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Preface

Numerous books have been written on Radar Systems and Radar Applica
tions. A limited set of these books provides companion software. There is 
need for a comprehensive reference book that can provide the reader with 
hands-on-like experience. The ideal radar book, in my opinion, should serve as 
a conclusive, detailed, and useful reference for working engineers as well as a 
textbook for students learning radar systems analysis and design. This book 
must assume few prerequisites and must stand on its own as a complete presen
tation of the subject. Examples and exercise problems must be included. User 
friendly software that demonstrates the theory needs to be included. This soft
ware should be reconfigurable to allow different users to vary the inputs in 
order to better analyze their relevant and unique requirements, and enhance 
understanding of the subject.

Radar Systems Analysis and Design Using MATLAB® concentrates on radar 
fundamentals, principles, and rigorous mathematical derivations. It also pro

vides the user with a comprehensive set of M ATLAB1 5.0 software that can be 
used for radar analysis and/or radar system design. All programs will accept 
user inputs or execute using the default set of parameters. This book will serve 
as a valuable reference to students and radar engineers in analyzing and under
standing the many issues associated with radar systems analysis and design. It 
is written at the graduate level. Each chapter provides all the necessary mathe
matical and analytical coverage required for good understanding of radar the
ory. Additionally, dedicated MATLAB functions/programs have been 
developed for each chapter to further enhance the understanding of the theory, 
and provide a source for establishing radar system design requirements. This 
book includes over 1190 equations and over 230 illustrations and plots. There 
are over 200 examples and end-of-chapter problems. A solutions manual will 
be made available to professors using the book as a text. The philosophy 
behind Radar Systems Analysis and Design Using MATLAB is that radar sys
tems should not be complicated to understand nor difficult to analyze and 
design.

All MATLAB programs and functions provided in this book can be down
loaded from the CRC Press Web site (www.crcpress.com). For this purpose, 
create the following directory in your C-drive: C:\RSA. Copy all programs into 
this directory. The path tree should be as in Fig. F.1 in Appendix F. Users can 
execute a certain function/program GUI by typing: file_name_driver, where

1. All MATLAB functions and programs provided in this book were developed using 
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98 
operating system.
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file names are as indicated in Appendix F. The MATLAB functions and pro
grams developed in this book include all forms of the radar equation: pulse 
compression, stretch processing, matched filter, probability of detection calcu
lations with all Swerling models, High Range Resolution (HRR), stepped fre
quency waveform analysis, ghk tracking filter, Kalman filter, phased array 
antennas, and many more.

The first part of Chapter 1 describes the most common terms used in radar 
systems, such as range, range resolution, Doppler frequency, and coherency. 
The second part of this chapter develops the radar range equation in many of 
its forms. This presentation includes the low PRF, high PRF, search, bistatic 
radar, and radar equation with jamming. Radar losses are briefly addressed in 
this chapter. Chapter 2 discusses the Radar Cross Section (RCS). RCS depen
dency on aspect angle, frequency, and polarization are discussed. Target scat
tering matrix is developed. RCS formulas for many simple objects are 
presented. Complex object RCS is discussed, and target fluctuation models are 
introduced. Continuous wave radars and pulsed radars are discussed in Chapter 
3. The CW radar equation is derived in this chapter. Resolving range and Dop
pler ambiguities is also discussed in detail.

Chapter 4 is intended to provide an overview of the radar probability of 
detection calculations and related topics. Detection of fluctuating targets 
including Swerling I, II, III, and IV  models is presented and analyzed. Coher
ent and non-coherent integrations are also introduced. Cumulative probability 
of detecting analysis is in this chapter. Chapter 5 reviews radar waveforms, 
including CW, pulsed, and LFM. High Range Resolution (HRR) waveforms 
and stepped frequency waveforms are also analyzed.

The concept of the matched filter, and the radar ambiguity function consti
tute the topics of Chapter 6. Detailed derivations of many major results are pre
sented in this chapter, including the coherent pulse train ambiguity function. 
Pulse compression is in Chapter 7. Analog and digital pulse compressions are 
also discussed in detail. This includes fast convolution and stretch processors. 
Binary phase codes and frequency codes are discussed.

Chapter 8  presents the phenomenology of radar wave propagation. Topics 
like multipath, refraction, diffraction, divergence, and atmospheric attenuation 
are included. Chapter 9 contains the concepts of clutter and Moving Target 
Indicator (MTI). Surface and volume clutter are defined and the relevant radar 
equations are derived. Delay line cancelers implementation to mitigate the 
effects of clutter is analyzed.

Chapter 10 has a brief discussion of radar antennas. The discussion includes 
linear and planar phased arrays. Conventional beamforming is in this chapter. 
Chapter 11 discusses target tracking radar systems. The first part of this chapter 
covers the subject of single target tracking. Topics such as sequential lobing, 
conical scan, monopulse, and range tracking are discussed in detail. The
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second part of this chapter introduces multiple target tracking techniques. 
Fixed gain tracking filters such as the a P  and the aP y  filters are presented in 
detail. The concept of the Kalman filter is introduced. Special cases of the Kal
man filter are analyzed in depth.

Synthetic Aperture Radar (SAR) is the subject of Chapter 12. The topics of 
this chapter include: SAR signal processing, SAR design considerations, and 
the SAR radar equation. Arrays operated in sequential mode are discussed in 
this chapter. Chapter 13 presents an overview of signal processing. Finally, six 
appendices present discussion on the following: noise figure, decibel arith
metic, tables of the Fourier transform and Z-transform pairs, common proba
bility density functions, and the MATLAB program and function name list.

MATLAB is a registered trademark 
of The MathWorks, Inc.

For product information, please contact:
The MathWorks, Inc.

3  Apple Hill Drive 
Natick, MA 01760-2098 USA 

Tel: 508-647-7000 
Fax: 508-647-7001 

E-mail: info@mathworks.com 
Web: www.mathworks.com

Bassem R. Mahafza 
Huntsville, Alabama 

January, 2000
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Chapter 1 Radar Fundamentals

1.1. Radar Classifications
The word radar is an abbreviation for RAdio Detection And Ranging. In 

general, radar systems use modulated waveforms and directive antennas to 
transmit electromagnetic energy into a specific volume in space to search for 
targets. Objects (targets) within a search volume will reflect portions of this 
energy (radar returns or echoes) back to the radar. These echoes are then pro
cessed by the radar receiver to extract target information such as range, veloc
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship 
based radar systems. They can also be classified into numerous categories 
based on the specific radar characteristics, such as the frequency band, antenna 
type, and waveforms utilized. Another classification is concerned with the 
mission and/or the functionality of the radar. This includes: weather, acquisi
tion and search, tracking, track-while-scan, fire control, early warning, over 
the horizon, terrain following, and terrain avoidance radars. Phased array 
radars utilize phased array antennas, and are often called multifunction (multi
mode) radars. A phased array is a composite antenna formed from two or more 
basic radiators. Array antennas synthesize narrow directive beams that may be 
steered, mechanically or electronically. Electronic steering is achieved by con
trolling the phase of the electric current feeding the array elements, and thus 
the name phased arrays is adopted.

Radars are most often classified by the types of waveforms they use, or by 
their operating frequency. Considering the waveforms first, radars can be
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Continuous Wave (CW) or Pulsed Radars (PR). CW radars are those that con
tinuously emit electromagnetic energy, and use separate transmit and receive 
antennas. Unmodulated CW  radars can accurately measure target radial veloc
ity (Doppler shift) and angular position. Target range information cannot be 
extracted without utilizing some form of modulation. The primary use of 
unmodulated CW radars is in target velocity search and track, and in missile 
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula
tion). In this category, radar systems can be classified on the basis of the Pulse 
Repetition Frequency (PRF), as low PRF, medium PRF, and high PRF radars. 
Low PRF radars are primarily used for ranging where target velocity (Doppler 
shift) is not of interest. High PRF radars are mainly used to measure target 
velocity. Continuous wave as well as pulsed radars can measure both target 
range and radial velocity by utilizing different modulation schemes.

Table 1.1 has the radar classifications based on the operating frequency.

TABLE 1.1. Radar frequency bands.

Letter
designation Frequency (GHz)

New band designation 
(GHz)

HF 0.003 - 0.03 A

VHF 0.03 - 0.3 A<0.25; B>0.25
UHF 0.3 - 1.0 B<0.5; C>0.5

L-band 1.0 - 2.0 D
S-band 2.0 - 4.0 E<3.0; F>3.0
C-band 4.0 - 8.0 G<6.0; H>6.0
X-band 8.0 -12.5 I<10.0; J>10.0
Ku-band 12.5 -18.0 J
K-band 18.0 - 26.5 J<20.0; K>20.0
Ka-band 26.5 - 40.0 K
MMW Normally >34.0 L<60.0; M>60.0

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off 
the ionosphere to detect targets beyond the horizon. Some examples include 
the United States Over The Horizon Backscatter (U.S. OTH/B) radar which 
operates in the frequency range of 5 -2 8 M H Z , the U.S. Navy Relocatable 
Over The Horizon Radar (ROTHR), see Fig. 1.1, and the Russian Woodpecker 
radar. Very High Frequency (VHF) and Ultra High Frequency (UHF) bands are 
used for very long range Early Warning Radars (EWR). Some examples 
include the Ballistic Missile Early Warning System (BM EW S) search and 
track monopulse radar which operates at 245MHz (Fig. 1.2), the Perimeter 
and Acquisition Radar (PAR) which is a very long range multifunction phased
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array radar, and the early warning PAVE PAWS multifunction UHF phased 
array radar. Because of the very large wavelength and the sensitivity require
ments for very long range measurements, large apertures are needed in such 
radar systems.

U.S. Navy ROTHR
2.6 -km  R ece iv ing  A rray

Figure 1.1. U. S. Navy Over The Horizon Radar. Photograph obtained 
via the Internet.

Figure 1.2. Fylingdales BMEWS - United Kingdom. Photograph 
obtained via the Internet.
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Radars in the L-band are primarily ground based and ship based systems that 
are used in long range military and air traffic control search operations. Most 
ground and ship based medium range radars operate in the S-band. For exam
ple, the Airport Surveillance Radar (ASR) used for air traffic control, and the 
ship based U.S. Navy AEGIS (Fig. 1.3) multifunction phased array are S-band 
radars. The Airborne Warning And Control System (AWACS) shown in Fig. 
1.4 and the National Weather Service Next Generation Doppler Weather Radar 
(NEXRAD) are also S-band radars. However, most weather detection radar 
systems are C-band radars. Medium range search and fire control military 
radars and metric instrumentation radars are also C-band.

Figure 1.3. U. S. Navy AEGIS. Photograph obtained via the Internet.

Figure 1.4. U. S. Air Force AWACS. Photograph obtained via the Internet.
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The X-band is used for radar systems where the size of the antenna consti
tutes a physical limitation; this includes most military multimode airborne 
radars. Radar systems that require fine target detection capabilities and yet can
not tolerate the atmospheric attenuation of higher frequency bands may also be 
X-band. The higher frequency bands (Ku, K , and Ka) suffer severe weather 
and atmospheric attenuation. Therefore, radars utilizing these frequency bands 
are limited to short range applications, such as the police traffic radars, short 
range terrain avoidance, and terrain following radars. Milli-Meter Wave 
(MMW ) radars are mainly limited to very short range Radio Frequency (RF) 
seekers and experimental radar systems.

1.2. Range
Figure 1.5 shows a simplified pulsed radar block diagram. The time control 

box generates the synchronization timing signals required throughout the sys
tem. A modulated signal is generated and sent to the antenna by the modulator/ 
transmitter block. Switching the antenna between the transmitting and receiv
ing modes is controlled by the duplexer. The duplexer allows one antenna to be 
used to both transmit and receive. During transmission it directs the radar elec
tromagnetic energy towards the antenna. Alternatively, on reception, it directs 
the received radar echoes to the receiver. The receiver amplifies the radar 
returns and prepares them for signal processing. Extraction of target informa
tion is performed by the signal processor block. The target’s range, R, is com
puted by measuring the time delay, A t ; it takes a pulse to travel the two-way 
path between the radar and the target. Since electromagnetic waves travel at 
the speed of light, c =  3 x  10 m / sec, then

Figure 1.5. A simplified pulsed radar block diagram.
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R = cAt ---2--- (1.1)

1
where R is in meters and At is in seconds. The factor of 2 is needed to 
account for the two-way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illus
trated by Fig. 1.6. The Inter Pulse Period (IPP) is T , and the pulse width is т . 
The IPP is often referred to as the Pulse Repetition Interval (PRI). The inverse 
of the PRI is the PRF, which is denoted by f r ,

f  =  =  1 r P R I T
(1.2)

t ra nsm itte d pulses  

pulse 1

re c e iv e d  pulses

П IPP  
т

At Г"| pulse 1 
|T echo

pulse 2

Л pulse 2 
echo

Л pulse 3

П pulse 3
echo ^ t ime

Figure 1.6. Train of transmitted and received pulses.

During each PRI the radar radiates energy only for т seconds and listens for 
target returns for the rest of the PRI. The radar transmitting duty cycle (factor) 
dt is defined as the ratio dt =  т /T . The radar average transmitted power is

P av =  P t x dt , (1.3)

where P t denotes the radar peak transmitted power. The pulse energy is
E„ P tT P t  =  P /  fav av r

The range corresponding to the two-way time delay T is known as the radar 
unambiguous range, Ru. Consider the case shown in Fig. 1.7. Echo 1 repre
sents the radar return from a target at range R 1 =  c A t/ 2 due to pulse 1. Echo 
2 could be interpreted as the return from the same target due to pulse 2, or it 
may be the return from a faraway target at range R2 due to pulse 1 again. In 
this case,

R
cAt 
---2--- or R

c (T + A t)  ------ 2------ (1.4)
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Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is 
transmitted the radar must wait a sufficient length of time so that returns from 
targets at maximum range are back before the next pulse is emitted. It follows 
that the maximum unambiguous range must correspond to half of the PRI,

Ru = c T =  2fr ( ,.6>

MATLAB Function “pulse_train.m”

The MATLAB function “pulse_train.m” computes the duty cycle, average 
transmitted power, pulse energy, and the pulse repetition frequency. It is given 
in Listing 1.1 in Section 1.8; its syntax is as follows:

[dt pav ep p r f  ru] = pulse_train(tau,pri,p_peak)

where

Symbol Description Units Status

tau pulse width seconds input
pri PRI seconds input

p_peak peak power Watts input
dt duty cycle none output

pav average transmitted power Watts output

ep pulse energy Joules output

prf PRF Hz output
ru unambiguous range Km output
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Example 1.1: A certain airborne pulsed radar has p eak  pow er P t =  10 KW , 
and uses two PRFs, f r1 =  10KHz and f r2 =  30KH z. What are the required 
pulse widths fo r  each PRF so that the average transmitted pow er is constant 
and is equal to 1500 Watts ? Compute the pulse energy in each case.

Solution: Since P av is constant, then both PRFs have the same duty cycle. 
More precisely,

---1---5---0---0---dt =  ---------- 3 =  0.15
10 x 103

The pulse repetition intervals are

T1 =  -----1— - =  0.1 ms
10 x  103

T2 =  -----1— - =  0.0333 ms
30 x  103

It follow s that

т 1 =  0.15 x T1 =  15|J.s 

т2 =  0.15 x T2 =  5д s

Ep 1 =  P tT1 =  10 x 103 x  15 x  10-6 =  0.15 Jo u le s  

Ep2 =  P 2т2 =  10 x  103 x  5 x  10-6 =  0.05 J o u l e s .

1.3. Range Resolution
Range resolution, denoted as A R , is a radar metric that describes its ability 

to detect targets in close proximity to each other as distinct objects. Radar sys
tems are normally designed to operate between a minimum range Rmin, and 
maximum range Rmax. The distance between Rmin and Rmax is divided into 
M range bins (gates), each of width A R ,

R _ R
M =  rnax min d g)

=  AR . )

Targets separated by at least AR will be completely resolved in range, as illus
trated in Fig. 1.8. Targets within the same range bin can be resolved in cross 
range (azimuth) utilizing signal processing techniques.
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Consider two targets located at ranges R 1 and R2 , corresponding to time 
delays t1 and t2 , respectively. Denote the difference between those two ranges 
as A R :

Д R R2 -  R 1
( t2 -  t i ) §t 

c 2 =  c 2
(1.7)

I { cross range

Rmin

A

R

Figure 1.8. Resolving targets in range and cross range.

Now, try to answer the following question: What is the minimum §t such 
that target 1 at R 1 and target 2 at R2 will appear completely resolved in range 
(different range bins)? In other words, what is the minimum AR?

