

R

codinG

IN PYTHON
Games

US_001_half_title.indd 1 23/02/18 6:38 pm

US_002-003_Title.indd 2 23/02/18 6:38 pm

R

codinG

IN PYTHON
Games

US_002-003_Title.indd 3 23/02/18 6:38 pm

R

codinG

IN PYTHON
Games

US_002-003_Title.indd 3 23/02/18 6:38 pm

DK INDIA
Senior editor Bharti Bedi

Project art editor Sanjay Chauhan
Editor Tina Jindal

Assistant art editors Rabia Ahmad,
Simar Dhamija, Sonakshi Singh

Jacket designer Juhi Sheth
Jackets editorial coordinator Priyanka Sharma

Managing jackets editor Saloni Singh
DTP designer Sachin Gupta

Senior DTP designer Harish Aggarwal
Senior managing editor Rohan Sinha
Managing art editor Sudakshina Basu

Pre-production manager Balwant Singh

First American Edition, 2018
Published in the United States by DK Publishing
345 Hudson Street, New York, New York 10014

Copyright © 2018 Dorling Kindersley Limited
DK, a Division of Penguin Random House LLC

18 19 20 21 22 10 9 8 7 6 5 4 3 2 1
001–309872–July/2018

All rights reserved.
Without limiting the rights under the copyright reserved above, no part

of this publication may be reproduced, stored in or introduced into a
retrieval system, or transmitted, in any form, or by any means (electronic,

mechanical, photocopying, recording, or otherwise), without the prior
written permission of the copyright owner.

Published in Great Britain by Dorling Kindersley Limited

A catalog record for this book
is available from the Library of Congress.

ISBN: 978-1-4654-7361-5

Printed in China

A WORLD OF IDEAS:
SEE ALL THERE IS TO KNOW

www.dk.com

DK UK
Project editor Ben Ffrancon Davies

Senior art editor Sunita Gahir
Consultant editor Craig Steele

Jacket design development manager Sophia MTT
Jacket editor Claire Gell

Producer, pre-production Gillian Reid
Senior Producer Alex Bell

US editors Jill Hamilton, Kayla Dugger
Managing editor Lisa Gillespie

Managing art editor Owen Peyton Jones
Publisher Andrew Macintyre

Associate publishing director Liz Wheeler
Art director Karen Self

Design director Phil Ormerod
Publishing director Jonathan Metcalf

US_004-005_imprint.indd 4 22/02/18 1:40 pm

CAROL VORDERMAN MBE is one of Britain’s best-loved TV presenters and is
renowned for her mathematical skills. She has hosted numerous TV shows on
science and technology, from Tomorrow’s World to How 2, and was co-host of
Channel 4’s Countdown for 26 years. A Cambridge University engineering
graduate, she has a passion for communicating science and technology and
is particularly interested in coding.

CRAIG STEELE is a specialist in computing science education who helps people
develop digital skills in a fun and creative environment. He is a founder of
CoderDojo in Scotland, which runs free coding clubs for young people. Craig
has run digital workshops with the Raspberry Pi Foundation, Glasgow Science
Centre, Glasgow School of Art, BAFTA, and the BBC micro:bit project. Craig’s first
computer was a ZX Spectrum.

DR. CLAIRE QUIGLEY studied computing science at Glasgow University,
where she obtained BSc and PhD degrees. She has worked in the Computer
Laboratory at Cambridge University and Glasgow Science Centre, and is
currently working on a project to develop a music and technology resource
for primary schools in Edinburgh. She is a mentor at CoderDojo Scotland.

DANIEL McCAFFERTY holds a degree in computer science from the University
of Strathclyde. He has worked as a software engineer for companies big and
small in industries from banking to broadcasting. Daniel lives in Glasgow with
his wife and two children, and when not teaching young people to code, he
enjoys bicycling and spending time with his family.

DR. MARTIN GOODFELLOW is a teaching associate in the Computer and
Information Sciences department at the University of Strathclyde. He has
also developed educational computer science content and workshops for
other organizations in the UK and China, including CoderDojo Scotland,
Glasgow Life, Codemao, and the BBC. He is currently the Scottish
Ambassador for National Coding Week.

US_004-005_imprint.indd 5 22/02/18 1:40 pm

CAROL VORDERMAN MBE is one of Britain’s best-loved TV presenters and is
renowned for her mathematical skills. She has hosted numerous TV shows on
science and technology, from Tomorrow’s World to How 2, and was co-host of
Channel 4’s Countdown for 26 years. A Cambridge University engineering
graduate, she has a passion for communicating science and technology and
is particularly interested in coding.

CRAIG STEELE is a specialist in computing science education who helps people
develop digital skills in a fun and creative environment. He is a founder of
CoderDojo in Scotland, which runs free coding clubs for young people. Craig
has run digital workshops with the Raspberry Pi Foundation, Glasgow Science
Centre, Glasgow School of Art, BAFTA, and the BBC micro:bit project. Craig’s first
computer was a ZX Spectrum.

DR. CLAIRE QUIGLEY studied computing science at Glasgow University,
where she obtained BSc and PhD degrees. She has worked in the Computer
Laboratory at Cambridge University and Glasgow Science Centre, and is
currently working on a project to develop a music and technology resource
for primary schools in Edinburgh. She is a mentor at CoderDojo Scotland.

DANIEL McCAFFERTY holds a degree in computer science from the University
of Strathclyde. He has worked as a software engineer for companies big and
small in industries from banking to broadcasting. Daniel lives in Glasgow with
his wife and two children, and when not teaching young people to code, he
enjoys bicycling and spending time with his family.

DR. MARTIN GOODFELLOW is a teaching associate in the Computer and
Information Sciences department at the University of Strathclyde. He has
also developed educational computer science content and workshops for
other organizations in the UK and China, including CoderDojo Scotland,
Glasgow Life, Codemao, and the BBC. He is currently the Scottish
Ambassador for National Coding Week.

US_004-005_imprint.indd 5 22/02/18 1:40 pm

 GETTING STARTED
12 What is Python?

14 Gaming in Python

16 Installing Python

18 Installing Pygame Zero

20 Using IDLE

22 Your first program

 LEARNING THE BASICS
28 Creating variables

32 Making decisions

36 Playing with loops

40 Functions

44 Fixing bugs

 SHOOT THE FRUIT
50 How to build Shoot the Fruit

Contents

 COIN COLLECTOR
60 How to build Coin Collector

 FOLLOW THE NUMBERS
70 How to build Follow the Numbers

 RED ALERT
82 How to build Red Alert

8 F O R E W O R D

Score: 0

US_006-007_Contents.indd 6 22/02/18 12:23 pm

 HAPPY GARDEN
156 How to build Happy Garden

 SLEEPING DRAGONS
178 How to build Sleeping Dragons

 REFERENCE
198 Project reference

220 Glossary

222 Index

224 Acknowledgments

 BIG QUIZ
100 How to build Big Quiz

 BALLOON FLIGHT
118 How to build Balloon Flight

 DANCE CHALLENGE
138 How to build Dance Challenge

Garden happy for: 16 seconds

26

Score: 0

Score: 0

7
London

Berlin

Paris

Tokyo

What is the
capital of France?

US_006-007_Contents.indd 7 22/02/18 12:23 pm

 HAPPY GARDEN
156 How to build Happy Garden

 SLEEPING DRAGONS
178 How to build Sleeping Dragons

 REFERENCE
198 Project reference

220 Glossary

222 Index

224 Acknowledgments

 BIG QUIZ
100 How to build Big Quiz

 BALLOON FLIGHT
118 How to build Balloon Flight

 DANCE CHALLENGE
138 How to build Dance Challenge

Garden happy for: 16 seconds

26

Score: 0

Score: 0

7
London

Berlin

Paris

Tokyo

What is the
capital of France?

US_006-007_Contents.indd 7 22/02/18 12:23 pm

Foreword

Computer programmers are the unsung heroes of the modern world. From smartphones
to laptops, traffic systems to bank cards, their hard work touches almost every aspect
of our lives. Behind each technological advance is a team of creative coders.

Over the past 30 years, computer games have become one of the most exciting and
popular areas of the entertainment industry to work in. Becoming a game programmer
takes creative flair to help create the story, graphics, music, and characters you need
for your games, and the technical know-how to bring them to life. Who knows? This
book may be the very first step on your journey from gamer to game maker.

Learning to code isn’t just for people who want to be professional programmers,
though. Coding skills are useful in lots of different jobs that may seem to have nothing
to do with computers at first. Programming expertise is essential to subject areas as
diverse as science, business, art, and music.

This book uses a programming language called Python®, a fairly simple text-based
language, and is perfect for beginners, or as a step up from Scratch™. However,
unlike Scratch, it was not created especially to teach coding. Python is as popular with
budding coders as it is with professionals, and is one of the most widely used
professional programming languages in the world. It pops up in banking, medicine,
animation, and even space exploration.

The best way to learn any new language is to get immersed in it, and programming
languages are no different. Building your own computer games is a fun way to combine
theory and practice. If you’re a brand-new coder, start off with the basics at the

US_008-009_Foreword.indd 8 22/02/18 12:23 pm

beginning of this book before moving on to the more complex games as the book
progresses. By following the step-by-step guides, you’ll find out how professional
coders think when they’re building a computer game. Follow those steps carefully and
you’ll have your own games up and running in no time. Then, if you really want to push
yourself, you can try tweaking the code to make your games unique.

Everybody, whether a beginner or a pro, makes mistakes. Nothing frustrates a coder
more than the bugs that manage to creep into their programs. If something goes
wrong in one of your games, go back over your code and check it all carefully. There
are hints and tips throughout the book that will help you do this. Most importantly,
don’t get disheartened—finding and fixing errors in your code is all part of being a
programmer. The more practice you get, the fewer bugs your code will contain, and
the quicker you’ll catch the little ones that still appear.

Most importantly, have fun! Once you’ve completed the games, you can show them off
to your friends and family—they’ll be amazed by what you’ve managed to make. This
book is packed with games to suit every audience, and we hope you enjoy building and
playing them as much as we enjoyed creating them for you.

Have fun coding!

US_008-009_Foreword.indd 9 23/02/18 2:31 pm

beginning of this book before moving on to the more complex games as the book
progresses. By following the step-by-step guides, you’ll find out how professional
coders think when they’re building a computer game. Follow those steps carefully and
you’ll have your own games up and running in no time. Then, if you really want to push
yourself, you can try tweaking the code to make your games unique.

Everybody, whether a beginner or a pro, makes mistakes. Nothing frustrates a coder
more than the bugs that manage to creep into their programs. If something goes
wrong in one of your games, go back over your code and check it all carefully. There
are hints and tips throughout the book that will help you do this. Most importantly,
don’t get disheartened—finding and fixing errors in your code is all part of being a
programmer. The more practice you get, the fewer bugs your code will contain, and
the quicker you’ll catch the little ones that still appear.

Most importantly, have fun! Once you’ve completed the games, you can show them off
to your friends and family—they’ll be amazed by what you’ve managed to make. This
book is packed with games to suit every audience, and we hope you enjoy building and
playing them as much as we enjoyed creating them for you.

Have fun coding!

US_008-009_Foreword.indd 9 23/02/18 2:31 pm

US_010-011_Chapter_opener_1.indd 10 22/02/18 1:40 pm

Getting
started

US_010-011_Chapter_opener_1.indd 11 22/02/18 1:40 pm

Getting
started

US_010-011_Chapter_opener_1.indd 11 22/02/18 1:40 pm

12 G E T T I N G S T A R T E D

What is Python?
Computers need step-by-step instructions
to perform different tasks. A set of instructions,
or code, can be written in different
programming languages. Python is one of
the most popular programming languages.

Why Python?
Python is a powerful programming language that
you can use to code simple programs quickly. It’s
not too hard to learn and it’s great for building
apps and games. Here are some of the reasons
why Python is such a great tool for programmers.

1+1=2

△ Packed with tools
Python comes with everything you need to start
coding right away, so programmers say it comes
with “batteries included.” It contains lots of
prewritten code, called the Standard Library,
that you can use in your programs.

Python is great!
I can take

it anywhere.

△ Portable
The same Python code will work on PCs,
Macs, Linux machines, and Raspberry Pi
computers. The programs act in a similar
way on each platform, so games created
with Python can be played on lots of
machines all around the world.

△ Lots of help
Python’s website is packed with support
materials to help you learn how to use it. It has a
guide to getting started, several pieces of sample
code, and a reference section to help you
understand the code.

△ Easy to understand
Unlike some other programming languages, Python
doesn’t use complicated symbols. You type the
code using a mixture of English words, characters, and
numbers, so it’s easy to read and write—just like a book.

◁ Diverse applications
Python is used to build
systems and tools for lots of
interesting tasks in different
industries, such as banking,
healthcare, the space industry,
education, and many others.

Better get started!

US_012_013_what_is_python.indd 12 22/02/18 12:23 pm

13W H A T I S P Y T H O N ?

From Scratch to Python
Scratch is a visual language, whereas Python is text
based. If you’ve used Scratch, you will recognize some
of the features and ideas in Python. The two languages
might look different, but lots of the elements that are
used in Scratch are also used in Python.

Goodbye!

△ Set a condition with Scratch
The “if-then-else” block lets you choose which part of
the script to run depending on whether the condition
is True or False.

when clicked

say Hello World!

Hello World!

This block displays
the message in a
speech bubble.

△ Print in Scratch
In Scratch, the “say” block is used to
display a message on the screen.

Type your
message here.

The message appears
on the screen like this.

△ Print in Python
In Python, the “print” command displays
a message on the screen.

say Hello!

say Goodbye!

a = 2if

else

then

Goodbye!
?Hello!

△ Set a condition with Python
In Python, “if-then-else” commands work
exactly the same way, but they don’t use
the word “then.”

This command
is executed if the
condition after
if is False.

This message is
displayed if the
answer is False.

if a == 2:

 print("Hello!")

 else:

 print("Goodbye!")

 print("Hello World!")

Hello World!

This command
is executed if
the condition
after if is True.

This message is
displayed if the
answer is True.

This is the end of the
“if-then-else” block.

US_012_013_what_is_python.indd 13 22/02/18 12:23 pm

13W H A T I S P Y T H O N ?

From Scratch to Python
Scratch is a visual language, whereas Python is text
based. If you’ve used Scratch, you will recognize some
of the features and ideas in Python. The two languages
might look different, but lots of the elements that are
used in Scratch are also used in Python.

Goodbye!

△ Set a condition with Scratch
The “if-then-else” block lets you choose which part of
the script to run depending on whether the condition
is True or False.

when clicked

say Hello World!

Hello World!

This block displays
the message in a
speech bubble.

△ Print in Scratch
In Scratch, the “say” block is used to
display a message on the screen.

Type your
message here.

The message appears
on the screen like this.

△ Print in Python
In Python, the “print” command displays
a message on the screen.

say Hello!

say Goodbye!

a = 2if

else

then

Goodbye!
?Hello!

△ Set a condition with Python
In Python, “if-then-else” commands work
exactly the same way, but they don’t use
the word “then.”

This command
is executed if the
condition after
if is False.

This message is
displayed if the
answer is False.

if a == 2:

 print("Hello!")

 else:

 print("Goodbye!")

 print("Hello World!")

Hello World!

This command
is executed if
the condition
after if is True.

This message is
displayed if the
answer is True.

This is the end of the
“if-then-else” block.

US_012_013_what_is_python.indd 13 22/02/18 12:23 pm

14 G E T T I N G S T A R T E D

Gaming in Python
Video games are computer programs that
contain a bunch of instructions. Python can
be used to build lots of different types of
games. With Python, there’s something for
every gamer!

Types of games
There are lots of different categories, or
genres, of computer games. These range
from simple one-button games to more
complex strategy ones. Which genre would
you like to create first?

△ Platform
Platform games, such as racing games, create
the illusion of speed by making the background
scroll past the player’s viewpoint. The gameplay
generally involves moving around obstacles or
jumping over them.

▷ One button
With Python, you can build fun,
action-packed games that only
need one button to be played.
These games are so addictive,
you’ll want to play them over
and over again.

◁ Puzzles
Puzzles are a great
way to exercise your
brain or test someone’s
general knowledge.
They come in all shapes
and sizes, from jigsaw
puzzles to word and
number games.

◁ Strategy
A strategy game is all
about decisions. You
need to plan ahead
and make the right
choices to win.

△ Multiplayer
Some games you play by yourself, but others let you
compete against other players. You can use Python to
build multiplayer games and challenge your friends.

US_014-015_Gaming_in_python.indd 14 22/02/18 12:24 pm

15G A M I N G I N P Y T H O N

Python modules
Python has bundles of code called “modules”
that help you complete common coding
tasks. You can use these modules by
importing them into your programs.
Here are some Python modules that you
might find useful.

▽ Pygame
Pygame is designed for writing games in Python.
With this module, you can easily add and control
game characters, update scores and timers, use
special animations and graphics, and use gamepads
and joysticks with your games. It is not a built-in
Python module, so it needs to be installed separately.

◁ Pygame Zero
Pygame Zero is a great module for
beginner game programmers. It’s a
simplified version of Pygame, which makes
it even easier to get started by hiding some
of Pygame’s more complicated features. It
comes with several tools that are useful for
beginners, but it’s also powerful enough
to build some impressive games.

▷ Random
This module can pick a random
number or shuffle a list into a
random order. It is great for
adding an element of chance
to a game. Use it when you
want to simulate rolling dice
or when choosing a random
enemy for the player to face.

◁ Tkinter
This tool is used to build
simple graphics in games
to create Graphical
User Interfaces (GUIs,
pronounced “goo-eys”)
that let users interact
with, and control,
Python programs.

◁ Time
This module provides tools to
work with time and dates in
a program. For example, you
might need to calculate how
many seconds have passed
since a game started.

▷ Math
Math is a standard Python
module that can be used to
perform simple calculations
in games. However, you might
need to use other modules for
trickier calculations.

E X P E R T T I P S

Downloading modules
Python comes with several built-in modules
for developing games, such as Pyglet. But
some other modules, like Pygame, have to
be downloaded separately.

US_014-015_Gaming_in_python.indd 15 22/02/18 12:24 pm

15G A M I N G I N P Y T H O N

Python modules
Python has bundles of code called “modules”
that help you complete common coding
tasks. You can use these modules by
importing them into your programs.
Here are some Python modules that you
might find useful.

▽ Pygame
Pygame is designed for writing games in Python.
With this module, you can easily add and control
game characters, update scores and timers, use
special animations and graphics, and use gamepads
and joysticks with your games. It is not a built-in
Python module, so it needs to be installed separately.

◁ Pygame Zero
Pygame Zero is a great module for
beginner game programmers. It’s a
simplified version of Pygame, which makes
it even easier to get started by hiding some
of Pygame’s more complicated features. It
comes with several tools that are useful for
beginners, but it’s also powerful enough
to build some impressive games.

▷ Random
This module can pick a random
number or shuffle a list into a
random order. It is great for
adding an element of chance
to a game. Use it when you
want to simulate rolling dice
or when choosing a random
enemy for the player to face.

◁ Tkinter
This tool is used to build
simple graphics in games
to create Graphical
User Interfaces (GUIs,
pronounced “goo-eys”)
that let users interact
with, and control,
Python programs.

◁ Time
This module provides tools to
work with time and dates in
a program. For example, you
might need to calculate how
many seconds have passed
since a game started.

▷ Math
Math is a standard Python
module that can be used to
perform simple calculations
in games. However, you might
need to use other modules for
trickier calculations.

E X P E R T T I P S

Downloading modules
Python comes with several built-in modules
for developing games, such as Pyglet. But
some other modules, like Pygame, have to
be downloaded separately.

US_014-015_Gaming_in_python.indd 15 22/02/18 12:24 pm

16 G E T T I N G S T A R T E D

Installing Python
The games in this book use Python 3. It’s
free, and you can download it from the
Python website. Follow the instructions
that match your computer. Never install
any program unless you have the computer
owner’s permission.

Installing Python on Windows
First you need to find out if your computer uses the
32-bit or 64-bit version of Windows. Go to the Start
menu, then Computer, Properties, and choose
System if the option appears.

Click the
installer.

Install Python
Open the installer file, then click Custom
Installation, then Next until you get to Advanced
Options. Leave the checked boxes as they are, but
make sure “Install for all users” and “Add Python to
environment variables” are also checked. Then
click Install and Next at each prompt.

2

Start IDLE
Once the installation process is complete,
open IDLE by searching for it or going to
the Start menu, choosing All Apps, then
selecting IDLE. A window like the one
below should appear.

3

Download Python
Go to www.python.org and click on Downloads. Click
on the latest version of Python for Windows. It should
start with the number 3. Select executable installer
from the different installer options that appear.

Use this installer if
you have a 32-bit
version of Windows.

Use this installer if
you have a 64-bit
version of Windows.

The version number might not be
exactly the same as this one—just
make sure it has 3 at the beginning.

• Python 3.6.2 - 2017-05-15
 • Windows x86 executable installer
 • Windows x86-64 executable installer

1

Python 3.6.2 (v3.6.2:5fd3365926, Aug 15 2017, 00:45:10) [MSC v.1900 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

Python 3.6.2 Shell

IDLE File Edit Shell Debug Window Help

L I N G O

IDLE
When you install Python 3, you will
also get another free program called
IDLE (short for Integrated Development
Environment). Designed for
beginners, IDLE includes a basic
text editor that allows you to write
and edit Python code.

Z Z Z

US_016-017_Installing_python.indd 16 23/02/18 3:52 pm

I N S T A L L I N G P Y T H O N 17

Start IDLE
Once the installation is complete, check that it was
successful by opening the IDLE program. Search for
it in Spotlight or select the Applications folder, then
the Python folder, and double-click IDLE. A window
like this should appear.

Download Python
Go to www.python.org and click on Downloads.
Click on the version of Python 3 that matches your
operating system. The “Python.pkg” file will download
to your Mac automatically.

Install Python
Double-click the “.pkg” file in the Downloads folder
to start the installation. Select Continue and then
Install to accept the default settings.

Installing Python on a Mac
Before you install Python 3 on a Mac, you need to check
which operating system your Mac uses. To do this, click
the Apple icon in the top left of the screen and choose
About This Mac from the drop-down menu.

The version number might not be exactly
the same as this one—just make sure it
has a 3 at the beginning.

Click the package
to run the installer.

• Python 3.6.2 - 2017-08-15
 • Download macOS X 64-bit/32-bit installer

Python 3.6.2 (v3.6.2:5fd3365926, Aug 15 2017, 13:38:16)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>>

Python 3.6.2 Shell

IDLE File Edit Shell Debug Window Help

1

2

3

I better
get going!

Where should
I plug this in?

E X P E R T T I P S

Raspberry Pi
If you’re using a Raspberry Pi computer,
then you can skip the download
step because Python 2 and Python 3
come preinstalled on the machine.
Remember this book uses Python 3, so
make sure you open the right version.
You’ll find Python 3 in the Applications
menu on your Raspberry Pi. Open it
now and check that it works.

US_016-017_Installing_python.indd 17 22/02/18 12:24 pm

I N S T A L L I N G P Y T H O N 17

Start IDLE
Once the installation is complete, check that it was
successful by opening the IDLE program. Search for
it in Spotlight or select the Applications folder, then
the Python folder, and double-click IDLE. A window
like this should appear.

Download Python
Go to www.python.org and click on Downloads.
Click on the version of Python 3 that matches your
operating system. The “Python.pkg” file will download
to your Mac automatically.

Install Python
Double-click the “.pkg” file in the Downloads folder
to start the installation. Select Continue and then
Install to accept the default settings.

Installing Python on a Mac
Before you install Python 3 on a Mac, you need to check
which operating system your Mac uses. To do this, click
the Apple icon in the top left of the screen and choose
About This Mac from the drop-down menu.

The version number might not be exactly
the same as this one—just make sure it
has a 3 at the beginning.

Click the package
to run the installer.

• Python 3.6.2 - 2017-08-15
 • Download macOS X 64-bit/32-bit installer

Python 3.6.2 (v3.6.2:5fd3365926, Aug 15 2017, 13:38:16)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>>

Python 3.6.2 Shell

IDLE File Edit Shell Debug Window Help

1

2

3

I better
get going!

Where should
I plug this in?

E X P E R T T I P S

Raspberry Pi
If you’re using a Raspberry Pi computer,
then you can skip the download
step because Python 2 and Python 3
come preinstalled on the machine.
Remember this book uses Python 3, so
make sure you open the right version.
You’ll find Python 3 in the Applications
menu on your Raspberry Pi. Open it
now and check that it works.

US_016-017_Installing_python.indd 17 22/02/18 12:24 pm

G E T T I N G S T A R T E D18

Installing
Pygame Zero
Now it’s time to add some extra tools to
help you build great games. In this book,
you’ll need two additional modules—Pygame
and Pygame Zero. These are not included
with Python, so you need to install
them separately.

E X P E R T T I P S

Admin access
Make sure you're signed into your
computer as an admin; otherwise,
the system won't let you install
things properly. Always ask
permission before installing new
software on someone's computer.

Installing Pygame Zero on Windows
Follow these steps to install the latest versions of
Pygame and Pygame Zero on your Windows computer.
Your machine needs to be connected to the Internet
to complete some of these steps.

Install a package manager
A package manager called “pip” should come
with Python when you install it. It’s a tool that
makes it easier to install Pygame Zero and other
Python modules. Type this command into the
Command Prompt and press Enter—it will
check if pip is on your computer and install
it if it is not.

2

Install Pygame Zero
Finally, type this command. When you
press Enter, this will install Pygame Zero,
also known as pgzero for short.

4

pip install pgzero

Install Pygame
Once the package manager is installed,
type the following command and press
Enter. This uses pip to install Pygame.

3

pip install pygame

Open the Command Prompt
Click Start. Scroll down and open the Windows
System folder. Click Command Prompt. If you
can’t find it, try searching for it. You’ll need to
type in some commands and press Enter to
run each one. Make sure you spell everything
correctly and put spaces in the right places
or it won’t work.

1

python -m pip install -U pip

Command Prompt

Look out for
this thumbnail
in the menu.

A C C E S S D E N I E D

c:\

US_018-019_Installing_pygame_zero.indd 18 22/02/18 12:24 pm

I N S T A L L I N G P Y G A M E Z E R O 19

Installing Pygame Zero
on a Mac
Follow these steps to install the latest
versions of Pygame and Pygame Zero
on your Mac. Your machine needs
to be connected to the Internet to
complete some of these steps.

Open Terminal
You’ll need to use the Terminal app to
install the modules. You can find it in your
Applications folder, or you can search for
it with Spotlight. Follow the steps below,
making sure all the spellings are correct
and the spaces are in the right place.

Install Pygame
Now it’s time to install Pygame. Type
in this command and press Enter.

5

Install other tools
Type in this command next and press
Enter. It uses Homebrew to install some
tools that will be needed by Pygame Zero.

4

1

6 Install Pygame Zero
Finally, this last command will install
Pygame Zero.

Check that Python 3 is installed
Homebrew will check if Python 3 is
already installed on your Mac and will
install it if it’s not there. Even though
you’ve already installed Python, it’s
worth checking just to be sure.

3

Install a package manager
Homebrew is a package manager tool
that makes it easier to install Pygame Zero
and other Python modules. Type in the
command at right and press Enter to
install Homebrew. It might ask you to
enter your password again, and it will take
a short while to install, so don't panic if
nothing happens right away.

2

brew install sdl sdl_mixer sdl_sound sdl_ttf

pip3 install pygame

Don’t put a
space before 3.

This should fit
on one line when
you type it in.

Type this line carefully in the
Terminal window and check for any

spelling errors and extra spaces.

brew install python3

pip3 install pgzero

E X P E R T T I P S

Having trouble?
Installing these modules might be a bit tricky at first. If
you’re having trouble, you can get the most up-to-date
installation instructions on the Pygame Zero website:
https://pygame-zero.readthedocs.io

This is what the
Terminal app
thumbnail looks like.

Rabiahma – bash – 80x24

Last login: Thu Sep 14 11:22:51 on ttys000

LC-0926:~ rzvz ruby -e "$(curl -fsSL https://raw.git

 hubusercontent.com/Homebrew/install/master/install)"

I N S T A L L I N G

>_

US_018-019_Installing_pygame_zero.indd 19 22/02/18 12:24 pm

I N S T A L L I N G P Y G A M E Z E R O 19

Installing Pygame Zero
on a Mac
Follow these steps to install the latest
versions of Pygame and Pygame Zero
on your Mac. Your machine needs
to be connected to the Internet to
complete some of these steps.

Open Terminal
You’ll need to use the Terminal app to
install the modules. You can find it in your
Applications folder, or you can search for
it with Spotlight. Follow the steps below,
making sure all the spellings are correct
and the spaces are in the right place.

Install Pygame
Now it’s time to install Pygame. Type
in this command and press Enter.

5

Install other tools
Type in this command next and press
Enter. It uses Homebrew to install some
tools that will be needed by Pygame Zero.

4

1

6 Install Pygame Zero
Finally, this last command will install
Pygame Zero.

Check that Python 3 is installed
Homebrew will check if Python 3 is
already installed on your Mac and will
install it if it’s not there. Even though
you’ve already installed Python, it’s
worth checking just to be sure.

3

Install a package manager
Homebrew is a package manager tool
that makes it easier to install Pygame Zero
and other Python modules. Type in the
command at right and press Enter to
install Homebrew. It might ask you to
enter your password again, and it will take
a short while to install, so don't panic if
nothing happens right away.

2

brew install sdl sdl_mixer sdl_sound sdl_ttf

pip3 install pygame

Don’t put a
space before 3.

This should fit
on one line when
you type it in.

Type this line carefully in the
Terminal window and check for any

spelling errors and extra spaces.

brew install python3

pip3 install pgzero

E X P E R T T I P S

Having trouble?
Installing these modules might be a bit tricky at first. If
you’re having trouble, you can get the most up-to-date
installation instructions on the Pygame Zero website:
https://pygame-zero.readthedocs.io

This is what the
Terminal app
thumbnail looks like.

Rabiahma – bash – 80x24

Last login: Thu Sep 14 11:22:51 on ttys000

LC-0926:~ rzvz ruby -e "$(curl -fsSL https://raw.git

 hubusercontent.com/Homebrew/install/master/install)"

I N S T A L L I N G

>_

US_018-019_Installing_pygame_zero.indd 19 22/02/18 12:24 pm

20 G E T T I N G S T A R T E D

Using IDLE
In IDLE, you can work in two different windows.
The editor window can be used to write and
save programs, while the shell window runs
Python instructions immediately.

The shell window
When you open IDLE, the shell window pops up.
This is the best place to get started because you
don’t have to create a new file first. You just type
the code directly into the shell window.

>>> print("You've unlocked a new level!")

>>> ''.join(reversed("Time to play"))

>>> 123 + 456 * (7 / 8)

E X P E R T T I P S

Different windows
To help you know which window you should
type your code in, we’ve given each window
in IDLE a different color.

Shell window

Editor window

△ Give the shell a test run
Type each of these code snippets into the shell window
and press Enter after each one. The first line displays a
message and the second line does a calculation. Can you
figure out what the third line does?

▽ Working in the shell
You can use the shell window to test out
snippets of code before you add them into
a bigger program. The code you type can
be run right away, and any messages
or “bugs” (errors) are displayed.

This line
shows the
version of
Python
you have.

You type
in code at

the >>>
prompt.

Python 3.6.2 (v3.6.2:5fd3365926, Aug 15 2017, 13:38:16)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> from turtle import *

>>> forward(200)

>>> left(90)

>>> forward(300)

>>>

Python 3.6.2 Shell

IDLE File Edit Shell Debug Window Help

The text here
will depend
on your
operating
system.

These four
lines of code
are a simple

drawing
program—try

it out for
yourself.

Look at
my pretty shell!

US_020-021_Using_Idle.indd 20 14/03/18 12:18 PM

U S I N G I D L E 21

The editor window
The shell window can’t save your code, so when you
close it, the code you typed is gone forever. When you
are working on a game, you should use IDLE’s editor
window. This will let you save your code. It also has
built-in tools to help you write your programs and
troubleshoot any errors.

▽ The editor window
To open the editor window
in IDLE, click on the File menu at
the top and choose New File.
An empty editor will then appear.
You’ll use the editor window to
write the programs for the games
in this book.

You can run Python programs from
this menu, but you will run Pygame
Zero programs a different way.

The name of the
file is shown here.

The menu bar for
the editor window is
different from the one
for the shell window.

 for count in range(10):

 if ((count % 2) == 0):

 print(count)

 print("is even")

 else:

 print(count)

 print("is odd")

EvensandOdds.py

IDLE File Edit Format Run Window Help

E X P E R T T I P S

Colors in the code
IDLE automatically colors
the text to highlight
different parts of the code.
The colors make it easier to
understand the code, and
they’re useful when you’re
trying to spot mistakes.

Text in quotation marks
Any text in quotation
marks is green. These are
called strings.

Output
Any text produced when
a program runs is blue.

Keywords
Certain words, such as if and
else, are special Python keywords.
They are shown in orange.

Built-in commands
Python commands,
such as print(), are
shown in purple.

Symbols and names
Most code text is colored
black.

Errors
Python uses red to
alert you to any errors
in your code.

Anything you tell
Python to print

gets displayed in
the shell window.

You type in the code
here. This program

prints a list that tells
you which numbers
are even and which

ones are odd.

US_020-021_Using_Idle.indd 21 22/02/18 12:24 pm

U S I N G I D L E 21

The editor window
The shell window can’t save your code, so when you
close it, the code you typed is gone forever. When you
are working on a game, you should use IDLE’s editor
window. This will let you save your code. It also has
built-in tools to help you write your programs and
troubleshoot any errors.

▽ The editor window
To open the editor window
in IDLE, click on the File menu at
the top and choose New File.
An empty editor will then appear.
You’ll use the editor window to
write the programs for the games
in this book.

You can run Python programs from
this menu, but you will run Pygame
Zero programs a different way.

The name of the
file is shown here.

The menu bar for
the editor window is
different from the one
for the shell window.

 for count in range(10):

 if ((count % 2) == 0):

 print(count)

 print("is even")

 else:

 print(count)

 print("is odd")

EvensandOdds.py

IDLE File Edit Format Run Window Help

E X P E R T T I P S

Colors in the code
IDLE automatically colors
the text to highlight
different parts of the code.
The colors make it easier to
understand the code, and
they’re useful when you’re
trying to spot mistakes.

Text in quotation marks
Any text in quotation
marks is green. These are
called strings.

Output
Any text produced when
a program runs is blue.

Keywords
Certain words, such as if and
else, are special Python keywords.
They are shown in orange.

Built-in commands
Python commands,
such as print(), are
shown in purple.

Symbols and names
Most code text is colored
black.

Errors
Python uses red to
alert you to any errors
in your code.

Anything you tell
Python to print

gets displayed in
the shell window.

You type in the code
here. This program

prints a list that tells
you which numbers
are even and which

ones are odd.

US_020-021_Using_Idle.indd 21 22/02/18 12:24 pm

22 G E T T I N G S T A R T E D

How it works
This Python program will check if everything
is set up properly so you can start building
some games. It uses Pygame Zero to display
the word “Hello” on the screen.

Draw a message
on the screen

Start

End

Your first program
After you’ve installed Python, Pygame,
and Pygame Zero, follow these steps
to write your first Python program.
This simple program will display a
message on the screen.

2

1

Start IDLE
Open IDLE on your
computer. From the
File menu, choose
New File to create an
empty editor window
where you can write
your program.

Set up a folder
Before you start, create a folder called python-games
somewhere easy to find, such as on your Desktop.
Create another folder within your python-games
folder and call it hello.

E X P E R T T I P S

Type carefully
Make sure you type all your code
exactly as it’s written in this book.
The grid will help you get it all correct.
A tiny typo in just one line of code can
cause a whole program to crash.

△ Hello flowchart
When building a game, programmers use
diagrams called flowcharts to plan their game
and show how it works. Each step is shown in
a box, with an arrow leading to the next step.
More complicated games might have steps
with questions and more than one arrow
leading to different boxes, depending on the
answer to the question.

Hello!

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

python-games
hello

Desktop

US_022-023_Your_first_Program_1.indd 22 22/02/18 12:24 pm

23Y O U R F I R S T P R O G R A M

Save the file
Now let‘s save the file. Go to the File menu and
choose Save As.... Name the file hello.py
and save it in the folder you created earlier.

Type the first line of code
Write this first line of code that tells Python
to show, or “draw,” something on the
screen. Press Enter when you’re done.

Type the second line of code
Then type in this second line of code. Check
that it starts with four spaces. This is called
an “indent,” and your code won’t work
without it!

E X P E R T T I P S

E X P E R T T I P S

Saving your code
Always save your code before you run it,
especially after you make any changes.
If you don’t, Python will run an out-of-date
version of your code.

Indents
There should be four blank spaces at the
start of the second line of your code. This
is called an “indent.” Python uses them to
separate different blocks of code. Spaces
and indents are very important—your code
will not work if you miss them or put them
in the wrong place. They’re one of the most
common bugs in Python programs!

Save As:

hello

Cancel Save

hello.py

Tags:

Where:

This line of code is used
to print something on
the screen.

Add four blank spaces
here if IDLE hasn’t
done it automatically.

Make sure you
have two closing

parentheses here.

5

3

4

When you save a program,
IDLE adds “.py” to the end
automatically, so you don‘t
have to type it in.

Here we go!

Hey, grab on!
I’ll save you!

 def draw():

 def draw():

 screen.draw.text("Hello", topleft=(10, 10))

US_022-023_Your_first_Program_1.indd 23 22/02/18 12:24 pm

23Y O U R F I R S T P R O G R A M

Save the file
Now let‘s save the file. Go to the File menu and
choose Save As.... Name the file hello.py
and save it in the folder you created earlier.

Type the first line of code
Write this first line of code that tells Python
to show, or “draw,” something on the
screen. Press Enter when you’re done.

Type the second line of code
Then type in this second line of code. Check
that it starts with four spaces. This is called
an “indent,” and your code won’t work
without it!

E X P E R T T I P S

E X P E R T T I P S

Saving your code
Always save your code before you run it,
especially after you make any changes.
If you don’t, Python will run an out-of-date
version of your code.

Indents
There should be four blank spaces at the
start of the second line of your code. This
is called an “indent.” Python uses them to
separate different blocks of code. Spaces
and indents are very important—your code
will not work if you miss them or put them
in the wrong place. They’re one of the most
common bugs in Python programs!

Save As:

hello

Cancel Save

hello.py

Tags:

Where:

This line of code is used
to print something on
the screen.

Add four blank spaces
here if IDLE hasn’t
done it automatically.

Make sure you
have two closing

parentheses here.

5

3

4

When you save a program,
IDLE adds “.py” to the end
automatically, so you don‘t
have to type it in.

Here we go!

Hey, grab on!
I’ll save you!

 def draw():

 def draw():

 screen.draw.text("Hello", topleft=(10, 10))

US_022-023_Your_first_Program_1.indd 23 22/02/18 12:24 pm

24 G E T T I N G S T A R T E D

7

Open Command Prompt or Terminal window
To run the program, you can use the command line.
If you’re using a Windows computer, this is in the
Command Prompt app. If you’re on a Mac, open
the Terminal app.

Drag and drop the IDLE file
Keep the app open, and using Explorer (Windows) or
Finder (Mac), go to the folder where you saved your
program. Once you find it, drag and drop the .py file
into the command line.

Type in the Pygame Zero command
To tell Pygame Zero to run the game, type
pgzrun into the command line and leave
a space, but don’t press Enter yet!

Run the program
Now that you’ve typed in the pgzrun command
and your computer knows where to find the IDLE
file, press Enter. This will launch Pygame Zero.

9 Final screen
If your program is working correctly, you’ll see
a window with a “Hello” message written in the
top-left corner of the screen. Good job! Now
it’s time to become a Python games coder!

10

Don’t forget to leave
a space after pgzrun.

The location of your
IDLE file will appear here
when you drop it in.

Drag and drop hello.py
into the Command Prompt
or Terminal window.

6

8

Sanjay – bash – 80x24

Sanjay – bash – 80x24

Last login: Sun Sep 3 17:18:36 on ttys000

LC-0797:~ sanjay$ pgzrun

Last login: Sun Sep 3 17:18:36 on ttys000

LC-0797:~ sanjay$ pgzrun User/Documents/python-games/hello.py

Running your program
Because your games use Pygame Zero,
you usually have to run them in a different
way from normal Python programs. It isn’t
difficult once you get used to it, however.

This is what the icon
for Command Prompt
looks like.

This is what the icon
for the Terminal
window looks like.

Name

hello

python-games

hello.py

c:\ >_

US_024-025_Your_first_Program_2.indd 24 14/03/18 4:29 PM

import pgzrun

def draw():

 screen.draw.text("Hello", topleft=(10, 10))

pgzrun.go()

25Y O U R F I R S T P R O G R A M

Type import pgzrun at the very top of your program and
pgzrun.go() at the very end. The entire code for your game
should now sit between these two lines.

To run the game in IDLE go to the
Run menu and click Run Module,
or just press the F5 key.

I M P O R T A N T !

Fix mistakes
If nothing happens when you run one of your programs, or if you
get an error message—don’t panic! It’s normal to experience
errors (these are called “bugs”) when coding a program. If an error
message appears, ask yourself the following questions:

 ▪ Does the code match the given example exactly?
 ▪ Have I saved the program in the right folder?
 ▪ Have I typed pgzrun correctly?
 ▪ Are Pygame and Pygame Zero installed correctly?

Running your program using IDLE
It’s possible to run your Pygame Zero programs using IDLE. To do
this you need to add two extra lines to your code. It’s a good idea to
wait until you have finish writing your program before doing this.

E X P E R T T I P S

Rerunning programs
When you’re building a program, you need to run the code
frequently to check for bugs. To save time, you can press the
Up arrow key in Command Prompt or Terminal to see your
recent commands. You can then press Enter to run one of
them again. If your game is still running, you need to close it
before rerunning your code. If you don’t, nothing will happen!

I think there’s some bug
spray on pages 44–47!

This should now be the
last line of your program.

This should now be the
first line of your program.

21

Run

 Python Shell

 Check Module

 Run Module... F5

US_024-025_Your_first_Program_2_new.indd 25 20/03/18 2:34 PM

import pgzrun

def draw():

 screen.draw.text("Hello", topleft=(10, 10))

pgzrun.go()

25Y O U R F I R S T P R O G R A M

Type import pgzrun at the very top of your program and
pgzrun.go() at the very end. The entire code for your game
should now sit between these two lines.

To run the game in IDLE go to the
Run menu and click Run Module,
or just press the F5 key.

I M P O R T A N T !

Fix mistakes
If nothing happens when you run one of your programs, or if you
get an error message—don’t panic! It’s normal to experience
errors (these are called “bugs”) when coding a program. If an error
message appears, ask yourself the following questions:

 ▪ Does the code match the given example exactly?
 ▪ Have I saved the program in the right folder?
 ▪ Have I typed pgzrun correctly?
 ▪ Are Pygame and Pygame Zero installed correctly?

Running your program using IDLE
It’s possible to run your Pygame Zero programs using IDLE. To do
this you need to add two extra lines to your code. It’s a good idea to
wait until you have finish writing your program before doing this.

E X P E R T T I P S

Rerunning programs
When you’re building a program, you need to run the code
frequently to check for bugs. To save time, you can press the
Up arrow key in Command Prompt or Terminal to see your
recent commands. You can then press Enter to run one of
them again. If your game is still running, you need to close it
before rerunning your code. If you don’t, nothing will happen!

I think there’s some bug
spray on pages 44–47!

This should now be the
last line of your program.

This should now be the
first line of your program.

21

Run

 Python Shell

 Check Module

 Run Module... F5

US_024-025_Your_first_Program_2_new.indd 25 20/03/18 2:34 PM

US_026-027_Chapter_opener_2.indd 26 22/02/18 1:40 pm

Learning
the basics

Y T H O NP

US_026-027_Chapter_opener_2.indd 27 22/02/18 1:40 pm

Learning
the basics

Y T H O NP

US_026-027_Chapter_opener_2.indd 27 22/02/18 1:40 pm

28 L E A R N I N G T H E B A S I C S

Creating variables
Variables are used to store and label pieces
of information. You’ll use them a lot in your
code—for example, to hold your current score
or keep track of how many lives you have left.

How to create a variable
You need to give each variable a name that describes
what data is stored inside it. What the variable stores is
called its value. Type the name followed by an equals
sign, then type the value, with a space between each
part. This is called “assigning a value” to the variable.

This is the
variable’s name.

This is the value
stored in the variable.

1 Assign a value
Open IDLE’s shell window. Type this line
of code to create a variable called score
and assign a value to it.

Print the value
Now type print(score) into the window after
the code you typed in Step 1. Press Enter to
see what happens.

2

E X P E R T T I P S

Naming variables
Always choose a meaningful name
for each variable in your programs.
For example, a variable for tracking the
number of attempts a player has left
could be called attempts_remaining,
rather than just attempts or a. Variable
names can contain letters, numbers, and
underscores, but they should always start
with a letter. Follow these rules and you
won’t go wrong.

Dos and don’ts
 ▪ Always start the variable’s name with a letter.
 ▪ Any letter or number can be used in the name.
 ▪ Symbols such as -, /, #, @ aren’t allowed.
 ▪ Do not use spaces. An underscore (_) can be used instead.
 ▪ Uppercase (capital) and lowercase letters are different.

 Python will treat Score and score as two different variables.
 ▪ Avoid words that are used in Python or Pygame Zero as

 commands, such as “function” or “screen.”

This is the
value of score.

The print() function displays the value
of the variable in the parentheses.

25

>>> score = 0

>>> score = 0

>>> print(score)

0

△ Storage box
A variable is like a box with a name label.
You can store data in the box and then use
its name to find the data again when you
need to use it.

US_028-029_Variables_1.indd 28 22/02/18 12:24 pm

29C R E A T I N G V A R I A B L E S

Using numbers
Variables can be used to store numbers,
which can then be used in calculations. You
can use them with symbols, just like you do
in math. Be careful with multiplication and
division, though, because they use different
symbols from the ones you use at school.

1 A simple calculation
Type this code into the shell window. It
uses two variables, x and y, which store
integers to perform a simple calculation.
Press Enter to see the answer.

2 Change a value
To change the value of a variable, just assign a
new value to it. In this code, assign the value 5
to x. Print the value assigned to y again. What
do you think the result will be?

* =
L I N G O

Integers and floats
In coding, different types of numbers can be
stored in variables. Whole numbers are called
“integers,” and numbers with a decimal point
in them are called “floats.” Integers are usually
used to count things, like a player’s score,
whereas floats are usually used for
measurements, such as temperature.

1 sheep
(an integer)

0.5 sheep
(a float)

Update the value
The value of y needs to be updated to
get the correct result. To do this, you need
to run the y = x * 3 calculation again. Now
the code assigns the new value to y after x
has been changed.

3

Create a new variable, x,
and assign the value 2 to it.

The result of
the calculation.

Multiply x by 3 and assign the
result to another variable, y.

Print the value
assigned to y.

Change the
value of x.

The result hasn’t changed—
next we’ll find out why.

>>> x = 2

>>> y = x * 3

>>> print(y)

6

>>> x = 5

>>> print(y)

6

Symbol

+

–

*

/

add

subtract

multiply

divide

Meaning

You need to redo the
calculation to update
the value of y.

>>> x = 5

>>> y = x * 3

>>> print(y)

15

US_028-029_Variables_1.indd 29 22/02/18 12:24 pm

29C R E A T I N G V A R I A B L E S

Using numbers
Variables can be used to store numbers,
which can then be used in calculations. You
can use them with symbols, just like you do
in math. Be careful with multiplication and
division, though, because they use different
symbols from the ones you use at school.

1 A simple calculation
Type this code into the shell window. It
uses two variables, x and y, which store
integers to perform a simple calculation.
Press Enter to see the answer.

2 Change a value
To change the value of a variable, just assign a
new value to it. In this code, assign the value 5
to x. Print the value assigned to y again. What
do you think the result will be?

* =
L I N G O

Integers and floats
In coding, different types of numbers can be
stored in variables. Whole numbers are called
“integers,” and numbers with a decimal point
in them are called “floats.” Integers are usually
used to count things, like a player’s score,
whereas floats are usually used for
measurements, such as temperature.

1 sheep
(an integer)

0.5 sheep
(a float)

Update the value
The value of y needs to be updated to
get the correct result. To do this, you need
to run the y = x * 3 calculation again. Now
the code assigns the new value to y after x
has been changed.

3

Create a new variable, x,
and assign the value 2 to it.

The result of
the calculation.

Multiply x by 3 and assign the
result to another variable, y.

Print the value
assigned to y.

Change the
value of x.

The result hasn’t changed—
next we’ll find out why.

>>> x = 2

>>> y = x * 3

>>> print(y)

6

>>> x = 5

>>> print(y)

6

Symbol

+

–

*

/

add

subtract

multiply

divide

Meaning

You need to redo the
calculation to update
the value of y.

>>> x = 5

>>> y = x * 3

>>> print(y)

15

US_028-029_Variables_1.indd 29 22/02/18 12:24 pm

30 L E A R N I N G T H E B A S I C S

Working with strings
A string is any data made up of a sequence of letters
or other characters. Words and sentences are stored
as strings. In Python, most programs use at least
one string. Any character that you can type on
your keyboard can be stored in a string. Y T H O NP

E X P E R T T I P S

Length of a string
For some programs, it’s useful to be able to count
the number of characters in a string. You can do
this using the function len(). A function is a useful
operation that contains multiple lines of code,
so you don’t have to enter them manually. To
find out the number of characters in the string
Hello Martin, type this line of code into the shell
after you’ve created the string, then hit Enter.

What’s the weather
like up there?

Strings in variables
Strings can be assigned to variables. Type this code
into the shell window. It assigns the string Martin
to the name variable and then displays it. Strings
must be written between quotation marks to show
where they start and end.

1 Quotation marks
tell the computer
that it’s a string.

Press Enter to
print the string. Remember the space

after the greeting.

The + symbol can
be used to join
strings together.

Joining strings together
Variables can be combined to create new ones.
For example, you can add two strings and store the
combination in a new variable. Type this code into
the shell window to try this out. You can change the
greeting and the name to make a new message.

2

Remember the quotation
marks, and leave a space

after Hello.

message is a new variable
that contains the greeting
and name variables.

The number
of characters,
including spaces,
is counted.

>>> name = "Martin"

>>> print(name)

Martin

>>> len(message)

12

>>> greeting = "Hello "

>>> name = "Martin"

>>> message = greeting + name

>>> print(message)

Hello Martin

!

US_030-031_Variables_2.indd 30 23/02/18 2:31 pm

31C R E A T I N G V A R I A B L E S

Making lists
A list is used to store a collection of data. It can
hold many different values and keep them in order.
For example, a list can store a deck of cards for a
game, such as Snap, so the code knows which card
to deal next. The position of each value in the list
is identified with a number, starting from 0. You
can use these numbers to change list values.

Getting items from a list
It’s easy to work with a list once you have
all your values in it. To get an item from a
list, type the name of the list, followed by
the item’s position in the list within square
parentheses. But watch out—in Python, the
first position in a list is 0, not 1. Now try
getting different cards out of your cards list.

3

List in a variable
It would be much easier to use a list to store all the
values of the cards instead of setting up so many
variables individually. To create a list, surround the
values you want to store with square brackets.

2

There’s no
need to type
this code out.

More than one variable
Imagine you’re coding a multiplayer game
and want to have a different variable for
each card. You would need 52 variables to
store a whole deck of cards, but we’ll just
work with six for now.

1 >>> card1 = "1 hearts"

>>> card2 = "2 hearts"

>>> card3 = "3 hearts"

>>> card4 = "4 hearts"

>>> card5 = "5 hearts"

>>> card6 = "6 hearts"

The values must be
separated by commas.

This line gets the first
value in the list.

This is the last
value in our list.

For our small list, the last
position is 5, but for the entire
cards list it would be 51.

