Genetic Algorithms with collective
sharing for Robust Optimization
in Financial Applications

OLIVIER V. PIcTET, MICHEL M. DACOROGNA,
RAKHAL D. DAVE ¥ BASTIEN CHOPARD |
ROBERTO SCHIRRU ¥AND MARCO TOMASSINT §

OVP.1995-02-06

January 22, 1996

*Olsen & Associates, Research Institute for Applied Economics,Seefeldstr. 233, CH-8008 Ziirich, Switzerland
T Centre Universitaire d’Informatique, Université de Genéve, CH-1211 Geneva 4, Switzerland

HIDSIA, Corso Elvezia 36, CH-6900 Lugano, Switzerland

$C8CS, Manno and EPFL-DI-LSL, CH-11015 Lausanne, Switzerland

Contents

1 Introduction

2 The main ingredients of simple trading models

2.1 Trading model indicators
2.2 Operations on indicators
2.3 Risk-sensitive performance measure.

2.4 Trading model optimization

3 The genetic algorithm to find and optimize simple trading models

3.1 Genetic algorithms with sharing scheme for multi-modal functions

3.2 Modified sharing function for robust optimizations
4 Performance analysis

5 Concluding remarks

Acknowledgements

REFERENCES

Tt o= W

11

13

13

13

Abstract

In this study, optimal indicators and strategies for foreign exchange trading models are
wmvestigated using the framework of genetic algorithms. We first explain how the relevant
quantities of our application can be encoded in "genes” so as to fit the requirements of the
genetic evolutionary optimization technique.

In financial problems sharp peaks of high fitness are usually not representative of a general
solution, rather they indicate accidental fluctuations. Such fluctuations may arise out of
imherent noise in the time series or due to threshold effects in the trading model performance.
Peaks in such a discontinuous, noisy and multimodal fitness space generally correspond to
trading models which will not perform well in out-of-sample tests.

In this paper we show that standard genetic algorithms will be quickly attracted to one of
the accidental peaks of the fitness space whereas genetic algorithms for multimodal functions
employing clustering and a specially designed fitness sharing scheme will find optimal param-
eters which correspond to broad regions where the fitness function is higher on average. The
optimization and the quality tests have been performed over eight years of high frequency data

on the main foreign exchange rates.

1 Introduction

Trading models are algorithms proposing trading recommendations for financial assets. In our
approach we limit this definition to a set of rules based on past financial data (Pictet et al.,
1992). The financial data, which are typically series of prices, enter the trading model in the
form of indicators corresponding to various kinds of averages. Although progress has been made
in understanding financial markets (Miller et al., 1993; Guillaume et al., 1994), there is no
definitive prescription on how to build a successful trading model and how to define the indicators.
Automatic search and optimization techniques can be considered when addressing this problem.

However, optimizing trading models for financial assets without overfitting is a very difficult
task because the scientific understanding of financial markets is still very limited. Overfitting
means building the indicators to fit a set of past data so well that they are no longer of general
value: instead of modeling the principles underlying the price movements, they model the specific
movements observed during a particular time period. Such a model usually exhibits a different
behavior (or may fail to trade successfully at all) when tested out-of-sample. This difficulty is
related to the fact that many financial time series do not show stability of their statistical behavior
over time especially when they are analyzed intra-daily (Guillaume et al., 1994).

To minimize overfitting during optimization, the optimization process must include the fol-
lowing important ingredients:

e a good measure of the trading model performance (Pictet et al., 1992),

e indicator evaluation for different time series,

large data samples,

a robust optimization technique,

e last but not least, strict testing procedures.

Olsen & Associates has been continuously collecting tick-by-tick data on the foreign exchange
(FX) markets since 1986, thus providing large data samples for developing trading models. It has
also produced a good trading model technology that has found applications in successful real-time
trading models for the major FX rates (Pictet et al., 1992).

The new element we want to present in this paper is a way to automize the search for improved
trading models. Genetic algorithms offer a promising approach for addressing such problems
(Allen and Karjalainen, 1993). Genetic algorithms consider a population of possible solutions to
a given problem and evolve it according to mechanisms borrowed from natural genetic evolution:
reproduction and selection. The criterion for selecting an individual is based on its fitness to
the environment, or more precisely, to the quality of the solution it bears. A possible solution
is coded as a gene, which is formally the data structure containing the values of the quantities
characterizing the solutions.

In the framework of the present application, a gene will contain the indicator parameters, for
example time horizons and a weighting function for the past, and also the type of operations used
to combine them. The fitness function will be based on the return obtained when following the
recommendations of a given trading model.