First, assume that the two targets are separated by c x / 4 ,  т is the pulse 
width. In this case, when the pulse trailing edge strikes target 2 the leading 
edge would have traveled backwards a distance c т , and the returned pulse 
would be composed of returns from both targets (i.e., unresolved return), as 
shown in Fig. 1.9a. However, if the two targets are at least c t / 2 apart, then as 
the pulse trailing edge strikes the first target the leading edge will start to return 
from target 2, and two distinct returned pulses will be produced, as illustrated 
by Fig. 1.9b. Thus, AR should be greater or equal to cт / 2 . And since the radar 
bandwidth B is equal to 1 / т , then

In general, radar users and designers alike seek to minimize AR in order to 
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve 
fine range resolution one must minimize the pulse width. However, this will 
reduce the average transmitted power and increase the operating bandwidth. 
Achieving fine range resolution while maintaining adequate average transmit
ted power can be accomplished by using pulse compression techniques.
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incident pulse c T

reflected pulse return
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return
tgt2
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-- c t
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ct 
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(a)

shaded area has returns 1 
from both targets ,

reflected pulses return return
tgt1 tgt2
c t c t

R1 R2 

ct 
--2---

tgt1 tgt2

(b)

Figure 1.9. (a) Two unresolved targets. (b) Two resolved targets.
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MATLAB Function “range_resolution.m”

The MATLAB function “range_resolution.m” computes range resolution. It 
is given in Listing 1.2 in Section 1.8; its syntax is as follows:

[delta_R] = range_resolution(var, indicator)

where

Symbol Description Units Status

var, indicator bandwidth, ‘hz’ Hz, none inputs
var, indicator pulse width, ‘s ’ seconds, none inputs

delta_R range resolution meters output

Example 1.2: A radar system with an unambiguous range o f  100 Km, and a 
bandwidth 0.5 MHz. Compute the required PRF, PRI, A R , and т .

Solution:

c 3 v 108 
P R F = -C - =  3 5 =  1500 Hz

2Ru 2 x  105

PRI =  PRF  =  Ш  =  0 6 6 6 7  ms
Using the function “range_resolution” yields

A „ с 3 x  108AR =  —  =  ----------------- - =  300 m
2B 2 x  0.5 x  106

2AR 2 x  300 „ 
т =  ------ =  --------- - =  2 | js .

C 3 x 108

1.4. Doppler Frequency
Radars use Doppler frequency to extract target radial velocity (range rate), as 

well as to distinguish between moving and stationary targets or objects such as 
clutter. The Doppler phenomenon describes the shift in the center frequency of 
an incident waveform due to the target motion with respect to the source of 
radiation. Depending on the direction of the target’s motion this frequency shift 
may be positive or negative. A waveform incident on a target has equiphase 
wavefronts separated by X , the wavelength. A closing target will cause the 
reflected equiphase wavefronts to get closer to each other (smaller wave
length). Alternatively, an opening or receding target (moving away from the 
radar) will cause the reflected equiphase wavefronts to expand (larger wave
length), as illustrated in Fig. 1.10.
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Figure 1.10. Effect of target motion on the reflected equiphase waveforms.

Consider a pulse of width т (seconds) incident on a target which is moving 
towards the radar at velocity v , as shown in Fig. 1.11. Define d  as the distance 
(in meters) that the target moves into the pulse during the interval At ,

d  =  vA t (19)

where At is equal to the time span between the pulse leading edge striking the 
target and the trailing edge striking the target. Since the pulse is moving at the 
speed of light and the trailing edge has moved distance c t  -  d , then

At ст- d
с

Combining Eq. (1.9) and Eq. (1.10) yields

vcd
v +  с

(1.10)

(1.11)

Now, in At seconds the pulse leading edge has moved in the direction of the 
radar a distance s ,

s =  с At (112)
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trailing leading

incident pulse C T

reflected pulse 
------

L  =  c t '

leading trailing

at time 

t =  t0

at time

t =  t0 +  At

Figure 1.11. Illustrating the impact of target velocity on a single pulse.

Therefore, the reflected pulse width is now t '  seconds, or L  meters,

L  =  с т ' =  s -  d 

Substituting Eq. (1.11) and Eq. (1.12) into Eq. (1.13) yields

(1.13)

ст ' =  с At - vc ------1
v +  с (114)

2 2
, с vc с -  vcCT =  ------ T --------- T =  ----------T

v +  с v +  с v +  с (1.15)

с -  v 
------ T
с +  v

(1.16)

In practice, the factor ( с -  v) / ( с +  v) is often referred to as the time dilation 
factor. Notice that if  v =  0 , then т ' =  т . In a similar fashion, one can com
pute t '  for an opening target. In this case,

, v +  с 
т =  ------ т

с -  v (117)

To derive an expression for Doppler frequency, consider the illustration 
shown in Fig. 1.12. It takes the leading edge of pulse 2 At seconds to travel a 
distance ( c / f r)-d  to strike the target. Over the same time interval, the leading 
edge of pulse 1 travels the same distance с A t . More precisely,

d  =  vAt (1.18)

v

d
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Figure 1.12. Illustration of target motion effects on the radar pulses.
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c  -  d  =  c A t  (1 .1 9 )

solving for At yields

c / f r
A t =  — — (1.20)

c +  V

c v / f r
d  =  ------ -r (1.21)

c +  V

The reflected pulse spacing is now s -  d  and the new PRF is f r' ,  where

с a cV /fr s -  d =  —, =  c At ---------  (1.22)
fr  c +  V

It follows that the new PRF is related to the original PRF by

fr' =  c + V  fr  (1.23)

However, since the number of cycles does not change, the frequency of the 
reflected signal will go up by the same factor. Denoting the new frequency by 
f 0' , it follows

c +  V
fo  =  —  fo (1.24)

where f 0 is the carrier frequency of the incident signal. The Doppler frequency 
f d is defined as the difference f 0' - f 0 . More precisely,

fd  =  f0 ' - f0 =  c + V  f0 - f0 =  c - V  f0 (1.25)

but since V « c and c =  Xf0 , then

fd ~~ 2  f 0 =  X  (1.26)

Eq. (1.26) indicates that the Doppler shift is proportional to the target velocity, 
and thus, one can extract f d from range rate and vice versa.

The result in Eq. (1.26) can also be derived using the following approach: 
Fig. 1.13 shows a closing target with velocity V . Let R0 refer to the range at 
time t0 (time reference), then the range to the target at any time t is

R ( t) =  R 0-V (t -  t0) (1.27)
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Figure 1.13. Closing target with velocity v.

The signal received by the radar is then given by

Xr(t) =  X(t -  Y ( t))

where x ( t) is the transmitted signal, and

(128)

v ( t) =  c (R0 -  Vt +  Vt0 )

Substituting Eq. (1.29) into Eq. (1.28) and collecting terms yield 

Xr ( t) =  x 1 +  t -  ^ 0)

(129)

(1.30)

the constant phase y 0 is

2 R 0 2 V
^ 0 =  —  +  7  t0

Define the compression or scaling factor у by

2 VY =  1 +  —
c

(1.31)

(1.32)

Note that for a receding target the scaling factor is Y =  1 -  (2 V /c ) .  Using Eq. 
(1.32) we can rewrite Eq. (1.30) as

Xr( t) =  x (Yt -  Y 0) (1.33)

Eq. (1.33) is a time-compressed version of the returned signal from a stationary 
target ( V =  0 ). Hence, based on the scaling property of the Fourier transform,
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the spectrum of the received signal will be expanded in frequency by a factor 
of Y.

Consider the special case when

x( t) =  y( t) cos rn0t (134)

where ю0 is the radar center frequency in radians per second. The received 
signal xr ( t) is then given by

xr ( t) =  y(Y t -  ¥ )  cos (Y®01 -  ¥ 0) 

The Fourier transform of Eq. (1.35) is

Xr (ю) 1  (  Y ( Ю
2 Y(  ( YY -  ^ J  +  Y(  y +  Ю(

ю

(135)

(136)

where for simplicity the effects of the constant phase y 0 have been ignored in 
Eq. (1.36). Therefore, the band pass spectrum of the received signal is now 
centered at Yю0 instead of ю0 . The difference between the two values corre
sponds to the amount of Doppler shift incurred due to the target motion,

ю ю0 -  Y^> (137)

юd is the Doppler frequency in radians per second. Substituting the value of Y 
in Eq. (1.37) and using 2 n f  =  ю yield

f  -  2v f  _  2v
fd = c f0 = x

(138)

which is the same as Eq. (1.26). It can be shown that for a receding target the 
Doppler shift is f d =  - 2  v /X  . This is illustrated in Fig. 1.14.

closing target receding target

Figure 1.14. Spectra of radar received signal.
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In both Eq. (1.38) and Eq. (1.26) the target radial velocity with respect to the 
radar is equal to v , but this is not always the case. In fact, the amount of Dop
pler frequency depends on the target velocity component in the direction of the 
radar (radial velocity). Fig. 1.15 shows three targets all having velocity v : tar
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as 
defined in Eq. (1.38). The amount of Doppler frequency due to target 3 is 
f d =  2 v cos 0 / X , where v cos 0 is the radial velocity; and 0 is the total angle 
between the radar line of sight and the target.

tgt1 tgt2 tgt3

Figure 1.15. Target 1 generates zero Doppler. Target 2 generates 
maximum Doppler. Target 3 is in-between.

Thus, a more general expression for f d that accounts for the total angle 
between the radar and the target is

fd  =  2̂ cos 0 a 3 9 )

and for an opening target

—2 v
fd  =  T " c° s 0 a 4 °)

where cos 0 =  cos 0e cos 0a . The angles 0 e and 0 a are, respectively, the ele
vation and azimuth angles; see Fig. 1.16.

Example 1.3: Compute the Doppler frequency measured by the radar shown 
in the figure below.

X =  0.03 m ,
vtarget = 175 m/sec

.  -  '  '  '  - 4 --------------------

_ line of s_ight_ ______ _ ^__
- - “ xf?

w target

Vradar = 250 m/sec
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Figure 1.16. Radial velocity is proportional to the azimuth and elevation angles.

Solution: The relative radial velocity between the radar and the target is 
vradar +  vtarget. Thus using Eq. (1.38), we get

fd  =  2 (25°0+03175) =  28.3 KHz 

Similarly, if  the target were opening the Doppler frequency is

fd  =  2 2 5 0 ж 75 =  5 KHz .

MATLAB Function “doppler_freq.m”

The function “d op p ler jreq .m ” computes Doppler frequency. It is given in 
Listing 1.3 in Section 1.8; its syntax is as follows:

[fd, tdr] = doppler_freq(freq, ang, tv, indicator)

where

Symbol Description Units Status

freq radar operating frequency Hz input
ang aspect angle degrees input
tv target velocity m/sec input

indicator 1 fo r  closing target, 0 otherwise none input
fd Doppler frequency Hz output
tdr time dilation factor ratio т ' / т none output

© 2000 by Chapman & Hall/CRC



1.5. Coherence
A radar is said to be coherent if the phase of any two transmitted pulses is 

consistent, i.e., there is a continuity in the signal phase from one pulse to the 
next, as illustrated in Fig. 1.17a. One can view coherence as the radar’s ability 
to maintain an integer multiple of wavelengths between the equiphase wave
front from the end of one pulse to the equiphase wavefront at the beginning of 
the next pulse, as illustrated by Fig. 1.17b. Coherency can be achieved by 
using a STAble Local Oscillator (STALO). A radar is said to be coherent-on- 
receive or quasi-coherent if  it stores in its memory a record of the phases of all 
transmitted pulses. In this case, the receiver phase reference is normally the 
phase of the most recent transmitted pulse.

Coherence also refers to the radar’s ability to accurately measure (extract) 
the received signal phase. Since Doppler represents a frequency shift in the 
received signal, then only coherent or coherent-on-receive radars can extract 
Doppler information. This is because the instantaneous frequency of a signal is 
proportional to the time derivative of the signal phase. More precisely,

f  =  2П > t) (1.41)

where f  is the instantaneous frequency, and ф(t) is the signal phase.

For example, consider the following signal:

x ( t) =  cos (ую01 -  y 0) (1.42)

where the scaling factor у is defined in Eq. (1.32), and y 0 is a constant phase. 
It follows that the instantaneous frequency of x ( t) is

J \A A H W W \/W
(a)

pulse n + 1  pulse n

Figure 1.17. (a) Phase continuity between consecutive pulses. (b) Maintaining an 
integer multiple of wavelen gths between the equiphase wavefronts 
of any two successive pulses guarantees coherency.
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fi  =  f  (1.43)

where ю0 =  2n f0 . Substituting Eq. (1.32) into Eq. (1.43) yields

f  =  f> (  1 + 2̂ )  =  f0 +  2v (1.44)

where the relation c =  Xf is utilized. Note that the second term of the most 
right-hand side of Eq. (1.44) is a Doppler shift.

1.6. The Radar Equation
Consider a radar with an omni directional antenna (one that radiates energy 

equally in all directions). Since these kinds of antennas have a spherical radia
tion pattern, we can define the peak power density (power per unit area) at any 
point in space as

P ea k  transm itted  p ow er watts 
Pd =  ---------------- 7--------- , -------- — 2“  (1.45)area  o f  a sp h ere  m2

The power density at range R away from the radar (assuming a lossless propa
gation medium) is

Pd =  - A - (1.46)
4n  R

2
where P t is the peak transmitted power and 4 nR  is the surface area of a 
sphere of radius R . Radar systems utilize directional antennas in order to 
increase the power density in a certain direction. Directional antennas are usu
ally characterized by the antenna gain G and the antenna effective aperture 
Ae . They are related by

A‘‘ =  f n  ( , -47>

where X is the wavelength. The relationship between the antenna’s effective 
aperture Ae and the physical aperture A is

Ae =  pA (1.48)
0 < p <  1

p is referred to as the aperture efficiency, and good antennas require p —» 1. 
In this book we will assume, unless otherwise noted, that A and Ae are the 
same. We will also assume that antennas have the same gain in the transmitting 
and receiving modes. In practice, p =  0.7 is widely accepted.
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The power density at a distance R away from a radar using a directive 
antenna of gain G is then given by

P tG
Pd =  a 49)

4n  R

When the radar radiated energy impinges on a target, the induced surface cur
rents on that target radiate electromagnetic energy in all directions. The amount 
of the radiated energy is proportional to the target size, orientation, physical 
shape, and material, which are all lumped together in one target-specific 
parameter called the Radar Cross Section (RCS) and is denoted by о .

The radar cross section is defined as the ratio of the power reflected back to 
the radar to the power density incident on the target,

о  =  ----- m (1.50)
PD

where P r is the power reflected from the target. Thus, the total power deliv
ered to the radar signal processor by the antenna is

P tG о
PDr =  ------- —2 Ae О.51)

(4n R )

substituting the value of Ae from Eq. (1.47) into Eq. (1.51) yields

2 2  P tG X о
PDr =  - 3 4 ( ^

(4 n )3R

Let Smin denote the minimum detectable signal power. It follows that the 
maximum radar range Rmax is

Rmax

' „ „2^ 2 \1 /4P tG X о

X4 n) Smin,
(153)

Eq. (1.53) suggests that in order to double the radar maximum range, one must 
increase the peak transmitted power P t sixteen times; or equivalently, one 
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor
rupted with noise, which introduces unwanted voltages at all radar frequencies. 
Noise is random in nature and can be described by its Power Spectral Density 
(PSD) function. The noise power N  is a function of the radar operating band
width, B . More precisely
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N  =  N oise PSD  x  B (1 .5 4 )

The input noise power to a lossless antenna is

Ni =  kTeB (1.55)
- 23

where k  =  1.38 x 10 jo u le /d e g r e e  K elvin  is Boltzman’s constant, and 
Te is the effective noise temperature in degree Kelvin. It is always desirable 
that the minimum detectable signal ( Smin) be greater than the noise power. The 
fidelity of a radar receiver is normally described by a figure of merit called the 
noise figure F  (see Appendix A for details). The noise figure is defined as

(SNR)i S / N i 
F  =  -------- -- =  —-----1 (1.56)

(SNR)o So/No ( )

(SNR)i and (SNR)o are, respectively, the Signal to Noise Ratios (SNR) at the 
input and output of the receiver. Si is the input signal power, Ni is the input 
noise power, So and No are, respectively, the output signal and noise power. 
Substituting Eq. (1.55) into Eq. (1.56) and rearranging terms yield

Si =  kTeB F ( SNR)o (1.57)

Thus, the minimum detectable signal power can be written as

Smin =  kTeBF(SNR)o . (1.58)nun e umin

The radar detection threshold is set equal to the minimum output SNR, 
(SNR)o . Substituting Eq. (1.58) in Eq. (1.53) gives

Rmax

п л ^ 2  \1 /4PtG X о

(4 n )3 kTeB F ( SNR)o
(159)

or equivalently,

2 2  P tG X о
(SNR) o =  ------ 3------------ 4 (1.60)

(4 n )3 kTeBFR

Radar losses denoted as L  reduce the overall SNR, and hence

2 2  P tG X о
(SNR)o =  ------ 3--------------4 (1.61)

(4 n )3 kTeBFLR

Although it may take on many different forms, Eq. (1.61) is what is widely 
known as the Radar Equation. It is a common practice to perform calculations
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associated with the radar equation using decibel (dB) arithmetic. A review is 
presented in Appendix B.