>>> cards[0]

>>> "1 hearts"

>>> cards[5]

>>> "6 hearts"

>>> cards = ["1 hearts", "2 hearts", "3 hearts", "4 hearts", "5 hearts", "6 hearts"]

The list is assigned to
the variable cards.

US_030-031_Variables_2.indd 31 22/02/18 12:24 pm

31C R E A T I N G V A R I A B L E S

Making lists
A list is used to store a collection of data. It can
hold many different values and keep them in order.
For example, a list can store a deck of cards for a
game, such as Snap, so the code knows which card
to deal next. The position of each value in the list
is identified with a number, starting from 0. You
can use these numbers to change list values.

Getting items from a list
It’s easy to work with a list once you have
all your values in it. To get an item from a
list, type the name of the list, followed by
the item’s position in the list within square
parentheses. But watch out—in Python, the
first position in a list is 0, not 1. Now try
getting different cards out of your cards list.

3

List in a variable
It would be much easier to use a list to store all the
values of the cards instead of setting up so many
variables individually. To create a list, surround the
values you want to store with square brackets.

2

There’s no
need to type
this code out.

More than one variable
Imagine you’re coding a multiplayer game
and want to have a different variable for
each card. You would need 52 variables to
store a whole deck of cards, but we’ll just
work with six for now.

1 >>> card1 = "1 hearts"

>>> card2 = "2 hearts"

>>> card3 = "3 hearts"

>>> card4 = "4 hearts"

>>> card5 = "5 hearts"

>>> card6 = "6 hearts"

The values must be
separated by commas.

This line gets the first
value in the list.

This is the last
value in our list.

For our small list, the last
position is 5, but for the entire
cards list it would be 51.

>>> cards[0]

>>> "1 hearts"

>>> cards[5]

>>> "6 hearts"

>>> cards = ["1 hearts", "2 hearts", "3 hearts", "4 hearts", "5 hearts", "6 hearts"]

The list is assigned to
the variable cards.

US_030-031_Variables_2.indd 31 22/02/18 12:24 pm

L E A R N I N G T H E B A S I C S32

Making decisions
Playing a game involves making decisions
about what to do next. These are often
based on answers to questions. For
example, “Do I have any lives left?”; “Is
someone chasing me?”; “Have I beaten
the highest score?”

Comparisons
Computers also make decisions about what to
do next by asking questions. These questions
usually involve comparing two values. For
instance, is one number bigger than the other?
If it is, the computer might skip a block of code
that it would otherwise have run.

△ Boolean values
The questions that computers ask only
have two possible answers: True or False.
Python calls these two values Boolean
values, and they must always start with
a capital letter. You can store a Boolean
value in a variable.

△ Logical operators
The symbols and words shown here are
called “logical operators,” and they help
computers make comparisons in order
to ask questions.

>>> answer_one = True

>>> answer_two = False Boolean value

Variable

This compares your
age with the variable.

The code prints the
message if the two match.

This sets the
value of

the variable.

E X P E R T T I P S

Equals signs
In Python, there are two types of equals sign: a single equals
sign = and a double equals sign ==. These signs have different
meanings. You use a single equals sign when you want to store
a value in a variable. For example, lives = 10 stores the value
10 in the variable lives. However, use a double equals sign
when you want to compare two values.

Which door should
we go through?

>>> age = 10

>>> if age == 10:

 print("You are ten years old.")

Meaning

equal to

greater than

less than

not equal to

==

!=

<

>

Symbol

US_032-033_Making_Decisions_1.indd 32 23/02/18 2:31 pm

M A K I N G D E C I S I O N S 33

>>> monsters = 3

>>> coins = 4

>>> coins > monsters

True

>>> coins > monsters

True

>>> monsters < coins

True

>>> monsters == coins

False

>>> (monsters == 3) and (coins == 4)

True

>>> (monsters == 7) or (coins == 4)

True

Monsters and coins
Let’s try an example in the shell window. You
can use the variables monsters and coins
to represent three monsters and four coins,
respectively. Type in the following code.

This variable
stores the
number of coins.

This expression is
True because the
number of coins is
greater than the
number of monsters.

This expression
is True because
the number of
monsters is less
than the number
of coins.

This expression
is False because
the number of
monsters and the
number of coins
aren’t equal.

When using and, both
the comparisons need
to be correct for the
Boolean value to be True.

coins is a variable.

> is a logical
operator.

monsters is a
variable.

True is a
Boolean value.

When using or, only
one of the comparisons

needs to be correct for the
Boolean value to be True.

This value is stored
in the variable
monsters.

▽ Let’s compare
Now type the following lines of code to compare
the values in the two variables. After typing each
line, press Enter and Python will tell you if the
statements are True or False.

▽ Multiple comparisons
In Python, you can also combine more than
one comparison by using the logical operators
and and or.

L I N G O

Boolean expressions
Statements that contain variables and values
and use logical operators always give you a
Boolean value—True or False. Because of this,
these statements are called Boolean expressions.
All of the statements about monsters and coins
in the examples are Boolean expressions.

US_032-033_Making_Decisions_1.indd 33 22/02/18 12:24 pm

M A K I N G D E C I S I O N S 33

>>> monsters = 3

>>> coins = 4

>>> coins > monsters

True

>>> coins > monsters

True

>>> monsters < coins

True

>>> monsters == coins

False

>>> (monsters == 3) and (coins == 4)

True

>>> (monsters == 7) or (coins == 4)

True

Monsters and coins
Let’s try an example in the shell window. You
can use the variables monsters and coins
to represent three monsters and four coins,
respectively. Type in the following code.

This variable
stores the
number of coins.

This expression is
True because the
number of coins is
greater than the
number of monsters.

This expression
is True because
the number of
monsters is less
than the number
of coins.

This expression
is False because
the number of
monsters and the
number of coins
aren’t equal.

When using and, both
the comparisons need
to be correct for the
Boolean value to be True.

coins is a variable.

> is a logical
operator.

monsters is a
variable.

True is a
Boolean value.

When using or, only
one of the comparisons

needs to be correct for the
Boolean value to be True.

This value is stored
in the variable
monsters.

▽ Let’s compare
Now type the following lines of code to compare
the values in the two variables. After typing each
line, press Enter and Python will tell you if the
statements are True or False.

▽ Multiple comparisons
In Python, you can also combine more than
one comparison by using the logical operators
and and or.

L I N G O

Boolean expressions
Statements that contain variables and values
and use logical operators always give you a
Boolean value—True or False. Because of this,
these statements are called Boolean expressions.
All of the statements about monsters and coins
in the examples are Boolean expressions.

US_032-033_Making_Decisions_1.indd 33 22/02/18 12:24 pm

L E A R N I N G T H E B A S I C S34

>>> score = 110

>>> snails = 3

>>> (score > 100) and (snails >= 4)

False

◁ Eye on the ball
Imagine you’re playing a soccer game and you need to
decide which way to aim the ball at the goal. You could
ask yourself, “Is the goalkeeper near the left side of the
goal?” If he is, you aim at the right side of the goal. If
he isn’t, you aim left. In Python, the different routes
through a program lead to different blocks of code. The
computer uses a Boolean expression, or a condition, to
decide which blocks to run.

Store values
in variables.

This is a Boolean expression
meaning “score greater

than 100 and snails more
than or equal to 4.”

This shows you cannot
progress to Level 2 yet.

Branching
Sometimes you need to make decisions when
playing a game. Should you turn right to
investigate the library or turn left to look at
the kitchen? Computer programs often contain
code that runs only in certain situations. This
means the computer makes decisions about
which parts of the code to run.

Level up
Imagine you’re creating a game that has two levels. To get
to Level 2, you need to have at least four magic snails and
a score of more than 100 points. At this point, you have
110 points but only three magic snails. Use the shell
window to see if you can still get to Level 2. First, create
variables for the score and number of snails collected and
assign the correct values to them. Then type the rules for
getting to Level 2 as a Boolean expression.

L2
L1

US_034-035_Making_Decisions_2.indd 34 14/03/18 12:18 PM

M A K I N G D E C I S I O N S 35

ghosts = 3

if ghosts > 1:

 print("It’s so spoooooky!")

elif ghosts > 0:

 print("Get that ghost!")

else:

 print("Ghosts all gone!")

▽ One branch
The simplest type of branching command is an if
statement. It only has one branch, which the computer
takes if the condition is True.

▽ Two branches
What if you want the program to do one thing if a
condition is True, but another if it’s False? In this case,
you need a command with two possible branches,
called an if-else statement.

◁ More than two branches
When there are more than two possible paths, the
command elif (short for “else-if”) can be used in
your program. In the following example, you need
to capture several ghosts in one go.

How it works
In this example, the program checks to see the number
of spells you’ve cast. If it’s more than ten, the program
prints “You gained the title Enchanter!” If the number
of spells you’ve cast is less than ten, the message
is not printed.

How it works
In this example, there’s a variable
called game_over, which is set to
True. The if statement checks to
see if game_over is True. If it is, the
program prints “Game Over!” If it
isn’t, the else statement runs to
print “Keep playing!” Try running this
code with game_over set to True,
then False, to see this in action.

How it works
In this program, the variable ghosts has been set
to 3, so the first branch is True and the program
prints “It’s so spoooooky!” But if the value in ghosts
was 1, the first branch would be False, so the
second branch would run, printing “Get that ghost!”
If neither of the above branches are True, the
program moves on to the third branch to print
“Ghosts all gone!” An elif statement must always
come after if and before else.

This block runs
if the second
condition is True. This block runs if

both conditions
are False.

This branch runs if
the condition is True.

spells = 11

if (spells > 10):

 print("You gained the title Enchanter!")

Behold! I grant
thee the title...

Enchanter!

GAME
OVER!

This is the first condition.

This comparison
is the condition.

game_over = True

if game_over:

 print("Game Over!")

else:

 print("Keep playing!")

This block runs
if the condition
is False.

US_034-035_Making_Decisions_2.indd 35 14/03/18 12:18 PM

M A K I N G D E C I S I O N S 35

ghosts = 3

if ghosts > 1:

 print("It’s so spoooooky!")

elif ghosts > 0:

 print("Get that ghost!")

else:

 print("Ghosts all gone!")

▽ One branch
The simplest type of branching command is an if
statement. It only has one branch, which the computer
takes if the condition is True.

▽ Two branches
What if you want the program to do one thing if a
condition is True, but another if it’s False? In this case,
you need a command with two possible branches,
called an if-else statement.

◁ More than two branches
When there are more than two possible paths, the
command elif (short for “else-if”) can be used in
your program. In the following example, you need
to capture several ghosts in one go.

How it works
In this example, the program checks to see the number
of spells you’ve cast. If it’s more than ten, the program
prints “You gained the title Enchanter!” If the number
of spells you’ve cast is less than ten, the message
is not printed.

How it works
In this example, there’s a variable
called game_over, which is set to
True. The if statement checks to
see if game_over is True. If it is, the
program prints “Game Over!” If it
isn’t, the else statement runs to
print “Keep playing!” Try running this
code with game_over set to True,
then False, to see this in action.

How it works
In this program, the variable ghosts has been set
to 3, so the first branch is True and the program
prints “It’s so spoooooky!” But if the value in ghosts
was 1, the first branch would be False, so the
second branch would run, printing “Get that ghost!”
If neither of the above branches are True, the
program moves on to the third branch to print
“Ghosts all gone!” An elif statement must always
come after if and before else.

This block runs
if the second
condition is True. This block runs if

both conditions
are False.

This branch runs if
the condition is True.

spells = 11

if (spells > 10):

 print("You gained the title Enchanter!")

Behold! I grant
thee the title...

Enchanter!

GAME
OVER!

This is the first condition.

This comparison
is the condition.

game_over = True

if game_over:

 print("Game Over!")

else:

 print("Keep playing!")

This block runs
if the condition
is False.

US_034-035_Making_Decisions_2.indd 35 14/03/18 12:18 PM

36 L E A R N I N G T H E B A S I C S

Playing with loops
When you’re coding a game, you often need
to run the same bit of code several times,
but it would be pretty boring if you had to
type it in every single time. Luckily, you can
use a loop to run the same block of code
over and over again. There are many
different types of loops.

Range
In Python, the word range followed
by two numbers in parentheses stands
for “all the numbers in the list from the
first number to the second-to-the-last
number.” Therefore, range(1, 5)
contains the numbers 1, 2, 3, and 4,
but not 5, so the loop runs four times.

E X P E R T T I P S

“For” loops
When you know exactly how many times you
want a loop to repeat, you can use a for loop. In
this example, the code prints “You are the high
scorer!” ten times. Try out the code for yourself
in the shell window.

This is the
loop variable.

The code that gets
repeated is known
as the “loop body.”

Loop variable
The loop variable keeps track of how many
times the loop has run so far. At the start of the
loop, it’s equal to the first number in the range.
The second time around, it’s equal to the
second number in the range, and so on. Once
it completes the second-to-last number in the
range, the loop stops.

Loop body
The block of code that gets repeated in a loop is
called the loop body. You must always indent the
commands in the body four spaces from the
beginning of the line that starts the for loop.

How are you
doing that?

>>> for count in range(1, 11):

 print("You are the high scorer!")

Just three more laps.
I mean loops!

US_036-037_Loopy_Loops_1.indd 36 22/02/18 12:24 pm

37

>>> robots = ["Bing", "Bleep", "Bloop"]

>>> colors = ["red", "orange", "purple"]

>>> index = 0

>>> for each in robots:

 print("My name is " + robots[index] + ". I am " + colors[index])

 index = index + 1

P L A Y I N G W I T H L O O P S

Looping over a list
Gaming programs often use a collection
of items grouped together in a list. If you
want to do something with each item
on the list, you can use a for loop.

Looping over two lists
Python can loop through a list from start to finish more
or less automatically. But if you want to loop through
two lists at once, you need to use an extra variable to
tell Python to move through both lists.

How it works
We create a temporary variable called
robot that holds a single item in the
list. The value in robot is updated
each time around the loop, so that it
holds Bing, then Bleep, and finally
Bloop. Once it reaches the end of the
list, the loop stops.

The index variable
keeps track of the
position each list is at.

index will help Python
move through both

lists in order.

This line updates
index so Python

moves through the
lists with each loop.

Robots with colors
In this example, we have two lists. One is called robots and
holds the names of the robots. The other is called colors and
tells you the color of each robot. This program uses a variable
called index to move through both lists, printing out each
robot’s name and also what color it is.

Page 31 will
help you out

with lists.

Listing robots
In this example, there is a list that contains
the names of three robots that the player
has to escape from in a game.

robot is a temporary variable
that moves along the robots
list each time the loop runs.

Python will add
one of the robots’
names here.

>>> robots = ["Bing", "Bleep", "Bloop"]

>>> for robot in robots:

 print("I am a robot. My name is " + robot)

US_036-037_Loopy_Loops_1.indd 37 22/02/18 12:24 pm

37

>>> robots = ["Bing", "Bleep", "Bloop"]

>>> colors = ["red", "orange", "purple"]

>>> index = 0

>>> for each in robots:

 print("My name is " + robots[index] + ". I am " + colors[index])

 index = index + 1

P L A Y I N G W I T H L O O P S

Looping over a list
Gaming programs often use a collection
of items grouped together in a list. If you
want to do something with each item
on the list, you can use a for loop.

Looping over two lists
Python can loop through a list from start to finish more
or less automatically. But if you want to loop through
two lists at once, you need to use an extra variable to
tell Python to move through both lists.

How it works
We create a temporary variable called
robot that holds a single item in the
list. The value in robot is updated
each time around the loop, so that it
holds Bing, then Bleep, and finally
Bloop. Once it reaches the end of the
list, the loop stops.

The index variable
keeps track of the
position each list is at.

index will help Python
move through both

lists in order.

This line updates
index so Python

moves through the
lists with each loop.

Robots with colors
In this example, we have two lists. One is called robots and
holds the names of the robots. The other is called colors and
tells you the color of each robot. This program uses a variable
called index to move through both lists, printing out each
robot’s name and also what color it is.

Page 31 will
help you out

with lists.

Listing robots
In this example, there is a list that contains
the names of three robots that the player
has to escape from in a game.

robot is a temporary variable
that moves along the robots
list each time the loop runs.

Python will add
one of the robots’
names here.

>>> robots = ["Bing", "Bleep", "Bloop"]

>>> for robot in robots:

 print("I am a robot. My name is " + robot)

US_036-037_Loopy_Loops_1.indd 37 22/02/18 12:24 pm

38 L E A R N I N G T H E B A S I C S

How it works
robots[index] and colors[index] both use the value
of index to decide which item in their list to print.
Since index is set to 0 to begin with, both lists will
start with the first item—remember the first position
in Python lists is always 0, not 1. Since Bing is at
position 0 of the list robots and red is at position 0
of the list colors, that means Bing is red. Each time
the loop runs, it adds 1 to index, moving each list
onto the next item, so Bleep will be orange and
Bloop will be purple. The loop will continue until
it reaches the end of the lists.

Indentation error
Just like the for loop, the code in
the body of a while loop must be
four spaces further in than the line
starting the loop. If you don’t do this,
Python will show an error message
saying “unexpected indent.”

SyntaxError

OK

unexpected indent

Nobody enters without
the magic key!

Loop condition
A while loop includes a question whose answer can either
be True or False. This is called a loop condition. The while
loop will only start if the answer to the loop condition is
True. Imagine you are playing a game where a castle is
guarded by a dragon that checks if you have the magic
key. “Do you have the magic key?” would be the loop
condition and the castle would be the loop body. If you
have the magic key, the loop condition is True and you
can enter the castle. But if you don’t have the key, the
loop condition is False, so you can’t get into the loop!

“While” loops
Sometimes, while coding a program, you
might not know exactly how many times
you want a loop to repeat. Don’t worry! In
this case, you can use a while loop.

Dude, when are
we supposed

to stop?

E X P E R T T I P S

US_038-039_Loopy_Loops_2.indd 38 22/02/18 12:24 pm

39P L A Y I N G W I T H L O O P S

How it works
The loop condition here is answer == "y", which means
you want to throw a water balloon. The loop body prints
“Splash!!!” to show a balloon being thrown and asks if
you want to throw another. If your answer is y, the loop
condition is True again and the loop is repeated. If your
answer is n (or anything other than y), the loop condition
is False and the program exits the loop and prints
“Goodbye!” before ending.

Infinite loops
Sometimes, you might want a loop
to repeat as long as the program is
running. This can be done with an
infinite loop. You can make an infinite
loop by setting the loop condition
to True, so that it keeps repeating
a block of code forever!

Making an escape
If you don’t want to run an infinite loop,
it’s important to make sure the body of a
while loop does something that could make
the loop condition False. But don’t worry if
you accidentally code a program with an
infinite loop—you can escape it by holding
down the Ctrl key and pressing the C key
along with it.

There is no False
option to escape
the loop.

This line gets the new
value of answer (used
in loop condition).

This line gets the value of
answer (used in loop condition).

When the loop is complete,
this line prints “Goodbye!”

Balloon fight
In this example, the
program asks if you want
to throw a water balloon.
If your answer is y, it prints
“Splash!!!” and asks if you
want to throw another
balloon. If your answer
is n, the program prints
“Goodbye!” and ends.

It’s really wet
in here!

They got
away!

answer = input("Throw a water balloon? (y/n)")

 while answer == "y":

 print("Splash!!!")

 answer = input("Throw another water balloon? (y/n)")

print("Goodbye!")

>>> while True:

 print("This is an infinite loop!")

US_038-039_Loopy_Loops_2.indd 39 22/02/18 12:24 pm

39P L A Y I N G W I T H L O O P S

How it works
The loop condition here is answer == "y", which means
you want to throw a water balloon. The loop body prints
“Splash!!!” to show a balloon being thrown and asks if
you want to throw another. If your answer is y, the loop
condition is True again and the loop is repeated. If your
answer is n (or anything other than y), the loop condition
is False and the program exits the loop and prints
“Goodbye!” before ending.

Infinite loops
Sometimes, you might want a loop
to repeat as long as the program is
running. This can be done with an
infinite loop. You can make an infinite
loop by setting the loop condition
to True, so that it keeps repeating
a block of code forever!

Making an escape
If you don’t want to run an infinite loop,
it’s important to make sure the body of a
while loop does something that could make
the loop condition False. But don’t worry if
you accidentally code a program with an
infinite loop—you can escape it by holding
down the Ctrl key and pressing the C key
along with it.

There is no False
option to escape
the loop.

This line gets the new
value of answer (used
in loop condition).

This line gets the value of
answer (used in loop condition).

When the loop is complete,
this line prints “Goodbye!”

Balloon fight
In this example, the
program asks if you want
to throw a water balloon.
If your answer is y, it prints
“Splash!!!” and asks if you
want to throw another
balloon. If your answer
is n, the program prints
“Goodbye!” and ends.

It’s really wet
in here!

They got
away!

answer = input("Throw a water balloon? (y/n)")

 while answer == "y":

 print("Splash!!!")

 answer = input("Throw another water balloon? (y/n)")

print("Goodbye!")

>>> while True:

 print("This is an infinite loop!")

US_038-039_Loopy_Loops_2.indd 39 22/02/18 12:24 pm

40 L E A R N I N G T H E B A S I C S

Functions
Functions are really handy tools for all coders.
They let you name useful chunks of code so
that you can use them over and over again
without having to type the whole thing out
each time—you just have to type in the name!
Python comes with some built-in functions,
but you can also write your own to handle
tasks specific to your games.

Using functions
When you want to use one of Python’s built-in functions,
all you need to do is “call” it by typing out its name
followed by a pair of empty parentheses. This tells Python
to run the code saved in that function. If you need to
give a function some data to use, it goes inside the
parentheses. This is called a “parameter.”

Built-in functions
Python comes with a number of built-in functions.
They allow you to perform a variety of tasks, from
printing messages to converting one type of data
to another.

The string parameter
is printed.

>>> print("This is a parameter")

This is a parameter

This calls the print() function
with a string parameter.

△ print()
One of the most commonly used functions is print().
This function lets you display a string (a series of
letters, numbers, or other characters) on the screen.
The string is a parameter in this case.

L I N G O

Function terms
Call When you want to use a
function, you “call” it by typing
the name of the function,
followed by parentheses, which
may contain a parameter.

Define When you use the
def keyword and write your
own code for a function, you
are “defining” that function.

Parameter A parameter is
a piece of data (information)
that you give a function to use.

Return value A return value
is data that you pass from a
function back to the main code
by using the keyword return.

I need to build this
very carefully!

US_040-041_Functions_1.indd 40 22/02/18 12:24 pm

41F U N C T I O N S

▷ input()
This function lets the player enter information for the
game to use, rather than the coder putting it in the
original code. For example, imagine you’re creating
a game and you want to create a variable to store
the player’s name, but you don’t know what they’re
called. You can use input() to make the game ask the
player what their name is. Their answer becomes a
return value, which the function will then assign to
the name variable.

You can type your
own name in here.

input() has assigned the
answer to the name variable.

input() asks the
user what their
name is.

This is a variable
that will later store
the player’s name.

Another way to call functions
Some types of data, such as integers and strings, have their
own built-in functions that are used to manipulate or
change that data. These are known as “member” functions
and can be called by placing a dot immediately after the
data, followed by the name of the function and a pair of
parentheses. Try these out in the shell window.

△ count()
This function is used with strings. It is called on one
string, with another string as a parameter of the
function count(). The return value tells you how many
times the second string appears in the first string.

△ reverse()
You can also call a member function on a variable.
In this example, the function reverse() is used
to reverse the order of the list of numbers stored
in the variable countdown.

>>> "functions are fun".count("fun")

2

A list of numbers is
assigned to a variable.

Members only

△ upper()
This function takes an existing string and returns a new
string, replacing all the lowercase letters with uppercase
(capital) letters.

This is the new string, all in capitals.The string fun appears twice.

>>> "blue".upper()

'BLUE'

△ replace()
For this function, you need two parameters—the first is
the part of a string you want to replace, and the second
is what you want to replace it with. The function returns
a new string with the replacement made.

>>> countdown = [1, 2, 3]

>>> countdown.reverse()

>>> print(countdown)

[3, 2, 1]

The reverse function
is called on the list
of numbers. The function has two parameters,

which are separated by a comma.

>>> message = "Coding makes me happy"

>>> message.replace("happy", ":D")

'Coding makes me :D'

>>> name = input("What is your name?")

What is your name?Ben

>>> print(name)

Ben

US_040-041_Functions_1.indd 41 22/02/18 12:24 pm

41F U N C T I O N S

▷ input()
This function lets the player enter information for the
game to use, rather than the coder putting it in the
original code. For example, imagine you’re creating
a game and you want to create a variable to store
the player’s name, but you don’t know what they’re
called. You can use input() to make the game ask the
player what their name is. Their answer becomes a
return value, which the function will then assign to
the name variable.

You can type your
own name in here.

input() has assigned the
answer to the name variable.

input() asks the
user what their
name is.

This is a variable
that will later store
the player’s name.

Another way to call functions
Some types of data, such as integers and strings, have their
own built-in functions that are used to manipulate or
change that data. These are known as “member” functions
and can be called by placing a dot immediately after the
data, followed by the name of the function and a pair of
parentheses. Try these out in the shell window.

△ count()
This function is used with strings. It is called on one
string, with another string as a parameter of the
function count(). The return value tells you how many
times the second string appears in the first string.

△ reverse()
You can also call a member function on a variable.
In this example, the function reverse() is used
to reverse the order of the list of numbers stored
in the variable countdown.

>>> "functions are fun".count("fun")

2

A list of numbers is
assigned to a variable.

Members only

△ upper()
This function takes an existing string and returns a new
string, replacing all the lowercase letters with uppercase
(capital) letters.

This is the new string, all in capitals.The string fun appears twice.

>>> "blue".upper()

'BLUE'

△ replace()
For this function, you need two parameters—the first is
the part of a string you want to replace, and the second
is what you want to replace it with. The function returns
a new string with the replacement made.

>>> countdown = [1, 2, 3]

>>> countdown.reverse()

>>> print(countdown)

[3, 2, 1]

The reverse function
is called on the list
of numbers. The function has two parameters,

which are separated by a comma.

>>> message = "Coding makes me happy"

>>> message.replace("happy", ":D")

'Coding makes me :D'

>>> name = input("What is your name?")

What is your name?Ben

>>> print(name)

Ben

US_040-041_Functions_1.indd 41 22/02/18 12:24 pm

L E A R N I N G T H E B A S I C S42

Making your own functions
There isn’t a built-in function for everything,
so you need to know how to write, or “define,”
your own. A function should have one clear
purpose and a name that describes what it
does. Follow these steps to create a function
that calculates a player’s score.

E X P E R T T I P S

Naming your functions
It’s important to give your functions
accurate names that explain what they do.
This will help you understand the code.
Names can contain letters, numbers, and
underscores, but they should always begin
with a letter. You can’t use spaces, so if
there are multiple words in the name
of your function, separate them by using
underscores instead. For example, if you
were creating a function to end the game,
you could name it game_over().

Use the def keyword
to define a function.

This function doesn’t
take a parameter.

The score is displayed
in the shell.

def fruit_score():

 print(10)

fruit_score()

10

1 Define the function
Let’s create a function to keep score in a game.
Open an editor window in IDLE and save it as
functions.py. Then type in the code below,
making sure you get all the indents right.
After each step, save the file, go to the
Run menu, and click Run Module.

2 Add some parameters
The function works well so far, but what
if you want to have different scores for
different fruits you collect? For the
function to know which score to print,
it needs to know which fruit you have
collected. Imagine you get ten points
for an apple, but five points for an orange.
You can do this by adding a parameter
to the function.

def fruit_score(fruit):

 if fruit == "apple":

 print(10)

 elif fruit == "orange":

 print(5)

fruit_score("apple")

fruit_score("orange")

The function now
takes a parameter.

These lines give
a value to the
parameter.

The function is called
twice—once with
each parameter.

10

5

The score that gets printed
depends on whether the
parameter is apple or orange.

This calls the function,
running the code

you’ve stored in it.

This is the code
you’re storing in
the function.

US_042-043_Functions_2.indd 42 14/03/18 12:18 PM

43F U N C T I O N S

3 Return a value
Rather than printing out the score, you might
want to use it elsewhere in your code. You can ask
to get a value out of a function to be used later.
This is called “returning” a value. Type in the
keyword return before the value you want it to
return in each case. Try switching your print
statements to return statements.

4 Using the return value
You can use the return value of a function
elsewhere in your code. In this case, we make
two calls to the function—one for each fruit. We
then add these results together to get a total
score. Add this code underneath what you wrote
in Step 3 and then go to the Run menu and click
Run Module.

def fruit_score(fruit):

 if fruit == "apple":

 return 10

 elif fruit == "orange":

 return 5

15

I would like to return
these oranges and buy
some apples instead.

E X P E R T T I P S

Indentation Errors
Python uses indentation to understand
where a block of code starts and stops.
An “IndentationError” appears when
something is wrong with the way you’ve
structured the code. Remember that if
a line of code ends with a colon (:), the
next line needs to be indented. If Python
does not add them automatically, use the
Space bar to manually insert four spaces.

Error... error!
The values are returned for
use later in the code. They
will not appear in the shell.

The two return values
are added together.

return 5

apple_score = fruit_score("apple")

 orange_score = fruit_score("orange")

total = fruit_score("apple") + fruit_score("orange")

 print(total)

Don’t use
parentheses with the
return statements.

US_042-043_Functions_2.indd 43 14/03/18 12:18 PM

43F U N C T I O N S

3 Return a value
Rather than printing out the score, you might
want to use it elsewhere in your code. You can ask
to get a value out of a function to be used later.
This is called “returning” a value. Type in the
keyword return before the value you want it to
return in each case. Try switching your print
statements to return statements.

4 Using the return value
You can use the return value of a function
elsewhere in your code. In this case, we make
two calls to the function—one for each fruit. We
then add these results together to get a total
score. Add this code underneath what you wrote
in Step 3 and then go to the Run menu and click
Run Module.

def fruit_score(fruit):

 if fruit == "apple":

 return 10

 elif fruit == "orange":

 return 5

15

I would like to return
these oranges and buy
some apples instead.

E X P E R T T I P S

Indentation Errors
Python uses indentation to understand
where a block of code starts and stops.
An “IndentationError” appears when
something is wrong with the way you’ve
structured the code. Remember that if
a line of code ends with a colon (:), the
next line needs to be indented. If Python
does not add them automatically, use the
Space bar to manually insert four spaces.

Error... error!
The values are returned for
use later in the code. They
will not appear in the shell.

The two return values
are added together.

return 5

apple_score = fruit_score("apple")

 orange_score = fruit_score("orange")

total = fruit_score("apple") + fruit_score("orange")

 print(total)

Don’t use
parentheses with the
return statements.

US_042-043_Functions_2.indd 43 14/03/18 12:18 PM

L E A R N I N G T H E B A S I C S44

Fixing bugs
If there’s an error, or a “bug,” in your code,
Python will show an error message. These
messages can be a bit confusing sometimes,
but they tell you what is wrong with your
code and how to fix it.

Error alert
In IDLE, both the editor and shell windows
can display an error message when something
unexpected happens. This message highlights
the error and shows you which line of code
to find it in.

▽ Messages in Command Prompt/Terminal
Error messages in Pygame Zero are shown in
the Command Prompt or Terminal window.
When an error is discovered, the program will
stop running and will tell you what the error is
and where to look for it in the code.

E X P E R T T I P S

Catching bugs
When you see an error in the Command
Prompt (Windows) or Terminal (Mac), look at
the line number. Go back to your code in
IDLE and click anywhere in the file. The line
number will be displayed at the bottom-
right corner of the screen—for example,
Ln: 12. Then use the Up or Down arrow
to find the line with the error in it.

Help me find
those delicious bugs!

 File "/Library/Frameworks/Python.framework/Versions/3.6/bin/pgzrun", line 11, in <module>

 load_entry_point('pgzero==1.1', 'console_scripts', 'pgzrun')()

 File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/

pgzero/runner.py", line 88, in main

 exec(code, mod.__dict__)

 File "score.py", line 2, in <module>

 print("Game Over: Score " + score)

TypeError: must be str, not int
This is a type error.

The error is on line 2.

Rabiahma – bash – 80x24

US_044-045_Fixing_bugs.indd 44 22/02/18 12:24 pm

F I X I N G B U G S 45

Syntax errors
The structure of statements used in a coding
language is known as syntax. A syntax error means
that you’ve typed something wrong. You could have
missed a part of a statement or misspelled a word.
Syntax errors are the easiest mistakes to fix. Go to the
line with the error and change what you’ve mistyped.

Indentation errors
Python uses indentation to show where
blocks of code begin and end. Indentation
errors are displayed if you make a mistake
with the structure of the code. If a line of
code ends with a colon, you must indent
the next line. Python automatically
indents after colons, but you can also
do it manually by adding four spaces.

The different indents tell
Python which block each
line of code belongs to.

Each indent is
four spaces.

The closing
parenthesis is missing.

The closing quotation
mark is missing.

This is a spelling mistake. It’s supposed
to be referencing the variable named
“horse,” so it should be horse.draw().

Block 1

Block 2

Block 3

Block 2, continuation

▷ Mistakes to
watch out for
Do your opening and
closing parentheses match?
Are you missing a quotation
mark? Have you spelled
everything correctly? These
are the main causes of
syntax errors.

◁ Indent each new block
Python programs usually have blocks of code
within other blocks, such as an if statement inside
a loop. Every line in a block must be indented by the
same amount. This can be done for each indent by
pressing the Space bar four times. Even though
Python automatically indents after colons, you should
get used to checking if the indentation is correct.

Block 1, continuation

H

e

l l o !
 print(score

 horse = Actor("horse)

 hrse.draw()

Indenting the code by adding
four spaces will fix this error.

Not leaving any spaces here
will cause an indentation error.

if play:

 horse.draw()

if play:

 horse.draw()

US_044-045_Fixing_bugs.indd 45 22/02/18 12:24 pm

F I X I N G B U G S 45

Syntax errors
The structure of statements used in a coding
language is known as syntax. A syntax error means
that you’ve typed something wrong. You could have
missed a part of a statement or misspelled a word.
Syntax errors are the easiest mistakes to fix. Go to the
line with the error and change what you’ve mistyped.

Indentation errors
Python uses indentation to show where
blocks of code begin and end. Indentation
errors are displayed if you make a mistake
with the structure of the code. If a line of
code ends with a colon, you must indent
the next line. Python automatically
indents after colons, but you can also
do it manually by adding four spaces.

The different indents tell
Python which block each
line of code belongs to.

Each indent is
four spaces.

The closing
parenthesis is missing.

The closing quotation
mark is missing.

This is a spelling mistake. It’s supposed
to be referencing the variable named
“horse,” so it should be horse.draw().

Block 1

Block 2

Block 3

Block 2, continuation

▷ Mistakes to
watch out for
Do your opening and
closing parentheses match?
Are you missing a quotation
mark? Have you spelled
everything correctly? These
are the main causes of
syntax errors.

◁ Indent each new block
Python programs usually have blocks of code
within other blocks, such as an if statement inside
a loop. Every line in a block must be indented by the
same amount. This can be done for each indent by
pressing the Space bar four times. Even though
Python automatically indents after colons, you should
get used to checking if the indentation is correct.

Block 1, continuation

H

e

l l o !
 print(score

 horse = Actor("horse)

 hrse.draw()

Indenting the code by adding
four spaces will fix this error.

Not leaving any spaces here
will cause an indentation error.

if play:

 horse.draw()

if play:

 horse.draw()

US_044-045_Fixing_bugs.indd 45 22/02/18 12:24 pm

L E A R N I N G T H E B A S I C S46

No, it’s
a pear.

Is this
a date?

◁ Examples of type errors
Type errors occur when you code something
that doesn’t make sense. Subtracting a string
from a number, comparing different data types,
or trying to find the highest number in a list of
strings are all type errors.

▷ Example of a name error
This code will give you a name error if you
try to display the contents of a variable
before creating it. Remember, you need
to create the variable first.

Type errors
These errors occur when you put the
wrong type of data in the code. For
example, if the code is expecting a number
but you give it a string, it won’t work.

Name errors
A name error occurs when you try
to use a variable or function that hasn’t
been created yet. To avoid this, you
must remember to define all variables
and functions before using them.

Sigh! I really thought
it would work.

Can you make a
web out of these

pineapples?

lives_remaining stores whole
numbers, or integers, so it doesn’t
make sense to minus the string
"one" from it. You need to use
the digit 1 instead.

This keeps track
of the number of
lives a player is
left with.

It doesn’t make sense
to check if a number
is greater than a string,
because they are
different data types.

Removing the quotation marks
around high_score would
make this code work properly.

This function expects a list of integers,
but instead it has been assigned a list
of strings representing players’ names.

You need to assign
"Martin" to the variable
player_name first.

lives_remaining = lives_remaining - "one"

 score = 100 > "high_score"

 players = ["Martin", "Craig", "Claire", "Daniel"]

 find_highest_score(players)

 print("Welcome " + player_name)

 player_name = "Martin"

?

US_046-047_Fixing_bugs_2.indd 46 22/02/18 12:24 pm

F I X I N G B U G S 47

Logic errors
Sometimes you may not get any error messages,
but your code still won’t work the way you want it to.
This is because, as far as Python is concerned, there’s
nothing wrong with the program, but the logic of the
code is incorrect. This is called a logic error. You might
have missed an important line of code, or maybe you’ve
put in the right instructions but in the wrong order.

Something isn’t
quite right!
I can feel it.

Should I be
worried?

print("You lost a life!")

print(lives)

lives = lives - 1

◁ Can you spot the bug?
This code will run with no error messages, but it contains
a logic error. When the player loses a life, the value of
lives is shown on the screen before the number of lives
is reduced by one. That means the player will see the
wrong number of lives remaining! To fix it, you’d have
to move the instruction print(lives) to the end.

▷ Fixing logic
Logic errors can be the hardest to find and fix. You can
only get better at it with more experience. To make logic
errors easier to find, run your code frequently to test it.
If you think there is an error, go through each line of
code carefully. For example, when checking the value
assigned to a variable at different stages in the program,
try using a print() statement to spot any errors.

Ask yourself...
 ▪ Have you typed the code exactly as it is in the book? Pay extra

 attention to indentation and spaces.
 ▪ Is everything spelled correctly?
 ▪ Do you have extra spaces at the start of a line?
 ▪ Have you confused any numbers for letters, such as 0 and O?
 ▪ Have you used the correct case for all the letters?
 ▪ Do opening parentheses have a matching closing parenthesis? () [] {}
 ▪ Does every quotation mark have a matching closing quotation mark?
 ▪ Have you asked someone else to check your code for you and

 compare it with the book?
 ▪ Have you saved your code since you last made changes?

E X P E R T T I P S

Bug-busting checklist
Coding can get frustrating
sometimes, and you might feel
as if you’ll never be able to find
a solution. But don’t give up!
If you follow the tips in this
handy checklist, you’ll be able
to identify most errors.

There are no errors in the
code, but the last two lines
are in the wrong order.

2 X 2 = 4
2 X 3 = 6
2 X 4 = 8
2 X 5 = 1 0
6 X 2 = 1 2

US_046-047_Fixing_bugs_2.indd 47 22/02/18 12:24 pm

F I X I N G B U G S 47

Logic errors
Sometimes you may not get any error messages,
but your code still won’t work the way you want it to.
This is because, as far as Python is concerned, there’s
nothing wrong with the program, but the logic of the
code is incorrect. This is called a logic error. You might
have missed an important line of code, or maybe you’ve
put in the right instructions but in the wrong order.

Something isn’t
quite right!
I can feel it.

Should I be
worried?

print("You lost a life!")

print(lives)

lives = lives - 1

◁ Can you spot the bug?
This code will run with no error messages, but it contains
a logic error. When the player loses a life, the value of
lives is shown on the screen before the number of lives
is reduced by one. That means the player will see the
wrong number of lives remaining! To fix it, you’d have
to move the instruction print(lives) to the end.

▷ Fixing logic
Logic errors can be the hardest to find and fix. You can
only get better at it with more experience. To make logic
errors easier to find, run your code frequently to test it.
If you think there is an error, go through each line of
code carefully. For example, when checking the value
assigned to a variable at different stages in the program,
try using a print() statement to spot any errors.

Ask yourself...
 ▪ Have you typed the code exactly as it is in the book? Pay extra

 attention to indentation and spaces.
 ▪ Is everything spelled correctly?
 ▪ Do you have extra spaces at the start of a line?
 ▪ Have you confused any numbers for letters, such as 0 and O?
 ▪ Have you used the correct case for all the letters?
 ▪ Do opening parentheses have a matching closing parenthesis? () [] {}
 ▪ Does every quotation mark have a matching closing quotation mark?
 ▪ Have you asked someone else to check your code for you and

 compare it with the book?
 ▪ Have you saved your code since you last made changes?

E X P E R T T I P S

Bug-busting checklist
Coding can get frustrating
sometimes, and you might feel
as if you’ll never be able to find
a solution. But don’t give up!
If you follow the tips in this
handy checklist, you’ll be able
to identify most errors.

There are no errors in the
code, but the last two lines
are in the wrong order.

2 X 2 = 4
2 X 3 = 6
2 X 4 = 8
2 X 5 = 1 0
6 X 2 = 1 2

US_046-047_Fixing_bugs_2.indd 47 22/02/18 12:24 pm

US_048-049_Chapter_opener_3.indd 48 22/02/18 1:40 pm

Shoot
the Fruit

US_048-049_Chapter_opener_3.indd 49 22/02/18 1:40 pm

Shoot
the Fruit

US_048-049_Chapter_opener_3.indd 49 22/02/18 1:40 pm

S H O O T T H E F R U I T5050

What happens
When the game starts, an apple appears on the screen
for you to “shoot.” If you hit it, a “Good shot!” message
pops up, and the apple appears at another point on
the screen. But if you miss, a “You missed!” message is
shown, and the game ends.

How to build
Shoot the Fruit
This simple shooting game is a fun way to practice
your aim. When the apple appears, click on it to
”shoot” it. Aim carefully though, because if you
miss, the game is over!

Pygame Zero Game

◁ Aim... Fire!
You need to stay
alert at all times while
playing this game.
Lose your focus and
you may miss the shot!

You can customize
your game by
changing the fruit
that appears on
the screen.

The default color
of the game screen
is black.

US_050-051_Shoot_the_Fruit_1.indd 50 22/02/18 12:24 pm

H O W T O B U I L D S H O O T T H E F R U I T 51

How it works
The game is constantly checking whether
you’ve clicked the mouse button. Every
time you click on the apple, it needs to be
drawn again somewhere else on the screen.
If you click and miss, the game will end.

Get shooting!
Are you ready to code? In this program,
you’ll start by drawing an apple on the screen,
then you’ll learn to place it at random points before
you start shooting it. Ready? Let’s get coding!

Player clicked
the mouse?

Player clicked
on the apple?

Start

Draw an apple
on the screen

Display
“You missed!”

Display
“Good shot!”

End

Open IDLE
Create an empty file
in IDLE by going to
the File menu and
choosing New File.

1

▷ Shoot the
Fruit flowchart
This flowchart shows
the logic behind the
game. The main part
of the code is a loop
that checks if you have
clicked on the apple or not.

Oops! I missed
again!

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

Y

Y

N

N

US_050-051_Shoot_the_Fruit_1.indd 51 23/02/18 2:31 pm

H O W T O B U I L D S H O O T T H E F R U I T 51

How it works
The game is constantly checking whether
you’ve clicked the mouse button. Every
time you click on the apple, it needs to be
drawn again somewhere else on the screen.
If you click and miss, the game will end.

Get shooting!
Are you ready to code? In this program,
you’ll start by drawing an apple on the screen,
then you’ll learn to place it at random points before
you start shooting it. Ready? Let’s get coding!

Player clicked
the mouse?

Player clicked
on the apple?

Start

Draw an apple
on the screen

Display
“You missed!”

Display
“Good shot!”

End

Open IDLE
Create an empty file
in IDLE by going to
the File menu and
choosing New File.

1

▷ Shoot the
Fruit flowchart
This flowchart shows
the logic behind the
game. The main part
of the code is a loop
that checks if you have
clicked on the apple or not.

Oops! I missed
again!

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

Y

Y

N

N

US_050-051_Shoot_the_Fruit_1.indd 51 23/02/18 2:31 pm

52

Set up an image folder
This game uses an image of an apple. Within
your shoot-the-fruit folder, right-click and
choose New Folder to create another folder
and call it images. It needs to be in the same
place as your IDLE file.

3Save your game
Go to the File menu and click Save As.... Then
save your program in the python-games folder.
Create this folder now if you haven’t made it
already. Inside this folder, make another folder called
shoot-the-fruit and save your IDLE file in it as shoot.py.

2

Save As:

shoot-the-fruit

Cancel Save

shoot.py

Tags:

Where:

Put the image into the folder
Go to dk.com/computercoding and download the
Python Games Resource Pack or just the Shoot the
Fruit images. Find the file called “apple.png”. Copy
this file into the images folder. Your folders should
look something like this now.

4

I wish my
folders were

more organized.

Introducing an Actor
Now you can start writing some code.
Go back to IDLE and write this line of code
in the editor window, then press Enter.

5

L I N G O

Actors and Sprites
In computer games development,
a sprite is an object, like a coin or an
enemy character, that is controlled by
code. Actors in Python are like Sprites
in Scratch. An Actor can be drawn on
the screen, moved around, and even
interact with other Actors in the
game. Each Actor is given a “script”
(the Python code) to tell it how to
behave in the game.

 apple = Actor("apple")

 New Folder

 Get Info

 Clean up

 Clean up by ▶

S H O O T T H E F R U I T

shoot.py
images

shoot-the-fruit

apple.png

This is such
an honor!

This creates
a new Actor
called apple.

US_052-053_Shoot_the_Fruit_2.indd 52 22/02/18 12:24 pm

53

Drawing the apple on the screen
Next you need to “draw” the apple on the screen.
To do this, you can use a built-in Pygame Zero
function called draw(). This function is used
to redraw the game screen. For example, if a
character has moved or a score has changed,
you can use this function to update the screen
with those changes. Write this code beneath
your previous code.

6

This function
is called draw().

Remember, you need
four blank spaces here.

This clears
the screen.

This line draws the
apple on the screen.

Test the code
Now it’s time to test the code. Run the
program by using the command line in
the Command Prompt or Terminal window.
Check out pages 24–25 if you need to
remind yourself how to do this.

7

Drag and drop your shoot.py
file here to run it. apple = Actor("apple")

 def draw():

 screen.clear()

 apple.draw()

First screen
If your code is working properly, you
should see this screen. If it’s not, or if
you get an error message, go back and
check your code to find any bugs.

8

 apple.draw()

 def place_apple():

 apple.x = 300

 apple.y = 200

A blank game
window with
an apple in the
top-left corner
of the screen
should appear.

Pygame Zero Game

If you need help
running your game,
check pages 24–25.

You must save your program
before running it, or I’ll run
an old version of your code.

Placing the apple
At the moment, the apple appears in the
top-left corner of the game window. You can
change the code to place the apple exactly
where you want it on the screen. Write this
function, which will place the apple at the
coordinates (300, 200).

9

The apple will be
placed 300 pixels
along the x-axis
(horizontal).

The apple will be placed 200
pixels down the y-axis (vertical).

 pgzrun

G A M E P R O G R E S S 5 3 %

US_052-053_Shoot_the_Fruit_2.indd 53 22/02/18 12:24 pm

53

Drawing the apple on the screen
Next you need to “draw” the apple on the screen.
To do this, you can use a built-in Pygame Zero
function called draw(). This function is used
to redraw the game screen. For example, if a
character has moved or a score has changed,
you can use this function to update the screen
with those changes. Write this code beneath
your previous code.

6

This function
is called draw().

Remember, you need
four blank spaces here.

This clears
the screen.

This line draws the
apple on the screen.

Test the code
Now it’s time to test the code. Run the
program by using the command line in
the Command Prompt or Terminal window.
Check out pages 24–25 if you need to
remind yourself how to do this.

7

Drag and drop your shoot.py
file here to run it. apple = Actor("apple")

 def draw():

 screen.clear()

 apple.draw()

First screen
If your code is working properly, you
should see this screen. If it’s not, or if
you get an error message, go back and
check your code to find any bugs.

8

 apple.draw()

 def place_apple():

 apple.x = 300

 apple.y = 200

A blank game
window with
an apple in the
top-left corner
of the screen
should appear.

Pygame Zero Game

If you need help
running your game,
check pages 24–25.

You must save your program
before running it, or I’ll run
an old version of your code.

Placing the apple
At the moment, the apple appears in the
top-left corner of the game window. You can
change the code to place the apple exactly
where you want it on the screen. Write this
function, which will place the apple at the
coordinates (300, 200).

9

The apple will be
placed 300 pixels
along the x-axis
(horizontal).

The apple will be placed 200
pixels down the y-axis (vertical).

 pgzrun

G A M E P R O G R E S S 5 3 %

US_052-053_Shoot_the_Fruit_2.indd 53 22/02/18 12:24 pm

54

 def place_apple():

 apple.x = 300

 apple.y = 200

place_apple()

Running the function
After you’ve written the function to place the
apple on the screen, you need to tell Python
to run it. Add this extra line of code to run the
function called place_apple().

Test it again
Save your file and then run the code from
the command line. Remember, you can press
the Up arrow in the command line to quickly
choose a previous command, then press
Enter. This time the apple will appear at
the point (300, 200).

10 11

The apple is placed at
coordinates (300, 200).

(300, 200)

This function
places the apple
at coordinates
(300, 200).

Run fast or we’ll
miss the bus!

E X P E R T T I P S

Graphics in Pygame
Python uses coordinates to identify all the
places in a window where an object could be.
This means that every place can be identified
by using two numbers. The first number is
the x coordinate, which shows how far to the
right an object is. The second number is the
y coordinate, which shows how far down
the object is. Coordinates are written in
parentheses, with the x coordinate first, like this:
(x, y). In math, the coordinate (0, 0) is usually
at the bottom left, but in computer graphics,
it’s almost always the top left.

(130, 140)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

y g
ettin

g
 b

ig
g

er

x getting bigger

(0, 0)

Pygame Zero Game

These are the
coordinates
of the star
on screen.

S H O O T T H E F R U I T

US_054-055_Shoot_the_Fruit_3.indd 54 22/02/18 12:25 pm

55

 def place_apple():

 apple.x = 300

 apple.y = 200

 def on_mouse_down(pos):

 print("Good shot!")

 place_apple()

 place_apple()

Dealing with clicks
Now it’s time to write the code that
will run when you press the mouse.
Pygame Zero has a built-in function
called on_mouse_down(), which is
run every time you click the mouse.
Type this code in between the code
you added in Step 9 and Step 10,
then run it from the command line.
You should see the message “Good
shot!” in the Command Prompt or
Terminal window each time you
click the mouse.

12
Programmers sometimes
add blank lines to make their
code neater, but they aren’t
necessary. Python ignores
blank lines completely.

Adding some logic
At this point, the “Good shot!” message is displayed
every time you click the mouse, but we only want
it to show if the player actually hits the apple. You can
do this by amending the code from Steps 10 and 12 to
include an if statement. This code checks if the apple
and the mouse cursor are in the same position. If they
are, the message is displayed.

13

pos is the position of
the cursor when you
click the mouse.

This function
checks if the
cursor is in the
same position
as the apple.

Make sure the bottom
two lines now start
with eight spaces.

Whoa!
Good shot!

START

1 2 3 4 5

E X P E R T T I P S

Indents
Python uses indents to separate different
blocks of code. If your indents are wrong,
Python won’t know how to read your code,
and you’ll end up with a bug! Each indent
is made up of four spaces, and code can be
indented more than once—for example,
by eight spaces. Sometimes IDLE adds the
indents for you, but if you’re moving the
code around, like in Step 13, you might
need to indent it yourself. You can do this
by entering the correct number of spaces.

 def on_mouse_down(pos):

 if apple.collidepoint(pos):

 print("Good shot!")

 place_apple()

G A M E P R O G R E S S 7 6 %

US_054-055_Shoot_the_Fruit_3.indd 55 22/02/18 12:25 pm

55

 def place_apple():

 apple.x = 300

 apple.y = 200

 def on_mouse_down(pos):

 print("Good shot!")

 place_apple()

 place_apple()

Dealing with clicks
Now it’s time to write the code that
will run when you press the mouse.
Pygame Zero has a built-in function
called on_mouse_down(), which is
run every time you click the mouse.
Type this code in between the code
you added in Step 9 and Step 10,
then run it from the command line.
You should see the message “Good
shot!” in the Command Prompt or
Terminal window each time you
click the mouse.