2 The main ingredients of simple trading models

In this section, we review the different ingredients that constitute the basis of a trading model
and reformulate them in terms of simple quantities that can be used in conjunction with a genetic
algorithm. Real trading models can be quite complicated and may require many different rules
that also depend on the models own trading history. Here we limit ourselves to simple models
that depend essentially on a set of indicators that are pure functions of the price history or of the
current return. The purpose of this simplification is to make model coding and representation
issues easier so we can study indicator behavior.

The basic rule of a simple trend-following trading model is
IF II| > K THEN G := sign(I) ELSE G := O

where I is an indicator whose sign and value give the direction and strength of the current trend.
The constant K is a break level and G, called the gearing, is the recommended position of the
model such that long = +1, short = —1 and neutral = 0. .

In this study we investigate how to construct and select good indicators or combinations of
indicators in order to make such simple trading models robust (i.e so that they perform well
out-of-sample).

More complex models can be developed afterwards combining such simple trading models or
using more complex rules. For instance to introduce a simple contrarian strategy the previous
rule can be modified as

IF II| > K THEN G := sign(I) * sign(L - S) ELSE G := 0

where S is an indicator that gives the strategy (trend following if S < L or contrarian if S > L),
and the constant L is the overbought /oversold break level.

!For a good definition of the trading model terminology used here see (Pictet et al., 1992) or (Ward, 1992)

2.1 Trading model indicators

Indicators are variables of the trading system algorithm whose values, together with the system
rules, determine the trading decision process. In various papers (Miiller, 1989a; Miiller, 1991a;
Miiller, 1991b; Pictet et al., 1992), we gave different descriptions of indicators that have been
used in conjunction with trading models. Here, we focus on some abstract classification of these
indicators in order to combine them sensibly with the genetic algorithm. For the time being, the
indicators we use are function of the time series itself. In a later stage, we can envisage using as
indicators for a particular time series a function of other time series, like, for instance, interest
rate functions for studying FX-rates.

First, we define two general classes of indicators. The symmetric [, and the antisymmetric I,
indicators:

IS(X) = Is(_X) and Ia(X) = _Ia(_X) (21)

where X is the basic variable used to define the indicator. This variable is generally a function
the logarithm of price? z but can be also a function the current return of the model .. A typical
antisymmetric indicator is a momentum (Pictet et al., 1992) of the logarithm of price itself
(I,(X) = X where X = z). A typical symmetric indicator would be a measure of the volatility.
The simplest one is the absolute price change (I;(X) = |X| where X = z(t;) — (t; — At)). The
two classes will be used differently in the trading model. The antisymmetric indicators are the
ones that provide the dealing signal while the symmetric indicators modulate it. For instance,
they may forbid the model to trade or may modulate the threshold values. An indicator using
the current return can be used for programming stop losses or stop profit, or to compute the risk
of an open position.

Indicators are characterized by several parameters. We first describe the parameters that are
common to both classes of indicators. Any indicator of the sort described here is composed of
moving averages (M A) of different types so the first parameter is the range At, of the moving
average. The second is the weighting function of the past. As linear combinations of repeated
applications of EMAs have many useful properties®(Miiller, 1991b), we use here a weighting
function with two parameters defined as

MAx (At t) = EMAY™ (AL, 1) = Y- EMAY (At 1) (2.2)
i=

n+1-—7

where we have two additional parameters: j and n, with 1 < j < n.
The quantity EMA()? is the ith application of the EMA operator, i.e.

EMAY = EMA(EMAL (AL, 1)) (2.3)
where KM A()}) is computed with the formula

1 ¢ =t/
EMAX (AtT7 t) = At / X(t/) 6_ Aty dt/ (24)

®We use here the same definition as in (Miiller et al., 1990).

?Essentially, the repeated application of EMAs cause the point of highest weight to be shifted progressively
back in time and a linear combination of such EMAs can be used to generate weighting functions with plateaus
and even approximate a rectangular moving average.

and EMA()?) = X. With this definition, M Ax ; , can model a wide variety of moving averages
of the series X (¢).

In addition to a moving average, an indicator may be a momentum of various order. The
simple momentum (of order 0) is defined as:

mX,j,n(t) = X(t)_MAX,j,n(t) 3 (2.5)

The concept of momentum can be extended to the first momentum which is a difference of two
moving averages with different ranges, and the second momentum which is a linear combination
of three moving averages with different ranges with the property that this combination is equal
to zero for a straight line; it indicates the overall curvature of the series for a certain depth in the
past. To avoid the introduction of too many additional parameters in the indicators, we restrict
the possible variation of the order of the momentum parameter to only three possible values 0, 1
and 2.

