
By icarus
This article copyright Melonfire 2000-2002. All rights reserved.

Table of Contents
.................... 1Hooking Up
.................. 2Kicking The Tyres
.................... 5Test Drive
.................... 6Et Tu, Brute?
................. 8No Forwarding Address
.................. 10Any Port In A Storm
................... 11Remote Control
.................... 12In And Out
..................... 13Log Out

Printed from DevShed.com

i

Hooking Up
Most relatively-experienced Internet users are already familiar with the benefits of SSH, secure shell
technology that makes it possible to securely connect to other hosts over TCP/IP. Unlike regular telnet,
which is unencrypted and offers hackers numerous opportunities to break into your connection and siphon
off sensitive information, SSH is a secure communication protocol, one which is immune to IP-based
attacks, and which uses hard-to-crack cryptographic techniques to protect the data it carries.
Now, most of the time, SSH is used as a replacement for regular telnet, allowing users to securely log in to
other hosts on a network. However, in addition to this, SSH also comes with one very interesting - yet not
very well-known - feature: the ability to create secure "tunnels" between two hosts for encrypted data
communication between other ports as well. This means that, for example, you could use SSH to create a
secure tunnel between your local host and your mail server so that your mail password is never transmitted
in cleartext across the network (as is usually the case) every time you check your mail. Or you could use
SSH to build an encrypted bridge between two or more firewall-protected hosts, so that network sniffers
never get to intercept the data flowing back and forth between the two.
By allowing such encrypted connections between two (or more) hosts, SSH provides harassed network
administrators with a powerful weapon in their daily balancing act of making their network more secure
while simultaneously giving users as much flexibility as possible. SSH tunneling and port forwarding
allow any user on a TCP-based network to communicate and transact with other hosts on the network in a
reliable and secure fashion, with minimal risk of data interception or corruption.
Sounds interesting? Keep reading.

Printed from DevShed.com

1

Kicking The Tyres
If you’re planning to use SSH, the first thing to do is make sure that it’s available on both the client
(usually your local system) and the server (the remote system).
The easiest way to check this is to telnet to port 22 of both hosts, which is the port the SSH daemon
traditionally runs on. If SSH services are available, you’ll be rewarded with an identification string
containing the version number, like this:

[me@olympus] $ telnet localhost 22 Connected to olympus. Escape character is ’^]’. SSH-1.99-OpenSSH_3.5p1

Nothing? Well, you could politely ask your ISP/Web hosting service/friendly neighbourhood geek to
install it for you - or, if you have super-user access to the system, and are comfortable with installing new
software on your system, you could download and install it yourself.
This article uses OpenSSH, an open-source alternative to commercial SSH that does away with many of
the licensing restrictions of SSH1 and SSH2. Drop by the official Web site at http://www.openssh.org/and
get yourself the latest stable release of the software (this tutorial uses OpenSSH 3.5). Note that you will
also need a copy of the zlib library, available from http://www.gzip.org/zlib/ (this tutorial uses zlib 1.1.4)
and the OpenSSL library, available from http://www.openssl.org/(this tutorial uses OpenSSL 0.9.7).
Once you’ve downloaded the source code archive to your Linux box (mine is named "olympus"), log in as
"root".

[me@olympus] $ su - Password: ****

You’ll first need to compile and install zlib. Extract the source to a temporary directory.

[root@olympus] $ cd /tmp [root@olympus] $ tar -xzvf zlib-1.1.4.tar.gz

Next, configure the package using the provided "configure" script,

[root@olympus] $ cd /tmp/zlib-1.1.4 [root@olympus] $./configure

and compile and install it.

Printed from DevShed.com

2

http://www.openssh.org/
http://www.openssl.org/

[root@olympus] $ make [root@olympus] $ make install

Unless you specified a different path to the "configure" script, zlib will have been installed to the directory
"/usr/local/lib".
Next up, OpenSSL. Extract the source to a temporary directory,

[root@olympus] $ cd /tmp [root@olympus] $ tar -xzvf openssl-0.9.7a.tar.gz

configure it,

[root@olympus] $ cd /tmp/openssl-0.9.7a [root@olympus] $./config

and compile and install it.