12
Programmers sometimes
add blank lines to make their
code neater, but they aren’t
necessary. Python ignores
blank lines completely.

Adding some logic
At this point, the “Good shot!” message is displayed
every time you click the mouse, but we only want
it to show if the player actually hits the apple. You can
do this by amending the code from Steps 10 and 12 to
include an if statement. This code checks if the apple
and the mouse cursor are in the same position. If they
are, the message is displayed.

13

pos is the position of
the cursor when you
click the mouse.

This function
checks if the
cursor is in the
same position
as the apple.

Make sure the bottom
two lines now start
with eight spaces.

Whoa!
Good shot!

START

1 2 3 4 5

E X P E R T T I P S

Indents
Python uses indents to separate different
blocks of code. If your indents are wrong,
Python won’t know how to read your code,
and you’ll end up with a bug! Each indent
is made up of four spaces, and code can be
indented more than once—for example,
by eight spaces. Sometimes IDLE adds the
indents for you, but if you’re moving the
code around, like in Step 13, you might
need to indent it yourself. You can do this
by entering the correct number of spaces.

 def on_mouse_down(pos):

 if apple.collidepoint(pos):

 print("Good shot!")

 place_apple()

G A M E P R O G R E S S 7 6 %

US_054-055_Shoot_the_Fruit_3.indd 55 22/02/18 12:25 pm

56 S H O O T T H E F R U I T

Time to shoot!
You did it! Run your program to play the game.
Each time you “shoot” the apple, it will move
to a random place on the screen for you to
“shoot” again.

Importing Random
The game is very easy at this point, because the
apple is always drawn at the same place on the
screen. You can use Python’s Random module to
make the game more challenging by placing the
apple at a random point on the screen each time it
is drawn. First, add this code at the very top of
your program.

Using Random
Change the code you typed in Step 9 to look like
this. The code will now use the randint() function
to pick a random number between 10 and 800 for
the x coordinate and a random number between
10 and 600 for the y coordinate.

Missed a shot? Game over!
Add some more logic to your code,
so that if you miss a shot and don’t
click on the apple, it quits the game.
Try it out!

Random numbers
Rolling a dice, picking a card from a deck,
or tossing a coin are all actions that you
can simulate by generating a random
number. You can read more about how to
use Python’s Random module by going to
the Help menu and clicking Python Docs.

I sure have
good aim!

Pick a card,
any card.

17

15

16

14

E X P E R T T I P S

This imports the
function randint()
from Python’s
Random module.

This function picks a
random number for
each coordinate.

This command quits the game by
stopping the program completely.

 if apple.collidepoint(pos):

 print("Good shot!")

 place_apple()

 else:

 print("You missed!")

 quit()

 def place_apple():

 apple.x = randint(10, 800)

 apple.y = randint(10, 600)

 from random import randint

 apple = Actor("apple")

US_056-057_Shoot_the_Fruit_4.indd 56 22/02/18 12:25 pm

57

△ Fruit salad
The Actor doesn’t need to be an apple! Find a picture of
another fruit in the Python Games Resource Pack or create
one using an 8-bit editor online. Make sure you’ve got a
suitably sized image before you save it in the images folder.
Then name the image and change the code accordingly to
use the new fruit as an Actor.

△ Keep on playing
This game is fun for people who want to practice
using a mouse. However, it could get frustrating
if the game quits every time you click in the
wrong place. Can you find the command that
quits the game and remove it to make the game
easier to play?

△ Don’t shoot!
Why not add another Actor to the game to
distract the player in the hope they’ll click on
that object by mistake? For instance, a red ball
might look similar enough to an apple to fool
the player!

SHOOT THE FRUIT

△ Keep count
Change your code so that it can keep count of the number
of times you click successfully. Here are some hints to
help you out.

▪ Store the count in a variable.
▪ Start by setting the variable to 0.
▪ Increase the count by 1 each time you click on the apple.
▪ Use print() to show the score in the Command Prompt
 or Terminal window each time the apple is drawn on
 the screen.

Hacks and tweaks
Now that you’ve created your first game, it’s time
to think about how you can change it to make the
game even more fun. Here are some hacks and
tweaks for you to play around with.

 kiwi = Actor("kiwi")

Page 28 will help you
with the variable!

G A M E P R O G R E S S 1 0 0 %

US_056-057_Shoot_the_Fruit_4.indd 57 22/02/18 12:25 pm

57

△ Fruit salad
The Actor doesn’t need to be an apple! Find a picture of
another fruit in the Python Games Resource Pack or create
one using an 8-bit editor online. Make sure you’ve got a
suitably sized image before you save it in the images folder.
Then name the image and change the code accordingly to
use the new fruit as an Actor.

△ Keep on playing
This game is fun for people who want to practice
using a mouse. However, it could get frustrating
if the game quits every time you click in the
wrong place. Can you find the command that
quits the game and remove it to make the game
easier to play?

△ Don’t shoot!
Why not add another Actor to the game to
distract the player in the hope they’ll click on
that object by mistake? For instance, a red ball
might look similar enough to an apple to fool
the player!

SHOOT THE FRUIT

△ Keep count
Change your code so that it can keep count of the number
of times you click successfully. Here are some hints to
help you out.

▪ Store the count in a variable.
▪ Start by setting the variable to 0.
▪ Increase the count by 1 each time you click on the apple.
▪ Use print() to show the score in the Command Prompt
 or Terminal window each time the apple is drawn on
 the screen.

Hacks and tweaks
Now that you’ve created your first game, it’s time
to think about how you can change it to make the
game even more fun. Here are some hacks and
tweaks for you to play around with.

 kiwi = Actor("kiwi")

Page 28 will help you
with the variable!

G A M E P R O G R E S S 1 0 0 %

US_056-057_Shoot_the_Fruit_4.indd 57 22/02/18 12:25 pm

US_058-059_Chapter_opener_4.indd 58 22/02/18 1:40 pm

Coin
Collector

US_058-059_Chapter_opener_4.indd 59 22/02/18 1:40 pm

Coin
Collector

US_058-059_Chapter_opener_4.indd 59 22/02/18 1:40 pm

60 C O I N C O L L E C T O R

What happens
A fox and a coin appear on the screen. You use the arrow
keys to move the fox toward the coin. When the fox
touches the coin, you get ten points, and another coin
appears somewhere else. The game ends after seven
seconds and the final score is displayed.

How to build
Coin Collector
Help a crafty fox collect as many coins as
possible before the time runs out. The more
coins you get, the higher your score. Be quick!
You only have a few seconds to collect them.

Score: 0

Pygame Zero Game

◁ Need for speed
This time-based
game tests your
reaction speed. How
fast can you move the
fox to grab the coins
before the time’s up?

The fox can
move up, down,
left, and right.

The coin
can appear
anywhere on
the screen.

I don’t think this
is enough. I’d better
collect some more!

US_060-061_coin_collector.indd 60 22/02/18 12:25 pm

61H O W T O B U I L D C O I N C O L L E C T O R

How it works
The game starts by setting the score to
zero. If there is time left, the fox can move
around and collect coins. When the time
is up, the game ends and the final score is
displayed on the screen.

Getting started
Follow these steps to build the game.
First set up a new file and import the
relevant modules. Then draw the Actors
and define the functions to run the
game. Good luck!

Start

Set the score to zero

Show the
final score

Treasure Hunt

End

Get set up
Create a new folder called coin-collector. Then
open IDLE and create an empty file by going to
the File menu and choosing New File. Select
Save As... from the same menu and save the
file as coin.py in the coin-collector folder.

1

▷ Coin Collector
flowchart
The main loop in this
flowchart checks if the
the time is up, whether
any arrow key is being
pressed, or if the fox is
touching a coin.

Save As:

coin-collector

Cancel Save

coin.py

Tags:

Where:

Is the
time up?

Is an arrow
key being
pressed?

Is the fox
touching the

coin?

Move the fox

Increase the score
Place the coin

somewhere else

Y

Y

Y

N

N

N

US_060-061_coin_collector.indd 61 22/02/18 12:25 pm

61H O W T O B U I L D C O I N C O L L E C T O R

How it works
The game starts by setting the score to
zero. If there is time left, the fox can move
around and collect coins. When the time
is up, the game ends and the final score is
displayed on the screen.

Getting started
Follow these steps to build the game.
First set up a new file and import the
relevant modules. Then draw the Actors
and define the functions to run the
game. Good luck!

Start

Set the score to zero

Show the
final score

Treasure Hunt

End

Get set up
Create a new folder called coin-collector. Then
open IDLE and create an empty file by going to
the File menu and choosing New File. Select
Save As... from the same menu and save the
file as coin.py in the coin-collector folder.

1

▷ Coin Collector
flowchart
The main loop in this
flowchart checks if the
the time is up, whether
any arrow key is being
pressed, or if the fox is
touching a coin.

Save As:

coin-collector

Cancel Save

coin.py

Tags:

Where:

Is the
time up?

Is an arrow
key being
pressed?

Is the fox
touching the

coin?

Move the fox

Increase the score
Place the coin

somewhere else

Y

Y

Y

N

N

N

US_060-061_coin_collector.indd 61 22/02/18 12:25 pm

62 C O I N C O L L E C T O R

Set up an image folder
This game uses two images—a fox and a
coin. Within your coin-collector folder, create
a new folder called images. Remember, this new
folder needs to be in the same place as your
coin.py file.

2

L I N G O

Patterns
Lots of computer games follow patterns.
Even though two games might have different
characters, power-ups, or levels, their actual
rules may be quite similar. Computer
programmers often look for patterns in
the programs they are building. If they
spot a pattern, they can reuse some code
from an existing program, making it easier
and quicker to build the new program.
This code is also less likely to have bugs
because it will already have been tested.

Setting the score
Now, let’s set the score to zero to begin with.
You’ll need to use a variable to do this. Type
the code shown in black below.

5

 WIDTH = 400

 HEIGHT = 400

score = 0

Get coding
Now you’re ready to start coding. This game works
in a similar way as Shoot the Fruit, so you’ll be able
to reuse some of the code from that game. Begin
by setting the size of the playing area. Type this
code at the top of your file.

4

WIDTH = 400

HEIGHT = 400 This code will make the
game screen 400 pixels
tall and 400 pixels wide.

This sets up a variable
called score.

Put the images into the folder
Find the files called “coin.png” and “fox.png”
in the Python Games Resource Pack
(dk.com/computercoding). Copy them both
into the images folder. Your folders should
look like this now.

3

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

coin.py

coin.png
fox.png

images

coin-collector

US_062-063_coin_collector.indd 62 22/02/18 12:25 pm

63

 WIDTH = 400

 HEIGHT = 400

 score = 0

 game_over = False

 fox = Actor("fox")

 fox.pos = 100, 100

 coin = Actor("coin")

 coin.pos = 200, 200

Game over?
You also need a Boolean variable (a variable
whose value can either be True or False) to tell
Pygame Zero if the game is over or not. At this
stage, set the variable to False.

6

Introducing the Actors
This game will feature two Actors—a fox and a coin.
To create them and set their positions, add these
lines of code under what you typed in Step 6.

7

Try it out
Now test the code you’ve written so far.
Remember, you have to use the command
line in the Command Prompt or Terminal
window to do this.

9 pgzrun

Did it work?
Did your game run? You should see the fox
and coin on your screen, with the score in
the top-left corner. You can’t actually play the
game yet, but it’s a good idea to run your
code frequently to check for bugs.

10

This line uses
the fox.png file
in the images
folder to create
the fox Actor.

The coin is positioned
200 pixels along from the top

left and 200 pixels down.

This line will
display the
score in the
top-left corner
of the screen.

Drag the coin.py
file here to run it.

Time to draw
Now you need to use the draw() function
to display the Actors on the screen, change
the background color, and display the
score. Type in this code to do these.

8
These lines draw
the fox and coin
on the screen.

Pages 24–25 will help you
run the code if you’ve

forgotten how.

coin.pos = 200, 200

 def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

G A M E P R O G R E S S 4 8 %

US_062-063_coin_collector.indd 63 22/02/18 12:25 pm

63

 WIDTH = 400

 HEIGHT = 400

 score = 0

 game_over = False

 fox = Actor("fox")

 fox.pos = 100, 100

 coin = Actor("coin")

 coin.pos = 200, 200

Game over?
You also need a Boolean variable (a variable
whose value can either be True or False) to tell
Pygame Zero if the game is over or not. At this
stage, set the variable to False.

6

Introducing the Actors
This game will feature two Actors—a fox and a coin.
To create them and set their positions, add these
lines of code under what you typed in Step 6.

7

Try it out
Now test the code you’ve written so far.
Remember, you have to use the command
line in the Command Prompt or Terminal
window to do this.

9 pgzrun

Did it work?
Did your game run? You should see the fox
and coin on your screen, with the score in
the top-left corner. You can’t actually play the
game yet, but it’s a good idea to run your
code frequently to check for bugs.

10

This line uses
the fox.png file
in the images
folder to create
the fox Actor.

The coin is positioned
200 pixels along from the top

left and 200 pixels down.

This line will
display the
score in the
top-left corner
of the screen.

Drag the coin.py
file here to run it.

Time to draw
Now you need to use the draw() function
to display the Actors on the screen, change
the background color, and display the
score. Type in this code to do these.

8
These lines draw
the fox and coin
on the screen.

Pages 24–25 will help you
run the code if you’ve

forgotten how.

coin.pos = 200, 200

 def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

G A M E P R O G R E S S 4 8 %

US_062-063_coin_collector.indd 63 22/02/18 12:25 pm

64 C O I N C O L L E C T O R

This will run the
code you’ve saved
in the place_coin()
function.

Importing randint()
Now it’s time to define these functions. The
first one will use Python’s built-in randint()
function, so you need to import it into your
program. Type this line at the very top of
your code to import it.

12

 from random import randint

Placing the coin
Next change the code in your place_coin()
function. This function will place the coin
in a random position on the screen. Delete
pass and type in these commands.

13

 def place_coin():

 coin.x = randint(20, (WIDTH - 20))

 coin.y = randint(20, (HEIGHT - 20))

E X P E R T T I P S

Pass
In Python, if you’re not sure what code
you want inside a function yet, you can
use the pass keyword in its place, and then
come back to it later. It’s a bit like skipping
a question in a quiz but answering it later.

Using placeholders
You need to write some more functions in order to
finish the game. You can add function placeholders
without having to define them right away by using
the keyword pass. Type in this code to give yourself
a template of the functions you’ll need.

11

To get an idea of the code’s
structure, you can use
placeholders for functions
that you’ll finish coding later.

Run the function
Remember, it’s not enough just to define the
function; you have to run it, too. Add this line
of code to the very bottom of your game.

14

 def update():

 pass

 place_coin()

The next question
is... What is
a function?

Err... pass!

Make sure you type this before all
the code you’ve written so far.

The coin will be placed at least 20 pixels
in from the sides of the screen.

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

 def place_coin():

 pass

 def time_up():

 pass

 def update():

 pass

?

US_064-065_coin_collecctor.indd 64 22/02/18 12:25 pm

65

 def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

 if game_over:

 screen.fill("pink")

 screen.draw.text("Final Score: " + str(score), topleft=(10, 10), fontsize=60)

If the variable game_over
is True, this will turn the
screen pink.

This command sets the size of
the text shown on the screen.

The final score is
shown on the screen.

Time’s up!
Now let’s fill in the code for the time_up() function.
In this function, set the game_over Boolean
variable to True, which will tell the program to
quit the game when the function is called. Type
in the following code.

15

 def time_up():

 global game_over

 game_over = True

Remember to delete
the pass keyword and
then add these lines.

Ending the game
The game starts and then seven seconds later,
clock.schedule will run the time_up() function,
which ends the game. But the game still needs
to show the player’s final score. For this, you need to
add in one more bit of code to the draw() function.

17

This line will run the function
time_up() seven seconds
after the game starts.

Set the timer
Now that time_up() is defined, the program needs
to run it. But it needs to run seven seconds after the
game starts. You can use Pygame Zero’s built-in tool
clock to do this. This tool lets the program call a
function after a specified amount of time. Add this
line in the code as shown here.

16

clock.schedule(time_up, 7.0)

place_coin()

Using update()
The final function you need to define is update(). This is
a built-in Pygame Zero function, which means that unlike
the other functions, you don’t need to worry about when
to run it. Once you’ve defined it, Pygame Zero will run
it automatically—60 times a second! Delete pass under
def update() and add this code. It will move the fox to
the left if the left keyboard arrow is pressed.

18 def update():

 if keyboard.left:

 fox.x = fox.x - 2

This moves the fox two pixels to
the left if the left arrow is pressed.

Time’s up! I think you
better stop now.

G A M E P R O G R E S S 8 6 %

US_064-065_coin_collecctor.indd 65 22/02/18 12:25 pm

65

 def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

 if game_over:

 screen.fill("pink")

 screen.draw.text("Final Score: " + str(score), topleft=(10, 10), fontsize=60)

If the variable game_over
is True, this will turn the
screen pink.

This command sets the size of
the text shown on the screen.

The final score is
shown on the screen.

Time’s up!
Now let’s fill in the code for the time_up() function.
In this function, set the game_over Boolean
variable to True, which will tell the program to
quit the game when the function is called. Type
in the following code.

15

 def time_up():

 global game_over

 game_over = True

Remember to delete
the pass keyword and
then add these lines.

Ending the game
The game starts and then seven seconds later,
clock.schedule will run the time_up() function,
which ends the game. But the game still needs
to show the player’s final score. For this, you need to
add in one more bit of code to the draw() function.

17

This line will run the function
time_up() seven seconds
after the game starts.

Set the timer
Now that time_up() is defined, the program needs
to run it. But it needs to run seven seconds after the
game starts. You can use Pygame Zero’s built-in tool
clock to do this. This tool lets the program call a
function after a specified amount of time. Add this
line in the code as shown here.

16

clock.schedule(time_up, 7.0)

place_coin()

Using update()
The final function you need to define is update(). This is
a built-in Pygame Zero function, which means that unlike
the other functions, you don’t need to worry about when
to run it. Once you’ve defined it, Pygame Zero will run
it automatically—60 times a second! Delete pass under
def update() and add this code. It will move the fox to
the left if the left keyboard arrow is pressed.

18 def update():

 if keyboard.left:

 fox.x = fox.x - 2

This moves the fox two pixels to
the left if the left arrow is pressed.

Time’s up! I think you
better stop now.

G A M E P R O G R E S S 8 6 %

US_064-065_coin_collecctor.indd 65 22/02/18 12:25 pm

66 C O I N C O L L E C T O R

 def update():

 global score

 if keyboard.left:

 fox.x = fox.x - 2

 elif keyboard.right:

 fox.x = fox.x + 2

 elif keyboard.up:

 fox.y = fox.y - 2

 elif keyboard.down:

 fox.y = fox.y + 2

 coin_collected = fox.colliderect(coin)

 if coin_collected:

 score = score + 10

 place_coin()

 clock.schedule(time_up, 7.0)

 place_coin()

Collect the coins
Finally, you need to add some code that will
update the score if the fox touches a coin.
Add this code to the update() function.

20

Make sure you add this
line at the very top.

If the fox touches the coin,
this variable will be True.

Game complete!
You’ve written all the code, and your game is now
ready to go! Test your game and see how many
coins you can collect before the game is over.

21

One way only
Now test your code. You should be able to
move the fox to the left. But the fox needs
to be able to move in other directions, too,
so add this code to do that.

19

The else-if
branches are
used to move the
fox depending
on which arrow
key is pressed.

def update():

 if keyboard.left:

 fox.x = fox.x - 2

 elif keyboard.right:

 fox.x = fox.x + 2

 elif keyboard.up:

 fox.y = fox.y - 2

 elif keyboard.down:

 fox.y = fox.y + 2

This will
increase the
score by ten.

Look what I found!

ONE WAY

US_066-067_coin_collector.indd 66 22/02/18 12:25 pm

67

hedgehog = Actor("hedgehog")

 if keyboard.left:

 fox.x = fox.x - 4

 elif keyboard.right:

 fox.x = fox.x + 4

 elif keyboard.up:

 fox.y = fox.y - 4

 elif keyboard.down:

 fox.y = fox.y + 4

Name’s Hog...
Hedge Hog.

I think I can
go faster.

Hacks and tweaks
There are lots of ways to modify your game.
You could try changing the fox to a different
character of your choice, or you could make
the game last longer.

△ A different Actor
You can replace the fox with some other character by using
another image from the Python Games Resource Pack, or
you can use the 8-bit editors available online to make
your own Actor. Remember to update the code so it uses
the name of the new character throughout the program.

clock.schedule(time_up, 15.0)

△ Extra time
The game currently ends after seven seconds. To
make the game easier, you could give the player
more time to play. You can do this by changing just
one line of code.

△ Go faster!
You can tweak the code to make the fox move
faster. For this, you’ll need to change some of the
code in the update() function. At the moment, the
fox moves two pixels every time the arrows are
pressed. Here’s a way to make it move at double
that speed.

△ Change the playing area
You can change the size of the playing area by changing
the values of WIDTH and HEIGHT. Try using different
numbers for these values and see what happens. Can
you spot which part of the code you need to update?

G A M E P R O G R E S S 1 0 0 %

US_066-067_coin_collector.indd 67 22/02/18 12:25 pm

67

hedgehog = Actor("hedgehog")

 if keyboard.left:

 fox.x = fox.x - 4

 elif keyboard.right:

 fox.x = fox.x + 4

 elif keyboard.up:

 fox.y = fox.y - 4

 elif keyboard.down:

 fox.y = fox.y + 4

Name’s Hog...
Hedge Hog.

I think I can
go faster.

Hacks and tweaks
There are lots of ways to modify your game.
You could try changing the fox to a different
character of your choice, or you could make
the game last longer.

△ A different Actor
You can replace the fox with some other character by using
another image from the Python Games Resource Pack, or
you can use the 8-bit editors available online to make
your own Actor. Remember to update the code so it uses
the name of the new character throughout the program.

clock.schedule(time_up, 15.0)

△ Extra time
The game currently ends after seven seconds. To
make the game easier, you could give the player
more time to play. You can do this by changing just
one line of code.

△ Go faster!
You can tweak the code to make the fox move
faster. For this, you’ll need to change some of the
code in the update() function. At the moment, the
fox moves two pixels every time the arrows are
pressed. Here’s a way to make it move at double
that speed.

△ Change the playing area
You can change the size of the playing area by changing
the values of WIDTH and HEIGHT. Try using different
numbers for these values and see what happens. Can
you spot which part of the code you need to update?

G A M E P R O G R E S S 1 0 0 %

US_066-067_coin_collector.indd 67 22/02/18 12:25 pm

US_068-069_Chapter_opener_5.indd 68 22/02/18 1:40 pm

Follow the
Numbers

1

2

33

21

US_068-069_Chapter_opener_5.indd 69 22/02/18 1:40 pm

Follow the
Numbers

1

2

33

21

US_068-069_Chapter_opener_5.indd 69 22/02/18 1:40 pm

F O L L O W T H E N U M B E R S70

◁ Dots and lines
The dots appear at random
positions on the screen. When
you click on the correct dot,
a line will be drawn between
it and the previous dot you
clicked on.

How to build
Follow the Numbers
Can you connect all the dots in the correct
order? Challenge yourself to finish the game
as quickly as you can. Be careful, however—
one wrong click and you’ll have to start
all over again.

What happens
At the beginning of the game, ten dots appear
at random positions on the screen, each with a
number next to it. You need to click on the dots in
the correct order to connect them. The game will
finish once you’ve connected all the dots together.
But if you make a mistake, all the lines will disappear
and you’ll have to start from the very first dot again.

Pygame Zero Game

1

8

2

3

US_070-071_follow_the_numbers_1.indd 70 22/02/18 12:25 pm

71H O W T O B U I L D F O L L O W T H E N U M B E R S

◁ Connect the dots
Every time you run this game,
the program uses a loop to
draw the dots at different
positions on the screen.

You can change the
background to any
color you like.

When you click on the
correct dot, a line is drawn
between it and the last dot
you clicked on.

Each dot has a number
label under it.

10

5

4

9

7

6

US_070-071_follow_the_numbers_1.indd 71 22/02/18 12:25 pm

71H O W T O B U I L D F O L L O W T H E N U M B E R S

◁ Connect the dots
Every time you run this game,
the program uses a loop to
draw the dots at different
positions on the screen.

You can change the
background to any
color you like.

When you click on the
correct dot, a line is drawn
between it and the last dot
you clicked on.

Each dot has a number
label under it.

10

5

4

9

7

6

US_070-071_follow_the_numbers_1.indd 71 22/02/18 12:25 pm

F O L L O W T H E N U M B E R S72

How it works
This game uses Python’s randint() function
to randomly choose x and y coordinates for
each of the dots, and then places them all on
the screen. It uses the on_mouse_down()
function to know when the player has clicked
on a dot. If the player clicks on the correct
dot, and it’s not the first dot, a line is drawn
between the current dot and the previous
dot. If the player clicks on the wrong dot, or
clicks anywhere else on the screen, all the
lines are deleted and the player has to start
again. The game ends once the player has
connected all the dots. Correct next

dot clicked?

 Was it the
first dot?

Are there any
dots left?

Start

End

Place dots

Draw line

Set the next_dot
variable back to 1 and

delete all lines

▷ Follow the
Numbers flowchart
This game checks to see if
the player has clicked on a
dot and if that dot matches
the value in the next_dot
variable. The program will
continue to run until there
are no more dots to connect.

Y

Y

Y

N

N

N

This is easy... Just
follow the numbers!

1

2

3

3

3

3

2

2

2

1
1

1

Really? I still
don’t get it!

US_072-073_follow_the_numbers.indd 72 22/02/18 12:25 pm

73

Let’s get started
It’s time to start building the game. Begin by
importing the Python modules required for this game.
Then write the functions to create the dots and the lines.

Set it up
Open IDLE and create
an empty file by going
to the File menu and
choosing New File.

1

Save the game
Go to the python-games folder you made
earlier and create another folder in it called
follow-the-numbers. Go to the File menu, click
Save As... and save your program as numbers.py.

2

follow-the-numbers

Cancel Save

numbers.pySave As:

Tags:

Where:

Put the image into the folder
Find the file called “dot.png” in the Python Games
Resource Pack (dk.com/computercoding) and copy
it into the images folder. Your folders should look
something like this now.

4 Import a module
Now you’re ready to start coding.
Go back to your IDLE file and type
this line at the top.

5

 from random import randint

This imports the randint()
function from Python’s
Random module.

Set up an image folder
This game uses one image for all the dots.
Create a new folder called images inside
your follow-the-numbers folder.

3

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

G A M E P R O G R E S S 3 3 %

One piece at a time!
File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

numbers.py

dot.png

follow-the-numbers

images

US_072-073_follow_the_numbers.indd 73 23/02/18 2:31 pm

73

Let’s get started
It’s time to start building the game. Begin by
importing the Python modules required for this game.
Then write the functions to create the dots and the lines.

Set it up
Open IDLE and create
an empty file by going
to the File menu and
choosing New File.

1

Save the game
Go to the python-games folder you made
earlier and create another folder in it called
follow-the-numbers. Go to the File menu, click
Save As... and save your program as numbers.py.

2

follow-the-numbers

Cancel Save

numbers.pySave As:

Tags:

Where:

Put the image into the folder
Find the file called “dot.png” in the Python Games
Resource Pack (dk.com/computercoding) and copy
it into the images folder. Your folders should look
something like this now.

4 Import a module
Now you’re ready to start coding.
Go back to your IDLE file and type
this line at the top.

5

 from random import randint

This imports the randint()
function from Python’s
Random module.

Set up an image folder
This game uses one image for all the dots.
Create a new folder called images inside
your follow-the-numbers folder.

3

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

G A M E P R O G R E S S 3 3 %

One piece at a time!
File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

numbers.py

dot.png

follow-the-numbers

images

US_072-073_follow_the_numbers.indd 73 23/02/18 2:31 pm

74 F O L L O W T H E N U M B E R S

Set up the Actors
It’s time to set up the Actors. In this game, the
ten dots are the Actors. Create these dots in a
loop, giving each one a randomly chosen
position and then adding it to the list of Actors.
Type this code under what you typed in Step 7.

8

Set up the lists
Now you need some lists to store
all the dots, and also the lines that
will be drawn to connect these dots.
You’ll need a variable to keep track
of which dot should be clicked
on next. Create these by typing
this code.

7

next_dot = 0

for dot in range(0, 10):

 actor = Actor("dot")

 actor.pos = randint(20, WIDTH - 20), \

 randint(20, HEIGHT - 20)

 dots.append(actor)

Use a backslash character
if you need to split a long
line of code over two lines.
It may fit on one in your
file, though.

This will loop
ten times.

 HEIGHT = 400

 dots = []

lines = []

 next_dot = 0

These global lists
will store the dots
and the lines.

This global variable starts at 0
and tells the game which dot
should be clicked on next.

You need to stand on
the mark, Martha.

This will ensure that the
dots appear at least 20

pixels away from the
edge of the screen so

the whole dot is shown.

This line will create a
new Actor using the

image of the dot in
the images folder.

E X P E R T T I P S

Global and local variables
There are two types of variables—
local and global. A global variable
can be used anywhere in your code.
A local variable can only be used
inside the function it was created in.
To change a global variable in a
function, just put the keyword global
before its name.

6

 WIDTH = 400

 HEIGHT = 400

This declares the global
variables to set the

screen size in pixels.

I definitely need
a bigger screen!

Set the screen size
Next you need to set the size of the screen
for your game. Type these lines under the
code from Step 5.

US_074-075_follow_the_numbers.indd 74 22/02/18 12:25 pm

75

Draw the Actors
Now use the draw() function to display the dots and their number
labels on the screen. The function screen.draw.text() expects a
string as an input, but since the value stored in number is an integer,
you need to use the str() function to convert it into a string. Add this
code below the commands from Step 8.

9

 dots.append(actor)

 def draw():

 screen.fill("black")

 number = 1

 for dot in dots:

 screen.draw.text(str(number), \

 (dot.pos[0], dot.pos[1] + 12))

 dot.draw()

 number = number + 1

This creates a variable
to keep track of the

current number label.

This sets the background
color to black.

Draw the lines
Next add this code to the end of the draw() function to draw the
lines. Until the player clicks on the first two dots, the lines list will
remain empty, so the function won’t draw any lines on the screen.

 number = number + 1

 for line in lines:

 screen.draw.line(line[0], line[1], (100, 0, 0))

10

These lines draw
each dot on the
screen along with
a number label.

These numbers can change
depending on the color
you choose for the line.

 screen.draw.line(x, y, (0, 0, 100))

E X P E R T T I P S

Line function
This function draws a line between two points
on the screen—starting at point x and ending
at point y. You can change the color of the line
to red (R), green (G), blue (B), or even a mix of
all three (RGB). Create a color by assigning
values between 0 (none of the color) and
255 (the maximum amount of the color). For
example, (0, 0, 100) sets the color of the line to
blue. You can use some colors by typing in
their names, but RGB values let you use lots of
different shades.

G A M E P R O G R E S S 6 7 %

How about royal blue?
Or pink? Better check

pages 114–115 for their
RGB values.

US_074-075_follow_the_numbers.indd 75 22/02/18 12:25 pm

75

Draw the Actors
Now use the draw() function to display the dots and their number
labels on the screen. The function screen.draw.text() expects a
string as an input, but since the value stored in number is an integer,
you need to use the str() function to convert it into a string. Add this
code below the commands from Step 8.

9

 dots.append(actor)

 def draw():

 screen.fill("black")

 number = 1

 for dot in dots:

 screen.draw.text(str(number), \

 (dot.pos[0], dot.pos[1] + 12))

 dot.draw()

 number = number + 1

This creates a variable
to keep track of the

current number label.

This sets the background
color to black.

Draw the lines
Next add this code to the end of the draw() function to draw the
lines. Until the player clicks on the first two dots, the lines list will
remain empty, so the function won’t draw any lines on the screen.

 number = number + 1

 for line in lines:

 screen.draw.line(line[0], line[1], (100, 0, 0))

10

These lines draw
each dot on the
screen along with
a number label.

These numbers can change
depending on the color
you choose for the line.

 screen.draw.line(x, y, (0, 0, 100))

E X P E R T T I P S

Line function
This function draws a line between two points
on the screen—starting at point x and ending
at point y. You can change the color of the line
to red (R), green (G), blue (B), or even a mix of
all three (RGB). Create a color by assigning
values between 0 (none of the color) and
255 (the maximum amount of the color). For
example, (0, 0, 100) sets the color of the line to
blue. You can use some colors by typing in
their names, but RGB values let you use lots of
different shades.

G A M E P R O G R E S S 6 7 %

How about royal blue?
Or pink? Better check

pages 114–115 for their
RGB values.

US_074-075_follow_the_numbers.indd 75 22/02/18 12:25 pm

76 F O L L O W T H E N U M B E R S

What do you see?
If the program runs successfully, you should
see a screen like the one below. Your dots will
probably be in a slightly different place, though. If
your screen looks completely different, or if you get
an error message, go through your code carefully
to see if you’ve made any mistakes.

12

11
Drag the numbers.py
file here to run it.

Test the code
Let’s test the code you’ve written so far. Remember,
you need to run the program by using the command
line in the Command Prompt or Terminal window.
Check pages 24–25 if you need to remind yourself
how to do this.

Ah! A bug! I’d
better turn to pages

44–47 for help.

Oh, I can finally see
them! There are ten

dots in all.

 pgzrun

Pygame Zero Game

The position of the
dots will change
each time you run
the code.

2

1

10

9

5

8

3

7

4

6

US_076-077_follow_the_numbers.indd 76 22/02/18 12:25 pm

77

Connect the dots
You now need to make the dots respond
to the mouse clicks. Add these lines under
def on_mouse_down(pos) from Step 13.

Time to connect
And it’s done! Now that you’ve finished
writing the code, save it and run it from
the command line to start playing. Don’t
forget, you need to connect all the dots
as fast as you can!

14

15

 global lines

 if dots[next_dot].collidepoint(pos):

 if next_dot:

 lines.append((dots[next_dot - 1].pos, dots[next_dot].pos))

 next_dot = next_dot + 1

 else:

 lines = []

 next_dot = 0

If the player clicks on the wrong dot,
this sets the next_dot back to the first
one and deletes all the lines.

This line checks if the player
has clicked on the next dot
in the sequence.

If the mouse click position
and the dot position match,
“Ouch” is printed in the shell.

This passes the position
of the mouse click to
the on_mouse_down()
function.

This creates an
Actor with the
dot image.

This line checks if the player has
already clicked on the first dot.

This draws a line
between the
current dot and
the previous one.This sets next_dot

to the next number.

Add a new function
When you ran the program just then, you
probably noticed that nothing happened
when you clicked on the dots. To fix this,
add the on_mouse_down(pos) function
under the code from Step 10.

13 You have to add this
code to let the function
change the values of
the global variables
next_dot and lines.

dot = Actor("dot")

def on_mouse_down(pos):

 if dot.collidepoint(pos):

 print("Ouch")

E X P E R T T I P S

Collisions
You can use the collidepoint() function to check
if the position of the mouse click matches the
position of an Actor.

 def on_mouse_down(pos):

 global next_dot

 global lines

G A M E P R O G R E S S 1 0 0 %

Here goes...

US_076-077_follow_the_numbers.indd 77 22/02/18 12:25 pm

77

Connect the dots
You now need to make the dots respond
to the mouse clicks. Add these lines under
def on_mouse_down(pos) from Step 13.

Time to connect
And it’s done! Now that you’ve finished
writing the code, save it and run it from
the command line to start playing. Don’t
forget, you need to connect all the dots
as fast as you can!

14

15

 global lines

 if dots[next_dot].collidepoint(pos):

 if next_dot:

 lines.append((dots[next_dot - 1].pos, dots[next_dot].pos))

 next_dot = next_dot + 1

 else:

 lines = []

 next_dot = 0

If the player clicks on the wrong dot,
this sets the next_dot back to the first
one and deletes all the lines.

This line checks if the player
has clicked on the next dot
in the sequence.

If the mouse click position
and the dot position match,
“Ouch” is printed in the shell.

This passes the position
of the mouse click to
the on_mouse_down()
function.

This creates an
Actor with the
dot image.

This line checks if the player has
already clicked on the first dot.

This draws a line
between the
current dot and
the previous one.This sets next_dot

to the next number.

Add a new function
When you ran the program just then, you
probably noticed that nothing happened
when you clicked on the dots. To fix this,
add the on_mouse_down(pos) function
under the code from Step 10.

13 You have to add this
code to let the function
change the values of
the global variables
next_dot and lines.

dot = Actor("dot")

def on_mouse_down(pos):

 if dot.collidepoint(pos):

 print("Ouch")

E X P E R T T I P S

Collisions
You can use the collidepoint() function to check
if the position of the mouse click matches the
position of an Actor.

 def on_mouse_down(pos):

 global next_dot

 global lines

G A M E P R O G R E S S 1 0 0 %

Here goes...

US_076-077_follow_the_numbers.indd 77 22/02/18 12:25 pm

78 F O L L O W T H E N U M B E R S

△ More dots
You can add more dots to the game to make it
more challenging. Remember the loop in Step 8
that creates ten dots? Can you modify the range
to create some more?

△ No more chances
At the moment, the player has an unlimited
number of attempts to connect the dots
together. Try changing the code so that the
game ends if the player makes a mistake. You
could even add a “Game Over!” message to
your code. If you do this, remember to clear
everything else off the screen first.

△ Multiple sets of dots
To make the game more challenging, you could
add another set of dots. There’s a red dot in the
Hacks and tweaks section of the Resource Pack.
You’ll need to think about the following things
to tweak the game:

 ▪ Create a separate list for the red dots.
 ▪ Create a separate list for blue lines to connect

 the red dots.
 ▪ Create a next_dot variable for the red dots.
 ▪ Set up the red dots at the start.
 ▪ Draw the red dots and blue lines.
 ▪ Check if the next red dot has been clicked.

Hacks and tweaks
Try out the following ideas to make
Follow the Numbers a bit more
challenging and even more fun.

△ Level up
You could add levels so the game gets harder
each time you complete a sequence. Each level
could have two more dots than the last. Try
defining a next_level() function to do this.
This code will help you get started.

Strike three, and
you’re out!

 number_of_dots = 10

 def next_level:

if next_dot == number_of_dots - 1:

Set up a variable to keep
track of how many dots
each level has.

What does your program need to
do when increasing the level?

Define a function
that adds two dots
to the dots list.

US_078-079_follow_the_numbers.indd 78 22/02/18 12:25 pm

79H A C K S A N D T W E A K S

▷ In record time
You can use the system clock to time how long it takes
a player to connect all the dots. You could then try to
beat your friends’ times! To time the game, you’ll need
to use the time() function. Once the game is complete,
you can display the final time taken on the screen. Why
not try placing the clock in the corner? Remember to
use str() to cast the message into a string. You can
check Step 9 of the game if you need to remind yourself
how to do this. At the moment, though, the draw()
function is only called when the player clicks the
mouse, so the clock would only update after each
mouse click. To fix this, add this code. This function is
called 60 times a second. Each call also calls the draw()
function, so the clock stays up to date.

I’m still going to win,
you know. Get ready

to lose again!

E X P E R T T I P SE X P E R T T I P S

time()
The time() function might give you an
unexpected result. It calculates the time that’s
passed since an “epoch,” which is the date an
operating system considers to be the “start of
time.” Windows machines will tell you how many
seconds have passed since January 1, 1601!
You can use this simple calculation below to
work out how long it actually took the player
to complete the game.

round()
The time() function calculates time to lots
of decimal places. You can use the round()
function to round it to a certain number
of decimal places, which will make it easier
to read. round() takes two parameters—the
number to round up or down and the number
of decimal places to shorten it to.

 from time import time

total_time = end_time - start_time

 def update():

 pass

STAIRS

This calculates the
total time elapsed.

You don’t need to replace
pass with any actual code.

Put this code at the top
of your program to use
the Time module.

This is the number
you want to round up.

This is the number of
decimal places you
want to round it to.

>>> round(5.75, 1)

5.8

US_078-079_follow_the_numbers.indd 79 22/02/18 12:25 pm

79H A C K S A N D T W E A K S

▷ In record time
You can use the system clock to time how long it takes
a player to connect all the dots. You could then try to
beat your friends’ times! To time the game, you’ll need
to use the time() function. Once the game is complete,
you can display the final time taken on the screen. Why
not try placing the clock in the corner? Remember to
use str() to cast the message into a string. You can
check Step 9 of the game if you need to remind yourself
how to do this. At the moment, though, the draw()
function is only called when the player clicks the
mouse, so the clock would only update after each
mouse click. To fix this, add this code. This function is
called 60 times a second. Each call also calls the draw()
function, so the clock stays up to date.

I’m still going to win,
you know. Get ready

to lose again!

E X P E R T T I P SE X P E R T T I P S

time()
The time() function might give you an
unexpected result. It calculates the time that’s
passed since an “epoch,” which is the date an
operating system considers to be the “start of
time.” Windows machines will tell you how many
seconds have passed since January 1, 1601!
You can use this simple calculation below to
work out how long it actually took the player
to complete the game.

round()
The time() function calculates time to lots
of decimal places. You can use the round()
function to round it to a certain number
of decimal places, which will make it easier
to read. round() takes two parameters—the
number to round up or down and the number
of decimal places to shorten it to.

 from time import time

total_time = end_time - start_time

 def update():

 pass

STAIRS

This calculates the
total time elapsed.

You don’t need to replace
pass with any actual code.

Put this code at the top
of your program to use
the Time module.

This is the number
you want to round up.

This is the number of
decimal places you
want to round it to.

>>> round(5.75, 1)

5.8

US_078-079_follow_the_numbers.indd 79 22/02/18 12:25 pm

US_080-081_Chapter_opener_6.indd 80 22/02/18 1:40 pm

Red
Alert

US_080-081_Chapter_opener_6.indd 81 23/02/18 2:31 pm

Red
Alert

US_080-081_Chapter_opener_6.indd 81 23/02/18 2:31 pm

R E D A L E R T82

What happens
When the game begins, two stars appear
and start moving down the screen. The
player needs to click on the red star before
the stars reach the bottom of the screen.
Each time the red star is clicked, the game
moves on to the next level. With each level,
more green and blue stars are added and
they move faster than before. If the player
clicks on any star other than the red one, or
if the stars reach the bottom of the screen,
the game ends.

How to build
Red Alert
You’ll need lightning-fast reactions to
beat this game. Click on the red star
to keep the game moving. Anything
other than red will land you in trouble.

Pygame Zero Game

◁ Stars
This game uses three colors
for the star Actors—red,
blue, and green.

The number of
stars increases

with every level.

US_082-083_Red_Alert_1.indd 82 22/02/18 12:25 pm

83

◁ Shooting stars
The program uses Pygame
Zero’s animate() function to
move the stars down the screen.
You can adjust the duration of
the animation to make the game
more interesting. The stars can
fall as slowly or as quickly as
you like!

H O W T O B U I L D R E D A L E R T

Those stars make
a beautiful

constellation!

The stars always appear
in a single line.

US_082-083_Red_Alert_1.indd 83 22/02/18 12:25 pm

83

◁ Shooting stars
The program uses Pygame
Zero’s animate() function to
move the stars down the screen.
You can adjust the duration of
the animation to make the game
more interesting. The stars can
fall as slowly or as quickly as
you like!

H O W T O B U I L D R E D A L E R T

Those stars make
a beautiful

constellation!

The stars always appear
in a single line.

US_082-083_Red_Alert_1.indd 83 22/02/18 12:25 pm

R E D A L E R T84

△ Red Alert flowchart
This program uses one main loop that
checks if the stars are moving down the
screen and if the player has clicked on a star.
The game either ends or moves on to the
next level, depending on the player’s action.

How it works
This game uses the draw() and update() functions to
display the stars on the screen. Each time the draw()
function is called, the program clears everything on the
screen and redraws the stars. The update() function
checks if the player has clicked on a star.

Has a star been
clicked on?

Is it red?
Is this the

final level?

Has a star reached
the bottom of the

screen?

Start

End

Draw and lay
out the stars

Animate the stars
Add a star and

increase the speed

Y

YY

Y

N

NN

N

Oh! A shooting
star!

US_084-085_Red_Alert_2.indd 84 22/02/18 12:25 pm

85

Let’s begin
It’s time to start coding the game. First
you’ll add the variables that control the
game’s behavior. Then you’ll create the
functions that draw and move the stars.
Once the steps are complete, you
should have some colorful stars.

Create a new file
To get started, open IDLE and create an
empty file by going to the File menu and
choosing New File.

Save the file
Go to the python-games folder you made earlier.
Inside this folder, create another folder called
red-alert and save your IDLE file in it as red.py.

Set up an image folder
This game uses images of a red star, a blue
star, and a green star. Create a new folder,
called images, inside the red-alert folder to
save these images. It should be in the
same place as the red.py file.

Put the images in the folder
Find the Red Alert images in the Python Games
Resource Pack (dk.com/computercoding) and
copy them into the images folder you just created.
Your folders should look something like this now.

G A M E P R O G R E S S 1 7 %

Ouch! I’m seeing
stars!

1

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

2

Save As:

red-alert

Cancel Save

red.py

Tags:

Where:

3 4

red-alert

red.py

blue-star.png
green-star.png
red-star.png
space.png

images

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

US_084-085_Red_Alert_2.indd 85 23/02/18 2:31 pm

85

Let’s begin
It’s time to start coding the game. First
you’ll add the variables that control the
game’s behavior. Then you’ll create the
functions that draw and move the stars.
Once the steps are complete, you
should have some colorful stars.

Create a new file
To get started, open IDLE and create an
empty file by going to the File menu and
choosing New File.

Save the file
Go to the python-games folder you made earlier.
Inside this folder, create another folder called
red-alert and save your IDLE file in it as red.py.

Set up an image folder
This game uses images of a red star, a blue
star, and a green star. Create a new folder,
called images, inside the red-alert folder to
save these images. It should be in the
same place as the red.py file.

Put the images in the folder
Find the Red Alert images in the Python Games
Resource Pack (dk.com/computercoding) and
copy them into the images folder you just created.
Your folders should look something like this now.

G A M E P R O G R E S S 1 7 %

Ouch! I’m seeing
stars!

1

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

2

Save As:

red-alert

Cancel Save

red.py

Tags:

Where:

3 4

red-alert

red.py

blue-star.png
green-star.png
red-star.png
space.png

images

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

US_084-085_Red_Alert_2.indd 85 23/02/18 2:31 pm

R E D A L E R T86

Declare the constants
Constants are variables that are usually
declared at the start of a program. They
are called constants because their
values shouldn’t change throughout the
program. Type the code shown in black.

Declare the global variables
Like constants, global variables are
usually declared at the top of a program,
but unlike constants, their values can
change throughout the program. They
can be used throughout the code. In this
game, you’ll use these global variables
to track the game’s progress. Add this
code under the lines from Step 6.

6

7

import random

FONT_COLOR = (255, 255, 255)

 WIDTH = 800

 HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

 CENTER = (CENTER_X, CENTER_Y)

FINAL_LEVEL = 6

START_SPEED = 10

COLORS = ["green", "blue"]

 FINAL_LEVEL = 6

 STA RT_SPEED = 10

COLORS = ["green", "blue"]

 game_over = False

 game_complete = False

 current_level = 1

 stars = []

 animations = []

This sets the font color of
the message that is displayed
at the end of the game.

These constants
define the size of
the game window.

These variables will
keep track of if the
game is over or not.

This variable will
keep track of what
level the player’s on.

This line sets the
color of the stars
that should not
be clicked.

This sets the speed at
which the stars move
down the screen.

This constant defines
the number of levels

in the game.

These lists will keep track
of the stars on the screen.

Import a module
The first thing you need to do is import
Python’s Random module. To import a whole
module, you simply need to type import
followed by the name of the module. We’ll
use Random in the choice() and shuffle()
functions later in the code.

5 import random

This imports the
Random module.

US_086-087_Red_Alert_3.indd 86 22/02/18 12:26 pm

87

Draw the stars
Now it’s time to define the first function.
You’ll use the draw() function to add
some stars and display messages on the
screen. Add this code under what you
typed in Step 7.

8

 current_level = 1

 sta rs = []

 animations = []

 def draw():

 global stars, cu rrent_level, game_over, game_complete

 screen.clea r()

 screen.blit("space", (0, 0))

 if game_over:

 display_ message(" GAME OVER!", "Try again.")

 elif game_comple te:

 display_ message("Y O U WON!", "Well done.")

 else:

 for star in stars:

 star.draw()

G A M E P R O G R E S S 3 3 %

These are the global
variables used in
this function.

This adds a
background
image to the
game window.

When the game is
over or complete,
this block displays
the relevant message
on the screen.

This block draws the
stars on the screen.

L I N G O

Constants
Constants are variables whose
value shouldn’t change after
they are first set. Programmers
use capital letters when naming
them to let other programmers
know not to change their values.
This is known as a “naming
convention”—a rule that most
programmers agree on, so that
everyone’s code looks similar
and is easier to understand.

US_086-087_Red_Alert_3.indd 87 22/02/18 12:26 pm

87

Draw the stars
Now it’s time to define the first function.
You’ll use the draw() function to add
some stars and display messages on the
screen. Add this code under what you
typed in Step 7.

8

 current_level = 1

 sta rs = []

 animations = []

 def draw():

 global stars, cu rrent_level, game_over, game_complete

 screen.clea r()

 screen.blit("space", (0, 0))

 if game_over:

 display_ message(" GAME OVER!", "Try again.")

 elif game_comple te:

 display_ message("Y O U WON!", "Well done.")

 else:

 for star in stars:

 star.draw()

G A M E P R O G R E S S 3 3 %

These are the global
variables used in
this function.

This adds a
background
image to the
game window.

When the game is
over or complete,
this block displays
the relevant message
on the screen.

This block draws the
stars on the screen.

L I N G O

Constants
Constants are variables whose
value shouldn’t change after
they are first set. Programmers
use capital letters when naming
them to let other programmers
know not to change their values.
This is known as a “naming
convention”—a rule that most
programmers agree on, so that
everyone’s code looks similar
and is easier to understand.

US_086-087_Red_Alert_3.indd 87 22/02/18 12:26 pm

R E D A L E R T88

Make the stars
Next you need to define the make_stars()
function. This is used to call some of
the other functions in the game. Type
this after the code from Step 9.

10

 stars = make_stars(current_level)

 def make_stars(number_of_extra_stars):

 colors_to_create = get_colors_to_create(number_of_extra_stars)

 new_stars = create_stars(colors_to_create)

 layout_stars(new_stars)

 animate_stars(new_stars)

 return new_stars

This function puts the stars in
the right position on the screen.

This function makes the stars
move down the screen.

This returns a list of
colors that will be
used to draw the stars.

This function uses the list
of colors as a parameter
and creates Actors for
each star.

Don’t forget to save
your work.

Define the update() function
The draw() function that you defined
in the previous step will have nothing
to draw unless you create the stars.
Define the update() function next to
check if there are any stars in the stars
list. If there aren’t, it should call the
make_stars() function. Add this
code under the lines from Step 8.

9 star.draw()

 def update():

 global stars

 if len(stars) == 0:

 stars = make_stars(current_level)

This checks if any stars
have been created yet.

If the stars list is empty,
this function is called.

Sir, your name is
not on the list.

But I’m the star
of the show!

US_088-089_Red_Alert_4.indd 88 22/02/18 12:26 pm

89

Add placeholders
You’ll need to define all the
functions created in the previous
step before you can test the
game. For now, use return [] for
the get_colors_to_create()
and create_stars() functions
to make empty lists, then write
placeholders for the layout_stars()
and animate_stars() functions
by using the pass keyword. Add
the code shown here.