Because of the construction of some input variable X, mainly used in the computation of
symmetric indicators, the number of parameters in the problem may be extended. For instance,
the volatility (Guillaume et al., 1994) has two parameters, the price change time interval and the
sample period on which the volatility is computed.

In order to be able to combine different indicators and obtain similar results for different FX
rate time series we need to normalize each indicator. To obtain this normalization we divide the
value of the indicator by the square root of a long term moving average of the squared values
of the indicator. Such a normalization is also very useful in order to make the indicators more
adaptive to the market changes.

2.2 Operations on indicators

The operations on the indicators are essentially the four mathematical operations: +, -, *, /. In
order to generate sensible trading models these operations must be performed following a set of
rules:

e In section 2, we saw that the trading model takes a position according to an antisymmetric
indicator I and a symmetric or antisymmetric strategy indicator S. To limit the size of the
function space and prevent the generation of very complex functions, the operations * and
/ are restricted to operate between a symmetric and an antisymmetric indicator and the
operations + and - are restricted to operate between indicators of the same type.

e For all the operations the problem of normalization is present. In the case of multiplications
or divisions scaling is not necessary because we have already constructed the indicators so
that they are of order one. In the case of additions and subtractions the resulting indicator
need to be renormalized.

e Division should only be used with a modified value of the indicator in order to avoid division
by zero. One would never divide by I but by I + sign([) * ¢ where ¢ is a small positive
constant. This constant can be chosen to be always the same if the indicators are well
normalized, for instance 0.0001.

o We shall assume that the number of operations allowed is limited. We limit this number to
three at first.

We have deliberately left out a large number of possible operations; square roots, power
functions or any log or exp functions. This is for the sake of simplicity and also because we
think that the present set is already wide enough to produce interesting results. These additional
operations can be included at a later stage.

2.3 Risk-sensitive performance measure

We wrote in the introduction that optimizing trading models is difficult because of the noise
present in the data and the risk of overfitting. The challenge is to find indicators that are robust
in the sense of being smooth and giving consistent results out-of-sample.

The first step is to define a value describing trading model performance in order to minimize
the overfitting in the in-sample period and allowing us to compare different trading models against
each other. The profit made by the model could be this fitness function but such a measure does
not take into account the risk assumed by the model. As risk is a major concern of investors it
is necessary to add a risk component to the fitness function. We use a risk-sensitive performance
measure of the trading model which was developed for the optimization of FX real-time trading
models (Pictet et al., 1992). This performance measure, called X g, is defined as

| QY

X = R—=0? (2.6)

where R is the annualized average total return, C' (C' > 0) is a risk aversion constant and o? is
the variance of the the total return curve against time, where a steady linear growth of the total
return represents the zero variance case?!. Because the variance 02 > 0, we have Xeg < R. While
the total return may mask considerable risk introduced by a high return volatility, the effective
return is risk-sensitive: the higher the volatility of return the lower the effective return. In other
words, high effective returns indicate highly stable returns.

A good approach to obtain more robust indicators is to test each new indicator simultaneously
on different exchange rate time series (since our experience has shown that trading models are
robust if they work simultaneously on different rates without changing parameters). This increases
the number of possible situations tested by the model in-sample. The performance measure of
the model is then given by the average of the X g performance measure obtained for each time
series corrected by the variance of the different X 5 values.

UXe
wo= Xy - =5 (2.7)

This correction decreases the probability of obtaining indicators that have a good average overall
but which vary strongly from one time series to another.

*For a more detailed definition of X see (Pictet et al., 1992)

2.4 Trading model optimization

To optimize and test our trading models we split the available historical data into three different
periods. The first period is used to build-up the indicators, the second one is for the optimization
of the trading model parameters and the third is for selecting the best trading models. The
build-up period generally contains more than ten years of daily data which is used to update long
term indicators. The end of this period is 12 December 1986 for all the exchange rates. As many
exchange rate time series do not show stability of their statistical behavior over time, the rest
of the historical data, from 1 January 1987 to 30 June 1994, is divided into different alternating
periods of in-sample and out-of-sample data. By this subdivision of the in-sample period we may
test a larger variety of statistical behaviors and we increase the probability of getting more robust
and up-to-date parameters. The size of each in-sample period must be large enough to obtain
statistically valid performance measures. Here we use in-sample periods with a size of one and a
half years. The performance measure of the model is then given by the X g performance measure
obtained from all in-sample periods.