MATLAB Function “radar_eq.m”

The function “radar_eq.m ” implements Eq. (1.61); it is given in Listing 1.4 
in Section 1.8. The outputs are either SNR in dB or range in Km where a dif
ferent input setting is used for each case. The syntax is as follows:

[out_par] = radar_eq (pt, freq, g, sigma, te, b, nf, loss, input_par, option, 
rcs_delta1, rcs_delta2, pt_percent1, pt_percent2)

Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input
sigma target cross section m2 input

te effective temperature Kelvin input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input
input_par SNR or R max dB, or Km input

option 1 means input_par = SNR 

2 means input_par =  R
none input

rcs_delta1 rcs delta1 (sigma - delta1) dB input
rcs_delta2 rcs delta2 (sigma + delta2) dB input

pt_percent1 pt * pt_percent1% none input
pt_percent2 pt * pt_percent2% none input

out_par R for  option = 1 
SNR for option = 2

Km, or dB output

If  some of the inputs are not available in the proper format, the functions 
“dB_to_base10.m” and / or “base10_to_dB.m” can be used first. Plots of SNR 
versus range (or range versus SNR) for several choices of RCS and peak power 
are also generated by the function “radar_eq.m ”. Typical plots utilizing Exam
ple 1.4 parameters are shown in Fig. 1.18. In this case, the default values are 
those listed in the example. Observation of these plots shows how doubling the 
peak power (3 dB) has little effect on improving the SNR. One should consider 
varying other radar parameters such as antenna gain to improve SNR, or detec
tion range.
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E de l t a 1  = 1 0 d B s m ,  d e l t a 2 = 1 0 d B s m ,  p e r c e n t 1  = 0 .5 ,  p e r c e n t 2 = 2 . 0

M i n i m u m  S N R  re q u ir e d  fo r d e t e c t i o n  - dB

M i n i m u m  S N R  re q u ir e d  fo r d e t e c t i o n  - dB

d e l t a1  = 5 d B s m ,  d e l t a 2 = 1 0 d B s m ,  p e r c e n t 1 = 0 . 5 ,  p e r c e n t 2 = 2 . 0

D e t e c t i o n  r a n g e  - K m

D e t e c t i o n  r a n g e  -  K m

Figure 1.18. Typical outputs generated by the function “radar_eq.m”. 
Plots correspond to parameters from Example 1.4.
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Example 1.4: A certain C-band radar with the following param eters: Peak 
pow er P t =  1.5MW, operating frequency  f 0 =  5 .6GHz, antenna gain 
G =  45d B , effective temperature Te =  290K , pulse width т =  0.2ц sec. 
The radar threshold is (SNR)min =  20dB. Assume target cross section 
о =  0.1 m . Compute the maximum range.

Solution: The radar bandwidth is

1 1B = =  5 MHz
0.2 x 10

the wavelength is

c =  3 x  10 

f 0 5.6 x  109
0.054m

From Eq. (1.59) we have

(R4)dB =  (P t +  G2 +  X2 +  о  -  (4 n )3 -  kTeB -  F  -  (SNR)o )l G- c  m ; j. dB

where, before summing, the dB calculations are carried out fo r  each o f  the 
individual param eters on the right-hand side. We can now construct the fo l 
lowing table with all parameters computed in dB:

Pt X2 G2 kTeB (4 n )3 F (SNR )0 .min о

61.761 -25.421 90dB -136 .987 32.976 3 dB 20dB -1 0

It follow s

R4 =  61.761 + 9 0  -  25.352 -  10 -  32.976 +  136.987 -  3 -  20 =  197.420dB

197.420
r,4R  =  10

V 5 5

10 =  55.208 x 1018m4

,18R =  V55.208 x 1 ^  =  86.199Km 

Thus, the maximum detection range is 86.2K m .

1.6.1. Low PRF Radar Equation

Consider a pulsed radar with pulse width т , PRI T , and peak transmitted 
power P t . The average transmitted power is P av =  P td t , where dt =  т / T is 
the transmission duty factor. We can define the receiving duty factor dr as

X
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Thus, for low PRF radars ( T » т ) the receiving duty factor is dr ~  1.

Define the “time on target” T{ (the time that a target is illuminated by the 
beam) as

Ti =  n  ^  np =  T fr  (1.63)f r

where np is the total number of pulses that strikes the target, and f r is the radar 
PRF. Assuming low PRF, the single pulse radar equation is given by

2 2  P tG X о
(SNR )1 =  ------ 3—------------ (1.64)

(4 n )3R kTeB FL

and for np coherently integrated pulses we get

2 2  P tG X о  np
(S N R \  =  hr---:--------p-  (1.65)

p (4 n )3R kTeBFL

Now by using Eq. (1.63) and using B =  1 /т  the low PRF radar equation can 
be written as

2 2P.G  X2o  T frт 
(SNR) =  ‘ 3 4 (1.66)

p (4 n )3R kTeFL

MATLAB Function “lprf_req.m”

The function “lprf_req.m” implements the low PRF radar equation; it is 
given in Listing 1.5 in Section 1.8. Again when necessary the functions 
“dB_to_base10.m” and/or “base10_to_dB.m” can be used first. For a given 
set of input parameters, the function “lprf_req.m” computes (SNR)np. Plots of 
SNR versus range for three sets of coherently integrated pulses are generated; 
see Fig. 1.19. Also, plots of SNR versus number of coherently integrated 
pulses for two choices of the default RCS and peak power are generated. Typi
cal plots utilizing Example 1.4 parameters are shown in Fig. 1.20. As indicated 
by Fig. 1.20, integrating a limited number of pulses can significantly enhance 
the SNR; however, integrating large amount of pulses does not provide any 
further major improvement.

The syntax for function “lprf_req.m” is as follows:

[snr_out] = lprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta,
pt_percent, np1, np2)

dr =  ^  =  1 -  Tfr (1 .6 2 )
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Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input
sigma target cross section m2 input

te effective temperature Kelvin input
b bandwidth Hz input

nf noise figure dB input
loss radar losses dB input

range target range Km input

prf PRF Hz input

np number o f pulses none input
np1 choice 1 for np none input
np2 choice 2 for np none input

rcs_delta rcs delta1 (sigma - delta) dB input
pt_percent pt * pt_percent% none input

snr_out SNR dB output

R a n g e  - Km

Figure 1.19. Typical output generated by the function “lprf_req.m”. Plots 
correspond to parameters from Example 1.4.
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N u m b e r  o f  c o h e r e n t l y  i n t e g r a t e d  p u l s e s

N u m b e r  o f  c o h e r e n t l y  i n t e g r a t e d  p u l s e s

Figure 1.20. Typical outputs generated by the function “lprf_req.m”. Plots 
correspond to parameters from Example 1.4.

1.6.2. High PRF Radar Equation

Now, consider the high PRF radar case. The transmitted signal is a periodic 
train of pulses. The pulse width is т and the period is T . This pulse train can 
be represented using an exponential Fourier series. The central power spectrum 
line (DC component) for this series contains most of the signal’s power. Its 
value is ( т / T) , and it is equal to the square of the transmit duty factor. Thus, 
the single pulse radar equation for a high PRF radar (in terms of the DC spec
tral power line) is

P tG2 X2o  d2t
SNR =  ------ 3—--------- ------  (1.67)

(4 n )3R kTeB F L d r

where, in this case, we can no longer ignore the receive duty factor, since its 
value is comparable to the transmit duty factor. In fact, dr ~ dt =  Tfr . Addi
tionally, the operating radar bandwidth is now matched to the radar integration 
time (time on target), B =  1 /  Ti . It follows that
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2 2P tTfrT -G Г а
SNR =  f 3 ‘ ---------  (1.68)

(4 n )3R kTeFL

and finally,

P avT f i 2 X2a
SNR =  — aaLr L- ---------  (1.69)

(4 n )3R kTeFL

where P av was substituted for P tTfr . Note that the product P avTi is a “kind of 
energy” product, which indicates that high PRF radars can enhance detection 
performance by using relatively low power and longer integration time.

MATLAB Function “hprf_req.m”

The function “hprf_req.m” implements the high PRF radar equation; it is 
given in Listing 1.6 in Section 1.8. Plots of SNR versus range for three duty 
cycle choices are generated. Figure 1.21 shows typical outputs generated by 
the function “hprf_req.m”. Its syntax is as follows:

[snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dtl,
dt2)

where

Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input
sigma target cross section m2 input

dt duty cycle none input
ti time on target seconds input
range target range Km input

te effective temperature Kelvin input

nf noise figure dB input
loss radar losses dB input

prf PRF Hz input
tau pulse width seconds input
dtl duty cycle choice l none input
dt2 duty cycle choice 2 none input

snr_out SNR dB output
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Note that either dt or the combination of f r and т are needed. One should 
enter zero for dt when f r and т are known and vice versa.

dt = 1, dt1 = 10, dt2 = 100

Range - Km

Figure 1.21. Typical output generated by the function “hprf_req.m”.
Plots correspond to parameters from Example 1.5.

Example 1.5: Compute the single pulse SNR fo r  a high PRF radar with the 
following parameters: p eak  pow er P t =  100KW , antenna gain G =  20d B , 
operating frequency f 0 =  5.6 GHz, losses L  =  8dB , noise figure F  =  5 dB , 
effective temperature Te =  400K , dwell interval Ti =  2 s , duty factor  
dt =  0 .3 . The range o f  interest is R =  50K m . Assume target RCS 
a  =  0.01 m2 .

Solution: From Eq. (1.69) we have 

(SNR)dB =  (Pav +  G2 +  X2 +  a  +  T, -  (4 n )3 -  R4 -  k T -  F  -  L )

The following table gives all parameters in dB:

P av X2 Ti kTe (4 n )3 R4 a

44.771 -25.421 3.01 -202.581 32.976 187.959 -2 0

(SNR)dB =  44.771 + 4 0  -  25.421 -  20 +  3.01 -  32.976 + 
202.581 -  187.959 -  5 -  8 =  11.006dB
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1.6.3. Surveillance Radar Equation

Surveillance or search radars continuously scan a specified volume in space 
searching for targets. They are normally used to extract target information such 
as range, angular position, and possibly target velocity. Depending on the radar 
design and antenna, different search patterns can be adopted. A two-dimen
sional (2-D) fan beam search pattern is shown in Fig.1.22a. In this case, the 
beam width is wide enough in elevation to cover the desired search volume 
along that coordinate; however, it has to be steered in azimuth. Figure 1.22b 
shows a stacked beam search pattern; here the beam has to be steered in azi
muth and elevation. This latter kind of search pattern is normally employed by 
phased array radars.

Search volumes are normally specified by a search solid angle Q in steradi- 
ans. The antenna 3 dB  beam width can be expressed in terms of its azimuth 
and elevation beam widths 0 a and 0e , respectively. It follows that the antenna 
solid angle coverage is 0a0 e . In this book we will assume symmetrical anten
nas (circular apertures) so that 0 a =  0 e . Furthermore, when we refer to the 
antenna beam width we will always assume the 3 dB  beam width, 03 dB.

The number of antenna beam positions nB required to cover a solid angle Q 
is (see Fig. 1.23)

Q Q
nB =  ^ЛТ =  a 7 °)a e 0 зdB

For a circular aperture of diameter D , the 03 dB is

03 dB ~  D (1'71)

(a) (b)

Figure 1.22. (a) 2-D fan search pattern; (b) stacked search pattern.
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Figure 1.23. A cut in space showing the antenna beam width 
and the search volume.

and when aperture tapering is used, 03 dB ~  1.25 X/ D . Substituting Eq. (1.71) 
into Eq. (1.70) yields

D2
nB =  - г  Q (1.72)

X2

As a rule of thumb, the 03 dB antenna beam width for a rectangular aperture of 
length a is 03 dB ~  2 X/ a .

Define the time it takes radar to search a volume defined by the solid angle 
Q as the scan time Tsc . The time on target can then be expressed in terms of
Tsc as

T T X2
Ti =  —  =  - I —  (1.73)

nB D Q

In order to define the search radar equation, start with Eq. (1.69) and use Eq. 
(1.73). More precisely,

P avG2X2c  -  X2
SNR =  ----- a — ------------S t -  (1.74)

(4 n) R kTeF L D  Q

and by using Eq. (1.47) in Eq. (1.74) we can define the search radar equation as

P avA c  Tsc
SNR =  ----- f -----------^  (1.75)

16R4kTeL F  Q
2

where the relation A =  nD / 4 (aperture area) was used.
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The quantity P avA in Eq. (1.75) is known as the power aperture product. In 
practice, the power aperture product is widely used to categorize the radar abil
ity to fulfill its search mission. Normally, a power aperture product is com
puted to meet predetermined SNR and radar cross section for a given search 
volume defined by Q .

Example 1.6: Compute the pow er aperture product fo r  an X-band radar with 
the following param eters: signal-to-noise ratio SNR =  15d B ; losses 
L  =  8 d B ; effective noise temperature Te =  900 degree Kelvin; search vol
ume Q =  2° ; scan time Tsc =  2.5 seconds; noise figure F  =  5 d B . Assume a 
-10dB sm  target cross section, and range R =  250Km . Also, compute the 
peak  transmitted pow er corresponding to 30% duty factor, i f  the antenna gain 
is 45 dB.

Solution: The angular coverage is 2 ° in both azimuth and elevation. It fo l 
lows that the solid angle coverage is

Q =  2 x 2  2 =  -2 9 .1 3 2 dB 
(57.23 )2

Note that the factor  3 6 0 /2n =  57.23 converts angles into solid angles. From 
Eq. (1.75), we have

(SNR)dB =  (P av +  A +  O +  Tsc -  16 -  R4 -  kTe -  L  -  F  -  Q )

O Tsc 16 R4 Tek

-1 0 3.979 12.041 215.918 -199 .059

It follow s that

15 =  P av +  A -  10 +  3.979 -  12.041 -  215.918 +  199.054 -  5 -  8 +  29.133 

Then the pow er aperture product is

P av +  A =  33.793dB

Now, assume the radar wavelength to be X =  0 .03m, then

2
-G--X--
4 n

A =  --О- =  3 .550d B ;  P av =  -  A +  33.793 =  30.243dB

P av =  1030243 =  1057.548 W

P = P- f .  =  1057548 =  3.52516KW .
r dt 0.3
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MATLAB Function “power_aperture_eq.m”

The function “power_aperture_req.m” implements the search radar equa
tion given in Eq. (1.75); it is given in Listing 1.7 in Section 1.8. Plots of peak 
power versus aperture area and the power aperture product versus range for 
three range choices are generated. Figure 1.24 shows typical output using the 
parameters given in Example 1.6. The syntax is as follows:

[p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt, 
range, te, nf, loss, az_angle, el_angle, g, rcs_delta1, rcs_delta2)

where

Symbol Description Units Status

snr sensitivity snr dB input

f m frequency Hz input
tsc scan time seconds input

sigma target cross section m2 input

dt duty cycle none input
range target range Km input

te effective temperature Kelvin input

nf noise figure dB input
loss radar losses dB input

az_angle search volume azimuth extent degrees input
el_angle search volume elevation extent degrees input

g antenna gain dB input
rcs_delta1 rcs delta 1 (sigma - delta1) dB input
rcs_delta2 rcs delta2 (sigma + delta2) dB input

p_a_p power aperture product dB output
aperture antenna aperture 2m2 output

pt peak power KW output
pav average power KW output

1.6.4. Radar Equation with Jamming

Any deliberate electronic effort intended to disturb normal radar operation is 
usually referred to as an Electronic Countermeasure (ECM). This may also 
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency 
absorbing materials), and of course, radar jamming. Jammers can be catego
rized into two general types: (1) barrage jammers; and (2) deceptive jammers 
(repeaters).
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Figure 1.24. Typical outputs generated by the function “power_aperture_req.m”. 
Plots correspond to parameters from Example 1.6.
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When strong jamming is present, detection capability is determined by 
receiver signal-to-noise plus interference ratio rather than SNR. And in most 
cases, detection is established based on the signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar 
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn, 
makes it difficult to detect the desired targets. This is the reason why barrage 
jammers are often called maskers (since they mask the target returns). Barrage 
jammers can be deployed in the main beam or in the side lobes of the radar 
antenna. If a barrage jammer is located in the radar main beam, it can take 
advantage of the antenna maximum gain to amplify the broadcasted noise sig
nal. Alternatively, side lobe barrage jammers must either use more power, or 
operate at a much shorter range than main beam jammers. Main beam barrage 
jammers can be deployed either on-board the attacking vehicle, or act as an 
escort to the target. Side lobe jammers are often deployed to interfere with a 
specific radar, and since they do not stay close to the target, they have a wide 
variety of stand-off deployment options.

Repeater jammers carry receiving devices on board in order to analyze the 
radar’s transmission, and then send back false target-like signals in order to 
confuse the radar. There are two common types of repeater jammers: spot noise 
repeaters and deceptive repeaters. The spot noise repeater measures the trans
mitted radar signal bandwidth and then jams only a specific range of frequen
cies. The deceptive repeater sends back altered signals that make the target 
appear in some false position (ghosts). These ghosts may appear at different 
ranges or angles than the actual target. Furthermore, there may be several 
ghosts created by a single jammer. By not having to jam the entire radar band
width, repeater jammers are able to make more efficient use of their jamming 
power. Radar frequency agility may be the only way possible to defeat spot 
noise repeaters.

Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers, are a class 
of ECM  systems carried on the vehicle they are protecting. Escort jammers 
(carried on vehicles that accompany the attacking vehicles) can also be treated 
as SSJs if they appear at the same range as that of the target(s).