Test the code
Save the IDLE file and run it from the command line
in the Command Prompt or Terminal window. You
won’t see any stars on the screen yet, but you will
be able to check if there are any bugs in the code.

11

12

 return new_stars

def get_colors_to_create(number_of_extra_stars):

 return []

 def create_stars(colors_to_create):

 return []

 def layout_stars(stars_to_layout):

 pass

 def animate_stars(stars_to_animate):

 pass

G A M E P R O G R E S S 5 4 %

Get a list of colors
This game uses red, blue, and green stars. First create
a list containing a string for the color red and then
assign this list to the variable colors_to_create. The
list starts with red, because you always need one—and
only one—red star to appear. To add green and blue
stars, you’ll use the parameter number_of_extra_
stars to loop through the code, randomly adding
either green or blue to the list of colors. Replace
return [] under def get_colors_to_create(number_
of_extra_stars) from Step 11 with this code.

13

def get_colors_to_create(number_of_extra_stars):

 colors_to_create = ["red"]

 for i in range(0, number_of_extra_stars):

 random_color = random.choice(COLORS)

 colors_to_create.append(random_color)

 return colors_to_create

This makes the first
star in the list red.

This adds the new
color to the list.

i refers to the current
number in the range.

This chooses a
random color
from the list for
each additional star.

Look at all
those colors!

 pgzrun

Drag the red.py file
here to run it.

US_088-089_Red_Alert_4.indd 89 22/02/18 12:26 pm

89

Add placeholders
You’ll need to define all the
functions created in the previous
step before you can test the
game. For now, use return [] for
the get_colors_to_create()
and create_stars() functions
to make empty lists, then write
placeholders for the layout_stars()
and animate_stars() functions
by using the pass keyword. Add
the code shown here.

Test the code
Save the IDLE file and run it from the command line
in the Command Prompt or Terminal window. You
won’t see any stars on the screen yet, but you will
be able to check if there are any bugs in the code.

11

12

 return new_stars

def get_colors_to_create(number_of_extra_stars):

 return []

 def create_stars(colors_to_create):

 return []

 def layout_stars(stars_to_layout):

 pass

 def animate_stars(stars_to_animate):

 pass

G A M E P R O G R E S S 5 4 %

Get a list of colors
This game uses red, blue, and green stars. First create
a list containing a string for the color red and then
assign this list to the variable colors_to_create. The
list starts with red, because you always need one—and
only one—red star to appear. To add green and blue
stars, you’ll use the parameter number_of_extra_
stars to loop through the code, randomly adding
either green or blue to the list of colors. Replace
return [] under def get_colors_to_create(number_
of_extra_stars) from Step 11 with this code.

13

def get_colors_to_create(number_of_extra_stars):

 colors_to_create = ["red"]

 for i in range(0, number_of_extra_stars):

 random_color = random.choice(COLORS)

 colors_to_create.append(random_color)

 return colors_to_create

This makes the first
star in the list red.

This adds the new
color to the list.

i refers to the current
number in the range.

This chooses a
random color
from the list for
each additional star.

Look at all
those colors!

 pgzrun

Drag the red.py file
here to run it.

US_088-089_Red_Alert_4.indd 89 22/02/18 12:26 pm

R E D A L E R T90

Try it out
Check your code to
make sure no bugs
have crawled in. Save
your code and run it
from the command
line. What do you see
on the screen?

15

At this point, both of
the stars will be drawn
on top of each other in

the top-left corner.

 def crea te_stars(colors _to_create):

 new_stars = []

 for color in colors_to_create:

 star = Actor(color + "-star")

 new_stars.append(star)

 return new_stars

Create the stars
Now you need to create the stars on the screen.
Start by making an empty list called new_stars.
Then loop over the colors in the colors_to_create
list. With each loop, the code will create a new
star Actor for the current color and add it to
the new_stars list. Replace return [] under
def create_stars(colors_to_create)
with the code shown in black.

14 This list will store the new
stars that are created.

This combines
the two strings.

This returns
the updated
new_stars list.

This loops over the
colors_to_create list.

Do you think that’s enough
stars, or should I create

some more?

Pygame Zero Game

US_090-091_Red_Alert_5.indd 90 22/02/18 12:26 pm

91

Place the stars
In this step, you’ll use the layout_stars() function to place all the stars in the right
position. First you need to work out the number of gaps you need between the
stars. This number will be one more than the number of stars on the screen. For
example, if there are two stars on the screen, there will be three gaps. The size
of each gap can be worked out by dividing the width of the screen by the total
number of gaps. You also need to shuffle the position of the stars so that the
red star doesn’t appear at the same position every time. Replace pass under
def layout_stars(stars_to_layout) with the code below.

Test again
Run the program one
more time to see what’s
changed in the code.

16

17

def layout_stars(stars_to_layout):

 number_of_gaps = len(stars_to_layout) + 1

 gap_size = WIDTH / number_of_gaps

 random.shuffle(stars_to_layout)

 for index, star in enumerate(stars_to_layout):

 new_x_pos = (index + 1) * gap_size

 star.x = new_x_pos

This shuffles the
position of the stars

along the x-axis.

This calculates
the number
of gaps on
the screen.

The gap between the edge
of the screen and each star
is the same size as the gap

between the two stars. This
gap is represented by the

yellow dotted line here.

This divides the width
of the screen by the

number of gaps.

This block sets the position of the
current star along the x-axis by multiplying the

position of the star in the list by the size of the gap.

Pygame Zero Game

G A M E P R O G R E S S 7 1 %

US_090-091_Red_Alert_5.indd 91 22/02/18 12:26 pm

91

Place the stars
In this step, you’ll use the layout_stars() function to place all the stars in the right
position. First you need to work out the number of gaps you need between the
stars. This number will be one more than the number of stars on the screen. For
example, if there are two stars on the screen, there will be three gaps. The size
of each gap can be worked out by dividing the width of the screen by the total
number of gaps. You also need to shuffle the position of the stars so that the
red star doesn’t appear at the same position every time. Replace pass under
def layout_stars(stars_to_layout) with the code below.

Test again
Run the program one
more time to see what’s
changed in the code.

16

17

def layout_stars(stars_to_layout):

 number_of_gaps = len(stars_to_layout) + 1

 gap_size = WIDTH / number_of_gaps

 random.shuffle(stars_to_layout)

 for index, star in enumerate(stars_to_layout):

 new_x_pos = (index + 1) * gap_size

 star.x = new_x_pos

This shuffles the
position of the stars

along the x-axis.

This calculates
the number
of gaps on
the screen.

The gap between the edge
of the screen and each star
is the same size as the gap

between the two stars. This
gap is represented by the

yellow dotted line here.

This divides the width
of the screen by the

number of gaps.

This block sets the position of the
current star along the x-axis by multiplying the

position of the star in the list by the size of the gap.

Pygame Zero Game

G A M E P R O G R E S S 7 1 %

US_090-091_Red_Alert_5.indd 91 22/02/18 12:26 pm

R E D A L E R T92

Animate the stars
Now that you have a few stars on the screen,
it’s time to add animation and bring this
game to life. You need to write some code to
move each star down the screen. You’ll also
have to define the duration of the animation
so the stars move faster as the levels progress.
You’ll set the star’s anchor to the bottom so
that the animation stops as soon as the star
reaches the bottom of the screen. Replace pass
under def animate_stars(stars_to_animate)
from Step 11 with the code below.

Game over
Next you need to define the handle_game_over()
function, which will end the game if the player makes
a mistake. Type the code shown in black after the
code from Step 18.

18

19

 def animate_stars(stars_to_animate):

 for star in stars_to_animate:

 duration = START_SPEED - current_level

 star.anchor = ("center", "bottom")

 animation = animate(star, duration=duration, on_finished=handle_game_over, y=HEIGHT)

 animations.append(animation)

 animations.append(animation)

 def handle_game_over():

 global game_over

 game_over = True

This works out the duration of the animation by
subtracting the current level from the default

start speed of the star. The higher the level, the
shorter the duration, so the faster the animation.

This sets the star’s
anchor at the bottom
of the star image.

This calls the
handle_game_over()
function when the
animation is complete.

L I N G O

Anchor
In computer graphics, “anchor” refers to a point
on a shape. This point is used to determine the
shape’s position on the screen. For example, if
the anchor of a square is the bottom-left corner,
when you set the position of the square to (0, 0),
its bottom-left corner is placed exactly at the
(0, 0) coordinates.

bottom-left
anchor

(0, 0)

top-left
anchor

mid-right
anchor

GAME OVER!

Game over?
It can’t be true!

US_092-093_Red_Alert_6.indd 92 23/02/18 2:31 pm

93

20

G A M E P R O G R E S S 8 3 %

This checks if the
player has clicked

on a star.

This function is
called if the player
clicks on a red star.

This function is called if
the player clicks on a star

that is not red.

(0,0) (100, 0)

Handle mouse clicks
It’s time to create a function that allows
the player to interact with the game.
Use Pygame Zero’s on_mouse_down()
function to do this. This function is called
whenever the player clicks the mouse.
Then use the collidepoint() function to
check if the player has clicked on a star.
If they have, the code will check whether
that star was red or not. Type this code
under the lines from Step 19.

E X P E R T T I P S

Animate function
animate() is a very useful function in Pygame
Zero’s library. It makes it really easy to move an
Actor on the screen. This function takes a
number of parameters:

 ▪ The first parameter is always the Actor that you
 want to animate.

 ▪ tween= This optional parameter can be used to
 change the behavior of the animation.

 ▪ duration= This parameter is the number of seconds
 the animation lasts for.

 game_over = True

 def on_mouse_down(pos):

 global stars, current_level

 for star in stars:

 if star.collidepoint(pos):

 if "red" in star.image:

 red_star_click()

 else:

 handle_game_over()

 ▪ on_finished= This is an optional parameter that
 allows you to pass a function that you want to call
 once the animation is finished. In Red Alert, you
 use this parameter to end the game when the star
 reaches the bottom of the screen.

 ▪ The final parameters are the properties of the Actor
 you want to animate. There can be more than
 one property. For example, if the Actor is at (0, 0)
 coordinates and you want to move it to (100, 0), the
 animate() function will move the Actor to the right by
 100 pixels. This move will be smooth and will last as
 many seconds as you set the duration parameter.

US_092-093_Red_Alert_6.indd 93 22/02/18 12:26 pm

93

20

G A M E P R O G R E S S 8 3 %

This checks if the
player has clicked

on a star.

This function is
called if the player
clicks on a red star.

This function is called if
the player clicks on a star

that is not red.

(0,0) (100, 0)

Handle mouse clicks
It’s time to create a function that allows
the player to interact with the game.
Use Pygame Zero’s on_mouse_down()
function to do this. This function is called
whenever the player clicks the mouse.
Then use the collidepoint() function to
check if the player has clicked on a star.
If they have, the code will check whether
that star was red or not. Type this code
under the lines from Step 19.

E X P E R T T I P S

Animate function
animate() is a very useful function in Pygame
Zero’s library. It makes it really easy to move an
Actor on the screen. This function takes a
number of parameters:

 ▪ The first parameter is always the Actor that you
 want to animate.

 ▪ tween= This optional parameter can be used to
 change the behavior of the animation.

 ▪ duration= This parameter is the number of seconds
 the animation lasts for.

 game_over = True

 def on_mouse_down(pos):

 global stars, current_level

 for star in stars:

 if star.collidepoint(pos):

 if "red" in star.image:

 red_star_click()

 else:

 handle_game_over()

 ▪ on_finished= This is an optional parameter that
 allows you to pass a function that you want to call
 once the animation is finished. In Red Alert, you
 use this parameter to end the game when the star
 reaches the bottom of the screen.

 ▪ The final parameters are the properties of the Actor
 you want to animate. There can be more than
 one property. For example, if the Actor is at (0, 0)
 coordinates and you want to move it to (100, 0), the
 animate() function will move the Actor to the right by
 100 pixels. This move will be smooth and will last as
 many seconds as you set the duration parameter.

US_092-093_Red_Alert_6.indd 93 22/02/18 12:26 pm

R E D A L E R T94

Stop the animations
Now you need to define the stop_animations()
function. This function stops the stars from
moving by looping over the list and calling stop()
on each animation if it is currently running.

Click a red star
In this game, when the player clicks on a red star, the program stops the
animation of the current set of stars on the screen and moves the game to
the next level. If the player is on the final level, game_complete is set to
True and the game ends. Add this code after the lines from Step 20.

22

21

 animations = []

 def stop_animations(animations_to_stop):

 for animation in animations_to_stop:

 if animation.running:

 animation.stop()

 handle_game_over()

 def red_star_click():

 global current_level, stars, animations, game_complete

 stop_animations(animations)

 if current_level == FINAL_LEVEL:

 game_complete = True

 else:

 current_level = current_level + 1

 stars = []

 animations = []

I don’t think you can build a
wall in time to stop them!

This function stops the
animations when the
player clicks on a red star.

This block runs if
the player is on the
final level.

This increases the current
level by one.

This block resets the stars and
the animations on screen.

US_094-095_Red_Alert_7.indd 94 22/02/18 12:26 pm

95G A M E P R O G R E S S 1 0 0 %

Display messages
Finally, add some code that displays the message you wrote
in Step 8 when the game comes to an end. Add these lines
under the code from Step 22.

Time to play!
That’s it! Save your
program and run the
IDLE file from the
command line to
start playing. How
many levels can you
complete?

23

24

 animation.stop()

 def display_message(heading_text, sub_heading_text):

 screen.draw.text(heading_text, fontsize=60, center=CENTER, color=FONT_COLOR)

 screen.draw.text(sub_heading_text,

 fontsize=30,

 center=(CENTER_X, CENTER_Y + 30),

 color=FONT_COLOR)

Pygame Zero Game

These display the text
on the screen when
the game ends.

This is the position
of the second line of
the message.

US_094-095_Red_Alert_7.indd 95 22/02/18 12:26 pm

95G A M E P R O G R E S S 1 0 0 %

Display messages
Finally, add some code that displays the message you wrote
in Step 8 when the game comes to an end. Add these lines
under the code from Step 22.

Time to play!
That’s it! Save your
program and run the
IDLE file from the
command line to
start playing. How
many levels can you
complete?

23

24

 animation.stop()

 def display_message(heading_text, sub_heading_text):

 screen.draw.text(heading_text, fontsize=60, center=CENTER, color=FONT_COLOR)

 screen.draw.text(sub_heading_text,

 fontsize=30,

 center=(CENTER_X, CENTER_Y + 30),

 color=FONT_COLOR)

Pygame Zero Game

These display the text
on the screen when
the game ends.

This is the position
of the second line of
the message.

US_094-095_Red_Alert_7.indd 95 22/02/18 12:26 pm

96 R E D A L E R T

Hacks and tweaks
This is your chance to put your own stamp on the game.
We’ve suggested some changes you might want to try.
Give them a try and maybe combine them with your own
ideas to make something new and different.

◁ Change the Actor
You can change the way your game
looks by simply changing the star Actor.
Find another image of an Actor in the
Python Games Resource Pack, or create
your own by using an 8-bit editor online.
Don’t forget to update the name of
the Actor in the code.

▽ A need for speed
One way to make the game more challenging is to
make the stars move at different speeds. Add the code
given below to the animate_stars() function. It uses
the randint() function to set the speed to 0, 1, or 2.
Once you have a value to adjust the speed by, it can be
added to the animation duration. Try running the
game after adding this code.

 random_speed_adjustment = random.randint(0,2)

 duration = START_SPEED - current_level + random_speed_adjustment

◁ Two directions
If you want to keep the players on their toes, you can make the
stars appear from the opposite direction. First you’ll need to
add the code shown here to the layout_stars() function. This will
check if the current index number is odd or even. When it’s odd,
the stars will appear at the bottom. Next you’ll need to update the
animate_stars() function to make the stars move from the bottom
to the top. Remember to update the star’s anchor.

 star.x = new_x_pos

 if index % 2 == 0:

 star.y = 0

 else:

 star.y = HEIGHT

Bharti wait!
I can change.

US_096-097_Red_Alert_8.indd 96 22/02/18 12:26 pm

97H A C K S A N D T W E A K S

◁ Try again
At the moment, the player needs to
quit the game to try again. You can
add some code to allow the player
to play again by pressing a key.
Add some code to the update()
function that will check if the player
has pressed the Space bar when
the game is over or complete. If
they have, the game is reset. You’ll
also need to update the draw()
function to change the message
that is displayed at the end.

▽ Shuffling
You can make the game a bit more fun by adding some code that shuffles the
stars every second. For this, you’ll need to use the shuffle() function. This function
first checks that the stars list isn’t empty. It then uses a Python feature called list
comprehension. This allows you to get each star’s position along the x-axis in the
form of a list. Once you have this list, you can mix up the values in it. Next you’ll
need to loop over the stars list and create an animation for each star to move
them to their new position. Use clock.schedule_interval() to run the shuffle()
function once every second. Add the following code at the end of your IDLE file.

def update():

 global stars, game_complete, game_over, current_level

 if len(stars) == 0:

 stars = make_stars(current_level)

 if (game_complete or game_over) and keyboard.space:

 stars = []

 current_level = 1

 game_complete = False

 game_over = False

def shuffle():

 global stars

 if stars:

 x_values = [star.x for star in stars]

 random.shuffle(x_values)

 for index, star in enumerate(stars):

 new_x = x_values[index]

 animation = animate(star, duration=0.5, x=new_x)

 animations.append(animation)

clock.schedule_interval(shuffle, 1)

I like the
shuffle mode!

I’m late for school!
I’ll try again tomorrow.

US_096-097_Red_Alert_8.indd 97 22/02/18 12:26 pm

97H A C K S A N D T W E A K S

◁ Try again
At the moment, the player needs to
quit the game to try again. You can
add some code to allow the player
to play again by pressing a key.
Add some code to the update()
function that will check if the player
has pressed the Space bar when
the game is over or complete. If
they have, the game is reset. You’ll
also need to update the draw()
function to change the message
that is displayed at the end.

▽ Shuffling
You can make the game a bit more fun by adding some code that shuffles the
stars every second. For this, you’ll need to use the shuffle() function. This function
first checks that the stars list isn’t empty. It then uses a Python feature called list
comprehension. This allows you to get each star’s position along the x-axis in the
form of a list. Once you have this list, you can mix up the values in it. Next you’ll
need to loop over the stars list and create an animation for each star to move
them to their new position. Use clock.schedule_interval() to run the shuffle()
function once every second. Add the following code at the end of your IDLE file.

def update():

 global stars, game_complete, game_over, current_level

 if len(stars) == 0:

 stars = make_stars(current_level)

 if (game_complete or game_over) and keyboard.space:

 stars = []

 current_level = 1

 game_complete = False

 game_over = False

def shuffle():

 global stars

 if stars:

 x_values = [star.x for star in stars]

 random.shuffle(x_values)

 for index, star in enumerate(stars):

 new_x = x_values[index]

 animation = animate(star, duration=0.5, x=new_x)

 animations.append(animation)

clock.schedule_interval(shuffle, 1)

I like the
shuffle mode!

I’m late for school!
I’ll try again tomorrow.

US_096-097_Red_Alert_8.indd 97 22/02/18 12:26 pm

US_098-099_Chapter_opener_7.indd 98 22/02/18 1:40 pm

Big Quiz

US_098-099_Chapter_opener_7.indd 99 22/02/18 1:40 pm

Big Quiz

US_098-099_Chapter_opener_7.indd 99 22/02/18 1:40 pm

B I G Q U I Z100

What happens
When the game begins, the first
question is shown on the screen
along with four possible answers.
The player has ten seconds to click on
an answer box. If they get the right
answer, the game moves on to the
next question. If the player chooses
a wrong answer, or if the time runs
out, the game ends and the final
score is displayed on the screen.

Pygame Zero Game

△ Boxes
This game doesn’t use images. Instead,
the questions, answers, and the timer are
displayed in colorful boxes that you
create using code.

How to build
Big Quiz
Put your coding skills to the
test and create a quiz game to
challenge your friends. You’re the
quizmaster, so you can make the
questions about any topic you like.

London

Berlin
Paris

What is the capital
of France?

Each question is
displayed here.

What is
capital of

US_100-101_Big_Quiz_1.indd 100 22/02/18 12:26 pm

101H O W T O B U I L D B I G Q U I Z

◁ Quiz time!
This program uses a
Graphical User Interface
(GUI, pronounced “goo-ey”),
which is the visible part of a
program that a user interacts
with. In this game, you’ll build
a GUI using Pygame Zero.

7
Paris

Tokyo

The game starts with ten
seconds on the timer. If it

reaches zero, the game ends.

The possible answers
are displayed in orange
boxes. You can change
them to a different color
if you like.

Are you ready for
the big quiz?

Bring it on!

the
France?

US_100-101_Big_Quiz_1.indd 101 22/02/18 12:26 pm

B I G Q U I Z102

How it works
All the questions and possible
answers are stored in a list. The
program uses the pop() function
to get the first question and
its possible answers from the
list and then displays them.
The player’s score is stored in
a variable and increases with
each correct answer. The final
score is displayed at the end
of the game.

◁ Big Quiz flowchart
The main body of this program is a loop
that checks if the player has selected the
correct answer within the given time. If
they have, the program moves to the next
question in the list and the timer is reset.
If the answer is wrong, the game ends and
the final score is displayed.

Is the player’s
answer correct?

Start

Draw the GUI on
the screen

Create a list of
questions

Display the question
at the top of the list

Reset timer

Increase score
by one

Display final score

Are there any
questions left in

the list?

End

Umm... I have
a question!

Y

Y

N

N

US_102-103_Big_Quiz_2.indd 102 22/02/18 12:26 pm

103G A M E P R O G R E S S 1 1 %

Thinking caps on!
There may be a time limit to answer the
questions, but not to build the game!
Follow these steps carefully to build
your own quiz show to play with your
friends and family.

First steps
Create a new folder called big-quiz in your
python-games folder. Then open IDLE and
create an empty file by going to the File menu
and choosing New File. Select Save As... from
the same menu and save the file as quiz.py
in the big-quiz folder.

Create the stubs
You don’t need any images for this game,
so you can jump straight into writing the
code. First create placeholders for the
functions you’ll need to build the quiz.

1

3 def draw():

 pass

 def game_over():

 pass

 def correct_answer():

 pass

 def on_mouse_down(pos):

 pass

 def update_time_left():

 pass

Remember, pass
is used as a
placeholder for
functions that you
don’t want to
define right away.

Set the screen size
Next you need to define the size of the
playing area. Add this code to the very
top of your program to set the width and
height of the game screen.

2 WIDTH = 1280

 HEIGHT = 720

These values
are in pixels.

Check page 144
to know more about

placeholders.

Save As:

big-quiz

Cancel Save

quiz.py

Tags:

Where:

US_102-103_Big_Quiz_2.indd 103 22/02/18 12:26 pm

103G A M E P R O G R E S S 1 1 %

Thinking caps on!
There may be a time limit to answer the
questions, but not to build the game!
Follow these steps carefully to build
your own quiz show to play with your
friends and family.

First steps
Create a new folder called big-quiz in your
python-games folder. Then open IDLE and
create an empty file by going to the File menu
and choosing New File. Select Save As... from
the same menu and save the file as quiz.py
in the big-quiz folder.

Create the stubs
You don’t need any images for this game,
so you can jump straight into writing the
code. First create placeholders for the
functions you’ll need to build the quiz.

1

3 def draw():

 pass

 def game_over():

 pass

 def correct_answer():

 pass

 def on_mouse_down(pos):

 pass

 def update_time_left():

 pass

Remember, pass
is used as a
placeholder for
functions that you
don’t want to
define right away.

Set the screen size
Next you need to define the size of the
playing area. Add this code to the very
top of your program to set the width and
height of the game screen.

2 WIDTH = 1280

 HEIGHT = 720

These values
are in pixels.

Check page 144
to know more about

placeholders.

Save As:

big-quiz

Cancel Save

quiz.py

Tags:

Where:

US_102-103_Big_Quiz_2.indd 103 22/02/18 12:26 pm

B I G Q U I Z104

Plan the interface
When building this game, you need to think about the
way it looks, or its “interface.” The player needs to be able
to see the question, its possible answers, and a timer
that shows how long they’ve got left. Here’s a sketch of
how you might want the interface to look.

4

There should be
enough room to

display the full
question.

The font size
will need to be

big enough for the
player to read the

question easily.

The timer can be
placed on the
side, but make
sure it’s big
enough for the
player to see
at a glance.

When planning the interface
of a game, try sketching it on
paper before writing any code.

There should be enough space between
all the answer options so that the player
doesn’t click a different answer by mistake.

The possible
answers need to be
big enough for the

player to click on
them quickly.

L I N G O

Wireframes
Computer game designers can plan their game
interfaces using wireframes. These are diagrams
that show the different parts of an interface that
the player sees on screen. They can be drawn
by hand or made using a simple drawing tool on
a computer. By doing this, the interface can be
tested, and any changes to the design can be
made before writing the code.

Main question Timer

Answer 1

Answer 3

Answer 2

Answer 4

US_104-105_Big_Quiz_3.indd 104 22/02/18 12:26 pm

105

Create a box for the interface
Now that you’ve planned what the interface will
look like, you can create the rectangular boxes
that will make up the GUI. Type this code below
what you typed in Step 2 to create a box for the
main question.

Make the other boxes
You now need to make a box for the timer
and four separate boxes for each of the
possible answers. Type this code under what
you wrote in Step 5.

5

6

 WIDTH = 1280

 HEIGHT = 720

 main_box = Rect(0, 0, 820, 240)

This function takes four parameters. The
first two numbers are the coordinates of

the top-left corner of the box, and the
last two numbers are the coordinates

of the bottom-right corner of the box.

This sets the box size
to 820 pixels wide and
240 pixels high.

The timer box is a square 240
pixels wide and 240 pixels high.

All the answer boxes
are the same size.

Move the boxes
At the moment, all the boxes will be drawn on
top of each other in the top-left corner. You
need to add some code to move them to their
correct positions on the screen. Type this code
immediately after the code from Step 6.

7 answer_box4 = Rect(0, 0, 495, 165)

 main_box.move_ip(50, 40)

 timer_box.move_ip(990, 40)

 answer_box1.move_ip(50, 358)

 answer_box2.move_ip(735, 358)

 answer_box3.move_ip(50, 538)

 answer_box4.move_ip(735, 538)

The top-left corner of
each box will be placed
at the coordinates in
the brackets.

move_ip() moves each
rectangle to the place you

want it on the screen.

Arr! Time to
move all these

boxes into place!

G A M E P R O G R E S S 2 6 %

 main_box = Rect(0, 0, 820, 240)

 timer_box = Rect(0, 0, 240, 240)

 answer_box1 = Rect(0, 0, 495, 165)

 answer_box2 = Rect(0, 0, 495, 165)

 answer_box3 = Rect(0, 0, 495, 165)

 answer_box4 = Rect(0, 0, 495, 165)

US_104-105_Big_Quiz_3.indd 105 22/02/18 12:26 pm

105

Create a box for the interface
Now that you’ve planned what the interface will
look like, you can create the rectangular boxes
that will make up the GUI. Type this code below
what you typed in Step 2 to create a box for the
main question.

Make the other boxes
You now need to make a box for the timer
and four separate boxes for each of the
possible answers. Type this code under what
you wrote in Step 5.

5

6

 WIDTH = 1280

 HEIGHT = 720

 main_box = Rect(0, 0, 820, 240)

This function takes four parameters. The
first two numbers are the coordinates of

the top-left corner of the box, and the
last two numbers are the coordinates

of the bottom-right corner of the box.

This sets the box size
to 820 pixels wide and
240 pixels high.

The timer box is a square 240
pixels wide and 240 pixels high.

All the answer boxes
are the same size.

Move the boxes
At the moment, all the boxes will be drawn on
top of each other in the top-left corner. You
need to add some code to move them to their
correct positions on the screen. Type this code
immediately after the code from Step 6.

7 answer_box4 = Rect(0, 0, 495, 165)

 main_box.move_ip(50, 40)

 timer_box.move_ip(990, 40)

 answer_box1.move_ip(50, 358)

 answer_box2.move_ip(735, 358)

 answer_box3.move_ip(50, 538)

 answer_box4.move_ip(735, 538)

The top-left corner of
each box will be placed
at the coordinates in
the brackets.

move_ip() moves each
rectangle to the place you

want it on the screen.

Arr! Time to
move all these

boxes into place!

G A M E P R O G R E S S 2 6 %

 main_box = Rect(0, 0, 820, 240)

 timer_box = Rect(0, 0, 240, 240)

 answer_box1 = Rect(0, 0, 495, 165)

 answer_box2 = Rect(0, 0, 495, 165)

 answer_box3 = Rect(0, 0, 495, 165)

 answer_box4 = Rect(0, 0, 495, 165)

US_104-105_Big_Quiz_3.indd 105 22/02/18 12:26 pm

B I G Q U I Z106

Draw the boxes
Now that you’ve created the boxes, it’s
time to add some code to draw them on
the screen. Replace pass under def draw()
from Step 3 with this code.

9

 def draw():

 screen.fill("dim gray")

 screen.draw.filled_rect(main_box, "sky blue")

 screen.draw.filled_rect(timer_box, "sky blue")

 for box in answer_boxes:

 screen.draw.filled_rect(box, "orange")

This sets the
background to a
dim gray color.

This list holds all
the answer boxes.

These lines draw
the main box and
the timer on the
screen and colors
them sky blue.

This draws every box
in the answer_boxes
list on the screen and
colors them all orange.

Try it out
Save your file and run it from the command
line in the Command Prompt or Terminal
window. You should be able to see your GUI,
ready to be filled with quiz questions. If your
program fails to run successfully, go back to
your code and try to catch those bugs!

10 Pygame Zero Game

Create a list of answer boxes
This game uses four boxes to show the possible
answers to each question. You can keep track
of these boxes by using a list. Add this code
immediately after what you typed in Step 7.

8

 answer_box4.move_ip(735, 538)

 answer_boxes = [answer_box1, answer_box2, answer_box3, answer_box4]

I’m not sure how to
run the game! Better check

pages 24–25 for help.

US_106-107_Big_Quiz_4.indd 106 22/02/18 12:27 pm

107G A M E P R O G R E S S 5 2 %

Set the score
Now that the interface is ready, you need to start thinking about
how the game will work. Create a variable to hold the score and
set it to zero. Type this after the code you wrote in Step 8.

 answer_boxes = [answer_box1, answer_box2, answer_box3, answer_box4]

 score = 0

11

This is the name of the list.
Here it means question 1.

This question is the
first item in the list.

These are all the
possible answers

to the question.

This number indicates the position of
the correct answer. Here it’s 2, which

means Paris is the correct answer.

Add the first question
It’s time to create the first quiz question.
All the questions will be multiple choice,
which means there are several possible
answers, but only one of them is correct.
You can use a list to store the information
about each question. Type this code next.

 time_left = 10

 q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

13

More questions
Let’s add some more questions by typing
the code shown in black below the lines from
Step 13. Remember, you can create your own
sets of questions if you like. You could base
them on your favorite sports team, or show
off what you know about your favorite
series of books.

 q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

 q2 = ["What is 5+7?",

 "12", "10", "14", "8", 1]

 q3 = ["What is the seventh month of the year?",

 "April", "May", "June", "July", 4]

 q4 = ["Which planet is closest to the Sun?",

 "Saturn", "Neptune", "Mercury", "Venus", 3]

 q5 = ["Where are the pyramids?",

 "India", "Egypt", "Morocco", "Canada", 2]

14

Set the timer
You also need to create a timer that will
hold the number of seconds the player has
left to answer each question. You can give
them ten seconds to answer by setting the
variable to 10.

12 score = 0

 time_left = 10

This is the number of
seconds the player has
to answer each question.

Don’t forget to save
your work.

? ?
?

?
?

Any questions?

US_106-107_Big_Quiz_4.indd 107 22/02/18 12:27 pm

107G A M E P R O G R E S S 5 2 %

Set the score
Now that the interface is ready, you need to start thinking about
how the game will work. Create a variable to hold the score and
set it to zero. Type this after the code you wrote in Step 8.

 answer_boxes = [answer_box1, answer_box2, answer_box3, answer_box4]

 score = 0

11

This is the name of the list.
Here it means question 1.

This question is the
first item in the list.

These are all the
possible answers

to the question.

This number indicates the position of
the correct answer. Here it’s 2, which

means Paris is the correct answer.

Add the first question
It’s time to create the first quiz question.
All the questions will be multiple choice,
which means there are several possible
answers, but only one of them is correct.
You can use a list to store the information
about each question. Type this code next.

 time_left = 10

 q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

13

More questions
Let’s add some more questions by typing
the code shown in black below the lines from
Step 13. Remember, you can create your own
sets of questions if you like. You could base
them on your favorite sports team, or show
off what you know about your favorite
series of books.

 q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

 q2 = ["What is 5+7?",

 "12", "10", "14", "8", 1]

 q3 = ["What is the seventh month of the year?",

 "April", "May", "June", "July", 4]

 q4 = ["Which planet is closest to the Sun?",

 "Saturn", "Neptune", "Mercury", "Venus", 3]

 q5 = ["Where are the pyramids?",

 "India", "Egypt", "Morocco", "Canada", 2]

14

Set the timer
You also need to create a timer that will
hold the number of seconds the player has
left to answer each question. You can give
them ten seconds to answer by setting the
variable to 10.

12 score = 0

 time_left = 10

This is the number of
seconds the player has
to answer each question.

Don’t forget to save
your work.

? ?
?

?
?

Any questions?

US_106-107_Big_Quiz_4.indd 107 22/02/18 12:27 pm

B I G Q U I Z108

Create a list for the questions
Next you need to add some code to keep
the questions in order. You can do this using
a list, just like you did for the answer boxes
in Step 8. Add this line under the code from
Step 14.

15 q5 = ["Where are the pyramids?",

 "India", "Egypt", "Morocco", "Canada", 2]

 questions = [q1, q2, q3, q4, q5]

This list holds all
the questions.

Add a function
In a real-life quiz, the quizmaster begins by
picking up the first question from the top of
a list. In Python, you can do the same thing
by using the pop() function. This function
removes the first item from the list, which
makes the second item move to the top of
the list. So in your code, pop() will remove q1,
and q2 will take its place. Type this code next.

16 questions = [q1, q2, q3, q4, q5]

 question = questions.pop(0)

This gets the first question from
the questions list and stores it
in a variable called question.

Display the boxes
Now you need to update the draw()
function to display the questions and the
timer on the screen. Use a for loop to draw
the possible answers inside the answer
boxes. Add this code to the draw() function
under what you typed in Step 9.

17

This line displays
the number of
seconds remaining
in the timer box.

This displays
the question in
the main box.

These lines draw
each possible answer
in an answer box.

 screen.draw.filled_rect(main_box, "sky blue")

 screen.draw.filled_rect(timer_box, "sky blue")

 for box in answer_boxes:

 screen.draw.filled_rect(box, "orange")

 screen.draw.textbox(str(time_left), timer_box, color=("black"))

 screen.draw.textbox(question[0], main_box, color=("black"))

 index = 1

 for box in answer_boxes:

 screen.draw.textbox(question[index], box, color=("black"))

 index = index + 1

E X P E R T T I P S

Pop the stack
When you place items in a list, Python
stacks them on top of each other. The first
item in the list appears at the top of the
stack. Using the pop() function removes
an item from the top of the stack.

US_108-109_Big_Quiz_5.indd 108 22/02/18 12:27 pm

109G A M E P R O G R E S S 7 0 %

Run the code again
Save your code and run it from the command line
again. You should see the first question and its four
possible answers. At the moment, you can’t click on
any of the options, and the timer is also fixed at ten.
You’ll add the code to do these things soon.

18

Pygame Zero Game

The first question is
displayed on screen.

Set up the final screen
It’s time to think about how the game should end. Write
some code that displays the final score when the game
ends. Replace pass under def game_over() from Step 3
with this code.

19

 def game_over():

 global question, time_left

 message = "Game over. You got %s questions correct" % str(score)

 question = [message, "-", "-", "-", "-", 5]

 time_left = 0

This creates a message
that will show the player’s
final score.

Since there’s no
correct answer here,
it’s set to 5, which
isn’t on the list.

This sets the time to zero
when the game ends.

The final message is displayed instead of another
question. This will set all possible answers to a dash
because you don’t want the player to be able to answer.

What is the
capital of France?

London

Berlin

Paris

Tokyo

10
Ah! I knew this was

the right place!

US_108-109_Big_Quiz_5.indd 109 22/02/18 12:27 pm

109G A M E P R O G R E S S 7 0 %

Run the code again
Save your code and run it from the command line
again. You should see the first question and its four
possible answers. At the moment, you can’t click on
any of the options, and the timer is also fixed at ten.
You’ll add the code to do these things soon.

18

Pygame Zero Game

The first question is
displayed on screen.

Set up the final screen
It’s time to think about how the game should end. Write
some code that displays the final score when the game
ends. Replace pass under def game_over() from Step 3
with this code.

19

 def game_over():

 global question, time_left

 message = "Game over. You got %s questions correct" % str(score)

 question = [message, "-", "-", "-", "-", 5]

 time_left = 0

This creates a message
that will show the player’s
final score.

Since there’s no
correct answer here,
it’s set to 5, which
isn’t on the list.

This sets the time to zero
when the game ends.

The final message is displayed instead of another
question. This will set all possible answers to a dash
because you don’t want the player to be able to answer.

What is the
capital of France?

London

Berlin

Paris

Tokyo

10
Ah! I knew this was

the right place!

US_108-109_Big_Quiz_5.indd 109 22/02/18 12:27 pm

B I G Q U I Z110

Correct answers
Now you need to tell Python
what you want the program
to do if the player gets an
answer correct. You need to
increase the current score,
and then get the next
question. If there aren’t any
questions left, the game
should end. Replace pass
under def correct_answer()
from Step 3 with this code.

20 def correct_answer():

 global question, score, time_left

 score = score + 1

 if questions:

 question = questions.pop(0)

 time_left = 10

 else:

 print("End of questions")

 game_over()

This increases
the score by one.

This gets the
next question
if there are any-
more questions
left in the list.

This resets the
timer back to
ten seconds.

This displays a message
in the Command Prompt
or Terminal window.

This block runs if there are no
more questions in the list.

Answering questions
Next add some code that
will run when the player clicks
on an answer box. This code
will check to see which box
has been clicked on, and
then print the result in the
Command Prompt or Terminal
window. Replace pass under
the on_mouse_down(pos)
function from Step 3 with
this code.

21

The variable index holds a number
that represents the position of the
answer box in the list.

This line checks
which box has
been clicked on.

This displays a message
in the Command Prompt
or Terminal window.

The variable index increases
by one and moves to the
next answer box in the list.

Click the boxes
Run your code again and
click on each answer box
that appears on the screen.
You should see messages in
the Command Prompt or
Terminal window telling you
which box you clicked on.

22

 def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 index = index + 1

Clicked on answer 1

Clicked on answer 2

Clicked on answer 3

Clicked on answer 4

Rabiahma – bash – 80x24

US_110-111_Big_Quiz_6.indd 110 22/02/18 12:27 pm

111G A M E P R O G R E S S 8 9 %

 def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 if index == question[5]:

 print("You got it correct!")

 correct_answer()

 index = index + 1

The item at position five
in each question list is the
number that corresponds
to the correct answer.

This checks if the player
has clicked on the correct
answer box.

This block runs if the box
clicked on doesn’t hold
the correct answer.

Check the answer
Now you need to update the body of
the on_mouse_down(pos) function
from Step 21. Add the following code
that will run if the player clicks on a
box with the correct answer.

23

24

 def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 if index == question[5]:

 print("You got it correct!")

 correct_answer()

 else:

 game_over()

 index = index + 1

End the game
If the player clicks on a wrong answer, the game should
end. Update the code under def on_mouse_down(pos)
one last time and use an else statement to run the
game_over() function if the player selects a wrong
answer. Add the code shown in black below.

Wow! Tina has gotten all
the answers correct!

One more point and
the game is over!

US_110-111_Big_Quiz_6.indd 111 22/02/18 12:27 pm

111G A M E P R O G R E S S 8 9 %

 def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 if index == question[5]:

 print("You got it correct!")

 correct_answer()

 index = index + 1

The item at position five
in each question list is the
number that corresponds
to the correct answer.

This checks if the player
has clicked on the correct
answer box.

This block runs if the box
clicked on doesn’t hold
the correct answer.

Check the answer
Now you need to update the body of
the on_mouse_down(pos) function
from Step 21. Add the following code
that will run if the player clicks on a
box with the correct answer.

23

24

 def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 if index == question[5]:

 print("You got it correct!")

 correct_answer()

 else:

 game_over()

 index = index + 1

End the game
If the player clicks on a wrong answer, the game should
end. Update the code under def on_mouse_down(pos)
one last time and use an else statement to run the
game_over() function if the player selects a wrong
answer. Add the code shown in black below.

Wow! Tina has gotten all
the answers correct!

One more point and
the game is over!

US_110-111_Big_Quiz_6.indd 111 22/02/18 12:27 pm

B I G Q U I Z112

Update the timer
Now you need to update the code under
def update_time_left() from Step 3. This will
decrease the number of seconds by one every
time the function is run. Type the following code.

Get quizzing!
That’s it! Run your game and try it
out. Hopefully, you’ll be able to
answer all the questions correctly.
Remember, if your screen doesn’t
look right, you’ll have to go back to
your code and debug it. Read every
line carefully and make sure your
code matches the steps exactly.
Have fun quizzing your friends!

25

Schedule the timer
Finally, you need to update the
update_time_left() function so
that it runs automatically once
every second. You can use Pygame
Zero’s clock tool to do this. Add this
line of code to the very bottom of
your program.

26

27

 def update_time_left():

 global time_left

 if time_left:

 time_left = time_left - 1

 else:

 game_over()

If there’s still time
left on the timer,

this decreases
it by one.

This calls the update_time_left()
function once every second.

The player
needs to click
on the correct
answer before
the time
runs out.

This ends the
game when the

time runs out.

 global time_left

 if time_left:

 time_left = time_left - 1

 else:

 game_over()

 clock.schedule_interval(update_time_left, 1.0)

Pygame Zero Game

7
London

Berlin

Paris

Tokyo

What is the
capital of France?

US_112-113_Big_Quiz_7.indd 112 22/02/18 12:27 pm

113G A M E P R O G R E S S 1 0 0 %

Hacks and tweaks
You’ve built a great game, but don’t limit
yourself to just five questions. Take Big
Quiz to the next level by tweaking some
of its rules. Here are some suggestions to
get you started.

◁ Skip a question
You could add some
more code to the
on_key_up(key)
function that allows
the player to skip a
question by pressing
the Space bar. Skipping
a question means they
move on to the next
question, but without
scoring a point. Here’s
one way of doing it.

 def on_key_up(key):

 if key == keys.H:

 print("The correct answer is box number %s " % question[5])

▷ Take the hint
You can give the player
a hint by displaying the
correct answer box in
the Command Prompt or
Terminal window if they
press the H key. Here is
some code you could
use to do this.

▷ More questions
You can play this game over and over
again, but to keep it interesting, you
can change the questions or even add
some more. Here are a few examples of
questions that you might want to use.
You can always add some of your own!
If you add extra questions, what else
in the code will you need to update?

 q6 = ["What is a quarter of 200?",

 "50", "100", "25", "150", 1]

 q7 = ["Which is the largest state in the USA?",

 "Wyoming", "Alaska", "Florida", "Texas", 2]

 q8 = ["How many wives did Henry VIII have?",

 "Eight", "Four", "Six", "One", 3]

def on_key_up(key):

 global score

 if key == keys.H:

 print("The correct answer is box number %s " % question[5])

 if key == keys.SPACE:

 score = score - 1

 correct_answer()

Got it!

This block first decreases the player’s score by one
and then runs the correct_answer() function, which
increases it by one, keeping the score the same.

US_112-113_Big_Quiz_7.indd 113 22/02/18 12:27 pm

113G A M E P R O G R E S S 1 0 0 %

Hacks and tweaks
You’ve built a great game, but don’t limit
yourself to just five questions. Take Big
Quiz to the next level by tweaking some
of its rules. Here are some suggestions to
get you started.

◁ Skip a question
You could add some
more code to the
on_key_up(key)
function that allows
the player to skip a
question by pressing
the Space bar. Skipping
a question means they
move on to the next
question, but without
scoring a point. Here’s
one way of doing it.

 def on_key_up(key):

 if key == keys.H:

 print("The correct answer is box number %s " % question[5])

▷ Take the hint
You can give the player
a hint by displaying the
correct answer box in
the Command Prompt or
Terminal window if they
press the H key. Here is
some code you could
use to do this.

▷ More questions
You can play this game over and over
again, but to keep it interesting, you
can change the questions or even add
some more. Here are a few examples of
questions that you might want to use.
You can always add some of your own!
If you add extra questions, what else
in the code will you need to update?

 q6 = ["What is a quarter of 200?",

 "50", "100", "25", "150", 1]

 q7 = ["Which is the largest state in the USA?",

 "Wyoming", "Alaska", "Florida", "Texas", 2]

 q8 = ["How many wives did Henry VIII have?",

 "Eight", "Four", "Six", "One", 3]

def on_key_up(key):

 global score

 if key == keys.H:

 print("The correct answer is box number %s " % question[5])

 if key == keys.SPACE:

 score = score - 1

 correct_answer()

Got it!

This block first decreases the player’s score by one
and then runs the correct_answer() function, which
increases it by one, keeping the score the same.

US_112-113_Big_Quiz_7.indd 113 22/02/18 12:27 pm

B I G Q U I Z114

▷ Dash of color
You can make your interface more attractive
by changing the color of the background, the
boxes, or the text that appears on screen.
Here are some colors along with their RGB
values that you can play with. Take a look at
page 75 to find out how RGB values work.

light coral
(R 240, G 128, B 128)

salmon
(R 250, G 128, B 114)

light salmon
(R 255, G 160, B 122)

crimson
(R 220, G 20, B 60)

red
(R 255, G 0, B 0)

fire brick
(R 178, G 34, B 34)

dark red
(R 139, G 0, B 0)

pink
(R 255, G 192, B 203)

hot pink
(R 255, G 105, B 180)

deep pink
(R 255, G 20, B 147)

medium violet red
(R 199, G 21, B 133)

pale violet red
(R 219, G 112, B 147)

coral
(R 255, G 127, B 80)

tomato
(R 255, G 99, B 71)

orange red
(R 255, G 69, B 0)

dark orange
(R 255, G 140, B 0)

orange
(R 255, G 165, B 0)

gold
(R 255, G 215, B 0)

yellow
(R 255, G 255, B 0)

light yellow
(R 255, G 255, B 224)

papaya whip
(R 255, G 239, B 213)

moccasin
(R 255, G 228, B 181)

peach puff
(R 255, G 218, B 185)

pale goldenrod
(R 238, G 232, B 170)

khaki
(R 240, G 230, B 140)

dark khaki
(R 189, G 183, B 107)

lavender
(R 230, G 230, B 250)

thistle
(R 216, G 191, B 216)

violet
(R 238, G 130, B 238)

orchid
(R 218, G 112, B 214)

fuchsia
(R 255, G 0, B 255)

plum
(R 221, G 160, B 221)

medium orchid
(R 186, G 85, B 211)

blue violet
(R 138, G 43, B 226)

dark violet
(R 148, G 0, B 211)

dark orchid
(R 153, G 50, B 204)

dark magenta
(R 139, G 0, B 139)

purple
(R 128, G 0, B 128)

indigo
(R 75, G 0, B 130)

slate blue
(R 106, G 90, B 205)

dark slate blue
(R 72, G 61, B 139)

medium slate blue
(R 123, G 104, B 238)

green yellow
(R 173, G 255, B 47)

chartreuse
(R 127, G 255, B 0)

lawn green
(R 124, G 252, B 0)

lime
(R 0, G 255, B 0)

lime green
(R 50, G 205, B 50)

pale green
(R 152, G 251, B 152)

light green
(R 144, G 238, B 144)

sea green
(R 46, G 139, B 87)

dark sea green
(R 143, G 188, B 143)

US_114-115_Big_Quiz_8.indd 114 22/02/18 12:27 pm

115H A C K S A N D T W E A K S

light slate gray
(R 119, G 136, B 153)

slate gray
(R 112, G 128, B 144)

black
(R 0, G 0, B 0)

spring green
(R 0, G 255, B 127)

green
(R 0, G 128, B 0)

dark green
(R 0, G 100, B 0)

olive drab
(R 107, G 142, B 35)

olive
(R 128, G 128, B 0)

dark olive green
(R 85, G 107, B 47)

medium aquamarine
(R 102, G 205, B 170)

light sea green
(R 32, G 178, B 170)

dark cyan
(R 0, G 139, B 139)

teal
(R 0, G 128, B 128)

medium turquoise
(R 72, G 209, B 204)

cyan
(R 0, G 255, B 255)

light cyan
(R 224, G 255, B 255)

pale turquoise
(R 175, G 238, B 238)

turquoise
(R 64, G 224, B 208)

cadet blue
(R 95, G 158, B 160)

steel blue
(R 70, G 130, B 180)

sky blue
(R 135, G 206, B 235)

light sky blue
(R 135, G 206, B 250)

deep sky blue
(R 0, G 191, B 255)

dodger blue
(R 30, G 144, B 255)

medium slate blue
(R 123, G 104, B 238)

sandy brown
(R 244, G 164, B 96)

royal blue
(R 65, G 105, B 225)

medium blue
(R 0, G 0, B 205)

dark blue
(R 0, G 0, B 139)

navy
(R 0, G 0, B 128)

midnight blue
(R 25, G 25, B 112)

corn silk
(R 255, G 248, B 220)

wheat
(R 245, G 222, B 179)

burly wood
(R 222, G 184, B 135)

tan
(R 210, G 180, B 140)

rosy brown
(R 188, G 143, B 143)

goldenrod
(R 218, G 165, B 32)

dark goldenrod
(R 184, G 134, B 11)

peru
(R 205, G 133, B 63)

chocolate
(R 210, G 105, B 30)

saddle brown
(R 139, G 69, B 19)

sienna
(R 160, G 82, B 45)

brown
(R 165, G 42, B 42)

maroon
(R 128, G 0, B 0)

azure
(R 240, G 255, B 255)

beige
(R 245, G 245, B 220)

antique white
(R 250, G 235, B 215)

dark gray
(R 169, G 169, B 169)

gray
(R 128, G 128, B 128)

dim gray
(R 105, G 105, B 105)

linen
(R 250, G 240, B 230)

misty rose
(R 255, G 228, B 225)

gainsboro
(R 220, G 220, B 220)

light gray
(R 211, G 211, B 211)

silver
(R 192, G 192, B 192)

US_114-115_Big_Quiz_8.indd 115 22/02/18 12:27 pm

115H A C K S A N D T W E A K S

light slate gray
(R 119, G 136, B 153)

slate gray
(R 112, G 128, B 144)

black
(R 0, G 0, B 0)

spring green
(R 0, G 255, B 127)

green
(R 0, G 128, B 0)

dark green
(R 0, G 100, B 0)

olive drab
(R 107, G 142, B 35)

olive
(R 128, G 128, B 0)

dark olive green
(R 85, G 107, B 47)

medium aquamarine
(R 102, G 205, B 170)

light sea green
(R 32, G 178, B 170)

dark cyan
(R 0, G 139, B 139)

teal
(R 0, G 128, B 128)

medium turquoise
(R 72, G 209, B 204)

cyan
(R 0, G 255, B 255)

light cyan
(R 224, G 255, B 255)

pale turquoise
(R 175, G 238, B 238)

turquoise
(R 64, G 224, B 208)

cadet blue
(R 95, G 158, B 160)

steel blue
(R 70, G 130, B 180)

sky blue
(R 135, G 206, B 235)

light sky blue
(R 135, G 206, B 250)

deep sky blue
(R 0, G 191, B 255)

dodger blue
(R 30, G 144, B 255)

medium slate blue
(R 123, G 104, B 238)

sandy brown
(R 244, G 164, B 96)

royal blue
(R 65, G 105, B 225)

medium blue
(R 0, G 0, B 205)

dark blue
(R 0, G 0, B 139)

navy
(R 0, G 0, B 128)

midnight blue
(R 25, G 25, B 112)

corn silk
(R 255, G 248, B 220)

wheat
(R 245, G 222, B 179)

burly wood
(R 222, G 184, B 135)

tan
(R 210, G 180, B 140)

rosy brown
(R 188, G 143, B 143)

goldenrod
(R 218, G 165, B 32)

dark goldenrod
(R 184, G 134, B 11)

peru
(R 205, G 133, B 63)

chocolate
(R 210, G 105, B 30)

saddle brown
(R 139, G 69, B 19)

sienna
(R 160, G 82, B 45)

brown
(R 165, G 42, B 42)

maroon
(R 128, G 0, B 0)

azure
(R 240, G 255, B 255)

beige
(R 245, G 245, B 220)

antique white
(R 250, G 235, B 215)

dark gray
(R 169, G 169, B 169)

gray
(R 128, G 128, B 128)

dim gray
(R 105, G 105, B 105)

linen
(R 250, G 240, B 230)

misty rose
(R 255, G 228, B 225)

gainsboro
(R 220, G 220, B 220)

light gray
(R 211, G 211, B 211)

silver
(R 192, G 192, B 192)

US_114-115_Big_Quiz_8.indd 115 22/02/18 12:27 pm

US_116-117_Chapter_opener_8.indd 116 22/02/18 1:40 pm

Balloon
Flight

US_116-117_Chapter_opener_8.indd 117 22/02/18 1:40 pm

Balloon
Flight

US_116-117_Chapter_opener_8.indd 117 22/02/18 1:40 pm

B A L L O O N F L I G H T118

What happens
When the game starts, a hot-air balloon
appears in the middle of the screen. You
need to use the mouse button to make the
balloon rise or fall. The challenge is to keep
the balloon in the air without hitting any
birds, houses, or trees. For every obstacle
you avoid, you’ll score one point. But as
soon as you hit one, the game is over.