The optimization process involves thousands of simulation runs through the in-sample data.
To obtain results in a reasonable amount of time we extract and use only hourly data (equally
spaced in the business time scale (Dacorognaet al., 1993)). This choice of data sampling produces
trading models with results which are very similar to the ones obtained with the full high frequency
time series. To select the best parameter set we need an algorithm which explores the parameter
space in an efficient way and chooses solutions that correspond not only to the largest average
effective return but also lie on broad peaks or high flat regions of the effective return function.
Such a requirement will ensure that small variations in the model parameters keep the system in
the high performance region in terms of X g.

Genetic algorithms (GA) (Goldberg, 1989; Davis, 1991) have been shown to be useful in the
optimization of multimodal functions in highly complex landscapes, especially when the function
does not have an analytic description and is noisy or discontinuous. The usefulness of genetic
algorithms for such problems comes from their evolutionary, adaptive capabilities. When given a
measure of the fitness (performance) of a particular solution and a population of adequately coded
feasible solutions, the GA is able to search many regions of the parameter space simultaneously. In
the GA, better than average solutions are sampled more frequently and thus, through the genetic
operations of crossover and mutation, new promising solutions are generated and the average
fitness of the whole population improves over time. Although GAs are not guaranteed to find
the global optimum, they tend to converge towards good regions of high fitness. This is all we
need, since global optima may be of little use in our application. In the next section we will first
describe a “naive” genetic algorithm approach to our problem, pointing out its drawbacks and
how they can be circumvented.

3 The genetic algorithm to find and optimize simple trading models

For our first attempt, we used a classical genetic algorithm with the following features:

e Each gene is represented as an array of real numbers. In such a representation, each element
of the array can be used to store parameters of different types (boolean, integer and real
values). Except the boolean types which can take only the values 0 or 1, all the other
parameters can be selected from a given list of possible values or varied in a given range.

e The population of a few tens of individuals is initialized at random, although seeding the
initial population with preselected individuals is also possible. The selection of individuals
for reproduction is fitness-proportionate, sometimes called roulette wheel selection (Davis,
1991). We use here a two point crossover and mutation. For the mutation, we pick randomly
a value inside the allowed range (list). In the crossover, the corresponding elements of the
two genes to be modified are either simply exchanged or computed by linear interpolation.
The probabilities of crossover and mutation are respectively 0.9 and 0.08.

o We use generational replacement with elitism and no duplicates. At each new generation
the major part of the population of parents is replaced by their offsprings. Only a limited
number of the best individuals (the elite) are kept unchanged. The elite rate is generally
of the order of 5% of the population size. We also eliminate all duplicate individuals to
maintain population diversity and to avoid useless and time consuming fitness evaluations.

The fitness evaluation is done by the trading model evaluation program. This is a lengthy
process since each gene (trading model) runs through a long time series of prices. In fact, this
phase accounts for most of the total computing time. Because the different parameters are directly
stored in the gene, the evaluation program is able to translate straightforwardly the content of
the gene into the trading model to test. If a given gene corresponds to an invalid trading model
the evaluation program returns the minimum possible fitness. Such a gene is eliminated in the
construction of the next generation. The number of invalid individuals is usually very small.

To speed up this process, all genes of a given generation are evaluated in parallel over several
machines of a workstation network. This has been done so far with a special-purpose network job
queuing system. In future versions, we plan to use the more portable PVM (Parallel Virtual Ma-
chine) system, which will allow us to take advantage of several different platforms in a transparent
way. In this distributed computing approach special attention must be paid to fault-recovery and
checkpointing issues.

When running the above genetic algorithm, the performance of the selected models on the data
set used in the learning process (in-sample) was excellent. The behavior of these models on the
test data set (out-of-sample) was, however, not satisfactory. This is a very common phenomenon
known as overfitting that plagues most real-world data-driven processes. As explained in the
introduction, there are many techniques to try to avoid overfitting. In this case, it seems that
the GA described above is itself partly responsible for the poor generalization capabilities. In
fact, the population invariably converges after a while on one high-fitness, but often unstable,
peak. In the next section we present modifications to the standard genetic algorithms that allow
simultaneous searching for different high-fitness solutions. It will show that a judicious selection
among the “best” solutions helps reducing the overfitting problem.

