
M A N N I N G

Richard L. Nuckolls

A guide for data engineers

ADF definitions

Triggers
start pipeline
execution.

TriggersPipelines LinkedServiceDatasets

Data mapping

Service connections

Datasets

LinkedService

Definitions feed IR processing steps.

Data Lake

store

SQL

Database

Delimited

schema

Copy

activity

Table

schema

Connected
through
datasets

Data Lake

Analytics

U-SQL

activity

Data Lake

store

No Dataset:
Connect
directly

Integration

Runtime

Pipeline steps

4

2

3

1

Azure Storage,
Streaming, and
Batch Analytic

A GUIDE FOR DATA ENGINEERS

RICHARD NUCKOLLS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Toni Arritola
Technical development editor: Robin Dewson

Manning Publications Co. Review editor: Ivan Martinović
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Ben Berg
Shelter Island, NY 11964 Proofreader: Jason Everett

Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296307
Printed in the United States of America

 This book is dedicated to my loving wife, Joy.

brief contents
1 ■ What is data engineering? 1

2 ■ Building an analytics system in Azure 12

3 ■ General storage with Azure Storage accounts 33

4 ■ Azure Data Lake Storage 63

5 ■ Message handling with Event Hubs 93

6 ■ Real-time queries with Azure Stream Analytics 116

7 ■ Batch queries with Azure Data Lake Analytics 158

8 ■ U-SQL for complex analytics 193

9 ■ Integrating with Azure Data Lake Analytics 223

10 ■ Service integration with Azure Data Factory 257

11 ■ Managed SQL with Azure SQL Database 299

12 ■ Integrating Data Factory with SQL Database 332

13 ■ Where to go next 360
v

contents
preface xiii
acknowledgements xv
about this book xvi
about the author xix
about the cover illustration xx

1 What is data engineering? 1
1.1 What is data engineering? 2
1.2 What do data engineers do? 3
1.3 How does Microsoft define data engineering? 4

Data acquisition 6 ■ Data storage 6 ■ Data processing 6
Data queries 7 ■ Orchestration 7 ■ Data retrieval 7

1.4 What tools does Azure provide for data engineering? 7
1.5 Azure Data Engineers 8
1.6 Example application 9

2 Building an analytics system in Azure 12
2.1 Fundamentals of Azure architecture 13

Azure subscriptions 13 ■ Azure regions 14 ■ Azure naming
conventions 14 ■ Resource groups 16 ■ Finding resources 17

2.2 Lambda architecture 17
vii

CONTENTSviii
2.3 Azure cloud services 19
Azure analytics system architecture 20 ■ Event Hubs 20
Stream Analytics 21 ■ Data Lake Storage 21 ■ Data Lake
Analytics 21 ■ SQL Database 22 ■ Data Factory 22
Azure PowerShell 22

2.4 Walk-through of processing a series of event
data records 22
Hot path 22 ■ Cold path 23 ■ Choosing abstract Azure
services 23

2.5 Calculating cloud hosting costs 28
Event Hubs 29 ■ Stream Analytics 29 ■ Data Lake
Storage 29 ■ Data Lake Analytics 30 ■ SQL Database 31
Data Factory 31

3 General storage with Azure Storage accounts 33
3.1 Cloud storage services 35

Before you begin 35

3.2 Creating an Azure Storage account 35
Using Azure portal 36 ■ Using Azure PowerShell 37
Azure Storage replication 38

3.3 Storage account services 39
Blob storage 40 ■ Creating a Blobs service container 40
Blob tiering 41 ■ Copy tools 42 ■ Queues 45 ■ Creating a
queue 49 ■ Azure Storage queue options 52

3.4 Storage account access 53
Blob container security 54 ■ Designing Storage account
access 54

3.5 Exercises 61
Exercise 1 61 ■ Exercise 2 61

4 Azure Data Lake Storage 63
4.1 Create an Azure Data Lake store 65

Using Azure Portal 65 ■ Using Azure PowerShell 66

4.2 Data Lake store access 68
Access schemes 68 ■ Configuring access 69 ■ Hierarchy
structure in the Data Lake store 73

4.3 Storage folder structure and data drift 77
Hierarchy structure revisited 77 ■ Data drift 82

CONTENTS ix
4.4 Copy tools for Data Lake stores 85
Data Explorer 85 ■ ADLCopy tool 87 ■ Azure Storage
Explorer tool 89

4.5 Exercises 91
Exercise 1 91 ■ Exercise 2 91

5 Message handling with Event Hubs 93
5.1 How does an Event Hub work? 94
5.2 Collecting data in Azure 94
5.3 Create an Event Hubs namespace 96

Using Azure PowerShell 96 ■ Throughput units 97
Event Hub geo-disaster recovery 97 ■ Failover with
geo-disaster recovery 99

5.4 Creating an Event Hub 100
Using Azure portal 100 ■ Using Azure PowerShell 100
Shared access policy 101

5.5 Event Hub partitions 102
Multiple consumers 102 ■ Why specify a partition? 103
Why not specify a partition? 103 ■ Event Hubs message
journal 104 ■ Partitions and throughput units 104

5.6 Configuring Capture 104
File name formats 105 ■ Secure access for Capture 105
Enabling Capture 106 ■ The importance of time 109

5.7 Securing access to Event Hubs 109
Shared Access Signature policies 110 ■ Writing to
Event Hubs 111

5.8 Exercises 114
Exercise 1 114 ■ Exercise 2 114 ■ Exercise 3 115

6 Real-time queries with Azure Stream Analytics 116
6.1 Creating a Stream Analytics service 118

Elements of a Stream Analytics job 119 ■ Create an ASA job
using the Azure portal 119 ■ Create an ASA job using Azure
PowerShell 120

6.2 Configuring inputs and outputs 122
Event Hub job input 123 ■ ASA job outputs 126

6.3 Creating a job query 135
Starting the ASA job 137 ■ Failure to start 138
Output exceptions 139

CONTENTSx
6.4 Writing job queries 139
Window functions 140 ■ Machine learning functions 146

6.5 Managing performance 148
Streaming units 148 ■ Event ordering 150

6.6 Exercises 155
Exercise 1 155 ■ Exercise 2 156

7 Batch queries with Azure Data Lake Analytics 158
7.1 U-SQL language 160

Extractors 161 ■ Outputters 162 ■ File selectors 163
Expressions 165

7.2 U-SQL jobs 165
Selecting the biometric data files 166 ■ Schema extraction 167
Aggregation 169 ■ Writing files 169

7.3 Creating a Data Lake Analytics service 171
Using Azure portal 172 ■ Using Azure PowerShell 172

7.4 Submitting jobs to ADLA 174
Using Azure portal 174 ■ Using Azure PowerShell 176

7.5 Efficient U-SQL job executions 178
Monitoring a U-SQL job 178 ■ Analytics units 179
Vertexes 179 ■ Scaling the job execution 182

7.6 Using Blob Storage 185
Constructing Blob file selectors 185 ■ Adding a new data
source 186 ■ Filtering rowsets 188

7.7 Exercises 191
Exercise 1 191 ■ Exercise 2 191

8 U-SQL for complex analytics 193
8.1 Data Lake Analytics Catalog 194

Simplifying U-SQL queries 194 ■ Simplifying data access 195
Loading data for reuse 205

8.2 Window functions 215
8.3 Local C# functions 217
8.4 Exercises 220

Exercise 1 221 ■ Exercise 2 222

CONTENTS xi
9 Integrating with Azure Data Lake Analytics 223
9.1 Processing unstructured data 225

Azure Cognitive Services 225 ■ Managing assemblies in
the Data Lake 226 ■ Image data extraction with
Advanced Analytics 230

9.2 Reading different file types 233
Adding custom libraries with a Catalog 233 ■ Creating a catalog
database 233 ■ Building the U-SQL DataFormats solution 234
Code folders 235 ■ Using custom assemblies 236

9.3 Connecting to remote sources 248
External databases 248 ■ Credentials 251 ■ Data
Source 251 ■ Tables and views 253

9.4 Exercises 254
Exercise 1 254 ■ Exercise 2 255

10 Service integration with Azure Data Factory 257
10.1 Creating an Azure Data Factory service 259
10.2 Secure authentication 262

Azure Active Directory integration 263 ■ Azure Key Vault 266

10.3 Copying files with ADF 272
Creating a Files storage container 272 ■ Adding secrets to
AKV 273 ■ Creating a Files storage linkedservice 274
Creating an ADLS linkedservice 276 ■ Creating a pipeline
and activity 280 ■ Creating a scheduled trigger 288

10.4 Running an ADLA job 291
Creating an ADLA linkedservice 292 ■ Creating a pipeline
and activity 294

10.5 Exercises 296
Exercise 1 296 ■ Exercise 2 297

11 Managed SQL with Azure SQL Database 299
11.1 Creating an Azure SQL Database 301

Create a SQL Server and SQLDB 302

11.2 Securing SQLDB 302
11.3 Availability and recovery 304

Restoring and moving SQLDB 304 ■ Database safeguards 311
Creating alerts for SQLDB 317

CONTENTSxii
11.4 Optimizing costs for SQLDB 318
Pricing structure 319 ■ Scaling SQLDB 321
Serverless 323 ■ Elastic Pools 325

11.5 Exercises 328
Exercise 1 328 ■ Exercise 2 329 ■ Exercise 3 330
Exercise 4 330

12 Integrating Data Factory with SQL Database 332
12.1 Before you begin 333
12.2 Importing data with external data sources 334

Creating a database scoped credential 336 ■ Creating an external
data source 338 ■ Creating an external table 339 ■ Importing
Blob files 340

12.3 Importing file data with ADF 341
Authenticating between ADF and SQLDB 343 ■ Creating SQL
Database linkedservice 344 ■ Creating datasets 347 ■ Creating
a copy activity and pipeline 351

12.4 Exercises 356
Exercise 1 356 ■ Exercise 2 357 ■ Exercise 3 357

13 Where to go next 360
13.1 Data catalog 361

Data Catalog as a service 362 ■ Data locations 362
Data definitions 362 ■ Data frequency 363 ■ Business
drivers 363

13.2 Version control and backups 363
Blob Storage 364 ■ Data Lake Storage 364 ■ Stream
Analytics 365 ■ Data Lake Analytics 365 ■ Data Factory
configuration files 365 ■ SQL Database 371

13.3 Microsoft certifications 372
13.4 Signing off 372

appendix A Setting up Azure services through PowerShell 374
appendix B Configuring the Jonestown Sluggers analytics system 389

index 415

preface
This book started, like any journey, with a single step. The services in Azure were run-
ning fine, but I still had a lot of code to write for the data processing. I was months
into the implementation when I saw Mike Stephens’s email. I wondered, “Is this
legit?” Why would a book publisher contact me?

 I’d been raising my profile as an Azure developer. Writing code, designing new sys-
tems, and migrating platforms are part of a team lead’s work. I was going to confer-
ences on Azure technology too, and writing up what I learned for my company. Put it
on social media; if you don’t tell someone, how will they know? Writing a book seemed
like the next step up. So I jumped at it.

 I’ve always enjoyed teaching. Maybe I should say lecturing because when I open my
mouth, I end up explaining a lot of things. I got my MCSD certification after a few
months of studying for the last test. I told others they should get it too. That’s what I
wanted to write: a study guide for my next certification, based on this new analysis sys-
tem I was building. Studying reveals how many options you have and I love to have
options. Like any long journey, writing a book presents many options too. This journey
ended up rather far from where I imagined that first step would lead.

 This book was written for the Microsoft technologist. I chose from the multitude of
options available specific services that tightly integrated with each other. Each one
does its job, and does it well. When I started, the exam “Perform Big Data Engineer-
ing on Microsoft Cloud Services” included Stream Analytics, Data Lake stores, Data
Lake Analytics, and Data Factory. I’ve used these services and know them well. I
thought I could write an exam preparation book about them. The replacement exam
xiii

PREFACExiv
“Implementing an Azure Data Solution” shifted focus to larger services that do almost
everything, like Azure Databricks, Synapse Analytics, and Cosmos DB. Each of these
services could be a book unto itself.

 The services chosen for this book, including Azure Storage, Data Lake stores,
Event Hubs, Stream Analytics, Data Lake Analytics, Data Factory, and SQL Database,
present a low barrier to entry for developers and engineers familiar with other Micro-
soft technologies. Some of them are broadly useful in cloud applications generally. So
I’ve written a book that’s part exam guide, part general introduction to Azure. I hope
you find these services useful in your cloud computing efforts, and that this book gives
you the tools you need to use them.

acknowledgements
I would like to first thank my wife, Joy, for always supporting me and being my biggest
cheerleader.

 Thank you so much Luke Fischer, James Dzidek, and Defines Fineout for reading
the book and encouraging me during the process. Thanks also to Filippo Barsotti,
Alexander Belov, Pablo Fdez, and Martin Smith for their feedback. I also need to men-
tion the reviewers who gave generously of their time and whose comments greatly
improved this book, including Alberto Acerbis, Dave Lobban, Eros Pedrini, Evan
Wallace, Gandhi Rajan, Greg Wright, Ian Stirk, Jason Rendel, Jose Luis Perez,
Karthikeyarajan Rajendran, Mike Fowler, Milorad Imbra, Pablo Acuña, Pierfrancesco
D’Orsogna, Raushan Jha, Ravi Sajnani, Richard Young, Sayak Paul, Simone Sguazza,
Srihari Sridharan, Taylor Dolezal, and Thilo Käsemann.

 I would like to thank the people at Manning for supporting me through the learn-
ing process that is writing a technical book: Deirdre Hiam, my project editor; Ben
Berg, my copyeditor; Jason Everett, my proofreader; and Ivan Martinović, my review
editor. I’m grateful to Toni Arritola for patience and advocating for explaining every-
thing. Thanks to Robin Dewson for an expert review and easy to swallow criticism.
And thanks to Mike Stephens for giving me the chance to write this book.
xv

about this book
Azure Storage, Streaming, and Batch Analytics was written to provide a practical guide to
creating and running a data analysis system using Lambda architecture in Azure. It
begins by explaining the Lambda architecture for data analysis, and then introduces
the Azure services which combine into a working system. Successive chapters create
new Azure services and connect each service together to form a tightly integrated col-
lection. Best practices and cost considerations help prevent costly mistakes.

Who should read this book
This book is for developers and system engineers who support data collection and
processing in Azure. The reader will be familiar with Microsoft technologies, but
needs only a basic knowledge of cloud technologies. A developer will be familiar with
C# and SQL languages; an engineer with PowerShell commands and Windows desk-
top applications. Readers should understand CSV and JSON file formats and be able
to perform basic SQL queries against relational databases.

How this book is organized: a roadmap
This book is divided into 13 chapters. The first two chapters introduce data processing
using Lambda architecture and how the Azure services discussed in the book form
the system. Each service has one or more chapters devoted to the creation and use
of the technology. The final chapter covers a few topics of interest to further improve
your data engineering skills.
xvi

ABOUT THIS BOOK xvii
■ Chapter 1 gives an overview of data engineering, including what a data engi-
neer does.

■ Chapter 2 describes fundamental Azure concepts and how six Azure services
are used to build a data processing system using Lambda architecture.

■ Chapter 3 shows how to set up and secure Storage accounts, including Blob
Storage and Queues.

■ Chapter 4 details creating and securing a Data Lake store and introduces the
Zones framework, a method for controlling use of a data lake.

■ Chapter 5 builds a resilient and high-throughput ingestion endpoint with Event
Hubs.

■ Chapter 6 shows how to create a streaming data pipeline with Stream Analytics,
and explores the unique capabilities of stream data processing.

■ Chapter 7 creates a Data Lake Analytics service, and introduces batch process-
ing with U-SQL jobs.

■ Chapter 8 dives into more complex U-SQL jobs with reusable tables, functions,
and views.

■ Chapter 9 extends U-SQL jobs with custom assemblies, including machine
learning algorithms for unstructured data processing.

■ Chapter 10 shows how to build data processing automation using Data Factory
and Key Vault.

■ Chapter 11 dives into database administration when using SQL Databases.
■ Chapter 12 demonstrates multiple ways to move data into SQL Databases.
■ Chapter 13 discusses version control for your Azure services and building a data

catalog to support your end users.

Because each service integrates with other services, this book presents the eight Azure
services in a specific order. Some services, like Stream Analytics and Data Factory, rely
on connecting to preexisting services. Many chapters include references to data files
to load into your system. Therefore, it’s best to read earlier chapters before later chap-
ters. The appendix includes code snippets in Azure PowerShell language for creating
instances of the required services. Using these PowerShell snippets, you can create any
required services if you want to jump straight into a chapter for a particular service.

About the code
Chapters 3–12 include Azure PowerShell commands to create instances of the services
discussed and to configure various aspects of the services. Some chapters, like chap-
ter 5, include demo code written in PowerShell to show usage of the service. Other
chapters, especially chapter 10, show JSON configuration files that support the config-
uration of the service. The code is available in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

 The appendix includes guidance for installing the Azure PowerShell module on
your Windows computer. You can also run the scripts using Azure Cloud Shell at

ABOUT THIS BOOKxviii
https://shell.azure.com. The scripts were created using version 3 of Azure PowerShell,
and newer versions also support the commands. The appendix collects the service cre-
ation scripts too.

 This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes boldface is used to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Author online
Purchase of Azure Storage, Streaming, and Batch Analytics includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum, go to https://livebook.manning.com/#!/book/azure-storage-
streaming-and-batch-analytics/discussion. You can also learn more about Manning's
forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

about the author
RICHARD NUCKOLLS has a passion for designing software and building things.

 He wrote his first computer program in high school and turned it into a career.
 He began teaching others about technology any time he could, culminating in his

first book about Azure.
 He recently started Blue Green Builds, a data integration company, so he could do

more in the cloud.
 You can follow his personal projects and see what he builds next at rnuckolls.com.
xix

about the cover illustration
The figure on the cover of Azure Storage, Streaming, and Batch Analytics is captioned
“Dame génoise,” or Genoese lady. The illustration is taken from a collection of dress
costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810),
titled Costumes de Différents Pays, published in France in 1788. Each illustration is finely
drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages. In
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress. The way we dress has changed since then
and the diversity by region, so rich at the time, has faded away. It is now hard to tell
apart the inhabitants of different continents, let alone different towns, regions, or
countries. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life. At a time when it is
hard to tell one computer book from another, Manning celebrates the inventiveness
and initiative of the computer business with book covers based on the rich diversity
of regional life of two centuries ago, brought back to life by Grasset de Saint-Sau-
veur’s pictures.
xx

What is data engineering?
Data collection is on the rise. More and more systems are generating more and
more data every day.1

More than 30,000 gigabytes of data are generated every second, and the rate of data
creation is only accelerating.

 —Nathan Marz

Increased connectivity has led to increased sophistication and user interaction in
software systems. New deployments of connected “smart” electronics also rely on
increased connectivity. In response, businesses now collect and store data from all

This chapter covers
 What is data engineering?

 What do data engineers do?

 How does Microsoft define data engineering?

 What tools does Azure provide for data
engineering?

1 Nathan Marz and James Warren. Big Data: Principles and Best Practices of Scalable Real-Time Data Systems.
Shelter Island, NY: Manning Publications, 2015.
1

2 CHAPTER 1 What is data engineering?
aspects of their products. This has led to an enormous increase in compute and stor-
age infrastructure. Writing for Gartner, Mark Beyer defines “Big Data.”2

Big Data is high volume, high velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision making, insight discovery,
and process optimization.

 —Mark A. Beyer

The scale of data collection and processing requires a change in strategy.
 Businesses are challenged to find experienced engineers and programmers to

develop the systems and processes to handle this data. The new role of data engineer
has evolved to fill this need. The data engineer manages this data collection. Collect-
ing, preparing, and querying of this mountain of data using Azure services is the sub-
ject of this book. The reader will be able to build working data analytics systems in
Azure after completing the book.

1.1 What is data engineering?
Data engineering is the practice of building data storage and processing systems. Robert
Chang, in his “A Beginner’s Guide to Data Engineering,” describes the work as design-
ing, building, and maintaining data warehouses.3 Data engineering creates scalable
systems which allow analysts and data scientists to extract meaningful information
from the data.

 Collecting data seems like a simple activity. Take reporting website traffic. A single
user, during a site in a web browser, requests a page. A simple site might respond with
an HTML file, a CSS file, and an image. This example could represent one, three, or
four events.

 What if there is a page redirect? That is another event.
 What if we want to log the time taken to query a database?
 What if we retrieve some items from cache but find they are missing?

All of these are commonly logged data points today.
 Now add more user interaction, like a comparison page with multiple sliders. Each

move of the slider logs a value. Tracking user mouse movement returns hundreds of
coordinates. Consider a connected sensor with a 100 Hz sample rate. It can easily
record over eight million measurements a day. When you start to scale to thousands
and tens of thousands of simultaneous events, every point in the pipeline must be
optimized for speed until the data comes to rest.

2 Mark A. Beyer and Douglas Laney. “The Importance of ‘Big Data’: A Definition.” Gartner, 2012. http://
www.gartner.com/id=2057415.

3 Robert Chang. “A Beginner’s Guide to Data Engineering—Part I.” Medium, June 24, 2018. http://mng.bz/
JyKz.

3What do data engineers do?
1.2 What do data engineers do?
Data engineers build storage and processing systems that can grow to handle these
high volume, high velocity data flows. They plan for variation and volume. They man-
age systems that provide business value by answering questions with data.

 Most businesses have multiple sources generating data. Manufacturing compa-
nies track the output of the machines, employees, and their shipping departments.
Software companies track their user actions, software bugs per release, and devel-
oper output per day. Service companies check number of sales calls, time to com-
plete tasks, usage of parts stores, and cost per lead. Some of this is small scale; some
of it is large scale.

 Analysts and managers might operate on narrow data sets, but large enterprises
increasingly want to find efficiencies across divisions, or find root causes behind
multi-faceted systems failures. In order to extract value from these disparate sources
of data, engineers build large-scale storage systems as a single data repository. A soft-
ware company may implement centralized error logging. The service company may
integrate their CRM, billing, and finance systems. Engineers need to support the
ingestion pipeline, storage backbone, and reporting services across multiple groups
of stakeholders.

 The first step in data consolidation is often a large relational database. Analysts
review reports, CSV files, and even Excel spreadsheets in an attempt to get clean and
consistent data. Often developers or database administrators prepare scripts to import
the data into databases. In the best case, experienced database administrators define
common schema, and plan partitioning and indexing. The database enters produc-
tion. Data collection commences in earnest.

 Typical systems based on storing data in relational databases have problems with
scale. A single database instance, the simplest implementation, always becomes a bot-
tleneck given increased usage. There are a finite amount of CPU cores and drive
space available on a single database instance. Scaling up can only go so far before I/O
bottlenecks prevent meeting response time targets. Distributing the database tables
across multiple servers, or sharding, can enable greater throughput and storage, at the
cost of greater complexity. Even with multiple shards, database queries under load dis-
play more and more latency. Eventually query latency grows too large to satisfy the
requirements of the application.

 The open source community answered the challenge of building web-scale data
systems. Hadoop makes it easy to access vast disk storage. Spark provides a fast and
highly available logging endpoint. NoSQL databases give users access to large stores of
data quickly. Languages like Python and R make deep dives into huge flat files possi-
ble. Analysts and data scientists write algorithms and complex queries to draw conclu-
sions from the data. But this new environment still requires system administrators to
build and maintain servers in their data center.

4 CHAPTER 1 What is data engineering?
1.3 How does Microsoft define data engineering?
Using these new open source tools looks quite different from the traditional database-
centric model. In his landmark book, Nathan Marz coined a new term: Lambda archi-
tecture. He defined this as a “general-purpose approach to implementing an arbitrary
function on an arbitrary data set and having the function return its results with low
latency” (Marz, p.7)4. The goals of Lambda architecture address many of the inherent
weaknesses of the database-centric model.

 Figure 1.1 shows a general view of the new approach to saving and querying data.
Data flows into both the Speed layer and the Batch layer. The Speed layer prepares data
views of the most recent period in real time. The Serving layer delivers data views over
the entire period, updated at regular intervals. Queries get data from the Speed layer,
Serving layer, or both, depending on the time period queried.

4 Marz and Warren. Big Data.

Batch layer

Serving layer

Speed layer

Real-time

view

Batch

view

Master data set

New data:

011010010...

Query:

“How many...?”

Real-time

view

Real-time

view

Batch

view

Batch

view

Figure 1.1 Lambda analytics system, showing logical layers of processing
based on query latency

5How does Microsoft define data engineering?
Figure 1.2 describes an analytics system using a Lambda architecture. Data flows
through the system from acquisition to retrieval via two paths: batch and stream. All
data lands in long term storage, with scheduled and ad hoc queries generating
refined data sets from the raw data. This is the batch process. Data with short time win-
dows for retrieval run through an immediate query process, generating refined data
in near-real time. This is the stream process.

1 Data is generated by applications, devices, or servers.
2 Each new piece of data is saved to long-term file storage.
3 New data is also sent to a stream processor.
4 A scheduled batch process reads the raw data.
5 Both stream and batch processes save query output to a retrieval endpoint.
6 Users query the retrieval endpoint.

Figure 1.2 shows the core principle of Lambda architecture: data flows one way. Only
new data is added to the data store; raw data is never updated. Batch processes yield

New data

File storage

Batch process

Stream process

Retrieval

User queries

3

4

5

2

1

6

JSON

CSV

CSV

JSON

Figure 1.2 Lambda architecture
with Azure PaaS services

6 CHAPTER 1 What is data engineering?
data sets by reading the raw data and deposit the data sets in a retrieval layer. A retrieval
layer handles queries.

 Human error accounts for the largest problem in operating an analytics system.
Lambda architecture mitigates these errors by storing the original data immutably.
An immutable data set—where data is written once, read repeatedly, and never modi-
fied—does not suffer from corruption due to incorrect update logic. Bad data can be
excluded. Bad queries can be corrected and run again.

 The output information remains one step removed from the source. In order to
facilitate fast writes, new bits of data are only appended. Updates to existing data
doesn’t happen. To facilitate fast reads, two separate mechanisms converge their out-
puts. The regularly scheduled batch process generates information as output from
queries over the large data set. Between batch executions, incoming data undergoes a
similar query to extract information. These two information sets together form the
entire result set.

 An interface allows retrieving the combined result set. Because writes, reads, que-
ries, and request handling execute as distributed services across multiple servers, the
Lambda architecture scales both horizontally and vertically. Engineers can add both
more and more powerful servers. Because all of the services operate as distributed
nodes, hardware faults are simple to correct, and routine maintenance work has little
impact on the overall system. Implementing a Lambda architecture achieves the goals
of fault tolerance, low latency reads and writes, scalability, and easy maintenance.

 Mike Wilson describes the architecture pattern for Microsoft in the “Big data archi-
tecture style” guide (http://mng.bz/2XOo). Six functions make up the core of this
design pattern.

1.3.1 Data acquisition

Large scale data ingestion happens one of two ways: a continuous stream of discrete
records, or a batch of records encapsulated in a package. Lambda architecture han-
dles both methods with aplomb. Incoming data in packages is stored directly for later
batch processing. Incoming data streams are processed immediately and packaged for
later batch processing. Eventually all data becomes input for query functions.

1.3.2 Data storage

Distributed file systems decouple saving data from querying data. Data files are col-
lected and served by multiple nodes. More storage is always available by adding more
nodes. The Hadoop Distributed File System (HDFS) lies at the heart of most modern
storage systems designed for analytics.

1.3.3 Data processing

A distributed query system partitions queries into multiple executable units and exe-
cutes them over multiple files. In Hadoop analytics systems, the MapReduce algo-
rithm handles distributing a query over multiple nodes as a two step process. Each

7What tools does Azure provide for data engineering?
Hadoop cluster node maps requested data to a single file, and the query returns
results from that file. The results from all the files are combined and the resulting set
of data is reduced to a set fulfilling the query. Multiple cluster nodes divide the Map
and Reduce tasks between them. This enables efficient querying of large scale collec-
tions. New queries can be set for scheduled updates or submitted for a single result.
Multiple query jobs can run simultaneously, each using multiple nodes.

1.3.4 Data queries

A real time analysis engine monitors the incoming data stream and maintains a snap-
shot of the most recent data. This snapshot contains the new data since the last sched-
uled query execution. Queries update result sets in the data retrieval layer. Usually these
queries duplicate the syntax or output of the batch queries over the same period.

1.3.5 Orchestration

A scheduling system runs queries using the distributed query system against the dis-
tributed file system. The output of these scheduled queries becomes the result set for
analysis. More advanced systems include data transfers between disparate systems. The
orchestration function typically moves result sets into the data retrieval layer.

1.3.6 Data retrieval

Lastly, an interface for collating and retrieving results from the data gives the end user
a low latency endpoint for information. This layer often relies on the ubiquitous
Structured Query Language (SQL) to return results to analysis tools. Together these
functions fulfill the requirements of the data analysis system.

1.4 What tools does Azure provide for data engineering?
Cloud systems promise to solve challenges with processing large scale data sets.

 Processing power limitations of single-instance services
 Storage limitations and management of on-premises storage systems
 Technical management overhead of on-premises systems

Using Azure eliminates many difficulties in building large scale data analytics systems.
Automating the setup and support of servers and applications frees up your system
administrators to use their expertise elsewhere. Ongoing expense of hardware can be
minimized. Redundant systems can be provisioned as easily as single instances. The
packaged analytics system is easy to deploy.

 Several cloud providers have abstracted the complexity of the Hadoop cluster and
its associated services. Microsoft’s cloud-based Hadoop system is called HDInsight.

 According to Jason Howell, HDInsight is “a fully managed, full spectrum, open
source analytics service for enterprises.”5 The data engineer can build a complete data

5 Jason Howell. “What is Apache Hadoop in Azure HDInsight.” Microsoft Docs, February 27, 2020. http://
mng.bz/1zeQ.

8 CHAPTER 1 What is data engineering?
analytics system using HDInsight and common tools associated with Hadoop. Many
data engineers, especially those familiar with Linux and Apache software, choose
HDInsight when building a new data warehouse in Azure. Configuration approaches,
familiar tools, and Linux-specific features and training materials are some of the rea-
sons why Linux engineers choose HDInsight.

 Microsoft also built a set of abstracted services in Azure which perform the func-
tions required for a data analysis system, but without Linux and Apache. Along with
the services, Microsoft provides a reference architecture for building a big data sys-
tem. The model guides engineers through some high-level technology choices when
using the Microsoft tools.6

A big data architecture is designed to handle the ingestion, processing, and analysis of
data that is too large or complex for traditional database systems.

 —Mike Wilson

This model covers common elements of the Lambda architecture, including data stor-
age, batch and stream processing, and variations on an analysis retrieval endpoint.
The model describes additional elements that are necessary but not defined in the
Lambda model. For robust and high performance ingestion, a message queue can
pass data to both the stream process and the data store. A query tool for data scientists
gives access to aggregate or processed information. An orchestration tool schedules
data transfers and batch processing.

 Microsoft lays out these skills and technologies as part of its certification for Azure
Data Engineer Associate (http://mng.bz/emPz). Azure Data Engineers are described
as those who “design and implement the management, monitoring, security, and pri-
vacy of data using the full stack of Azure data services to satisfy business needs.” This
book focuses on the Microsoft Azure technologies described in this certification. This
includes Event Hubs, Stream Analytics, Data Lake store and storage accounts, SQL
Database, and Data Factory. Engineers can use these services to build big data analyt-
ics solutions.

1.5 Azure Data Engineers
Platform as a service (PaaS) tools in Azure allow engineers to build new systems with-
out requiring any on-premise hardware or software support. While HDInsight pro-
vides an open source architecture for handling data analysis tasks, Microsoft Azure
also provides another set of services for analytics. For engineers familiar with Micro-
soft languages like C# and T-SQL, Azure hosts several services which can be linked to
build data processing and analysis systems in the cloud.

 Using the tool set in Azure for building a large scale data analysis system requires
some basic and intermediate technical skills. First, SQL is used extensively for processing
streams of data, batch processing, orchestrating data migrations, and managing SQL

6 Mike Wilson. “Big data architecture style.” Microsoft Docs, November 20, 2019. http://mng.bz/PAV8.

9Example application
databases. Second, CSV and JSON files facilitate transferring data between systems.
Data engineers must understand the strengths and weaknesses of these file formats.
Reading and writing these files are core activities of the batch processing workflows.
Third, the Microsoft data engineer should be able to write basic C# and JavaScript
functions. Several cloud tools, including Stream Analytics and Data Lake Analytics,
are extensible using these languages. Processing functions and helpers can run in
Azure and be triggered by cloud service events. Last, experience with the Azure portal
and familiarity with the Azure CLI or PowerShell allows the engineer to create new
resources efficiently.

1.6 Example application
In this book, you will build an example data analytics system using Azure cloud tech-
nologies. Marz defines the function of the data analytics system this way: “A data sys-
tem answers questions based on information that was acquired in the past up to the
present.” (Marz, p.6)7 You will learn how to create Azure services by working through
an overarching scenario.

 The Jonestown Sluggers, a minor league baseball team, want to use data to
improve their players’ performance and company efficiency. They field a new sensor
suite in their players’ uniforms to collect data during training and games. They iden-
tify current data assets to analyze. IT systems for the company already run on Micro-
soft technology. You move to the new position of data engineer to build the new
analytics system.

 You will base your design on the principles of the Lambda architecture. The system
will provide a scalable endpoint for inbound messages and a data store for loading
data files. The system will collect data and store it securely. It will allow batch process-
ing of queries over the entire data set, scheduling the batch executions and moving
data into the retrieval endpoint. Concurrently, incoming data will stream into the
retrieval endpoint.

 Figure 1.3 shows a diagram of your application using Azure technologies. Six pri-
mary Azure services work together to form the system.

1 Event Hubs logs messages from data sources like Azure Functions, Azure Event
Hubs SDK code, or API calls.

2 Stream Analytics subscribes to the Event Hubs stream and continually reads the
incoming messages.

3 A Data Lake store saves new JSON files each hour containing the Stream Analyt-
ics data.

4 Data Lake Analytics reads the new JSON file from the Data Lake store each
hour and outputs an aggregate report to the Data Lake store.

7 Marz and Warren. Big Data.

10 CHAPTER 1 What is data engineering?
5 SQL Database saves new aggregate query result records any time the Stream
Analytics calculations meet a filter criteria.

6 Data Factory reads the new aggregate report from the store, deletes the previ-
ous day’s data from the database, and writes aggregate query results to the data-
base for the entire batch.

Multiple services provide methods for processing user queries. The SQL Database
provides a familiar endpoint for querying aggregate data. Engineers and data scien-
tists can submit new queries to Stream Analytics and Data Lake Analytics to generate
new data sets. They can run SQL queries against existing data sets in the SQL Data-
base with low latency. This proposal fulfills the requirements of a Lambda architecture
big data system.

 In order to build this analytics system, you’ll need an Azure subscription. Signing
up for a personal account and subscription takes an email address and a credit card.
Most of the examples in this book use Azure PowerShell to create and interact with

Data Lake
store

Data Lake
Analytics

Event
Hubs

Stream
Analytics

SQL
Database

SQL
Database

User query

Data
Factory

Data Lake
Analytics

Data Lake
store

Blob
Storage

Event
Hubs

Blob
Storage

Batch layer

Speed layer

Serving layer

New data

Power
BI

Azure
Functions

Machine
Learning

CSV TXTJSON

Figure 1.3 Azure PaaS Services analytics application

11Summary
Azure services. You can run these PowerShell scripts using Azure Shell, a web-based
terminal located at https://shell.azure.com/. Nearly all of the examples in this book
are also shown using the Azure Portal. PowerShell scripts, with the Azure PowerShell
module, allow a more repeatable process for creating and managing Azure services. A
recent version of an integrated development environment (IDE) like Visual Studio
2019 is optional, if you want to build the C# code examples or create your own proj-
ects using the various Azure software development kits.

Summary
 Many challenges come with the growing data collection and analysis efforts at

most companies, including older systems struggling under increased load and
shortages of space and time. These take up valuable developer resources.

 Increased usage leads to increased disruption of unplanned outages, and the
risk of data loss is always present.

 The database-centric model for data analysis systems no longer meets the needs
of many businesses.

 The Lambda architecture reduces system complexity by minimizing the effort
required for low latency queries.

 Building a Lambda architecture analytics system with cloud technologies reduces
workload for engineers even further.

 Azure provides PaaS technologies for building a web-scale data analytics system.

Building an analytics
system in Azure
Cloud providers offer a wide selection of services to build a data warehouse
and analytics system. Some services are familiar incarnations of on-premises
applications: virtual machines, firewalls, file storage, and databases. Increasing
in abstraction are services like web hosting, search, queues, and application con-
tainerization services. At the highest levels of abstraction are products and services
that have no analogue in a typical data center. For example, Azure Functions exe-
cutes user code without needing to set up servers, runtimes, or program contain-
ers. Moving workloads to more abstract services reduces or eliminates setup and
maintenance work and brings higher levels of guaranteed service. Conversely,

This chapter covers
 Introducing the six Azure services discussed in

this book

 Joining the services into a working analytics
system

 Calculating fixed and variable costs of these
services

 Applying Microsoft big data architecture best
practices
12

13Fundamentals of Azure architecture
more abstract services remove access to many configuration settings and constrain
usage scenarios. This chapter introduces the Azure services we’ll use to build our
analytics system. These services range from abstract to very abstract, which allows
you to focus on functionality immediately without needing to spend time on the
underlying support systems.

2.1 Fundamentals of Azure architecture
Before you dive into creating and using Azure services, it’s important to understand
some of the basic building blocks. These are required for creating services and config-
uring them for optimum efficiency. These properties include:

 Azure subscriptions—service billing
 Azure Regions—underlying service location
 Resource groups—security and management boundaries
 Naming conventions—service identification

As you create new Azure services, you will choose each of these properties for the new
service. Managing services is easier with thoughtful and consistent application of your
options.

2.1.1 Azure subscriptions

Every resource is assigned a subscription. The subscription provides a security bound-
ary: administrators and resources managers get initial authorization at the subscrip-
tion level. Resources and resource groups inherit permissions from their subscription.
The subscription also configures the licensing and payment agreement for the cloud
services used. This can be as simple as a monthly bill charged to a credit card, or an
enterprise agreement with third-party financing and invoicing.

 All Azure services will have a subscription, a resource group, a name, and a location.

 A subscription groups services together for access control and billing.
 A resource group groups related services together for management.
 A location groups services into a regional data center.
 Names are globally unique identifiers within the specific service.

Every Azure service, also called a resource, must have a name. Consistently applying a
naming convention helps users find services and identify ownership and usage of ser-
vices. You will be browsing and searching for the specific resource you need to work
with, from a resource group to a SQL Database to Azure Storage accounts.

TIP Because caching exists in many levels of Azure infrastructure, and sync-
ing changes can occur between regions, recreating a service with the same
name can be problematic in a short time frame (on the order of minutes).

14 CHAPTER 2 Building an analytics system in Azure
2.1.2 Azure regions

Microsoft Azure provides network services, data storage, and generalized and special-
ized compute nodes that are accessible remotely. Azure doesn’t allow access to their
servers or data centers, and users don’t own the physical hardware. These restrictions
makes Azure a cloud provider.

 Cloud providers own and maintain network and server hardware in data centers.
The data center provides all the power, Internet connectivity, and security required to
support the hardware operations that run the cloud services. Azure runs data centers
across the world.

 Azure data centers are clustered into regions. A region consists of two or more
data centers located within a small geographic area. There are many regions for host-
ing Azure resources across the globe, including the Americas, Europe, Asia Pacific,
and the Middle East and Africa.

 Data centers within a region share a high-speed network for low latency. Service and
data replication between data centers in a region provide critical disaster recovery safe-
guards. All Azure services exist in more than one region and some are available in every
region. Keeping related services within the same region maximizes system performance.
Choosing a region near to your users minimizes latency between the user and the services.

 This book uses the East US 2 region for any Azure PowerShell scripts which require a
specific region, because all resources in the book are available in that region.

TIP You can learn more about the global nature of Azure regions at http://
mng.bz/pz28. You can see the current list of Microsoft Azure services by
region at http://mng.bz/OvGR.

2.1.3 Azure naming conventions

You should create a resource group before creating any services. Use this first step to
plan your naming conventions and region preferences at the start of your project. A
resource naming convention should be applicable across all resources types and fol-
low these guidelines:

 It should align with security or management boundaries.
 It should decrease the cognitive load for the user in identifying a resource.
 It should produce a name which is globally unique within the service.
 Ideally, a naming convention will allow meaningful sorting by name.

An approach moving from broadest to narrowest classifications can fulfill these
requirements.

1 The broadest element is the Azure region or location. Most services will have a
definite location. Keeping related services in the same region limits charges for
network egress. Define a set of acronyms to use.

2 Define a platform name. What project, product, or client does the collection of
services support? When you have dozens or hundreds of the same service, sev-
eral levels of discrimination helps to target the correct service.

15Fundamentals of Azure architecture
3 Separate services by release promotion. Continuous deployment, to a develop-
ment or production environment, is one of several release strategies that rely
on deployment to more than one environment for testing and validation. Dev,
Stag, Test, Load, and Prod all work for defining release environments.

4 Adding a service type descriptor helps group similar services.
5 A use case descriptor is better than a number for expressing a particular service

instance’s function. For example, a system may use multiple Azure databases
such as Content, Users, and Logs, each with distinct usage periods and patterns.
Adding usage descriptors to the database names makes their purpose clear.

6 All other options being equal, a fixed-width numeric ID is a final differentiator.
A random string of alphanumeric characters also serves as a valid ID for auto-
matically provisioned services.

Figure 2.1 lays out these six elements.

As an example, picture a design for an analytics system hosted in the Australia South-
east region.

 A resource group name of ause-analytics-dev-grp
 An app service hosting a Web API site named ause-analytics-dev-web-api-01
 Two databases named ause-analytics-dev-db-raw-01 and ause-analytics-

dev-db-curated-01

 An Azure Storage account named auseanalyticsdevblob

location-platform-environment-type-use-number

Azure region e.g.

use (US East)

eugne (Europe Germany NE)

ause (Australia East)

Platform or client

or integrated system e.g.

analytics

client13

gisproc (GIS processing)

Jenkins

Release stage e.g.

dev, staging, prod

Service type e.g.

web, db, blobs,

function, vm

Service use case e.g.

public

webapi

reporting

function3

Instance number 01-99

Figure 2.1 Resource naming in Azure

16 CHAPTER 2 Building an analytics system in Azure
Some services, like Azure Storage, have a length limit for the name. You’ll see the
specific requirements for setting up Azure Storage in the next chapter, including
the naming restrictions. Other resource creation throughout the book will present
similar details. Use the components of the naming convention that make sense for
your situation.

NOTE An Azure Storage account is an umbrella resource that hosts services,
including Blobs, Queues, Files, and Tables. The Storage account Blob Storage
stores files of all sizes. You can learn more about Azure Storage accounts in
chapter 3.

Your services may all be in a single location and not need the location in the name.
Your release process may involve creating new services with the latest configuration
and changing an endpoint setting to the new services. In this case, your environment
variable must be more flexible than “dev” and “prod”, instead specifying a release ID.
Perhaps your projects can be separated by subscription, so you don’t need a project.
Or all your services might be a single type, so adding the type to the name would be
redundant. If you plan for expanded use of Azure services and features at the start,
your naming convention will be flexible enough to cover your system.

NOTE For another take on service names, Microsoft recommends some for-
mats at http://mng.bz/wB8B.

2.1.4 Resource groups

Resource groups in Azure are organizing containers. Every Azure service has one.
Every resource group has a region. The resource group anchors a service to a region,
with the primary configuration data for the service stored in that region. This is espe-
cially true for some services, like Cosmos DB and Traffic Manager, which are global
and have infrastructure in every region.

 Every Azure resource belongs to a resource group. Role-based access control
(RBAC) can be managed at the resource group level for all services in the resource
group. Deleting a resource group deletes all the resources attached to it. This book
uses ade-dev-eastus2 as the resource group for any PowerShell scripts which
require it.

 Every resource needs a resource group, so let’s create one now. The New-
AzResourceGroup command creates a new resource group. Provide the resource
group name using the Name parameter and the Azure region using Location. Execute
this script in PowerShell with the Azure Modules loaded.

New-AzResourceGroup -Name "ade-dev-eastus2" -Location "East US 2"

This PowerShell script will return an error if a group by that name exists. Otherwise it
will create a new resource group.

Listing 2.1 New resource group

17Lambda architecture
TIP You can find the current list of Azure regions at http://mng.bz/YxgB.

2.1.5 Finding resources

In the Azure portal, common filters include name, subscription, resource group, ser-
vice type, location, and tags. Tags are key-value pairs you can add to any service for fil-
tering. Azure provides multiple methods for filtering by type.

NOTE Remember, in the Azure portal, the content layout containers are
called blades.

Using the Azure portal, you can search in the All Services blade, use the type filter in
the All Resources blade, or use Favorites to navigate directly to a specific service type
blade. Filtering by name, location, and tags is available from the All Resources blade,
or from a specific service type’s blade.

 You can even use Azure PowerShell to get services by type. Access Azure PowerShell
by visiting Azure Cloud Shell at https://shell.azure.com/, or clicking the >_ header
menu in the Azure portal. See appendix A for more details about setting up Power-
Shell and using it to create and configure services in Azure. Listing 2.2 shows the mod-
ule command for getting a list of Azure Storage accounts.

Get-AzResource -ResourceType Microsoft.Storage/storageAccounts | ft

Listing 2.2 includes the Format-Table alias ft, which formats the command output as
a table instead of a column of property values. Listing 2.3 shows the output of the Get-
AzResource command. The subscription contains a single Azure Storage account.

Name ResourceGroupName ResourceType Location
---- ----------------- ------------ --------
adedeveastus ade-dev-eastus Microsoft.Storage/storageAccounts eastus

From listing 2.3, you can discern the naming convention in use is platform-environment-
location. Now that you can locate services in Azure, let’s take a look at how we’ll
design the analytics system.

2.2 Lambda architecture
Lambda architecture seeks to combine the best of real-time processing and fast query-
ing, with the ability to query over huge amounts of collected data. All of the data that
enters the system gets a time stamp. The time stamp puts the data in order, which is
split into multiple time windows based on the time stamp. Data follows two paths
through the system. The real-time “hot” path prepares data for querying with low
latency, on the order of seconds or minutes. The hot path has access to the most

Listing 2.2 Azure PowerShell list Storage accounts

Listing 2.3 Azure PowerShell list Storage accounts output

18 CHAPTER 2 Building an analytics system in Azure
recent data; therefore its calculations are accurate over a short window of time, but
may not be accurate over all time. The batch “cold” path prepares data over the entire
data window. The cold path has access to all the data before the batch execution, so
the calculations are accurate up to the time of the last batch. Typical latency for the
cold path is on the order of hours or days. Together the hot and cold paths contain
data from all the time windows.

 In an analytics system designed with a Lambda architecture, user queries are sub-
mitted to two processors, depending on the targeted time window. For real-time or
low latency data sets, a speed layer returns query results from the hot path. For longer
windows of time, a serving layer returns results from various batch processes which
cover the time window. Figure 2.2 shows queries submitted to two layers.

To build a Lambda analytics system in Azure, you need to select technologies and ser-
vices that provide the functions of these layers. Let’s look at some of the services
offered by Azure that can be used.

Batch layer

Serving layer

Speed layer

Real-time

view

Batch

view

Master data set

New data:

011010010...

Query:

“How many...?”

Real-time

view

Real-time

view

Batch

view

Batch

view

Figure 2.2 Lambda analytics system, showing logical layers of processing
based on query latency

19Azure cloud services
2.3 Azure cloud services
Microsoft Azure is a cloud services provider. This means Azure provides data center
services and software that an enterprise traditionally hosted in their own offices or
data center, or in a hosting provider’s data center. These were “on-premise” resources,
to be distinguished from resources hosted “in the cloud.” IT engineers usually have
physical access to on-premise resources, but not to cloud resources.

 Cloud services providers, like Microsoft Azure and Amazon Web Services, provide
three main types of services, classified by the end-user management of the underlying
operating system and software.

1 The lowest level of abstraction provides Infrastructure as a Service (IaaS). IaaS
provides resources like virtual machines, routers, and firewalls. The provider
manages the hardware in their data center, and the end user manages the soft-
ware and operating system. IaaS resources require technical and developer sup-
port to manage operating system and software installation, and create code to
run on the servers.

2 The next level of abstraction provides a Platform as a Service (PaaS). PaaS pro-
vides server application hosting such as web servers, databases, and storage. The
provider manages the hardware and operating system running in their data
center and manages server applications running on the operating system. The
end user configures and uses the applications. PaaS resources require devel-
oper support to create code to run on the server applications.

3 The third level of abstraction provides Software as a Service (SaaS). SaaS provides
user applications delivered over the internet. Typical SaaS applications include
web-based email services or web-based file sharing services that charge a sub-
scription. The SaaS provider manages all aspects of the hardware, operating sys-
tem, and software. The end user configures and uses the application. Microsoft
has transitioned many of their operating systems, desktop, and server applica-
tions to IaaS, PaaS, or SaaS resources available in Azure.

Microsoft Azure offers both open-source and Microsoft technologies in its cloud ser-
vices. HDInsight is available for Hadoop engineers and data scientists. HDInsight
manages containerized Hadoop processing nodes, with plenty of configuration access
and overhead. Azure also provides Databricks, a SaaS abstraction of the Apache Spark
analytics engine. Both provide viable options for operating large analytics systems in
the cloud. A third option exists: By using the tight integration provided by Azure
products, Microsoft data engineers can build their own sophisticated and flexible ana-
lytics system using familiar technologies like C#, SQL, and Git. This book will discuss
these services and how to use them to build a complete analytics system in the cloud.

 Leveraging interconnected services allows you to focus on the business logic of the
application. Contrast this with writing and hosting the software yourself, and you can
see the value of creating your application in the cloud first. The comparison also
demonstrates the source of expenses in cloud service usage. Engineers and developers

20 CHAPTER 2 Building an analytics system in Azure
at Microsoft must design and maintain software that operates at an impressive scale, is
resilient to failure, tolerates updates and new features, and supports end user’s chang-
ing usage.1

Cloud-native software is highly distributed, must operate in a constantly changing
environment, and is itself constantly changing.

 —Cornelia Davis

Azure services were developed as cloud-native software. You pay for the benefits that
accrue from this software design, like on-demand scaling and high availability. You can
take advantage of the resilient and agile nature of cloud-native software by creating
your own analytics application with these interconnected services. In this book we’ll
build a robust analytics processing system that can scale with demand.

2.3.1 Azure analytics system architecture

Imagine your company wants to analyze user behavior in their main website to pro-
vide relevant suggestions for further reading, to promote user retention and higher
page views. A solution would allow generating suggestions based on historical data,
recent personalized actions, and machine learning algorithms. Further, the same sys-
tem could also analyze error events in real-time and provide alerts. You can build a sys-
tem in Azure to do the analysis work. The rest of this book walks through use cases,
technical trade-offs, and design considerations when creating and operating each
piece of our proposed analytics system. Before we dive deeply into each of the ser-
vices, let’s take a look at the system as a whole.

 This architectural design uses the six Azure services discussed in this chapter.

 Events Hubs for real-time ingestion
 Stream Analytics for real-time query processing
 Data Lake Storage for data retention and batch query processing support
 Data Lake Analytics for batch query processing
 Data Factory for batch scheduling and aggregate data movement
 SQL Database for interactive queries

Let’s look at each of these services.

2.3.2 Event Hubs

Azure Event Hubs provides a PaaS scalable message ingestion endpoint, including
built-in integrations with Blob Storage and Stream Analytics. Our analytics system
will use Event Hubs as the entry point to our data processing pipeline. This provides
our system with a scalable and reliable buffer to handle spikes in the volume of
incoming events. Event Hubs accepts HTTPS, Advanced Message Queuing Protocol

1 Cornelia Davis and Gene Kim. Cloud Native Patterns: Designing Change-Tolerant Software. Shelter Island, NY:
Manning Publications, 2019.

21Azure cloud services
(AMQP), and Apache Kafka packets for event messages. Clients are available for
these protocols in your language of choice. Messages in Event Hubs can be read by
one or more subscribers.

 Events Hubs scales in two ways. First, the endpoint processes incoming messages
with a throughput unit, a measure of maximum throughput at a fixed cost. Adding
more throughput units allows a higher message rate, at a higher cost. Second, Event
Hubs partitions the messages. Adding more partitions allows the Event Hub to buffer
more messages and service parallel reads by subscribers. We’ll cover setup and design
considerations with Event Hubs deeply in chapter 5.

2.3.3 Stream Analytics

Azure Stream Analytics processes streaming data. Streaming data is ordered by a time
element, which is why it’s often referred to as events or event data. Stream Analytics
accepts streams from Event Hubs, IoT Hubs, and Blob Storage, and outputs processed
information to one or more Azure endpoints. It uses Structured Query Language to
query the data stream. The data process can be thought of as fishing a river with a net
made of particular shapes. The data flows by the net, which captures the bits that
match the shapes. The fisherman hauls in the net regularly to review his catch. In the
same way, the queries pull result sets out of the stream as it flows by.

 Stream Analytics scales in two ways. First, each Stream Analytics job can utilize one
or more streaming units, a synthetic metric describing CPU and memory allocation.
Each step in the job uses between one and six streaming units. Second, planning par-
allelism in your stream queries allows you to take advantage of the available parallel
processes. For example, writing data to a file in Blob Storage or Data Lake Storage can
use multiple connections in parallel. Writing data to a SQL Server table uses a single
connection, for now. A single query operation can use up to six streaming units. Each
job can have more than one query operation. Planning the streaming unit allocation
along with the query structure will allow for maximum throughput.

2.3.4 Data Lake Storage

Azure Data Lake Storage stores files. It provides a folder interface over an Apache
Hadoop file system, which supports petabytes of data. Multiple open-source and
native Azure cloud services integrate with Data Lake Storage. Fine grained access via
integration with Azure Active Directory makes securing files a familiar exercise.

2.3.5 Data Lake Analytics

Azure Data Lake Analytics (ADLA) brings scalable batch processing to Data Lake
Storage and Blob Storage. ADLA jobs use familiar SQL syntax to read files, query
the data, and output results files over data sets of any size. Because ADLA uses a dis-
tributed query processor over a distributed file system, batch jobs can be executed
over multiple nodes at once. To run a job with parallel processing, just move the
slider past one.

22 CHAPTER 2 Building an analytics system in Azure
 Azure Data Lake Analytics uses a new coding language called U-SQL. U-SQL is not
ANSI SQL. For starters, WHERE clauses use C# syntax. Declarative statements can be
extended with C# functions. Query data comes from tables or files. We’ll discuss this
new language more in chapter 8.

2.3.6 SQL Database

Azure SQL Database (SQLDB) supports most functions you’re familiar with from the
on-premises SQL Server. Most functionality matches: CRUD actions, views, stored proce-
dures, table creation, indexing, and partitioning. Many database applications can be
ported to directly. In addition, you get backup management, on-demand scaling of pro-
cessing power, nearly unlimited databases and storage space, and multi-zone failover.

2.3.7 Data Factory

Azure Data Factory automates the data movement between layers. With it, you can
schedule an ADLA batch job for creating aggregate data files. You can import those
files into SQLDB and execute stored procedures too. Data Factory connects to many
different endpoints for input and output and can build structured workflows for
moving data between them. Data Factory schedules, executes, and monitors these
repeated activities.

2.3.8 Azure PowerShell

Azure offers Cloud Shell as an option for managing resources via the command line,
as PowerShell or Bash commands. You can access Cloud Shell from the Azure portal,
or by connecting to https://shell.azure.com. This book uses Azure PowerShell scripts
throughout for provisioning Azure resources.

2.4 Walk-through of processing a series of event
data records
In this system, incoming event data follows both a hot and cold path into the user
query engine. To illustrate how the event data flows through both paths, let’s trace the
flow of a typical user action event through both paths. This system monitors error
rates and provides “users also viewed” suggestions. We can see how each path fulfills
part of our imagined business requirements for this system.

2.4.1 Hot path

1 New data events are submitted to the Event Hub endpoint. The data events con-
tain both error data and page view data.

2 The Event Hubs endpoint stores the events for retrieval.
3 A Stream Analytics job reads events from Event Hubs as they are submitted. The

job runs two steps.
a The first step prepares updates for a Power BI dashboard. This could be a

simple error rate query from the last hour, or a machine learning API call.
The query limits the updates to one per second.

23Walk-through of processing a series of event data records
b The second step saves data directly to SQL Database. To match the project
requirements, the query reads the last 24 hours of streaming data and finds
the top three most visited pages by same-session users. It then writes this
data.

4 The website reads the most recent list of recommendations for a particular page
view from the SQL Database.

2.4.2 Cold path

1 New data events are submitted to the Event Hub endpoint. The data events con-
tain both error data and page view data.

2 The Event Hub endpoint stores the events for retrieval.
3 A Stream Analytics job reads events from Event Hubs as they are submitted.
4 The Stream Analytics job runs one step—writing the raw data events to Data

Lake Storage files.
5 Each day, Data Factory runs a scheduled pipeline. This pipeline has multiple steps.

a Data Factory submits a Data Lake Analytics job to calculate next page visit
probabilities based on previous page visits.

b To match the project requirements, the job query reads the last 30 days of
stored page visit data and finds pages visited by same-session users.

c It then writes this data to an aggregate file.
6 Data Factory imports the aggregate file into the SQL Database.

a It also moves 24 hour “hot” data to an archive table.
7 The website reads the most recent list of recommendations for a particular page

view from the SQL Database.

Figure 2.3 shows how all six services can be assembled into an analytics processing sys-
tem providing real-time and batch-time outputs.

2.4.3 Choosing abstract Azure services

There are multiple functions that a modern analytics platform must support. Some
platforms put all the functions in one monolithic system; others require building the
system with many discrete services. You can design a platform in Azure using the sec-
ond approach, using the advantages of PaaS software.

 First, the system must collect event data. This can be user input, server actions, or
error logging. If you can build new logging functionality into your systems, using
Event Hubs as a logging endpoint makes sense because:

 Event Hubs can handle high traffic loads.
 Event Hubs can easily save all event data to disk.
 Event Hubs comes with a good service level agreement.
 Event Hubs is a convenient gateway to Stream Analytics for real-time processing

of the event data.

24 CHAPTER 2 Building an analytics system in Azure
For applications built on the .NET framework, the NuGet package from Microsoft
provides a client for integration into application code for logging events. The .NET
client includes built-in retry logic.

 Second, the system must process events in real-time. Stream Analytics queries a
streaming data set from Event Hubs in real-time.

 Stream Analytics includes built-in support for reading from Event Hub end-
points as a streaming source.

 Stream Analytics supports outputting results to SQL and Cosmos databases,
Blob Storage, Power BI, and Azure Functions.

 Stream Analytics has multiple methods for enhancing data with machine learn-
ing algorithms.

 Stream Analytics lets us leverage our existing SQL skills.

The result set will be emitted in small batches when a calculation is completed. Fig-
ure 2.4 shows Stream Analytics reading from Event Hubs and writing to Data Lake

Hubs

Stream
Analytics

Data Lake
store

Data Lake
Analytics

Data
Factory

New data

Stream
Analytics

Power
BI

Event data generated
by Functions, websites,
or other applications

Stream Analytics reads
the queue and writes a
SQL result set to an output.

Power BI reads an
output data set and
updates a dashboard.

Stream Analytics reads
the queue and writes a
SQL result set to an output.

SQL result set saves
to a file in the Data Lake.

Data Lake Analytics job
reads data from files,
evaluates via U-SQL
queries, and saves
output files back to
Data Lake.

Data Factory executes
Data Lake Analytics job,
then loads output file
to SQL Database.

Data Factory
removes stream
data and loads
batch data to
table.

Stream Analytics
outputs aggregated
data to SQL
Database table.

Speed layer

Batch layer

Serving layer

User
query

Power
BI

Website
query

SQL
Database

Event Hubs records messages
and serves readers.

3
3

4

4
4

5

7

8

5

2

1

6

Figure 2.3 Azure abstract service analytics system, showing Lambda architecture layers over hot
path and cold path data processing steps

25Walk-through of processing a series of event data records
store. Power BI integration makes adding results to dashboards quick work. Writing
the emitted result set to a SQL Database keeps queries up to date, continuously add-
ing new data as it enters the system. For projects where real-time logging is not an
option, log files can be loaded into Blob Storage for near-real-time processing by
Stream Analytics. Figure 2.5 shows Stream Analytics evaluating SQL statements and
writing results to SQLDB and Data Lake store.

Event
Hubs

Stream
Analytics

Data Lake
Store

New data

Stream
Analytics

Event data generated
by Functions, websites,
or other applications

Event Hubs records
messages and
serves readers.

Stream Analytics reads
the queue and writes a
SQL result set to an output.

Stream Analytics reads
the queue and writes a
SQL result set to an output.

SQL result set saves
to a file in the Data Lake.

Speed layer

Batch layer

Event Hubs saves data
to file at intervals.

3
3

1

4

5

2

Figure 2.4 Event Hubs reads discrete messages and serves the set to readers.

Event
Hubs

Stream
Analytics

Data Lake
store

Stream
Analytics

Power
BI

Stream Analytics
reads the
messages.

Power BI reads an
output data set and
updates a dashboard.

SQL result set saves
to a file in the Data Lake.

Stream Analytics
outputs aggregated
data to SQL
Database table.

Speed layer

Batch layer
Serving layer

Job query evaluates
one or more
SQL statements.

SQL
query

Job query evaluates
one or more SQL
statements.

SQL
query

SQL
Database

Stream Analytics
reads the
messages.

3

3
4

22
1 1

Figure 2.5 Stream analytics reads streams of data, evaluates SQL queries, and emits data sets.

26 CHAPTER 2 Building an analytics system in Azure
Third, the system must store all the data securely while allowing easy access. Both Blob
Storage and Data Lake Storage can fulfill this role.

 Data Lake Storage has no practical limit to the volume of data that can be stored.
 Data Lake Storage uses a familiar read/write/execute security model over a

hierarchical folder structure.
 Authentication is controlled through Azure Active Directory accounts.

Data Lake Storage, which is based on the Hadoop file system, allows access by many
analytics services, including Data Lake Analytics, HDInsight, and Databricks. For proj-
ects where real-time logging is not an option, log files can be loaded into Data Lake
Storage for batch processing by Data Lake Analytics. Figure 2.6 shows multiple tools
loading data to Data Lake store for batch processing.

Fourth, the system must enable batch analytics over any and all of the data. Data
Lake Analytics, as the name suggests, runs analytics jobs over data lake files. ADLA
jobs execute using distributed compute by design, with a simple slider defining the
number of nodes to use. Engineers and data scientists write the data processing job
in SQL. ADLA job processing nodes read one or more data files and output one or
more data files. Figure 2.7 shows ADLA jobs processing data in batches using U-SQL
queries.

Data Lake
store

Data Lake
Analytics

Stream
Analytics

Stream Analytics writes
a SQL result set to
a Data Lake output.

Data Lake Analytics job
reads data from files
and saves output files
back to Data Lake.

Batch layer

Storage
Explorer

AZCopy

CMD
Command line tool
writes files to Data Lake.

Event
Hubs

Event Hubs Capture
writes to Data Lake file.

Manual uploads
save files to Data Lake.

3

4

5

21

Figure 2.6 Multiple services can access Data Lake Storage for read and write
operations.

27Walk-through of processing a series of event data records
Fifth, the system must be capable of updating user query result sets. Data Factory is a
great fit for automating these other services.

 Data Factory connects to Azure endpoints like Blob Storage, Data Lake Storage,
and SQL Database.

 Data Factory provides multiple methods for moving and transforming data
between endpoints.

 Data Factory can access on-premises files and databases, through an on-prem-
ises Integration Runtime.

 Data Factory pipelines can copy file data to and from databases, execute ADLA
jobs, and run stored procedures.

Data Factory orchestration manages the end-to-end data movement requirements of
this analytics system. Figure 2.8 shows Data Factory scheduling batch processing and
moving data into the serving layer.

Data Lake
store

Data Lake
Analytics

Data Lake Analytics job
provisions multiple
processing nodes.

Batch layer

Job query evaluates
one or more
U-SQL statements.

SQL
query

Processing nodes
read data from files.

Processing nodes
write result data
to files.

3

42

1

Figure 2.7 Data Lake Analytics
reads data files, evaluates SQL
queries, and save result sets
as files.

Data Lake
store

Data Lake
Analytics

Data
Factory

Data Factory reads
output file from
Data Lake store.

Data Lake Analytics job reads
data from files, evaluates via
U-SQL queries, and saves
output files back to Data Lake.

Data Factory executes
Data Lake Analytics job. Batch layer

Serving layer

Data Factory loads
output file to SQL
Database.

SQL
Database

3

4 2

1

Figure 2.8 Data Factory schedules jobs and moves data between files and databases.

28 CHAPTER 2 Building an analytics system in Azure
Sixth, the system must be capable of returning results to user queries in near real-
time. SQL Database uses a familiar RDBMS query engine with a scalable storage sys-
tem that supports TBs of data. Because SQL Database uses SQL for querying data,
many tools exist which can connect and submit queries. Power BI is one such tool. Fig-
ure 2.9 shows end user queries run against SQL Database in the serving layer.

This example focuses on connecting abstract services together into a working system.
Each service offers an optimized tool designed for easy setup, high throughput, and
minimal maintenance. The services take full advantage of the consumption model of
cloud computing. Let’s look more closely at the main cost considerations for building
a system with these services.

2.5 Calculating cloud hosting costs
When building systems in any cloud provider, engineers must include a detailed esti-
mate of costs of the new system. They must understand the long-term costs of the new
system, including service, storage, and usage costs. Poor setup choices, lax account
security, and lack of planning for resource cleanup can ruin a successful project with
unplanned expensive costs.

 Microsoft Azure includes a powerful tool for estimating costs. The pricing calcula-
tor (https://azure.microsoft.com/pricing/calculator/) provides a graphical inter-
face for collecting all the resources required for a project and generating estimates
for cost based on usage. Practicing with Azure resources is the best way to learn how
to judge the estimates from the pricing calculator. Business decisions involve risk
and cost calculations, and this tool can help validate your decision to use a cloud
architecture.

 Azure resource pricing changes as new systems are added, more capacity comes
online, and new versions of existing services are released. These changes tend to lower
existing costs, or raise the threshold for free usage. Your agreement with Microsoft for

Power BI reads
a data set and
updates a report.

Serving layer

User
query

Power BI

User
query

Data visualization
software reads
data set.

Application

SQL
Database

21

Figure 2.9 SQL Database provides
data query endpoint.

29Calculating cloud hosting costs
software, services, and support can also modify the final amount billed. Some services,
like Data Lake Storage, can take advantage of pre-purchased capacity at reduced rates.
A knowledgeable data engineer can make a huge impact on TCO in this type of sce-
nario. Reviewing the Azure documentation and subscribing to the Azure newsletter
helps keep engineers current with changes to pricing and capabilities.

2.5.1 Event Hubs

Event Hubs pricing includes tiering, scaling, and usage costs. Event Hubs Dedicated
includes everything for very high throughput for a very large price per hour. Event
Hubs Basic does not include several important features, like multiple consumer
groups and direct file capture, but costs about 50% less than the Standard tier. See
Event Hubs pricing http://mng.bz/GdGv for specific prices. Most scenarios will use
the Standard tier and include file capture for an additional cost. The primary cost
decision for configuring a new Event Hub involves choosing a base number of
throughput units. Generally this is two throughput units at minimum, but you
should calculate the volume of data ingress to minimize throttling of any message
submissions.

2.5.2 Stream Analytics

The Azure Stream Analytics cost structure consists of streaming unit usage per hour.
Typical scenarios involve one to six streaming units, depending on the complexity of
the queries. Each job has a fixed base cost per month, but each job can have multiple
inputs and outputs. Most systems need only a single job per event hub. See http://
mng.bz/zrQB for specific prices. We’ll cover capacity planning for Stream Analytics in
chapter 4.

2.5.3 Data Lake Storage

Azure Data Lake Storage (ADLS) pricing covers three activities: space utilization, read
and write transactions, and data transfers. The storage calculation is based on monthly
average file storage. Read and write transactions are inexpensive. Outbound data
transfers incur charges; inbound transfers are free. Prepurchasing storage space provides
a discount. See http://mng.bz/0ZwN for specific prices.

 ADLS gen 2 adds tiered storage to the mix, with modified costs for space utilization
and transactions. The design of the analytics system should take into account these
differences in long-term costs. See pricing http://mng.bz/K5Bj for specific prices.

 For most scenarios, storage follows compute in terms of cost. Balancing tiered
access cost savings with latency requirements adds to the complexity. However, hot
and cool tiers have the same latency. Most data should be shifted to the cool tier
within a month. ADLS gen 2 reduces costs significantly. Because of the cost savings,
for most projects you’ll want to use ADLS gen 2, or plan a migration from gen 1 to
gen 2.

30 CHAPTER 2 Building an analytics system in Azure
2.5.4 Data Lake Analytics

Azure Data Lake Analytics (ADLA) cost structure consists of analytics unit usage per
hour. Prepurchasing unit-hours provides a discount. See http://mng.bz/9A57 for spe-
cific prices.

 Any ADLA job will run with a single analytics unit at 100% efficiency, but most jobs
can take advantage of parallel processing to shorten the duration of the job. Data
engineers can help determine the optimum allocated units for a particular job. They
can also plan for monthly usage and assist in prepurchasing unit-hours.

 For example, suppose a job imports two files, aggregates the data, and writes a
summary file.

This job can run with one, two, or more analytics units doing the processing. Figure 2.10
shows a job that uses 2 AUs but has been allocated 3AUs. The third AU is not used.

1 Using one unit, both files will import sequentially, the aggregation step will exe-
cute, and finally the summary file will be written.

2 Using two units, both files will import in parallel, then the aggregation step will
execute, then the summary file will be written.

3 Using three or more units will run just like using two units. A job will use at most
one unit per file, but usually processes multiple files per unit. Any extra units
beyond two will incur charges for the duration of the job without doing any work.

Each analytics unit allocated to the job incurs charges for the duration of the job. In
the best case, a job that takes four hours with one AU would take two hours with two
AUs, and one hour with four AUs. All three runs would cost the same: 4hr*1AU =
2hr*2AU = 1hr*4AU = 4AUhrs. In reality, jobs are not entirely parallel, and analytic

Data Lake
Analytics

AU1

AU2

AU3AU3 is not used

AU1 imports
file .1

File 2 waits for
next available AU.
File 2 imports in
parallel with File .1

Aggregation begins
when all files have
imported.

Output begins when
aggregation completes.

A
n
a
ly

tic
s

U
n
its

SQL

5

2

3 4

1

Figure 2.10 Parallel processing in Azure Data Lake Analytics jobs with multiple
analytics units

31Calculating cloud hosting costs
units will be idle for some portion of the job. The optimization work determines how
much parallelization can be achieved for which portion of the job, and then balances
the requirements for total job duration with minimizing cost. We’ll look more closely
at optimizing ADLA jobs and costs in chapter 7.

2.5.5 SQL Database

Three flavors of SQL Database are available in Azure. Azure SQLDB provides a PaaS
SQL Server database with scalable processing throughput and storage. You can use
it with a single database, multiple databases pooling resource consumption, and
even a virtual instance of a SQL Server. SQLDB offers the lowest-cost tiers, as well as
higher tiers for better performance and storage. Performance and storage costs are
bundled.

 Azure Stretch Database shards your on-premise database by attaching a cloud data-
base and handling multi-database queries. This allows storage expansion at lower
costs. Stretch Database costs include processing engine and storage. Storage costs are
approximately the same rate as premium Blob Storage.

 Azure Hyperscale Database moves storage to a separate engine in Azure Storage,
allowing unlimited storage. Costs for Hyperscale include the processing engine,
storage, and any read replicas added. Read replicas cost approximately two-thirds of
the full instance. Storage costs are approximately two-thirds of the premium Blob
Storage rate.

2.5.6 Data Factory

Two versions of Data Factory are available. Data Factory gen 1 is a configuration-
driven service using JSON files to define the various endpoints, data movements, and
transforms in each job. Data Factory gen 2 builds on gen 1, providing a GUI for build-
ing the JSON configurations. Calculating the ongoing costs involves several variables.
These variables fall into two main categories: data operations and orchestration. Data
operations charge for the duration of copy events between source and sink. A syn-
thetic usage metric called a data movement unit (DMU) measures the duration of data
activities and meters the movement rate. DMU usage is billed per hour. For gen 2,
Azure adds charges for both read/writes and monitoring operations against entities
like a dataset or list of pipeline activities.

 Jobs which move data between cloud resources are more expensive than moving
from on-premises to cloud. Orchestration charges cover executions of the Integration
Runtime, both in the cloud and on-premises. Charges are lower for executing more
jobs in the cloud, or executing longer-running jobs on-premises.

 To formulate a recommendation, plan for the most cost-effective scenario which
accomplishes the project requirements. For example, 10 jobs running for 10 seconds
each minute would be more expensive than a single job that runs 4 hours each day.
There would be more data operations and more jobs would be run. In Figure 2.11,
multiple short pipelines cost more than a single pipeline running for a longer period.

32 CHAPTER 2 Building an analytics system in Azure
NOTE We’ll look more closely at Data Factory setup and configuration in
chapter 10. Setting up the self-hosted Integration Runtime (IR) will clarify
the differences between cloud and on-premises IR functions.

Summary
 Using highly abstract cloud services reduces setup and maintenance time, but

limits options. You pay to shift maintenance and support of the underlying ser-
vices to Microsoft.

 Microsoft Azure offers several well integrated services that can combine to form
an analytics processing system. Connecting multiple resilient services together
forms a resilient cloud-native application.

 Every Azure service must have a name. Designing an effective naming conven-
tion makes managing resources easier.

 Calculating costs requires estimating the volume and size of the data collection.
Each kind of service charges for usage and storage differently.

Data Factory
Pipelines

Execution Execution Execution

Execution

Time

Figure 2.11 Multiple
repeated Data Factory
jobs versus single job

General storage with
Azure Storage accounts
In the previous chapter you explored some services provided by Microsoft Azure:
Event Hubs, Stream Analytics, Data Lake, Data Lake Analytics, and SQL Data-
base. You saw at a high level how these services can work together to create an
analytics system.

 This chapter begins showing you how to design and set up these services to lay
the foundation of an analytics system. The first step is learning how to implement a
storage system that is secure and scalable using Azure Storage accounts.

 Durable storage serves both input and output for your analytics system. You
can integrate your existing applications and third-party software with file-based
transports. The comma-separated values (CSV) format has long been used to
export data from applications. More recently, Extensible Markup Language
(XML) and JavaScript Object Notation (JSON) provide greater structure for data
interchange. All three formats are stored in plain text files. When delivered as
exports from existing systems, these formats provide sources for data processing.

This chapter covers
 Creating a storage service

 Setting up an Azure Storage Blob Storage

 Configuring file access in Blob Storage
33

34 CHAPTER 3 General storage with Azure Storage accounts
After processing, they can hold the output of user queries. Figure 3.1 shows exam-
ples of durable storage as sources in the Batch layer, and outputs from the Speed
and Serving layers.

Azure Storage accounts provide several types of durable and transient storage. The
first we’ll look at, Blob Storage, is a cheap and resilient service for storing any kind of
file. A number of services in Azure integrate directly with Blob Storage, including
Event Hubs, Stream Analytics, and Cloud Shell. Blob Storage will be used as part of
your analytics system. Let’s look at how Azure Storage accounts run Blob Storage, and
other types of storage too.

TIP You can find the code listings online in the GitHub repository for this
book at https://github.com/rnuckolls/azure_storage.

Data Lake
store

Data Lake
Analytics

Event
Hubs

Stream
Analytics

SQL
Database

SQL
Database

User query

Data
Factory

Data Lake
Analytics

Data Lake
Store

Blob
Storage

Event
Hubs

Blob
Storage

Batch layer

Speed layer

Serving layer

New data

Power
BI

Azure
Functions

Machine
Learning

CSV TXTJSON

Figure 3.1 Lambda architecture with Azure PaaS services

35Creating an Azure Storage account
3.1 Cloud storage services
Azure Storage is Microsoft’s first cloud storage service. It provides multiple specialized
types, of essentially key/value stores: queues, blobs, tables, file shares. Key/value pairs
store data in a flat hierarchy. The key is used for lookup, and the value stores simple or
complex data. Blob Storage and file shares have a particularly large value, and a key that
looks like a file path. Tables are standard key/value stores. Queues store ID and text
fields. Azure Storage also provides backing for virtual machine (VM) disks in Azure VMs.

 Blob Storage stores files as byte collection blobs, with a programmatic com-
mand interface.

 Files service stores files, with a Server Message Block (SMB) protocol interface.
Use this service for network shares.

 Queue service stores messages in a queue for sequential programmatic retrieval.
 Tables service stores collections of key/value pairs, with unique IDs.

Suppose the Finance and Operations departments want a joint file archive that can be
used with multiple Azure services. Users and systems from each department will
upload files to the archive. Access to upload files for one department must not allow
reading files from the other department. You need to design and implement an
appropriate access scheme in a Storage account that satisfies these requirements. How
can you accommodate this request?

3.1.1 Before you begin

The scenarios in the next section use a security group from Azure Active Directory
(AAD) called “Finance.” If you don’t want to use an existing AAD group, you should
create this group in AAD. You can use the scripts in appendix A to create the users
and groups required in this chapter.

3.2 Creating an Azure Storage account
Azure offers multiple methods for creating new resources, including Azure Power-
Shell, Resource Manager (ARM) templates, and the Azure portal. Though PowerShell
and ARM templates allow you to more easily automate your activities in Azure, the
Azure portal presents a lower bar to entry. This chapter uses examples from both the
Azure portal and PowerShell scripts to demonstrate procedures and features in Azure.

NOTE You should already be familiar with the Azure portal and have a sub-
scription. If not, please visit https://azure.microsoft.com/en-us/free/ to sign
up for a free month. You will need an email address and a credit card to cre-
ate a subscription.

Setting up an Azure Storage account requires a few pieces of information common to
all Azure services, including a subscription, name, location, and resource group.

 A subscription groups services together for access control and billing.
 A resource group groups related services together for management.

36 CHAPTER 3 General storage with Azure Storage accounts
 A location assigns services to a regional data center.
 Names are globally unique identifiers within the specific service.

It also requires some options specific to Azure Storage.

 Selecting the “Premium” performance tier provisions solid state drives in Azure
Storage, but limits the service to page blobs such as VM disks. The “Standard”
tier supports all types of Azure Storage services.

 Selecting your account kind provides backward compatibility for existing imple-
mentations of the Blob Storage or general-purpose storage services.

 The contents of an Azure Storage account can be replicated for increased
redundancy. Options are available for single data center redundancy (LRS), multi-
data center redundancy (ZRS), and multi-region, multi-data center redundancy
(GRS) with read access (RA-GRS). See section 3.2.3 later in this chapter for
more details.

3.2.1 Using Azure portal

Use the following steps to create a new Storage account with these options. Figure 3.2
shows the Azure portal interface for creating a Storage account.

1 In the Azure portal, click the Create a Resource menu or the Add button on
the Storage accounts blade. This opens the Create Storage Account blade.
You can also browse directly to http://mng.bz/awDB.

2 Choose a subscription. The default will be the oldest subscription, if you have
access to more than one.

3 Choose a resource group. (See appendix A for instructions if you haven’t cre-
ated one.)

4 Choose a name (“[XYZ]deveastus2”). The Storage account name must be low-
ercase alphanumeric, between 3-24 characters, and globally unique.

5 Choose a location. Azure Storage are available in all regions; choose one close
to you. Keep Azure resources that interact in the same region to minimize net-
work latency. You may choose a region to match your user base, as some govern-
ments restrict movement of data outside their zone of control.

6 Choose the default Standard performance level. Premium is only for VM disks.
7 Choose the default kind, StorageV2. This is the latest version, and there are no

benefits to using the previous version for new projects.
8 Choose the LRS replication type, or leave the default RA-GRS. (LRS costs less

than RA-GRS.)
9 Choose the Hot access tier. This minimizes costs for your tutorial usage. The

Cool tier and Archive tier include a minimum storage duration cost for each
file. Access tiering allows you to balance content retrieval latency with cost.

10 Review your choices and create the Storage account.

37Creating an Azure Storage account
3.2.2 Using Azure PowerShell

The New-AzStorageAccount command creates a new Storage account. The SkuName
parameter selects the replication type. Possible values include Standard_LRS, Stan-
dard_ZRS, Standard_GRS, Standard_RAGRS, Standard_GZRS, Standard_RAGZRS,
Premium_LRS, and Premium_ZRS. Premium SKUs are used with VM disk creation.
The parameter EnableHttpsTrafficOnly with a value of 0 disables HTTPS traffic,
but you shouldn’t do this. Storage account requests are limited to HTTPS only by
default. Execute the script in listing 3.1 in Azure PowerShell.

Use the same subscription for related resources.

Use the same resource group for related resources.

Name must be alphanumeric only.

Keep related resources in the same location for
best performance.

Premium is only for VM disks.

Leave the default StorageV2.

Redundant storage incurs higher costs.

Choose Cool if you will rarely access
these files.

Review, and then create the Storage
account in two steps.

3

4

5

2

1

6

7

8

9

3

4

5

2

1 6

7

8

9

Figure 3.2 Creating a Storage account

38 CHAPTER 3 General storage with Azure Storage accounts
New-AzStorageAccount -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

➥ -AccountName "adedeveastus2"

➥ -EnableHttpsTrafficOnly 1

➥ -SkuName Standard_LRS

This PowerShell script will return an error if a Storage account by that name exists.
With your new Storage account in place, you should consider backup and disaster
recovery options for the data stored there.

3.2.3 Azure Storage replication

A common working space for collaboration probably needs to be highly available.
Picking a location near your users’ physical location will reduce network latency over
the Internet. Azure Storage provide some flexibility in configuration to allow for dif-
fering availability requirements. Your Storage account contents can be replicated to
multiple locations. Figure 3.3 shows files replication in a local data center and to sec-
ondary regions.

 At minimum, three copies of each file are kept in the local data center. Local redun-
dant storage (LRS) uses only the local data center. Zone redundant storage (ZRS) repli-
cates contents to another data center in the same region. Geo-redundant storage (GRS)
replicates contents to a separate region. Read-access geo-redundant storage (RA-GRS) rep-
licates contents to a separate region, and allows read access. Adding replication to
Azure Storage gives your applications redundancy, and raises their cost and complex-
ity. This redundancy increases the storage price.

NOTE For the latest pricing details, see http://mng.bz/gg4E.

Microsoft chooses the region pairing, and when to declare a region unrecoverable
and failover to the secondary region.

 Regions are separated physically, with at least 300 miles between paired regions’
data centers.

 Regions are paired geographically, to comply with data residency requirements.
 Paired regions receive updates sequentially, to minimize downtime and effects

of adverse outcomes due to updates.

NOTE See http://mng.bz/7XEV for the latest list of paired regions.

For greater control or shortened recovery times, you may wish to backup data to a sec-
ond Storage account in a separate region using a tool like AzCopy. You can find an
introduction to AzCopy in section 3.3.4 later in this chapter.

Listing 3.1 Create a Storage account with PowerShell

Account name must
be alphanumeric.

Allowing only HTTPS
traffic increases security.

Choose RA-GRS for maximum redundancy,
LRS for minimal redundancy.

39Storage account services
IMPORTANT Microsoft maintains Azure data centers in locations around the
world. Every Azure service you create is available in at least one location.
Some services, like Azure Storage, can run in any Azure location. Not all ser-
vices are available in all locations. For best performance, keep services which
need to connect to each other in the same location.

3.3 Storage account services
Azure Storage provides cheap cloud storage options, including services targeted at
NoSQL data, queues, and VM disks. Storage accounts consist of five services: files,
blobs, disk, queues, and tables. Table 3.1 shows what each of the services offer.

East US

Storage
account

finance

r1.csv r2.csv

Central US

North Central US

South Central
US

West US
Storage
account

finance

r1.csv r2.csv
GRS and RA-GRS replication:
three storage nodes
at secondary location, too

Primary
region

Secondary
region

East US 2

Primary
region

Secondary
region

RA-GRS
replica
available
for read

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

LRS replication:
three storage
nodes in the
same location

4

1

5

5

5

2

1

3

4

Figure 3.3 Storage account replication to multiple zones

40 CHAPTER 3 General storage with Azure Storage accounts
3.3.1 Blob storage

For this scenario, you want to use a service that can store and access files. Since you
want to use this service for file storage, queue and table stores are out. For disk
stores, a dedicated VM would be required to access the files. This requirement
doesn’t match your low cost directive, so you can eliminate this option. In an analyt-
ics system, other native Azure services will access these files, so you don’t need or
want the features from file or disk stores. Blob Storage would be most useful for this
example.

3.3.2 Creating a Blobs service container

In order to use the new Storage account for Blob Storage, you need to create a con-
tainer. All blob files reside within a container. A container works just how it sounds. It’s
a logical grouping of a set of objects, in this case files. Because you want to store text
files in this Storage account, you won’t be setting up a queue, table, or disk container.
You have no need to enable remote file share access to the log files, so you don’t need
a file service.

1 In the Azure portal, browse to the Azure Storage Account blade. One approach
is to click the All Services blade, filter to Storage accounts, and click the Storage
Accounts icon.

2 Click your newly created Azure Storage service “[XYZ]deveastus2”.
3 In the Storage account, under Blobs Service, click Blobs to show the Blobs blade.
4 Click the Container button to add a new container. Figure 3.4 shows the New

container blade.
5 Enter finance as the container name. The name must be lowercase alphanu-

meric (including hyphens), between 3-63 characters, and unique in the Storage
account.

6 Leave the default Public access level Private. Other access levels allow read or
read and list access to the container by anonymous public users.

7 Click OK to create the container.

Table 3.1 Azure storage containers

Type Feature Limitation

Files SMB interface for file shares; high throughput; folder-
file hierarchy

TB scale files and shares

Blobs Global replication; high throughput; flat-file hierarchy PB scale storage

Disk High throughput; folder-file hierarchy Attached to VM; no access
outside VM

Queues Message store; no hierarchy Messages only

Tables NoSQL store; collection-item hierarchy Table items only

41Storage account services
You can now use the Azure portal or other tools to copy the files into the Finance
container.

3.3.3 Blob tiering

Azure Storage containers should be configured for each use case. Access tiering in
Blob containers allows you to balance content retrieval latency with cost. For example,
cheap long-term archival of files is a common use case. Which tier would best suit this?
A hot tier provides the fastest retrieval; use a warm/cool tier for slower retrieval, or a
different cost structure. A cool tier would be the least expensive for long term storage,
but may have long retrieval times and additional retrieval fees. Table 3.2 lists the Blob
access tiers.

Blobs containers

Use lowercase letters, numbers, and hyphens.

Leave this Private.

2

1

3

2

1

3

Figure 3.4 Creating a Blob container

42 CHAPTER 3 General storage with Azure Storage accounts
Tiering options are available when targeting General purpose v2 or Blob storage.
These kinds allow you to change the blob access level between Hot, Cold, and Archive
levels, to better manage your costs. You can choose only Hot and Cool as the default
tier for the Blob container. New blobs are only created at the Hot or Cool tier. You can
also set blobs to the Archive tier on a per-blob basis.

 Use the Azure portal, Azure Storage Explorer, or the Azure SDK to change a blob
tier to Hot, Cool, or Archive. Moving a blob from the Cold or Archive tiers to another
tier incurs a prorated charge, if the minimum storage period has not been met. Delet-
ing a blob from the Cold or Archive tiers incurs a prorated charge, if the minimum
storage period has not been met. Moving a blob from Hot to Cool, Cool to Archive, or
Hot to Archive tiers incurs write operation charges. Moving a blob from Archive to
Cool, Cool to Hot, or Archive to Hot incurs read operation charges.

 Frequently accessed files, or files for systems that need fast performance, prioritize
low latency over price. For frequently accessed or transitory files, you would choose
the Hot tier as a default. Some use cases, like archival storage, need to write once and
be read rarely. In this case, price would rank higher than latency, so you would choose
the Archive tier. First copy the blobs to Blob Storage with a default at the Hot tier, to
prevent an initial retention period charge. Then shift the blobs to the Archive tier
with your selected tool.

 Now that you have some perspective on the cost of using Storage account Blobs,
let’s look at how you can move files to the storage containers.

3.3.4 Copy tools

Now that you’ve created a Storage account and a blob container for the Finance
department, you can start copying the files. Figure 3.5 shows four options for tools to
copy files. The Azure portal provides a web-based interface for uploading and down-
loading files. AzCopy is a command-line tool from Microsoft for copying files to and
from Storage account services, including Blobs and Files. Azure Data Factory (ADF)
uses cloud scheduling and on-premises integration to copy data. (You can read about
ADF in chapter 10.) Azure Storage Explorer provides a desktop GUI interface for
uploading files to multiple Azure services, including Azure Storage.

 Each tool has its benefits.

 The Azure portal is available without an install.
 AzCopy can be used for automated file copying without user interaction.

Table 3.2 Azure Storage Blob access tiers

Access Tier Latency Storage cost Access cost Minimum period

Hot Milliseconds Highest Lowest N/A

Cool Milliseconds Middle Middle 30 days

Archive < 15 hours Lowest Highest 180 days

43Storage account services
 File copying with ADF can be included in multi-step workflows, and integrate
with other Azure services.

 Storage Explorer provides an easy to use GUI and tracks the status of actions.

STORAGE EXPLORER

Azure Storage Explorer has a flexible authentication process. It can authenticate to
Azure Storage using Azure Active Directory (AAD), shared access signature (SAS)
tokens, or the storage keys themselves. You’ll see more about access controls for Azure
Storage later in this chapter. Figure 3.6 shows Storage Explorer connecting with multi-
ple types of authentication. You can use drag-and-drop to upload and download files,
or use the buttons in the toolbar.

AZCOPY

AzCopy works well for simple copies. Both Storage Explorer and AzCopy allow you to
copy files into new folders. AzCopy uses wildcard matching to select files for copying.

"C:\Program Files (x86)\Microsoft SDKs\Azure\AzCopy\azcopy"

➥ /Source:C:\csvLogs\aa /Dest:https://abc.

➥ blob.core.windows.net/project-abc/v1/v1.1

➥ /destkey:==StorageKey== /Pattern:"ch*.csv" /Y

Listing 3.2 Command line log shipping with AzCopy

Data
Factory

Storage

Explorer

AzCopy

CMD

Blob
Storage

On Premises

Tools for copying files to
Storage account Blob service

Azure
Portal

JSON

CSV

TXT

CSV

JSON

TXT

CSV

JSON

Figure 3.5 Blob Storage copy tools

Plan for version
of files

/Y switch for suppressing
acknowledgments

44 CHAPTER 3 General storage with Azure Storage accounts
AzCopy, as a command-line application, can be scheduled to run automatically. AzCopy
includes many options for selecting files to include, and configuring the output
commands.

 Omitting the /Pattern option copies all files in the selected folder.
 The /S option recursively copies sub-folders and their files.

Use the account key to connect to a Storage
account. All resources and services are accessible.

Use a shared access signature to connect to a
Storage account. Only resources and services
in the SAS are accessible.

Connect to Data Lake with your
Azure Active Directory (AAD) user.

AAD user provides access to Storage account
resources and services based on role.
Nearly all roles grant read access.

Storage Explorer interprets the folder
structure of the files in a Storage account
Blob service.

Use Storage Explorer to change Access
Tier: Hot, Cool, and Archive.

Store many file types with recognized
MIME types.

5

6 7

2

1

3

4

5

6

7

2

1

3

4

Figure 3.6 Storage Explorer configured to connect to Azure Storage with access keys and SAS
tokens.

45Storage account services
 Blobs are assigned a MIME type of application/octet-stream during upload
by default. Add the option /SetContentType to have AzCopy assign the MIME
type of the blob based on the file extension. AzCopy comes with most MIME types
preconfigured in the AzCopyConfig.json file, which is located in the AzCopy
directory.

 For copies of the same file type, or to override the configured MIME type, add
option /SetContentType:[MIME-type] to explicitly set the type.

 By default, an operation journal is output at %LocalAppData%\Microsoft\Azure\
AzCopy\AzCopy.jnl. This file tracks the progress of the execution, and AzCopy
can use it to restart the process if there is a problem. This file is deleted upon
successful completion.

 Add the option /V to output a verbose log file at %LocalAppData%\Microsoft\
Azure\AzCopy\AzCopy\AzCopyVerbose.log.

"C:\Program Files (x86)\Microsoft SDKs\Azure\AzCopy\azcopy"

➥ /Source:C:\csvLogs\aa /Dest:https://abc.

➥ blob.core.windows.net/project-abc/v1/v1.1

➥ /DestKey:==StorageKey== /Pattern:"ch*.csv" /XO /Y

➥ /SetContentType:text/csv

See http://mng.bz/emnv for download instructions. You can read more about file ver-
sioning and data drift in chapter 4.

3.3.5 Queues

Azure Storage accounts also support a basic queuing service. Queuing services fill
an important role in applications, forming a buffer between front-end and back-end
processes.

 Queues are used for many purposes, but they all accomplish the same goal: they
add a holding area for objects to await processing. People and cars both wait in
queues to be serviced; imagine waiting in line for a bank teller, or in a car wash. In the
digital realm, almost any type of electronic object can be stored in a queue, to await
further processing. Examples include page requests on a web server or outbound mes-
sages on an email server. In this section we’ll refer to objects in queues as messages.

 A system implementing queues needs three components: incoming messages, a
message storage service, and a message servicer. A message can be as simple as a text
completion signal “Done” or as complex as a serialized JSON object. Simple message
queues store the entire message in the queue. More complex message queues store
the message in separate storage, and hold a reference to the message in the queue.
For example, the JSON object in listing 3.4 is less than 150 bytes and could be stored
in a queue in its entirety.

Listing 3.3 Setting specific MIME type with AzCopy

/XO switch to exclude
older files from copy
when present in the
target folder.

Pattern is copying CSV files,
so set MIME type to CSV.

46 CHAPTER 3 General storage with Azure Storage accounts
{
"Player":"abera101",
"Node":12,
"NodeValue":100.2,
"EventTime":"2020-04-05T13:15:1947365Z"

}

The storage system can be implemented as an in-memory list or stack, rows in a text file,
multiple text files, rows in a database, and so on. Azure provides several queueing ser-
vices, including the Azure Queue service and Service Bus queues. Finally, servicers
retrieve messages from the queue and do some work on or with them. One or more
instances of a computer program retrieve messages from the queue when present,
and when work on previous messages has completed.

 Queues are described by the scheduling of message retrieval. For example, first-in-
first-out (FIFO) queues push the messages into a tube. New messages go in one end;
the oldest messages come out the other end first (figure 3.7).

Last-in-first-out (LIFO) queues resemble a stack of items; you add or remove items
from only the top of the stack (figure 3.8).

Other approaches to message retrieval include priority scheduling and longest-wait
scheduling. Priority queuing, like premium ticket boarding at an airline departure
gate, assigns a priority to the queued object. The server, such as the airline employee,

Listing 3.4 Sensor object JSON message

FIFO queues

3 2 1 3 2 1

Messages enter the
queue: , 2, 31

Messages exit the
queue: , 2, 31

3 2 1

21

Figure 3.7 First-in-first-out queue

Messages enter the
queue: , 2, 3, 41

Messages exit the
queue: 4, 3, 2, 1

1

2

3

42

3

4

1 1

2

3 4

L
IF

O
 q

u
e
u
e
s

L
IF

O
 q

u
e

u
e

s

21

Figure 3.8 Last-in-first-out queue

47Storage account services
must take higher-priority queued objects first. This can be accomplished with separate
queues for each priority. Longest-wait scheduling covers more complex scenarios,
where multiple steps are required to clear a queue. The Azure Queue service is a FIFO
queue, but does not guarantee ordering. Regardless of the approach, queues provide
a method for allowing wait time and ordering retrieval.

 In this chapter, you’ll see how queues work by using an Azure Queue service.

WHEN INPUT RATE EXCEEDS OUTPUT RATE

Imagine a direct processing system where a single message generator produces 100
messages per hour, and a single message servicer processes 100 messages per hour.
The rate of production and servicing are equal. When messages are produced faster
than they are processed, the system can’t work at optimal efficiency. To increase the
efficiency of a direct processing system, you can increase capacity to handle the sub-
mission rates at all times, including spikes; decrease the submission rate; or you can
drop submissions. Figure 3.9 compares these three approaches.

If dropping submissions is not an option, and the system needs to optimize the load
and handle spikes in submission rates, a new element needs to be introduced between
the submissions and processing steps. This element is a queue.

QUEUE-BASED LOAD LEVELING

A system using a queue can run with submission rates lower than the maximum pro-
cessing rate, with processing rates higher than the maximum submission rate, or with
both rates equal. What happens when there’s a spike in submissions? If the message
servicer cannot keep up with the rate of submissions, the queue message count grows.
Once the spike in submissions ends, the queue message count reduces.

 When the rate of submissions varies over time, the number of messages in the
queue ebbs and flows. This system of processing has the following characteristics:

1 The input rate does not match the output rate.
2 The total input rate equals the total output rate over a given time frame.

Under-provisioned Level-provisioned

No dropped
messages

Direct processing

Service
dropped
messages

Over-provisioned

No dropped
messages

Lowered
efficiency

X

X

2 2 2

1 1 1

3

Figure 3.9 Over-provisioning prevents dropping submissions.

48 CHAPTER 3 General storage with Azure Storage accounts
3 Inputs and outputs operate on discrete elements.
4 The input does not need to wait on the output to complete.

With these characteristics, this system benefits from a queue.

 A queue decouples the submission rate from the processing rate.
 A queue shifts wait times from the submitter to the queue itself.
 With a queue, the servicer processes messages at a predictable rate until the

queue is empty, regardless of the submission rate.

This pattern of varying submission rate with steady processing rate is called queue-based
load leveling. With this pattern, you can optimize the provisioning of submitters and
servicers by matching the average submission rate to the processing rate for a given
time period. This also brings the benefit of smoothing the output of the system over
time. With queue-based load leveling, you can capture all the submissions in the
queue and process them at a rate subsequent services can handle, even if those ser-
vices cannot handle a spike in submissions. You can see load leveling depicted in fig-
ure 3.10.

Queues can be used in many scenarios where the rate of incoming submissions varies
significantly. Browser requests to a web server highlight the variable nature of event
submissions. End users can request content from the server at any time. A web page
could see huge spikes in traffic from a popular news story or recommendation by an
influential source. Web servers can handle several requests at a time, but at a high
enough request rate, some requests will have to wait for processing.

 Microsoft Internet Information Services (IIS) provides a metric for the size of
HTTP service request queues, to monitor request rates and diagnose long wait times.
For other applications, your system will need to manage its own queue.

 Earlier in the chapter, you created an Azure Storage account. The Storage account
provides a management layer for services including Blob, File shares, the key-value
Table, and Queues. All of these services provide different interfaces to key-value

Accepted
messages

Accepted
messages

No dropped
messages

Queue
servicer

Direct processing Queue-based load levelling

Service dropped
messages

Service
X

X

1 1

2 2

3

Figure 3.10 Queue-based load leveling prevents dropping submissions.

49Storage account services
stores, including queues. A key-value store is simply a set of data (the value) with a
unique identifier (the key). You use the key to retrieve the value. The Queues service
stores messages. Let’s look at how to create one in Azure.

3.3.6 Creating a queue

For the next season of the Jonestown Sluggers, the corporate IT group will begin
sending data to your analytics system for further processing, during the games. One
or more users will submit stats using a new app. The first set of stats to be imple-
mented will cover pitching. To support this, you need to create an endpoint in
Azure to accept the incoming stats and hold them for processing. How can you
accommodate this?

 The first iteration of the pitching stats includes a game ID, pitcher ID, time of the
pitch, speed and type of the pitch, and whether the pitch was a strike.

{
"Game":"JNT202004080",
"Pitcher":"abera101",
"InningPitch":"05T25",
"Speed":100.2,
"Type":"Fastball",
"Result":"B"

}

From the description, you don’t yet know what the processing will be. Because you
know this data is being submitted to your Lambda analytics system, you should plan
to store the data for later batch processing, and allow for near real-time processing
too. Because there will be multiple submitters, and later multiple streams of data,
you need an ingestion endpoint that can handle multiple simultaneous inputs. To
minimize complexity and cost, you should choose a single endpoint and a single
processor. You can handle the ingestion endpoint with an Azure Storage queue and
a bit of code.

 With queue-based processing, the processing technology is disconnected from the
outside-facing endpoint, the queue. Requests enter the queue, and processors read
from the queue. The submitting application and processing application only need to
know the queue endpoint and the data definition for messages stored in the queue.
The processing application can be updated or replaced without changes or interrup-
tion to the submitting application. Figure 3.11 shows a queue-based processing solu-
tion for the pitching statistics.

 Let’s create a queue and write some code to implement this functionality.

Listing 3.5 Pitch statistic

Home team code, year,
month, day of game

Pitcher code

Fifth inning, top of
inning, 25th pitch

50 CHAPTER 3 General storage with Azure Storage accounts
AZURE STORAGE QUEUE CREATION

Earlier in this chapter, you created an Azure Storage account and added a Blob Stor-
age container. (If you haven’t created the Storage account yet, refer to section 3.2 for
creation details.) You can use the same Storage account to host the Queue service too.
Create the queue using the Azure portal by following these steps:

1 In the Azure portal, browse to the Storage account blade, and select the Storage
account you created earlier.

2 In the Overview blade, click the Queues service.
3 On the Queues blade, click the Queue button to create the new queue.
4 Choose a name for the queue, consisting of lowercase letters, numbers, and

hyphens, less than 63 characters long.
5 Click OK to create the queue.