How to build
Balloon Flight
Take control of your own hot-air
balloon and try to avoid the obstacles
that come your way as you fly.

◁ Obstacles
The obstacles keep appearing
at random positions. The
player needs to avoid all the
obstacles to stay in the game.

◁ Balloon
The balloon begins to drop
as soon as the game starts.
You can make it rise again
by clicking the mouse.

Pygame Zero Game

A cloudy backdrop
sets the scene.

US_118-119_Balloon_fight_1.indd 118 22/02/18 12:27 pm

119H O W T O B U I L D B A L L O O N F L I G H T

◁ Up in the air
The program creates the
illusion of motion by making
the obstacles appear at
random intervals and moving
them along the x-axis.

The balloon moves up
when you’re pressing
the mouse button and
down when you’re not
pressing it.

Watch out for the
bird as it flies across
the screen.

The clouds are part
of the background,
so you don’t need
to avoid them.

Score: 0

US_118-119_Balloon_fight_1.indd 119 22/02/18 12:27 pm

119H O W T O B U I L D B A L L O O N F L I G H T

◁ Up in the air
The program creates the
illusion of motion by making
the obstacles appear at
random intervals and moving
them along the x-axis.

The balloon moves up
when you’re pressing
the mouse button and
down when you’re not
pressing it.

Watch out for the
bird as it flies across
the screen.

The clouds are part
of the background,
so you don’t need
to avoid them.

Score: 0

US_118-119_Balloon_fight_1.indd 119 22/02/18 12:27 pm

120 B A L L O O N F L I G H T

How it works
First you’ll add the balloon and all the obstacles to the
code. The program will check if the player has pressed
the mouse button to move the balloon up, or hasn’t to let
it fall. Once an obstacle has disappeared off the left edge
of the screen, the program will place a new one up to 800
pixels off the right edge of the screen at a random position
to make the obstacles appear at random intervals. If the
balloon hits any of the obstacles, the game will end and
the top scores will be displayed.

Has the balloon
collided with an

obstacle?

Has an obstacle
disappeared off the

left side of the screen?

Has the player
clicked the

mouse?

Start

Add balloon

Add obstacles

Place obstacle at a
random position
off the right side

of the screen

Add one point
to the score

Move balloon up

Make balloon fall

Show high scores End

△ Balloon Flight flowchart
This flowchart maps the progress of the
game, which constantly checks for obstacles
disappearing off the screen, mouse clicks, and
collisions between the balloon and the obstacles.

N

Y

Y
N

Y

N

US_120-121_Balloon_flight_2.indd 120 22/02/18 12:27 pm

121

Up, up, and away!
Before you take to the skies, it’s
important to understand the key
elements used to build this game.
The code is a bit long and tricky, so be
extra careful when you’re typing it out.

1

4

Set up an images folder
This game uses six images. Create a
new folder called images within your
balloon-flight folder. Find the Balloon Flight
images in the Python Games Resource Pack
(dk.com/computercoding) and copy them
into the images folder as shown here.

Create a file to store the high scores
Next open a new file in IDLE and type the following
code in it. From the File menu, select Save As... and
save the file as high-scores.txt in the balloon-flight
folder. Make sure you delete the .py extension.

Import a module
Now that your folders are ready, it’s time to
start writing the code. First you need to import
a module that’s used in the program. Type this
line at the top of your balloon.py IDLE file.

First steps
Go to the python-games folder you made
earlier and create a folder called balloon-flight
inside it. Now open IDLE and create an empty
file by going to the File menu and choosing
New File. Save this file as balloon.py in the
balloon-flight folder.

2

3

Save As:

balloon-flight

Cancel Save

balloon.py

Tags:

Where:

from random import randint

 0 0 0

This function will be used to
generate random positions for
the obstacles on the screen.

Make sure you put a space
between each 0.

IDLE automatically adds .py to a file name.
So remember to change the extension to
.txt when saving the file.

balloon-flight

balloon-flight

balloon.py

balloon.py

images

balloon.png
bird-down.png
bird-up.png
house.png
tree.png

background.png

high-scores.txt
images

G A M E P R O G R E S S 1 4 %

US_120-121_Balloon_flight_2.indd 121 22/02/18 12:27 pm

121

Up, up, and away!
Before you take to the skies, it’s
important to understand the key
elements used to build this game.
The code is a bit long and tricky, so be
extra careful when you’re typing it out.

1

4

Set up an images folder
This game uses six images. Create a
new folder called images within your
balloon-flight folder. Find the Balloon Flight
images in the Python Games Resource Pack
(dk.com/computercoding) and copy them
into the images folder as shown here.

Create a file to store the high scores
Next open a new file in IDLE and type the following
code in it. From the File menu, select Save As... and
save the file as high-scores.txt in the balloon-flight
folder. Make sure you delete the .py extension.

Import a module
Now that your folders are ready, it’s time to
start writing the code. First you need to import
a module that’s used in the program. Type this
line at the top of your balloon.py IDLE file.

First steps
Go to the python-games folder you made
earlier and create a folder called balloon-flight
inside it. Now open IDLE and create an empty
file by going to the File menu and choosing
New File. Save this file as balloon.py in the
balloon-flight folder.

2

3

Save As:

balloon-flight

Cancel Save

balloon.py

Tags:

Where:

from random import randint

 0 0 0

This function will be used to
generate random positions for
the obstacles on the screen.

Make sure you put a space
between each 0.

IDLE automatically adds .py to a file name.
So remember to change the extension to
.txt when saving the file.

balloon-flight

balloon-flight

balloon.py

balloon.py

images

balloon.png
bird-down.png
bird-up.png
house.png
tree.png

background.png

high-scores.txt
images

G A M E P R O G R E S S 1 4 %

US_120-121_Balloon_flight_2.indd 121 22/02/18 12:27 pm

122 B A L L O O N F L I G H T

Set the screen size
Next you need to set the size of the screen
for your game. Type this code under the
line from Step 4.

Prepare the obstacles
Next you need to set up the Actors for all the
obstacles in the game. Create one for the bird,
one for the house, and one for the tree.

Get the balloon ready
Now you need to set up the Actors. First
add the hot-air balloon, which the player
controls to play the game.

5

7

6

 WIDTH = 800

 HEIGHT = 600

 balloon = Actor("balloon")

 balloon.pos = 400, 300

 bird = Actor("bird-up")

 bird.pos = randint(800, 1600), randint(10, 200)

 house = Actor("house")

 house.pos = randint(800, 1600), 460

 tree = Actor("tree")

 tree.pos = randint(800, 1600), 450

This sets the screen
size in pixels.

This line creates
a new Actor
using the
balloon image.

This line places the balloon
in the center of the screen.

This line makes the bird
appear at a random position
on the x-axis between 800
and 1600 pixels, and at a
random position on the y-axis
between 10 and 200 pixels.

This line creates a
new Actor using the
image of the house.

This value makes the
tree appear on the
grass at the bottom
of the screen.

The balloon
has to avoid
birds, houses,
and trees.

 def add(a, b):

 return a + b

E X P E R T T I P S

Functions
A function is made up of two
parts—a header and a body.
The header is the first line of the
function that includes the name
and any parameters it has. The
body is the code that the function
runs when it’s called.

Name of the
function

The function’s
parameters

Body of the
function

Pygame Zero Game

US_122-123_Balloon_fight_3.indd 122 22/02/18 12:27 pm

123G A M E P R O G R E S S 3 1 %

Create global variables
You can now set up the global
variables. Add these lines after the
code from Step 7.

Manage the high scores
Next add placeholders for the functions that
will manage the high scores. You will need a
function to update the scores and another to
display them. The bodies of these functions
will be added later on.

8

9

 tree.pos = randint(800, 1600), 450

 bird_up = True

 up = False

 game_over = False

 score = 0

 number_of_updates = 0

 scores = []

 scores = []

 def update_high_scores():

 pass

 def display_high_scores():

 pass

This keeps track of the image used for the
bird Actor. The image will be changed later
in the game to make the bird look like it’s
flapping its wings.

This variable keeps track of
how many times the game
has been updated to change
the image of the bird.

This list stores the
top three high
scores for the game.

Use pass to create a function
placeholder. You can define it later.

This line
keeps track of
the player’s
score.

E X P E R T T I P S

Obstacles on screen
In Balloon Flight, the balloon stays in the
middle of the screen and the obstacles
move past it. This makes it look like it’s
the balloon that’s moving. To make the
obstacles appear at random intervals, the
game chooses a random position for each
one to appear between 800 and 1600
pixels. Because the width of the screen is
800 pixels, the obstacles will first “appear”
off screen, so you won’t see them right
away. Later on, you’ll add code to make
these obstacles move from right to left,
so the farther off screen an obstacle is
placed, the longer it will take to appear
on screen. The upper limit is set to 1600
because otherwise the obstacles would
take too long to appear.

I must steer clear of
all these obstacles!

house.pos = randint(800, 1600), 460

The house can appear
anywhere along the x-axis

between 800 and 1600 pixels.

The position of
the house on the

y-axis is fixed at 460.

US_122-123_Balloon_fight_3.indd 123 22/02/18 12:27 pm

123G A M E P R O G R E S S 3 1 %

Create global variables
You can now set up the global
variables. Add these lines after the
code from Step 7.

Manage the high scores
Next add placeholders for the functions that
will manage the high scores. You will need a
function to update the scores and another to
display them. The bodies of these functions
will be added later on.

8

9

 tree.pos = randint(800, 1600), 450

 bird_up = True

 up = False

 game_over = False

 score = 0

 number_of_updates = 0

 scores = []

 scores = []

 def update_high_scores():

 pass

 def display_high_scores():

 pass

This keeps track of the image used for the
bird Actor. The image will be changed later
in the game to make the bird look like it’s
flapping its wings.

This variable keeps track of
how many times the game
has been updated to change
the image of the bird.

This list stores the
top three high
scores for the game.

Use pass to create a function
placeholder. You can define it later.

This line
keeps track of
the player’s
score.

E X P E R T T I P S

Obstacles on screen
In Balloon Flight, the balloon stays in the
middle of the screen and the obstacles
move past it. This makes it look like it’s
the balloon that’s moving. To make the
obstacles appear at random intervals, the
game chooses a random position for each
one to appear between 800 and 1600
pixels. Because the width of the screen is
800 pixels, the obstacles will first “appear”
off screen, so you won’t see them right
away. Later on, you’ll add code to make
these obstacles move from right to left,
so the farther off screen an obstacle is
placed, the longer it will take to appear
on screen. The upper limit is set to 1600
because otherwise the obstacles would
take too long to appear.

I must steer clear of
all these obstacles!

house.pos = randint(800, 1600), 460

The house can appear
anywhere along the x-axis

between 800 and 1600 pixels.

The position of
the house on the

y-axis is fixed at 460.

US_122-123_Balloon_fight_3.indd 123 22/02/18 12:27 pm

124 B A L L O O N F L I G H T

Show high scores
In the draw() function, you need to add
a call to display_high_scores() when the
game is over. Type this immediately after
the last line of code from Step 10.

Test your code
Now try running your code. You should see the
balloon in the middle of the screen and a current
score of zero. There won’t be any obstacles on
the screen yet—these will only appear once
you’ve added some code to make them move
onto the screen.

11

12

 else:

 display_high_scores()

Create the draw() function
Just like in the other games you’ve created, you now
need to add a draw() function to your code. You will also
add an image for the game background instead of just a
solid color. Add these lines after the code from Step 9.

10

 def draw():

 screen.blit("background", (0, 0))

 if not game_over:

 balloon.draw()

 bird.draw()

 house.draw()

 tree.draw()

 screen.draw.text("Score: " + str(score), (700, 5), color="black")

This adds a background
image of the sky, grass,
and clouds.

If the game isn’t over, this code
will draw the Actors on screen.

This line displays
the score on screen.

Remember to add four
spaces before else.

This won’t do anything yet
because you haven’t written
the body of this function.

You can see the
background used

in the game.

Pygame Zero Game

Score: 0

B A L L O O N F L I G H T

US_124-125_balloon_fight_4.indd 124 22/02/18 12:27 pm

125G A M E P R O G R E S S 4 5 %

Reacting to mouse clicks
Now you need to define two event handler
functions—on_mouse_down() to make
the balloon rise if the player pushes down
on the mouse button, and on_mouse_up()
to let the balloon fall if they release the
button. Add this code under what you
typed in Step 11.

13

 else:

 display_high_scores()

 def on_mouse_down():

 global up

 up = True

 balloon.y -= 50

def on_mouse_up():

 global up

 up = False

E X P E R T T I P S

E X P E R T T I P S

Shorthand calculations
With Python, you can perform a calculation
using a variable and then store the result
in the same variable. For example, to add
1 to a variable called a, you would usually
write: a = a + 1.

A shorter way to write this calculation and
still get the same result is a += 1. You can
also do this with subtraction, multiplication,
and division. For example:

a = a - 1 is the same as a -= 1
a = a / 1 is the same as a /= 1
a = a * 1 is the same as a *= 1

Coordinates
In most programming languages, the coordinates
(0, 0) refer to the top-left corner of the screen.
Subtracting 50 pixels from the y-coordinate in
on_mouse_down() makes the balloon go 50
pixels closer to 0 on the y-axis, which is the top
of the screen. Therefore, the balloon goes up.

These functions
handle the mouse

button presses.

I can’t believe this
is actually working!

Quick! What’s 4 + 4?

?

US_124-125_balloon_fight_4.indd 125 22/02/18 12:27 pm

125G A M E P R O G R E S S 4 5 %

Reacting to mouse clicks
Now you need to define two event handler
functions—on_mouse_down() to make
the balloon rise if the player pushes down
on the mouse button, and on_mouse_up()
to let the balloon fall if they release the
button. Add this code under what you
typed in Step 11.

13

 else:

 display_high_scores()

 def on_mouse_down():

 global up

 up = True

 balloon.y -= 50

def on_mouse_up():

 global up

 up = False

E X P E R T T I P S

E X P E R T T I P S

Shorthand calculations
With Python, you can perform a calculation
using a variable and then store the result
in the same variable. For example, to add
1 to a variable called a, you would usually
write: a = a + 1.

A shorter way to write this calculation and
still get the same result is a += 1. You can
also do this with subtraction, multiplication,
and division. For example:

a = a - 1 is the same as a -= 1
a = a / 1 is the same as a /= 1
a = a * 1 is the same as a *= 1

Coordinates
In most programming languages, the coordinates
(0, 0) refer to the top-left corner of the screen.
Subtracting 50 pixels from the y-coordinate in
on_mouse_down() makes the balloon go 50
pixels closer to 0 on the y-axis, which is the top
of the screen. Therefore, the balloon goes up.

These functions
handle the mouse

button presses.

I can’t believe this
is actually working!

Quick! What’s 4 + 4?

?

US_124-125_balloon_fight_4.indd 125 22/02/18 12:27 pm

126 B A L L O O N F L I G H T

E X P E R T T I P S

Actor animations
You can make your Actors look like they’re moving
by using two or more different images of the same
Actor. For example, in this game, there are two images
of a bird—one with its wings up and one with its wings
down. By alternating between the two images, it looks
as if the bird is flapping its wings. The same function
could make a person look like they’re dancing, or a frog
look like it’s jumping!

Create the update() function
Now you need to create a function to
update the game. Remember, update()
is a built-in function that automatically
runs 60 times a second, so you don’t
need to call it. Add this code right after
the lines from Step 14.

def update():

 global game_over, score, number_of_updates

 global game_over, score, number_of_updates

 if not game_over:

 if not up:

 balloon.y += 1

This line declares the
variables the function
must change.

Make the bird flap
To make the bird more realistic, add a
function to make it look like it’s flapping
its wings. You don’t need to do this for
the other obstacles.

def flap():

 global bird_up

 if bird_up:

 bird.image = "bird-down"

 bird_up = False

 else:

 bird.image = "bird-up"

 bird_up = True

If the bird’s wings are up, this code
will change its image to the one

where the bird’s wings are down.

Add in gravity
Next add some code to make the balloon
move down when the player isn’t pressing
the mouse button. Add this code to the
update() function from Step 15.

If the mouse button
is not being pressed,
this moves the balloon
down by one pixel.

Test your code
Let’s run the code again. This time
you’ll see the same screen as in
Step 12, but the balloon should
react to mouse clicks.

15

14

16

17

US_126-127_balloon_fight_5.indd 126 22/02/18 12:28 pm

127G A M E P R O G R E S S 6 5 %

Remember to add
eight spaces before
typing this line.

Move the bird
Next you need to add some code to make it
look like the bird is flying across the screen
while flapping its wings. This code will move
the bird to the left by four pixels to make it
seem like it’s flying across the screen.

 balloon.y += 1

 if bird.x > 0:

 bird.x -= 4

 if number_of_updates == 9:

 flap()

 number_of_updates = 0

 else:

 number_of_updates += 1

If the bird is on the
screen, this will move
it to the left.

This block of code will
make the bird flap its
wings every tenth time the
update() function is called.

Handle the bird flying off the screen
When the bird disappears off the left edge of the
screen, you need to move it back to a random
position off the right side of the screen, just
like you did at the beginning of the game. The
height at which the bird appears also needs to
be randomly chosen. Type the following code
immediately after the last line of code in Step 18.

 else:

 number_of_updates += 1

 else:

 bird.x = randint(800, 1600)

 bird.y = randint(10, 200)

 score += 1

 number_of_updates = 0

This adds one to the player’s
score for every obstacle that
disappears off the screen.

This code places the bird at
a random position off the

right side of the screen.

E X P E R T T I P S

Smooth animations
In Python, the update() function is
automatically called 60 times every
second. If you change the image of the
bird each time this function is called, it
would just be a blur on the screen. To
make the animation smoother, add a block
of code that will change the image every
tenth time the function is called. You can
change this interval if you want. But if the
gap between the updates is too big, the
bird will appear to move very slowly.

Dude, you’re so
wrong! The actors aren’t

blurry at all!

Get out of the way!

18

19

US_126-127_balloon_fight_5.indd 127 22/02/18 12:28 pm

127G A M E P R O G R E S S 6 5 %

Remember to add
eight spaces before
typing this line.

Move the bird
Next you need to add some code to make it
look like the bird is flying across the screen
while flapping its wings. This code will move
the bird to the left by four pixels to make it
seem like it’s flying across the screen.

 balloon.y += 1

 if bird.x > 0:

 bird.x -= 4

 if number_of_updates == 9:

 flap()

 number_of_updates = 0

 else:

 number_of_updates += 1

If the bird is on the
screen, this will move
it to the left.

This block of code will
make the bird flap its
wings every tenth time the
update() function is called.

Handle the bird flying off the screen
When the bird disappears off the left edge of the
screen, you need to move it back to a random
position off the right side of the screen, just
like you did at the beginning of the game. The
height at which the bird appears also needs to
be randomly chosen. Type the following code
immediately after the last line of code in Step 18.

 else:

 number_of_updates += 1

 else:

 bird.x = randint(800, 1600)

 bird.y = randint(10, 200)

 score += 1

 number_of_updates = 0

This adds one to the player’s
score for every obstacle that
disappears off the screen.

This code places the bird at
a random position off the

right side of the screen.

E X P E R T T I P S

Smooth animations
In Python, the update() function is
automatically called 60 times every
second. If you change the image of the
bird each time this function is called, it
would just be a blur on the screen. To
make the animation smoother, add a block
of code that will change the image every
tenth time the function is called. You can
change this interval if you want. But if the
gap between the updates is too big, the
bird will appear to move very slowly.

Dude, you’re so
wrong! The actors aren’t

blurry at all!

Get out of the way!

18

19

US_126-127_balloon_fight_5.indd 127 22/02/18 12:28 pm

128 B A L L O O N F L I G H T

Move the house
Just like you made the bird move across the
screen, you now need to make the house move,
too. Add this code under the lines from Step 19.

20

 else:

 bird.x = randint(800, 1600)

 bird.y = randint(10, 200)

 score += 1

 number_of_updates = 0

 if house.right > 0:

 house.x -= 2

 else:

 house.x = randint(800, 1600)

 score += 1

If the house disappears off the
left edge of the screen, this line
places it at a random position
off the right edge.

This line will update the
score by one if the house
moves off the screen.

MOVING VAN

Move the tree
Using the same logic as before, add these
lines under the code from Step 20 to make
the tree move across the screen.

21

 else:

 house.x = randint(400, 800)

 score += 1

 if tree.right > 0:

 tree.x -= 2

 else:

 tree.x = randint(800, 1600)

 score += 1

Don’t forget to count the
number of spaces before
each line of code.

E X P E R T T I P S

Scrolling across the screen
Once the obstacles disappear off the screen, you
need to move them back to the right-hand side
of the screen. This is to create the illusion of motion
and make it look like lots of obstacles are appearing
on the screen when, in reality, you only use one
Actor for each type of obstacle in your code.
Scrolling the same Actor across the screen means
you don’t have to create new Actors every time one
disappears off the screen.

B A L L O O N F L I G H T

US_128-129_balloon_fight_6.indd 128 22/02/18 12:28 pm

129G A M E P R O G R E S S 8 3 %

Test your code
Save your program and run it
from the command line. You
should now be able to play the
game, but it’s not quite finished
yet! Next you’ll find out how to
add high scores to your game.

This checks if the
balloon has hit any of
the three obstacles.

Use a backslash
character if you
need to split a long
line of code over
more than one line.

Keep it steady
Your game needs to end if the
balloon hits the top or the bottom
of the screen. Type this code under
the lines from Step 21.

22

23

 score += 1

 if balloon.top < 0 or balloon.bottom > 560:

 game_over = True

 update_high_scores()

This line checks if the
balloon has touched the
top or bottom of the screen.

Handle collisions with obstacles
Finally, you need to add some code to
end the game if the balloon hits any of
the three obstacles. Add the code below.

24

 update_high_scores()

 if balloon.collidepoint(bird.x, bird.y) or \

 balloon.collidepoint(house.x, house.y) or \

 balloon.collidepoint(tree.x, tree.y):

 game_over = True

 update_high_scores()

This updates
the high scores,

if necessary.

This sets game_over
to True, which tells

the program that the
game is over.

All the obstacles will
now seem to move

across the screen.

Pygame Zero Game

Score: 0

US_128-129_balloon_fight_6.indd 129 22/02/18 12:28 pm

129G A M E P R O G R E S S 8 3 %

Test your code
Save your program and run it
from the command line. You
should now be able to play the
game, but it’s not quite finished
yet! Next you’ll find out how to
add high scores to your game.

This checks if the
balloon has hit any of
the three obstacles.

Use a backslash
character if you
need to split a long
line of code over
more than one line.

Keep it steady
Your game needs to end if the
balloon hits the top or the bottom
of the screen. Type this code under
the lines from Step 21.

22

23

 score += 1

 if balloon.top < 0 or balloon.bottom > 560:

 game_over = True

 update_high_scores()

This line checks if the
balloon has touched the
top or bottom of the screen.

Handle collisions with obstacles
Finally, you need to add some code to
end the game if the balloon hits any of
the three obstacles. Add the code below.

24

 update_high_scores()

 if balloon.collidepoint(bird.x, bird.y) or \

 balloon.collidepoint(house.x, house.y) or \

 balloon.collidepoint(tree.x, tree.y):

 game_over = True

 update_high_scores()

This updates
the high scores,

if necessary.

This sets game_over
to True, which tells

the program that the
game is over.

All the obstacles will
now seem to move

across the screen.

Pygame Zero Game

Score: 0

US_128-129_balloon_fight_6.indd 129 22/02/18 12:28 pm

130

Get the current high scores
To know if the player’s score has beaten any of the
previous scores, you’ll need to read the scores saved
in the high-scores.txt file you created in Step 3. Add
this code under the lines from Step 25.

 scores = []

 with open(filename, "r") as file:

 line = file.readline()

 high_scores = line.split()

This opens the high-scores.txt
file for reading.

This function splits
the high scores stored
in one line into three
different strings.

Remember, the high
scores file only has one

line. This reads the single
line stored in the file.

E X P E R T T I P S

Splitting strings
In this game, all the high scores are
saved in a text file on a single line as a
string. To check if the player has beaten
any of these high scores, you need to
split this string into three separate
parts. Python’s split() function can be
used to split a string at a character and
then store the separate strings in a list.
You can pass a parameter to the split()
function telling it which character you
want to split the string by.

 name = "Martin,Craig,Daniel,Claire"

 name.split(",")

This parameter splits the string at each
comma. If you don’t provide a parameter,
the function will split the string at the space
character, like in Step 26 of your program.

The list is returned with four separate strings.

Update the high scores
Now go back to the update_high_scores() function
from Step 9 and write the body. This function gets
the top three high scores and updates them if the
player’s current score has beaten one of them.
Replace pass with the code in black below, then
carefully follow the extra instructions to get the
path for your high-score.txt file.

 def update_high_scores():

 global score, scores

 filename = r"/Users/bharti/Desktop/python-games/balloon-flight/high-scores.txt"

 scores = []

You will need to change this gray bit of code to the high-scores.txt
file's location on your own computer. Drag the high-scores.txt file
into the Command Prompt or Terminal window, then copy and
paste the path here and put quotation marks around it. Replace
any backslashes \ that look out of place with a space.

This resets the list
of high scores.

B A L L O O N F L I G H T

26

25

["Martin", "Craig", "Daniel", "Claire"]

US_130-131_balloon_fight_7.indd 130 14/03/18 12:18 PM

131G A M E P R O G R E S S 9 7 %

Find the highest scores
Now write some code that will check if the current
score has beaten any of the three high scores.
Add this code under the lines from Step 26.

Write the high scores in the file
Use write() to write the new high score
to the high-scores.txt file. Add this
code under the code from Step 27.

 high_scores = line.split()

 for high_score in high_scores:

 if(score > int(high_score)):

 scores.append(str(score) + " ")

 score = int(high_score)

 else:

 scores.append(str(high_score) + " ")

 scores.append(str(high_score) + " ")

 with open(filename, "w") as file:

 for high_score in scores:

 file.write(high_score)

This checks if the player’s
score is higher than the

existing high scores.

This sets score to
the high score that

was just beaten.

This opens the high-scores.txt
file to be written to.

If the player hasn’t beaten the high
score in question, that current
high score is added to the list.

If the player’s score is higher
than an existing high score,

this adds it to the list.

This block writes the new
high scores to the .txt file.

E X P E R T T I P S

Keeping score
Imagine the current high scores are 12, 10, 8, and a
player scores 11. If your code just replaced each score
you’ve beaten with the new score, you’d end up with
12, 11, 11, which wouldn’t be right. To avoid this, your
code needs to compare the player’s score with the top
score first. 11 is less than 12, so it doesn’t replace it. It
then needs to move on to the second-highest score.
The next one, 11 is greater than 10, so it replaces it. Now
that 11 is on the scoreboard, the code needs to check if
10, the score that was just replaced, is greater than the
score currently in third place. Because 10 is greater than
8, it replaces it, and 8 is removed altogether.

This loops
through the list

of high scores.

These are the new
three high scores.

 12 10 8

 12 11 8

 12 11 10

This is an example
of an existing list
of scores.

Once 11 has replaced
10, you need to
check 10, rather
than 11, against 8.

27

28

US_130-131_balloon_fight_7.indd 131 14/03/18 12:18 PM

131G A M E P R O G R E S S 9 7 %

Find the highest scores
Now write some code that will check if the current
score has beaten any of the three high scores.
Add this code under the lines from Step 26.

Write the high scores in the file
Use write() to write the new high score
to the high-scores.txt file. Add this
code under the code from Step 27.

 high_scores = line.split()

 for high_score in high_scores:

 if(score > int(high_score)):

 scores.append(str(score) + " ")

 score = int(high_score)

 else:

 scores.append(str(high_score) + " ")

 scores.append(str(high_score) + " ")

 with open(filename, "w") as file:

 for high_score in scores:

 file.write(high_score)

This checks if the player’s
score is higher than the

existing high scores.

This sets score to
the high score that

was just beaten.

This opens the high-scores.txt
file to be written to.

If the player hasn’t beaten the high
score in question, that current
high score is added to the list.

If the player’s score is higher
than an existing high score,

this adds it to the list.

This block writes the new
high scores to the .txt file.

E X P E R T T I P S

Keeping score
Imagine the current high scores are 12, 10, 8, and a
player scores 11. If your code just replaced each score
you’ve beaten with the new score, you’d end up with
12, 11, 11, which wouldn’t be right. To avoid this, your
code needs to compare the player’s score with the top
score first. 11 is less than 12, so it doesn’t replace it. It
then needs to move on to the second-highest score.
The next one, 11 is greater than 10, so it replaces it. Now
that 11 is on the scoreboard, the code needs to check if
10, the score that was just replaced, is greater than the
score currently in third place. Because 10 is greater than
8, it replaces it, and 8 is removed altogether.

This loops
through the list

of high scores.

These are the new
three high scores.

 12 10 8

 12 11 8

 12 11 10

This is an example
of an existing list
of scores.

Once 11 has replaced
10, you need to
check 10, rather
than 11, against 8.

27

28

US_130-131_balloon_fight_7.indd 131 14/03/18 12:18 PM

132 B A L L O O N F L I G H T

E X P E R T T I P S

File handling
In Balloon Flight, you’ve used a .txt file to store
the high scores. A file like this can be opened and
assigned to a variable. The main functions that
you need to handle the file are open(), read(),
and write().

▷ open() takes two parameters, the file name
and the “mode,”, which tells Python what you
want to do with the file. There are four modes in
Python: r for reading, w for writing, a for adding
to the end of a file, and r+ for reading and writing.

 file = open("names.txt", "r")

file = open("names.txt", "w")

file.write("Martin")

▽ Now use the write() function to write to a file.

 names = file.read()

▽ Use the read() function to read an entire file.

 file.close()

▽ When you’re finished with a file, you should
close it to tell the program you are done with it.

 name = file.readline()

▽ You can also just read a single line, rather
than the whole file.

lines = []

 for line in file:

 lines.append(line)

▽ You can even add all the lines to a list.

 with open("names.txt", "r") as file:

 name = file.readline()

▽ If you forget to close a file after using it,
some of the data may not get written to it.
Use the with statement to stop this from
happening. This statement opens the file and
automatically closes it when it has finished
running the body of the with statement.

Body of the function.

Name of
the file

Mode

It’s time to close. Are
you sure you’re done?

US_132-133_balloon_fight_8.indd 132 22/02/18 12:28 pm

133

Hacks and tweaks
There are lots of ways you can adapt this
game to make it more complex. Here are
some ideas you can try out.

HIGH SCORES

1. 12
2. 9
3. 8
4. 6
5. 3

△ More high scores
Right now the game only stores the top three high scores.
Can you change it to store the top five or ten? Remember
the text file you created in Step 3 with three zeroes? How
can you edit this file to store more high scores?

△ Lives
Why don’t you give the player some more
chances to complete the game? Introduce a
new variable to keep track of a player’s lives.
Reduce the number by one every time the
player hits an obstacle. When there are no
more lives left, the game ends.

G A M E P R O G R E S S 1 0 0 %

Display high scores
Now that you’ve written a function to collect the high scores, you
need to write one to display them on the screen. Replace the word
pass under def display_high_scores() from Step 9 with this code.

 def display_high_scores():

 screen.draw.text("HIGH SCORES", (350, 150), color="black")

 y = 175

 position = 1

 for high_score in scores:

 screen.draw.text(str(position) + ". " + high_score, (350, y), color="black")

 y += 25

 position += 1

This line writes
HIGH SCORES
on the screen.

This sets the first
high score’s position
on the y-axis.

This line displays the high
scores on the screen.

This adds to the y position, so
that each high score is displayed
25 pixels below the previous one.

lives = 3

Phew! I still have
two lives left.Pygame Zero Game

29

US_132-133_balloon_fight_8.indd 133 23/02/18 2:31 pm

133

Hacks and tweaks
There are lots of ways you can adapt this
game to make it more complex. Here are
some ideas you can try out.

HIGH SCORES

1. 12
2. 9
3. 8
4. 6
5. 3

△ More high scores
Right now the game only stores the top three high scores.
Can you change it to store the top five or ten? Remember
the text file you created in Step 3 with three zeroes? How
can you edit this file to store more high scores?

△ Lives
Why don’t you give the player some more
chances to complete the game? Introduce a
new variable to keep track of a player’s lives.
Reduce the number by one every time the
player hits an obstacle. When there are no
more lives left, the game ends.

G A M E P R O G R E S S 1 0 0 %

Display high scores
Now that you’ve written a function to collect the high scores, you
need to write one to display them on the screen. Replace the word
pass under def display_high_scores() from Step 9 with this code.

 def display_high_scores():

 screen.draw.text("HIGH SCORES", (350, 150), color="black")

 y = 175

 position = 1

 for high_score in scores:

 screen.draw.text(str(position) + ". " + high_score, (350, y), color="black")

 y += 25

 position += 1

This line writes
HIGH SCORES
on the screen.

This sets the first
high score’s position
on the y-axis.

This line displays the high
scores on the screen.

This adds to the y position, so
that each high score is displayed
25 pixels below the previous one.

lives = 3

Phew! I still have
two lives left.Pygame Zero Game

29

US_132-133_balloon_fight_8.indd 133 23/02/18 2:31 pm

134 B A L L O O N F L I G H T

△ Different way to score
In the current game, the player scores a point
every time an obstacle disappears off the left
edge of the screen. You can change the code
so that the player scores every time they pass
an obstacle on the screen. Can you figure out
how to do this? Remember the position of the
balloon always remains at 400 pixels along
the x-axis.

△ File handling
In the game, you write to the high-scores.txt file every
time the program exits. It would be more efficient to write
to the file only if the high scores have changed. To code
this, you can use a Boolean variable to track whether
the high scores have changed. In programming, this is
sometimes referred to as a “flag.” In the game, if the flag
is set to True, then the high scores have changed and
you have to write them back to the file. But if there is no
change, there is no need to write anything to the file.

△ Speed it up
Do you want to make the game more
challenging? Why don’t you make the obstacles
go faster? You can do this by changing the
number of pixels the obstacles move by. If you
make the bird faster, remember to also update
the flap() function to match the new speed.

 new_high_score = False

 bird.x -= 4

△ Add in multiples of each obstacle
Do you find avoiding just one of each obstacle on the
screen too easy? You could change the code so that
more than one of each obstacle appears on the screen
at the same time.

Name of the second
bird obstacle.

Make this number higher
to increase the speed.

bird2 = Actor("bird-up")

bird2.pos = randint(800, 1600), randint(10, 200)

I didn’t know I could
score points like this!

I think I read about
file handling on

page 132 as well.

B A L L O O N F L I G H T

US_134-135_balloon_flight_9.indd 134 22/02/18 12:28 pm

135H A C K S A N D T W E A K S

▽ Space out the obstacles
Sometimes all the obstacles—the tree, the
house, and the bird—might appear at the same
position on the x-axis. This works fine, but you
may want to avoid it. Try to change the update()
function so that the obstacles pick a new random
x coordinate if there is a clash. This code will
help you get started.

E X P E R T T I P S

Modulo operator
When Python performs division, it ignores the
remainder. But sometimes it’s useful to know if
there is a remainder and what it is. For example,
if you want to test if the number is even, you can
do so by dividing it by 2 and checking if there is
a remainder. To do this, you can use the modulo
operator %.

This is 0 because there is no
remainder when 2 is divided by 2.

This is the remainder
when 3 is divided by 2.

This would return the remainder
when the score is divided by 10.

In Balloon Flight, you can use the modulo
operator to know if the score is a multiple of 10,
and therefore whether the player should move
to the next level.

 score % 10

 if bird.x == house.x

▽ Level up
Make the game more fun by adding levels and increasing
the speed with each level. To do this, you could set the
number of obstacles in each level to ten. To complete the
level, the player must clear all the obstacles and score ten
points. Every time the score reaches a multiple of ten,
make the obstacles move faster. In the original game, the
birds move by four pixels at a time, and the houses and
trees move by two. If you want to increase it with every
level, you need to store the speed in a variable. Just
remember that the bird should always be traveling twice
as fast as the trees and houses.

 speed = 2

 bird.x -= speed * 2

 >>> print(2 % 2)

0

 >>> print(3 % 2)

1

US_134-135_balloon_flight_9.indd 135 14/03/18 12:18 PM

135H A C K S A N D T W E A K S

▽ Space out the obstacles
Sometimes all the obstacles—the tree, the
house, and the bird—might appear at the same
position on the x-axis. This works fine, but you
may want to avoid it. Try to change the update()
function so that the obstacles pick a new random
x coordinate if there is a clash. This code will
help you get started.

E X P E R T T I P S

Modulo operator
When Python performs division, it ignores the
remainder. But sometimes it’s useful to know if
there is a remainder and what it is. For example,
if you want to test if the number is even, you can
do so by dividing it by 2 and checking if there is
a remainder. To do this, you can use the modulo
operator %.

This is 0 because there is no
remainder when 2 is divided by 2.

This is the remainder
when 3 is divided by 2.

This would return the remainder
when the score is divided by 10.

In Balloon Flight, you can use the modulo
operator to know if the score is a multiple of 10,
and therefore whether the player should move
to the next level.

 score % 10

 if bird.x == house.x

▽ Level up
Make the game more fun by adding levels and increasing
the speed with each level. To do this, you could set the
number of obstacles in each level to ten. To complete the
level, the player must clear all the obstacles and score ten
points. Every time the score reaches a multiple of ten,
make the obstacles move faster. In the original game, the
birds move by four pixels at a time, and the houses and
trees move by two. If you want to increase it with every
level, you need to store the speed in a variable. Just
remember that the bird should always be traveling twice
as fast as the trees and houses.

 speed = 2

 bird.x -= speed * 2

 >>> print(2 % 2)

0

 >>> print(3 % 2)

1

US_134-135_balloon_flight_9.indd 135 14/03/18 12:18 PM

US_136-137_Chapter_opener_9.indd 136 22/02/18 1:40 pm

Dance
Challenge

US_136-137_Chapter_opener_9.indd 137 22/02/18 1:40 pm

Dance
Challenge

US_136-137_Chapter_opener_9.indd 137 22/02/18 1:40 pm

D A N C E C H A L L E N G E138

How to build
Dance Challenge
Get your groove on with this fast-paced
game. Watch the dancer move to the
music and then put your memory skills
to the test by repeating those moves.
How long can you keep going without
making a mistake?

◁ Dancer
The dancer loves showing
off his moves! Follow him
carefully to keep on playing.

◁ Colored squares
One of the squares is
highlighted with a yellow
outline each time the
dancer switches from
one move to another.

Each correct move
will earn you a point.

What happens
In this game, the dancer performs a
sequence of moves. You need to remember
this sequence and make him repeat it using
the four arrow keys on the keyboard.

Pygame Zero Game

Score: 0

US_138-139_Dance_challenge_1.indd 138 22/02/18 12:28 pm

139H O W T O B U I L D D A N C E C H A L L E N G E

The dancer appears
to dance by switching
between different poses.

Press the arrow keys
in the right order to
score points.

This stage image
sets the scene for
your game.

You can use a
different image for

the background
of the game.

◁ Ready to rock!
This program uses
different functions to
make the dancer move
and to highlight the
colored squares. You can
also create a countdown
to give the player time to
get ready to memorize
the routine.

US_138-139_Dance_challenge_1.indd 139 22/02/18 12:28 pm

139H O W T O B U I L D D A N C E C H A L L E N G E

The dancer appears
to dance by switching
between different poses.

Press the arrow keys
in the right order to
score points.

This stage image
sets the scene for
your game.

You can use a
different image for

the background
of the game.

◁ Ready to rock!
This program uses
different functions to
make the dancer move
and to highlight the
colored squares. You can
also create a countdown
to give the player time to
get ready to memorize
the routine.

US_138-139_Dance_challenge_1.indd 139 22/02/18 12:28 pm

140 D A N C E C H A L L E N G E

How it works
You start this program by
setting up functions that will
generate a sequence of dance
moves, create a countdown,
and then display the moves on
the screen. The game will keep
checking if you have pressed
an arrow key and if it was the
correct one. If you make a
mistake, the game will end.

◁ Dance Challenge flowchart
This simple flowchart shows how
the game fits together and how your
actions affect what happens next. If
you manage to copy all the moves
in the sequence in the right order, the
game will loop around to create a new
sequence. This will continue to happen
until you make a mistake.

Start music

Display moves

Display “Dance!”

See which move
to check next

All moves in
the sequence

checked?

Start

Generate moves

Show countdown

End

Did it match
the move?

Check the key pressed
by the player

Y

Y

N

N

E X P E R T T I P S

Adding music
In this game, you will need to add
some music for your dancer to
move to. Pygame Zero has some
special commands that make it
quite easy to do this. Each time
you add music to a game, set
up a folder called music within
your game’s main folder, so that
Pygame Zero knows where to
find the audio files.

Are you up to
the challenge?

US_140-141_Dance_challenge_2.indd 140 22/02/18 12:28 pm

141

dance.py
images

Hit the dance floor
Now that you’ve worked out how the
game will work, it’s time to put your dancing
shoes on and get started! Begin by setting
up and saving a new file, and then import
the Python modules you will need in this
game. You will then use different Python
functions to create the game.

Create a file in IDLE
Open IDLE and create an empty
file by going to the File menu and
choosing New File.

Save your game
Go to the python-games folder you made
earlier. Inside this folder, create another folder
called dance-challenge and save your IDLE file
in it as dance.py.

Set up an image folder
This game uses images of a dancer, a stage,
and eight colored squares with an arrow inside
each. You’ll need to create a new folder, called
images, inside your dance-challenge folder. This
folder has to be inside the same folder as your
dance.py IDLE file.

1

3

2

Put the images into the folder
Find the Dance Challenge files in the Python
Games Resource Pack (dk.com/computercoding),
and copy them into the images folder. Leave the
.ogg audio file for the moment.

4

Save As:

dance-challenge

Cancel Save

dance.py

Tags:

Where:

Within your dance-challenge
folder, right-click and choose
New Folder to create the
images folder.

There should be a
total of 14 files in

the images folder.

Create this folder inside
the python-games folder.

dance.py

dancer-down.png
dancer-left.png
dancer-right.png

dancer-up.png
down-lit.png
down.png
left-lit.png
left.png
right-lit.png
right.png

up.png

stage.png
up-lit.png

dancer-start.png

images

Nice save!

G A M E P R O G R E S S 1 3 %

dance-challenge

File

 New File

 Open...

dance-challenge

US_140-141_Dance_challenge_2.indd 141 23/02/18 2:31 pm

141

dance.py
images

Hit the dance floor
Now that you’ve worked out how the
game will work, it’s time to put your dancing
shoes on and get started! Begin by setting
up and saving a new file, and then import
the Python modules you will need in this
game. You will then use different Python
functions to create the game.

Create a file in IDLE
Open IDLE and create an empty
file by going to the File menu and
choosing New File.

Save your game
Go to the python-games folder you made
earlier. Inside this folder, create another folder
called dance-challenge and save your IDLE file
in it as dance.py.

Set up an image folder
This game uses images of a dancer, a stage,
and eight colored squares with an arrow inside
each. You’ll need to create a new folder, called
images, inside your dance-challenge folder. This
folder has to be inside the same folder as your
dance.py IDLE file.

1

3

2

Put the images into the folder
Find the Dance Challenge files in the Python
Games Resource Pack (dk.com/computercoding),
and copy them into the images folder. Leave the
.ogg audio file for the moment.

4

Save As:

dance-challenge

Cancel Save

dance.py

Tags:

Where:

Within your dance-challenge
folder, right-click and choose
New Folder to create the
images folder.

There should be a
total of 14 files in

the images folder.

Create this folder inside
the python-games folder.

dance.py

dancer-down.png
dancer-left.png
dancer-right.png

dancer-up.png
down-lit.png
down.png
left-lit.png
left.png
right-lit.png
right.png

up.png

stage.png
up-lit.png

dancer-start.png

images

Nice save!

G A M E P R O G R E S S 1 3 %

dance-challenge

File

 New File

 Open...

dance-challenge

US_140-141_Dance_challenge_2.indd 141 23/02/18 2:31 pm

142 D A N C E C H A L L E N G E

Set up a music folder
This game uses an audio file so that the dancer
has something to dance to. The file needs its
own folder, so create a new folder called music
inside your dance-challenge folder.

Put the music file into the folder
Go back to the Python Games Resource Pack,
find the file called “vanishing-horizon.ogg”
and copy it into the music folder. Your folders
should look like this now.

Import a module
Now that you’re all set up, it’s time to get started
on the code. Open the dance.py file in IDLE and
type this line of code at the top of the program.
You’ll use randint() to generate random numbers
that will represent different dance moves.

5 6

7

Set the stage
Next you need to define the global
variables. These are variables that can
be used in any part of the program.
Add this code next.

8

from random import randint

 WIDTH = 800

HEIGHT = 600

CENTER_X = WIDTH / 2

CENTER_Y = HEIGHT / 2

move_list = []

display_list = []

score = 0

current_move = 0

count = 4

dance_length = 4

say_dance = False

show_countdown = True

moves_complete = False

game_over = False

This imports the randint()
function from Python’s
Random module.

These variables
define the size of
the game window.

These will
contain lists of
the dance moves.

These variables are
assigned integer
values needed in
the game.

These are flag
variables that
keep track of
what’s happening
in the game.

The stage is almost
set. I can’t wait to

get started!

dance.py

vanishing-horizon.ogg

images
music

New Folder

Get Info

Clean up

Clean up by ▶

Sort by ▶

dance-challenge

US_142-143_Dance_Challenge_3.indd 142 22/02/18 12:28 pm

143

Add the Actors
Now it’s time to define the
Actors and set their starting
positions. Add this code under
what you typed in Step 8.

Draw the Actors
It’s time to see what your game is
going to look like. You can display
your Actors on the screen using
Pygame Zero’s built-in draw()
function. Type this in next.

Run the code
Save all the changes you’ve made, and then go
to the command line in the Command Prompt or
Terminal window. Type in pgzrun and drag the
dance.py file into the window. Then press Enter.

9 dancer = Actor("dancer-start")

dancer.pos = CENTER_X + 5, CENTER_Y - 40

 up = Actor("up")

up.pos = CENTER_X, CENTER_Y + 110

right = Actor("right")

right.pos = CENTER_X + 60, CENTER_Y + 170

down = Actor("down")

down.pos = CENTER_X, CENTER_Y + 230

left = Actor("left")

left.pos = CENTER_X - 60, CENTER_Y + 170

def draw():

 global game_over, score, say_dance

 global count, show_countdown

 if not game_over:

 screen.clear()

 screen.blit("stage", (0, 0))

 dancer.draw()

 up.draw()

 down.draw()

 right.draw()

 left.draw()

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 return

10

11

When the game
starts, the
dancer appears
in the starting
position in the
center of the
game window.

This code will arrange the
colored squares in a cross

shape below the dancer.

This line clears
previous items drawn.

These lines draw all
the Actors in their
current positions.

Use this function to
add a background in
the game window.

This prints the
score in the top-left

corner of the screen.

This command is only run
if the game isn’t over.

These lines tell Python which global
variables you want to use in this function.

Check pages 24–25 if you
need to remind yourself how

to run your games.

G A M E P R O G R E S S 3 5 %

US_142-143_Dance_Challenge_3.indd 143 22/02/18 12:28 pm

143

Add the Actors
Now it’s time to define the
Actors and set their starting
positions. Add this code under
what you typed in Step 8.

Draw the Actors
It’s time to see what your game is
going to look like. You can display
your Actors on the screen using
Pygame Zero’s built-in draw()
function. Type this in next.

Run the code
Save all the changes you’ve made, and then go
to the command line in the Command Prompt or
Terminal window. Type in pgzrun and drag the
dance.py file into the window. Then press Enter.

9 dancer = Actor("dancer-start")

dancer.pos = CENTER_X + 5, CENTER_Y - 40

 up = Actor("up")

up.pos = CENTER_X, CENTER_Y + 110

right = Actor("right")

right.pos = CENTER_X + 60, CENTER_Y + 170

down = Actor("down")

down.pos = CENTER_X, CENTER_Y + 230

left = Actor("left")

left.pos = CENTER_X - 60, CENTER_Y + 170

def draw():

 global game_over, score, say_dance

 global count, show_countdown

 if not game_over:

 screen.clear()

 screen.blit("stage", (0, 0))

 dancer.draw()

 up.draw()

 down.draw()

 right.draw()

 left.draw()

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 return

10

11

When the game
starts, the
dancer appears
in the starting
position in the
center of the
game window.

This code will arrange the
colored squares in a cross

shape below the dancer.

This line clears
previous items drawn.

These lines draw all
the Actors in their
current positions.

Use this function to
add a background in
the game window.

This prints the
score in the top-left

corner of the screen.

This command is only run
if the game isn’t over.

These lines tell Python which global
variables you want to use in this function.

Check pages 24–25 if you
need to remind yourself how

to run your games.

G A M E P R O G R E S S 3 5 %

US_142-143_Dance_Challenge_3.indd 143 22/02/18 12:28 pm

144 D A N C E C H A L L E N G E

First screen
If your code is working properly, your game
screen should look something like this. If not,
there’s no need to worry. Just go back to your
code and use your debugging skills to check
every line for possible errors, such as spellings
and number of spaces.

12

def reset_dancer():

 pass

def update_dancer(move):

 pass

def display_moves():

 pass

def generate_moves():

 pass

def countdown():

 pass

def next_move():

 pass

def on_key_up(key):

 pass

def update():

 pass

Musical statues
You’ve probably spotted a problem with your
dancer... he’s not moving! Set up placeholders
for the functions you’re going to use to
change that. Add this code under what you
typed in Step 10.

13

Pygame Zero Game

Score: 0

R E M E M B E R

Placeholders
Using pass is a good way to list all
the functions you’ll need so you don’t
forget anything.

Take that!

This function will set
the Actors back to their
original positions.

This function will display
the latest sequence of
moves generated by
the program.

This function will
generate a list of
dance moves.

This function updates
the Actors to show a
dance move.

This function will display
a countdown before each
sequence of moves.