3.1 Genetic algorithms with sharing scheme for multi-modal functions

In the context of genetic algorithms, optimizing multimodal functions has been investigated using
methods inspired from the natural notions of niche and species(Goldberg and Richardson, 1987;
Deb and Goldberg, 1989; Yin and Germay, 1993). The general goal is to be able to create and
maintain several subpopulations, ideally one per major peak of the fitness function, instead of
having the whole population converge to one global optimum.

One of the best methods was proposed by Goldberg and Richardson(Goldberg and Richardson,
1987). The idea is that the GA perception of the fitness function is changed in such a way that
when individuals tend to concentrate around a high peak, the fitness there is reduced by a factor
proportional to the number of individuals in the region. This has the effect of diminishing the
attractiveness of the peak and allowing parts of the population to concentrate on other regions.
This effective fitness of an individual 7, called the shared fitness s; is given by:

_ J)
sy(i) = m (i)

(3.1)

where f(i) is the original fitness and m(7) is called the niche count. For an individual 7, the
quantity m(i) is calculated by summing the sharing function values sh contributed by all N
individuals of the population:

N
m(i) = sh(d;) (3.2)
7=1
where d;; is the distance between two individuals i and j and

N ETARETN
sh(dij):{l (0) if dij <o, (3.3)

0 otherwise

The quantities @ and o, are constants.

A difficulty of this method is to choose an adequate value of o as this requires prior knowledge
about the number of peaks in the solution space. In our economic applications as well as in many
realistic problems, this information is not readily available.

A new method is proposed in (Yin and Germay, 1993) based on a different sharing scheme and
using an adaptive cluster methodology. The authors show that this method is effective at revealing
unknown multimodal function structures and is able to maintain subpopulation diversity. This
method establishes analogies between clusters and niches in the following way: the GA population
is divided, by MacQueen’s adaptive KMEAN clustering algorithm, into K clusters of individuals
that correspond to K niches. The shared fitness calculation is the same as in the classical sharing
method, but the niche count m(7) is no longer associated with o,. In this case the number
of individuals in the cluster to which the individual ¢ belongs plays a central role in the niche
count calculation. As the number of clusters is associated with the number of niches (peaks),
the individuals are put into a single partition of K clusters, where K is not fixed a priori, but
determined by the algorithm itself. Therefore no a priori knowledge about the number of peaks
of the fitness function is required as in the classical sharing method. The niche count m(7) is
computed as

. dic “
m(i) = N, — N_x (2Dmax) z, € C, (3.4)

where NV, is the number of individuals in the cluster ¢, a is a constant, d;. is the distance between
the individual ¢ and the centroid of its niche. The algorithm requires a distance metric in order
to compute the distance between two clusters and the distance between one individual and one
cluster. Two clusters are merged if the distance between their centroids is smaller than a threshold
parameter D, ;,. Moreover, when an individual is further away than a maximum distance D,
from all existing cluster centroids, a new cluster is formed with this individual as a member. The
efficiency of the algorithm is improved by sorting the population in descending order according
to the individual’s fitness before the application of the clustering.

Such a standard genetic algorithm with sharing and clustering has been applied to standard
multimodal and continuous fitness functions (Yin and Germay, 1993; Chopard et al., 1995) with
good results. One example of a more complex application is the determination of the optimum
parameters of the business time scale® (Dacorogna et al., 1993) which is used for analyzing price
history and computing indicators. In this example, the optimization is quite difficult because
we have to optimize simultaneously 17 parameters and the function to optimize is non-linear
in some of the parameters. To solve this problem it was necessary to normalize the parameter
space for the genetic algorithm, i.e. each parameter is only allowed to vary in the range [0,1]. In
simple problems the two clustering parameters are generally set to D,;,, = 0.05 and D, = 0.15.
But here, because of the high dimensionality of the parameter space, the values of the clustering
parameters Dy ;, and Dy, must be much larger. In this case, the two parameters are multiplied
by /n where n in the number of parameters to be optimized. The results obtained with this
genetic algorithm are very good and the sharing and clustering methods clearly increased the
speed of convergence compared to the simple genetic algorithm described in the previous section.

When applied to the indicator optimization problem the genetic algorithm with sharing and
clustering runs into difficulties. If the fitness landscape contains too many sharp peaks of high
fitness all the selected clusters concentrate around these peaks and the genetic algorithm is unable
to find robust solutions. In the next section, we propose some modifications to the genetic
algorithm to detect clusters in the parameter space which correspond to more general and robust
solutions.