Assume a radar with an antenna gain G , wavelength X , aperture A , band
width B , receiver losses L , and peak power P t . The single pulse power 
received by the radar from a target of RCS O , at range R , is

2 2  Pt G X O
Pr =  - 3 4 (1.76)

(4 n )3 R L
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The power received by the radar from an SSJ jammer at the same range is

P j G j  AB 

4n R2 BJL JPssJ =  - - j  j J L  <1'77)

where PJ, GJ, BJ, L J are, respectively, the jammer’s peak power, antenna gain, 
operating bandwidth, and losses. Substituting Eq. (1.47) into Eq. (1.77) yields

P  =  P jG j jX jG  _ b_
PSSJ " W  4П B ,L ,  ( , -78)

The factor (B / BJ ) (a ratio less than unity) is needed in order to compensate 
for the fact that the jammer bandwidth is usually larger than the operating 
bandwidth of the radar. This is because jammers are normally designed to 
operate against a wide variety of radar systems with different bandwidths. 
Thus, the radar equation for a SSJ case is obtained from Eqs. (1.76) and (1.78),

S P tG о  B jL j
= ---- -------- J - j J -  (1.79)

SSSJ 4 n PJGJR BL  

where Gp is the radar processing gain.

The jamming power reaches the radar on a one-way transmission basis, 
whereas the target echoes involve two-way transmission. Thus, the jamming 
power is generally greater than the target signal power. In other words, the ratio 
S / Sssj is less than unity. However, as the target becomes closer to the radar, 
there will be a certain range such that the ratio S / Sssj is equal to unity. This 
range is known as the crossover or burn-through range. The range window 
where the ratio S / Sssj is sufficiently larger than unity is denoted as the detec
tion range. In order to compute the crossover range Rco , set S / Sssj to unity in 
Eq. (1.79) and solve for range. It follows that

/  P tG o  BJL J \1 / 2 
( r co)ssj =  ( ; f j j j j j B j l

MATLAB Program “ssj_req.m"

The program “ssj_req.m” implements Eqs. (1.76) through (1.80); it is given 
in Listing 1.8 in Section 1.8. This program calculates the crossover range and 
generates plots of relative S and Sssj versus range normalized to the cross
over range, as illustrated in Fig. 1.25. In this example, the following parame
ters were utilized in producing this figure: radar peak power p t =  50 K W , 
jammer peak power P J =  200W , radar operating bandwidth B =  667K H z , 
jammer bandwidth BJ =  50M H z , radar and jammer losses 
L  =  LJ =  0 .10d B , target cross section о  =  10.m , radar antenna gain 
G =  35dB , jammer antenna gain GJ  =  10dB  .
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The synatx is as follows:

[BR_range] = ssj_req (pt, g, freq, sigma, b, loss, pj, bj, gj, lossj)

where

Symbol Description Units Status

Pt radar peak power KW input

g radar antenna gain dB input
sigma target cross section m2 input

freq radar operating frequency Hz input
b radar operating bandwidth Hz input

loss radar losses dB input

pj jammer peak power KW input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input
lossj jammer losses dB input

BR_range burn-through range Km output

R a n g e  n o r m a l i z e d  to  c r o s s o v e r  ra nge

Figure 1.25. Target and jammer echo signals. Plots were generated using 
the program “ssj_req.m”.
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Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges which are 
beyond the defense’s lethal capability. The power received by the radar from 
an SO J jammer at range RJ  is

_  P G J  x G  _ b _  (181)
PsOJ _ 4 п R J 4 4  B jL j ( , -8 ,)

where all terms in Eq. (1.81) are the same as those for the S S J case except for 
G ' .  The gain term G ' represents the radar antenna gain in the direction of the 
jammer and is normally considered to be the side lobe gain.

The SO J radar equation is then computed from Eqs. (1.81) and (1.76) as

2 2
S PtG RjOB jL j=  ------ J-----j j  (1.82)

s soj 4 nPJ GJ G'R BL

Again, the crossover range is that corresponding to S =  SSOJ; it is given by

( r co\soj 

and the detection range is

'  P,-G2RJ o B j L j

4 k P jG jG'BL\ J J /
(1.83)

r d =  (Rco)SOJ (1.84)

W S J n

where (S /S SOJ)min is the minimum value of the signal-to-jammer power ratio 
such that target detection can occur.

Note that in practice, the ratio S / SSOJ is normally computed after pulse com
pression, and thus Eqs. (1.82) and (1.83) must be modified by multiplication 
with the compression gain Gcomp. Plots in Figs. 1.25 and 1.26 were produced 
without regard to pulse compression gain.

MATLAB Program “soj_req.m”

The program “soj_req.m ” implements Eqs. (1.82) and (1.83); it is given in 
Listing 1.9 in Section 1.8. The inputs to the program “soj_req.m” are the same 
as in the SSJ case, with two additional inputs: they are the radar antenna gain 
on the jammer G ' and radar to jammer range RJ . This program generates the 
same type of plots as in the case of the SSJ. Typical output is in Fig. 1.26 utiliz
ing the same parameters as those in the S S J case, with jammer peak power 
PJ =  5000W , jammer antenna gain GJ =  30d B , radar antenna gain on the 
jammer G' =  10d B , and radar to jammer range RJ =  J J . J K m .
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R a n g e  n o r m a l i z e d  to  c r o s s o v e r  range

Figure 1.26. Target and jammer echo signals. Plots were generated using 
the program “soj_req.m”.

Range Reduction Factor

Consider a radar system whose detection range R in the absence of jamming 
is governed by Eq. (1.61), which is repeated here as Eq. (1.85):

T-. y~i2 л 2P tG X a
(SNR)0 =  ------ 3--------------4 (1.85)

(4 n )3 kTeBFLR

The term Range Reduction Factor (RRF) refers to the reduction in the radar 
detection range due to jamming. More precisely, in the presence of jamming 
the effective radar detection range is

Rdj =  R x RRF  (1.86)

In order to compute RRF, consider a radar characterized by Eq. (1.85), and a 
barrage jammer whose output power spectral density is J 0 . Then, the amount 
of jammer power in the radar receiver is

PJ  =  J 0B =  kTJB (1.87)

where k  is Boltzman’s constant and TJ  is the jammer effective temperature. It 
follows that the total jammer plus noise power in the radar receiver is given by

© 2000 by Chapman & Hall/CRC



Ni + PJ = kTeB + kTJB (1.88)

In this case, the radar detection range is now limited by the receiver signal-to- 
noise plus interference ratio rather than SNR. More precisely,

(  P.ssj + n )

n s~>2'\ 2PtG X a

SSJ +  NZ (4 n )3k ( Te +  TJ ) B FLR 4
(189)

The amount of reduction in the signal-to-noise plus interference ratio because 
of the jammer effect can be computed from the difference between Eqs. (1.85) 
and (1.89). It is expressed (in dBs) by

Г  =  10.0 x 

Consequently, the R RF is

-og ( ‘ +  0
(190)

Г
40 (191)R R F  =  10 

MATLAB Function “range_red_fac.m”

The function “range_red_factor.m” implements Eqs. (1.90) and (1.91); it is 
given in Listing 1.10 in Section 1.8. This function generates plots of RRF ver
sus: (1) the radar operating frequency; (2) radar to jammer range; and (3) jam 
mer power. Its syntax is as follows:

range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)

where

Symbol Description Units Status

te radar effective temperature K input
pj jammer peak power KW input
gj jammer antenna gain dB input

g radar antenna gain on jammer dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input
rangej radar to jammer range Km input
lossj jammer losses dB input

The following values were used to produce Figs. 1.27 through 1.29.

te pj gj g freq bj rangej lossj
730K 150KW 3dB 40dB 10GHz 1MHz 400Km 1dB
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1.27. Range reduction factor versus radar operating wavelength. This 
plot was generated using the function “range_red_factor.m”.

R a d a r  to  j a m m e r  ra n ge  - Km

Figure 1.28. Range reduction factor versus radar to jammer range. This 
plot was generated using the function “range_red_factor.m”.
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Figure 1.29. Range reduction factor versus jammer peak power. This plot was 
generated using the function “range_red_factor.m”.

1.6.5. Bistatic Radar Equation

Radar systems that use the same antenna for both transmitting and receiving 
are called monostatic radars. Bistatic radars use transmit and receive antennas 
that are placed in different locations. Under this definition CW radars, although 
they use separate transmit and receive antennas, are not considered bistatic 
radars unless the distance between the two antennas is considerable. Figure 
1.30 shows the geometry associated with bistatic radars. The angle, в , is 
called the bistatic angle. A synchronization link between the transmitter and 
receiver is necessary in order to maximize the receiver’s knowledge of the 
transmitted signal so that it can extract maximum target information.

The synchronization link may provide the receiver with the following infor
mation: (1) the transmitted frequency in order to compute the Doppler shift; 
and (2) the transmit time or phase reference in order to measure the total scat
tered path (Rt + R r ). Frequency and phase reference synchronization can be 
maintained through line-of-sight communications between the transmitter and 
receiver. However, if  this is not possible, the receiver may use a stable refer
ence oscillator for synchronization.
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Figure 1.30. Bistatic radar geometry.

One major distinction between monostatic and bistatic radar operations has 
to do with the measured bistatic target RCS, denoted by a B . In the case of a 
small bistatic angle, the bistatic RCS is similar to the monostatic RCS: but, as 
the bistatic angle approaches 180°, the bistatic RCS becomes very large and 
can be approximated by

4n A .
^ b » т  (1-92)max

where X is the wavelength and A t is the target projected area.

The bistatic radar equation can be derived in a similar fashion to the mono
static radar equation. Referring to Fig. 1.30, the power density at the target is

P tG t
P d = - H -  (1-93)

4n R t

where P t is the peak transmitted power, G t is the gain of the transmitting 
antenna, and R t is the range from the radar transmitter to the target.

The effective power scattered off a target with bistatic RCS a B is

P ' = P d^B (1-94)

and the power density at the receiver antenna is

P ' P  D °B  
P refl = ------- = - £ - B (1-95)

4 n R . 4nR .
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where R r is the range from the target to the receiver. Substituting Eq. (1.93) 
into Eq. (1.95) yields

P tGt o B
P refl = V  2B 2 (1'96)

f (4 n )2 Rt Rr

The total power delivered to the signal processor by a receiver antenna with 
aperture A e is

P tG tc BA e
PDr = t 2 B "2 (197)

(4 n) R tR l
2

Substituting ( GrX / 4n) for A e yields

P tG tG r X2c B
PDr = - 3 2 2B (1-98)

(4 n) R tRj.

where Gr is gain of the receive antenna. Finally, when transmitter and receiver 
losses, Lt and Lr , are taken into consideration, the bistatic radar equation can 
be written as

2
P tG tG r X c B

PDr = ----- 13 t2 r2 BB (1-99)
(4n ) RtRrLtL rLp

where Lp is the medium propagation loss.

1.7. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely propor
tional to the radar losses. Hence, any increase in radar losses causes a drop in 
the SNR, thus decreasing the probability of detection, since it is a function of 
the SNR. Often, the principal difference between a good radar design and a 
poor radar design is the radar losses. Radar losses include ohmic (resistance) 
losses and statistical losses. In this section we w ill briefly summarize radar 
losses.

1.7.1. Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna 
input port, and between the antenna output port and the receiver front end, 
respectively. Such losses are often called plumbing losses. Typically, plumbing 
losses are on the order of 1 to 2 dBs.
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1.7.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna 
gain. This is true only if the target is located along the antenna’s boresight axis. 
However, as the radar scans across a target the antenna gain in the direction of 
the target is less than maximum, as defined by the antenna’s radiation pattern. 
The loss in the SNR due to not having maximum antenna gain on the target at 
all times is called the antenna pattern (shape) loss. Once an antenna has been 
selected for a given radar, the amount of antenna pattern loss can be mathemat
ically computed.

For example, consider a sinx/x  antenna radiation pattern as shown in Fig.
1.31. It follows that the average antenna gain over an angular region of ±0/2 
about the boresight axis is

g „ - 1 -  ( ? ) 20б a - )

where r  is the aperture radius and X is the wavelength. In practice, Gaussian 
antenna patterns are often adopted. In this case, if  0 3dB denotes the antenna 
3dB beam width, then the antenna gain can be approximated by

G (0)  = exp 2 .7760^
0203dB

(1.101)

A a n g l e  - r a d i a n s

Figure 1.31. Normalized (sin x / x) antenna pattern.
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If the antenna scanning rate is so fast that the gain on receive is not the same 
as on transmit, additional scan loss has to be calculated and added to the beam 
shape loss. Scan loss can be computed in a similar fashion to beam shape loss. 
Phased array radars are often prime candidates for both beam shape and scan 
losses.

1.7.3. Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later 
chapter. Atmospheric attenuation is a function of the radar operating frequency, 
target range, and elevation angle. Atmospheric attenuation can be as high as a 
few dBs.

1.7.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target 
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The 
collapsing loss factor is defined as

n + m
Pc = -------  (1-102)c n

where n is the number of pulses containing both signal and noise, while m is 
the number of pulses containing noise only. Radars detect targets in azimuth, 
range, and Doppler. When target returns are displayed in one coordinate, such 
as range, noise sources from azimuth cells adjacent to the actual target return 
converge in the target vicinity and cause a drop in the SNR. This is illustrated 
in Fig. 1.32.

Figure 1.32. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5 
converge to increase the noise level in cell 3.
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1.7.5. Processing Losses

a. Detector Approximation:

The output voltage signal of a radar receiver that utilizes a linear detector is

where (vI, vq) are the in-phase and quadrature components. For a radar using 
a square law detector, we have v ( t) = vI ( t) + vq ( t) .

Since in real hardware the operations of squares and square roots are time 
consuming, many algorithms have been developed for detector approximation. 
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss:

In many cases the radar detection threshold is constantly adjusted as a func
tion of the receiver noise level in order to maintain a constant false alarm rate. 
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in 
order to keep the number of false alarms under control in a changing and 
unknown background of interference. CFAR processing can cause a loss in the 
SNR level on the order of 1 dB.

Three different types of CFAR processors are primarily used. They are adap
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference.

c. Quantization Loss:

Finite word length (number of bits) and quantization noise cause an increase 
in the noise power density at the output of the Analog to Digital (A/D) con
verter. The A/D noise level is q / 12, where q is the quantization level.

d. Range Gate Straddle:

The radar receiver is normally mechanized as a series of contiguous range 
gates (bins). Each range bin is implemented as an integrator matched to the 
transmitted pulse width. Since the radar receiver acts as a filter that smears 
(smooths), the received target echoes. The smoothed target return envelope is 
normally straddled to cover more than one range gate.

Typically, three gates are affected; they are called the early, on, and late 
gates. If a point target is located exactly at the center of a range gate, then the
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early and late samples are equal. However, as the target starts to move into the 
next gate, the late sample becomes larger while the early sample gets smaller. 
In any case, the amplitudes of all three samples should always roughly add up 
to the same value. Fig. 1.33 illustrates the concept of range straddling. The 
envelope of the smoothed target echo is likely to be Gaussian shape. In prac
tice, triangular shaped envelopes may be easier and faster to implement.

( a )  T a r g e t  on  the  c e n te r  o f  a r a n g e  g a t e .

ec h o  en v e lo p e

Figure 1.33. Illustration of range gate straddling.

Since the target is likely to fall anywhere between two adjacent range bins, a 
loss in the SNR occurs (per range gate). More specifically, a target’s returned 
energy is split between three range bins. Typically, straddle loss of about 2 to 3 
dBs is not unusual.

Example 1 .7 : Consider the smoothed target echo voltage shown below. 
Assume 1Q resistance. Find the pow er loss due to range gate straddling over 
the interval {0, t}  .
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Solution: The smoothed voltage can be written as

v ( t)

K  +

K -

(K  + П
( — ) t ;t < 0 

(K  + n
( — j . ;t >0

The pow er loss due to straddle over the interval { 0, t}  is

Ls = ^  = 1 -K2

The average pow er loss is then

t/2

2 (  K - )  t + ( W ) 313

Ls J (  1 -  2 ( -K i ) t  + ( -- T - ) 2t3)  d.

= 1 - K-+1 , C - '+ l)2
2K 12 K 2

and, for example, if  K  = 15, then Ls = 2.5dB  .

e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case 
the Doppler filter spectrum is spread (widened) due to weighting functions. 
Weighting functions are normally used to reduce the side lobe levels. Since the 
target Doppler frequency can fall anywhere between two Doppler filters, signal 
loss occurs. This is illustrated in Fig. 1.34, where due to weighting, the cross
over frequency f co is smaller than the filter cutoff frequency f c which nor
mally corresponds to the 3dB power point.

2

0
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e f f e c t i v e f co = cross  + ver f r eque ncy

D o p p le r  f il te rs  b e fo re  w i n d o w in g

effec tive  
1 b a n d w i d t h  '

crossover frequency = f ci 

cutoff frequency = f c

Figure 1.34. Due to windowing, the crossover frequency may become smaller 
than the cutoff frequency.