You can also create the queue with Azure PowerShell. The New-AzStorageQueue com-
mand creates a new Storage account queue. You need to supply a name for the new
queue, and a context object describing the Storage account to use. The context object
is stored as a variable in PowerShell. Execute the following script (listing 3.6) in Power-
Shell, with Azure PowerShell enabled.

$account = Get-AzStorageAccount -ResourceGroupName "ade-dev-eastus2"

➥ -AccountName "adedeveastus2"
New-AzStorageQueue -Name "pitcherstats" -Context $account.Context

Creating an Azure Storage queue is quick; the underlying storage and interface has
already been provisioned. Now that you have a queue, you can add some data.

Listing 3.6 Create new Azure Storage queue using PowerShell

Storage
Queue

New data Processors

Data Lake
store

Blob
Storage

User and apps
submit data.

Data saved in
Storage Queue

Processor code
reads item from queue.

Processor exports
data to storage.

Processing

Optional
calculations

SQL
Database

4

321

5

Figure 3.11 Queue-based processing reduces the size of processors.

Azure Storage account
to hold the queue

New queue name

51Storage account services

WRITING TO THE QUEUE

Azure PowerShell also integrates the Azure SDK for .NET. This means you can create
.NET objects and execute methods right from PowerShell. Listing 3.7 is a script that
populates the new queue, using the Azure SDK to submit queue messages. The script
gets the queue context using Get-AzStorageAccount and then gets an instance of the
queue using Get-AzStorageQueue. Then it runs a loop 30 times. Each loop creates a
JSON text string with randomized data, then adds the JSON to a new queue message
object. The PowerShell New-Object command creates an in-memory object of the
type specified by the TypeName parameter, in this case a CloudMessageQueue. The
CloudMessageQueue object submits the message to the Azure queue using the Add-
MessageAsync() function.

$account = Get-AzStorageAccount -ResourceGroupName "ade-dev-eastus2" -
AccountName "adedeveastus2"

$queue = Get-AzStorageQueue -Name "pitcherstats" -Context $account.Context

for($i = 0; $i -lt 30; $i++)
{
$game = "JNT202004080"
$pitcher = "abera101"
$inning = Get-Random -Minimum 0 -Maximum 10
$pitch = Get-Random -Minimum 0 -Maximum 110
$inningPitch = $inning.ToString("D2") + "T" + $pitch.ToString()
$speed = Get-Random -Minimum 75 -Maximum 110
$type = switch (Get-Random -Minimum 1 -Maximum 4) {

1 {"FA"; break}
2 {"CU"; break}
3 {"KN"; break}

}
$result = switch (Get-Random -Minimum 0 -Maximum 3) {

0 {"B"; break}
1 {"S"; break}
2 {"F"; break}

}

$message = @{Game=$game; Pitcher=$pitcher; InningPitch=$inningPitch;
Speed=$speed; Type=$type; Result=$result} | ConvertTo-Json -Compress

$queueMessage = New-Object -TypeName
Microsoft.Azure.Storage.Queue.CloudQueueMessage
-ArgumentList $message

$queue.CloudQueue.AddMessageAsync($QueueMessage)
}

The message body can be any UTF-8 data format, including base-64 encoded binary
data. Using a JSON-serialized text string is a common method to store complex
objects in queue messages. The queue servicer can deserialize the message contents
and use the schema to assist in processing. Now that you’ve added some messages to
the queue, you can use several technologies to retrieve them.

Listing 3.7 Generate pitcher stats messages

The number of iterations doesn’t
matter, it’s just a method for
generating multiple examples.

The Get-Random
method generates
values greater
than or equal to
the -Minimum
parameter, and
less than the
-Maximum
parameter.

Pipe the array out to a
minimal JSON object.

Fully qualified
CloudQueueMessage .NET
type used.

52 CHAPTER 3 General storage with Azure Storage accounts
READING FROM THE QUEUE

The following script reads messages from the new queue, using the Azure SDK. The
script gets an instance of the queue. Then it runs a loop while the hasMessage state is
true. Once no more messages are retrieved from the queue, the hasMessage state is set
to false, and the loop ends. Deleting the retrieved message is the final step, as shown
in listing 3.8.

$account = Get-AzStorageAccount

➥ -ResourceGroupName "ade-dev-eastus2"

➥ -AccountName "adedeveastus2"
$queue = Get-AzStorageQueue -Name "pitcherstats"

➥ -Context $account.Context

$hasMessage = $TRUE
while ($hasMessage)
{
$queueMessage = $queue.CloudQueue.GetMessageAsync()
if ($queueMessage.Result -is

➥ [Microsoft.Azure.Storage.Queue.CloudQueueMessage])
{
Write-Host $queueMessage.Result.AsString
$queue.CloudQueue.DeleteMessageAsync

➥ ($queueMessage.Result.Id,$queueMessage.Result.popReceipt)
$queueMessage = $null
}
else { $hasMessage = $FALSE }
}

NOTE You can create this same pattern of create client, read message, pro-
cess message, and delete message in other compiled languages that use the
Azure SDK.

Even with the simplicity of the Azure Queue service, there are still configuration
options and limitations that influence how you work with the queue. In the next sec-
tion, you’ll see more about the read-lock-delete pattern of message processing in the
Azure Queue service.

3.3.7 Azure Storage queue options

The Queue service implements a locking feature on message read. A message is
dequeued, or more exactly leased, for 30 seconds by default. You can extend the lease
as needed in your servicer code by calling the client UpdateMessage command.
While a message is locked, a subsequent request for a message will retrieve the next

Listing 3.8 Retrieve pitcher stats

A WHILE loop iterates over the
code, checking for true at the
start of each iteration.

Check the message
retrieval using type
check -is.

Write the contents of the message to
screen. Actual work with the message

would be done at this point.

Messages in Storage account
queues must be deleted to be

removed from the queue.

Clear the message to prepare
for the next iteration.

53Storage account access
message in line. A dequeued message must be deleted to be removed from the
queue, or it will remain in the queue until its expiration date passes. This means
when messages fail to complete processing before the lease expires, they return to
the queue for another attempt at processing. The returned message can then be
processed again. However, the returned message might be processed after a message
that arrived to the queue later. The Azure Queue service does not guarantee pro-
cessing order. A default expiration of one day in the future is added to new mes-
sages, but can be set up to seven days.

TIP The Azure Queue service messages have a maximum size of 64 KB.
Azure Service Bus queues handle message sizes up to 256 KB. If you need
larger-sized messages, you can save the contents to a blob and reference the
blob URL in the message body.

The Azure Queue service provide a simple endpoint for writing and reading messages
from a queue. The Queue service’s main strength, its simplicity, also limits its use to
systems with developer support. Developers must write code to manage the logic for
writing, reading, and deleting messages.

 Once you’ve created the Storage account, created a container and queue, and cop-
ied some files, you’ll be prepared to set up multiple storage services and multiple Stor-
age accounts on demand. Creating Azure Storage accounts is one of the basic skills
needed to store data files in Azure. The AAD user account that created the Storage
account becomes the owner and has full permissions to administer the resource. If
you are the sole admin for your business, this may be sufficient. For most use cases,
additional users are given access following service creation. Giving access to users
expands the usefulness of storage services. Let’s look at methods for allowing secure
access to the storage services.

3.4 Storage account access
You have created a Storage account and Blob Storage. But the service is not useful for
anyone else in its current state. In order for others to use it, you need to define, plan,
and implement an access scheme. An access scheme defines who is allowed to access
resources and what they are allowed to access. In order to provide secure access, you’ll
look at how the file hierarchy of the Storage account influences its security model.
Then you’ll see how to plan and implement file access by working through an access
scenario. By the end of this section, you’ll be able to configure secure file access for a
Storage account.

54 CHAPTER 3 General storage with Azure Storage accounts
3.4.1 Blob container security

Returning to our earlier example, the Finance and Operations departments want a
joint file archive that can be used with multiple Azure services. Users and systems from
each department will upload files to the archive. Access to upload files for one depart-
ment must not allow reading files from the other department. You need to design and
implement an appropriate access scheme in a Storage account that satisfies these
requirements. How can you accommodate this request?

 Up to this point, the Azure Storage you’ve created have been accessible only by
the owner, you. Now you need to broaden access to include other users. This sce-
nario applies the principle of least privilege by restricting access to each depart-
ment’s files and folders to members of that department. By working through this
scenario, you’ll learn some approaches to configure security controls on Azure Stor-
age and Data Lake stores.

3.4.2 Designing Storage account access

Storage accounts have two security boundaries: at the account level, and the container
level. Storage accounts use AAD RBAC for authentication to the entire account, and
alternately access keys for authentication to the Storage account or individual contain-
ers. AAD authentication and authorization only confers access to management func-
tions of the Storage account. Key-based authorization can be granted for the Storage
account, all containers, by container type, or for specific actions on a container. How
do you set up a Storage account so that you have a common file location but still
restrict access to certain files?

 You can create two Blob containers in the Azure Storage account, one for each
department. Separate Secure Access Signature (SAS) tokens for each department
would be used to control access. SAS tokens incorporate the access keys for authori-
zation. Using a single Azure Storage account relies on SAS tokens; giving a depart-
ment access via AAD RBAC would give that department access to all the Blob
containers.

 Or you can create two Azure Storage accounts, with a single Blob container each.
Each department would have access to their respective Storage account and any con-
tainers within it via AAD authorization. This approach doesn’t quite meet the require-
ments of a “joint file archive,” but you can access multiple Storage accounts with
various tools and Azure services.

 Let’s create a single Storage account with two Blob containers, one for each
department. You can refer back to figure 3.12 for more instructions.

55Storage account access
Now create two Blob containers using the Azure portal.

1 In your Storage account, click Containers under Blob Service to show the Blobs
blade.

2 Click Container to show the New Container wizard. Figure 3.13 shows the New
container blade.

3 Enter “finance” for the Name.
4 Leave the Public Access Level at the default, Private.

Use the same subscription for related resources.

Use the same resource group for related resources.

Name must be alphanumeric only.

Keep related resources in the same location for
best performance.

Premium is only for VM disks.

Leave the default StorageV2.

Redundant storage incurs higher costs.

Choose Cool if you will rarely access
these files.

Review, and then create the Storage
account in two steps.

3

4

5

2

1

6

7

8

9

3

4

5

2

1 6

7

8

9

Figure 3.12 Creating a Storage account

56 CHAPTER 3 General storage with Azure Storage accounts
5 Click OK to create the container.
6 Repeat for the “operations” container.

The Storage account is ready for you to add access controls.

HIERARCHY STRUCTURE IN AZURE STORAGE BLOB CONTAINER

When you create a Storage account, you also need to create a container in order to do
anything useful. The container is the root of the file hierarchy for Blobs and Files, so it
must be present in order to address any files. Both Files and Blobs emulate a folder
structure, and have an addressable URL like https://ABCDEF.blob.core.windows.net/
ABCDEFcontainer/ABC/DEF/123.csv. Clicking the blob in the Azure Portal container
Overview blade brings up the blob’s properties window, which displays the blob’s URL.

Blobs containers

Use lowercase letters, numbers, and hyphens.

Leave this Private.

2

1

3

2

1

3

Figure 3.13 Creating a Blob container

57Storage account access
 As the owner of the Storage account, you have full access to all files in the Blobs
and Files containers via your AAD user. You can assign role-based access to other AAD
users too, and grant them access at the Azure Storage account level. This access covers
all services in the Storage account, including Blobs and Files containers. You can use
the Azure Portal to configure the roles.

1 Click Access Control (IAM) in the Azure Storage Service blade to show the
Access Control blade. Figure 3.14 shows the Access Control blade.

2 Click Add Role Assignment to show the Add Role Assignment blade.

Reader

Click Add role assignment to give new permissions.

Owners have full control, Contributors nearly as much,
and Readers just read.

Use Azure AD groups for easiest management.
Other options are Azure service-to-service authorization.

Start typing to filter the list.

Click on a security user or group
to select.

Save your new role assignment.

Access control defines what you can do to the service,
and is required for minimal access to the stored files.

3

4

5

2

1

6

7

3

4

2

1 5

6

7

Figure 3.14 Assigning AAD group to Azure Storage service roles

58 CHAPTER 3 General storage with Azure Storage accounts
3 Select Reader for the Role.
4 Select the default—Azure AD User, Group, or Service Principal—to Assign

access to. Other options allow authorization by Azure services.
5 Click the Finance group to select the group.
6 Click Save to add the role assignment.

But you can’t set access permissions on a folder. Blobs and Files set access permissions
at the container level. Blobs allow individual file access permissions as well, via a SAS
token. The Files service uses access keys to set access permissions. Permissions are
checked when the network share is set up. Blob Storage can use access keys or SAS
tokens to set permissions. Figure 3.15 describes the various access schemes.

SHARED ACCESS SIGNATURES

A SAS token, also known as a SAS key, is a URI-friendly hashed string derived from the
Storage account access key. It is generated by an authorized user or application for
distribution to an end user. The SAS token provides granular access to Storage
account resources, like Files and Blob containers.

 A SAS token has multiple properties which define the access granted.

 Start and end dates provide a limited window for access.
 A set of permissions grant actions to the user.
 A stored access policy serves as a reusable and easily revocable container for per-

missions.
 SAS tokens can be generated for the entire Storage account, service container,

or individual files.

Azure AD
account

Storage
access key

Blob
Storage

Blob
Storage

File
Storage

Storage
account

Shared Access
Signature

Azure AD
account

Blob
Storage

File
Storage

Owner role can do all
actions for account

Other roles can
access any file, or

perform other actions

Signature
allows access

to files

Access keys allow
full access to

Storage account

Blob
Storage

File
Storage

Containers Delete

Browse

Direct
URL

Add

Figure 3.15 Access Storage account resources with Azure AD accounts, access keys, and SAS

59Storage account access
SAS tokens at the container level must be created using the Azure REST API or Azure
PowerShell module. There isn’t a method in the Azure portal to specify the policy
when creating a SAS token. You can use Azure PowerShell to create a container-level
token with a 24-hour effective window by providing these options:

 The name of the service container
 A valid start date
 A valid expiration date
 The Azure Storage account containing the service container, as context
 The permissions for the SAS token

The New-AzStorageContainerSASToken command creates the SAS token on a specific
container, and returns the value interactively. Set the SAS token permissions using the
Permission parameter, passing a combination of (a)dd, (r)ead, (w)rite, (c)reate,
(d)elete, and (l)ist. This command requires you to specify a Storage account to target
using the Context parameter. The New-AzStorageContext command retrieves a Stor-
age account context by name.

$Now = Get-Date
$StartTime = $Now.AddMinutes(-15.0)
$EndTime = $startTime.AddHours(24.0)
New-AzStorageContainerSASToken -Name "finance"

➥ -StartTime $StartTime -ExpiryTime $EndTime

➥ -Context (New-AzStorageContext -StorageAccountName

➥ "adedeveastus2" -StorageAccountKey "<storage key>")

➥ -Permission rwcl

Add the option -FullUri to return the full URL to the Azure Storage container. The
default expiration is one hour after the start time. Any valid date will work, as long as
it’s after the start time.

STORED ACCESS POLICY

Stored access policies allow you to create a common reference for multiple SAS tokens. SAS
tokens generated from the policy use the permissions and time frame specified in the
policy. Editing or deleting the policy updates the SAS tokens. This feature is not avail-
able with individual SAS tokens. The stored access policy applies only to containers.

 To create a new stored access policy for a container, you must choose a container, a
name, and a permission set. Create and write permissions allow uploading files; read
and list permissions allow viewing the contents. SAS tokens should have a start and
expiry time, but you can remove access after a set time by adding a start and end
time to the associated policy. Using shorter duration SAS tokens will improve security

Listing 3.9 Create shared access signature for container

Set start date back 15 minutes, to prevent
errors due to time sync between services.

Set expiration date
for 24 hours hence.

Specify the finance
container.

Use the PowerShell
variables.

Include the context, which is the
Storage account. Use your Azure

Storage key to authenticate.
Specify permission of

Read,Write,Create,List as string.

60 CHAPTER 3 General storage with Azure Storage accounts

Use
PowerS

variab
by minimizing how long compromised keys can be used. You can also revoke tokens
by modifying the associated policy.

 To create an access policy, use the New-AzStorageContainerStoredAccessPolicy
command. Execute the script in listing 3.10 in a window with Azure PowerShell to cre-
ate a policy named AddFiles on the Finance container. The script connects to the
Storage account where you created the Finance container service.

New-AzStorageContainerStoredAccessPolicy -Container "finance"

➥ -Policy "AddFiles" -Permission rwcl

➥ -Context (New-AzStorageContext -StorageAccountName

➥ "adedeveastus2" -StorageAccountKey "<storage key>")

You can create a container-level SAS token using a policy with the New-AzStorage-
ContainerSASToken command. Pass the Policy parameter with the policy name. You
can use a service-level SAS token to execute this command instead of the root service
key, to avoid exposing the root access key. To create a SAS token using the access pol-
icy, execute the script in listing 3.11 with Azure PowerShell.

$Now = Get-Date
$StartTime = $Now.AddMinutes(-15.0)
$EndTime = $startTime.AddHours(24.0)
New-AzStorageContainerSASToken -Name "finance" -Policy "AddFiles"

➥ -StartTime $StartTime -ExpiryTime $EndTime

➥ -Context (New-AzStorageContext -StorageAccountName

➥ "adedeveastus2" -StorageAccountKey "<storage key>")

➥ -FullUri

Using PowerShell variables enables you to reuse values in a session. It also makes your
script easier to read, by shortening the lines. Listing 3.11 can be executed multiple
times, each time returning a new signature and expiration. Make sure you have cre-
ated the stored access policy before trying to create a SAS tied to it.

TIP Add Immutable blob storage policy to a Blob container to prevent any
modifications to files in the container, even for the Owner role. You can add
an Immutable blob storage policy using the Access policy blade of the specific

Listing 3.10 Create a Storage account stored access policy

Listing 3.11 Create SAS with access policy

Create a policy named AddFiles. Specify
permission of Read,Write,Create,List as string.

Include the context, which is
the Storage account.

Use the Azure Storage key to authenticate.

Set start date back 15 minutes, to prevent
errors due to time sync between services.

Set expiration
date for 24
hours hence.

Specify the
container and
the policy set

up previously.

 the
hell
les.

Include the context, which is the
Storage account. Use the Azure

Storage key to authenticate.
PowerShell returns the value of the SAS
immediately, and adds the URL of the
Storage account and container.

61Exercises
Blob container in the Azure portal. It does not need to be attached to a SAS
token to be effective.

Now that you’ve learned how to create the Storage account and access keys, you can
create useful storage services. In this scenario, you explored securing access in Azure
Storage. While it’s possible to create discrete security configurations in a single Stor-
age account, creating SAS tokens relies on an external service for authorization.
Ongoing usage of the Storage account with SAS tokens requires the client to renew
the keys periodically. Alternately, using separate Storage accounts provides clear
security boundaries, but create difficulties in addressing the stored files without
switching contexts.

3.5 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create Blob containers and queues, and provide secure
access to them.

3.5.1 Exercise 1

Your department wants to use Storage account Blobs to archive application logs.
Access to the archive will be infrequent, and the archive must minimize cost. Which
two options for the Blob container should you choose?

1 Cold tier
2 Archive tier
3 LRS replication
4 GRS replication
5 BAK replication

SOLUTION

1 The Cool tier costs less than the default Hot tier. There isn’t a Cold tier.
2 The Archive tier is the most cost effective option for long-term storage, but it

does have a minimum storage term.
3 LRS replication is the most cost effective option for replication. LRS maintains

copies only in the local data center.
4 GRS replication is a more costly option for replication than LRS. GRS main-

tains copies in multiple data centers.
5 There is no BAK replication option.

3.5.2 Exercise 2

A user requests access to a Storage account Blob container to upload a few files. A
Storage account administrator returns a SAS token to the user shortly thereafter. The
next day, the user complains that they can’t upload files to the container. Select all
potential causes.

62 CHAPTER 3 General storage with Azure Storage accounts
1 The Azure region where the Storage account is located is experiencing an outage.
2 The Storage account has been deleted.
3 The Blob container has been deleted.
4 The SAS token has expired.
5 The user’s password has changed.

SOLUTION

Answers 1 through 4 are possible.

1 Azure regions occasionally have outages. Internet connectivity problems can
also prevent access.

2 Storage accounts can be deleted at any time, if there isn’t a retention policy in place.
3 Blob containers can be deleted at any time, if there isn’t a retention policy in place.
4 The default timeout for a SAS token is one hour.
5 The user’s account is not connected to the SAS token used for access. The user’s

account is only used for access if they are an owner of the Storage account.

Summary
 Azure Storage consists of several services. Blob Storage provides cost effective

storage in the cloud. The Queue service provides simple messages queues.
 Microsoft provides several tools for copying files into Azure Storage, each with a

strong use case. Pick the tool that works for the task at hand.
 Queues disconnect input rate from processing rate. Both rates can be scaled

independently.
 Azure Storage account access is granted at the Storage account level using AAD.

Granular access at the container/service level is granted using access keys.
Shared access signatures grant access at the container/service level and the
blob level. The access control method will influence your choice of a single
Storage Account or multiple.

Azure Data Lake Storage
In the last chapter, you learned how to work with a fundamental Azure service, the
Storage account. Storage accounts provide nearly unlimited storage for many
Azure services, with high throughput and high redundancy. Storage accounts also
host other file-based services, such as file shares and queues.

 In this chapter, you’ll learn about another storage service, Azure Data Lake Stor-
age (ADLS). You’ll create a Data Lake store and learn how to structure your data
lake to increase maintainability and security. You’ll learn how this service supports
other Azure services through Azure Active Directory authentication. This will be
the central service around which you construct the analytics system.

 ADLS resembles a local file system, with folders and files. Azure Active Direc-
tory (AAD) controls access to folders and files, with assignable read/write/exe-
cute permissions. ADLS provides the primary storage backbone for the master
data set, a source of data for batch layer processing. ADLS also stores batch analysis

This chapter covers
 Setting up a Data Lake store

 Configuring file access in Data Lake Storage

 Understanding and planning for data drift
63

64 CHAPTER 4 Azure Data Lake Storage
artifacts, including the report files that make up the output of the Serving layer (see
figure 4.1).

Massive storage in ADLS allows for massive data, feeding massive batch jobs. ADLS
builds on Hadoop and the Hadoop Distributed File System (HDFS). Hadoop man-
ages storage and data retrieval across a horizontally-scalable cluster of data nodes.
ADLS provides security management and integration with other Azure services
while abstracting Hadoop commands. ADLS provides a familiar interface over a
complex system.

 Let’s see what’s involved in creating a Data Lake store.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

Data Lake
store

Data Lake
Analytics

Event
Hubs

Stream
Analytics

SQL
Database

SQL
Database

User query

Data
Factory

Data Lake
Analytics

Data Lake
Store

Blob
Storage

Event
Hubs

Blob
Storage

Batch layer

Speed layer

Serving layer

New data

Power
BI

Azure
Functions

Machine
Learning

CSV TXTJSON

Figure 4.1 Lambda architecture with Azure PaaS services

65Create an Azure Data Lake store
4.1 Create an Azure Data Lake store
Setting up an ADLS store requires some information common to all Azure services,
including a subscription, name, location, and resource group.

 A subscription groups resources together for access control and billing.
 A resource group groups resources together for management.
 A location groups resources into a regional data center.

IMPORTANT By default, all files in ADLS are encrypted at rest. You should
leave the management of the encryption keys to the service unless you have a
system in place to manage them.

4.1.1 Using Azure Portal

Here’s how to create a new ADLS store.

1 In the Azure portal, use the Create a Resource menu to open a New Data Lake
Storage Gen1 blade, or use the All Services menu and filter on Data Lake Stor-
age Gen1. Or you can go directly to the New Data Lake Storage Gen1 blade at
https://portal.azure.com/#create/Microsoft.AzureDataLakeStore. Figure 4.2
shows the New Data Lake Storage Gen1 blade.

2 Choose a name (“[XYZ]deveastus2”). The name must be lowercase alphanu-
meric, between 3-24 characters, and globally unique. Read more about Azure
service naming conventions in chapter 3.

3 Choose a subscription. The default will be the oldest subscription, if you have
access to more than one.

4 Choose a resource group. (See appendix A for instructions if you haven’t cre-
ated one.)

5 Choose a location. ADLS stores are not available in all regions; choose one
close to you. Keep resources that interact in the same region to minimize net-
work latency. You may choose a region to match your user base, as some govern-
ments restrict moving data outside their zone of control.

6 Choose a pricing package, or leave the default, Pay-as-you-go. This minimizes
costs for your tutorial usage. In a production system, reserving storage up front
provides discounts. See http://mng.bz/6AXy for more information.

7 Choose an encryption management scheme, or leave the default, Enabled. To
use a self-managed key, you will need to create an Azure Key Vault and an
encryption key.

8 Create the Data Lake store.

66 CHAPTER 4 Azure Data Lake Storage
4.1.2 Using Azure PowerShell

You can also create an ADLS store via Azure PowerShell. Use the New-AzDataLake-
StoreAccount command to create it. The command takes the resource group, loca-
tion, and a name for the new ADLS store. You can disable file encryption by passing
DisableEncryption, or specify an encryption scheme using the Encryption parameter.
Encryption takes ServiceManaged or UserManaged as a value. User-managed encryp-
tion require the use of Azure Key Vault, which you’ll learn more about in chapter 10.
Access Azure PowerShell by visiting Azure Cloud Shell at https://shell.azure.com/, or
clicking the >_ header menu in the Azure portal.

Use the same subscription for
related resources.

Use the same resource group for
related resources.

Use lowercase letters and numbers.

Keep related resources in the same
location for best performance.

Calculate the threshold for savings before committing.

Use encryption.

Unless you have established key management systems,
let the service manage the keys.

5

6

7

2

3

4

1

5

6

7
2

3

4

1

Figure 4.2 Creating a Data Lake store

67Create an Azure Data Lake store
New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2" -Location "East US 2"

➥ -Encryption "ServiceManaged"

This script will return an error if an ADLS store by that name exists, or if ADLS is not
available in the selected region. ADLS is not available in all regions, so it’s a good idea
to select a region that supports ADLS before creating the rest of your services, to keep
all services in the same region. This lowers the latency of network communication
between services.

 You can also specify some other options during setup. You can add key/value pairs
called tags to help locate the service later. If you know your storage size, you can pre-
purchase storage at a discounted rate, using the Tier parameter. Possible values for
the Tier parameter include Consumption, Commitment1TB, Commitment10TB,
Commitment100TB, Commitment500TB, Commitment1PB, and Commitment5PB.

New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2" -Location "East US 2"

➥ -Tag @{User="ADE";}

➥ -Tier Commitment1TB

Add a tag for management of resources. This is especially useful when browsing the
All Resources blade in the portal, because you can filter the list of resources using
the tags you have provided. Use a consumption plan, until you’ve calculated your
monthly storage needs. You can purchase a plan at any time. Pre-purchasing capacity
lowers costs, bringing them closer to that of Storage account Blobs.

TIP If you know how much data you will store in the Data Lake, purchasing
capacity in advance can save you money. Once your storage level passes a
threshold close to your commitment, you can reduce your spending. For
example, if you are archiving more than 900 GB of log files, purchasing 1 TB
of capacity will cost less than paying as you go. Overages are calculated at the
standard rate of $0.039/GB.

Creating Storage accounts and ADLS stores are basic skills for storing data files in
Azure. The AAD user account that created the Storage account becomes the owner
and has full permissions to administer the resource. If you are the sole admin for your
business, this may be sufficient. For most use cases, additional users are given access
following service creation. Giving access to users expands the usefulness of storage ser-
vices. Let’s look at methods for allowing secure access to the storage services.

Listing 4.1 Create new Data Lake store

Listing 4.2 Create a new Data Lake store with options

Create a tag called
User with value ADE.

Pre-purchase 1 TB of storage each
month and save 12% over basic rate.

68 CHAPTER 4 Azure Data Lake Storage
4.2 Data Lake store access
You created the ADLS store, but the service is not useful for anyone else in its current
state. Only you, the owner, can access it. For others to use it, you need to define, plan,
and implement an access scheme.

4.2.1 Access schemes

The Finance and Operations departments want a joint file archive that can be used
with multiple Azure services. Users and systems will upload files from each depart-
ment. Access for uploading files for one department must not allow reading files from
the other department. You need to design and implement an access scheme in a Data
Lake store that satisfies these requirements. How can you accommodate this request?

 An access scheme defines who can access resources and what they are allowed to
access. Authentication encompasses validating the identity of the entity making the
request. Authorization matches authorized entities with the actions they can perform.
Authentication for ADLS is handled by AAD.

 AAD is Microsoft’s cloud-based identity and access management service. It pro-
vides sign-on services and account management for Office 365, the Azure portal, and
other applications. AAD can use directory synchronization to allow on-premise and
cloud applications to use the same account. Authentication is handled at the user
level; authorization can be set for users and groups.

 Authorization for ADLS actions is defined in two ways. For managing the service,
role-based access controls (RBAC) allow or deny access to tasks like deleting the ADLS
store, assigning roles to users, and purchasing reserved storage. For managing file and
folder access, access control lists (ACLs) define granular access. The ACLs use stan-
dard Read (R), Write (W), and Execute (X) permissions. To see how these two autho-
rization approaches work, you’ll look at the security model for ADLS. Then you’ll see
how to plan and implement the folder hierarchy and file access. By the end of the sec-
tion, you’ll be able to configure secure file access for ADLS.

LEAST PRIVILEGE

Up to this point, the ADLS stores you’ve created have been accessible only by the
owner, you. Now you need to broaden access to include other users. The Principle of
Least Privilege states that “a subject should be given only those privileges needed for it
to complete its task.”1 This scenario applies the principle by restricting access to a
department’s files and folders to members of the department. By working through
this scenario, you’ll learn some approaches to configure RBACs and ACLs on ADLS.

1 Michael Gegick and Sean Barnum. “Least Privilege.” Cybersecurity and Infrastructure Security Agency CISA,
September 14, 2005. http://mng.bz/mBny.

69Data Lake store access
4.2.2 Configuring access

How do you set up your new ADLS store to have a common file location but still
restrict access to certain files? You need separate folders for Finance and Operations,
with access and default ACLs specific to each department.

ROOT FOLDER ACLS

Folders get an access ACL and a default ACL. Files get an access ACL only. Folder and
file access is not inherited; each folder and file contains its permissions list in meta-
data. The access ACL determines access for the folder or file itself. The default ACL
determines the access ACL for files created in the folder and the default ACL for
child folders.

 Access ACLs can be set using the Access blade of a file or folder in the Data
Explorer blade of an ADLS store, in the Azure portal. Default ACLs can be set using
the Advanced blade in the Access blade of a folder in the Data Explorer blade, in the
Azure portal. The Advanced blade also lets you apply ACLs to child folders.

 New folders created in the ADLS store’s root folder “/” copy the ACLs from the
root folder. When the ADLS store is first created, the root folder has a unique access
ACL and default ACL. The AAD account used to create the ADLS store is assigned the
root folder owner role. Since you are the creator, you are the root folder owner by
default. A security group, with an all-zero GUID, is assigned to the root folder owner
role, to satisfy a requirement that folders must have a group owner. This null security
group does not permit access and should be replaced with a valid group. This ensures
access to the folders and files in case access via the creator account is lost. You’ll
replace the owner group in the next section.

ROOT FOLDER OWNER

Assigning ownership and access and default ACLs to the root folder creates the broad
outlines of your access scheme. If you don’t have an AAD user and group, see appen-
dix A for a PowerShell script to create them.

 Azure uses AAD extensively for user and service authentication. You should already
be familiar with the Azure portal and using AAD for authentication and authorization to
Azure services. Listing 4.3 shows an Azure PowerShell script for creating a new user and
security group, and assigning the user to the group. The script uses the commands New-
AzADUser, New-AzADGroup, and Add-AzADGroupMember. The new user command requires
a display name, a mail name, a principal name which is an email address, and a pass-
word. The security group command requires a display name and a mail name. The
group membership command requires both member and group identifiers: either
user principal name or ID, and group display name, object, or ID. You need to con-
struct a UserPrincipalName using one of the AAD registered domains. For a personal
Azure account, use your signup email without the top-level domain, and append
.onmicrosoft.com. For example, if creating an AAD user for techuser@azuredomain
.com, the UserPrincipalName is techuser@azuredomain.onmicrosoft.com.

 Execute these lines with Azure PowerShell to create the user and group membership.

70 CHAPTER 4 Azure Data Lake Storage
$SecureStringPassword = Read-Host -Prompt "Enter password" -AsSecureString

$User = New-AzADUser -DisplayName "Tech User"

➥ -Password $SecureStringPassword -MailNickname "techuser"

➥ -UserPrincipalName "techuser@azuredomain.onmicrosoft.com"

$Group = New-AzADGroup -DisplayName "Technical Operations"

➥ -MailNickname "TechOps"

Add-AzADGroupMember -MemberObjectId $User.Id

➥ -TargetGroupObjectId $Group.Id

This PowerShell script will return an error if a group by that name exists. The new
user and security group have no access to the ADLS store at this time, but allow
authentication to Azure and the various services. Next, you’ll give the group, and
through it the user, access permissions in the ADLS store.

NOTE If you are using an Azure subscription without a corporate Active
Directory, then your domain will be some variation of the email you used to
sign up with Azure. You can find this value by going to the AAD Overview
blade. The domain is listed above the header Default Directory. It is also
listed in the Custom Domain Names blade.

Now you’ve created a user and a security group in AAD using PowerShell. You can use
them when securing the ADLS store’s root directory. Set the owning group to the
TechOps group using the Azure portal.

1 In the Azure portal, use the All Services menu and filter on Data Lake Storage
Gen1 to show the Data Lake Storage Gen1 blade.

2 Select your Data Lake store to display the Overview blade.
3 In the Overview blade, click Data Explorer.
4 In the Data Explorer blade, click Access. Figure 4.3 shows the Access blade.
5 In the Access blade, verify that “/ (Folder)” is displayed below the header, indi-

cating you have selected the root folder.
6 In the Owners section, click the group 00000000-0000-0000-0000-000000000000.
7 In the Access Details blade, click Change Owning Group. This opens an AAD

search blade.
8 In the Select User or Group blade, search for and select the TechOps AAD

group, and click Select.

You can also set the owning group on the ADLS store root folder “/” with PowerShell.
The Set-AzDataLakeStoreItemOwner command sets the owner for a folder. The

Listing 4.3 New AAD user and group

Prompt for a password for the new user.Use the secure password.

Build the principal name from
MailNickname and your AAD
registered domain.

Get the ID from the
variable $User, from the
new user command.Get the ID from the

variable $Group, from the
new group command.

71Data Lake store access
Account parameter specifies the name of the ADLS store you wish to update. The for-
ward-slash character following Path parameter indicates the root folder. This Power-
Shell script changes the security group owner, passing in the ID of the “Technical
Operations” AAD group. Execute this line in PowerShell Core with the Azure Power-
Shell module loaded.

Set-AzDataLakeStoreItemOwner -Account "adedeveastus2"

➥ -Path / -Type Group

➥ -Id (Get-AzADGroup -DisplayName "Technical Operations").Id

Listing 4.4 Set Data Lake owner

Browse into root folder and click Access.

Click the null security group.

Click “Change owning group.”

Select a security group from Azure Active
Directory.

Click “Select” to commit change.

2

3

4

1

5

5

2

3

41

Figure 4.3 Assigning owning group to Data Lake store folder

Group owner instead
of user owner.

Get the security group ID.

72 CHAPTER 4 Azure Data Lake Storage
Get-AzADGroup returns a security object, which has an ID property. Instead of in-lin-
ing the group object lookup, you could include the GUID directly.

 Next, set a fallback access ACL for non-owners on the root folder. This ACL has
Read (R) and Execute (X) permissions. Without this ACL, non-owner AAD users will
not be able to list the folder structure from the root folder. Users with access to spe-
cific files can access them directly via URL, in the form adl:/ /adedeveastus2.azuredat-
alakestore.net/file.csv. You can find this path under Properties for the file in the
Azure portal Data Explorer blade. As an alternative, you could apply specific ACLs for
AAD groups as they are added to the Data Lake service and give access to one or more
folders in the store. Try setting the fallback ACL using the Azure portal.

1 In the Overview blade of the Data Lake service, click Data Explorer.
2 The Data Explorer blade opens in the root folder.
3 Add a file and folder list ACL for everyone on the root folder by clicking Access,

then checking the Read and Execute boxes under Everyone Else.
4 Click Save to set the ACL on the root folder.

You can also set the ACL using PowerShell. The Set-AzDataLakeStoreItemAclEntry
command takes full words as values for its Permissions parameter. Values include
None, Execute, Write, WriteExecute, Read, ReadExecute, ReadWrite, and All. The
AceType parameter defines the type of ACL to add: User, Group, Mask, or Other.
Other sets the ACL for “everyone else”—users and groups that don’t have a specified
permission. Mask applies to all users and groups, and the folder and file owning
group. The owning group is set when a folder or file is created. For ADLS service own-
ers, a default mask ACL on the root “/” folder gives owners access to all files and fold-
ers. Execute this line with Azure PowerShell to set the default ACLs.

Set-AzDataLakeStoreItemAclEntry -AccountName "adedeveastus2"

➥ -Path / -AceType Other -Permissions ReadExecute

IMPORTANT Make sure that one of your first steps is assigning a valid security
group to the service owner role and root folder owning group when configur-
ing security. If your AAD account gets locked out or removed, users in the
owning group can still access the Data Lake folders. This rationale applies to
the service owner role as well. The service owner role can view all data in the
store, but the root folder owning group cannot manage the Data Lake service,
unless they have more than Reader role. You can choose different security
groups for different roles. For instance, your organization’s Technical Opera-
tions group can manage a Data Lake service as an owner, while the Analytics
or Architects group can be the root folder owning group.

Listing 4.5 Set Data Lake default access entry

Use AceType Other to set the “everyone else” ACL.

73Data Lake store access
4.2.3 Hierarchy structure in the Data Lake store

Storing lots of data in cloud storage enables users to apply analysis over the data. Low-
ering the implementation effort for new data collection often means accepting unpro-
cessed or uncurated data sets, which then need transformation and data cleansing to
prepare them for consumption. Having a designated landing zone for the initial data
marks a clear distinction between the original and processed data files. You’ll look
more closely at planning folder hierarchies in section 4.3.1.

NEW INBOUND FILES FOLDER

Now that you have the root folder in better shape, let’s add a top-level folder named
Staging. The Staging folder is a target for storing unprocessed data. Finance and
Operations will deposit files in subfolders under Staging. This Staging folder will
inherit the owners assigned to the root folder on creation. You will also add an ACL to
allow users to list any files and view the Staging folder itself. Without this fallback ACL,
non-owner users will be unable to browse the folder hierarchy. Use the Azure portal to
create the folder and set the ACL.

1 Create the Staging folder by clicking New Folder and enter the name Staging.
2 Click on the new Staging folder to browse it.
3 Add a file and folder list ACL for everyone by clicking Access, then checking

the Read and Execute boxes under Everyone Else.
4 Click Save to set the ACL on the Staging folder.

This ACL will only give access for the Staging folder. Subfolders will belong to their
respective groups, and general access won’t be provided. You’ll look more closely at
this folder structure in section 4.3.1.

FINANCE AND OPERATIONS FOLDERS

In order to secure separate access to the Operations and Finance folders, you’ll need
users and groups in AAD. You can create these using the Azure portal or Azure Power-
Shell. Here is an Azure PowerShell script for creating a new Finance user, a new secu-
rity group, and assigning the user to the group. This script uses the same commands
that were used to set the root folder ACLs. Execute these lines in PowerShell with the
Azure PowerShell module loaded.

$SecureStringPassword = Read-Host -Prompt "Enter password" -AsSecureString

$User = New-AzADUser -DisplayName "Finance User"

➥ -Password $SecureStringPassword -MailNickname "financeuser"

➥ -UserPrincipalName "financeuser@azuredomain.onmicrosoft.com"

$Group = New-AzADGroup -DisplayName "Finance"

➥ -MailNickname "Finance"

Listing 4.6 Finance AAD user and group

Prompt for a password for the new user.Use the secure password.

Build the principal name from
MailNickname and your AAD

registered domain.

74 CHAPTER 4 Azure Data Lake Storage
Add-AzADGroupMember -MemberObjectId $User.Id

➥ -TargetGroupObjectId $Group.Id

Here is an Azure PowerShell script for creating a new Operations user, a new security
group, and assigning the user to the group.

 Execute these lines in PowerShell with the Azure PowerShell module loaded.

$SecureStringPassword = Read-Host -Prompt "Enter password" -AsSecureString

$User = New-AzADUser -DisplayName "Operations User"

➥ -Password $SecureStringPassword -MailNickname "operationsuser"

➥ -UserPrincipalName "operationsuser@azuredomain.onmicrosoft.com"

$Group = New-AzADGroup -DisplayName "Operations"

➥ -MailNickname "Ops"

Add-AzADGroupMember -MemberObjectId $User.Id

➥ -TargetGroupObjectId $Group.Id

Now that you’ve set up access to the Staging folder, create Finance and Operations
folders under Staging in the same way. For these folders, assign a Read, Write, Execute
(RWX) ACL to the Finance and Operations AAD groups, respectively.

 Figure 4.4 shows how to set the ACLs on a folder. Use the Azure portal to create
the folders and set the ACLs.

1 Create the department folder for Finance under Staging.
2 Click on the new Finance folder to browse the folder.
3 Click Access to show the Assign Permissions blade, then click Add to configure

the ACL.
4 For Select User or Group, select the Finance group.
5 For Select Permission, check the Read, Write, and Execute boxes under

Permission.
6 Select This Folder and All Children.
7 Under Add As, select An Access Permission Entry and a Default Permission

Entry. This will set the permission on the folder and the inherited permission
on any new files.

8 Click Ok to set the ACL on the Finance folder.
9 Repeat this process for Operations folder.

Listing 4.7 Operations AAD user and group

Get the ID from the variable $User,
from the new user command.

Get the ID from the
variable $Group, from
the new group command.

Prompt for a password for the new user.Use the secure password.

Build the principal name
from MailNickname and

your AAD registered
domain.

Get the ID from the variable $User,
from the new user command.

Get the ID from the
variable $Group, from
the new group command.

75Data Lake store access
DATA LAKE STORE AUTHORIZATION

If your end users will only use command-line tools to copy files, then you can manage
the ADLS store using ACL permissions only. If they will use the Azure portal, Power-
Shell, or Storage Explorer, then one more step is required. You need to give access via
RBAC permissions to any AAD user or group using the folders.

 Many built-in roles are available. The Owner role has full control of the ADLS store.
The Contributor role has full control, except for assigning access via RBAC permissions.
The Reader role allows read-only access to management data, and access to interact with
storage via tools. You can read about the security controls at http://mng.bz/5a9Z.

Click Add on the Access blade. Advanced
lets you modify child permissions.

Select an Azure Active Directory security group
or user.

Choose Read and Execute for folder listing, or
all three for full control.

You can cascade these permissions down to
existing child files and folders.

Set permission on only existing files and
folders (access), on new files and folders
when created (default), or both.

Click Ok twice to commit the permissions.

5

2
3

4

1

5

6

2

3

41

6 6

Figure 4.4 Assigning ACLs to a Data Lake store folder

76 CHAPTER 4 Azure Data Lake Storage
 Every AAD user or group that needs to access the ADLS store must have at least the
Reader role. To complete the setup of the two departments’ folders, you need to
assign the Reader role to the two AAD groups.

 Use the Azure portal to configure the roles.

1 Click Access Control (IAM) in the Data Lake Service blade to show the Access
Control blade.

2 Click the Add Role Assignment or Add button within the Add a Role Assign-
ment container to show the Add Role Assignment blade. Figure 4.5 shows the
Add Role Assignment blade.

3 Select Reader for the Role.

Access control defines what you can do to the service
and is required for minimal access to the stored files.

Click Add role assignment to give new permissions.

Owners have full control, Contributors nearly as much,
and Readers just read.

Use Azure AD groups for easiest management.
Other options are Azure service-to-service authorization.

Start typing to filter the list.

Click on a security user or group
to select.

Save your new role assignment.

5

6

7

7

2

3

4

1

5

6

2
3

4

1

Figure 4.5 Assigning AAD group to Data Lake service roles

77Storage folder structure and data drift
4 For Assign Access To, select the default: Azure AD User, Group, or Service Prin-
cipal. Other options allow authorization by Azure services.

5 Start typing Finance in the Select input to filter the list of AAD users.
6 Click the Finance group to select the group.
7 Click Save to add the role assignment.

The Data Lake service owner role gives access to all the content, as well as manage-
ment functions for the ADLS store. As an owner, you can assign other AAD users as
owners too. These owners, and other Data Lake service roles, are separate from the
root, sub-folder, and file owners.

 The Finance and Operations departments now have a joint file archive to store
data for analysis. The initial process for setting up the data lake had four steps:

1 Creating the ADLS store.
2 Configuring default security.
3 Creating the subfolders for each department.
4 Configuring the folder security for each department.

In the next section, you’ll build on the initial root folder with a plan for data use, man-
agement, and governance. The plan materializes in a folder structure.

4.3 Storage folder structure and data drift
Data lakes provide unstructured storage and access controls for users and tools to
perform analysis on stored data. This generates business value from the collected
data. For this reason, it’s important that the data be of high quality and easy to
locate. You’ve seen how a folder structure and access controls can define what
actions are allowed. This is one mode of data governance. Segregating unfiltered
data from reviewed, corrected, enhanced, or otherwise processed data is another
mode. In this section, you’ll see how applying a structure from the start provides
data governance and assists users. This structure helps your users understand and
locate the data they need.

 The Jonestown Sluggers head office manages the home stadium for the team.
Finance has years of vendor sales data. They would like to store this data in your new
data lake for analysis. The data is stored in CSV files in multiple folders and with dif-
ferent schemas. You want to ensure that the data is accessible and can be found by
analysts. How can you accommodate this request?

4.3.1 Hierarchy structure revisited

Earlier in this chapter you created root-level folders to solve the immediate require-
ment for storing data, without much structure beyond that necessitated by ADLS. Now
you’re going to look at an approach to structuring folders which provides a usage pat-
tern for analysis. You already created a Staging folder in the root folder of the ADLS
store. Now you’ll take this folder construction further.

78 CHAPTER 4 Azure Data Lake Storage
 Documenting a storage area, especially a data lake, is more than just taking notes
to support it. Data files need attributes like source, type, quality, and date. These attri-
butes help users to find the data they need. You can provide these attributes at a basic
level using a combination of folder structure and file naming conventions.

TIP Azure offers a service called Data Catalog. This service stores metadata
on multiple sources of data, including files and folders in ADLS stores. Data
Catalog is covered briefly in the final chapter of this book. You can find more
information with Microsoft’s introduction to Data Catalog at http://mng.bz/
oR2M.

ZONES FRAMEWORK

Imagine splitting your data lake into multiple sections, or zones, based on the level
of processing and/or transformation required. An initial zone would be a place for
external services and users to upload unprocessed data. You created this zone when
you created the Staging folder in the previous section. The next zone stores vali-
dated and slightly processed files for long-term access, without further modifica-
tion. This is the Raw zone. The third zone allows storage of ad hoc query output, as
well as other files used when creating new data investigations. This is the Sandbox
zone. The last zone stores production query output for business use. This is the
Curated zone.

 In a production ADLS store, analytics and automation systems handle data move-
ment into and between zones. Sources of business data, like application logging, user
behavior tracking, and IoT data, flow into the Staging zone. Azure services like ADF
and ADLA copy, clean, transform, and enrich data before outputting files to the Raw
zone. Analysts use tools like ADLA to generate data files in their Sandbox folder.
Finally, analysts and data engineers use these same tools to create final data sets in the
Curated zone for end user queries. Figure 4.6 shows the layout of the zones frame-
work, with the flows of data between the zones.

NOTE You can read about creating and using ADLA jobs in chapter 7. You’ll
hear more about data movement in chapter 10 on data integration with ADF.

STAGING ZONE

Let’s look at the Staging zone. This zone is for initially loading files into the data lake.
Access to files and folders in the Staging zone should be limited to systems loading the
data. Often these files need some type of processing before they can be used. Combin-
ing multiple small files into larger files for long-term storage would happen here. Dis-
tributed processing systems work most efficiently with fewer, larger files. Another
example would be personally identifiable information (PII) cleansing. Files in the
Staging zone should not be expected to remain long. Taking the design and structure
from listing 4.6, here are a set of PowerShell commands to set up these folders for the
zone framework. Execute listing 4.8, listing 4.9, listing 4.10, and listing 4.11 using a
PowerShell client with Azure PowerShell loaded to set up the folders.

79Storage folder structure and data drift
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/Finance"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/DevOps"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/

Operations" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/Finance/

Growth" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/Finance/

SalesW" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Staging/Finance/

Product" -Folder

Listing 4.8 Set up a Data Lake store Staging folder

Azure AD

account

Azure AD

account

Data Lake
store

Sales-Reports

Growth-v1

Raw

Finance

2017

Growth-v2

2017 2018

v1 v2 v2

Curated

Staging

Operations

Sandbox

F D O

Growth SalesW Product

User1 User2 User3

New data

Data generated by
Functions, websites,
or other applications
loaded to Staging.

Jobs copy files
from Staging
to Raw.

A B C D E F

Analysts
create jobs.

Jobs populate
data sets.

End users query data sets.
5

2

3

4

1

Figure 4.6 Folder structure
with zones framework

80 CHAPTER 4 Azure Data Lake Storage
Remember to return and set an ACL for access to folders below Staging, according to
product or department ownership.

TIP ADLA performs best using splittable files between 250 MB and 1 GB. See
http://mng.bz/6QWZ for more best practices.

RAW ZONE

Staging files are destined for the Raw folder. The Raw zone is where data files go to
die. In the Raw zone, content of all types waits to be read as part of an analytics job or
other request. Files in the Raw zone should remain in their original state, without
modification or updating. To preserve this state, access to content in the Raw zone
should be limited to read-only access for data analysts. Collections of data in the Raw
zone can suffer from data drift. You’ll examine the use of versioning to mitigate
effects of data drift later in this section. Execute these Azure PowerShell commands to
set up the folders.

New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Operations"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports/Growth-v1" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports/Growth-v2" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports/Growth-v1/2017" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports/Growth-v2/2017" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Raw/Finance/

Sales-Reports/Growth-v2/2018" -Folder

WARNING Many data exploration techniques rely on finding outliers. Clean-
ing and normalizing data at the Raw stage could remove valuable data. Con-
sider storing even data rows that fail Staging processing in “Error” folders
adjacent to the data files.

SANDBOX ZONE

The Sandbox zone is an open area where data analysts can process files. It allows
uploading of new data and creating multiple versions of combined data files as new
data products are developed. Use this zone as a testing space for developing process-
ing routines. The data can be minimally or majorly processed in the Sandbox.
Access to content in the Sandbox zone should be unrestricted for each user. This
zone does not serve data to end users. Execute these Azure PowerShell commands
to set up the folders.

Listing 4.9 Set up a Data Lake store Raw folder

81Storage folder structure and data drift
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Sandbox" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Sandbox/User1"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Sandbox/User2"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Sandbox/User3"

-Folder

You can skip setting up user folders in the Sandbox zone until you have users ready to
do analysis. Remember to secure each user folder with appropriate ACLs.

CURATED ZONE

The Curated zone holds output from analytics jobs run against data files in the Raw
zone. This data has been processed, preparing it for use by end users. A common use
case would be exploration with visualization tools by business users. Access to content
in the Curated zone should be limited to read-only access for business users and tools,
and write access for data analysts and jobs creating the data sets. Execute these Azure
PowerShell commands to set up the folders.

New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Curated" -Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Curated/FolderA"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Curated/FolderB"

-Folder
New-AzDataLakeStoreItem -AccountName "adedeveastus2" -Path "/Curated/FolderC"

-Folder

These are the top-level zones that should be set up in the Data Lake store. These are
community best practice, not a specific Microsoft recommendation. Figure 4.7 shows
a hierarchy scheme using the zones approach.

 In each zone, data files are sorted by department, source, and type. Sorting often
includes a date of ingestion, or loading, into the ADLS store. The folder hierarchy of
the Raw zone typically follows that of the Staging zone, but can vary depending on file
aggregation or data drift controls. The Sandbox zone can be constructed using fold-
ers per user, rather than being broken up by department and source. Data sets in the
Curated zone have a business case, and frequently combine data from multiple
sources. The Curated zone can be constructed using folders per business unit, project,
or along security boundaries.

 Later chapters will walk through the processes that move data between folders, cre-
ate new data files, and return data to the end user. When you use a folder hierarchy
and enforce it with security controls, you reduce the likelihood of your data lake
becoming a data swamp.

Listing 4.10 Set up a Data Lake store Sandbox folder

Listing 4.11 Set up a Data Lake store Curated folder

82 CHAPTER 4 Azure Data Lake Storage
4.3.2 Data drift

When the structure of the data storage format changes over time, this is data drift.
“Data drift exists in three forms: structural drift, semantic drift, and infrastructure
drift.”2 The set of fields contained in a data file can increase or decrease over time.
This is structural drift. The content of each field can contain new values with the same
meaning, or new meaning. This is semantic drift. And the systems generating, housing,
or processing the data may change, leading to entirely different formats. This is infra-
structure drift. Since computing systems change over time, data drift is a natural part
of operating computer systems. Data drift causes problems with data analysis, because
two sets of data structures representing the same type of content must be handled
differently.

 Data drift can be managed using folder structure and naming conventions. Segre-
gating data files with differing structures prevents breaking changes to existing analy-
sis processes. Thoughtful naming conventions provide direction for finding the correct
data sources and matching the import logic to the structure and schema. Because
later analysis must take into account these changes in the data itself, you should plan
from the beginning ways to clearly identify the changes.

2 Girish Pancha. “Big Data’s Hidden Scourge: Data Drift.” CMSWire.com. April 8, 2016. http://mng.bz/oPX2.

Root
folder

Zone
(Staging, Raw,

Curated, Sandbox)

Department or Area
(Finance, Operations)

Source
(IIS, Saleforce, Excel)

Data set
(W3Cv1.0, Sales_Report_3)

Date ingested
(by year 2017, 2018, or by day, 2019/11/21)

Top level of
the Data Lake

Data Lake
store

5

6

2

3

4

1

Figure 4.7 Azure Data Lake folder hierarchy

83Storage folder structure and data drift
MITIGATING DATA DRIFT IN ZONES

Now consider a folder hierarchy using the zones framework. Finance has years of ven-
dor sales data, stored in CSV files in multiple folders and with different schemas. To
store the vendor sales data, you have several options for folder structures. The files can
be loaded directly into the Curated zone, if this data has been validated and aggregated.
But this scenario states that the files will be used for analysis. In this case, the files can
land in the Staging zone and be validated, cataloged, and moved to the Raw zone by an
automated process. Alternatively, the Finance team could load the vendor sales data
directly into the Raw zone. But how will you deal with differing schema in the data files?

 The framework spreads out from the root and our four zones to numerous, more
targeted folders. This organizes the files contained and conveys details about the files.
Figure 4.8 depicts the zones framework as a pyramid.

Because the likelihood of data drift increases with time, you should incorporate ver-
sioning into your plan. Versioning the files allows analytics jobs to process files with
the same schema in the same way, or to use different processes with differing schema.

 Analytics jobs read from folders in the Raw zone hierarchy, which now includes
four folder levels, defining:

1 The originating department or area
2 The source

Root
folder

Zone
(Staging, Raw,

Curated, Sandbox)

Department or Area
(Finance, Operations)

Source
(IIS, Saleforce, Excel)

Data set
(W3Cv1.0, Sales_Report_3)

Date ingested
(by year 2017, 2018, or by day, 2019/11/21)

Top level of
the Data Lake

Data Lake
store

5

6

2

3

4

1

Figure 4.8 Azure Data Lake folder hierarchy

84 CHAPTER 4 Azure Data Lake Storage
3 The data set
4 A version of the file within

The folder naming convention matters less than the principle of segregation: an ana-
lytics job can read all the files in a single folder, and be guaranteed that their schema
match. This hierarchy adds description to the files, and versioning mitigates the effects
of data drift. Figure 4.9 shows this folder structure laid out.

With this structure in place, Finance can bulk load their data in the Raw zone. If
needed, you can create an automated process to migrate data from the Staging zone
Vendors folder into Raw. Finance would load new vendor data into Staging, but would
need to notify you of any change in schema. Otherwise, you may need to rely on fail-
ure notifications or other processes to detect the data drift. For your part, you will
need to create the new folder for the new file version, and update any data movement
and analytics jobs to add references to the new version.

 With the zones framework, versioning by file folder works in any of the four top
zones: Staging, Raw, Sandbox, or Curated. The zone structure provides flexibility around
your implementation, especially at the lowest levels. Figure 4.8 shows a hierarchy scheme
using ingestion date as the lowest level. This works well in a slowly changing environ-
ment, with little data drift, and analysis bounded by date ranges. This structure benefits
from automated processing to create the folders and copy the files, especially when
including month and day folders. Consider some other lower-level folder variations.

 How granular are the data files? Will they be combined by week or month to
improve efficiency? Try segregating by file version.

Data Lake
store

ABC-v1

Raw

Vendors

2017

ABC-v2

2017 2018

v1 v2 v2

Finance Operations

Sandbox

User1 User2 User3

Curated

A B

Data Lake store Root

A B

Staging

F D O

Vendors SalesW Product

v2

Figure 4.9 Folder structure with file versions

85Copy tools for Data Lake stores
 How great is the volume? Will the files need to be divided into smaller files by
day, hour, or minute? Try a year, month, day folder structure.

 Does a single department generate a single format, like images or XML? Try
segregating at the Source level by format, then by project set.

 How rapidly does the data drift? It’s easiest to modify the folder structure at the
bottom, rather than at the zone, department, or source level.

TIP Many data lakes collect data sources from third parties. Consider adding
a “Third-Party” or individual third-party folders at the Department level of the
zones framework.

With the zones framework, you have a model for minimizing the impact of data drift
in your ADLS store. It also provides a method for managing your ADLS store’s security
structure. With these attributes in mind, you can create an ADLS store to serve your
analytics system well.

4.4 Copy tools for Data Lake stores
Several Microsoft tools operate within Azure, copying files between services. Keeping
the data transfer in Azure, rather than downloading and uploading files, minimizes
network egress charges. Network transfers within an Azure data center are faster than
across the Internet. ADLCopy is a command-line tool for copying files from Storage
accounts to ADLS stores and between ADLS stores. ADLA can perform the same func-
tions as ADLCopy. (You can read more about ADLA in chapter 7.) Azure Data Factory
(ADF) uses cloud scheduling and Azure runtimes, including ADLA, to copy data
between services. (You can read about ADF in chapter 10.) You can even export files
directly from SQL Data Warehouse to ADLS. Chapter 3 discussed copying files into
Storage accounts. Figure 4.10 adds two more options for tools to copy files to Azure
storage services.

 Each tool has a strong use case.

 The Azure portal is available without an install.
 ADLCopy can be used for automated file copying without user interaction.
 File copying with ADF can be included in multi-step workflows and integrated

with other Azure services.
 Storage Explorer provides an easy-to-use GUI and status tracking of actions.
 ADLA can retrieve data during processing jobs.

4.4.1 Data Explorer

You can use the Azure portal to manage files and folders in ADLS, including upload-
ing files and setting access permissions. Data Explorer is a blade within the ADLS Ser-
vice Management blade in the Azure portal. You can access it from the Overview
blade, or via Data Lake Storage Gen1 > Data Explorer in the left menu.

86 CHAPTER 4 Azure Data Lake Storage
To set up a new folder in the Staging zone for the ABC vendor, follow this example.

1 In the All Services blade, enter “Data Lake Storage Gen1” in the filter and select
the Data Lake Storage Gen1 service type to see your ADLS stores. Click on the
ADLS store you created in the previous section, “[XYZ]deveastus2”.

2 In the Overview blade of the ADLS store, click Data Explorer.
3 Browse to the /Staging/Finance folder.
4 In the Data Explorer blade, click New Folder.
5 Name the folder Vendors. Folder names can be any string of characters that are

valid in a URL.
6 Click the Vendors folder to browse to it.
7 In the Data Explorer blade, click New Folder.
8 Name the folder ABC.
9 Click the ABC folder to browse to it.

10 Click Access to assign permissions to the folder.
11 Click Upload to view the Upload Files blade.

JSON

CSV

TXT

Blob
Storage

On Premises

CSV

JSON

TXT

CSV

JSON

JSON

Data Lake
store

CSV

TXT
Data

Factory

Storage
Explorer

Data
Factory

ADLCopy

Data Lake
Analytics

Tools for copying files to
Storage account Blob service

Tools for copying files to
Data Lake store

Tools for copying files between
Blob service and Data Lake store

Data
Factory

Storage
Explorer

AZCopy

Azure
Portal

Azure
Portal

2

3

1

CMD

CMD

Figure 4.10 Tools for copying files between storage services

87Copy tools for Data Lake stores
12 Click the folder icon to open a File Select dialog.
13 Select your files and click Open to begin uploading them to the ABC Data Lake

folder.

4.4.2 ADLCopy tool

ADLCopy is a command-line tool for copying files between Storage accounts and
ADLS stores and between ADLS stores. It doesn’t copy files from on-premises
stores to an ADLS store. Because the file copy occurs between storage systems in
Azure, Azure resources are used to execute the copy, eliminating Internet band-
width and single system constraints. You can download ADLCopy at https://aka.ms/
downloadadlcopy.

Once in the Data Explorer blade, you can create new folders.

You can upload files. Browse into the target folder first.

Name can be any string of characters that can be URL-encoded.

2

3

1

2

3

1

Figure 4.11 Creating a new folder in Data Lake store

88 CHAPTER 4 Azure Data Lake Storage
 The copy can run in standalone (shared) mode or ADLA (dedicated) mode. With
standalone mode, Azure executes the job using available shared resources for ADLS.
With ADLA mode, you configure the transfer to use dedicated resources and tweak
the number of analytics units to balance cost and speed of the transfer. Dedicated
resources ensure no throttling occurs during the transfer.

 When using ADLCopy in standalone mode from a Storage account to an ADLS
store, commands include four parameters:

 Source is the path to the files.
 Dest is the target of the file copy.
 Sourcekey is the root key or shared access signature key. (see chapter 3)
 Pattern is a regex pattern to match the files for copying. Pattern is optional,

and not supplying a pattern will copy all files in the Source path.

The following listing shows the use of ADLCopy to copy files from a Storage account
to an ADLS store.

"C:\Program Files (x86)\Microsoft SDKs\Azure\ADLCopy\adlcopy"

➥ /Source https://abc.blob.core.windows.net/project-abc/v1/v1.1

➥ /Dest adl://abc.azuredatalakestore.net/iislogs/v1/v1.1/

➥ /SourceKey ==StorageKey== /Pattern "ch*.csv"

NOTE See section 4.3.1 earlier in this chapter for a discussion of folder hier-
archies and versioning in the data lake.

When using ADLCopy in ADLA mode from a Storage account to an ADLS store, com-
mands include six parameters:

 Source is the path to the files.
 Dest is the target of the file copy.
 Sourcekey is the root key or shared access signature key. See chapter 3 for more

details.
 Pattern is a regex pattern to match the files for copying. This is optional, and

not supplying a pattern will copy all files in the Source path.
 Account is the name of the ADLA to use for executing the copy job.
 Units specifies how many analytics units to use for the job. See chapter 7 for a

discussion of ADLA analytics units.

The following listing shows the use of ADLCopy to copy files from a Storage account
to an ADLS store, using your existing ADLA to execute the job.

Listing 4.12 ADLCopy transfer standalone

Replicating the folder structure

Use file patterns for finer control.

89Copy tools for Data Lake stores
"C:\Program Files (x86)\Microsoft SDKs\Azure\ADLCopy\adlcopy"

➥ /Source https://finance.blob.core.windows.net/datalakeload/p-abc/

➥ /Dest adl://abc.azuredatalakestore.net/staging/finance/p-abc-v1.2/

➥ /sourcekey ==StorageKey== /Pattern "tv*.csv"
/Account dedeveastus2 /Units 2

When using the ADLA account, the Pattern switch must be placed before the
Account and Units switches. Unattended copy executions are possible. On first execu-
tion, ADLCopy prompts for Azure credentials. These are saved in the %AppData%\
ADLCopy\TokenCache.dat file. This file will then provide authentication for sched-
uled executions of ADLCopy. You’ll need to add the Storage account and ADL
account as a data source in ADLA, if not already attached. You can read more about
ADLA in chapter 7.

4.4.3 Azure Storage Explorer tool

Azure Storage Explorer provides a desktop GUI interface for uploading files to multi-
ple Azure services, including Storage accounts. Azure Storage Explorer can also
connect to ADLS stores using AAD. MIME types are identified by file extension. Fig-
ure 4.12 shows Storage Explorer connecting with multiple types of authentication.
You can use the drag-and-drop function to upload and download files, or use the indi-
vidual function buttons in Storage Explorer. Download Azure Storage Explorer at
http://mng.bz/nzNK.

NOTE Data Explorer and other Azure services don’t create sub-folders auto-
matically, but copy files only. Other tools, like Storage Explorer or ADLCopy,
will copy files and folder structure. Creating folders yourself, and carefully
planning the structure of your folder hierarchy, will help keep your data lake
from turning into a data swamp!

With an Azure Data Lake store at your disposal, you are ready to capture data and
begin data analysis. Using the zones framework will help you keep your data lake
under control. The following chapters will show you how to set up more services in
Azure, run real-time and batch processing, and automate your system.

Listing 4.13 ADLCopy transfer with ADLA

Implement change in hierarchy by targeting new folder.

Use file patterns
for finer control.

Add ADLA account after file name
pattern, use 2 parallel workers.

90 CHAPTER 4 Azure Data Lake Storage
Use the account key to connect to a Storage
account. All resources and services are accessible.

Use a shared access signature to connect to a
Storage account. Only resources and services
in the SAS are accessible.

Connect to Data Lake with your
Azure Active Directory (AAD) user.

AAD user provides access to Storage account
resources and services based on role.
Nearly all roles grant read access.

Storage Explorer interprets the folder
structure of the files in a Storage account
Blob service.

Use Storage Explorer to change Access
Tier: Hot, Cool, and Archive.

Store many file types with recognized
MIME types.

5

6 7

2

1

3

4

5

6

7

2

1

3

4

Figure 4.12 Storage Explorer configured to connect to Storage accounts with access keys and
SAS keys

91Exercises
4.5 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create a Data Lake store and configure access.

4.5.1 Exercise 1

Which of these commands will create a new ADLS store without prompting for addi-
tional info?

1 New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2"
2 New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2" -Name

"adedeveastus2"
3 New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2" -Name

"adedeveastus2" -Location "East US 2"
4 New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2" -Name

"adedeveastus2" -Location "East US 2" -Encryption "ServiceManaged"

SOLUTION

When using the New-AzDataLakeStoreAccount command, resource group, account
name, and region are required. If the selected ADLS store name doesn’t exist, options
3 and 4 will not prompt for additional input. Azure PowerShell will prompt for user
input for text values when the parameters are absent.

4.5.2 Exercise 2

The Operations team has installed a data collection application called Vacuum con-
nected to the shop floor machines. They will schedule a daily export for three data
types: machine start and stop times, machine amperage draw, and operator inputs.
Each file name will include the type, year, month, and day. Devise a folder structure to
store each data set.

SOLUTION

1 Because this is a new data feed, start the folder structure in the /Staging folder.
2 This data set has a clear department owner. Use a new or existing folder for

Operations at /Staging/Operations.
3 This data set is generated by an application named Vacuum, so create the third-

level folder for this application at /Staging/Operations/Vacuum.
4 Three data sets are listed, each potentially having their own schema and uses.

Create a folder for each data set. It is up to you if you add a discriminator for
version to the folder name, add a folder beneath it, or disregard the version
until a new version of the schema is released. You can create a folder for each
data set, like /Staging/Operations/Vacuum/operating_times.

5 With a single file per day, you have options for the depth of your folder struc-
ture. Segregating files by year and month aligns with typical monthly reporting
schedules. The exporting process typically handles creating new folders as needed,

92 CHAPTER 4 Azure Data Lake Storage
but you can start the structure to give guidance and ensure correct ACLs are in
place. The lowest level of folders should look like /Staging/Operations/Vacuum/
operating_times/2019/03.

Summary
 ADLS is a petabyte-scale storage service which provides a hierarchical folder

structure over HDFS. This structure provides fine-grained access control.
 AAD is used to secure files and folders in Azure Data Lake stores, which reduces

management.
 Dividing the ADLS store into zones creates a structure necessary to control

usage. This helps support user access to data.
 Planning for data drift during creation of ADLS folders provides clear guidance

for later accommodating the changes. This helps users work with data in multi-
ple schemas.

Message handling
with Event Hubs
In the previous chapters, you learned about services that can store the potentially
limitless volumes of data generated by modern applications. These services support
the speed and batch layers of the Lambda architecture. Data storage forms both
sources and outputs for data, and queries to answer user questions.

 In this chapter, you’ll learn about another Azure data source. Event Hubs
exposes a high-throughput endpoint for ingesting and serving event messages.
Events messages record the activities of modern applications as a time-based series
of event data. Producers generate event messages, and consumers process event mes-
sages. Event Hubs forms the bridge between the two. In this way, Event Hubs
decouples the producers from the consumers. By decoupling ingestion from con-
sumption, Event Hubs allows multiple producers to communicate with multiple
consumers.

This chapter covers
 Creating an Event Hub

 Configuring partitions and throughput units

 Saving messages to disk

 Accessing Event Hubs
93

94 CHAPTER 5 Message handling with Event Hubs
5.1 How does an Event Hub work?
An Event Hub ingests messages from applications. It records the details of each mes-
sage in a journal and saves the message data for retrieval. The message data can be
simple or complex. The Event Hub serves messages on request. Each message con-
sumer records the last message read in the journal. Multiple consumers can read from
the same journal of messages.

 Messages are retained in the journal until the retention period elapses and are not
removed during retrieval. This means multiple consumers can read from the same
journal, and a single consumer can read from the journal multiple times. This differs
from the Azure Queue service, where messages are deleted on successful processing.
Replaying messages from the journal allows reprocessing of events, and having multi-
ple consumers allows different processing to happen on the same data set. Extending
the retention period lets us revisit our old data in the future.

 Applications submit messages to Event Hubs via an API using HTTPS, Advanced
Message Queuing Protocol (AMQP), or the Apache Kafka protocol. HTTPS is the
industry standard for secure Internet web communication. AMQP messages are an
industry standard for message queuing. Kafka is an open-source option for hosting a
high-throughput message endpoint. The Kafka protocol is an open standard. If you
don’t want to manage a Kafka cluster, you could use Event Hubs in a namespace using
Kafka. One example would be using an Event Hub as the message ingestion point for
a Databricks cluster. All protocols require a fully qualified domain name (FQDN) end-
point to submit messages to. In Event Hubs, this is called the Event Hubs namespace.

 The Event Hubs namespace can be thought of as the gateway or load balancer for
one or more Event Hubs. It lets applications use common connection strings to access
multiple Hubs for sending and receiving. It also allows you to create SAS keys that
grant access to read and write to the Hubs in the namespace. By acting as a gateway in
front of your Event Hub, the namespace can route traffic to a second Hub if there is a
regional outage.

NOTE Although this scenario could easily fit with an IoT Hub deployment,
for the purposes of submitting event data to Azure, Event Hubs and IoT Hubs
are functionally equivalent.

Let’s see how Event Hubs work by collecting data for a new scenario.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

5.2 Collecting data in Azure
For the next season of the Jonestown Sluggers, the IT group is piloting a biometric
monitoring program during practice and home games. All of the players have sensors
integrated into their uniforms, recording data multiple times per second and submit-
ting to your analytics system. The development team wants to send the data to Azure

95Collecting data in Azure
for processing. To support this initiative, you need to create an endpoint in Azure to
accept the incoming stats and hold them for processing. Later work will add real-time
stats analysis and batch analysis.

 To collect data from one or more sources, you can proceed with four general tasks.

1 Define your data schema.
2 Define your collection endpoint.
3 Generate your data.
4 Submit data to the endpoint.

Figure 5.1 shows these steps using Azure services as endpoints.

Collecting data from devices works the same way as collecting from software. Because
the data collection will occur in real-time, let’s choose a message schema, like that
used for pitching stats. A file schema would be better suited to batch processing.

 For the first iteration of the biometric stats, include a player identifier, sensor iden-
tifier, the value read, and the sensor read time, as shown in the following listing.

{
"Player":"abera101",
"Node":12,
"NodeValue":100.2,
"EventTime":"2020-04-05T13:15:1947365Z"

}

Listing 5.1 Player statistics

JSON

Data Lake
store

CSV

ARVO

Stream
Analytics

Event
Hubs

Event Hubs

Capture

AzCopy

Command line tools
for existing data files

Web

app

Capture data now,
real time later.

Message
schema

Storage
Queues

Service Bus
Queues Smart

sevices
Event
Hubs

Blob
Storage

Data Lake
store

File
schema

data.

Cloud
services

Define
schema.

Choose
ingestion
endpoint.

Storage
Queues

1

2

41

2

3

4

4

CMD

Figure 5.1 Data collection from multiple sources to multiple targets

Player identifier

ISO 8601
datetime format

96 CHAPTER 5 Message handling with Event Hubs
With a data format defined, you can move on to setting up the collection endpoint. To
route traffic to an Event Hubs service, you need a FQDN. Each Event Hub relies on a
namespace. Because of this, Event Hubs can take advantage of some redundancy and
recovery features. It also means you must create the namespace before creating an
Event Hub.

5.3 Create an Event Hubs namespace
Event Hub namespaces host an Internet-routable endpoint for message submission to
an Event Hub. The endpoint provisions throughput capacity for Event Hubs in the
namespace. This capacity is allocated and priced using throughput units, an allotment
of bandwidth and message rate that controls the input and output of messages
through your namespace and Hubs.

 Namespaces can host up to 20 throughput units, across all of the Event Hubs in the
namespace. You may need more than one namespace to handle the largest ingestion
pipeline, but for most uses, a namespace can handle multiple Event Hubs. The Auto-
Inflate option will increase the number of throughput units if the traffic approaches
the maximum for ingestion or output. When using Auto-Inflate, set the maximum
throughput units to 20. This ensures you won’t lose incoming data if the throughput
rate rises above a single unit. Enabling retries by the client can prevent data loss
during transient outages, like ServerBusyException, if your usage is very sporadic. You
pay for each throughput unit provisioned, even if the ingestion rate does not require
that much throughput.

TIP The maximum number of throughput units available through the Azure
portal and PowerShell is 20. You can increase this to 40 units by submitting a
support ticket.

5.3.1 Using Azure PowerShell

You can use Azure PowerShell to create an Event Hubs namespace. The New-
AzEventHubNamespace command creates the namespace. This command takes multi-
ple parameters: a name, resource group, location, performance tier, and throughput
level. NamespaceName defines part of the routable Event Hub URL. The namespace
name must be alphanumeric and hyphens, end with a letter or number, and be glob-
ally unique. Read more about Azure service naming conventions in chapter 3.
SkuName accepts Basic or Standard as values. The Standard tier adds Auto-Inflate scal-
ing for longer message retention, more connections, geo-disaster recovery, and more
control over writing to the queues. SkuCapacity accepts an integer from 1-20 for the
number of throughput units. You can also enable Auto-Inflate by adding EnableAuto-
Inflate and providing a value for MaximumThroughputUnits, between 1-20. Add
EnableKafka to use the Kafka protocol in this namespace.

 Run listing 5.2 in Azure PowerShell to create a namespace. Access Azure Power-
Shell by visiting Azure Cloud Shell at https://shell.azure.com/, or clicking the >_
header menu in the Azure portal.

97Create an Event Hubs namespace
New-AzEventHubNamespace -ResourceGroupName "ade-dev-eastus2"

➥ -NamespaceName "ade-dev-eastus2-hubs" -Location "East US 2"

➥ -SkuName "Standard" -SkuCapacity 1

➥ -Tag @{User="ADE";}

➥ -EnableAutoInflate

➥ -MaximumThroughputUnits 5

You can use the Azure portal to create a new Event Hubs namespace too. The Create
Namespace blade is located at https://portal.azure.com/#create/Microsoft.EventHub.
With both methods, you need to select the throughput units for your namespace.

5.3.2 Throughput units

You can increase the throughput of your Event Hubs by adding more throughput
units, with some conditions. Starting with a single throughput unit minimizes your
hourly cost. The maximum ingestion rate of a single throughput unit is 1 MB per sec-
ond and up to 1000 ingestion events per second. The maximum output rate of a sin-
gle throughput unit is 2 MB per second and up to 2000 messages per second. With
Auto-Inflate enabled, your ingestion endpoint won’t stop accepting new messages
when the first ingestion limits are reached. Some consumers, or readers, cannot run
in parallel against an Event Hub and are limited to a single throughput unit on the
output side. We’ll cover high-output parallel readers in the next chapter, with Stream
Analytics. For now, you can monitor the incoming rates of messages and bytes on the
namespace’s Overview blade in Azure portal.

WARNING There is no “Auto-Deflate” for throughput units. Be sure to moni-
tor your Event Hub namespace for throughput usage, and scale down when
usage returns to a lower volume.

An Event Hub namespace hosts an endpoint in a single datacenter and region. To
enable greater fault tolerance, the namespace offers routing of event submissions to a
secondary datacenter during an outage.

5.3.3 Event Hub geo-disaster recovery

Azure services run in multiple data centers, regions, zones, and on multiple conti-
nents around the world. Even with the distributed nature of the execution and resil-
ient design of Azure services, outages can occur. You should plan how you will recover
from short and long outages in Azure services. As part of a disaster-recovery plan, you
may want to set up redundancies and fail-over paths between Azure services. Event
Hubs makes this fairly painless with geo-disaster recovery routing.

Listing 5.2 Create a new Azure Event Hub Namespace using PowerShell

Standard tier, 1 throughput unit.

Tag this resource with ADE
to aid in searching.

Enable automatic scaling of
throughput units. Required when
using MaximumThroughputUnits.

Limit scaling to a maximum
of 5 throughput units.

98 CHAPTER 5 Message handling with Event Hubs
 To have a failover endpoint to mitigate downtime, you need to add a second Event
Hubs namespace and connect the primary and secondary namespaces via an alias.
The alias is a routing FQDN, which routes incoming messages to the active Event
Hubs namespace. Figure 5.2 shows the flow of messages in Event Hubs when using a
geo-disaster recovery alias.

You can create the geo-recovery alias using Azure PowerShell. The command New-
AzEventHubGeoDRConfiguration creates the alias using two existing Event Hub name-
spaces. You provide the alias using the Name parameter, along with the resource
group to store the metadata. Both namespaces need to run on at least the Standard
tier. You can change the tier of an existing Event Hubs namespace on the Overview
blade of the Azure portal, by clicking the Pricing Tier link. You can pair an Event
Hubs namespace with a namespace in any other supported Azure region. Using name-
space zone redundancy restricts the available locations to regions in the United
States, Europe, and Southeast Asia. Because the routing alias will be the FQDN used
in your connection strings, choose a name that is region-neutral and that conveys
the use of the namespaces.

Event
Hubs

Hub Hub Hub

Namespace

Geo-disaster recovery alias

Namespace

Hub Hub Hub

Primary (active)Secondary

Web

app
Smart

devices

Cloud
services

Applications send
messages to
Event Hubs alias.

Alias routes messages
to active namespace.

Namespace routes
messages to specified
Hub in the namespace.

PartitionsPartitions

Hub routes messages
to a specified partition
or next available.

2

3

4

1

Figure 5.2 Routing messages with Event Hubs Geo-disaster recovery alias

99Create an Event Hubs namespace

Tag
resou
with A
to ai

search
 The script in listing 5.3 does the following:

 Creates a second Event Hubs namespace
 Creates a routing alias
 Assigns the primary and secondary namespaces

Execute this script in Azure PowerShell. Access Azure PowerShell by visiting Azure
Cloud Shell at https://shell.azure.com/, or clicking the >_ header menu in the
Azure portal.

New-AzEventHubNamespace -ResourceGroupName "ade-dev-eastus2"

➥ -NamespaceName "ade-dev-westus2-hubs" -Location "West US 2"

➥ -SkuName "Standard" -SkuCapacity 1

➥ -Tag @{User="ADE";}

➥ -EnableAutoInflate

➥ -MaximumThroughputUnits 5

New-AzEventHubGeoDRConfiguration -ResourceGroupName "ade-dev-eastus2"

➥ -Namespace "ade-dev-eastus2-hubs"

➥ -Name "ade-dev-hubs-alias"

➥ -PartnerNamespace "ade-dev-westus2-hubs"

5.3.4 Failover with geo-disaster recovery

In the event of a long-term regional outage of Event Hubs, you would change the pri-
mary namespace from the failed region to the functional one. The failover does not
happen automatically: you initiate it. After you initiate the failover, event messages col-
lection resumes in the new primary namespace. If and when the failed namespace
comes online, it will then be the secondary.

TIP Geo-disaster recovery works to recover parts of your analytics system
from a regional disaster. You should ask yourself a few questions before using
it, including the following:

 How often can you expect to use the failover?
 How quickly can you update your systems to use a new Event Hubs name-

space?
 Can you re-create the rest of the analytics system on short notice?

If you can tolerate several hours of downtime for the ingestion endpoint,
you probably don’t need to use a geo-disaster alias. If you can easily update
your systems with a new Event Hubs endpoint address, you don’t need to
use a geo-disaster alias. If you can re-create your Event Hubs and update

Listing 5.3 Create a secondary Azure Event Hub namespace and alias using PowerShell

Secondary namespace, Standard tier,
1 throughput unit to minimize cost

this
rce
DE

d in
ing.

Enable automatic scaling
of throughput units.

Limit scaling to a maximum
of 5 throughput units.

The primary namespace
to route to

The new domain
endpoint

The secondary
namespace to route to

100 CHAPTER 5 Message handling with Event Hubs
your systems easily, then you can create a new Event Hubs namespace when
needed, and forgo the expense of running a secondary namespace. Auto-
mation is your friend.

With at least one namespace created, you can create an Event Hub. The Event Hub
contains the journal that records messages. Both the namespace and an Event Hub are
required for a complete endpoint.

5.4 Creating an Event Hub
The Event Hub provides only a few options, but they have a big impact on usability.
These include the duration of message retention, partition count, and automatic out-
put to durable storage. Because the data and journal entry for each message are
recorded in durable storage, data accumulates in the Event Hub. Each Event Hub
includes a set amount of storage with the cost of the throughput unit. Once this
included storage is consumed, you can allow the oldest messages to be removed or pay
for extra storage to extend the retention period. Each partition represents a parallel
path for ingesting and consuming messages. With Event Hubs Capture, you can out-
put the message data to accessible storage without needing a consuming application.
You’ll see more about each of these options later in this section.

5.4.1 Using Azure portal

In the Azure portal, you first choose the namespace, then add an Event Hub. The
Event Hub name must be alphanumeric and hyphens, periods, or underscores, and
begin and end with a letter or number. You must select a message retention period
between one and seven days. Message retention sets a minimum duration for storing
messages, and at least one day of message retention is provided at no extra cost.

 You need to provide a partition count value too. Choose a partition count that
matches your use case. The partition count controls the maximum parallel consumers
that can process messages simultaneously. The minimum is two, which allows for
redundancy in the system. Even though there can be 26 players on the baseball roster,
you don’t need to set the partition count to 26. Use two partitions instead. Higher par-
tition counts are needed for much larger throughput demands. Capture automatically
saves messages to Azure Storage or Data Lake Storage. Leave Capture disabled. You’ll
configure it later.

TIP Additional partitions do not increase the cost of the Event Hub name-
space, but they can negatively affect downstream performance if the number
of messages does not require high throughput.

5.4.2 Using Azure PowerShell

You can also create the Event Hub by using Azure PowerShell. The New-AzEventHub
command creates an Event Hub. You need to provide a name, resource group, location,
and the namespace connected to the Event Hub. Use the MessageRetentionInDays
parameter to specify the message retention period and PartitionCount to set the

101Creating an Event Hub
number of partitions. Run the following script (listing 5.4) to create the Event Hub
with two partitions and message retention of one day.

New-AzEventHub -ResourceGroupName "ade-dev-eastus2"
-NamespaceName "ade-dev-eastus2-hubs" -Name "biometricstats"

➥ -MessageRetentionInDays 1

➥ -PartitionCount 2

Because the throughput units are set at the namespace level, you can add more Event
Hubs to the namespace without extra charges. Remember that throughput units are
split among the Event Hubs in the namespace. There is a maximum of 10 Event Hubs
per namespace. Let’s look at some of the ways you can configure the Event Hub.

TIP If you want to prepare for a failover event and have created a secondary
namespace, you can reuse this script to create a secondary Event Hub.
Change the NamespaceName to “ade-dev-westus2-hubs”, or the name you used
for the secondary namespace. There is no ongoing charge for adding an Event
Hub (without Capture enabled) to the namespace, only for the throughput
units. (The resource group can be reused for both East US 2 and West US 2
resources for simplicity.)

With a namespace and Event Hub, the last thing needed to write messages to Event
Hubs is an access key.

5.4.3 Shared access policy

A Shared Access Signature (SAS) key is required to access an Event Hub. Creating an
Event Hub namespace generates a new key policy named RootManageSharedAccess-
Key. The default access policy gives full control to the service. This policy includes a
primary and secondary SAS key. You can view the policy keys in the Azure portal in the
Event Hubs Namespace > Shared Access Policies blade.

 You can view the keys and connection string for a particular policy using Azure
PowerShell too. Use the Get-AzEventHubAuthorizationRule command to list the
access keys for an Event Hub namespace. By default, RootManageSharedAccessKey is
included, allowing full access to the service. Execute the following PowerShell script
(listing 5.5) to see the available rules.

Get-AzEventHubAuthorizationRule -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2-hubs
Get-AzEventHubKey -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2

➥ -AuthorizationRuleName RootManageSharedAccessKey

Listing 5.4 Create Event Hub

Listing 5.5 Get Event Hub namespace default policy

One day of message retention
(storage) included in the
throughput unit rateUp to 32 partitions can be divided

between the throughput unit rate.

The Event Hub
namespace

The policy name

102 CHAPTER 5 Message handling with Event Hubs
With the namespace, Event Hub, and access key, you can give the development team
access to the new Event Hub. Later in the chapter you’ll see more details about config-
uring SAS policies, and see an example script for writing to the Event Hub. Now let’s
look more closely at the inner workings of the Event Hub.

5.5 Event Hub partitions
An Event Hub behaves like a multi-lane highway where all cars obey the speed limit. Fig-
ure 5.3 shows messages as cars on a highway. From a single on-ramp, a car on the high-
way can run in any lane, and lanes can separate from the highway at any point. Each
Event Hub comes with a minimum of two partitions, the lanes of the highway. Event
Hubs have throughput units and partitions for managing throughput, the throughput
unit functioning as a speed limit. Messages submitted earlier are retrieved first, but
retrieval can begin from any point of the journal. A single consumer can service all par-
titions, or multiple consumers will divide the partitions between them automatically.

An outage of a single partition does not cause the Event Hub to become unavailable.
Because an Event Hub has multiple partitions serving a single entry point, any parti-
tion can handle any inbound message. Event Hubs was designed around this require-
ment. An extra partition-serving process is kept warm on the Event Hub to take over a
failed partition. This extra partition supports the high availability of the Hub as part of
its hourly rate. For your two-partition Event Hub, there are actually three processes
running, with one at idle.

5.5.1 Multiple consumers

Event Hubs implements the message storage differently from Azure Queue service.
With the Queue service, each message is an individual file. With Event Hubs, each
message is written to a common log and read from the same log. Consumers read
messages not yet flagged as read from the log, selecting the next batch of messages
belonging to the partition they service.

 Event Hubs provides a method for multiple consumers to read from the same log
and track the read messages separately. Each Event Hub includes a single consumer

SPEED
LIMIT

1 MB/S

Partition 1

Partition 2

Figure 5.3 Partitioned Event Hub runs at throughput unit rate.

103Event Hub partitions
group named $Default. This consumer group identifies which consumers read from
the journal and use the same checkpoint to identify the last read message. For Basic
tier namespaces, only the default consumer group is allowed. For Standard tier, you
can add multiple consumer groups and allow multiple application consumers to read
the same Event Hub messages.

5.5.2 Why specify a partition?

If you want to specify a specific order of processing for a set of messages, then specify
a partition. All the messages in that partition will be processed by the same consumer,
because only one consumer from a consumer group reads from a partition. This
ensures consistency in the state of related messages. For example, Stream Analytics
can group messages in a specific partition together when making calculations and can
use multiple consumers to read multiple partitions.

5.5.3 Why not specify a partition?

Unassigned messages are assigned a partition, round-robin style. Assigning messages
to a specific partition can cause message count skew between partitions, which can
slow processing in heavily used partitions. If messages are tied to a specific partition,
then any outage with the partition will prevent the ingestion endpoint from accepting
those messages. Event Hub partitions can go offline for a number of reasons. Pro-
cesses will be shifted or created to bring the partition back online, but during the out-
age, submissions will fail. If high availability is more important than consistency in
processing, then allow the Event Hub to manage the message partition.

 Figure 5.4 shows a comparison of assigned messages to unassigned messages.

When defining partitions on your messages, adding retry logic to your code can keep
partition outages from causing message loss.

Submitted
messages

Dropped
messages

Event

Hubs
3 2 1

1

2

3Three

partitions

Specific
partitions

1 1 1

2 2 2

3

3 3

Event

Hubs
9 8 7

1

2

3Three

partitions

No set
partitions

7 4 1

8 5 2

9 6 3

Submitted
messages

No
dropped
messages

2

3

1

2

3

1

Figure 5.4 Partitioned queues
can be highly available or highly
consistent.

104 CHAPTER 5 Message handling with Event Hubs
5.5.4 Event Hubs message journal

These separate partitions all read from the same message tracking source, the jour-
nal. Every message coming into the endpoint is recorded to the journal, along with
its partition. In figure 5.3, you can think of the journal as a list of vehicle makes and
models, with the partitions representing which vehicle is in which lane. Event Hubs
uses Blob Storage behind the scenes to serve the log file for the partition consum-
ers. Remember from chapter 3 that Azure Storage services are backed by multiple
stores for high availability. Thus message ingestion and storage are both protected
from network outages.

5.5.5 Partitions and throughput units

Event Hubs implements a partitioned journal, with at least two partitions in every
Event Hub. When submitting messages to the Event Hub, you can choose to use the
first available partition. The Event Hub will distribute messages evenly among the par-
titions. If you choose a partition for a message, then the Event Hub will send those
messages only to that partition.

 Each partition can only utilize a single throughput unit. Your ingestion and output
rates may never reach the maximum of a single throughput unit. Using the default of
two partitions, only two throughput units can be used, even if more partitions are
available. When creating an Event Hub, a valid practice is to choose the number of
partitions based on the expected maximum throughput rate.

 Using a log impacts message retention in an interesting manner. One day of mes-
sage retention defines at most a full day’s worth of messages in the log. At 1 MB per
second per throughput unit per day, that yields 60 sec × 60 min × 24 hrs, or 86400 MB
of messages. At 1,000 messages per second per throughput unit per day, that yields
60 sec × 60 min × 24 hrs × 1,000, or 86.4 million messages if each message is 1 KB.
Once the log reaches 86400 MB or the equivalent number of messages, the oldest
messages are deleted. When you configure message retention, you are setting the stor-
age limit for messages to 86400 MB × (number of days). Depending on the size and
volume of messages entering the Event Hub, messages can be stored for days, weeks,
or months. You pay for the storage of messages over the provided 86400 MB.

5.6 Configuring Capture
When creating or configuring an Event Hub, you may choose to enable Capture. Cap-
ture creates discrete files from batches of Event Hub messages. This allows you to save
the messages from your Event Hub queue to durable storage without writing addi-
tional code. To add equivalent functionality to the Azure Queue service or Service Bus
queues, you would need to add logic to your queue servicers to batch the messages,
authenticate to the storage service, and write the files. Capture provides a codeless
method for generating files for batch processing.

 When enabling Capture, you can choose an output folder in Blob Storage or Data
Lake Storage. You control the batch size by setting a maximum time window between

105Configuring Capture
1 and 15 minutes and a maximum size window between 10 MB and 500 MB. You can
choose to skip outputting a file if no messages are received in the time window. In
general, larger files perform better in batch processing, so choosing larger windows is
preferable. These settings can be modified at any time.

5.6.1 File name formats

When configuring the Capture function, you will choose a folder pattern using all of
the following parameters:

 Namespace
 EventHub
 PartitionId
 Year
 Month
 Day
 Hour
 Minute
 Second

You are free to organize the parameters in any order. The last parameter will form all
or part of the file name. For example, the following pattern emphasizes filenames
over granular folders.

{Namespace}/{EventHub}/{Year}/{Month}/{Day}/{Hour}/{EventHub}_{PartitionId}_
{Year}_{Month}_{Day}_{Hour}_{Minute}_{Second}.avro

The ingestion rate for your Event Hub can affect how you design the folder pattern. A
single throughput unit provides a maximum ingestion rate of 1 MB per second. With
a maximum of a single throughput unit per partition, multiple files per minute can be
generated, but no more than 1 file per second per partition. At this rate, with 32 parti-
tions, you could generate 230,400 files per hour if your size window is 10 MB, or 4,608
files for a 500 MB window size. Review your expected ingestion rate against the folder
pattern to keep the file count per folder below 1,000. Using more than 1,000 files
becomes difficult to manage with Storage Explorer.

5.6.2 Secure access for Capture

When you choose Blob Storage as the destination for your captured files, security is
handled by the Event Hub during Capture setup. The Capture setup retrieves the root
access key from the Storage account and stores it for access. If needed, the specified
Blob Storage will be created.

WARNING You may reset the root access key for an Azure Storage account.
This will cause Capture to stop saving files to any Blob Storage in the Storage
account. Remember to refresh the connection between the Event Hub and
the destination Blob Storage when this happens.

106 CHAPTER 5 Message handling with Event Hubs

Se
ac
for
ser
at

root
Sta
fold
When you choose Data Lake Storage, you must configure access before enabling Cap-
ture. You must assign access permissions for Microsoft.EventHubs to the folder struc-
ture that will store the Capture data. Event Hubs uses this service principal to identify
itself to other Azure services. Assign Execute (X) permission to the folder hierarchy,
from the root folder to the folder that holds the Capture pattern results. Then add
Read (R), Write (W), and Execute (X) permissions to that holding folder and all sub-
folders by default. (See chapter 4 for details on assigning file and folder permissions
in Azure Data Lake Storage.)

 The following Azure PowerShell script creates a new Zones Staging folder for col-
lecting statistics and sets the necessary permissions for Event Hubs. The script will
prompt to overwrite the folder if present. You learned about the zones framework in
chapter 4. The final step applies the permissions over any existing folders and files.
Run this script in Azure Cloud Shell https://shell.azure.com/ for the most consistent
PowerShell experience.

$pri = Get-AzADServicePrincipal

➥ -DisplayName Microsoft.EventHubs
$store = "adedeveastus2"
New-AzDataLakeStoreItem -AccountName $store

➥ -Path "/Staging/playerstats" -Folder

Set-AzDataLakeStoreItemAclEntry -AccountName $store -Path /

➥ -AceType User -Id $pri.Id -Permissions Execute
Set-AzDataLakeStoreItemAclEntry -AccountName $store -Path /Staging

➥ -AceType User -Id $pri.Id -Permissions Execute
Set-AzDataLakeStoreItemAclEntry -AccountName $store

➥ -Path /Staging/playerstats -AceType User -Id $pri.Id

➥ -Permissions All -Default
Set-AzDataLakeStoreItemAclEntry -AccountName $store

➥ -Path /Staging/playerstats -AceType User -Id $pri.Id

➥ -Permissions All -Recurse -Concurrency 128

The -Recurse and -Concurrency parameters are used to apply permissions to existing
child folders and files. The recursion does not apply to permissions using the -Default
parameter, which sets permissions on new folders and new files in the current folder.

5.6.3 Enabling Capture

You can use the Azure portal to enable Capture on an Event Hub, either at creation or
at a later time. You’ll need to choose values for four options:

 Time window
 Size window
 Blob Storage or Data Lake Storage for a storage provider
 Filename and file path for the files

Listing 5.6 Set access permissions for Event Hubs service

Get the account for the
Event Hub service.

Create a folder in
the Data Lake store.t list

cess
 the
vice
 the
 and
ging
ers. Set full access for

the service at the
Staging/playerstats
folder, for new
items.

Set full access for the service at the
Staging/playerstats folder, for existing items.

107Configuring Capture
Here’s how to enable Capture:

1 In the Azure portal, use the All Services menu and filter on Event Hubs to show
the Event Hubs blade.

2 Select the Event Hubs namespace that routes messages for the Event Hub to
view the Overview blade.

3 On the left, under Entities, click Event Hubs to open the Event Hubs blade for
the namespace.

4 Select the Event Hub you want to enable Capture for (“biometricstats”) to open
its blade. Figure 5.5 shows the Capture configuration blade.

Toggle On to reveal options.

Maximum time window between saving files
is between minute and 5 minutes.1 1

Maximum size window is between 10 MB
and 500 MB.

Check to prevent creation of empty files after
the maximum time window has passed.

Select Azure Storage or Azure Data Lake Store.

Path begins with / and does not need final /.

This is a free-text field, but you must use all
available parameters at least once.

5

6

7

2

3

4

1

5

6

7

2

3

4

1

Figure 5.5 Creating a new Event Hub with Azure portal

108 CHAPTER 5 Message handling with Event Hubs

T
windo

seco
for
mi

wind

for

Sp
the

n
forma

a
str
5 On the left, under Features, click Capture to show the Capture blade.
6 Select On if Capture is set to Off.
7 Select a Time Window of 5 minutes.
8 Select a Size Window of 300 MB.
9 Enable the option Do Not Emit Empty Files. Leave this disabled if you want a

consistent number of files using time window segmentation.
10 Select Azure Data Lake Store as the Capture provider.
11 Enter the name of your Data Lake (“[XYZ]deveastus2”) in the Data Lake Store

field.
12 Enter the folder path you used to set up folder security in the previous section

(listing 5.6).
13 Select a naming convention from the Sample Capture File Name Formats field,

or provide your own in the Capture File Name Format field. See section 5.6.1
for more details.

The PowerShell script in listing 5.7 enables Capture using the maximum time and size
values, with a destination of Blob Storage. The Get-AzEventHub command retrieves
the Event Hub object to enable Capture. Get-AzStorageAccount retrieves the Storage
account to use. New-Object creates a property object for setting all the Capture con-
figuration values. Finally, Set-AzEventHub saves the changes to the Event Hub object.
The script uses the folder pattern described in section 5.6.1 and uses Blob Storage for
the provider. Run this script in PowerShell with Azure PowerShell module enabled.

$eh = Get-AzEventHub -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2-hubs -Name biometricstats
$storageId = (Get-AzStorageAccount -ResourceGroupName ade-dev-eastus2

➥ -Name adedeveastus2).Id
$eh.CaptureDescription = New-Object

➥ -TypeName Microsoft.Azure.Commands.EventHub.Models

➥ .PSCaptureDescriptionAttributes
$eh.CaptureDescription.Enabled = $true
$eh.CaptureDescription.IntervalInSeconds = 900
$eh.CaptureDescription.Encoding = "Avro"
$eh.CaptureDescription.SizeLimitInBytes = 524288000
$eh.CaptureDescription.Destination.Name =

➥ "EventHubArchive.AzureBlockBlob"
$eh.CaptureDescription.Destination.BlobContainer = "players"
$eh.CaptureDescription.Destination.ArchiveNameFormat =
"{Namespace}/{EventHub}/{PartitionId}/{Year}/{Month}/{Day}/{Hour}
/{EventHub}_{PartitionId}_{Year}_{Month}_{Day}_{Hour}_{Minute}_{Second}"
$eh.CaptureDescription.Destination

➥ .StorageAccountResourceId = $storageId
Set-AzEventHub -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2-hubs -Name biometricstats

➥ -InputObject $eh

Listing 5.7 Enable Capture using PowerShell

This line
instantiates a
new Capture
settings object.

ime
w in
nds,
a 15
nute
ow.

Avro
mat

Size window in bytes,
for a 500 MB window.

Using Blob Storage
for storage provider

ecify
 file
ame
t as

 text
ing.

ID of the Azure
Storage account

Update the Event Hub, passing in the Capture
settings object. Available outside of Canada.

109Securing access to Event Hubs
There are two options for encoding: Avro and AvroDeflate. AvroDeflate uses zlib com-
pression to reduce file size. AvroDeflate is not available via the Azure portal. To use
Data Lake Storage, you must use the Azure portal.

TIP Apache Avro is a file format for storing data with detailed schema.
Because it stores data as binary blocks, you can’t use a text editor to view the
files: you need software to decode and edit them. Microsoft lists several
options at http://mng.bz/nP4e. Chapter 8 covers using Data Lake Analytics
with other services, including files generated by Event Hubs Capture.

5.6.4 The importance of time

The usefulness of timestamps on events cannot be overstated. Timestamps (and other
granular date and time values) let you determine if two events occurred simultaneously
or sequentially. File names, like those generated by Event Hub Capture, frequently use
date and time elements. Aggregations by hour, day, and month are common. Real-time
processing of event data uses a time window function to group events. A time window
function groups events based on their relations to each other in time. They could be
events occurring within 5 seconds of any other event, within a 5 minute block, within a
60 minute timeout. Queue messages can be processed out of order, but streams of
messages are always read in order. Events that were delayed and arrived late need to
be slotted into the stream at the correct time. You’ll read more about time windows
and ordering in the next chapter on Stream Analytics. For now, remember that Event
Hubs adds an enqueued timestamp to every message written to the log, in addition to
any event timestamps in the message data.