3.2 Modified sharing function for robust optimizations

We need to find a new genetic algorithm which avoids the concentration of many individuals
around sharp peaks of high fitness but detects broad regions of the parameter space which contain
a group of individuals with a high average fitness level and a small variance of the individual fitness
values.

To solve this problem we propose a new sharing function that penalizes clusters with a large
variance of the individual fitness values and also penalizes clusters with too many solutions con-
centrated inside too small a region. The distance metric considered here is the Euclidean distance
computed in the real parameter space (phenotypic sharing). In the proposed sharing scheme all
the individuals that belong to a given cluster ¢ will share the same fitness value, i.e.

_ N —
se(i) = o — (N—+ 1rdrd) o (f.) Ve, € C, (3.5)

where N, is the number of genes in the cluster ¢ and where the average fitness value f. and

°This is a time scale that contracts and expands time based on seasonal activity or volatility of the time series.

standard deviation of the individual fitness values o(f.) are defined as usual by

1 & 1 & —
o = VC;M and o(f) = \|F3 ;U@') -)2 (3.6)

As the method is based on the distribution of gene fitness inside each cluster, we keep only the
clusters that contain at least a minimum number of members. We use here a minimum cluster
size of two individuals. As we also need to keep enough clusters of resonable size, we have to limit
the size of the largest clusters. The term N./N,, of the equation 3.5 is used to control the number
of genes inside each cluster. If N_ is smaller than the expected average number of genes inside
each cluster N,, the correction is reduced, otherwise it is increased. In this study the constant
N,y is chosen as the population size divide by the (pre-configured) expected number of clusters
to be kept.

The second term (1 — ry)/rq of equation 3.5 is used to penalize clusters with a concentration
of genes around their centroid that is too high. The value r; is defined as

_ Li dic 3.7
/rd_ NC _l(Dmal’) (‘)

where d;. is the distance of gene ¢ to the centroid of the corresponding cluster ¢. Here the square
root is used to avoid too large a correction for an average concentration of genes.

To keep the cluster’s space as large as possible, we also have to minimize the overlap between
different clusters. To reduce this overlap, the clustering parameter D,;, must be quite large and
here we use D = Dpnax. In order to have reasonable clustering parameters for a parameter
space of high dimensionality, the values of the two clustering parameters D,,;, and D, are
multiplied by y/n where n is the number of parameters to be optimized.

With this new sharing scheme, the selection pressure is no longer specific to each individual,
as in a standard GA, but is the same for all genes present in a given cluster. This gives us a
selection mechanism which tries to find subpopulations of solutions with an average high quality
instead of the best individual solution. Of course, the overall convergence speed is a little reduced.

The selection pressure towards good solutions is still present through the adaptive cluster
methodology which tends to create clusters around a group of good individuals and through the
reproduction technique which uses elitism and mating restriction inside each cluster. Moreover,
to keep variety in the population, all the individuals which do not really belong to any clusters
(i.e. which are further away than the maximum distance D, ,, from all existing cluster centroids)
will have an unmodified fitness value. During the reproduction phase these individuals will have
no mating restriction and generally a slightly higher selection probability.

To speed up the full process, the result of each different gene is stored and not recomputed
when this gene appears again in future generations. Moreover, the information of all the previously
computed solutions can be used at the end to assess the reasonableness of the optimum solution.

When finished, the algorithm selects for each cluster the best solution which is not further
away than Dy,,./2 from the cluster centroid. The final solution selected from the cluster is the
solution that has the greatest average fitness after correcting for variance, i.e. the maximum value

of f. — o(f.).

10

4 Performance analysis

To test the new genetic algorithm we first restricted the search to simple known indicators that
were developed in a previous study (Pictet et al., 1992) and for which we know the optimum
solutions. These solutions have been found through a combination of an exhaustive in-sample
search and human judgement.

For this first test, we optimize simple trading models using for I the antisymmetric indicator
constructed as a simple momentum of z (the logarithm of price) and no strategy component S.
In this case the genes contain a set of four numbers

e the break level K,
e the minimum order of EMA operator j,
e the maximum order of EMA operator n,

e the range of the moving average At,.

For the optimization, 40 generations of 200 individuals were generated. FEach gene is evalu-
ated simultaneously on seven exchange rates: USD/DEM, USD/CHF, USD/JPY, GBP/USD,
USD/FRF, USD/ITL and USD/NLG.