[root@olympus] $ make [root@olympus] $ make test [root@olympus] $ make install

The compilation process here is fairly involved and may take a few minutes - get yourself a cup of coffee
while you’re waiting for it to happen. By the time you get back, OpenSSL should be installed to the
directory "/usr/local/ssl".
Finally, it’s time to install the OpenSSH package itself. Again, extract the source to a temporary directory,

 [root@olympus] $ cd /tmp [root@olympus] $ tar -xzvf openssh-3.5p1.tar.gz

and configure the software via the provided "configure" script. Remember to tell "configure" where it can
find the libraries you just installed as well.

 [root@olympus] $ cd /tmp/openssh-3.5p1 [root@olympus] $./configure --with-ssl-dir=/usr/local/ssl/ --with-zlib=/usr/local/lib/ --prefix=/usr/local/ssh

Once the software has been configured, you can compile and install it.

 [root@olympus] $ make [root@olympus] $ make install

Printed from DevShed.com

3

In this case, since I specified an installation path to the "configure" script, OpenSSH would have been
installed to the "/usr/local/ssh" directory.
During the install part of the cycle, you’ll notice a set of host keys being generated - this is the
private/public key pair for your system, and the two keys are usually stored in the files
"/usr/local/ssh/etc/ssh_host_key" and "/usr/local/ssh/etc/ssh_host_key.pub" respectively.
Once the software has been installed, you need to start up the "sshd" daemon.

 [root@olympus] $ /usr/local/ssh/sbin/sshd Privilege separation user "sshd" does not exist

Oops! Something obviously went wrong somewhere...
Actually, the reason for the error above is fairly simple. As the OpenSSH manual puts it, "privilege
separation is a method in OpenSSH by which operations that require root privilege are performed by a
separate privileged monitor process [...] the purpose is to prevent privilege escalation by containing
corruption to an unprivileged process."
You can correct this error by creating a user and group for the "sshd" daemon to run as, by executing the
following commands:

 [root@olympus] $ mkdir /var/empty [root@olympus] $ chown root:sys /var/empty [root@olympus] $ chmod 755 /var/empty [root@olympus] $ groupadd sshd [root@olympus] $ useradd -g sshd -c ’sshd privsep’ -d /var/empty -s /bin/false sshd

Now, try restarting the daemon,

 [root@olympus] $ /usr/local/ssh/bin/sshd

and all should be well.
You can verify that the daemon is, in fact, alive via a telnet to port 22:

[me@olympus] $ telnet localhost 22 Trying 127.0.0.1... Connected to localhost. Escape character is ’^]’. SSH-1.99-OpenSSH_3.5p1

Remember that you need an OpenSSH daemon at both ends of the connection; in the absence of this, SSH
will revert back to using insecure rsh mechanisms to perform a remote login.
Next, I’ll be showing you how to generate your own public/private key pair, which you’ll be using to
authenticate your remote logins.

Printed from DevShed.com

4

Test Drive
The procedure for using SSH-based private/public key authentication to log into a remote server is very
simple. I’ll explain it with an example, which assumes that the remote server is named "brutus" and the
local system, or client, is named "olympus".
The first thing you need to do is generate a key pair for yourself. Log in to "olympus", and run this
command from your shell:

[me@olympus] $ /usr/local/bin/ssh-keygen -t rsa

The key generator will go to work generating a key pair for you.

Generating public/private rsa key pair. Enter file in which to save the key (/home/me/.ssh/id_rsa): Created directory ’/home/me/.ssh’. Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/me/.ssh/id_rsa. Your public key has been saved in /home/me/.ssh/id_rsa.pub. The key fingerprint is: f6:41:99:d8:a5:d1:fb:e7:93:86:7e:e6:4f:01:d9:5b

Once the key generation process is complete, you’ll be asked for a password for your private key. This is
optional - you can enter a null passphrase - but recommended. Your passphrase may be any combination
of letters and numbers, and can also be a complete sentence. Should you decide to change it later, simply
use