5.7 Securing access to Event Hubs
Security for Event Hubs covers many of the same tactics as for on-premises installa-
tions, including controlling access to hardware, the execution and behavior of appli-
cations, and who can manage the systems. These practices can be put into place for
Azure resources too. Microsoft takes care of many of them as part of their cloud host-
ing platform. This includes physical security at Azure datacenters, patching and net-
work security for the services that run Azure resources, and audit logging and
monitoring of operations. Other practices, like using less-privileged accounts or limit-
ing network access to systems, are left to the end user.

 You can use two avenues to add security to Event Hubs.

 You can restrict the network where Event Hubs runs and what networks can
connect to the Event Hubs namespace.

 You can restrict the available actions for connected clients.

Both options are configured at the Event Hubs namespace level. Azure services are
already secured and monitored. However, most Azure services are created and run in
a public cloud infrastructure. This means your new Event Hub and namespace can

110 CHAPTER 5 Message handling with Event Hubs
receive malicious requests designed to gain access to data or the system. To add
another layer of security, you can restrict connections to your namespace with Virtual
Networks and IP address filters. New Event Hubs namespaces restrict access to
selected networks only. There are no networks at creation time, so you must disable
this setting or add your Event Hub namespace to a Virtual Network.

 Azure provides a configurable Virtual Network (VNet) service to allow administra-
tors to restrict access to resources. VNets restrict network traffic between IP addresses
with a gateway and firewall, much like a traditional network. VNets currently support
various compute services like App Services and Virtual Machines. Distributed services
like Azure Storage, SQL Database, and Event Hubs are also supported, but Stream
Analytics does not integrate with VNets. Due to this, we won’t discuss securing Event
Hubs namespaces with VNets.

 You can also secure access to an Event Hub namespace with an IP firewall. IP fire-
walls restrict access to ports at a specific IP address. The firewall is enabled at the
Event Hubs namespace. You can allow connections from specific IP addresses and
address ranges to the Event Hubs namespace. IP Firewall is only available for Event
Hubs namespaces at the Standard level. Note that enabling the IP Firewall interferes
with connections from multiple Azure services, including Stream Analytics. Due to
this, we won’t discuss securing Event Hubs namespaces with IP firewall.

 Sending HTTPS or AMQP requests is the first step in interacting with Event Hubs.
The next layer of security you may want to implement covers authentication and
authorization to the Event Hub, as we’ll discuss in the following section.

5.7.1 Shared Access Signature policies

To connect to the Event Hub namespace or Event Hub using a client, you must use a
URL endpoint and a shared access key. Both are managed through Shared Access Sig-
nature (SAS) policies. Each policy includes a primary and secondary key, and a con-
nection string for each key. Each key can be regenerated separately. This allows key
rotation and resets without loss of availability.

 You can view policies to copy the keys and connection strings for use in your appli-
cations. In the Event Hubs namespace, click Shared Access Policies to view any SAS
policies. Every namespace comes with a default policy called RootManageSharedAc-
cessKey. This policy is assigned all three options:

 Manage
 Send
 Listen

You can use this policy for all actions on the Event Hub namespace and Event Hubs. A
better policy would separate client activities with separate policies. Some systems will
write messages and only need a Send policy. Other systems will read messages, or con-
trol aspects of the Event Hub or namespace. These systems can be assigned policies
appropriate to their activities.

111Securing access to Event Hubs

The
polic
 You can create new SAS policies with the Azure portal. All you need is to name the
policy and select options. SAS policies can be created at the namespace level, for use
in all Event Hubs, or at the Event Hub level for the most granular control.

 Use the Add function from the SAS Policies blade in the Azure portal to create a
new policy. Provide a name for the policy. The name can only contain numbers, let-
ters, hyphens, periods, and underscores. Select one or more permissions for the pol-
icy. Manage allows changing settings in the Event Hub, but does not allow sending or
reading messages. Send and Listen allow sending and reading messages, respectively.

 Execute the PowerShell script in listing 5.8 to see the keys and connection strings
for a policy named “biometricstats-hub-writer”.

Get-AzEventHubKey -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2-hubs

➥ -EventHubName biometricstats

➥ -AuthorizationRuleName biometricstats-hub-writer

Now that you’ve created your Event Hub and added a SAS policy for access, you’re
ready to write messages to the Event Hub. Event Hub clients use the components of
the Event Hub connection string, including the SAS policy key, to connect securely
to the Event Hub. In the following section, you’ll use the Event Hub and SAS policy to
write messages to your Azure endpoint.

5.7.2 Writing to Event Hubs

To keep the barriers low, I’ve created this Event Hub process in PowerShell, rather
than using C# and an IDE. The following PowerShell scripts (listings 5.9, 5.10, and
5.11) perform four main actions: create a REST API access token using the SAS policy
key, create a REST request with headers, create a message in a loop, and submit the
REST request.

 Run these PowerShell scripts in sequence to submit 60 messages to your Event
Hub. The first script creates the API access token.

[Reflection.Assembly]::LoadWithPartialName("System.Web")

➥ | out-null

$key = Get-AzEventHubKey -ResourceGroupName ade-dev-eastus2

➥ -NamespaceName ade-dev-eastus2-hubs

➥ -EventHubName biometricstats

➥ -AuthorizationRuleName biometricstats-hub-writer
$URI="ade-dev-eastus2-hubs.servicebus.windows.net/biometricstats"

$Expires=([DateTimeOffset]

➥ ::Now.ToUnixTimeSeconds())+300
$SignatureString=[System.Web.HttpUtility]

Listing 5.8 Get Event Hub specific policy

Listing 5.9 Create a Shared Access Signature to Event Hubs

The Event Hub namespace

The Event Hub name

The policy name

Instantiate the
System.Web class to use
HttpUtility methods.

The Event Hub to
submit messages to

 SAS
y to
use

Use a short timeout. This limits
the usage of a compromised
authorization token.

112 CHAPTER 5 Message handling with Event Hubs

Con
the p

ke
By

Con
Byte
a str

The t
creat
listin
➥ ::UrlEncode($URI)+ "`n" + [string]$Expires
$HMAC = New-Object System.Security.Cryptography.HMACSHA256
$HMAC.key = [Text.Encoding]

➥ ::ASCII.GetBytes($key.PrimaryKey)
$Signature = $HMAC.ComputeHash([Text.Encoding]

➥ ::ASCII.GetBytes($SignatureString))
$Signature = [Convert]::ToBase64String($Signature)
$SASToken = "SharedAccessSignature sr=" +

➥ [System.Web.HttpUtility]::UrlEncode($URI) +

➥ "&sig=" + [System.Web.HttpUtility]::UrlEncode($Signature) +

➥ "&se=" + $Expires + "&skn=" + $key.KeyName

The token generated in this script expires after five minutes. You can regenerate
another or increase the number of seconds. The script encrypts the URL and token
timeout values to create the signature.

 The format of the URL is specific to the Event Hubs REST API. The host value can
be found in the selected SAS policy’s connectionstring property. The message is con-
verted to JSON for submission to the Event Hub. The body is formatted using the
object design from listing 5.1 earlier in the chapter. Run the script in listing 5.10 in
the same Azure PowerShell session as listing 5.9. This script creates a new URL for the
Event Hub endpoint with a signature, then submits a new message on a new request
in a loop.

$endpoint = "https://ade-dev-eastus2-hubs.servicebus.windows.net/

➥ biometricstats/messages" + "?timeout=60&api-version=2014-01"

$headers = New-Object

➥ "System.Collections.Generic.Dictionary[[String],[String]]"
$headers.Add("Authorization", $SASToken)
$headers.Add("Content-Type",

➥ "application/atom+xml;type=entry;charset=utf-8")
$headers.Add("Host", "ade-dev-eastus2-hubs.servicebus.windows.net")

$eventDate =

➥ (Get-Date).ToUniversalTime().ToString("o")

for($i = 0; $i -lt 30; $i++)
{

#Construct body using Hashtable
$htbody = @{

Player="abera101"
Node=12
NodeValue=100.2
EventTime= $eventDate

}
$body = ConvertTo-Json $htbody

Listing 5.10 Create a REST API request to Event Hubs

Format the Signature
value as endpoint +
expiration.

vert
olicy
y to
tes. Hash the Signature

with the policy key.
vert
s to
ing.

Convert the Signature string
to a URL-friendly string.

Combine the string elements
into the final token.

oken
ed in
g 5.9

ISO 8601
datetime format

For loop will
run 30 times

For simplicity,
reuse the
values for
each iteration.

Stream Analytics will
deserialize JSON.

113Securing access to Event Hubs

For
will ru

tim
Invoke-WebRequest -Uri $endpoint -Method POST

➥ -Body $body -Headers $headers
}

Event Hub clients can submit messages individually or in batches. The next Power-
Shell script expands on the last script by creating a batch of messages within the loop
and sending the whole batch in a single request. The script also adds a parameter to
specify the partitionId for the batch of messages. Using this script with Capture
enabled, you can see all the messages collect in a single partition output file. Run the
script in listing 5.11 in the same Azure PowerShell session as listing 5.9.

$endpoint = "https://ade-dev-eastus2-hubs.servicebus.windows.net/

➥ biometricstats/messages" + "?timeout=60&api-version=2014-01"

$headers = New-Object

➥ "System.Collections.Generic.Dictionary[[String],[String]]"
$headers.Add("Authorization", $SASToken)
$headers.Add("Content-Type",

➥ "application/vnd.microsoft.servicebus.json")
$headers.Add("Host", "ade-dev-eastus2-hubs.servicebus.windows.net")

$eventDate =
(Get-Date).ToUniversalTime().ToString("o")
$messages = New-Object "System.Collections.Generic.List[[String]]"

for($i = 0; $i -lt 30; $i++)
{

#Construct body using Hashtable
$partition = @{PartitionKey="3"}
$htbody = @{

Id=(New-Guid).Guid
Player="abera101"
Node=(Get-Random -Minimum 0 -Maximum 40)
NodeValue=(Get-Random -Minimum 40 -Maximum 110)
EventTime= $eventDate

}
$messages.Add((ConvertTo-Json @{

Body=(ConvertTo-Json $htbody)
BrokerProperties=$partition

}))
}

Invoke-WebRequest -Uri $endpoint -Method POST

➥ -Body ("[" + ($messages -join ",") + "]") -Headers $headers

Listing 5.11 Create a REST API request to Event Hubs using partitions

Submit the message to Event
Hub with a POST method.

Message in the
body, authorization
token in the header

The token created
in listing 5.9

ISO 8601
datetime format

loop
n 30

es.

Use partition 3 for
these messages.

A unique ID is required for
each message in a batch.

Generate new
data for each
message in
the batch.

Event Hubs uses
JSON to format
the batch body.

Submit the message
to Event Hub with a
POST method.

 JSON array of messages in the body,
authorization token in the header

114 CHAPTER 5 Message handling with Event Hubs
Event Hubs focuses on reading streams of messages. In the next chapter, you’ll learn
how to take these streams and process them into insights in near real-time.

5.8 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create an Event Hub, choose a partition and streaming
units count, and configure Capture.

5.8.1 Exercise 1

In order to create an Event Hub with automatic failover, which of the following, if any,
are not required?

1 Two Event Hubs
2 Two Event Hub namespaces
3 Two namespace aliases
4 Two throughput units per Event Hub
5 Two consumer groups

SOLUTION

Geo-disaster recovery requires a single alias to use as the message ingestion endpoint.
It requires two namespaces, one in each region. Each namespace requires an Event
Hub, with matching names and consumer groups. The default consumer group can
be used. Each namespace requires at least one throughput unit.

5.8.2 Exercise 2

Given the following rates of ingestion, how many throughput units and partitions are
required to ingest 1 KB messages?

1 300 messages/sec
2 3,000 messages/sec
3 30,000 messages/sec

SOLUTION

To find the answer, you need to know the message and data allowance per throughput
unit, and compare the message and data rates. The message allowance per through-
put unit is 1,000 ingestion events per second, which includes message batches and sin-
gle messages. The data allowance is 1 MB per second. Calculate the data rate at N
messages multiplied by the average message data size.

1 This rate requires one throughput unit to handle 300 messages and 0.3 MB of
message data, because the message rate and data rate are below allowances.
Two partitions are the minimum per Event Hub.

2 This rate requires three throughput units to handle 3,000 messages and 3.9 MB
of message data, because the message rate exceeds the allowance. Three parti-
tions will be required to support three throughput units.

115Summary
3 This rate is over the maximum allowance for 20 throughput units. This rate also
exceeds the data allowance of 20 MB per second. Contact Microsoft to increase
the maximum number of throughput units to 30 or more.

A batch of 1,000 1 K messages is under the maximum 1 MB per ingestion event. Thirty
message batches per second will require 30 throughput units to meet the 1 MB per
second data allowance. This rate would require 30 partitions as well.

 One partition is required per throughput unit for maximum ingestion. You can
use up to 20 throughput units per Event Hub or up to 40 by contacting support.
Using 30 throughput units would require 30 partitions to support 30,000 messages
per second.

5.8.3 Exercise 3

Given 500 1 KB messages per second entering an Event Hub, what is the largest file
size you can generate with Capture? What about 1,000 1 KB messages per second?

SOLUTION

The two measures for the Capture trigger are size and time. 500 MB or 15 minutes are
the largest windows.

500 messages × 1 KB × 60 seconds × 15 minutes / 1024 KB/MB = 439 MB

Therefore, a 439 MB file will be generated every 15 minutes.

1000 messages × 1 KB × 60 seconds × 15 minutes / 1024 KB/MB = 879 MB

Therefore, a 500 MB file will be generated every 8.5 minutes.

Summary
 Event Hubs accept messages via a namespace route. You can configure multi-

region redundancy by using an alias for a pair of namespaces to mitigate regional
outages.

 Event Hubs uses a partitioned log for storing messages. Partition count deter-
mines downstream parallelism. Multiple services can read all messages written
to the message log, yielding higher processing throughput.

 Access policies define which activities are allowed for connected clients. Using
separate keys makes controlling and revoking access easy.

Real-time queries with
Azure Stream Analytics
In previous chapters you’ve seen examples of prep work for batch processing, loading
files into storage, and saving groups of messages into files. Storage accounts, Data
Lake, and Event Hubs set the base for building a batch processing analytics system
in Azure. In this chapter, you’re going to see how these services support stream
processing too.

 Stream processing covers running an operation on individual pieces of data
from an endless sequence, or on multiple pieces of data in a time-ordered sequence.
These two approaches are called one-at-a-time or real-time stream processing and
micro-batch processing.

 Figure 6.1 shows two queries processing a stream of data. One query checks
every new data item and returns an output for each match. The other query
counts how many items were submitted during a repeating time frame. The data

This chapter covers
 Creating a Stream Analytics service

 Configuring inputs and outputs

 Choosing the number of streaming units

 Writing queries using window functions

 Writing queries for parallel processing
116

117
is organized by time. Data in files from Azure Storage and messages from ingestion
services like Event Hubs can both feed into stream processors. Stream processors gen-
erate results in real time rather than on demand. The query is registered once, and
results are output repeatedly.1

This model is called the continuous query model, meaning the query is constantly being
evaluated as new data arrives.

 —Andrew G. Psaltis

In this chapter, you’ll learn about a new Azure service, Stream Analytics. Azure Stream
Analytics (ASA) reads data sources, executes operations over the data, and outputs
results to data sinks. Stream processing generates output as input is received and
query requirements are fulfilled. ASA performs the processing that drives the Speed
Layer of Azure’s Lambda architecture (see figure 6.2).

 ASA uses Structured Query Language (SQL) to define the data operations. ASA
tightly integrates with other Azure services, like Event Hubs, Azure Storage, and SQL

1 Andrew G. Psaltis. Streaming Data Understanding the Real-Time Pipeline. Shelter Island, NY: Manning Publica-
tions, 2017.

Data A

Data B
Data C

Data D

Data E

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data A

Data B

Data B

Data B

Data B

Data B
Data B

Data B

Data B

Data C

Data C

Data C

Data C

Data E

Data E

Data E

Message data ingestion

T
im

e

FILTER QUERY:

where ABC = E

TIME QUERY:

COUNT(N)

TIME QUERY:

COUNT(N)

TIME QUERY:

COUNT(N)

TIME QUERY:

COUNT(N)

9

6

11

7

FILTER QUERY:

where ABC = E

FILTER QUERY:

where ABC = E

FILTER QUERY:

where ABC = E

No grouping Window grouping

Data A

Figure 6.1 Data stream with one-at-a-time and micro-batch queries

118 CHAPTER 6 Real-time queries with Azure Stream Analytics
Database (SQLDB). This means that you can spend your time writing queries to trig-
ger data output, instead of writing code to handle the input and output connections.

 To get started, let’s create an ASA service and set up an input and output.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

6.1 Creating a Stream Analytics service
The Jonestown Sluggers baseball team has put biometric sensors in all players’ uni-
forms and begins collecting data during practice and home games. The data flows
into Azure using an Event Hub. You have been asked to save the stream to files in
Azure Data Lake Storage (ADLS). How can you fulfill this request?

 Using ASA, you can read from Event Hubs and write data to a number of targets,
including ADLS. ASA can match the throughput of an Event Hub and automatically
recovers from outages and network partitions. Let’s look at what makes an ASA ser-
vice work.

Data Lake
store

Data Lake
Analytics

Event
Hubs

Stream
Analytics

SQL
Database

SQL
Database

User query

Data
Factory

Data Lake
Analytics

Data Lake
Store

Blob
Storage

Event
Hubs

Blob
Storage

Batch layer

Speed layer

Serving layer

New data

Power
BI

Azure
Functions

Machine
Learning

CSV TXTJSON

Figure 6.2 Lambda architecture with Azure PaaS services

119Creating a Stream Analytics service
6.1.1 Elements of a Stream Analytics job

ASA instances are referred to as jobs. The ASA job consists of four parts:

1 Inputs
2 Transformations
3 Outputs
4 Coordination

Inputs read data into the job. This includes connections to stream sources including
Event Hub, IoT Hub, and Blob Storage. Inputs can also be static reference sources,
which are used for data enrichment during the transformation processing. These ref-
erence sources include Blob Storage and SQLDB.

 Transformations transform input data and combine input and reference data. An
ASA job contains a single query, which contains one or more transformations in the
form of SQL statements. You write transformations using SQL queries.

 Outputs connect the transformed data to external sinks, like storage, or queues for
further processing or event triggering. Outputs include connections to file stores like
Blob Storage, relational stores like SQLDB, message queues like Event Hubs, and even
Azure Functions for code-driven data processing. An ASA job can have multiple outputs.

 ASA jobs must coordinate data movement between inputs, transformations, and
outputs. Because ASA is built on a clustered infrastructure, parallel processing can
occur at each of these steps. Creating an ASA job provisions the cluster and sets up a
framework to complete the steps in the processing job.

6.1.2 Create an ASA job using the Azure portal

To create an ASA job in the Azure portal, you select a name, region, resource group,
and hosting environment. ASA jobs can run in the Azure cloud, but they can also be
compiled and deployed to an IoT edge device. Selecting Edge for the Hosting Envi-
ronment enables this feature. Finally, you’ll need to choose the number of streaming
units (SUs) to use in your job. An SU is a processing resource node for an ASA job.
Each SU allocated to a job increases the throughput and therefore the monthly cost.
Here’s how to create the job in Azure portal:

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Click Add to open the new Stream Analytics Job blade. You can also browse to
https://portal.azure.com/#create/Microsoft.StreamAnalyticsJob.

3 Choose a name (“abe-dev-eastus2-asa-biometricstats”). The name must be alpha-
numeric and hyphens or underscores and be less than 63 characters long.

4 Choose a subscription. The default will be the oldest subscription, if you have
access to more than one.

5 Choose a resource group. (See appendix A for instructions if you haven’t cre-
ated one.)

120 CHAPTER 6 Real-time queries with Azure Stream Analytics
6 Choose a location in the same region as your input sources. The default is East
US. ASA jobs are only available in select regions at the time of writing, includ-
ing in North and South America, Europe, and Asia. You can check the entire
list of regions at http://mng.bz/vxj1.

7 Select 1 SU to start. You can increase the number later once you have analyzed
the query load and maximum parallelization possible.

8 Click Create to create the job.

6.1.3 Create an ASA job using Azure PowerShell

You can also use Azure PowerShell to create an ASA job. Using PowerShell scripts to
create resources allows for a repeatable process and consistent configuration across
environments. Access Azure PowerShell by visiting Azure Cloud Shell at https://shell
.azure.com/, or clicking the >_ header menu in the Azure portal.

 Unlike creating most other Azure resources with Azure PowerShell, ASA jobs
require a JSON configuration file as part of the process. This file contains general set-
tings for the job. Because the configuration file doesn’t include specific details like
name and resource group, you can reuse its files for multiple jobs.

 The configuration file contains location and properties elements. Choose a loca-
tion value from the list of available regions for ASA, removing spaces from the name.
The sku name element in properties has only one value, Standard.

 Aside from the SKU, the properties array element contains settings to control
event ordering and error handling. Event ordering is critical for many types of stream
processing calculations. Sources for ASA are restricted to those that guarantee order
of processing. We’ll discuss order of message handling later in the chapter. For now,
use the default values for these settings. You can see the format of the ASA job config-
uration file in the following listing.

{
"location":"EastUS2",
"properties":{

"sku":{
"name":"Standard"

},
"eventsOutOfOrderPolicy":"Adjust",
"outputErrorPolicy": "Stop",
"eventsOutOfOrderMaxDelayInSeconds":0,
"eventsLateArrivalMaxDelayInSeconds":5,
"compatibilityLevel": 1.1

}
}

NOTE Compatibility level 1.2 introduces some changes around integration
with other services, particularly when reading from sources that allow paral-
lelization. Parallel processing is discussed later in this chapter. You can read
more about these changes at http://mng.bz/4A0D.

Listing 6.1 ASA job configuration file

Standard is
the only
allowed
value. Covers both late and

out-of-order windows.
Use Adjust or Drop.

Use Stop or Drop, like
when you put out a fire.
Stop = Retry.

Choose 1.0, 1.1
(the default), or 1.2.

121Creating a Stream Analytics service
To use Cloud Shell to create an ASA job, you will need to add the job configuration
file to your Cloud Shell storage. There are two ways to do it: use the Cloud Shell
upload function or create a new file with the Cloud Shell file editor.

CREATING CLOUD SHELL FILES

To upload the file, first copy the JSON from listing 6.1 into a new JSON file named
“streamingjob.json” on your computer. Then log in to Cloud Shell at https://shell
.azure.com/. Finally, click the Upload/Download Files button in the Cloud Shell menu
and select Upload. This will open a dialog where you can select the new configuration
file. The uploaded file will be stored in the Cloud Shell root folder. You can move it to
another existing folder using the Move command. The file will now be available for
use in PowerShell commands.

 The second method involves using the editor in Cloud Shell to create a new con-
figuration file. This method allows you to create a file in the folder of your choice. Fol-
low these steps to create the file.

1 Open and log in to Cloud Shell in a web browser: https://shell.azure.com/.
2 Type mkdir asa in the window to create a folder “asa” to store the ASA job files.
3 Type cd asa to switch to the new folder.
4 Type code streamingjob.json to create a new file inside the folder.
5 Copy the JSON from listing 6.1 into the editor.
6 Press Ctrl+S/Cmd+S to save the file.
7 Press Ctrl+Q/Cmd+Q to quit the editor.

Now that you have a valid ASA job configuration file available, you can run the com-
mand to create the ASA job. New-AzStreamAnalyticsJob takes three parameters: the
name of the job to create, the resource group for the service, and the file path for
the job configuration file. Run the command in listing 6.2 using Azure Cloud Shell.

New-AzStreamAnalyticsJob -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-biometricstats"

➥ -File ~/asa/streamingjob.json

When using Azure PowerShell, you don’t configure the SUs when you configure the
job. Instead you do so when configuring the transformation queries. Because of this,
new ASA jobs created with Azure PowerShell use the default value of 3 SUs. If you wish
to minimize cost for the ASA job at this point, you should reduce this to 1. You can do
this through the Azure portal.

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Click the job name you want to manage.

Listing 6.2 Create new Azure Stream Analytics job using PowerShell

The name for
the ASA job

Note the leading tilde forward-slash
for use in Cloud Shell storage.

122 CHAPTER 6 Real-time queries with Azure Stream Analytics
3 Click Configure > Scale from the left navigation blade.
4 Drag the slider to the left, or change the value to 1.
5 Click Save to save the changes.

NOTE You can also change the number of SUs using Azure PowerShell. You’ll
learn about creating and managing ASA job queries later in the chapter. That
section includes the JSON configuration and PowerShell scripts for setting
the ASA job transformations.

Now that you’ve created your first ASA job, you can configure inputs and outputs, to
prepare it for writing transformation queries.

6.2 Configuring inputs and outputs
ASA jobs read unbounded data sets, transform the data, and write out the new data set
or sets. You define the input sources and output sinks using tightly integrated inter-
faces to other Azure resources. You can’t choose your own third-party or custom
sources. You can choose the following inputs:

1 Event Hubs
2 IoT Hub
3 Blob Storage

ASA jobs also support a set of non-streaming data called a reference input. The refer-
ence input is a Storage account Blob file containing data in CSV or JSON format, or
an Azure SQLDB query. Reference data is loaded into memory when the ASA job
starts running.

 You can choose from the following outputs:

1 Event Hubs
2 Blob Storage
3 Table Storage
4 Data Lake Storage
5 SQL Database
6 Cosmos DB
7 Azure Functions
8 Power BI
9 Service Bus queues

10 Service Bus topics

Each input and output uses a unique set of options to configure authentication, desti-
nation parameters, and batch size. Let’s see how this works by configuring the ASA job
to set up a passthrough query.

123Configuring inputs and outputs
6.2.1 Event Hub job input

A passthrough query in this context simply takes the input fields and writes them all to
the output sink without any processing. Within the ASA job, the passthrough query is
made of an input and an output, tied together with SQL in a transformation. Starting
with a passthrough query lets you test the inputs and outputs before creating more
complicated transforms. Using a passthrough query in an ASA job, with an Event Hub
input and ADLS output, gives you more control over schema drift. If you enumerate
the fields in your transform, you can prevent new fields from entering long term stor-
age prematurely. You’ll add an input to the ASA job next.

CREATE AN EVENT HUB INPUT USING THE AZURE PORTAL

Once you have created your ASA job, you will need to configure inputs and outputs.
In the current scenario, you are collecting data from the uniform biometric sensors
using an Event Hub. To create an Event Hub input, you need to select the Event Hub
and specify the connection and message format details. Here’s how to do it in the
Azure portal:

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Inputs in the left navigation to open the Inputs blade.
4 Click Add to show the Input selection menu.
5 Select Event Hubs from the list of options. This displays the Event Hubs Con-

nection Configuration blade.
6 Choose a name for the input (“input”).
7 Leave the default, Select From Existing Event Hubs.
8 Select the Event Hubs namespace (“ade-dev-eastus2-hubs”).
9 Select the Event Hub to read (“biometricstats”).

10 Enter the consumer group to identify your stream reader, or leave blank to use
the default (“$Default”).

11 Choose the format, delimiter, encoding, or compression values to match the
Event Hub configuration. The defaults (“JSON”) match the biometricstats
Event Hub.

12 Click Create to create the input.

Figure 6.3 shows the Azure portal interface for creating the input.
 You need to match the settings you used for your Event Hub. This includes the access

policy, consumer group, and serialization settings. Although you can use the defaults,
a better practice involves creating separate access policies for each application that
accesses the Event Hub. This applies to the consumer group as well, if the Event Hub
runs at the Standard level and not the Basic level. At the Basic level, your Event Hub only
has the $Default consumer group. Using separate consumer groups lets separate ASA

124 CHAPTER 6 Real-time queries with Azure Stream Analytics
jobs read the same data stream without complications, like one job updating another
job’s checkpoints.

NOTE See chapter 5 for more information on Event Hubs security.

CREATING AN EVENT HUB INPUT USING AZURE POWERSHELL

Like creating the ASA job with Azure PowerShell, you must reference a JSON con-
figuration file. This file includes the input name, type, and a list of properties that
configure the input source and format. The type element has a value of Stream or
Reference. The datasource element defines the input’s connection type and details.
Possible type values include Microsoft.Storage/Blob, Microsoft.ServiceBus/Event-
Hub, and Microsoft.Devices/IotHubs.

Click Add stream input to show selections for
Event Hub, IoT Hub, and Storage account.

This Shared Access policy is set at the
Event Hub Namespace level.

1

Choose an existing Event Hub, or create one.

3

Specify a previously configured consumer group.
Leave blank to use the default $Default.

Choose JSON or CSV, to match the output
of your Event Hub.

Click Save to create and test the input.

5

2

3

4

1

5

6

6

2

3

41

Figure 6.3 Creating a Stream Analytics Event Hubs input in the Azure Portal

125Configuring inputs and outputs
 Listing 6.3 shows the configuration file for an Event Hub input. This file includes
the same parameters we used for the Azure portal setup.

{
"properties": {

"type": "Stream",
"datasource": {

"type": "Microsoft.ServiceBus/EventHub",
"properties": {

"eventHubName": "biometricstats",
"serviceBusNamespace": "ade-dev-eastus2-hubs",
"sharedAccessPolicyName": "RootManageSharedAccessKey",
"sharedAccessPolicyKey": "==KEY==",
"consumerGroupName": "$Default"
}

},
"compression": {

"type": "None"
},
"serialization": {

"type": "Json",
"properties": {

"encoding": "UTF8"
}

}
},
"name": "HubsInputBiometrics",
"type": "Microsoft.StreamAnalytics/streamingjobs/inputs"

}

Follow these steps to save the contents of listing 6.3 to Azure Cloud Shell.

1 Open and log in to Cloud Shell in a web browser at https://shell.azure.com/.
2 Type cd asa to switch to the new “asa” folder. Type mkdir asa if the folder

doesn’t exist, then switch to the folder.
3 Type code HubsInputBiometrics.json to create a new file in the folder.
4 Copy the JSON from listing 6.3 into the editor.
5 Update the value of sharedAccessPolicyKey with the key value from your

Event Hub policy.
6 Press Ctrl+S/Cmd+S to save the file.
7 Press Ctrl+Q/Cmd+Q to quit the editor.

Now that you have a valid input configuration file, you can run the Azure PowerShell
command to create the input. New-AzStreamAnalyticsInput takes the resource
group, ASA job name, name of the new input, and the file path for the job configura-
tion file. Run the command in listing 6.4 using Azure Cloud Shell to add the Event
Hub input.

Listing 6.3 ASA job input configuration file

Event Hubs under the
Microsoft.ServiceBus namespace

Name of the Event
Hub to read fromName of the Event

Hubs namespace

Name of the access
policy for connecting

to the Event Hub
Replace with your
access policy key.

The $Default consumer
group works with Basic
and Standard level
Event Hubs.

Match the
serialization of the
Event Hub message.

126 CHAPTER 6 Real-time queries with Azure Stream Analytics
New-AzStreamAnalyticsInput -ResourceGroupName "ade-dev-eastus2"

➥ -JobName "ade-dev-eastus2-biometricstats"

➥ -Name "HubsInputBiometrics"

➥ -File "~/asa/inputs.json"

6.2.2 ASA job outputs

ASA jobs typically use a single input with one or more outputs. Later in the chapter,
you’ll add a second input for static reference data. The next step in setting up the
passthrough query is adding an output.

 You can choose from the following outputs:

1 Event Hubs
2 Blob Storage
3 Table Storage
4 Data Lake Storage
5 SQL Database
6 Cosmos DB
7 Azure Functions
8 Power BI
9 Service Bus queues

10 Service Bus topics

Event Hubs, Service Bus queues, and Service Bus topics are all queues that allow
event-driven processing and queue-based load balancing. Azure Functions provides a
serverless queue servicer, using the output from the ASA job as an intermittent event
source. Blob Storage and Data Lake Storage are files stores. SQL Database is relational
database. Table Storage and Cosmos DB are non-relational indexed table stores.
Power BI is Microsoft’s data visualization tool. These cloud services let you build
advanced data processing and querying systems with ASA jobs. For now, let’s start with
some foundational services for your analytics system. Let’s add a Data Lake Storage
output and an Azure SQLDB output.

NOTE You can read more about creating and securing Blob Storage in chap-
ter 3, and chapter 4 covers Data Lake Storage. Chapter 5 covers queues and
ingesting data with Event Hubs.

CREATE AN ADLS OUTPUT USING THE AZURE PORTAL

Creating a passthrough query for your ASA job lets you save raw data for later batch
processing. You provide a location for storing the raw data using Blob Storage or Data
Lake Storage. Data Lake Storage is designed for large-scale batch processing, so it’s a
good choice. Here’s how to create the Data Lake store output in the Azure portal:

Listing 6.4 Create a new Azure Stream Analytics job Event Hub input using PowerShell

The name of
the ASA jobThe name

for the input
Note the leading tilde forward-slash

for use in Cloud Shell storage.

127Configuring inputs and outputs
1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Job Topology > Outputs in the left navigation to open the Outputs blade.
4 Click Add to show the Output Selection menu.
5 Select Date Lake Storage Gen1 from the list of options. This displays the Data

Lake Store Connection Configuration blade.
6 Choose a name for the output (“adloutput”).
7 Leave the default, Select Data Lake Storage Gen1 from Your Subscriptions.
8 Select the Data Lake Storage Account Name (“adedeveastus2”).
9 Enter the Path Prefix Pattern (“Staging/biometricstats/v1/{date}/{time}”). The

bracketed wildcards will generate a dynamic file and folder structure.
10 Change the Date format option to YYYY-MM-DD. Leave the Time format at HH,

the default. Together with the Path Prefix Pattern, this will create hourly files
within daily folders in the v1 sub-folder.

11 Select CSV for Event Serialization Format. CSV files consume less storage space
and are easier to use in batch processing.

12 Leave Encoding at UTF-8, the default.
13 Change Authentication Mode to User Token. Click Authorize to retrieve the

user token.
14 Click Save to create the output.

Figure 6.4 shows the Azure Portal interface for creating the Data Lake output.
 Because of the available authentication modes, the Azure portal is the only sup-

ported interface for creating a Data Lake store output. An authorized user token can
only be retrieved using the Azure portal. The ASA job’s managed identity can only be
enabled using the Azure portal.

TIP To connect to the Data Lake store using the ASA job’s managed identity,
you first need to enable this feature in the ASA job, then assign permissions to
the appropriate folders in the Data Lake store. In the Azure portal, in your
ASA job, click Configure > Managed Identity to open the Managed Identity
blade. Check the box to enable authentication with managed identity.
Remember to assign the identity (W)rite and E(x)ecute permissions on the
folder path. The identity will appear like a normal user, with the name of the
ASA job. Refer to chapter 4 for directions on assigning permissions in ADLS
and for planning ADLS store folder hierarchies. If you enable the managed
identity, you can then create an ADLS output using Azure PowerShell.

PREPARE FOR ADDING SQLDB OUTPUT

Azure SQL Database (SQLDB) provides a convenient endpoint for users familiar with
T-SQL. To add a SQLDB as an output for your ASA job, you first need to create it.

128 CHAPTER 6 Real-time queries with Azure Stream Analytics

The
Crede
comm

prompt
a usern

passw
Create a SQL Server
Every SQLDB requires an Azure SQL Server as a host. To create one, you’ll need to
choose a resource group, name, and region, as well as an admin username and password
too. You can use the PowerShell command Get-Credential to prompt for a secure
credential when the script is executed. Run the code in listing 6.5 in Azure Cloud Shell
to create the SQL Server.

New-AzSqlServer -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -SqlAdministratorCredentials (Get-Credential)

Listing 6.5 Create new Azure SQL Server

Click Add to show selections for Event Hub,
SQL Database, and Data Lake Storage Gen1.

Skip leading forward slash.

Selections with forward slashes yield
folders, with dashes yield filenames.

Choose User token to authenticate with your user.

The Authorize button opens a pop-up authentication
window and will prompt for credentials if required.

Click Save to create and test the output.

1

5

6

2

3

41

5

6

2

3

4

1

Figure 6.4 Creating a Stream Analytics Data Lake store output in the Azure portal

Choose a name for
the server, according
to your naming
convention.

Get-
ntial
and

s for
ame
and
ord.

129Configuring inputs and outputs
Azure SQL Servers by themselves do not accrue monthly fees. SQL Servers can be
moved between resource groups and subscriptions and take any attached SQLDBs
along with them. SQLDBs have three methods for billing: managed instance, stand-
alone, and elastic pools. Stand-alone databases are separately managed and billed. Elas-
tic pools group SQLDBs together for shared utilization of resources, much like a tradi-
tional SQL Server hosting multiple databases. A managed instance is a PaaS version of
SQL Server, managing the server and database backups for you. All three types scale
resources using a synthetic metric called DTUs (database transaction units), or a bundle
of hardware resources called a vCore. By default, new SQLDBs are created as a stand-
alone databases at the lowest vCore tier. You can change this by specifying the tier with
the Edition parameter. Allowed values are

 Basic
 Standard
 Premium
 DataWarehouse
 Stretch
 GeneralPurpose
 BusinessCritical

Basic, Standard, and Premium are DTU-based tiers. You can read more about provi-
sioning SQLDBs in chapter 11.

 A SQL Server without a database has few uses. You need to create a database on
your new server as a target for the ASA job output.

Create a SQL Database
You can create a new SQLDB using the Azure portal or Azure PowerShell. The New-
AzSqlDatabase command creates a new database. Pass the resource group, SQL
Server name, and name of the new database. Add the Edition parameter to specify
the database tier. Run listing 6.6 in Azure Cloud Shell to create a new SQLDB.

WARNING The default tier for SQLDB is the vCore model, with monthly rates
starting around $300. You may want to scale your databases to a different tier,
or specify a tier during provisioning using the Edition parameter. The lowest
pricing, for Standard S0 with 10 DTUs, is $0.0202/hour at the time of writing.
You can find current pricing for SQLDB at http://mng.bz/9A11.

New-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

➥ -Edition "Basic"

You’ll learn more about redundancy, including cross-region replication, in chapter 11.

Listing 6.6 Create new Azure SQL Database

The server name you
chose previously

Databases are not tied to a
particular server or region,
and can have simpler names.Set the tier to the lowest-cost tier.

130 CHAPTER 6 Real-time queries with Azure Stream Analytics

The se
name

ch
previo
 The new SQL Server does not allow outside connections by default. They are
blocked by a firewall. This includes the query editor in the Azure portal SQLDB blade,
Azure services, and SQL Server Management Studio (SSMS). In order to access the
new database, you have to allow access through the firewall.

 There are two types of firewall rules: one for Azure resources and one for specific
IP addresses. The New-AzSqlServerFirewallRule command creates firewall rules on
the SQL Server. This command takes the resource group and SQL server name as well
as two sets of options. The AllowAllAzureIPs parameter creates a dynamic rule that
allows Azure resources and applications to connect to the SQL Server. To add specific
external IP addresses, provide a firewall rule name using the FirewallRuleName
parameter. Include StartIpAddress and EndIpAddress to specify an IP range.

 The PowerShell script in listing 6.7 will set the Allow Azure Endpoints rule and cre-
ate another rule for your on-premises network. This rule will let you connect to the
DB from the Azure portal query editor or your local SSMS install. If you execute the
SQL statements in the following sections through Azure Cloud Shell, you won’t need
the on-premises rule. Run the script in listing 6.7 in Azure Cloud Shell to create the
firewall rules.

New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -AllowAllAzureIPs

New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -FirewallRuleName "Onpremises"

➥ -StartIpAddress "192.168.0.198"

➥ -EndIpAddress "192.168.0.198"

The first rule type allows all traffic from other Azure endpoints on port 1433. The sec-
ond rule type allows traffic on port 1433 for specific IP addresses and address ranges.
You do not have to manage the Azure endpoints rule, but you will need to update the
rules if you have changing Internet IP addresses.

 With the firewall rules in place, your end users can access the SQLDB. You can pro-
vide them a server name and a username and password to connect—even the admin
account you used to create the SQL Server. The Azure SQL Server endpoint takes the
form tcp:[SERVERNAME].database.windows.net. Note the use of tcp: preceding
the SQL Server name, to force a connection over TCP.

 The final step to preparing the SQLDB as an output is creating a table to store the
message data. You could do this using the SQLDB Query Editor blade in the Azure por-
tal, connecting with SQL Server Management Studio or Visual Studio, or the SQL Server

Listing 6.7 Create firewall rule to allow access by Azure resources

rver
 you
ose
usly

This rule allows access from Azure
resources, regardless of their IP address.

Choose a name for the rule
that allows access from your
on-premises network.

Select a routable Internet
address for the start of a range.

Select a routable Internet address for the
end of a range, or match the StartIPAddress
to list a single IP address.

131Configuring inputs and outputs
PowerShell module. Before you create the table, it’s a good idea to define the table
schema. This will make integration between the ASA job output and the SQLDB easier.

Biometric data definition
In chapter 5, you defined the data schema for submitting the biometric data to Event
Hubs. The schema included the player ID, sensor ID, sensor value, and a timestamp.
The data dictionary for the biometric data could look like table 6.1.

Listing 6.8 connects to the new SQLDB and runs a query. This script uses the Power-
Shell command Invoke-Sqlcmd to execute a SQL statement. Pass the full server name
with the parameter ServerInstance. Specify the Database target value. The Credential
parameter needs a credential object, which is used to authenticate with the SQL Server
and database. The Get-Credential PowerShell command will prompt you to enter a
user and password. Use the Query parameter to define a SQL statement to execute.

 The query creates a new table based on the data definition from table 6.1. Run the
script in listing 6.8 in Azure Cloud Shell.

Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql.database.windows.net"

➥ -Database "Playerstats"

➥ -Credential (Get-Credential)

➥ -Query "CREATE TABLE Biometricstats (Player nvarchar(255), Node int,

➥ NodeValue decimal(5,2), EventTime datetime);"

Even with all of these steps to go through, you can have a fully functional SQL Server
database running in a few minutes. You can further improve the setup as you load data
and query the table. The SQLDB will be useful later in the chapter, for storing ASA
job’s complex calculations.

NOTE Event Hubs inputs add extra fields to your schema. These include
EventEnqueuedUtcTime, EventProcessedUtcTime, and PartitionId. Event-
EnqueuedUtcTime is a timestamp indicating when the message was accepted by

Table 6.1 Biometric sensor raw data

Field Type Byte size Description Source Service

Player String 20 abera101 Player ID Azure Event Hub

Node Integer 8 1 Biometric nodes ID Azure Event Hub

NodeValue Float 8 000.00 Sensor Azure Event Hub

EventTime DateTime 8 ISO 8601
00/00/0000T00:00:00

Sensor collection Azure Event Hub

Listing 6.8 Create SQLDB table

The fully qualified server
name you chose previously

The database name you chose previously

Use the same credentials you
used to configure the server.

Create a table to match the schema
of the Event Hub message data.

132 CHAPTER 6 Real-time queries with Azure Stream Analytics
the Event Hub. EventProcessedUtcTime indicates the read time from the
queue servicer, in this case an ASA job. PartitionId is an integer from 0 to
31, indicating which partition holds the message. See figure 6.12 for more on
EventDate. These fields can be used in the ASA job query and passed on to
outputs. Blob inputs add a BlobName field, which takes the full blob path, and
BlobLastModifiedUtcTime, which is the time the blob was uploaded.

Now that the SQLDB and raw data table have been created, you can create the ASA
job endpoint.

CREATE A SQLDB OUTPUT WITH THE AZURE PORTAL

Creating ASA job outputs works much the same way as inputs. You select one of the
available Azure resource types, such as SQLDB, and provide the connection and for-
mat configuration. You need to provide the SQLDB to connect to and the table to
insert into. You’ll need to provide a username and password with access to the data-
base and table.

 Here’s how to create a SQLDB output in the Azure portal:

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Job Topology > Outputs in the left navigation to open the Outputs blade.
4 Click Add to show the Output Selection menu.
5 Select SQL Database from the list of options. This displays the SQL Database

Connection Configuration blade.
6 Choose a name for the output (“SqlOutputRaw”).
7 Leave the default, Select SQL Database from Your Subscriptions.
8 Select the Database (“Playerstats”).
9 Enter the Username for the connection. You can use the SQL Server admin

account, or another database user.
10 Enter the Password for the user account.
11 Enter the Table Name (“Biometricstats”).
12 Leave the default, Merge All Input Partitions.
13 Reduce Max Batch Count to 100. This should match your ASA job input rate per

second. Double the batch size and SQLDB DTU size as the input rate doubles.
14 Click Create to create the output.

Figure 6.5 shows the Azure portal interface for creating the SQLDB output.

WARNING When you create a new Azure SQL Server, you create an admin
account. You can use this account for general access to all the databases on
the server, but creating separate users for different applications is a better
practice. You can use role-based access controls in Azure SQL Database.
When you create any tables for stream data, take the opportunity to create a
user, group, or role for the streaming service.

133Configuring inputs and outputs
CREATING SQLDB OUTPUT WITH AZURE POWERSHELL

Like creating an ASA job with Azure PowerShell, you must reference a JSON configu-
ration file. The configuration file includes the type and a list of properties. These
properties configure the output source and format. The datasource element defines
the connection type and input details. The type values of the datasource include
Microsoft.Storage/Blob, Microsoft.Sql/Server/Database, and many others. For a
SQLDB output, you provide the server, database, table, and username and password.

TIP You can see the values for the various definitions of Stream Analytics
outputs at http://mng.bz/QyAR.

Use a dedicated user and password
for connecting to your SQL Database.

Click Add to show selections for Event Hub,
SQL Database, and Data Lake Storage Gen1.

Choose an existing database.

Enter the table name from the Database selected.
This table must be created before creating the
job output.

Start with a smaller batch count and increase
as event volume increases.

Click Save to create and test the output.

5

6

2

3

4

1

5

6

2

3

41

SqlOutputRaw

Figure 6.5 Creating a Stream Analytics SQLDB output in the Azure portal

134 CHAPTER 6 Real-time queries with Azure Stream Analytics
Listing 6.9 shows the configuration file for an SQLDB output. The configuration file
includes the same parameters as the Azure Portal setup.

{
"properties":{

"datasource":{
"type":"Microsoft.Sql/Server/Database",
"properties":{

"server":"tcp:ade-dev-eastus2-sql.database.windows.net",
"database":"Biometricstats",
"table":"Biometricstats",
"user":"user@sampleserver",
"password":"****************"
}

}
}

}

TIP Use T-SQL commands to create a new login and database user for the ASA
job. You can restrict this user to write permissions, like using the db_datawriter
role, if you are only using it with outputs.

Follow these steps to save the contents of listing 6.9 to Azure Cloud Shell.

1 Open and log in to Cloud Shell in a web browser at https://shell.azure.com/.
2 Type cd asa to switch to the new “asa” folder. Type mkdir asa if the folder

doesn’t exist, then switch to the folder.
3 Type code SqlOutputRaw.json to create a new file in the new folder.
4 Copy the JSON from listing 6.9 into the editor.
5 Press Ctrl+S/Cmd+S to save the file.
6 Press Ctrl+Q/Cmd+Q to quit the editor.

Now that you have a valid ASA job input configuration file, you can run the Azure
PowerShell command to create the output. AzStreamAnalyticsOutput takes several
parameters, including the resource group and ASA job to target. You assign a name to
this output using the Name parameter. Since you exited the Cloud Shell editor still in
the asa folder, you can address the configuration file with a short path. Run the com-
mand in listing 6.10 using Azure Cloud Shell.

New-AzStreamAnalyticsOutput -ResourceGroupName "ade-dev-eastus2"

➥ -JobName "ade-dev-eastus2-biometricstats"

➥ -Name "SqlOutputRaw"

➥ -File "~/asa/SqlOutputRaw.json"

Listing 6.9 ASA job SQLDB output configuration file

Listing 6.10 Create new Azure Stream Analytics job SQLDB output using PowerShell

Type value corresponds
to output type.

Fully qualified
server name

Name of
the target
database

Name of
the target

table

Replace with your SQL
Admin user, or other user
you have created.

Replace with the relevant
user’s password.

The name of
the ASA job

The name for
the output

Note the leading tilde forward-slash
for use in Cloud Shell storage.

135Creating a job query
ASA jobs require three things to start running: an input, an output, and a transforma-
tion. You have added an input for Event Hubs and outputs for SQLDB and Data Lake
Storage. Now that you have defined inputs and outputs, you can create a query to tie
them together.

6.3 Creating a job query
By default, new ASA jobs include a query with a single transformation. Each transforma-
tion is a SQL statement that reads from one or more inputs and writes to an output.
Each step of an ASA job query is a transformation, and each job query can have one or
more steps. The default query includes a working transform, with a value SELECT *
INTO [YourOutputAlias] FROM [YourInputAlias]. You can view and edit the trans-
forms in the Azure portal.

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Job Topology > Query on the left navigation to display the Query blade.

The default query of a new ASA job includes a passthrough transform using Your-
InputAlias as input and YourOutputAlias as output. To use the Event Hub input and
SQLDB output you setup earlier, you need to update the default query. You also need
to replace the wildcard field selector with a specific field list. You can update the trans-
forms using the Azure portal.

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Job Topology > Query in the left navigation to open the Query blade.
4 Paste the query text from listing 6.11 into the Query window.

SELECT Id, NodeValue, Player, Node, EventTime, PartitionId,
EventProcessedUtcTime, EventEnqueuedUtcTime
INTO SqlOutputRaw
FROM HubsInputBiometrics;

To the left of the query window you’ll see a list of available inputs and outputs, includ-
ing any aliases you define in the Query window. Reviewing this list can help you catch
misspellings in your transforms.

 You can also update the query transforms using Azure PowerShell. Like creating
an ASA job with Azure PowerShell, you must reference a JSON configuration file.
Listing 6.12 shows the configuration file for a single transform. The file specifies the
SUs value.

Listing 6.11 ASA job passthrough query transform

136 CHAPTER 6 Real-time queries with Azure Stream Analytics

The n
o

ASA
{
"properties":{

"streamingUnits":1,
"query":"SELECT

➥ Id,

➥ NodeValue,

➥ Player,

➥ Node,

➥ EventTime,

➥ PartitionId,

➥ EventProcessedUtcTime,

➥ EventEnqueuedUtcTime

➥ INTO SqlOutputRaw

➥ FROM HubsInputBiometrics;"
}

}

Follow these steps to save the contents of listing 6.12 to Azure Cloud Shell.

1 Open and log in to Cloud Shell in a web browser at https://shell.azure.com/.
2 Type cd asa to switch to the new “asa” folder. Type mkdir asa if the folder

doesn’t exist, then switch to the folder.
3 Type code transform.json to create a new file in the new folder.
4 Copy the JSON from listing 6.12 into the editor.
5 Press Ctrl+S/Cmd+S to save the file.
6 Press Ctrl+Q/Cmd+Q to quit the editor.

Now that you have a valid ASA job transform configuration file, you can run
the command to update the ASA job query. The PowerShell command New-
AzStreamAnalyticsTransformation takes four main parameters: the resource group,
the name of the ASA job to target, a path to the transform configuration file, and a
name for the transform. Although the name is not displayed anywhere in the Azure
portal, you must provide one when querying transforms using Azure PowerShell.
Because a new ASA job creates a default query with a transform, PowerShell will
prompt for confirmation before overwriting with the new transform. You can include
the -Force parameter to override this. Run the command in listing 6.13 using Azure
Cloud Shell to update the transform.

New-AzStreamAnalyticsTransformation -ResourceGroupName "ade-dev-eastus2"

➥ -JobName "ade-dev-eastus2-asa-biometricstats"

➥ -Name "Transformation"

➥ -File "~/asa/transform.json"

➥ -Force

Listing 6.12 ASA job transformation configuration file

Listing 6.13 Update ASA job transformation using PowerShell

Set the number of SUs here, instead
of during the ASA job creation.

New fields
added by the
Event Hub input

INTO clause
precedes FROM.

INTO value matches
an output, and FROM
matches an input.

ame
f the
 job

The name of
the existing
transformationNote the leading

tilde forward-slash
for use in Cloud
Shell storage.

-Force option overwrites
transformation without prompting.

137Creating a job query
The query transforms do the main work of the ASA job. Once you have set up the
inputs, outputs, and transformations, you can start the job.

6.3.1 Starting the ASA job

You have three options for specifying the starting message time for your ASA job. Dif-
ferent options allow you to replay the message stream in part or in whole.

 You can start at the current time.
– Messages received after this time will be read into the ASA job.

 You can start at the last ASA job output time.
– Messages received since that job output time will be read.

 You can start at a specific time in the past.
– Messages received since the start time will be read.

Choose a start time based on the previous state of the processed data. Starting the
ASA job at the current time works when you don’t have any earlier data, or you don’t
want to process the older data. Starting the ASA job at the last output time allows a
stopped job to pick up processing without apparent interruption to the stream. Stop-
ping and starting the job in this manner appears as a large increase in latency in pro-
cessing messages that arrived during the job stoppage. The most common reason to
use this start time is because you need to update the ASA job.

 The ASA job must be stopped in order to make changes to the inputs, outputs, and
transforms. Once the changes are made, the ASA job can resume processing where it
stopped, from a time in the past, or from the current moment. Starting the ASA job at
a time in the past lets you replay the stream through the transforms in part or in full.
When using Event Hubs as the input, you can replay the message stream from the ear-
liest timestamp remaining in the log. When using Blob Storage, the job will read files
with a file modified date after the job start date. Refer to section 6.5.2 for more details
on message timestamps.

NOTE Refer to chapter 5 for more information on Event Hubs logging.

You can start your ASA job using the Azure portal.

1 In the Azure portal, in your ASA job Overview blade, click the Start button to
open the Start Job blade.

2 Select Now to start the job now, select When Last Stopped to pick up from the
previous stopping point, or select Custom to select a point in time.

3 Click Start to start the job.

You can also start the ASA job using Azure PowerShell using the Start-

AzStreamAnalyticsJob command. For this command, you need to provide the
resource group, name of the ASA job, start mode, and, if using a custom start time, a
timestamp. The OutputStartMode parameter accepts JobStartTime, LastOutputEvent-
Time, or CustomTime. Run the script in listing 6.14 to start the job with a custom time.

138 CHAPTER 6 Real-time queries with Azure Stream Analytics

Resour
of the
Start-AzStreamAnalyticsJob -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-asa-biometricstats"

➥ -OutputStartMode "CustomTime"

➥ -OutputStartTime "2019-06-01T00:00Z"

The first time you start your ASA job with Azure PowerShell, you must select either
JobStartTime or CustomTime for the OutputStartMode parameter. You can’t use
LastOutputEventTime for the first start. Wait until the ASA job has successfully started
at least once before using this option.

6.3.2 Failure to start

Your ASA job might not start. You may have problems with an input. For example, you
may have created an input with an incorrect endpoint name or address. Or you may
have an output with the same situation. In both cases, use the Azure portal to check
the Activity Log.

 You can show the Activity Log blade in the Azure portal by clicking Activity Log on
the left, when viewing your ASA job. Job start failures will be listed under Operation
Name, with an event severity of Error. You can also retrieve the Activity Log for a given
resource using Azure PowerShell. Listing 6.15 shows a script which returns status
messages for a set number of failed events. The script retrieves the ResourceId of a
specified resource, like an ASA job, using the Get-AzResource command and
resource name. It then calls Get-AzLog to retrieve log records with status Failed.
Run listing 6.15 in Cloud Shell to get any failed event log messages for the resource
ade-dev-eastus2-asa-biometricstats.

(Get-AzLog -ResourceId (

➥ Get-AzResource -Name "ade-dev-eastus2-asa-biometricstats"

➥).ResourceId

➥ -Status "Failed" -MaxRecord 5

➥).Properties

Once you have corrected any problems with your inputs, outputs, or transformations,
you can start your ASA job. This is a good time to submit some events to your Event
Hub. Stream data will begin flowing through the inputs to the transforms to the out-
puts. If all parts are configured properly, events submitted at the Event Hub will be
read by your ASA job and written out to the SQLDB and the Data Lake store folder. If
there is a problem with an input or output, an alert icon will display in the ASA job
Overview blade.

Listing 6.14 Start an ASA job using PowerShell

Listing 6.15 Reading failure messages in an ASA job using PowerShell

The name of
the ASA job

Select a custom
start time.

Set the start time in the past.

The name of the ASA jobceId
 ASA
job

Limit to most recent
5 failed activities.

Show the properties, which
contains the status messages.

139Writing job queries
6.3.3 Output exceptions

Once your ASA job starts and data has been submitted, your job may experience errors.
The causes of errors are many and varied, ranging from disabled AAD accounts and
security access changes, to schema changes in database tables, to service outages. One of
your jobs as a data engineer will be to monitor your ASA jobs for errors.

 An alert icon displays in the Azure portal’s ASA job Overview blade whenever there is
an error reading or writing to the inputs or outputs. You can view the status by clicking
the icon. You can also view any status messages for a specific input or output. Open the
Inputs or Outputs blade by clicking Job Topology > Inputs or Outputs on the left. Then
click the specific input or output displaying the icon, to view any status messages.

 ASA jobs come with a retry policy for output data errors. Retrying failed output
batches is enabled by default. In some scenarios, you may value reduced latency over
consistency. When you maintain a second path for collecting the raw data, the stream-
ing data may only be valuable for near real-time calculations. In this case, your users
can rely on the batch processing to provide consistency. You can disable the output
retry policy using the Azure portal.

1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Configure > Error Policy on the left to show the Error Policy blade.
4 Set the Action to Drop to disable the retry policy.

Even with experience, starting an ASA job without errors is one of the most challeng-
ing parts of using ASA. By creating a passthrough query from your input to a file-
based output, like Data Lake Storage or Blob Storage, you can more easily verify the
fields and data provided by the input. Together with a wildcard SQL statement, like
SELECT * FROM, you can output to fields and values without restrictions on matching
data schemas. In the next section, you’ll learn to write more complex transforms.
Starting with a file-based output can make writing your own transforms easier.

6.4 Writing job queries
The Jonestown Sluggers baseball team is collecting biometric data from sensors in play-
ers’ uniforms. The manager would like to get a real-time estimate of the pitcher’s fatigue.
Rather than an output of the last pitch thrown, the manager wants to compare the last
pitch’s power with the average of the most recent pitches. The development team wants
you to save the calculations to a SQL Server database. How can you fulfill this request?

 The ASA job query provides the logic powering the work. Inputs deliver raw data
to the query transforms, and outputs deliver transformed data to consumers. The
logic can be simple, as you saw in the passthrough query from the previous section. Or
it can be as complicated as batch transformation, leveraging external code bases and
batch windows of varying durations and periods. In the following sections, you’ll build
queries using built-in aggregations and functions, and enhance the raw data with static

140 CHAPTER 6 Real-time queries with Azure Stream Analytics
sources and functions developed by Microsoft. You’ll start by using window functions to
slice the data stream into micro-batches, to highlight the strengths of this approach.
These queries, and the ASA jobs running them, support the Lambda architecture Speed
layer by providing low latency processing and query access to the raw data. Let’s start by
looking at the feature that makes stream processing special: the time window.

6.4.1 Window functions

Streaming data enters the ASA job as a single message, followed by another, then
another, with no fixed end. Thus, the ASA job query initially only sees a set of one.
Time windows allow the ASA job to keep track of other data in the stream. You can
think of the data entering the ASA job as fish in a river. A fisherman can cast a net
across the river and catch all the fish, one at a time, or the net can let some fish pass.
Using a time window is like leaving the net across the river for a while and then look-
ing at all the fish that were caught. Let’s see how time windows can be used to pull
comparisons from past data.

WRITING WINDOW QUERIES

To use a time window in the query transforms, you need to define the shape of the
time window and its relationship to the data. Time windows have a start time and a
duration, and can begin and repeat on a set cycle, or start on receipt of a new mes-
sage. Some types of time windows can overlap, whereas others run sequentially with
each message in only one window. How do you decide which to use?

USING BIOMETRICSTATS EVENT HUB DATA

To create the ASA job transform, you’ll want to define the data you want to collect, the
calculations to be done, and any time windows which must be used to collect the data.
In this scenario, you should return the pitcher ID, the value relating to the last pitch,
and the average of the last several pitches. You need to filter the data for only the
pitcher, and limit the metrics to fastball pitches. Let’s assume the pitcher is Player
abera101, node 12 is a sensor on his right arm, and values for node 12 greater than 80
indicate a fastball was thrown. Using the schema for the biometric data you used in
table 6.1, a data row for the pitches could look like the following listing.

{
"Player":"abera101",
"Node":12,
"NodeValue":100.2,
"EventTime":"2020-04-05T13:15:1947365Z"

}

You saw this schema describing biometric sensor data in chapter 5. You also used
PowerShell to submit messages to an Event Hub, which were then saved using Event
Hub Capture. If you still have the Event Hub, you can begin the ASA job and replay
those events, which will then flow through to your ASA job. This will provide data for

Listing 6.16 Player statistics

Player identifier

ISO 8601
datetime format

141Writing job queries
use in the following queries. You can return to chapter 5 and run the PowerShell
scripts to generate new messages.

 Going by Major League Baseball stats, on average a pitcher throws 15 pitches
during a 20 minute inning. About half the pitches thrown are fastballs.2 When select-
ing a time window, keep in mind that results are only output at the end of the window.
Waiting an entire inning doesn’t seem very useful for getting immediate feedback.
Reducing the window to 2.5 minutes, or 150 seconds, would track approximately four
pitches by one pitcher. Let’s look at how time windows can be used to calculate the
data in these 150-second windows.

TIME WINDOW TYPES

Time windows in ASA transforms have a start time and a duration, and contain event
messages.

Tumbling windows
Figure 6.6 describes the first type of time window, the tumbling window. As time passes
from left to right, messages are submitted to the ASA job. Each transform that uses a
time window collects the message data from that window.

 The first tumbling window starts at the ASA job start time, and when its duration
elapses, a new window starts. When data arrives at the ASA input, at regular or irregu-
lar intervals, it goes into the current window. Each message falls in only one window.
The SQL calculation using a window includes only the messages in that window.

 First, look at calculating the 150 second average. Using a tumbling time window,
you define the duration of the window as 150 seconds. You first list the fields you
need, including Player, Node, and the AVG() aggregate function on the Value field,
with a SELECT clause. Next, use the HubsInputBiometrics input from our Event Hub
to define the transform source table. Setting the TIMESTAMP BY parameter on the
FROM clause to EventTime puts the data in order. Next, list the data restrictions using
a WHERE clause. Finally, roll up the fields using a GROUP BY clause, including the
TumblingWindow() function. This function takes two parameters: time units and

2 John Walsh. “Fastball, slider, change-up, curveball—an analysis.” The Hardball Times. https://tht.fangraphs
.com/fastball-slider-changeup-curveball-an-analysis/.

Table 6.2 Time windows

Type Start Duration Events Description

Tumbling After previous window Fixed Events contained in only one window

Hopping After fixed time Fixed Events can be contained in multiple
windows.

Sliding With each new event Fixed Always contains at least one event.

Session With first event after
period of no events

Variable; less than a maxi-
mum duration + two peri-
ods without events

Events contained in only one
window; always contains at least
one event.

142 CHAPTER 6 Real-time queries with Azure Stream Analytics
duration. Pass second for the units and 150 for the duration. You should end up with
a SQL statement like the following listing.

SELECT Player, Node, AVG(NodeValue) AS AvgValue
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, TumblingWindow(second, 150)

In order to deliver the data as designed, you need to return the current value as well
as calculate the average over the past 150 seconds. To do so, you can join two tables.
For ASA job transforms, the inputs are the available tables. You can also construct
Common Table Expressions (CTEs) for the transform steps in the ASA job query. Each
CTE can be run in parallel with the SELECT statement.

 Because the data you want is all in one input (HubsInputBiometrics), you can use
that input joined to a CTE to do the aggregation. Wrap the average pitch speed calcula-
tion in a CTE and join it with another SQL statement that retrieves the current pitch.
First we take our SQL from listing 6.17 and give it an alias. Next, first list the fields from
the input, referring to them by their own alias. Add an OUTPUT clause for an output. Next,
define the transform source table using the HubsInputBiometrics input. Put the data in
order sorted by EventTime, as with the CTE. Add an alias to the HubsInputBiometrics
table. Define an Inner Join to the CTE table, using the Player and Node as match criteria.
Joins in ASA jobs require the DATEDIFF function, so add a DATEDIFF criteria with a 150-
second duration, to match the tumbling window. Finally, list the data restrictions using
a WHERE clause. You should end up with a SQL statement like the following listing.

WITH PitchAverage AS (
SELECT Player, Node, AVG(NodeValue) AS AvgValue

Listing 6.17 Implementing the pitcher fastball transform with tumbling window

Listing 6.18 Implementing the pitcher fastball transform with tumbling window

Stream
Analytics

Time

Tumbling window
Tumbling window

2 events 3 events 1 event 2 events

Events

Event data stream

Events captured
by Transform

2

3

4

1

SQL SQL SQL SQL

Figure 6.6 Relating tumbling time windows to data stream

143Writing job queries
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, TumblingWindow(second, 150)
)
SELECT a.Player, a.NodeValue, b.AvgValue
INTO SqlOutputPitcher
FROM HubsInputBiometrics a TIMESTAMP BY EventTime
INNER JOIN PitchAverage b
ON a.Player = b.Player
AND a.Node = b.Node
AND DATEDIFF(second, a, b) BETWEEN 0 AND 150
WHERE a.NodeValue > 80

With this transform, you get your first output after 150 seconds have elapsed from the
job start time. After that, all event messages that match the pitcher and fastball criteria
will emit the transform fields to the output, using the latest 150 second time window.
This seems like a good start, but the updates could come sooner after the pitch. With
a time window of only a few minutes, there may not be many fastballs thrown in the
window. Let’s see what the updates look like using more frequent updates but a longer
time window.

Hopping windows
Figure 6.7 shows the next type of time window, the hopping window. As time passes
from left to right, messages are submitted to the ASA job. Each transform that uses a
time window collects the message data from that window.

 Whereas tumbling window frequency is determined by duration, hopping windows
let you set the repeat time independently of the window length. The time hop doesn’t
need to be a factor of the duration. Hopping windows can occur more frequently than

Stream
Analytics

Time

Hopping window

Hopping window

2 events 3 events 1 event 2 events

Events

2 events 3 event 2 events

Event data stream

Events captured
by Transform

2

3

4

1

SQL SQL SQL SQL

SQL SQL SQL

Figure 6.7 Relating hopping time windows to data stream

144 CHAPTER 6 Real-time queries with Azure Stream Analytics
tumbling windows, when the time hop is less than the duration, or less frequently,
when the time hop is greater than the duration. This leads to better sampling from
the data stream. Setting the time hop equal to the duration yields a tumbling window.

 As with listing 6.18, you can wrap a hopping time window in a CTE to collect your
average speed and join the CTE with each fastball event message entering the ASA
job. The HoppingWindow() function takes three parameters: time units, duration, and
hop. Pass second for the units, 300 for the duration, and 30 for the hop. Change the
DATEDIFF to a 300 second duration, to match the hopping window. The JOIN and WHERE
clauses otherwise remain the same. You should end up with a SQL statement like the
following listing.

WITH PitchAverage AS (
SELECT Player, Node, AVG(NodeValue) AS AvgValue
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, HoppingWindow(second, 300, 30)
)
SELECT a.Player, a.NodeValue, b.AvgValue
INTO SqlOutputPitcher
FROM HubsInputBiometrics a TIMESTAMP BY EventTime
INNER JOIN PitchAverage b
ON a.Player = b.Player
AND a.Node = b.Node
AND DATEDIFF(second, a, b) BETWEEN 0 AND 300
WHERE a.NodeValue > 80

With this transform, you can get your first output after 300 seconds have elapsed from
the job start time. After that, all event messages that match the pitcher and fastball cri-
teria will emit the transform fields to the output, using the 300-second time window.
Each 300 second window starts after 30 seconds elapse. This seems like an improve-
ment, with the updates coming sooner after the pitch. With a time window of multiple
minutes, there should be several fastballs included. There’s one more time window
that can deliver outputs even sooner.

Sliding windows
Figure 6.8 describes the next type of time window, the sliding window. As time passes
from left to right, messages are submitted to the ASA job. Each transform that uses a
time window collects the message data from that window.

 With sliding time windows, the window starts when an event message arrives at the
ASA job input. This means there will be one time window for each event that matches
the selection. Unlike tumbling and hopping time windows, the period of window
updates can vary, depending on message times.

 As with listing 6.18, you can wrap a sliding time window in a CTE to collect your aver-
age speed and join the CTE with each fastball event message entering the ASA job. The
SlidingWindow() function takes two parameters: time units and duration. Pass second

Listing 6.19 Implementing the pitcher fastball transform with hopping windows

145Writing job queries
for the units and 300 for the duration. This covers about 25% of an inning. Set the
DATEDIFF to 300 seconds, to match the sliding window. The JOIN and WHERE clauses
otherwise remain the same. You should end up with a SQL statement like the follow-
ing listing.

WITH PitchAverage AS (
SELECT Player, Node, AVG(NodeValue) AS AvgValue
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, SlidingWindow(second, 300)
)
SELECT a.Player, a.NodeValue, b.AvgValue
INTO SqlOutputPitcher
FROM HubsInputBiometrics a TIMESTAMP BY EventTime
INNER JOIN PitchAverage b
ON a.Player = b.Player
AND a.Node = b.Node
AND DATEDIFF(second, a, b) BETWEEN 0 AND 300
WHERE a.NodeValue > 80

With this transform, you get your first output after 300 seconds have elapsed from job
start time and at least one matching event has been submitted. With this time window, a
window update will be emitted for each fastball that is recorded. The average will be cal-
culated over any fastballs recorded in the previous 300 seconds, even if there is only one.

 As you can see, choosing the best time window depends on your use case. Time
windows with regular periods, like tumbling and hopping time windows, give consistent

Listing 6.20 Implementing the pitcher fastball transform with sliding window

Stream
Analytics
Stream

Analytics

Sliding window

2 events 4 events 3 events 1 event

Events

2 events 3 events 2 events

Time

Sliding window

Event data stream

Events captured
by Transform

2

3

4

1

SQL SQL SQL SQL

SQL SQL SQL

Figure 6.8 Relating sliding time windows to data stream

146 CHAPTER 6 Real-time queries with Azure Stream Analytics
results. In this way, the aggregation they provide resembles short, frequent batch pro-
cessing. Your users may prefer intermittent results with extremely short latency. ASA
jobs provide another type of function that does comparisons across time: Anomaly
Detection Machine Learning functions.

6.4.2 Machine learning functions

Machine Learning (ML) covers a broad range of mathematical disciplines and com-
puter science topics. Luckily, ASA jobs let you take advantage of a well established type
of ML analysis without having to learn it all. ASA jobs include Anomaly Detection
functions to detect spikes, dips, and anomalous values. They can provide a sliding
value of deviation from the data stream. They can also emit updates when the func-
tion’s return value crosses a threshold.

ANOMALY DETECTION

The Anomaly Detection functions work differently than the time window aggregations
you’ve seen so far. Instead of collecting event messages, these functions analyze mes-
sage data and return a judgment about each event. They return this judgment as two
values: a Boolean integer signifying if the event data is anomalous and a real number
score indicating how far from the norm the value lies. A lower score indicates greater
deviance. Instead of the end user comparing pitch speeds to determine a drop in out-
put, now the Anomaly Detection functions can do that work.

 The Anomaly Detection functions use a continuous training model. Because you
are using these functions in an ASA job, they get the benefit of an unending stream of
data for training. But the functions need training before they can be effective. This
means the underlying ML algorithm can detect deviations from the norm, but it
doesn’t know what is normal for your data until it processes a large enough set of data.
When you configure the function in your ASA job transform, you define the time win-
dow so that the ML algorithm gets enough data to determine the norm. Once the first
window has passed, the model is trained, and the function can issue judgments on
each event message.

USING MACHINE LEARNING ALGORITHMS

To put this into practice, let’s update the fastball example to use an Anomaly Detec-
tion function. The function is added to an ASA job query transform, like other
SQL functions. Two functions are available: AnomalyDetection_SpikeAndDip() and
AnomalyDetection_ChangePoint(). SpikeAndDip detects spikes and dips in values.
ChangePoint detects anomalies, but does not classify them. SpikeAndDip takes five
regular parameters and two optional parameters. ChangePoint takes the same param-
eters as SpikeAndDip, but drops the Mode parameter. SpikeAndDip is well suited for
detecting drops in pitch speed in our example.

 To configure the functions, you need to set which field to analyze, how long to
gather data (training), and how much data to collect to get a normal range of values.
Next you need to set a threshold for the difference judgment. The ML algorithm cal-
culates a value from 0 to 100, indicating how similar the analyzed value is to the norm.

147Writing job queries
Highly similar values can rate above 95, with little better than chance rating below 50.
Tuning the threshold to prevent false alarms is part of the testing process. Provide an
identifier field if you want to analyze multiple similar fields at once. In baseball, there
is only one pitcher at a time on the mound, but you may want to track the relief pitch-
ers in the bullpen separately. Finally, assign any filter expression to the WHEN clause. It
works like a WHERE clause on a SELECT statement. The following listing shows the func-
tion call definition outside of a SQL statement.

AnomalyDetection_SpikeAndDip(
ValueToAnalyze,
ConfidenceFactor,
EventsToTrain,
'spikes')

OVER (
[PARTITION BY Sensor]
LIMIT DURATION(second, 300)
[WHEN 1 = 1])

To create the ASA job transform, you still use a CTE to wrap the function, but the CTE
makes it easier to retrieve function output. The CTE will return the relevant fields to
output and run the Anomaly Detection function. Use a 90% confidence factor and
collect 15 pitches. Pass minute for the units and 40 for the duration. You’ll want a lon-
ger time frame to collect enough event data. This duration covers about two innings.
Pitches are collected if Node equals 12 and Value is greater than 80. Limit the trans-
form to emit output when events are flagged as anomalies. You should end up with a
SQL statement like the following listing.

WITH PitchAnomaly AS (
SELECT Player, Node, CAST(NodeValue AS FLOAT) AS NodeValue,
AnomalyDetection_SpikeAndDip(CAST(NodeValue AS FLOAT), 90, 15, 'dips')
OVER (
PARTITION BY Player
LIMIT DURATION(minute, 40)
WHEN Node = 12 AND NodeValue > 80
)
AS ADValues
FROM HubsInputBiometrics
)

Listing 6.21 Structure of Anomaly Detection function

Listing 6.22 Implementing the pitcher fastball transform with Machine Learning

The value to analyze, a single
integer or real number

The algorithm assigns a
rating to the result, from
0 to 100% confidence.

Count of events needed to get
a normal range of values

Choose spikes, dips, or spikesanddips.
This parameter is not used for
ChangePoint functions.

Separate the training functions into
different channels which have different
ranges of normal values, like the different
sensor nodes in the biometricstats data.
This parameter is optional.

A time range to collect
the EventToTrain

count. Units are day,
hour, minute, second,

millisecond, and
microsecond.

WHEN used in place
of a WHERE clause, to
filter the events used
to train the algorithm

148 CHAPTER 6 Real-time queries with Azure Stream Analytics
SELECT Player, NodeValue,
CAST(GetRecordPropertyValue(ADValues, 'Score') as FLOAT) AS Score
INTO SqlOutputPitcher
FROM PitchAnomaly
WHERE CAST(GetRecordPropertyValue(ADValues, 'IsAnomaly') AS BIGINT) = 1;

The field returned by the Anomaly Detection functions is a complex object with two
properties. Use GetRecordPropertyValue to read a particular value. Pass the Anomaly
Detection function return value and the property name to GetRecordPropertyValue
to read the value.

 With this transform, you can get your first output after 40 minutes have elapsed
from job start time and 15 pitches have been collected. After that, all matching event
messages since the start will emit the transform fields to the output, using the latest
training group of 15 pitches.

 Window functions and Anomaly Detection functions both take advantage of the
streaming nature of data in ASA jobs. With them you can capture snapshots of data
from an ever-changing set of micro-batches. We’ll look at scheduled batches with win-
dow functions and Machine Learning algorithms in later chapters.

6.5 Managing performance
There are two primary concerns for managing performance of ASA jobs: keeping up
with input rates and reducing latency. ASA jobs can scale resources with a simple
adjustment, but often you need to adjust the job query to take advantage of the addi-
tional resources. Let’s take a look at how ASA jobs manage resources.

6.5.1 Streaming units

Azure uses streaming units (SUs) to control the amount of processing resources avail-
able to handle imports, transformations, and outputs. ASA jobs charge based on the
number of SUs selected. Starting with a single SU minimizes your hourly cost for
Stream Analytics. Not all jobs can utilize more than a single SU.

 Stream Analytics uses partitions in the inputs and outputs to divide the stream
data. This division allows parallel processing of the input, output, and transformation
steps. Each transformation step in the job query must use PARTITION BY to take advan-
tage of the partitioning. Processing is then spread across the allocated SUs.

NOTE Compatibility level 1.2 for ASA jobs removes the PARTITION BY require-
ment for matching parallel processing on inputs. See the description of com-
patibility level earlier in the chapter (section 6.1.3).

The underlying cluster nodes for an ASA job support up to six SUs each. When you
allocate more than six SUs to your ASA job, more nodes are allocated for each block
of six SUs. Partitioned data processing steps are spread across multiple nodes, using
up to six SUs per partition. You must use partitioned inputs and outputs to utilize more
than one node per step. The processing steps are defined in the query transforms,

149Managing performance
which you saw earlier in the chapter. Non-partitioned processing steps only run on a
single node. However, separate steps can run on separate nodes, if more than six SUs
are allocated.

 The inputs and outputs also influence how many SUs an ASA job can use. Event
Hub inputs and outputs use full nodes, up to the number of partitions in the Event
Hub. Figure 6.9 compares partitioning of inputs and outputs with provisioned SUs.
Recall from chapter 5 that every Event Hub uses at least two partitions. SQL Server,
Blob Storage, and Data Lake Storage outputs also support writing partitioned from
multiple ASA nodes.

Monitor the SU utilization to determine when to add more SUs. You can check this stat
using the Metrics blade of the ASA job. There, you can view current or historical data on
the job’s performance. Figure 6.10 shows the Metrics blade with three metrics selected.

1 Click General > Metrics link in the left navigation.
2 In the Metric selection area above the grid, select Metric SU % Utilization from

the Metric drop down.
3 Monitor the values shown during typical usage.

a When SU % Utilization is above 70%, add more SUs.
b When SU % Utilization is below 30%, reduce the number of SUs.

You can select 1, 2, or 3 SUs incrementally. When selecting more than 3 SUs, they’re
allocated in blocks of 6, corresponding to another full cluster node. You can select 6,
12, 18, and higher numbers of SUs in blocks of 6. For small to medium ASA jobs with

Stream
Analytics
Stream

Analytics

Machine
learning

Data Lake
store

Functions

Blob
Storage

Machine
learning

Not partioned
6 SUs max

Parallel writes
up to SU max
simultaneously.

Non-partitioned
queries only use 1 SU.
Queries run in parallel.

2

3

4

1

4

4

SQL

SQL

SQL

SQL

Read each
partition up
to SU max.

Figure 6.9 Partitioned data flow in Stream Analytics

150 CHAPTER 6 Real-time queries with Azure Stream Analytics
several discrete transformations, it may be more cost-effective to run multiple ASA
jobs, reading from a single source. Then each ASA job would perform a specific func-
tion, outputting to a separate sink.

6.5.2 Event ordering

ASA jobs support micro-batch processing over time-dependent data. Time-dependent
data contains one or more timestamps. At a basic level, a single timestamp contains a
date and time. Common uses for timestamps include the message creation time and
submission time. Although creation and submission times should be nearly the same,
occasionally submission lags behind creation. For example, connections to an Event
Hub from the on-premises network may be unavailable. In this case, the best practice

SU % Utilization is the only percent metric,
so it works better in its own chart.

Constant nominal SU utilization
occurs with no input events.

14%–20% utilization is a typical baseline
for passthrough queries with low volume.

Select the Time window to view selected metrics.

Add metrics with the Add metric button.
Input and Output Events, and Runtime Errors
are good for seeing overall job health.

The chart metrics are summed over
the whole period.

5

6

2

3

41

5 6

2

3

4

1

Figure 6.10 Monitoring SU % utilization in ASA

151Managing performance
is to repeat sending the message until the submission succeeds. In this situation, the
creation and submission timestamps can vary significantly. Figure 6.11 shows how time
assignment can vary between processing steps.

When a message arrives late to a set of streaming data, the data is either valuable or not.

 If the data is no longer valuable, you can drop it.
 If the data is valuable, and you are processing one-at-a-time, you can proceed

with processing the data.
 If the data is valuable, and you are processing micro-batches, you need to pause

the batch that should include the late data until it arrives and can be included.
Figure 6.12 describes how data submissions, ASA jobs, and job queries relate to
advancing time.

When you have defined your query with a time window transformation, you start pro-
cessing your data in micro-batches. The time window sets the boundaries for the data
used in the batch. You define the window for the ASA job by setting the timestamp in
the transforms. Because message data timestamps invariably differ from the submis-
sion time, you should consider a strategy to deal with the variability.

 ASA jobs support three methods for handling data with time sequence errors.

 Wait for late data and include it.
 Include early data in the stream.
 Correct out-of-order data.

Event
source

Event sources submit
messages to the
Event Hub.

Stream
Analytics
Stream

Analytics

Event
Hubs

T
i

m
e

X

X

30 secs

30 secs

1
CreationTime

1:00:00

2
CreationTime

1:01:00

1
CreationTime

1:00:00
1

CreationTime
1:00:00

2
CreationTime

1:01:00
2

CreationTime
1:01:00

EventTime
1:00:20

EventTime
1:00:20

EventTime
1:02:20

EventTime
1:02:20

ArrivalTime
1:00:25

ArrivalTime
1:02:35

Add
CreationTime

Add
EventTime

Add
ArrivalTime

Event submitted Stream Analytics
read

2 31

Figure 6.11 Event time assignment in data stream

152 CHAPTER 6 Real-time queries with Azure Stream Analytics
Message data with a timestamp before the submission time is late data. Message data
with a timestamp after the submission time is early data.

 By default, ASA jobs collect up to five minutes of data ahead of your selected job
start time, which allows the job to include early data in the stream for processing.
This five-minute lead time is not configurable. Early data before this window is not
included in the data stream.

 Also by default, ASA job queries collect five extra seconds of data beyond the time-
stamp window, to account for system latency. This wait period provides the query

Time

Tumbling windowTumbling window

4 events

Events

Job Query TIMESTAMP BY CreationDate

Event
Hubs

Source determines
CreationDate.

Event Hub submission name
determines EventDate.

Data determines
CreationDate. Blob
name determines
EventDate.

Stream
Analytics

TIMESTAMP of query
to judge late arrivals

1 2 3 4 5 67 8 910

Event ordering
adjusts late arrivals.

2 3 4 5 6 7 8 910

Early events
dropped.

4 events 1 event

Late

Late

Late

Events submitted.

Some events have high latency:
a large delay between
CreationDate and SubmitDate.

Time window function
groups events and marks
late point.

Late event still
included in a window.

Blobs

X

5

6

7

8

2 3

4

1

SQL SQL SQL

Figure 6.12 Event ordering in ASA data stream

153Managing performance
transaction with an automatic pause for each transaction window. Because most mes-
sage timestamps are defined before submission, most message data would be classified
as late data. The late arrival window can and should be adjusted to account for any
expected latency. For example, clock time drift on unmanaged systems generating
data can cause timestamps to be early or late by minutes to hours. You can extend this
wait up to 20 days. Of course, by that point the stream processing done by the job can
hardly be called “real-time.” Extending the wait time for late data increases the job’s
memory usage as well as the latency of each transaction.

 ASA jobs can detect out-of-order timestamps in the data stream. Message data is
out-of-order if sorting by timestamp or submission time results in different sequences.
Message data can be late, out-of-order, or both. By default, transactions do not wait for
out-of-order data. You can increase this wait period up to 60 minutes. Extending the
wait time for late data increases the memory usage as well as the latency of each trans-
action. Figure 6.13 shows the Event Ordering blade in the Azure portal.

Range of variability in transmitting message.

The job will rearrange events into order,
based on ORDER BY clauses in the job query.

Change the specified date to the latest
acceptable date, or drop the message.
Save the changes.

2

3

4

1

2

3

4

1

Figure 6.13 Adjusting variable time in ASA job

154 CHAPTER 6 Real-time queries with Azure Stream Analytics
For example, let’s look at the behavior of timestamps given a set of late and out-of-
order windows. The job query uses a transaction with a 10-second window function.
You can read more about window functions in the section on writing job queries.

 The late window is set to 60 seconds.
 The out-of-order window is set to 20 seconds.
 The out-of-bounds policy is set to adjust. In table 6.3, you can see how these

configurations affect the transaction window.

ASA jobs calculate the state of each piece of message data by comparing the time-
stamp with the submission time. The data source provides the submission time, and
the ASA job logs the most recent submission time. If the timestamp falls outside the
window specified for late or out-of-order messages, one of two things can happen. You
can choose to drop the message data from the stream and not process it, or you can
adjust the message timestamp to the submission timestamp, minus the value of the
state window. You can adjust the late data window, out-of-order window, and handling
policy in the Azure portal. These options do not affect the job pricing. Use these steps
to configure your ASA job.

Table 6.3 Late and out-of-order message data

Order
Message time

(mm:ss)
Submission time

(mm:ss)
Timestamp

(mm:ss)
State Adjustment Reason

1 01:00 01:00 None On-time Dropped Outside five minute
early window

2 01:33 01:34 None Late Dropped Outside five minute
early window

- - - 07:00 Job start - -

3 07:00 07:01 07:00 Late No change Within late window

4 07:03 07:10 07:03 Late No change Within late window

5 07:02 07:12 07:02 Late, out-
of-order

No change Within late window,
within out-of-order
window

6 07:12 07:15 07:12 Late No change Within late window

6 07:17 07:16 None Early Dropped Early submission

7 07:07 07:29 07:09 Late, Out-
of-order

Timestamp set
to maximum out-
of-order window

Within late window,
beyond out-of-order
window

8 07:09 08:15 07:15 Late, Out-
of-order

Timestamp set
to maximum late
window

Beyond late
window, beyond
out-of-order
window

155Exercises
1 In the Azure portal, use the All Services menu and filter on Stream Analytics
jobs to show the Stream Analytics Jobs blade.

2 Select the Stream Analytics job you want to manage.
3 Click Configure > Event Ordering from the left navigation blade.
4 Choose a late message window, from 0 seconds to 20 days.
5 Choose an out-of-order window, from 0 seconds to 60 minutes.
6 Choose an out-of-bounds handling policy, of Adjust or Drop.
7 Click Save to save the changes.

Your late and out-of-order windows will reflect the latency and recovery mechanisms
in your data generators. For example, if you have an on-premises application with
retry logic that resubmits failed messages for up to five minutes, you should increase
both windows to five minutes or more. Conversely, if you consume job outputs every
minute, messages more than one minute late would have little value after that minute
passed. If they still have value, setting the late window to one minute with an Adjust
policy will include the late messages during the minute they are submitted, but will
increase the latency while waiting for late messages.

6.6 Exercises

6.6.1 Exercise 1

Determine if each ASA job query can use more than six SUs. Each query uses an Event
Hub with two partitions and a Data Lake output.

SELECT Player, Node, AVG(NodeValue) AS AvgValue
INTO SqlOutputPitcher
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, TumblingWindow(second, 150)

SELECT Player, Node, AVG(NodeValue) AS AvgValue
INTO SqlOutputPitcher
FROM HubsInputBiometrics TIMESTAMP BY EventTime
PARTITION BY PartitionId
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, TumblingWindow(second, 150)

WITH PitchAnomaly AS (
SELECT Player, Node, CAST(NodeValue AS FLOAT) AS NodeValue,
AnomalyDetection_SpikeAndDip(CAST(NodeValue AS FLOAT), 90, 15, 'dips')
OVER (
PARTITION BY Player

Listing 6.23 Exercise 1a

Listing 6.24 Exercise 1b

Listing 6.25 Exercise 1c

156 CHAPTER 6 Real-time queries with Azure Stream Analytics
LIMIT DURATION(minute, 40)
WHEN Node = 12 AND NodeValue > 80
)
AS ADValues
FROM HubsInputBiometrics
)
SELECT Player, NodeValue,
CAST(GetRecordPropertyValue(ADValues, 'Score') as FLOAT) AS Score
INTO SqlOutputPitcher
FROM PitchAnomaly
WHERE CAST(GetRecordPropertyValue(ADValues, 'IsAnomaly') AS BIGINT) = 1;

SOLUTION

Exercise 1a consists of one transform with no CTEs, and the transform does not use
PARTITION BY, so it can use up to six SUs.

 Exercise 1b uses PARTITION BY, so this query can use up to 12 SUs.
 Exercise 1c consists of a transform with a CTE, so it can use up to 12 SUs. Because

the CTE step does not partition by the same key as the Event Hub input (PartitionId),
this step can only use up to 6 SUs. Because the SELECT step does use PARTITION BY, this
step can only use up to 6 SUs.

6.6.2 Exercise 2

You want 100 hopping window calculations each hour. Which of these options will
give you that count?

1 TumblingWindow(second, 150)
2 HoppingWindow(hour, 100)
3 HoppingWindow(hour, 1, 100)
4 HoppingWindow(second, 300, 36)

SOLUTION

The correct choice is option 4. Option 1 uses a tumbling window. You can configure a
hopping window to behave like a tumbling window, but not vice versa. Option 2 does
not include the required hop value. Option 3 uses a 1-hour time window and hops for-
ward 100 hours. Option 4 uses a 5-minute window and hops every 36 seconds.

Summary
 When using Azure PowerShell to create ASA jobs, a configuration file is

required. You can create and reference these config files from Azure Cloud
Shell. This method of configuration makes automating the configuration pro-
cess more difficult.

 You can start using real-time processing in ASA jobs by creating a passthrough
query. The passthrough query provides an easy channel for saving Event Hub
streaming data to multiple storage options.

157Summary
 Starting the ASA job tests the configuration of your inputs, outputs, and trans-
forms. Passing the tests ensures the streaming calculations work correctly.
ASA jobs provide exception logs when components fail to assist with trouble-
shooting.

 ASA job transforms analyze data over given time ranges. ASA jobs provide data
collection functions which advance through the time ranges in multiple ways.
These let you collect data over time without specifying an end.

Batch queries with Azure
Data Lake Analytics
In the last chapter, you used Azure Stream Analytics as a source for raw data, using
a passthrough query. The passthrough query takes incoming data and passes it to the
output, in this case files in Azure Data Lake Storage (ADLS). Figure 7.1 shows this
use of Stream Analytics in parallel with the serving layer.

 This is the latest example of prep work for batch processing, which includes load-
ing files into storage and saving groups of messages into files. Azure Storage
accounts, Data Lakes, and Event Hubs services set the base for building a batch pro-
cessing analytics system in Azure. With files in the ADLS store, you’re ready to start
doing batch processing.

 In this chapter, you’ll learn how to use Azure Data Lake Analytics (ADLA) to
run analysis over data stored in semi-structured files. ADLA powers the batch pro-
cessing pillar of the Lambda architecture. Figure 7.2 shows ADLA as the focus of

This chapter covers
 Writing job queries using U-SQL

 Creating U-SQL jobs

 Creating a Data Lake Analytics service

 Estimating appropriate parallelization for
U-SQL jobs
158

159
the batch layer. ADLA uses Azure’s unbounded fast storage and readily available pro-
cessing nodes to make analyzing file-based data sets as easy as analyzing relational
database data sets.

ADLA jobs read data files, filter the data, execute calculations, and output new data
sets to files. You define a list of files to read, which make up a file set. The list can be a
single file, an array of files, or a wildcard declaration to select multiple files and fold-
ers. ADLA jobs define the read, write, filter, and calculation operations with the U-SQL
language, a unique coding language that combines aspects of SQL and C#.

 U-SQL blends SQL and C# syntax to define a batch job. A compiler transforms this
definition into a set of commands that can be executed in parallel on separate nodes.
This job then executes on one to hundreds of nodes, to process a nearly unlimited
amount of data. This follows the sharding cloud design pattern.

Event
Hubs

Stream
Analytics

Data Lake
store

Stream
Analytics

Power
BI

Stream Analytics
reads the
messages.

Power BI reads an
output data set and
updates a dashboard.

SQL result set saves
to a file in the Data Lake.

Stream Analytics
outputs aggregated
data to SQL
Database table.

Speed layer

Batch layer
Serving layer

Job query evaluates
one or more
SQL statements.

SQL
query

Job query evaluates
one or more SQL
statements.

SQL
query

SQL
Database

Stream Analytics
reads the
messages.

3

3
4

22
1 1

Figure 7.1 Lambda architecture with Azure PaaS Speed layer

Data Lake
store

Data Lake
Analytics

Data Lake Analytics job
provisions multiple
processing nodes

Batch layer

Job query evaluates
one or more
U-SQL statements

SQL
query

Processing nodes
read data from files

Processing nodes
write result data
to files

3

42

1

Figure 7.2 Lambda architecture
with Azure PaaS Batch layer

160 CHAPTER 7 Batch queries with Azure Data Lake Analytics
TIP You can read more about the sharding cloud pattern in Microsoft’s
documentation at http://mng.bz/0Zy6.

By dividing the data to be read and processed across multiple nodes, the overall job
duration can be reduced. Each node reads a set of the data in the batch and performs
commands according to the batch definition. Each node also takes advantage of the
data store sharding to read files in parallel, increasing throughput. This horizontal
scaling is defined on each batch execution.

 The power of ADLA lies in this massive scalability. The U-SQL language is the tool
to define your data analysis in ADLA and harness this scalability. Before we start run-
ning jobs, we need to see how U-SQL works.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

7.1 U-SQL language
The biometric data is now flowing into your ADLS store and is available for analysis.
The development team would like to view summary reports of the data, with the aver-
age node value, grouped by player, node, and day. The data is collected by the Event
Hub and saved in ADLS in folder /Staging/biometricstats/v1. How can you fulfill
this request?

 ADLA U-SQL jobs read data files, transform data, and write out data in a batch.
They can read and write data files from ADLS stores or Blob Storage. Figure 7.3 shows
a job which reads multiple files from an ADLS store and writes multiple files to an
ADLS store.

U-SQL defines loading, filtering, and calculations on data with rowsets. A rowset describes
the output of a data operation: either a load or a calculation. Each rowset works a bit
like an object class, with properties and dynamic read and calculate operations. Each
step of the batch job is a rowset calculation.

Data Lake
Analytics

Job 1

In Out

Unprocessed files
Files
read

U-SQL jobs
Files

written

Processed files

In

Data Lake
store

Data Lake
store

Out

2 31

SQLCSV

CSV

CSV

CSV

Figure 7.3 Reading and writing data files with ADLA

161U-SQL language
 Rowsets are generated from data from the files listed in the job or as results from
calculation on other rowsets. The calculations are defined as expressions describing
the shape of the data output, rather than the row-by-row operations to perform. This
makes U-SQL a declarative language like T-SQL. The statements defining the opera-
tions are collected into a U-SQL script, which is loaded and compiled in a U-SQL job.
The compiler transforms the script into the row-by-row operations to perform.

IMPORTANT The job compilation makes it tricky to debug the intermediate
calculation results. The evaluation isn’t complete until the job is complete. In
practice, this means you get the output of the U-SQL job at the end or not at
all. Developing U-SQL scripts can be an iterative process, with each step gen-
erating an output file.

Each U-SQL job builds a unique application, with the U-SQL script defining the work.
To build this application, the U-SQL script describes four elements.

1 A file reader, called an extractor, matched to the type of files being read
2 A file writer, called an outputter, matched to the type of file being written
3 A set or list of files to read and a list of files to write
4 A set of calculations to perform on the data

With these four elements, you can build complex transformations. By combining file
selectors, extractors, expressions, and outputters, you can define analysis jobs that run
over small and large amounts of data. A U-SQL script is a file with a .usql extension
that contains U-SQL commands. You upload the script to a new job via the Azure por-
tal, Azure PowerShell, or another tool like Azure Data Factory. Let’s look at each ele-
ment before putting them together in a U-SQL script.

7.1.1 Extractors

Extractor expressions define a file read operation. ADLA includes three extractors by
default: CSV, TSV, and Text. You define a read operation using the EXTRACT com-
mand, which has four parts:

1 A rowset variable assignment
2 A schema definition
3 A FROM clause
4 A USING clause

The FROM clause uses a file set to list the file or files to read. The file set can be a string
file path or a string variable. The USING clause declares a new instance of the extractor
class, with the specific type. Listing 7.1 shows a typical Extractor expression, reading a
single file defined in a variable, with the CSV extractor.

 Extractors implement schema-on-read functionality. You define the field order and
field type to be read in the EXTRACT expression. The extractor reads the file and does
a conversion for you. U-SQL uses the underlying C# Type.Parse() function to do the
conversions.

162 CHAPTER 7 Batch queries with Azure Data Lake Analytics
 The U-SQL statements in listing 7.1 contains six important U-SQL syntax rules.

1 DECLARE begins a variable declaration.
2 Variable names begin with the @ sign.
3 Standard C# types are available for variables.
4 String and DateTime types enclose their values in double-quotes; integers don’t.
5 Row set names also begin with the @ sign.
6 All U-SQL statements end with a semicolon.

DECLARE @in string = "/Staging/pitcherstats/v1/2019-10-11-12-0.csv";
@input =

EXTRACT
Id Guid,
Player string,
Node int,
[Value] decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM @in
USING Extractors.Csv();

The EXTRACT command creates a rowset variable that can then be modified using
expressions or written to a new file with an outputter class.

7.1.2 Outputters

Outputters write the rowsets to files in Data Lake Storage. ADLA includes three output-
ters by default: CSV, TSV, and Text. You define an output operation using the OUTPUT
command, which has three parts: a variable assignment, a TO clause, and a USING
clause. OUTPUT references a rowset to write out. The TO clause uses a file path to list the
file to write. The file set can be a string file path or a string variable. Declare a new
instance of the outputter with USING. Listing 7.2 shows two outputter expressions,
writing a single file to a file path defined in a variable or inline, with the CSV and
TSV outputters.

DECLARE @out string = "/Staging/pitcherstats/v1/2019-10-11-12-0.csv";
OUTPUT @Players

TO @out
USING Outputters.Csv();

Listing 7.1 CSV EXTRACT statement

Listing 7.2 CSV OUTPUT statement

Assign this expression
statement to a rowset
@input.Call

EXTRACT.
Define the field names
and types that make
up the rowset schema.

Specify a string variable
file set for the file to read.

Use the Extractors built-in CSV class.

Outputters write
to a single file

Reference a previously
declared rowset.

TO using a file
path variable

Use the Outputters
built-in CSV class.

163U-SQL language
OUTPUT @Players
TO "/Raw/pitcherstats/v1/pitcher/2019-10-11-12-0.tsv"
USING Outputters.Tsv();

Outputters use the schema of the referenced rowset. Outputter file paths can use rela-
tive paths to the default ADLS store, or direct paths to ADLS stores or Blob Storage.
File selector variables work with outputters too, but are limited to a single line.

7.1.3 File selectors

File selectors define the list of files read by the extractor. The simplest form specifies a
single file by path and filename. The FROM clause of the extractor function takes a string,
string variable, or string array as an input, to select the files to read. The following
statement creates a variable selecting a single file.

DECLARE @in string = "/Staging/pitcherstats/v1/2019-07-01-13-0.csv";

You build these variables as inputs to an extractor function. The text gets parsed by
the extractor function before being used to read the files. Because of this, you can
instruct the extractor with special syntax.

 For example, you can pass in a wildcard for a portion of the file or folder name.
The wildcard uses braces {} to delineate the parsed portion. Using /Staging/
pitcherstats/v1/{*}.csv for a selector selects all CSV files in the /Staging/pitcher-
stats/v1 folder.

DECLARE @in string = "/Staging/pitcherstats/v1/2019-07-01-{*}.csv";

The wildcard braces format can extract values from the filepath too, including file-
name and dates. Dates are commonly used for folder and filename syntax, which
makes extracting the date a straightforward example. The extracted value(s) becomes
an extra field in the file schema available in the read expression. For example, add a
field named filedate of type DateTime and one named filename of type string to
your expression schema. The {filedate:yyyy}, {filedate:MM}, {filedate:dd}, and
{filename} wildcards parse the specified portions of the file path during each file
read and include the value in the rowset field.

DECLARE @in string = "/Staging/pitcherstats/v1/

➥ {filedate:yyyy}-{filedate:MM}-{filedate:dd}-{filename}.csv";

In this example, a field called filedate is constructed during file read. When the
extractor uses this @in variable, it parses the filenames found in the folder path v1,
collects the data for filedate, and adds a new filedate field to each row read from
each file. Table 7.1 shows the field values from two filenames using this wildcard format.

A full path
to a fileUse the Outputters

built-in TSV class.

164 CHAPTER 7 Batch queries with Azure Data Lake Analytics
NOTE You can use multiple wildcards in input file paths, but only one wild-
card is allowed in an output file path. Using {*} in the output file selector will
output the ID of the vertex writing the file. You can read more about vertexes
later in this chapter.

The DECLARE command creates a new variable of the specified C# type. All variables
are constants in U-SQL. You can’t change the value once declared, unless you use the
EXTERNAL keyword. The DECLARE EXTERNAL @variable declaration allows the variable
to be declared twice.

DECLARE EXTERNAL @Year int = 2019;
// Year = 2019

This allows tools to inject their own parameters into the U-SQL script. If you don’t
inject a variable parameter, the script will use the original value as a default. The
injected variable parameters are added to the beginning of the U-SQL job by the tool
that submits the job. The EXTERNAL keyword on a variable, following the same variable
without the keyword, prevents the subsequent value from being set. This pattern
works like IF NOT EXISTS([variable]), short-circuiting the variable declaration.

DECLARE @Year int = 2020;
DECLARE EXTERNAL @Year int = 2019;
// Year = 2020

Using an injected variable parameter looks like the following listing.