We started by using the simple genetic algorithm described in the introduction to chapter 3. In
Table 1 two sets of results are given. The first one is obtained by using the total return as a fitness
measure and the second one is obtained by using the effective return. We observe that the result
obtained using the effective return is less overfitted, but in both cases the optimization converges
to a sub-optimum. If we increase the number of runs or the number of tested individuals, we
invariably find a more global optimum which can gives much worse out-of-sample results (see first
result of Table 2).

parameters fitness in-sample | out-of-sample
K j n At |measure| R X eff R Xy
0.04 1 1 40 | Tot.Ret | 7.28 1.56 | 2.72 -4.79
0.34 3 3 16 Xéﬂ 6.09 1.91 | 4.55 -0.90

Table 1: Best results found by the simple GA. The first 4 columns give the resulting
parameters and the last 4 the average yearly return R and the X g quality
obtained in the corresponding in and out-of-sample periods respectively.

11

In a second test, we used the genetic algorithm with a clustering and sharing scheme described
in the section 3.1. The obtained results are given in Table 2. The algorithm is better able to
explore the fitness landscape and to find other optima. Here again, if we increase the number of

runs or the number of tested individuals, the algorithm will invariably find a more global optimum
(first solution of Table 2).

parameters fitness in-sample | out-of-sample

K j n At |measure| R X eff R Xy
0.02 1 1 40 | Tot.Ret | 7.71 2.15 | 2.52 -7.30
0.10 1 6 12 | Tot.Ret | 6.69 1.18 | 4.29 -2.45
0.04 3 3 20 | Tot.Ret | 6.57 1.05] 3.95 -3.98
0.36 3 3 16 Xéﬂ 5.93 1.84 | 4.26 -1.25
0.3 3 9 8 Xéﬂ .78 1.50 | 3.80 -3.47
034 2 7 12 Xéﬂ 5.83 1.41 | 3.73 -4.53

Table 2: Best results found by the GA using clustering and original sharing scheme.
The first 4 columns give the resulting parameters and the last 4 the average
yearly return R and the Xcg quality obtained in the corresponding in and
out-of-sample periods respectively.

In the third test, we used the genetic algorithm with the collective sharing described in sec-
tion 3.2. The results are given in table 3. The solutions obtained using either total return or
effective return fitness measures provide out-of-sample results which present less overfitting on
average. Moreover, the effective return fitness measure allows us to find solutions which provide
better out-of-sample results. Although these optimizations are performed on a very different in-

parameters fitness in-sample | out-of-sample

K j n At |measure| R X eff R Xy
0.06 2 3 16 | Tot.Ret | 6.59 1.03 | 4.76 -3.13
0.10 1 6 12 | Tot.Ret | 6.48 0.86 | 3.42 -3.26
0.04 3 3 20 | Tot.Ret | 5.89 0.77 | 3.86 -3.30
0.32 3 3 16 Xéﬂ 6.29 2.05|4.83 -0.59
0.28 2 4 16 Xéﬂ 6.25 1.77 | 4.54 -2.50
0.28 3 7 10 Xéﬂ 6.08 1.55 | 4.52 -2.36

Table 3: Best results found by the GA using clustering and robust sharing. The first 4
columns give the resulting parameters and the last 4 the average yearly return
R and the Xcg quality obtained in the corresponding in and out-of-sample
periods respectively.

sample period than in the previous study, one of the optimum solutions obtained with the GA is
very similar to the original solution and all the important parameter values are the same, i.e. the
range of the moving average At., = 16 days and the minimum and the maximum orders of the
EMA operator are j = 2 and n = 4.

Preliminary tests with more complex indicators for the direction component I (based on the
different possible combinations described in section 2.2) have shown that the population size and

12

the number of generations must be significantly increased. However, in this simple test the genetic
algorithm found the solution very efficiently.

5 Concluding remarks

We have shown that genetic algorithms with collective sharing successfully find robust solutions
after evaluating only a few percent of the full parameter space. This is extremely important
because each evaluation of a complex model on a full time series can take up to few minutes of
CPU time on our computers. However, the success of this type of genetic algorithm is still quite
sensitive to the following two considerations.

Fitness measure: We have already seen from the results (Tables 1,2,3) how the choice of X 4
is much superior to the raw return R, as a performance measure. Our research continues in
the direction of finding better performance measures (particularly with respect to drawdown
periods) in order to make the method more robust. The above genetic algorithm methods
cannot be used as a proxy for better performance measures.

Paramater space normalization: This is the distance metric used in the cluster construction.
If the parameter space is not equally sensitive to all the parameters this should be also
reflected in the clustering algorithm. For this reason we have introduced the possibility of
modifying the distance metric of the parameter space. (In some applications even this may
not be enough and parameter mapping functions which depend on the specific problem may
become necessary).