[me@olympus] $ /usr/local/bin/ssh-keygen -p

Your public key will be saved to "~/.ssh/id_rsa.pub" while your private key will be located in
"~/.ssh/id_rsa".
The public key may be distributed to all and sundry, and should be world-readable. The private key should
not be readable by anyone but the owner. Remember that in public-key cryptography, it is not possible to
deduce the private key from the public key - which is why this authentication method is so secure.
Next, you need to add this public key to the remote server. Telnet to "brutus" (the remote host), log in and
create a directory in your home area named ".ssh". Within that directory, create a file named
"authorized_keys" and insert the contents of your "~/.ssh/id_rsa.pub" on "olympus" into that file.
This "authorized_keys" file contains the public keys which are authorized to log in to your account on
"brutus". Each key in the file should be on a separate line. Ensure that the file has 0600 permissions, while
the "~/.ssh" directory has 0700 permissions.
If you don’t have telnet access to the remote host, you could also upload your "id_rsa.pub" file via FTP
and rename it to "authorized_keys". Alternatively, if you’re trying to set this up on a restricted server, you
might need to email the system administrator with your public key so that he can add it to the appropriate
file.
Done? Log out of "brutus".

Printed from DevShed.com

5

Et Tu, Brute?
Now that you have your two hosts talking to each other over an encrypted connection, the next step is to
set up a secure channel between them for non-telnet type activities - for example, setting up a secure
tunnel for mail transfer.
In order to do this, you need to use the port forwarding support built into OpenSSH. Port forwarding
essentially means that connections made to a port on one host are automatically and transparently
forwarded to another port on another host. Since SSH is taking care of the forwarding for you, the
connection also gets encrypted - a nice (and very useful) bonus.
The best way to demonstrate how this works is with an example. Let’s suppose that I would like to read
my mail on "brutus", the network’s POP3 mail server, from my personal Linux box, "olympus". Normally,
I would configure my mail client to connect to port 110 on "brutus" to retrieve my mail - this would
involve sending my username and mail password to "brutus" in cleartext across the network, a technique
that we have determined to be unsuitable for purposes of this tutorial.
With port forwarding, I have an alternative. I can have SSH forward a port (say, 9000) on my local host,
"olympus", to port 110 on "brutus", and protect all traffic passing between the two (including my mail
password) by creating a secure tunnel between the two hosts and ports. Once the tunnel is established, my
mail client would no longer connect to port 110 on "brutus" to get my mail; rather, I would configure it to
use port 9000 on my local host, "olympus", instead, and SSH would take care of automatically passing the
data to post 110 on "brutus" via the tunnel.
Here’s how to go about doing this:

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus

Translated into English, the above command merely says "listen for connections to port 9000 on this local
host, and use the remote host named brutus to forward all those connections to port 110 on the host named
localhost".
SSH will now connect and log in to "brutus", and simultaneously begin forwarding port 9000.

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus Last login: Fri Mar 28 10:18:59 2003 from olympus.localdomain.com [me@brutus] $

You can now verify that the port is indeed being forwarded by switching to another terminal on "olympus"
and opening up a telnet connection to port 9000.

[me@olympus] $ telnet localhost 9000 Trying 127.0.0.1... Connected to localhost Escape character is ’^]’. +OK POP3 brutus v7.64 server ready

Printed from DevShed.com

6

As you can see, connections to port 9000 on your local host are being transmitted to port 110 (the POP3
server port) on the host named "brutus". All data transmitted in this session will be encrypted and
decrypted by the SSH daemons running at the two ends of the connection.
Note that this connection remains available for the duration of your SSH session - the moment you log out
of "brutus", the port forwarding will also stop.
If this is not what you want, you can add the "-N" command-line argument to tell SSH *not* to execute
any command on the remote side once the connection has been established. Background the task, and
you’ll have port forwarding without a login on the remote host!

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus -N &

Note that if you do this, you will need to manually kill the process when you want to stop forwarding the
specified ports.
You can also forward more than one port at a time by specifying them all on the same command line:

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 -L 9001:localhost:25 brutus