--Start of file--
DECLARE @Year int = 2020;

DECLARE EXTERNAL @Year int = 2019;
// Year = 2020
...
--End of file--

NOTE You’ll work with injecting variable parameters into U-SQL jobs in
Azure Data Factory, when you configure automation and scheduling for your
analytics system. The Azure Data Factory pipeline will submit your job file to
ADLA. You can read more about Azure Data Factory in chapter 10.

Table 7.1 Constructing a field from file name

File name filedate field filename field

/2019-11-01-aa.csv 2019-11-01T00:00:00.0000000Z aa

/2019-11-02-cc.csv 2019-11-02T00:00:00.0000000Z cc

Listing 7.3 Using injected variables

Injected variable

Original script
variable declaration

Injected variable

Overridden
variable

165U-SQL jobs

R

7.1.4 Expressions

Expressions create and transform rowsets using the data read by the extractors. An
expression can create new calculated columns, join multiple rowsets, and filter and
group rows, as you would with other SQL languages. An expression references a previ-
ously declared rowset or defines one with a row enumeration.

 Use the SELECT statement to create an expression. When adding a calculated col-
umn, use the connector AS to provide a name for the field. Expressions end with a
semicolon.

 Listing 7.4 shows an example of creating a rowset using enumeration. An enumer-
ated rowset generates a set of rows using a parenthetical list of comma-separated field
values. The list of field values is given a name, using the AS connector, and a set of
field names. The following defines a rowset with three rows, then defines a second
rowset based on the first, including an aggregation column.

@PlayerList =
SELECT * FROM

(VALUES
("abera101", 13, 15.0, new DateTime(2019,9,30)),
("abera101", 13, 18.0, new DateTime(2019,9,30)),
("jstro102", 4, 220.10, new DateTime(2019,10,10))

) AS
D(Player, Node, NodeValue, EventTime);

@Players =
SELECT Player,
Node,
AVG(NodeValue) AS AvgValue,
EventTime
FROM @PlayerList
GROUP BY Player, Node, EventTime;

These are just two examples of the expressions you can write. Expressions in U-SQL
can become quite complicated and benefit from advanced knowledge of SQL. But
don’t let that stop you! The ADLA compiler will help optimize the job, and you can
refactor and rerun jobs. Remember, maintaining the original data files is one of the
key tenets of Lambda architecture. As long as you follow this tenet, you can execute
batch jobs again and again without risk to the data.

 Much of the challenge in using ADLA jobs and U-SQL involves structuring a work-
ing U-SQL script. Let’s overcome that by writing a job.

7.2 U-SQL jobs
Now that you’ve seen what’s in a U-SQL script, let’s go through the steps for creating
one. The most basic U-SQL jobs read and write files with a passthrough query. The
passthrough query doesn’t change the data it processes, nor does it read or interpret
the file schema. Three common use cases for ADLA passthrough queries are moving

Listing 7.4 Building rowset with expressions

Rowset 1 name,
preceded by @ sign

C# format
for types

Column names
for rowset

Rowset 2
name

SELECT fields to
include in rowset

Calculated columns must
include AS [columnName]

FROM
owset 1

Statement ends
with semicolon

166 CHAPTER 7 Batch queries with Azure Data Lake Analytics
files, splitting and combining files, and transforming file formats. This type of U-SQL
job can be structured with three steps: read file to memory, create rowset, and write
rowset to file.

 For the biometric data scenario, you’ll want a script that’s a bit more complicated.
This script will apply a schema to a rowset during file read and then use that rowset as
a source for an aggregation operation. This type of U-SQL script can be structured
with four steps: read file to memory, create rowset, create aggregation, and write
rowset to file. Let’s look at each step.

7.2.1 Selecting the biometric data files

Reading files in a U-SQL script uses the EXTRACT command and a file selector. As
you recall from chapter 4, the files for your analytics systems are stored in ADLS and
arranged according to the zones framework. First, let’s make sure some files are
available.

 Make sure you have a Data Lake store available. (You can review chapter 4 for
instructions on creating a Data Lake store if needed.) The biometric data schema was
introduced in chapter 5, and new files were saved to the ADLS store using Stream
Analytics in chapter 6. The biometric file schema has the following fields:

1 Id: String
2 Player: String
3 Node: Integer
4 NodeValue: Decimal
5 EventTime: DateTime
6 PartitionId: Integer
7 EventEnqueuedUtcTime: DateTime
8 EventProcessedUtcTime: DateTime

The following listing shows the first two rows of an example file.

Id,Player,Node,NodeValue,EventTime,PartitionId,

➥ EventEnqueuedUtcTime,EventProcessedUtcTime
89f324ef-1927-4ae9-b610-7570e8e24e4d,mjone101,13,20.79,

➥ 2019-07-11T01:19:21.1357084Z,2,2019-07-11T01:19:24.5087084Z,

➥ 2019-07-11T01:19:24.5897084Z

Include a header row. Upload three copies of the file to your Data Lake store. For this
example, the values don’t matter. You can duplicate the same file three times.

TIP This file format was generated from data submitted to an Event Hub and
written to Data Lake Storage with Stream Analytics. You can retrieve a file for
your job with 100 K rows in this format from the GitHub repository for this
book at http://mng.bz/XPv1.

Listing 7.5 Player biometrics stats file

167U-SQL jobs
You can also get a simple C# project for creating multiple large files in this
format at http://mng.bz/yylo.

For this scenario, the data is stored in your ADLS store. This file selector path includes
folders and the filename itself. You’ll see later in the chapter how you can read files
from alternate ADLS stores and Blob Storage.

 Using the EXTERNAL clause for file selectors allows you to reuse the U-SQL script in
the future. The file selector variable uses a braced wildcard to select all files in the v1
folder with a CSV extension. If you inject a file selector path with a tool like ADF, you
can modify the path to reference other folders or specific files that share the same
schema. The following listing demonstrates building a file selector variable.

DECLARE EXTERNAL @in string = "/Staging/biometricstats/v1/{*}.csv";

The filename must include the file extension. Because you’re passing a wildcard in
the file selector, the extractor will read all three files in the folder and combine the
file rows into the extractor rowset.

7.2.2 Schema extraction

Extractor expressions use the file selector variable. The extractor has four parts: a
rowset variable assignment, a schema definition, a file set selection statement, and an
extractor configuration.

 The rowset variable references the rows extracted from the file set.
 The schema definition defines the fields in the rowset for the expression.
 The file set selection identifies the files.
 The extractor configuration allows you to match the particulars of the files you

are reading.

The schema definition for the extractor follows the EXTRACT command. List the name
of the field and the C# type. The name cannot be all uppercase and does not need to
match the file header. The schema field order does need to match the file field order.
It’s critical to include all of the fields in the file in the EXTRACT expression. If you
don’t, none of the rows will be read. Add virtual fields before or after the file fields.
These would include any wildcard values extracted from the file set selector.

 The built-in CSV, TSV, and Text extractors can accept input parameters to match
the specific file format. Table 7.2 lists the parameters and their defaults.

 The CSV and TSV extractors are derived from the Text extractor and use a set of
defaults for the parameters. The delimiter should be a single Unicode character, but
you’ll need to use a special code for some special characters such as tab (\t), newline
(\n), or carriage return (\r). The CSV extractor uses a comma (,) as delimiter, and
TSV uses \t for tab.

Listing 7.6 Declaring file path variables with wildcards

168 CHAPTER 7 Batch queries with Azure Data Lake Analytics
Listing 7.7 shows the extractor expression for the biometric data files using the CSV
extractor. Because the file includes a header row, use the parameter skipFirstNRows
to skip the header.

@Players =
EXTRACT

Id Guid,
Player string,
Node int,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM @in
USING Extractors.Csv(
skipFirstNRows: 1
);

Table 7.2 Extractor parameters

Parameter Possible Values Default Description

delimiter Any Unicode character ,

encoding Encoding.[ASCII], Encod-
ing.BigEndianUnicode,
Encoding.Unicode, Encod-
ing.UTF7, Encoding.UTF8,
Encoding.UTF32

Encoding.UTF8

escapeCharacter Any Unicode character, or
unset

null

nullEscape Any string null A string that represents
null

quoting true, false true Field values wrapped in
double-quotes ignore
delimiters.

rowDelimiter Any string of length 1 \r\n and \r and \n \r\n is a special case

silent true, false false Skip rows with errors in
parsing, or use null for
field conversion failures.

skipFirstNRows Any Integer 0

charFormat string, uint16 uint16 Controls serialization of
Unicode char values

Listing 7.7 Using a CSV extractor

Begin the expression with
the rowset variable name.

Declare the operation
with EXTRACT.

List
the field
names.

Use the file set selector
variable with the FROM
clause.

Use the Extractors.Csv
built-in function.

Because the file has a
header, skip the first row.End the expression

with a semicolon.

169U-SQL jobs
With the @Players rowset defined, you can create another rowset expression to do the
required aggregation.

7.2.3 Aggregation

U-SQL supports many of the familiar SQL aggregate functions, including SUM,
COUNT, AVG, MAX, MIN, STDEV, and VAR. Use these functions in a U-SQL expression to
generate a new field. This new field must have a name assigned. You’ll see more
about aggregate expressions in chapter 8. In this scenario, the report description
requires the average node value, grouped by player, node, and day. Listing 7.8 shows
a U-SQL expression setting a new rowset variable, using the @Players rowset from
the previous section.

@DailyAgg =
SELECT Player,

Node,
EventTime.ToString("d") AS AvgDate,
AVG([Value]) AS Average

FROM @Players
GROUP BY Player, Node, EventTime.ToString("d");

Calculations done in U-SQL expressions can be as complicated as necessary. You can
add multiple expressions, each building on previous expressions, to build complex
conversions and calculations.

7.2.4 Writing files

An outputter expression uses a file selector variable or a string filepath to define the
file target. The outputter has three parts: a rowset variable assignment, a file set selec-
tion statement, and an outputter configuration.

 The rowset variable references the rows extracted from the file set.
 The file set selection identifies the file to write.
 The outputter configuration allows you to set the particulars of the files you are

writing.

The built-in CSV, TSV, and Text outputters can accept input parameters to set a spe-
cific file format. Table 7.3 lists the parameters and their defaults.

 Use the OUTPUT command to write out a rowset. Provide the rowset variable fol-
lowing OUTPUT. The TO clause defines the file target for the write, using a string or
file set variable. The USING clause specifies the outputter class to use and enumer-
ates any configuration parameters. Listing 7.9 shows the U-SQL expressions to
write the @DailyAgg rowset from the previous section to a CSV file, using a file set
variable.

Listing 7.8 Calculations in a U-SQL expression

Use a C# DateTime.ToString
format output to get a
simple date.

Provide a name for
the aggregate field.

170 CHAPTER 7 Batch queries with Azure Data Lake Analytics
DECLARE EXTERNAL @out string = "/Curated/biometricstats/v1/daily_value_avg.csv";

OUTPUT @DailyAgg
TO @out
USING Outputters.Csv(outputHeader: true);

Writing the file is the last step for this U-SQL job. U-SQL scripts can be stored as text
files with a .usql file extension. The following listing shows the entire U-SQL script for
the biometric data aggregation query.

DECLARE EXTERNAL @in string = "/Staging/biometricstats/v1/{*}.csv";

@Players =
EXTRACT

Id Guid,
Player string,
Node int,

Table 7.3 Outputter parameters

Parameter Possible values Default Description

delimiter Any Unicode character ,

dateTimeFormat Any string O C# DateTime formatting
codes

encoding Encoding.[ASCII], Encod-
ing.BigEndianUnicode, Encod-
ing.Unicode, Encoding.UTF7,
Encoding.UTF8, Encod-
ing.UTF32

Encoding.UTF8

escapeCharacter Any Unicode character, or unset null

nullEscape Any string null A string that represents
null

quoting true, false true Field values wrapped in
double-quotes ignore
delimiters.

rowDelimiter Any string of length 1 \r\n \r\n is a special case

charFormat string, uint16 uint16 Controls serialization of
Unicode char values

outputHeader true, false false

Listing 7.9 Using a CSV outputter

Listing 7.10 U-SQL aggregation query script

OUTPUT command begins the file write expression.

Using a file selector
variable

Include the rowset
columns as a header
row in the file.

171Creating a Data Lake Analytics service
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM @in
USING Extractors.Csv(
skipFirstNRows: 1
);

@DailyAgg =
SELECT

Player,
Node,
EventTime.ToString("d") AS AvgDate,
AVG(NodeValue) AS Average

FROM @Players
GROUP BY Player, Node, EventTime.ToString("d");

DECLARE EXTERNAL @out string =

➥ "/Curated/biometricstats/v1/daily_value_avg.csv";

OUTPUT @DailyAgg
TO @out
USING Outputters.Csv(outputHeader: true);

You can use this script to create a new job in ADLA. In order to do that, you need to
create the ADLA service.

7.3 Creating a Data Lake Analytics service
ADLA services manage execution of U-SQL scripts for batch processing. ADLA ser-
vices access ADLS stores via the user executing the job and Blob Storage through a
Storage account key. The service keeps track of previous job executions, letting you
review instructions, file contents, and performance. The service does not schedule
jobs, however. You can read more about scheduling U-SQL jobs in chapter 10.

 There is no charge for the ADLA service itself. U-SQL jobs are billed on consump-
tion, which is the total run time for the job multiplied by the number of nodes, at the
hourly node rate. You’ll learn more about processing nodes later in the chapter. The
U-SQL job also stores job management data, compiled U-SQL job code, and custom
User Defined Function (UDF) code in the default Data Lake store. These stored files
incur monthly costs, but are usually negligible compared with the overall cost of
ADLS storage.

NOTE ADLA currently bills jobs at a rate of $2 (USD) per hour per node. You
can see the latest Azure Data Lake Analytics pricing at http://mng.bz/K5l0.

172 CHAPTER 7 Batch queries with Azure Data Lake Analytics
7.3.1 Using Azure portal

Creating an ADLA service in the Azure portal requires the standard selections of
name, region, and resource group. You also need to select the default ADLS store and
a pricing package. The pricing package allows you to pre-purchase, on a monthly
basis, a number of job processing node hours at a discount. Here’s how to create the
job in the Azure portal:

1 In the Azure portal, use the All Services menu and filter on Data Lake Analytics
to show the Data Lake Analytics resource. Click Data Lake Analytics to show the
resource blade.

2 Click Add to open the new Data Lake Analytics blade. You can also browse to
https://portal.azure.com/#create/Microsoft.AzureDataLakeAnalytics.

3 Choose a subscription. The default will be the oldest subscription, if you have
access to more than one.

4 Choose a resource group. (See appendix A for instructions if you haven’t cre-
ated one.)

5 Choose a name (“adedeveastus2”). The ADLA service name must be lowercase
alphanumeric and be between 3 and 24 characters long.

6 Choose a location in the same region as your input sources to minimize egress
charges and latency. The default is East US 2. ADLA services are only available
in select regions at the time of writing, including Central US and East US 2,
North Europe, and West Europe. You can check the entire list of regions at
http://mng.bz/MdND.

7 Choose an existing ADLS store from the list of stores or create a new store using
the Create New link.

8 Select the default Pricing package, Pay-as-You-Go. Monthly commitments can
reduce spending in production, but are not needed unless you expect more
than 100 hours of processing in a month.

9 Click Review + Create to create the service.

The ADLA is ready to accept new U-SQL jobs to execute.

7.3.2 Using Azure PowerShell

Using PowerShell scripts to create resources gives you a repeatable process and con-
sistent configuration across environments. You can access Azure PowerShell by visit-
ing Azure Cloud Shell at https://shell.azure.com/, or click the >_ header menu in the
Azure portal.

 Creating an ADLA service in the Azure portal requires the standard selections of
name, region, and resource group. You also need to select the default ADLS store and
a pricing package. Creating the service with Azure PowerShell offers more options
than with Azure portal. With the Azure PowerShell command, you can also adjust pol-
icy limits and storage growth. Let’s take a closer look at these options.

173Creating a Data Lake Analytics service
ADLA MANAGEMENT DATA

ADLA maintains a set of artifacts for each U-SQL job, including the compiled code
generated from the U-SQL script and the details of the job execution. These are
stored in job folders within the system root folder in the default ADLS store for the
ADLA account. The QueryStoreRetention parameter lets you modify the artifacts’
retention period. The default is 30 days. With this parameter, you can increase or
decrease how long these folders are kept and so change the storage cost in the ADLS
store or reduce the clutter of old jobs in ADLA. The amount of space taken by this
folder is negligible compared with the large amount of data files in a production
ADLS store.

LIMITS ON JOB EXECUTION

You can adjust the limits on the number of jobs and maximum Analytics Units (AU)
available for the service. An AU refers to the processing node used to run a U-SQL job
in ADLA. The jobs policy’s MaxJobCount parameter sets the maximum number of
simultaneous U-SQL jobs that can be run. The default maximum is three. The AU
policy’s MaxAnalyticsUnits parameter sets a maximum number of AU available to all
jobs combined. The default maximum is 32. These limits help control spending, but
can restrict larger jobs from using the maximum number of resources. These two pol-
icies can also be changed after service creation using the Azure portal and the Azure
PowerShell command Update-AzDataLakeAnalyticsComputePolicy.

RESERVE CAPACITY

You can choose from multiple levels of commitment plans, once you have established
your base monthly consumption level. These plans allow you to pre-purchase Analytics
Unit-Hours for use during the month, at a reduced rate. There are nine levels, includ-
ing the “Pay-as-You-Go” Consumption plan:

 Consumption
 Commitment100AUHours
 Commitment500AUHours
 Commitment1000AUHours
 Commitment5000AUHours
 Commitment10000AUHours
 Commitment50000AUHours
 Commitment100000AUHours
 Commitment500000AUHours

Use the Tier parameter to set the commitment plan. Listing 7.11 shows a Power-
Shell script for adding a commitment plan to an ADLA service. Use the Set-
AzDataLakeAnalyticsAccount command to modify an existing ADLA. The parame-
ters for this command are the same as for New-AzDataLakeAnalyticsAccount. Chang-
ing an ADLA service in Azure PowerShell requires the name of the ADLA service and
the optional parameter to change.

174 CHAPTER 7 Batch queries with Azure Data Lake Analytics
Set-AzDataLakeAnalyticsAccount -Name "adedeveastus2"

➥ -Tier "Commitment100AUHours"

You can run the script in listing 7.12 to create the ADLA service.

New-AzDataLakeAnalyticsAccount -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2"

➥ -Location "East US 2" -DefaultDataLakeStore "adedeveastus2"

➥ -QueryStoreRetention 62

➥ -MaxJobCount 12 -MaxAnalyticsUnits 24

➥ -Tier "Consumption"

Once the ADLA service has been created, you can submit U-SQL jobs.

7.4 Submitting jobs to ADLA
There are multiple methods for submitting U-SQL jobs for execution in ADLA. You
can use the Azure portal directly, pass a U-SQL file via an Azure PowerShell com-
mand, submit a job using an Azure Data Factory (ADF) pipeline, or run a job
remotely through Visual Studio. You can read about ADF pipelines in chapter 10.

TIP Working with U-SQL jobs in Visual Studio requires Azure Data Lake
Tools for Visual Studio, a separate download. You can learn how to submit U-
SQL scripts via Visual Studio at Microsoft’s website: http://mng.bz/aRW9.

7.4.1 Using Azure portal

Submitting jobs with the Azure portal is the easiest way to get started. The portal inter-
face lets you create a new job from scratch, upload saved U-SQL files, and edit U-SQL
scripts before submitting the job. Here’s how to create the job in the Azure portal:

1 In the Azure portal, use the All Services menu and filter on Data Lake Analytics
to show the Data Lake Analytics resource. Click Data Lake Analytics to show the
resource blade.

2 Select the ADLA service (“adedeveastus2”) that will run the U-SQL job, to open
the service Overview blade.

3 Click New Job to open the New Job blade.
4 Choose a name (“Sensor Aggregate”). The name can be any combination of

alphanumeric and punctuation characters.
5 Choose one Analytics Unit for this first run. The default is one. You’ll see later

in the chapter how to scale AUs for the job.

Listing 7.11 Adding a monthly commitment to your ADLA service with Azure PowerShell

Listing 7.12 Creating a new ADLA service with Azure PowerShell

The name for the ADLA service Select the Data Lake store for
management and job storage.

Change the default
management to 62 days.

Change the policy limits
on U-SQL job scaling to
fit your budget.Use the

“Pay-as-You-Go”
Consumption plan.

175Submitting jobs to ADLA
6 Copy/paste the contents of listing 7.10 into the job body window or type the
expressions.

7 Click Submit to submit the job to the ADLA cluster.

Figure 7.4 shows the Azure portal interface.

The job will be submitted for parsing and compiling. If these are successful, the job
will begin processing. If not successful, the job window will display an error message
and diagnostic information to help correct the problem. Once processing is com-
plete, you can review the job output and the specifics of the execution. Figure 7.5
shows an example of a completed job. You can leave the New Job blade at any point
after submitting and the job will continue.

you@domain.com

Use slider or text box to select the
number of Analytical Units for the job.

Use the Open file and Save as buttons
to upload and download the U-SQL script.

Choose a meaningful name.

Copy/paste and edit the U-SQL script
in this window before submitting.

Click Submit to compile and execute the job.

5
2 3

4

1

52

3

41

Figure 7.4 Creating a new U-SQL job with the Azure portal

176 CHAPTER 7 Batch queries with Azure Data Lake Analytics
7.4.2 Using Azure PowerShell

As when creating ASA jobs with Azure PowerShell, U-SQL jobs require a file as part of
the submission process. This file contains the instructions for the job. You can see the
contents of the aggregation query script in the following listing.

DECLARE EXTERNAL @in string = "/Staging/biometricstats/v1/{*}.csv";

@Players =
EXTRACT

Listing 7.13 U-SQL biometric aggregation query script

The number of AUs selected for this job.

Run the job again or make a copy of the
entire job with an opportunity to edit the
script before submission.

The amount complete increases as the job
executes, but is not a reliable method for
estimating total time.

The total processing AU-hours spent determines
cost. This number totals all AUs selected over the
execution time.

Greater amounts of data are processed more
efficiently. Too many AUs for the amount of data
lowers efficiency. Aim for >70% efficiency.

Total running time determines cost and is less
than job duration.

5

6

2
3

4

1

5

6

2

3

41

Figure 7.5 U-SQL job result details

177Submitting jobs to ADLA
Id Guid,
Player string,
Node int,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM @in
USING Extractors.Csv(
skipFirstNRows: 1
);

@DailyAgg =
SELECT

Player,
Node,
EventTime.ToString("d") AS AvgDate,
AVG(NodeValue) AS Average

FROM @Players
GROUP BY Player, Node, EventTime.ToString("d");

DECLARE EXTERNAL @out string =

➥ "/Curated/biometricstats/v1/daily_value_avg.csv";

OUTPUT @DailyAgg
TO @out
USING Outputters.Csv(outputHeader: true);

Use the Azure PowerShell Submit-AzDataLakeAnalyticsJob command to submit the
job. Set the Account parameter to the name of the ADLA account to run the job, and
set Name to the job name. Pass the name of the U-SQL script file using ScriptPath.
The AnalyticsUnits parameter sets the number of AUs, up to the maximum number
allowed in the ADLA.

 To use Cloud Shell to create a U-SQL job, you will need to add the U-SQL file to
your Cloud Shell storage. Save the contents of listing 7.13 to a file named /adla/dai-
lyagg.usql. There are two ways to do it: use the Cloud Shell upload function or create
a new file with a Cloud Shell file editor.

NOTE If you’ve forgotten how to do this, see section 6.1.3 “Creating Cloud
Shell files” in chapter 6 for directions.

The script in listing 7.14 returns a job object with the current status of the job. If not
enough AUs are available, or the maximum number of jobs are currently executing,
the new job will be queued for execution.

Submit-AzDataLakeAnalyticsJob -Account "adedeveastus2"

➥ -Name "Sensor Daily Agg"

Listing 7.14 Create a Data Lake Analytics job

The U-SQL job name will be displayed in the Azure portal
and when querying the list of jobs via Azure PowerShell.

178 CHAPTER 7 Batch queries with Azure Data Lake Analytics
➥ -ScriptPath "~/adla/dailyagg.usql"

➥ -AnalyticsUnits 1

Once the daily aggregation job completes, you’ll have a new CSV file in the ADLS
store to give to the development team. You can grant them access to the curated
ADLS folder or transfer the CSV file another way. We’ll look at scheduling U-SQL jobs
in chapter 10 and copying data in chapter 12.

7.5 Efficient U-SQL job executions
U-SQL jobs in ADLA are made up of expression statements, collected as a script, sub-
mitted to the ADLA cluster as a job, and stored in U-SQL files. To manage a batch pro-
cessing analysis system with ADLA, you must choose the number of AUs for each job.
To improve the ROI on each job, you should learn how to balance the job duration
with the cost. You should also ensure you aren’t using more AUs than necessary, by
reviewing previous jobs and estimating how many AUs you’ll need for future jobs.

7.5.1 Monitoring a U-SQL job

You can check the status of a U-SQL job using the Azure portal. Browse to the ADLA
Overview blade and click Data Lake Analytics > Job Management. This will display a
list of submitted jobs and their current status.

 You can check on the job using the Azure PowerShell command Get-
AzDataLakeAnalyticsJob to get the latest info. Use the Name parameter to search for
the job you submitted named “Sensor Daily Agg.” If you know the JobId, you can use
that. The following listing shows these two approaches.

$jobId = (Get-AzDataLakeAnalyticsJob -Account "adedeveastus2"

➥ -Name "Sensor Daily Agg" -Top 1).JobId
Get-AzDataLakeAnalyticsJob -Account "adedeveastus2" -JobId $jobId

The output of Get-AzDataLakeAnalyticsJob is a formatted object with various
properties.

ErrorMessage :
Properties : Microsoft.Azure.Management.DataLake.

➥ Analytics.Models.USqlJobProperties
JobId : 762531a0-b8e6-4345-91cb-0e321c7ac0b0
Name : Sensor Daily Agg
Type : USql
Submitter : user@domain.com
DegreeOfParallelism : 1
Priority : 1000
SubmitTime : 7/27/19 8:14:07 PM +00:00

Listing 7.15 Checking status of a Data Lake Analytics job

Note the tilde forward-
slash in the file path in
Cloud Shell.Specify the number of Analytics

Units. If unsure, start with one.

Use Top parameter to return most recent job.

179Efficient U-SQL job executions
StartTime : 7/27/19 8:14:47 PM +00:00
EndTime : 7/27/19 8:24:14 PM +00:00
State : Ended
Result : Succeeded

You can monitor the job status using the State property of the returned object.

 A value of Running indicates the job has compiled and is executing.
 A value of Ended, with a Result value of Succeeded, indicates a completed

execution.

To determine the cost, take the difference between the EndTime and StartTime in
hours, multiplied by the DegreeOfParallelism, and by $2 (USD) per hour. For exam-
ple, a U-SQL job that ran 4,500 seconds (1.25 h) with a DegreeOfParallelism of 10
would cost approximately $25. In order to understand if this cost can be reduced for
the next execution, let’s look more closely at how ADLA processes jobs.

7.5.2 Analytics units

ADLA provides access to a pool of U-SQL job processors, along with a compiler and
job monitor. These services form the ADLA cluster. New jobs are created with a U-SQL
script and one or more processing nodes to run on.

 The processing node is called an Analytics Unit (AU). Each AU is an entirely man-
aged node, with a fixed set of CPU and memory. Each AU runs for the entirety of the
job, running the next available processing step that makes up the job. A processing
step is called a vertex.

7.5.3 Vertexes

The job script is sent to a compiler, which generates anywhere from a few to many
thousands of vertexes per job, depending on the number, size, and type of files, and
number of expressions. Individual vertexes are distributed across the available pro-
cessing nodes, or AUs. ADLA manages job creation, compilation, vertex scheduling,
and monitoring for you.

 When you submit a U-SQL job to ADLA, you define the job name, U-SQL script,
and the number of processing nodes available for the job. The U-SQL job processes
through multiple steps:

1 A new job is created. ADLA checks the maximum simultaneous job count and
maximum AU count per job.

2 If other jobs are running, and not enough AUs are available for the job, the job
is queued until other jobs complete and release enough AUs.

3 The job starts by allocating the requested AUs and compiling the U-SQL script.
ADLA checks the U-SQL for syntax errors and compiles the code into vertexes.

4 Job execution and billing begins. Parallelizable steps (vertexes) are distributed
among available processing nodes (AUs).

180 CHAPTER 7 Batch queries with Azure Data Lake Analytics
5 Job execution completes once the last vertex has completed processing. The
monitoring node updates the final job status and saves the job’s performance
profile.

You can see how the ADLA cluster distributes the work in figure 7.6.

Some vertexes can be run in parallel and some must wait for previous steps to com-
plete. Suppose a U-SQL job is defined to import two 100 MB files, aggregate three col-
umns, and write a single output file. This should have four vertexes: one for each file
import, one for the aggregation, and one for the file output. You can run this U-SQL
job with one, two, three, or more AUs. With one AU, all vertexes will run sequentially
on the node. With two AUs, the file imports will execute in parallel, one per AU, then
the aggregation will run on one AU, then the file out will run on one AU. With three
AUs or more, the file imports will execute in parallel, one per AU, then the aggrega-
tion will run on one AU, then the file out will run on one AU. The third AU will not
be used. Beyond two AUs, this job would be over-provisioned. Figure 7.7 shows how
the processing steps are parceled out among the available nodes.

New job
submitted
to ADLA

Data Lake
store

Data Lake
Analytics

Processing
node

Data

Processing
node

Data

Monitoring
node

Job 1

Job 2

Job 3

Compile
node

SQL
C#

Processing
node

Data
collection

File
output

New jobs are compiled
into multiple steps.

Compiled job
steps run on nodes.

Some processing
nodes read data.

Other processing
nodes write data.

Output files written
to Data Lake

Data Lake
store

5 64

2

3

1

JSON

CSV

ARVO

JSON

CSV

ARVO

USQL

CSV

Figure 7.6 Data flow through the ADLA cluster

181Efficient U-SQL job executions
The available nodes are allocated and billed in terms of AU-seconds. An AU-second
equates to 1 node allocated for 1 second. Thus 10 AU-seconds equates to one node
allocated for 10 seconds, 2 nodes for 5 seconds, or 10 nodes for 1 second. Each job is
billed in AU-hours for the nodes allocated for the duration of the job, regardless of
how many vertexes are executed by the node.

WARNING U-SQL jobs include reading and writing to the associated Data
Lake store. The output files are also stored there. Thirty days of job manage-
ment data are stored by default. The activity, data files, and management files
also incur charges, separate from the job execution rate, in AU-hours.

Figure 7.8 show the results of a successful job run in the Azure portal.
 Management and compile processing time are not billed. The single node runs

all vertexes sequentially until the job is complete. U-SQL job execution with one AU
will only reach 100% efficiency if at least 1 GB of data is read. Allocating more than
one AU (node) will lower the overall job efficiency, because few U-SQL jobs can
break every expression into parallel steps. Allocating more than one AU will decrease
the job duration in most cases. The ADLA compilation step reviews the job files
for size and count, analyzes the expressions in the script, and divides the work
into vertexes.

NOTE Azure Data Lake Store Gen1 runs on the Hadoop Distributed File Sys-
tem. Large files are broken into blocks of 250 MB each, called extents. ADLA
vertexes can read a single large file from the Data Lake in parallel, each ver-
tex assigned up to four 250 MB extents. This makes the vertexes most effi-
cient when reading files close to 1 GB. Files smaller than 250 MB are read
with a single vertex.

Data Lake
Analytics

AU1

AU2

AU3AU3 is not used.

AU1 imports
file .1

File 2 waits for
next available AU.
File 2 imports in
parallel with File .1

Aggregation begins
when all files have
imported.

Output begins when
aggregation completes.

A
n
a
ly

tic
s

U
n
its

SQL

5

2

3 4

1

Figure 7.7 Allocating multiple AUs to a four-step U-SQL job

182 CHAPTER 7 Batch queries with Azure Data Lake Analytics
7.5.4 Scaling the job execution

Determining the optimal number of AUs for the first execution of a new U-SQL script
is more of a guess than a calculation. Judging the total number of vertexes and the
degree of parallelism for any step is complicated, until the ADLA compiler has ana-
lyzed the job and the execution is complete.

 Figures 7.9 and 7.10 show the results of multiple U-SQL job runs with varying file
sizes, counts, and AU allocations. To check basic read and write efficiency, a passthrough

Run the job again or make a copy of
the entire job with an opportunity
to edit the script before submission.

The number of AUs selected for this job.

The amount complete increases as
the job executes, but is not a reliable
method for estimating total time.

The total processing AU-hours spent determines cost.
This number totals all AUs selected over the execution
time.

Larger files are more efficient than smaller files.
Too many AUs on the job lowers efficiency.
Aim for for >80% efficiency.

Total running time determines cost and is less than
job duration.

5

6

2
3

4

1

5

6

2

3

41

Figure 7.8 U-SQL job result details

183Efficient U-SQL job executions
U-SQL script was used to read the files and write a single output file without any inter-
mediate calculations.

@PlayersPassthrough =
SELECT *
FROM @Players;

Four U-SQL passthrough query scripts were executed with the following files selected:

 10 files of 113 MB
 100 files of 113 MB
 10 files of 1157 MB
 30 files of 1157 MB

The four U-SQL scripts were executed six times each, doubling the number of AUs
with each job run, from 1 to 32. The total execution time and efficiency were plotted
against the number of AUs for the job run. Figure 7.9 shows the efficiency of various
file counts and file sizes, at varying levels of parallel execution.

Listing 7.16 A simple passthrough expression

AUs

AU % Efficiency of File Sizes and Counts

10 113 MB Files

E
ffi

c
ie

n
c
y

100 113 MB Files 10 1157 MB Files 30 1157 MG Files

100

90

80

70

60

50

40

30

20

10

0

1 2 4 8 16 32

Figure 7.9 AU %Efficiency of file sizes and counts

184 CHAPTER 7 Batch queries with Azure Data Lake Analytics
The job efficiency ratings show how much of the overall execution time used all allo-
cated AUs. Figure 7.9 shows that file overhead has a significant impact for small sets of
small files. You can see the jobs don’t reach peak efficiency until they read more than
10 GB of data.

 Figure 7.10 shows the execution time in seconds for the same file counts and file
sizes.

You can see that parallelization with multiple AUs can decrease job time significantly
as the amount of data read increases. Roughly, for each 8 GB of total files read, the job
will benefit from an increase in AU allocation. Most batch jobs benefit from optimiz-
ing the number of AUs for subsequent executions. For some jobs, you can scale back
the number of AUs without significantly increasing execution time.

 Here are a few guidelines you can use for the first run.

 File count doesn’t matter.
 If job duration doesn’t matter, choose 1 AU. It will cost the least to execute

the job.

AUs

S
e
c
o
n
d
s

AU % Seconds for File Sizes and Counts

10 113 MB Files 100 113 MB Files 10 1157 MB Files 30 1157 MG Files

1 2 4 8 16 32

1,100

1,000

900

800

700

500

400

300

200

100

0

600

Figure 7.10 AU Seconds for file sizes and counts

185Using Blob Storage
 Calculate 1/8th of the total GB of data read into the job and round up to the
next whole number. Using that number for your initial AU count will reduce
the job duration for a relatively small increase in cost.

 Don’t use more AUs than the total number of GB of data to be read in the job.

Getting skilled at estimating the available parallelization will help you balance cost
with producing output in the desired timeframe.

7.6 Using Blob Storage
Suppose a third-party has delivered a list of ball players to a Storage account in Blob
Storage. The file is a tab-separated text file with multiple fields and a header row. The
development team would like to retrieve the list of active players from the file and
write it as a CSV file in the ADLS store. How can you fulfill this request?

 U-SQL jobs can perform all of these steps. File selectors can target files in Blob
Storage, extractors can read multiple formats and combine multiple files, and output-
ters can write CSV files.

7.6.1 Constructing Blob file selectors

For this scenario, the data is stored in a Storage account Blob. The path to files in
Blob Storage requires a protocol and URI structure.

 The Blob Storage path starts with the “wasb://” protocol, which targets Blob Stor-
age using the HTTPS protocol. The path uses an Azure Storage account and Blobs
container format:

wasb://[blob container name]@[Storage account name]/[filename]

The file selector variable in listing 7.17 uses string compilation to combine elements.
This allows elements to be injected into a string. @fileprefix defines part of the file
name and gets injected into the Blob Storage path along with the wildcard element.
This path includes the Storage account name (adedeveastus2), the Blob container for
the files (biometricstats), the path structure in the container, and the file extension
with a wildcard for the filename. You can use the same wildcard pattern as for Data
Lake store paths. The following listing demonstrates building a file selector variable.

DECLARE EXTERNAL @fileprefix string = "Player";
DECLARE @in string = String.Format("wasb://biometricstats@adedeveastus2/

➥ Staging/Players/{0}{1}.txt", @fileprefix, "{*}");

The extractor will add .blob.core.windows.net to the Storage account name, if not
included. The filename must include the file extension. Because you’re passing an
asterisk wildcard in the file selector, the extractor will read any files starting with the
file prefix player with a TXT extension in the Blob Storage container, and combine
the rows into the extractor rowset.

Listing 7.17 Declaring Blob file path variables with wildcards

186 CHAPTER 7 Batch queries with Azure Data Lake Analytics
IMPORTANT Files in Blob storage are case-sensitive.

Make sure you have an Azure Storage account and Blob store available. To read from
the Blob store with this file selector, you’ll need to have a file available in the Blob store.

NOTE You can review chapter 3 for instructions on creating a Storage account
and Blob store.

Listing 7.18 shows the first two rows of a sample tab-separated file with the following
schema:

1 PlayerId: String
2 PlayerName: String
3 TeamName: String
4 TeamPosition: String
5 PositionStart: DateTime
6 PositionEnd: DateTime

"PlayerId" "PlayerName" "TeamName" "TeamPosition" "PositionStart"

➥ "PositionEnd"
"abera101" "Arnold Berathal" "Jonestown Sluggers" "Pitcher" 2010-

07-11T00:00:00.0000000Z

➥ 2020-07-11T00:00:00.0000000Z
"jstro102" "John Strong" "Poplar Bats" "Second Base" 2010-07-

11T00:00:00.0000000Z

Create a file named /Staging/Players/PlayerDetails.txt with these fields, with multi-
ple rows, and upload to your Blob store (adedeveastus2/biometricstats). Include a
header row.

TIP You can retrieve a file for use in your job from the GitHub repository for
this book at http://mng.bz/gyZ8.

The file selector provides the path to the files, but not the authorization for ADLA to
access them. For that, you must add an additional data source to ADLA.

7.6.2 Adding a new data source

In order to read files from Blob Storage in your job, ADLA needs access to the Storage
account Blob service. Initially, ADLA has access to only the Data Lake store that was
selected during creation. In order to access other stores, you need to add them as new
data sources.

USING AZURE PORTAL

The following describes how to create one in the Azure portal:

1 In the Azure portal, use the All Services menu and filter on Data Lake Analytics
to show the ADLA blade.

Listing 7.18 Player team stats file

187Using Blob Storage
2 Select the ADLA service that needs the new data source to view the Overview
blade.

3 Click Data Lake Analytics > Data Explorer to open the Data Explorer blade.
4 Click Add Data Source to open the New Data Source dialog.
5 Choose a Storage type, from Azure Data Lake Storage Gen1 or Azure Storage.
6 Under Selection Method, choose Select Account.
7 Choose the correct subscription, if you have access to more than one.
8 Choose an existing account from the Azure data source list.

When adding a data source through the Azure portal, the Add Data Source dialog
handles credentials for Blob Storage. Connections to Data Lake stores from ADLA
occur at the job level. Each job will be submitted by an authorized AAD entity, either a
user account or a service principal for a service like Azure Data Factory. ADLA passes
credentials to the Data Lake store for the user executing the jobs. For jobs connecting
to Blob Storage, ADLA uses the stored access key for the data source.

USING AZURE POWERSHELL

You can also add the Storage account to your ADLA service via Azure PowerShell. Use
the Add-AzDataLakeAnalyticsDataSource command to add the service. Set the
Account parameter to the name of the ADLA service to update, Blob to the Storage
account name, and DataLakeStore to the ADLS store name. When connecting to a
data source in a Storage account, you must provide an access key using the AccessKey
parameter. You can retrieve this key from the Storage account. Add the resource
group of the new data source, if different from the ADLA, using ResourceGroupName.
Listing 7.19 shows an example of adding Blob Storage from a separate resource group
to the ADLA service and a Data Lake store from the same resource group.

Add-AzDataLakeAnalyticsDataSource -Account "adedeveastus2"

➥ -Blob "ade2deveast2"

➥ -AccessKey "==Key=="

➥ -ResourceGroupName "ade-dev-west2"

Add-AzDataLakeAnalyticsDataSource -Account "adedeveastus2"

➥ -DataLakeStore "fcrdeveastus2"

Now you can create a U-SQL script to read from the data source.

Listing 7.19 Add Storage account Blob Storage

Specify Storage account name
using -Blob parameter.

Use a Shared Access
Signature key with at
least Read access.

Specify the resource
group to look up the
Storage account.

Specify Data Lake store name
using -DataLakeStore.

188 CHAPTER 7 Batch queries with Azure Data Lake Analytics

qu

su

w

7.6.3 Filtering rowsets

To read the tab-separated text file, you can use the generic Text extractor. You can
provide any or all of the parameters. For a tab-separated file, you’ll use the delimiter
parameter to specify \t, the tab character.

@Players =
EXTRACT

PlayerId string,
PlayerName string,
TeamName string,
TeamPosition string,
PositionStart DateTime,
PositionEnd DateTime?

FROM @in
USING Extractors.Text(

delimiter: '\t',
encoding: Encoding.UTF32,
escapeCharacter: '#',
nullEscape: "NULL",
quoting: true,
silent: false,
skipFirstNRows: 1,
charFormat: "uint16");

The CSV and TSV extractors are implementations of the Text extractor, with a specific
delimiter. It’s critical to match the number of columns in the EXTRACT expression with
the fields in the file. If they don’t match, none of the rows will be read. If the row has
null values, use a nullable field type.

 U-SQL scripts can contain multiple expressions, to transform rowsets. Extractors
and outputters don’t use filters, but SELECT rowset operations can. The filter is a mix
of SQL WHERE clause and C# comparison and equivalency operators. For example, use
!= null instead of IS NOT NULL to filter out null values. In this case, we want the filter
to include rows where the PositionEnd date is null.

 This operation assigns the name @CurrentPlayers to the SELECT query expression
rowset. Expressions can become as complex and numerous as necessary to complete
the calculations. The following query expression returns the list of players currently
on a team.

Listing 7.20 Using a Text extractor

Define the schema for
@Players expression.

The Text extractor allows
multiple config options.

Default is comma, but can
be any Unicode character.

Default is UTF8. Other options
include UTF7, UTF32, Unicode,
and BigEndianUnicode.

null is the default, but you can specify any
Unicode character. If the escape character is
followed by any character other than itself
or the delimiter, it is dropped.

The default is null. Any specified string
must match the field value exactly to be
considered a null.

Double
otes are
the only
pported

string
rapper.

Setting silent to true allows
skipping rows where columns are
missing or when conversion errors
can fall back to null.

Skip 1 row. This allows skipping
one or more header rows.

When using Char in the expression
schema, the row field must be an
unsigned integer. Specify “string” to
use string character instead.

189Using Blob Storage

IS
.NE
@CurrentPlayers =
SELECT

PlayerName AS Name,
TeamName AS Team,
TeamPosition AS Position
FROM @Players
WHERE PositionEnd == null
GROUP BY PlayerName, TeamName, TeamPosition;

The U-SQL expressions resemble SQL statements in most regards. You can see more
similarities and differences in later chapters.

 For this scenario, the job should output comma-separated values to the file. Listing
7.22 shows the expression for writing a rowset using the Text outputter. The outputter
uses the rowset expression from listing 7.21 for the data source. The target is a CSV
file in the Data Lake store, in the Raw folder. Because the input files included a
header row, you need to write a header row in the output file. The Text outputter sup-
ports this based on the fields defined in the rowset expression. The CSV and TSV out-
putters are implementations of the Text outputter, using the defaults and a comma or
tab character as the delimiter, respectively.

OUTPUT @CurrentPlayers
TO "/Raw/Players/v1/activeplayers.csv"

USING Outputters.Text(
delimiter: ',',
dateTimeFormat: "o",
encoding: Encoding.UTF8,
escapeCharacter: '#',
nullEscape: "NULL",
quoting: true,
rowDelimiter: "\n",
charFormat: "uint16",
outputHeader: true);

Listing 7.23 shows the complete U-SQL script for reading a file from Blob Storage. The
script uses parameters on the extractor and outputter to match the file specifications.

Listing 7.21 U-SQL filter expression

Listing 7.22 Using a Text outputter

Capitalize AS to provide an
alternate column name.

Use C# equality instead
of SQL null equality. Group by column

names instead of
aliases.

OUTPUT command begins
the file write expression.

Using an inline string
instead of a variable

The Text outputter allows
multiple config options.

Default is comma, but can be
any Unicode character.

O 8601
T string
format

Default is UTF8, so this
parameter is optional.

null is the default, but you can
specify any Unicode character. If
the escape character is followed
by any character other than itself
or the delimiter, it is dropped.

Default is an empty string. The
provided string will be output for
any field values of null.

Double quotes are the only
supported string wrapper.

The row delimiter is a one-character
string, either \r or \n. The default is \r\n.

When using Char in the expression schema, the
row field must be an unsigned integer. Specify
“string” to use a string character instead.

Include the rowset columns
as a header row in the file.

190 CHAPTER 7 Batch queries with Azure Data Lake Analytics
DECLARE EXTERNAL @fileprefix string = "Player";
DECLARE @in string = String.Format(

➥ "wasb://biometricstats@adedeveastus2/Staging/Players/{0}{1}.txt",

➥ @fileprefix, "{*}");

@Players =
EXTRACT

PlayerId string,
PlayerName string,
TeamName string,
TeamPosition string,
PositionStart DateTime,
PositionEnd DateTime?

FROM @in
USING Extractors.Text(

delimiter: '\t',
encoding: Encoding.UTF8,
escapeCharacter: '#',
nullEscape: "NULL",
quoting: true,
silent: false,
skipFirstNRows: 1,
charFormat: "uint16");

@CurrentPlayers =
SELECT

PlayerName AS Name,
TeamName AS Team,
TeamPosition AS Position
FROM @Players
WHERE PositionEnd != null
GROUP BY PlayerName, TeamName, TeamPosition;

OUTPUT @CurrentPlayers
TO "/Raw/Players/v1/APlayers.csv"
USING Outputters.Text(
delimiter: ',',
dateTimeFormat: "o",
encoding: Encoding.UTF8,
escapeCharacter: '#',
nullEscape: "NOTHING",
quoting: true,
rowDelimiter: "\n",
charFormat: "uint16",
outputHeader: true);

You can write files out to a Blob service too, by providing a fully-qualified Blob storage
path to the outputter’s file selector.

 The two U-SQL jobs defined in this chapter provide an introduction to batch pro-
cessing with ADLA. Combining files and creating aggregate report files from raw data
may be all you need to do. You’ll get to see more complex batch processing in chap-
ters 8 and 9.

Listing 7.23 U-SQL script to list players

191Exercises
7.7 Exercises

7.7.1 Exercise 1

Given this list of files, write a file selector which includes only files of type CSV with
“12” in the name.

 /sales/nj/park1/2012-01-08-receipts.csv
 /sales/nj/park1/2012-01-09-receipts.csv
 /sales/nj/park1/2013-01-12-receipts.csv
 /sales/nj/park1/2014-01-09-receipts.csv

SOLUTION

More than one wildcard can be used for extractor selectors. This selector will include
the first three files.

DECLARE @in string = "/sales/nj/park1/{*}12{*}.csv";

7.7.2 Exercise 2

Using the following list of files and the given U-SQL script, how many AUs would you
choose for your first job submission, to get an acceptable cost/speed ratio?

Filename File size File type

balls1.csv 855 MB CSV

balls2.csv 655 MB CSV

balls3.csv 565 MB CSV

balls4.csv 995 MB CSV

balls5.csv 755 MB CSV

balls6.csv 602 MB CSV

balls7.csv 677 MB CSV

balls8.csv 822 MB CSV

balls9.csv 599 MB CSV

balls10.csv 765 MB CSV

balls11.csv 752 MB CSV

balls12.csv 678 MB CSV

balls12.csv 681 MB CSV

balls12.csv 854 MB CSV

balls12.csv 644 MB CSV

balls12.csv 589 MB CSV

192 CHAPTER 7 Batch queries with Azure Data Lake Analytics
DECLARE EXTERNAL @in string = "/balls/balls{*}.csv";

@Balls =
EXTRACT Id Guid,

BallWeight decimal,
BallManu string,
BallSource int,
BallUse DateTime

FROM @in
USING Extractors.Csv();

@BigBalls =
SELECT

Id,
BallWeight,
BallSource

FROM @Balls
WHERE BallWeight > 5.5
GROUP BY Id, BallWeight, BallSource;

DECLARE EXTERNAL @out string = "/balls/bigballs.csv";

OUTPUT @BigBalls
TO @out
USING Outputters.Csv(outputHeader: true);

SOLUTION

Because the total size of the files to be read is just over 11 GB, you can use two AUs for
the first run and get a significant reduction in execution time for little additional cost.
You can use the 1/8th total size rule to calculate the number of AUs.

Summary
 U-SQL scripts use a mix of SQL and C# to define processing steps. The steps

read, transform, and write data.
 U-SQL includes built-in classes for reading and writing text files. These classes

let you focus on the data transforms instead of file manipulation at scale.
 Data Lake Analytics jobs can read from Data Lake stores and Blob Storage. This

allows ADLA jobs to move data between services.
 Data Lake Analytics compiles U-SQL scripts into jobs that can be run in paral-

lel. You can scale the amount of parallelization to balance your need for speed
versus minimizing cost.

U-SQL for complex
analytics
In the last chapter, you learned how to create an Azure Data Lake Analytics
(ADLA) account and how to build and run simple jobs. In this chapter, you’ll build
on that knowledge by writing more complex queries. Because U-SQL scripts com-
pile into C# programs, you can use many C# features within U-SQL expressions.

 You’ll compare methods of structuring U-SQL for reuse, including creating
indexed data stores in the U-SQL Catalog.

 You’ll use C# language features to replace and extend features of SQL.
 You’ll see how to reap benefits from previous jobs by reusing outputs and

repeatedly reusing U-SQL scripts.

Let’s get started by prepping some data for repeated use.

This chapter covers
 Creating reusable data access objects with U-SQL

views, table-valued functions, and tables

 Staging data for reuse with U-SQL tables

 Using window functions for aggregation queries

 Adding custom inline C# functions to U-SQL
scripts
193

194 CHAPTER 8 U-SQL for complex analytics
TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

8.1 Data Lake Analytics Catalog
ADLA uses the attached Data Lake store for more than reading and writing files. It
offers a structured interface for querying reusable rowsets via a database catalog.
The catalog provides a few features for creating and running ADLA jobs, including
the following:

 A database and table-naming convention
 Indexes for faster query performance
 Partitioned data for faster query performance
 Reusable rowsets across U-SQL jobs, without extractor expressions or file selectors

The ADLA catalog lets you collect and access U-SQL databases. U-SQL databases can
collect and access database objects, including tables, views, functions, and stored pro-
cedures. You can then access these in your U-SQL scripts in ADLA jobs. You can view
the databases in the catalog using the ADLA Data Explorer in the Azure portal.
Browse to the ADLA service and choose Data Lake Analytics > Data Explorer blade.
Figure 8.1 shows this tool.

WARNING Although you can use U-SQL databases the same way you use SQL
Server databases, they aren’t interchangeable. Indexed tables, SELECT queries
using joins, views, and table-valued functions all work similarly. But you won’t
find common table expressions, temp tables, or SSMS.

The ADLA catalog is created when you set up your ADLA account, in the form of a
folder in the default Data Lake store named catalog, containing data files and schema
metadata. The initial files define the master database. The files for any U-SQL database
you create will be stored in this folder.

 The ADLA catalog does nothing by itself; it only provides a file and folder struc-
ture for U-SQL databases. Let’s build a database of useful objects to help our users
query data in the Data Lake store.

8.1.1 Simplifying U-SQL queries

Suppose you have a group of users who want to write queries against some data files in
your Data Lake store. If these users are developers and want to learn U-SQL, you can
give them access to ADLA and let them write their own jobs. What if these users only
know SQL? You can build an interface for them using a U-SQL database.

 Using a U-SQL database, with tables and views, gives your users a familiar syntax to
query the backend data in the ADLS store. The users can be shielded from the added
complexity of file imports. Let’s create a database and objects using the biometric sen-
sor data from chapter 7.

195Data Lake Analytics Catalog
8.1.2 Simplifying data access

The Jonestown Sluggers are trying out uniforms with biometric sensors and collect-
ing data in the Data Lake store. Some analysts want to access the data and add sen-
sor names to the reports they generate. The sensor data is stored in your Data Lake
store.

U-SQL DATABASE

Because these analysts will write queries using the same set of data files repeatedly, you
can use some U-SQL database features to simplify writing the queries. You can build
one or more reusable objects in a U-SQL database.

 The U-SQL catalog for your ADLA account comes with the master database. All
U-SQL scripts start with a reference to this database, so by default any U-SQL script
can access objects within it. You can place new objects in the master database, which

View master and user U-SQL databases.

Select a table, view, function, or procedure
to view.

Registered assemblies are listed.

Click object to generate a U-SQL
script to use.

52

41

3

2

4

1

Figure 8.1 ADLA Data Explorer showing the U-SQL database objects

196 CHAPTER 8 U-SQL for complex analytics
makes them easy to access. However, creating objects here restricts your ability to man-
age data access and prevents removing objects at the database level. For example, if
you want to limit access by department, you can place related objects in a department-
specific U-SQL database and grant access to that department. In another case, you
could create a U-SQL database for use by consultants doing data analysis. You can load
the required data into the database, and when the project is completed, clean up the
temporary data and artifacts by removing the database. These scenarios are difficult to
accomplish using the master database. You’ll find additional benefits to using a U-SQL
database later in the chapter.

IMPORTANT Always create at least one U-SQL database in your ADLA account.
This keeps all the database objects together and makes managing the data-
base objects, including granting access and deletions, much safer. Always use
a USE DATABASE [Database]; command in your scripts when working with
U-SQL databases.

You use a U-SQL script in an ADLA job to create a database. In this case, the U-SQL
script contains only expressions and does not read or write files. You load the script
into a job like any other. You need to run the script only once, and the database will
persist. You can configure access after the database is created. The syntax for creating
the database is familiar. Use 'IF NOT EXISTS' when creating a database to confirm it
doesn’t already exist, as in the following statement:

CREATE DATABASE IF NOT EXISTS Players;

It’s also easy to just drop the database if it already exists, shown in the following state-
ment. This pattern removes a current database and replaces it with an empty one. Be
careful with this, because any objects created in the existing database will be deleted.

DROP DATABASE IF EXISTS Players;
CREATE DATABASE Players;

Once you’ve created the database, you can view it in the Azure portal.
 Here’s how to configure access to the U-SQL database in the Azure portal:

1 In the Azure portal, use the All Services menu and filter on Data Lake Analytics
to show the ADLA blade.

2 Select the ADLA service where you created the database to view the Overview
blade.

3 Click Data Lake Analytics > Data Explorer to view the Data Explorer blade.
4 The left navigation window contains two nodes: a folder hierarchy for the

account and a catalog hierarchy for the account. Expand the Account Catalog
node, and click on the new database.

5 Click the Manage Access button to open the Access blade.
6 Click the Add button in the Access blade to add access to Active Directory users

and groups.

197Data Lake Analytics Catalog
Now that you have the database container, you can add other objects. You have three
options for reusing file import code: a U-SQL view, a table-valued function, or a U-
SQL table. All of these need data to be useful. Two data files are provided for use with
these objects. You can get the biometric sensor file from the GitHub site for this book
at http://mng.bz/eQrG. Save this file in your Data Lake store as /Staging/Sensor/
v1/sensor_00.csv. The biometric sensor naming file is also on GitHub at http://mng
.bz/pBMR. Save it in your Data Lake store as /Raw/Sensor/v1/SensorNames.txt.

TIP The biometric sensor file has 100 K rows containing player and sensor
IDs, and sensor values with timestamps. This schema was generated from
data submitted to an Event Hub and written to Data Lake store with Stream
Analytics.

You can also get a simple C# project for creating multiple large data files in
this format in the repository at http://mng.bz/OMdj.

U-SQL VIEW

U-SQL views offer a means to encapsulate U-SQL extractor and query expressions. You
can think of this as moving a block of code into a separate function, where the database
is the class, and the function returns a rowset. U-SQL views define a rowset, either as a
SELECT command from a U-SQL table, a value array, or as an EXTRACT command from
files. Create a view using CREATE VIEW [viewname], and remove a view using DROP VIEW
[viewname]. You can include the IF EXISTS option to check if it exists before execution.
The following listing shows the script for a view which reads from the sensors file.

USE DATABASE Players;
DROP VIEW IF EXISTS v_Sensors;
CREATE VIEW v_Sensors

AS
EXTRACT Id Guid,

Player string,
Node int,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM "/Staging/Sensor/v1/sensor_00.csv"
USING Extractors.Csv(skipFirstNRows: 1);

Views operate much like expression variables, but the logic for populating the rowset
is saved in the U-SQL database for use across ADLA jobs. You can reuse the view in
U-SQL scripts by fully qualifying its name, in the form [Database].[Schema].[Name].
You can also add a USE [Database] statement to shorten the object names in the
script. U-SQL databases include the dbo schema by default. New database objects are
added using the dbo schema unless a different schema is included in the object at

Listing 8.1 U-SQL view for sensors file

Drop view first to
replace an existing view.

No need to check for
existence immediately
following DROP VIEW
command

198 CHAPTER 8 U-SQL for complex analytics
creation. The following listing shows a U-SQL script using the new view and output-
ting the rowset to a new file.

@view = SELECT * FROM [Players].[dbo].[v_Sensors];

OUTPUT @view
TO "/Sandbox/User1/Players.dbo.v_Sensors.tsv"
USING Outputters.Tsv();

At this point, your users can access the sensor data, but not the sensor names. You can
add a second view to provide access to the names in the same way you created the sen-
sor data view.

USE DATABASE Players;
DROP VIEW IF EXISTS v_SensorNames;
CREATE VIEW v_SensorNames

AS
EXTRACT Id int,

NodeName string
FROM "/Raw/Sensor/v1/SensorNames.txt"
USING Extractors.Tsv();

You can manage this same set of Sensor names with a SELECT ... FROM VALUES rowset.
The VALUES operator specifies an array object as the data source, instead of a U-SQL
table, rowset variable, or extractor function. When you create row data with VALUES,
you don’t need to upload or read data from files. The rowset gets compiled with the
ADLA job, and you don’t have to wait for the file read during job execution.

 Creating the SELECT ... FROM VALUES rowset uses a specific syntax to create the row
array. The array is a comma-separated list of parenthesis-delimited comma-separated
field values. The array is then declared as a rowset with field names. Each row is within
parentheses: (1, "abc") is a row with an integer of value 1 and a string with value abc.
The rowset declaration VALUES (a,b), (a,b) is wrapped in parentheses too. The col-
umn name declaration uses the AS {alias}({fieldName},{fieldName}); clause, fol-
lowing the rowset declaration. The entire expression looks like SELECT * FROM (VALUES
(a,b), (a,b)) AS X(A,B);. You can see how this works as an alternative to using an
EXTRACT statement for the sensor names file in the following listing.

USE DATABASE Players;
DROP VIEW IF EXISTS v_SensorNames;
CREATE VIEW v_SensorNames

AS
SELECT *
FROM (VALUES

Listing 8.2 Query the U-SQL view for sensors file

Listing 8.3 U-SQL view for SensorNames file

Listing 8.4 U-SQL view using VALUES table

This expression uses the
fully qualified view name.

Write out the rowset into
your user sandbox folder.

The VALUES clause and rows
are wrapped in parentheses.

199Data Lake Analytics Catalog

q
vie
(1,"Heartrate"),
(2,"Pulse"),
(3,"Temperature Chest"),
(4,"O2"),
(5,"Left Pectoralis"),
// Shortened for readability
(38,"Right Metatarsal Pressure"),
(39,"Unused"),
(40,"Unused")
) AS r(Id,NodeName);

The table schema can be declared implicitly, as in listing 8.4, or the field types can be
declared explicitly. The explicit declaration looks like AS r(Id int,SensorName string).
Now you have two views to extract some complexity from the analysis queries. Let’s
look at how you use these views in a U-SQL query.

U-SQL JOIN

With two views, you have two separate rowsets. With U-SQL, you use a JOIN clause in
a SELECT statement to connect two rowsets into one. Five types of joins are available
in U-SQL:

 INNER JOIN
 OUTER JOIN
 CROSS JOIN
 SEMIJOIN
 ANTISEMIJOIN

INNER JOIN and OUTER JOIN work like their T-SQL counterparts. CROSS JOIN joins
every row of the first rowset with every row of the second rowset. SEMIJOIN includes
every row in the first rowset that has at least one matching row in the second rowset.
ANTISEMIJOIN includes every row in the first rowset that has no matching rows in the
second rowset. Except for CROSS JOIN, all joins use the ON clause to define the match
or matches between individual fields in the rowsets. Listing 8.5 shows the use of an
INNER JOIN to add the sensor name to the list of sensor values by joining two views.
The join clause uses the C# equality operator == to match the fields.

 When using a join clause, you must provide an alias for each rowset in the expres-
sion, in the form [ObjectName] AS [alias]. Aliases can contain letters and numbers,
and must start with a letter. The AS operator is a reserved word. All reserved words in
U-SQL are all capitals, and only reserved words can be all capitals. Make sure your
aliases include at least one lowercase letter or a number.

@view = SELECT s.Id, s.Player, s.Node, sn.NodeName, s.NodeValue, s.EventTime
FROM [Players].[dbo].[v_Sensors] AS s
INNER JOIN [Players].[dbo].[v_SensorNames] AS sn
ON s.Node == sn.Id;

Listing 8.5 Query the U-SQL views for sensors with sensor names

Each row is wrapped in parentheses,
contains all fields separated by
commas, and is separated from
subsequent rows by a comma.

The rowset alias is unused, but
the field name list is required.

Fully
ualified
w name

AS sn clause
to add aliasMatch two fields in the

join clause with ==.

200 CHAPTER 8 U-SQL for complex analytics
OUTPUT @view
TO "/Sandbox/User1/Players.dbo.v_Sensors.tsv"
USING Outputters.Tsv();

If you wanted, you could even bundle the two view expressions in listing 8.5 into a
third view. Views are useful for single expression reuse.

 At this point, you can hand over the script from listing 8.5 to your users and let
them query the data. But perhaps you want to simplify the expressions further, or add
more functionality to the data lookup. If you want to reuse multiple expressions, you
can use a table-valued function.

U-SQL TABLE-VALUED FUNCTIONS

Table-valued functions (TVF) extend the view wrapper for reusing U-SQL expressions.
TVFs add three extra features beyond the view:

1 Optional parameters
2 A returned TABLE definition
3 A BEGIN ... END wrapper for multiple expressions

By using parameters, you can extract logic flow from your analysis scripts, read data
from different files or folders, or move WHERE clauses into routines for consistent use.
The TVF can contain far larger blocks of logic than views, by combining multiple
expressions in a chain.

 You create a TVF with the CREATE FUNCTION [functionname] command and remove
it with DROP FUNCTION [functionname]. You can include the IF EXISTS option to check
if it exists before execution.

 The TVF can include one or more parameters by adding a parenthetical set of vari-
able declarations. These variables are available for use in the TVF. CREATE FUNCTION
[f_Name] (@ID int = 0) shows the first part of the command, specifying an integer
parameter named @ID. The @ID variable has a default value set, so the parameter will
be optional when using the TVF. Separate multiple parameters with commas.

 TVFs must define a return variable as a TABLE type. This type includes a field defi-
nition schema very similar to a table variable in T-SQL. Use the clause RETURNS
@result TABLE() to define the return variable. Add each field with a name and type,
separated by commas, within the parentheses. A typical variable with an integer and
string fields looks like RETURNS @result TABLE(Id int, Result string).

 The body of the TVF is defined by the clause AS BEGIN ... END; which wraps the
data processing expressions. The TVF body can have any number of expressions. The
last expression must assign the RETURNS variable to an expression that returns the
fields for the TABLE(). For instance, for a return clause of RETURNS @result TABLE(Id
int, Result string) the last expression would include the Id and Result fields.

BEGIN
--expressions omitted for brevity
@result = SELECT Id, Result FROM @rows;
END;

201Data Lake Analytics Catalog

Drop
fir

replac
exis
Figure 8.2 shows an example of the entire TVF U-SQL creation script.
 Expressions in a TVF can read from the same sources as any other U-SQL script,

including value rowsets, EXTRACT statements, views, tables, and other TVFs.
 The following listing shows the script for a view that reads from the sensors file.

USE DATABASE Players;
DROP FUNCTION IF EXISTS f_Sensors;
CREATE FUNCTION f_Sensors ()
RETURNS @result TABLE(

Id Guid, Player string, Node int, NodeName string,
NodeValue decimal, EventTime DateTime)
AS

BEGIN
@sensors = EXTRACT

Id Guid,
Player string,
Node int,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM "/Staging/Sensor/v1/sensor_00.csv"
USING Extractors.Csv(skipFirstNRows: 1);

@sensorNames = EXTRACT
Id int,
NodeName string

FROM "/Raw/Sensor/v1/SensorNames.txt"
USING Extractors.Tsv();

@result = SELECT
s.Id, s.Player, s.Node, sn.NodeName, s.NodeValue, s.EventTime

Listing 8.6 U-SQL function for sensors file with sensor names

CREATE FUNCTION f_Name (@ID int = 0)

RETURNS @result TABLE(Name string)

AS

BEGIN

@result = SELECT Name FROM dbo.Table;

END;

Create without
existence check.

Define parameters
as variables. Add default value

to make optional.RETURNS rowset variable
of type TABLE.

Define the table
schema within
parentheses.

Column names or field names
must match the TABLE schema.

Use the RETURNS rowset
variable to return the data.

Wrap expression in
BEGIN and END.
Finish with semicolon.

Figure 8.2 Table-valued function description

view
st to
e an
ting
TVF.

No need to check for existence
immediately following DROP
FUNCTION command

Define the six fields of
the sensor values with
name result.Start the body

with BEGIN.

Use the
RETURNS
variable for
the last rowset
expression.

Match the field
names of the

rowset with field
names of the

TABLE variable.

202 CHAPTER 8 U-SQL for complex analytics
FROM @sensors AS s
INNER JOIN @sensorNames AS sn
ON s.Node == sn.Id;

END;

The following listing shows the usage of the TVF. The query with a TVF is very similar
to a query using a view or table.

@view = SELECT s.Id, s.Player, s.Node, sn.NodeName, s.NodeValue, s.EventTime
FROM [Players].[dbo].[f_Sensors]() AS s;

OUTPUT @view
TO "/Sandbox/User1/Players.dbo.f_Sensors.tsv"
USING Outputters.Tsv();

Putting parameters within the parentheses adds options for the behavior of the TVF.
For example, suppose you want to add a new field to the sensor file. This is an exam-
ple of structural drift, and it can break reading and import processes. You need an
approach to handle changes to analytics processes dealing with these files.

 In order to read both the eight-field and nine-field schemas, you could create sep-
arate views or functions for each schema version. This can be cumbersome when mul-
tiple schemas are in use or the schemas change frequently. This book recommends
that the folder structure for the sensor file follows the zones framework, including a
level for versioning. Creating a function with a version parameter makes managing
the data extracts easier.

 The first version of the TVF reads the sensor file from the version 1 folder, /Staging/
Sensor/v1/sensor_00.csv. The second version reads from both version 1 and version 2
folders and uses the version parameter to switch between them.

 First, add a parameter for the version to the CREATE clause. CREATE FUNCTION
[f_Sensors] (@version string = "v2") shows the first part of the command, specify-
ing a string parameter named @version. The @version variable has a default value
set, so the parameter will be optional when using the TVF. Unless specified with the
version parameter, the TVF will return data from the version 2 file set.

NOTE You can read more about the zones framework and data drift in chap-
ter 4. For this chapter, we will use two versions of the sensor file with different
schemas. Each version will have its own folder under the file set folder. You
can retrieve three files, with 100 K rows in this format, for use in your job at
http://mng.bz/YrQj, sensor_02.csv, and sensor_03.csv. Save these files to your
Data Lake store in /Staging/Sensor/v2/sensor_01.csv, /Staging/Sensor/v2/
sensor_02.csv, and /Staging/Sensor/v2/sensor_03.csv.

You can structure your TVF to allow targeting folders when reading data files, based on a
parameter. For the sensor files, you can write the expressions with different queries, based
on the differences between versions. This calls for an IF ... THEN ... ELSE statement.

Listing 8.7 Query the U-SQL views for sensors with sensor names

Close the body with END;.
Note the closing semicolon.

No parameters needed,
but parentheses are
required

203Data Lake Analytics Catalog
 U-SQL supports one selection statement for logic, the IF statement. Given two ver-
sions of the sensor files, one including the new field “NodeType”, you can structure
your TVF to support both. You can chain multiple ELSEIF statements together with IF
to handle multiple options.

 The IF statement looks like a blend of the SQL and C# versions. It combines a
series of expressions ending with semicolons, but without brackets or parentheses.

IF @version == "v2" THEN
--EXTRACT FROM v2;

ELSE
--EXTRACT FROM v1;

END;

For three or more options, you can add multiple selections using ELSEIF clauses before
the final ELSE.

IF @version == "v3" THEN
--EXTRACT FROM v3;

ELSEIF @version == "v2" THEN
--EXTRACT FROM v2;

ELSE
--EXTRACT FROM v1;

END;

Now let’s make a new script to handle both versions. First, add an optional version
parameter to the TVF. This parameter will be used to determine which schema
version and file location to use, with a default value indicating the latest version.
Adding a default value makes the TVF easier to use and provides a measure of self-
documentation.

CREATE FUNCTION f_Sensors (@version string = "v2")

Next, update the RETURNS clause to include the new field. TVFs return a single TABLE
type. Because the new schema includes an extra field, it must be added to the TABLE type.

RETURNS @result TABLE(
Id Guid, Player string, Node int, NodeType string,
NodeName string, NodeValue decimal, EventTime DateTime)

The addition of the new field implies all other versions of the rowset will include the
field, even if the file schema did not contain it. You will need to decide on a value for
this new field for these schemas: a null, default, or lookup value. For this example,
provide a value of Unknown. In this example there are only two versions. You can cover
them both with a single IF ... ELSE statement. With these defaults in place, you can
write the complete U-SQL script.

204 CHAPTER 8 U-SQL for complex analytics
USE DATABASE Players;
DROP FUNCTION IF EXISTS f_Sensors;
CREATE FUNCTION f_Sensors (@version string = "v2")
RETURNS @result TABLE(

Id Guid, Player string, Node int, NodeType string,
NodeName string, NodeValue decimal, EventTime DateTime)

AS
BEGIN

IF @version == "v2" THEN
@sensors = EXTRACT

Id Guid,
Player string,
Node int,
NodeType string,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime
FROM "/Staging/Sensor/v2/sensor_{*}.csv"
USING Extractors.Csv(skipFirstNRows: 1);

ELSE
@sensorLoad = EXTRACT

Id Guid,
Player string,
Node int,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime
FROM "/Staging/Sensor/v1/sensor_00.csv"
USING Extractors.Csv(skipFirstNRows: 1);

@sensors = SELECT
Id, Player, Node, "Unknown" AS NodeType, NodeValue,
EventTime, PartitionId, EventEnqueuedUtcTime, EventProcessedUtcTime
FROM @sensorLoad;

END;

@sensorNames = EXTRACT
Id int,
NodeName string

FROM "/Raw/Sensor/v1/SensorNames.txt"
USING Extractors.Tsv();

@result = SELECT
s.Id, s.Player, s.Node, s.NodeType,
sn.NodeName, s.NodeValue, s.EventTime

FROM @sensors AS s
INNER JOIN @sensorNames AS sn
ON s.Node == sn.Id;

END;

Listing 8.8 U-SQL function for sensor file with sensor names and versioning

Use the C#
equality ==.

With multiple files,
use a wildcard {*}
to read all files.

Include new
field in the
return rowset.

205Data Lake Analytics Catalog
Planning for data drift ensures the data in your Data Lake store remains accessible to
your end users. Using views and TVFs lets you abstract some of these changes away.
Because TVFs allow parameters and multiple expressions, they are a powerful method
for abstracting complexity and handling changing versions of the same data.

8.1.3 Loading data for reuse

U-SQL provides one more method of abstracting the data access routines in ADLA
jobs: the U-SQL table. U-SQL views and TVFs read the original Data Lake store files
any time they are used in a job. U-SQL tables don’t read from the original files, but
save the data elsewhere. U-SQL tables use a set of sorted and indexed files to make
data retrieval faster. Part of creating the U-SQL table is populating and indexing the
files for the table. This provides both permanence to the data schema and a method
for optimizing data reads. Storage location and read optimization are the key aspects
to consider when using U-SQL tables.

U-SQL TABLES

U-SQL tables provide access to a pre-defined set of data in tabular format—rows and
columns—along with a pre-defined schema for the underlying data. The ADLA cata-
log supports two types of tables:

1 Managed
2 External

Managed tables store the schema definition, and the table data, in files within the cata-
log folders in the associated Data Lake store. External tables store the schema defini-
tion, but reference external data sources. When your data is stored in an Azure SQL
Database, you can leave the raw data there and configure read access through a U-SQL
external table. When your data sources are files in your Data Lake store, or your data-
base is not located in Azure, you can use a U-SQL managed table to restructure the
data storage. Figure 8.3 shows the two types of U-SQL tables.

Data Lake
Analytics

Data Lake
store

Distributions

Data-
base
table

Managed
U-SQL table
backed by files

Data-
base
table

SQLDB

Database

External
U-SQL table
backed by DB

Schema + data vs. schema only

Table1 Table2

32

1

Figure 8.3 Managed versus
external tables

206 CHAPTER 8 U-SQL for complex analytics
U-SQL external tables support Azure SQL Database, SQL Data Warehouse, and Azure
VM-hosted SQL Server. Chapter 9 covers integrating ADLA with external tables.

 U-SQL managed tables (hereafter, tables) store large blocks of data organized for
efficient reads and filtering. In addition, by defining schema, U-SQL tables simplify
exploring the data in the Data Lake store. A U-SQL table is made up of a schema defi-
nition, a clustered index, and a backing file structure. The schema definition includes
the table name, the field names and types, and a distribution method for storing the
data rows across multiple files. This differs from the schema-on-read pattern, where
you define the field order and field type in the EXTRACT expression. Every table must
have an index and a distribution method. Let’s look at details of creating a table.

CREATING A U-SQL TABLE

Creating a table uses the CREATE TABLE command. The command includes the table
name. You can also include the IF NOT EXISTS option. You supply the list of fields as
parameters to the command.

 With the list of fields, you must include an index definition, which takes the form
INDEX [name] CLUSTERED([Field] ASC/DESC). U-SQL tables only support clustered
indexes. The CLUSTERED option takes a comma-separated list of one or more fields,
with an ordering description.

 CREATE TABLE also requires the DISTRIBUTED BY option. You must select an algo-
rithm for distributing the data rows across the backing files, and one or more fields
from the field list as a parameter for the algorithm. Listing 8.9 shows the script for cre-
ating a U-SQL table for the sensor file, which you have already loaded into your Data
Lake store in /Staging/Sensor/v2/. The script adds an index on the Node and Event-
Time fields. It uses the HASH distribution algorithm on the Node field, which distributes
rows with the same values as the Node field to the same backing file.

USE DATABASE Players;
CREATE TABLE IF NOT EXISTS SensorData
(

Id string,
Player string,
Node int,
NodeType string,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime,
INDEX idx_SensorData CLUSTERED(Node ASC, EventTime ASC)

)
DISTRIBUTED BY HASH(Node);

You can read more about indexes and distribution algorithms in the following sections.

Listing 8.9 Create U-SQL table with hash distribution

Define the table
schema to match
the target file.

Define a clustered
index using one or

more columns.

Choose a distribution method,
with HASH as the default.

207Data Lake Analytics Catalog
TABLE STRUCTURE

Because U-SQL tables are basic structures, built on top of unstructured data files, cre-
ating objects requires a bit more thought than the typical relational database. Defin-
ing the table structure is the most important aspect of U-SQL table usage. Using the
right table structure reduces the overall data read by eliminating entire segments of
data. This is a form of predicate pushdown, and using it reduces the time and cost of run-
ning ADLA jobs.

 Predicate pushdown isn’t a set of code, but an approach to processing filters in
SQL statements. A filter (predicate) can be evaluated in memory on the full dataset.
Predicate pushdown seeks to evaluate the filter by limiting the amount of data read
from storage to only that matching the filter. U-SQL tables enable this by distributing
data rows into separate files with one or more keys.

TIP One way to harness predicate pushdown in ADLA jobs is by using con-
ventions for naming and structuring the extracted files, like new folders each
month or {year}-{month}-{day}-XYZ file naming conventions. This way, you can
reduce the number of files and rows read into memory during the job. You
can structure U-SQL EXTRACT expressions to target a relevant segment of
data files for a job. Fewer files and fewer rows means fewer vertexes to run and
shorter run times. You can read more about Data Lake Storage structure in
chapter 4 and ADLA jobs in chapter 7.

TABLE DISTRIBUTIONS

The data stored in a U-SQL table is spread across two or more segments, called distri-
butions, to aid in parallel reads and segment eliminations. Each distribution gets a set
of the overall table data and is stored in a separate file or files.

 Every U-SQL table must have a key for use in distributing the data rows. Each key
value is assigned to a distribution according to an algorithm. The algorithms are listed
in table 8.1.

Table 8.1 Distribution algorithms

Algorithm Description Use Typical key field

Round-robin Distributes all rows evenly across
all segments

For unique identifiers, or data
that heavily reuses a subset
of values in the key field

Unique identifier

Range Splits the values of the key into
discrete ranges, and distributes
the rows to segments with other
rows in the same range

Good for date keys, and
numeric data in known
ranges

Cost, date, size

Hash Hashes the key, and puts rows
with the same key in the same
segment

For data that reuses the val-
ues of the key field equally,
and when you want to elimi-
nate segments based on a
category

Foreign keys

208 CHAPTER 8 U-SQL for complex analytics
Figure 8.4 depicts distribution keys and methods for three different data sets for three
different tables. The first table is designed around searching for data based on the
PRICE field. The second is a lookup table with descriptions. The third would be used
in queries joining and filtering on the CODE field.

The set of data in each distribution is determined by the key and the number of distri-
butions on the table. Figure 8.5 shows distribution files on separate U-SQL tables.
Each table defines the number of distributions used. The number of distributions can
be chosen automatically or manually.

CODE,MAKE,PRICE

aabb123, ABC, 99.00

aabb123, ABE, 123.00

aacc122, BBE, 222.00

aacc122, BAB, 211.00

MAKE,DESC,TERM

ABC, abcdefg, 1

ABD, abcdefg, 2

ABE, abcdefg, 1

BAA, abcdefg, 1

BAB, abcdefg, 2

BAC, abcdefg, 2

ID,CODE,COUNT

1, aabb123, 5

2, aabb123, 12

3, aabb123, 5

4, aacc122, 1

5, aacc122, 2

6, aadd133,12

7, aadd134, 2

aabb123, ABC, 99.00

aabb123, ABE, 123.00

aacc122, BBE, 222.00

aacc122, BAB, 211.00

ABC, abcdefg, 1

BAA, abcdefg, 1

ABD, abcdefg, 2

BAB, abcdefg, 2

ABE, abcdefg, 1

BAC, abcdefg, 2

1, aabb123, 5

2, aabb123, 12

3, aabb123, 5

4, aacc122, 1

5, aacc122, 2

6, aadd133, 12

7, aadd134, 2

Data rows 3 distributions

Key:
PRICE

Distribution:
Range

Key:
MAKE

Distribution:
Round-robin

Key:
CODE

Distribution:
Hash

For data with numeric fields having
pre-defined segments used in filters,
use the Range method.

For data without clear segments,
or to gain indexing on large files,
use the Round-robin method.

For data with a repeating, bounded
set of values, like a foreign key,
use the Hash method.

2

3

Rows clustered by range:
0– 00, 00–200, 200–3001 1

Rows distributed first-read,
first-written to each file

Rows segmented automatically,
to achieve even rows-per-file

5

6

41

33

22

44

55

1

66

Figure 8.4 ADLA table distributions using different methods

209Data Lake Analytics Catalog
CHOOSING A DISTRIBUTION KEY

The segmentation of the data is driven by the distribution key. This key is one or more
fields that are included in the table. In general, the key should be chosen based on
the intended query usage. For lookup tables where a single row is used with a join,
the unique identifier for the join is a good distribution key. For lookup tables where
multiple rows are returned by the query, a field representing a foreign key is a good
choice, when used with the hash distribution method. For data tables not reliant on
joins, but that are used with WHERE clauses to define ranges like “greater than” or
“between,” use a field that represents a continuous set of values, like a date field
or integer.

 Each distribution file that makes up the U-SQL table should be no greater than
2 GB. Based on the expected table size, you can choose to set the distribution count
for the table during creation. This calculation for N number of distributions follows:

(byte size of a single row) * (average row count per unique key) * (number of unique
keys) / N < = 2 GB

For example, you could have 100 files, each with 1 M rows of 1 KB length, with 256
unique values in a potential key. You would calculate your number of distributions as:

(1 KB * (100 * 1000000 / 256) * 256) / 2 * 1048576 KB < = N, N > = 48

If you have most of the data to be loaded into the table when you start, you can allow the
U-SQL job to calculate the number of distributions for you. The compiler chooses a dis-
tribution count from the list of 2, 10, 20, 60, 120, 240, 480 to meet the 2 GB target.
To use this automatic calculation, choose a representative set of data for the initial load.

Data Lake
store

Distributions

Data-
base
table

Distributions

Data-
base
table

U-SQL database tables
backed by Data Lake files

1 62

U-SQL table with three distributions,
three files

U-SQL table with two distributions

1

2 Figure 8.5 ADLA table distributions structure

210 CHAPTER 8 U-SQL for complex analytics
 You don’t want to use a data set that consists primarily of rows for a few unique
identifiers, which you are then using for your distribution key.

 You can retrieve the distribution key info using an Azure PowerShell command. Get-
AzDataLakeAnalyticsCatalogItem will give you information about any U-SQL cata-
log item. The -ItemType parameter specifies the type of object from a set. Table 8.2
lists the allowed types.

The -Path parameter uses the fully qualified object name, with the database, schema,
and object name elements, and returns an object with several properties. To get the
distribution info, target the .DistributionInfo property.

(Get-AzDataLakeAnalyticsCatalogItem -Account adedeveastus

➥ -ItemType Table

➥ -Path "Players.dbo.SensorData"

➥).DistributionInfo

The .DistributionInfo property output looks like the following example.

Type Keys Count DynamicCount
---- ---- ----- ------------

2 {Player, Node} 10 0

Table 8.2 Catalog object types

Type Description

Database Container for U-SQL objects

Schema dbo

Assembly Custom C# code

Table Schema metadata over data files

TableValuedFunction TVF

TableStatistics Data on U-SQL table’s contents

ExternalDataSource Connection info for external tables

View Reusable Extractor expression

Procedure Like a TVF, but does not return a rowset

Secret Passwords

Credential Connection info for external tables

Types Custom C# types

TablePartition Data on U-SQL table partitions

Listing 8.10 Table distribution information via Azure PowerShell

Use Table
type to see
distribution
information.

Path uses fully
qualified object
name.Wrapping the command and

parameters in parentheses lets you
target output object properties.

211Data Lake Analytics Catalog
If your data grows too large for the 480 2 GB distributions, or you want to load and/or
delete large segments of data at once, U-SQL tables offer partitions too.

TABLE PARTITIONS

In addition to the required distributions that store the data rows, tables can also divide
rows among file partitions. U-SQL table partitions provide a coarser, more manual
method of segmenting the rows in a table. File partitions allow larger table capacity
and more options for predicate pushdown during queries.

 Both table distributions and partitions reduce overall file reads for U-SQL queries,
when using filters matching the segmentation keys. Using tables this way trades addi-
tional storage cost for reduced ADLA job costs, because the file reads are reduced sig-
nificantly. Converting a data set originally segmented for one type of query (or
undifferentiated) into a segmentation matching another query type is a strong use
case for U-SQL tables. Figure 8.6 describes the process of predicate pushdown using
U-SQL table partitions or distributions. Including the distribution or partition key in
the WHERE clause lets the ADLA job compiler use the table structure to limit file reads
to distributions that contain the key values 1, 2, or 3.

NOTE The intermediate language is not U-SQL, but the U-SQL EXTRACT expres-
sion is illustrative of the process.

When adding partitions to a U-SQL table, each partition’s rows are distributed to files
by the table distribution key, and all have the same partition key value(s). When parti-
tioning is used, the underlying files backing the distributions are segmented further,
grouped by the chosen partition key. Because of this, U-SQL tables don’t allow the
partition key to be the same field as the distribution key, or be included in the table

U-SQL database table expressions

SELECT ∗

FROM table1
WHERE key = 1;

@table1_{key} = EXTRACT

...

FROM

“/table/{key}_table1.file”

USING Extractors.Text();

Catalog

DB1 DB2 DB3

table1 table2 table3

123 456 789

Data Lake
Analytics

Job 1 U-SQL script
Compile
node

Processing
node

1. Reusable syntax

2. Generated intermediate
language during compile 3. Partition elimination

File Read

SELECT ∗

FROM table1
WHERE key < 3;

Figure 8.6 ADLA table partitions data elimination

212 CHAPTER 8 U-SQL for complex analytics
index. The U-SQL table doesn’t need to be partitioned, but if it will be, this must be
done at table creation. During table loading, data will be added to a backing file based
on the partition key value and the algorithm for the distribution key. As with files
backing an unpartitioned table, file management is handled for you. Figure 8.7
demonstrates the hierarchy of segmentation with U-SQL tables.

To create a table with partitions, include the PARTITIONED BY [field] parameter in
the table creation expression. Listing 8.11 shows the expression for SensorData, modi-
fied for partitioning. In this case, the table is designed around queries that filter on
players and sensor nodes.

USE DATABASE Players;
DROP TABLE IF EXISTS SensorData;
CREATE TABLE IF NOT EXISTS SensorData
(

Id Guid,
Player string,
Node int,
NodeType string,

Listing 8.11 Create a U-SQL table with a specific partition

Data Lake
Analytics

Data Lake
store

Distributions

Distribution
key

Table

partition

Distributions

Distribution
key

Distributions

Distribution
key

Table

partition

U-SQL
table

U-SQL
table

U-SQL
database

Distributions

Distribution
key

Distributions

Distribution
key

Table

partition

Distributions

Distribution
key

Distributions

Distribution
key

Table

partition

U-SQL defines metadata and schema
within the Data Lake Analytics Catalog

Metadata and data files
stored in the Data Lake

Distributions

Distribution
key

DATA

SKEW!

Each partition contains
an entire distribution set

Figure 8.7 ADLA table partition structure

213Data Lake Analytics Catalog
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime,
INDEX idx_SensorData CLUSTERED(Node ASC, EventTime ASC)

)
PARTITIONED BY (Player)
DISTRIBUTED BY HASH(Node);

When planning to use partitions in U-SQL tables, consider both data loading and que-
rying. U-SQL table loading works best when all the data in the partition is loaded
during one or a few loads. Inserting data into existing U-SQL tables, either parti-
tioned or not, creates delta files instead of appending to the original files. Read per-
formance can begin to degrade after a few rounds of insertions. You may want to
structure your partitions around the frequency of your data loads, to minimize this
fragmentation. U-SQL includes a way to reorganize the underlying files to rectify this
if it does occur. The REBUILD option on the ALTER TABLE command shifts data around
in the backing files to make data reads from fewer files. This is an example of a U-SQL
script with no file output.

ALTER TABLE [TableName] REBUILD;

Alternately, you may want to select partition key values that match different use cases
for the data, such as years, clients, states, or other top-level divisions. This type of par-
titioning works well when the data products have been defined and you are optimiz-
ing the production system.

 Before loading data into partitioned tables, you need to create the partitions. Each
partition holds one value of the key. You need to generate a list of values for the field
used to partition the table. This can be done by requesting the list from the data own-
ers, or by running a U-SQL script over the data, grouping by the field in question.
Once you have the list, create a U-SQL script containing the partitioning operations.

 Creating partitions uses the ALTER TABLE command. Use the option ADD PARTITION
to add a partition, or DROP PARTITION to drop a partition. Adding or dropping a parti-
tion takes the key value as a parameter, of a type matching the partition key. You can
also include IF NOT EXISTS when adding partitions, and IF EXISTS when dropping
partitions, which will prevent errors when executing the command. In most cases, you
would not drop an existing partition before adding a new partition of the same value.
Listing 8.12 shows the U-SQL script for adding the first partitions to the SensorData
table, using string values.

USE DATABASE Players;
DECLARE @partition string = "mjone101";
ALTER TABLE SensorData
ADD IF NOT EXISTS PARTITION (@partition);

Listing 8.12 Changing a U-SQL table

214 CHAPTER 8 U-SQL for complex analytics
DECLARE @partition2 string = "pharv102";
ALTER TABLE SensorData
ADD IF NOT EXISTS PARTITION (@partition2);

WRITING TO A U-SQL DATABASE TABLE

What happens if you load data to a partitioned table, but haven’t created partitions for
all the key values? The ADLA job will fail. Partitions for the key values must be created
manually. There must be at least one partition added to the table before you can load
data to a table created for partitioning. If there isn’t a matching partition for all data
rows, U-SQL provides an option for INSERT statements to handle this. You can drop
the rows that don’t match, or provide a catch-all partition. Add ON INTEGRITY VIOLATION
IGNORE after the field definition to drop the row, or ON INTEGRITY VIOLATION MOVE TO
PARTITION ([partition]) to write the row to the selected partition. Include a parti-
tion for unmatched values when you create the initial partitions. You must set a value
for this partition but it doesn’t matter what you choose, as long as it isn’t in the parti-
tion key value set. The following listing shows an example for adding an unmatched key
partition to the SensorData table.

USE DATABASE Players;
DECLARE @partitionx string = "playerx";
ALTER TABLE SensorData
ADD IF NOT EXISTS PARTITION (@partitionx);

With this extra partition, if you add ON INTEGRITY VIOLATION MOVE TO PARTITION
("playerx") to the INSERT statement, Player field data that doesn’t match an existing
partition will be loaded into the playerx partition.

USE DATABASE Players;

@sensors = EXTRACT
Id Guid,
Player string,
Node int,
NodeType string,
NodeValue decimal,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM "/Staging/Sensor/v2/sensor_{*}.csv"
USING Extractors.Csv(skipFirstNRows: 1);

INSERT INTO SensorData
(Id,Player,Node,NodeType,NodeValue,EventTime,

➥ PartitionId,EventEnqueuedUtcTime,EventProcessedUtcTime)
ON INTEGRITY VIOLATION MOVE TO PARTITION ("playerx")
SELECT * FROM sensors;

Listing 8.13 Add unmatched partition to U-SQL table

Listing 8.14 Using INTEGRITY VIOLATION MOVE in a U-SQL table

215Window functions
Inserting data into U-SQL tables updates the clustered index.

TABLE INDEXES

Every U-SQL table must have a clustered index, and there can be only one index per
table. The clustered index organizes the rows within each distribution. The index is
the row order within the distribution’s backing files. The clustering key doesn’t need
to be unique. Because the distribution key is usually used as a predicate of the query
reading from the table, including the key as an index field is a good idea. For instance,
for tables with low ratio of rows per key value, rows for multiple key values can be
stored in the same backing files. Therefore, adding the key field to the table index can
reduce read times. The clustered index orders the rows within the backing files, and
the U-SQL compiler can use the index to read only sub-sections of the file. You can
create a covering index, which includes your expected query filters. The index can’t be
removed or changed once created. You will need to drop, then create and load the
table to use a different index.

READING DATA FROM TABLES

To get the data back out of the table, you can use a regular rowset expression, with a
fully qualified table name.

@sensorNames = SELECT * FROM [Players].[dbo].[SensorNames];

8.2 Window functions
U-SQL window functions segment the rowset by a selected field’s value. Each row is seg-
mented based on the specified field or fields. The number and size of segments is
handled by the window function. In this way, it is similar to the GROUP BY clause that
also handles the number and size of the output buckets. They differ in that GROUP BY
reduces the number of rows in the resulting rowset to the number of unique values in
each bucket, whereas the window function maintains the rows.

 In U-SQL scripts, the OVER () clause is used with the selected aggregation function
to generate a new field, or as part of a calculation. U-SQL includes the standard func-
tions COUNT, SUM, MAX, MIN, STDEV, and AVG. You can’t use the window function in the
same expression as a GROUP BY clause.

 For example, you might want to include the average of the NodeValue field for
each row of the sensor data file, and then use it to calculate the difference between
the row’s value and the average. You can do this with a window function.

@counts =
SELECT

s.Player,
s.Node,
s.NodeValue,
AVG(s.NodeValue) OVER () AS NodeValueAvg
FROM [Players].[dbo].[f_Sensors]("v1") AS s;

216 CHAPTER 8 U-SQL for complex analytics
OUTPUT @counts
TO "/Sandbox/User1/SensorData/Window1.tsv"
USING Outputters.Tsv();

In this case, no field was specified for the window, so the average is calculated over the
entire rowset, and each row has the same value for the average.

"Player","Node","NodeValue","NodeValueAvg"
"mjone101",13,20.79,255.5399421
"mjone101",13,20.79,255.5399421
"mpete101",7,160.74,255.5399421
"mpete101",7,160.74,255.5399421
"pharv102",29,411.90,255.5399421

You may want a more targeted average to use in the calculation. In this case, include
the field or fields that would define unique segments. When defining window func-
tion segmentation, fields with discrete values work better than numerical fields with
continuous values. For example, both the Node and NodeValue are numbers, but the
Node values represent discrete objects while the NodeValue is a measurement on an
scale. The following script calculates the average for the entire rowset, for each Player,
and for each combination of Player + Node. Put a PARTITION BY [field] clause inside
the OVER () clause to specify the fields to create the window segments.

@counts =
SELECT

s.Player,
s.Node,
s.NodeValue,
AVG(s.NodeValue) OVER () AS NodeValueAvg,
AVG(s.NodeValue) OVER (PARTITION BY s.Player) AS NodeValuePlayerAvg,
AVG(s.NodeValue) OVER (PARTITION BY s.Player, s.Node) AS

NodeValuePlayerNodeAvg,
(s.NodeValue - (AVG(s.NodeValue) OVER (PARTITION BY s.Player,

s.Node))) AS NodeValueDiff
FROM [Players].[dbo].[f_Sensors]("v1") AS s;

OUTPUT @counts
TO "/Sandbox/User1/SensorData/Window2.tsv"
USING Outputters.Tsv();

For each field using a windowed aggregation function, the calculation is performed
on the aggregate field on all rows in the window. The resulting value is applied to
each row. You can see the segmentation of rows in figure 8.8, with a changing aggre-
gation value.

 Running the previous script with multiple aggregate windows over the sensor data
generates the following rows.

"Player","Node","NodeValue","NodeValueAvg","NodeValuePlayerAvg",
"NodeValuePlayerNodeAvg","NodeValueDiff"
"mjone101",13,20.79,255.5399421,255.36,256.28,-235.49
"mjone101",13,20.79,255.5399421,255.36,256.28,-235.49

217Local C# functions
"mjone101",14,448.08,255.5399421,255.36,255.64,192.43
"mpete101",7,160.74,255.5399421,255.94,259.17,-98.43
"mpete101",7,160.74,255.5399421,255.94,259.17,-98.43
"mpete101",8,383.95,255.5399421,255.94,258.87,125.07
"pharv102",26,94.81,255.5399421,255.29,261.67,-166.86
"pharv102",29,411.90,255.5399421,255.29,268.30,143.59
// significant digits reduced for clarity

You can see that the three averages are consistent over their windows, but change as
the windows change. The U-SQL compiled code calculates the windows of the entire
rowset, each player, and each player-node.

 For this example, we used built-in functions to add new fields to rowsets, and eval-
uated them for each row. Let’s see how this works when you add your own functions
using C#.

8.3 Local C# functions
You can build a new field using C# code too. You can build a C# expression within a
U-SQL expression by naming the output, using the AS operator. In this example, the
field NumberTwo is created by adding 1 to field NumberOne.

@numbers = SELECT
NumberOne,
(NumberOne + 1) AS NumberTwo
FROM @rows;

OVER () entire rowset: 64

OVER (PARTITION BY Player)
New segment on change in Player: 32

OVER (PARTITION BY Player, Node)
New segment on change in both
Player or Node: 4

22

1

3

CountNodeValueNodePlayer

abera101 1 10.50 4
abera101 1 10.90 4
abera101 1 12.41 4
abera101 1 18.12 4

abera101 2 10.43 4
abera101 2 10.98 4
abera101 2 13.37 4
abera101 2 14.26 4

jstro101 1 12.00 4
jstro101 1 12.83 4
jstro101 1 15.41 4
jstro101 1 18.58 4

jstro101 2 11.01 4
jstro101 2 20.95 4
jstro101 2 26.20 4
jstro101 2 28.15 4

Figure 8.8 Segmenting rowset with OVER () window function

218 CHAPTER 8 U-SQL for complex analytics
You can use built-in C# functions to process values. This example uses the C# condi-
tional operator ? to generate a field with one of two string values.

@numbers = SELECT
NumberOne,
NumberOne > 100 ? "Large" : "Small" AS NumberSize
FROM @rows;

What if you want to use a C# expression more than once in a script, or need more
complex code? U-SQL lets you define an anonymous function in the script, assign it to
a variable, and call the function as needed. The variable declaration takes the form:
DECLARE @Xyz Func<input type,output type> = (input) => {code;};. By now, you
should be familiar with declaring U-SQL variables. In this case, the variable is of type
Func, a C# anonymous function. The function declaration begins with Func<type>,
which accepts one or more C# types. The return type for the function must be
defined. If there are one or more input parameters, the type for each parameter will
be listed, separated by commas, preceding the output type. For instance, for a func-
tion that takes two strings and returns true or false, use Func<string, string, bool>.
Add an equals sign = and put the expression in parentheses (). We’re defining a
lambda expression: (inputs) => {}. For instance, to check if one string is longer than
another, use (string1, string2) => { return string.Length(string1) > string
.Length(string2);}. The return value of the comparison > is a boolean, so the com-
plete U-SQL expression looks like:

DECLARE @LongerThan Func<string, string, bool> = ((string1, string2) =>
{return string.Length(string1) > string.Length(string2);});

Declare this anonymous function in your U-SQL script, and you can use it in any
rowset expression. Calling the function in a rowset expression look like:

DECLARE @LongerThan Func<string, string, bool> = ((string1, string2) =>
{return string.Length(string1) > string.Length(string2);});

@Strings = SELECT
String1,
String2,
@LongerThan(String1, String2) AS LargerString
FROM @rows;

Let’s look at a more complicated problem. In this example, users are querying sensor
data using your new TVF. They want to compare each node value with the previous
value, and add a new field showing Greater, Lesser, or Same depending on the change
in value. The users haven’t been able to do this themselves, and have asked for your
help. How will you satisfy this request?

 U-SQL includes several built-in window functions. In the last section, you saw how you
can use aggregation functions like AVG() to evaluate row values. These functions return
the same value for every row in the window. There’s another set, called analytic functions,
that can return a new value for each row in the window. Table 8.3 lists these functions.

LargerString field
is a boolean.

219Local C# functions
The LAG() function returns the field value from a preceding row. LAG() and LEAD()
take three parameters: a field to read, the number of rows move forward or back, and
a default value if no row is found. Passing a field of NumberOne, an offset of two rows,
and a default of 100 looks like LAG(NumberOne, 2, 100). LAG() and LEAD() use the
OVER() window option to define the row order, but do not use a partitioning value like
other functions. The returned value can be NULL if a row is not present at the offset or
the field value is NULL. The returned value is based on the position of the current row
and offset row, instead of performing a calculation. The OVER() option contains an
ORDER BY statement with the ordering fields. Using a LAG() function for field Number-
One, an offset of 1, and a default of 0, the entire expression looks like:

@numbers = SELECT
NumberOne,
LAG(NumberOne, 1, 0) OVER(ORDER BY NumberOne) AS LastNumber
FROM @rows;

To fulfill your end users’ request, you have several options. You could add a new field
to the existing TVF, or create an entirely new TVF. This would make the new field
reusable, but could cut down on the use in ad-hoc queries. Or you could provide an
example script, as shown in listing 8.15. Providing the inline function in a script allows
it to be used in other scripts, and modified by the end user. This script passes the

Table 8.3 Analytic functions

Function Name Description Parameters

CUME_DIST Cumulative dis-
tribution

Ranked position of value within
the ordered window

None

PERCENTILE_CONT Percentile Percentile of continuous distribu-
tion of values within the window

Double, percentile to
calculate

PERCENTILE_DISC Percentile Percentile of discrete distribution
of values within the window,
matching a value in the window

Double, percentile to
calculate

FIRST_VALUE First value Returns the first value from the
ordered window

None

LAST_VALUE Last value Returns the last value from the
ordered window

None

LEAD Leading value Returns the specified offset value
ahead of the current row

Field type, field; Integer,
offset; Field type, default
value

LAG Lagging value Returns the specified offset value
before the current row

Field type, field; Integer,
offset; Field type, default
value

PERCENT_RANK Relative rank Rank between 0 and 1 of the cur-
rent value within the window

None

220 CHAPTER 8 U-SQL for complex analytics
output of LAG() to the inline custom C# function, and includes the output of that
function as a new field in the rowset. The LAG() calculation orders the rows by Player,
Node, and EventTime.