Acknowledgements

The authors acknowledge the useful discussions with Ulrich M. Miiller. The Swiss National Science
Foundation is gratefully acknowledged for its financial support.

References

Allen F. and Karjalainen R., 1993, Using genetic algorithms to find technical trading rules,
Working Paper. The Rodney L. White Center for Financial Research, The Wharton School,
University of Pensylvania, 20-93, 1-17.

Chopard B., Oussaidéne M., Pictet O., Schirru R., and Tomassini M., 1995, Fvolution-
ary algorithms for multimodal optimization in financial applications, In Proceedings of the
SPP-IF Seminar, Ziirich, 139-142.

Dacorogna M. M., Miiller U. A., Nagler R. J., Olsen R. B., and Pictet O. V., 1993,
A geographical model for the daily and weekly seasonal volatility in the FX market, Journal
of International Money and Finance, 12(4), 413-438.

Davis L. ., 1991, Handbook of Genetic Algorithms, Van Nostrand, New York.

Deb K. and Goldberg D. E., 1989, An investigation of niche and species formation in ge-
netic function optimization, Proceeding of the Third International Conference on Genetic
Algorithms, 42-50.

13

Goldberg D. E., 1989, Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley, Reading, Massachusetts.

Goldberg D. E. and Richardson J., 1987, Genetic algorithms with sharing for multimodal
Sfunction optimization, Proceeding of the Second International Conference on Genetic Algo-
rithms, 41-49.

Guillaume D. M., Dacorogna M. M., Davé R. D., Miiller U. A., Olsen R. B., and
Pictet O. V., 1994, From the bird’s eye to the microscope: A survey of new stylized facts
of the intra-daily foreign exchange markets, Internal document DMG.1994-04-06, Olsen &
Associates, Seefeldstrasse 233, 8008 Ziirich, Switzerland.

Miiller U. A., 1989a, Indicators for trading systems, Internal document UAM.1989-08-10, Olsen
& Associates, Seefeldstrasse 233, 8008 Ziirich, Switzerland.

Miller U. A., 1989b, Volatility — A classification of its definitions, Internal document
UAM.1989-08-24, Olsen & Associates, Seefeldstrasse 233, 8008 Ziirich, Switzerland.

Miller U. A., 1991a, Direction change indicators design document and discussion, Internal
document UAM.1991-02-01, Olsen & Associates, Seefeldstrasse 233, 8008 Ziirich, Switzerland.

Miiller U. A., 1991b, Specially weighted moving averages with repeated application of the FMA
operator, Internal document UAM.1991-10-14, Olsen & Associates, Seefeldstrasse 233, 8008
Ziirich, Switzerland.

Miiller U. A., Dacorogna M. M., Davé R. D., Pictet O. V., Olsen R. B., and Ward
J. R., 1993, Fractals and intrinsic time — a challenge to econometricians, Invited presenta-
tion at the XXXIXth International AEA Conference on Real Time Econometrics, 14-15 Oct
1993 in Luxembourg, and the 4th International PASE Workshop, 22-26 Nov 1993 in Ascona
(Switzerland); also in “Erfolgreiche Zinsprognose”, ed. by B. Liithje, Verband o6ffentlicher
Banken, Bonn 1994, ISBN 3-927466-20-4; UAM.1993-08-16, Olsen & Associates, Seefeld-
strasse 233, 8008 Ziirich, Switzerland.

Miiller U. A., Dacorogna M. M., Olsen R. B., Pictet O. V., Schwarz M., and Mor-
genegg C., 1990, Statistical study of foreign exchange rates, empirical evidence of a price
change scaling law, and intraday analysis, Journal of Banking and Finance, 14, 1189-1208.

Pictet O. V., Dacorogna M. M., Miiller U. A., Olsen R. B., and Ward J. R., 1992,
Real-time trading models for foreign exchange rates, Neural Network World, 2(6), 713-744.

Ward J. R., 1992, Trading model users’ guide, Internal document JRW.1992-03-27,
Olsen & Associates, Seefeldstrasse 233, 8008 Ziirich, Switzerland.

Yin X. and Germay N., 1993, A fast genetic algorithm with sharing scheme using cluster
analysis methods in multimodal function optimization, Proc. Inter. Conf. Artificial Neural
Nets and Genetic Algorithms, Innsbruck, Austria, 450-457.

14