1.7.6. Other Losses

Other losses m ay include equipment losses due to aging radar hardware, 
matched filter loss, and antenna efficiency loss. Tracking radars suffer from  
crossover (squint) loss (see Chapter 11).

1.8. MATLAB Program and Function Listings

This section presents listings fo r all M A T LA B  functions and program s used 
in this chapter. U sers are encouraged to va ry  the input param eters and rerun 
these program s in order to enhance their understanding o f the theory presented  
in the text. A ll selected parameters and variables fo llo w  the same naming nota
tion used in the text, thus, understanding the structure and hierarchy o f the pre
sented code should be an easy task once the user has read the theory.

For alm ost each M A T L A B  function or program  provided in this book, there 
is a companion file  designated as “filenam e_driver.m ”. These “driver” files 
utilize M AT LAB -based G raphical U ser Interface (GUI). For exam ple, the
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companion “d river” file for the function “lprf_req.m” is “lprf_req_driver.m”. 
When a “d river” file is executed, it opens a GUI work space which can be 
used by the user to enter values to parameters and produce the relevant plots. 
Figure 1.35 shows the GUI work space for the function “lprf_req_driver.m”. 
Note that all MATLAB programs and functions developed in this book can be 
downloaded from CRC Press Web Site “www.crcpress.com”.

40

■20 I-----------1---------- 1-----------1-----------1-----------1-----------1-----------1-----------
0 50 100 150 200 250 300 350 400 

Range - Km

pt-KW 1.0e6 Te • Kelvin 400 R-Km 250.

frequency - Hz 5.6e9 В -Hz 5e6 I  PRF- Hz 100

G - dB 40. F-dB 3. np - none 10

RCS - m2 0.1 L-dB 1.

Figure 1.35 GUI work space related to the function “lprf_req.m”. Note 
that this GUI was designed on a Windows 98 Personal 
Computer (PC) using MATLAB 5 - Release 11 and thus, it 
may appear different on Apple or Unix based machines, 
or PC systems using earlier versions of MATLAB.
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Listing 1.1. MATLAB Function “pulse_train.m”
function [dt, prf, pav, ep, ru] = pulse_train(tau, pri, p_peak)
% This function is described in Section 1.2.
c = 3.0e+8;
dt = tau / pri;
prf = 1. / pri;
pav = p_peak *  dt;
ep = p_peak * tau;
ru = 1.0e-3 * c * pri / 2.0;
return

Listing 1.2. MATLAB Function “range_resolutio.m”
function [delta_R] = range_resolution(bandwidth,indicator)
% This function computes radar range resolution in meters 
% the bandwidth must be in Hz ==> indicator = Hz.
% Bandwidth may be equal to (1/pulse width)==> indicator = seconds 
c = 3.e+8; 
if(indicator == 'hz') 

delta_R = c / (2.0 * bandwidth); 
else

delta_R = c * bandwidth / 2.0; 
end 
return

Listing 1.3. MATLAB Function “doppler_freq.m”
function [fd, tdr] = doppler_freq(freq, ang, tv, indicator)
% This function computes Doppler frequency and time dilation factor ratio 
% tau_prime / tau 
format long 
c = 3.0e+8;
ang_rad = ang * pi /180.; 
lambda = c / freq; 
if (indicator == 1) 

fd = 2.0 * tv * cos(ang_rad) / lambda; 
tdr = (c - tv) / (c + tv); 

else
fd = -2.0 * c * tv * cos(and_rad) / lambda; 
tdr = (c + tv) / (c -tv); 

end 
return

Listing 1.4. MATLAB Function “radar_eq.m”
function [out_par] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, input_par, option, 

rcs_delta1, rcs_delta2, pt_percent1, pt_percent2)
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% This function implements Eq. (1.161). Parameters description is in Section 1.6. 
c = 3.0e+8; 
lambda = c / freq; 
p_peak = base10_to_dB(pt); 
lambda_sq = lambdaA2; 
lambda_sqdb = base10_to_dB(lambda_sq); 
sigmadb = base10_to_dB(sigma); 
for_pi_cub = base10_to_dB((4.0 * pi)A3); 
k_db = base10_to_dB(1.38e-23); 
te_db = base10_to_dB(te) 
b_db = base10_to_dB(b); 
if (option == 1) 

temp = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - input_par; 

out_par = dB_to_base10(temp)A(1/4)
% calculate sigma(+-)10dB (rcs +- rcs_delta1,2) 
sigmap = rcs_delta1 + sigmadb; 
sigmam = sigmadb - rcs_delta2.;
% calculate.pt_percent1 * pt and pt_percent2% * pt 
pt05 = p_peak + base10_to_dB(pt_percent1); 
pt200 = p_peak + base10_to_dB(pt_percent2); 
index = 0 ;
% vary snr from.5 to 1.5 o f default value 
for snrvar = input_par*.5: 1: input_par*1.5

index = index + 1;
range1(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...

sigmam - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0;

range2(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ....
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0 ;

range3(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
sigmap - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0 ;

end
index = 0 ;
for snrvar = input_par*.5: 1: input_par*1.5;

index = index + 1;
rangp1(index) = dB_to_base10(pt05 + 2. * g + lambda_sqdb + ...

sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0 ;

rangp2(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0 ;

rangp3(index) = dB_to_base10(pt200 + 2. * g + lambda_sqdb + ...
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ... 
л(1/4) / 1000.0 ;

end
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snrvar = input_par*.5: 1: input_par*1.5; 
figure (1) 
subplot (2,1,1)
plot (snrvar,range2,snrvar,range1,snrvar,range3) 
legend ('default RCS','RCS-rcs_delta1','RCS+rcs_delta2') 
xlabel ('Minimum SNR required for detection - dB'); 
ylabel ('Detection range - Km');
%title ('Plots correspond to input parameters from example 1.4'); 
subplot (2,1,2)
plot (snrvar,rangp2,snrvar,rangp1,snrvar,rangp3) 
legend ('default power','.pt_percent1*pt', 'pt_percent2*pt') 
xlabel ('Minimum SNR required for detection - dB'); 
ylabel ('Detection range - Km') 

else
range_db = base10_to_dB(input_par * 1000.0); 
out_par = p_peak + 2. * g + lambda_sqdb + sigmadb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db 
% calculate sigma -- rcs_delta1,2 dB 
sigma5 = sigmadb - rcs_delta1; 
sigma10 = sigmadb - rcs_delta2;
% calculate pt_percent1% * pt and pt_percent2*pt 
pt05 = p_peak + base10_to_dB(pt_percent1); 
pt200 = p_peak + base10_to_dB(pt_percent2); 
index = 0 ;
% vary snr from .5 to 1.5 o f default value 
for rangvar = input_par*.5 : 1 : input_par*1.5 

index = index + 1;
var = 4.0 * base10_to_dB(rangvar * 1000.0); 
snr1(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - var; 
snr2(index) = p_peak + 2. * g + lambda_sqdb + sigma5 - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - var; 
snr3(index) = p_peak + 2. * g + lambda_sqdb + sigma10 - ... 

for_pi_cub - k_db - te_db - b_db - nf - loss - var;
end
index = 0 ;
for rangvar = input_par*.5 : 1 : input_par*1.5; 

index = index + 1;
var = 4.0 * base10_to_dB(rangvar * 1000.0); 
snrp1(index) = pt05 + 2. * g + lambda_sqdb + sigmadb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - var; 
snrp2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - var; 
snrp3(index) = pt200 + 2. * g + lambda_sqdb + sigmadb - ... 

for_pi_cub - k_db - te_db - b_db - nf - loss - var;
end

end
rangvar = input_par*.5 : 1 : input_par*1.5;

© 2000 by Chapman & Hall/CRC



figure (2) 
subplot (2,1,1)
plot (rangvar,snr1,rangvar,snr2,rangvar,snr3) 
legend ('default RCS','RCS-rcs_delta1','RCS-rcs_delta2') 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB');
%title ('Plots correspond to input parameters from example 1.4'); 
subplot (2,1,2)
plot (rangvar,snrp2,rangvar, snrp1,rangvar, snrp3) 
legend ('default power','.pt_percent1*pt','pt_percent2*pt') 
xlabel ('Detection range - Km'); 
ylabel ('SNR - dB');

Input file  “radar_reqi.m”

% Use this input file to reproduce Fig. 1.18  
clear all 
pt = 1.5e+6; 
freq = 5.6e+9; 
g = 45.0; 
sigma = 0 .1; 
te = 290.0; 
b = 5.0e+6; 
nf = 3.0; 
loss = 0.0 ; 
option = 1;

input_par = 20; 
rcs_delta1 = 5.0; 
rcs_delta2 =10.0 ; 
pt_percent1 = 0.5; 
pt_percent2 =2.0 ;

% peak power in Watts 
% radar operating frequency in Hz 
% antenna gain in dB 
% radar cross section in m square 
% effective noise temperature in Kelvins 
% radar operating bandwidth in Hz 
% noise figure in dB 
% radar losses in dB 
% 1 ===> input_par = SNR in dB 
% 2 ===> input_par = Range in Km

% rcs variation choice 1 
% rcs variation choice2 
% peak power variation choice 1 
% peak power variation choice 2

Listing 1.5. MATLAB Function “lprf_req.m”
function [snr_out] = lprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta, 

pt_percent, np1, np2)
% This program implements the LOW PRF radar equation.
c = 3.0e+8;
lambda = c / freq;
p_peak = base10_to_dB(pt);
lambda_sq = lambdaЛ2;
lambda_sqdb = base10_to_dB(lambda_sq);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)л3);
k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te)
b_db = base10_to_dB(b);

© 2000 by Chapman & Hall/CRC



np_db = base10_to_dB(np);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.65)
snr_out = p_peak + 2. * g + lambda_sqdb + sigmadb + np_db - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db 
% Generate plots in Fig. 1.19 
index = 0; 
n1 = np_db;
n2 = base10_to_dB(np1); 
n3 = base10_to_dB(np2) 
for range_var = 25:5:400 % 25 - 400 Km 

index = index + 1;
rangevar_db = base10_to_dB(range_var * 1000.0); 
snr1(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n1 - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db; 
snr2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n2 - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db; 
snr3(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n3 - ... 

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
end
figure(1) 
var = 25:5:400;
plot(var,snr1,'k',var,snr2,'k--',var,snr3,'k--.') 
legend('np = 1','np1','np2') 
xlabel ('Range - Km'); 
ylabel ('SNR - dB');
%title ('np = 1, np1 = 10, np2 =100');
% Generate plots in Fig. 1.20
sigma5 = sigmadb - rcs_delta.;
pt05 = p_peak + base10_to_dB(pt_percent);
index = 0;
for nvar = 1:10:500 % 500 pulses 

index = index + 1; 
ndb = base10_to_dB(nvar);
snrs(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db; 
snrs5(index) = p_peak + 2. * g + lambda_sqdb + sigma5 + ndb - ... 

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
index = 0;
for nvar = 1:10:500 % 500 pulses 

index = index + 1; 
ndb = base10_to_dB(nvar);
snrp(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db; 
snrp5(index) = pt05 + 2. * g + lambda_sqdb + sigmadb + ndb - ... 

for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
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nvar =1:10:500; 
figure (2) 
subplot (2,1,1)
plot (nvar,snrs,'k',nvar,snrs5,'k --') 
legend ('default RCS','RCS-delta') 
xlabel ('Number of coherently integrated pulses'); 
ylabel ('SNR - dB');
%title ('delta = 10, percent = 2'); 
subplot (2,1,2)
plot (nvar,snrp,'k',nvar,snrp5,'k --') 
legend ('default power','pt * percent') 
xlabel ('Number of coherently integrated pulses'); 
ylabel ('SNR - dB');

Input file  “lprf_reqi.m”

% Use this input file to reproduce Fig.s 1.19 and 1.20
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0 .1; % radar cross section in m square
te = 290.0; % effective noise temperature in Kelvins
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; % noise figure in dB
loss = 0.0; % radar losses in dB
np = 1; % 1 number of coherently integrated pulses
prf = 100 ; % PRF in Hz
range = 250.0; % target range in Km
np1 = 10; % choice 1 o f np
np2 = 100; % choice 2 o f np
rcs_delta = 10.0 ; % rcs variation
pt_percent = 2.0; % pt variation

Listing 1.6. MATLAB Function “hprf_req.m”
function [snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dt1, 

dt2)
% This program implements the High PRF radar equation. 
c = 3.0e+8; 
lambda = c / freq;
% Compute the duty cycle 
if (dt == 0) 

dt = tau * prf; 
end
pav_db = base10_to_dB(pt * dt); 
lambda_sqdb = base10_to_dB(lambdaЛ2); 
sigmadb = base10_to_dB(sigma); 
for_pi_cub = base10_to_dB((4.0 * pi^3);
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k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te);
ti_db = base10_to_dB(ti);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.69)
snr_out = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...

for_pi_cub - k_db - te_db - nf - loss - 4.0 * range_db 
% Generate Plots in Figure 1.21 
index = 0;
pav10 = base10_to_dB(pt *dt1); 
pav20 = base10_to_dB(pt * dt2); 
for range_var = 10:1:100 

index = index + 1;
rangevar_db = base10_to_dB(range_var * 1000.0);
snr1(index) = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...

for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db; 
snr2(index) = pav10 + 2. * g + lambda_sqdb + sigmadb + ti_db - ...

for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db; 
snr3(index) = pav20 + 2. * g + lambda_sqdb + sigmadb + ti_db - ... 

for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
end
figure (1) 
var = 10:1:100;
plot (var,snr1,'k',var,snr2,'k--',var,snr3,'k:') 
grid
legend ('dt','dt1,'dt2') 
xlabel ('Range - Km'); 
ylabel ('SNR - dB');
%title ('dt = 30%, dt1 = 5%, dt2 = 20%');

Input file  “hprf_reqi.m”

% Use this input file to reproduce Fig. 1.21 
clearall
pt = 100.0e+3; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 20.0; % antenna gain in dB
sigma = 0 .01; % radar cross section in m square
ti = 2.0 ; % time on target in seconds
dt = 0.3; % radar duty cycle
%%%%%%%%%%%% enter dt = 0 when PRF and Tau are given %%%%%  
prf = 0.0; % PRF
%%%%%%%%%%%% enter fr = 0 when duty cycle is known %%%% 
tau = 0 .0 ; % pulse width in seconds
%%%%%%%%%%%% enter tau = 0 when duty cycle is known %%%% 
te = 400.0; % effective noise temperature in Kelvins
nf = 5.0; % noise figure in dB
loss = 8.0; % radar losses in dB
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range =50.0; % target range in Km 
dt1 = 0.05; 
dt2 = 0 .2;

Listing 1.7. MATLAB Function “power_aperture_req.m”
function [p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt,

range, te, nf, loss, az_angle, el_angle, g, rcs_delta1, rcs_delta2) 
% This program implements the search radar equation. 
c = 3.0e+8;
% Compute Omega in steraradians 
omega = (az_angle / 57.23) * (el_angle /57.23); 
omega_db = base10_to_dB(omega); 
lambda = c / freq;
lambda_sqdb = base10_to_dB(lambdaЛ2);
sigmadb = base10_to_dB(sigma);
k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te);
tsc_db = base10_to_dB(tsc);
factor = base10_to_dB(16.0);
range_db = base10_to_dB(range * 1000.);
p_a_p = snr - sigmadb - tsc_db + factor + 4.0 * range_db + ...

k_db + te_db + nf + loss + omega_db 
aperture = g + lambda_sqdb - base10_to_dB(4.0 * pi) 
pav = p_a_p - aperture; 
pav = dB_to_base10(pav) / 1000.0 
pt = pav / dt
% Calculate sigma(+-) rcs_delta1,2 dB 
sigmap = rcs_delta1 + sigmadb; 
sigmam = sigmadb - rcs_delta2.; 
index = 0;
% vary range from 10% to 200% of input range 
for rangevar = range*.1 : 1 : range*2.0 

index = index + 1;
rangedb = base10_to_dB(rangevar * 1000.0);
pap1(index) = snr - sigmadb - tsc_db + factor + 4.0 * rangedb + ...

k_db + te_db + nf + loss + omega_db; 
papm(index) = snr - sigmam - tsc_db + factor + 4.0 * rangedb + ...

k_db + te_db + nf + loss + omega_db; 
papp(index) = snr - sigmap - tsc_db + factor + 4.0 * rangedb + ... 

k_db + te_db + nf + loss + omega_db;
end
var = range*.1 : 1 : range*2.0 ; 
figure (1)
plot (var,pap1,'k',var,papm,'k --',var,papp,'k:') 
legend ('default RCS','RCS-delta1','RCS+1delta2') 
xlabel ('Range - Km'); 
ylabel ('Power aperture product - dB');
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%title ('delta1 = 10dBsm, delta2 = 10dBsm'); 
index = 0;
% Vary aperture from 2 msq to 50 msq 
for apervar = 2:1:50  

aperdb = base10_to_dB(apervar); 
index = index +1; 
pav = p_a_p - aperdb; 
pav = dB_to_base10(pav) / 1000.0; 
pt(index) = pav / dt; 

end
figure (2) 
apervar = 2:1:50; 
plot (apervar, pt,'k') 
grid
xlabel ('Aperture in squared meters') 
ylabel ('Peak power - Kw')

Input file  “power_aperture_reqi.m”

% Use this input file to reproduce plots in Fig. 1.24 
clear all 
snr = 15.0; 
freq = 10.0e+9; 
tsc = 2.5; 
sigma = 0 .1; 
dt = 0.3; 
range = 250.0; 
te = 900.0; 
nf = 5.0; 
loss = 8.0 ; 
az_angle = 2.0 ; 
el_angle = 2.0 ; 
g = 45.0;
rcs_delta1 = 10.0 ; 
rcs_delta2 = 10.0 ;

Listing 1.8. MATLAB Program “ssj_req.m”
function [BR_range] = ssj_req (pt, g, freq, sigma, b, loss, ...

pj, bj, gj, lossj)
% This function implements Eq.s (1.76) through (1.80) 
c = 3.0e+8; 
lambda = c / freq;
lambda_db = base10_to_dB(lambdaЛ2); 
if (loss = = 0 .0) 

loss = 0 .000001; 
end
if (lossj = = 0 .0)

% sensitivity SNR in dB 
% radar operating frequency in Hz 
% antenna scan time in seconds 
% radar cross section in m square 
% radar duty cycle 
% sensitivity range in Km 
% effective noise temperature in Kelvins 
% noise figure in dB 
% radar losses in dB
% search volume azimuth extent in degrees 
% search volume elevation extent in degrees 
% antenna gain in dB
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lossj = 0.000001; 
end
% Compute Omega in steraradians 
sigmadb = base10_to_dB(sigma); 
pt_db = base10_to_dB(pt); 
b_db = base10_to_dB(b); 
bj_db = base10_to_dB(bj); 
pj_db = base10_to_dB(pj); 
factor = base10_to_dB(4.0 *pi);
BR_range = sqrt((pt * (dB_to_base10(g)) * sigma * bj * (dB_to_base10(lossj))) / . 