DECLARE @Trend Func<decimal, decimal?, string> =
((nodeValue, lastValue) =>
{

if (nodeValue > lastValue)
{

return "Greater";
}
else if (nodeValue < lastValue)
{

return "Lesser";
}
else
{

return "Same";
};

});

@counts =
SELECT

s.Player,
s.Node,
s.NodeValue,
s.EventTime,
LAG(s.NodeValue, 1, 0) OVER(ORDER BY s.Player, s.Node, s.EventTime)

AS lastNodeValue,
@Trend(s.NodeValue, LAG(s.NodeValue, 1, 0) OVER(ORDER BY s.Player,

s.Node, s.EventTime)) AS NodeTrend
FROM [Players].[dbo].[f_Sensors]("v1") AS s;

OUTPUT @counts
TO "/Sandbox/User1/SensorTable/SensorData5.tsv"
ORDER BY Player, Node, EventTime
USING Outputters.Tsv(outputHeader: true);

With these inline functions, you can convert, validate, and construct many variations
of the raw data using U-SQL and C#. In the next chapter, you’ll learn how to create
your own classes to add even more complex C# logic. The U-SQL catalog forms the
container for database items, including assemblies of custom code. Now that you’ve
seen some of U-SQL’s processing capabilities, you’re ready to expand on it with inte-
grations for your own custom code and external endpoints.

8.4 Exercises
The following exercises can help you internalize the new features introduced in this
chapter.

Listing 8.15 Declaring an anonymous function in U-SQL

Function accepts a
decimal and a nullable
decimal, and returns
a string.

Name of the input parameters
precedes the Lambda operator,
separated by a comma.

Return a value using
the return operator.

Including the LAG()
function output in the field

list is not required, but
useful for validation.

Player, Node, and
EventTime are used to
define previous row.

221Exercises
8.4.1 Exercise 1

Given a rowset containing the fields in the following extract, generate a new rowset
that matches the example.

Id,Code,Volume,Units,Detail
1,"ABE",12,4,"Test"
2,"ABEF",22,2,"Fourth"
3,"AB",13,2,""

Id,Desc,Sold
1,ABE:Test,48
2,ABEF:Fourth,44
3,AB,26

SOLUTION

This exercise requires string operators to modify the values in the Detail field. You
also have to concatenate the Code and Detail fields, and check that the Detail field
has a value, other than the HTML. This exercise assumes that all Detail fields use the
same wrapper. Your solution could look like the following script.

@rows =
SELECT *
FROM (VALUES

(1,"ABE",12,4,"Test"),
(2,"ABEF",22,2,"Fourth"),
(3,"AB",13,2,"")
) AS r(Id,Code,Volume,Units,Detail);

@newrows =
SELECT

Id,
Code,
string.Format(
"{0}{1}",
Code,
string.IsNullOrWhiteSpace(

Detail.Replace("", "")
.Replace("", "")) ?

string.Empty :
":" + Detail.Replace("", "").Replace("", "")

) AS Detail,
(Volume * Units) AS Sold

FROM @rows;

OUTPUT @newrows
TO "Sandbox/User1/code-units.csv"
USING Outputters.Csv(outputHeader:true);

This C# code could be encapsulated in an inline function as well.

Listing 8.16 Extract

Listing 8.17 Example

222 CHAPTER 8 U-SQL for complex analytics
8.4.2 Exercise 2

Given a set of data files with the following properties, choose a U-SQL database object
to make reading the data easier on end users.

FILE SET A

 600 10 M-row, 1 GB files containing application events
 New files are generated daily
 Files are stored in hierarchy Year/Month/Day
 Routine queries run daily and monthly

FILE SET B

 A 500 K-row, 100 MB file containing start and end dates for machine processes
 Ad-hoc queries that retrieve rows for a particular machineID and date

FILE SET C

 15 200 M-row, 1 TB files containing banking transaction data
 New files are generated monthly
 Routine queries run each month for each branch

SOLUTION

For file set A, a TVF would be optimal. The TVF would allow passing year, month, and
day parameters. The parameters can be used to define the file path for the EXTRACT
expression.

 For file set B, a view would be optimal. The file is small enough to be handled by a
single vertex in an ADLA job. The overhead of loading a U-SQL table would be
greater than the efficiency gains in the subsequent jobs.

 For file set C, a U-SQL table with partitions would work well. Each monthly file
could be loaded to daily or monthly partitions. Previous months can be deleted via
partitions.

Summary
 U-SQL databases provide containers for storing reusable objects. These can be

U-SQL expressions and data sets. Reuse means quicker query development.
 U-SQL tables allow optimized read access to large data sets. Data is reorganized

for partition elimination, which saves time and money.
 U-SQL includes built-in functions for working with row-based data. Data values

can be aggregated without reducing the number of rows returned.
 U-SQL allows custom C# functions to be inlined in rowset expressions. This

allows complex data manipulations using C# statements.

Integrating with Azure
Data Lake Analytics
In the last chapter, you learned how to use Azure Data Lake Analytics (ADLA) to
build reusable objects. You also used C# to enhance, and sometimes replace, the
functions of SQL. In this chapter, you’ll build on that by adding features to improve
your U-SQL scripts. You’ll use the Data Lake store to serve assembly files for use in
ADLA jobs. You’ll run Azure PowerShell and U-SQL scripts to modify the ADLA
and Data Lake environments. You’ll add new types of data extraction classes to
ADLA, and add C# functions for modifying data. You’ll also connect to external
providers to add even more data with minimal effort. This extensibility is facilitated
by the compiled nature of ADLA jobs.

 The ADLA cluster translates each U-SQL script submitted into a .NET compiled
application as a new ADLA job. This creates a new set of code to be executed on
the cluster nodes assigned to the job. Because the script is compiled, each job
includes a step that allows external code libraries to be included. The compiler

This chapter covers
 Using Azure Cognitive Services to enhance data

 Building user-defined functions using Visual
Studio and C#

 Connecting to remote data sources
223

224 CHAPTER 9 Integrating with Azure Data Lake Analytics
includes SQL and .NET assemblies in every job, which lets jobs use many C# and SQL
functions. Adding custom assemblies to a job works this way:

1 You submit a U-SQL script as part of an ADLA job.
a The script defines the data sources to use and the logic to process the data.
b The script defines any external assemblies to be included in the code.
c The job defines the number of processing nodes to use for executing the

code.
2 The job is submitted to the job compiler.

a The compiler includes some Microsoft system assemblies and U-SQL lan-
guage assemblies with the job code.

b The compiler includes any referenced assemblies with the job code.
c The compiler create a runtime to execute on the processing nodes.

3 The processing nodes execute the job runtime, write output files, and report
progress to the monitoring node.

Figure 9.1 shows the compiler building the job code and incorporating these assemblies.

The U-SQL database stores data-object descriptions and provides methods for referenc-
ing data objects and compiled assemblies. You can take advantage of this by compiling
your own code, registering your own assemblies in the database, and referencing
those functions in your scripts. The assembly files are copied and stored in the Data
Lake like other files. This allows the ADLA compiler to find them and include them in
the job code.

Data Lake
Analytics

Processing
node

Data

Processing
node

Data

Monitoring
node

Job 1

Job 2

Job 3

Compile
node

SQL
C#USQL

Data
collection

CSV

File
output

A job is submitted
to the compiler.

Compiled job
steps run on nodes.

Compiler adds
required assemblies.

2

3

1

Processing
node

Figure 9.1 Code flow through
the ADLA cluster

225Processing unstructured data
 Because ADLA has integrated access to your Data Lake, ADLA is a convenient vehi-
cle for analyzing both structured and unstructured data stored there. By adding cus-
tom or third-party assemblies, you can expand the capabilities of ADLA’s parallel
processing engine. Let’s look at the process by adding Machine Learning (ML) algo-
rithms to ADLA.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

9.1 Processing unstructured data
The Jonestown Sluggers have installed time-lapse cameras around their stadium to
capture information about the spectators in the stands. Each camera has a fixed view
of the stands, and records one image per second. The images are uploaded to your
Data Lake store for analysis. You have been asked to provide statistics on spectators’
gender and age. How can you fulfill this request?

 This analysis consists of two common computer-vision functions: object detection
and facial recognition. Object-detection software identifies objects in an image by type
and position. Facial-recognition software recognizes human faces and facial features.
Both types of software are available in Azure via Cognitive Services.

9.1.1 Azure Cognitive Services

Azure Cognitive Services bundles a set of ML algorithms into APIs. Microsoft devel-
oped these algorithms using millions of iterations of content data analysis, including
images, video, audio, and text data sources. The resulting algorithms are bundled into
assemblies for developer use. These assemblies accept unstructured data content and
return structured data about the objects in the content. The inputs include text-,
image-, audio-, and video-analysis algorithms. To use the algorithms, you create Cogni-
tive Service endpoints as resources in your Azure account. The API service endpoints
are available through REST HTTP calls and through a .NET SDK library integration.
Figure 9.2 shows how a system for analyzing data with Cognitive services could be
structured.

 To fulfill the image processing request, you could build an application to use these
APIs, and send the data to it. This approach makes sense if you need immediate analy-
sis of images. But the ADLA support team has made using Cognitive Services much
easier than this. They have created a set of assemblies for using the ML text- and
image-algorithms in U-SQL scripts. Using an ADLA job allows parallel processing of
images without extra code complexity, and you can immediately process the output
using logic in the job. The ADLA Cognitive assemblies let you analyze text and image
content within ADLA jobs. You need to load and register the U-SQL Cognitive assem-
blies to use them in a job.

 ADLA creates the U-SQL catalog with every ADLA account to maintain a container
for referencing objects for reuse in U-SQL scripts. Because U-SQL is compiled at job

226 CHAPTER 9 Integrating with Azure Data Lake Analytics
time with external assemblies, you can use the Cognitive Services assemblies in your
ADLA jobs too. First, you need to add them to your Data Lake and register them in a
database within the catalog.

 In the Azure portal, you can add these assemblies by adding a set of U-SQL exten-
sions, called Advanced Analytics. This copies the Cognitive Services assemblies, along
with language processing assemblies for R and Python, into your ADLA Data Lake.
You can trigger this as follows:

1 In the Azure portal, use the All Services menu and filter on Data Lake Analytics
to show the Data Lake Analytics resource. Click Data Lake Analytics to show the
Resource blade.

2 Click Sample Scripts to display the Sample Scripts blade.
3 Click Install U-SQL Extensions to copy the assemblies into folder /usqlext in

the default Data Lake root folder.

NOTE The new folder inherits existing permissions from the root folder
upon creation. You can learn more about Data Lake permissions in chapter 4.

The new folder contains assemblies for using Cognitive Services, Python scripts, and R
scripts. Python and R are popular languages for doing large-scale data processing. The
folder includes scripts for registering these assemblies within the master U-SQL data-
base. We’ll look at registering assemblies shortly.

9.1.2 Managing assemblies in the Data Lake

The new folder created when you install the U-SQL extensions sits at the root of your
Data Lake store. Although this location is easy to reference, creating new root folders
without planning for long-term usage makes your folder structure shallow like a
swamp instead of deep like a lake.

New data Cognitive Services

Data Lake
store

Blob
Storage

.NET
processor

Text results
saved to output files

4

New data
saved to storage

1 Data submitted
for processing

2 Azure ML
algorithms

3

Figure 9.2 .NET integration with Cognitive services

227Processing unstructured data
 As a practical design, you should structure your assembly folders much as you
would your data folders—along security boundaries with versioning over time, and
segmentation aligned with project or source.

TIP Defining a folder structure and using it consistently prevents your Data
Lake from becoming a Data Swamp. You can read about the zones frame-
work, a practical design for structuring your Data Lake, in chapter 4.

Using the model of the zones framework, you should design a folder structure that is
narrow at the top and branches out. The basic structure should include a top-level
folder to hold user code. This code can be separated into U-SQL scripts and C# assem-
blies. The scripts can be divided by project, database, or user, depending on your
needs. Figure 9.3 shows a folder structure arranged this way.

NOTE Submitting jobs to ADLA via Azure Data Factory requires the job script
to be stored in Azure Storage. Because ADF will have authorized access to
your ADLS store in order to execute the job, it’s standard to store the script in
the same ADLS store. Chapter 10 covers automating data processing with
Azure Data Factory.

With this design in mind, let’s move the Cognitive Services assemblies out of the
/usqlext folder and into a managed structure. This structure will use the /Code/
Assemblies tree, including the registered U-SQL database and version number. You
can choose where to register your assemblies. If you plan to use only one general U-
SQL database, you can register all assemblies there. This makes sense if you have a
limited set of users accessing ADLA, or a single ADLA project. You can use one or
more user databases for security separation, or you can use the master database for
common usage. Registering assemblies in the master database means the functions
are available to every U-SQL script. It also means greater complexity if you want to use
multiple versions of the same assemblies in different projects. Using specific user
U-SQL databases aligned with projects allows for simpler versioning, but requires

Code

Usql Assemblies

ProjectProject

Database1

U-SQLU-SQLU-SQL

Project

v1

Figure 9.3 Creating the Data
Lake folder structure for code

228 CHAPTER 9 Integrating with Azure Data Lake Analytics
registering the assemblies in each new database. For these common assemblies, we’ll
use the master database.

 Copy the files and folders from the /usqlext folder into /Code/Assemblies/master/
v1 folder. You can do this with the Azure portal, Azure Storage Explorer, or other
tools. The following script shows how to move the files using Azure PowerShell. You
can run it using Azure Cloud Shell. The following listing cleans up the folder struc-
ture of your Data Lake by removing the files from the previous location.

New-AzDataLakeStoreItem -AccountName "adedeveastus2"

➥ -Path "/Code/Assemblies/master/cognition/v1/" -Folder
Move-AzDataLakeStoreItem -Account "adedeveastus2"

➥ -Path "/usqlext/assembly/cognition/"

➥ -Destination "/Code/Assemblies/master/cognition/v1/"
Remove-AzDataLakeStoreItem -Account "adedeveastus2"

➥ -Paths "/usqlext/" -Recurse

WARNING Moving assembly files after they are registered breaks the registra-
tion. U-SQL scripts referencing these registrations will return an error when
submitted. You must drop and/or register the assemblies in the new location
before using. You can do this at any time. Updating the assembly files, either
by copying to a new versioned folder or by overwriting, also requires drop-
ping and registering the assemblies before use.

Registering the assemblies in their new location will let you call the functions from
your U-SQL scripts. It also lets the ADLA compiler locate the assembly files when com-
piling an ADLA job. You register an assembly by creating a new ADLA job and includ-
ing the registration commands. These commands can run in a separate U-SQL script,
or in the same script as your data access and processing commands.

 Create a U-SQL script with the CREATE ASSEMBLY command. The command takes
two parameters and has two options. You must provide a single-word name for the
assembly, like CREATE ASSEMBLY [CodeName]. Specify the file path with FROM @"/folder/
file.dll". Note the @ symbol which is used to denote a literal string. You can use CREATE
ASSEMBLY IF NOT EXISTS to check before creation. You can also use the DROP ... CREATE
pattern instead. The following listing registers an assembly this way.

DROP ASSEMBLY [CodeName];
CREATE ASSEMBLY [CodeName]
FROM @"/Code/Assemblies/Database/Program/v1/CodeName.dll";

Last, you may need to provide associated resource files with the assembly for use by
the compiler. You attach these files using WITH ADDITIONAL FILES =(path array). You
define a comma separated list, contained within parentheses, of one or more files that

Listing 9.1 Move Cognitive assemblies in Data Lake with PowerShell

Listing 9.2 Create file assembly

229Processing unstructured data
need to be included in the compiled job when using the assembly. The following list-
ing shows a multi-file assembly.

CREATE ASSEMBLY IF NOT EXISTS [CodeName]
FROM @"/Code/Assemblies/Database/Program/v1/CodeName.dll"
WITH ADDITIONAL FILES = (

@"/Code/Assemblies/Database/Program/v1/Code1.txt",
@"/Code/Assemblies/Database/Program/v1/Code2.dll"

);

Because we have moved the Cognitive Services assemblies to a new folder, we need to
register the files in the master database. The following listing shows the commands for
registering the facial recognition methods.

DROP ASSEMBLY IF EXISTS [ImageCommon];
CREATE ASSEMBLY IF NOT EXISTS [ImageCommon]
FROM @"/Code/Assemblies/master/cognition/v1/vision/common/ImageIO.dll"
WITH ADDITIONAL_FILES =

(
@"/Code/Assemblies/master/cognition/v1/vision/common/ImageCommon.dll",
@"/Code/Assemblies/master/cognition/v1/vision/common/FaceSdkManagedWrap

per.dll",
@"/Code/Assemblies/master/cognition/v1/vision/common/libiomp5md.dll",
@"/Code/Assemblies/master/cognition/v1/vision/common/DetectionJDA.mdl",
@"/Code/Assemblies/master/cognition/v1/vision/common/version.cog.imgcom

mon"
);

DROP ASSEMBLY IF EXISTS [ImageOcr];
CREATE ASSEMBLY IF NOT EXISTS [ImageOcr]
FROM @"/Code/Assemblies/master/cognition/v1/vision/ocr/ImageOCR.dll"
WITH ADDITIONAL_FILES = (
@"/Code/Assemblies/master/cognition/v1/vision/ocr/Microsoft.Ocr.dll",
@"/Code/Assemblies/master/cognition/v1/vision/ocr/Microsoft.Ocr.xml",
@"/Code/Assemblies/master/cognition/v1/vision/ocr/MsOcrRes.orp",
@"/Code/Assemblies/master/cognition/v1/vision/ocr/version.cog.ocr"
);

NOTE The full script can be downloaded from the GitHub site for this book
at http://mng.bz/7GD9.

To register all the available services, create a new job in ADLA using the U-SQL script
from the GitHub repository. All metadata actions, like creating a U-SQL database or
registering assemblies, only need a single AU to run. Once the job has executed, the
assemblies will be ready for use in U-SQL scripts.

 By registering the assemblies, you have extended the ADLA account to support
Cognitive Services data analysis. Now you can move to the next part of the request:
submitting images to the assemblies in U-SQL.

Listing 9.3 Create a file assembly with multiple files

Listing 9.4 Register Cognitive Services assemblies for face recognition

Denote the array
with parentheses.

Separate each file
path with a comma.

230 CHAPTER 9 Integrating with Azure Data Lake Analytics
9.1.3 Image data extraction with Advanced Analytics

U-SQL scripts can analyze many types of unstructured data, as long as an extractor is
available that can read the file type. The Advanced Analytics extensions, which include
the Cognitive Services assemblies, provide extractors that let you read bytes from a
JPEG, for storage or further processing. With these, you can read JPEG contents, pro-
cess them with the Cognitive Services algorithms, and return U-SQL rowsets.

 Cognitive Services extractors work like text extractors , but each extractor defines
the fields returned in its rowset output. The following table lists the output fields for
each image extractor.

NOTE SQL.MAP<TKey,TValue> creates an array of key-value pairs. To output
the field using an outputter, you first need to expand the array using CROSS
APPLY EXPLODE. You can read more about this type at http://mng.bz/P1z9.

Using the image extractors works like the text extractors you saw in chapter 7. You
declare a file selector, create an expression using the extractor to read the files, and
write out the rowset data using an outputter. Using the Cognitive Services assemblies
requires one more statement in the script: REFERENCE ASSEMBLY [XYZ]. The ADLA com-
piler does not include the Cognitive Services assemblies by default. Once you have regis-
tered the assemblies in your U-SQL database, you must reference them in U-SQL scripts
to use their functions. Use the name you assigned when you registered the assembly.

Table 9.1 Cognitive Services extractors

Assembly Extractor Fields Description

ImageIO.dll Cognition.Vision.
ImageExtractor

ImgData (byte[]) Returns a byte array of
the JPEG data

ImageOCR.dll Cognition.Vision.
OcrExtractor

RectX (float), RectY (float),
Width (float), Height (float),
Text (string)

Returns text from image,
and location of text

FaceSdkCNN.dll Cognition.Vision.
FaceDetectionExtractor

FaceIndex (int), RectX
(float), RectY (float), Width
(float), Height (float),
FaceAge (int), FaceGender
(string)

Returns one row for each
face found; each row
includes the detected age
and gender, and the loca-
tion of the detected face

ImageTagging.dll Cognition.Vision.
ImageTagsExtractor

NumObjects (int), Tags
(SQL.MAP<string, float?>)

Returns a list of identified
objects in the images
with a confidence score
on recognition

EmotionAnalysis.dll Cognition.Vision.
EmotionExtractor

FaceIndex (int), RectX
(float), RectY (float), Width
(float), Height (float), Emo-
tion (string), Confidence
(float)

Returns one row for each
face found; each row
includes the detected
emotion, a confidence
vote, and the location of
the detected face

231Processing unstructured data
For example, if you registered ImageIo.dll as ImageCommon and FaceSdkCNN.dll as
FaceSdk, then referencing these two assemblies is shown in the following listing.

REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY FaceSdk;

When processing multiple images within a folder, include the filename and path infor-
mation with the extractor output. This lets you link the image to the generated meta-
data for later use. For instance, you could retrieve a set of images including a male face
or children. Without these fields, you can’t tie ML output to a specific image.

 You can include filename and path data using {} in the file selector. In previous
chapters, you’ve seen the braces used with a wildcard expression {*} to select multiple
files. When used to replace a portion of the path, the braces use the wildcard expres-
sion and add the replaced portion of the path as a field in the extractor output. To
return a field called FileName with a value of the file selected, declare a file selector
variable enclosing FileName in braces, as follows:

DECLARE @in = "/Staging/Stadium/v1/camera1/{FileName}.jpg"

The placeholder {FileName} passes through the extractor using the file selector, is
populated for each row, and returned as a field in the rowset. Listing 9.6 shows the
syntax for processing multiple images within multiple folders, and returning the folder
and filename in the rowset.

USE DATABASE master;
REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY FaceSdk;
DECLARE @in = "/Staging/Stadium/v1/{Camera}/{FileName}.jpg";
@people = EXTRACT

Camera string,
FileName string,
FaceGender string
FROM @in
USING new Cognition.Vision.FaceDetectionExtractor();

Here’s an example from the @people rowset executed against two files c1.jpg and
c2.jpg in folders Camera1 and Camera2:

"Camera1","c1","Male"
"Camera2","c2","Female"
"Camera1","c1","Male"

Listing 9.7 shows the full U-SQL script to classify people in images by age and gender.
Choose one or more images that show faces to use with the script. You can use your

Listing 9.5 Reference Cognitive services assemblies

Listing 9.6 Using the FaceSdk assembly

232 CHAPTER 9 Integrating with Azure Data Lake Analytics
own images, or some from an online source, such as a stock image site or a public
domain source, like the Library of Congress: https://www.loc.gov/free-to-use/.

USE DATABASE master;
REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY FaceSdk;
DECLARE @in = "/Staging/Stadium/{Camera}/{FileName}.jpg";
@people = EXTRACT

Camera string,
FileName string,
NumFaces int,
FaceIndex int,
RectX float, RectY float, Width float, Height float,
FaceAge int,
FaceGender string
FROM @in
USING new Cognition.Vision.FaceDetectionExtractor();

@peopleRange =
SELECT FaceGender,
(FaceAge >= 0 && FaceAge < 20) ? "Child" :
(FaceAge >= 20 && FaceAge < 65) ? "Adult" :
"Retired" AS AgeCategory
FROM @people;

@peopleCount =
SELECT FaceGender,
AgeCategory,
COUNT(FaceGender) AS CountOfPeople
FROM @peopleRange
GROUP BY FaceGender, AgeCategory;

OUTPUT @peopleCount
TO @"/Sandbox/User1/Stadium/peopletest.csv"
USING Outputters.Csv();

The output file looks like the following listing.

"Female","Adult",16
"Female","Child",3
"Female","Retired",2
"Male","Adult",41
"Male","Child",1
"Male","Retired",7

This is one of many ways you can use ML algorithms to generate new structured data
from unstructured data, like images. Used in conjunction with thoughtful folder
structures and filenames, these algorithms can generate data with context to help
answer new questions.

Listing 9.7 Reading facial features from images

Listing 9.8 Example Cognitive Services output

ImageCommon is used with all
the Image processing services.

The FaceSdk assembly
has the Face Detection
algorithms.

Read the camera
portion of the path
and the filename.

Three-part C#
conditional expression
can be expanded for
more categories.

233Reading different file types
 Now that you have stored, registered, and used assemblies to extend ADLA’s built-in
functions, you are ready to build your own. The JavaScript Object Notation (JSON) for-
mat uses key-value pairs and lists of values for data interchange. You can read more about
JSON at https://www.json.org/. JSON data is typically stored in files with a .JSON exten-
sion. In the next section, you’ll extend your ADLA account by adding support for JSON.

9.2 Reading different file types
The Jonestown Sluggers want to correlate weather conditions with performance met-
rics. Every day, the IT department will load JSON files from the NOAA weather.gov
API into your Data Lake store. You have been asked to load the data into a U-SQL
table, including the temperature, wind speed and direction, pressure, and relative
humidity. How will you fulfill this request?

 U-SQL scripts do not natively support extracting rowsets from JSON files. Using a
Text extractor and parsing string would be brittle at best. You need a way to add JSON
support to U-SQL scripts. Microsoft has created code for this purpose. You need to
retrieve it, compile it, and register it with your ADLA account. Let’s dig into the pro-
cess for adding custom code libraries to ADLA.

9.2.1 Adding custom libraries with a Catalog

ADLA jobs automatically load a few assemblies when a job is compiled. These include
the following namespaces:

 System
 System.Data
 System.Linq
 System.Text
 System.Text.RegularExpressions
 Microsoft.Analytics.Types
 Microsoft.Analytics.Types.Sql
 Microsoft.Analytics.Interfaces

Because these assemblies are loaded by default, you can reference them from any U-SQL
script. This integration is what allows the use of C# methods like string.Format() and
Convert.ToInt().

 In the last section, you saw how you can register and reference other assemblies
to add even more functions to U-SQL. You can write your own assemblies and load
them during compile time too. The first step is to create a U-SQL database to regis-
ter the assemblies.

9.2.2 Creating a catalog database

Each ADLA account creates a U-SQL catalog in the associated Data Lake store. It also
adds the master database. In the previous section, you used the master database to
register the Cognitive Services assemblies. The master database allows access from any

234 CHAPTER 9 Integrating with Azure Data Lake Analytics
U-SQL script, because the ADLA compiler includes its path in all jobs. Using a sepa-
rate database gives greater control over registering and referencing objects, including
assemblies. This includes:

 Easy removal of objects
 Options for versioning of assemblies and objects
 Providing security perimeters

In chapter 8, you learned how to create a U-SQL database. The U-SQL database
groups tables, views, functions, and stored procedures, and makes them accessible in
U-SQL scripts. It also contains custom assemblies registered by users. You can create a
database by running an Azure PowerShell script or an ADLA job. Run listing 9.9 in the
Azure Shell. It will submit a short U-SQL script to ADLA to execute.

Submit-AzDataLakeAnalyticsJob -Account "adedeveastus2"

➥ -Name "Create DB"

➥ -Script "CREATE DATABASE IF NOT EXISTS Players;"

➥ -AnalyticsUnits 1

Now that you have a U-SQL database to contain the references, you can prepare your
assemblies. ADLA jobs load a few assemblies by default, including one for the text
extractor and outputter classes. The default Extractors class includes functions for
reading text, TSV, and CSV files. No support is provided for JSON, XML, or Avro, but
you can add it with a custom assembly.

 Microsoft provides documentation and example code on GitHub for ADLA users.
The Azure U-SQL repository includes example code for creating new functions and
implementations for new extractors. The code is collected in a set of C# projects
called the DataFormats Samples. These include code for working with XML, JSON, and
Avro. The JSON and Avro extractors are of particular interest. JSON is used for
Stream Analytics output. Avro is a semi-structured format used by Event Hubs Cap-
ture. The code is open-source and available in the Azure U-SQL GitHub repository.

9.2.3 Building the U-SQL DataFormats solution

So far you’ve saved Event Hub data directly to the Data Lake store using Capture, in
Avro format. You’ve read JSON serialized event data using Stream Analytics, and writ-
ten JSON to files in the Data Lake store. But you couldn’t use the data in ADLA jobs.
Now you’re going to add the functionality to let ADLA jobs read JSON and Avro data.
The code is in the DataFormats Samples projects.

IMPORTANT This chapter requires Visual Studio IDE to create and build
some code examples. Though you can build Visual Studio solutions with only
the .NET framework installed, I’ll assume you have Visual Studio installed,
and know how to open and build a solution. You can obtain a free copy of
Visual Studio at https://visualstudio.microsoft.com/vs/community/.

Listing 9.9 U-SQL database creation with PowerShell

235Reading different file types
Start by getting the code from the Azure U-SQL repository at https://github.com/
azure/usql. Using Visual Studio 2015 or greater, open the solution file Microsoft.Analytics
.Samples.sln under /Examples/DataFormats, and build the solution. This solution con-
tains code for Avro, XML, and JSON extractors, letting you extend the range of files that
U-SQL can read. The projects use .NET 4.6.1, so loading into Visual Studio will be
cleaner if that is also installed. You can upgrade the projects to a newer version if needed.

 Building the project creates an assembly in the project’s /bin folder, along with
any assemblies for code dependencies. For the Formats project, these include Avro.dll,
log4net.dll, and Newtonsoft.Json.dll. You will copy the assembly and its dependencies
to the Data Lake store for use by ADLA jobs.

9.2.4 Code folders

Any custom assemblies you create must be copied to the Data Lake store and regis-
tered in a U-SQL database before use in a U-SQL script. As noted in the previous sec-
tion, you should structure your assembly folders much like you’d structure your data,
along security boundaries with versioning over time and segmentation aligned with
project or source. Figure 9.4 shows a folder structure arranged this way.

For this project, we have created a database called Players for storing related objects.
Copy the DLL files from the /bin folder into /Code/Assemblies/Players/v1 folder.
These files include:

 Avro.dll
 log4net.dll
 Newtonsoft.Json.dll
 Microsoft.Analytics.Samples.Formats.dll

NOTE There are several methods for uploading, including the Azure portal
Data Explorer blade. You can read more about working with files in ADLS in
chapter 4.

Code

Usql Assemblies

ProjectProject

Database1

U-SQLU-SQLU-SQL

Project

v1

Figure 9.4 Creating the Data
Lake folder structure for code

236 CHAPTER 9 Integrating with Azure Data Lake Analytics

rt

.

The assemblies for Microsoft.Analytics.Interfaces.dll and Microsoft.Analytics.Types.dll
are already loaded by the compiler, so you don’t needed them in the folder.

 The last step in preparing the assemblies is to register them with the database
using a U-SQL script. The script switches context to the database, then assigns a name
to the assembly file for reference. Run listing 9.10 in the Azure Shell. It submits a
short U-SQL script to ADLA which registers all four assemblies.

Submit-AzDataLakeAnalyticsJob -Account "adedeveastus2"

➥ -Name "Register Formats"

➥ -Script "
CREATE ASSEMBLY IF NOT EXISTS Avro FROM

➥ `@"/Code/Assemblies/Players/Formats/v1/Avro.dll`";
CREATE ASSEMBLY IF NOT EXISTS log4net FROM

➥ `@"/Code/Assemblies/Players/Formats/v1/log4net.dll`";
CREATE ASSEMBLY IF NOT EXISTS Json FROM

➥ `@"/Code/Assemblies/Players/Formats/v1/Newtonsoft.Json.dll`";
CREATE ASSEMBLY IF NOT EXISTS Formats FROM

➥ `@"/Code/Assemblies/Players/Formats/v1/Players.Analytics.Samples
.Formats.dll`";"

➥ -AnalyticsUnits 1

Now that you have the assemblies prepared, let’s use them in a job to extract JSON
data.

9.2.5 Using custom assemblies

The IT department wants you to load the JSON data into a U-SQL table; this type of
request should be familiar from chapters 7 and 8. Data is stored in a particular loca-
tion and format, and you need to read it, make some calculations, and output it in a
specific format. To process the weather.gov API JSON files, you need access to the
files, a script using a JSON extractor, and a database table.

DATA FILES

You can retrieve the forecast data directly from the weather.gov API at https://www
.weather.gov/documentation/services-web-api. Use the website or a web request tool
to request the files by zone and date. You can also get them from the GitHub reposi-
tory for this book.

 Listing 9.11 is a subset of the forecast file for November 22, 2019. The data is
JSON-structured, using a schema called JavaScript Object Notation for Linked Data (JSON-
LD). The file includes a @context array describing its contents and the definitions for
decoding the data. JavaScript objects get a type definition, so we use FeatureCollection
from JSON-LD. In this case, each “feature” in the features array contains a properties
object, which lists the key/value pairs for the weather measurements.

Listing 9.10 U-SQL assembly reference creation with PowerShell

Start a new line by leaving
an unclosed double quote.

Use the IF NOT
EXISTS pattern,
with a meaningful
name for the
assembly.

Use backquote to escape double quote,
with a full path to the assembly file.

You can use sho
or fully qualified
assembly names

237Reading different file types
{
"@context": [

"https://raw.githubusercontent.com/geojson/geojson-
ld/master/contexts/geojson-base.jsonld",

{
"wx": "https://api.weather.gov/ontology#",
"s": "https://schema.org/",
"geo": "http://www.opengis.net/ont/geosparql#",
"@vocab": "https://api.weather.gov/ontology#",
"geometry": {

"@id": "s:GeoCoordinates",
"@type": "geo:wktLiteral"

}
}

],
"type": "FeatureCollection",
"features": [

{
"id": "https://api.weather.gov/stations/KSGT/observations/2019-11-

22T07:56:00+00:00",
"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [
-91.5699999,
34.6

]
},
"properties": {

"@id": "https://api.weather.gov/stations/KSGT/observations/2019-11-
22T07:56:00+00:00",

"@type": "wx:ObservationStation",
"elevation": {
"value": 68,
"unitCode": "unit:m"

},
"station": "https://api.weather.gov/stations/KSGT",
"timestamp": "2019-11-22T07:56:00+00:00",
"rawMessage": "KSGT 220756Z AUTO 18011KT 10SM FEW055 BKN120 16/15

A2994 RMK AO2 SLP137 T01610150",
"textDescription": "Mostly Cloudy",
"icon": "https://api.weather.gov/icons/land/night/bkn?size=medium",
"presentWeather": [],
"temperature": {
"value": 16.100000000000023,
"unitCode": "unit:degC",
"qualityControl": "qc:V"

},

}
}]

}

Listing 9.11 Weather.gov API Observations file

Items removed
for brevity

238 CHAPTER 9 Integrating with Azure Data Lake Analytics
You need to parse this JSON file and retrieve the values for temperature and other
measurements.

TIP You can retrieve three example files in this format for your job at http://
mng.bz/04aE.

The example files use zone MSZ010 for dates in Nov 2019. The REST API URL
takes the following format.

http://mng.bz/Jxg0

Once you have retrieved the files, upload them to your Data Lake store. Using the
zones framework as a guide to folder structures, create a folder in Staging to handle
weather.gov files. This folder structure will let you incorporate API changes as needed,
and let you target different types of data files by folder name. Copy the three example
files here.

 /Staging/weather.gov/v1/observations/MSZ010/2019-11-19.json
 /Staging/weather.gov/v1/observations/MSZ010/2019-11-20.json
 /Staging/weather.gov/v1/observations/MSZ010/2019-11-21.json

U-SQL TABLE

Create a U-SQL table to store the output of the JSON extraction script. This table will
make it easy for subsequent jobs to query this historical data. The table holds the val-
ues drawn from the data files. The table is structured to allow partition elimination by
queries filtering on station, and for faster lookup within date ranges with an index.
The measurement dates are of type DateTime to allow later use of C# DateTime func-
tions. You can read more about creating U-SQL tables in chapter 8. Listing 9.12
shows the U-SQL script for creating the table. Execute this script as an ADLA job,
using 1 AU.

USE DATABASE Players;
CREATE TABLE IF NOT EXISTS WeatherData
(

Zone string,
Filename string,
Id string,
Station string,
EventDate DateTime,
Temperature decimal,
WindSpeed decimal,
WindDirection decimal,
Pressure decimal,
Visibility decimal,
Precipitation decimal,
RelativeHumidity decimal,
INDEX idx_SensorData CLUSTERED(EventDate ASC)

Listing 9.12 Creating a U-SQL table

239Reading different file types
)
DISTRIBUTED BY HASH(Station);

Once the U-SQL table is created and the files are in place, you can write a U-SQL
script that will read the files and populate the table.

READING A JSON FILE

With the new Formats assembly registered in the Players U-SQL database, the new
functions can be used in your U-SQL scripts. The assembly includes two extractor func-
tions for processing JSON files. The first function works like a built-in text extractor;
you call EXTRACT, choose the output and input files, and create the extractor class. You
must instantiate this extractor with the new keyword. The following listing uses the Json-
Extractor class.

@rowset = EXTRACT
Field1 string,
Field2 string
FROM @inputFiles
USING new JsonExtractor();

The extractor field names can come from bracketed identifiers in the file selector, or
from the JSON objects in the files. For example, given a JSON file with title, weight,
and color elements, the extractor can return fields named title, weight, and color.
You can see this structure in listing 9.14. Assign each field a type in the extract
expression, using C# conversions on the value if needed.

{
"title":"First",
"weight": 13.6,
"color": "Black"

},
{

"title":"Second",
"weight": 12.6,
"color": "Blue"

}

All JSON data uses key/value pairs to structure the data elements. The key is the string
preceding the colon, and the value follows the colon. This JSON example has elements
only at the root level. The extractor can read them directly. You can assign the fields as
type string, and convert them later if bad data is encountered during processing. The
following listing shows this Extractor definition.

@rowset = EXTRACT
title string,

Listing 9.13 Using the JSONExtractor

Listing 9.14 Example single level JSON document

Listing 9.15 Example first level JSON extraction

The new keyword creates
a new instance of the
JsonExtractor class.

240 CHAPTER 9 Integrating with Azure Data Lake Analytics
weight decimal,
color string
FROM @example
USING new JsonExtractor();

A CSV output of the previous rowset would yield two rows.

"title","weight","color"
"First",13.6,"Black"
"Second",12.6,"Blue"

To read a multi-level JSON document with the JSON extractor, read the element with
nested data as a string, and use a special function to generate a key/value pair. The
value holds the nested data string. The following shows a multi-level JSON document.

{
"title":"First",
"options":{

"size":"L",
"color":"Black"

}
}

The options element has nested elements. Because options is at the root level, you
can still directly extract it with the JSON extractor. The extractor in the following list-
ing will yield a JSON string in the options field.

@rowset = EXTRACT
title string,
options string
FROM @example
USING new JsonExtractor();

When reading a nested JSON value, the field output will be the entire nested element,
rather than a single value. A CSV output of the previous rowset would yield two rows,
including the header.

"title","options"
"First","{

""size"": ""L"",
""color"": ""Black""

}"

Though you could parse this field, the Formats assemblies include a class for handling
JSON strings like this. The JsonFunctions class includes a function JsonTuple() that

Listing 9.16 Example first level JSON extract output

Listing 9.17 Example multi-level JSON document

Listing 9.18 Example multi-level JSON extraction

Listing 9.19 Example raw output from JsonExtractor

241Reading different file types
parses one or more elements into an array of key/value pairs. You can then retrieve
the values in the array by referencing the element name. JsonTuple() takes the JSON
string as a parameter, and returns an array of key/value pairs that can be addressed by
the key. In the previous example, you would pass options to JsonTuple function, and
you could read out the keys size and color by name.

 Figure 9.5 describes the flow of data from JSON elements into rowset fields using
JsonExtractor and JsonTuple. JsonExtractor reads the element value into a field
with the element name. JsonTuple converts several JSON elements into a key/value
array addressable by element name. You read the value using the element name in
brackets ["Name"] when the rowset field is an array.

The following example demonstrates using JsonTuple() to retrieve a value, both inline
and in subsequent rowsets.

@rowValues = SELECT
title AS Title,
JsonFunctions.JsonTuple(options) AS OptionValues,
JsonFunctions.JsonTuple(options)["size"] AS Size
FROM @rowset;

Listing 9.20 Using the JsonTuple() function

{

“properties”: {

“key1”: “VALUE1”,

“key2”: “VALUE2”

},

“key3”: “VALUE3”

}

properties

“key1”: “VALUE1”,

“key2”: “VALUE2”

key3

VALUE3

@rows = EXTRACT

properties string,

key3 string

FROM @in

USING new JsonExtractor();

SELECT
JsonFunctions.JsonTuple(properties)[“key1”] AS key1,
JsonFunctions.JsonTuple(properties)[“key2”] AS key2,
key3
FROM @rows;

key2

VALUE1 VALUE2 VALUE3

key3key1

Read.

CSV field of key/value pairs

JsonTuple

Parse CSV key/value pairs.

1

2

3

4

Figure 9.5 Using JsonTuple function with multi-level elements

242 CHAPTER 9 Integrating with Azure Data Lake Analytics
@rowSubValues = SELECT
Title,
OptionValues["color"] AS Color,
Size
FROM @rowValues;

A CSV output of the two SELECT expressions yield two rows, including the header.

"Title","Color","Size"
"First","Black","L"

JsonExtractor can also take a single parameter. The parameter is a JSONPath state-
ment defining the path to the element where you want to start extracting. Leaving this
blank starts from the document root. Providing a path parameter will start extraction
at the element defined in the path. Some common JSONPath definitions are shown in
table 9.2.

If the values you want to extract are not elements at the root, you can use the JSON-
Path parameter to return one or more nested elements within the file. For example,
JSONPaths can be used to return elements from different levels of the same file. Fig-
ure 9.6 shows the elements returned for various JSONPath expressions.

 When using JsonExtractor, the typical use for a JSONPath parameter would be to
target an object with several elements one of more levels below the root, such as
$.features.[*].properties in figure 9.6. Let’s look at a couple of ways to parse the
weather.gov data using JSONPaths.

Listing 9.21 Example JSON extract

Table 9.2 JSONPath Definitions

JSONPath Description Use Output

$ Root element $.title Returns root element(s) named
“title”, in an array

. Child element $.options.size Return the value of the size ele-
ment which is a child of options

[] Array elements $.options.size.[0:1] ;
$.options.size.[*]

Return the values for the first two
elements named size in an array
named “options”; Use * for all ele-
ments in array

@ Current element of
array, used with filter

$.[?(@.color)] Returns values of any elements that
contain a child named color

?() Filter child elements $.[?(@.size == "L")] Returns values of any elements that
contain a child named size with a
value of L

243Reading different file types
TIP Most languages support parsing JSON using JSONPath expressions. For
.NET languages, the most common tool is the JSON.net assembly from New-
tonsoft. This assembly is included with the Formats Visual Studio solution
from earlier in this chapter, and is required by the JSONExtractor() class and
other tools in this chapter.

JSON EXTRACTOR WITH NAME/VALUE PARSING

There are two differences between using the built-in text file extractors and the new
JSONExtractor class: You must reference the Formats assembly in the U-SQL script,
and instantiate the JSONExtractor class using the new keyword. You reference the
assemblies by database and name, using the USE DATABASE [Name] and REFERENCE
ASSEMBLY [Name] expressions. In this case, we’re referencing the Newtonsoft JSON.net
assembly and the Microsoft Sample Formats assembly (see listing 9.22). As in other
.NET languages, the USING statement reduces the need to fully qualify class functions.

USE DATABASE Players;
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];

Listing 9.22 Referencing registered assemblies

{

“type”: “FeatureCollection”,

“features”: [

{

“id": “KSGT/observations/2019-11-22T07:56:00+00:00”,

“properties”: {

“station": “https://api.weather.gov/stations/KSGT”,

“timestamp”: “2019-11-22T07:56:00+00:00”,

“temperature”: {

“value”: 16.8,

“unitCode”: “unit:degC”,

“qualityControl“: “qc:V”

}

}

},

{

“id”: “KSGT/observations/2019-11-22T07:56:00+00:00”,

“properties”: {

“station”: “https://api.weather.gov/stations/KSGT”,

“timestamp”: “2019-11-22T07:56:00+00:00”,

“temperature”: {

“value”: 17.1,

“unitCode”: “unit:degC”,

“qualityControl”: “qc:V”

}

}

}]

}

Path: $

Path: $.features.[properties]

Path: $.features.[properties]

Path: $.features.[].properties.station∗

Path: $.features.[].properties.station∗

Figure 9.6 Using JSONPath
expressions to select elements

244 CHAPTER 9 Integrating with Azure Data Lake Analytics

r
e

.

To extract the weather data using JSONExtractor, we’ll break the parsing into several
steps.

1 Get the Features elements by specifying a JSONPath expression.
2 Get the first-level elements in the EXTRACT rowset expression.
3 Parse the second-level elements and get the third-level elements in a second

rowset expression.
4 Parse the third-level elements and get the fourth-level elements in a third

rowset expression.
5 Parse the fourth-level elements in a fourth rowset expression.
6 Insert the data into a U-SQL table.

TIP You can retrieve the forecast observation data directly from the weather
.gov API at https://www.weather.gov/documentation/services-web-api.

The following listing shows each of these steps.

USE DATABASE Players;
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];
USING Microsoft.Analytics.Samples.Formats.Json;

DECLARE @in = @"/Staging/weather.gov/v1/observations/{Zone}/{Filename}.json";

@rows = EXTRACT
Zone string,
Filename string,
id string,
properties string
FROM @in
USING new JsonExtractor("features[*]");

@jsonRows = SELECT
Zone,
Filename,
id AS Id,
JsonFunctions.JsonTuple(properties)["station"] AS Station,
JsonFunctions.JsonTuple(properties)["timestamp"] AS EventDate,
JsonFunctions.JsonTuple(properties)["temperature"] AS TempsArray,
JsonFunctions.JsonTuple(properties)["windDirection"] AS WindDirArray,
JsonFunctions.JsonTuple(properties)["windSpeed"] AS WindSpeedArray,
JsonFunctions.JsonTuple(properties)["barometricPressure"] AS PressureArray,
JsonFunctions.JsonTuple(properties)["visibility"] AS VisibilityArray,
JsonFunctions.JsonTuple(properties)["precipitationLastHour"] AS
PrecipitationArray,

JsonFunctions.JsonTuple(properties)["relativeHumidity"] AS HumidityArray
FROM @rows;

Listing 9.23 Multi-step JSON extraction using JSONExtractor

As in other .NET languages, the USING statement
reduces the need to fully qualify class functions.

Retrieve the weathe
file zone and filenam
for later storage with

the file data

Get the
value for

station
directly.

The temperature
value is an array of

nested elements.

245Reading different file types

 a
ce
et
se
or
n.

t
neste
into
key/
@jsonRows2 = SELECT
Zone,
Filename,
Id,
Station.Replace("https://api.weather.gov/stations/",string.Empty) AS Station,
EventDate,
JsonFunctions.JsonTuple(TempsArray) AS Temps,
JsonFunctions.JsonTuple(WindDirArray) AS WindDirs,
JsonFunctions.JsonTuple(WindSpeedArray) AS WindSpeeds,
JsonFunctions.JsonTuple(PressureArray) AS Pressures,
JsonFunctions.JsonTuple(VisibilityArray) AS Visibilitys,
JsonFunctions.JsonTuple(PrecipitationArray) AS Precipitations,
JsonFunctions.JsonTuple(HumidityArray) AS Humiditys
FROM @jsonRows;

@splitRows = SELECT
Zone,
Filename,
Id,
Station,
Convert.ToDateTime(EventDate) AS EventDate,
Convert.ToDecimal(Temps["value"]) AS Temperature,
Convert.ToDecimal(WindDirs["value"]) AS WindDirection,
Convert.ToDecimal(WindSpeeds["value"]) AS WindSpeed,
Convert.ToDecimal(Pressures["value"]) AS Pressure,
Convert.ToDecimal(Visibilitys["value"]) AS Visibility,
Convert.ToDecimal(Precipitations["value"]) AS Precipitation,
Convert.ToDecimal(Humiditys["value"]) AS Humidity
FROM @jsonRows2;

INSERT INTO WeatherData (
Zone,
Filename,
Id,
Station,
EventDate,
Temperature,
WindDirection,
WindSpeed,
Pressure,
Visibility,
Precipitation,
RelativeHumidity)
SELECT * FROM @splitRows;

Listing 9.23 outputs the parsed data rowset to a U-SQL table. You can review the script
output by writing the data in the table out to a CSV file. This script satisfies the request
to load the weather data to a table. This approach of using multiple rowsets for multi-
ple nested elements can be cumbersome for deeply nested elements. The Formats
assembly provides another extractor for dealing with multiple levels of nesting.

Use
String.Repla
function to g
a more conci

value f
statio

Convert the
emperature
d elements
 an array of
value pairs.

Strongly-typed objects
make data more precise.
Done in a separate rowset
expression for clarity.

246 CHAPTER 9 Integrating with Azure Data Lake Analytics
JSON EXTRACTOR WITH JSONPATH PARSING

The MultiLevelJsonExtractor class reads JSON files too. Like JSONExtractor, it
requires a reference to the Formats assembly in the U-SQL script, and the class must
be instantiated. MultiLevelJsonExtractor differs in how it reads the JSON. Rather
than returning a single block of JSON, it can read multiple blocks of JSON in a single
extraction. You could call it the “multi path JSON extractor.”

 If your JSON file is flat, with few nested elements, it’s more efficient to write
EXTRACT and rowset expressions with JsonExtractor. If your JSON file uses nested ele-
ments, or if you want to return strongly typed fields with minimal processing, scripts
with MultiLevelJsonExtractor class are easier to write.

 The MultiLevelJsonExtractor class takes three optional parameters. It relies on
JSONPath expressions to return all specified elements from the JSON file at once.
The parameters define where to find the elements to retrieve, and how to deal with
missing elements.

 The first parameter rowpath takes a JSONPath expression defining where to
start reading the file.

 The default is the JSON root element.
 The third parameter jsonPaths is an array of JSONPath expressions, defining

the elements to return. This parameter takes zero, one, or many JSONPath
expressions.

When the second parameter bypassWarning is false (the default), MultiLevelJson-
Extractor returns errors if a JSONPath is not found. When set to true, it returns null
instead.

USING new MultiLevelJsonExtractor(
"features[*]",
true,
"properties.@id"
);

You must provide one or more fields in the EXTRACT expression that correspond to the
expressions in the jsonPaths parameter. The field name must match the name of
the element returned by the expression. You can specify object types other than string
as well. Be aware that when bypassWarning is set to true, you need to use nullable
types. MultiLevelJsonExtractor works like JsonExtractor if you don’t provide any
expressions for jsonPaths, with one caveat. You still need to provide at least one field
in the EXTRACT expression for it to compile. The following listing shows the use of
multiple JSONPaths to retrieve values from the weather file.

Listing 9.24 MultiLevelJsonExtractor parameters

Start extraction and JSONPath lookup at
features element, which is an array. Return null for missing

JSONPath matches.

Return single field, from
element @id that is a child
element of properties.

247Reading different file types

.

Re
fo
USE DATABASE Players;
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];
USING Microsoft.Analytics.Samples.Formats.Json;

DECLARE @in = @"/Staging/weather.gov/v1/observations/{Zone}/{Filename}.json";

@jsonRows = EXTRACT
Zone string,
Filename string,
id string,
station string,
timestamp DateTime,
temperature decimal?,
windDirection decimal?,
windSpeed decimal?,
pressure decimal?,
visibility decimal?,
precipitation decimal?,
humidity decimal?
FROM @in
USING new MultiLevelJsonExtractor("features[*]",
true,
"properties.@id",
"properties.station",
"properties.timestamp",
"properties.temperature.value",
"properties.windDirection.value",
"properties.windSpeed.value",
"properties.barometricPressure.value",
"properties.visibility.value",
"properties.precipitationLastHour.value",
"properties.relativeHumidity.value");

@cleanRows = SELECT
Zone,
Filename,
id AS Id,
station AS Station,
timestamp AS EventDate,
temperature ?? 0 AS Temperature,
windDirection ?? 0 AS WindDirection,
windSpeed ?? 0 AS WindSpeed,
pressure ?? 0 AS Pressure,
visibility ?? 0 AS Visibility,
precipitation ?? 0 AS Precipitation,
humidity ?? 0 AS Humidity
FROM @jsonRows;

INSERT INTO WeatherData (
Zone,
Filename,

Listing 9.25 Multi-level extraction with MultiLevelJsonExtractor

As in other .NET
languages, the USING
statement reduces the
need to fully qualify
class functions.

Retrieve the weather
file zone and filename
for later storage with

the file data
temperature is the fourth
item in the jsonPaths
parameter. In case some
readings are missing, use
a nullable Decimal? type.

Using a JSONPath
expression to skip
a level

turn null
r missing
elements. Return single field,

from element station
that is a child element
of properties.

Use the null coalesce
operator ?? to provide
default value of 0.

248 CHAPTER 9 Integrating with Azure Data Lake Analytics
Id,
Station,
EventDate,
Temperature,
WindDirection,
WindSpeed,
Pressure,
Visibility,
Precipitation,
RelativeHumidity)
SELECT * FROM @cleanRows;

The MultiLevelJsonExtractor class, JsonExtractor class, and JsonTuple function
demonstrate the use of .NET assemblies, written in .NET languages like C#, within
U-SQL scripts.

 Custom assemblies extend the usefulness of U-SQL scripts and ADLA jobs. They can
add many kinds of functionality to rowset processing in U-SQL scripts, such as complex
string handling and data validation. This includes the Newtonsoft.Json functions, pro-
vided by the assembly you loaded in this chapter. Custom assemblies like the Microsoft
Sample Formats assembly let your ADLA jobs access more types of data files. With these
assemblies loaded, you can parse JSON files and take advantage of JSON data. In the
next section, you’ll see one more type of data source you can access in your ADLA jobs.

9.3 Connecting to remote sources
ADLA jobs are designed around accessing data stored in a Data Lake store or Blob
Storage. But a significant amount of data is stored in relational databases. Many meth-
ods exist for exporting data from relational databases. In fact, we’ll look at one
method in chapter 10, using Azure Data Factory. In some scenarios it makes sense to
leave the data in the database: Perhaps you want each job to use the most current
data, or you don’t want to invest in an automated process to extract the data on a reg-
ular basis. To support these cases, ADLA jobs can connect to external SQL Server
databases and execute queries.

9.3.1 External databases

ADLA jobs can connect to Microsoft SQL Server databases, including Azure SQL
Database (SQLDB), SQL Data Warehouse (SQLDW), and SQL Servers installed on
Azure VMs. This is facilitated by two U-SQL database objects: a Data Source object and
a stored credential. The Data Source defines the connection details used when query-
ing the external database. The credential provides a secure means of storing a user
and password.

CREATE A SQL SERVER

Before setting up the connections, you need to have a SQL database available. As you
recall from chapter 6, you can create a SQLDB quickly with a few Azure PowerShell
commands. (If you still have a SQLDB available for development purposes, you can
skip to the next section and start connecting to the database.)

249Connecting to remote sources
 The first step is creating a PaaS SQL Server. You choose the resource group for the
server, the server name, type, and provide the default administrator credentials. You
can optionally choose the SQL Server version. At the time of writing, only -Server-
Version 12.0 is supported. Run the following listing in Azure Cloud Shell to create the
new Azure SQL Server.

New-AzSqlServer -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -SqlAdministratorCredentials (Get-Credential)

CREATE A SQL DATABASE

You can create a new SQLDB using the Azure portal and Azure PowerShell. The New-
AzSqlDatabase command takes the resource group of the server, server name, and
database name. You can optionally provide an edition value to set the performance
tier at creation (see chapter 6 for more information). Run the following listing in Azure
Cloud Shell to create a new SQLDB.

New-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

➥ -Edition "Basic"

WARNING The default resource allocation tier for SQLDB is the vCore
model, with monthly rates starting around $300.00. You may want to scale any
new databases you create to a different tier, or specify a tier during provision-
ing using the Edition parameter.

ALLOW ADLA TRAFFIC

The database instance must allow connections from the ADLA servers. For Azure PaaS
databases, the firewall includes an Allow All Azure IP Addresses option. The Power-
Shell script in listing 9.28 will set this rule and create another rule for your on-prem-
ises network. Run the script in Azure Cloud Shell to create the firewall rules.

New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -AllowAllAzureIPs

Listing 9.26 Create new Azure SQL Server

Listing 9.27 Create new Azure SQL Database

Listing 9.28 Create firewall rule to allow access by Azure resources

Choose a name for the
server, according to your
naming convention.

The Get-Credential command prompts for
a username and password interactively.

The server name you
chose previously

Databases are not tied to a
particular server or region,
and can have simpler names.Set the database to the

lowest performance tier.

The server
name you chose
previously

This rule allows access from Azure resources,
regardless of their IP address.

250 CHAPTER 9 Integrating with Azure Data Lake Analytics

e
New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -FirewallRuleName "Onpremises"

➥ -StartIpAddress "192.168.0.198"

➥ -EndIpAddress "192.168.0.198"

Once you have created the server and database and configured access, create a table
named PlayerNames. You can do this with a PowerShell command, or with your favor-
ite SQL Server query tool. Listing 9.29 connects to the new SQLDB and runs a query
that creates a new table to hold the player names. You can see more information in
chapter 6. Run the script in listing 9.29 in Azure Cloud Shell to create the table.

Invoke-Sqlcmd

➥ -Query "CREATE TABLE PlayerNames (PlayerID int, FirstName nvarchar(255),
LastName nvarchar(255));"

➥ -ServerInstance "tcp:ade-dev-eastus2-sql.database.windows.net"

➥ -Database "Playerstats"

➥ -Credential (Get-Credential)

Listing 9.29 Create SQLDB table

ADLA IP addresses
Azure resources rotate IP addresses as instances are brought online and offline. If
you want to connect to a SQL Server running in a VM, you will need to allow ADLA
access through any firewalls. Microsoft publishes a set of IP address ranges that vari-
ous services use for their network connectivity. You can find the most recent list for the
Public cloud at http://mng.bz/wpvq. Unfortunately, the list doesn’t specifically list all
services. The list for ADLA follows.

The server
name you chos
previously

Choose a name for the rule
that allows access from your
on-premises network.

Select a routable Internet
address for the start of a range.

Select a routable Internet address for the end of
a range, or match the StartIPAddress to list a

single IP address.

The fully qualified server name you
chose previously. Remember to

prepend with tcp:Use the database you
created previously.

Table 9.3 ADLA IP Address Ranges

Region IP Ranges

Europe North 104.44.91.64/27

Europe West 104.44.93.192/27

US Central 104.44.91.160/27, 40.90.144.0/27

US East 2 104.44.91.96/27, 40.90.144.64/26

251Connecting to remote sources
9.3.2 Credentials

The U-SQL external database credential securely stores SQL Server username and
passwords by encrypting them in your U-SQL database. To create an external database
credential in your U-SQL database, you must use Azure PowerShell commands. Exe-
cute listing 9.30 using Azure PowerShell.

New-AzDataLakeAnalyticsCatalogCredential -AccountName "adedeveastus2"

➥ -DatabaseName "Players"

➥ -CredentialName "PlayerStatsAdmin"

➥ -Credential (Get-Credential)

➥ -DatabaseHost "ade-dev-eastus2-sql.database.windows.net" -Port 1433

It’s up to you to manage logins and users for your Azure SQL database resources.
Using non-admin users for remote access is a best practice. (See chapter 11 for config-
uration options for Azure SQL database users.)

9.3.3 Data Source

The CREATE DATA SOURCE command stores the connection details for the external
database. It has three options to configure.

 You must provide a name for the Data Source, using alphanumeric characters
and optionally underscores.

 You must specify the type of SQL Server instance you are connecting to. The
value can be AZURESQLDB, AZURESQLDW, or SQLSERVER.

 You can optionally provide an existence check before executing the command
(see listing 9.31).

CREATE DATA SOURCE IF NOT EXISTS [SourceName]
FROM SQLSERVER
WITH([Options]);

The WITH() option can include parameters for target, credentials, and predicate
push-down. The PROVIDER_STRING includes three values that are merged with the con-
nection during database requests: Database=[DBNAME], Trusted_Connection=False,
and Encrypt=True. You must provide a valid SQL database name for the Database
parameter. The values for Trusted_Connection and Encrypt are just for show; they do
not impact the connection. You link the U-SQL credential you created with the Data
Source using the CREDENTIAL parameter.

 The REMOTABLE_TYPES parameter lists the C# types for filters to be processed by the
SQL Server engine. For external database queries using the Data Source, the query is
parsed for WHERE filters. Any filters with a field type matching one of the types speci-
fied in the REMOTABLE_TYPES list is added to the SQL query made in the database

Listing 9.30 Create U-SQL credential

Listing 9.31 Create Data Source for SQL Server VM with existence check

252 CHAPTER 9 Integrating with Azure Data Lake Analytics

Pr
the

SQ
request. This is called predicate push-down. (You can learn more about maximizing
query performance in chapter 8.) Pushing filters to the database for evaluation often
improves performance of the queries, because less data is returned from the external
source. Filters with other field types are evaluated within the ADLA job after the data
is returned from the database request. Removing a type from remote execution can
make sense if you’ve created a custom comparison class, or need to carefully manage
language encoding with non-Latin SQL collations. In most cases, skipping the filter
on the first rowset and processing a second rowset using custom logic is more useful
than discarding an entire type. Figure 9.7 shows the effect on a query of removing
DateTime from the list of remotable types.

The primary .NET types for remoting are bool, byte, short, int, long, decimal,
float, double, string, and DateTime. Run the script in listing 9.32 to create the
SQLDB data source.

USE DATABASE Players;

DROP DATA SOURCE IF EXISTS adedeveastus2sql;
CREATE DATA SOURCE adedeveastus2sql
FROM AZURESQLDB
WITH
(

PROVIDER_STRING = "Database=Playerstats;

➥ Trusted_Connection=False;Encrypt=True",

Listing 9.32 Create U-SQL external data source

U-SQL database table expressions

SELECT ∗

FROM table1
WHERE intKey == “One”
AND dateKey == “1/1/2020”;

SELECT ∗

FROM table1
WHERE intKey = ‘One’;

Data Lake
Analytics

Job 1 U-SQL script
Compile
node

Processing
node

1. Reusable syntax

2. Generated intermediate
language during compile

3. Predicate pushdown

Database read

@rowset = SELECT ∗

FROM @table1_rows
WHERE dateKey ==“1/1/2020”;

SQL

Database

table1: 3 M rows

SELECT: 30 K rows

4. U-SQL rowset filtering

@table1_rows: 30 K rows

@rowset: 300 rows

Figure 9.7 Using Data Source remotable types to control row filtering

The data source name
must be alphanumeric,
with optional underscores.

AZURESQLDB identifies
the type of SQL Server.ovide

name
of the
LDB.

These settings must
have these values.

253Connecting to remote sources
CREDENTIAL = PlayerStatsAdmin,
REMOTABLE_TYPES = (bool, byte, short, int, long,
decimal, float, double, string, DateTime)

);

TIP You can find the entire list of .NET-to-T-SQL type mappings at http://
mng.bz/K2jg. Some types, such as byte[]/binary, do not lend themselves to
use as filters.

With the Data Source created, you can query any tables and views in the external data-
base that your specified credential has access to.

9.3.4 Tables and views

Database tables accessed via the U-SQL data source are read-only. You can read data
from the external database using two options with the U-SQL SELECT expression.

 The first option adds EXTERNAL [Data Source Name] to the expression. The data
source will be specific to the U-SQL database context of the script. Be sure to
add a USE DATABASE [Name]; expression to the script.

 The second option adds LOCATION [Table Name], replacing the standard U-SQL
table name reference. Use double quotes around the external database table
name, which forces the compiler to look outside the current U-SQL database
context. You can include the target schema for the table if different from the
default dbo.

@results =
SELECT *
FROM EXTERNAL [Data Source]
LOCATION "[schema].[TableName]";

The following listing shows a query that reads from the PlayerNames table in the exter-
nal SQLDB, using the Data Source you set up.

USE DATABASE Players;

@results =
SELECT *
FROM EXTERNAL adedeveastus2sql LOCATION "dbo.PlayerNames";

OUTPUT @results
TO "/Sandbox/User1/Player/external1.csv"
USING Outputters.Csv(outputHeader: true);

Listing 9.33 SELECT from external Data Source

Listing 9.34 Reading data from a U-SQL external data source

The credential you created
in the previous step

Pass the list of
applicable types.

254 CHAPTER 9 Integrating with Azure Data Lake Analytics
Because access is read-only, you can use views instead of base table access to your
external database without losing any functionality. Because access is read-only, you can
structure your external database access using views instead of base table access without
losing any functionality. Using views allows greater control over data access, including
by shifting control of the access granted to the database. Using a view works the same
as querying a table, only you specify the view name instead. The following listing demon-
strates using a view with the external database.

USE DATABASE Players;

@results =
SELECT *
FROM EXTERNAL adedeveastus2sql LOCATION "dbo.vw_PlayerNames";

OUTPUT @results
TO "/Sandbox/User1/Player/external1.csv"
USING Outputters.Csv(outputHeader: true);

Accessing external SQL Server data sources gives you one more method of generating
data in ADLA for analysis. When you add additional assemblies, many options for
analysis become available with ADLA jobs, all with the built-in parallel processing you
get from large batch processing jobs.

9.4 Exercises
The following exercises can help you internalize the new features introduced in this
chapter.

9.4.1 Exercise 1

Given a set of user-submitted JPEG images loaded to Data Lake store folder /Staging/
Users/User1/images/, create a U-SQL script to analyze the images and return the
locations of any identified faces.

SOLUTION

The EmotionAnalysisEmotionExtractor can be used to locate faces in photographs,
as well as identify the emotion present on the face. Reference the registered assembly,
along with the ImageIO.dll assembly. Refer to the table of output fields from the
EmotionExtractor for the EXTRACT statement. Include all the fields.

USE DATABASE master;
REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY EmotionAnalysis;
DECLARE @in = "/Staging/Users/User1/images/{FileName}.jpg";
@people = EXTRACT

Camera string,
FaceIndex int,
RectX float,

Listing 9.35 Reading data from a U-SQL external data source

255Exercises
RectY float,
Width float,
Height float,
Emotion string,
Confidence float
FROM @in
USING new Cognition.Vision.EmotionExtractor();

9.4.2 Exercise 2

Given the following JSON file, create a script to return the SaleNo, LotNo, ItemName,
and LotDescript fields.

{
"Results":[

{
"SaleNo ":"A1QSCI20001",
"LotNo ":701,
"AucStartDt ":"2019-11-27",
"AucEndDt ":"2019-12-04",
"ItemName ":"MISC FORENSICS LAB EQUIPMENT",
"PropertyAddr1 ":"State Of Oregon, Das",
"PropertyAddr2 ":"Federal Surplus Property",
"PropertyAddr3 ":"1655 Salem Industrial Dr NE",
"PropertyCity ":"Salem",
"PropertyState ":"OR",
"PropertyZip ":"973010375",
"AuctionStatus ":"A",
"BiddersCount ": 4,
"LotInfo":[

{"LotSequence":"001", "LotDescript":"Misc\u0020Forensics\u0020Lab\u
0020Equipment\u0020\u0028Internal\u003A"},

{"LotSequence":"002", "LotDescript":"470496\u002D9309\u002D0001\u00
3B\u0020\u00281\u002D17\u0029\u0020TV\u0029\u0020Please\u0020see\u0020at
tached"},

{"LotSequence":"003", "LotDescript":"list\u0020for\u0020more\u0020d
etails\u002E\u0020Shipping\u0020weight\u0020\u0026"},

{"LotSequence":"004", "LotDescript":"dimensions\u0020will\u0020be\u
0020determined\u0020after\u0020award\u002C"},

{"LotSequence":"005", "LotDescript":"depending\u0020on\u0020whether
\u0020it\u0020will\u0020be\u0020picked\u0020up\u0020locally"},

{"LotSequence":"006", "LotDescript":"or\u0020shipped\u002E\u00201\u
0020Lot"},

{"LotSequence":"007", "LotDescript":"47049693090001"}
],

"ItemDescURL ":"https://gsaauctions.gov/gsaauctions/aucdsclnk/?sl=A1
QSCI20001701",
"ImageURL ":"https://gsaauctions.gov/lotimages/regnA/A1QSCI200017

01.jpg"
}

]
}

NOTE JSON data courtesy of https://open.gsa.gov/api/.

256 CHAPTER 9 Integrating with Azure Data Lake Analytics
SOLUTION

You can use the JsonExtractor or MultiLevelJsonExtractor functions to read the
rows. Using the MultiLevelJsonExtractor, you will use a JSONPath statement to
directly retrieve each field. Note the fixed-width fields in the JSONPath expressions.

USE DATABASE DB;
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];
USING Microsoft.Analytics.Samples.Formats.Json;

DECLARE @in = @"/Staging/open.gsa.gov/v1/auctions/Filename}.json";

@jsonRows = EXTRACT
Filename string,
SaleNo string,
LotNo int,
ItemName string,
LotDescript string
FROM @in
USING new MultiLevelJsonExtractor("Results[*]",
true,
"SaleNo ",
"LotNo ",
"ItemName ",
"LotInfo[*].LotDescript");

Summary
 ADLA accounts include Cognitive Services .NET assemblies. These assemblies

allow U-SQL scripts to extract data from images using ML algorithms.
 You can add your own .NET assemblies to the U-SQL catalog. This allows devel-

opers to extend the built-in functions of U-SQL.
 U-SQL scripts can connect to external SQL Server databases using a Data

Source and credential. Using external databases lets you add relational data to
the rowsets in ADLA jobs.

Service integration
with Azure Data Factory
In previous chapters, you’ve learned how to use Azure services to ingest and trans-
form data. Except for Stream Analytics (SA), which automatically processes incom-
ing data, you have added the data or triggered a process manually. In this chapter,
you’ll learn how to move data between services on a schedule. You’ll learn how to
move files between Azure Storage accounts and your Data Lake store (ADLS store).
You’ll also learn how to run U-SQL scripts on a schedule to transform data. You’ll
use Azure Data Lake Analytics (ADLA) to read and transform data from multiple
sources. You’ll learn how to store secrets in Azure Key Vault (AKV). Azure Data Fac-
tory (ADF) provides the connections that power this automation.

 ADF manages execution of tasks. These can be as simple as calling a web service
endpoint, or as complicated as creating a new server cluster to run custom code
and removing it once the code completes. Each task is a resource entity consisting
of a JSON resource definition. Each resource is related to one or more other
resources. Resources and relationships are defined as follows:

This chapter covers
 Building a single-step processing pipeline

 Using a secret key store

 Scheduling batch data processing
257

258 CHAPTER 10 Service integration with Azure Data Factory
 Each task is called an activity.
 Connections to external services are called linkedservices.
 Files and data tables in linkedservices define a schema interface called a dataset.
 Activities connect to external services using a linkedservice. Most activities use a

source and target dataset to define a transformation.
 One or more activities chain to form a pipeline.
 One or more pipelines form a data factory.

Figure 10.1 shows some of the activities an ADF pipeline can perform, including copy-
ing files between storage locations, database imports, and executing ADLA U-SQL jobs.

1 Data lands in storage, on-premises, and in Azure.
2 ADF moves raw data from on-premises to a Data Lake.
3 ADF triggers Azure services, like ADLA, to modify or import data.
4 ADF moves processed data to user endpoints in Azure or on-premises.
5 Azure services, like Azure SQL Database (SQLDB), provide end-user access.
6 Failure in ADF processing triggers alert messaging.

ADF moves data and integrates with data processing and serving endpoints. With this
in mind, imagine you need to automate data movement and processing tasks. In previous

Data Lake
Analytics

New data

On premises

CSV

JSON

TXT

CSV

JSON

Data
Factory

Alert

Data
Factory

JSON

Data Lake
store

CSV

TXT

CSV

Data
Factory

Blob
Storage

SQL
Database

4

2

3

1

6

5

Figure 10.1 Data Factory moves data between services.

259Creating an Azure Data Factory service
chapters you’ve learned multiple methods for copying files, including command-line
tools and PowerShell scripts. Azure includes several other services that can be devel-
oped to copy and transform data, including Azure Functions, ADLA, and SA. Each has
strengths and weaknesses, like significant development costs or maintenance costs.
ADF was designed around scheduling data movement and transformation, so that’s
where its strengths lay.

 ADF combines a no-code graphical development environment with modern cloud-
native principles. The resources are compiled into a set of steps to execute. Each exe-
cution creates one or more calls to separate processes, to perform the steps. Each step
is monitored and can be retried. Each step can run independently or subsequent to
another step. Multiple steps can be run simultaneously, and the service automatically
scales to handle multiple executions.

 File copies, data imports, and running ADLA jobs are some of the most common
tasks in a production analytics system like we’ve been building. ADF does have a few
limitations to be aware of.

 A limit of 800 ADF services per subscription.
 A limit of 5,000 resources in a single ADF service. This includes activities, linked-

services, datasets, and pipelines.
 A maximum of 40 activities per pipeline.

This chapter shows you how to set up the basic blocks for building complex auto-
mated analytics processing in Azure. You should create these blocks in this order:

1 Azure Data Factory service
2 Azure Key Vault service
3 Azure Key Vault linkedservice
4 Subsequent ADF linkedservices
5 Any ADF datasets for the linkedservices
6 First ADF activity and pipeline
7 Subsequent ADF activities and pipelines

Before we discuss creating activities and pipelines, let’s set up the container for these
resources—the ADF service itself.

TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

10.1 Creating an Azure Data Factory service
The ADF service functions as an organizing structure for a collection of resources.
This includes pipelines and the activities within them. The ADF service doesn’t do
anything on its own: the pipelines manage the activities that execute. In this way, it’s
similar to other Azure services, like the Event Hubs namespace, SQL Server, and Stor-
age accounts, which need additional services configured.

260 CHAPTER 10 Service integration with Azure Data Factory
 Because it’s an organizing structure, creating a new ADF service requires a few
choices. You can create the new service in the Azure portal by browsing to the New
Data Factory blade at https://portal.azure.com/#create/Microsoft.DataFactory. Creat-
ing an ADF service in the Azure portal requires the standard selections of name, region,
and resource group. You also need to select the ADF version to use. Version 2 (V2)
includes a graphical designer for creating pipelines, activities, and other resources.
V2 also separates scheduling pipeline runs from the pipeline itself. Version 1 uses the
same JSON definitions for ADF resources. You should use V2 to take advantage of
newer features.

 ADF V2 also supports version control, using Git, a popular open-source version
control system. We’ll enable version control with Git later in the chapter.

NOTE ADF V2 supports all the functionality of V1, and adds a graphical
designer and other new features. Improved pipeline scheduling and Azure
resource-to-resource transfers make V2 the better option. This book focuses
on ADF V2.

You can also create the new ADF service using Azure PowerShell, which allows auto-
mation and repeatability. Use the New-AzDataFactoryV2 command to create a new
ADF service. Supply the standard ResourceGroupName, Name, and Location parame-
ters to create the service. You do not need to select the ADF version, because separate
commands are used to create V1 and V2 services. Run the script in the following list-
ing to create the ADF V2 service.

New-AzDataFactoryV2 -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-adf" -Location "EastUS2"

When you first create an ADF service, it has no resources. For data engineers, most of
the ADF setup lies in creating and configuring the linkedservices, dataset, pipeline,
and trigger resources. ADF builds the pipelines using a no-code approach. All resources
are defined using JSON configuration files. You can create the configuration files
using the ADF authoring tool, or using a text editor and Azure PowerShell. The JSON
elements define each resource’s properties, including the relationships to other
resources, as follows:

 Linkedservices define the connections to Azure and on-premises services, like
Blob Storage, ADLA, and SQL Server databases.

 Datasets define the schema of data available from a connection. This makes it
possible to move data between dissimilar services.

 Pipelines define one or more activities to act on linkedservices. Some activities
trigger actions, like starting a U-SQL job in ADLA. Some activities move data
between two services, using linkedservices and datasets.

 Triggers define scheduled or event-driven execution of pipelines.

Listing 10.1 Creating a new ADF service with Azure PowerShell

261Creating an Azure Data Factory service
 An Integration Runtime (IR) manages the work of executing each activity,
either in Azure or on-premises.

 An ADF service collects the resource definitions together, defines the version
control connection, and provides an integration point for the ADF GUI.

Figure 10.2 shows the relationships of these resources.

To build a complete pipeline, you need to configure services in order.

1 Start at the lowest level, the linkedservice. Arrange required credentials and access
to the service.

2 Add a pipeline to group the actions to perform.
3 Add an activity to perform an action that doesn’t read or write data. Activities

require a pipeline.

Data
Factory

Triggers

Pipelines

Delimited
schema

Table
schema

Copy activities
read and write
data.

Execute
activities call
external
services.

Data Lake
store

SQL
Database

Delimited
schema

Table
schema

Source Read Map Write

Rest
API

Data Lake
Analytics

SQL
Database

HTTP U-SQL Procedure

Triggers run
pipelines;
Pipelines run
activities.

LinkedService

LinkedServices store
service config and
credentials.

Datasets

Datasets store
schema, metadata,
and path details.

Function
apps

Invoke

Key
Vault

Managed
identities

App
registration

Key Vault provides
secure value lookup.

JSON
schema

01

Binary
file

SQL
Database

Data Lake
Analytics

Blob
Storage

Data Lake
store

Rest
API

Function
apps

Key
Vault

Data Factory stores
configuration data
for all elements.

Integration
Runtimes
execute steps

Integration
Runtime

4

3

2

1

6

7

5

Pipelines

Figure 10.2 Data Factory moves data.

262 CHAPTER 10 Service integration with Azure Data Factory
4 Add a dataset for files or data tables that provide access to data. Datasets require
a linkedservice.

5 Add an activity to perform reads and writes on data between two datasets.

With your new ADF service to hold the resources, let’s start with a secure foundation
for all the linkedservices, AKV.

10.2 Secure authentication
ADF holds the authentication configuration for each linkedservice, both external ser-
vices and Azure services. Authentication happens between the requester and the endpoint,
and is closely tied to authorization. Authentication identifies the requester; authorization
defines what the requester can do. The requester must know which authentication
method and which credentials to use. AKV provides a secure method for storing the
credentials. The linkedservice stores the authentication method.

 The ADF IR connects to linkedservice endpoints to perform actions. Some linked-
service endpoints, like public REST APIs, do not require credentials, but most require
some form of authentication and authorization. Authorization methods vary between
endpoints, even within Azure services, and must be configured at the endpoint.

 Linkedservices use multiple methods for authenticating with their target services.
These methods fall into three categories: AAD-integrated, key-based, and username/
password (see table 10.1).

AAD-integrated authentication methods are used for Azure services. Some services
can use multiple types of authentication, such as key-based methods, and keys can be
used with many REST API endpoints. Some websites restrict access with Basic authen-
tication, and you can authenticate to SQL Server with database credentials. Let’s look
at the AAD integrated methods in more detail.

Table 10.1 Authentication methods

Method Type Services Description

Managed identity AAD account Blob Storage, Key Vault, Data
Lake store, SQLDB, Syn-
apseDB

An AAD entity with ID tied to
the ADF service

Service principal AAD key Blob Storage, Data Explorer,
Data Lake store, Data Lake
Analytics, SQLDB, SynapseDB,
ML service

An AAD entity with ID and
secret key

Secret key Key Blob Storage, Table Storage,
Batch, Databricks, Functions,
ML Studio, Search

One or more keys to pass with
REST API requests

Username/password
or connection string

Password File Storage, HDInsight, Cos-
mosDB, SQLDB, SynapseDB

One or more key/value pairs
to pass with HTTP requests or
SQL Server connections

263Secure authentication
10.2.1 Azure Active Directory integration

AAD integrations use two methods: a key-based method called a service principal, and a
service-based method called a managed identity.

 The service principal is an entity you create in AAD, similar to a user account. It
provides an identity for authentication and authorization that can be used by services
requesting or providing access. The service principal must be given access to Azure
services, just like a user account. Using AAD integration with ADF lets you create a sin-
gle credential, instead of many, for use with multiple Azure services.

 To create a new service principal for ADF, we’ll use a template called an App regis-
tration. The App registration defines credentials and authorization methods for an
application or applications, and the service principal identifies the application or
applications. Instead of a username and password, applications use the application ID
and a secret key to get an authentication token from the service principal.

 When Azure services are created in AAD, a managed identity is created for them.
Unlike App registrations, managed identities can be used by only a single Azure ser-
vice. Managed identities also must be given access to Azure services, just like a user
account or service principal.

NOTE App registrations reside in a single AAD directory. The app has one or
more unique URIs to identify it. An app can have more than one service prin-
cipal associated with it, but only one per directory. Additional service princi-
pals can be added in other AAD directories. This means you can authenticate
your ADF service with a single method and access services in other AAD direc-
tory scopes. This is an example of multi-tenant integration with AAD.

Before we create any linkedservices, we need to create the App registration and ser-
vice principal, so we can include the ID and key in the resource configuration file.

CREATING AN APP REGISTRATION

An App registration will be used to identify ADF to other Azure services. Those ser-
vices can use a common credential for authentication and authorization, reducing the
number of credentials to manage in ADF.

 Creating an App registration for service-principal authentication consists of two
steps: creating the app and adding a key. You can perform both in the Azure portal.
Browse to the AAD App Registrations blade in AAD via All Services > Azure Active
Directory > App Registrations. The Register an Application blade will open if you
don’t have any apps; otherwise click New Registration. Type a name for the App regis-
tration, distinct from the ADF service name, for example, ade-dev-eastus2-adf-id.
For this scenario, choose Default Directory Only - Single Tenant. The other account
types are for services shared across multiple AAD directories and tenants, which is use-
ful in SaaS applications with multiple customers. Leave the Redirect URI blank,
because we won’t be interacting with this app through a web request.

TIP You should choose a name for your App registration that is distinct from
the application or applications that use it. When you create a service in AAD,

264 CHAPTER 10 Service integration with Azure Data Factory
managed identities are also created with the same name as the Azure service
they represent. When you add an App registration with the same name as the
ADF service and its managed identity, it becomes difficult to select between
them when assigning permissions. Managed identities are less flexible than
App registrations. We’ll discuss managed identities later in the chapter.

After registering the app, browse to the Certificates & Secrets blade of the new App
registration. Click New Client Secret to open the Add a Client Secret blade. The client
secret is the key that applications will use to impersonate the App registration—in this
case, the ADLA linkedservice. Add a description and choose an expiration window.
The expiration window forces you to rotate your access key, the client secret, on a reg-
ular basis. You should select an expiration window that works with your organization’s
policy on key rotation. The default value is sufficient if you have no policy. Once you
click Add, the blade will generate and display a new client secret key. You will have just
one opportunity to copy this key before moving away from the blade. Copy the key or
leave the blade open while you create the AKV linkedservice in the next section.

 You can also use Azure PowerShell to create a new App registration. The steps are
the same, but in a slightly different order.

1 Create the App registration.
2 Create the secret key at the same time.
3 Create the service principal, using the new App registration ID.

Creating an App registration for principal impersonation in Azure PowerShell
requires three values: a name, a URI, and a password. The parameter DisplayName
assigns the app name. You should use a name that’s distinct from the ADF service
name. IdentifierUris is required, and is used as part of an authentication chain with
this service principal. You do not need to provide a valid endpoint but it must be
unique, because ADF uses IdentifierUris to identify this app. You need to provide a
SecureString object for the Password parameter. The encrypted value of this object
will be stored as the client secret key. In listing 10.2, you provide a value for the Secure-
String interactively when running the script, using the Read-Host command.

 Run listing 10.2 to create the new App registration. The output will display the
ApplicationId. Copy the ApplicationId value, along with the password you entered, for
use in configuring the new ADLS linkedservice in the next section.

$Secure = Read-Host -AsSecureString

$App = New-AzADApplication -DisplayName "ade-dev-eastus2-adf-id"

➥ -IdentifierUris "http://none.none"

➥ -Password $Secure

$App.ApplicationId.Guid

Listing 10.2 Creating a new App registration with Azure PowerShell

Read a secret key
value interactively.

Throwaway value

Previously submitted
secret key

The new service principal ID

265Secure authentication
NOTE The Read-Host -AsSecureString command provides a more secure
method of providing the password than storing it in a file, but does limit the
script’s automation potential. PowerShell provides several functions for gen-
erating a SecureString.

The App registration alone does not give access to Azure services. You need to cre-
ate a service principal, in the same AAD directory, and authorize it to access the
services used by ADF. When creating an App registration using the Azure portal,
AAD creates the service principal for you. You must do it yourself when using Azure
PowerShell.

 New-AzADServicePrincipal creates a new service principal. You can create a
standalone service principal, but it’s more useful when attached to an app. To attach it
and use the authentication methods defined in the app, pass the app’s GUID using
the ApplicationId parameter. You can authorize access to a service using AAD RBAC
when you use Azure PowerShell to create the service principal. This is not available
through the Azure Portal. Pass the target service resourceId value using the Scope
parameter. You can target a whole subscription, a resource group and its children, or
a specific Azure service. The default is the current subscriptions. Pass the desired role
using the Role parameter. The default is Contributor, but you can use Admin, Reader,
or other more specific roles.

 Listing 10.3 shows an Azure PowerShell script that creates a new service principal
and attaches it to an app. The new service principal does not have any permissions.
You’ll assign permissions as needed when you create linkedservices. Run the script in
the following listing to create the service principal.

$App = Get-AzADApplication -DisplayName "ade-dev-eastus2-adf-id"
New-AzADServicePrincipal

➥ -ApplicationId $App.ApplicationId.Guid

WARNING When authorizing access during service principal creation, be sure
to include both Role and Scope parameters. If only one is included, the other
parameter will be applied with the default value. This can result in the autho-
rization inadvertently being applied to all services in a subscription, or with
greater access than necessary.

Azure provides a general service for storing the service principal identity key. ADF can
integrate with AKV to securely store passwords, keys, and other secrets.

Listing 10.3 Creating a new service principal with Azure PowerShell

Look up the
app by name.

Use the app’s ID
for authentication.

266 CHAPTER 10 Service integration with Azure Data Factory
10.2.2 Azure Key Vault

AKV securely stores and gives access to secrets. You can programatically add and
access any string less than 25 KB in size, and AKV will encrypt and decrypt the secret
value for you.

 Applications and Azure services authenticate to AKV using service principals and
managed identities. Using a managed identity doesn’t require AKV to provide any
secrets; the service authenticates as itself. The AKV linkedservice uses the ADF man-
aged identity to connect.

 Linkedservices store the authentication method in their definition files. This
includes usernames, passwords, and secret keys if provided. AKV forms a critical point
in the authentication chain by securely storing these secrets. Because ADF can use Git
version control, you could accidentally make the secrets in your definition files avail-
able to unauthorized parties. Using an AKV service prevents this by storing the secret,
and provides it to the IR when needed. The secret can be a password, an API key, or
any other string. Figure 10.3 shows this process in action.

Secrets in AKV can also be used with linkedservices using service principals. With the
AKV, you can store the secret name in the JSON configuration file and allow the IR to
retrieve it directly from AKV. Azure services authorize the service principal to access
the service and perform actions. Figure 10.4 shows this process in action.

 There are a couple of steps to begin using AKV for authentication in ADF pipe-
lines. First, you need to have an available key vault. Next, you authorize ADF to access
it. Last, you add secrets to the vault. Let’s start by creating a new key vault.

CREATING A KEY VAULT

You can create the new vault in the Azure portal with just a few options. In the Azure
Portal, browse to the New AKV blade at https://portal.azure.com/#create/Microsoft
.KeyVault. Choose a subscription and resource group, name, and location for the key

Data
Factory

Pipeline
triggered

Key
Vault

Rest
API

Add the client
secret to Key Vault.

Runtime gets client secret
from Key Vault.

Runtime passes
secret key to service.Authentication process

using keys

SQL
Database

Function
apps

Secret
key

File
Storage

Integration
Runtime

2

3

1

Figure 10.3 Data Factory secret key authentication

267Secure authentication
vault. As usual, you should select the same location as the other Azure services that will
integrate with AKV. You can choose between Standard and Premium tiers.

 Both tiers use a hardware security module (HSM) to generate and store encryp-
tion keys.

 Both levels support RSA 2048-bit and higher keys, and use the same charge per
transaction level.

 The Premium tier adds support for HSM encryption processing. At this tier,
HSM provides more secure encryption by keeping keys and encrypted values
within the device, and running encryption algorithms on the HSM.

In the Azure portal, you can configure options for preserving values in your key vault.
Soft delete retains the vault for a period of days after deletion. This is enabled by
default. Deleted vaults will remain hidden in the Azure portal until the retention
period has passed. Disabling soft delete will allow the vault to be removed in one step.
You can recover or delete soft-deleted vaults using Azure PowerShell. Enabling purge
protection prevents soft-deleted vaults from being removed during the retention
period. The retention period is 90 days by default, but you can set it between 7 and 90
days when you create the vault in the Azure portal. Listing 10.4 shows how to recover a
deleted vault.

NOTE At the time of writing, operations on secrets cost $0.03 per 10,000
transactions for RSA 2048-bit keys. RSA 3072-bit and higher operations are

Data
Factory

Pipeline
triggered

Key
Vault

Service
principal

App
registration

SQL
Database

Data Lake
Analytics

Data Lake
store

Service
principal

Create a service
principal for the ADF.

Add the client
secret to Key Vault.

Runtime gets identity
key using client secret.

Runtime passes
service principal
token to service.

Service principal
given authorization
to access service.

Authentication
process using
service principal

Blob
Storage

Integration
Runtime

42

3

1

5

Figure 10.4 Data Factory service principal authentication and authorization

268 CHAPTER 10 Service integration with Azure Data Factory
$0.15 per 10,000 transactions. HSM keys add $1 per key. There is no monthly
charge. See http://mng.bz/4B6j for the latest pricing details.

If you need to recover a soft-deleted vault, use the Undo-AzKeyVaultRemoval com-
mand in Azure PowerShell. Supply the standard ResourceGroupName, Location, and
VaultName for the vault to recover.

Undo-AzKeyVaultRemoval -VaultName "ade-dev-eastus2-key"

➥ -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

Using Azure PowerShell
You can also create the key vault using Azure PowerShell. Use the New-AzKeyVault
command to create a new AKV service, supplying the standard ResourceGroupName,
Name, and Location parameters. When using this command, you do not need to
provide the tier when choosing Standard. Use the parameter Sku with value Premium
for the Premium tier. Use EnablePurgeProtection to enable recovery of deleted
secrets and AKV services for 90 days. The following listing shows the script for cre-
ating the new key vault.

New-AzKeyVault -Name 'ade-dev-eastus2-key'

➥ -ResourceGroupName 'ade-dev-eastus2'

➥ -Location 'East US 2'

➥ -EnableSoftDelete -EnablePurgeProtection

The new key vault can store keys and secrets for use by ADF. You’ll add secrets later in
the chapter. Now you need to authorize ADF to access the vault.

AUTHORIZING ADF USING MANAGED IDENTITIES

Before ADF can look up secrets in AKV, you need to authorize ADF to do so. AKV
linkedservices use managed identities to authenticate to AKV, so this is the type of
AAD entity you will need to grant access to. You can add the ADF service to AKV using
the Azure portal.

Using Azure portal
Browse to the Access Policies blade under the AKV service. Click Add Access Policy to
show the Add Access Policy blade. In the blade, you can grant permission for keys,
secrets, and certificate actions like Get, Set, List, and Delete. Choose Get and List
from the Secret Permission drop-down. The authoring GUI can test if a secret exists
during the creation of a linkedservice. Click the Select Principal option to search for
the ADF service. Type the name of the ADF ade-dev-eastus2-adf in the Principal
search box. Select the entity representing the ADF service, not the App registration.
Click Add to add the policy.

Listing 10.4 Recovering a soft-deleted key vault with Azure PowerShell

Listing 10.5 Creating a new key vault with Azure PowerShell

269Secure authentication
Using Azure PowerShell
You can also add the Access policy using Azure PowerShell, using the Set-AzKey-
VaultAccessPolicy command. Listing 10.6 shows the script to do this. It retrieves the
ADF Managed Identity object and passes the ID to Set-AzKeyVaultAccessPolicy
using the ObjectId parameter. The PermissionsToSecrets parameter takes a CSV
string of the permissions to apply. The values include Get, List, Set, Delete, Backup,
Restore, Recover, and Purge.

$App = Get-AzADServicePrincipal -DisplayName "ade-dev-eastus2-adf"
Set-AzKeyVaultAccessPolicy -VaultName "ade-dev-eastus2-key"

➥ -ObjectId $App.Id

➥ -PermissionsToSecrets Get,List

By assigning access to the ADF managed identity, you can now create an AKV linked-
service in ADF and use it to retrieve secrets for other linkedservice connections. Let’s
create the linkedservice now.

CREATING AN AKV LINKEDSERVICE

Linkedservices define the connection details to the external service, including end-
point addresses and authentication methods. They store these details in their defini-
tion files.

 Tight integration with Azure services makes it easy to configure the endpoint
details. For Azure services, you choose the subscription, resource group, and service
name, and ADF manages the endpoint lookup. For services outside of Azure, you
must provide a URL or host address that is accessible by either the Azure or on-prem-
ises Integration Runtime (IR). Azure hosts an IR for use by ADF when connecting to
Internet-accesible services. An on-premises IR allows access to services behind fire-
walls, in your datacenter or in private networks in Azure. This chapter discusses ser-
vices accessible to the Azure IR.

 You can create a linkedservice with the Azure portal authoring GUI in a single
step, if you have the authentication method set up beforehand. For the AKV linked-
service, authentication happens using the ADF managed identity. You authorized
the managed identity in the previous section. Most other Azure services, like ADLS,
authorize access by the App registration for the ADF service you created earlier in
the chapter. Linkedservices for those services retrieve the App registration key
through the linkedservice, then impersonate the App registration to authenticate
with the Azure service. Authentication methods for ADLS and ADLA are covered
later in the chapter.

 Configuring linkedservices for Azure services takes advantage of integrations. For
PaaS services hosted in Azure, you rely on Azure infrastructure to provide the connec-
tion details for a named instance of the service. You can select the subscription and
service from drop-down lists when creating linkedservices in the authoring GUI.

Listing 10.6 Assign permissions to Data Factory in a key vault with Azure PowerShell

Look up the
ADF managed

identity.Use the Id
property.

Assign read and list access.

270 CHAPTER 10 Service integration with Azure Data Factory
NOTE Other Azure services, like Azure Functions and Azure Key Vault, use
other methods for authentication. Functions uses a secret key, and AKV
authenticates with the ADF managed identity. ADF provides methods for
authentication depending on what integrations are available. We review these
in the chapter discussing the specific service. For services hosted outside
Azure, you generally provide a host name and port for communicating over
the Internet. You also provide an authentication method, either a key or a
username and password. You can find details of authentication and integra-
tion for the other linkedservices at http://mng.bz/QxRv.

Using Azure portal
To create the AKV linkedservice in the Azure portal, launch the authoring GUI.

1 Browse to the Overview blade of the ADF service.
2 Click Author & Monitor to launch the Authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Show Connections, from the bottom of the Factory Resources navigation.
5 Click New to open the selection blade.
6 Show the Azure tab.
7 Select Azure Key Vault from the list and click Continue.
8 Choose a name for the resource. Only alphanumerics and underscores are allowed.
9 Select the Azure subscription from the drop-down.

10 Select the Azure key vault name (ade-dev-eastus2-key) from the drop-down of
available AKV services.

11 Because you have already granted access to the key vault for ADF, you don’t
need to authorize it at this point.

At this point you can click Create and save the new linkedservice. The authoring
GUI provides a helpful feature here: the Test Connection button. This will try to
connect to the service with the configuration details you just provided. This can be
helpful when troubleshooting a new linkedservice, because connection failures pro-
vide error messages.

Using Azure PowerShell
You can also use Azure PowerShell to create a new linkedservice. This allows for a
repeatable process and consistent configuration across environments. Access Azure
PowerShell by visiting Azure Cloud Shell at https://shell.azure.com/, or clicking the
>_ header menu in the Azure portal.

 Like creating Stream Analytics services with Azure PowerShell, creating ADF
resources requires a JSON configuration file. Using the authoring GUI will generate
these files. When configuring ADF with Azure PowerShell, you need to generate
them yourself.

 The JSON configuration file contains a few common root elements: name and
properties. The properties element contains a set of elements common to other

271Secure authentication
linkedservices. The annotations element is a CSV string array. The values can be used
as additional identifiers for linkedservices, much like the Tags attribute of Azure
resources. The type element identifies the type of linkedservice. For AKV, the type is
AzureKeyVault. You’ll see more types later in this chapter.

 The typeProperties contains the connection information for the linkedservice.
This element varies significantly between linkedservices. There are some elements
that multiple Azure services use, because the services are structured similarly or
authenticate similarly. For Azure services, these most common elements include:

 subscriptionId—The Azure subscription containing the service
 tenant—The AAD organization used for authentication
 servicePrincipalId—The registered app used to authenticate the ADF service
 servicePrincipalKey—The definition for the AKV identity lookup

The only typeProperties element for AKV is baseUrl. You cannot find this value in
the Azure portal or the through Azure PowerShell. It’s generated by adding the AKV
name to the AKV Azure domain, like the following:

https://[AKVName].vault.azure.net

Listing 10.7 shows the AKV JSON configuration file. Save this file to an Azure Cloud
Shell folder (/adf) or a local drive accessible by your local PowerShell install. Refer to
chapter 6 for more details on uploading files to Azure Cloud Shell.

{
"name": "AzureKeyVault1",
"properties": {

"annotations": [],
"type": "AzureKeyVault",
"typeProperties": {

"baseUrl": "https://ade-dev-eastus2-key.vault.azure.net/"
}

}
}

Set-AzDataFactoryV2LinkedService is used for creating all linkedservices. The com-
mand takes the ADF resource group, ADF name, and the name of the new linkedser-
vice. The parameter DefinitionFile takes the JSON configuration file path. Run the
script in the following listing to create the new linkedservice.

Set-AzDataFactoryV2LinkedService -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureKeyVault1"

➥ -DefinitionFile "~/adf/AzureKeyVault.json"

Listing 10.7 Azure Key Vault definition file

Listing 10.8 Creating a new AKV linkedservice with Azure PowerShell

272 CHAPTER 10 Service integration with Azure Data Factory
With the AKV linkedservice created, you can now use the key vault to store passwords
securely and access them in ADF pipelines. Let’s put AKV to use by creating a pipeline
to copy files.

10.3 Copying files with ADF
The Jonestown Sluggers facilities team has taken an interest in your Data Lake store.
They currently store badge tracking data from the stadium in Azure using a File Storage
network share and CSV files. They want to copy these files to the Data Lake store so they
can do advanced analytics processing. How can you accommodate this request?

 Azure Files storage is a storage container type that supports using SMB file sharing.
You can map a drive on your local desktop directly to a Files container and use it as a
network share. This makes for easy integration with on-premises servers that want to
use Azure Storage. You have a few options to copy data from Azure Files:

 Use Azure Storage Explorer to copy from Files > desktop > ADLS.
 Use Azure AzCopy to copy from Files > Blobs, then use ADLCopy to copy from

Blobs > ADLS.
 Use Azure portal to copy from a file share attached to Files > ADLS.
 Create an Azure Function to copy from Files > ADLS.
 Use ADF to copy from Files > ADLS.

TIP You can read more about Azure storage containers in chapter 3.

Some solutions involve manual interactions; others use extra network traffic. Azure
Functions requires writing code using the Azure Storage SDK. ADF has a linkedservice
available for connecting to Files storage. Let’s see what’s involved in creating the ADF
pipeline for fulfilling this request.

10.3.1 Creating a Files storage container

Recall from chapter 3 that creating a Blob Storage service is a two-part process:

1 You first create the Azure storage account
2 Then you create the Blob service under the account

Creating a Files service works the same; the Files service exists under an Azure storage
account.

 For this scenario, you will need a Files service. You can create one under your exist-
ing Azure storage account using the Azure portal or Azure PowerShell.

USING AZURE PORTAL

In the Azure portal, browse to the File Service > File Shares blade under your Azure
Storage account. Click the File Share button to show the New File Share dialog. Give
your new file share a name (accesscard), using alphanumeric characters and hyphens.
You can choose to limit the maximum size of the share, by specifying a value up to
5120 in GB. Click Create to add the new file share.

273Copying files with ADF
USING AZURE POWERSHELL

Creating a new file share with Azure PowerShell is just as easy. You need to provide the
resource group, storage account, and a name for the new file share. You can also set a
maximum storage size using the QuotaGiB parameter, in GBs. The following listing
shows the script for creating this Files container. Run this script to create the container.

New-AzRmStorageShare -ResourceGroupName "ade-dev-eastus2"

➥ -StorageAccountName "adedeveastus2"

➥ -Name "accesscard" -QuotaGiB 500

Now that you have the Files container, you need some files. You can download a
100 K-row badge-tracking data file at http://mng.bz/90Bq. Upload this file, and maybe
a few copies, to the Files service using the Azure portal, Storage Explorer, or map-
ping a drive.

 ADF authenticates to the Files container using what appear to be a username and
password. The values are actually just the storage account name and an account access
key. Because ADF will use a key to authenticate, you need to retrieve one with the
appropriate access level. ADF integration uses Azure Storage account access keys as
the only option. These keys come with more than enough permissions to access the
Files container. You then store this key in AKV, thereby not exposing the key in the con-
figuration file.

10.3.2 Adding secrets to AKV

Adding keys to AKV should become a common practice for Azure developers. Authen-
ticating with AAD lets you retrieve secrets from the AKV instead of configuration files.
Rotating keys should also become a developer best practice. AKV supports rotation by
allowing several active values for a single named secret. Each value has its own start
and end date, and can be manually disabled. This lets you stage key updates over time.
Linkedservice integration with AKV lets you specify a particular value from a named
secret, or use the latest value.