Printed from DevShed.com

7

No Forwarding Address
Now that you have your two hosts talking to each other over an encrypted connection, the next step is to
set up a secure channel between them for non-telnet type activities - for example, setting up a secure
tunnel for mail transfer.
In order to do this, you need to use the port forwarding support built into OpenSSH. Port forwarding
essentially means that connections made to a port on one host are automatically and transparently
forwarded to another port on another host. Since SSH is taking care of the forwarding for you, the
connection also gets encrypted - a nice (and very useful) bonus.
The best way to demonstrate how this works is with an example. Let’s suppose that I would like to read
my mail on "brutus", the network’s POP3 mail server, from my personal Linux box, "olympus". Normally,
I would configure my mail client to connect to port 110 on "brutus" to retrieve my mail - this would
involve sending my username and mail password to "brutus" in cleartext across the network, a technique
that we have determined to be unsuitable for purposes of this tutorial.
With port forwarding, I have an alternative. I can have SSH forward a port (say, 9000) on my local host,
"olympus", to port 110 on "brutus", and protect all traffic passing between the two (including my mail
password) by creating a secure tunnel between the two hosts and ports. Once the tunnel is established, my
mail client would no longer connect to port 110 on "brutus" to get my mail; rather, I would configure it to
use port 9000 on my local host, "olympus", instead, and SSH would take care of automatically passing the
data to post 110 on "brutus" via the tunnel.
Here’s how to go about doing this:

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus

Translated into English, the above command merely says "listen for connections to port 9000 on this local
host, and use the remote host named brutus to forward all those connections to port 110 on the host named
localhost".
SSH will now connect and log in to "brutus", and simultaneously begin forwarding port 9000.

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus Last login: Fri Mar 28 10:18:59 2003 from olympus.localdomain.com [me@brutus] $

You can now verify that the port is indeed being forwarded by switching to another terminal on "olympus"
and opening up a telnet connection to port 9000.

[me@olympus] $ telnet localhost 9000 Trying 127.0.0.1... Connected to localhost Escape character is ’^]’. +OK POP3 brutus v7.64 server ready

Printed from DevShed.com

8

As you can see, connections to port 9000 on your local host are being transmitted to port 110 (the POP3
server port) on the host named "brutus". All data transmitted in this session will be encrypted and
decrypted by the SSH daemons running at the two ends of the connection.
Note that this connection remains available for the duration of your SSH session - the moment you log out
of "brutus", the port forwarding will also stop.
If this is not what you want, you can add the "-N" command-line argument to tell SSH *not* to execute
any command on the remote side once the connection has been established. Background the task, and
you’ll have port forwarding without a login on the remote host!

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus -N &

Note that if you do this, you will need to manually kill the process when you want to stop forwarding the
specified ports.
You can also forward more than one port at a time by specifying them all on the same command line:

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 -L 9001:localhost:25 brutus

Printed from DevShed.com

9

Any Port In A Storm
One of the things that frequently goes unmentioned when discussing SSH port forwarding - perhaps
because it’s not so obvious at first glance - it that you can use the remote host to forward connections to
any other named host (not just to itself) on the network.
If you look at the example on the previous page again,

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:localhost:110 brutus

you will notice that I am using the remote host "brutus" to open connections to port 9000 on a host named
"localhost". Since "brutus" automatically resolves the host name "localhost" to itself, I could also write the
command above as

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9000:brutus:110 brutus

and obtain an equivalent result.
This opens up an interesting possibility - using an SSH connection between two hosts to create a
connection to a third host. Can it be done? Yes indeedy - take a look:

[me@olympus] $ /usr/local/ssh/bin/ssh -L 9001:medusa:25 brutus

In this case, all connections made to port 9001 on my local machine "olympus" will automatically get
forwarded to port 25 (the SMTP port) on the new host "medusa" via the host "brutus". Try it and see for
yourself:

[me@olympus] $ telnet localhost 9001 Trying 127.0.0.1... Connected to localhost Escape character is ’^]’. 220 medusa.domain.com ESMTP Sendmail 8.9.3/8.9.3; Fri, 28 Mar 2003 11:11:44 +0530

Neat, huh?