This function will
go to the next
move in the list.

This function will make
the program react when
you press a key.

This is a built-in
Pygame Zero function.

US_144-145_Dance_Challenge_4.indd 144 22/02/18 12:28 pm

145

Random numbers
Your program needs to generate dance sequences for you
to memorize and repeat. The four possible moves are Up,
Down, Left, and Right. You don’t have a function that will
generate random directions, but the randint() function will
let you generate random numbers. If you assign each of the
four moves a number, starting from 0, you will then be able
to create random dance sequences. Step 15 will show you
how to do this.

Let’s move!
The first function you need to define properly is update_dancer().
This changes the image of the dancer to match the dance move
he should perform. The colored square that corresponds to
that dance move also changes to become outlined in yellow.
Replace pass under the update_dancer(move) function from
Step 13 with the code shown below. There’s quite a lot to add,
so be extra careful.

def update_dancer(move):

 global game_over

 if not game_over:

 if move == 0:

 up.image = "up-lit"

 dancer.image = "dancer-up"

 clock.schedule(reset_dancer, 0.5)

 elif move == 1:

 right.image = "right-lit"

 dancer.image = "dancer-right"

 clock.schedule(reset_dancer, 0.5)

 elif move == 2:

 down.image = "down-lit"

 dancer.image = "dancer-down"

 clock.schedule(reset_dancer, 0.5)

 else:

 left.image = "left-lit"

 dancer.image = "dancer-left"

 clock.schedule(reset_dancer, 0.5)

 return

2 = Down

3 = Left

0 = Up

1 = Right

The value in move tells
the dancer which dance
move to do. Here, it’s set
to 0, which will mean Up.

This line changes the
image of the dancer.

This function will tell
the dancer which
move to perform.

The dancer will hold the
move for half a second
before reset_dancer()
is called, returning him
to the starting pose.

This line tells
Python which

global variable
to use.

This line highlights
the colored square

for Up with a
yellow outline.

0

1

2

3

14

15

Don’t forget to save
your work.

G A M E P R O G R E S S 4 8 %

US_144-145_Dance_Challenge_4.indd 145 22/02/18 12:28 pm

145

Random numbers
Your program needs to generate dance sequences for you
to memorize and repeat. The four possible moves are Up,
Down, Left, and Right. You don’t have a function that will
generate random directions, but the randint() function will
let you generate random numbers. If you assign each of the
four moves a number, starting from 0, you will then be able
to create random dance sequences. Step 15 will show you
how to do this.

Let’s move!
The first function you need to define properly is update_dancer().
This changes the image of the dancer to match the dance move
he should perform. The colored square that corresponds to
that dance move also changes to become outlined in yellow.
Replace pass under the update_dancer(move) function from
Step 13 with the code shown below. There’s quite a lot to add,
so be extra careful.

def update_dancer(move):

 global game_over

 if not game_over:

 if move == 0:

 up.image = "up-lit"

 dancer.image = "dancer-up"

 clock.schedule(reset_dancer, 0.5)

 elif move == 1:

 right.image = "right-lit"

 dancer.image = "dancer-right"

 clock.schedule(reset_dancer, 0.5)

 elif move == 2:

 down.image = "down-lit"

 dancer.image = "dancer-down"

 clock.schedule(reset_dancer, 0.5)

 else:

 left.image = "left-lit"

 dancer.image = "dancer-left"

 clock.schedule(reset_dancer, 0.5)

 return

2 = Down

3 = Left

0 = Up

1 = Right

The value in move tells
the dancer which dance
move to do. Here, it’s set
to 0, which will mean Up.

This line changes the
image of the dancer.

This function will tell
the dancer which
move to perform.

The dancer will hold the
move for half a second
before reset_dancer()
is called, returning him
to the starting pose.

This line tells
Python which

global variable
to use.

This line highlights
the colored square

for Up with a
yellow outline.

0

1

2

3

14

15

Don’t forget to save
your work.

G A M E P R O G R E S S 4 8 %

US_144-145_Dance_Challenge_4.indd 145 22/02/18 12:28 pm

146 D A N C E C H A L L E N G E

Reset the Actors
The dancer needs to return to the start position after
each move. The yellow-outlined arrow square that
corresponds to his dance move will also need to go
back to normal. To make a function to handle this,
replace the word pass under def reset_dancer()
from Step 13 with this code.

Make a move
Next you need to write a function
that makes the dancer perform a
move when you press one of the
arrow keys on the keyboard. You
can use Pygame Zero’s built-in tool
on_key_up() to write an event-
handler function to do this. Replace
pass under the on_key_up(key)
function from Step 13 with this code.

Move those feet
It’s time to see your dancer’s moves!
Save your file and run it from the
command line. You will see the same
screen as in Step 12, but this time
if you hit the Right key, the dancer
will perform the dance move
assigned to that key. The square
for the Right arrow will also get
highlighted. The dancer and square
will return to their starting images
after half a second. Press the other
arrow keys to test their moves, too.

16

17

18

 def reset_dancer():

 global game_over

 if not game_over:

 dancer.image = "dancer-start"

 up.image = "up"

 right.image = "right"

 down.image = "down"

 left.image = "left"

 return

 def on_key_up(key):

 global score, game_over, move_list, current_move

 if key == keys.UP:

 update_dancer(0)

 elif key == keys.RIGHT:

 update_dancer(1)

 elif key == keys.DOWN:

 update_dancer(2)

 elif key == keys.LEFT:

 update_dancer(3)

 return

Each time an arrow key is pressed,
the update_dancer() function is

called with a parameter to make the
dancer perform the relevant move.

Score: 0

A square is
highlighted to
match the arrow key
that you pressed.

Pygame Zero Game

US_146-147_Dance_Challenge_5.indd 146 22/02/18 12:28 pm

147

Show me the steps
Now that you can make the dancer move with the arrow
keys, he needs to display some computer-generated moves
for the player to copy. Begin by writing the function that
displays a sequence of moves to memorize. Replace pass
under the display_moves() function from Step 13 with the
code shown below.

19

 def display_moves():

 global move_list, display_list, dance_length

 global say_dance, show_countdown, current_move

 if display_list:

 this_move = display_list[0]

 display_list = display_list[1:]

 if this_move == 0:

 update_dancer(0)

 clock.schedule(display_moves, 1)

 elif this_move == 1:

 update_dancer(1)

 clock.schedule(display_moves, 1)

 elif this_move == 2:

 update_dancer(2)

 clock.schedule(display_moves, 1)

 else:

 update_dancer(3)

 clock.schedule(display_moves, 1)

 else:

 say_dance = True

 show_countdown = False

 return

This line
checks if the
list of dance

moves has
something in it.

This line stores the first
move in display_list in
the variable this_move.

This removes the first item
from display_list so that
the second item will now
be at position 0.

If the value of
this_move is 0,

it is passed on
to this function.

This line
schedules a call
to the function

display_moves()
in one second.

If display_list is empty,
this line tells the draw()
function to display “Dance!”

This line sets the
global variable
show_countdown
to False.

Care to teach
me flamenco?

G A M E P R O G R E S S 6 1 %

US_146-147_Dance_Challenge_5.indd 147 22/02/18 12:28 pm

147

Show me the steps
Now that you can make the dancer move with the arrow
keys, he needs to display some computer-generated moves
for the player to copy. Begin by writing the function that
displays a sequence of moves to memorize. Replace pass
under the display_moves() function from Step 13 with the
code shown below.

19

 def display_moves():

 global move_list, display_list, dance_length

 global say_dance, show_countdown, current_move

 if display_list:

 this_move = display_list[0]

 display_list = display_list[1:]

 if this_move == 0:

 update_dancer(0)

 clock.schedule(display_moves, 1)

 elif this_move == 1:

 update_dancer(1)

 clock.schedule(display_moves, 1)

 elif this_move == 2:

 update_dancer(2)

 clock.schedule(display_moves, 1)

 else:

 update_dancer(3)

 clock.schedule(display_moves, 1)

 else:

 say_dance = True

 show_countdown = False

 return

This line
checks if the
list of dance

moves has
something in it.

This line stores the first
move in display_list in
the variable this_move.

This removes the first item
from display_list so that
the second item will now
be at position 0.

If the value of
this_move is 0,

it is passed on
to this function.

This line
schedules a call
to the function

display_moves()
in one second.

If display_list is empty,
this line tells the draw()
function to display “Dance!”

This line sets the
global variable
show_countdown
to False.

Care to teach
me flamenco?

G A M E P R O G R E S S 6 1 %

US_146-147_Dance_Challenge_5.indd 147 22/02/18 12:28 pm

148 D A N C E C H A L L E N G E

Show the countdown
Now that you’ve defined a function for the countdown, you need
to add some code to the draw() function to display it. You will
also need to display “Dance!” when a new set of moves has been
shown, so the player knows when to start entering the moves
using the arrow keys. Add this code to the draw() function that
you started in Step 10.

21

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 if say_dance:

 screen.draw.text("Dance!", color="black",

 topleft=(CENTER_X - 65, 150), fontsize=60)

 if show_countdown:

 screen.draw.text(str(count), color="black",

 topleft=(CENTER_X - 8, 150), fontsize=60)

 return

E X P E R T T I P S

Recursive functions
Both display_moves() and
countdown() are functions
that call themselves. These are
known as recursive functions.
Because Pygame Zero redraws
the screen thousands of times
every second, you need your
recursive functions to schedule
a call to themselves one whole
second later. Otherwise, the
moves and the countdown
would be displayed too fast
for even the most eagle-eyed
player to see!

Counting down
You don’t want your players to be looking away when the next set of
moves to memorize is displayed. Add a function that displays 3, 2, and
then 1 with a one-second pause between each number. You’ll actually
count down from 4, but because the countdown() function begins by
subtracting one from count, the number 4 doesn’t appear on the
screen long enough to be seen. Replace pass under def countdown()
from Step 13 with this code.

20

def countdown():

 global count, game_over, show_countdown

 if count > 1:

 count = count - 1

 clock.schedule(countdown, 1)

 else:

 show_countdown = False

 display_moves()

 return

This updates the
value in count by
subtracting one.

This line
schedules
another call to
the countdown()
function in
one second.

This removes the
countdown from the

screen if count is less
than or equal to one.

This line draws the
word “Dance!” on
the screen in black.

This line displays the
current value of count
on the screen in black.

Can you call me back
in a second?

US_148-149_Dance_Challenge_6.indd 148 22/02/18 12:29 pm

149

Generate the moves
Next you need to write a function to generate
a sequence of moves to display on the screen.
You need to use a for loop to generate four
random numbers ranging from 0 to 3, where
each number represents one of the moves you
set up in Step 15. Each move generated will be
added to two lists—move_list and display_list.
Replace pass under def generate_moves()
from Step 13 with this code.

22 def generate_moves():

 global move_list, dance_length, count

 global show_countdown, say_dance

 count = 4

 move_list = []

 say_dance = False

 for move in range(0, dance_length):

 rand_move = randint(0, 3)

 move_list.append(rand_move)

 display_list.append(rand_move)

 show_countdown = True

 countdown()

 return

Game over
If the player makes a mistake, you need a “GAME OVER!”
message to pop up. You can do this by adding an else branch
to the if not game_over statement. By doing this, if game_over
becomes True, the dancer and squares will vanish and be replaced
by the “GAME OVER!” message. Add this code to the draw()
function immediately above the return statement.

23

 if show_countdown:

 screen.draw.text(str(count), color="black",

 topleft=(CENTER_X - 8, 150), fontsize=60)

 else:

 screen.clear()

 screen.blit("stage", (0, 0))

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 screen.draw.text("GAME OVER!", color="black",

 topleft=(CENTER_X - 130, 220), fontsize=60)

 return

This line draws
the score in the
top-left corner.

This line draws “GAME
OVER!” in black at the
center of the screen.

This assigns values
0, 1, 2, or 3 at random to
the variable rand_move.

This line adds each
new move to the end

of the list of moves.

This code runs if
game_over is True.

This line tells the function
draw() to display the
value in count to create
the countdown.

G A M E P R O G R E S S 7 4 %

Don’t forget to save
your work.

US_148-149_Dance_Challenge_6.indd 149 22/02/18 12:29 pm

149

Generate the moves
Next you need to write a function to generate
a sequence of moves to display on the screen.
You need to use a for loop to generate four
random numbers ranging from 0 to 3, where
each number represents one of the moves you
set up in Step 15. Each move generated will be
added to two lists—move_list and display_list.
Replace pass under def generate_moves()
from Step 13 with this code.

22 def generate_moves():

 global move_list, dance_length, count

 global show_countdown, say_dance

 count = 4

 move_list = []

 say_dance = False

 for move in range(0, dance_length):

 rand_move = randint(0, 3)

 move_list.append(rand_move)

 display_list.append(rand_move)

 show_countdown = True

 countdown()

 return

Game over
If the player makes a mistake, you need a “GAME OVER!”
message to pop up. You can do this by adding an else branch
to the if not game_over statement. By doing this, if game_over
becomes True, the dancer and squares will vanish and be replaced
by the “GAME OVER!” message. Add this code to the draw()
function immediately above the return statement.

23

 if show_countdown:

 screen.draw.text(str(count), color="black",

 topleft=(CENTER_X - 8, 150), fontsize=60)

 else:

 screen.clear()

 screen.blit("stage", (0, 0))

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 screen.draw.text("GAME OVER!", color="black",

 topleft=(CENTER_X - 130, 220), fontsize=60)

 return

This line draws
the score in the
top-left corner.

This line draws “GAME
OVER!” in black at the
center of the screen.

This assigns values
0, 1, 2, or 3 at random to
the variable rand_move.

This line adds each
new move to the end

of the list of moves.

This code runs if
game_over is True.

This line tells the function
draw() to display the
value in count to create
the countdown.

G A M E P R O G R E S S 7 4 %

Don’t forget to save
your work.

US_148-149_Dance_Challenge_6.indd 149 22/02/18 12:29 pm

150 D A N C E C H A L L E N G E

 generate_moves()

def update():

 pass

Get the next move
You need a way to move along
the list of moves the computer
generated. This will let you
compare the first move the player
enters to the first move in the
computer’s list, and so on through
the list. You also need to know when
you’ve reached the end of the list.
To do this, use the global variable
current_move to identify which
move you’re dealing with. Replace
pass under def next_move()
from Step 13 with this code.

def next_move():

 global dance_length, current_move, moves_complete

 if current_move < dance_length - 1:

 current_move = current_move + 1

 else:

 moves_complete = True

 return

The else block runs
if there are no more
moves to check.

This condition is
True if there are
still some moves
to check.

The global variable
current_move identifies
which move you’re dealing with.

This code moves
current_move on
to the next move.

9 8

Generation test
It’s time to test your new functions and see if they are working. Add
a call to generate_moves() just above the definition of update()
from Step 13. Save the file and run it. You should see a countdown
appear and then your dancer demonstrating a sequence of four
moves. The word “Dance!” should be displayed when he’s finished,
but don’t start dancing yet! You still need to add the code that
checks if the moves entered by the player are correct.

24

 if key == keys.UP:

 update_dancer(0)

 if move_list[current_move] == 0:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.RIGHT:

 update_dancer(1)

Score on each move
You now need to add some code to the on_key_up() function.
When the player presses a key, the game needs to check whether
the arrow key that’s been pressed matches the move the game
is currently checking. If it does, the player scores a point and
current_move is updated to the next move on the list. If it doesn’t,
the game is over! Add this code to the on_key_up(key) function
that you started in Step 17. Be careful to add it in the right place.

26

25

If the player
makes a mistake,
game_over is set
to True.

This block runs if the
player presses the
correct key.

US_150-151_Dance_Challenge_7.indd 150 22/02/18 12:29 pm

151

 if move_list[current_move] == 1:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.DOWN:

 update_dancer(2)

 if move_list[current_move] == 2:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.LEFT:

 update_dancer(3)

 if move_list[current_move] == 3:

 score = score + 1

 next_move()

 else:

 game_over = True

 return

I am out of control!

def update():

 global game_over, current_move, moves_complete

 if not game_over:

 if moves_complete:

 generate_moves()

 moves_complete = False

 current_move = 0

Keep going!
To make the game more challenging, a new set of
moves needs to be displayed every time the player
successfully completes a dance sequence. Replace
pass in the update() function from Step 13 with
the code below to do this.

27

E X P E R T T I P S

Event handling
Dance Challenge uses an event handler
function called on_key_up() to react
to a player pressing an arrow key. You
shouldn’t put the code to deal with key
presses inside the built-in update()
function in this case because it will
run too frequently. If you pressed a
key down just for a second, update()
would tell the game you had pressed
it hundreds of times. This probably
wouldn’t match the dance sequence,
so the game would finish right away.

This line runs if you
complete every move
in the current list.

This line generates a
new series of moves
and displays them.

G A M E P R O G R E S S 8 7 %

Don’t worry!
I’ll handle it.

US_150-151_Dance_Challenge_7.indd 151 22/02/18 12:29 pm

151

 if move_list[current_move] == 1:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.DOWN:

 update_dancer(2)

 if move_list[current_move] == 2:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.LEFT:

 update_dancer(3)

 if move_list[current_move] == 3:

 score = score + 1

 next_move()

 else:

 game_over = True

 return

I am out of control!

def update():

 global game_over, current_move, moves_complete

 if not game_over:

 if moves_complete:

 generate_moves()

 moves_complete = False

 current_move = 0

Keep going!
To make the game more challenging, a new set of
moves needs to be displayed every time the player
successfully completes a dance sequence. Replace
pass in the update() function from Step 13 with
the code below to do this.

27

E X P E R T T I P S

Event handling
Dance Challenge uses an event handler
function called on_key_up() to react
to a player pressing an arrow key. You
shouldn’t put the code to deal with key
presses inside the built-in update()
function in this case because it will
run too frequently. If you pressed a
key down just for a second, update()
would tell the game you had pressed
it hundreds of times. This probably
wouldn’t match the dance sequence,
so the game would finish right away.

This line runs if you
complete every move
in the current list.

This line generates a
new series of moves
and displays them.

G A M E P R O G R E S S 8 7 %

Don’t worry!
I’ll handle it.

US_150-151_Dance_Challenge_7.indd 151 22/02/18 12:29 pm

152 D A N C E C H A L L E N G E

Test the game
Before you add the finishing touches to your game,
test it. Save your code and then run it. Try getting the
first sequence of moves right to increase your score
to four, then deliberately make a mistake with the
second sequence. What do you see on the screen?

Start the music
At the moment, your dancer has nothing to
dance to, which isn’t much fun. Add a command
in your program that will play the audio file you
saved in the music folder earlier. Type this code
under the command you typed in Step 24. This
will tell Pygame Zero to start playing the music
file until it’s told to stop. If the player is still
dancing at the end of the song, it will loop
around and play the song again.

Stop the music
You don’t want the music to keep playing after
the game has finished. So you need to add an else
branch to your first if statement in the update()
function to stop the music if the game is over. Add
this code to what you typed in Step 27.

Ready to play
Your code is now complete, so get your
dancing shoes on! Save the file, run it
from the command line in Command
Prompt or Terminal window, and see
how long you can keep on dancing!

28

 generate_moves()

 music.play("vanishing-horizon")

def update():

 if not game_over:

 if moves_complete:

 generate_moves()

 moves_complete = False

 current_move = 0

 else:

 music.stop()

GAME OVER!

29 30

31

If game_over is True,
this line stops playing
the audio file.

You passed the
first test!

Pygame Zero Game

Score: 0

US_152-153_Dance_Challenge_8.indd 152 22/02/18 12:29 pm

153

 if (rounds % 3 == 0):

 dance_length = dance_length + 1

Hacks and tweaks
You can play around with the code to
make the game even more interesting.
But only if you’ve got enough energy
left after all that dancing!

△ A longer dance
You can make the game more challenging. Each time you
complete three sequences, increase the dance_length by one.
To find out how many rounds have been completed, divide
the number of sequences danced by three. If the remainder is
zero, then three sequences have been successfully completed
since the last check, so add 1 to dance_length. You can use
Python’s modulo operator to work out the remainder. Modulo
is written using the % symbol, so 4 % 3 will give you the
remainder on dividing 4 by 3.

△ Change the music
You can change the game music by downloading
audio files from www.creativecommons.org.
Remember to look for the .ogg format. You
don’t have to pay for the music, but you should
acknowledge the creator in your game by adding
a line of code that displays the name of the track
and its creators on the “GAME OVER!” screen.

△ Play against a friend!
You can play this game against a friend. Change the
code so that all the odd-number sequences add to
player 1’s score, and the even-number ones add
to player 2’s score. It should show both scores at the
top of the screen, and must also display a message
that tells which player needs to play next, just before
the countdown begins. Add some code to the
on_key_up() function so that one player uses the
keys W, A, S, and D to enter their moves, while the
the other uses the Up, Left, Down, and Right keys.

△ Create your own character
Make your own dancer by using the 8-bit editors available
online, or use the additional images provided in the Python
Games Resource Pack. You could have more than four dance
moves to make more interesting and harder sequences. Just
add some code under the on_key_up() function in Step 17
to assign keys to each of the extra moves.

Can you give me
a hand?

Shuffle mode is
my favorite!

It’s you against
me now!

G A M E P R O G R E S S 1 0 0 %

US_152-153_Dance_Challenge_8.indd 153 22/02/18 12:29 pm

153

 if (rounds % 3 == 0):

 dance_length = dance_length + 1

Hacks and tweaks
You can play around with the code to
make the game even more interesting.
But only if you’ve got enough energy
left after all that dancing!

△ A longer dance
You can make the game more challenging. Each time you
complete three sequences, increase the dance_length by one.
To find out how many rounds have been completed, divide
the number of sequences danced by three. If the remainder is
zero, then three sequences have been successfully completed
since the last check, so add 1 to dance_length. You can use
Python’s modulo operator to work out the remainder. Modulo
is written using the % symbol, so 4 % 3 will give you the
remainder on dividing 4 by 3.

△ Change the music
You can change the game music by downloading
audio files from www.creativecommons.org.
Remember to look for the .ogg format. You
don’t have to pay for the music, but you should
acknowledge the creator in your game by adding
a line of code that displays the name of the track
and its creators on the “GAME OVER!” screen.

△ Play against a friend!
You can play this game against a friend. Change the
code so that all the odd-number sequences add to
player 1’s score, and the even-number ones add
to player 2’s score. It should show both scores at the
top of the screen, and must also display a message
that tells which player needs to play next, just before
the countdown begins. Add some code to the
on_key_up() function so that one player uses the
keys W, A, S, and D to enter their moves, while the
the other uses the Up, Left, Down, and Right keys.

△ Create your own character
Make your own dancer by using the 8-bit editors available
online, or use the additional images provided in the Python
Games Resource Pack. You could have more than four dance
moves to make more interesting and harder sequences. Just
add some code under the on_key_up() function in Step 17
to assign keys to each of the extra moves.

Can you give me
a hand?

Shuffle mode is
my favorite!

It’s you against
me now!

G A M E P R O G R E S S 1 0 0 %

US_152-153_Dance_Challenge_8.indd 153 22/02/18 12:29 pm

US_154-155_Chapter_opener_10.indd 154 22/02/18 1:40 pm

Happy
Garden

US_154-155_Chapter_opener_10.indd 155 22/02/18 1:40 pm

Happy
Garden

US_154-155_Chapter_opener_10.indd 155 22/02/18 1:40 pm

156 H A P P Y G A R D E N

How to build
Happy Garden
Gardening may seem like a relaxing
hobby, but not in this game! Can you
help a flower-loving cow keep all
the plants watered? Look out for the
scary fangflowers as they try to zap
the cow. How long can you help it
keep the garden happy?

◁ Fangflower
This large carnivorous
plant moves around the
garden and tries to zap
the cow.

◁ Cow
The cow is the main
character in the game.
Its aim is to keep all
the flowers watered.

The counter displays the
number of seconds the
garden has been happy for.

Garden happy for: 16 seconds

What happens
When the game starts, a cow with a watering
can appears in the garden, but there is only
one flower. Every few seconds another flower
appears or an existing flower begins to wilt. Use
the arrow keys to move the cow to the wilted
flowers and press the Space bar to water them.
If any flower remains wilted for more than ten
seconds, the game ends. But if the garden is
happy for more than 15 seconds, one of the
flowers mutates into a fangflower and tries
to zap the cow.

Pygame Zero Game

US_156-157_happy_garden_1.indd 156 22/02/18 12:29 pm

157H O W T O B U I L D H A P P Y G A R D E N

◁ Keep moo-ving!
There are a lot of different
elements in this game. The
code uses several functions
to keep track of them all.

If a flower remains
wilted for more than ten
seconds, the game ends.

The blooming flowers
continue to appear at random
positions on the screen as
the game progresses.

US_156-157_happy_garden_1.indd 157 22/02/18 12:29 pm

157H O W T O B U I L D H A P P Y G A R D E N

◁ Keep moo-ving!
There are a lot of different
elements in this game. The
code uses several functions
to keep track of them all.

If a flower remains
wilted for more than ten
seconds, the game ends.

The blooming flowers
continue to appear at random
positions on the screen as
the game progresses.

US_156-157_happy_garden_1.indd 157 22/02/18 12:29 pm

158

How it works
The code begins by setting up the Actors—the cow and
the flowers—in the garden. It then checks if any of the
flowers have been wilted for more than ten seconds,
and if the cow has been zapped by a fangflower. If
any one of these conditions is True, the game ends.
If not, the program checks for the other conditions.

Is the cow next to
a fangflower?

Is the cow next
to a flower?

Is the arrow key
being pressed?

Is the Space bar
being pressed?

Start

End

Add the garden and the cow;
generate and add the first flower

Reset flower if it is wilted

Show water coming out
of the watering can

Move cow in the direction
of the arrow key

Mutate a flower
into a fangflower ◁ Happy Garden flowchart

This flowchart shows how various
parts of the game fit together. It
also shows how both the player’s
actions and the randomly
generated events affect what
happens in the game.

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

A good shower
always makes

me happy!

Has the game been
running for more than

15 seconds and have no
fangflowers appeared yet?

H A P P Y G A R D E N

Has the flower
been wilted for more

than ten seconds?

US_158-159_happy_garden_2.indd 158 22/02/18 12:29 pm

159

It’s gardening time!
It will take some preparation to get the
garden ready. Begin by setting up the folders
and downloading the images you’ll need.

Get started
Open IDLE and create an empty file by clicking
on the File menu and choosing New File.

1

Set up an image folder
Within the happy-garden folder, create another
folder by right-clicking and choosing New Folder.
Name it images. It will be used to store all the
images you need for this game.

3

Save the game
Go to your python-games folder and create
another folder called happy-garden. From the File
menu, choose Save As… and save the program
as garden.py inside the happy-garden folder.

2

Save As:

happy-garden

Cancel Save

garden.py

Tags:

Where:

Put the images into the folder
Find the images for Happy Garden in the Python
Games Resource Pack (dk.com/computercoding)
and copy them into the images folder. Your folders
should look like this now.

4

Import modules
It’s time to start coding. Go back to your garden.py
file and start by importing some modules. You’ll
use randint() to randomly choose which flowers
will wilt or mutate. The functions in the Time
module will keep track of how long the garden
has been happy for or how long any flowers
have been wilted.

5 from random import randint

import time

This imports the
randint() function from
Python’s Random module.

This imports Python’s
Time module.

garden.pygarden.py

cow.png
cow-water.png

fangflower.png

flower.png
flower-wilt.png

garden.png
zap.png

imagesimages

These are going to look
great in my garden.

G A M E P R O G R E S S 1 4 %

happy-garden happy-garden

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

US_158-159_happy_garden_2.indd 159 23/02/18 2:31 pm

159

It’s gardening time!
It will take some preparation to get the
garden ready. Begin by setting up the folders
and downloading the images you’ll need.

Get started
Open IDLE and create an empty file by clicking
on the File menu and choosing New File.

1

Set up an image folder
Within the happy-garden folder, create another
folder by right-clicking and choosing New Folder.
Name it images. It will be used to store all the
images you need for this game.

3

Save the game
Go to your python-games folder and create
another folder called happy-garden. From the File
menu, choose Save As… and save the program
as garden.py inside the happy-garden folder.

2

Save As:

happy-garden

Cancel Save

garden.py

Tags:

Where:

Put the images into the folder
Find the images for Happy Garden in the Python
Games Resource Pack (dk.com/computercoding)
and copy them into the images folder. Your folders
should look like this now.

4

Import modules
It’s time to start coding. Go back to your garden.py
file and start by importing some modules. You’ll
use randint() to randomly choose which flowers
will wilt or mutate. The functions in the Time
module will keep track of how long the garden
has been happy for or how long any flowers
have been wilted.

5 from random import randint

import time

This imports the
randint() function from
Python’s Random module.

This imports Python’s
Time module.

garden.pygarden.py

cow.png
cow-water.png

fangflower.png

flower.png
flower-wilt.png

garden.png
zap.png

imagesimages

These are going to look
great in my garden.

G A M E P R O G R E S S 1 4 %

happy-garden happy-garden

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

US_158-159_happy_garden_2.indd 159 23/02/18 2:31 pm

H A P P Y G A R D E N160

Add the cow
To start with, the only Actor in the
game is the cow. Type the code
shown in black to add the cow
and set its starting position.

Declare global variables
Next define the global variables.
These are the variables that will be
used throughout the game. Type
this code under the lines you added
in Step 5.

6

Create lists for other Actors
The other Actors in the game—
flowers and fangflowers—are
generated at random as the
game progresses. Since you don’t
know how many of them will be
generated, create lists to store
each one that appears.

flower_list = []

 wilted_list = []

 fangflower_list = []

start_time = time.time()

 cow = Actor("cow")

 cow.pos = 100, 500

This list will store the
fangflower Actors.

Each time a new flower Actor is
created, it gets added to this list.

These values set the
cow’s starting position
on the screen.

This list will store how
long a flower has
been wilted.

 WIDTH = 800

 HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

 game_over = False

 finalized = False

 garden_happy = True

 fangflower_collision = False

 time_elapsed = 0

 start_time = time.time()

These variables
define the size of
the game screen.

These variables help
keep track of the time.

These are flag variables,
which let you know what’s

happening in the game.

Keep track of the fangflowers
In this game, you need to pay special
attention to the zapping fangflowers.
You’ll need to make them move
around the garden. They also need
to bounce off the edges of the game
window so that they are always on
the screen. You can do this by
keeping track of their velocity—the
speed at which something moves in
a particular direction—along the
x-axis and the y-axis. Add these lines
after the code from Step 8.

9 fangflower_vy_list = []

 fangflower_vx_list = []

This will hold the velocities
of the fangflowers along
the y-axis.

This will hold the velocities
of the fangflowers along
the x-axis.

7

8

?

US_160-161_happy_garden_3.indd 160 22/02/18 12:29 pm

161

Time to test
It’s time to take a look at your garden!
Save the IDLE file and then run it from
the command line in the Command
Prompt or Terminal window.

11

This will draw
all the fangflowers.

This code checks
how long the game

has been running for.

This code will draw
all the flowers.

This code draws the
cow on the screen.

 def draw():

 global game_over, time_elapsed, finalized

 if not game_over:

 screen.clear()

 screen.blit("garden", (0, 0))

 cow.draw()

 for flower in flower_list:

 flower.draw()

 for fangflower in fangflower_list:

 fangflower.draw()

 time_elapsed = int(time.time() - start_time)

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

Pygame Zero Game

Draw the garden
Now that you’ve set up those
variables, you need to draw the
garden and the cow. There are no
flowers or fangflowers to draw yet,
but add the code that will draw
them when they’re generated. Add
these lines immediately after the
code from Step 9.

10

Type this in the Command Prompt
or Terminal window and then
drag and drop the garden.py file.

G A M E P R O G R E S S 3 3 %

Get a sneak peek!
If there are no mistakes in your code, you
should see a screen like this. If something’s
wrong, don’t worry! Just use your debugging
skills to check that you’ve spelled everything
correctly and used the correct number of
spaces for indentation.

12

 pgzrun

Garden happy for: 0 seconds

You should see the
garden and the cow

holding a watering can.

US_160-161_happy_garden_3.indd 161 22/02/18 12:29 pm

161

Time to test
It’s time to take a look at your garden!
Save the IDLE file and then run it from
the command line in the Command
Prompt or Terminal window.

11

This will draw
all the fangflowers.

This code checks
how long the game

has been running for.

This code will draw
all the flowers.

This code draws the
cow on the screen.

 def draw():

 global game_over, time_elapsed, finalized

 if not game_over:

 screen.clear()

 screen.blit("garden", (0, 0))

 cow.draw()

 for flower in flower_list:

 flower.draw()

 for fangflower in fangflower_list:

 fangflower.draw()

 time_elapsed = int(time.time() - start_time)

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

Pygame Zero Game

Draw the garden
Now that you’ve set up those
variables, you need to draw the
garden and the cow. There are no
flowers or fangflowers to draw yet,
but add the code that will draw
them when they’re generated. Add
these lines immediately after the
code from Step 9.

10

Type this in the Command Prompt
or Terminal window and then
drag and drop the garden.py file.

G A M E P R O G R E S S 3 3 %

Get a sneak peek!
If there are no mistakes in your code, you
should see a screen like this. If something’s
wrong, don’t worry! Just use your debugging
skills to check that you’ve spelled everything
correctly and used the correct number of
spaces for indentation.

12

 pgzrun

Garden happy for: 0 seconds

You should see the
garden and the cow

holding a watering can.

US_160-161_happy_garden_3.indd 161 22/02/18 12:29 pm

H A P P Y G A R D E N162

Moving around the garden
At the moment, the cow appears
on the screen but doesn’t do
anything. Add some code that lets
you move the cow around. Replace
the word pass under def update()
with the following code.

14

Other functions
You’ll use a lot of functions in this
game. You can list some of them
now and define them later in the
code. Using pass will make sure
that Python doesn’t run anything
yet. Type this code under what
you added in Step 10.

13 def new_flower():

 pass

 def add_flowers():

 pass

 def check_wilt_times():

 pass

 def wilt_flower():

 pass

 def check_flower_collision():

 pass

def reset_cow():

 pass

 def update():

 pass

 def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 if not game_over:

 if keyboard.left and cow.x > 0:

 cow.x -= 5

 elif keyboard.right and cow.x < WIDTH:

 cow.x += 5

 elif keyboard.up and cow.y > 150:

 cow.y -= 5

 elif keyboard.down and cow.y < HEIGHT:

 cow.y += 5

This moves the cow five
pixels to the right when the
Right arrow key is pressed.

Don’t forget to save
your work.

I'm going to make
them all bloom.

US_162-163_happy_garden_4.indd 162 22/02/18 12:29 pm

163

Add a flower
In this step, you’ll create a flower Actor for the cow to
water and add it to the end of flower_list. You’ll also add
the value happy to the end of wilted_list, which holds
the amount of time each flower has been wilted for. The
happy value will let the program know that the flower
hasn’t wilted. Replace pass in the new_flower() function
with this code.

Add more flowers to the garden
Having just one flower to water would make the
game too easy. You need to add some code that will
create a new flower every four seconds to keep the
cow busy. Add this code to replace the word pass
under def add_flowers().

16

These are the
global variables
this function uses.

This adds the new flower
to the list of flowers.

This lets the program know
that the flower is not wilted.

This line sets the
position of
the new flower.

This line creates
a new flower Actor.

This line calls the
new_flower() function
to create a new flower.

This adds a new
flower every
four seconds.

Another test
Test your newly updated code to make sure
it’s correct. Save your IDLE file and run it from
the command line. You should now be able to
move the cow on the screen.

15

 pgzrun

 def add_flowers():

 global game_over

 if not game_over:

 new_flower()

 clock.schedule(add_flowers, 4)

 return

 def new_flower():

 global flower_list, wilted_list

 flower_new = Actor("flower")

 flower_new.pos = randint(50, WIDTH - 50), randint(150, HEIGHT - 100)

 flower_list.append(flower_new)

 wilted_list.append("happy")

 return

17
I think I need a
bigger garden!

Let’s check pages
24–25 to see

how it’s done.

G A M E P R O G R E S S 4 7 %

Type this in the Command Prompt
or Terminal window and then
drag and drop the garden.py file.

US_162-163_happy_garden_4.indd 163 22/02/18 12:29 pm

163

Add a flower
In this step, you’ll create a flower Actor for the cow to
water and add it to the end of flower_list. You’ll also add
the value happy to the end of wilted_list, which holds
the amount of time each flower has been wilted for. The
happy value will let the program know that the flower
hasn’t wilted. Replace pass in the new_flower() function
with this code.

Add more flowers to the garden
Having just one flower to water would make the
game too easy. You need to add some code that will
create a new flower every four seconds to keep the
cow busy. Add this code to replace the word pass
under def add_flowers().

16

These are the
global variables
this function uses.

This adds the new flower
to the list of flowers.

This lets the program know
that the flower is not wilted.

This line sets the
position of
the new flower.

This line creates
a new flower Actor.

This line calls the
new_flower() function
to create a new flower.

This adds a new
flower every
four seconds.

Another test
Test your newly updated code to make sure
it’s correct. Save your IDLE file and run it from
the command line. You should now be able to
move the cow on the screen.

15

 pgzrun

 def add_flowers():

 global game_over

 if not game_over:

 new_flower()

 clock.schedule(add_flowers, 4)

 return

 def new_flower():

 global flower_list, wilted_list

 flower_new = Actor("flower")

 flower_new.pos = randint(50, WIDTH - 50), randint(150, HEIGHT - 100)

 flower_list.append(flower_new)

 wilted_list.append("happy")

 return

17
I think I need a
bigger garden!

Let’s check pages
24–25 to see

how it’s done.

G A M E P R O G R E S S 4 7 %

Type this in the Command Prompt
or Terminal window and then
drag and drop the garden.py file.

US_162-163_happy_garden_4.indd 163 22/02/18 12:29 pm

H A P P Y G A R D E N164

This line will check
if the cow is next
to a flower.

This will reset the
cow’s image after
half a second.

This will change the
image of the cow to the
one with water coming

out of the watering can.

This will check if
the Space bar is

being pressed.

Water the flowers
It’s time for the cow to water the wilted flowers. Let’s add
some code that will make the cow sprinkle water on the
flowers when the player presses the Space bar. The code
will also check if the cow is standing next to a flower. Add
this code to the update() function.

20

 global flower_list, fangflower_list, time_elapsed

 if not game_over:

 if keyboard.space:

 cow.image = "cow-water"

 clock.schedule(reset_cow, 0.5)

 check_flower_collision()

 if keyboard.left and cow.x > 0:

 cow.x -= 5

Start adding flowers
Although add_flowers() will schedule
a call to itself every four seconds, you
need to call it once in the program to
start this process. Add the line in black
above def update() from Step 13. Save
and run your code to check if the flowers
start appearing!

18 def reset_cow():

 pass

add_flowers()

 def update():

Blooming garden
If there are no errors in your code,
you will see a new flower appear on
the screen every four seconds. This
is what your screen will look like after
20 seconds. Use the arrow keys to
move the cow around.

19 Pygame Zero Game

I’m going to grow
even taller than you.

Garden happy for: 20 seconds

US_164-165_happy_garden_5.indd 164 22/02/18 12:29 pm

165G A M E P R O G R E S S 6 1 %

Stop watering
The code from Step 20 uses two functions that you haven’t
written yet—reset_cow() and check_flower_collision(). Let’s
add the code that will change the image of the cow using the
watering can back to the version where it’s just holding it.
Replace the word pass under the reset_cow() function from
Step 13 with the code in black below.

Points for accuracy!
You need the code to check if the cow is near a flower when the
Space bar is pressed. If it is, the flower will get watered and its
“time since flower wilted” value in wilted_list will be set to happy.
To do this, you’ll use Pygame Zero’s built-in colliderect() function
to check if a flower and the cow have collided or are next to each
other. Replace pass under def check_flower_collision() in Step
13 with the code shown below.

21

22

This code runs
if the game is
not over yet.

This changes
the cow’s image
back to the
original one.

These are the global
variables you will use
in this function.

This variable helps
the program to

move through the
list in order.

This code loops through
all the flowers in the list.

This condition
applies if the cow

is next to the
flower you’re

looking at.

This line stops the program
counting how long the
flower’s been wilted.This stops the loop

from checking the
other flowers.

This line updates the
value of index so that

the program moves
through the list.

 def check_flower_collision():

 global cow, flower_list, wilted_list

 index = 0

 for flower in flower_list:

 if (flower.colliderect(cow) and

 flower.image == "flower-wilt"):

 flower.image = "flower"

 wilted_list[index] = "happy"

 break

 index = index + 1

 return

This changes
the wilted flower’s
image back to the
original version.

 def reset_cow():

 global game_over

 if not game_over:

 cow.image = "cow"

 return

add_flowers()

Uhh... I think that’s
enough water.

US_164-165_happy_garden_5.indd 165 22/02/18 12:29 pm

165G A M E P R O G R E S S 6 1 %

Stop watering
The code from Step 20 uses two functions that you haven’t
written yet—reset_cow() and check_flower_collision(). Let’s
add the code that will change the image of the cow using the
watering can back to the version where it’s just holding it.
Replace the word pass under the reset_cow() function from
Step 13 with the code in black below.

Points for accuracy!
You need the code to check if the cow is near a flower when the
Space bar is pressed. If it is, the flower will get watered and its
“time since flower wilted” value in wilted_list will be set to happy.
To do this, you’ll use Pygame Zero’s built-in colliderect() function
to check if a flower and the cow have collided or are next to each
other. Replace pass under def check_flower_collision() in Step
13 with the code shown below.

21

22

This code runs
if the game is
not over yet.

This changes
the cow’s image
back to the
original one.

These are the global
variables you will use
in this function.

This variable helps
the program to

move through the
list in order.

This code loops through
all the flowers in the list.

This condition
applies if the cow

is next to the
flower you’re

looking at.

This line stops the program
counting how long the
flower’s been wilted.This stops the loop

from checking the
other flowers.

This line updates the
value of index so that

the program moves
through the list.

 def check_flower_collision():

 global cow, flower_list, wilted_list

 index = 0

 for flower in flower_list:

 if (flower.colliderect(cow) and

 flower.image == "flower-wilt"):

 flower.image = "flower"

 wilted_list[index] = "happy"

 break

 index = index + 1

 return

This changes
the wilted flower’s
image back to the
original version.

 def reset_cow():

 global game_over

 if not game_over:

 cow.image = "cow"

 return

add_flowers()

Uhh... I think that’s
enough water.

US_164-165_happy_garden_5.indd 165 22/02/18 12:29 pm

H A P P Y G A R D E N166

Wilt a flower
It’s time to give your garden-
tending cow a bit of a challenge.
Add some code that will wilt
a random flower every three
seconds. The cow will have to
dash to the wilted flower to water
it. Replace the word pass in the
wilt_flower() function from
Step 13 with the code below.

23
These two
lists store the
information of
a particular
flower at the
same index
number.

0 1

happy happy

flower_list

index =

wilted_list

2 3

This line generates
a random index in
the list of flowers.

This checks if the
flower at this index
is wilted or not.

This sets the flower
image to a wilted
flower image.

These lines
check if the
flower is wilted
and work out
how long it’s
been wilted.

This checks if
there are any

items in the
wilted_list.

This line
resets the time

for this flower in
wilted_list to

the current time.

This code loops over
each item in the
wilted_list.

This schedules
another call to

wilt_flower() in
three seconds.

This line checks
if the flower has

been wilted for
more than

ten seconds.

Unhappy garden!
Next you need to check if any of the flowers have been
wilted for more than ten seconds. If one has, the garden’s
unhappy, and it’s game over! Go to def check_wilt_times()
in Step 13 and replace pass with the code shown here.

24

 def wilt_flower():

 global flower_list, wilted_list, game_over

 if not game_over:

 if flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 if (flower_list[rand_flower].image == "flower"):

 flower_list[rand_flower].image = "flower-wilt"

 wilted_list[rand_flower] = time.time()

 clock.schedule(wilt_flower, 3)

 return

 def check_wilt_times():

 global wilted_list, game_over, garden_happy

 if wilted_list:

 for wilted_since in wilted_list:

 if (not wilted_since == "happy"):

 time_wilted = int(time.time() - wilted_since)

 if (time_wilted) > 10.0:

 garden_happy = False

 game_over = True

 break

 return

US_166-167_happy_garden_6.indd 166 22/02/18 12:30 pm

167G A M E P R O G R E S S 7 5 %

Start wilting
Now that you’ve added a function
to wilt the flowers, you need to
call it. Add this code just below
the call to add_flowers() that
you added in Step 18.

Check for happiness
Now you need to add a call to
the check_wilt_times() function
you defined in Step 24. Go to the
update() function and add this line.

Game over!
Your game is almost ready! But before testing it,
you need to add some code that lets the player
know that the game is over if the flowers have
been wilted for too long. Add an else branch to
the if not game_over statement in the draw()
function you defined in Step 10.

25

26

27

This command will
make the flowers wilt.

 cow.image="cow"

 return

add_flowers()

wilt_flower()

 def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 check_wilt_times()

 if not game_over:

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 else:

 if not finalized:

 cow.draw()

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 if (not garden_happy):

 screen.draw.text(

 "GARDEN UNHAPPY—GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

This displays
a message

that tells
the player the
game is over.

This line displays
a message to
show how long
the garden has
been happy.

This checks how
long the flowers
have been wilted.

US_166-167_happy_garden_6.indd 167 22/02/18 12:30 pm

167G A M E P R O G R E S S 7 5 %

Start wilting
Now that you’ve added a function
to wilt the flowers, you need to
call it. Add this code just below
the call to add_flowers() that
you added in Step 18.

Check for happiness
Now you need to add a call to
the check_wilt_times() function
you defined in Step 24. Go to the
update() function and add this line.

Game over!
Your game is almost ready! But before testing it,
you need to add some code that lets the player
know that the game is over if the flowers have
been wilted for too long. Add an else branch to
the if not game_over statement in the draw()
function you defined in Step 10.

25

26

27

This command will
make the flowers wilt.

 cow.image="cow"

 return

add_flowers()

wilt_flower()

 def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 check_wilt_times()

 if not game_over:

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 else:

 if not finalized:

 cow.draw()

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 if (not garden_happy):

 screen.draw.text(

 "GARDEN UNHAPPY—GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

This displays
a message

that tells
the player the
game is over.

This line displays
a message to
show how long
the garden has
been happy.

This checks how
long the flowers
have been wilted.

US_166-167_happy_garden_6.indd 167 22/02/18 12:30 pm

H A P P Y G A R D E N168

Added menace
So far, keeping the garden happy has been difficult
but not dangerous. What if the flowers start mutating
into scary fangflowers that move around the garden
trying to zap the cow? Let’s add some functions to
control the fangflower. Use placeholders for now
and define them later on. Type this code above
the reset_cow() function you defined in Step 21.

Test run
Save your IDLE file and run it from the
command line in the Command Prompt
or Terminal window. Try moving the cow
around and water the wilted flowers.
If a flower remains wilted for more than
ten seconds, you will see a screen like
the one shown here.

28

29 index = index + 1

 return

 def check_fangflower_collision():

 pass

 def velocity():

 pass

 def mutate():

 pass

 def update_fangflowers():

 pass

 def reset_cow():

 global game_over

 if not game_over:

 cow.image = "cow"

Pygame Zero Game

Where did these
weird flowers

come from?

Code testing makes
me really giddy!

Garden happy for: 23 seconds

GARDEN UNHAPPY—GAME OVER!

US_168-169_Happy_Garden_7.indd 168 22/02/18 12:30 pm

169G A M E P R O G R E S S 8 3 %

Mutation
It’s time for your harmless flowers to turn
into carnivorous fangflowers. Even worse,
the code will change one random flower
into a fangflower every 20 seconds after
the first mutation. Replace pass under
def mutate() with the code below.
There’s a lot of code to add here, so be
extra careful.

30

This line picks a
random flower
to mutate.

This line
removes the

mutated flower
from the list

of flowers.

This line sets the
fangflower at the
same position as

the flower it
mutated from. This sets

how fast the
fangflower is
moving left
or right on
the screen.

This sets
how fast the

fangflower is
moving up

or down on
the screen.

This adds a new
fangflower to the
list of fangflowers.

The fangflower’s
velocities are
added to these lists.

This line schedules a call
to mutate a flower every
20 seconds.

These are the global
variables needed in

this function.

If the game is not over and there
are still flowers left to mutate,
this block of code will run.

These three lists will
store the velocities

of a particular
fangflower at the

same index number.

 def mutate():

 global flower_list, fangflower_list, fangflower_vy_list

 global fangflower_vx_list, game_over

 if not game_over and flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 fangflower_pos_x = flower_list[rand_flower].x

 fangflower_pos_y = flower_list[rand_flower].y

 del flower_list[rand_flower]

 fangflower = Actor("fangflower")

 fangflower.pos = fangflower_pos_x, fangflower_pos_y

 fangflower_vx = velocity()

 fangflower_vy = velocity()

 fangflower = fangflower_list.append(fangflower)

 fangflower_vx_list.append(fangflower_vx)

 fangflower_vy_list.append(fangflower_vy)

 clock.schedule(mutate, 20)

 return

0

2 0 -1 3

201-3

1

fangflower_list

index

fangflower_vx_list

fangflower_vy_list

2 3

US_168-169_Happy_Garden_7.indd 169 22/02/18 12:30 pm

169G A M E P R O G R E S S 8 3 %

Mutation
It’s time for your harmless flowers to turn
into carnivorous fangflowers. Even worse,
the code will change one random flower
into a fangflower every 20 seconds after
the first mutation. Replace pass under
def mutate() with the code below.
There’s a lot of code to add here, so be
extra careful.

30

This line picks a
random flower
to mutate.

This line
removes the

mutated flower
from the list

of flowers.

This line sets the
fangflower at the
same position as

the flower it
mutated from. This sets

how fast the
fangflower is
moving left
or right on
the screen.

This sets
how fast the

fangflower is
moving up

or down on
the screen.

This adds a new
fangflower to the
list of fangflowers.

The fangflower’s
velocities are
added to these lists.

This line schedules a call
to mutate a flower every
20 seconds.

These are the global
variables needed in

this function.

If the game is not over and there
are still flowers left to mutate,
this block of code will run.

These three lists will
store the velocities

of a particular
fangflower at the

same index number.

 def mutate():

 global flower_list, fangflower_list, fangflower_vy_list

 global fangflower_vx_list, game_over

 if not game_over and flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 fangflower_pos_x = flower_list[rand_flower].x

 fangflower_pos_y = flower_list[rand_flower].y

 del flower_list[rand_flower]

 fangflower = Actor("fangflower")

 fangflower.pos = fangflower_pos_x, fangflower_pos_y

 fangflower_vx = velocity()

 fangflower_vy = velocity()

 fangflower = fangflower_list.append(fangflower)

 fangflower_vx_list.append(fangflower_vx)

 fangflower_vy_list.append(fangflower_vy)

 clock.schedule(mutate, 20)

 return

0

2 0 -1 3

201-3

1

fangflower_list

index

fangflower_vx_list

fangflower_vy_list

2 3

US_168-169_Happy_Garden_7.indd 169 22/02/18 12:30 pm

H A P P Y G A R D E N170

Move the fangflower
Unlike other flowers, the fangflowers don’t stay in
one place. They move all over the garden trying to
zap the cow. In this step, you’ll add the code that
generates the velocity of each fangflower along
the x-axis and y-axis. The fangflowers will use a
combination of these two velocities to move up,
down, side to side, or diagonally. Add the following
code under def velocity() from Step 29.

31

 def velocity():

 random_dir = randint(0, 1)

 random_velocity = randint(2, 3)

 if random_dir == 0:

 return -random_velocity

 else:

 return random_velocity

This line generates a number
that represents the direction
of the fangflower.

This generates the
velocity of the fangflower

with no direction yet.

If the direction is
0, this returns a

negative velocity.
If the direction is 1, this
returns a positive velocity.