USING AZURE PORTAL

Browse to the AKV > Settings > Secrets blade, or use the search box to find Secrets in
the top left of your AKV in the portal. Click Generate/Import to open the Create a
Secret blade. Use the Manual upload method, because other options are deprecated.
Provide a name for the secret, using alphanumeric values and hyphens. The name of
the secret should reference the source or use of the secret. For example, the name
adedeveastus2-files-key provides three pieces of information: the name of a Storage
account using the standard naming convention, the type of storage service or use for
this secret, and the type of secret. You can design your own secret naming format. You
can provide both an activation date and an expiration date if you want tighter control

Listing 10.9 Create a File Storage service with Azure PowerShell

Set a reasonable quota according
to expected usage of the file
share, to limit spending.

274 CHAPTER 10 Service integration with Azure Data Factory

Ch
a un

n

over the secret’s availability. By default, the new secret value will be enabled. You can
choose to create it disabled, and enable at a later time manually.

 To configure access for the AKV linkedservice, you will provide one of the two
access keys from the Storage account containing the new Files service (adedeveas-
tus2). You can copy the key from the Storage account’s Access Keys blade. Create the
secret without an activation or expiration date, unless you have an existing key rota-
tion policy. Leave the new secret enabled. This will create a secret that is ready to be
used in ADF.

USING AZURE POWERSHELL

Listing 10.10 shows the script for adding the key to AKV. The Set-AzKeyVaultSecret
command creates a new secret, or adds a new value to an existing secret. This com-
mand takes the name of the AKV and the name of the secret. The script retrieves the
key from the Storage account, and adds it to the SecretValue parameter. It also adds
the parameter ContentType with a value of key to add a description to the secret,
when viewing the list of secrets. Run this script to create the secret.

 The script uses Get-AzStorageAccountKey to retrieve the primary key from the
named Storage account. The output of the command is the key value. Set-
AzKeyVaultSecret takes a SecureString object as input to the SecretValue parame-
ter, so the script uses ConvertTo-SecureString to create a SecureString. This com-
mand nominally takes an encrypted string as an input, often via the Read-Host
command. In this script, the key from the Storage account is not encrypted, so
ConvertTo-SecureString uses the AsPlainText and Force parameters to read the
input key value. You could provide the key value manually using Read-Host instead.

$Secret = ConvertTo-SecureString -String

➥ (Get-AzStorageAccountKey -ResourceGroupName "ade-dev-eastus2"

➥ -AccountName "adedeveastus2"

➥ | Where-Object {$_.KeyName -eq "key1"}).Value

➥ -AsPlainText -Force
Set-AzKeyVaultSecret -VaultName "ade-dev-eastus2-key"

➥ -Name "adedeveastus2-files-key"

➥ -SecretValue $Secret

➥ -ContentType "key"

After creating the AKV, linkedservice, and a secret, and giving ADF access, you are ready
to create a Files linkedservice in ADF. With this, and the ADLS linkedservice you created
earlier, you’ll create the pipeline and activity to copy the badge-tracking data file.

10.3.3 Creating a Files storage linkedservice

Creating a Files linkedservice works like creating an AKV linkedservice, but there are
a few extra values to configure.

Listing 10.10 Add new AKV key with Azure PowerShell

Choose the first
account key.

Force the plain text
value instead of
encrypted.

oose
ique
ame.

Use the
SecureString
variable.Add a text description.

275Copying files with ADF
USING AZURE PORTAL

To create the linkedservice in the Azure portal, launch the authoring GUI.

1 Browse to the Overview blade of the ADF service.
2 Click the Author & Monitor button to launch the authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Show Connections, from the bottom of the Factory Resources navigation.
5 Click New to open the Selection blade.
6 Show the Azure tab.
7 Select Azure File Storage from the list of Azure services, and click Continue.
8 Choose a name for the resource. Only alphanumerics and underscores are

allowed.
9 Because this is an Azure service, leave the default AutoResolveIntegration-

Runtime selected. This is the Azure integration runtime.
10 Set the Files Container Host to \\adedeveastus2.file.core.windows.net\\

accesscard. This is the Azure storage account URL and the Files container name.
11 Set the Files User Name to AZURE\\adedeveastus2. This is the string AZURE\\

followed by the Storage account URL.
12 Switch to using Azure Key Vault. This will change the available values, letting

you choose a vault from the same resource group, and add the secret key name.
13 Select the AKV you created earlier (ade-dev-eastus2-key).
14 Set the Secret Name to the secret you created to store the Files access key

(adedeveastus2-files-key).

The host element identifies the Files container to connect to. You cannot find this
value in the Azure portal or the through Azure PowerShell. It’s generated by adding
the Storage account name and the Files container name to the storage domain, like
the following:

\\\\[StorageName].file.core.windows.net\\[ContainerName]

Note that the start of the path is preceded by four backslashes.

USING AZURE POWERSHELL

Save this JSON configuration file to an Azure Cloud Shell folder or a local drive accessi-
ble by your local PowerShell install in listing 10.11. You’ll use the file to create the Files
linkedservice.

{
"name": "AzureFileStorage1",
"properties": {

"annotations": [],
"type": "AzureFileStorage",
"typeProperties": {

Listing 10.11 Files linkedservice definition file

276 CHAPTER 10 Service integration with Azure Data Factory
"host": "\\\\adedeveastus2.file.core.windows.net\\accesscard",
"userId": "AZURE\\adedeveastus2",
"password": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault1",
"type": "LinkedServiceReference"

},
"secretName": "abedeveastus2-files-key"

}
}

}
}

The Set-AzDataFactoryV2LinkedService command is the same one used for the AKV
linkedservice. Run the script in the following listing to create the Files linkedservice.

Set-AzDataFactoryV2LinkedService -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureFileStorage1"

➥ -DefinitionFile "~/adf/AzureFileStorage1.json"

Now you have the source linkedservice. You need to add a target linkedservice, using
ADLS.

10.3.4 Creating an ADLS linkedservice

Creating an ADLS linkedservice works much like creating a Files linkedservice.

USING AZURE PORTAL

The steps for creating the ADLS linkedservice in the portal are the same as for a Files
linkedservice, except the authentication options are different. You can choose to use a
managed identity or service principal instead of a username and password. Authoriza-
tion settings for an ADLS linkedservice work much like providing a username and
password. You provide a service principal ID and secret key. Azure populates the
Tenant ID field from the currently logged in account, much like the subscriptions and
services drop-downs are populated. For the ADLS linkedservice, service principal
authentication works just as well as using a managed identity. You need to add the ser-
vice principal secret to AKV before the authentication will work.

ADDING THE SERVICE PRINCIPAL SECRET TO AKV
To authenticate with the ADLS linkedservice using AKV, you need to supply AKV with
the service principal (ade-dev-eastus2-adf-id) client secret. That way ADF can look up
the secret during pipeline execution. Azure services authorize the service principal to
access the service and perform actions. Figure 10.5 shows this in action.

 You can use the same process you used to create the AKV secret for the Files storage
access key. The new secret can be created using the Azure portal or Azure PowerShell.

Listing 10.12 Creating a new Files linkedservice with Azure PowerShell

277Copying files with ADF
Using Azure PowerShell to add an AKV secret
When you created the App registration earlier in the chapter, you added a client
secret. Now you will enter that same value again, so that the encrypted SecureString
can be entered as a new secret in AKV. Listing 10.13 shows the script for adding the
key to AKV using Azure PowerShell. The script uses the same command to add the secret
as you used for creating the Files storage key.

$Secret = Read-Host -AsSecureString
Set-AzKeyVaultSecret -VaultName "ade-dev-eastus2-key"

➥ -Name "ade-dev-eastus2-adf-key"

➥ -SecretValue $Secret

➥ -ContentType "key"

Once you have added the service principal key to your AKV, you can complete the cre-
ation of the ADLS linkedservice via the Azure portal, just as with the Files storage
linkedservice.

Using Azure PowerShell
Creating the ADLS linkedservice with Azure PowerShell uses the same process as the
Files linkedservice. The JSON configuration file contains a few common root elements:
name and properties. The properties element contains a set of elements common to
other linkedservices. For ADLS, the type is AzureDataLakeStore. The ADLS linked-
service contains a type root element with the fixed value Microsoft.DataFactory/

Listing 10.13 Add a new service principal key with Azure PowerShell

Data
Factory

Pipeline
triggered

Key
Vault

Service
principal

App
registration

SQL
Database

Data Lake
Analytics

Data Lake
store

Service
principal

Create a service
principal for the ADF.

Add the client
secret to Key Vault.

Runtime gets identity
key using client secret.

Runtime passes
service principal
token to service.

Service principal
given authorization
to access service.

Authentication
process using
service principal

Blob
Storage

Integration
Runtime

42

3

1

5

Figure 10.5 Data Factory service principal authentication and authorization

278 CHAPTER 10 Service integration with Azure Data Factory
factories/linkedservices. Many linkedservices, including AWS S3, Azure CosmosDb,
and SQLDB, use this same element and value.

 typeProperties contains the connection information for the linkedservice. This
element varies significantly between linkedservices. Some elements are used by multi-
ple Azure services, because the services are structured similarly or authenticate simi-
larly. For Azure services, these include:

 subscriptionId—The Azure subscription containing the service
 tenant—The AAD organization used for authentication
 servicePrincipalId—The registered app used to authenticate the ADF service
 servicePrincipalKey—The definition for the AKV identity lookup

The servicePrincipalKey element has three children. The value of type is always
AzureKeyVaultSecret. The secretName is the name of the secret in AKV. The store
element points to a previously configured AKV linkedservice, using its referenceName
and a type of LinkedServiceReference.

 In addition, ADLS linkedservices require a resourceGroupName and dataLake-
StoreUri to identify the ADLA service. You cannot find the dataLakeStoreUri in the
Azure portal or the through Azure PowerShell. It’s generated by adding the ADLS
name to the ADLS domain, like

https://[ADLSName].azuredatalakestore.net/webhdfs/v1

These elements combine in a JSON document like in the following listing.

{
"name": "AzureDataLakeStore1",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": [],
"type": "AzureDataLakeStore",
"typeProperties": {

"dataLakeStoreUri": "https://adedeveastus2.azuredatalakestore.net
/webhdfs/v1",

"servicePrincipalId": "9ebef9cc-904b-4948-abb6-237e60cca836",
"servicePrincipalKey": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault1",
"type": "LinkedServiceReference"

},
"secretName": "ade-dev-eastus2-adf-key"

},
"tenant": "f41e678f-812a-43cf-b020-7c1f89e52901",
"subscriptionId": "fdc22d66-7061-4721-abbc-b4c6c93c3d5c",
"resourceGroupName": "ade-dev-eastus2"

}
}

}

Listing 10.14 ADLS linkedservice definition file

279Copying files with ADF
Listing 10.15 shows a script creating the linkedservice. It uses the same command we
used for the AKV linkedservice. Save the JSON configuration file in listing 10.14 to an
Azure Cloud Shell folder or a local drive accessible by your local PowerShell install.
Run the script from listing 10.15 to create the new linkedservice.

Set-AzDataFactoryV2LinkedService -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureDataLake1"

➥ -DefinitionFile "~/adf/AzureDataLake1.json"

With the new linkedservice configured to use AKV, ADF activities will try to connect to
ADLS using the ADF registered app’s service principal. In order for your service prin-
cipal to access the ADLS store, you need to authorize the App registration.

AUTHORIZING THE SERVICE PRINCIPAL TO ADLS
As you recall from chapter 4, ADLS access requires two permissions:

1 Access to the Azure service itself
2 Access to the file and folder structure within ADLS

You can assign both using the Azure portal and Azure PowerShell.

Using Azure PowerShell
Listing 10.16 shows how to assign the ADF App access to the ADLS store. Run the
script to grant access.

$Adla = Get-AzResource -Name "adedeveastus2" -ResourceType
"Microsoft.DataLakeStore/accounts"

$App = Get-AzADApplication -DisplayName "ade-dev-eastus2-adf-id"
New-AzRoleAssignment -RoleDefinitionName "Contributor" -ApplicationId

$App.ApplicationId

In chapter 4, you saw how to assign access control lists (ACLs) to files and folders in
ADLS. ADF needs elevated permissions to the ADLS store to successfully read and
write files. You can apply these ACLs through the ADL Data Explorer blade in the
Azure portal, or through Azure PowerShell.

 The script in listing 10.17 shows how to set Read, Write, and Execute permissions
for all existing files and folders. Use the Set-AzDataLakeStoreItemAclEntry com-
mand to set the ACLs. In this case, the service principal uses the User value for Ace-
Type parameter. If your ADLS store has files and folders, use the Recurse parameter
to apply the ACLs down the folder tree. By using multiple calls to the command, with
different Path and Recurse values, you can tailor the access given to ADF. ADF does
need at least Read and Execute on the root folder in order to read the structure of the
folders it can access. Add the Default parameter to give ADF default access for new
folders and files.

Listing 10.15 Creating a new ADLS linkedservice with Azure PowerShell

Listing 10.16 Assigning a service principal role with Azure PowerShell

280 CHAPTER 10 Service integration with Azure Data Factory
Set-AzDataLakeStoreItemAclEntry -AccountName "adedeveastus2"
-Path / -AceType User
-Id (Get-AzADServicePrincipal -DisplayName "ade-dev-eastus2-adf-

id").ApplicationId.Guid
-Permissions All -Recurse
Set-AzDataLakeStoreItemAclEntry -AccountName "adedeveastus2"
Path / -AceType User
-Id (Get-AzADServicePrincipal -DisplayName "ade-dev-eastus2-adf-

id").ApplicationId.Guid
-Permissions All -Recurse -Default

With a Files linkedservice and an ADLS linkedservice, you can now create a pipeline
and activity to copy the files.

10.3.5 Creating a pipeline and activity

In ADF, pipelines contain activities. This structure is expressed in the JSON files defin-
ing pipeline. Aside from the ubiquitous annotations element, all of the pipeline
resource’s properties are the activities in the pipeline. The activities element holds
an array of activity definitions. Each pipeline can have one or more activities.

ADF PIPELINE WORKFLOW

Executing an ADF pipeline with a copy activity looks like this:

 The pipeline has a single activity, a file copy.
 The pipeline has a single trigger, using a schedule.
 The pipeline uses the Integration Runtime (IR) to manage the copy activity

between the two linkedservices.
 The IR handles the commands for both linkedservices, and monitors the activ-

ity for progress and errors.
 The Azure IR runs in Azure and connects to Azure resources.
 Each activity and each pipeline execution collects metrics that you can review later.

Figure 10.6 shows the steps for running this ADF pipeline.

Listing 10.17 Assigning a service principal ACLs in ADLS with Azure PowerShell

Service principal gets User type ACLs.

Give ADF app full rights through the
entire existing folder hierarchy.

Apply the default ACLs
in the same manner.

Data
Factory

Triggers Pipelines Run
Metrics

Trigger starts
on schedule.

Pipeline lists
activities to run.

IR builds list
of commands.

Read file(s)
from storage.

Record successful
run with details.

File
Storage

Data Lake
store

Write file(s)
to storage.

Integration
Runtime

42 31 65

Figure 10.6 Pipeline processing steps

281Copying files with ADF
The process of creating a pipeline is practically the reverse. The steps for creating the
ADF pipeline go like this:

1 Create any linkedservices to connect to the services needed.
2 Create any datasets to define any transformations.
3 Create the activities using the linkedservices and datasets.
4 Create the pipeline with the activities.
5 Create the pipeline triggers.

Each activity defines the steps the IR will take, what resources the activity will use, and
any other activities that it depends on. Activities fall into three categories:

1 Flow control activities provide variable assignment, validation, looping, and deci-
sion support to other activities. They don’t depend on other services.

2 Copy activities move and transform data. They connect two datasets.
3 Execute activities call functions on linkedservices. They require at least one linked-

service to interact with.

The IR takes the steps defined by each activity in the pipeline, and their relation to
each other, and runs the steps in order. The IR uses the datasets and linkedservices
listed in the activities to get connection details and perform transformations. Execute
activities list what linkedservices to connect to. Copy activities list what datasets to uti-
lize. The dataset definition then lists what linkedservice to connect to. Figure 10.7
shows this relationship between activities, datasets, and linkedservices.

ADF definitions

Triggers
start pipeline
execution.

TriggersPipelines LinkedServiceDatasets

Data mapping

Service connections

Datasets

LinkedService

Definitions feed IR processing steps.

Data Lake
store

SQL
Database

Delimited
schema

Copy
activity

Table
schema

Connected
through
datasets

Data Lake
Analytics

U-SQL
activity

Data Lake
store

No Dataset:
Connect
directly

Integration
Runtime

Pipeline steps

4

2

3

1

Figure 10.7 Pipeline activities interact with other resources.

282 CHAPTER 10 Service integration with Azure Data Factory
Copy activities use one or more dataset definitions to transform one type of data
file or schema into another. You will need a dataset for both the source and target
linkedservices.

CREATING DATASETS

The dataset resource has three important details: the linkedservice connection to use,
the data target of a file path or a table name, and the data’s schema definition. The
exception is the binary dataset. This format doesn’t read the file or define a schema.
Copy activities using binary datasets do a direct byte-for-byte copy between two linked-
services. Multiple datasets can connect to the same linkedservice.

Using Azure portal
To create the ADF datasets in the Azure portal, launch the authoring GUI.

1 Browse to the Overview blade of the ADF service.
2 Click the Author & Monitor button to launch the authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Click Datasets, from the Factory Resources navigation, to reveal a list of existing

datasets.

Click the dots to the right of the datasets section to reveal the New Dataset button.
When creating a new dataset in the GUI, you first choose a data store. These roughly
equate to the available service integrations, aside from the strictly compute services
like Batch, Functions, and ADLA. File-based data stores then let you choose the file
format: Parquet, Delimited, JSON, AVRO, ORC, or Binary. Table-based stores don’t
use a format.

 Next, you need to select an existing linkedservice of the same type as the data
store. For file-based datasets, you also choose the file path and a filename. For table-
based datasets, you choose a table. Last, you get the option to import a schema based
on the file or table you selected.

 Like other resources in ADF, datasets are defined by JSON configuration files.
Using the GUI to create a dataset resource outputs one of these files. You can access
the file when viewing a dataset, activity, or pipeline in the authoring GUI, using the
Code button in the top right corner.

Using Azure PowerShell
Like other ADF resources, you need to prepare the JSON configuration files before
using them with an Azure PowerShell command. The file contains a few common
root elements: name and properties. The properties element contains a set of ele-
ments common to other linkedservices. The annotations element is a CSV string
array. The values can be used as additional identifiers for datasets, much like the Tags
attribute of Azure resources. The type element identifies the type of dataset. For
binary datasets, the type is Binary.

 The linkedServiceName element contains the connection information, using the
linkedservice’s referenceName and a type of LinkedServiceReference.

283Copying files with ADF
 The typeProperties contains the dataset’s path information. For SQL table data-
sets, the schema and table elements are directly under typeProperties. For file
datasets, the path definitions are under a location element. The defining elements
include type, folderPath, and fileName. The value for type will depend on the tar-
get, but is usually [linkedservicetype]Location. You can omit folderPath if the file
is in the root directory. Omit fileName to select all files in the directory. Listings 10.18
and 10.19 show the JSON configuration files for two binary datasets, one for Files and
one for ADLS.

{
"name": "Binary1",
"properties": {

"linkedServiceName": {
"referenceName": "AzureFileStorage1",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "Binary",
"typeProperties": {

"location": {
"type": "AzureFileStorageLocation",
"fileName": "access_01.csv",
"folderPath": "2019"

}
}

}
}

{
"name": "Binary2",
"properties": {

"linkedServiceName": {
"referenceName": "AzureDataLakeStore1",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "Binary",
"typeProperties": {

"location": {
"type": "AzureDataLakeStoreLocation",
"folderPath": "Staging/Stadium/Doors"

}
}

}
}

Save both files to an Azure Cloud Shell folder or a local drive accessible by your local
PowerShell install. You’ll use the files in the next command to create the binary datasets.

Listing 10.18 Files binary dataset definition file

Listing 10.19 ADLS binary dataset definition file

284 CHAPTER 10 Service integration with Azure Data Factory
 Set-AzDataFactoryV2Dataset is used to create or update ADF datasets. Run the
script in the following listing to create the two binary datasets.

Set-AzDataFactoryV2Dataset -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "FilesBinary1"

➥ -DefinitionFile "~/adf/FilesBinary1.json"
Set-AzDataFactoryV2Dataset -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "ADLBinary1"

➥ -DefinitionFile "~/adf/ADLBinary1.json"

TIP Using the authoring GUI lets you create all of the ADF resources quickly.
You can then copy the configuration files if you want to reproduce the ADF
without the manual work in the GUI. You can get the JSON configuration
files for all the ADF resources in this chapter at http://mng.bz/X0qa.

To create a pipeline that can execute a binary copy, you only need one activity: a copy
activity. The copy activity reads the file(s) from one linkedservice and writes to another.
With the two datasets available, you can create a copy activity to use them. Next you
will define the activity.

CREATING ACTIVITIES

The three activity categories each have common and unique configuration elements.
Table 10.2 shows some common elements.

You need to look up the correct type value for the activities you are creating. For the
Copy job, the value is Copy.

Listing 10.20 Creating new binary datasets with Azure PowerShell

Table 10.2 Common activity elements

Element Value Description

name String Limit to alphanumeric, hyphens, and
underscores for JSON compatibility.

type Unique string identifier for activity DataLakeAnalyticsU-SQL, Copy, SqlServer-
StoredProcedure, Wait, etc.

dependsOn JSON array element with activity
and dependencyConditions
properties

The list of activities immediately preced-
ing this activity, with the outcome condi-
tion for next step

userProperties JSON array element with name and
value properties

An array of user specified key:value pairs
added to the activity

typeProperties Varies Define the attributes of the specific type
of activity.

285Copying files with ADF
TIP You can get configuration details for each type of activity from the ADF
How-to guides at https://docs.microsoft.com/azure/data-factory/.

The dependsOn element holds an array of JSON elements, each with an activity and
dependencyCondition element. The activity element is the name of another activity
in the pipeline. The dependencyCondition has one of four values: Completed, Failed,
Skipped, Succeeded. With these values, you can create pipeline flows that handle mul-
tiple scenarios. For example, you may want to call an Azure Function or web hook to
be notified of a certain failure. You could add a second copy activity that only copies if
the first succeeded. Or you could continue after external website calls regardless of
outcome. Succeeded is the default in the authoring UI. Here you can see a dependsOn
snippet for an activity that follows activity Copy1 when it succeeds.

"dependsOn": [
{

"activity": "Copy1",
"dependencyConditions": [

"Succeeded"
]

}
]

The typeProperties element has the greatest variety of implementations. For copy
activities, it has three elements: source, sink, and enableStaging. The source and
sink align with the datasource and the linkedservice driving the activity. The follow-
ing snippet copies from the Azure Files service without reading and translating the
data. It writes to an ADLS store in the same mode. The source element can be config-
ured to select files from the current directory, defined in the dataset, and from child
folders using the recursive flag.

 enableStaging lets the IR do a two-part copy using an intermediate storage loca-
tion. Staging the files is most common for copying between two datacenters, between
on-premises storage and cloud databases, and when the database can use technologies
like Polybase to improve import throughput. For a copy between two fast Azure stor-
age services, no staging is required.

"typeProperties": {
"source": {

"type": "BinarySource",
"storeSettings": {

"type": "AzureFileStorageReadSettings",
"recursive": true

}
},
"sink": {

"type": "BinarySink",
"storeSettings": {

"type": "AzureDataLakeStoreWriteSettings"
}

286 CHAPTER 10 Service integration with Azure Data Factory
},
"enableStaging": false

}

Binary copy activities don’t need to define schema or the translator that defines
mappings between the two datasets. There is no parsing or translation. You can see a
copy with schema in chapter 12.

 Last, the copy activity includes inputs and outputs elements. These use the famil-
iar referenceName and type structure common to other ADF resource references. For
both, the type is DatasetReference. For inputs, referenceName is the named dataset
used as the source. For outputs, referenceName refers to the sink dataset. The follow-
ing listing shows the entire pipeline and activity JSON definition file.

{
"name": "pipeline1",
"properties": {

"activities": [
{

"name": "Copy data1",
"type": "Copy",
"dependsOn": [],
"policy": {

"timeout": "0.01:00:00",
"retry": 1,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false

},
"userProperties": [],
"typeProperties": {

"source": {
"type": "BinarySource",
"storeSettings": {

"type": "AzureFileStorageReadSettings",
"recursive": true

}
},
"sink": {

"type": "BinarySink",
"storeSettings": {

"type": "AzureDataLakeStoreWriteSettings"
}

},
"enableStaging": false

},
"inputs": [

{
"referenceName": "Binary1",
"type": "DatasetReference"

}

Listing 10.21 Pipeline and activity definition file

287Copying files with ADF
],
"outputs": [

{
"referenceName": "Binary2",
"type": "DatasetReference"

}
]

}
],
"annotations": []

}
}

Using Azure PowerShell
You can upload this JSON configuration file to Azure Cloud Shell just as you did for
the AKV and ADLS linkedservices. Then you can run Set-AzDataFactoryV2Pipeline
to create the pipeline and copy activity. The following listing shows the Azure Power-
Shell script.

Set-AzDataFactoryV2Pipeline -ResourceGroupName "ade-dev-eastus2"

➥ -Name "pipeline1"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -File "~/adf/pipeline1.json"

Using Azure portal to publish the pipeline
Creating pipelines in the authoring GUI removes the need to look up many values
and construct a JSON file. The GUI guides you through the choices with drop-down
selection of existing linkedservices and datasets. You can create a blank pipeline work-
space in the GUI and add an activity to it by dragging the activity into the pipeline
workspace. Clicking on the new activity displays the editing panel, where you can
make changes. The activities populate the values in the backing JSON configuration
files for you, based on the activity you choose, the drop-down values you select, or val-
ues you input manually.

 The last step in creating a pipeline with the GUI is publishing. The GUI operates
in a sandbox, and once you’re done constructing the pipeline, click Publish All to
publish the backing JSON configuration files to the production ADF environment.
Publishing sets up the triggers and configures logging and metrics around pipeline
executions. Figure 10.8 shows this workflow in action.

 Creating and modifying pipelines with Azure PowerShell publishes to the produc-
tion environment automatically. Because both authoring methods output JSON con-
figuration files, ADF can be version controlled. We’ll discuss version control with ADF
in chapter 12.

 Now that the pipeline has been created, you can kick it off manually. You can do
this in the authoring GUI using the Add Trigger > Trigger Now menu option.

Listing 10.22 Creating a new pipeline with Azure PowerShell

288 CHAPTER 10 Service integration with Azure Data Factory
Using Azure PowerShell to start a pipeline execution
You can start the pipeline with Azure PowerShell too. Use the Invoke-AzDataFactory-
V2Pipeline command, passing resource group, ADF name, and pipeline name. The
following listing shows this script in action.

Invoke-AzDataFactoryV2Pipeline -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -PipelineName "pipeline1"

But you didn’t come this far to kick off pipelines manually. A major benefit of using
ADF is running pipelines on a schedule and recording the success and failure states of
each step. You can use third-party schedulers to accomplish these executions, by using
the ADF REST or PowerShell interfaces to trigger them. For IT departments with
existing automation systems, adding ADF pipeline steps to their workflow can be a
good approach. This ADF pipeline supports a new system built in Azure. Let’s add
a schedule trigger on the new pipeline in Azure too.

10.3.6 Creating a scheduled trigger

Creating a trigger resource in ADF works like creating other resources.

USING AZURE POWERSHELL

You provide a JSON configuration file for the trigger, as with other ADF resources. The
JSON configuration file contains two common root elements: name and properties.

Listing 10.23 Starting a pipeline manually with Azure PowerShell

Pipeline1

Triggers
scheduled
or event

Key
Vault

Edit environment

Production environment

Data Lake
Analytics

Git

repo

Scheduled
trigger

TriggersPipelines LinkedServiceDatasets

Delimited
schema

Data Lake
Analytics

U-SQL

Scheduled run

Publish to Production Version control

Trigger Fires

Runtime
executes

Integration
Runtime

4

2

3

1

Figure 10.8 Data Factory code promotion

289Copying files with ADF
The properties element contains a set of elements common to other resources. The
annotations element is a CSV string array, and is used as in other resources. The type
element identifies the trigger type: ScheduleTrigger, BlobEventsTrigger, or Tumbling-
WindowTrigger. Set the activated state with runtimeState, either Started or Stopped.

 The pipelines element defines the pipeline(s) triggered by the trigger. Triggers
can start more than one pipeline, and a pipeline can have more than one trigger. Like
other resource references, the pipelines element is an array of references, each with
a referenceName and type. For trigger pipelines, the type is PipelineReference.

"pipelines": [
{

"pipelineReference": {
"referenceName": "pipeline1",
"type": "PipelineReference"

}
}

]

Element typeProperties varies for the three types of triggers. For the Schedule trig-
ger, all elements are under the recurrence element. There are five elements to con-
figure: frequency, interval, startTime, timeZone, and schedule.

 The frequency element can be one of the following:

 Minute
 Hour
 Day
 Week
 Month

interval takes a number and works together with frequency, e.g. 12 hours, 2 days, 1
month. startTime takes a date value in UTC. The format is ISO8601, with T separator
and trailing Z for UTC time. The timeZone is always UTC. The trigger will run at the
start time and every interval thereafter, or if the start time was in the past, the next
occurring interval in the future when you create the trigger. For example, to start a
trigger with an hourly interval one hour from now, set the start time to one hour from
now and save the trigger. Or set the start time to now (or one hour ago, or 24 hours
ago) and save it. The next available interval will be one hour from now.

 To run more complicated schedules, you can add the schedule element to
recurrence. This element can take arrays for minutes, hours, weekDays, and month-
Days, and will start the trigger on the specified marker(s). The following example
runs a pipeline at 5:00 a.m. and 5:00 p.m. every Monday.

"recurrence": {
"frequency": "Day",
"interval": 1,
"startTime": "2019-11-01T02:01:00.000Z",

290 CHAPTER 10 Service integration with Azure Data Factory
"timeZone": "UTC",
"schedule": {

"minutes": [
0

],
"hours": [

5,
17

],
"weekDays": [

"monday"
]

}
}

The following listing shows the complete trigger configuration file for a 5:00 a.m. UTC
daily run.

{
"name": "trigger1",
"properties": {

"annotations": [],
"runtimeState": "Started",
"pipelines": [

{
"pipelineReference": {

"referenceName": "pipeline1",
"type": "PipelineReference"

}
}

],
"type": "ScheduleTrigger",
"typeProperties": {

"recurrence": {
"frequency": "Day",
"interval": 1,
"startTime": "2019-12-31T02:01:00.000Z",
"timeZone": "UTC",
"schedule": {

"minutes": [
0

],
"hours": [

5
]

}
}

}
}

}

With a completed JSON configuration file available, you can use the script from the
following listing to create the trigger and enable it.

Listing 10.24 Scheduled trigger definition file

291Running an ADLA job
Set-AzDataFactoryV2Trigger -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "trigger1"

➥ -DefinitionFile "~/adf/trigger1.json"
Start-AzDataFactoryV2Trigger -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "trigger1"

USING AZURE PORTAL

Adding triggers in the authoring GUI is a two-step process. You create the trigger, then
assign it to a pipeline. You can do both at the same time, creating then assigning the trig-
ger from within the pipeline, using the Trigger drop-down in the pipeline workspace,
and selecting New/Edit. The Trigger drop down can also start the pipeline manually.

 You can also create triggers separately from the pipeline and assign them later. In
the GUI, switch to the Triggers window using the button at the bottom of the left nav-
igation. Provide a name and leave the default Schedule type selected. Change the
Start Date to when you want the first execution to run. Setting the date in the past
does not trigger the execution any earlier than the publish date, but you can set the
date in the future to delay execution. Select a recurrence pattern in terms of a num-
ber of minutes, hours, days, weeks, or months. You can specify an End Date too, if you
want to limit the number of recurring executions.

 By default, the trigger is disabled. Switch Activated to Yes to enable it. Save the trig-
ger. Switch to any pipeline you want to use the new trigger. Use the Trigger drop-down
in the pipeline workspace, and select New/Edit. Select your new trigger from the
drop-down, and click through the dialogs. Once you save the trigger, you need to click
the Publish menu option to push the trigger into production.

 Once you have created the trigger, your new File Copy pipeline is complete. From
this point onward, you can reuse the linkedservices you have created, and create new
ones. You can use the datasets as sources or sinks for other activities. You can add
more activities to the first pipeline, or create new pipelines. You can even add an activ-
ity that starts another pipeline. Let’s see what adding another activity is like, now that
you’ve created the primary support resources.

10.4 Running an ADLA job
The trials of the Jonestown Sluggers biometric-uniform sensor suite are running, and
the data is being collected in the Data Lake store. The analysts want the data to be
updated on a regular basis. You previously loaded data into a U-SQL table manually.
How can you accommodate this request?

 You have a few options with ADLA jobs.

 Resubmit a job using the Azure portal.
 Submit a new job using Azure PowerShell or other tools.
 Submit a new job with an ADF pipeline.

Listing 10.25 Creating a trigger with Azure PowerShell

292 CHAPTER 10 Service integration with Azure Data Factory
Resubmitting the previous job is pretty easy to implement. You can even add some C#
code to make the script import the previous day. However, you do need to find the job
in the Azure portal, click the Reuse Script button, and then submit the job. These are
manual steps to be performed by someone.

 Submitting a new job is also pretty easy. You have the table import a U-SQL script
(see chapter 8), and you can automate executing PowerShell scripts with a number of
tools, like Windows Task Scheduler. You will need to have a server to execute the
script. The logging and diagnostic information may be lacking, depending on your
PowerShell skill level.

 Creating a process with ADF works better than these other options. ADF offers
both event-driven and scheduled triggers. ADF integrates directly with ADLA to exe-
cute jobs. Because it’s integrated, monitoring and error handling, including retries,
are included. Let’s see how creating an ADF pipeline can make scheduling data pro-
cessing easy. The first step is creating a new linkedservice for the ADLA service.

10.4.1 Creating an ADLA linkedservice

Creating an ADLA linkedservice works just like an ADLS linkedservice. You can create
one with the Azure portal or Azure PowerShell. The steps are the same as for an ADLS
linkedservice, with one exception: ADLA linkedservices use only service principal
authentication.

 The JSON configuration file contains two common root elements: name and prop-
erties. The properties element contains a set of elements common to other linked-
services too. For ADLA, the type is AzureDataLakeAnalytics. The linkedservice also
has a type root element, with the fixed value Microsoft.DataFactory/factories/
linkedservices. Many linkedservices, including AWS S3, Azure CosmosDb, and
SQLDB, use this same element and value.

 The typeProperties contains the linkedservice’s connection information. This
element varies significantly between linkedservices. There are some elements that
multiple Azure services use, because the services are structured similarly or authenti-
cate similarly. For Azure services, these include:

 subscriptionId—The Azure subscription containing the service
 tenant—The AAD organization used for authentication
 servicePrincipalId—The registered app used to authenticate the ADF service
 servicePrincipalKey—The definition for the AKV identity lookup

The servicePrincipalKey element has three children. The value of type is always
AzureKeyVaultSecret. The secretName value is the name of the secret in AKV. The
store element points to a previously configured AKV linkedservice, using a reference-
Name of the AKV linkedservice and type of LinkedServiceReference.

 In addition to these elements, ADLA linkedservices require an accountName and
resourceGroupName. These elements combine in a JSON document like the follow-
ing listing.

293Running an ADLA job
{
"name": "AzureDataLakeAnalytics1",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": ["adla","usql"],
"type": "AzureDataLakeAnalytics",
"typeProperties": {

"accountName": "adedeveastus2",
"servicePrincipalId": "9999999c-904b-4948-abb6-2222222ca836",
"servicePrincipalKey": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault1",
"type": "LinkedServiceReference"

},
"secretName": "ade-dev-eastus2-adf"

},
"tenant": "ffffffff-812a-43cf-b020-777777752901",
"subscriptionId": "fdffffff-7061-4721-abbc-bbbbbbbc3d5c",
"resourceGroupName": "ade-dev-eastus2"

}
}

}

USING AZURE POWERSHELL

Save this JSON configuration file to an Azure Cloud Shell folder or a local drive acces-
sible by your local PowerShell install. You’ll use the file in the Azure PowerShell com-
mand to create the ADLA linkedservice.

 The Set-AzDataFactoryV2LinkedService command is the same one used for the
ADLS linkedservice. Run the script in the following listing to create the linkedservice.

Set-AzDataFactoryV2LinkedService -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureDataLakeAnalytics1"

➥ -DefinitionFile "~/adf/AzureDataLakeAnalytics1.json"

Now you have a ADLA linkedservice in your ADF service. Before you can create a pipe-
line and activity, one more step remains. You need a source for the U-SQL script. You
have two options: Blob Storage and ADLS stores.

 As you recall from chapter 9, you created a top-level folder structure to hold code
artifacts. This included folders for .NET assemblies and U-SQL scripts. Because mov-
ing data into and out of ADLS is a central part of this analytics system, having a linked-
service in ADF is critical. In fact, you have already seen how to create the ADLS earlier
in the chapter. If you haven’t created the ADLS linkedservice already, refer to the
instructions in section 10.3.4 to create one now.

Listing 10.26 ADLA linkedservice definition file

Listing 10.27 Creating a new ADLA linkedservice with Azure PowerShell

294 CHAPTER 10 Service integration with Azure Data Factory
 With these two linkedservices created, you can create a new pipeline and activity to
run your U-SQL script. Once you have at least one pipeline, you can decide if new
activities should run in the existing pipeline or a new one. You can add the new U-SQL
job activity to your existing pipeline, which does a copy activity for Facilities. Because
the request comes from a different source, and works with different data, a better
choice would be to create a new pipeline for that project, and add the new U-SQL job
activity to it. Let’s see what that entails.

10.4.2 Creating a pipeline and activity

Let’s focus on some new settings for the U-SQL job activity. U-SQL activities include
three elements that apply to the new job, and one that locates an ADF resource. The
scriptPath element stores the path to the U-SQL script, from the root folder of the
storage resource. degreeOfParallelism specifies the number of AUs to use when exe-
cuting the job. priority provides a priority level for queued jobs when the number of
available AUs is less than the degreeOfParallelism requested. 1000 is the default for
ADLA jobs. Smaller numbers are higher priority.

 Because ADF does not store files, but accesses files from linked storage services,
use scriptLinkedService to provide a linkedservice that will host the U-SQL script.
The ADLS linkedservice you added earlier can support this element. You specify the
linkedservice using a referenceName and type. Use the name of the ADLS linkedser-
vice you created. The value of type is always LinkedServiceReference.

"typeProperties": {
"scriptPath": "Code/Usql/Players/readview.usql",
"degreeOfParallelism": 2,
"priority": 100,
"scriptLinkedService": {

"referenceName": "AzureDataLakeStore1",
"type": "LinkedServiceReference"

}
}

Copy and execute activities also implement several parameters using the policy element.
These parameters are listed in table 10.3.

Table 10.3 Policy elements

Element Type Description

timeout Timespan d.hh.mm.ss, e.g. One day, 12 hours, 30 mins, 5 secs
would be 1.12.30.05.

retry Integer Maximum retry attempts, specify 0 for no retries

retryIntervalInSeconds Integer Delay between retries

secureOutput Boolean Save output values in logs

secureInput Boolean Save input values in logs

295Running an ADLA job
Some activities take parameters as input, or generate values from lookups or responses
from external services. With the secureOutput and secureInput elements, you can
prevent these values from being entered in the ADF execution logs.

 Execute activities have some common elements. Because all activities use a type
value, you need to look up the one that matches the activity. For the U-SQL job, the value
is DataLakeAnalyticsU-SQL. Finally, most execute activities use the linkedServiceName
element to specify what service to connect to for execution. The referenceName specifies
the name of the linkedservice, and the type identifies the element as a linkedservice.

"linkedServiceName": {
"referenceName": "AzureDataLakeAnalytics1",
"type": "LinkedServiceReference"

}

The following listing shows the entire pipeline and activity JSON definition file.

{
"name": "pipeline2",
"properties": {

"activities": [
{

"name": "U-SQL1",
"type": "DataLakeAnalyticsU-SQL",
"dependsOn": [],
"policy": {

"timeout": "0.01:00:00",
"retry": 1,
"retryIntervalInSeconds": 60,
"secureOutput": false,
"secureInput": false

},
"userProperties": [],
"typeProperties": {

"scriptPath": "Code/Usql/Players/readview.usql",
"degreeOfParallelism": 2,
"priority": 10,
"compilationMode": "Semantic",
"scriptLinkedService": {

"referenceName": "AzureDataLakeStore1",
"type": "LinkedServiceReference"

}
},
"linkedServiceName": {

"referenceName": "AzureDataLakeAnalytics1",
"type": "LinkedServiceReference"

}
}

],
"annotations": []

}
}

Listing 10.28 Pipeline and activity definition file

The name of the
ADLA linkedservice

Use LinkedServiceReference.

296 CHAPTER 10 Service integration with Azure Data Factory
USING AZURE POWERSHELL

You can upload this JSON configuration file to Azure Cloud Shell just as you did for
the AKV and ADLS linkedservices. Then you can run the Set-AzDataFactoryV2-
Pipeline command to create the pipeline and U-SQL job activity. The following list-
ing shows the Azure PowerShell script to create the pipeline.

Set-AzDataFactoryV2Pipeline -ResourceGroupName "ade-dev-eastus2"

➥ -Name "pipeline2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -File "~/adf/pipeline2.json"

10.5 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create and schedule an ADF pipeline.

10.5.1 Exercise 1

In chapter 4, you learned about the zones framework for structuring a Data Lake store.
A fundamental part of the framework involves loading data into a “staging” folder first.
Any data cleaning and validation occurs on these files, before approved files are loaded
to the “raw” folder. In some scenarios, the original data files delivered to staging are
ready for use. Given valid CSV files in Data Lake adedeveastus2, design a pipeline with a
single activity that copies files from folder /staging/players/v2 to /raw/players/v2.

SOLUTION

The solution resembles the copy pipeline you saw in the chapter. The copy pipeline
uses a copy activity, two datasets to define the copy action and file paths, and two
linkedservices.

 For this scenario, the two datasets would use the same ADLS linkedservice. Create
two binary datasets to point to each of the folder locations.

{
"name": "Binary1",
"properties": {

"linkedServiceName": {
"referenceName": "AzureDataLakeStore1",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "Binary",
"typeProperties": {

"location": {
"type": "AzureDataLakeStoreLocation",
"folderPath": "/staging/players/v2"

}
}

}
}

Listing 10.29 Creating a new pipeline with Azure PowerShell

297Exercises
Create a pipeline with the copy activity, using the datasets. This pipeline and activity
look just like the pipeline for copying from the Files storage service, except the source
element refers to an ADLS store.

"source": {
"type": "BinarySource",
"storeSettings": {

"type": "AzureDataLakeStoreReadSettings",
"recursive": true

}
}

10.5.2 Exercise 2

The File Copy pipeline for Facilities has entered production, and the new files are
available in ADLS daily. You have been asked to schedule a U-SQL job after the
copy runs, to detect suspicious activity. Given a U-SQL script in the ADLS store at
/Code/Usql/Facilities/dailycheck.usql, add an ADLA U-SQL job activity to the File
Copy pipeline. Set the U-SQL job to run on successful completion of the copy activity.

SOLUTION

You’ve seen both the copy and U-SQL job activities. The activities element of the
pipeline properties is an array, and can define multiple activities. You can add a new
U-SQL job activity to the array.

"properties": {
"activities": []

}

The key item to add is the dependsOn element.

"dependsOn": [
{

"activity": "Copy1",
"dependencyConditions": [

"Succeeded"
]

}
]

Add the dependsOn element to the U-SQL job activity, and reference the File Copy
activity.

{
"name": "U-SQL1",
"type": "DataLakeAnalyticsU-SQL",
"dependsOn": [

{
"activity": "Copy1",
"dependencyConditions": [

"Succeeded"
]

298 CHAPTER 10 Service integration with Azure Data Factory
}
],
"typeProperties": {

"scriptPath": "/Code/Usql/Facilities/dailycheck.usql",
"scriptLinkedService": {

"referenceName": "AzureDataLakeStore1",
"type": "LinkedServiceReference"

}
}
}

Summary
 ADF uses JSON configuration files to define the steps and connections to move

and transform data. These configuration files are both the output of the
authoring GUI, and the input for the execution engine. The ADF service can
be configured by modifying the JSON files.

 ADF uses AKV to securely store secrets. Using AKV keeps passwords, keys, and
other secrets out of the JSON configuration files.

 ADF has separate resources for connections, data definitions, actions, and sched-
uling. Building a pipeline calls for creating the resources in a specific order.

Managed SQL with
Azure SQL Database
In the previous chapter, you learned how to create a scheduled pipeline for pro-
cessing data in Azure. Azure Data Factory lets you automate the common steps in
the analytics processing workflow. In chapter 6, you saw another piece of the work-
flow, with Stream Analytics calculations that flowed into a SQL Server database.

 In this chapter, you’ll learn more about the Azure SQL Database (SQLDB).
You’ll learn how SQLDB abstracts the underlying SQL Server to make complex
functionality work with only a few clicks. You’ll create a highly available database,
and learn how to balance cost and performance. You’ll work through some of the
most common tasks in working with SQLDB. By the end, you’ll have a system ready
to support end users with analytic queries in SQL.

This chapter covers
 Creating a highly-available distributed Azure SQL

database

 Restoring an Azure SQL Database

 Moving an Azure SQL Database between
subscriptions

 Optimizing costs for Azure SQL Database
299

300 CHAPTER 11 Managed SQL with Azure SQL Database
 Relational databases form an important part of the Lambda architecture. Both the
Speed layer (powered by Stream Analytics) and the Batch layer (powered by Data
Lake Analytics) output data. The processing in these layers is defined by investigating
and analyzing data output by these systems, which then feeds new iterations of pro-
cessing. Resulting data products can themselves can be delivered as text files and as
database tables. Text files serve well for machine processing, and end users with SQL
knowledge can use data stored in relational databases. Data products, in both text files
and database tables, make up the output of the Serving layer (see figure 11.1).

With the PaaS model of Azure SQL Server, you can add, copy, and remove databases
on demand. This makes it easier to support the Serving layer of your analytics sys-
tem. You can segregate users and data products, run short-lived projects, and respond
to increased data usage by end users. Let’s see what’s involved in spinning up a
new SQLDB.

Data Lake
store

Data Lake
Analytics

Event
Hubs

Stream
Analytics

SQL
Database

SQL
Database

User query

Data
Factory

Data Lake
Analytics

Data Lake
Store

Blob
Storage

Event
Hubs

Blob
Storage

Batch layer

Speed layer

Serving layer

New data

Power
BI

Azure
Functions

Machine
Learning

CSV TXTJSON

Figure 11.1 Lambda architecture with Azure PaaS services

301Creating an Azure SQL Database
TIP You can find the code listings in the GitHub repository for this book at
https://github.com/rnuckolls/azure_storage.

11.1 Creating an Azure SQL Database
The development team wants a SQL Server database that will eventually be hosted in
Azure. They want to use it for development work ahead of a production deployment.
You’ve been asked to create the database in Azure. How can you fulfill this request?

WARNING Like most services in Azure, running SQL Server databases comes
with a cost. Without controls in place, and consideration of usage and ROI,
you can easily spend thousands of dollars a month for little return. Later sec-
tions of this chapter cover optimizing costs for SQLDB.

There are several options for running SQL Server databases in Azure: single databases,
multiple databases, warehouses, and VMs. For most users, the choice of what type of SQL
Server database can be simplified to a few questions, which are shown in figure 11.2.

The underlying type of SQL Server instance is the main determining factor.

 The SQL Managed Instance hosts multiple databases on a single instance that
supports cross-database update queries and shared SQL Server logins between
databases. If you need these functions, choose SQL Managed Instance. This ser-
vice is limited to 8 TB databases, so if you need larger databases, select the
Azure SQL Server VM Set.

 The SQL Server VM Set provides redundancy, and you can add drives to increase
storage for your databases.

SQL

Database

SQL Data

Warehouse

SQLDB

elastic pool

Managed

Instance
SQL Server

VM Set
SQL

Hyperscale

Do you need...

Cross-database
update queries?

Yes No

Legacy app
installations?

Yes No

>8 TB of
DB storage?

Yes No

Long-running
analytics

workloads?

Yes No

Multiple

databases?

Yes No

Figure 11.2 Choosing the SQL Server installation in Azure

302 CHAPTER 11 Managed SQL with Azure SQL Database
 The Azure SQL Server instance runs the engine behind SQLDB, Synapse
(SQLDW), and SQLDB Hyperscale.

– Azure SQLDB provides the most cost-effective database.
– Hyperscale moves data storage for SQLDB onto separate storage nodes,

backed by Azure Storage infrastructure. This allows SQLDB to grow beyond
the normal 4 TB limit.

– SQLDW similarly separates storage, and adds the option of multiple com-
pute nodes to support long-running and complex queries used in analytics
workloads.

NOTE You can install SQL Server on an Azure virtual machine (VM) if you need
100% compatibility with your on-premises installation, or want total control of
upgrades and versions. You can also install applications on the same VM as the
SQL Server. But you must manage security updates for the VM and SQL Server,
and handle administration duties like backups and recovery planning. The
SQL Server VM Set falls under the Infrastructure-as-a-Service model; this book
focuses on using the Platform-as-a-Service model.

For the new database, choose a SQLDB on an Azure SQL Server instance. This will
minimize costs during development as well as management overhead. Every database
needs a SQL Server instance, so let’s create one now.

11.1.1 Create a SQL Server and SQLDB

As you recall from chapter 6, you can create a SQLDB quickly with a few Azure Power-
Shell commands or by using the Azure portal. (If you’ve already created a SQLDB,
you can skip to the next section and learn more about high-availability configurations.
If not, create a SQLDB now, following the guidance in chapter 6.)

11.2 Securing SQLDB
Every Azure SQL Server requires an administrator account. This is the equivalent of
the system administrator (sa) login on standard SQL Servers. Controlling administra-
tive access reduces attack paths on the database. You cannot disable the sa on Azure
SQL Servers.

 You can, and should, provide a strong password for the Admin account. You can
reset the Admin password at any time from the Azure portal by browsing to the
Overview blade and clicking Reset Password. You need to have the Owner role to
reset the password.

 You can use the Set-AzSqlServer command to reset the Admin password using
Azure PowerShell. Pass the resource group and server name to identify the server.
Then use SqlAdministratorPassword to pass the password. The following listing shows
the command, using Read-Host to get a secure password string from the Azure Power-
Shell console.

303Securing SQLDB
Set-AzSqlServer -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -SqlAdministratorPassword

➥ (Read-Host "Enter Password" -AsSecureString)

IMPORTANT Securing access to data should be a top priority when creating
Azure resources. Although the Azure SQL Server instance runs at no cost,
there is an option for a small cost that brings a big benefit. You can enable
Advanced Data Security (ADS) for $15 per server per month, at time of writ-
ing. ADS includes threat detection alerts, including attempts at SQL injec-
tion, brute force password attacks, and unusual login attempts. Enable it using
Azure PowerShell and the Enable-AzSqlInstanceAdvancedDataSecurity
command. Pass the resource group and the server name.

Enable-AzSqlInstanceAdvancedDataSecurity

➥ -ResourceGroupName "ade-dev-eastus2"

➥ -InstanceName "ade-dev-eastus2-sql"

You can learn more about ADS in the Microsoft documentation at http://
mng.bz/jgw8.

In order to reduce use of the Admin account, Azure SQL Servers let you set an AAD
user or group as a second administrator. Using AAD authentication brings all the ben-
efits of centrally managed AAD accounts to SQLDB, including using AAD to authenti-
cate applications.

 You can set the AAD Admin using the Azure portal or Azure PowerShell. Browse to
the Active Directory Admin blade in the Azure SQL Server and click Set Admin to
select an account or group. In Azure PowerShell, use the Set-AzSqlServerActive-
DirectoryAdministrator command, which takes the resource group and server name.
You provide the name of the AAD account or group using the DisplayName parame-
ter. You can optionally provide a specific AAD principal ID using ObjectId, if more
than one principal matches the DisplayName. The following listing shows this com-
mand in use.

$Group = "Technical Operations"
$GroupId = (Get-AzADGroup -DisplayName $Group).Id
Set-AzSqlServerActiveDirectoryAdministrator -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DisplayName $Group

➥ -ObjectId $GroupId

Listing 11.1 Set the SQL Server Admin password

Listing 11.2 Set an AAD group as the SQL Server admin

Set the name of the AAD
group as a variable for reuse.

Look up the group
by name and get ID.

Name of the group

Use ID to specifically identify principals
with the same DisplayName.

304 CHAPTER 11 Managed SQL with Azure SQL Database
With an AAD admin account, you can connect to your SQLDB with tools like SSMS or
the Azure portal Query Editor to create logins and DB users. Performing routine data-
base actions with non-admin accounts reduces risks to the system and lowers the
impact of account compromise. Data and system problems can still occur. Let’s look at
some of the functionality available to mitigate risks and impact of these problems.

11.3 Availability and recovery
Developing and implementing a disaster-recovery plan is an important task for data
engineers. At a minimum, you can do the following:

 Ensure backups occur regularly
 Ensure restores from backups result in functioning databases

SQLDB covers the first requirement for you. Databases are backed up with restore
points every 5 minutes. The automated backups include full backups each week, dif-
ferential backups every 12 hours, and log backups every 5 minutes. Backups are kept
for 7 days by default. You can test the backups at any point by restoring to a new
database.

 Every restore of SQLDB is a new database. You pick the point-in-time to restore the
database, and a name for the new database. The new database is always created on the
same SQL Server as the backed-up database. This means that if you delete a SQL
Server in Azure, you won’t be able to restore the databases that were on it. But you can
move SQLDB between SQL Servers easily. Let’s look at this by retrieving a database
copy from production for development work.

11.3.1 Restoring and moving SQLDB

The development team has deployed their new application in production, and the
production SQLDB is accumulating useful data. They want to refresh the develop-
ment SQLDB with a copy of the production data. How can you fulfill this request?

 Copying databases for development is a common use case. Development teams fre-
quently need to troubleshoot issues in production databases, and prefer to not
directly access production servers. This follows a best practice for restricting access to
sensitive production data, and minimizes the risk of errors in production. For an on-
premises SQL Server database, this works as follows:

1 Back up the production database.
2 Optional: restore the backup to new database, remove sensitive data, and make

a new backup.
3 Copy the backup file from production to the development network.
4 Restore the backup over the existing development database of the same name.

This process can include steps for wiping sensitive data and updating data rows with
development values after restore. The process for copying a database in Azure offers
two options: restore backup, and export.

305Availability and recovery

Sp
the
EXPORTING A DATABASE

Exporting a database is similar to making a manual backup of an on-premises data-
base. You select a file name for the export, choose a storage location, and provide an
Admin account. The account must be a server-level admin, because the export removes
database encryption that is managed at the server level. The export process uses Blob
Storage to store the file in .bacpac format. This format can be used to restore a SQLDB
database to an on-premises SQL Server.

Using Azure portal
To export a SQLDB using the Azure Portal, browse to the SQLDB Overview blade and
click Export to show the Export Database blade. Provide the file name, and a target
subscription for the Blobs service to store the file. Select the Azure Storage and Blobs
service to use, and provide the Admin user and password. You can use either AAD
Admin or SQL Admin accounts.

Using Azure PowerShell
You can use Azure PowerShell to export the SQLDB too. When using the New-
AzSqlDatabaseExport command, you provide the resource group, server and database
names, and Admin credentials. The AdministratorLogin parameter accepts either an
AAD account or SQL account. Use a SQL Admin by default, or set AuthenticationType
to ADPassword to use an AAD account. Use AdministratorLoginPassword to pass
the password. (In listing 11.3, the Read-Host command is used to read input for
these values.)

 You must provide the Blobs service path and access when using the Azure Power-
Shell command. The command doesn’t have drop-down choices to select values like
the Portal has. You specify the entire URL to define the location for the bacpac file
using the StorageUri parameter. The URL looks like the following:

https:/ /[STORAGEACCOUNT].blob.core.windows.net/[BLOBSERVICE]/[FILENAME].bacpac

You also need to provide the key to provide access to write the bacpac files to Blob
Storage. Set the key value using StorageKey, and set the key type with StorageKey-
Type. The type can be SharedAccessKey for SAS keys or StorageAccessKey for Storage
access keys. (See chapter 3 for more information on Azure Storage account access.) The
following listing sets a variable for the Storage URL and key, then calls the export
command.

$Blob = "https://adedeveastus2sql.blob.core.windows.net

➥ /backups/playerstats_2020_02_02.bacpac"
$Key = (Get-AzStorageAccountKey -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2sql").Value[0]
New-AzSqlDatabaseExport -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

Listing 11.3 Export a SQLDB bacpac to Blobs storage

The Azure Storage URLThe Blobs service and file name

Get the
Azure Storage

access keys.

ecify
 first
key.

306 CHAPTER 11 Managed SQL with Azure SQL Database

.

S
max

D

➥ -StorageKeyType "StorageAccessKey"

➥ -StorageKey $Key -StorageUri $Blob

➥ -AdministratorLogin (Read-Host "Enter Admin")

➥ -AdministratorLoginPassword (Read-Host "Enter Password" -AsSecureString)

IMPORTING A DATABASE

Importing the bacpac file works the same as exporting, but you need to specify the ser-
vice level of the new SQLDB. The steps in the Azure portal are the same, using
“Import” instead of “Export.” The steps are the same for Azure PowerShell as well, but
include a few extra parameters to specify the size of the new SQLDB.

Using Azure PowerShell
The import function uses the New-AzSqlDatabaseImport command. The same
parameters are used for server and database names, access to storage, and the SQL
Server. The Edition and ServiceObjectiveName parameters set the provisioning
model of the database—either DTU or vCore-based—and the service level. The Data-
baseMaxSizeBytes parameter sets a maximum value for the vCore model database
storage, in bytes. Use a big number for vCore storage. The following listing sets a vari-
able for the Storage URL and key, then calls the import command.

$Blob = "https://adedeveastus2sql.blob.core.windows.net

➥ /backups/playerstats_2020_02_02.bacpac"
$Key = (Get-AzStorageAccountKey -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2sql").Value[0]
New-AzSqlDatabaseImport -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

➥ -Edition "Standard" -ServiceObjectiveName "S0"

➥ -DatabaseMaxSizeBytes 1

➥ -StorageKeyType "StorageAccessKey"

➥ -StorageKey $Key -StorageUri $Blob

➥ -AdministratorLogin (Read-Host "Enter Admin")

➥ -AdministratorLoginPassword (Read-Host "Enter Password" -AsSecureString)

NOTE At the time of writing, the DatabaseMaxSizeBytes parameter has no
effect on SQLDBs using the DTU model. The maximum DB size is a function
of the edition and service level. You can’t use Azure PowerShell to import a
bacpac file to a Managed Instance. You must use SSMS or another tool.

You can import bacpac files to the same or different SQL Servers, even across sub-
scriptions. When using the Azure portal, the logged-in account should have at least
contributor access to the Azure Storage account, to read the access keys. The SQL

Listing 11.4 Import a SQLDB bacpac to SQL Server

Choose the Storage access key.

Set the key and file URL.

Read the Admin user and password
from the PowerShell console.

The Azure Storage URL
The Blobs service
and file name

Get the Azure Storage access keys.

Specify the
first key.

Select the Standard edition, S0
level for an inexpensive SQLDB

et the
imum

B size.
Choose the Storage access key.

Set the key and file URL.

Read the Admin user and password
from the PowerShell console.

307Availability and recovery
Server target has a special blade in the Azure Portal to monitor the import or export
processes. The Import/Export History blade shows the status and progress of imports
and exports.

 You can create security boundaries in Azure using resource groups and subscrip-
tions. These boundaries can define and enforce separation of logical environments.
Users can be given access to Azure services at the service level, resource group level,
and subscription level. The export and import process lets you copy SQL Databases
to different resource groups and different subscriptions, as long as you have access
to both.

 Azure SQLDB also maintains automatic backups that can be restored directly
to the same server. Let’s see how the copy process works when using point-in-time
backups.

USING A DATABASE RESTORE AND MOVE

In the Azure portal, you restore a SQLDB from the SQLDB’s Overview blade, or the
host SQL Server’s Deleted Databases blade. Deleted SQLDBs can be restored on the
SQL Server where they were hosted for seven days after deletion, when the last backup
is automatically removed.

 Restoring a SQLDB from backup takes only a couple steps. You choose the point-
in-time for the backup, the provisioning model and service level of the SQLDB, and a
name for the new SQLDB. When restoring from earlier than the 7-day window, you
choose a backup by timestamp.

Using Azure portal
In the Azure portal, select the SQLDB Overview blade and click Restore. In the
Restore blade, select either Point-in-Time or Long-Term Backup Source. Choose a
name for the new database and a timestamp for the restore target. Select the provi-
sioning model and service level for the new database. You can optionally chose to add
the new database to an elastic pool.

NOTE An elastic pool lets multiple databases share a single service level’s
resources. We’ll talk more about elastic pools later in the chapter.

USING AZURE POWERSHELL

Restoring a database with Azure PowerShell works much the same as with the Azure
portal. Because you don’t have the GUI to populate drop-down lists for you, you need
to look up the database and the available restore times. You also need to find the ID of
the database that generated the backups. Listing 11.5 combines all these steps. The
following paragraphs explain each PowerShell command.

 You can use Get-AzSqlDatabase to look up the database properties. Pass the
resource group, server name, and database name. Capture the database ID for later
use. You can get a list of database restore points, or point-in-time range, using Get-
AzSqlDatabaseRestorePoint. Pass the resource group, server name, and database
name. The command output for a SQLDB is the earliest time when point-in-time
restores are available, and looks like the following:

308 CHAPTER 11 Managed SQL with Azure SQL Database
ResourceGroupName : ade-dev-eastus2
ServerName : ade-dev-eastus2-sql
DatabaseName : Playerstats
Location : East US 2
RestorePointType : CONTINUOUS
RestorePointCreationDate :
EarliestRestoreDate : 2/8/2020 11:06:06 AM
RestorePointLabel :

Restores are available for any time between the EarliestRestoreDate and the current
time. The restore will use the latest point-in-time backup earlier than the chosen time.

 Restore-AzSqlDatabase uses the database ID and the restore time to locate a
restore point and create a new database. To use a point-in-time backup, add the
FromPointInTimeBackup flag, and pass the time with PointInTime. As with New-
AzSqlDatabaseImport, pass the resource group, server name, edition, and service
level. The TargetDatabaseName parameter, rather than DatabaseName, sets the new
database name.

 Listing 11.5 combines all these commands into a single script for a specific date.
First, get the properties of the database to restore and save them in a variable. Second,
review the available point-in-time date range. Third, create a DateTime variable using
the Get-Date command, using values in the range. Last, restore the database using
the variables.

$Db = Get-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql" -DatabaseName "Playerstats"
Get-AzSqlDatabaseRestorePoint -ResourceGroupName $Db.ResourceGroupName

➥ -ServerName $Db.ServerName -DatabaseName $Db.DatabaseName
$Date = Get-Date -Year 2020 -Month 2 -Day 2 -Hour 13 -Minute 0 -Second 0
Restore-AzSqlDatabase

➥ -FromPointInTimeBackup -PointInTime $Date

➥ -ResourceGroupName $Db.ResourceGroupName

➥ -ServerName $Db.ServerName

➥ -TargetDatabaseName "Playerstats_2020_02_02_13_00"

➥ -ResourceId $Db.ResourceID

➥ -Edition "Standard" -ServiceObjectiveName "S0"

The restore option creates a copy of the SQLDB up to the last backup. You can use
the copy command to get a copy of the SQLDB current up to when the action was
completed.

CREATE THE DATABASE COPY

The copy command for SQLDB is the easiest method for moving a database between
SQL Servers in the same subscription. In the Azure portal, you start with the Overview
blade for the database you wish to copy, and click Copy. You need to choose only the

Listing 11.5 Restore a SQLDB to SQL Server using a point-in-time backup

Get the database properties,
including the ID.

Set the type of backup source
and the target time.

Use the Db variable property,
because it’s there.

Choose a name
different from the
original database.

The database ID is a ResourceId property.

309Availability and recovery
new database name, the target SQL Server, and the service level of the new SQLDB.
You can choose a target SQL Server in any resource group your account has access to.
For vCore-based databases, you chose the vCores; for DTU-based, you chose the ser-
vice level objective. The SQLDB edition remains the same for the new copy.

 The copy command New-AzSqlDatabaseCopy is easier to use than the restore com-
mand in Azure PowerShell. It takes the resource group, server name, and database
name of the source SQLDB. Provide the target SQLDB specifics using CopyResource-
GroupName, CopyServerName, and CopyDatabaseName. Listing 11.6 demonstrates copying
a SQLDB from a production resource group called ade-prod-eastus2 to a develop-
ment resource group called ade-dev-eastus2. To run this command, you need a sec-
ond resource group and SQL Server to represent different environments.

New-AzSqlDatabaseCopy -ResourceGroupName "ade-prod-eastus2"

➥ -ServerName "ade-prod-eastus2-sql" -DatabaseName "ade-prod-playerstats"

➥ -CopyResourceGroupName "ade-dev-eastus2"

➥ -CopyServerName "ade-dev-eastus2-sql"

➥ -CopyDatabaseName "ade-dev-playerstats_2020_02_02_13_00"

➥ -ServiceObjectiveName "S0"

Copying databases across resource groups or servers, potentially security boundaries,
works fine if no data must be cleansed before leaving the original security zone.

 Database copies come from a recent snapshot of the database. Database restores
come from the last week of managed full, differential, and log backups. If you need to
get database copies from more than seven days in the past, SQLDB makes adding a
back-up rotation easy.

LONG-TERM BACKUP RETENTION

SQL Server long-term retention policies let you keep backups well beyond the seven-day
window. Storage for backups is provisioned in the background. The storage is RA-GRS
type for data center redundancy. Storage costs accrue for the backups after seven days.

 A basic policy can extend the backup retention up to 35 days, and also allows for a
grandfathering rotation of backups. With this rotation, you can keep the first of the
week’s backups for N number of weeks, the first of the month’s backups for N number
of months, and the first of the year’s backups for N number of years. You can use these
in any combination. If you use all three rotations, with 2-year, 12-month, 4-week rota-
tions, after a while you could have the following backups available. Table 11.1 counts
the backups available over time.

 By the end of week 1, a point-in-time restore is available for every 5-minute
period. By the end of week 2, point-in-time restores cover both weeks, and a backup
of the previous week is available. By the end of week 5, point-in-time restores cover 4
weeks, 4 new weekly restores are available, and a new monthly restore is available. By
the end of 27 weeks, 6 monthly restores are available. By the end of 53 weeks, the
most recent 3,360 point-in-time restores, the last 4 weeks’ restores, the last 12 months’

Listing 11.6 Create a SQLDB on another SQL Server using the copy command

310 CHAPTER 11 Managed SQL with Azure SQL Database
restores, and 1 restore from the previous year is available. You can expect the monthly
storage cost for this kind of rotation for a database size N in GB to be around the
following:

(N*4*2(4 full weekly + differential point-in-time) + N*4(full weekly)
+ N*12(full monthly) + N(full yearly) - N*2(included)) * $0.035

You can create the retention policy using the Azure portal. You configure the policy
using the SQL Server’s Manage Backups blade. Select one or more databases on the
SQL Server to participate in the policy, and click Configure Retention. You can
extend the built-in point-in-time window to 14, 21, 28, or 35 days. This gives you point-
in-time restores up to 5 weeks in the past. You can also add long-term retention to
weekly backups at the week, month, and year levels. The yearly retention level lets you
choose which week of the year to retain, from 1st to 52nd. The first day of the month
at the monthly level is retained. Choose the retention at each level in days, weeks,
months, or years. Use Apply to save the policy when done.

 To add a retention policy with Azure PowerShell, use Set-AzSqlDatabaseBackup-
ShortTermRetentionPolicy for point-in-time retention, and Set-AzSqlDatabase-
BackupLongTermRetentionPolicy for long-term retention. The commands really are
that long. You provide the resource group, server name, and database name for the
policy. To extend the point-in-time retention, specify the days using the Retention-
Days1 parameter, using a value of 14, 21, 28, or 35. For long-term retention, you can
set weekly, monthly, and yearly periods separately or all at once. WeeklyRetention,
MonthlyRetention, and YearlyRetention are self-evident. When setting the yearly
retention period, add a WeekOfYear parameter between 1 and 52 to choose what
weekly backup to retain. The retention parameters use an ISO 8601 pattern for speci-
fying the duration, as follows, for either (Y)ears, (M)onths, or (W)eeks:

P(n)Y(n)M(n)W

Use an integer to specify the period in days. The following listing sets both the point-
in-time retention period and a long-term retention policy for 8 weekly, 12 monthly,
and 2 yearly backups.

Table 11.1 Long-term backup rotation

Weeks Point-in-time Weekly Monthly Yearly

1 480*7, 3360

2 480*14, 6720 1

5 480*28, 13440 4 1

27 480*28, 13440 4 6

53 480*28, 13440 4 12 1

311Availability and recovery
$Db = Get-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql" -DatabaseName "ade-dev-playerstats"
Set-AzSqlDatabaseBackupShortTermRetentionPolicy
-ResourceGroupName $Db.ResourceGroupName
-ServerName $Db.ServerName -DatabaseName $Db.DatabaseName
-RetentionDays 28
Set-AzSqlDatabaseBackupLongTermRetentionPolicy

➥ -ResourceGroupName $Db.ResourceGroupName

➥ -ServerName $Db.ServerName -DatabaseName $Db.DatabaseName

➥ -WeeklyRetention 70

➥ -MonthlyRetention P52W

➥ -YearlyRetention P2Y -WeekOfYear 1

Once you have safeguards in place against data loss, you can look at protecting your
SQLDB from outages. The top performance tiers come with active replication, and
the standard tiers with cloud-based system redundancy. You can also add regional rep-
lication as another layer of redundancy, to ensure access to your SQLDB.

11.3.2 Database safeguards

Business continuity plans for data consist of strategies to maintain access to business
data assets during an outage. Disaster recovery plans define the technical solutions that
come out of these strategies. For example, to deal with a lost or deleted database
event, a strategy would be to maintain backups of the database. To deal with a data-
center outage, another strategy would be to maintain a second data center. The con-
crete decisions of who, how, where, and how much are covered by the disaster recov-
ery plan.

 Azure SQLDB covers many of the typical requirements for disaster recovery by
default. These include accidental data loss, hardware failure, and data center outages.
Cluster management of the SQL Server process allows for automatic recovery during
updates or server failures. Redundant storage for data and log files prevents disk fail-
ures. Seven days of backups and 5-minute point-in-time targets help you cover most
restore point objectives (RPO) for data loss. Geo-replication of backups ensures even
entire regional outages won’t prevent getting your database back online.

NOTE Each region in Azure is made of multiple data centers. Services in
Azure have redundancy within a data center and between data centers. You
can choose which region to host your Azure services, but you can’t see which
data center is running your instances.

Defining an RPO lets you judge if your backup windows meet the requirements of the
disaster recovery plan. The RPO represents the most data the business can lose while
the database is offline. Ensuring availability of backups is the main step to ensuring
continuity of business data. Defining a recovery time objective (RTO) lets you judge

Listing 11.7 Configure long-term backup retention for SQLDB

35 days is the longest
point-in-time window.

Set 8 weeks of
weekly retention.

Keep 1 year of
monthly backups.Keep 1 backup for 2 years.

312 CHAPTER 11 Managed SQL with Azure SQL Database
between options for restoring data access. The RTO for a database is the maximum
time allowed for restoring access.

 You’ve seen two methods already for meeting an RTO and RPO for a disaster. You
can export a backup and restore the database to the same or a different server at any
time. This can be automated but, depending on the RPO, the data could be too old,
and the import is slower than a standard restore. You can restore point-in-time back-
ups to the same server. This will let you recover a deleted database or recover deleted
data, but it doesn’t work if the server is unavailable due to a data-center outage. To
recover a database when the host data center is unavailable, Azure replicates SQLDB
backups between data centers. You can create a new database from the most recent
replicated backup into a new data center. You can also choose a backup stored by a
long-term retention policy. Either option can meet your needs, depending on your
RTO and RPO. Or neither could meet your needs, if the restore time is greater than
the RTO.

 Suppose the Technical Operations team wants to test a catastrophic disaster recov-
ery scenario in Azure, including your Azure SQL Database. In this scenario, the pri-
mary data center will go offline, and you have an RTO of four hours and an RPO of
one hour. Restoring your 1500 GB database takes six hours. How can you configure
your database to meet these requirements?

 When neither automated imports nor restores from backup are sufficient to meet
your disaster recovery targets, SQLDB offers another option: geo-replication maintains a
second read-only copy of the database in the same region, or a separate region. The
geo-replicated database synchronizes all transactions with the secondary database, and
can be manually failed over to the secondary at any time. Promoting the secondary to
primary takes less than a minute, and the data loss window is less than five seconds.
This means you can have a functioning database available again very quickly, and well
within your plan’s RTO and RPO. Let’s see what’s involved in configuring a SQLDB
for geo-replication.

SET UP GEO-REPLICATION

In order to configure geo-replication, you need an existing database. You also need a
SQL Server instance in the target region. Using the Azure portal, you can create this
SQL Server while setting up geo-replication. In Azure PowerShell, you need to create
the SQL Server as a separate step.

 Geo-replication creates a second read-only copy of the database. If your applica-
tion supports it, you can use the secondary for read operations. This lets you scale out
read access to the database. Reading from the secondary reduces traffic on the pri-
mary database and table and row contention during data operations. The database
runs at the selected service level and accrues costs at the hourly rate for that level. You
can set the service level to handle the expected use.

NOTE Geo-replication creates copies of the database across regions. It’s avail-
able at the basic and higher levels of SQLDB. The Premium and Business
Critical provisioning modes include replicating databases to different data

313Availability and recovery
centers within the same region. This replication is similar to the Always On
Availability Groups for on-premises SQL Server. You’ll see more about provi-
sioning modes and service tiers for SQLDB later in the chapter. You can read
more about SQLDB’s high availability features at http://mng.bz/WPol.

You configure geo-replication for each SQLDB as needed. First, choose a region to
target. You can target a region near your users or applications to reduce latency for
read access, or a region farther from you primary region to reduce the likelihood of
the same outage befalling both regions. Next, create the SQL Server in that region.
Last, create the secondary database by selecting the region, SQL Server, and service
level. The secondary database will be created, loaded with data from the primary data-
base, and synchronization will begin. Figure 11.3 shows the relationship between SQL
Servers and databases using geo-replication.

The time to bring the secondary database online depends on the database size, the
service level of the primary and secondary, and the latency between the regions. You
can shorten the creation time by increasing the secondary’s service level when starting
geo-replication setup.

IMPORTANT Active geo-replication of a database requires an available source
database and some time to create the secondary database. Don’t wait until

East US

Central US

North Central US

South Central US

West US Secondary
Region

East US 2

Primary
Region

Secondary
Region

West US 2

West Central US

SQL
Database

SQL
Server

SQL
Database

SQL
Server

SQL
Database

Secondary DB instance
on SQL Server East US

Geo-replication
to secondary

Primary DB instance
on SQL Server West Central US

Choose one region
to host secondary DB.

1

2

3

4

Figure 11.3 Geo-replication of SQLDBs

314 CHAPTER 11 Managed SQL with Azure SQL Database
after an outage occurs to configure it! Once the secondary database is cre-
ated, transactional replication will keep it up to date. You can reduce the ser-
vice level of the secondary to reduce ongoing costs.

To configure geo-replication in the Azure portal, start from the SQLDB to replicate.
Browse to the Geo-replication blade, and select the target region from the list. The
Create Secondary blade will open, letting you select or create the SQL Server in the
target region, and select the service level. Clicking OK will create the secondary data-
base and begin the synchronization process.

 Configuring geo-replication in Azure PowerShell has more steps. First, create a
new resource group. Because this SQLDB, and potentially other Azure resources, will
be in a separate region, you should group them together. Next, create a new SQL
Server in the target region, in the new resource group. Last, configure the replication.

 The New-AzSqlDatabaseSecondary command configures the replication. The
parameter list is very similar to that for New-AzSqlDatabaseCopy because they do simi-
lar tasks. You provide the source database values and the target server values. The rep-
lication command gives the target server values using PartnerResourceGroupName
and PartnerServerName. Set the service level of the new database with Secondary-
ServiceObjectiveName. You can optionally use a different name for the replicated
database, passing the new name with PartnerDatabaseName. If you leave it off, the
name of the source database will be used.

 The primary difference between the commands deals with read access to the repli-
cated database. You can disable read access by passing No with AllowConnections. Pass
All to allow read connections. You cannot disable read access when using the Azure
portal. Listing 11.8 demonstrates creating the new resource group and server, then
configuring geo-replication on the Playerstats database. You can compare to listing 11.6
to see the similarities with New-AzSqlDatabaseCopy.

New-AzResourceGroup -Name "ade-dev-westus2" -Location "West US 2"
New-AzSqlServer -ResourceGroupName "ade-dev-westus2"

➥ -Location "West US 2" -ServerName "ade-dev-westus2-sql"

➥ -ServerVersion "12.0"

➥ -SqlAdministratorCredentials (Get-Credential)
New-AzSqlDatabaseSecondary -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

➥ -PartnerResourceGroupName "ade-dev-westus2"

➥ -PartnerServerName "ade-dev-westus2-sql"

➥ -AllowConnections "All"

➥ -AsJob -SecondaryServiceObjectiveName "S0"

Listing 11.8 Create new Azure SQL Server

Provide a server admin credential. This can
match the primary server or be different.

The partner resource group
contains the target SQL Server.

Use the new SQL Server.

Allow read access
to the database.

Submit synchronization
command as a job.

315Availability and recovery
Replication takes some time to completely initialize. Once the databases are in sync,
transactions are replicated automatically. With the databases synchronized, you can
use the Azure portal to collect the connection string to each database. Browse to the
database and click Connection String in the left nav or on the Overview blade. The
connection strings have a common form, as follows:

Server=tcp:[SERVERNAME].database.windows.net,1433;

➥ Initial Catalog=[DBNAME];Persist Security Info=False;

➥ User ID=[USER];Password=[PASSWORD];

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;

If you use the same database name, you can vary the server name and use the same
connection string. The connection string drops the user and password parameters
when using AAD authentication.

Data Source=tcp:ade-dev-eastus2-sql.database.windows.net;

➥ Initial Catalog=ade-dev-playerstats;

➥ MultipleActiveResultSets=False;Encrypt=True;

➥ TrustServerCertificate=False;Connection Timeout=30;

➥ Authentication=Active Directory Integrated;

If you don’t use the server administrator account to connect to the SQLDB—and it’s a
best practice not to—you need to create contained users in the database that you are
replicating. The database replication does not include the “master” database nor the
SQL logins contained there. This is similar to creating regular database users, but
without linking them to a SQL login.

 You can create a SQL user with a local password, or use an AAD linked user. You
must connect to the database in order to execute these commands. Use your pre-
ferred SQL Server tool, like SQL Server Management Studio, Visual Studio, or the
SQLDB Query Editor built into the Azure portal. Use the SQL Server Admin account
to connect to the database and create new users. To create an AAD linked user, you
must connect to the SQLDB with an AAD account, not the SQL Server Admin
account. The following script adds an AAD group as a user in the connected database,
then adds the user to the db_owner SQL role. The FROM EXTERNAL PROVIDER option
denotes an AAD account:

CREATE USER [Technical Operations] FROM EXTERNAL PROVIDER;
EXEC sp_addrolemember [db_owner], [Technical Operations];

Now you have an online copy of your database, ready to use in case of an outage. But
what happens in an outage? During an outage, the primary database is unavailable.
The secondary remains online, and does not become primary automatically. With
geo-replicated SQLDBs, the secondary database is read-only. You must choose if and
when to fail over to the secondary to let clients read and write to it. Failover pro-
motes the secondary database to the primary, and requires changing your application

316 CHAPTER 11 Managed SQL with Azure SQL Database
connection string. To complete our disaster recovery scenario, let’s promote the sec-
ondary database.

FAILOVER OF REPLICATED DATABASE

With SQLDB geo-replication, the secondary database is online and synchronized auto-
matically. When you fail over to the secondary database, it becomes the primary. The
former primary becomes the secondary and begins replication once it’s back online.

NOTE SQLDB in a geo-replicated pair can also add a failover policy, called a
failover group. With a failover group, a geo-replicated database can fail over
automatically during an outage. This requires at least one hour of downtime
before failover will initiate. See http://mng.bz/8pD5 for more information.

Failover can be initiated in the Azure portal. Browse to the SQLDB, either the primary
or secondary, and click Geo-Replication to open the Geo-Replication blade. Click the
listed secondary database to open the Failover and Replication blade. Click Forced
Failover to begin failover. It should take less than 30 seconds, regardless of database
size or location.

 Using Azure PowerShell to trigger the failover works a bit differently. The Set-
AzSqlDatabaseSecondary command specifies the secondary database name, resource
group, and server. You identify the primary database resource group using Partner-
ResourceGroupName. The parameter Failover is required to initiate the failover. The
following listing shows failover from a SQL Server in the East US 2 region to a second-
ary database hosted in the West US 2 region.

Set-AzSqlDatabaseSecondary -PartnerResourceGroupName "ade-dev-eastus2"

➥ -Failover

➥ -ResourceGroupName "ade-dev-westus2"

➥ -ServerName "ade-dev-westus2-sql"

➥ -DatabaseName "ade-dev-playerstats"

You can also add the parameter AllowDataLoss to force a failover. When testing a
disaster recovery scenario, Azure PowerShell allows a more graceful failover, because
you can wait for transactions and synchronization to complete.

 Once the secondary database has been promoted, it will be fully active and allow
read and write operations. You may need to perform operations against other Azure
services, like updating Stream Analytics connections or changing SQL Server linked
services in Data Factory. Once service is restored in the region, the formerly primary
SQLDB will assume the secondary role. Synchronization will bring the two databases
back to a matching state. You can then fail over again.

 Geo-replication provides a method for rapid recovery of database function for lit-
tle additional effort. It’s easy to test. But how will you know when to use it? In the next
section, you’ll see how to create monitors that alert you to problems in your database.

Listing 11.9 Initiate SQLDB failover to secondary

Set the resource
group of the

current primary
server.

Start a planned failover.

Use the current
secondary database
name, which is
normally the same
as the primary.

317Availability and recovery
11.3.3 Creating alerts for SQLDB

Azure services provide a set of common alert features for monitoring the health of
your service. The Azure portal includes a common interface for creating alerts in each
service. You can access this from the Monitoring > Alerts blade of the specific service.

 Azure alerts consist of two parts:

1 The alert rule
2 The alert action

You define rules based on a metric specific to the service and a threshold for activa-
tion. You can choose specific types of notification actions, including the following:

 Email
 SMS
 Phone call
 Azure App push notification
 Webhook
 Automation runbook
 Azure Function
 Azure LogicApp
 IT Service Management endpoint call

One or more actions are bundled into an action group. The rule triggers the action
group, which executes the actions. The Alerts service comes with an Owner action
group by default, which notifies the resource owner.

 Each action uses specific configuration options, and most require external services
to work. SMS and Phone each take a country code and phone number. SMS notifica-
tions allow the recipient to unsubscribe. Email actions include sending email to static
targets, and to a configured role on the service, like owner, contributor, or reader. You
can send notifications to the Azure mobile app for a specific user. You can POST to a
webhook/website endpoint, sending a JSON payload with alert details. The automa-
tion runbook, Function, and LogicApp actions let you build complex responses to
alerts with PowerShell runbooks, C# functions, or codeless apps, respectively.

TIP The Azure mobile app lets you review and manage your Azure resources
from your mobile device. You can download it at http://mng.bz/yrZd.

You can create new alert rules and manage existing alerts from the Alerts blade. Use
New Alert Rule to open the Create Rule blade. Here you can select the service or
resource to monitor; it defaults to the service you were viewing. Add a condition,
which selects a metric called a Signal, with its threshold for activation. Also select an
action group to send the alert to.

 The condition evaluates the metric over an aggregation window at a particular
rate. You can choose an aggregation of average, minimum, or maximum. By default

318 CHAPTER 11 Managed SQL with Azure SQL Database
the window is 5 minutes, checked every minute. You can choose a window up to 24
hours and a rate of every 1, 5, 15, 30, or 60 minutes.

 Each service includes its own metrics for monitoring. SQLDBs include 32 different
signals. These include CPU percentage, DTU percentage, Data space used percent-
age, Failed connections, Deadlocks, and more. By monitoring these metrics, you can
take action when your database needs attention. For each database, you should create
alerts to check for CPU/DTU utilization and data space utilization; >80% CPU/DTU
utilization over an hour, and data space used >80% over an hour are conservative mea-
surements. These alerts can prompt you to increase storage or service level objectives
to keep your database running well.

 Now that you have disaster recovery, high-availability, and monitoring configured,
your databases will be ready for use. Once your systems are running in Azure, you
should review ongoing usage for utilization, performance, and cost. Controlling cost
and planning end-of-life becomes more important for cloud resources, where expen-
ditures are easy to generate and don’t expire. Let’s look at some of the ways you can
ensure you get the most out of your SQLDB expenditure.

11.4 Optimizing costs for SQLDB
Some services and features in Azure are free: AAD, Azure Functions at low utiliza-
tion rates, SQL Server, and Azure Shell. Other services are not free, SQLDB being a
prime example. The cost generally falls within two categories: hardware sizing and
data storage.

 These two categories combine into several pricing models for PaaS databases.
You can select from them to get the features you require and scale the compute and
storage to your needs. The modes and tiers can be changed later as the database
usage changes.

 Let’s look at a scenario that examines the costs and benefits of using SQLDB. The
Finance office would like to reduce Azure resource costs. Your environment consists
of five Premium tier S400 databases, three Standard S100 databases, and a single 10-
vCore Hyperscale database. You need to both justify your current expenditures and
provide options for reducing costs.

TIP Microsoft provides a utility to analyze your current on-premises SQL
Server load and calculate the appropriate DTU service level when migrating
to SQLDB. It’s called Azure SQL Database DTU Calculator, and you can
download it at https://dtucalculator.azurewebsites.net/.

Budget and expense audits can help control costs when using Azure services. Review-
ing expenses can uncover opportunities for consolidation, deletion, and upgrades to
reduce costs and improve performance. Audits can also reveal options for improving
systems, which can increase costs. The U.S. government requires audits of its largest
departments annually, in accordance with the Federal Information Security Man-
agement Act (FISMA). Departments provide updates quarterly or semi-annually,

319Optimizing costs for SQLDB
depending on size. Quarterly reviews of Azure expenses with annual security reviews
would align with these practices. Improve your systems by finding the right balance of
cost and features for your business case. To provide a response to the request from
Finance, let’s look at how SQLDB defines its pricing.

11.4.1 Pricing structure

SQLDBs have three pricing models for computing hardware: stand-alone, elastic
pools, and Managed Instances:

 Stand-alone databases use a defined set of resources.
 Elastic pools group SQLDBs together to share resources, much like an on-prem-

ises SQL Server hosting multiple databases.
 Managed Instances perform like an on-premises SQL Server, with the underlying

OS abstracted away.

Both stand-alone and elastic pools scale hardware resources using a synthetic metric
called DTUs, or with the vCore pricing model. The vCore model defines a CPU and
memory combination. Manage Instances only use the vCore model.

 The hardware provisioning models also have distinct performance tiers. The DTU
model has three: Basic, Standard, and Premium.

 Basic include the minimum number of DTUs and up to 2 GB of storage.
 Standard includes a full range of DTU tiers, and up to 250 GB of storage.
 Premium includes options for even more DTUs, and up to 4 TB of solid state

drive (SSD) storage. This tier also includes a read-only replica and multiple hot
standby replicas for high availability. Because of this, Premium costs about three
times as much as Standard.

The vCore model has four variations, with distinct features. For comparison, 100
DTUs are roughly about 1 vCore at the Standard tier.

 General purpose provisioned allocates pairs of vCores, up to 80. You pay for the
storage allocated, up to 4 TB. This model and tier runs all the time.

 General purpose serverless allocates a single vCore or pairs of vCores, up to 16. You
pay for the storage allocated, up to 3 TB. This model and tier allow burst usage
of vCores up to the maximum set, for a higher per-hour cost. This tier also
allows the database to automatically pause when no queries are executing.

 Hyperscale allocates vCores up to 24. You pay for storage allocated, but without a
maximum amount. You can add up to four read-only replicas, each at two-thirds
the cost of the original.

 Business critical allocates pairs of vCores, up to 80. You pay for the SSD storage
allocated, up to 4 TB. This tier also includes a read-only replica and multiple
hot standby replicas for high availability. Because of this, the Business critical
tier costs about three times as much as Standard.

320 CHAPTER 11 Managed SQL with Azure SQL Database
Managed Instances use the vCore pricing model. You select the number of CPUs and
maximum data storage for the instance. You can create as many databases as you want
on the instance, all sharing the compute and storage allocated.

 Typically you determine the use case and availability requirements for a database at
creation time. Use cases include online transaction processing (OLTP) and online
analytical processing (OLAP). OLTP systems improve work best with lower latency
and high availability. OLAP systems benefit most from large storage sizes. All database
systems benefit from more CPUs and more memory. You need to determine how much
to spend on each aspect.

 The primary differences between the Premium/Business-critical and lower tiers
are faster SSD drives for higher I/O and lower latency, and high-availability configura-
tions. We’ve already seen how adding a geo-replicated secondary database improves
availability for databases at the Standard and General-purpose tiers. So you mix differ-
ent tiers and models to meet your requirements at the lowest cost.

 Start by choosing between Azure SQL Server VMs, Managed Instance, or individ-
ual SQLDBs.

 SQL Server VMs have the highest compatibility, but require support.
 Managed Instances offer high compatibility and cross-database queries.
 Individual SQLDBs are the least expensive option.

Determine the performance tier you need.

 Do you need high-availability features? You can build multiple VMs, use the
Business-critical or Premium tiers, or add geo-replication.

 Do you need the fast read/write speeds of an SSD? Choose the Business-critical
or Premium tier.

Then pick a pricing model, between DTUs and vCores.

 Managed Instances only use the vCore model.
 Hyperscale databases only use the vCore model.
 DTUs have less expensive service levels than the vCore model.

Then determine the service level objective.

 Check CPU utilization. Increase DTUs or vCores when average CPU is more than
80% for multiple minutes, and decrease when less than 20%.

 Compare vCores in SQLDB with on-premises CPU cores, and start with a match-
ing level.

 Find the cost for your last purchase of on-premises SQL Server hardware, storage,
networking, and licensing. Divide by a 24- or 36-month hardware refresh cycle.

 Start low. It’s easy to increase the service level later.

Then consolidate on a different hardware model if needed.

 Single databases can be scaled separately, for fine-matching of usage and ser-
vice level.

321Optimizing costs for SQLDB
 SQL Server VMs and Managed Instances share resources between databases.
 Hyperscale databases remain single.
 Combine multiple single SQLDBs onto an elastic pool.

To find the right level of performance for the database, you can do some tests, moni-
tor the performance of the system in production, and make estimates based on
installed hardware if migrating. Once you determine the usage patterns and the
average usage, you may want to change some configurations to reduce costs. Azure
SQLDBs include some useful features to help match your usage scenario. Let’s look at
some of these.

11.4.2 Scaling SQLDB

By default, a new SQLDB is created as a stand-alone database at the lowest-level vCore
general purpose tier. This level may be sufficient or you may want to increase it. The
SQLDB’s Overview blade in Azure portal shows a utilization chart for the past hour,
day, or week.

 Thresholds for scaling up and down will differ based on database utilization. For
databases with steady usage levels, a target service level is easy to find. First, determine
your performance targets. If your users are complaining, or your database perfor-
mance is preventing your application from meeting performance SLAs, consider scal-
ing up. Next, if you are meeting your performance targets, consider scaling down. If
your system is running fine, reduce the service level objective until the database
becomes a bottleneck. Scaling down the database compute resources will save money.
For databases with spikes in usage and sustained idle periods, refer to the next section
on SQLDB serverless. You can change the compute mode, performance tier, or ser-
vice level objective at any time.

WARNING Once you create or convert a database to Hyperscale, you can’t
change to DTU mode or to a higher tier.

You can change the database settings using the Azure portal with the SQLDB’s Config-
ure blade. Choose DTU compute mode in Basic, Standard, or Premium tiers. Choose a
DTU or vCore service level objective, and a maximum data size for the database. 250 GB
are included with DTU performance tiers; above this, you pay an additional charge per
GB. You pay for the full data size reserved for the database in the vCore tiers.

 You can change the database settings using Azure PowerShell. You define the hard-
ware provisioning model, performance tier, and service level objective with the Set-
AzSqlDatabase command. Specify the resource group, server, and database to change.

 Change the tier with the Edition parameter. The following values are allowed:

 Basic
 Standard
 Premium
 DataWarehouse

322 CHAPTER 11 Managed SQL with Azure SQL Database
 Hyperscale
 Stretch
 GeneralPurpose
 BusinessCritical

Basic, Standard, and Premium are DTU-based tiers. GeneralPurpose, Hyperscale, and
BusinessCritical are vCore-based. Stretch allows automated movement of data from an
on-premises database into a linked SQLDB in Azure.

 The RequestedServiceObjectiveName parameter sets the level for DTUs between
10 and 3000; VCore sets vCores between 2 and 80. VCore also requires you to set the
processor generation to Gen4 or Gen5 using the ComputeGeneration parameter. Gen5
includes a higher available core count than Gen4.

TIP The lowest Standard S0 10 DTUs pricing is $0.0202/hour at the time of
writing. You can find current pricing for SQLDB at http://mng.bz/Mo9B.

The MaxSizeBytes parameter lets you increase the database’s maximum data size. You
can change the data size, compute type, and performance tier in a single command,
as shown in listing 11.10. This script sets the SQLDB to the Business-Critical perfor-
mance tier with 4 vCores. Using the same configuration as current has no effect.

Set-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "ade-dev-playerstats"

➥ -ComputeGeneration "Gen5" -VCore 4

➥ -MaxSizeBytes 1099511627776

➥ -Edition "BusinessCritical"

The Set-AzSqlDatabase command can also be used to convert a SQLDB to the
Hyperscale tier. Use the Edition value Hyperscale to do so. Set the number of vCores
with the VCore parameter. The Hyperscale tier includes an option for read-only cop-
ies, much like the Business-critical tier. You can add from 0 to 4 copies using the Read-
ReplicaCount parameter. The following listing shows this conversion to Hyperscale,
with no read-only copies.

Set-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -DatabaseName "ade-dev-PlayerStats"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -Edition "Hyperscale" -VCore 1

➥ -ReadReplicaCount 0 -AsJob

Listing 11.10 Scale SQLDB to 4 vCores Business Critical tier with 1 TB of disk space

Listing 11.11 Initiate SQLDB conversion to Hyperscale

Specify VCore with a
supported tier in Edition
to change from DTUs.

One terabyte is a
large number.Specify a tier that supports vCores.

323Optimizing costs for SQLDB
Monitoring a Hyperscale SQLDB works like other SQLDBs. Scale the number of
vCores to match the usage levels, up or down. Hyperscale SQLDBs charge for all stor-
age, but you don’t need to monitor the upper data storage maximum. You can remove
data from the SQLDB and reduce storage costs. You could also reduce the number of
read-only copies.

 Single database usage for the Hyperscale tier relies on an administrator monitoring
usage and calculating appropriate capacity. SQLDBs have an approach to automatically
balancing available capacity while minimizing cost for other single databases. It’s called
SQLDB serverless, and it allows scaling of compute based on demand.

11.4.3 Serverless

You could call the SQLDB serverless provisioning model the “usage billing mode”
instead. The serverless SQLDB still runs on a SQL Server. It still has backup tied to a
server, and uses the SQL Server firewall. SQLDB serverless uses the vCore compute
mode, it’s just not statically provisioned.

 Instead of being billed at a static level, the billed usage increases with demand.
When configuring SQLDB serverless, you set the minimum and maximum number of
vCores for the database. While the SQLDB has activity, the SQL engine can assign que-
ries to any available CPU core. This allows databases with periods of multiple requests
to use multiple cores to handle them in parallel. Each available vCore represents a
hyper-thread, and can execute part or all of a query. Usage of each vCore is tracked by
the second for billing. The hourly rate is approximately double that for statically pro-
visioned SQLDBs.

 During periods of low or no activity, usage is billed at the minimum vCore provi-
sioned per second. But after a period of no activity, a new feature activates, or rather
deactivates—by default, after one hour of no activity, the database pauses. The data-
base is taken offline and billing for the vCores ceases while it is paused.

 Figure 11.4 compares the cost of a two-vCore provisioned SQLDB and a four-vCore
serverless SQLDB with 25 minutes of high usage and 25 minutes of low usage. SQLDB
serverless costs about twice as much per vCore-hour as SQLDB provisioned. Over this
period, the serverless database costs about a third more than the provisioned one.

 After auto-pause, the database remains offline until the next request is received,
then it comes online. The first request fails with a retryable error, and the database is
online again in less than a minute. Storage reserved for the database accrues charges
at the normal rate regardless of the database state. Databases with sporadic activity can
see a significant reduction in cost by using auto-pause.

IMPORTANT If you add geo-replication or a long-term backup retention pol-
icy to the database, the auto-pause feature will not trigger.

SQLDB serverless is available in the vCore General Purpose tier only. You can set your
database to serverless using the Azure portal by browsing to the SQLDB and viewing

324 CHAPTER 11 Managed SQL with Azure SQL Database
the Configure blade. Choose Serverless instead of Provisioned, set the minimum and
maximum vCores, and the timeout to auto-pause. The auto-pause delay can run from
one hour to seven days. or you can disable it.

 You can switch to the serverless via Azure PowerShell too. Use the Set-
AzSqlDatabase command to change an existing database. The ComputeModel param-
eter sets the option to Serverless or Provisioned. Use VCore to set the available
vCores, with MinimumCapacity defining the minimum to use. Set the auto-pause delay
with the AutoPauseDelayInMinutes parameter, or use -1 to disable auto-pause. The
following listing sets up SQLDB serverless with six vCores maximum and one vCore
minimum, with a two-hour auto-pause delay.

Set-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "ade-dev-playerstats"

➥ -Edition "GeneralPurpose"

➥ -ComputeModel "Serverless"

➥ -ComputeGeneration "Gen5"

➥ -VCore 6 -MinimumCapacity 1

➥ -AutoPauseDelayInMinutes 120

SQLDB serverless provisioning works for databases that have long idle periods.
What if your databases don’t see significant idle periods, or can’t tolerate failed

Listing 11.12 Initiate SQLDB conversion to Serverless

SQLDB

Provisioned

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

4

3

2

1

0

Cost

Minutes

vCores

SQLDB

Serverless

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

4

3

2

1

0
Cost

Minutes

vCores

Requests

Requests

Request rate higher than service level causes delays

Serverless handles demand with higher cost

Timeout to auto-pause, then reduced cost

Steady cost over period

Figure 11.4 Comparing SQLDB provisioned cost versus serverless

325Optimizing costs for SQLDB
initial connections? You can still find savings by sharing provisioned resources, using
an elastic pool.

11.4.4 Elastic Pools

A SQLDB elastic pool falls somewhere between a single SQLDB and a Managed
Instance. It’s used to share billing for multiple databases, but it doesn’t enable any
cross-database features. The SQLDBs in the pool remain separate. The databases in
the pool share available compute resources.

 When shared across multiple databases, the elastic pool compute model costs
less per database and less overall. Figure 11.5 shows the cost relationships of the var-
ious models.

The shared nature means that databases in the pool can compete for compute resources.
Each database can use the full DTUs of the pool for intensive queries. Other databases
in the pool have to wait for DTUs to free up. This is fine for multiple low-utilization data-
bases with spikes of demand. The elastic pool comes with a DTU-bounding feature to
limit this behavior so databases don’t have to wait to start their queries.

 When creating an elastic pool, you set the upper and lower bounds on the data-
bases, based on the DTUs provisioned for the pool. The upper and lower bounds
apply to all databases in the pool. For example, three SQLDBs in a S1 100-DTU pool
could have a minimum of 10 DTUs and a maximum of 100 DTUs. In practice, any of
the three databases could use up to 80 DTUs at any time, while the other two reserved
10 DTUs each to execute any new queries. The following is the DTU-bounding calcu-
lation for N databases:

Available DTUs = (Maximum DTUs) - ((N-1) * Minimum DTUs)

SQL

Database

H
ig

h
e
r

c
o
s
t

Higher cost per database

SQL Data

Warehouse

SQLDB

elastic pool

Managed

Instance

SQL ServerVM Set

Figure 11.5 Comparing SQLDB costs

326 CHAPTER 11 Managed SQL with Azure SQL Database
The available DTUs are constantly in flux in a busy pool, as queries begin and com-
plete, consuming and releasing DTUs. It’s a good practice to provision more DTUs
than you’d need for any single database, if your databases are frequently used or you
reserve significant DTUs for each database. You can always run the busiest SQLDBs on
their own, outside a pool.

 Thanks to elastic pool cost savings, it’s possible to get a higher maximum service
level for any database, for the total cost of the separate databases at a lower service
level. Standalone SQLDBs run $1.50 per DTU, while elastic pools run $2.25 per DTU
For example, three SQLDBs at S2 50-DTU level cost $225 per month at the time of
writing. You can move all three into a S1 100-DTU elastic pool for $225 per month.
Each elastic pool service level objective has a break-even point, the minimum number
of databases at a minimum service level where it is cheaper to host them in a pool
than separately. You can get the current prices for each service level objective at
http://mng.bz/awmm.

 You create a new elastic pool on the SQL Server hosting the databases that will join
the pool. When using the Azure portal, start from the Overview blade, and click New
Elastic Pool. Give the pool a name and you can create it.

 By default, the new pool runs with two vCores. Choose the hardware provisioning
mode and performance tier using the Configure Pool blade. You can also add any
databases on the target server to the pool while configuring. If you want to reserve
compute for each database, do that now. The vCore model reserves entire vCores; the
DTU model reserves DTUs.