Printed from DevShed.com

10

Remote Control
SSH also allows you to do the reverse - forward connections made to a port on the remote host to the local
host, or some other host.
In order to better understand this, let’s look at another example. Suppose I wanted all connections made to
port 9000 on the remote host "brutus" to be forwarded to port 80 (the Web server port) on my local
machine "olympus". Here’s how:

[me@olympus] $ /usr/local/ssh/bin/ssh -R 9000:olympus:80 brutus

Once SSH connects and logs me in, it will automatically set up a listener on port 9000 on the host named
"brutus". All connections to this port will then get forwarded to port 80 on the host named "olympus" (my
local host).
You can verify this by logging in to "brutus" and attempting a telnet connection to port 9000:

[me@brutus] $ telnet localhost 9000 Trying 127.0.0.1... Connected to localhost Escape character is ’^]’. GET /some.file.html HTTP/1.0 HTTP/1.1 404 Not Found Date: Fri, 28 Mar 2003 06:11:36 GMT Server: Apache/1.3.20 (Unix) PHP/4.0.6 Connection: close Content-Type: text/html; charset=iso-8859-1

Printed from DevShed.com

11

In And Out
Port forwarding comes in handy when dealing with firewalls as well. By creating a secure channel
between two hosts, each on different sides of a firewall, SSH makes it possible for any computer outside
the firewall to connect to any computer inside it.
The most common scenario here is when roaming users need to connect to their intranet Web server,
which is protected behind a corporate firewall, from an external location. A direct connection in such
cases is not possible - the firewall will reject all requests coming from outside the local network. SSH can
play an important role here.
Let’s consider an example, to better understand how this could work. Let’s assume that the corporate Web
server is running on a machine named "www", inside the firewall, and that there exists a machine named
"medusa" on the same physical network, but outside the firewall. We can also assume that both "medusa"
and "www" are running OpenSSH.
Next, let’s assume that there exists a roaming host "remote", which is connected to the Internet on a
dial-up connection and is outside the firewall...but desperately needs to get inside so that its owner can
access the corporate intranet.
With port forwarding, accomplishing this is fairly simple. First, an SSH connection should be established
between "medusa" and "www", which are on opposite sides of the firewall, and then an arbitrary port (say,
8080) on "medusa" should be forwarded to port 80 (the Web server port) on "www".

[me@www] $ /usr/local/ssh/bin/ssh -R 8080:www:80 medusa

Since "medusa" is outside the firewall, it can accept connections from the external host "remote" on port
8080. These connections are then forwarded through the secure tunnel to port 80 on "www", and the
resulting Web pages transmitted back to "remote" via the reverse route. The end result: the roaming user
can gain access to a server inside the corporate firewall without compromising the security of the system.

Printed from DevShed.com

12

Log Out
And that’s about it for the moment. In this article, I introduced you to OpenSSH, a free open-source
implementation of the SSH protocol. After a quick crash course in installing and configuring SSH, I took
you through the process of creating a key pair, and using it to securely connect to other hosts. With the
basics out of the way, I then moved to the main focus of this article - using SSH to create secure tunnels
between ports on different hosts, in an effort to add greater security to the data packets traveling across a
network. I walked you through a number of possible scenarios for this capability, including securing your
connection to your incoming mail server via local port forwarding, and creating secure channels for hosts
outside your firewall to communicate with hosts inside it via remote port forwarding.
In case you’d like to read more about the capabilities and technologies discussed in this article, you should
take a look at the following Web sites:
The official OpenSSH Web site, at http://www.openssh.org/
The OpenSSH FAQ, at http://www.openssh.org/faq.html
The OpenSSH mailing list, at http://www.openssh.org/list.html
The Shell Game, at http://www.devshed.com/Server_Side/Administration/SSH
Getting Started With SSH, at http://kimmo.suominen.com/ssh/
SSH tutorials for Linux, at http://www.suso.org/linux/tutorials/ssh.phtml and
http://www.linux.ie/articles/tutorials/ssh.php
I hope you enjoyed this article, and that you found the information in it useful in securing your network.
Till next time...stay healthy!
Note: Examples are illustrative only, and are not meant for a production environment. Melonfire provides
no warranties or support for the source code described in this article. YMMV!

Printed from DevShed.com

13

http://www.openssh.org/
http://www.openssh.org/faq.html
http://www.openssh.org/list.html
http://www.devshed.com/Server_Side/Administration/SSH
http://kimmo.suominen.com/ssh/
http://www.suso.org/linux/tutorials/ssh.phtml
http://www.linux.ie/articles/tutorials/ssh.php

	Hooking Up
	Kicking The Tyres
	Test Drive
	Et Tu, Brute?
	No Forwarding Address
	Any Port In A Storm
	Remote Control
	In And Out
	Log Out