(4.0 * pi * pj * (dB_to_base10(gj)) * b * ...
(dB_to_base10(loss)))) / 1000.0 

s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...
3.0 * factor - 4.* base10_to_dB(BR_range) - loss 

% prepare to plot Figure 1.25
index =0 ;
for ran_var = .1:10:10000 

index = index + 1;
ran_db = base10_to_dB(ran_var * 1000.0);
ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - ...

2.0 * ran_db - bj_db - lossj + s_at_br ;
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...

3.0 * factor - 4.* ran_db - loss + s_at_br ;
end
ranvar = .1:10:10000; 
ranvar = ranvar ./ BR_range; 
semilogx (ranvar,s ,'k',ranvar, ssj,'k-.');
% axis([.1 1000 -90 40]); % This line is specific to Fig. 1.25 
xlabel ('Range normalized to cross-over range'); 
legend ('Target echo','SSJ')
ylabel ('Relative signal or jamming amplitude - dB'); 
grid

Input file  “ssj_reqi.m”

% Use this input file to reproduce Fig. 1.25 
clear all
pt = 50.0e+3; % peak power in Watts
g = 35.0; % antenna gain in dB
freq = 3.2e+9; % radar operating frequency in Hz
sigma = 10.0 ; % radar cross section in m square
b = 667.0e+3; % radar operating bandwidth in Hz
loss = 0.000; % radar losses in dB
pj = 200.0; % jammer peak power in Watts
bj = 50.0e+6; % jammer operating bandwidth in Hz
gj = 10.0; % jammer antenna gain in dB
lossj = 0.0; % jammer losses in dB
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Listing 1.9. MATLAB Program “soj_req.m”
function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...

pj, bj,gj, lossj, gprime, rangej)
% This function implements equations for SOJs 
c = 3.0e+8; 
lambda = c / freq;
lambda_db = base10_to_dB(lambdaЛ2) 
if (loss == 0.0) 

loss = 0 .000001; 
end
if (lossj == 0 .0) 

lossj =0 .000001; 
end
% Compute Omega in steraradians
sigmadb = base10_to_dB(sigma);
range_db = base10_to_dB(range * 1000.);
range_db = base10_to_dB(rangej * 1000.);
pt_db = base10_to_dB(pt);
b_db = base10_to_dB(b);
bj_db = base10_to_dB(bj);
pj_db = base10_to_dB(pj);
factor = base10_to_dB(4.0 *pi);
BR_range = ((pt * dB_to_base10(2.0*g) * sigma * bj * dB_to_base10(lossj) * ... 

(rangej^2) / (4.0 * pi * pj * dB_to_base10(gj) * dB_to_base10(gprime) * ... 
b * dB_to_base10(loss))^.25 / 1000.

%* (dB_to_base10(16)л.25)
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...

3.0 * factor - 4.0 * base10_to_dB(BR_range) - loss 
% prepare to plot Figure 1.27 

index =0 ;
for ran_var = .1:1:1000; 

index = index + 1;
ran_db = base10_to_dB(ran_var * 1000.0); 
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...

3.0 * factor - 4.0 * ran_db - loss + s_at_br; 
soj(index) = s_at_br - s_at_br; 

end
ranvar = .1:1:1000;
%ranvar = ranvar ./BR_range; 
semilogx (ranvar,s,'k',ranvar,soj,'k-.'); 
xlabel ('Range normalized to cross-over range'); 
legend ('Target echo','SOJ')
ylabel ('Relative signal or jamming amplitude - dB');
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Input file “soj_reqi.m’

% Use this input file to reproduce Fig. 1.26 
clear all 
pt = 50.0e+3; 
g = 35.0; 
freq = 3.6e+9; 
sigma = 10 ; 
b = 667.0e+3; 
range = 20*1852; 
gprime = 10.0 ; 
loss = 0.01; 
rangej = 12*1852; 
pj = 5.0e+3; 
bj = 50.0e+6; 
gj = 30.0; 
lossj = 0 .01 ; 
rangej = 12*1852;

% peak power in Watts 
% antenna gain in dB 
% radar operating frequency in Hz 
% radar cross section in m square 
% radar operating bandwidth in Hz 
% radar to target range 
% radar antenna gain on jammer 
% radar losses in dB 
% range to jammer in Km 
% jammer peak power in Watts 
% jammer operating bandwidth in Hz 
% jammer antenna gain in dB 
% jammer losses in dB 
% range to jammer in Km

Listing 1.10. MATLAB Function “range_red_factor.m”
function RRF = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produce
% plots of RRF versus wavelength, radar to jammer range, and jammer power
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
gj_10 = dB_to_base10(gj);
g_10 = dB_to_base10(g);
lossj_10 = dB_to_base10(lossj);
index = 0;
for wavelength = .01:.001:1 

index = index +1;
jamer_temp = (pj * gj_10 * g_10 *wavelengthл2) / ...

(4.0Л2 * piл2 * k * bj * lossj_10 * (rangej * 1000.0)Л2); 
delta = 10.0 * log10(1.0 + (jamer_temp / te)); 
rrf(index) = 10Л(-delta /40.0); 

end
w = 0.01:.001:1; 
figure (1) 
semilogx (w,rrf,'k') 
grid
xlabel ('Wavelength in meters') 
ylabel ('Range reduction factor') 
index = 0;
for ran =rangej*.3:1:rangej*2 

index = index + 1;
jamer_temp = (pj * gj_10 * g_10 *wavelengthл2) / ...
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(4.0Л2 * p^ 2  * k * bj * lossj_10 * (ran * 1000.0)Л2); 
delta = 10.0 * log10(1.0 + (jamer_temp / te)); 
rrf1(index) = 10Л(-delta /40.0); 

end
figure(2)
ranvar = rangej*.3:1:rangej*2 ;
plot (ranvar,rrf1,'k')
grid
xlabel ('Radar to jammer range - Km') 
ylabel ('Range reduction factor') 
index = 0;
for pjvar = pj *.01:1:pj*2 

index = index + 1;
jamer_temp = (pjvar * gj_10 * g_10 *wavelengthл2) / ...

(4.0Л2 * p^ 2  * k * bj * lossj_10 * (rangej * 1000.0)Л2); 
delta = 10.0 * log10(1.0 + (jamer_temp / te)); 
rrf2(index) = 10Л(-delta /40.0); 

end
figure(3)
pjvar = pj *.01:1:pj *2; 
plot (pjvar,rrf2,'k') 
grid
xlabel ('Jammer peak power - Watts') 
ylabel ('Range reduction factor')

Input file  “range_red_factori.m”

% Use this input file to reproduce Fig.s 1.27 through 1.29 
clear all 
te = 500.0; 
pj = 500; 
gj = 3.0; 
g = 45.0; 
freq = 10.0e+9; 
bj = 10.0e+6; 
rangej = 750.0; 
lossj = 1.0 ;

Problems
1 . 1 .  (a) Calculate the maximum unambiguous range for a pulsed radar with 
PRF of 200Hz and 750H z ; (b) What are the corresponding PRIs?
1 . 2 .  For the same radar in Problem 1.1, assume a duty cycle of 30% and 
peak power of 5 K W . Compute the average power and the amount of radiated 
energy during the first 2 0 m s .

% radar effective temperature in Kelvin 
% jammer peak power in W  
% jammer antenna gain in dB 
% radar antenna gain 
% radar operating frequency in Hz 
% radar operating bandwidth in Hz 
% radar to jammer range in Km 
% jammer losses in dB
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1 . 3 .  A certain pulsed radar uses pulse width т = 1 |j.s. Compute the corre
sponding range resolution.
1 . 4 .  An X-band radar uses PRF of 3 K H z . Compute the unambiguous 
range, and the required bandwidth so that the range resolution is 30 m . What is 
the duty cycle?
1 . 5 .  Compute the Doppler shift associated with a closing target with veloc
ity 100, 200, and 350 meters per second. In each case compute the time dilation 
factor. Assume that X = 0 .3m .

1 . 6 .  A certain L-band radar has center frequency 1.5 G H Z , and PRF
f r = 10KHz. What is the maximum Doppler shift that can be measured by 
this radar?
1 . 7 .  Starting with a modified version of Eq. (1.27), derive an expression for 
the Doppler shift associated with a receding target.
1 . 8 .  In reference to Fig. 1.16, compute the Doppler frequency for 
v = 150m/s , 0 a = 30°, and 0 e = 15° . Assume that X = 0.1m .

1 . 9 .  A pulsed radar system has a range resolution of 30cm  . Assuming sinu
soid pulses at 45K H z, determine the pulse width and the corresponding band
width.
1 . 1 0 .  (a) Develop an expression for the minimum PRF of a pulsed radar; (b) 
compute f  for a closing target whose velocity is 400m / s ; (c) what is the

unambiguous range? Assume that X = 0 .2m .
1 . 1 1 .  An L-band pulsed radar is designed to have an unambiguous range of 
100Km and range resolution AR < 100m . The maximum resolvable Doppler 
frequency corresponds to vtarget < 350m /  sec. Compute the maximum required 

pulse width, the PRF, and the average transmitted power if P t = 500 W .

1 . 1 2 .  Compute the aperture size for an X-band antenna at f 0 = 9 G H z . 

Assume antenna gain G  = 10, 20, 30 d B .
1 . 1 3 .  An L-band radar (1500 MHz) uses an antenna whose gain is
G  = 30dB . Compute the aperture size. If the radar duty cycle is dt = 0.2

and the average power is 25KW , compute the power density at range 
R = 50Km.
1 . 1 4 .  For the radar described in Problem 1.13, assume the minimum detect
able signal is 5dBm  . Compute the radar maximum range for

a  = 1.0, 10.0, 20.0m .
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1 . 1 5 .  Consider an L-band radar with the following specifications: operating 
frequency f 0 = 1500M H z , bandwidth B = 5 M H z , and antenna gain

G = 5000 . Compute the peak power, the pulse width, and the minimum
2

detectable signal for this radar. Assume target RCS a  = 10m , the single 
pulse SNR is 15.4dB , noise figure F  = 5 d B , temperature T0 = 290K , and 

maximum range Rmax = 150Km.
2

1 . 1 6 .  Repeat Example 1.4 with P t = 1 M W , G  = 4 0d B , and a  = 0.5m .

1 . 1 7 .  Show that the DC component is the dominant spectral line for high 
PRF waveforms.
1 . 1 8 .  Repeat Example 1.5 with L = 5d B , F  = 10dB , T = 500K ,
Ti = 1.5 s , dt = 0 .25 , and R = 75K m .

1 . 1 9 .  Consider a low PRF C-band radar operating at f 0 = 5000M H z. The 

antenna has a circular aperture with radius 2m . The peak power is
P t = 1 M W  and the pulse width is т = 2 |j.s. The PRF is f r = 250H z, and 

the effective temperature is T0 = 600K . Assume radar losses L = 15 dB and
2

target RCS a  = 10m . (a) Calculate the radar’s unambiguous range; (b) cal
culate the range R0 that corresponds to SNR = 0d B ; (c) calculate the SNR at 

R = 0.75R0 .

1 . 2 0 .  The atmospheric attenuation can be included in the radar equation as 
another loss term. Consider an X-band radar whose detection range at 20Km 

includes a 0.25dB/Km  atmospheric loss. Calculate the corresponding detec
tion range with no atmospheric attenuation.
1 . 2 1 .  Let the maximum unambiguous range for a low PRF radar be Rmax. 

(a) Calculate the SNR at ( 1/2 )Rmax and ( 3/ 4 )Rmax. (b) If a target with
2

a  = 10m exists at R = ( 1/2 )Rmax, what should the target RCS be at 

R = ( 3 / 4 )Rmax so that the radar has the same signal strength from both tar
gets.
1 . 2 2 .  A M illi-Meter Wave (MMW) radar has the following specifications: 
operating frequency f 0 = 94 G H z , PRF f r = 15 K H z , pulse width

т = 0 .05m s, peak power P t = 10 W , noise figure F  = 5d B , circular 

antenna with diameter D = 0.254m , antenna gain G = 30dB , target RCS
2

a  = 1 m , system losses L = 8d B , radar scan time TSc = 3 s , radar angular
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coverage 200° , and atmospheric attenuation 3d B / K m . Compute the follow
ing: (a) wavelength X ; (b) range resolution AR ; (c) bandwidth B ; (d) the SNR 
as a function of range; (e) the range for which SNR = 15dB ; (f) antenna 
beam width; (g) antenna scan rate; (h) time on target; (i) the effective maxi
mum range when atmospheric attenuation is considered.

2
1 . 2 3 .  Repeat Example 1.5 with Q = 4 °, a  = 1 m , and R = 400K m .

1 . 2 4 .  Using Eq. (1.80), compute (as a function of BJ/ B ) the crossover 

range for the radar in Problem 1.22. Assume P J = 100W , GJ = 10d B , and 

LJ = 2d B .

1 . 2 5 .  Using Eq. (1.80), compute (as a function of BJ/ B ) the crossover 

range for the radar in Problem 1.22. Assume P J = 200W , GJ = 15d B , and 

LJ = 2d B . Assume G' = 12dB and RJ = 25K m .

1 . 2 6 .  A certain radar is subject to interference from an SSJ jammer. Assume 
the following parameters: radar peak power P t = 55 K W , radar antenna gain 

G = 30dB , radar pulse width т = 2 |j.s, radar losses L = 10d B , jammer 
power P J = 150W , jammer antenna gain GJ = 12d B , jammer bandwidth 

BJ = 50M H z , and jammer losses LJ = 1 dB . Compute the crossover range
2

for a 5m target.

1 . 2 7 .  A radar with antenna gain G  is subject to a repeater jammer whose 
antenna gain is G J . The repeater illuminates the radar with three fourths of the 
incident power on the jammer. (a) Find an expression for the ratio between the 
power received by the jammer and the power received by the radar; (b) what is

this ratio when G  = GJ = 200 and R/X = 105 ?

1 . 2 8 .  Using Fig. 1.30 derive an expression for R r . Assume 100% synchro
nization between the transmitter and receiver.
1 . 2 9 .  An X-band airborne radar transmitter and an air-to-air missile receiver 
act as a bistatic radar system. The transmitter guides the missile toward its tar
get by continuously illuminating the target with a CW signal. The transmitter 
has the following specifications: peak power P t = 4 K W ; antenna gain

G t = 25d B ; operating frequency f 0 = 9.5G H z . The missile receiver has the
2

following characteristics: aperture Ar = 0.01m ; bandwidth B = 750H z;
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noise figure F  = 7dB  ; and losses L r = 2 d B . Assume that the bistatic RCS is
2

a B = 3m . Assume R r = 35Km ; Rt = 17Km  . Compute the SNR at the 
missile.
1 . 3 0 .  Repeat the previous problem when there is 0.1 dB/Km  atmospheric 
attenuation.
1 . 3 1 .  Consider an antenna with a sinx/x  pattern. Let x = (n r sin0 )/X , 
where r  is the antenna radius, X is the wavelength, and 0 is the off-boresight 
angle. Derive Eq. (1.100). Hint: Assume small x , and expand sin x/x as an 
infinite series.
1 . 3 2 .  Compute the amount of antenna pattern loss for a phased array 
antenna whose two-way pattern is approximated by

f ( y ) = [ exp (-2 ln 2  (y / 03dB)2 ) ]4 

where 0 3dB is the 3dB beam width. Assume circular symmetry.