Negative x velocity

N
eg

at
iv

e
y

ve
lo

ci
ty

Positive x velocity

0 x + Negative y

Positive x + Negative y

Positive x + 0 y

Positive x + Positive y

0 x + Positive y

Negative x + Positive y

Negative x + 0 y

Negative x + Negative y

Po
si

ti
ve

 y
 v

el
o

ci
ty

Remember, we
talked about velocity

on page 160.

This is one of eight
different directions a
fangflower can move in.

This combination of the
two velocities affect a
fangflower’s movement.

US_170-171_happy_garden_8.indd 170 22/02/18 12:30 pm

171

Update the fangflowers
It’s time for the fangflowers to start moving. The code in this
step will be called every time the update() function runs. It
will also keep the fangflowers inside the garden by making
them bounce off the edges of the game screen. Replace pass
under def update_fangflowers() from Step 29 with this
code. There’s a lot of tricky code here, so type it in carefully.

32

These are the global
variables used in
this function.

These get the x
and y velocities
of the fangflower.

By changing its y velocity,
the fangflower is brought
back into the screen.

These get the
new position of
the fangflower.

If the fangflower
touches the left

edge of the screen,
this will make it
start moving to

the right.

This variable
helps the

program keep
track of which

item in the list it’s
dealing with.

This loops over all
the fangflowers
in the list.

def update_fangflowers():

 global fangflower_list, game_over

 if not game_over:

 index = 0

 for fangflower in fangflower_list:

 fangflower_vx = fangflower_vx_list[index]

 fangflower_vy = fangflower_vy_list[index]

 fangflower.x = fangflower.x + fangflower_vx

 fangflower.y = fangflower.y + fangflower_vy

 if fangflower.left < 0:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.right > WIDTH:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.top < 150:

 fangflower_vy_list[index] = -fangflower_vy

 if fangflower.bottom > HEIGHT:

 fangflower_vy_list[index] = -fangflower_vy

 index = index + 1

 return

G A M E P R O G R E S S 8 9 %

Better make
sure none of

you wander off!

US_170-171_happy_garden_8.indd 171 22/02/18 12:30 pm

171

Update the fangflowers
It’s time for the fangflowers to start moving. The code in this
step will be called every time the update() function runs. It
will also keep the fangflowers inside the garden by making
them bounce off the edges of the game screen. Replace pass
under def update_fangflowers() from Step 29 with this
code. There’s a lot of tricky code here, so type it in carefully.

32

These are the global
variables used in
this function.

These get the x
and y velocities
of the fangflower.

By changing its y velocity,
the fangflower is brought
back into the screen.

These get the
new position of
the fangflower.

If the fangflower
touches the left

edge of the screen,
this will make it
start moving to

the right.

This variable
helps the

program keep
track of which

item in the list it’s
dealing with.

This loops over all
the fangflowers
in the list.

def update_fangflowers():

 global fangflower_list, game_over

 if not game_over:

 index = 0

 for fangflower in fangflower_list:

 fangflower_vx = fangflower_vx_list[index]

 fangflower_vy = fangflower_vy_list[index]

 fangflower.x = fangflower.x + fangflower_vx

 fangflower.y = fangflower.y + fangflower_vy

 if fangflower.left < 0:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.right > WIDTH:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.top < 150:

 fangflower_vy_list[index] = -fangflower_vy

 if fangflower.bottom > HEIGHT:

 fangflower_vy_list[index] = -fangflower_vy

 index = index + 1

 return

G A M E P R O G R E S S 8 9 %

Better make
sure none of

you wander off!

US_170-171_happy_garden_8.indd 171 22/02/18 12:30 pm

H A P P Y G A R D E N172

Check for collisions
Now that your fangflowers are in motion, you need
to add some code that will check if a fangflower
has caught up with the cow to zap it! Replace pass
in the check_fangflower_collision() function with
the code shown below.

Drawing results
If a fangflower manages to zap the
cow, it’s game over. Add this code to
the draw() function to display a game
over message.

33

34

 def check_fangflower_collision():

 global cow, fangflower_list, fangflower_collision

 global game_over

 for fangflower in fangflower_list:

 if fangflower.colliderect(cow):

 cow.image = "zap"

 game_over = True

 break

 return

 if (not garden_happy):

 screen.draw.text(

 "GARDEN UNHAPPY—GAME OVER!", color="black",

 topleft=(10, 100)

)

 finalized = True

 else:

 screen.draw.text(

 "FANGFLOWER ATTACK—GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

 return

This checks if the
fangflower and
cow are next to
each other.

This adds an
image to show

the cow has
been zapped.

This tells the
program that

the game is over.

This line stops the
program from checking
other fangflowers.

These are the global
variables used
in this function.

This block of
code runs if the

garden is still
happy but the cow

has been zapped.

This draws a
message on the
screen to show

the game is over
because of a

fangflower attack.

This makes sure
the code is not

run again.

Don’t forget to save
your work.

US_172-173_happy_garden_9.indd 172 22/02/18 12:30 pm

173G A M E P R O G R E S S 1 0 0 %

Test and play!
Green thumbs at the ready, your game can now
be played! Save and run the file from the
command line. Make sure the cow keeps the
flowers watered while avoiding the dangerous
fangflowers. What does your screen look like when
the fangflowers appear and finally zap the cow?

36 Pygame Zero Game

Garden happy for: 21 seconds

We’ve run all the tests.
You’re good to go!

Set up the update
The fangflowers are ready to attack.
The last thing you need to do is add
some code that starts the whole
mutation process if the garden
has been happy for more than
15 seconds. Go to the update()
function and add the code as
shown here.

35 def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 fangflower_collision = check_fangflower_collision()

 check_wilt_times()

 if not game_over:

 if keyboard.space:

 cow.image = "cow-water"

 clock.schedule(reset_cow, 0.5)

 check_flower_collision()

 if keyboard.left and cow.x > 0:

 cow.x -= 5

 elif keyboard.right and cow.x < WIDTH:

 cow.x += 5

 elif keyboard.up and cow.y > 150:

 cow.y -= 5

 elif keyboard.down and cow.y < HEIGHT:

 cow.y += 5

 if time_elapsed > 15 and not fangflower_list:

 mutate()

 update_fangflowers()

This checks if the garden
has been happy for more

than 15 seconds and if any
fangflowers have appeared

on the screen yet.

This line
mutates a

flower into a
fangflower.

FANGFLOWER ATTACK—GAME OVER!

US_172-173_happy_garden_9.indd 173 22/02/18 12:30 pm

173G A M E P R O G R E S S 1 0 0 %

Test and play!
Green thumbs at the ready, your game can now
be played! Save and run the file from the
command line. Make sure the cow keeps the
flowers watered while avoiding the dangerous
fangflowers. What does your screen look like when
the fangflowers appear and finally zap the cow?

36 Pygame Zero Game

Garden happy for: 21 seconds

We’ve run all the tests.
You’re good to go!

Set up the update
The fangflowers are ready to attack.
The last thing you need to do is add
some code that starts the whole
mutation process if the garden
has been happy for more than
15 seconds. Go to the update()
function and add the code as
shown here.

35 def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 fangflower_collision = check_fangflower_collision()

 check_wilt_times()

 if not game_over:

 if keyboard.space:

 cow.image = "cow-water"

 clock.schedule(reset_cow, 0.5)

 check_flower_collision()

 if keyboard.left and cow.x > 0:

 cow.x -= 5

 elif keyboard.right and cow.x < WIDTH:

 cow.x += 5

 elif keyboard.up and cow.y > 150:

 cow.y -= 5

 elif keyboard.down and cow.y < HEIGHT:

 cow.y += 5

 if time_elapsed > 15 and not fangflower_list:

 mutate()

 update_fangflowers()

This checks if the garden
has been happy for more

than 15 seconds and if any
fangflowers have appeared

on the screen yet.

This line
mutates a

flower into a
fangflower.

FANGFLOWER ATTACK—GAME OVER!

US_172-173_happy_garden_9.indd 173 22/02/18 12:30 pm

H A P P Y G A R D E N174

Hacks and tweaks
Do you want to make the game even more
exciting? You can try out some of these
ideas and add new features to the game.

 random_velocity = randint(2, 3)

△ Faster fangflowers!
You can make the fangflowers move faster by
changing the possible range of random_velocity.
Try increasing the range by using something
like randint(4, 6).

△ Change the gardener
You might think a cow is an unusual gardener.
Why don’t you look for another character in the Python
Game Resource Pack? You could also make a new
character using any 8-bit editor available online.

Sorry pal, your day
in the sun is over.

clock.schedule(mutate, 20) clock.schedule(add_flowers, 4)

△ More flowers
You can change how often a new flower appears
on the screen to make the game easier or harder.
Update the code under def add_flowers() to
change how often it schedules a call to itself.

△ More fangflowers
Is the game too hard or too easy?
You can change the code in mutate()
to make fangflowers appear more
or less often.

US_174-175_Happy_garden_10.indd 174 14/03/18 12:18 PM

175H A C K S A N D T W E A K S

◁ Add new enemies
If you find the game is not challenging enough at the
moment, you can add more enemies. Use an online
8-bit editor to create more characters and then add some
functions to control their behavior. These functions would
be similar to the ones that control the fangflowers in the
game. The new enemies could be flowers that fire pellets
at the cow if it gets too close, thorn bushes that snake out
long stems to catch the cow, or even aliens in flying saucers
who are after the fangflowers.

if not raining:

 screen.blit("garden", (0, 0))

else:

 screen.blit("garden-raining", (0, 0))

△ Rain in the garden
What happens if it rains in the garden? The flowers will
be much happier and wouldn’t need watering. But they
will also mutate into fangflowers more quickly. To make
it look like it’s raining, you can update the background
with another image from the Python Games Resource
Pack or create a new background on your own. To
control the new background, create a new variable
called raining and change the draw() function to
update the background based on the variable’s value.

US_174-175_Happy_garden_10.indd 175 14/03/18 12:18 PM

175H A C K S A N D T W E A K S

◁ Add new enemies
If you find the game is not challenging enough at the
moment, you can add more enemies. Use an online
8-bit editor to create more characters and then add some
functions to control their behavior. These functions would
be similar to the ones that control the fangflowers in the
game. The new enemies could be flowers that fire pellets
at the cow if it gets too close, thorn bushes that snake out
long stems to catch the cow, or even aliens in flying saucers
who are after the fangflowers.

if not raining:

 screen.blit("garden", (0, 0))

else:

 screen.blit("garden-raining", (0, 0))

△ Rain in the garden
What happens if it rains in the garden? The flowers will
be much happier and wouldn’t need watering. But they
will also mutate into fangflowers more quickly. To make
it look like it’s raining, you can update the background
with another image from the Python Games Resource
Pack or create a new background on your own. To
control the new background, create a new variable
called raining and change the draw() function to
update the background based on the variable’s value.

US_174-175_Happy_garden_10.indd 175 14/03/18 12:18 PM

US_176-177_Chapter_opener_11.indd 176 22/02/18 1:40 pm

Sleeping
Dragons

US_176-177_Chapter_opener_11.indd 177 22/02/18 1:40 pm

Sleeping
Dragons

US_176-177_Chapter_opener_11.indd 177 22/02/18 1:40 pm

S L E E P I N G D R A G O N S178

How to build
Sleeping Dragons
Grab your shield and sword as you go
in search of dragon treasure. Time your
movements to snatch the eggs from
under the dragons’ noses. But be
careful, brave knight—if they wake
up, you’re in for a nasty surprise!

26

What happens
In this game, the player controls the hero
using the four arrow keys. The hero must
collect 20 eggs from the dragons’ lair to win
the game. Each dragon sleeps and wakes up
at different times. If the hero is near a dragon
when it’s awake, the player loses a life. The
game ends when the player runs out of lives
or collects enough eggs.

◁ Hero
The fearless hero has
three lives to collect
20 eggs.

◁ Eggs
Each dragon has a
different number of eggs.

◁ Dragons
The three dragons
are harmless when
they’re asleep.

Pygame Zero Game

US_178-179_sleeping_dragons_1.indd 178 22/02/18 12:30 pm

179

◁ Dragons in a dungeon
This game uses built-in
Pygame functions to animate
the Actors and Python’s
dictionaries to keep track of
the dragons and their eggs.

H O W T O B U I L D S L E E P I N G D R A G O N S

The dragons breathe
fire when they wake up.

The dungeon
background sets the
scene for your quest.

Because I like to
fight knights!Why do you sleep

during the day?

US_178-179_sleeping_dragons_1.indd 179 22/02/18 12:30 pm

179

◁ Dragons in a dungeon
This game uses built-in
Pygame functions to animate
the Actors and Python’s
dictionaries to keep track of
the dragons and their eggs.

H O W T O B U I L D S L E E P I N G D R A G O N S

The dragons breathe
fire when they wake up.

The dungeon
background sets the
scene for your quest.

Because I like to
fight knights!Why do you sleep

during the day?

US_178-179_sleeping_dragons_1.indd 179 22/02/18 12:30 pm

S L E E P I N G D R A G O N S180

Is an arrow key
being pressed?

Are there any
lives left?

Is the hero
touching any eggs?

Is the hero being
attacked by

a dragon?

Start

Draw dragons,
eggs, and the hero

Subtract one from number of
lives, reset hero’s position

Increase the egg count, hide
the egg(s) for two seconds

Move the hero in the direction
of the key being pressed

Y

Y

N

Y

N

N

Y

N

N

◁ Sleeping Dragons flowchart
There are two separate loops in
this program. The main loop is
controlled by Pygame and runs
multiple times per second.

How it works
You’ll use the draw() function
to draw the hero, the dragons,
and the eggs on the screen.
Then you’ll create the update()
function to check the player’s
actions and update the
different elements of the
game. Both these functions
are called many times every
second, which will allow you
to animate the Actors in the
game. You’ll also use the
clock.schedule_interval()
function to wake up the
dragons and send them to
sleep at regular intervals.

End

Has the player
collected enough

eggs?

Y

End

US_180-181_sleeping_dragons_2.indd 180 22/02/18 12:30 pm

181

Begin the quest
First you’ll create the variables that will track the game’s
progress. Then you’ll write some code that will draw all
the elements on the screen. Finally, you’ll set up the
functions to make the hero move, handle the dragons’
sleep cycles, and check if the hero has collected enough
eggs without getting caught.

Has the dragon
slept long enough?

Has the dragon been
awake long enough?

Start

Is the dragon
awake?

Send the dragon
to sleep

Y

N

Y

Y

NN

Time to begin
Open IDLE and create
an empty file by going
to the File menu and
selecting New File.

1

▷ Dragon animation flowchart
The second loop in the program is
responsible for the dragons’ sleep
cycle. It runs once every second.

G A M E P R O G R E S S 3 %

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

I need some
more eggs!

Wake the dragon

Z
Z

Z

US_180-181_sleeping_dragons_2.indd 181 23/02/18 3:52 pm

181

Begin the quest
First you’ll create the variables that will track the game’s
progress. Then you’ll write some code that will draw all
the elements on the screen. Finally, you’ll set up the
functions to make the hero move, handle the dragons’
sleep cycles, and check if the hero has collected enough
eggs without getting caught.

Has the dragon
slept long enough?

Has the dragon been
awake long enough?

Start

Is the dragon
awake?

Send the dragon
to sleep

Y

N

Y

Y

NN

Time to begin
Open IDLE and create
an empty file by going
to the File menu and
selecting New File.

1

▷ Dragon animation flowchart
The second loop in the program is
responsible for the dragons’ sleep
cycle. It runs once every second.

G A M E P R O G R E S S 3 %

File

 New File

 Open...

 Open Module...

 Recent Files ▶

 Class Browser

I need some
more eggs!

Wake the dragon

Z
Z

Z

US_180-181_sleeping_dragons_2.indd 181 23/02/18 3:52 pm

S L E E P I N G D R A G O N S182

L I N G O

Constants
Constants are variables that are used to
hold values that determine how a game
behaves. There is nothing special about
these variables that prevents them from
being changed, but programmers use capital
letters when naming them to let the other
programmers know that they should not
be changed throughout the program.

Save the file
Go to your python-games folder and create
another folder, called sleeping-dragons, inside
it. Then go to the File menu and select Save As...
to save the IDLE file as dragons.py in this folder.

Add the images
This game uses nine images. Create a new folder,
called images, inside the sleeping-dragons
folder. Find all the images in the Python Games
Resource Pack (dk.com/computercoding) and
copy them into this folder.

2

3

Save As:

Cancel Save

dragons.py

Tags:

Where:

Check page 15 to
find out more about

the Math module.

I name thee
Margaret.

dragons.py

dragon-asleep.png
dragon-awake.png
dungeon.png

hero.png
life-count.png
one-egg.png
three-eggs.png
two-eggs.png

egg-count.png

images

sleeping-dragons

Import a module
Now you can start writing the code. Begin by
importing Python’s Math module. Type this
at the very top of your IDLE file.

4

import math This imports the
entire module.

?

sleeping-dragons

US_182-183_sleeping_dragons_3.indd 182 22/02/18 12:30 pm

183

Declare the global variables
After the constants, you need to declare the global variables. They’re a lot
like constants because they’re usually declared at the top of the program.
However, unlike constants, their values change when they’re used
throughout the program to track the game’s progress. Type this code next.

6

 MOVE_DISTANCE = 5

lives = 3

eggs_collected = 0

 game_over = False

 game_complete = False

reset_required = False

This variable
tracks the
number of lives
remaining.

This tracks the
number of eggs

collected.

This variable
tracks if the
game is over.

This variable
tracks if the

player has won.

Declare the constants
You need to declare the constants at the start of the game.
In this game, you’ll use constants to determine many things,
including the hero’s starting position and the number of
eggs the player needs to collect to win the game. All of these
constants will be used later in the code. Type this under the
line from Step 4.

5

G A M E P R O G R E S S 1 9 %

import math

 WIDTH = 800

 HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

 CENTER = (CENTER_X, CENTER_Y)

 FONT_COLOR = (0, 0, 0)

 EGG_TARGET = 20

 HERO_START = (200, 300)

 ATTACK_DISTANCE = 200

 DRAGON_WAKE_TIME = 2

 EGG_HIDE_TIME = 2

 MOVE_DISTANCE = 5

These constants
define the size of

the game window.
This sets the font
color to black.

This sets the hero’s
position at the start

of the game.

This sets the number
of eggs needed

to win the game.

This is the distance in
pixels at which a dragon
can attack the hero.

This is the number of
seconds the dragons
stay awake.

This sets the number
of seconds the eggs
are hidden.

This is the number of
pixels the hero moves
by with each key press.

Don’t forget to save
your work.

Check page 74 to
learn more about
global variables.

US_182-183_sleeping_dragons_3.indd 183 22/02/18 12:30 pm

183

Declare the global variables
After the constants, you need to declare the global variables. They’re a lot
like constants because they’re usually declared at the top of the program.
However, unlike constants, their values change when they’re used
throughout the program to track the game’s progress. Type this code next.

6

 MOVE_DISTANCE = 5

lives = 3

eggs_collected = 0

 game_over = False

 game_complete = False

reset_required = False

This variable
tracks the
number of lives
remaining.

This tracks the
number of eggs

collected.

This variable
tracks if the
game is over.

This variable
tracks if the

player has won.

Declare the constants
You need to declare the constants at the start of the game.
In this game, you’ll use constants to determine many things,
including the hero’s starting position and the number of
eggs the player needs to collect to win the game. All of these
constants will be used later in the code. Type this under the
line from Step 4.

5

G A M E P R O G R E S S 1 9 %

import math

 WIDTH = 800

 HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

 CENTER = (CENTER_X, CENTER_Y)

 FONT_COLOR = (0, 0, 0)

 EGG_TARGET = 20

 HERO_START = (200, 300)

 ATTACK_DISTANCE = 200

 DRAGON_WAKE_TIME = 2

 EGG_HIDE_TIME = 2

 MOVE_DISTANCE = 5

These constants
define the size of

the game window.
This sets the font
color to black.

This sets the hero’s
position at the start

of the game.

This sets the number
of eggs needed

to win the game.

This is the distance in
pixels at which a dragon
can attack the hero.

This is the number of
seconds the dragons
stay awake.

This sets the number
of seconds the eggs
are hidden.

This is the number of
pixels the hero moves
by with each key press.

Don’t forget to save
your work.

Check page 74 to
learn more about
global variables.

US_182-183_sleeping_dragons_3.indd 183 22/02/18 12:30 pm

S L E E P I N G D R A G O N S184

Create the lairs
Each dragon in this game has its own lair with a certain
number of eggs and an easy, medium, or hard difficulty
level. You can use Python’s dictionaries to keep track
of all the elements needed to create these lairs. Each
dictionary includes Actors for the dragons and eggs,
and variables for tracking each dragon’s sleep cycle.
Begin by creating a dictionary for the easiest lair.
Carefully type these lines under the code from Step 6.

Medium lair
Next add a dictionary for the lair with medium difficulty.
The code for this is a lot like the code in the previous step,
but some of the values are different.

}

 medium_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 300)),

 "eggs": Actor("two-eggs", pos=(400, 300)),

 "egg_count": 2,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 7,

 "sleep_counter": 0,

 "wake_counter": 0

}

This sets the
coordinates
of the eggs.

This checks
if the eggs are

currently hidden.

This tracks
the dragon’s
sleep cycle.

E X P E R T T I P S

Dictionaries
In Python, using a dictionary is another
way to store information. It’s like a list, but
with a label attached to every item. This
label is known as the “key” and the item
it’s attached to is called the “value.” You
can even create a dictionary in which the
values are other dictionaries. This is called
“nesting,” and it allows you to store the
pieces of your game in a structured way.

These are the
coordinates for the
dragon in this lair.

reset_required = False

easy_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 100)),

 "eggs": Actor("one-egg", pos=(400, 100)),

 "egg_count": 1,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 10,

 "sleep_counter": 0,

 "wake_counter": 0

}

trophypaint bucket

clockcherries

7

8

US_184-185_sleeping_dragons_4.indd 184 22/02/18 12:31 pm

185

Bring the lairs together
You’ll need to loop over all the lairs later on in
the code. To make this easier, store them in a
list. Type this line next.

A hero is born
The final Actor needed for this game
is the hero. It’s the character that the
player controls to collect the dragon eggs.

 "sleep_counter": 0,

 "wake_counter": 0

}

lairs = [easy_lair, medium_lair, hard_lair]

 lairs = [easy_lair, medium_lair, hard_lair]

 hero = Actor("hero", pos=HERO_START)

Hard lair
Now you need to add the third
and final lair. Add this code
after what you typed in Step 8.

 "sleep_length": 7,

 "sleep_counter": 0,

 "wake_counter": 0

}

hard_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 500)),

 "eggs": Actor("three-eggs", pos=(400, 500)),

 "egg_count": 3,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 4,

 "sleep_counter": 0,

 "wake_counter": 0

}

This tracks how many
seconds the eggs have
been hidden for.

This sets the starting
position of the hero Actor.

This list holds
all the lairs.

This sets the
numbers of eggs

for this lair.

G A M E P R O G R E S S 3 4 %

This is just
too hard!

I was born to
do this!

10

11

9

US_184-185_sleeping_dragons_4.indd 185 22/02/18 12:31 pm

185

Bring the lairs together
You’ll need to loop over all the lairs later on in
the code. To make this easier, store them in a
list. Type this line next.

A hero is born
The final Actor needed for this game
is the hero. It’s the character that the
player controls to collect the dragon eggs.

 "sleep_counter": 0,

 "wake_counter": 0

}

lairs = [easy_lair, medium_lair, hard_lair]

 lairs = [easy_lair, medium_lair, hard_lair]

 hero = Actor("hero", pos=HERO_START)

Hard lair
Now you need to add the third
and final lair. Add this code
after what you typed in Step 8.

 "sleep_length": 7,

 "sleep_counter": 0,

 "wake_counter": 0

}

hard_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 500)),

 "eggs": Actor("three-eggs", pos=(400, 500)),

 "egg_count": 3,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 4,

 "sleep_counter": 0,

 "wake_counter": 0

}

This tracks how many
seconds the eggs have
been hidden for.

This sets the starting
position of the hero Actor.

This list holds
all the lairs.

This sets the
numbers of eggs

for this lair.

G A M E P R O G R E S S 3 4 %

This is just
too hard!

I was born to
do this!

10

11

9

US_184-185_sleeping_dragons_4.indd 185 22/02/18 12:31 pm

S L E E P I N G D R A G O N S186

Draw the Actors
Now use the draw() function to
display all the Actors on the screen.
Add the following code under the
lines you typed in Step 11. There’s
quite a bit to add here, so be careful.

Create the stubs
Next create the placeholders for some
functions that will be defined later on.
Using pass will tell Python not to run
these functions yet. Type this code below
the lines from Step 12.

Run the code
Save your file and run it from the command
line. Check pages 24–25 if you need to remind
yourself how to do this.

 hero = Actor("hero", pos=HERO_START)

 def draw():

 global lairs, eggs_collected, lives, game_complete

 screen.clear()

 screen.blit("dungeon", (0, 0))

 if game_over:

 screen.draw.text("GAME OVER!", fontsize=60, center=CENTER, color=FONT_COLOR)

 elif game_complete:

 screen.draw.text("YOU WON!", fontsize=60, center=CENTER, color=FONT_COLOR)

 else:

 hero.draw()

 draw_lairs(lairs)

 draw_counters(eggs_collected, lives)

 def draw_lairs(lairs_to_draw):

 pass

 def draw_counters(eggs_collected, lives):

 pass

pgzrun

One down,
two to go!

Type this command in
the Command Prompt or
Terminal window, then drag the
dragons.py file here to run it.

This adds a background
to the game.

12

13

14

US_186-187_sleeping_dragons_5.indd 186 14/03/18 12:18 PM

187

Draw the lairs
You now need to define the draw_lairs() function. It takes a
parameter called lairs_to_draw. This function loops over the
three lairs—easy_lair, medium_lair, hard_lair—and draws a
dragon for each of them. If the eggs are not currently hidden,
they are drawn as well. To get the Actors from the dictionaries of
all the lairs, type the name of the dictionary followed by the key in
square brackets. Replace pass under draw_lairs(lairs_to_draw)
from Step 13 with this code.

Enter the dungeon
If your code is free of errors, you’ll
see a screen similar to the one
shown here. You’ll see the hero and
the dungeon, but you won’t be able
to move the hero around yet. The
dragons and eggs will be added
in the next step.

 else:

 hero.draw()

 draw_lairs(lairs)

 draw_counters(eggs_collected, lives)

 def draw_lairs(lairs_to_draw):

 for lair in lairs_to_draw:

 lair["dragon"].draw()

 if lair["egg_hidden"] is False:

 lair["eggs"].draw()

This loops over
each lair.

This draws the eggs
for each lair if they are

not currently hidden.

This draws a dragon
Actor for each lair.

G A M E P R O G R E S S 5 0 %

Pygame Zero Game

The hero appears at the
starting position.

Don’t forget to save
your work.

16

15

US_186-187_sleeping_dragons_5.indd 187 22/02/18 12:31 pm

187

Draw the lairs
You now need to define the draw_lairs() function. It takes a
parameter called lairs_to_draw. This function loops over the
three lairs—easy_lair, medium_lair, hard_lair—and draws a
dragon for each of them. If the eggs are not currently hidden,
they are drawn as well. To get the Actors from the dictionaries of
all the lairs, type the name of the dictionary followed by the key in
square brackets. Replace pass under draw_lairs(lairs_to_draw)
from Step 13 with this code.

Enter the dungeon
If your code is free of errors, you’ll
see a screen similar to the one
shown here. You’ll see the hero and
the dungeon, but you won’t be able
to move the hero around yet. The
dragons and eggs will be added
in the next step.

 else:

 hero.draw()

 draw_lairs(lairs)

 draw_counters(eggs_collected, lives)

 def draw_lairs(lairs_to_draw):

 for lair in lairs_to_draw:

 lair["dragon"].draw()

 if lair["egg_hidden"] is False:

 lair["eggs"].draw()

This loops over
each lair.

This draws the eggs
for each lair if they are

not currently hidden.

This draws a dragon
Actor for each lair.

G A M E P R O G R E S S 5 0 %

Pygame Zero Game

The hero appears at the
starting position.

Don’t forget to save
your work.

16

15

US_186-187_sleeping_dragons_5.indd 187 22/02/18 12:31 pm

S L E E P I N G D R A G O N S188

Move the hero
With everything set up, it’s time to add some code
that will make the hero move on the screen. You’ll use
the update() function to do this. If the player presses
an arrow key, this code will make the hero move in
that direction by the number of pixels assigned to
MOVE_DISTANCE. You also need to add a call to the
check_for_collisions() function, which you’ll define
later. Type this code after the lines from Step 17.

 def update():

 if keyboard.right:

 hero.x += MOVE_DISTANCE

 if hero.x > WIDTH:

 hero.x = WIDTH

 elif keyboard.left:

 hero.x -= MOVE_DISTANCE

 if hero.x < 0:

 hero.x = 0

 elif keyboard.down:

 hero.y += MOVE_DISTANCE

 if hero.y > HEIGHT:

 hero.y = HEIGHT

 elif keyboard.up:

 hero.y -= MOVE_DISTANCE

 if hero.y < 0:

 hero.y = 0

 check_for_collisions()

This draws an icon to
represent the number of
lives the player has left.

Draw the counters
Next you’ll define the draw_counters() function. It takes two
parameters—eggs_collected and lives. Their values will be
displayed in the bottom-left corner of the game screen. Replace
pass under def draw_counters(eggs_collected, lives) with the
code shown below.

 def draw_counters(eggs_collected, lives):

 screen.blit("egg-count", (0, HEIGHT - 30))

 screen.draw.text(str(eggs_collected),

 fontsize=40,

 pos=(30, HEIGHT - 30),

 color=FONT_COLOR)

 screen.blit("life-count", (60, HEIGHT - 30))

 screen.draw.text(str(lives),

 fontsize=40,

 pos=(90, HEIGHT - 30),

 color=FONT_COLOR)

This draws an icon to
represent the number

of eggs collected.

Hey, move!
That’s my spot.

That’s enough eggs
for one day.

18

17

US_188-189_sleeping_dragons_6.indd 188 22/02/18 12:31 pm

189

 check_for_collisions()

def check_for_collisions():

 pass

Animate the lairs
Now animate the dragons and the eggs to make the game
more interesting. The update_lairs() function will loop
through each lair dictionary and check if the dragon is
asleep or awake. Add this code between the update()
function and the def check_for_collisions() placeholder.

Add a placeholder
This is a good point to run your game and
check for any bugs. But before you run it,
you need to set up a placeholder for the
check_for_collisions() function. Add
these lines after the code from Step 18.

Try it out
Save your IDLE file and run it from the command
line. If there are no bugs hiding in your code, you’ll
see a screen like the one below. You’ll be able to
make the hero move around the screen, but you
won’t be able to collect any eggs yet.

 check_for_collisions()

 def update_lairs():

 global lairs, hero, lives

 for lair in lairs:

 if lair["dragon"].image == "dragon-asleep":

 update_sleeping_dragon(lair)

 elif lair["dragon"].image == "dragon-awake":

 update_waking_dragon(lair)

 update_egg(lair)

def check_for_collisions():

This loops
through all
three lairs. This is called

if the dragon
is asleep.

This is called
if the dragon
is awake.

This block
will animate
the dragon.

This will
animate

the eggs.

G A M E P R O G R E S S 6 6 %

Pygame Zero Game

The hero moves
in the direction of the

arrow key being pressed.

The counters for the eggs
collected and lives remaining

appear in the bottom-left corner.
30

21

19 20

US_188-189_sleeping_dragons_6.indd 189 22/02/18 12:31 pm

189

 check_for_collisions()

def check_for_collisions():

 pass

Animate the lairs
Now animate the dragons and the eggs to make the game
more interesting. The update_lairs() function will loop
through each lair dictionary and check if the dragon is
asleep or awake. Add this code between the update()
function and the def check_for_collisions() placeholder.

Add a placeholder
This is a good point to run your game and
check for any bugs. But before you run it,
you need to set up a placeholder for the
check_for_collisions() function. Add
these lines after the code from Step 18.

Try it out
Save your IDLE file and run it from the command
line. If there are no bugs hiding in your code, you’ll
see a screen like the one below. You’ll be able to
make the hero move around the screen, but you
won’t be able to collect any eggs yet.

 check_for_collisions()

 def update_lairs():

 global lairs, hero, lives

 for lair in lairs:

 if lair["dragon"].image == "dragon-asleep":

 update_sleeping_dragon(lair)

 elif lair["dragon"].image == "dragon-awake":

 update_waking_dragon(lair)

 update_egg(lair)

def check_for_collisions():

This loops
through all
three lairs. This is called

if the dragon
is asleep.

This is called
if the dragon
is awake.

This block
will animate
the dragon.

This will
animate

the eggs.

G A M E P R O G R E S S 6 6 %

Pygame Zero Game

The hero moves
in the direction of the

arrow key being pressed.

The counters for the eggs
collected and lives remaining

appear in the bottom-left corner.
30

21

19 20

US_188-189_sleeping_dragons_6.indd 189 22/02/18 12:31 pm

S L E E P I N G D R A G O N S190

Wake the sleeping dragon
Now you need to check if the dragon has slept long enough.
To do this, you need to compare the sleep_counter with the
sleep_length set for that dragon. If it’s time to wake the
dragon, the sleeping dragon image will be updated and the
sleep_counter will be reset to 0. If not, the sleep_counter will
be increased by one. Add this code under the line from Step 22.

Send the dragon to sleep
If the dragon has been awake for long enough, it
needs to be sent back to sleep. The function needed
to do this is similar to the one you defined in the
previous step. However, unlike sleep_length, which
is different for all the dragons, the time they should
be awake for is the same, so you’ll use the constant
DRAGON_WAKE_TIME. Add this code under what
you typed in Step 23.

23

24

 def update_sleeping_dragon(lair):

 if lair["sleep_counter"] >= lair["sleep_length"]:

 lair["dragon"].image = "dragon-awake"

 lair["sleep_counter"] = 0

 else:

 lair["sleep_counter"] += 1

 def update_waking_dragon(lair):

 if lair["wake_counter"] >= DRAGON_WAKE_TIME:

 lair["dragon"].image = "dragon-asleep"

 lair["wake_counter"] = 0

 else:

 lair["wake_counter"] += 1

This checks if the
sleep_counter is
greater than or equal
to the sleep_length
set for the dragon.

This resets
the dragon’s

sleep_counter to 0. This increases
the sleep_counter
by one.

This checks if the
dragon has been

awake long enough.
This updates the
dragon image.

This resets the dragon’s
wake_counter to 0.

This adds one to
the wake_counter.

Schedule a call
Next add some code to schedule a call
to the update_lairs() function once
every second. Add this line under the
code from Step 21.

22 update_egg(lair)

 clock.schedule_interval(update_lairs, 1)

The number of seconds between
each function call can be changed

by updating this number.

This function schedules a
call to another function at

regular intervals.

US_190-191_sleeping_dragons_7.indd 190 22/02/18 12:31 pm

191

Animate the eggs
The program hides the eggs when the hero collects
them. You need to check if the eggs have been hidden
for long enough and, therefore, need to reappear. Add
this code immediately after the lines from Step 24.

25

Test the code
Save your file and run it from the command line. You should see
the dragons sleeping and waking up. Next you’ll add the code
that’ll make the eggs disappear when the hero collects them.

26

 lair["wake_counter"] += 1

 def u pda te_egg(lair):

 if lair["egg_hidde n"] is True:

 if lair["e gg_hi de_counter"] >= EGG_HIDE_TI ME:

 lai r["egg_hidd en"] = False

 lair["e gg_hide _counter"] = 0

 else:

 lair["egg_hi de_counter"] += 1

This block runs
if any eggs have
been hidden for
long enough.

This adds one to the
egg_hide_counter.

G A M E P R O G R E S S 8 1 %

Pygame Zero Game

This function checks
if any eggs need to
stay hidden or not.

30

The dragons will wake
up at different times.

US_190-191_sleeping_dragons_7.indd 191 22/02/18 12:31 pm

191

Animate the eggs
The program hides the eggs when the hero collects
them. You need to check if the eggs have been hidden
for long enough and, therefore, need to reappear. Add
this code immediately after the lines from Step 24.

25

Test the code
Save your file and run it from the command line. You should see
the dragons sleeping and waking up. Next you’ll add the code
that’ll make the eggs disappear when the hero collects them.

26

 lair["wake_counter"] += 1

 def u pda te_egg(lair):

 if lair["egg_hidde n"] is True:

 if lair["e gg_hi de_counter"] >= EGG_HIDE_TI ME:

 lai r["egg_hidd en"] = False

 lair["e gg_hide _counter"] = 0

 else:

 lair["egg_hi de_counter"] += 1

This block runs
if any eggs have
been hidden for
long enough.

This adds one to the
egg_hide_counter.

G A M E P R O G R E S S 8 1 %

Pygame Zero Game

This function checks
if any eggs need to
stay hidden or not.

30

The dragons will wake
up at different times.

US_190-191_sleeping_dragons_7.indd 191 22/02/18 12:31 pm

S L E E P I N G D R A G O N S192

Check for collisions
You now need to define the
check_for_collisions() function
from Step 19. The code in this
function will loop over each
lair dictionary and check if the
hero has touched an egg and
if the hero is close enough to an
awake dragon to get attacked.
Replace pass under def_check_
for_collisions() with the code
shown below.

 lair["egg_hide_counter"] += 1

def check_for_collisions():

 global lairs, eggs_collected, lives, reset_required, game_complete

 for lair in lairs:

 if lair["egg_hidden"] is False:

 check_for_egg_collision(lair)

 if lair["dragon"].image == "dragon-awake" and reset_required is False:

 check_for_dragon_collision(lair)

This function is called if
the eggs are not hidden.

This function is called if the
dragon is awake and the hero’s
position is not being reset.

This makes sure the
player doesn’t lose a
life when the hero is
being moved back to
the start position.

Bounding
rectangle

Area of collision
is where the

two bounding
rectangles overlap.

E X P E R T T I P S

colliderect()
The colliderect() function gets its name
from a combination of two words—
collide and rectangle. Pygame places an
invisible rectangle around each element
on the screen. If you want to detect a
collision between two objects, you can
check if the rectangles around them are
overlapping with each other. Sometimes
Pygame detects a collision even if two
objects appear to be slightly apart.
This is because even when the objects
are not touching each other, the
rectangles around them can still overlap.

27

US_192-193_sleeping_dragons_8.indd 192 22/02/18 12:31 pm

193

Reset hero
If the player loses a life, the hero’s position needs
to be reset to the starting position. You’ll use the
animate() function to do this. In your game, this
function takes three parameters—the hero Actor,
the hero’s starting position, and the subtract_life()
function. Add the code shown in black here.

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

def handle_dragon_collision():

 global reset_required

 reset_required = True

 animate(hero, pos=HERO_START, on_finished=subtract_life)

This function is called when
the animation is complete.

G A M E P R O G R E S S 9 1 %

Dragon collisions
If the hero gets too close to an awake
dragon, the player will lose a life. You’ll
use the check_for_dragon_collision()
function to calculate this distance.
Add this code under what you typed
in Step 27.

 check_for_dragon_collision(lair)

def check_for_dragon_collision(lair):

 x_distance = hero.x - lair["dragon"].x

 y_distance = hero.y - lair["dragon"].y

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

This calculates the
horizontal and vertical
distances between the
dragon and the hero.

This finds the distance
between the dragon and
the hero in a straight line.

This function is called if the distance
between the hero and dragon is
less than ATTACK_DISTANCE.

Don’t forget to save
your work.

29

28

US_192-193_sleeping_dragons_8.indd 193 22/02/18 12:31 pm

193

Reset hero
If the player loses a life, the hero’s position needs
to be reset to the starting position. You’ll use the
animate() function to do this. In your game, this
function takes three parameters—the hero Actor,
the hero’s starting position, and the subtract_life()
function. Add the code shown in black here.

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

def handle_dragon_collision():

 global reset_required

 reset_required = True

 animate(hero, pos=HERO_START, on_finished=subtract_life)

This function is called when
the animation is complete.

G A M E P R O G R E S S 9 1 %

Dragon collisions
If the hero gets too close to an awake
dragon, the player will lose a life. You’ll
use the check_for_dragon_collision()
function to calculate this distance.
Add this code under what you typed
in Step 27.

 check_for_dragon_collision(lair)

def check_for_dragon_collision(lair):

 x_distance = hero.x - lair["dragon"].x

 y_distance = hero.y - lair["dragon"].y

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

This calculates the
horizontal and vertical
distances between the
dragon and the hero.

This finds the distance
between the dragon and
the hero in a straight line.

This function is called if the distance
between the hero and dragon is
less than ATTACK_DISTANCE.

Don’t forget to save
your work.

29

28

US_192-193_sleeping_dragons_8.indd 193 22/02/18 12:31 pm

S L E E P I N G D R A G O N S194

Egg collisions
You now need to add a function that will
check if the hero has touched an egg or
not. This function uses colliderect() to
check this. If the hero touches an
egg, the egg_count variable will be
increased by the number of eggs in that
lair. If the egg count reaches the target,
the game_complete variable will be set to
True and the player will win the game.

30 def check_for_egg_collision(lair):

 global eggs_collected, game_complete

 if hero.colliderect(lair["eggs"]):

 lair["egg_hidden"] = True

 eggs_collected += lair["egg_count"]

 if eggs_collected >= EGG_TARGET:

 game_complete = True

This adds the number of
eggs for the current lair
to the player’s egg count.

This variable is set to False,
as the hero is already at the
starting position.

This checks if the number
of eggs collected is greater

than or equal to the
EGG_TARGET.

Lose a life
Lastly, you need to define the
subtract_life() function. Every time the
player loses a life, this function will update
the number of lives remaining. If there are
no more lives left, the game_over variable
will be set to True and the game will end.

Time to play
You are now ready for the quest. Try
to collect all 20 eggs to win the game,
but watch out for those dragons!

31

32

 game_complete = True

 def subtract_life():

 global lives, reset_required, game_over

 lives -= 1

 if lives == 0:

 game_over = True

 reset_required = False

I did not sign
up for this!

US_194-195_sleeping_dragons_9.indd 194 22/02/18 12:31 pm

195G A M E P R O G R E S S 1 0 0 %

Hacks and tweaks
Add some more challenges to the quest
and make the game even more engaging.
Here are a few ideas to get you started.

▷ Less predictable dragons
Right now it’s fairly easy to predict when
a dragon will wake up. You can add an
element of chance to each dragon’s sleep
cycle to make the game more challenging.
For this, you’ll first need to import the
Random module at the top of your
program. Then you’ll need to add some
code to the update_sleeping_dragon()
function. This will randomly decide
whether to wake up the dragon each
time the function is called. To do this,
add the line of code shown in black
here to Step 23.

◁ Add another hero
All this egg collecting can be a lot of work for one
hero. You can add another hero to lend a hand. You’ll
need to add some new code and change some
existing code to do this. Begin by changing the
starting position of the current hero and adding a
different one for the new hero. Then add some code
to the draw() function to draw the second hero on
the screen. Now add the code shown here to the
update() function, which will make the second
hero move on the screen using a new set of keys—
W, A, S, D. Lastly, remember to add a parameter to
all the functions that check for collisions so they
check the collisions for both heroes.

This moves the second
hero down.

 if lair["sleep_counter"] >= lair["sleep_length"]:

 if random.choice([True, False]):

 lair["dragon"].image = "dragon-awake"

 if keyboard.d:

 hero2.x += MOVE_DISTANCE

 if hero2.x > WIDTH:

 hero2.x = WIDTH

 elif keyboard.a:

 hero2.x -= MOVE_DISTANCE

 if hero2.x < 0:

 hero2.x = 0

 elif keyboard.s:

 hero2.y += MOVE_DISTANCE

 if hero2.y > HEIGHT:

 hero2.y = HEIGHT

 elif keyboard.w:

 hero2.y -= MOVE_DISTANCE

 if hero2.y < 0:

 hero2.y = 0

I know when the
dragons will wake

up next.

They are not
as predictable as

you think.

I could use
some help!

US_194-195_sleeping_dragons_9.indd 195 22/02/18 12:31 pm

195G A M E P R O G R E S S 1 0 0 %

Hacks and tweaks
Add some more challenges to the quest
and make the game even more engaging.
Here are a few ideas to get you started.

▷ Less predictable dragons
Right now it’s fairly easy to predict when
a dragon will wake up. You can add an
element of chance to each dragon’s sleep
cycle to make the game more challenging.
For this, you’ll first need to import the
Random module at the top of your
program. Then you’ll need to add some
code to the update_sleeping_dragon()
function. This will randomly decide
whether to wake up the dragon each
time the function is called. To do this,
add the line of code shown in black
here to Step 23.

◁ Add another hero
All this egg collecting can be a lot of work for one
hero. You can add another hero to lend a hand. You’ll
need to add some new code and change some
existing code to do this. Begin by changing the
starting position of the current hero and adding a
different one for the new hero. Then add some code
to the draw() function to draw the second hero on
the screen. Now add the code shown here to the
update() function, which will make the second
hero move on the screen using a new set of keys—
W, A, S, D. Lastly, remember to add a parameter to
all the functions that check for collisions so they
check the collisions for both heroes.

This moves the second
hero down.

 if lair["sleep_counter"] >= lair["sleep_length"]:

 if random.choice([True, False]):

 lair["dragon"].image = "dragon-awake"

 if keyboard.d:

 hero2.x += MOVE_DISTANCE

 if hero2.x > WIDTH:

 hero2.x = WIDTH

 elif keyboard.a:

 hero2.x -= MOVE_DISTANCE

 if hero2.x < 0:

 hero2.x = 0

 elif keyboard.s:

 hero2.y += MOVE_DISTANCE

 if hero2.y > HEIGHT:

 hero2.y = HEIGHT

 elif keyboard.w:

 hero2.y -= MOVE_DISTANCE

 if hero2.y < 0:

 hero2.y = 0

I know when the
dragons will wake

up next.

They are not
as predictable as

you think.

I could use
some help!

US_194-195_sleeping_dragons_9.indd 195 22/02/18 12:31 pm

US_196-197_Chapter_opener_12.indd 196 22/02/18 1:48 pm

Reference

US_196-197_Chapter_opener_12.indd 197 22/02/18 1:48 pm

Reference

US_196-197_Chapter_opener_12.indd 197 22/02/18 1:48 pm

198 R E F E R E N C E

Project reference
This section contains the complete Python code for
every game in this book, except for the hacks and
tweaks. If your games don’t run properly, check their
scripts carefully against the code shown here.