 You can create elastic pools with Azure PowerShell. You create the pool, define
the provisioning mode and performance tier, and reserve capacity with the New-
AzSqlElasticPool command. Specify the resource group and server for the pool. Use
ElasticPoolName to define the pool name. Because the pool is tied to the SQL Server,
use a variation of the SQL Server name to name the pool. Use Edition to set the
mode. Use Basic, Standard, or Premium edition for DTUs. Use GeneralPurpose or
BusinessCritical for vCores. The Dtu parameter sets the tier for DTUs between 50
and 4000, and VCores parameter sets vCores between 2 and 80. VCore also requires
you to set the processor generation to Gen4 or Gen5 using the ComputeGeneration
parameter. Gen5 includes a higher available core count than Gen4.

 To reserve compute power for the databases in the pool, you include one or two
parameters for the lower and upper bounds. DatabaseDtuMin reserves a minimum
number of DTUs, and DatabaseDtuMax defines the maximum DTUs any database
can use. The minimum DTUs can be set using the same set of values as the service
level objective for a standalone database. DatabaseVCoreMin and DatabaseVCoreMax
do the same for vCores. The minimum vCores can be set using the same scale as the
standalone service level objective, and at 0.25, 0.5, and 0.75 fractional vCores.

327Optimizing costs for SQLDB

nd
s.
TIP As of time of writing, table 11.2 lists the service level objectives for elas-
tic pools.

Check http://mng.bz/awmm for the latest values for vCore and DTU service
level objectives.

You can move a SQLDB into a pool by specifying the pool name with the Elastic-
PoolName parameter of the Set-AzSqlDatabase command. The following listing shows
the command to create a new pool and move a database into it.

New-AzSqlElasticPool -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -ElasticPoolName "ade-dev-eastus2-sql-pool1"

➥ -Edition "Standard" -Dtu 400

➥ -DatabaseDtuMin 10 -DatabaseDtuMax 400
Set-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "ade-dev-playerstats"

➥ -ElasticPoolName "ade-dev-eastus2-sql-pool1"

Elastic pools limit the amount of storage available to all databases in the pool. The
storage limit scales with the DTUs or vCores, up to 4 TB. Because of this, you should
monitor storage growth of your databases in pools, and plan for increasing service
level objectives as overall usage and storage grows. Splitting pools, moving databases
between pools, and moving databases to single compute models can balance compute
and storage usage. All these changes are done on demand with minimal interruption.

 Elastic pools provide a method for sharing capacity between multiple databases
automatically. They rely on an administrator monitoring usage and calculating appro-
priate capacity for multiple SQLDBs.

 You now have all the background to provide recommendations and justifications
to the Finance department. With data sizes less than 100 GB and moderate utilization,
two or more of the five Premium-tier S400 databases could be moved into an equivalent
elastic pool, which would reduce costs. If any do not require rapid failover or maxi-
mum IOPS, they can be converted to the Standard tier. With significant periods of

Table 11.2 Service level objectives

Compute mode objectives

DTU Basic 50, 100, 200, 300, 400, 800, 1200, 1600

DTU Standard 50, 100, 200, 300, 400, 800, 1200, 1600, 2000, 2500, 3000

DTU Premium 125, 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000

vCore General Purpose 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 32, 40, 80

vCore Business Critical 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 32, 40, 80

Listing 11.13 Add SQLDB to new elastic pool

Use a pool name that
references the host server a
distinguishes between pool

Use DTU or VCore
parameter to match
the Edition selected.

Use both minimum and
maximum parameters.

328 CHAPTER 11 Managed SQL with Azure SQL Database
inactivity, the three Standard S100 databases may be good candidates for SQLDB
serverless. A review of usage for the Hyperscale database might lead you to increase or
decrease vCores, or add a read-only copy. Now create some databases, give them some
load, and create some alerts!

11.5 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create, restore, and optimize cost for SQLDBs.

11.5.1 Exercise 1

Given these three databases and this usage graph, make a recommendation for opti-
mizing the database configuration.

 DB1: Standard 400 DTU, 80% usage 3 hours per day
 DB2: Standard 100 DTU, 100% usage 4 hours per day
 DB3: Standard 800 DTU, 50% usage 4 hours per day

Figure 11.6 Usage chart of three SQLDBs over 24 hours

329Exercises
SOLUTION

The current cost ratio for the 3 SQLDBs is 4X + 1X + 8X = 13X, where X is the cost of
100 DTUs on a single SQLDB. DB1 looks likes it’s set in the sweet spot, DB2 may be
under-provisioned, and DB3 may be over-provisioned. If you increase DB2 to 200
DTUs and decrease DB3 to 400 DTUs, the cost ratio yields 4X + 2X + 4X = 10X. This
level of provisioning could reduce the monthly spend by 3 times the cost of 100 DTUs.

 Alternately, you could place all 3 SQLDBs in an 800 DTU elastic pool for 8Y, where
Y is the cost of 100 DTUs on an elastic pool. If 8Y < 13X, then you would save the dif-
ference each month. The usage patterns of the three databases are such that usage
peaks vary throughout the day, so there would less likelihood of competition between
the databases in the pool. Using an 800 DTU pool would benefit DB1 and DB2.

11.5.2 Exercise 2

Given these three databases and this usage graph, make a recommendation for opti-
mizing the database configuration.

 DB1: General Purpose 6 vCore, 100% usage 4 hours per day
 DB2: General Purpose 1 vCore, 50% usage 19 hours per day
 DB3: Business Critical 8 vCore, 20% usage 11 hours per day

Figure 11.7 Usage chart of three SQLDBs over 24 hours

330 CHAPTER 11 Managed SQL with Azure SQL Database
SOLUTION

DB1 presents a classic pattern for the SQLDB serverless provisioning model. The cur-
rent usage yields 6X * 24 = 144X, where X is the cost of a vCore-hour. DB1 could be set
for 10 vCore serverless with 0.25 vCore minimum. The usage would then yield (2X *
10 * 4) + (2X * 1 * 0.25) = 80.5X, where X is the cost of a vCore-hour. DB2 appears to
have appropriate usage. DB3 appears to be over-provisioned, and could be reduced to
4 or 6 vCores.

11.5.3 Exercise 3

Given these three scenarios, give the closest target restore window.

1 Restore target 14 days previous, default SQLDB settings
2 Restore target 14 days previous, default SQLDB settings with 4 weeks of weekly

long-term backup retention
3 Restore target 14 days previous, 28 days point-in-time retention with 12 months

of long-term backup retention

SOLUTION

1 The database can be restored to 7 days previous.
2 If more than 3 weeks have passed since the retention policy was applied, the

database can be restored to midnight on the first or second Monday that is
more than 7 days in the past. If more than 2 but less than 3 weeks have passed,
only the first Monday more than 7 days in the past is available.

3 The database can be restored to 14 days previous.

11.5.4 Exercise 4

A group of users requires access to data in a production database for reporting. The
database contains private data that must not be shared. How can you provide access?

SOLUTION

You will need to create a copy of the SQLDB that can be sanitized. You can then
export the sanitized SQLDB for later import, or move the copied SQLDB to be acces-
sible to the group of users. This scenario is covered in the sections on exporting and
copying databases.

1 Create a SQL Server in the production environment.
2 Create a copy of the SQLDB onto the new SQL Server.
3 Sanitize the copied SQLDB data using SQL statements.
4 Provide access to the SQLDB by moving the SQL Server into a different security

network for the user group, and/or providing IP access through the SQL Server
firewall.

5 Provide SQL credentials to the user group, either with SQL authentication or
AAD authentication.

331Summary
Summary
 You can make your SQLDB highly available using the Premium and Business

Critical performance tiers, and by adding a geo-replicated secondary database.
Both options include read-only access to a database replica, and allow you to
meet short recovery time objectives.

 SQLDB provides point-in-time backups for up to 35 days, and long-term reten-
tion for weeks, months, and years. You can tailor your retention policy to suit
your requirements.

 SQLDB has multiple approaches to optimizing cost for database usage. You can
pay for just the performance needed by a single database, or collect multiple
databases together to share resources and split costs.

Integrating Data Factory
with SQL Database
In the last chapter, you learned about creating and configuring Azure SQL Database
(SQLDB). Relational databases like SQLDB provide an accessible endpoint for que-
ries into both the Serving layer and Speed layer of a Lambda architecture analytics
system. In chapter 6, you saw the real-time part of the workflow, with Stream Analytics
calculations that flowed into SQLDB. Chapter 10 demonstrated using Azure Data
Factory (ADF) to automate the batch-processing part using Azure Data Lake Analyt-
ics (ADLA). SQLDB sits at the center of this web of data flows and forms the primary
service of the Serving layer. You can see the entire design in figure 12.1.

 In this chapter, you’ll learn how to move data in Azure services into SQLDB.
This includes the outputs of ADLA batch processing, data in Blob Storage, and
data in other SQLDBs. Providing data via an RDBMS gives more users access, with a
wider range of tools, than data files only.

This chapter covers
 Importing data into Azure SQL Database with

external data sources

 Configuring cross-database queries in Azure SQL
Database

 Importing file data into Azure SQL Database with
Azure Data Factory
332

333Before you begin
This chapter explores two methods of importing data into SQLDB: external tables
and ADF. External tables read data from data stores other than the one storing the
SQLDB’s native tables. These data stores can be external files or separate databases.
ADF connects to both file services and databases, and copies data between services.
Along the way you’ll enhance your use of both SQLDB and ADF. You’ll learn how to
share data between otherwise isolated SQLDB instances, which works the same as
accessing data from file stores. You’ll also attach Git repositories to your ADF services,
providing change management for your configuration files.

12.1 Before you begin
The scenarios in the next section deal with querying data from sources outside the
database, using external tables. To see how external tables work, you’ll need a couple
of databases and a file in Blob Storage. You can use the scripts in appendix A to create
the databases and Storage account required in this chapter.

Hubs

Stream
Analytics

Data Lake
store

Data Lake
Analytics

Data
Factory

New data

Stream
Analytics

Power
BI

Event data generated
by Functions, websites,
or other applications

Stream Analytics reads
the queue and writes a
SQL result set to an output.

Power BI reads an
output data set and
updates a dashboard.

Stream Analytics reads
the queue and writes a
SQL result set to an output.

SQL result set saves
to a file in the Data Lake.

Data Lake Analytics job
reads data from files,
evaluates via U-SQL
queries, and saves
output files back to
Data Lake.

Data Factory executes
Data Lake Analytics job,
then loads output file
to SQL Database.

Data Factory
removes stream
data and loads
batch data to
table.

Stream Analytics
outputs aggregated
data to SQL
Database table.

Speed layer

Batch layer

Serving layer

User
query

Power
BI

Website
query

SQL
Database

Event Hubs records messages
and serves readers.

3
3

4

4
4

5

7

8

5

2

1

6

Event

Figure 12.1 Lambda architecture with Azure PaaS services

334 CHAPTER 12 Integrating Data Factory with SQL Database
TIP You can find the code listings for this book at https://github.com/
rnuckolls/azure_storage.

Let’s take another look at some files output by ADLA jobs and the PlayerStats database.

12.2 Importing data with external data sources
The development team has lookup data in a SQLDB in Azure. Your analytics SQLDB
holds rows containing the original data values including lookup data. Users of your
analytics SQLDB want access to the latest lookup values for their reports. How can you
fulfill this request?

 Lookup tables have many benefits in database systems. Normalization is the process
of removing duplicate information from one table or dataset into a second using a ref-
erence key. Shifting values from one table where it repeats into lookup tables lets you
update these values efficiently, by updating a single record in the lookup table. This
reduces overall storage requirements too, because the relational key and lookup table
use less storage than the original data.

 One problem with normalized tables comes when lookup tables change over time.
In the simplest form of lookup table, with a single-column relational key and single
data column, updating the lookup value loses the historical value. In some scenarios
this is a feature rather than a drawback. For example, you can discover and correct
textual errors. In other scenarios, data sets drawn from a particular period should
reflect the extant values of that period. For example, when a user changes addresses,
referencing an address stored in a user lookup table should show the previous address
for orders before the move occurred. This history can be kept either in a separate ver-
sion of the main table, or by using a from/to date range. We’re not going to delve
deeply into data warehouse designs, but we’ll use remote data sources to look up data.
Dealing with slowly changing values in analytics systems is a topic for another book.

 In this scenario, your users want a report that shows a single value for a column
that changed over the period of time the report covers. Or, the data in the lookup
table in your analytics database has become out of sync with the data in the develop-
ment team’s database. In either case, you need to let your users query the latest data.
You can do this by loading the updated data into your database or by querying the
data remotely.

 SQLDB is inherently insular. Unlike its cousins, the Managed Instance and full
SQL Server install, SQLDB can’t connect to multiple databases in a single query.
Server-level logins aren’t supported for connecting between SQLDBs, so these cross-
database queries don’t connect. There’s no method for linking servers together
either, as with a full SQL Server install. SQLDB does support connections from out-
side applications that can insert data into and read data from the database. The
SQLDB is an island with no bridges.

 You can build bridges from SQLDB to other databases using external data sources.
An external data source uses a saved credential, a connection definition, and a table
definition to let queries read from outside databases. This saved credential is called a

335Importing data with external data sources
database scoped credential. The external data source defines the location of the external
database and the credential to use. An external table provides a schema definition to
use when reading data from the external connection. Together, these three objects
allow read access to data in separate databases.

 An external data source can use either another SQLDB or a Blob file. Different
schema, read, and authentication steps are used for each source. Figure 12.2 shows
the process of reading data from external data sources using a SQL query.

SQL queries using external tables retrieve rows from the external data source and
perform processing like JOINs and column calculations afterward. The retrieved rows
are stored in an intermediate temp table during processing. To use data from Blob
files in SQL queries, you must first import the data into a database table. Then you
can use the table in your query.

 While preparing query execution, filters in the query are evaluated for predicate
pushdown, which executes some filters remotely to optimize performance. This works
for SQLDB external data sources, but not for Blob sources.

TIP When using external tables with large row counts, consider loading data
into local tables. Queries with Blob data sources load all data rows into a table

SQLDB

Using external data sources to read RDBMS data

Run query using
external table.

Authenticate with
scoped credential.

Read data to
temp local table.

Calculate remote query
with external table schema.

Execute query on
external connection.

Return result set
rows with query.

Internal
table

Blob

Storage

SQL
query

RowsetUser
credential

SQL
query

User
credential

External
table

SQLDB Remote
table

Rowset

Using external data sources to read Blob data

Import data using
Bulk Insert.

Authenticate with
scoped credential.

Write data to
internal table.

Read file data
row by row.

Execute query using
internal table.

Return result set
rows with query.

SQL
query

CSV

Blob file

1 2 3 4 5 6

1 2 3 4 5 6

Figure 12.2 Connecting SQLDB to an external data source

336 CHAPTER 12 Integrating Data Factory with SQL Database
before filtering. Some queries for remote SQLDB tables will read all data to a
local temp table too. Queries without filters read all data locally, as do exter-
nal tables in a correlated sub-query. Querying the data source returns the lat-
est values; any performance trade-offs against local tables may be worth it in
your use case.

To read data from external sources, you must create the credentials, external data
sources, and external tables. External tables require external data sources, which
require scoped credentials. Let’s create a credential first.

12.2.1 Creating a database scoped credential

The database scoped credential stores the identity information used when connecting
to external sources. The credential can be a username and password for SQLDB, or
SAS token for Blob Storage. The credential is stored in the system tables of the con-
taining database. The password or key is encrypted before being stored. SQLDB uses a
symmetric encryption key called a master key for this encryption.

CREATING A MASTER KEY

Database-scoped credentials are encrypted before storing in the SQLDB, using an
encryption key generated by the user. The first time you add a credential, you need to
create an encryption key in the SQLDB. The SQL command CREATE MASTER KEY
ENCRYPTION creates the key. You need CONTROL permission at the database level to
run the command, so use a database administrator account. You can learn more about
database admins in chapter 11. The following listing shows the command using a pass-
word to secure the key.

CREATE MASTER KEY ENCRYPTION BY PASSWORD='{YOURPASSWORD}';

If you already have a master key, you can move on to creating database-scoped creden-
tials. You may want to reset the master key as part of a key rotation, or when personnel
changes. You can use ALTER MASTER KEY to do so. The REGENERATE WITH parameter
decrypts and encrypts any secrets encrypted with it. You can check for the existence of
a master key using the sys.symmetric_keys catalog view. The following listing shows
its usage by checking for the ##MS_DatabaseMasterKey## record.

IF EXISTS (SELECT * FROM sys.symmetric_keys WHERE [name] =
'##MS_DatabaseMasterKey##')

ALTER MASTER KEY REGENERATE WITH ENCRYPTION BY PASSWORD = '{YOURPASSWORD}';

NOTE Most of the listings in this section show T-SQL commands, rather than
PowerShell commands. You’ll want to use a SQL editor to connect to the
databases and execute the commands. Both SQL Server Management Studio

Listing 12.1 Create a master encryption key with password

Listing 12.2 Alter an existing master encryption key with password

337Importing data with external data sources
and Visual Studio are available for free download from Microsoft, at http://
mng.bz/EdMX and https://visualstudio.microsoft.com/downloads/. You can
also use the SQL Query Editor in the Azure portal by browsing to the SQLDB
overview blade and clicking Query Editor from the left nav.

With a master key in place, you can create a database-scoped credential. Do you have a
plan for accessing the remote database securely, and a user available with the right
permissions? If not, check section A.5.10 in appendix A for scripts to create a login
and user. Let’s move on to creating a scoped credential.

CREATING A CREDENTIAL

Creating a database-scoped credential saves the credential in the database. It is used
when connecting to external sources, using a configured external connection. The
credential can match an AAD user, a SQLDB user, or a Blob Storage key. The same
format is used to store all types.

NOTE Authentication using Azure Active Directory (AAD) users for external
tables is not supported at time of writing. This means different credentials
must be used for different external source types. You’ll need to use a SQL
user in the remote database that has access to the data tables, views, or stored
procedures you want to call remotely.

To save the credential, you use the SQL command CREATE DATABASE SCOPED
CREDENTIAL. The command takes a unique name for the credential within the data-
base, and two parameters.

 Identity stores the username for SQLDB sources, using the value SHARED
ACCESS SIGNATURE for Blob sources.

 SECRET stores the password for SQLDB sources, or a SAS token for Blob sources.

In this example, you’ll connect later to database ade-dev-sql2-gamestats on server ade-
dev-eastus2-sql2. Create a scoped credential in the ade-dev-sql-playerstats database
using the command in the following listing.

CREATE DATABASE SCOPED CREDENTIAL [ade-dev-sql2-gamestats-user]

➥ WITH IDENTITY = '{USERNAME}',

➥ SECRET = '{USERPASSWORD}';

TIP You can use your own SQLDB, create a new one yourself, or use the
scripts in appendix A to create a second SQL Server and SQLDB for creating
a remote connection.

To connect to a Blob Storage file, the credential uses a default identity value, SHARED
ACCESS SIGNATURE, and a SAS token. You can use a SAS token for the Blob container,
or a specific Blob file.

Listing 12.3 Saving an external username and password as scoped credential

Use remoteuser login if using the DB
creation scripts from appendix A.

338 CHAPTER 12 Integrating Data Factory with SQL Database
TIP You can read more about Storage accounts, Blob files, and working with
SAS tokens in chapter 3.

In chapter 7, you uploaded the PlayerDetails.txt file to Blob Storage, at https://adede-
veastus2.blob.core.windows.net/biometricstats/Staging/Players/PlayerDetails.txt.
You can use this file as the target for your external data source too.

TIP You can retrieve a file for use in this scenario at http://mng.bz/NKlv.

You’ll need to generate the SAS token for the particular file that you will read. Use the
Azure portal to browse to the file in the Storage account container and generate an
SAS token. You can generate a token at the Storage account level for containers, too.
For container-level tokens, remove the leading ? from the token. You can also gener-
ate an SAS token for any containers or on the Blob file itself using Azure PowerShell.
(See section 3.4 in chapter 3 for more details.) Once you have the signature part of
the SAS token, you can use it with the SQL statement in the following listing to create
a credential.

CREATE DATABASE SCOPED CREDENTIAL [ade-dev-eastus2-blob-playerdata]

➥ WITH IDENTITY = 'SHARED ACCESS SIGNATURE',

➥ SECRET = '{SASTOKEN}';

Now that you have a scoped credential for authentication, you can create the external
data source.

12.2.2 Creating an external data source

SQLDB supports connections to other Azure SQL databases and Storage account
Blob files. The data source defines the target location for the data and the authentica-
tion scheme to use when connecting.

 Creating an external data source requires a couple of pieces of information: a
name for the data source and the connection details. Use the SQL command CREATE
EXTERNAL DATA SOURCE {NAME}, providing the details using the WITH () attribute. You
provide four parameters to the CREATE command:

1 TYPE

2 LOCATION

3 DATABASE_NAME

4 CREDENTIAL

TYPE can have three values:

1 RDBMS for SQLDB
2 SHARD_MAP_MANAGER for querying sharded databases with elastic queries
3 BLOB_STORAGE for Blob Storage

Listing 12.4 Saving an external SAS token as a scoped credential

339Importing data with external data sources
The location parameter uses the fully-qualified server name, under the database.win-
dows.net domain. Specify the database using DATABASE_NAME, and the database scoped
credential using CREDENTIAL.

NOTE External data sources and tables are part of the SQL Database elastic
query framework. Vertical partitioning in SQLDB separates tables across multi-
ple databases and uses external tables for queries. Horizontal partitioning dupli-
cates tables across multiple databases and splits rows between the databases.
This is called sharding. Horizontal partitioning uses a metadata database to
manage queries across the sharded tables. When linking an external data
source to a sharded source, you connect to this managing database, specifying
the SHARD_MAP_MANAGER source type.

Listing 12.5 shows a script for creating the external data source, on the ade-dev-sql2-
gamestats SQLDB, using the scoped credential you created in the previous section.

CREATE EXTERNAL DATA SOURCE [ade-dev-eastus2-sql2-gamestats]

➥ WITH (TYPE = RDBMS,

➥ LOCATION = 'ade-dev-eastus2-sql2.database.windows.net',

➥ DATABASE_NAME = 'ade-dev-sql2-gamestats',

➥ CREDENTIAL = [ade-dev-sql2-gamestats-user]);

Creating an external data source on a Blob file uses the same SQL command. Pass the
type, location, and credential parameters. The location is the fully-qualified URL to
the Blob file. Because you’re connecting to a file, you don’t use the database name
parameter. Connecting to a Blob external data source uses a Blob Storage key or AAD
user scoped credential, instead of a SQLDB user. The following listing shows a script
for creating the blob file external data source.

CREATE EXTERNAL DATA SOURCE [ade-dev-eastus2-blob-playerdata]

➥ WITH (TYPE = BLOB_STORAGE,

➥ LOCATION = 'https://adedeveastus2.blob.core.windows.net

➥ /biometricstats/Staging/Players',

➥ CREDENTIAL = [ade-dev-eastus2-blob-playerdata]);

With a data source created, you can now add the table schema using the data source
for the SQLDB connection, or import the Blob file. This is the last step to enable que-
rying of external data.

12.2.3 Creating an external table

External tables form the entry point to retrieving data from remote SQLDBs. Use
external tables like internal tables in queries, views, and stored procedures, with a
few caveats.

Listing 12.5 Creating an external data connection to SQLDB

Listing 12.6 Creating an external data connection to a Blob file

Leave the trailing /
off of the location
path.

340 CHAPTER 12 Integrating Data Factory with SQL Database
 External tables allow only read access. You can use remote execution of stored
procedures to update the remote table, or you can copy the data into a local
table for use.

 External tables don’t get local indexes. Queries using external tables will scan
tables as necessary, but remote processing can include indexes on the remote
table to improve query speed.

Creating an external table requires a few pieces of information: a name for the table,
and the name of the data source. You also define the schema for the table, just as
when creating a local table.

WARNING The schema for the external table should match the schema of the
remote table. While the external schema can vary from the remote table, you
will get errors if you use fields that don’t match in queries.

Use the SQL command CREATE EXTERNAL TABLE {NAME} to create the external table.
The name of the external table must match the name of the remote table. Provide the
data source using WITH (DATA_SOURCE = {NAME}). Listing 12.7 shows a script to create a
table that matches the PlayerDetails.txt file from chapter 7. A script for creating this
table in the remote database can be found in appendix A.

CREATE EXTERNAL TABLE [dbo].[playerdetails]

➥ (PlayerId nvarchar(8),PlayerName nvarchar(100),

➥ TeamName nvarchar(100),TeamPosition nvarchar(100),

➥ PositionStart DateTime,PositionEnd DateTime)

➥ WITH (DATA_SOURCE = [ade-dev-eastus2-sql2-gamestats]);

External table queries work like local table queries. Keep predicate pushdown in
mind when structuring queries. SQL Server will pass filter clause values to the remote
database to reduce the number of rows returned. Increasing the performance tier of
the remote database can improve query speed.

 With a configured credential and data source, you can read external data with-
out defining an external table. Reading from a Blob file is an import instead of a
remote query.

12.2.4 Importing Blob files

Using external data sources with Blob files works differently than with remote SQLDBs.
External tables can read directly from remote databases and can be used in queries
directly. Blob file data sources must import the data first, before using it in queries.
The import target can be temp tables, table variables, or local tables.

 To import data from Blob files, use the BULK INSERT SQL command. The FROM param-
eter provides the file to import, and WITH specifies other options. Pass the external data
source using DATA_SOURCE. Use FORMAT = 'CSV' to specify a comma-separated file with

Listing 12.7 Creating an external table

Table name matches
remote table name.

Using external
RDBMS data
source

341Importing file data with ADF
carriage return and line feed row endings. The target table already has a header defined
for the columns; you can skip the header row in the Blob file by passing FIRSTROW = 2.
The following listing shows an example script for importing PlayerDetails.txt.

BULK INSERT [#blob_playerdetails]

➥ FROM 'PlayerDetails.txt'

➥ WITH (DATA_SOURCE = 'ade-dev-eastus2-blob-playerdata',

➥ FORMAT = 'CSV',

➥ FIRSTROW = 2);

TIP BULK INSERT offers many parameters to customize usage for your partic-
ular use case. You can see the options at http://mng.bz/D2XA.

Now you’ve seen two methods for accessing data stored in external locations through
SQLDB queries. Depending on your use case and data size, importing Blob files inline
with your queries may be sufficient. Reading from external databases minimizes data
duplication and is fast for small files. If you need to import more substantial data or
files from your data lake, or perform imports on a schedule, you can move file import
processing to Azure Data Factory (ADF). Let’s see what loading data into SQLDB with
ADF looks like.

12.3 Importing file data with ADF
As data moves through the Batch layer, it is captured in ADLS files. These files are
available for reading directly. For ease of use, your analytics system will also provide
access to the data via an RDBMS. You’ve seen how SQLDB can directly access data in
remote databases and remote files in Blob Storage. Azure Synapse Analytics (formerly
SQL Data Warehouse) can access files in ADLS. To provide the same access for
SQLDB, you can use ADF.

 Now that you have automated some ADLA batch processing jobs using ADF, your
users have begun downloading the output files. They want the output data to be avail-
able in their business application database without having to load it manually. How
can you fulfill their request?

 You’ve seen already that SQLDB can import Blob files. An option for loading the data
involves modifying the U-SQL job to output to Blob Storage instead of ADLS. Updating
database data can be done as a pull. This approach relies on restructuring the applica-
tion query to perform the import, or some other means of automating the import.

 You can instead use ADF to load the output of the U-SQL job into the database.
Recall from chapter 10 that ADF can both read from ADLS and trigger ADLA execu-
tions. ADF also supports linkedservices connecting to databases, including SQL Server.
You can use the same pipeline that triggers the ADLA job to push the output into the
database. This business application database would become part of the Serving layer of
your analytics system. Figure 12.3 shows ADF handling this data movement.

Listing 12.8 Importing data from a Blob file with Bulk Insert

Using a
temp table

Filename
to import

Data source name
uses single quotes.

342 CHAPTER 12 Integrating Data Factory with SQL Database
Using ADF to push data into SQLDB requires a few configuration tasks, beyond using
existing factory, database, and table entities. You must create an authorized credential,
create an ADF linkedservice, and create an ADF dataset.

 The new ADF pipeline workflow will look like figure 12.4. The U-SQL activity con-
nects to an ADLS linkedservice and an ADLA linkedservice, to execute a U-SQL activ-
ity that generates a new data file in the ADL. You will add a new copy activity to the
pipeline, to import the data file into SQLDB. This activity will use the existing ADLS

Data Lake
store

Data Lake
Analytics

Data
Factory

Data Factory reads
output file from
Data Lake store.

Data Lake Analytics job reads
data from files, evaluates via
U-SQL queries, and saves
output files back to Data Lake.

Data Factory executes
Data Lake Analytics job. Batch layer

Serving layer

Data Factory loads
output file to SQL
Database.

SQL
Database

3

4 2

1

Figure 12.3 Moving data from the Batch layer into the Serving layer

ADF definitions

Triggers
scheduled
or event

TriggersPipelines LinkedServiceDatasets

Mapping

Connection

Datasets

LinkedService

Definitions feed IR processing steps.

Data Lake

store

SQL

Database

Delimited

schema

Copy

activity

Table
schema

Connected
through
Datasets

Data Lake

Analytics

U-SQL

U-SQL

activity

Data Lake

store

Connect
directly

Integration

Runtime

1 2

3 4

Figure 12.4 Data Factory batch processing and SQLDB import

343Importing file data with ADF
linkedservice, and require a new SQLDB linkedservice, the copy activity, and two
schema datasets.

 Let’s look at adding each of these ADF resources. We’ll start by preparing access to
the SQLDB before creating the linkedservice.

12.3.1 Authenticating between ADF and SQLDB

When connecting to data sources, it’s important to provide access with minimal priv-
ileges and protect credentials. You may need to work within an existing framework
of security controls or ad-hoc user accounts. Using ADF will let you configure access
securely.

 Connecting to SQLDB follows a flexible authentication model. Both SQL Server
users and AAD principals are supported. Recall from chapter 10 that ADF supports
retrieving secrets from Azure Key Vault (AKV). When using a SQL username and pass-
word, store the password in AKV securely. The same goes for AAD service principal
authentication. You store the service principal key in ADF, and authorize the AAD
principal to access the data. SQLDB linkedservices also allow authentication via the
ADF managed identity itself, the same way ADF authenticates to AKV. Managed identi-
ties allow secure authentication without the need for secret key storage.

TIP You can learn more about ADF authentication methods in chapter 10,
which covers integrating with AKV, using managed identities, and creating
service principals.

To set up authentication to a SQLDB, choose which type you want to use. SQL Server
users work for SQLDBs that don’t have AAD authentication configured. Managed
identity and service principals both use the same command to create a new SQLDB
user. If you have already used a service principal to access other Azure services, and
have the secret key stored in AKV, using the service principal again for SQLDB will
make the linkedservice creation easy.

 First start by creating the user account in SQLDB. If you are using a standard SQL
Server login and user, you can use the scripts included in appendix A or create them
yourself. Creating a user for managed instance or service principal authentication
doesn’t use a SQL Server login; instead, the CREATE USER command uses FROM EXTERNAL
PROVIDER to indicate this is an AAD login. Listing 12.9 shows a script to add the ADF
App registration principal to the SQLDB, with write permissions. To add a service
principal as a user, you must be connected to the SQLDB as an AAD-authenticated
user with sufficient permissions to add users. You can use the SQL Server Active Direc-
tory Admin account for this purpose.

CREATE USER [ade-dev-eastus2-adf-id] FROM EXTERNAL PROVIDER;
ALTER ROLE [db_datareader] ADD MEMBER [ade-dev-eastus2-adf-id];
ALTER ROLE [db_datawriter] ADD MEMBER [ade-dev-eastus2-adf-id];

Listing 12.9 Authorize ADF to access SQLDB

344 CHAPTER 12 Integrating Data Factory with SQL Database
If you prefer to use a managed identity, you can use the same SQL command to add
the ADF principal, by using the ADF name instead of the App registration.

TIP See chapter 11 for more detail on adding an Active Directory Admin to
Azure SQL Server. See chapter 10 for directions on creating App registrations.

With a user created and given access to the SQLDB, you can add a linkedservice to
connect ADF to the SQLDB.

12.3.2 Creating SQL Database linkedservice

The steps for creating a SQLDB linkedservice in Azure portal are the same as an
ADLS linkedservice, except the authentication options are more expansive. You can
choose to use a managed identity, service principal, or SQL username and password
for authentication. Authorization settings for service principal authentication work
much like providing a username and password. You provide a service principal ID and
secret key.

USING AZURE PORTAL

To create the SQLDB linkedservice in the Azure portal, launch the authoring GUI
and use the following steps:

1 Browse to the Overview blade of the ADF.
2 Click the Author & Monitor button to launch the authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Show Connections, from the bottom of the Factory Resources navigation.
5 Click New to open the Selection blade. Figure 12.5 shows the Selection blade.
6 Show the Azure tab.
7 Select Azure SQL Database from the list and click Continue.
8 Choose a name for the resource. Only alphanumerics and underscores are

allowed.
9 Select the Azure subscription from the drop-down.

10 Select the Server Name (ade-dev-eastus2-sql2) from the drop-down of available
SQL servers.

11 Select the Database Name (ade-dev-sql2-gamestats) from the drop-down of avail-
able databases.

12 Select Service Principal, Managed Identity, or SQL Authentication as the authen-
tication type.

13 For Service Principal or SQL authentication, switch to using Azure Key Vault.
This will change the available values to let you use a key vault from the same
resource group, and add the secret key name.

14 Select the vault you created earlier (ade-dev-eastus2-key).
15 Set Secret Name to the secret you created to store the ADF App registration

(ade-dev-eastus2-adf-id-key).

345Importing file data with ADF
Figure 12.5 shows the creation of a SQLDB linkedservice using the ADF authoring GUI.
At this point you can click Create and save the new linkedservice.

USING AZURE POWERSHELL

As with others, a SQLDB linkedservice uses a JSON file to define its properties. Azure
PowerShell uses the same process to create a SQLDB linkedservice as for an ADLS
linkedservice. The JSON configuration file contains two common root elements: name
and properties. properties contains a set of elements common to other linked-
services. For SQLDB, the type is AzureSqlDatabase.

 typeProperties contains the connection information for the linkedservice. In
addition to the common servicePrincipalId, servicePrincipalKey, and tenant

Click Connectors to create a new
linkedservice.

Use a connection string and lookup
values using drop downs.

Enter the Service Principal ID, and look up the
key using AKV.

Choose Service Principal authentication.

Enter the AKV Secret name for the Service
Principal key.

Click Test connection to validate the settings.

5

6

2

3

41

1

2

3

4

5

6

Figure 12.5 Creating a new SQLDB linkedservice using the ADF authoring GUI

346 CHAPTER 12 Integrating Data Factory with SQL Database
elements, a SQLDB linkedservice requires a connectionString. The connection-
String requires a Data Source and Initial Catalog values. The Data Source is the
fully-qualified SQL Server name, and the Initial Catalog is the SQLDB name. For the
connectionString, you can include or leave off the protocol tcp: that is required for
connecting with other remote tools. Server cannot be substituted for Data Source.

TIP See chapter 10 for more detail on creating linkedservices in ADF.

Save this JSON configuration file in listing 12.10 to an Azure Cloud Shell folder or a
local drive accessible by your local PowerShell install. You’ll use the file to create the
SQLDB linkedservice.

{
"name": "AzureSqlDatabase1",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": [],
"type": "AzureSqlDatabase",
"typeProperties": {

"connectionString": "Data Source=ade-dev-eastus2-
sql2.database.windows.net;Initial Catalog=ade-dev-sql2-gamestats;",

"servicePrincipalId": "d915e8ef-f61c-4eb1-82b5-b4b20f0a6190",
"servicePrincipalKey": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault1",
"type": "LinkedServiceReference"

},
"secretName": "ade-dev-eastus2-adf-id"

},
"tenant": "f41e678f-812a-43cf-b020-7c1f89e52901"

}
}

}

Set-AzDataFactoryV2LinkedService is the same command used for other linkedser-
vices. Run the script in the following listing to create the SQLDB linkedservice.

Set-AzDataFactoryV2LinkedService -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureSqlDatabase1"

➥ -DefinitionFile "~/adf/AzureSqlDatabase1.json"

With the SQLDB linkedservice and the existing ADLS linkedservice, you can move on
to creating datasets for the source file and target database table.

Listing 12.10 SQLDB linkedservice definition file

Listing 12.11 Creating a new SQLDB linkedservice with Azure PowerShell

347Importing file data with ADF
12.3.3 Creating datasets

Datasets in ADF define the location and schema of the data to read and write via
linkedservices. ADF includes many dataset types, including various flavors of RDBMS
and document databases, flat and semi-structured file types, and even web services like
Google AdWords. Datasets connect activities to linkedservices and provide the inter-
face for translating data between two endpoints.

 You’ll be using a copy activity to copy data from a CSV file into a SQLDB table. To
create the activity, you’ll need to have defined both the source and target dataset. The
source dataset will use a file in your ADLS store, and the target dataset will use a table
in your SQLDB.

 Earlier in the chapter, you uploaded PlayerDetails.txt to Blob Storage. For this sce-
nario, the source file is stored in your ADLS store. Upload the PlayerDetails.txt file to
folder /Raw/Players/v1 in the ADLS store. In chapter 10, you created a linkedservice
to the ADLS; you can reuse that linkedservice as part of the SQLDB import pipeline.

TIP You can retrieve a file for use in this scenario at http://mng.bz/lG6d.

Like other ADF resources, datasets use a JSON file to define their properties. The
dataset resource defines three important details: the linkedservice connection to use,
the data target of a file path or a table name, and the data schema definition.

TIP See chapter 10 for more detail on creating datasets in ADF.

Let’s go over creating a file-based dataset in the Azure portal, and a table-based data-
set using Azure PowerShell.

USING AZURE PORTAL

To create the ADF datasets in the Azure portal, launch the authoring GUI.

1 Browse to the Overview blade of the ADF.
2 Click the Author & Monitor button to launch the authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Click Datasets, from the Factory Resources navigation, to reveal a list of existing

datasets.
5 Click the dots to the right of the datasets section to reveal the New Dataset button.
6 Choose Azure Data Lake Storage Gen1 from the list of data stores.
7 Choose DelimitedText from the list of formats.
8 Select a name for the dataset, and choose the linkedservice that accesses the file.
9 Browse to the file you uploaded earlier (/Raw/Players/v1/PlayerDetails.txt) to

select it, or enter the folder and filename path manually.
10 Because this file has a header, select the First Row as Header option. This will pro-

vide a human-readable name for the fields, and skip the first row during import.
11 Choose Import Schema from Connection/Store. This will read the selected file

directly, and generate a schema for you. You can choose to skip this step and

348 CHAPTER 12 Integrating Data Factory with SQL Database
generate the schema manually, or upload a sample file here using the From
Sample File option.

Clicking OK at this point will read the schema from the file and save the new data
source. You can review the result of the file read. In the GUI, the data source provides
two tabs, Connection and Schema, to review and edit the file details and review the
schema. The Connection tab shows the specific row characteristics used to read the file.
This includes:

 Field delimiters
 Row delimiters
 Escape and quoting characters
 File encoding
 Compression

You can modify the row import using a drop-down for each characteristic. The
Schema tab lets you clear the schema and rescan the file to update the schema. You
can leave the file portion of the File Path value empty, and the Preview and Import
Schema functions will read from the first file in the folder. The Import Schema func-
tion will prompt you to select a file extension, sample file, or a wildcard. You can
specify a single file or wildcard when creating the copy activity later. Keeping files of
different schemas in separate folders, and having a defined folder structure, makes
this easier.

 Creating the dataset resource with the authoring GUI generates a JSON definition
file. You can access the file via the Code button to the far right of the canvas. You can
edit the JSON directly in the GUI, and the changes will be reflected in the GUI tabs.
You can generate a template for the dataset this way, to be used with Azure PowerShell
for programmatic creation of datasets. Let’s see how the JSON configuration is con-
structed for a SQLDB dataset.

USING AZURE POWERSHELL

Like other ADF resources, you need to prepare the JSON configuration files before
using them. The JSON configuration file contains two common root elements: name
and properties. The properties element contains a set of elements common to
other datasets too. The type element identifies the type of dataset. For a SQLDB data-
set, the type is AzureSqlTable.

 The typeProperties contains the data path information for the dataset. For SQL
table datasets, the schema and table elements are directly under typeProperties.
These elements contain the database schema and table name that identify the tar-
get table.

 The most complicated part of the dataset definition lies in defining the schema.
The schema array element lists each table field with a name and SQL type elements.
Some types require precision and scale elements to match the target table types.
Table 12.1 shows a list of supported SQL field types, their ADF types, and whether

349Importing file data with ADF
precision or scale elements are needed. Except for the numeric and rowversion
types, SQL type names match ADF type names. Matching types are excluded from
the table.

Binary, bit, char, date, image, nchar, ntext, nvarchar, text, timestamp, uniqueidentifier,
varbinary, varchar, and xml use matching type names, and don’t require a precision
value. Listing 12.12 shows an excerpt of the SQLDB dataset schema element. Note
that the nvarchar ADF type doesn’t use the SQL format nvarchar(NNNN) and doesn’t
specify a length. This is typical of the rest of the types.

"schema": [
{

"name": "PlayerId",
"type": "nvarchar"

},
{

"name": "PositionEnd",
"type": "datetime",
"precision": 23,
"scale": 3

}
],

Table 12.1 SQL schema types

SQL Type ADF type Default precision Default scale

bigint bigint 19

datetime datetime 23 3

decimal decimal 18 0

float float 15

int int 10

money money 19 4

numeric decimal 18 0

real real 07

smalldatetime smalldatetime 16 0

smallint smallint 05

smallmoney smallmoney 10 4

time time 07

tinyint tinyint 03

Listing 12.12 SQLDB dataset schema detail

350 CHAPTER 12 Integrating Data Factory with SQL Database
Save the JSON configuration file in listing 12.13 to an Azure Cloud Shell folder or a
local drive accessible by your local PowerShell install. You’ll use the file to create the
SQLDB dataset.

{
"name": "AzureSqlTable1",
"properties": {

"linkedServiceName": {
"referenceName": "AzureSqlDatabase1",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "AzureSqlTable",
"schema": [

{
"name": "PlayerId",
"type": "nvarchar"

},
{

"name": "PlayerName",
"type": "nvarchar"

},
{

"name": "TeamName",
"type": "nvarchar"

},
{

"name": "TeamPosition",
"type": "nvarchar"

},
{

"name": "PositionStart",
"type": "datetime",
"precision": 23,
"scale": 3

},
{

"name": "PositionEnd",
"type": "datetime",
"precision": 23,
"scale": 3

}
],
"typeProperties": {

"schema": "dbo",
"table": "PlayerDetails"

}
}

}

The Set-AzDataFactoryV2Dataset command is used to create or update ADF data-
sets. Run the script in the following listing to create the SQLDB dataset.

Listing 12.13 SQLDB table dataset definition file

351Importing file data with ADF
Set-AzDataFactoryV2Dataset -ResourceGroupName "ade-dev-eastus2"

➥ -DataFactoryName "ade-dev-eastus2-adf"

➥ -Name "AzureSqlTable1"

➥ -DefinitionFile "~/adf/AzureSqlTable1.json"

This covers both the ADLS file dataset and the SQLDB dataset creation. With these
datasets you can create a copy activity in a pipeline. Both datasets are bi-directional.
Although this scenario calls for reading the file data into SQLDB, the copy activity can
use the SQLDB dataset as a source and the ADLS dataset as a file target. Let’s create a
copy activity to import the ADLS file into the SQLDB now.

12.3.4 Creating a copy activity and pipeline

In ADF, pipelines contain activities. This structure is expressed in the JSON files that
define the pipeline. Aside from the ubiquitous annotations element, all the properties
of the pipeline resource are activities in the pipeline. The activities element holds
an array of activity definitions. There isn’t a separate activity definition outside of a
pipeline. Each pipeline can have one or more activities.

 Recall from chapter 10 that an ADF pipeline with a copy activity looks like this:

 The pipeline has a single activity, a file to DB copy.
 The pipeline has a single trigger, using a schedule.
 The pipeline uses the Integration Runtime (IR) to manage the copy activity

between the ADLS linkedservice and the SQLDB linkedservice.
 The IR handles commands for both linkedservices and monitors the activity for

progress and errors.
 The Azure IR runs in Azure and connects to Azure resources.
 Each activity and pipeline execution collects metrics which can be reviewed

later.

Figure 12.6 describes the steps for running this ADF pipeline.
 Importing data with a copy activity works like the copy activity for binary files you

saw in chapter 10. Two linkedservices are used for the source and destination, and two

Listing 12.14 Creating new SQLDB dataset with Azure PowerShell

Data
Factory

Triggers Pipelines Run
Metrics

Trigger starts
on schedule.

Pipeline lists
activities to run.

IR builds list
of commands.

Read file(s)
from storage

Record successful
run with details.

File
Storage

Data Lake
store

Write file(s)
to storage

Integration
Runtime

42 31 65

Figure 12.6 Pipeline processing steps

352 CHAPTER 12 Integrating Data Factory with SQL Database
datasets define the read target and write target. For non-binary copies, the copy activ-
ity includes a schema translation.

 The two datasets define their respective target schemas. To create a copy activity
with a translation, you define the mapping between the schemas. For your user
request, the target SQLDB data table uses a matching field structure as the CSV file
target. Let’s see how this schema mapping plays out.

SCHEMA MAPPING IN ACTIVITIES

ADF copy activities use many common elements, including name, type, dependency,
and inputs and outputs. Recall from chapter 10 that the dependsOn array lists any
pipeline activities that must execute before the copy activity. The inputs and outputs
arrays define the source and destination datasets used in the copy.

 Pipeline definitions with copy activities tend to be long documents. Listing 12.17
shows the JSON definition file for copying an ADLS data file into SQLDB with a single
schema mapping. Before we get to the whole document, let’s break out the new sec-
tions for the copy activity: source, sink, and translator. The source section is shown in
listing 12.15, and the sink section in listing 12.16.

 Under typeProperties, each ADF copy activity includes source and sink ele-
ments that describe the operations available. For a source targeting a row-based text
file, like a CSV, we use DelimitedTextReadSettings under formatSettings.

"source": {
"type": "DelimitedTextSource",
"storeSettings": {

"type": "AzureDataLakeStoreReadSettings",
"recursive": true

},
"formatSettings": {

"type": "DelimitedTextReadSettings"
}

}

For a sink targeting a row-based text file, like a CSV, we use DelimitedTextRead-
Settings under formatSettings.

"sink": {
"type": "DelimitedTextSink",
"storeSettings": {

"type": "AzureDataLakeStoreWriteSettings"
},
"formatSettings": {

"type": "DelimitedTextWriteSettings",
"quoteAllText": true,
"fileExtension": ".csv"

}
}

Listing 12.15 Delimited source dataset in copy activity

Listing 12.16 Delimited sink dataset in copy activity

353Importing file data with ADF
Because the copy activity inserts data into the SQLDB, you should consider the impact
of duplicates on the table. For instance, you may read the same data file into the table
multiple times, each time appending the same data rows. To handle this duplication,
you could do the following:

 Structure the table with an import date field that is set automatically, and adjust
your queries to use the latest rows.

 Add an activity to execute a stored procedure that will clean up the duplicates
or clear the table.

 First import the data into a staging table, and then add an activity that executes
a stored procedure to merge the staging table.

For a sink targeting SQLDB, you have the option of running a SQL script before
the data begins copying. This lets you prep the table where the data will land. With
the sinkpreCopyScript element, you can execute a SQL script that clears the table
before import.

"sink": {
"type": "AzureSqlSink",
"preCopyScript": "DELETE FROM [dbo].[PlayerDetails];",
"disableMetricsCollection": false

}

TIP ADF collects information about the database endpoint during execu-
tion, especially the scale unit like DWU, DTU, or RU for SQLDW, SQLDB,
and Cosmos. You can set disableMetricsCollection to true to disable this.
You can read more about creating activities in chapter 10.

When adding a copy activity, you also need to define the translation between the
source and sink schemas in the translator element of typeProperties. Here we use
a type of TabularTranslator and a mappings array to join a strongly typed field from
the source to a strongly typed field in the sink. Each translation in the array is a pair
of name and type elements, for the source and sink. The types are the same as listed
earlier in the section.

"translator": {
"type": "TabularTranslator",
"mappings": [

{
"source": {

"name": "PlayerId",
"type": "String"

},
"sink": {

"name": "PlayerId",
"type": "String"

}
}

]
}

354 CHAPTER 12 Integrating Data Factory with SQL Database
You can add any or all of the fields from the source as translations to the sink. The
ADF authoring GUI in the Azure portal offers a wizard for adding copy activities to a
pipeline. The wizard steps through configuring the details for the activity, source, and
sink, and includes an automatic schema mapping feature. The completed activity
and pipeline are backed by a JSON definition file that you can edit and download too.

TIP There are many targets for copy activities in Data Factory. You can get
an up-to-date list of them and the formats of their JSON definition files at
http://mng.bz/QxRv.

Let’s look at publishing the complete JSON file to ADF using Azure PowerShell.

USING AZURE POWERSHELL

Listing 12.17 shows the JSON definition file for copying an ADLS data file into
SQLDB with a single schema mapping.

TIP You can get the full version of listing 12.17 in the GitHub repository for
this book at http://mng.bz/B2nw.

{
"name": "pipeline1",
"properties": {

"activities": [
{

"name": "Copy1",
"type": "Copy",
"dependsOn": [],
"policy": {

"timeout": "0.01:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false

},
"userProperties": [],
"typeProperties": {

"source": {
"type": "DelimitedTextSource",
"storeSettings": {

"type": "AzureDataLakeStoreReadSettings",
"recursive": true

},
"formatSettings": {

"type": "DelimitedTextReadSettings"
}

},
"sink": {

"type": "AzureSqlSink",
"preCopyScript": "DELETE FROM [dbo].[PlayerDetails];",
"disableMetricsCollection": false

Listing 12.17 SQLDB copy activity and pipeline definition file

355Importing file data with ADF
},
"enableStaging": false,
"translator": {

"type": "TabularTranslator",
"mappings": [

{
"source": {

"name": "PlayerId",
"type": "String"

},
"sink": {

"name": "PlayerId",
"type": "String"

}
}

]
}

},
"inputs": [

{
"referenceName": "DelimitedText1",
"type": "DatasetReference"

}
],
"outputs": [

{
"referenceName": "AzureSqlTable1",
"type": "DatasetReference"

}
]

}
],
"annotations": []

},
"type": "Microsoft.DataFactory/factories/pipelines"

}

You can upload this file to Azure Cloud Shell just as you did for the SQLDB linkedser-
vice. Then you can run the Azure PowerShell command Set-AzDataFactoryV2-
Pipeline to create the pipeline and copy activity. The following listing shows the
script to create the pipeline.

Set-AzDataFactoryV2Pipeline -ResourceGroupName "ade-dev-eastus2"
 -Name "pipeline2" -DataFactoryName "ade-dev-eastus2-adf" -File
 "~/adf/pipeline2.json"

This pipeline now contains the SQLDB copy activity. You can add the ADLA U-SQL
activity and the daily schedule trigger from chapter 10 to complete this request. Copy
activities form the core function of ADF, and significantly extend SQLDB’s data inges-
tion capabilities.

Listing 12.18 Creating a new pipeline with Azure PowerShell

//Array
truncated

356 CHAPTER 12 Integrating Data Factory with SQL Database
 With multiple methods for loading data into your SQLDB, your users can access
analytic data in multiple ways. The Serving layer for your analytics system is ready to
provide answers.

12.4 Exercises
The following exercises can help you internalize the new features introduced in this
chapter. You should be able to create an ADF pipeline and connect two SQLDBs to
support cross-database queries.

12.4.1 Exercise 1

Given an Azure Storage Blob file 2020-02-21.txt in container stats in account data,
create the SQL scripts necessary to import the data into your SQLDB. The file has a
header row, and two columns: an integer ID, and a decimal Level. Assume you have
a master encryption key.

SOLUTION

The solution requires three steps:

1 Create a scoped credential with access to the Storage account.
2 Create an external data source pointing to the Storage container.
3 Use a BULK INSERT SQL command to import the file data.

CREATE DATABASE SCOPED CREDENTIAL [creds]

➥ WITH IDENTITY = 'SHARED ACCESS SIGNATURE',

➥ SECRET = '==key==';

CREATE EXTERNAL DATA SOURCE [blob1]

➥ WITH (TYPE = BLOB_STORAGE,

➥ LOCATION = 'https://data.blob.core.windows.net/stats',

➥ CREDENTIAL = [creds]);

CREATE TABLE #Stats (ID int, Level decimal(18,5));
BULK INSERT [#blob_playerdetails]

➥ FROM 'PlayerDetails.txt'

➥ WITH (DATA_SOURCE = 'ade-dev-eastus2-blob-playerdata',

➥ FORMAT = 'CSV',

➥ FIRSTROW = 2);

Listing 12.19 Saving an external username and password as scoped credential

Listing 12.20 Creating an external data connection to a Blob file

Listing 12.21 Importing data from Blob file with Bulk Insert

357Exercises
12.4.2 Exercise 2

You have two SQLDBs, both running standalone—not in a Managed Instance or
Hyperscale mode. Which of the following are required to read a database table from
the other database?

1 Both SQLDBs must be on the same SQL Server.
2 Both SQLDBs must have matching user accounts.
3 Each SQLDB must have the table defined in the database.
4 Each SQLDB must define a database scoped credential.
5 The source SQLDB must list the source table as an external data source.

SOLUTION

Number 3 is required for reading from external tables. The source database stores a
regular table. The target database stores an external table with the same schema.

 The SQLDBs can be on different servers. The target database creates a scoped cre-
dential with a user from the source database, but a matching user doesn’t need to be
present in the target database. The source database doesn’t need to add a scoped cre-
dential to allow outside connections. The target database defines the connection
parameters for the source database in an external data source. The source database
doesn’t require any external data sources, external tables, or scoped credentials.

12.4.3 Exercise 3

Complete the following schema element from a copy activity definition.

"Id", "Level", "SampleTime"
1,20.3,"05:12:34:123"
2,1.0,"05:12:34:225"
3,180.33,"05:12:34:320"

CREATE TABLE Stats (ID int, Level decimal(18,5), SampleTime Time);

"mappings": [
{

"source": {
"name": "Id",
"type": __________

},
"sink": {

"name": __________,
"type": "Int"

}
},

Listing 12.22 Sample source file

Listing 12.23 Sample target table

Listing 12.24 Sample mappings element

358 CHAPTER 12 Integrating Data Factory with SQL Database
{
"source": {

"name": __________,
"type": __________

},
"sink": {

"name": "Level",
"type": "Decimal"

}
},
{

"source": {
"name": __________,
"type": "Time"

},
"sink": {

"name": __________,
"type": __________

}
}

]

SOLUTION

The mappings element defines the schema mapping from one data source to another.
Using the file header and table definition, you can determine the source and sink name
values. From the table definition, you can determine the sink type values. Most type val-
ues match between ADF and SQL types. You can refer to table 12.1 for more details.

"mappings": [
{

"source": {
"name": "Id",
"type": "Int"

},
"sink": {

"name": "Id",
"type": "Int"

}
},
{

"source": {
"name": "Level",
"type": "Decimal"

},
"sink": {

"name": "Level",
"type": "Decimal"

}
},

Listing 12.25 Sample mappings element

359Summary
{
"source": {

"name": "SampleTime",
"type": "Time"

},
"sink": {

"name": "SampleTime",
"type": "Time"

}
}

]

You now have the knowledge to move data into and out of SQLDBs in multiple ways.
The Serving layer of your Lambda analytics system is now complete.

Summary
 External data sources define connections to files and databases. Data sources

allow importing data from Blob files and reading data from remote databases.
 External tables in SQLDB allow queries between isolated databases. Standalone

SQLDB do not support cross-database queries using a server login.
 External tables can connect across security boundaries. They remain intact in

databases restored from backups.
 The copy activity in Data Factory copies data between two data sources. The

sources can be files, databases, and other endpoints.
 Schema mapping allows translation between the source formats. Using Data

Factory allows loading data from sources not supported by SQL Database.

Where to go next
You’ve reached the end of this book on building an analytics system in Azure using
the Lambda architecture. Each chapter demonstrates part of the overall system.
You can see flow of data through the system in figure 13.1.

 The knowledge you’ve learned in this book can be applied more broadly too.
Consider the following:

 Storage account services support backups of other Azure services, disks for
Azure Virtual Machines, and durable, scalable storage for web applications.

 Queues and Event Hubs decouple components of applications. Use them in
other systems for scalability and asynchronous processing.

 Relational databases are used in many multi-tiered software applications.
The many flavors of SQLDB allow drop-in substitution for on-premises SQL
Server databases.

This chapter covers
 Making your data assets user friendly

 Keeping your data assets safe

 Keeping your development assets safe

 Proving your skills with Microsoft exams
360

361Data catalog
 Azure Data Factory can connect to external cloud services like AWS S3 and
Google Cloud Storage. It can trigger web hooks, and retrieve data from web-
sites, FTP servers, and services like Salesforce.

As you begin gathering data and supporting analysis work, consider how you can
encourage adoption and protection of the analytics system you’ve built. You can start
by making a descriptive list of your data.

13.1 Data catalog
A data catalog is a source describing who, what, where, when, and how for the data
you provide. Your data catalog is made up of metadata describing your data sources,
including:

 Who are your data subject matter experts
 What application or entity generates the data
 Where the data resides

Hubs

Stream
Analytics

Data Lake
store

Data Lake
Analytics

Data
Factory

New data

Stream
Analytics

Power
BI

Event data generated
by Functions, websites,
or other applications

Stream Analytics reads
the queue and writes a
SQL result set to an output.

Power BI reads an
output data set and
updates a dashboard.

Stream Analytics reads
the queue and writes a
SQL result set to an output.

SQL result set saves
to a file in the Data Lake.

Data Lake Analytics job
reads data from files,
evaluates via U-SQL
queries, and saves
output files back to
Data Lake.

Data Factory executes
Data Lake Analytics job,
then loads output file
to SQL Database.

Data Factory
removes stream
data and loads
batch data to
table.

Stream Analytics
outputs aggregated
data to SQL
Database table.

Speed layer

Batch layer

Serving layer

User
query

Power
BI

Website
query

SQL
Database

Event Hubs records messages
and serves readers.

3
3

4

4
4

5

7

8

5

2

1

6

Event

Figure 13.1 Lambda architecture with Azure PaaS services

362 CHAPTER 13 Where to go next
 When the data is updated
 How the data is transformed and delivered

The data catalog may seem like an extra feature, but this documentation can prove
incredibly powerful. Data catalogs answer questions for developers and analysts who
need to access data and business users who need to trust the data. You can build your
catalog by documenting the data when you bring it into your Data Lake store for the
first time.

13.1.1 Data Catalog as a service

Azure’s Data Catalog service provides a central repository for storing metadata about
data sources and how to access them. It includes a search facility and an authoring
tool, similar to the authoring GUI for Azure Data Factory. You can learn more about
Azure Data Catalog at https://azure.microsoft.com/services/data-catalog/.

 The following are some questions your data catalog will help answer.

13.1.2 Data locations

Where does your data live? List the types of data storage that your analytics system
supports:

 Files in Blog Storage
 Files in File Storage
 Files in Data Lake Storage
 SQL Server databases
 Stream Analytics streams
 Other Azure database services

Data in Queue Storage, Event Hubs, and Service Bus topics count as data generators
rather than data stores. You may want to track the upstream source of these data
streams.

 How is your data generated? Your analytics system uses data that has been saved to
persistent storage. This can take the form of database tables, data files, and unstruc-
tured sources like video and audio. You can record the generating application and the
type of storage used for discrete output—delimited file, data table, structured data
files, images, audio, and video. You can also record which department or team is respon-
sible for the application.

13.1.3 Data definitions

What is the shape of the data at rest? Record the schema used for the data. This could
be delimited file columns, table columns, or a data structure like JSON. Include any
row and column delimiters, and data gaps and errors that must be controlled. Include
versions of the schema as data drift occurs over time. This will allow users to work with
the data easily, without inspecting it and choosing the schema themselves.

363Version control and backups
 How is the data transformed? New data often undergoes several processing steps
before it is ready for consumption. This can include validation, error identification
and remediation, and aggregation. If these steps are available as separate data sources,
record the step as a data source and reference the preceding and following steps in
the process. Reports and data aggregations lie at the end of the chain, and the chain
lets you review the data sources. This chain of data transformations will give users
greater confidence in the data they use.

13.1.4 Data frequency

What is the schedule for data generation? Some data is available in real-time or near
real-time. For example, you may collect data from IoT devices, or web and mobile
applications. Some data is collected offline and delivered when network access is avail-
able. Some data is exported on hourly, daily, or monthly schedules. This schedule will
limit the use cases available. For example, dashboards use real-time data, but aren’t
suitable for weekly and monthly data sets.

 When is the data updated? Some data sets are written to durable storage once and
never updated. Some are overwritten with each new export. Some are corrected after the
initial generation. Each approach to data updates can be described in your data catalog.

 If you have designed your analytics system with a Lambda architecture, you will
maintain an original version of the data. Subsequently updated data is stored sepa-
rately from the original. This allows updates and corrections to be made as many
times as needed to derive the best data.

 Storage data sets using dates in the folder paths also helps determine the state of
data updates over time. For data updated each month, as opposed to data added each
month, separating the updates into monthly folders or files lets you analyze data at a
point in time. Updated or appended data should be noted in the data catalog.

13.1.5 Business drivers

Creating and maintaining a data catalog for your analytics system provides business
value. The data catalog should make it easier for your end users to extract value from
the data you manage. This can come in the form of reports, machine learning algo-
rithms, or questions answered by data scientists. If you don’t have those types of business
drivers, you may not need a data catalog. You should implement backup and recovery
processes in all cases.

13.2 Version control and backups
This book describes Azure services that function as Platform-as-a-Service (PaaS) or
Software-as-a-Service resources (SaaS). PaaS services require some configuration to
get running, then some amount of development work to use. Azure Stream Analytics,
Data Lake Analytics, and Data Factory fall into this category. For PaaS services, you
want to protect the configuration and the development output from loss. For SaaS
services, the configuration and data are most important for recovery. No development

364 CHAPTER 13 Where to go next
work per se is required, but the act of using the software generates valuable assets. You
can and should include backups for these assets. Let’s explore the options available
for your Azure resources.

13.2.1 Blob Storage

If you are using Azure PowerShell to provision your Storage accounts, it’s a trivial
exercise to version control the configuration assets, the PowerShell scripts. You can
save the scripts as text files, and include them in a source control repository of your
choice. Data backups are more problematic.

 Storage accounts are built on redundant storage. At the Local Redundant Storage
(LRS) level, at least three copies are kept in the local data center. Other levels include
replication to other data centers. This prevents file loss but doesn’t prevent data loss
within the file.

 Blob Storage has a facility for versioning a file, called snapshots. A snapshot is a ver-
sion of a file saved at a specific time. Each snapshot is set individually on each individual
file. Deleting the file deletes the snapshots. There is no feature to turn on automatic
snapshots for Blob Storage.

 You can use Azure Data Factory (ADF) to back up Blob Storage. Using a binary
copy activity in a pipeline, you can schedule file copies from one Storage account to
another. You can configure the activity to only copy new and modified files. The ADF
authoring GUI includes templates to set up pipelines like this easily. See the docu-
mentation at http://mng.bz/dyBg for more information.

13.2.2 Data Lake Storage

Much like Blob Storage, Azure Data Lake Storage (ADLS) replicates files locally.
ADLS doesn’t include a backup service for versioning files. ADF copy activities also
work for backing up files to guard against data loss.

 Using multiple copy activities in ADF pipelines lets you control which data sets are
copied. Some questions to consider include the following:

 Are some data sets exports from external systems with their own backups?
 Are some projects obsolete and don’t require recovery in the event of data loss?
 Are there requirements for data retention?
 For aggregate or batch processing outputs, how much time is required to re-create

the data sets?
 Do data sets lose business value over time, and if so, should they be excluded

from backup?

Structuring your ADLS store using the zones framework gives you options for selective
backup. For example:

 Staging data sets don’t require backups.
 Curated data sets can usually be re-created via batch processing.
 Raw data sets can be selected by most recent version or excluded by project.

365Version control and backups
Complexity and maintenance of backup activities must be balanced against storage
cost and business value.

13.2.3 Stream Analytics

Beyond the basics of Stream Analytics (SA) service creation, you have the streaming
calculations themselves. When using Azure PowerShell to create SA jobs, you save the
job queries in JSON definition files. These can be kept in a source control repository.

 When using Visual Studio for Azure development, you can build SA jobs and trans-
formations in an SA project. Install the Azure Stream Analytics tools for Visual Studio
to create this type of project. The tools let you create jobs and publish to your SA ser-
vices. Get them at http://mng.bz/rrpx.

13.2.4 Data Lake Analytics

Beyond the basics of Data Lake Analytics (ADLA) service creation, you have the U-SQL
scripts themselves. When using Azure PowerShell to create U-SQL jobs, you save the
U-SQL scripts in text files. These files can be kept in a source control repository.

 When using Visual Studio for Azure development, you can build and debug U-SQL
scripts in an ADLA project. Install the Data Lake Tools for Visual Studio to create this
type of project. The tools let you submit jobs to your ADLA services. Get them at
http://mng.bz/Vg5N.

13.2.5 Data Factory configuration files

Now that you can create pipelines for multiple types of functionality, you might won-
der how you can provide safeguards for your ADF processes. Although the ADF system
runs on distributed, redundant Azure systems, by default it provides limited backup
functionality. But thanks to the JSON configuration files backing the ADF resources,
you can make copies of the files and resources as you wish. ADF also comes with a
more sophisticated version of file copies.

 The Azure portal provides a web-based GUI for creating pipelines, linkedservices,
data sets, and triggers. This GUI generates JSON files that define the resources. The
GUI helps you look up Azure services to use in linkedservices, read schemas from files
to configure datasets, and create triggers for pipelines. It also validates the resulting
JSON definition files before deploying for execution. You can access the GUI in the
Azure portal by browsing to your ADF service > Overview > Author & Monitor button.

 Each ADF service has two environments: one to edit resources (development) and
one to execute pipelines (production). Using the authoring GUI, you can make
changes in development without impacting existing pipeline runs. Once you have cre-
ated your linkedservices, data sets, pipelines and activities, and triggers, you must pro-
mote the definition files to production. Once in production, enabled triggers will
invoke IRs to process the pipeline activities.

1 ADF uses the definition files to configure the production environment. This
environment is completely managed for you.

366 CHAPTER 13 Where to go next
2 Once you have completed configuring the resources for your ADF, you must
publish the definition files to production.

3 The pipelines are then operational and can be started by the configured triggers.
4 The activities within a running pipeline are executed by an IR, either in Azure

or on-premises.

Figure 13.2 shows this workflow in action.

Because ADF uses JSON files to define all its resources, the ADF store can be version
controlled too. You have two approaches to version control with ADF: external or inte-
grated. You can use any form of external version control you like. With external ver-
sion control, save the files in your repository as you would other files. For integrated
version control, ADF services can be configured using Git. You can run your edit envi-
ronment with or without integrated version control. Let’s see how to configure an
ADF with Git.

GIT VERSION CONTROL

ADF services can be configured using Git version control. Git is used to keep track of
changes to source code, the JSON definition files. You can keep your ADF resource
definitions under version control to make it easier to revert to previous configured
states and provide recovery options if the service is deleted.

Pipeline1

Triggers
scheduled
or event

Key
Vault

Edit environment

Production environment

Data Lake
Analytics

Git

repo

Scheduled
trigger

TriggersPipelines LinkedServiceDatasets

Delimited
schema

Data Lake
Analytics

U-SQL

Scheduled run

Publish to Production.

Trigger Fires

Runtime
executes

Integration
Runtime

4

2

3

1 Version control

Figure 13.2 Data Factory code promotion

367Version control and backups
 Saving and publishing are tightly integrated with Git when using version control.
Saving changes to ADF resources automatically commits to Git. You can create new
branches from the ADF authoring GUI or directly to the Git repository. You can pub-
lish to production from any branch. Even without using a branching strategy, enabling
version control lets you review change history and revert changes in the ADF service.

 ADF provides integrations for two version control systems: Azure DevOps Git and
GitHub. Azure DevOps (AZDO) is a collection of services for planning, controlling,
compiling, and deploying application code. AZDO uses Git for source code version
control. GitHub is a hosting platform for Git. Both integrations require an account
name, repository name, branch name, and root folder to support reading a Git repos-
itory for configuration.

TIP You can learn more about Azure DevOps in “What is Azure DevOps?” at
http://mng.bz/xWN7.

Using Azure portal
In the Azure portal, you provide the Git URL, repository name, branch name, and
root folder when creating a new ADF service with version control. You can also enable
version control on an existing service in the authoring GUI.

1 Browse to the Overview blade of the ADF service.
2 Click the Author & Monitor button to launch the authoring GUI in a new window.
3 Switch to the Authoring tab in the left nav.
4 Click the Data Factory drop-down in the top left corner, and select Setup Code

Repository.
5 Choose a Repository type, either AZDO Git or GitHub.
6 Choose an AZDO account, or enter the GitHub account to use.
7 Choose an AZDO project if using AZDO.
8 Choose an existing repository for GitHub.

a When choosing a GitHub account, ADF will attempt to authenticate to GitHub
and retrieve a list of repositories.

b ADF will open a pop-up login window to GitHub to authenticate and autho-
rize the service.

9 Choose an existing repository for AZDO, or create a new one.
a When creating a new repository, choose a collaboration branch to use. Mas-

ter is the default.
10 Choose a collaboration branch to use. This is the base branch for new branches,

typically Master or Default.
11 If you have created resources, choose to import existing ADF resources into ver-

sion control, or not; it’s up to you. I mean, I’d do it. Why not save that work?
Branches are practically free.
a You can import the existing JSON definition files into a new or existing branch.

12 Click Apply to set the version control configuration.

368 CHAPTER 13 Where to go next
The Git URL can point to a user with access to the repository, or the URL of an AZDO
organization and project hosting the repository. Examples include https://github.com/
rnuckolls for GitHub, and https:/ /dev.azure.com/azure99999/ade-dev-eastus2-adf for
AZDO. In the latter case, azure99999 is the organization, and ade-dev-eastus2-adf is
the project. Use the name of the ADF service /ade-dev-eastus2-adf in the root folder
value for the repository root. ADF will make commits here.

NOTE Access must be granted to the repository for ADF to make updates
when version control is enabled. Access is controlled via OAuth in GitHub,
and granted to the AzureDataFactory account. Figure 13.3 shows the GitHub
access control screen.

Access is controlled via AAD for AZDO, and granted to the active AAD user
with the built-in AZDO repository controls.

AzureDataFactory is a GitHub account.

Log in to GitHub in the same browser with your
GitHub account that has access to the target repository.GitHub account that has access to the target repository.

Click button to authorize.

AzureDataFactory gains access to all repositories
in the account.

2

3

1

4

1

2

3

4

Figure 13.3 Granting GitHub
access to ADF via OAuth

369Version control and backups
Using Azure PowerShell
Creating an ADF service under version control with Azure PowerShell works the
same as without version control. You can create a new ADF service using the New-
AzDataFactoryV2 command, and add the repository values with parameters. Table 13.1
shows the list of parameters. You can create the service first, then configure version con-
trol later using Set-AzDataFactoryV2 too.

You can run the script in the following listing to update or create the ADF V2 service
under version control with GitHub.

Set-AzDataFactoryV2 -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-adf" -Location "EastUS2"

➥ -HostName 'https://github.com'

➥ -AccountName "github-account"

➥ -RepositoryName "ade-dev-eastus2-adf"

➥ -CollaborationBranch "master" -RootFolder "/"

To use GitHub repositories, you need to authorize the AzureDataFactory application.
To do this, you must use the ADF GUI. In the ADF GUI, open the Home page and
click the Git Repo Settings button in the top right corner. If ADF is not authorized to
access the configured account and repository, the GUI will open a pop-up, and
prompt you to log in and/or authorize the AzureDataFactory to access the account
repositories.

WARNING When using a GitHub account, you will need to authorize the
AzureDataFactory user to access the repository via OAuth. The user will have
full permissions to all repositories in the GitHub account. You should care-
fully weigh access controls when using version control with ADF on GitHub.
One approach to limiting access is to host your ADF definitions in a separate
account. That way, ADF only has access to repositories under that account.
You can read more about it at http://mng.bz/AA6e.

Table 13.1 Version control parameters

Parameter Service Value description

AccountName Both The organization hosting the DevOps repository, or the
GitHub user account

RepositoryName Both Limited to alphanumeric plus hyphens and underscores

CollaborationBranch Both Typically Master, but can follow your version control branch-
ing strategy

RootFolder Both Use / for the root, or a path to the definition files

HostName GitHub Use https://github.com

ProjectName Azure DevOps The specific DevOps project hosting the repository

Listing 13.1 Updating a GitHub version controlled ADF service with Azure PowerShell

HostName is always
https://github.com.

https://github.com/
rnuckolls is my GitHub
account.

370 CHAPTER 13 Where to go next
To use AZDO, use the Set-AzDataFactoryV2 command, with the ProjectName param-
eter instead of HostName. You can find the AccountName and ProjectName values using
the URL of your AZDO instance, like the following:

https://{AccountName}.visualstudio.com/{ProjectName} https://dev.azure.com/{
AccountName}/{ProjectName}

You can run the script in the following listing to update or create the ADF V2 service
under version control with AZDO.

Set-AzDataFactoryV2 -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-adf" -Location "EastUS2"

➥ -AccountName "azure99999"

➥ -ProjectName "YourProject"

➥ -RepositoryName "ade-dev-eastus2-adf"

➥ -CollaborationBranch "master" -RootFolder "/"

IMPORTANT Before using an AZDO repository in ADF, you must initialize the
repository. This means creating the first branch. AZDO defaults to Master as
the main branch. Create the branch, using the DevOps portal or a Git tool,
then configure ADF to use the repository.

Enabling version control is typically the last step you’ll take when using PowerShell to
interact with a specific ADF service, because version control complicates the ADF
authoring and deployment workflow. From this point forward, you’ll use the author-
ing GUI or a text editor and Git. Let’s look at the reason behind this workflow change.

USING ADF WITH GIT VERSION CONTROL

Version control functions differently between the authoring GUI and Azure Power-
Shell. The authoring GUI commits changes to linkedservices, datasets, and triggers
upon edit completion. Pipeline and activity changes aren’t committed until you click
Save All. Overall updates to the service are only pushed to production when you
click Publish. Publishing commits to a special repository branch called adf_publish,
which contains Azure Resource Manager (ARM) templates for creating the service.
These templates create the production environment.

 Azure PowerShell writes directly to the non-version controlled development and
production environments. When version control is enabled, the authoring GUI uses a
Git editing environment, separate from the development environment. This means
changes made using Azure PowerShell are not committed to Git, and are not present
in the authoring GUI under version control. Publishing in the authoring GUI from
the non-version-controlled ADF edit environment and branches other than the collab-
oration branch is also disabled. Publishing in the authoring GUI is only allowed from
the collaboration branch.

Listing 13.2 Updating an AZDO version controlled ADF service with Azure PowerShell

Also known as
organization in AZDO

An account can have
multiple projects.

371Version control and backups
 So if you use Azure PowerShell to update the ADF after enabling version control, your
edit and production environments can fall out of sync. Changes to the version-controlled
edit environment are checked against the adf_publish branch during publish. If no
differences are detected, the change is not published. In short, once you enable ver-
sion control on the ADF, stop using Azure PowerShell to update it. Use the authoring
GUI or commit directly to your Git repository.

WARNING If your version-controlled authoring GUI editing environment
gets out of sync, and you can’t publish, disconnect version control and then
reconnect. Use the Azure PowerShell Set-AzDataFactoryV2 command, with-
out the version control parameters, to disconnect. When using the authoring
GUI to reconnect, choose to not import existing ADF resources, if the resources
would be incorrect.

It’s especially important when using version-controlled ADF that you use Azure Key
Vault or Managed Identities for linkedservice connections. The configuration files are
added to Git repositories, which may have different security restrictions than the ADF
and the linkedservice endpoints. Best practice is to not save passwords, keys, and other
access tokens in version control repositories.

 Using Git prevents creating new resources in ADF from within the New Resource
Creation blade. Chain resource creation can be handy when creating new pipelines.
But resource creation commits the new resource to Git on save, and validates required
resources. This happens against the production environment. The resources with
dependencies must be created after the dependency has been published to produc-
tion. This is done from the collaboration branch. If you use a branching strategy,
with code reviews and pull requests, you will need to plan a staggered release of ADF
resources.

 Even with all these constraints, using version control with ADF is recommended.
You get the benefits of version control processes, like code reviews and backups, with
an integrated system. Using AZDO also lets you automate the production deployment
or multiple environment deployments using AZDO pipelines. You can read more
about AZDO at http://mng.bz/Z2yN.

13.2.6 SQL Database

SQLDB has backups covered. Recall from chapter 11 that backups are taken at regu-
lar intervals and that you can manage long-term retention. But what about version
control?

 Version control for database schemas or data changes requires a time commitment
to a specific solution. Several commercial and open-source options are available, like
Redgate SQL Source Control and Liquibase by Datical. These let you track changes to
the database objects. Microsoft developers can use Entity Framework (EF) Code First
design to build your database based on class code. You classes are tracked with version
control. You can read more about EF Code First design at http://mng.bz/RARR.

372 CHAPTER 13 Where to go next
 Backup and recovery plans are part of any production-ready system. You should plan
your response to an outage or a disaster. You can present your plan to the system business
owner, and implement the processes that the business deems worth the cost. Bolster the
case for your plans by demonstrating your expertise with Microsoft certifications.

13.3 Microsoft certifications
Microsoft certifications have long been a method for demonstrating competency,
when looking for new positions or promotions. Certifications can be part of Microsoft
partner programs supporting businesses. Books have traditionally been part of prepar-
ing for an exam.

 At the time of writing, there are two exams for the Azure Data Engineer Associate
certification:

1 DP-200: Implementing an Azure Data Solution
2 DP-201: Designing an Azure Data Solution

Many of the topics for these exams are covered in this book. Learn Blob Storage provi-
sioning in chapter 3, and usage with various services throughout. Configure SQLDB
for high availability and security in chapter 11. Integrate SQLDB with other services
and choose the right database technology. Build Data Factory pipelines in chapters 10
and 12. Process data with Stream Analytics in chapter 6. Choosing the right authenti-
cation method and securing assets is covered in multiple chapters. This includes AAD
authentication using Managed Identities and SAS with Storage accounts.

 Use this book as part of your overall course of study for Azure exam topics. Get a
free Azure account for testing out the services discussed in this book and more. If you
have an MSDN subscription, you get credits every month to use for development and
testing using Azure services. Most of the services have a free tier or usage level that lets
you study and test your knowledge at a low cost. Reading and working hands-on exam-
ples is a strong method for learning new skills. Exposure to a broad swath of options is
one of the best benefits you can get from studying for Microsoft exams.

13.4 Signing off
Good luck in your pursuit of data engineering. I hope you have learned as much from
reading this book as I have from writing it. Azure cloud technologies continue to
improve and new services come online. This book represents an island in this flow of
change, showcasing software with a limited scope. As Azure grows and changes, you’ll
be able to learn and grow with it. May your data lake be deep and clear, and your
cloud processing always come with a silver lining.

Summary
 You build an analytics system for the benefit of data consumers. You can help

them use your system by documenting the data assets available.
 Azure handles the work of keeping your services online. To a greater or lesser

degree, you must do the work of keeping your configuration effort safe.

373Summary
 Azure Data Factory integrates with Git repositories. You can add version control
processes for ADF and gain the benefits of code review and backups for your
JSON definition files.

 Microsoft certifications demonstrate your knowledge. The act of preparing
yields a personal benefit beyond just earning the certification.

appendix A
Setting up Azure services

through PowerShell

This appendix covers setting up Azure resources for the examples in the book.
These PowerShell scripts can help you quickly get your Azure environment setup
for use with chapter scripts. The scripts in this book have been developed using Azure
PowerShell version 3.8.0 and earlier. See http://mng.bz/X01a for a full command
reference. You should already be familiar with the Azure portal. This book uses
the portal to set up services, as the GUI makes discovering the many options avail-
able easy.

 Some features in Azure cannot be configured through the portal, and some
can be configured only through the portal. PowerShell is a powerful tool, and the
examples in this book only scratch the surface of what’s possible. Read Learn Win-
dows PowerShell in a Month of Lunches, 3rd ed. (Manning, 2016) by Don Jones and
Jeffrey Hicks for a much deeper view.

TIP If you don’t have the latest Azure PowerShell module installed, Azure
offers Cloud Shell. You can access Cloud Shell from the Azure portal, or by
connecting to https://shell.azure.com. First-time Cloud Shell setup
requires a Resource group and Storage account. You will also choose Pow-
erShell instead of Bash for your shell environment. You can create a new
group and Storage account right from Cloud Shell, specifically for Cloud
Shell use. Azure Cloud Shell is tied to a user account, so you will have
access to all your subscriptions, but you will need to select a subscription to
store the settings and local scripts used in the command window.
374

375Setting up Azure PowerShell
A.1 Setting up Azure PowerShell
If you already have a working Azure PowerShell setup, or want to use Cloud Shell, you
can skip to the next section.

 Getting Azure PowerShell installed on your machine may be complicated. Differ-
ent versions of Windows come with different versions of PowerShell. Azure Power-
Shell requires PowerShell 5.x and .NET 4.7.2 on Windows. Here are a few steps that
can help.

■ Run cmd.exe as Administrator.
■ Run the following cmdlets to install the Azure PowerShell package.

powershell.exe -ExecutionPolicy Unrestricted

This command will start PowerShell, and the ExecutionPolicy setting allows the instal-
lation of packages.

 Install-Module installs PowerShell modules. If you install modules from public
repos, even from Microsoft’s own PSGallery, the modules are treated as untrusted.
PowerShell will ask you to confirm the installation before proceeding. You can
override this behavior on a per-install basis using the Force parameter. This follow-
ing script will install the Azure PowerShell module, updating earlier cmdlets if pres-
ent using the AllowClobber parameter. You can set the target repository with the
Repository parameter.

Install-Module -Name Az -Repository PSGallery -Force -AllowClobber

This loads Azure PowerShell into memory for use.

Import-Module Az

This generates a token for connecting the session to Azure. Follow the instructions
on-screen, going to https://microsoft.com/devicelogin to enter your token.

Connect-AzAccount

Connect-AzAccount connects subsequent Az PowerShell commands to the default sub-
scription for the account. You can set a different subscription to use with Set-AzContext.
Look up the subscription you want to use and pass the ID to the command.

$Sub = Get-AzSubscription -SubscriptionName "{SubNameHere}"
Set-AzContext -SubscriptionId $Sub.Id

You can modify a Windows shortcut for PowerShell by passing -ExecutionPolicy
Unrestricted, and run these PowerShell script in a PowerShell window. See http://
mng.bz/2Woo for more information.

376 APPENDIX A Setting up Azure services through PowerShell
 Now that you have a working PowerShell environment, you can use PowerShell
and the Azure PowerShell cmdlets to create and modify services in Azure. In the next
section, you’ll set up the basic resources needed for working with Azure services and
completing the examples and exercises in this book. Set up these basic resources
before moving on to creating any other Azure services.

A.2 Create a subscription
In order to follow along with the examples, you’ll need an Azure subscription. Signing
up for a personal account and subscription takes an email address, a phone number,
and a credit card. Visit https://azure.microsoft.com/free/ to start your free trial. All
of the Azure services described in this book are available during the trial period.

A.3 Azure naming conventions
Every Azure service, also called a resource, must have a name. Consistently applying a
naming convention helps users find services, and identify ownership and usage of ser-
vices. Since some resource names require lowercase characters, and most resources
are addressable via URL, make your names lowercase from the start. A working nam-
ing convention incorporates several aspects of managing cloud resources:

■ Project, system, or owning organization
■ Environment or deployment stage, such as Development, Staging, or Production
■ Region, or lack thereof
■ Supported function, such as web, tools, api, batch, daily or other description
■ Multiple instances, using a numeric suffix

This book uses a naming convention with these elements where necessary.

[REGION]-[PROJECT]-[ENVIRO]-[FUNCTION]-[SUBFUNCTION]-[NN]

Suppose we need two SQL Databases for development, in the East US 2 region, for
Azure Data Engineering (ADE), supporting baseball statistics. This gives us a name
like ade-dev-eastus2-sql-baseball. You can read about Microsoft’s recommendations for
resource naming at http://mng.bz/1g6Q.

A.4 Setting up common Azure resources using PowerShell
In this section, you’ll learn how to set up some common Azure resources using Power-
Shell. You’ll need access to an instance of PowerShell with the Azure PowerShell mod-
ule loaded to run these scripts. This can be a local PowerShell install, or you can use
Azure Cloud Shell: https://shell.azure.com. You’ll create a resource group which you
can use for all the examples and exercises. You’ll create an AAD user and security
group, which you can use to test security on Azure resources with accounts different

Listing A.1 Naming convention

377Setting up common Azure resources using PowerShell
than your primary owner account. These basic resource types are useful throughout
your Azure service use.

A.4.1 Creating a new resource group

Resource groups in Azure are organizing containers. Every Azure service has one.
Every resource group has a region. The resource group anchors a service to a region,
with the primary configuration data for the service stored in that region. This is espe-
cially true for some global services, like Cosmos DB and Traffic Manager, which have
infrastructure in every region. Deleting a resource group deletes all the services
attached to it. This book uses ade-dev-eastus2 as the resource group for any scripts
which require it. You should choose a naming convention which make sense for your
situation. This book uses the East US 2 region for any scripts which require it, since all
resources in the book are available in that region. The following listing shows how to
create a new resource group and retrieve a list of all resource groups.

New-AzResourceGroup -Name "ade-dev-eastus2" -Location "East US 2"
Get-AzResourceGroup

Execute this line in PowerShell with the Azure Modules loaded. This script will return
an error if a group by that name exists. Otherwise it will create a new resource group,
then list the resource groups in the current subscription. There are many regions, or
locations, for hosting Azure resources across the globe, including the Americas, Europe,
Asia Pacific, and the Middle East and Africa. You can see the current list of services by
region at http://mng.bz/OvGR.

A.4.2 Creating a new Azure Active Directory user

Azure uses Azure Active Directory (AAD) extensively for user and service authentica-
tion. Setup, examples, and exercises in this book make use of AAD users and groups.
You should already be familiar with the Azure portal, and using Active Directory for
authentication and authorization to Azure services. The following listing creates two
new AAD users.

$SecureStringPassword = ConvertTo-SecureString -String "Password1!"
-AsPlainText -Force

$User = New-AzADUser -DisplayName "Tech User"

➥ -UserPrincipalName "techuser@domain.onmicrosoft.com"

➥ -Password $SecureStringPassword -MailNickname "techuser"
$SecureStringPassword = ConvertTo-SecureString -String "Password1!"

-AsPlainText -Force
$User2 = New-AzADUser -DisplayName "Finance User"

➥ -UserPrincipalName "financeuser@domain.onmicrosoft.com"

➥ -Password $SecureStringPassword -MailNickname "financeuser"

Listing A.2 New resource group

Listing A.3 New AAD user

378 APPENDIX A Setting up Azure services through PowerShell
Execute these lines in PowerShell with the Azure PowerShell module loaded. This
script will return an error if a group by that name exists. The first line creates a Pass-
word object. Don’t use Password1! The second will create a new user techuser. You
need to construct a UserPrincipalName using one of the AAD registered domains.
You’ll repeat these steps for a new user finance.

NOTE If you are using an Azure subscription without a corporate Active
Directory, then your domain will be some variation of the email you used to
sign up with Azure. You can find this value by going to the AAD service’s
Overview blade. The domain is listed above the header Default Directory, as
well as in the Custom Domain Names blade.

A.4.3 Creating a new Azure Active Directory group

Now create a new security group for Technical Operations, and add techuser to this
group. Execute listing A.4 in PowerShell with the Azure PowerShell module loaded.
You’ll repeat these steps for the finance user. This script will return an error if a
group by that name exists.

$Group = New-AzADGroup -DisplayName "Technical Operations" -MailNickname
"TechOps"

Add-AzADGroupMember -MemberObjectId $User.Id -TargetGroupObjectId $Group.Id
$Group2 = New-AzADGroup -DisplayName "Finance" -MailNickname "Finance"
Add-AzADGroupMember -MemberObjectId $User2.Id -TargetGroupObjectId $Group2.Id

Now you’ve set up the basic resources in Azure using PowerShell. You’ve learned
why you need a resource group in Azure, and how to create one. You’ve created a
user and a security group for Technical Operations and Finance in AAD. Now you
can use them when securing other resources in Azure. In the next section you’ll cre-
ate a Storage account.

A.5 Setting up Azure services using PowerShell
In this section, you’ll provision the required Azure services for your analytics system.
These include:

■ Storage account
■ Data Lake Storage
■ Event Hubs
■ Stream Analytics
■ Data Lake Analytics
■ SQL Server and SQL Database
■ Data Factory
■ Key Vault

Listing A.4 New AAD group

379Setting up Azure services using PowerShell
A.5.1 Creating a new Storage account

Now you’ll create a Storage account using Azure PowerShell. The Storage account
cmdlet needs four pieces of information.

1 The resource group created in listing A.2.
2 A name, referencing the same values from the resource group.
3 A replication SKU, for the default Read Access Geo-redundant Storage.
4 A location, the same region as the resource group.

Execute listing A.5 in Azure PowerShell. This script will return an error if a Storage
account by that name exists.

New-AzStorageAccount -ResourceGroupName "ade-dev-eastus2" -AccountName
"adedeveastus2" `

-SkuName Standard_RAGRS -Location "East US 2" `
-EnableHttpsTrafficOnly 1 -Kind "StorageV2"

There are multiple values for the Replication SKU, which we cover in chapter 3. The
default value includes the most redundancy. Other values are less expensive, but have
less redundancy.

 There are multiple values for the Kind command.

■ Storage, which includes Blobs, Tables, Queues, Files and Disks services
■ StorageV2, the default, which includes Blobs, Tables, Queues, Files and Disks

services and adds Hot/Cold/Archive tiered storage
■ BlobStorage, which only supports Blob Storage

Now you’ve learned how to create a Storage account using Azure PowerShell.

A.5.2 Creating a new Data Lake store

Creating a Data Lake store works the same as most Azure resources. Use the New-
AzDataLakeStoreAccount command and provide the basic properties of name, resource
group, and location. The cmdlet takes three pieces of information.

1 The resource group created in listing A.2.
2 A name, referencing the same values from the resource group, alphanumeric only.
3 A location, the same region as the resource group.

Execute the following listing in Azure PowerShell to create a new Data Lake store.

Listing A.5 Create a new Storage account

Account name must be alphanumeric.

Choose RAGRS for maximum redundancy,
LRS for minimal redundancy.

Allowing only HTTPS
traffic increases security.

380 APPENDIX A Setting up Azure services through PowerShell
New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2"
-Name "adedeveastus2" -Location "East US 2"

This script will return an error if a Data Lake store by that name exists, or if the service
is not available in the selected region. Keep resources within the same region. Data
Lake Storage has the fewest available regions. It’s a good idea to select one of these
regions before creating the rest of your resource in Azure, to keep all resources in the
same region. This lowers the latency of network communication between resources.

 You can also specify some other options during setup. You can add key/value pairs,
called tags, to Azure resources to help locate them later. If you know your storage size,
you can pre-purchase storage at a discounted rate using the -Tier parameter.

New-AzDataLakeStoreAccount -ResourceGroupName "ade-dev-eastus2"
-Name "adedeveastus2" -Location "East US 2" -Tag @{User="ADE";} -Tier
Commitment1TB -DefaultGroup (Get-AzADGroup -DisplayName "Technical

Operations").Id

-DefaultGroup will set the owning group for your root folder and other folders in the
Data Lake store. Add a tag for management of resources. This is especially nice when
browsing the All Resources blade in the portal, because you can select from a list of all
the tags you have provided. Use a consumption plan, until you calculate your monthly
storage needs. After you find your usage, sign up for recurring billing of the commit-
ted storage.

A.5.3 Create new Event Hub

Creating and configuring an Event Hub is covered in chapter 5. Creating an Event
Hub using PowerShell requires two steps: creating an Event Hubs namespace and cre-
ating the Event Hub. Both AMQP and Kafka protocols require a fully-qualified
domain name (FQDN) endpoint to submit messages to. In Event Hubs, this is called
the Event Hubs namespace. The namespace can be thought of as the gateway or load
balancer for one or more Event Hubs. You need to create the namespace before creat-
ing an Event Hub. The following listing shows how to create the namespace with
Azure PowerShell.

New-AzEventHubNamespace -ResourceGroupName "ade-dev-eastus2"

➥ -NamespaceName "ade-dev-eastus2-hubs" -Location "East US 2"

➥ -SkuName "Standard" -SkuCapacity 1

➥ -Tag @{User="ADE";}

Listing A.6 Create new Data Lake store

Listing A.7 Create new Data Lake store with options

Listing A.8 Create a new Azure Event Hub namespace using PowerShell

Standard tier, 1 throughput unit

Tag this resource with
ADE, to aid in searching.

381Setting up Azure services using PowerShell

s
e
nd
rs.

e
➥ -EnableAutoInflate

➥ -MaximumThroughputUnits 5

Once you have the namespace created, you can create the Event Hub. Run the follow-
ing script to create the Event Hub with two partitions and message retention of one day.

New-AzEventHub -ResourceGroupName "ade-dev-eastus2"
-NamespaceName "ade-dev-eastus2-hubs" -Name "biometricstats"

➥ -MessageRetentionInDays 1

➥ -PartitionCount 2

The script in listing A.10 creates a new Staging folder for collecting statistics, and
sets the necessary permissions for Event Hubs. The script will prompt to overwrite
the folder if present. The final step applies the permissions over any existing folders
and files.

$pri = Get-AzADServicePrincipal

➥ -DisplayName Microsoft.EventHubs
$store = "adedeveastus2"
New-AzDataLakeStoreItem -AccountName $store

➥ -Path "/Staging/playerstats" -Folder

Set-AzDataLakeStoreItemAclEntry -AccountName $store -Path /

➥ -AceType User -Id $pri.Id -Permissions Execute
Set-AzDataLakeStoreItemAclEntry -AccountName $store -Path /Staging

➥ -AceType User -Id $pri.Id -Permissions Execute
Set-AzDataLakeStoreItemAclEntry -AccountName $store

➥ -Path /Staging/playerstats -AceType User -Id $pri.Id

➥ -Permissions All -Default
Set-AzDataLakeStoreItemAclEntry -AccountName $store

➥ -Path /Staging/playerstats -AceType User -Id $pri.Id

➥ -Permissions All -Recurse -Concurrency 128

A.5.4 Create new Stream Analytics job

Creating and configuring a Stream Analytics job is covered in chapter 6. Creating an
ASA job using PowerShell requires two steps: creating a JSON configuration file and
executing a Azure PowerShell command referencing the file. The following listing
contains the creation configuration file.

Listing A.9 Create an Event Hub

Listing A.10 Set access permissions for Event Hubs service

Enable automatic
scaling of throughput
units.Limit scaling to a maximum

of 5 throughput units.

One day of message retention
(storage) included in the
Throughput Unit rateUp to 32 partitions included

in the Throughput Unit rate

Get the account for the
Event Hub service.

Create a folder in the
Data Lake store.

Set list acces
for the servic
at the root a
Staging folde

Set full access for the servic
at the Staging/playerstats
folder, for new items.

Set full access for the service at the Staging/
playerstats folder, for existing items.

382 APPENDIX A Setting up Azure services through PowerShell
{
"location":"EastUS2",
"properties":{

"sku":{
"name":"Standard"

},
"eventsOutOfOrderPolicy":"Adjust",
"outputErrorPolicy": "Stop",
"eventsOutOfOrderMaxDelayInSeconds":10,
"eventsLateArrivalMaxDelayInSeconds":5,
"compatibilityLevel": 1.1

}
}

Follow these steps to create the file.

1 Open and log in to Cloud Shell in a web browser at https://shell.azure.com/.
2 Choose the PowerShell environment instead of Bash. If necessary, switch to

PowerShell using the environment selector in the top left corner of the page.
3 Type mkdir asa in the window to create a folder “asa” to store the ASA job files.
4 Type cd asa to switch to the new folder.
5 Type code streamingjob.json to create a new file in the Cloud Shell editor in

the folder.
6 Copy the JSON from listing A.11 into the editor.
7 Enter Ctrl+s/Cmd+S to save the file.
8 Enter Ctrl+Q/Cmd+Q to quit the editor.

Now that you have a valid ASA job configuration file available, you can run the Azure
PowerShell command to create the job. Execute the command in listing A.12 using
Azure Cloud Shell.

New-AzStreamAnalyticsJob -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-biometricstats"

➥ -File ~/asa/streamingjob.json

A.5.5 Create new Data Lake Analytics account

Listing A.13 shows a PowerShell script for creating an ADLA service. Creating an
ADLA service with Azure PowerShell requires the standard selections of name, region,
and resource group. You also need to select the default Data Lake store and a pricing
package. With the Azure PowerShell command, you can also adjust policy limits and
storage growth.

Listing A.11 ASA job configuration file

Listing A.12 Create new Azure Stream Analytics job using PowerShell

The name for the
ADLA service

Select the Data Lake store for
management and job storage.

383Setting up Azure services using PowerShell
New-AzDataLakeAnalyticsAccount -ResourceGroupName "ade-dev-eastus2"

➥ -Name "adedeveastus2"

➥ -Location "East US 2" -DefaultDataLakeStore "adedeveastus2"

➥ -QueryStoreRetention 62

➥ -MaxJobCount 12 -MaxAnalyticsUnits 24

➥ -Tier "Consumption"

A.5.6 Create new SQL Server and Database

Every SQLDB requires an Azure SQL Server as a host. To create an Azure SQL Server,
you’ll need to choose a resource group, a name, and a region. You also must choose
between version 11 (SQL Server 2012) and 12 (SQL Server 2014). Finally, you’ll need
to provide an admin username and password. You can use Azure PowerShell to create
the SQL Server. Run the following listing in Azure Cloud Shell.

New-AzSqlServer -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -SqlAdministratorCredentials (Get-Credential)

You can create a new SQLDB using the Azure portal, and using Azure PowerShell.
Run the following listing in Azure Cloud Shell to create a new SQLDB.

New-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -DatabaseName "Playerstats"

➥ -Edition "Basic"

The new SQL Server does not allow outside connections to the engine by default. Out-
side connections are blocked by a firewall. There are two types of firewall rules you can
apply: one for Azure resources, and one for specific IP addresses. The script in list-
ing A.16 will set the Allow Azure Endpoints rule and create another rule for your on-
premises network. Run the script in Azure Cloud Shell to create the firewall rules.

Listing A.13 Creating a new ADLA service with Azure PowerShell

Listing A.14 Create new Azure SQL Server

Listing A.15 Create new Azure SQL Database

The name for the ADLA service
Select the Data Lake store for
management and job storage.

You can change the
default management
info retention period
from 30 days to 60
days or more.

You can set policy
limits on U-SQL job scaling,
by changing max job count

from the default of 3, and the
max scaling units from 32.

Use the Pay-as-You-Go
consumption plan.

Choose a name for the
server, according to your
naming convention.

Enter admin username
and password for server.

The server name you
chose previously

Databases are not tied to a
particular server or region,
and can have simpler names.

Set the tier to the
lowest-cost tier.

384 APPENDIX A Setting up Azure services through PowerShell
New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -AllowAllAzureIPs

New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql"

➥ -FirewallRuleName "Onpremises"

➥ -StartIpAddress "192.168.0.198"

➥ -EndIpAddress "192.168.0.198"

A.5.7 Create a new Data Factory service

ADF functions as an organizing structure for a collection of resources. Because it’s
an organizing structure, creating a new ADF service requires a few choices. Use the
New-AzDataFactoryV2 command to create a new ADF service. Supply the standard
ResourceGroupName, Name, and Location parameters. When using the Azure Power-
Shell command, you do not need to select the ADF version. Separate commands
are used to create V1 and V2 services. Run the script in the following listing to cre-
ate the ADF V2 service.

New-AzDataFactoryV2 -ResourceGroupName "ade-dev-eastus2"

➥ -Name "ade-dev-eastus2-adf" -Location "EastUS2"

When you first create an ADF, it has no resources. The bulk of ADF work lies in creat-
ing and configuring the linkedservices, data set, pipeline, and trigger resources. You
can get the JSON configuration files for all the ADF resources in this chapter at
http://mng.bz/yr8d.

A.5.8 Creating a new App registration

To create a new service principal for ADF to use, we’ll use a template called an App reg-
istration. The App registration defines the credentials and authorization methods for
the application(s), and the service principal identifies the application(s). The App
registration links to a custom service principal, separate from the service’s own service
principal. Instead of a username and password to access the service principal, applica-
tions use the application ID and a secret key to get an instance of the custom service
principal. Using the custom service principal provides a common authentication
mechanism for the ADF linkedservices.

Listing A.16 Create a firewall rule to allow access by Azure resources

Listing A.17 Creating a new ADF service with Azure PowerShell

Use the server name you
chose previously.

This rule allows access from Azure
resources, regardless of their IP address.

Choose a name for the rule
which allows access from
your on-premises network.

Select a routable
Internet address for
the start of a range.

Select a routable Internet address for the
end of a range, or match the StartIPAddress

to list a single IP address.

385Setting up Azure services using PowerShell
 Run listing A.18 to create the new App registration. The output will display the
ApplicationId. Copy the ApplicationId value, along with the password you entered,
for use in configuring the new ADLS linkedservice in the next section.