1 . 3 3 .  A certain radar has a range gate size of 30m . Due to range gate strad
dle, the envelope of a received pulse can be approximated by a triangular 
spread over three range bins. A target is detected in range bin 90. You need to 
find the exact target position with respect to the center of the range cell. (a) 
Develop an algorithm to determine the position of a target with respect to the 
center of the cell; (b) assuming that the early, on, and late measurements are, 
respectively, equal to 4 / 6 , 5 / 6 , and 1/ 6 , compute the exact target position.
1 . 3 4 .  Compute the amount of Doppler filter straddle loss for the filter 
defined by

H (f) = — -
1 + a

Assume half-power frequency f 3dB = 500Hz and crossover frequency 
f c = 350H z .
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Chapter 2 Radar Cross Section 
(RCS)

In Chapter 1, the term Radar Cross Section (RCS) was used to describe the 
amount of scattered power from a target towards the radar, when the target is 
illuminated by RF energy. At that time, RCS was referred to as a target-spe
cific constant. This was only a simplification and, in practice, it is rarely the 
case. In this chapter, the phenomenon of target scattering and methods of RCS 
calculation are examined. Target RCS fluctuations due to aspect angle, fre
quency, and polarization are presented. Radar cross section characteristics of 
some simple and complex targets are also introduced. The analysis of extended 
RCS due to volume and surface clutter w ill be explored in a later chapter.

2.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif
fracted or scattered in all directions when incident on a target. These scattered 
waves are broken down into two parts. The first part is made of waves that 
have the same polarization as the receiving antenna. The other portion of the 
scattered waves w ill have a different polarization to which the receiving 
antenna does not respond. The two polarizations are orthogonal and are 
referred to as the Principle Polarization (PP) and Orthogonal Polarization 
(OP), respectively. The intensity of the backscattered energy that has the same 
polarization as the radar’s receiving antenna is used to define the target RCS. 
When a target is illuminated by RF energy, it acts like an antenna, and w ill 
have near and far fields. Waves reflected and measured in the near field are, in 
general, spherical. Alternatively, in the far field the wavefronts are decom
posed into a linear combination of plane waves.
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Assume the power density of a wave incident on a target located at range R 
away from the radar is P Di. The amount of reflected power from the target is

Pr = OPdi (2.1)

о denotes the target cross section. Define P Dr as the power density of the 
scattered waves at the receiving antenna. It follows that

PDr = P / (  4 n R 2) (2.2)

Equating Eqs. (2.1) and (2.2) yields

о  = w  ( P )  <2-31

and in order to ensure that the radar receiving antenna is in the far field (i.e., 
scattered waves received by the antenna are planar), Eq. (2.3) is modified

о = 4 k R2 lim ( (2.4)
R VP Di '

The RCS defined by Eq. (2.4) is often referred to as either the monostatic RCS, 
the backscattered RCS, or simply target RCS.

The backscattered RCS is measured from all waves scattered in the direction 
of the radar and has the same polarization as the receiving antenna. It repre
sents a portion of the total scattered target RCS o t , where o t > 0 . Assuming 
spherical coordinate system defined by ( p, 0, ф), then at range p the target 
scattered cross section is a function of (0 , ф). Let the angles ( 0 ,  фi ) define the 
direction of propagation of the incident waves. Also, let the angles ( 0s, фя ) 
define the direction of propagation of the scattered waves. The special case, 
when 0s = 0 i and фя = фi , defines the monostatic RCS. The RCS measured 
by the radar at angles 0s Ф 0 i and фs Ф фi is called the bistatic RCS.

The total target scattered RCS is given by

2 К К

0 t = 4П 1 1 0 ( 0 Ф») sin0 s d0 dфs (2.5)

фг = 0 0s = 0

The amount of backscattered waves from a target is proportional to the ratio 
of the target extent (size) to the wavelength, X , of the incident waves. In fact, a 
radar w ill not be able to detect targets much smaller than its operating wave
length. For example, if weather radars use L-band frequency, rain drops 
become nearly invisible to the radar since they are much smaller than the
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wavelength. RCS measurements in the frequency region, where the target 
extent and the wavelength are comparable, are referred to as the Rayleigh 
region. Alternatively, the frequency region where the target extent is much 
larger than the radar operating wavelength is referred to as the optical region. 
In practice, the majority of radar applications falls within the optical region.

The analysis presented in this book assumes far field monostatic RCS mea
surements in the optical region. Near field RCS, bistatic RCS, and RCS mea
surements in the Rayleigh region w ill not be considered since their treatment 
falls beyond this book’s intended scope. Additionally, RCS treatment in this 
chapter is mainly concerned with Narrow Band (NB) cases. In other words, the 
extent of the target under consideration falls within a single range bin of the 
radar. Wide Band (WB) RCS measurements w ill be briefly addressed in a later 
section. Wide band radar range bins are small (typically 10 - 50 cm), hence, the 
target under consideration may cover many range bins. The RCS value in an 
individual range bin corresponds to the portion of the target falling within that 
bin.

2.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to 
understand the significance of RCS prediction. Most radar systems use RCS as 
a means of discrimination. Therefore, accurate prediction of target RCS is crit
ical in order to design and develop robust discrimination algorithms. Addition
ally, measuring and identifying the scattering centers (sources) for a given 
target aid in developing RCS reduction techniques. Another reason of lesser 
importance is that RCS calculations require broad and extensive technical 
knowledge, thus many scientists and scholars find the subject challenging and 
intellectually motivating. Two categories of RCS prediction methods are avail
able: exact and approximate.

Exact methods of RCS prediction are very complex even for simple shape 
objects. This is because they require solving either differential or integral equa
tions that describe the scattered waves from an object under the proper set of 
boundary conditions. Such boundary conditions are governed by M axwell’s 
equations. Even when exact solutions are achievable, they are often difficult to 
interpret and to program using digital computers.

Due to the difficulties associated with the exact RCS prediction, approxi
mate methods become the viable alternative. The majority of the approximate 
methods are valid in the optical region, and each has its own strengths and lim
itations. Most approximate methods can predict RCS within few dBs of the 
truth. In general, such a variation is quite acceptable by radar engineers and 
designers. Approximate methods are usually the main source for predicting
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RCS of complex and extended targets such as aircrafts, ships, and missiles. 
When experimental results are available, they can be used to validate and ver
ify the approximations.

Some of the most commonly used approximate methods are Geometrical 
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD), 
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents 
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for 
more details on these and other approximate methods.

2.3. RCS Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre
quency. For the purpose of illustration, isotropic point scatterers are consid
ered. An isotropic scatterer is one that scatters incident waves equally in all 
directions. Consider the geometry shown in Fig. 2.1. In this case, two unity 
(1m ) isotropic scatterers are aligned and placed along the radar line of sight 
(zero aspect angle) at a far field range R . The spacing between the two scatter
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees, 
and the composite RCS of the two scatterers measured by the radar is com
puted.

This composite RCS consists of the superposition of the two individual radar 
cross sections. At zero aspect angle, the composite RCS is 2m . Taking scat- 
terer-1 as a phase reference, when the aspect angle is varied, the composite 
RCS is modified by the phase that corresponds to the electrical spacing 
between the two scatterers. For example, at aspect angle 10°, the electrical 
spacing between the two scatterers is

(a) > • -

r a d a r

radar line of sight scat1 scat2 
■ •

1 m

(b)

r a d a r

radar line of sight
0.707m

Figure 2.1. RCS dependency on aspect angle. (a) Zero aspect angle, zero 
electrical spacing. (b) 45° aspect angle, 1.414X electrical 
spacing.
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2 x ( L 0 x c Os(1 0 )) 
e le c -sp a c in g  = ----- ------- ---------— — (2.6)X

X is the radar operating wavelength.

Fig. 2.2 shows the composite RCS corresponding to this experiment. This 
plot can be reproduced using MATLAB function “rcs_aspect.m” given in List
ing 2.1 in Section 2.8. As indicated by Fig. 2.1, RCS is dependent on the radar 
aspect angle. Knowledge of this constructive and destructive interference 
between the individual scatterers can be very critical when a radar tries to 
extract RCS of complex or maneuvering targets. This is true because of two 
reasons. First, the aspect angle may be continuously changing. Second, com
plex target RCS can be viewed to be made up from contributions of many indi
vidual scattering points distributed on the target surface. These scattering 
points are often called scattering centers. Many approximate RCS prediction 
methods generate a set of scattering centers that define the back-scattering 
characteristics of such complex targets.

F r e q u e n c y  i s 3 G H z ;  s c a t t e r r e r  s p a c i n g  is 0 . 5 m

a s p e c t  a n g l e  - d e g r e e s

Figure 2.2. llustration of RCS dependency on aspect angle.

MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes and plots the RCS dependency on 
aspect angle. Its syntax is as follows:

[rcs] = rcs_aspect (scat_spacing, freq)
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Symbol Description Units Status
scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus 
aspect angle

dBsm output

Next, to demonstrate RCS dependency on frequency, consider the experi
ment shown in Fig. 2.3. In this case, two far field unity isotropic scatterers are 
aligned with radar line of sight, and the composite RCS is measured by the 
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 2.4 
and 2.5 show the composite RCS versus frequency for scatterer spacing of 0.1 
and 0.7 meters.

r a d a r

radar line o f sight scat1 scat2

dist

Figure 2.3. Experiment setup which demonstrates RCS
dependency on frequency; dist = 0.1, or 0.7 m.

X = B a n d ;  s c a t t e r e r  s p a c i n g  is 0 . 1 m

F r e q u e n c y  - G H z

F ig u r e  2 .4 .  I l lu s t r a t io n  o f  R C S  d e p e n d e n c y  o n  f r e q u e n c y .
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X = B a n d ;  s c a t t e r e r  s p a c i n g  i s 0 . 7 m

F r e q u e n c y  - G H z

Figure 2.5. Illustration of RCS dependency on frequency.

The plots shown in Figs. 2.4 and 2.5 can be reproduced using MATLAB 
function “rcs_frequency.m” given in Listing 2.2 in Section 2.8. From those 
two figures, RCS fluctuation as a function of frequency is evident. Little fre
quency change can cause serious RCS fluctuation when the scatterer spacing is 
large. Alternatively, when scattering centers are relatively close, it requires 
more frequency variation to produce significant RCS fluctuation.

MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes and plots the RCS dependency 
on frequency. Its syntax is as follows:

[rcs] = rcs_frequency (scat_spacing, frequ, freql)

where

Symbol Description Units Status
scat_spacing scatterer spacing meters input

freql start o f frequency band Hz input

frequ end of frequency band Hz input

rcs array of RCS versus 
aspect angle

dBsm output
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2.4. RCS Dependency on Polarization

The material in this section covers two topics. First, a review of polarization 
fundamentals is presented. Second, the concept of target scattering matrix is 
introduced.

2.4.1. Polarization

The x  and y electric field components for a wave traveling along the positive 
z direction are given by

where k = 2 k /X , ю is the wave frequency, the angle 5 is the tim ephase 
angle which Ey leads Ex , and finally, E1 and E2 are, respectively, the wave 
amplitudes along the x  and y directions. When two or more electromagnetic 
waves combine, their electric fields are integrated vectorially at each point in 
space for any specified time. In general, the combined vector traces an ellipse 
when observed in the x-y plane. This is illustrated in Fig. 2.6.

Ex = E1sin (юг -  kz) (2.7)

Ey = E2sin(ю t -  kz + 5) (2.8)

Y

X

Figure 2.6. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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The ratio of the major to the minor axes of the polarization ellipse is called 
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir
cle, and the resultant wave is then called circularly polarized. Alternatively, 
when E1 = 0 and AR  = ^  the wave becomes linearly polarized.

Eqs. (2.7) and (2.8) can be combined to give the instantaneous total electric 
field,

л л
E = axE1sin ( a t  -  kz) + ayE2sin(ю t -  kz + 5) (2.9)

where ax and ay are unit vectors along the x and y directions, respectively. At 
z = 0 ,  Ex = E1sin ( a t ) and Ey = E2sin ( a t  + 5 ) ,  then by replacing 
sin ( a t )  by the ratio Ex/ E 1 and by using trigonometry properties Eq. (2.9) 
can be rewritten as

2 2  E2 2 ExEy cos 5 E
-  E - E F  + 3  = ( sin 5 )2 <2.10>E 1 E1 E2 E2

Note that Eq. (2.10) has no dependency on ю t .

In the most general case, the polarization ellipse may have any orientation, 
as illustrated in Fig. 2.7. The angle £ is called the tilt angle of the ellipse. In 
this case, AR is given by

OA 
AR = oAb  ( 1 -  AR  - “ ) (2.11)

F ig u r e  2 .7 . P o la r iz a t io n  e l l ip s e  in  th e  g e n e r a l  c a s e .
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When Е1 = 0 , the wave is said to be linearly polarized in the y direction, 
while if E2 = 0 the wave is said to be linearly polarized in the x direction. 
Polarization can also be linear at an angle of 45° when E1 = E2 and 
£ = 4 5° . When E1 = E2 and 5 = 90°, the wave is said to be Left Circu
larly Polarized (LCP), while if  5 = -9 0 °  the wave is said to Right Circularly 
Polarized (RCP). It is a common notation to call the linear polarizations along 
the x and y directions by the names horizontal and vertical polarizations, 
respectively.

In general, an arbitrarily polarized electric field may be written as the sum of 
two circularly polarized fields. More precisely,

— > — >

E = Er + El (2.12)
—> —>

where Er and El are the RCP and LCP fields, respectively. Similarly, the 
RCP and LCP waves can be written as

Er = E v + jE H 

El = Ev - jE H

(2.13)

(2.14)

where Ev and Eh are the fields with vertical and horizontal polarizations, 
respectively. Combining Eqs. (2.13) and (2.14) yields

E b

El =

Eh - j E v

72

EH + jEV
72

Using matrix notation Eqs. (2.15) and (2.16) can be rewritten as

Er = _1_ ’ 1 - j Eh = [ T ] Eh

El 72 .1 j E v_ Ev_

(2.15)

(2.16)

(2.17)

Eh = _1_ 1 1 Er = [ T]-1 Eh

E v_ = 72 J  - j El Ev_
(2.18)

For many targets the scattered waves w ill have different polarization than the 
incident waves. This phenomenon is known as depolarization or cross-polar
ization. However, perfect reflectors reflect waves in such a fashion that an inci
dent wave with horizontal polarization remains horizontal, and an incident
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wave with vertical polarization remains vertical but is phase shifted 180°. 
Additionally, an incident wave which is RCP becomes LCP when reflected, 
and a wave which is LCP becomes RCP after reflection from a perfect reflec
tor. Therefore, when a radar uses LCP waves for transmission, the receiving 
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to 
measure the OP RCS.

2.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the 
scattering matrix, and is denoted by [ S ] .  When an arbitrarily linearly polarized 
wave is incident on a target, the backscattered field is then given by

E

E2
= [ S ]

E2

s 11 s12 

s21 s22

E

E2
(2.19)

The superscripts i and s denote incident and scattered fields. The quantities 
S j are in general complex and the subscripts 1 and 2 represent any combina
tion of orthogonal polarizations. More precisely, 1 = H, R , and 2 = V, L . 
From Eq. (2.3), the backscattered RCS is related to the scattering matrix com
ponents by the following relation:

(2.20)

It follows that once a scattering matrix is specified, the target backscattered 
RCS can be computed for any combination of transmitting and receiving polar
izations. The reader is advised to see Ruck for ways to calculate the scattering 
matrix [ S ] .

Rewriting Eq. (2.20) in terms of the different possible orthogonal polariza
tions yields

°11 °12 2
= 4 n R

1 |2 I i2
lsn| |s 12|

_°21 °22 1 |2 1 |2Js21| |S22| _

EH

E

SHH SHV

SVH SVV

EH

E
(2.21)

E

E

SRR SRL

sLR sLL

E

E
(2.22)
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By using the transformation matrix [ T ] in Eq. (2.17), the circular scattering 
elements can be computed from the linear scattering elements

SRR SRL = [ T] SHH SHV 1 0

_SLR SLL _SVH SVV_ 0 -1_
[ T ] 1

SVH -1-

and the individual components are

-  Svv  + sHH- j (sHV + svh) 
Srr = 2

sVV + sHH + j  ( sHV -  sVH>
sRL = --------------- 2---------------

sVV + sHH -  j ( s HV -  sVH>
SLR = --------------- 2---------------

_ - S VV + SHH + j ( s HV + s vH
SLL = ---------------- 2----------------

Similarly, the linear scattering elements are given by

[ T ]SHH SHV = [ T] 1

s 
1

R R SRL 1 0

_SVH SVV_ R L 
 ̂

| SLL 0 -1_

and the individual components are

-  SRR + SRT + STR -  Sr
s

s

•'HR T 3RL ^ 3LR ~ L̂L 
HH = 2

j ( s RR -  SLR "l_ SRL -  SLL) 
VH = 2

- j (  SRR + SLR -  SRL -  SLL)
Shv = --------------- 2---------------

SRR + SLL + j s RL + SLR

(2.23)

(2.24)

(2.25)

(2.26)

SVV

2.5. RCS o f Simple Objects

This section presents examples of backscattered radar cross section for a 
number of simple shape objects. In all cases, except for the perfectly conduct
ing sphere, only optical region approximations are presented. Radar designers 
and RCS engineers consider the perfectly conducting sphere to be the simplest 
target to examine. Even in this case, the complexity of the exact solution, when
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compared to the optical region approximation, is overwhelming. Most formu
las presented are Physical Optics (PO) approximation for the backscattered 
RCS measured by a far field radar in the direction (0 , ф), as illustrated in Fig.