Shoot the Fruit (page 48)
from random import randint

apple = Actor("apple")

def draw():

 screen.clear()

 apple.draw()

def place_apple():

 apple.x = randint(10, 800)

 apple.y = randint(10, 600)

def on_mouse_down(pos):

 if apple.collidepoint(pos):

 print("Good shot!")

 place_apple()

 else:

 print("You missed!")

 quit()

place_apple()

Coin Collector (page 58)
from random import randint

WIDTH = 400

HEIGHT = 400

score = 0

game_over = False

fox = Actor("fox")

fox.pos = 100, 100

coin = Actor("coin")

coin.pos = 200, 200

US_198-199_reference.indd 198 22/02/18 12:32 pm

199P R O J E C T R E F E R E N C E

def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

 if game_over:

 screen.fill("pink")

 screen.draw.text("Final Score: " + str(score), topleft=(10, 10), fontsize=60)

def place_coin():

 coin.x = randint(20, (WIDTH - 20))

 coin.y = randint(20, (HEIGHT - 20))

def time_up():

 global game_over

 game_over = True

def update():

 global score

 if keyboard.left:

 fox.x = fox.x - 2

 elif keyboard.right:

 fox.x = fox.x + 2

 elif keyboard.up:

 fox.y = fox.y - 2

 elif keyboard.down:

 fox.y = fox.y + 2

 coin_collected = fox.colliderect(coin)

 if coin_collected:

 score = score + 10

 place_coin()

clock.schedule(time_up, 7.0)

place_coin()

Follow the Numbers (page 68)
from random import randint

WIDTH = 400

HEIGHT = 400

US_198-199_reference.indd 199 22/02/18 12:32 pm

199P R O J E C T R E F E R E N C E

def draw():

 screen.fill("green")

 fox.draw()

 coin.draw()

 screen.draw.text("Score: " + str(score), color="black", topleft=(10, 10))

 if game_over:

 screen.fill("pink")

 screen.draw.text("Final Score: " + str(score), topleft=(10, 10), fontsize=60)

def place_coin():

 coin.x = randint(20, (WIDTH - 20))

 coin.y = randint(20, (HEIGHT - 20))

def time_up():

 global game_over

 game_over = True

def update():

 global score

 if keyboard.left:

 fox.x = fox.x - 2

 elif keyboard.right:

 fox.x = fox.x + 2

 elif keyboard.up:

 fox.y = fox.y - 2

 elif keyboard.down:

 fox.y = fox.y + 2

 coin_collected = fox.colliderect(coin)

 if coin_collected:

 score = score + 10

 place_coin()

clock.schedule(time_up, 7.0)

place_coin()

Follow the Numbers (page 68)
from random import randint

WIDTH = 400

HEIGHT = 400

US_198-199_reference.indd 199 22/02/18 12:32 pm

200 R E F E R E N C E

dots = []

lines = []

next_dot = 0

for dot in range(0, 10):

 actor = Actor("dot")

 actor.pos = randint(20, WIDTH - 20), \

 randint(20, HEIGHT - 20)

 dots.append(actor)

def draw():

 screen.fill("black")

 number = 1

 for dot in dots:

 screen.draw.text(str(number), \

 (dot.pos[0], dot.pos[1] + 12))

 dot.draw()

 number = number + 1

 for line in lines:

 screen.draw.line(line[0], line[1], (100, 0, 0))

def on_mouse_down(pos):

 global next_dot

 global lines

 if dots[next_dot].collidepoint(pos):

 if next_dot:

 lines.append((dots[next_dot - 1].pos, dots[next_dot].pos))

 next_dot = next_dot + 1

 else:

 lines = []

 next_dot = 0

Red Alert (page 80)
import random

FONT_COLOR = (255, 255, 255)

WIDTH = 800

HEIGHT = 600

CENTER_X = WIDTH / 2

CENTER_Y = HEIGHT / 2

CENTER = (CENTER_X, CENTER_Y)

FINAL_LEVEL = 6

START_SPEED = 10

COLORS = ["green", "blue"]

US_200-201_reference.indd 200 22/02/18 12:33 pm

201P R O J E C T R E F E R E N C E

game_over = False

game_complete = False

current_level = 1

stars = []

animations = []

def draw():

 global stars, current_level, game_over, game_complete

 screen.clear()

 screen.blit("space", (0, 0))

 if game_over:

 display_message("GAME OVER!", "Try again.")

 elif game_complete:

 display_message("YOU WON!", "Well done.")

 else:

 for star in stars:

 star.draw()

def update():

 global stars

 if len(stars) == 0:

 stars = make_stars(current_level)

def make_stars(number_of_extra_stars):

 colors_to_create = get_colors_to_create(number_of_extra_stars)

 new_stars = create_stars(colors_to_create)

 layout_stars(new_stars)

 animate_stars(new_stars)

 return new_stars

def get_colors_to_create(number_of_extra_stars):

 colors_to_create = ["red"]

 for i in range(0, number_of_extra_stars):

 random_color = random.choice(COLORS)

 colors_to_create.append(random_color)

 return colors_to_create

def create_stars(colors_to_create):

 new_stars = []

 for color in colors_to_create:

 star = Actor(color + "-star")

 new_stars.append(star)

 return new_stars

def layout_stars(stars_to_layout):

 number_of_gaps = len(stars_to_layout) + 1

 gap_size = WIDTH / number_of_gaps

US_200-201_reference.indd 201 22/02/18 12:33 pm

202 R E F E R E N C E

 random.shuffle(stars_to_layout)

 for index, star in enumerate(stars_to_layout):

 new_x_pos = (index + 1) * gap_size

 star.x = new_x_pos

def animate_stars(stars_to_animate):

 for star in stars_to_animate:

 duration = START_SPEED - current_level

 star.anchor = ("center", "bottom")

 animation = animate(star, duration=duration, on_finished=handle_game_over, y=HEIGHT)

 animations.append(animation)

def handle_game_over():

 global game_over

 game_over = True

def on_mouse_down(pos):

 global stars, current_level

 for star in stars:

 if star.collidepoint(pos):

 if "red" in star.image:

 red_star_click()

 else:

 handle_game_over()

def red_star_click():

 global current_level, stars, animations, game_complete

 stop_animations(animations)

 if current_level == FINAL_LEVEL:

 game_complete = True

 else:

 current_level = current_level + 1

 stars = []

 animations = []

def stop_animations(animations_to_stop):

 for animation in animations_to_stop:

 if animation.running:

 animation.stop()

def display_message(heading_text, sub_heading_text):

 screen.draw.text(heading_text, fontsize=60, center=CENTER, color=FONT_COLOR)

 screen.draw.text(sub_heading_text,

 fontsize=30,

 center=(CENTER_X, CENTER_Y + 30),

 color=FONT_COLOR)

US_202-203_reference.indd 202 22/02/18 12:34 pm

203P R O J E C T R E F E R E N C E

Big Quiz (page 98)
WIDTH = 1280

HEIGHT = 720

main_box = Rect(0, 0, 820, 240)

timer_box = Rect(0, 0, 240, 240)

answer_box1 = Rect(0, 0, 495, 165)

answer_box2 = Rect(0, 0, 495, 165)

answer_box3 = Rect(0, 0, 495, 165)

answer_box4 = Rect(0, 0, 495, 165)

main_box.move_ip(50, 40)

timer_box.move_ip(990, 40)

answer_box1.move_ip(50, 358)

answer_box2.move_ip(735, 358)

answer_box3.move_ip(50, 538)

answer_box4.move_ip(735, 538)

answer_boxes = [answer_box1, answer_box2, answer_box3, answer_box4]

score = 0

time_left = 10

q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

q2 = ["What is 5+7?",

 "12", "10", "14", "8", 1]

q3 = ["What is the seventh month of the year?",

 "April", "May", "June", "July", 4]

q4 = ["Which planet is closest to the Sun?",

 "Saturn", "Neptune", "Mercury", "Venus", 3]

q5 = ["Where are the pyramids?",

 "India", "Egypt", "Morocco", "Canada", 2]

questions = [q1, q2, q3, q4, q5]

question = questions.pop(0)

def draw():

 screen.fill("dim grey")

 screen.draw.filled_rect(main_box, "sky blue")

 screen.draw.filled_rect(timer_box, "sky blue")

 for box in answer_boxes:

 screen.draw.filled_rect(box, "orange")

US_202-203_reference.indd 203 22/02/18 12:34 pm

203P R O J E C T R E F E R E N C E

Big Quiz (page 98)
WIDTH = 1280

HEIGHT = 720

main_box = Rect(0, 0, 820, 240)

timer_box = Rect(0, 0, 240, 240)

answer_box1 = Rect(0, 0, 495, 165)

answer_box2 = Rect(0, 0, 495, 165)

answer_box3 = Rect(0, 0, 495, 165)

answer_box4 = Rect(0, 0, 495, 165)

main_box.move_ip(50, 40)

timer_box.move_ip(990, 40)

answer_box1.move_ip(50, 358)

answer_box2.move_ip(735, 358)

answer_box3.move_ip(50, 538)

answer_box4.move_ip(735, 538)

answer_boxes = [answer_box1, answer_box2, answer_box3, answer_box4]

score = 0

time_left = 10

q1 = ["What is the capital of France?",

 "London", "Paris", "Berlin", "Tokyo", 2]

q2 = ["What is 5+7?",

 "12", "10", "14", "8", 1]

q3 = ["What is the seventh month of the year?",

 "April", "May", "June", "July", 4]

q4 = ["Which planet is closest to the Sun?",

 "Saturn", "Neptune", "Mercury", "Venus", 3]

q5 = ["Where are the pyramids?",

 "India", "Egypt", "Morocco", "Canada", 2]

questions = [q1, q2, q3, q4, q5]

question = questions.pop(0)

def draw():

 screen.fill("dim grey")

 screen.draw.filled_rect(main_box, "sky blue")

 screen.draw.filled_rect(timer_box, "sky blue")

 for box in answer_boxes:

 screen.draw.filled_rect(box, "orange")

US_202-203_reference.indd 203 22/02/18 12:34 pm

204 R E F E R E N C E

 screen.draw.textbox(str(time_left), timer_box, color=("black"))

 screen.draw.textbox(question[0], main_box, color=("black"))

 index = 1

 for box in answer_boxes:

 screen.draw.textbox(question[index], box, color=("black"))

 index = index + 1

def game_over():

 global question, time_left

 message = "Game over. You got %s questions correct" % str(score)

 question = [message, "-", "-", "-", "-", 5]

 time_left = 0

def correct_answer():

 global question, score, time_left

 score = score + 1

 if questions:

 question = questions.pop(0)

 time_left = 10

 else:

 print("End of questions")

 game_over()

def on_mouse_down(pos):

 index = 1

 for box in answer_boxes:

 if box.collidepoint(pos):

 print("Clicked on answer " + str(index))

 if index == question[5]:

 print("You got it correct!")

 correct_answer()

 else:

 game_over()

 index = index + 1

def update_time_left():

 global time_left

 if time_left:

 time_left = time_left - 1

 else:

 game_over()

clock.schedule_interval(update_time_left, 1.0)

US_204-205_reference.indd 204 22/02/18 12:35 pm

205P R O J E C T R E F E R E N C E

Balloon Flight (page 116)
from random import randint

WIDTH = 800

HEIGHT = 600

balloon = Actor("balloon")

balloon.pos = 400, 300

bird = Actor("bird-up")

bird.pos = randint(800, 1600), randint(10, 200)

house = Actor("house")

house.pos = randint(800, 1600), 460

tree = Actor("tree")

tree.pos = randint(800, 1600), 450

bird_up = True

up = False

game_over = False

score = 0

number_of_updates = 0

scores = []

def update_high_scores():

 global score, scores

 filename = r"/Users/bharti/Desktop/python-games/balloon-flight/high-scores.txt"

 scores = []

 with open(filename, "r") as file:

 line = file.readline()

 high_scores = line.split()

 for high_score in high_scores:

 if(score > int(high_score)):

 scores.append(str(score) + " ")

 score = int(high_score)

 else:

 scores.append(str(high_score) + " ")

 with open(filename, "w") as file:

 for high_score in scores:

 file.write(high_score)

def display_high_scores():

 screen.draw.text("HIGH SCORES", (350, 150), color="black")

 y = 175

 position = 1

Remember, you'll need to change this
gray bit of code to the high-scores.txt
file's location on your own computer.

US_204-205_reference.indd 205 22/02/18 12:35 pm

205P R O J E C T R E F E R E N C E

Balloon Flight (page 116)
from random import randint

WIDTH = 800

HEIGHT = 600

balloon = Actor("balloon")

balloon.pos = 400, 300

bird = Actor("bird-up")

bird.pos = randint(800, 1600), randint(10, 200)

house = Actor("house")

house.pos = randint(800, 1600), 460

tree = Actor("tree")

tree.pos = randint(800, 1600), 450

bird_up = True

up = False

game_over = False

score = 0

number_of_updates = 0

scores = []

def update_high_scores():

 global score, scores

 filename = r"/Users/bharti/Desktop/python-games/balloon-flight/high-scores.txt"

 scores = []

 with open(filename, "r") as file:

 line = file.readline()

 high_scores = line.split()

 for high_score in high_scores:

 if(score > int(high_score)):

 scores.append(str(score) + " ")

 score = int(high_score)

 else:

 scores.append(str(high_score) + " ")

 with open(filename, "w") as file:

 for high_score in scores:

 file.write(high_score)

def display_high_scores():

 screen.draw.text("HIGH SCORES", (350, 150), color="black")

 y = 175

 position = 1

Remember, you'll need to change this
gray bit of code to the high-scores.txt
file's location on your own computer.

US_204-205_reference.indd 205 22/02/18 12:35 pm

206 R E F E R E N C E

 for high_score in scores:

 screen.draw.text(str(position) + ". " + high_score, (350, y), color="black")

 y += 25

 position += 1

def draw():

 screen.blit("background", (0, 0))

 if not game_over:

 balloon.draw()

 bird.draw()

 house.draw()

 tree.draw()

 screen.draw.text("Score: " + str(score), (700, 5), color="black")

 else:

 display_high_scores()

def on_mouse_down():

 global up

 up = True

 balloon.y -= 50

def on_mouse_up():

 global up

 up = False

def flap():

 global bird_up

 if bird_up:

 bird.image = "bird-down"

 bird_up = False

 else:

 bird.image = "bird-up"

 bird_up = True

def update():

 global game_over, score, number_of_updates

 if not game_over:

 if not up:

 balloon.y += 1

 if bird.x > 0:

 bird.x -= 4

 if number_of_updates == 9:

 flap()

 number_of_updates = 0

 else:

 number_of_updates += 1

US_206-207_reference.indd 206 22/02/18 12:36 pm

207P R O J E C T R E F E R E N C E

 else:

 bird.x = randint(800, 1600)

 bird.y = randint(10, 200)

 score += 1

 number_of_updates = 0

 if house.right > 0:

 house.x -= 2

 else:

 house.x = randint(800, 1600)

 score += 1

 if tree.right > 0:

 tree.x -= 2

 else:

 tree.x = randint(800, 1600)

 score += 1

 if balloon.top < 0 or balloon.bottom > 560:

 game_over = True

 update_high_scores()

 if balloon.collidepoint(bird.x, bird.y) or \

 balloon.collidepoint(house.x, house.y) or \

 balloon.collidepoint(tree.x, tree.y):

 game_over = True

 update_high_scores()

Dance Challenge (page 136)
from random import randint

WIDTH = 800

HEIGHT = 600

CENTER_X = WIDTH / 2

CENTER_Y = HEIGHT / 2

move_list = []

display_list = []

score = 0

current_move = 0

count = 4

dance_length = 4

say_dance = False

show_countdown = True

US_206-207_reference.indd 207 22/02/18 12:36 pm

207P R O J E C T R E F E R E N C E

 else:

 bird.x = randint(800, 1600)

 bird.y = randint(10, 200)

 score += 1

 number_of_updates = 0

 if house.right > 0:

 house.x -= 2

 else:

 house.x = randint(800, 1600)

 score += 1

 if tree.right > 0:

 tree.x -= 2

 else:

 tree.x = randint(800, 1600)

 score += 1

 if balloon.top < 0 or balloon.bottom > 560:

 game_over = True

 update_high_scores()

 if balloon.collidepoint(bird.x, bird.y) or \

 balloon.collidepoint(house.x, house.y) or \

 balloon.collidepoint(tree.x, tree.y):

 game_over = True

 update_high_scores()

Dance Challenge (page 136)
from random import randint

WIDTH = 800

HEIGHT = 600

CENTER_X = WIDTH / 2

CENTER_Y = HEIGHT / 2

move_list = []

display_list = []

score = 0

current_move = 0

count = 4

dance_length = 4

say_dance = False

show_countdown = True

US_206-207_reference.indd 207 22/02/18 12:36 pm

208 R E F E R E N C E

moves_complete = False

game_over = False

dancer = Actor("dancer-start")

dancer.pos = CENTER_X + 5, CENTER_Y - 40

up = Actor("up")

up.pos = CENTER_X, CENTER_Y + 110

right = Actor("right")

right.pos = CENTER_X + 60, CENTER_Y + 170

down = Actor("down")

down.pos = CENTER_X, CENTER_Y + 230

left = Actor("left")

left.pos = CENTER_X - 60, CENTER_Y + 170

def draw():

 global game_over, score, say_dance

 global count, show_countdown

 if not game_over:

 screen.clear()

 screen.blit("stage", (0, 0))

 dancer.draw()

 up.draw()

 down.draw()

 right.draw()

 left.draw()

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 if say_dance:

 screen.draw.text("Dance!", color="black",

 topleft=(CENTER_X - 65, 150), fontsize=60)

 if show_countdown:

 screen.draw.text(str(count), color="black",

 topleft=(CENTER_X - 8, 150), fontsize=60)

 else:

 screen.clear()

 screen.blit("stage", (0, 0))

 screen.draw.text("Score: " +

 str(score), color="black",

 topleft=(10, 10))

 screen.draw.text("GAME OVER!", color="black",

 topleft=(CENTER_X - 130, 220), fontsize=60)

 return

def reset_dancer():

 global game_over

US_208-209_reference.indd 208 22/02/18 12:37 pm

209P R O J E C T R E F E R E N C E

 if not game_over:

 dancer.image = "dancer-start"

 up.image = "up"

 right.image = "right"

 down.image = "down"

 left.image = "left"

 return

def update_dancer(move):

 global game_over

 if not game_over:

 if move == 0:

 up.image = "up-lit"

 dancer.image = "dancer-up"

 clock.schedule(reset_dancer, 0.5)

 elif move == 1:

 right.image = "right-lit"

 dancer.image = "dancer-right"

 clock.schedule(reset_dancer, 0.5)

 elif move == 2:

 down.image = "down-lit"

 dancer.image = "dancer-down"

 clock.schedule(reset_dancer, 0.5)

 else:

 left.image = "left-lit"

 dancer.image = "dancer-left"

 clock.schedule(reset_dancer, 0.5)

 return

def display_moves():

 global move_list, display_list, dance_length

 global say_dance, show_countdown, current_move

 if display_list:

 this_move = display_list[0]

 display_list = display_list[1:]

 if this_move == 0:

 update_dancer(0)

 clock.schedule(display_moves, 1)

 elif this_move == 1:

 update_dancer(1)

 clock.schedule(display_moves, 1)

 elif this_move == 2:

 update_dancer(2)

 clock.schedule(display_moves, 1)

 else:

 update_dancer(3)

 clock.schedule(display_moves, 1)

US_208-209_reference.indd 209 22/02/18 12:37 pm

209P R O J E C T R E F E R E N C E

 if not game_over:

 dancer.image = "dancer-start"

 up.image = "up"

 right.image = "right"

 down.image = "down"

 left.image = "left"

 return

def update_dancer(move):

 global game_over

 if not game_over:

 if move == 0:

 up.image = "up-lit"

 dancer.image = "dancer-up"

 clock.schedule(reset_dancer, 0.5)

 elif move == 1:

 right.image = "right-lit"

 dancer.image = "dancer-right"

 clock.schedule(reset_dancer, 0.5)

 elif move == 2:

 down.image = "down-lit"

 dancer.image = "dancer-down"

 clock.schedule(reset_dancer, 0.5)

 else:

 left.image = "left-lit"

 dancer.image = "dancer-left"

 clock.schedule(reset_dancer, 0.5)

 return

def display_moves():

 global move_list, display_list, dance_length

 global say_dance, show_countdown, current_move

 if display_list:

 this_move = display_list[0]

 display_list = display_list[1:]

 if this_move == 0:

 update_dancer(0)

 clock.schedule(display_moves, 1)

 elif this_move == 1:

 update_dancer(1)

 clock.schedule(display_moves, 1)

 elif this_move == 2:

 update_dancer(2)

 clock.schedule(display_moves, 1)

 else:

 update_dancer(3)

 clock.schedule(display_moves, 1)

US_208-209_reference.indd 209 22/02/18 12:37 pm

210 R E F E R E N C E

 else:

 say_dance = True

 show_countdown = False

 return

def countdown():

 global count, game_over, show_countdown

 if count > 1:

 count = count - 1

 clock.schedule(countdown, 1)

 else:

 show_countdown = False

 display_moves()

 return

def generate_moves():

 global move_list, dance_length, count

 global show_countdown, say_dance

 count = 4

 move_list = []

 say_dance = False

 for move in range(0, dance_length):

 rand_move = randint(0, 3)

 move_list.append(rand_move)

 display_list.append(rand_move)

 show_countdown = True

 countdown()

 return

def next_move():

 global dance_length, current_move, moves_complete

 if current_move < dance_length - 1:

 current_move = current_move + 1

 else:

 moves_complete = True

 return

def on_key_up(key):

 global score, game_over, move_list, current_move

 if key == keys.UP:

 update_dancer(0)

 if move_list[current_move] == 0:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.RIGHT:

US_210-211_reference.indd 210 22/02/18 12:38 pm

211P R O J E C T R E F E R E N C E

 update_dancer(1)

 if move_list[current_move] == 1:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.DOWN:

 update_dancer(2)

 if move_list[current_move] == 2:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.LEFT:

 update_dancer(3)

 if move_list[current_move] == 3:

 score = score + 1

 next_move()

 else:

 game_over = True

 return

generate_moves()

music.play("vanishing-horizon")

def update():

 global game_over, current_move, moves_complete

 if not game_over:

 if moves_complete:

 generate_moves()

 moves_complete = False

 current_move = 0

 else:

 music.stop()

Happy Garden (page 154)
from random import randint

import time

WIDTH = 800

HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

game_over = False

 finalised = False

US_210-211_reference.indd 211 22/02/18 12:38 pm

211P R O J E C T R E F E R E N C E

 update_dancer(1)

 if move_list[current_move] == 1:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.DOWN:

 update_dancer(2)

 if move_list[current_move] == 2:

 score = score + 1

 next_move()

 else:

 game_over = True

 elif key == keys.LEFT:

 update_dancer(3)

 if move_list[current_move] == 3:

 score = score + 1

 next_move()

 else:

 game_over = True

 return

generate_moves()

music.play("vanishing-horizon")

def update():

 global game_over, current_move, moves_complete

 if not game_over:

 if moves_complete:

 generate_moves()

 moves_complete = False

 current_move = 0

 else:

 music.stop()

Happy Garden (page 154)
from random import randint

import time

WIDTH = 800

HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

game_over = False

 finalised = False

US_210-211_reference.indd 211 22/02/18 12:38 pm

212 R E F E R E N C E

garden_happy = True

fangflower_collision = False

time_elapsed = 0

 start_time = time.time()

cow = Actor("cow")

cow.pos = 100, 500

flower_list = []

 wilted_list = []

 fangflower_list = []

 fangflower_vy_list = []

 fangflower_vx_list = []

 def draw():

 global game_over, time_elapsed, finalized

 if not game_over:

 screen.clear()

 screen.blit("garden", (0, 0))

 cow.draw()

 for flower in flower_list:

 flower.draw()

 for fangflower in fangflower_list:

 fangflower.draw()

 time_elapsed = int(time.time() - start_time)

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 else:

 if not finalized:

 cow.draw()

 screen.draw.text(

 "Garden happy for: " +

 str(time_elapsed) + " seconds",

 topleft=(10, 10), color="black"

)

 if (not garden_happy):

 screen.draw.text(

 "GARDEN UNHAPPY - GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

 else:

 screen.draw.text(

US_212-213_reference.indd 212 22/02/18 12:39 pm

213P R O J E C T R E F E R E N C E

 "FANGFLOWER ATTACK - GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

 return

 def new_flower():

 global flower_list, wilted_list

 flower_new = Actor("flower")

 flower_new.pos = randint(50, WIDTH - 50), randint(150, HEIGHT - 100)

 flower_list.append(flower_new)

 wilted_list.append("happy")

 return

 def add_flowers():

 global game_over

 if not game_over:

 new_flower()

 clock.schedule(add_flowers, 4)

 return

 def check_wilt_times():

 global wilted_list, game_over, garden_happy

 if wilted_list:

 for wilted_since in wilted_list:

 if (not wilted_since == "happy"):

 time_wilted = int(time.time() - wilted_since)

 if (time_wilted) > 10.0:

 garden_happy = False

 game_over = True

 break

 return

 def wilt_flower():

 global flower_list, wilted_list, game_over

 if not game_over:

 if flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 if (flower_list[rand_flower].image == "flower"):

 flower_list[rand_flower].image = "flower-wilt"

 wilted_list[rand_flower] = time.time()

 clock.schedule(wilt_flower, 3)

 return

def check_flower_collision():

 global cow, flower_list, wilted_list

 index = 0

US_212-213_reference.indd 213 22/02/18 12:39 pm

213P R O J E C T R E F E R E N C E

 "FANGFLOWER ATTACK - GAME OVER!", color="black",

 topleft=(10, 50)

)

 finalized = True

 return

 def new_flower():

 global flower_list, wilted_list

 flower_new = Actor("flower")

 flower_new.pos = randint(50, WIDTH - 50), randint(150, HEIGHT - 100)

 flower_list.append(flower_new)

 wilted_list.append("happy")

 return

 def add_flowers():

 global game_over

 if not game_over:

 new_flower()

 clock.schedule(add_flowers, 4)

 return

 def check_wilt_times():

 global wilted_list, game_over, garden_happy

 if wilted_list:

 for wilted_since in wilted_list:

 if (not wilted_since == "happy"):

 time_wilted = int(time.time() - wilted_since)

 if (time_wilted) > 10.0:

 garden_happy = False

 game_over = True

 break

 return

 def wilt_flower():

 global flower_list, wilted_list, game_over

 if not game_over:

 if flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 if (flower_list[rand_flower].image == "flower"):

 flower_list[rand_flower].image = "flower-wilt"

 wilted_list[rand_flower] = time.time()

 clock.schedule(wilt_flower, 3)

 return

def check_flower_collision():

 global cow, flower_list, wilted_list

 index = 0

US_212-213_reference.indd 213 22/02/18 12:39 pm

214 R E F E R E N C E

 for flower in flower_list:

 if (flower.colliderect(cow) and

 flower.image == "flower-wilt"):

 flower.image = "flower"

 wilted_list[index] = "happy"

 break

 index = index + 1

 return

def check_fangflower_collision():

 global cow, fangflower_list, fangflower_collision

 global game_over

 for fangflower in fangflower_list:

 if fangflower.colliderect(cow):

 cow.image = "zap"

 game_over = True

 break

 return

def velocity():

 random_dir = randint(0, 1)

 random_velocity = randint(2, 3)

 if random_dir == 0:

 return -random_velocity

 else:

 return random_velocity

def mutate():

 global flower_list, fangflower_list, fangflower_vy_list

 global fangflower_vx_list, game_over

 if not game_over and flower_list:

 rand_flower = randint(0, len(flower_list) - 1)

 fangflower_pos_x = flower_list[rand_flower].x

 fangflower_pos_y = flower_list[rand_flower].y

 del flower_list[rand_flower]

 fangflower = Actor("fangflower")

 fangflower.pos = fangflower_pos_x, fangflower_pos_y

 fangflower_vx = velocity()

 fangflower_vy = velocity()

 fangflower = fangflower_list.append(fangflower)

 fangflower_vx_list.append(fangflower_vx)

 fangflower_vy_list.append(fangflower_vy)

 clock.schedule(mutate, 20)

 return

def update_fangflowers():

 global fangflower_list, game_over

US_214-215_reference.indd 214 22/02/18 12:40 pm

215P R O J E C T R E F E R E N C E

 if not game_over:

 index = 0

 for fangflower in fangflower_list:

 fangflower_vx = fangflower_vx_list[index]

 fangflower_vy = fangflower_vy_list[index]

 fangflower.x = fangflower.x + fangflower_vx

 fangflower.y = fangflower.y + fangflower_vy

 if fangflower.left < 0:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.right > WIDTH:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.top < 150:

 fangflower_vy_list[index] = -fangflower_vy

 if fangflower.bottom > HEIGHT:

 fangflower_vy_list[index] = -fangflower_vy

 index = index + 1

 return

def reset_cow():

 global game_over

 if not game_over:

 cow.image = "cow"

 return

add_flowers()

wilt_flower()

def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 fangflower_collision = check_fangflower_collision()

 check_wilt_times()

 if not game_over:

 if keyboard.space:

 cow.image = "cow-water"

 clock.schedule(reset_cow, 0.5)

 check_flower_collision()

 if keyboard.left and cow.x > 0:

 cow.x -= 5

 elif keyboard.right and cow.x < WIDTH:

 cow.x += 5

 elif keyboard.up and cow.y > 150:

 cow.y -= 5

 elif keyboard.down and cow.y < HEIGHT:

 cow.y += 5

 if time_elapsed > 15 and not fangflower_list:

 mutate()

 update_fangflowers()

US_214-215_reference.indd 215 22/02/18 12:40 pm

215P R O J E C T R E F E R E N C E

 if not game_over:

 index = 0

 for fangflower in fangflower_list:

 fangflower_vx = fangflower_vx_list[index]

 fangflower_vy = fangflower_vy_list[index]

 fangflower.x = fangflower.x + fangflower_vx

 fangflower.y = fangflower.y + fangflower_vy

 if fangflower.left < 0:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.right > WIDTH:

 fangflower_vx_list[index] = -fangflower_vx

 if fangflower.top < 150:

 fangflower_vy_list[index] = -fangflower_vy

 if fangflower.bottom > HEIGHT:

 fangflower_vy_list[index] = -fangflower_vy

 index = index + 1

 return

def reset_cow():

 global game_over

 if not game_over:

 cow.image = "cow"

 return

add_flowers()

wilt_flower()

def update():

 global score, game_over, fangflower_collision

 global flower_list, fangflower_list, time_elapsed

 fangflower_collision = check_fangflower_collision()

 check_wilt_times()

 if not game_over:

 if keyboard.space:

 cow.image = "cow-water"

 clock.schedule(reset_cow, 0.5)

 check_flower_collision()

 if keyboard.left and cow.x > 0:

 cow.x -= 5

 elif keyboard.right and cow.x < WIDTH:

 cow.x += 5

 elif keyboard.up and cow.y > 150:

 cow.y -= 5

 elif keyboard.down and cow.y < HEIGHT:

 cow.y += 5

 if time_elapsed > 15 and not fangflower_list:

 mutate()

 update_fangflowers()

US_214-215_reference.indd 215 22/02/18 12:40 pm

216 R E F E R E N C E

Sleeping Dragons (page 176)
import math

 WIDTH = 800

HEIGHT = 600

 CENTER_X = WIDTH / 2

 CENTER_Y = HEIGHT / 2

 CENTER = (CENTER_X, CENTER_Y)

 FONT_COLOR = (0, 0, 0)

 EGG_TARGET = 20

 HERO_START = (200, 300)

 ATTACK_DISTANCE = 200

DRAGON_WAKE_TIME = 2

 EGG_HIDE_TIME = 2

 MOVE_DISTANCE = 5

lives = 3

 eggs_collected = 0

game_over = False

game_complete = False

reset_required = False

 easy_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 100)),

 "eggs": Actor("one-egg", pos=(400, 100)),

 "egg_count": 1,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 10,

 "sleep_counter": 0,

 "wake_counter": 0

 }

 medium_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 300)),

 "eggs": Actor("two-eggs", pos=(400, 300)),

 "egg_count": 2,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 7,

 "sleep_counter": 0,

 "wake_counter": 0

 }

 hard_lair = {

 "dragon": Actor("dragon-asleep", pos=(600, 500)),

 "eggs": Actor("three-eggs", pos=(400, 500)),

US_216-217_reference.indd 216 22/02/18 12:41 pm

217P R O J E C T R E F E R E N C E

 "egg_count": 3,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 4,

 "sleep_counter": 0,

 "wake_counter": 0

 }

 lairs = [easy_lair, medium_lair, hard_lair]

 hero = Actor("hero", pos=HERO_START)

 def draw():

 global lairs, eggs_collected, lives, game_complete

 screen.clear()

 screen.blit("dungeon", (0, 0))

 if game_over:

 screen.draw.text("GAME OVER!", fontsize=60, center= CENTER, color=FONT_COLOR)

 elif game_complete:

 screen.draw.text("YOU WON!", fontsize=60, center=CENTER, color=FONT_COLOR)

 else:

 hero.draw()

 draw_lairs(lairs)

 draw_counters(eggs_collected, lives)

 def draw_lairs(lairs_to_draw):

 for lair in lairs_to_draw:

 lair["dragon"].draw()

 if lair["egg_hidden"] is False:

 lair["eggs"].draw()

 def draw_counters(eggs_collected, lives):

 screen.blit("egg-count", (0, HEIGHT - 30))

 screen.draw.text(str(eggs_collected),

 fontsize=40,

 pos=(30, HEIGHT - 30),

 color=FONT_COLOR)

 screen.blit("life-count", (60, HEIGHT - 30))

 screen.draw.text(str(lives),

 fontsize=40,

 pos=(90, HEIGHT - 30),

 color=FONT_COLOR)

 screen.draw.text(str(lives),

 fontsize=40,

 pos=(90, HEIGHT - 30),

 color=FONT_COLOR)

US_216-217_reference.indd 217 14/03/18 12:19 PM

217P R O J E C T R E F E R E N C E

 "egg_count": 3,

 "egg_hidden": False,

 "egg_hide_counter": 0,

 "sleep_length": 4,

 "sleep_counter": 0,

 "wake_counter": 0

 }

 lairs = [easy_lair, medium_lair, hard_lair]

 hero = Actor("hero", pos=HERO_START)

 def draw():

 global lairs, eggs_collected, lives, game_complete

 screen.clear()

 screen.blit("dungeon", (0, 0))

 if game_over:

 screen.draw.text("GAME OVER!", fontsize=60, center= CENTER, color=FONT_COLOR)

 elif game_complete:

 screen.draw.text("YOU WON!", fontsize=60, center=CENTER, color=FONT_COLOR)

 else:

 hero.draw()

 draw_lairs(lairs)

 draw_counters(eggs_collected, lives)

 def draw_lairs(lairs_to_draw):

 for lair in lairs_to_draw:

 lair["dragon"].draw()

 if lair["egg_hidden"] is False:

 lair["eggs"].draw()

 def draw_counters(eggs_collected, lives):

 screen.blit("egg-count", (0, HEIGHT - 30))

 screen.draw.text(str(eggs_collected),

 fontsize=40,

 pos=(30, HEIGHT - 30),

 color=FONT_COLOR)

 screen.blit("life-count", (60, HEIGHT - 30))

 screen.draw.text(str(lives),

 fontsize=40,

 pos=(90, HEIGHT - 30),

 color=FONT_COLOR)

 screen.draw.text(str(lives),

 fontsize=40,

 pos=(90, HEIGHT - 30),

 color=FONT_COLOR)

US_216-217_reference.indd 217 14/03/18 12:19 PM

218 R E F E R E N C E

 def update():

 if keyboard.right:

 hero.x += MOVE_DISTANCE

 if hero.x > WIDTH:

 hero.x = WIDTH

 elif keyboard.left:

 hero.x -= MOVE_DISTANCE

 if hero.x < 0:

 hero.x = 0

 elif keyboard.down:

 hero.y += MOVE_DISTANCE

 if hero.y > HEIGHT:

 hero.y = HEIGHT

 elif keyboard.up:

 hero.y -= MOVE_DISTANCE

 if hero.y < 0:

 hero.y = 0

 check_for_collisions()

 def update_lairs():

 global lairs, hero, lives

 for lair in lairs:

 if lair["dragon"].image == "dragon-asleep":

 update_sleeping_dragon(lair)

 elif lair["dragon"].image == "dragon-awake":

 update_waking_dragon(lair)

 update_egg(lair)

clock.schedule_interval(update_lairs, 1)

 def update_sleeping_dragon(lair):

 if lair["sleep_counter"] >= lair["sleep_length"]:

 lair["dragon"].image = "dragon-awake"

 lair["sleep_counter"] = 0

 else:

 lair["sleep_counter"] += 1

 def update_waking_dragon(lair):

 if lair["wake_counter"] >= DRAGON_WAKE_TIME:

 lair["dragon"].image = "dragon-asleep"

 lair["wake_counter"] = 0

 else:

 lair["wake_counter"] += 1

def update_egg(lair):

 if lair["egg_hidden"] is True:

 if lair["egg_hide_counter"] >= EGG_HIDE_TIME:

US_218-219_reference.indd 218 22/02/18 12:42 pm

219P R O J E C T R E F E R E N C E

 lair["egg_hidden"] = False

 lair["egg_hide_counter"] = 0

 else:

 lair["egg_hide_counter"] += 1

 def check_for_collisions():

 global lairs, eggs_collected, lives, reset_required, game_complete

 for lair in lairs:

 if lair["egg_hidden"] is False:

 check_for_egg_collision(lair)

 if lair["dragon"].image == "dragon-awake" and reset_required is False:

 check_for_dragon_collision(lair)

 def check_for_dragon_collision(lair):

 x_distance = hero.x - lair["dragon"].x

 y_distance = hero.y - lair["dragon"].y

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

 def handle_dragon_collision():

 global reset_required

 reset_required = True

 animate(hero, pos=HERO_START, on_finished=subtract_life)

 def check_for_egg_collision(lair):

 global eggs_collected, game_complete

 if hero.colliderect(lair["eggs"]):

 lair["egg_hidden"] = True

 eggs_collected += lair["egg_count"]

 if eggs_collected >= EGG_TARGET:

 game_complete = True

 def subtract_life():

 global lives, reset_required, game_over

 lives -= 1

 if lives == 0:

 game_over = True

 reset_required = False

You’ve got really
bad breath, dude!

US_218-219_reference.indd 219 22/02/18 12:42 pm

219P R O J E C T R E F E R E N C E

 lair["egg_hidden"] = False

 lair["egg_hide_counter"] = 0

 else:

 lair["egg_hide_counter"] += 1

 def check_for_collisions():

 global lairs, eggs_collected, lives, reset_required, game_complete

 for lair in lairs:

 if lair["egg_hidden"] is False:

 check_for_egg_collision(lair)

 if lair["dragon"].image == "dragon-awake" and reset_required is False:

 check_for_dragon_collision(lair)

 def check_for_dragon_collision(lair):

 x_distance = hero.x - lair["dragon"].x

 y_distance = hero.y - lair["dragon"].y

 distance = math.hypot(x_distance, y_distance)

 if distance < ATTACK_DISTANCE:

 handle_dragon_collision()

 def handle_dragon_collision():

 global reset_required

 reset_required = True

 animate(hero, pos=HERO_START, on_finished=subtract_life)

 def check_for_egg_collision(lair):

 global eggs_collected, game_complete

 if hero.colliderect(lair["eggs"]):

 lair["egg_hidden"] = True

 eggs_collected += lair["egg_count"]

 if eggs_collected >= EGG_TARGET:

 game_complete = True

 def subtract_life():

 global lives, reset_required, game_over

 lives -= 1

 if lives == 0:

 game_over = True

 reset_required = False

You’ve got really
bad breath, dude!

US_218-219_reference.indd 219 22/02/18 12:42 pm

R E F E R E N C E220

Glossary
animation
A process in which
images are displayed
one after another
to make it look like
something’s moving.

Boolean expression
A statement that is either
True or False, leading to
two possible outcomes.

branch
A point in a program
where different
options are available
to choose from.

bug
An error in a program’s
code that makes it behave
in an unexpected way.

call
To use a function
in a program.

command line
The screen that lets you
enter commands into the
Command Prompt or
Terminal window.

Command Prompt
An application on
Windows computers
that allows a user to
enter and execute
commands.

comment
A text note added to a
program that makes the
code easier to understand
and is ignored by the
program when it runs.

condition
A “True or False”
statement used to
make a decision in
a program. See also
Boolean expression.

constant
A variable whose
value should stay
the same throughout
a program. Programmers
use capital letters when
naming constants to
let other programmers
know that their values
should not be changed.
See also variable.

coordinates
A pair of numbers
that pinpoint an exact
location. Usually written
as (x, y).

data
Information, such
as text, symbols, and
numerical values.

dictionary
A collection of data
items stored in pairs,
such as countries and
their capital cities.

debug
To look for and
correct errors
in a program.

encryption
A way of encoding
data so that only
certain people can
read or access it.

event
Something a computer
program can react to,
such as a key being
pressed or the mouse
being clicked.

file
A collection
of data stored
with a name.

flag variable
A variable that can
have two states, such
as True and False.

float
A number
with a decimal
point in it.

flowchart
A diagram that
shows a program
as a sequence of
steps and decisions.

function
Code that carries out
a specific task. Also
called a procedure,
subprogram, or
subroutine.

global variable
A variable that can be
used throughout every
part of a program. See
also local variable.

graphics
Visual elements
on a screen, such as
text, pictures, icons,
and symbols.

GUI
The GUI, or graphical
user interface, is the
name for the buttons
and windows that make
up the part of the
program you can see
and interact with.

hack
An ingenious change
to code that makes
it do something new
or simplifies it. (Also,
accessing a computer
without permission.)

hacker
A person who breaks
into a computer system.
“White hat” hackers work
for computer security
companies and look for
problems in order to fix
them. “Black hat” hackers
break into computer
systems to cause harm or
to make profit from them.

indent
When a block of code
is placed farther to the
right than the previous
block. An indent is usually
four spaces. Every line in
a particular block of code
must be indented by the
same amount.

index number
A number given to an
item in a list. In Python,
the index number of
the first item will be
0, the second item 1,
and so on.

US_220-221_Glossary.indd 220 22/02/18 12:42 pm

G L O S S A R Y 221

input
Data that is entered
into a computer.
Keyboards, mice, and
microphones can be
used to input data.

integer
A whole number.
An integer does not
contain a decimal
point and is not
written as a fraction.

interface
The means by which
the user interacts with
software or hardware.
See GUI.

keyword
A word that has a special
meaning in a program. All
programming languages
have a set of keywords.
These words cannot be
used to name variables
or functions.

library
A collection of
functions that can
be reused in other
projects.

list
A collection of
items stored in
numbered order.

local variable
A variable that works
only within a limited
part of a program, such
as a function. See also
global variable.

loop
A part of a program
that repeats itself, so
you don’t need to type
out the same piece of
code multiple times.

module
A package of ready-made
code that can be imported
into a Python program,
making lots of useful
functions available.

nested loop
A loop inside
another loop.

operating system (OS)
The program that
controls everything on
a computer. Windows,
macOS, and Linux are
operating systems.

operator
A symbol that performs
a specific function: for
example, “+” (addition)
or “–” (subtraction).

output
Data that is produced
by a computer program
and viewed by the user.

parameter
A value given to a
function. The value of
a parameter is assigned
by the line of code that
calls the function.

pixels
Tiny dots that make
up a digital image.

program
A set of instructions
that a computer follows
in order to complete
a task.

programming
language
A language that
is used to give
instructions to
a computer.

Python
A popular programming
language created by
Guido van Rossum. It
is a great language for
beginners to learn.

random
A function in a
computer program
that allows unpredictable
outcomes. Useful when
creating games.

recursion
Creating a loop
by telling a function
to call itself.

return value
The variable or data
that is passed back
after a function has
been called (run).

run
The command to make
a program start.

software
Programs that run
on a computer and
control how it works.

statement
The smallest
complete instruction
a programming
language can be
broken down into.

string
A series of characters.
Strings can contain
numbers, letters,
or symbols, such
as a colon.

syntax
The rules that
determine how code
must be written in order
for it to work properly.

Terminal
An application on Mac
computers that allows
a user to enter and
execute commands.

toggle
To switch between two
different settings.

Unicode
A universal code
used by computers to
represent thousands
of symbols and text
characters.

variable
A place to store data
that can change in a
program, such as the
player’s score. A variable
has a name and a value.
See also global variable
and local variable.

US_220-221_Glossary.indd 221 22/02/18 12:42 pm

G L O S S A R Y 221

input
Data that is entered
into a computer.
Keyboards, mice, and
microphones can be
used to input data.

integer
A whole number.
An integer does not
contain a decimal
point and is not
written as a fraction.

interface
The means by which
the user interacts with
software or hardware.
See GUI.

keyword
A word that has a special
meaning in a program. All
programming languages
have a set of keywords.
These words cannot be
used to name variables
or functions.

library
A collection of
functions that can
be reused in other
projects.

list
A collection of
items stored in
numbered order.

local variable
A variable that works
only within a limited
part of a program, such
as a function. See also
global variable.

loop
A part of a program
that repeats itself, so
you don’t need to type
out the same piece of
code multiple times.

module
A package of ready-made
code that can be imported
into a Python program,
making lots of useful
functions available.

nested loop
A loop inside
another loop.

operating system (OS)
The program that
controls everything on
a computer. Windows,
macOS, and Linux are
operating systems.

operator
A symbol that performs
a specific function: for
example, “+” (addition)
or “–” (subtraction).

output
Data that is produced
by a computer program
and viewed by the user.

parameter
A value given to a
function. The value of
a parameter is assigned
by the line of code that
calls the function.

pixels
Tiny dots that make
up a digital image.

program
A set of instructions
that a computer follows
in order to complete
a task.

programming
language
A language that
is used to give
instructions to
a computer.

Python
A popular programming
language created by
Guido van Rossum. It
is a great language for
beginners to learn.

random
A function in a
computer program
that allows unpredictable
outcomes. Useful when
creating games.

recursion
Creating a loop
by telling a function
to call itself.

return value
The variable or data
that is passed back
after a function has
been called (run).

run
The command to make
a program start.

software
Programs that run
on a computer and
control how it works.

statement
The smallest
complete instruction
a programming
language can be
broken down into.

string
A series of characters.
Strings can contain
numbers, letters,
or symbols, such
as a colon.

syntax
The rules that
determine how code
must be written in order
for it to work properly.

Terminal
An application on Mac
computers that allows
a user to enter and
execute commands.

toggle
To switch between two
different settings.

Unicode
A universal code
used by computers to
represent thousands
of symbols and text
characters.

variable
A place to store data
that can change in a
program, such as the
player’s score. A variable
has a name and a value.
See also global variable
and local variable.

US_220-221_Glossary.indd 221 22/02/18 12:42 pm

R E F E R E N C E222

Index
what happens

100–101
birds 126, 127
body, of function 122
Boolean expressions 33
Boolean values 32
boxes 100–101,

105–06, 108
branching 34–35
bugs

bug-busting checklist
47

finding 44
fixing 25, 44–47
see also hacks

and tweaks

C
calculations, shorthand

125
clock tool 112
code

colors in 19
indenting 23, 43, 55

Coin Collector 58–67
flowchart 61
getting started 61–66
hacks and tweaks 67
how it works 61
project reference

198–199
what happens 60

collidepoint() function
77, 93

colliderect() function
165, 192, 194

collisions 77, 129, 165,
172, 192–94

colors 114–15
conditions 34
constants 86, 87, 182,

183

coordinates 125
count() function

41
countdown() function

148
cow 156, 160

D
Dance Challenge

136–53
coding 141–52
defining actors 143
flowchart 140
hacks and tweaks

153
how it works 140
movement 145–51
music 140, 142, 152,

153
project reference

207–211
scoring 150
what happens

138–39
decisions, making 32–35
dictionaries 184
dots, connecting 70–71,

77
dragons 178–81, 184,

190, 193, 195
animation 181

draw() function
Balloon Flight 124
Big Quiz 108
Coin Collector 63, 65
Dance Challenge

143
Follow the Numbers

75, 79
Happy Garden 172,

175
Red Alert 87

Shoot the Fruit 53
Sleeping Dragons

180, 186

E
editor window 21

messages in 44
eggs 178, 184, 192, 194

animation 191
equals signs 32
error messages 44
errors, types 45–47
event handling 151

F
fangflowers 156, 160,

168–75
file handling 132, 134
floats 29
flowcharts 22

Balloon Flight 120
Big Quiz 102
Coin Collector 61
Dance Challenge 140
Follow the Numbers

72
Happy Garden 158
Red Alert 84
Shoot the Fruit 51
Sleeping Dragons

180–81
flowers 163–69, 174
folders 52
Follow the Numbers

68–79
flowchart 72
getting started

73–77
hacks and tweaks

78–79
how it works 72

Page numbers in bold
refer to main entries.

A
Actors 52

animations 126, 127
admin access 18
anchor 92
animate() function 83,

93, 193
animations 92, 126, 127,

181, 191
stopping 94

audio files 141–42

B
Balloon Flight 116–35

coding 121–33
flowchart 120
hacks and tweaks

133–35
how it works 120
lives 133
project reference

205–207
scoring 123, 124,

130–33
what happens 118–19
see also obstacles

Big Quiz 98–115
coding 103–12
flowchart 102
GUI 101
hacks and tweaks

113–15
how it works 102
interface 104–06
project reference

203–204
scoring 107
timer 107, 112

US_222-224_Index_Acks_corrected.indd 222 23/02/18 2:31 pm

I N D E X 223

project reference
199–200

what happens 70–71
“for” loops 36–37
functions 30, 40–43,

122
body 122, 122
built-in 44–45
calling 40, 41
header 122
making 42–43
naming 42
using 40

G
games, types 14
garden, drawing 161
global variables 74, 86,

123
graphical user

interface see GUI
graphics, in Pygame 54
gravity 126
GUI 101

Big Quiz 101

H
hacks and tweaks

Balloon Flight
133–35

Big Quiz 113–15
Coin Collector 67
Dance Challenge

153
Follow the Numbers

78–79
Happy Garden

174–75
Red Alert 96–97
Shoot the Fruit

57

Sleeping Dragons
195

Happy Garden 154–75
coding 159–73
flowchart 158
hacks and tweaks

174–75
how it works 158
project reference

211–215
scoring 165
what happens

156–57
header, of function 122
hero 178, 185, 187, 188,

192–95
hints 113
houses 128

I-J
IDLE 16

colors in code 21
editor window 21
shell window 20
using 20–21

indentation errors 43, 45
input() function 41
integers 29
interface, planning 104
join function 136

K
keys 184

L
lairs 184–85, 187, 189
len() function 30
levels 34, 78, 92, 135
line() function 75
list comprehension 97

lists 31
looping over 37

lives 133, 193–94
local variables 74
logic errors 47
loop variable 36
loops 36–39

escaping 37
for 36–37
infinite 39
while 38–39

M
Mac computers 17, 19
modules 15

downloading 15
modulo operator 135,

153
motion, illusion of 119,

128
music, adding 140

N
numbers, using 29

O
obstacles 118

collisions with 129
multiples of 134
preparing 122
on screen 123
spacing out 135

on_key_up() function
113, 146, 151

on_mouse_down()
function 55, 72, 77, 93,

125
open() function

132

P
parameters 40
“pass” keyword 64, 144
patterns 62
placeholders 64, 144
pop() function 102, 108
print() function 40
programs

rerunning 25
running 24–25

Pygame
graphics in 54
installing 18–19

Pygame Zero,
installing 18–19

Python
first program 22–23
installing 16–17
Python 3 16
why use 12

Q
questions

adding 107
answering 110
comparing 32
skipping 113

quizzes see Big Quiz

R
rain 175
randint() function 56, 64,

72, 96, 145
Random module 56
random numbers 56
range 36
Raspberry Pi

computers 17
read() function 132
Red Alert 80–97

US_222-224_Index_Acks_corrected.indd 223 22/02/18 12:44 pm

I N D E X 223

project reference
199–200

what happens 70–71
“for” loops 36–37
functions 30, 40–43,

122
body 122, 122
built-in 44–45
calling 40, 41
header 122
making 42–43
naming 42
using 40

G
games, types 14
garden, drawing 161
global variables 74, 86,

123
graphical user

interface see GUI
graphics, in Pygame 54
gravity 126
GUI 101

Big Quiz 101

H
hacks and tweaks

Balloon Flight
133–35

Big Quiz 113–15
Coin Collector 67
Dance Challenge

153
Follow the Numbers

78–79
Happy Garden

174–75
Red Alert 96–97
Shoot the Fruit

57

Sleeping Dragons
195

Happy Garden 154–75
coding 159–73
flowchart 158
hacks and tweaks

174–75
how it works 158
project reference

211–215
scoring 165
what happens

156–57
header, of function 122
hero 178, 185, 187, 188,

192–95
hints 113
houses 128

I-J
IDLE 16

colors in code 21
editor window 21
shell window 20
using 20–21

indentation errors 43, 45
input() function 41
integers 29
interface, planning 104
join function 136

K
keys 184

L
lairs 184–85, 187, 189
len() function 30
levels 34, 78, 92, 135
line() function 75
list comprehension 97

lists 31
looping over 37

lives 133, 193–94
local variables 74
logic errors 47
loop variable 36
loops 36–39

escaping 37
for 36–37
infinite 39
while 38–39

M
Mac computers 17, 19
modules 15

downloading 15
modulo operator 135,

153
motion, illusion of 119,

128
music, adding 140

N
numbers, using 29

O
obstacles 118

collisions with 129
multiples of 134
preparing 122
on screen 123
spacing out 135

on_key_up() function
113, 146, 151

on_mouse_down()
function 55, 72, 77, 93,

125
open() function

132

P
parameters 40
“pass” keyword 64, 144
patterns 62
placeholders 64, 144
pop() function 102, 108
print() function 40
programs

rerunning 25
running 24–25

Pygame
graphics in 54
installing 18–19

Pygame Zero,
installing 18–19

Python
first program 22–23
installing 16–17
Python 3 16
why use 12

Q
questions

adding 107
answering 110
comparing 32
skipping 113

quizzes see Big Quiz

R
rain 175
randint() function 56, 64,

72, 96, 145
Random module 56
random numbers 56
range 36
Raspberry Pi

computers 17
read() function 132
Red Alert 80–97

US_222-224_Index_Acks_corrected.indd 223 22/02/18 12:44 pm

R E F E R E N C E224

Acknowledgments
DK Publishing would like to thank Caroline Hunt for
proofreading; Jonathan Burd for the index; Daniel Pope for
creating Pygame Zero; Jason Shaw at audionautix.com for the
music for Dance Challenge; Chloe Parry, Phoebe Parry, and
Joshua Parry for user testing; Aashirwad Jain for code testing;
and Isha Sharma for editorial assistance.

Python is copyright © 2001–2018 Python Software Foundation.
All Rights Reserved.

coding 85–95
flowchart 84
hacks and tweaks

96–97
how it works 84
project reference

200–202
see also stars

replace() function 41
return value 40
reverse() function 41
RGB values 75, 114–15
round() function 79

S
scores

high 121, 123, 124,
130–31, 133

keeping 131
Scratch 13
screen.draw.text()

function 75
screen size 74, 103, 122
scrolling, across

screen 128
shell window 20

messages in 44
Shoot the Fruit 48–57

coding 51–56
flowchart 51
hacks and tweaks

57
how it works 51
project reference

198
what happens 50

shuffle() function 97
Sleeping Dragons

176–95
coding 181–94
flowcharts 180–81
hacks and tweaks

195
how it works

180–81
project reference

216–219
losing lives 193–94
what happens

178–79
split() function 130
Sprites 52
stack 108
stars

animating 92
clicking 94
creating 90

drawing 87
placing 91

str() function 75
strings 30

length 30
splitting 130

syntax errors 45

T
time 79
time() function 79
Time module 15
timer

scheduling 112
setting 107

trees 128
True/False statements

32–34
type errors 46

U
update() function

automatic calls 127

Balloon Flight 126, 135
Coin Collector 65, 67
Happy Garden 171, 173

Red Alert 84, 88
Sleeping Dragons 180,

188
upper() function 41

V
values 184

returning 43
variables 28–31

creating 28
global 74, 86, 123
local 74
loop 36
naming 28
velocity 170

W
“while” loops 38–39
Windows computers 16,

18
wireframes 104
write() function 132

US_222-224_Index_Acks_corrected.indd 224 22/02/18 12:44 pm

	Contents
	8 FOREWORD
	1 GETTING STARTED
	12 What is Python?
	14 Gaming in Python
	16 Installing Python
	18 Installing Pygame Zero
	20 Using IDLE
	22 Your first program

	2 LEARNING THE BASICS
	28 Creating variables
	32 Making decisions
	36 Playing with loops
	40 Functions
	44 Fixing bugs

	3 SHOOT THE FRUIT
	50 How to build Shoot the Fruit

	4 COIN COLLECTOR
	60 How to build Coin Collector

	5 FOLLOW THE NUMBERS
	70 How to build Follow the Numbers

	6 RED ALERT
	82 How to build Red Alert

	7 BIG QUIZ
	100 How to build Big Quiz

	8 BALLOON FLIGHT
	118 How to build Balloon Flight

	9 DANCE CHALLENGE
	138 How to build Dance Challenge

	10 HAPPY GARDEN
	156 How to build Happy Garden

	11 SLEEPING DRAGONS
	178 How to build Sleeping Dragons

	REFERENCE
	198 Project reference
	220 Glossary
	222 Index
	224 Acknowledgments