$Secure = Read-Host -AsSecureString

$App = New-AzADApplication -DisplayName "ade-dev-eastus2-adf-id"

➥ -IdentifierUris "http://none.none"

➥ -Password $Secure

$App.ApplicationId.Guid

The App registration alone does not give access to services in Azure. You need to cre-
ate a service principal, in the same AAD directory, and authorize it to access the ser-
vices used by ADF.

 Listing A.19 shows an Azure PowerShell script that creates a new service principal
and attaches it to an app. The new service principal does not have any permissions.
You’ll assign permissions as needed when you create linkedservices. Run the script to
create the service principal.

$App = Get-AzADApplication -DisplayName "ade-dev-eastus2-adf-id"
New-AzADServicePrincipal

➥ -ApplicationId $App.ApplicationId.Guid

A.5.9 Creating a new key vault

You can also create the key vault using Azure PowerShell. Use the New-AzKeyVault
command to create a new AKV service. Supply the standard ResourceGroupName,
Name, and Location parameters. When using the Azure PowerShell command, you do
not need to provide the tier when choosing Standard. Use the parameter Sku with
value “Premium” for the Premium tier. Use EnablePurgeProtection to enable recov-
ery of deleted secrets and AKV services for 90 days. The following listing shows the
script for creating the new vault.

New-AzKeyVault -Name 'ade-dev-eastus2-key'

➥ -ResourceGroupName 'ade-dev-eastus2'

➥ -Location 'East US 2'

➥ -EnableSoftDelete -EnablePurgeProtection

Listing A.18 Creating a new App registration with Azure PowerShell

Listing A.19 Creating a new service principal with Azure PowerShell

Listing A.20 Creating a new key vault with Azure PowerShell

Read a secret key
value interactively.

Throwaway value
Previously
submitted
secret key

The new service principal ID

Look up the
app by name.

Use the ID of the app for authentication.

386 APPENDIX A Setting up Azure services through PowerShell
Before ADF can look up secrets in AKV, you need to authorize ADF to access secrets.
Use the Set-AzKeyVaultAccessPolicy command to set the policy. Listing A.21 shows
the script to do this. The script retrieves the ADF Managed Identity object, and passes the
ID to the Set-AzKeyVaultAccessPolicy command using the ObjectId parameter. The
PermissionsToSecrets parameter takes a CSV string of the permissions to apply.
The values include Get, List, Set, Delete, Backup, Restore, Recover, and Purge.

$App = Get-AzADServicePrincipal -DisplayName "ade-dev-eastus2-adf"
Set-AzKeyVaultAccessPolicy -VaultName "ade-dev-eastus2-key"

➥ -ObjectId $App.Id

➥ -PermissionsToSecrets Get,List

A.5.10 Create new SQL Server and Database with lookup data

Chapter 12 includes a section on configuring SQLDB to query external data from
other SQLDBs. To follow along, you need a second database. Use the following code
samples to create the second SQLDB and add a data table to it.

 To create an Azure SQL Server, you’ll need to choose a resource group, a name,
and a region. The SQL Server also requires you to choose between version 11 (SQL
Server 2012) and 12 (SQL Server 2014). Finally, you’ll need to provide an admin user-
name and password. Run the following listing in Azure Cloud Shell.

New-AzSqlServer -ResourceGroupName "ade-dev-eastus2"

➥ -Location "East US 2"

➥ -ServerName "ade-dev-eastus2-sql2"

➥ -SqlAdministratorCredentials (Get-Credential)

Run the following listing in Azure Cloud Shell to create a new SQLDB.

New-AzSqlDatabase -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql2"

➥ -DatabaseName "ade-dev-sql2-gamestats"

➥ -Edition "Basic"

The new SQL Server does not allow outside connections to the engine by default.
Outside connections are blocked by a firewall. There are two types of firewall rules
you can apply: one for Azure resources and one for specific IP addresses. The script in
listing A.24 will set the Allow Azure Endpoints rule, and create another rule for your
on-premises network. Run listing A.24 in Azure Cloud Shell to create the firewall
rules. Remember to update the StartIpAddress and EndIpAddress with your network
IP address.

Listing A.21 Assign permissions to Data Factory in key vault with Azure PowerShell

Listing A.22 Create a new Azure SQL Server

Listing A.23 Create a new Azure SQL Database

Lookup the
ADF Managed

Instance.
Use the ID
property.

Assign read and list access.

387Setting up Azure services using PowerShell
New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql2"

➥ -AllowAllAzureIPs

New-AzSqlServerFirewallRule -ResourceGroupName "ade-dev-eastus2"

➥ -ServerName "ade-dev-eastus2-sql2"

➥ -FirewallRuleName "Onpremises"

➥ -StartIpAddress "192.168.0.198"

➥ -EndIpAddress "192.168.0.198"

To authenticate to the SQLDB, you can use the server admin credential you created
with the new SQL Server. Or you can create a login and user for querying the SQLDB.
Run the script in listing A.25 to create the SQL Server login. This script connects to
the Master database on the SQL Server.

Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "master"

➥ -Credential (Get-Credential)

➥ -Query "CREATE LOGIN remoteuser

➥ WITH PASSWORD = {YOURPASSWORD};"

Run the script in listing A.26 to create the new user in the SQLDB. This script con-
nects to the GameStats database on the SQL Server.

$Cred = Credential (Get-Credential)
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats"

➥ -$Cred

➥ -Query "CREATE USER remoteuser

➥ FOR LOGIN remoteuser;"
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats"

➥ -$Cred

➥ -Query "ALTER ROLE db_datareader

➥ ADD MEMBER remoteuser;"

To query external data from this new SQLDB, you need a table with data. The fol-
lowing PowerShell script creates a table and adds some rows of data for use in an

Listing A.24 Create a firewall rule to allow access by Azure resources

Listing A.25 Create a SQL Server login

Listing A.26 Create a SQLDB user

Connect to the second SQL Server.

Connect to the master
database to create a login.

Provide a SQL Server
admin credential.Replace with a strong password.

Connect to the second SQL Server.

Connect to the master
database to create a login.

Provide a SQL Server
admin credential.

Specify the login created
at the server level.

Allow remoteuser
to read data.

388 APPENDIX A Setting up Azure services through PowerShell
external table query. Run the script in the following listing to create the table and
populate the data.

$Cred = Get-Credential
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats" -Credential $Cred

➥ -Query "CREATE TABLE PlayerDetails (PlayerId nvarchar(8),

➥ PlayerName nvarchar(100),TeamName nvarchar(100),TeamPosition

➥ nvarchar(100),PositionStart DateTime,PositionEnd DateTime);"
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats" -Credential $Cred

➥ -Query "INSERT INTO PlayerDetails values ('abera101',

➥ 'Arnold Berathal','Jonestown Sluggers','Pitcher',

➥ '2010-07-11','2020-07-11');"
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats" -Credential $Cred

➥ -Query "INSERT INTO PlayerDetails values ('jstro101',

➥ 'John Strong','Poplar Bats','First Base',

➥ '2010-07-11','2020-07-11');"
Invoke-Sqlcmd

➥ -ServerInstance "tcp:ade-dev-eastus2-sql2.database.windows.net"

➥ -Database "ade-dev-sql2-gamestats" -Credential $Cred

➥ -Query "INSERT INTO PlayerDetails values ('mjone101',

➥ 'Michael Jones','Harrisburg Drivers','First Base',

➥ '2018-07-11',NULL);"

Listing A.27 Create a table and populate game data

Create the
data table.

Insert a row.

appendix B
Configuring the Jonestown

Sluggers analytics system

This appendix covers setting up Azure resources to form the Jonestown Sluggers
analytics system featured in the book. It uses Azure PowerShell to create and config-
ure the services. PowerShell is a powerful tool, and the examples in this book only
scratch the surface of what’s possible. This appendix provides some enhancement
to similar scripts found elsewhere in the book, but these enhancements are to sup-
port script reuse by multiple readers. Learn Windows PowerShell in a Month of Lunches,
3rd ed. (Manning, 2016) by Don Jones and Jeffrey Hicks provides a much deeper
view of the technology.

TIP You can find the code listings at https://github.com/rnuckolls/azure
_storage.

B.1 Solution design
The Lambda architecture for analytics systems forms the basis of this design. The
Lambda architecture defines a Speed layer, Batch layer, Serving layer, and master
data set. Data flows through both a hot path and a cold path, allowing both low-
latency calculations and large batch processing to occur.

 The end-to-end solution presented in this appendix provides one possible design
for implementing a Lambda architecture in Azure. The solution uses the same Azure
services discussed in the book. Instead of presenting all the options for feature imple-
mentation, this solution focuses on producing output from a single data source along
the hot and cold paths. The output is a set of average values within two different win-
dows of time: 5 minutes and 24 hours. Figure B.1 shows the services used to imple-
ment the various layers of the Lambda architecture in this solution.
389

390 APPENDIX B Configuring the Jonestown Sluggers analytics system
1 A PowerShell script generates event messages and submits them to an Event
Hubs endpoint.

2 Event Hubs serves as a distribution point for the Speed layer and the master
data set.

3 An Azure Stream Analytics (ASA) job prepares a real-time view and outputs the
average calculations to a CSV file in Blob Storage.

4 A Storage account provides access to the real-time view data.
5 The same ASA job saves the raw event messages to Data Lake store (ADLS

store) for long term storage.
6 The event messages are stored in CSV files each hour in the /Staging folder in

ADLS.

Event
Hubs

Stream
Analytics

Data Lake
store

Data Lake
Analytics

Data
Factory

Stream
Analytics

Event data generated
by Azure PowerShell script.

Stream Analytics outputs
aggregated data to
Storage account.

CSV files generated
in Blob storage and
read on demand.

Stream Analytics reads
the queue and writes a
SQL result set to
an output.

CSV files generated
in Data Lake.

Data Lake Analytics job
reads data from files,
evaluates via U-SQL
queries, and saves
output files back to
Data Lake.

Data Factory executes
Data Lake Analytics job,
then loads output file
to SQL Database.

Data Factory pipeline
loads batch data to table.

Speed layer

Batch layer

Serving layerSQL
Database

Event Hubs records
messages and serves readers.

Azure
PowerShell

Storage
account

Blob
Storage

Master dataset

1

2

5

6

7

8

9

4

3

Figure B.1 Azure service analytics system, showing Lambda architecture layers over hot path and
cold path data processing steps

391Solution design
7 On a daily schedule, a Data Factory (ADF) pipeline calls Data Lake Analytics
(ADLA) to execute a batch job.

8 ADLA runs a U-SQL job to calculate the daily average and generate a CSV file
in the /Curated folder.

9 The same ADF pipeline then copies the data from the daily average CSV file
into a SQL Database (SQLDB) table.

10 The SQLDB provides access to the batch view data.

B.1.1 Hot path

Event data flows through the Speed layer for real-time views in the Lambda architec-
ture. This design uses only a single query to generate a single real-time view in the
Speed layer. This view uses a 5-minute window to average the values in a specific field
for events that match the query criteria. While all data is analyzed, not all data follows
the hot path to the end. Only data that matches the query filter for this view are
included. For this reason, the PowerShell script generates many thousands of event
messages so that some qualify for inclusion in the calculation. Figure B.2 shows the
steps this data follows as it is processed on the hot path.

B.1.2 Cold path

Event data flows into the Batch layer for storing in the master data set. From the mas-
ter data set, data is drawn for calculations to generate the batch views. This design uses
only a single query to generate a single batch view in the Batch layer. This view uses a
24-hour window to average the values in a specific field for all events in the window.
All data is analyzed, and all data follows the cold path to the end. This daily average
U-SQL job query includes only the previous day’s data. The ADF service schedules the
query execution to calculate the averages. ADF also copies the resultant data into a

Event
Hubs

Stream
Analytics

Azure
PowerShell

Storage
account

Blob
Storage

Event data
generated by
Azure PowerShell
script with
random data.

Event Hubs
records
messages and
serves readers.

Stream Analytics
watches data for
matches within
tumbling window.

New file created
each hour, and
window data
written when
calculated by
SQL query.

Event message progresses through submission and calculation

1 2 3 4 5

Files stored
ready for access
by users and
report software.

Figure B.2 Azure service analytics system, showing Lambda architecture hot path data processing steps

392 APPENDIX B Configuring the Jonestown Sluggers analytics system
SQLDB table. This table represents the batch view in the Batch layer. Figure B.3 shows
the steps this data follows as it is processed on the cold path.

B.2 Naming convention
This appendix contains multiple code listings, including Azure PowerShell scripts,
JSON configuration files, and U-SQL query files. These are intended to create an
entire analytics processing system based on the solution provided in this appendix. Most
of this can be accomplished with Azure PowerShell commands, but some tasks cannot.
The code listings are interspersed with instructions to complete before moving on.
These include configuring specific service features in the Azure portal, and copying
configuration files to folders for use by the subsequent Azure PowerShell scripts.
Please follow the steps in order to ensure each piece is configured correctly.

 Listing B.1 sets up the naming convention for your system. Modify these variables
to match a system name you prefer. These variables are used in later scripts. The list-
ing provides a single place to set the names to make set up easier.

Data Lake
store

Data Lake
Analytics

Data
Factory

SQL
Database

Event
Hubs

Stream
Analytics

Azure
PowerShell

Event data
generated by
Azure PowerShell
script with
random data.

Event Hubs
records
messages and
serves readers.

Stream Analytics
selects all data by
SQL passthrough
query for output.

Event message progresses through submission and calculations

Data
Factory

Data Lake
Store

New file created
each hour, and
all event data
written to file.

Scheduled
Pipeline runs
U-SQL job to
calculate daily
averages.

U-SQL query
reads daily files
and generates
daily averages.

Daily average
file stored in
Curated zone
until used.

Scheduled
Pipeline runs
copy activity to
load daily average
data into database.

Database table
makes data
available for
users and
report software.

1 2 3 4 5

6789

Figure B.3 Azure service analytics system, showing Lambda architecture cold path data processing
steps

393Creation script
Define the named parts for your system
Choose the region
$region = "eastus2"
$regionName = "East US 2"
Choose unique client name
$client = "jones"
$env = "dev"
$project = "biometricstats"
$rgName = $region + "-" + $client + "-" + $env
Make sure RG name is less than 21 characters
("RG name length " + $rgName.length)
$storeName = $region + $client + $env
Make sure Storage name is less than 25 characters
("Storage name length " + $storeName.length)
$hubsName = $rgName + "-" + "hubs"
$streamName = $rgName + "-" + "asa" + "-" + $project
$sqlName = $rgName + "-" + "sql"
$dbName = $sqlName + "-" + "stats"
$vaultName = $rgName + "-" + "key"
Make sure AKV name is less than 25 characters
("AKV name length " + $vaultName.length)
$adfName = $rgName + "-" + "adf"
$adfAppName = $adfName + "-" + "id"
Lookup your workstation public IP Address
$ipAddress = "192.168.0.1"

B.3 Creation script
Listing B.2 takes approximately 10 minutes to run. You must provide values for a SQL
Server admin and password interactively. You will receive a prompt halfway through
the script to allow you to enter these values.

Create services
Get-AzResourceGroup -Name $rgName -ErrorVariable notPresent -ErrorAction

SilentlyContinue
if ($notPresent)
{
New-AzResourceGroup $rgName -Location $regionName
}

Storage Account
Get-AzStorageAccount -Name ($storeName) -ResourceGroupName $rgName `
-ErrorVariable notPresent -ErrorAction SilentlyContinue
if ($notPresent)
{
New-AzStorageAccount -ResourceGroupName $rgName `
-AccountName $storeName -SkuName Standard_LRS -Location $regionName `
-EnableHttpsTrafficOnly 1 -Kind "StorageV2"

Listing B.1 Azure naming convention

Listing B.2 Create Azure services

394 APPENDIX B Configuring the Jonestown Sluggers analytics system
$accountObject = Get-AzStorageAccount -ResourceGroupName $rgName `
-AccountName $storeName
New-AzRmStorageContainer -StorageAccount $accountObject `
-ContainerName $project -PublicAccess None
}

Data Lake store
if (!(Test-AzDataLakeStoreAccount -Name $storeName))
{
New-AzDataLakeStoreAccount -Name $storeName -Location $regionName `
-ResourceGroup $rgName -Encryption ServiceManaged
}

Event Hubs
if ((Test-AzEventHubName -Namespace $hubsName).NameAvailable)
{
New-AzEventHubNamespace -ResourceGroupName $rgName `
-NamespaceName $hubsName -Location $regionName `
-SkuName "Standard" -SkuCapacity 1
New-AzEventHub -ResourceGroupName $rgName `
-NamespaceName $hubsName -Name $project `
-MessageRetentionInDays 1 -PartitionCount 2
New-AzEventHubAuthorizationRule -ResourceGroupName $rgName `
-NamespaceName $hubsName -AuthorizationRuleName "hubsreader" `
-Rights @("Listen")
New-AzEventHubAuthorizationRule -ResourceGroupName $rgName `
-NamespaceName $hubsName -AuthorizationRuleName "hubswriter" `
-Rights @("Send")
}

Stream Analytics
Get-AzStreamAnalyticsFunction -JobName $streamName -ResourceGroupName $rgName `
-ErrorVariable notPresent -ErrorAction SilentlyContinue
if ($notPresent)
{
mkdir asa
cd asa
$jobConfig = @{}
$jobProp = @{}
$jobSku = @{name="standard"}
$jobProp.Add("sku",$jobSku)
$jobProp.Add("eventsOutOfOrderPolicy","adjust")
$jobProp.Add("eventsOutOfOrderMaxDelayInSeconds",11)
$jobProp.Add("compatibilityLevel",1.1)
$jobProp.Add("outputErrorPolicy","Stop")
$jobProp.Add("eventsLateArrivalMaxDelayInSeconds",6)
$jobConfig.Add("properties",$jobProp)
$jobConfig.Add("location","EastUS2")
$jobConfig | ConvertTo-Json -Depth 10 | Out-File -FilePath ./streamingjob.json
New-AzStreamAnalyticsJob -ResourceGroupName $rgName `
-Name $streamName -File ./streamingjob.json
cd ..
}

395Creation script
Data Lake Analytics
if (!(Test-AzDataLakeAnalyticsAccount -Name $storeName))
{
New-AzDataLakeAnalyticsAccount -ResourceGroupName $rgName -Name $storeName `
-Location $regionName -DefaultDataLakeStore $storeName -Tier "Consumption"
}

SQL Database
Get-AzSqlServer -Name $sqlName -ResourceGroupName $rgName `
-ErrorVariable notPresent -ErrorAction SilentlyContinue
if ($notPresent)
{
Enter new SQL Admin credentials
New-AzSqlServer -ResourceGroupName $rgName -Location $regionName `
-ServerName $sqlName -SqlAdministratorCredentials (Get-Credential -

Message "Enter new SQL Admin credentials")
}

Get-AzSqlDatabase -Name $dbName -ResourceGroupName `
$rgName -ServerName $sqlName -ErrorVariable notPresent -

ErrorAction SilentlyContinue
if ($notPresent)
{
New-AzSqlDatabase -ResourceGroupName $rgName -ServerName $sqlName `
-DatabaseName $dbName -Edition "Basic"
}

Key Vault
if (-not (Get-AzKeyVault -Name $vaultName -ResourceGroupName $rgName))
{
New-AzKeyVault -Name $vaultName -ResourceGroupName $rgName `
-Location $regionName -EnablePurgeProtection -ErrorVariable deleted
}
if ($deleted)
{
Undo-AzKeyVaultRemoval -VaultName $vaultName -ResourceGroupName $rgName `
-Location $region
}

Get-AzDataFactoryV2 -Name $adfName -ResourceGroupName `
$rgName -ErrorVariable notPresent -ErrorAction SilentlyContinue
if ($notPresent)
{
New-AzDataFactoryV2 -Name $adfName -Location $regionName `
-ResourceGroupName $rgName
}

Verify creation of Resource Group, Storage account,
Data Lake store, Event Hubs, Stream Analytics,
Data Lake Analytics, SQL Database, Key Vault,
and Data Factory resources.

When complete, the required services will be created. Each of them requires further
configuration.

396 APPENDIX B Configuring the Jonestown Sluggers analytics system
B.4 Configure Azure services using PowerShell
Once your Azure services have been created, run the following scripts to configure
the services.

B.4.1 Stream Analytics Managed Identity

Enable Managed Identity using the Azure portal. This cannot be done via Azure Power-
Shell at the time of writing.

1 In the Azure portal, use the All Services menu and filter on ASA jobs to show
the ASA Jobs blade.

2 Select your ASA job by clicking its name.
3 Click Configure > Managed Identity in the left navigation to open the Managed

Identity blade.
4 Click Use System-assigned Managed Identity. Click Save to confirm the setting

and generate the Managed Identity.

B.4.2 Data Lake store

Run listing B.3 to configure your ADLS store for use by ASA, ADLA, and ADF. The
code creates folders and assigns permissions to the various service principals for these
services.

Data Lake store
Add Data Factory permissions
$principal = Get-AzADServicePrincipal -DisplayName $adfName

Set-AzDataLakeStoreItemAclEntry -AccountName $storeName -Path / `
-AceType User -Id $principal.Id -Permissions Execute

New-AzDataLakeStoreItem -AccountName $storeName -Path "/Staging" -Folder
New-AzDataLakeStoreItem -AccountName $storeName -Path "/Raw" -Folder
New-AzDataLakeStoreItem -AccountName $storeName -Path "/Curated" -Folder
New-AzDataLakeStoreItem -AccountName $storeName -Path "/Sandbox" -Folder
New-AzDataLakeStoreItem -AccountName $storeName -Path "/Code" -Folder

Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Staging -AceType User -Id $principal.Id -Permissions All -Default
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Raw -AceType User -Id $principal.Id -Permissions All -Default
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Curated -AceType User -Id $principal.Id -Permissions All -Default
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Code -AceType User -Id $principal.Id -Permissions All -Default

Add Stream Analytics permissions
$principal = Get-AzADServicePrincipal -DisplayName $streamName

Listing B.3 Configure ADLS

397Configure Azure services using PowerShell
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName -Path / `
-AceType User -Id $principal.Id -Permissions Execute

Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Staging -AceType User -Id $principal.Id -Permissions All
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName `
-Path /Staging -AceType User -Id $principal.Id -Permissions All -Default

New-AzDataLakeStoreItem -AccountName $storeName -Path ("/Staging/
" + $project) -Folder

New-AzDataLakeStoreItem -AccountName $storeName -Path "/Code/Assemblies"
-Folder

New-AzDataLakeStoreItem -AccountName $storeName -Path "/Code/Usql" -Folder

Copy the U-SQL file in listing B.4 to ADLS folder /Code/Usql/DailyAggregate.usql.
This file will be used for the ADLA daily average batch job.

DECLARE EXTERNAL @year string = DateTime.Today.AddDays(-
1).Year.ToString("#0000");

DECLARE EXTERNAL @month string = DateTime.Today.AddDays(-
1).Month.ToString("#00");

DECLARE EXTERNAL @day string = DateTime.Today.AddDays(-1).Day.ToString("#00");
DECLARE EXTERNAL @in string = string.Format("/Staging/biometricstats/{0}-{1}-

{2}{3}.csv", @year, @month, @day, "{*}");

@Players =
EXTRACT

Id Guid,
NodeValue decimal,
Player string,
Node int,
EventTime DateTime,
PartitionId int,
EventEnqueuedUtcTime DateTime,
EventProcessedUtcTime DateTime

FROM @in
USING Extractors.Csv(
skipFirstNRows: 1
);

@DailyAgg =
SELECT

Player,
Node,
EventTime.ToString("d") AS AvgDate,
AVG(NodeValue) AS Average

FROM @Players
GROUP BY Player, Node, EventTime.ToString("d");

DECLARE EXTERNAL @out string = "/Curated/biometricstats/v1/
daily_value_avg.csv";

Listing B.4 U-SQL script for daily aggregation

398 APPENDIX B Configuring the Jonestown Sluggers analytics system
OUTPUT @DailyAgg
TO @out
USING Outputters.Csv(outputHeader: true);

See chapter 4 for detailed descriptions of the ADL service.

B.4.3 Stream Analytics job configuration

ASA uses JSON files for configuring the inputs, outputs, and transforms via Azure
PowerShell. You must save these files in a folder location accessible by your Power-
Shell instance.

TIP The files can be downloaded from the GitHub repository for this book at
http://mng.bz/MoZB.

Create an Event Hubs input file using the JSON in listing B.5. Save this file into a new
folder named /asa, and name the file HubsInputBiometrics.json. Retrieve the Event
Hubs access key using the following Azure PowerShell command, and update the
sharedAccessPolicyKey value in the file.

$key = (Get-AzEventHubKey -ResourceGroupName $rgName `
-Namespace ($rgName + "-" + "hubs") `
-AuthorizationRuleName "hubsreader").PrimaryKey

Update the value for serviceBusNamespace and sharedAccessPolicyKey in the fol-
lowing listing.

{
"properties": {

"type": "Stream",
"datasource": {

"type": "Microsoft.ServiceBus/EventHub",
"properties": {

"eventHubName": "biometricstats",
"serviceBusNamespace": "eastus2-jones-dev-hubs",
"sharedAccessPolicyName": "hubsreader",
"sharedAccessPolicyKey": "==KEY==",
"consumerGroupName": "$Default"
}

},
"compression": {

"type": "None"
},
"serialization": {

"type": "Json",
"properties": {

"encoding": "UTF8"
}

Listing B.5 Get Event Hubs key

Listing B.6 Configure Event Hubs input

399Configure Azure services using PowerShell
}
},
"name": "HubsInputBiometrics",
"type": "Microsoft.StreamAnalytics/streamingjobs/inputs"

}

Create a Blob output file using the JSON in listing B.8. Save this file into the folder
named /asa, and name the file BlobOutputPitcher.json. Retrieve the Storage account
access key using the following Azure PowerShell command, and update the accountKey
value in the file. Update the accountName value to match your naming convention.

$key = (Get-AzStorageAccountKey -ResourceGroupName $rgName `
-Name $storeName).Value | Select-Object -First 1

Update the value for accountName and accountKey in the following JSON file in the fol-
lowing listing.

{
"properties":{

"datasource":{
"type":"Microsoft.Storage/Blob",
"properties":{

"container":"biometricstats",
"pathPattern":"{date}/{time}",
"dateFormat":"yyyy/MM/dd",
"timeFormat":"HH",
"storageAccounts":[
{

"accountName":"eastus2jonestowndev",
"accountKey": "==key=="

}
]
}

},
"serialization":{

"type":"CSV",
"properties": {

"encoding": "UTF8",
"fieldDelimiter":","

}
}

}
}

Create the ADLS output for your Stream Analytics job in the Azure portal. Creating an
ADLS output via Azure PowerShell is not supported at time of writing. Use the follow-
ing settings:

Listing B.7 Get Storage account key

Listing B.8 Configure Storage Blobs output

400 APPENDIX B Configuring the Jonestown Sluggers analytics system
■ Name—DataLakeOutputRaw

■ Account name—your chosen ADLS name
■ Path prefix pattern—/Staging/biometricstats/{date}-{time}
■ Date format—YYYY-MM-DD
■ Time format—HH
■ Event serialization format—CSV
■ Delimiter—comma
■ Encoding—UTF-8
■ Authentication mode—Managed Identity

See “Create an ADLS output using the Azure Portal” in chapter 6 for a detailed
description of creating the ADLS output.

 Create a query transforms file using the JSON in listing B.9. Save this file into the
folder named /asa, and name the file Transforms.json.

{
"properties":{

"streamingUnits":1,
"query":"WITH PitchAverage AS (

SELECT Player, Node, AVG(NodeValue) AS AvgValue
FROM HubsInputBiometrics TIMESTAMP BY EventTime
WHERE Player = 'abera101' AND Node = 12 AND NodeValue > 80
GROUP BY Player, Node, TumblingWindow(second, 150)
)
SELECT a.Player, a.NodeValue, b.AvgValue
INTO BlobOutputPitcher
FROM HubsInputBiometrics a TIMESTAMP BY EventTime
INNER JOIN PitchAverage b
ON a.Player = b.Player
AND a.Node = b.Node
AND DATEDIFF(second, a, b) BETWEEN 0 AND 150
WHERE a.NodeValue > 80;

SELECT
Id,
NodeValue,
Player,
Node,
EventTime,
PartitionId,
EventProcessedUtcTime,
EventEnqueuedUtcTime
INTO DataLakeOutputRaw
FROM HubsInputBiometrics TIMESTAMP BY EventTime;"

}
}

Listing B.9 Configure ASA job transforms

401Configure Azure services using PowerShell
Run the following listing to configure the ASA job with these configuration files, and
start the job running.

Stream Analytics
cd asa
Create Input
New-AzStreamAnalyticsInput -ResourceGroupName $rgName `
-JobName $streamName -Name "HubsInputBiometrics" `
-File "./HubsInputBiometrics.json"

Create output
New-AzStreamAnalyticsOutput -ResourceGroupName $rgName `
-JobName $streamName -Name "BlobOutputPitcher" `
-File "./BlobOutputPitcher.json"

Create query
New-AzStreamAnalyticsTransformation -ResourceGroupName $rgName `
-JobName $streamName -Name "Transformation" `
-File "./Transforms.json" -Force

Start-AzStreamAnalyticsJob -ResourceGroupName $rgName `
-Name $streamName -OutputStartMode "JobStartTime"

See chapter 6 for detailed descriptions of the ASA service.

B.4.4 SQL Database

Run listing B.11 to configure the SQLDB for your analytics system. The code adds fire-
wall rules, a SQL credential for access, and creates the daily averages table.

SQL Server
New-AzSqlServerFirewallRule -ResourceGroupName $rgName `
-ServerName $sqlName -AllowAllAzureIPs
New-AzSqlServerFirewallRule -ResourceGroupName $rgName `
-ServerName $sqlName -FirewallRuleName "Onpremises" `
-StartIpAddress $ipAddress -EndIpAddress $ipAddress

Add user and login
$sqlAddress = ("tcp:" + $sqlName + ".database.windows.net")
Provide SQL Server admin and password
$sqlCred = Credential (Get-Credential -Message "Enter SQL Admin credentials")
$YOURPASSWORD = "MMMMMMMMMm.1"
Invoke-Sqlcmd `
-ServerInstance $sqlAddress -Database "master" -Credential $sqlCred `
-Query ("IF NOT EXISTS(SELECT sid FROM sys.sql_logins WHERE name =

'remoteuser') `
BEGIN CREATE LOGIN remoteuser WITH PASSWORD = '" + $YOURPASSWORD + "'; END")

Invoke-Sqlcmd -ServerInstance $sqlAddress `
-Database $dbName -Credential $sqlCred `

Listing B.10 Configure ASA

Listing B.11 Configure SQLDB

402 APPENDIX B Configuring the Jonestown Sluggers analytics system
-Query "IF NOT EXISTS(SELECT uid FROM sys.sysusers WHERE name = 'remoteuser') `
BEGIN CREATE USER remoteuser FOR LOGIN remoteuser; END"
Invoke-Sqlcmd -ServerInstance $sqlAddress `
-Database $dbName -Credential $sqlCred `
-Query "ALTER ROLE db_datareader ADD MEMBER remoteuser;"
Invoke-Sqlcmd -ServerInstance $sqlAddress `
-Database $dbName -Credential $sqlCred `
-Query "ALTER ROLE db_datawriter ADD MEMBER remoteuser;"

Add data table
Invoke-Sqlcmd -ServerInstance $sqlAddress `
-Database $dbName -Credential $sqlCred `
-Query "DROP TABLE IF EXISTS DailyAverages; `
CREATE TABLE DailyAverages (Player nvarchar(50), Node int, `
AverageDate DateTime, AverageValue decimal(18,9));"

See chapter 11 for detailed descriptions of the SQLDB service.

B.4.5 Data Factory

Run listing B.12 to configure security for ADF. This code registers a new app for the
ADF service, then gives access to the ADLS store and Azure Key Vault (AKV) to the app.
For a new AKV service, a user account must be given permission via a policy before
adding additional policies. Update the $user value with your AAD user. A format is
provided for users without a corporate AAD account. It also adds two secrets to the
AKV service, one for impersonating the ADF service, and one to hold the SQLDB
remoteuser password. You’ll want to provide the remoteuser password from the previ-
ous section when prompted.

Data Factory
App registration
$App = Get-AzADApplication -DisplayName $adfAppName
if ([string]::IsNullOrWhiteSpace($App))
{
Enter new app password
$Secure = Read-Host -AsSecureString -Prompt "Enter new app password"
$App = New-AzADApplication -DisplayName $adfAppName `
-IdentifierUris ("https://" + $adfName + ".none") -Password $Secure
}
$adfGuid = $App.ApplicationId.Guid

$notPresent = Get-AzADServicePrincipal -DisplayName $adfAppName
if ([string]::IsNullOrWhiteSpace($notPresent))
{
New-AzADServicePrincipal -ApplicationId $adfGuid
}
Give Data Factory access to Data Lake store
$principal = Get-AzADServicePrincipal -DisplayName $adfAppName
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName -Path / `
-AceType User -Id $principal.Id -Permissions All -Recurse

Listing B.12 Configure Active Directory service principal for ADF

403Configure Azure services using PowerShell
Set-AzDataLakeStoreItemAclEntry -AccountName $storeName -Path / `
-AceType User -Id $principal.Id -Permissions All -Recurse -Default

Key Vault
Find your AAD user and add access policy, so that following steps succeed
$user = "[USER]_[DOMAIN].com#EXT#@[USER][DOMAIN].onmicrosoft.com"
$userId = (Get-AzADUser -UserPrincipalName $user).Id
Set-AzKeyVaultAccessPolicy -VaultName $vaultName `
-ObjectId $userId -PermissionsToSecrets Get,List,Set,Delete

$principal = (Get-AzDataFactoryV2 -ResourceGroupName $rgName -Name
$adfName).Identity.PrincipalId.Guid

Set-AzKeyVaultAccessPolicy -VaultName $vaultName -ObjectId $principal
-PermissionsToSecrets Get,List

Add Data Factory key
$Secret = Read-Host -AsSecureString -Prompt "Enter registered app password"
Set-AzKeyVaultSecret -VaultName $vaultName `
-Name ($adfName + "-" + "key2") -SecretValue $Secret `
-ContentType "key"

Add SQL Database user
Enter remoteuser password from SQL Database configuration
$Secret = Read-Host -AsSecureString -Prompt "Enter remoteuser password from

SQL Database"
Set-AzKeyVaultSecret -VaultName $vaultName `
-Name ($dbName + "-" + "2") -SecretValue $Secret `
-ContentType "key"

IMPORTANT Assign permissions to Data Lake services and folders using the
ID of the ADF registered app’s service principal, not the registered app itself.

Run listing B.13 to create an AKV linkedservice in the ADF service. This can be accom-
plished in a single step, without having to save a configuration file first, using the code
in the listing.

Key Vault
Get-AzDataFactoryV2LinkedService -ResourceGroupName $rgName `
-DataFactoryName $adfName -Name "AzureKeyVault1" `
-ErrorVariable notPresent -ErrorAction SilentlyContinue

if ($notPresent)
{
mkdir adf
cd adf
$akvConfig = @{}
$akvProp = @{}
$akvType = @{baseUrl=("https://" + $vaultName + ".vault.azure.net")}
$akvProp.Add("typeProperties",$akvType)
$akvProp.Add("type","AzureKeyVault")

Listing B.13 Configure AKV linkedservice

404 APPENDIX B Configuring the Jonestown Sluggers analytics system
$akvConfig.Add("properties",$akvProp)
$akvConfig.Add("name","AzureKeyVault1")
$akvConfig | ConvertTo-Json -Depth 10 | `
Out-File -FilePath ./AzureKeyVault.json
Set-AzDataFactoryV2LinkedService -ResourceGroupName $rgName `
-DataFactoryName $adfName -Name "AzureKeyVault" `
-DefinitionFile "./AzureKeyVault.json"
cd ..
}

Look up subscriptionId, tenantId, and ADLS servicePrincipalID using the Azure
PowerShell commands in listing B.14. Update the JSON configuration files for linked-
services with these values.

Subscription and Account
Get-AzSubscription
Data Factory Service Principal
Get-AzADServicePrincipal -DisplayName ($adfName + "-" + "id")

TIP The files can be downloaded from the GitHub repository for this book at
http://mng.bz/MoZB.

Create a config file using the JSON in listing B.15. Save this file into the folder named
/adf, and name the file AzureDataLake.json. Make the following changes to the file:

■ Update dataLakeStoreUri, replacing subdomain with the name of the ADLS store.
■ Update servicePrincipalId using the ADF app service principal ApplicationId.
■ Update secretName with the AKV secret name.
■ Update tenant with the Active Directory ID.
■ Update subscriptionId with your resource group subscription ID.
■ Update resourceGroupName with your resource group name.

{
"name": "AzureDataLakeStore1",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": [],
"type": "AzureDataLakeStore",
"typeProperties": {

"dataLakeStoreUri": "https://
eastus2jonesdev.azuredatalakestore.net/webhdfs/v1",

"servicePrincipalId": "12345678-904b-4948-abb6-123456789012",
"servicePrincipalKey": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault1",

Listing B.14 Lookup service and environment identifiers

Listing B.15 ADLS linkedservice configuration file

405Configure Azure services using PowerShell
"type": "LinkedServiceReference"
},
"secretName": "eastus2-jones-dev-adf-key"

},
"tenant": "12345678-812a-43cf-b020-123456789012",
"subscriptionId": "12345678-7061-4721-abbc-123456789012",
"resourceGroupName": "eastus2-jones-dev"

}
}

}

Create a config file using the JSON in listing B.16. Save this file into the folder named
/adf, and name the file AzureDataLakeAnalytics.json. Make the following changes to
the file:

■ Update servicePrincipalId using the ADF app service principal ApplicationId.
■ Update secretName with the AKV secret name.
■ Update tenant with the Active Directory ID.
■ Update subscriptionId with your resource group subscription ID.
■ Update resourceGroupName with your resource group name.

{
"name": "AzureDataLakeAnalytics",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": ["adla","usql"],
"type": "AzureDataLakeAnalytics",
"typeProperties": {

"accountName": "eastus2jonesdev",
"servicePrincipalId": "9999999c-904b-4948-abb6-2222222ca836",
"servicePrincipalKey": {

"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault",
"type": "LinkedServiceReference"

},
"secretName": "eastus2-jones-dev-adf-key"

},
"tenant": "ffffffff-812a-43cf-b020-777777752901",
"subscriptionId": "fdffffff-7061-4721-abbc-bbbbbbbc3d5c",
"resourceGroupName": "eastus2-jones-dev"

}
}

}

Create a config file using the JSON in listing B.17. Save this file into the folder named
/adf, and name the file AzureSQLDatabase.json. Make the following changes to the file:

■ Update connectionString, replacing the server name and database name.
■ Update secretName with the AKV secret name for the remoteuser password.

Listing B.16 ADLA linkedservice configuration file

406 APPENDIX B Configuring the Jonestown Sluggers analytics system
{
"name": "AzureSqlDatabase",
"type": "Microsoft.DataFactory/factories/linkedservices",
"properties": {

"annotations": [],
"type": "AzureSqlDatabase",
"typeProperties": {

"connectionString": "Data Source=eastus2-jones-dev-
sql.database.windows.net;Initial Catalog=eastus2-jones-dev-sql-stats;User
ID=remoteuser",

"password": {
"type": "AzureKeyVaultSecret",
"store": {

"referenceName": "AzureKeyVault",
"type": "LinkedServiceReference"

},
"secretName": "eastus2-jones-dev-sql-stats"

}
}

}
}

Create a config file using the JSON in listing B.18. Save this file into the folder named
/adf, and name the file PlayerAverageFile.json.

{
"name": "PlayerAverageFile",
"properties": {

"linkedServiceName": {
"referenceName": "AzureDataLake",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "DelimitedText",
"typeProperties": {

"location": {
"type": "AzureDataLakeStoreLocation",
"fileName": "daily_value_avg.csv",
"folderPath": "Curated/biometricstats/v1"

},
"columnDelimiter": ",",
"escapeChar": "\\",
"firstRowAsHeader": true,
"quoteChar": "\""

},
"schema": [

{
"name": "Player",
"type": "String"

},

Listing B.17 SQLDB linkedservice configuration file

Listing B.18 Player average file datasource configuration file

407Configure Azure services using PowerShell
{
"name": "Node",
"type": "String"

},
{

"name": "AvgDate",
"type": "String"

},
{

"name": "Average",
"type": "String"

}
]

}
}

Create a config file using the JSON in listing B.19. Save this file into the folder named
/adf, and name the file PlayerAverageTable.json.

{
"name": "PlayerAverageTable",
"properties": {

"linkedServiceName": {
"referenceName": "AzureSQLDatabase",
"type": "LinkedServiceReference"

},
"annotations": [],
"type": "AzureSqlTable",
"schema": [

{
"name": "Player",
"type": "nvarchar"

},
{

"name": "Node",
"type": "int",
"precision": 10

},
{

"name": "AverageDate",
"type": "datetime",
"precision": 23,
"scale": 3

},
{

"name": "AverageValue",
"type": "decimal",
"precision": 18,
"scale": 9

}
],
"typeProperties": {

Listing B.19 Player average table datasource configuration file

408 APPENDIX B Configuring the Jonestown Sluggers analytics system
"schema": "dbo",
"table": "DailyAverages"

}
}

}

Create a config file using the JSON in listing B.20. Save this file into the folder named
/adf, and name the file Pipeline.json.

{
"name": "Pipeline",
"properties": {

"activities": [
{

"name": "DailyAggregate",
"type": "DataLakeAnalyticsU-SQL",
"dependsOn": [],
"policy": {

"timeout": "0.01:00:00",
"retry": 1,
"retryIntervalInSeconds": 30,
"secureOutput": false,
"secureInput": false

},
"userProperties": [],
"typeProperties": {

"scriptPath": "Code/Usql/DailyAggregate.usql",
"scriptLinkedService": {

"referenceName": "AzureDataLake",
"type": "LinkedServiceReference"

}
},
"linkedServiceName": {

"referenceName": "AzureDataLakeAnalytics",
"type": "LinkedServiceReference"

}
},
{

"name": "Import",
"type": "Copy",
"dependsOn": [

{
"activity": "DailyAggregate",
"dependencyConditions": [

"Succeeded"
]

}
],
"policy": {

"timeout": "0.01:00:00",
"retry": 0,
"retryIntervalInSeconds": 30,

Listing B.20 ADF pipeline configuration file

409Configure Azure services using PowerShell
"secureOutput": false,
"secureInput": false

},
"userProperties": [],
"typeProperties": {

"source": {
"type": "DelimitedTextSource",
"storeSettings": {

"type": "AzureDataLakeStoreReadSettings",
"recursive": true

},
"formatSettings": {

"type": "DelimitedTextReadSettings"
}

},
"sink": {

"type": "AzureSqlSink"
},
"enableStaging": false,
"enableSkipIncompatibleRow": false,
"translator": {

"type": "TabularTranslator",
"mappings": [

{
"source": {

"name": "Player",
"type": "String",
"physicalType": "String"

},
"sink": {

"name": "Player",
"type": "String",
"physicalType": "nvarchar"

}
},
{

"source": {
"name": "Node",
"type": "String",
"physicalType": "String"

},
"sink": {

"name": "Node",
"type": "Int32",
"physicalType": "int"

}
},
{

"source": {
"name": "AvgDate",
"type": "DateTime",
"physicalType": "String"

},
"sink": {

"name": "AverageDate",

410 APPENDIX B Configuring the Jonestown Sluggers analytics system
"type": "DateTime",
"physicalType": "datetime"

}
},
{

"source": {
"name": "Average",
"type": "Decimal",
"physicalType": "String"

},
"sink": {

"name": "AverageValue",
"type": "Decimal",
"physicalType": "decimal"

}
}

],
"typeConversion": true,
"typeConversionSettings": {

"allowDataTruncation": true,
"treatBooleanAsNumber": false

}
}

},
"inputs": [

{
"referenceName": "PlayerAverageFile",
"type": "DatasetReference"

}
],
"outputs": [

{
"referenceName": "PlayerAverageTable",
"type": "DatasetReference"

}
]

}
],
"annotations": []

}
}

Create a config file using the JSON in listing B.21. Save this file into the folder named
/adf, and name the file Trigger.json.

{
"name": "DailyTrigger",
"properties": {

"annotations": [],
"runtimeState": "Started",
"pipelines": [

{

Listing B.21 ADF pipeline trigger configuration file

411Configure Azure services using PowerShell
"pipelineReference": {
"referenceName": "Pipeline",
"type": "PipelineReference"

}
}

],
"type": "ScheduleTrigger",
"typeProperties": {

"recurrence": {
"frequency": "Day",
"interval": 1,
"startTime": "2020-06-25T01:00:00.000Z",
"timeZone": "UTC"

}
}

}
}

Run listing B.22 to configure the ADF pipeline with these configuration files, and start
the trigger. The pipeline trigger will run the pipeline activities at the scheduled time.

Add Key Vault Linkedservice
cd adf -ErrorAction SilentlyContinue
Add Data lake Linkedservice
Set-AzDataFactoryV2LinkedService -ResourceGroupName $rgName -DataFactoryName

$adfName -Name "AzureDataLake" -DefinitionFile "./AzureDataLake.json"
Add Data Lake Analytics Linkedservice
Set-AzDataFactoryV2LinkedService -ResourceGroupName $rgName -DataFactoryName

$adfName -Name "AzureDataLakeAnalytics" -DefinitionFile "./
AzureDataLakeAnalytics.json"

Add SQL Database Linkedservice
Set-AzDataFactoryV2LinkedService -ResourceGroupName $rgName -DataFactoryName

$adfName -Name "AzureSQLDatabase" -DefinitionFile "./AzureSQLDatabase.json"

Add Player average file dataset
Set-AzDataFactoryV2Dataset -ResourceGroupName $rgName -DataFactoryName $adfName

-Name "PlayerAverageFile" -DefinitionFile "./PlayerAverageFile.json"
Add Player average table dataset
Set-AzDataFactoryV2Dataset -ResourceGroupName $rgName -DataFactoryName $adfName

-Name "PlayerAverageTable" -DefinitionFile "./PlayerAverageTable.json"

Add pipeline
Set-AzDataFactoryV2Pipeline -ResourceGroupName $rgName -DataFactoryName

$adfName -Name "Pipeline" -File "./Pipeline.json"

Add trigger
Set-AzDataFactoryV2Trigger -ResourceGroupName $rgName -DataFactoryName $adfName

-Name "Trigger" -File "./Trigger.json"
Start-AzDataFactoryV2Trigger -ResourceGroupName $rgName -DataFactoryName

$adfName -Name "Trigger"

See chapter 10 for more information about ADF.

Listing B.22 Configure ADF

412 APPENDIX B Configuring the Jonestown Sluggers analytics system
B.5 Load event data
The PowerShell script in listing B.23 loads data into the Event Hubs endpoint. The
code creates a SAS key and generates random values in the Player Biometricstats for-
mat. These events are created in a loop and sent to Event Hubs.

Write data to Event Hubs
[Reflection.Assembly]::LoadWithPartialName("System.Web") | out-null

$key = Get-AzEventHubKey -ResourceGroupName $rgName -NamespaceName $hubsName
-AuthorizationRuleName "hubswriter"

$URI= $hubsName + ".servicebus.windows.net/" + $project

$Expires=([DateTimeOffset]::Now.ToUnixTimeSeconds())+3600
$SignatureString=[System.Web.HttpUtility]::UrlEncode($URI)+ "`n" +

[string]$Expires
$HMAC = New-Object System.Security.Cryptography.HMACSHA256
$HMAC.key = [Text.Encoding]::ASCII.GetBytes($key.PrimaryKey)
$Signature = $HMAC.ComputeHash([Text.Encoding]::ASCII.GetBytes($SignatureString))
$Signature = [Convert]::ToBase64String($Signature)
$SASToken = "SharedAccessSignature sr=" +

[System.Web.HttpUtility]::UrlEncode($URI) + "&sig=" +
[System.Web.HttpUtility]::UrlEncode($Signature) + "&se=" + $Expires
+ "&skn=" + $key.KeyName

$endpoint = "https://" + $hubsName + ".servicebus.windows.net/" + $project + "/
messages" + "?timeout=60&api-version=2014-01"

$headers = New-Object "System.Collections.Generic.Dictionary[[String],[String]]"
$headers.Add("Authorization", $SASToken)
$headers.Add("Content-Type", "application/atom+xml;type=entry;charset=utf-8")
$headers.Add("Host", ($hubsName + ".servicebus.windows.net"))

for($i = 0; $i -lt 14400; $i++)
{
$player = switch (Get-Random -Minimum 1 -Maximum 4) {
1 {"abera101"; break}
2 {"jjone101"; break}
3 {"ksmit102"; break}

}
$node = GET-Random -Minimum 1 -Maximum 40
$val = Get-Random -Minimum 0 -Maximum 254
$eventDate = (Get-Date).ToUniversalTime().ToString("o")

#Construct body using Hashtable
$htbody = @{

Id=(New-Guid).Guid
Player= $player
Node= $node
NodeValue= $val

Listing B.23 Submit events to Event Hubs

413Removing services
EventTime= $eventDate
}

$body = ConvertTo-Json $htbody

Invoke-WebRequest -Uri $endpoint -Method POST -Body $body -Headers $headers
}

B.6 Output of batch and stream processing
Once the analytics system has been created, the ASA job is running, data has been
submitted to the Event Hubs endpoint, and the ADF pipeline has executed, you will
have multiple files to verify. Check for data files in ADLS, including in the /Staging
and /Curated folders, to verify that the cold path is working. Check for data files in
the Blob Storage container to verify that the hot path is working. Check the data table
in the SQLDB to ensure that the pipeline import is working. With all these outputs
verified, you have successfully created the end-to-end solution.

B.7 Removing services
To remove all of the Azure resources, four steps are required.

1 Delete the resource group. This will delete all of the Azure resources that were
created, except two. The registered app for the Data Factory remains, and the
AKV service becomes hidden.

2 Delete the registered app. This can be found in Azure Active Directory blade,
under Enterprise Applications. Show all application types, and filter by the reg-
istered app name.

3 Delete the /asa and /adf folders from your Azure PowerShell directory. Include
the configuration files.

4 Wait 90 days for the AKV service to be removed. After this soft-delete retention
period, the Azure Resource Manager will remove the AKV service. The name
will be available once the old AKV service is removed.

WARNING Don’t delete secrets you have added to the AKV service. You can’t
add a new secret with the same name, unless you have deleted and purged the
old secret. They can be difficult to restore. Instead add a new version of the
secret, or add a secret with a new name.

index
A

AAD (Azure Active Directory)
35, 43, 63, 337, 377

AAD group 378
AAD integration 263–265
AAD user 377–378
access ACL 69
access scheme 53, 68
AccessKey parameter 187
Account parameter 71, 88, 177
accountKey value 399
accountName 399
AceType parameter 279
ACL (access control list) 68,

279
action group 317
activities element 280, 297,

351
activity element 258, 261, 285
ADD PARTITION option 213
Add-AzADGroupMember

command 69
Add-AzDataLakeAnalyticsData-

Source command 187
AddFiles policy 60
AddMessageAsync()

function 51
ADE (Azure Data

Engineering) 376
ade-dev-eastus2 309
ADF (Azure Data Factory) 27,

42, 85, 174, 257, 332, 341,
364, 391

Azure cloud services 22
cloud hosting costs 31–32

configuration files, version
control and backups
365–371

copying files with 272–291
activities, creating 284–288
adding secrets to AKV

273–274
ADF pipeline

workflow 280–282
ADLS linkedservice,

creating 276–280
datasets, creating 282–284
Files storage container,

creating 272–273
Files storage linkedservice,

creating 274–276
scheduled trigger,

creating 288–291
creating ADF service 259–262
creating service 384
importing file data with

341–356
authenticating between

ADF and SQLDB
343–344

copy activity and pipeline,
creating 351–356

datasets, creating 347–351
SQL Database linkedser-

vice, creating 344–346
in Jonestown Sluggers analyt-

ics system configuration
402–411

running ADLA jobs 291–296
ADLA linkedservice,

creating 292–294

pipeline and activity,
creating 294–296

secure authentication
262–272

AAD (Azure Active Direc-
tory) integration
263–265

AKV (Azure Key
Vault) 266–272

using with Git version
control 370–371

ADLA (Azure Data Lake
Analytics) 21, 30, 158, 193,
223, 257, 332, 391

Azure cloud services 21–22
Blob Storage 185–190

adding new data
source 186–187

constructing Blob file
selectors 185–186

filtering rowsets 188–190
cloud hosting costs 30–31
creating account 382–383
creating ADLA service

171–174
using Azure portal 172
using Azure

PowerShell 172–174
submitting jobs to 174–178

using Azure portal 174–175
using Azure

PowerShell 176–178
U-SQL jobs 165–171

aggregation 169
efficient executions of

178–185
415

INDEX416
ADLA (Azure Data Lake
Analytics) (continued)
schema extraction 167–169
selecting biometric data

files 166–167
writing files 169–171

U-SQL language 160–165
expressions 165
extractors 161–162
file selectors 163–164
outputters 162–163

version control and
backups 365

ADLA (Azure Data Lake Analyt-
ics), integrating with

connecting to remote
sources 248–254

credentials 251
data source 251–253
external databases 248–250
tables and views 253–254

processing unstructured
data 225–233

Azure Cognitive Services
225–226

image data extraction with
Advanced Analytics
230–233

managing assemblies in
Data Lake 226–229

reading different file types
233–248

adding custom libraries
with catalog 233

catalog database, creating
233–234

code folders 235–236
custom assemblies 236–248
U-SQL DataFormats solu-

tion, building 234–235
ADLA cluster 179
ADLCopy tool 85, 87–89
ADLS (Azure Data Lake Stor-

age)
Azure cloud services 21
cloud hosting costs 29
copy tools for Data Lake

stores 85–89
ADLCopy tool 87–89
Azure Storage Explorer

tool 89
Data Explorer 85–87

Data Lake store access 68–77
access schemes 68
configuring access 69–72

hierarchy structure in Data
Lake store 73–77

Data Lake store, creating
65–67

using Azure Portal 65
using Azure PowerShell

66–67
storage folder structure and

data drift 77–85
data drift 82–85
hierarchy structure 77–81

version control and backups
364–365

ADLS linkedservice, creating
276–280

adding service principal secret
to AKV 276–279

authorizing service principal
to ADLS 279–280

using Azure portal 276
ADLS store 26, 29, 63, 85, 118,

158, 257, 364, 390
AdministratorLogin parameter

305
ADS (Advanced Data Security)

303
Advanced Analytics 226
Advanced Data Security (ADS)

303
Advanced Message Queuing Pro-

tocol (AMQP) 21, 94
AKV (Azure Key Vault) 257,

266–272, 343, 402
AKV linkedservice, creating

269–272
creating key vault 266–268
managed identities 268–269

AllowAllAzureIPs
parameter 130

AllowClobber parameter 375
AllowConnections 314
AllowDataLoss parameter 316
ALTER MASTER KEY 336
ALTER TABLE command 213
AMQP (Advanced Message

Queuing Protocol) 21, 94
analytics system, building in

Azure
Azure architecture 13–17

naming conventions
14–16

regions 14
resource groups 16–17
resources, finding 17
subscriptions 13

Azure cloud services 19–22
Azure analytics system

architecture 20
Azure PowerShell 22
Data Factory 22
Data Lake Analytics 21–22
Data Lake Storage 21
Event Hubs 20–21
SQL Database 22
Stream Analytics 21

calculating cloud hosting
costs 28–32

Data Factory 31–32
Data Lake Analytics 30–31
Data Lake Storage 29
Event Hubs 29
SQL Database 31
Stream Analytics 29

event data records, process-
ing series of 22–28

choosing abstract Azure
services 23–28

cold path 23
hot path 22–23

Lambda architecture 17–18
Analytics Units (AU) 173, 179
AnalyticsUnits parameter 177
annotations element 271, 280,

282, 351
Anomaly Detection

function 148
AnomalyDetection_Change-

Point() function 146
AnomalyDetection_SpikeAnd-

Dip() function 146
ANTISEMIJOIN 199
Apache Avro 109
App registration 263, 384–385
application/octet-stream 45
ApplicationId parameter 265
ApplicationId value 385,

404–405
ARM (Azure Resource

Manager) 35, 370
AS connector 165
AS operator 199
ASA (Azure Stream Analytics)

24, 117, 390
ASA job

creating 119–122
elements of 119

ASA job outputs 126–135
creating using Azure

Portal 126–127
SQLDB output 127–135

INDEX 417
ASA (Azure Stream Analytics)
(continued)

creating ASA service 118–122
Event Hub job input 123–126

creating Event Hub input
using Azure portal
123–124

creating Event Hub input
using Azure PowerShell
124–126

job queries, creating 135–139
failure to start 138
output exceptions 139
starting ASA job 137–138

job queries, writing 139–148
machine learning

functions 146–148
window functions

140–146
managing performance

148–155
event ordering 150–155
streaming units 148–150

AsPlainText parameter 274
AU (Analytics Units) 173, 179
auseanalyticsdevblob 15
ause-analytics-dev-db-raw-01 15
ause-analytics-dev-grp 15
ause-analytics-dev-web-api-01 15
authentication 68, 262
authorization 68, 262
AutoPauseDelayInMinutes

parameter 324
AVG() function 141, 169, 215,

218
Avro 109
AvroDeflate 109
AzCopy 43–45
AZDO (Azure DevOps) 367
AzStreamAnalyticsOutput 134
Azure Active Directory. See AAD
Azure architecture 13–17

naming conventions 14–16
regions 14
resource groups 16–17
resources, finding 17
subscriptions 13

Azure cloud services 19–22
Azure analytics system

architecture 20
Azure PowerShell 22
Data Factory 22
Data Lake Analytics 21–22
Data Lake Storage 21
Event Hubs 20–21

SQL Database 22
Stream Analytics 21

Azure Cognitive Services 225–226
Azure Data Engineering

(ADE) 376
Azure Data Factory. See ADF
Azure Data Lake Analytics. See

ADLA
Azure Data Lake Storage. See

ADLS
Azure Key Vault. See AKV
Azure portal 35

adding new data source
using 186–187

adding secrets to AKV using
273–274

creating ADLA service using
172

creating ADLS linkedservice
using 276

creating AKV linkedservice
using 270

creating ASA job input using
123–124

creating ASA job using
119–120

creating Azure Storage
using 36

creating Data Lake store
using 65

creating datasets using
347–348

creating Event Hubs using
100

creating Files storage con-
tainer using 272

creating SQL Database linked-
service using 344–345

exporting SQLDB using 305
Git version control

using 367–368
managed identities using 268

Azure PowerShell
adding new data source

using 187
adding secrets to AKV using

274
adding service principal secret

to AKV using 277–279
authorizing service principal

to ADLS using 279–280
Azure cloud services 22
Azure naming conventions 376
Azure subscription, creating

376

configuring Azure services
using 396–411

Data Factory 402–411
Data Lake store 396–398
SQL Database 401–402
Stream Analytics job

configuration 398–401
Stream Analytics Managed

Identity 396
creating ADLA service

using 172–174
ADLA management data

173
limits on job execution 173
reserve capacity 173–174

creating AKV linkedservice
using 270–272

creating ASA job input
using 124–126

creating ASA job using
120–122

creating Azure Storage
using 37–38

creating Data Lake store
using 66–67

creating datasets using
348–351

creating Event Hubs name-
spaces using 96–97

creating Event Hubs
using 100–101

creating Files storage con-
tainer using 273

creating key vault using 268
creating SQL Database linked-

service using 345–346
exporting SQLDB using

305–306
Git version control using

369–370
managed identities using 269
setting up 375–376
setting up Azure services

using 378–388
App registration, creating

384–385
Data Factory service,

creating 384
Data Lake Analytics

account, creating
382–383

Data Lake store, creating
379–380

Event Hub, creating
380–381

INDEX418
Azure PowerShell (continued)
key vault, creating 385–386
SQL Server and Database

with lookup data,
creating 386–388

SQL Server and Database,
creating 383–384

Storage account, creating
379

Stream Analytics job,
creating 381–382

setting up common Azure
resources using 376–378

Azure Active Directory
group, creating 378

Azure Active Directory user,
creating 377–378

resource group, creating
377

Azure Resource Manager
(ARM) 35, 370

Azure SQL Database. See SQLDB
Azure SQL Server 302
Azure Storage

account services 39–53
Blob storage 40
blob tiering 41–42
blobs service container,

creating 40–41
copy tools 42–45
queues 45–49

account, creating 35–39
Azure Storage replication

38–39
using Azure portal 36
using Azure PowerShell

37–38
cloud storage services 35
Storage account access 53–61

blob container security 54
designing 54–61

Azure Storage Blob container
56–58

Azure Storage Explorer tool 89
Azure Stream Analytics. See ASA
Azure Stretch Database 31
Azure subscription 376
Azure Synapse Analytics. See

SQLDW
AzureDataLakeAnalytics 292
AzureDataLakeStore 277
AzureKeyVault 271
AzureKeyVaultSecret 278, 292
AzureSqlDatabase 345
AzureSqlTable 348

B

backups. See version control and
backups

baseUrl 271
batch processing 116, 158
batch queries 192
blades 17
blob container security 54
Blob files, importing 340–341
Blob Storage 21, 31, 35, 40, 53,

104, 185–190, 338
adding new data source

186–187
using Azure portal 186–187
using Azure PowerShell 187

constructing Blob file
selectors 185–186

filtering rowsets 188–190
version control and

backups 364
blob tiering 41–42
BlobEventsTrigger 289
BlobLastModifiedUtcTime 132
blobs service container,

creating 40–41
BlobStorage value 379
BULK INSERT command

340–341, 356
business continuity 311
business critical 319

C

Capture 104–109
enabling 106–109
file name formats 105
secure access for 105–106
time, importance of 109

catalog 194
catalog database, creating

233–234
charFormat parameter 167, 169
client secret 264
cloud hosting costs 28–32

Data Factory 31–32
Data Lake Analytics 30–31
Data Lake Storage 29
Event Hubs 29
SQL Database 31
Stream Analytics 29

cloud services. See Azure cloud
services

Cloud Shell files, creating
121–122

cloud-native software 20
CLUSTERED option 206
code folders 235–236
comma-separated values

(CSV) 33
Common Table Expression

(CTE) 142
ComputeGeneration

parameter 322
-Concurrency parameter 106
Connect-AzAccount 375
connectionstring property 112,

346, 405
consumer group 103
consumers 93
ContentType parameter 274
@context array 236
Context parameter 59
Convert.ToInt() method 233
ConvertTo-SecureString 274
copy activities 281
copy command 308
copy tools 42–45

AzCopy 43–45
Storage Explorer 43

CopyDatabaseName 309
copying files, with ADF 272–291

activities, creating 284–288
using Azure portal to pub-

lish pipeline 287
using Azure PowerShell 287
using Azure PowerShell

to start pipeline
execution 288

adding secrets to AKV 273–274
ADF pipeline workflow

280–282
ADLS linkedservice, creating

276–280
datasets, creating 282–284
Files storage container,

creating 272–273
Files storage linkedservice,

creating 274–276
scheduled trigger, creating

288–291
CopyResourceGroupName 309
CopyServerName 309
COUNT function 169, 215
covering index 215
CREATE ASSEMBLY command

228
CREATE clause 202
CREATE DATA SOURCE

command 251

INDEX 419
CREATE DATABASE SCOPED
CREDENTIAL command
337

CREATE FUNCTION 200
CREATE MASTER KEY

ENCRYPTION command
336

CREATE TABLE command 206
CREATE USER command 343
Credential parameter 131, 251
CROSS APPLY EXPLODE 230
CROSS JOIN 199
CSV (comma-separated

values) 33
CTE (Common Table

Expression) 142
CUME_DIST function 218
Curated zone 81
@CurrentPlayers 188
custom assemblies 236–248

data files 236–238
JSON extractor with JSON-

Path parsing 246–248
JSON extractor with

name/value parsing
243–245

reading JSON file 239–243
U-SQL table 238–239

CustomTime 138

D

@DailyAgg rowset 169
data acquisition 6
Data catalog 361–363

as service 362
business drivers 363
data definitions 362–363
data frequency 363
data locations 362

data drift 82
data engineering

Azure tools for 7–8
data engineers and 3, 8–9
Microsoft’s definition of 4–7

data acquisition 6
data processing 6–7
data queries 7
data retrieval 7
data storage 6
orchestration 7

overview 2
Data Explorer 85–87
Data Lake Analytics. See ADLA
Data Lake Storage. See ADLS

Data Lake store
access 68–77

access schemes 68
configuring 69–72
hierarchy structure in Data

Lake store 73–77
copy tools for 85–89

ADLCopy tool 87–89
Azure Storage Explorer

tool 89
Data Explorer 85–87

creating 65–67, 379–380
using Azure Portal 65
using Azure PowerShell

66–67
in Jonestown Sluggers analyt-

ics system configuration
396–398

data movement unit (DMU) 31
data processing 6–7
data queries 7
data retrieval 7
data storage 6
Database parameter 251
database scoped credential 335
Database target value 131
database transaction units

(DTUs) 129
DatabaseDtuMax 326
DatabaseMaxSizeBytes

parameter 306
DatabaseVCoreMax 326
DatabaseVCoreMin 326
DataFormats Samples 234
DataLakeOutputRaw 399
DataLakeStore 187
dataLakeStoreUri 278, 404
DatasetReference 286
datasets, ADF

creating using Azure
portal 282

creating using Azure
PowerShell 282–284

datasource element 124, 133
DATEDIFF function 142, 145
DateTime variable 238, 308
dateTimeFormat parameter

169
db_owner SQL role 315
DECLARE command 164
DECLARE EXTERNAL

@variable 164
default ACL 69
-Default parameter 106
-DefaultGroup 380

DefinitionFile parameter 271
DegreeOfParallelism 179, 294
DelimitedTextReadSettings 352
delimiter parameter 167, 169,

188
dependencyCondition 285
dependsOn element 285, 297
dequeued messages 52
Dest parameter 88
DisableEncryption 66
disableMetricsCollection 353
disaster recovery 311
DisplayName parameter 264,

303
DISTRIBUTED BY option 206
.DistributionInfo property 210
DMU (data movement unit) 31
DROP FUNCTION 200
DROP PARTITION option 213
DROP VIEW command 197
DROP…CREATE pattern 228
DTUs (database transaction

units) 129

E

EarliestRestoreDate 308
early data 152
Edition parameter 129, 249,

306, 321
EF (Entity Framework) 371
elastic pools 129, 319, 325–328
ElasticPoolName parameter 327
ELSEIF statements 203
EmotionAnalysis

EmotionExtractor 254
EmotionAnalysis.dll 230
EmotionExtractor 254
EnableAutoInflate 96
Enable-AzSqlInstanceAdvanced-

DataSecurity command
303

EnableHttpsTrafficOnly
parameter 37

EnableKafka 96
EnablePurgeProtection 268,

385
enableStaging 285
encoding parameter 167, 169
Encryption parameter 66
EndIpAddress 130, 386
EndTime 179
Entity Framework (EF) 371
escapeCharacter parameter

167, 169

INDEX420
event data records, processing
series of 22–28

choosing abstract Azure
services 23–28

cold path 23
hot path 22–23

Event Hubs
Azure cloud services 20–21
Capture 104–109

enabling 106–109
file name formats 105
secure access for 105–106
time, importance of 109

collecting data in Azure
94–96

costs 29
creating 100–102, 380–381

shared access policy 101–102
using Azure portal 100
using Azure PowerShell

100–101
job input 123–126

creating, using Azure
portal 123–124

creating, using Azure
PowerShell 124–126

namespace 94, 380
namespace, creating 96–100

Event Hub geo-disaster
recovery 97–99

failover with geo-disaster
recovery 99–100

throughput units 97
using Azure PowerShell

96–97
overview 94
partitions 102–104

message journal 104
multiple consumers

102–103
specifying 103
throughput units and 104

securing access to 109–114
SAS (Shared Access Signa-

ture) policies 110–111
writing to Event Hubs

111–114
event messages 93
event ordering 150–155
EventEnqueuedUtcTime 131
EventProcessedUtcTime 131
EventTime 141–142
ExecutionPolicy setting 375
-ExecutionPolicy Unrestricted

375

Extensible Markup Language
(XML) 33

extents 181
EXTERNAL clause 167
external data sources 334
EXTRACT command 161–162,

166–167, 197, 211, 239, 246
extractors 161
Extractors class 234

F

FaceSdk 231
FaceSdkCNN.dll 230
failover group 316
features array 236
PARTITIONED BY 212
FIFO (first-in-first-out) 46
file types, reading 233–248

adding custom libraries with
catalog 233

catalog database, creating
233–234

code folders 235–236
custom assemblies 236–248

data files 236–238
JSON extractor with JSON-

Path parsing 246–248
JSON extractor with

name/value parsing
243–245

reading JSON file 239–243
U-SQL table 238–239

U-SQL DataFormats solution,
building 234–235

filedate field 163
FileName field 231
@fileprefix 185
Files service 35
Files storage container,

creating 272–273
using Azure portal 272
using Azure PowerShell 273

Finance folder 73–74
FirewallRuleName

parameter 130
first-in-first-out (FIFO) 46
FIRST_VALUE function 218
flow control activities 281
Force parameter 136, 375
formatSettings 352
Format-Table (ft) 17
FQDN (fully-qualified domain

name) 94, 380
FROM clause 161, 168

FROM EXTERNAL PROVIDER
option 315, 343

FromPointInTimeBackup
flag 308

ft (Format-Table) 17
-FullUri option 59
fully-qualified domain name

(FQDN) 94, 380

G

general purpose provisioned 319
general purpose serverless 319
geo-disaster recovery 97–100
geo-disaster recovery routing 97
geo-redundant storage (GRS)

36, 38
geo-replication 312
Get-AzADGroup 72
Get-AzDataLakeAnalytics-

CatalogItem command 210
Get-AzDataLakeAnalyticsJob

command 178
Get-AzEventHub command 108
Get-AzEventHubAuthorization-

Rule command 101
Get-AzLog command 138
Get-AzResource command 17,

138
Get-AzSqlDatabase command

307
Get-AzSqlDatabaseRestorePoint

command 307
Get-AzStorageAccount

command 51, 108
Get-AzStorageAccountKey

command 274
Get-Credential command 128,

131
Get-Date command 308
GetRecordPropertyValue 148
Git version control 366–370

using ADF with 370–371
using Azure portal 367–368
using Azure PowerShell

369–370
GROUP BY clause 141, 215
GRS (geo-redundant

storage) 36, 38

H

Hadoop Distributed File System
(HDFS) 6, 64

HARD_MAP_MANAGER 338

INDEX 421
hardware security module
(HSM) 267

hash algorithm 207
HASH distribution

algorithm 206
HDFS (Hadoop Distributed File

System) 6, 64
HDInsight 7, 19
hopping windows 143–144
HoppingWindow()

function 144
horizontal partitioning 339
HSM (hardware security

module) 267
HubsInputBiometrics 142
hyperscale 319

I

IaaS (Infrastructure as a
Service) 19

@ID variable 200
IDE (integrated development

environment) 11
IdentifierUris 264
IF EXISTS option 197, 200, 213
IF NOT EXISTS option 206,

213, 236
IF…THEN…ELSE

statement 202
IIS (Internet Information

Services) 48
image data extraction, with

Advanced Analytics
230–233

ImageCommon 231
ImageIO.dll 230, 254
ImageOCR.dll 230
ImageTagging.dll 230
@in variable 163
infrastructure drift 82
INNER JOIN 199
input element 286
inputs 119
INSERT statement 214
Install-Module 375
integrated development envi-

ronment (IDE) 11
Integration Runtime (IR) 32,

261, 269, 280, 351
Internet Information Services

(IIS) 48
Invoke-AzDataFactoryV2Pipe-

line command 288
Invoke-Sqlcmd command 131

IP firewall 110
IR (Integration Runtime) 32,

261, 269, 280, 351
-ItemType parameter 210

J

JavaScript Object Notation
(JSON) 33, 233

JavaScript Object Notation for
Linked Data (JSON-LD)
236

job queries, ASA
creating 135–139

failure to start 138
output exceptions 139
starting ASA job 137–138

writing 139–148
machine learning functions

146–148
window functions 140–146

JobStartTime 137–138
JOIN clause 144–145, 199
Jonestown Sluggers analytics sys-

tem, configuring
Azure services, configuring

using PowerShell
396–411

Data Factory 402–411
Data Lake store 396–398
SQL Database 401–402
Stream Analytics job

configuration 398–401
Stream Analytics Managed

Identity 396
creation script 393–395
loading event data 412
naming convention 392
output of batch and stream

processing 413
removing services 413
solution design 389–392

cold path 391–392
hot path 391

JSON (JavaScript Object
Notation) 33, 233

JSON extractor
with JSONPath parsing

246–248
with name/value

parsing 243–245
JSON file, reading 239–243
JSONExtractor class 243, 246
JsonExtractor class 242, 248,

256

JSONExtractor() class 243
JsonFunctions class 240
JSON-LD (JavaScript Object

Notation for Linked
Data) 236

jsonPaths parameter 246
JsonTuple() function 240, 248

K

key vault. See AKV
Kind command 379

L

LAG() function 218–220
Lambda architecture 17–18
last-in-first-out (LIFO) 46
LastOutputEventTime 137–138
LAST_VALUE function 218
LEAD function 218–219
Least privilege, Data Lake store

access 68
LIFO (last-in-first-out) 46
linkedServiceName element

282
LinkedServiceReference 278,

283, 292
linkedservices 258, 261
local C# functions 217–220
local redundant storage

(LRS) 36, 38, 364
Location parameter 16, 260,

384–385
locations 13, 65
longest-wait scheduling 47
LRS (local redundant

storage) 36, 38, 364

M

Machine Learning (ML) 225
managed identity 127, 263
managed instances 129, 319
MapReduce algorithm 6
master database 194–195
master key 336
MAX function 169, 215
MaxAnalyticsUnits parameter

173
MaximumThroughputUnits 96
MaxJobCount parameter 173
MaxSizeBytes parameter 322
message handling. See Event

Hubs

INDEX422
message journal 104
MessageRetentionInDays

parameter 100
messages 45
micro-batch processing 116
Microsoft certifications 372
Microsoft.Analytics.Interfaces

namespace 233
Microsoft.Analytics.Types

namespace 233
Microsoft.Analytics.Types.Sql

namespace 233
Microsoft.Devices/IotHubs 124
Microsoft.EventHubs 106
Microsoft.ServiceBus/EventHub

124
Microsoft.Storage/Blob 125
MIN function 169, 215
MinimumCapacity 324
ML (Machine Learning) 225
MultiLevelJsonExtractor

class 246, 248, 256
multi-tenant integration 263

N

Name parameter 16, 98, 260,
384–385

names 13
namespace, Event Hubs 96–100

creating using Azure
PowerShell 96–97

Event Hub geo-disaster
recovery 97–99

failover with geo-disaster
recovery 99–100

throughput units 97
NamespaceName 96
naming conventions 376

Azure architecture 14–16
Jonestown Sluggers analytics

system configuration 392
New-AzADServicePrincipal

command 265
New-AzADUser, New-

AzADGroup command 69
New-AzDataFactoryV2

command 260, 369, 384
New-AzDataLakeStoreAccount

command 66, 91, 379
New-AzEventHub

command 100
New-AzEventHubGeoDR-

Configuration command
98

New-AzEventHubNamespace
command 96

New-AzKeyVault command 268,
385

New-AzResourceGroup
command 16

New-AzSqlDatabase command
129, 249

New-AzSqlDatabaseCopy
command 309, 314

New-AzSqlDatabaseExport
command 305

New-AzSqlDatabaseImport
command 306, 308

New-AzSqlDatabaseSecondary
command 314

New-AzSqlElasticPool
command 326

New-AzSqlServerFirewallRule
command 130

New-AzStorageAccount
command 37

New-AzStorageContainerSAS-
Token command 59–60

New-AzStorageContainerStored-
AccessPolicy command 60

New-AzStorageContext
command 59

New-AzStorageQueue
command 50

New-AzStreamAnalyticsInput
command 125

New-AzStreamAnalyticsJob
command 121

New-AzStreamAnalyticsTransfor-
mation command 136

New-Object 108
Node field 206
NodeValue field 215
normalization 334
null values 188
nullEscape parameter 167, 169

O

ObjectId parameter 269, 386
OLAP (online analytical

processing) 320
OLTP (online transaction

processing) 320
ON INTEGRITY VIOLATION

IGNORE 214
ON INTEGRITY VIOLATION

MOVE TO PARTITION
("playerx") 214

ON INTEGRITY VIOLATION
MOVE TO PARTITION
([partition]) 214

one-at-a-time stream processing
116

online analytical processing
(OLAP) 320

online transaction processing
(OLTP) 320

Operations folder 73–74
orchestration 7
OUTER JOIN 199
OUTPUT command 142, 162,

169
output element 286
outputHeader parameter 169
outputs 119
OutputStartMode parameter

137–138
outputter 161
OVER () clause 215

P

PaaS (Platform as a Service) 8,
19, 363

parameter 212
PARTITION BY 148, 156
PartitionCount 101
partitionId 113
partitions, Event Hubs 102–104

message journal 104
multiple consumers 102–103
specifying 103
throughput units and 104

PartnerResourceGroupName
314, 316

PartnerServerName 314
passthrough query 122, 158, 165
passthrough U-SQL script 183
-Path parameter 210
Pattern option 44
Pattern parameter 88
PERCENTILE_CONT

function 218
PERCENTILE_DISC function

218
PERCENT_RANK function 218
Permission parameter 59
PermissionsToSecrets

parameter 269, 386
PII (personally identifiable

information) 78
pipeline 258, 261
PipelineReference 289

INDEX 423
pipelines element 289
Platform as a Service (PaaS) 8,

19, 363
PlayerNames table 250
@Players rowset 169
PositionEnd 188
predicate pushdown 207, 252
priority scheduling 46
producers 93
ProjectName parameter 370
properties element 120, 236,

270, 277, 282, 289, 292, 348
PROVIDER_STRING 251

Q

queries, U-SQL 194
Query parameter 131
QueryStoreRetention

parameter 173
Queue service 35
queue-based load leveling 48
queueing services 46
queues 45–49

creating 49–52
options 52–53
queue-based load leveling

47–49
reading from 52
when input rate exceeds out-

put rate 47
writing to 51

QuotaGiB parameter 273
quoting parameter 167, 169

R

RA-GRS (read-access geo-redun-
dant storage) 36, 38

range algorithm 207
Raw zone 80
RBAC (role-based access

control) 16, 68
Read, Write, Execute (RWX) 74
read-access geo-redundant stor-

age (RA-GRS) 36, 38
Read-Host 302
Read-Host -AsSecureString

command 265
ReadHost command 264
ReadReplicaCount

parameter 322
real-time queries. See ASA
real-time stream processing

116

REBUILD option 213
recovery time objective

(RTO) 312
-Recurse parameter 106
recursive flag 285
reference input 122
referenceName 278
REGENERATE WITH

parameter 336
regions 14
REMOTABLE_TYPES

parameter 251
remote sources, connecting

to 248–254
credentials 251
data source 251–253
external databases 248–250

ADLA traffic, allowing
249–250

SQL Database, creating
249

SQL Server, creating
248–249

tables and views 253–254
remoteuser password 402, 405
Repository parameter 375
RequestedServiceObjective-

Name parameter 322
resource groups 13, 65, 376

creating 377
overview 16–17

ResourceGroupName
parameter 187, 260, 268,
278, 384–385, 404–405

ResourceId 138
restore point objectives (RPO)

311
Restore-AzSqlDatabase 308
RetentionDays1 parameter 310
RETURNS clause 203
RETURNS @result TABLE()

function 200
Role parameter 265
role-based access control

(RBAC) 16, 68
round-robin algorithm 207
rowDelimiter parameter 167,

169
rowpath parameter 246
rowsets 160
RPO (restore point

objectives) 311
RTO (recovery time

objective) 312
RWX (Read, Write, Execute) 74

S

S option 44
SA (Stream Analytics) 257
SaaS (Software as a Service) 19,

363
Sandbox zone 80–81
SAS (shared access signature)

43, 101, 110
SAS key 58
SAS tokens 58–59
scheduled trigger, ADF

creating using Azure
Portal 291

creating using Azure
PowerShell 288–290

ScheduleTrigger 289
Scope parameter 265
scriptPath element 177, 294
SecondaryServiceObjective-

Name 314
secretName 404–405
SecretValue parameter 274
secure authentication 262–272

AAD (Azure Active Directory)
integration 263–265

AKV (Azure Key Vault)
266–272

AKV linkedservice,
creating 269–272

creating key vault 266–268
managed identities 268–269

secureInput 295
secureOutput 295
SecureString 264, 274, 277
SELECT clause 141
SELECT command 197
SELECT query 188
SELECT rowset 188
SELECT statement 142, 165, 199
SELECT…FROM VALUES

rowset 198
semantic drift 82
SEMIJOIN 199
SensorData 212
Server Message Block (SMB) 35
ServerInstance parameter 131
service principal 263
serviceBusNamespace 398
ServiceObjectiveName

parameter 306
servicePrincipalID 271, 278,

292, 404–405
servicePrincipalKey 271, 278,

292

INDEX424
servicers 46
serving layer 18
Set-AzContext 375
Set-AzDataFactoryV2

command 370–371
Set-AzDataFactoryV2Dataset

command 284, 350
Set-AzDataFactoryV2Linked-

Service command 271, 276,
293, 346

Set-AzDataFactoryV2Pipeline
command 287, 355

Set-AzDataLakeAnalyticsAc-
count command 173

Set-AzDataLakeStoreItemAcl-
Entry command 72, 279

Set-AzDataLakeStoreIte-
mOwner command 70

Set-AzEventHub command 108
Set-AzKeyVaultAccessPolicy

command 269, 386
Set-AzKeyVaultSecret

command 274
Set-AzSqlDatabase

command 321–322, 324,
327

Set-AzSqlDatabaseBackupLong-
TermRetentionPolicy 310

Set-AzSqlDatabaseBackupShort-
TermRetentionPolicy 310

Set-AzSqlDatabaseSecondary
command 316

Set-AzSqlServer command 302
Set-AzSqlServerActiveDirectory-

Administrator command
303

SetContentType option 45
sharding 339
SHARD_MAP_MANAGER

source type 339
shared access policy 101–102
SHARED ACCESS

SIGNATURE 337
shared access signature

(SAS) 43, 101, 110
shared access signatures 58–59
SharedAccessKey 305
sharedAccessPolicyKey

value 398
silent parameter 167
sink preCopyScript element 353
skipFirstNRows parameter

167–168
Sku parameter 268
SkuCapacity 96

SkuName parameter 37
sliding window 144
sliding windows 144–146
SlidingWindow() function 144
SMB (Server Message Block) 35
snapshots 364
soft delete 267
Software as a Service (SaaS) 19,

363
solid state drive (SSD) 319
Source parameter 88
Sourcekey parameter 88
speed layer 18
SQL (Structured Query

Language) 7, 117
SQL Managed Instance 301
SQL Server Management Studio

(SSMS) 130
SQL Server VM Set 301
SQL Server, creating 128–129,

248–249, 383–384, 386–388
SqlAdministratorPassword 302
SQLDB (Azure SQL Database)

22, 31, 118, 248, 258, 299,
332, 383, 386, 391

alerts for 317–318
Azure cloud services 22
cloud hosting costs 31
copy of 308–309
costs for, optimizing 318–328

elastic pools 325–328
pricing structure 319–321
scaling SQLDB 321–323
serverless 323–325

creating 129–131, 249, 301–
302, 383–384, 386–388

database safeguards 311–316
failover of replicated

database 316
setting up geo-replication

312–316
exporting 305–306

using Azure portal 305
using Azure PowerShell

305–306
importing 306–307
in Jonestown Sluggers analyt-

ics system configuration
401–402

long-term backup
retention 309–311

restoring and moving 307–308
using Azure portal 307
using Azure PowerShell

307–308

securing 302–304
version control and backups

371–372
SQLDB (Azure SQL Database),

integrating data factory with
importing data with external

data sources 334–341
Blob files, importing

340–341
database scoped credential,

creating 336–338
external data source,

creating 338–339
external table, creating

339–340
importing file data with

ADF 341–356
authenticating between

ADF and SQLDB
343–344

copy activity and pipeline,
creating 351–356

datasets, creating 347–351
SQL Database linkedser-

vice, creating 344–346
SQLDB serverless 323
SQLDW (SQL Data Warehouse)

248, 302
SSD (solid state drive) 319
SSMS (SQL Server Manage-

ment Studio) 130
Staging zone 78–80
stand-alone databases 129, 319
Standard value 120
Start-AzStreamAnalyticsJob

command 137
StartIpAddress 130, 386
StartTime 179
State property 179
STDEV function 169, 215
Storage account, creating 379
Storage Explorer 43
storage system 46
Storage value 379
StorageAccessKey 305
StorageUri parameter 305
StorageV2 value 379
store element 278
stored access policy 59–61
Stream Analytics

Azure cloud services 21
cloud hosting costs 29
jobs

configuring 398–401
creating 381–382

INDEX 425
Stream Analytics (continued)
Managed Identity 396
version control and

backups 365
Stream Analytics (SA) 257
stream processing 116
streaming units 21, 148–150
string.Format() method 233
structural drift 82
Structured Query Language

(SQL) 7, 117
SU (streaming unit) 119
Submit-AzDataLakeAnalyticsJob

command 177
subscription, Azure

creating 376
overview 13

subscriptionId 271, 278, 292,
404–405

SUM function 169, 215
System namespace 233
System.Data namespace 233
System.Linq namespace 233
System.Text namespace 233
System.Text.RegularExpressions

namespace 233

T

table data 205
Tables service 35
tables, U-SQL 205–206

creating 206
distribution key 209–211
distributions 207–208
indexes 215
partitions 211–213
reading data from 215
structure of 207–215
writing to U-SQL database

table 214–215
Table-valued functions

(TVF) 200
TabularTranslator 353
tags 67, 380
Tags attribute 271, 282
tenant 271, 278, 292
tenantId 404
throughput units 21, 96–97, 104
Tier parameter 67, 173, 380
time window function 109
time window types 141–146

hopping windows 143–144
sliding windows 144–146
tumbling windows 141–143

TIMESTAMP BY parameter
141

TO clause 162
transformations 119, 135
translator element 353
tumbling windows 141–143
TumblingWindow() function

141
TumblingWindowTrigger

289
TVF (Table-valued functions)

200
type element 124
TypeName parameter 51
Type.Parse() function 161
typeProperties 271
typeProperties element 271,

278, 285, 292, 345, 348

U

UDF (User Defined
Function) 171

Undo-AzKeyVaultRemoval
command 268

Units parameter 88
unstructured data,

processing 225–233
Azure Cognitive Services

225–226
image data extraction with

Advanced Analytics
230–233

managing assemblies in Data
Lake 226–229

Update-AzDataLakeAnalytics-
ComputePolicy
command 173

UpdateMessage command 52
use-analytics-dev-db-curated-01

15
$user value 402
UserPrincipalName 69
USING clause 161–162, 169
U-SQL 160–165

ADLA catalog 194–215
DataFormats solution,

building 234–235
expressions 165
extractors 161–162
file selectors 163–164
local C# functions 217–220
outputters 162–163
simplifying data access

195–205

U-SQL database 195–197
U-SQL join 199–200
U-SQL table-valued

functions 200–205
U-SQL view 197–199

simplifying U-SQL queries
194

tables 205–206
creating 206
distribution key 209–211
distributions 207–208
indexes 215
partitions 211–213
reading data from 215
structure of 207–215
writing to U-SQL database

table 214–215
window functions 215–217

U-SQL jobs 165–171
aggregation 169
efficient executions of

178–185
analytics units 179
monitoring U-SQL

job 178–179
scaling job execution

182–185
vertexes 179–181

schema extraction
167–169

selecting biometric data
files 166–167

writing files 169–171

V

Vacuum 91
VALUES operator 198
VAR function 169
VCore parameter 322
version control and

backups 363–372
Blob Storage 364
Data Factory configuration

files 365–371
Data Lake Analytics 365
Data Lake Storage

364–365
SQL Database 371–372
Stream Analytics 365

@version variable 202
vertexes 179–181
vertical partitioning 339
VM (virtual machine) 302
VNet (Virtual Network) 110

INDEX426
W

WHERE clause 141–142,
144–145, 188, 211

window functions 215–217
WITH() option 251, 338

X

XML (Extensible Markup
Language) 33

Z

zones 78
Zones framework 78
ZRS (zone redundant

storage) 36, 38

East US

Storage
account

finance

r1.csv r2.csv

Central US

North Central US

South Central
US

West US
Storage
account

finance

r1.csv r2.csv
GRS and RA-GRS replication:
three storage nodes
at secondary location, too

Primary
region

Secondary
region

East US 2

Primary
region

Secondary
region

RA-GRS
replica
available
for read

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

finance

r1.csv r2.csv

Storage node

LRS replication:
three storage
nodes in the
same location

4

1

5

5

5

2

1

3

4

Several services, including Storage accounts, SQL Databases,

and Event Hubs, offer managed replication between regions.

Replication provides a safeguard against loss during regional outages.

Replication occurs within the data center, between data centers in the

same region, and to data centers in separate regions for Storage account Blobs.

Richard L. Nuckolls

ISBN: 978-1-61729-630-7

M
icrosoft Azure provides dozens of services that simplify
storing and processing data. These services are secure,
reliable, scalable, and cost effi cient.

Azure Storage, Streaming, and Batch Analytics shows you how
to build state-of-the-art data solutions with tools from the
Microsoft Azure platform. Read along to construct a
cloud-native data warehouse, adding features like real-time
data processing. Based on the Lambda architecture for big
data, the design uses scalable services such as Event Hubs,
Stream Analytics, and SQL databases. Along the way, you’ll
cover most of the topics needed to earn an Azure data
engineering certifi cation.

What’s Inside
● Confi guring Azure services for speed and cost
● Constructing data pipelines with Data Factory
● Choosing the right data storage methods

For readers familiar with database management. Examples in
C# and PowerShell.

Richard Nuckolls is a senior developer building big data
analytics and reporting systems in Azure.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/azure-storage-streaming-and-batch-analytics

$49.99 / Can $65.99 [INCLUDING eBOOK]

Azure
Storage, Streaming, and Batch Analytics

CLOUD COMPUTING/MICROSOFT AZURE

M A N N I N G

“A detailed tour through
Azure’s capabilities.

A must-read for anyone
looking to use Azure for

 data engineering.”
—Mike Fowler, Claranet

“If you have any questions
about storage, streaming,

or batch analytics with Azure,
you won’t after reading

 this book.”
—Taylor Dolezal, HashiCorp

“An excellent reference
for anyone using

 Azure for analytics.”—Srihari Sridharan, AthenaHealth

“If you are implementing
data solutions on Azure, this

 is the book you need.”—Pablo Acuña, Accenture

See first page

	Azure Storage, Streaming, and Batch Analytic
	brief contents
	contents
	preface
	acknowledgements
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Author online

	about the author
	about the cover illustration
	1 What is data engineering?
	1.1 What is data engineering?
	1.2 What do data engineers do?
	1.3 How does Microsoft define data engineering?
	1.3.1 Data acquisition
	1.3.2 Data storage
	1.3.3 Data processing
	1.3.4 Data queries
	1.3.5 Orchestration
	1.3.6 Data retrieval

	1.4 What tools does Azure provide for data engineering?
	1.5 Azure Data Engineers
	1.6 Example application
	Summary

	2 Building an analytics system in Azure
	2.1 Fundamentals of Azure architecture
	2.1.1 Azure subscriptions
	2.1.2 Azure regions
	2.1.3 Azure naming conventions
	2.1.4 Resource groups
	2.1.5 Finding resources

	2.2 Lambda architecture
	2.3 Azure cloud services
	2.3.1 Azure analytics system architecture
	2.3.2 Event Hubs
	2.3.3 Stream Analytics
	2.3.4 Data Lake Storage
	2.3.5 Data Lake Analytics
	2.3.6 SQL Database
	2.3.7 Data Factory
	2.3.8 Azure PowerShell

	2.4 Walk-through of processing a series of event data records
	2.4.1 Hot path
	2.4.2 Cold path
	2.4.3 Choosing abstract Azure services

	2.5 Calculating cloud hosting costs
	2.5.1 Event Hubs
	2.5.2 Stream Analytics
	2.5.3 Data Lake Storage
	2.5.4 Data Lake Analytics
	2.5.5 SQL Database
	2.5.6 Data Factory

	Summary

	3 General storage with Azure Storage accounts
	3.1 Cloud storage services
	3.1.1 Before you begin

	3.2 Creating an Azure Storage account
	3.2.1 Using Azure portal
	3.2.2 Using Azure PowerShell
	3.2.3 Azure Storage replication

	3.3 Storage account services
	3.3.1 Blob storage
	3.3.2 Creating a Blobs service container
	3.3.3 Blob tiering
	3.3.4 Copy tools
	3.3.5 Queues
	3.3.6 Creating a queue
	3.3.7 Azure Storage queue options

	3.4 Storage account access
	3.4.1 Blob container security
	3.4.2 Designing Storage account access

	3.5 Exercises
	3.5.1 Exercise 1
	3.5.2 Exercise 2

	Summary

	4 Azure Data Lake Storage
	4.1 Create an Azure Data Lake store
	4.1.1 Using Azure Portal
	4.1.2 Using Azure PowerShell

	4.2 Data Lake store access
	4.2.1 Access schemes
	4.2.2 Configuring access
	4.2.3 Hierarchy structure in the Data Lake store

	4.3 Storage folder structure and data drift
	4.3.1 Hierarchy structure revisited
	4.3.2 Data drift

	4.4 Copy tools for Data Lake stores
	4.4.1 Data Explorer
	4.4.2 ADLCopy tool
	4.4.3 Azure Storage Explorer tool

	4.5 Exercises
	4.5.1 Exercise 1
	4.5.2 Exercise 2

	Summary

	5 Message handling with Event Hubs
	5.1 How does an Event Hub work?
	5.2 Collecting data in Azure
	5.3 Create an Event Hubs namespace
	5.3.1 Using Azure PowerShell
	5.3.2 Throughput units
	5.3.3 Event Hub geo-disaster recovery
	5.3.4 Failover with geo-disaster recovery

	5.4 Creating an Event Hub
	5.4.1 Using Azure portal
	5.4.2 Using Azure PowerShell
	5.4.3 Shared access policy

	5.5 Event Hub partitions
	5.5.1 Multiple consumers
	5.5.2 Why specify a partition?
	5.5.3 Why not specify a partition?
	5.5.4 Event Hubs message journal
	5.5.5 Partitions and throughput units

	5.6 Configuring Capture
	5.6.1 File name formats
	5.6.2 Secure access for Capture
	5.6.3 Enabling Capture
	5.6.4 The importance of time

	5.7 Securing access to Event Hubs
	5.7.1 Shared Access Signature policies
	5.7.2 Writing to Event Hubs

	5.8 Exercises
	5.8.1 Exercise 1
	5.8.2 Exercise 2
	5.8.3 Exercise 3

	Summary

	6 Real-time queries with Azure Stream Analytics
	6.1 Creating a Stream Analytics service
	6.1.1 Elements of a Stream Analytics job
	6.1.2 Create an ASA job using the Azure portal
	6.1.3 Create an ASA job using Azure PowerShell

	6.2 Configuring inputs and outputs
	6.2.1 Event Hub job input
	6.2.2 ASA job outputs

	6.3 Creating a job query
	6.3.1 Starting the ASA job
	6.3.2 Failure to start
	6.3.3 Output exceptions

	6.4 Writing job queries
	6.4.1 Window functions
	6.4.2 Machine learning functions

	6.5 Managing performance
	6.5.1 Streaming units
	6.5.2 Event ordering

	6.6 Exercises
	6.6.1 Exercise 1
	6.6.2 Exercise 2

	Summary

	7 Batch queries with Azure Data Lake Analytics
	7.1 U-SQL language
	7.1.1 Extractors
	7.1.2 Outputters
	7.1.3 File selectors
	7.1.4 Expressions

	7.2 U-SQL jobs
	7.2.1 Selecting the biometric data files
	7.2.2 Schema extraction
	7.2.3 Aggregation
	7.2.4 Writing files

	7.3 Creating a Data Lake Analytics service
	7.3.1 Using Azure portal
	7.3.2 Using Azure PowerShell

	7.4 Submitting jobs to ADLA
	7.4.1 Using Azure portal
	7.4.2 Using Azure PowerShell

	7.5 Efficient U-SQL job executions
	7.5.1 Monitoring a U-SQL job
	7.5.2 Analytics units
	7.5.3 Vertexes
	7.5.4 Scaling the job execution

	7.6 Using Blob Storage
	7.6.1 Constructing Blob file selectors
	7.6.2 Adding a new data source
	7.6.3 Filtering rowsets

	7.7 Exercises
	7.7.1 Exercise 1
	7.7.2 Exercise 2

	Summary

	8 U-SQL for complex analytics
	8.1 Data Lake Analytics Catalog
	8.1.1 Simplifying U-SQL queries
	8.1.2 Simplifying data access
	8.1.3 Loading data for reuse

	8.2 Window functions
	8.3 Local C# functions
	8.4 Exercises
	8.4.1 Exercise 1
	8.4.2 Exercise 2

	Summary

	9 Integrating with Azure Data Lake Analytics
	9.1 Processing unstructured data
	9.1.1 Azure Cognitive Services
	9.1.2 Managing assemblies in the Data Lake
	9.1.3 Image data extraction with Advanced Analytics

	9.2 Reading different file types
	9.2.1 Adding custom libraries with a Catalog
	9.2.2 Creating a catalog database
	9.2.3 Building the U-SQL DataFormats solution
	9.2.4 Code folders
	9.2.5 Using custom assemblies

	9.3 Connecting to remote sources
	9.3.1 External databases
	9.3.2 Credentials
	9.3.3 Data Source
	9.3.4 Tables and views

	9.4 Exercises
	9.4.1 Exercise 1
	9.4.2 Exercise 2

	Summary

	10 Service integration with Azure Data Factory
	10.1 Creating an Azure Data Factory service
	10.2 Secure authentication
	10.2.1 Azure Active Directory integration
	10.2.2 Azure Key Vault

	10.3 Copying files with ADF
	10.3.1 Creating a Files storage container
	10.3.2 Adding secrets to AKV
	10.3.3 Creating a Files storage linkedservice
	10.3.4 Creating an ADLS linkedservice
	10.3.5 Creating a pipeline and activity
	10.3.6 Creating a scheduled trigger

	10.4 Running an ADLA job
	10.4.1 Creating an ADLA linkedservice
	10.4.2 Creating a pipeline and activity

	10.5 Exercises
	10.5.1 Exercise 1
	10.5.2 Exercise 2

	Summary

	11 Managed SQL with Azure SQL Database
	11.1 Creating an Azure SQL Database
	11.1.1 Create a SQL Server and SQLDB

	11.2 Securing SQLDB
	11.3 Availability and recovery
	11.3.1 Restoring and moving SQLDB
	11.3.2 Database safeguards
	11.3.3 Creating alerts for SQLDB

	11.4 Optimizing costs for SQLDB
	11.4.1 Pricing structure
	11.4.2 Scaling SQLDB
	11.4.3 Serverless
	11.4.4 Elastic Pools

	11.5 Exercises
	11.5.1 Exercise 1
	11.5.2 Exercise 2
	11.5.3 Exercise 3
	11.5.4 Exercise 4

	Summary

	12 Integrating Data Factory with SQL Database
	12.1 Before you begin
	12.2 Importing data with external data sources
	12.2.1 Creating a database scoped credential
	12.2.2 Creating an external data source
	12.2.3 Creating an external table
	12.2.4 Importing Blob files

	12.3 Importing file data with ADF
	12.3.1 Authenticating between ADF and SQLDB
	12.3.2 Creating SQL Database linkedservice
	12.3.3 Creating datasets
	12.3.4 Creating a copy activity and pipeline

	12.4 Exercises
	12.4.1 Exercise 1
	12.4.2 Exercise 2
	12.4.3 Exercise 3

	Summary

	13 Where to go next
	13.1 Data catalog
	13.1.1 Data Catalog as a service
	13.1.2 Data locations
	13.1.3 Data definitions
	13.1.4 Data frequency
	13.1.5 Business drivers

	13.2 Version control and backups
	13.2.1 Blob Storage
	13.2.2 Data Lake Storage
	13.2.3 Stream Analytics
	13.2.4 Data Lake Analytics
	13.2.5 Data Factory configuration files
	13.2.6 SQL Database

	13.3 Microsoft certifications
	13.4 Signing off
	Summary

	Appendix A—Setting up Azure services through PowerShell
	A.1 Setting up Azure PowerShell
	A.2 Create a subscription
	A.3 Azure naming conventions
	A.4 Setting up common Azure resources using PowerShell
	A.4.1 Creating a new resource group
	A.4.2 Creating a new Azure Active Directory user
	A.4.3 Creating a new Azure Active Directory group

	A.5 Setting up Azure services using PowerShell
	A.5.1 Creating a new Storage account
	A.5.2 Creating a new Data Lake store
	A.5.3 Create new Event Hub
	A.5.4 Create new Stream Analytics job
	A.5.5 Create new Data Lake Analytics account
	A.5.6 Create new SQL Server and Database
	A.5.7 Create a new Data Factory service
	A.5.8 Creating a new App registration
	A.5.9 Creating a new key vault
	A.5.10 Create new SQL Server and Database with lookup data

	Appendix B—Configuring the Jonestown Sluggers analytics system
	B.1 Solution design
	B.1.1 Hot path
	B.1.2 Cold path

	B.2 Naming convention
	B.3 Creation script
	B.4 Configure Azure services using PowerShell
	B.4.1 Stream Analytics Managed Identity
	B.4.2 Data Lake store
	B.4.3 Stream Analytics job configuration
	B.4.4 SQL Database
	B.4.5 Data Factory

	B.5 Load event data
	B.6 Output of batch and stream processing
	B.7 Removing services

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