2.5.1. Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are 
co-polarized (have the same polarization) with the incident waves. This means 
that the cross-polarized backscattered waves are practically zero. For example, 
if the incident waves were Left Circularly Polarized (LCP), then the backscat
tered waves w ill also be LCP. However, because of the opposite direction of 
propagation of the backscattered waves, they are considered to be Right Circu
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat- 
tered waves from a sphere are LCP, while the OP backscattered waves are 
negligible.

The normalized exact backscattered RCS for a perfectly conducting sphere 
is a M ie series given by

2.8.

Direction to

Figure 2.8. Direction of antenna receiving backscattered waves.

k r J n_ 1(kr) - n J n(kr) )

v k H U ^ - n H ^ ^ r ) ,
(2.27)

n =1
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where r  is the radius of the sphere, k = 2n/X , X is the wavelength, J n is the 
spherical Bessel of the first kind of order n, and is the Hankel function of 
order n, and is given by

H(n1]( kr) = Jn( kr) + jYn( k r) (2.28)

Yn is the spherical Bessel function of the second kind of order n. Plots of the 
normalized perfectly conducting sphere RCS as a function of its circumference 
in wavelength units are shown in Figs. 2.9a and 2.9b. These plots can be repro
duced using the function “rcs_sphere.m” given in Listing 2.3 in Section 2.8.

In Fig. 2.9, three regions are identified. First is the optical region (corre
sponds to a large sphere). In this case,

2
о = Пr  r »  X (2.29)

Second is the Rayleigh region (small sphere). In this case,

2 4 ло «  9n r  (kr) r  «  X (2.30)

The region between the optical and Rayleigh regions is oscillatory in nature 
and is called the M ie or resonance region.

2n r/X
Figure 2.9a. Normalized backscattered RCS for a perfectly conducting sphere.
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S p h e r e  c i r c u m f e r e n c e  in w a v e le n g t h s

Figure 2.9b. Normalized backscattered RCS for a perfectly 
conducting sphere using semi-log scale.

The backscattered RCS for a perfectly conducting sphere is constant in the 
optical region. For this reason, radar designers typically use spheres of known 
cross sections to experimentally calibrate radar systems. For this purpose, 
spheres are flown attached to balloons. In order to obtain Doppler shift, 
spheres of known RCS are dropped out of an airplane and towed behind the 
airplane whose velocity is known to the radar.

2.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 2.10. It is defined by the fol
lowing equation:

( a ) 2 + ( b J + ( 0 2 = i

One widely accepted approximation for the ellipsoid backscattered RCS is 
given by

2,2 2 п a b cO = -------------------------------------------------------------------------- (2.32)2 2 2 2 2 2 2 2 2 
(a  ( sin0) ( cosф) + b ( sin0) ( sinф) + c ( cos 0) )
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D irec t ion  to

When a = b , the ellipsoid becomes roll symmetric. Thus, the RCS is inde
pendent of ф, and Eq. (2.32) is reduced to

,4  2nb c

(a 2( sin 0 )2 + c ( cos 0 )2)2
(2.33)

and for the case when a c ,

(2.34)

Note that Eq. (2.34) defines the backscattered RCS of a sphere. This should be 
expected, since under the condition a = b = c the ellipsoid becomes a 
sphere. Fig. 2.11 shows the backscattered RCS for an ellipsoid versus 0 for 
ф = 45 ° . This plot can be generated using MATLAB function 
“rcs_ellipsoid.m” given in Listing 2.4 in Section 2.8. Note that at normal inci
dence (0  = 90 ° ) the RCS corresponds to that of a sphere of radius c , and is 
often referred to as the broadside specular RCS value.

MATLAB Function “rcs_ellipsoid.m”

The function “rcs_ellipsoid.m” computes and plots the RCS of an ellipsoid 
versus aspect angle. It utilizes Eq. (2.32) and its syntax is as follows:

[rcs] = rcs_ellipsoid (a, b, c, phi)

where

о
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Symbol Description Units Status
a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array of RCS versus 
aspect angle

dBsm output

phi = 45 deg, (a,b,c) = (.15,.20,.95) meter

Aspect angle - degrees

Figure 2.11. Ellipsoid backscattered RCS versus aspect angle, ф = 45 ° .

2.5.3. Circular Flat Plate

Fig. 2.12 shows a circular flat plate of radius r , centered at the origin. Due to 
the circular symmetry, the backscattered RCS of a circular flat plate has no 
dependency on ф. The RCS is only aspect angle dependent. For normal inci
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is

л 3 4
о  = 4 п 2г- 0 = 0° (2.35)

X2
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Figure 2.12. Circular flat plate.

For non-normal incidence, two approximations for the circular flat plate 
backscattered RCS for any linearly polarized incident wave are

Xr
8 n sin 0( tan (8 ) )2

о = ---------------------- 2 (2.36)

2 4/2J 1 (2 k r sin 0)\2 2 
о  = n k r  J ( c o s  0) (2.37) 

where k = 2n/X , and J ^ P )  is the first order spherical Bessel function evalu
ated at в . The RCS corresponding to Eqs. (2.35) through (2.37) is shown in 
Fig. 2.13. These plots can be reproduced using MATLAB function 
“rcs_circ_plate.m” given in Listing 2.5 in Section 2.8.

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS 
from a circular plate. Its syntax is as follows:

[rcs] = rcs_circ_plate (r, freq)

where

Symbol Description Units Status
r radius of circular plate meters input

freq frequency Hz input

rcs array o f RCS versus aspect angle dBsm output
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F r e q u e n c y  = X - B a n d ,  r a d i u s  = 0 . 2 5  m

A s p e c t  a n g l e  - d e g r e e s

Figure 2.13. Backscattered RCS for a circular flat plate. Solid line
corresponds to Eq. (2.37). Dashed line corresponds to Eq. (2.36).

2.5.4. Truncated Cone (Frustum)

Figs. 2.14 and 2.15 show the geometry associated with a frustum. The half 
cone angle a  is given by

( r2 -  r 1) r2 
tan a  = 2 1 = i-2 (2.38)

H L

Define the aspect angle at normal incidence (broadside) as 0n . Thus, when a 
frustum is illuminated by a radar located at the same side as the cone’s small 
end, the angle 0n is

0n = 90° -  a  (2.39)

Alternatively, normal incidence occurs at

0n = 90 ° + a  (2.40)

At normal incidence, one approximation for the backscattered RCS of a trun
cated cone due to a linearly polarized incident wave is

„ , 3/2 3/2 2
8 n ( z2 -  z1 ) 2 

o 0 = ------ ------ ------ tan a (  sin 0n -  cos 0n tan a )  (2.41)
0n 9 X sin 0„ n n
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Figure 2.14. Truncated cone (frustum).

F ig u r e  2 .1 5 .  D e f in it io n  o f  h a l f  c o n e  a n g le .
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where X is the wavelength, and z1, z2 are defined in Fig. 2.14. Using trigono
metric identities, Eq. (2.41) can be reduced to

„ , 3/2 3/2 2
8n (z 2 -  z 1 ) sin a

O0n = 9X ( )4 (2.42)( cos a )

For non-normal incidence, the backscattered RCS due to a linearly polarized 
incident wave is

= X ztana/ sin0 -  cos 0 tan a  J 2 
8 n sin 0v sin 0 tan a  + cos 0/

(2.43)

where z is equal to either z1 or z2 depending on whether the RCS contribu
tion is from the small or the large end of the cone. Again, using trigonometric 
identities Eq. (2.43) (assuming the radar illuminates the frustum starting from 
the large end) is reduced to

Xz tan a  442

о  = 8-nsn3 (tan (0  -  a ) )  (2'44>

When the radar illuminates the frustum starting from the small end (i.e., the 
radar is in the negative z direction in Fig. (2.14)), Eq. (2.44) should be modi
fied to

Xztan a  442

о  = 8 п г ы ) ( ta n (0 + a ) )  (2-45>

For example, consider a frustum defined by H = 20.945cm , 
r 1 = 2.057cm , r2 = 5.753cm . It follows that the half cone angle is 10°. 
Fig. 2.16 (top) shows a plot of its RCS when illuminated by a radar in the pos
itive z direction. Fig. 2.16 (bottom) shows the same thing, except in this case, 
the radar is in the negative z direction. Note that for the first case, normal inci
dence occur at 100°, while for the second case it occurs at 80 ° . These plots 
can be reproduced using MATLAB function “rcs_frustum.m” given in Listing 
2.6 in Section 2.8.

MATLAB Function “rcs_frustum.m”

The function “rcs_frustum.m” computes and plots the backscattered RCS of 
a truncated conic section. The syntax is as follows:

[rcs] = rcs_frustum (r1, r2, freq, indicator)

where
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Symbol Description Units Status
r1 small end radius meters input

r2 large end radius meters input

freq frequency Hz input

indicator indicator = 1 when viewing from 
large end

indicator = 0 when viewing from 
small end

none input

rcs array of RCS versus aspect angle dBsm output

Wavelength = 0.861 cm

Apsect angle - degrees

Apsect angle - degrees 

Figure 2.16. Backscattered RCS for a frustum.

2.5.5. Cylinder

Fig. 2.17 shows the geometry associated with a cylinder. Two cases are pre
sented: first, the general case of an elliptical cylinder; second, the case of a cir
cular cylinder. The normal and non-normal incidence backscattered RCS for an
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elliptical cylinder due a linearly polarized incident wave are, respectively, 
given by

о 0
2 2 2  2%H r 2 r 1

л / 2* ч2 2* ,2 ,1-5X( r 1 ( cos ф) + r2 ( sin ф) )
(2.46)

о
X r2 r^sin 0

8n( cos 0 )2 ( r2( cos ф)2 + r2 ( sin ф)2) 1'5
(2.47)

For a circular cylinder of radius r , then due to roll symmetry, Eqs. (2.46) 
and (2.47), respectively, reduce to

o 0

о =

27tH r----X----

Xrsin0 

8 n ( cos 0 )2

(2.48)

(2.49)

(a) (b)

F ig u r e  2 .1 7 .  ( a )  E l l ip t i c a l  c y l in d e r ;  (b )  c i r c u l a r  c y l in d e r .
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Fig. 2.18 shows a plot of the cylinder backscattered RCS using Eqs. (2.48) 
and (2.49). This plot can be reproduced using MATLAB function 
“rcs_cylinder.m” given in Listing 2.7 in Section 2.8. Note that the broadside 
specular occurs at aspect angle of 90° .

F re q u e n c y  = 9 .5  G H z

A s p e c t  a ng le  - d egre es

Figure 2.18. Backscattered RCS for a cylinder, r  = 0.125m and H = 1 m . 

MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of 
a cylinder. The syntax is as follows:

[rcs] = rcs_cylinder (r, h, freq)

where

Symbol Description Units Status
r radius meters input

h length of cylinder meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

© 2000 by Chapman & Hall/CRC



2.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as 
shown in Fig. 2.19. The two sides of the plate are denoted by 2 a and 2b . For 
a linearly polarized incident wave in the x-z plane, the horizontal and vertical 
backscattered RCS are, respectively, given by

o v = —v n °1V  -  0 2V
1 0 2 V,

-----a + T - (0 3V + 0 4 V)cos 0 4 4 V
-1 

0 5 V (2.50)

о = -b---2- 
0 h = П о 1 H -  о1H_  U2H

1 J2H
cos 0 4 ( o 3H + 0 4 H)

-1 
0  5 H

where k = 2 п/X and

(2.51)

о 1 V = cos (k asin 0) -  j . ŝ i:t̂  (Л-
sin0

j (ka -  к/4)

(01 h)*

0 2V =
(ka)

3 / 2

(2.52)

(2.53)

0 3 V =
(1 + sin 0) e-jkasin 0

о 4V

( 1 -  sin 0 )2

/1 • rw Jk asin 0(1 -  Sin^)g^

( 1 + sin 0 )2

(2.54)

(2.55)

2 2

2
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J (2ka -  п/2)
O5 v  = 1 ---------------Г  (2.56)

8п (ka)

4 i(ka + п/4)
O2h  = -7 = ------- 1-2 (2.57)

л/2Л (ka)

-jk asin 0
= e

13 H = 1 -  sine
(2.58)

jk asin 0
04H = т — - 7 - (2.59)4H 1 + sin 0

j  (2ka + (п/2))

0 5H = ‘ -  (2-в0>

Eqs. (2.50) and (2.51) are valid and quite accurate for aspect angles 
0° < 0 < 80 . For aspect angles near 90° , Ross1 obtained by extensive fitting 
of measured data an empirical expression for the RCS. It is given by

ab 2 
Ov = X

1+
2 (2 a/X )2-

1 -
2 (2 a/X )2-

cos
( 2ka -  f

(2.61)

The backscattered RCS for a perfectly conducting thin rectangular plate for 
incident waves at any 0, ф can be approximated by

2 2 2 4--- a b ( îi:-(̂ i!̂ ^̂ r̂ -̂ t--os-<-̂ -̂ s in (b k s in 0 sh ^ )Y , m 2
O = -----2— I ---- - - Q---------^  ( cos 0) (2.62)X2 I  aksin  0 cos ф bksin 0 sin ф )

Eq. (2.62) is independent of the polarization, and is only valid for aspect angles
0 < 20° . Fig. 2.20, shows an example for the backscattered RCS of a rectangu
lar flat plate, for both vertical (Fig. 2.20a) and horizontal (Fig. 2.20b) polariza
tions, using Eqs. (2.50), (2.51) and (2.62). In this example, a = b = 10.16cm 
and wavelength X = 3 .25cm . This plot can be reproduced using MATLAB 
function “rcs_rect_plate” given in Listing 2.8 in Section 2.8.

MATLAB Function “rcs_rect_plate.m ”

The function “rcs_rect_plate.m” calculates and plots the backscattered RCS 
of a rectangular flat plate. Its syntax is as follows:

1. Ross, R. A. Radar Cross Section of Rectangular Flat Plate as a Function of Aspect 
Angle, IEEE Trans. AP-14:320, 1966.
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where

[rcs] = rcs_rect_plate (a, b, freq)

Symbol Description Units Status
a short side of plate meters input

b long side of plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

Vertical polarization

aspect angle - deg

Figure 2.20a. Backscattered RCS for a rectangular flat plate.

2.5.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented 
in Fig. 2.21. The backscattered RCS can be approximated for small aspect 
angles (less than 30°) by

о 4nA . n42 — — ( cos0) Oo (2.63)
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[ ( sin a ) 2 -  ( sin (Р / 2 ))2]2 + O01
O  = --------------- 2 (R /0)2------------- (2.64)a  - (Р / 2)

O01 = 0 .25 (s in ф)2[ (2 a / b ) cosфsinP -  sinфs in 2 a ]2 (2.65)

H o r i z o n ta l  p o la r i z a t io n

a s p e c t  a ng le  - deg

Figure 2.20b. Backscattered RCS for a rectangular flat plate.

F ig u r e  2 .2 1 . C o o r d in a t e s  fo r  a  p e r f e c t ly  c o n d u c t in g  is o s c e le s  t r i a n g u l a r  p la t e .
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where a  = k asin8 cosф, в = kbsin8 sinф, and A  = a b / 2 .  For waves inci
dent in the plane ф = 0 , the RCS reduces to

4пA . a ,2 — t -  ( cos 8)
X2

' 4 2'( sin a )  ( sin2 a  -  2 a )

a 4 a
(2.66)

and for incidence in the plane ф = п/2

о

4пА 2о = — — ( cos 8)
X2

(s in (P / 2 )) 

. ( в / 2 )4
(2.67)

Fig. 2.22 shows a plot for the normalized backscattered RCS from a per
fectly conducting isosceles triangular flat plate. In this example a = 0.2m , 
b = 0.75m , and ф = 0 , п / 2 . This plot can be reproduced using MATLAB 
function “rcs_isosceles.m” given in Listing 2.9 in Section 2.8.

f req = 9 . 5 G H z ,  ph i  = pi / 2

A s p e c t  a n g l e  - d e g r e e s

Figure 2.22. Backscattered RCS for a perfectly conducting triangular
flat plate, a = 20cm and b = 75cm .

MATLAB Function “rcs_isosceles.m”

The function “rcs_isosceles.m” calculates and plots the backscattered RCS 
of a triangular flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)
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where

Symbol Description Units Status
a height of plate meters input

b base of plate meters input

freq frequency Hz input

phi roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

2.6. RCS o f Complex Objects

A complex target RCS is normally computed by coherently combining the 
cross sections of the simple shapes that make that target. In general, a complex 
target RCS can be modeled as a group of individual scattering centers distrib
uted over the target. The scattering centers can be modeled as isotropic point 
scatterers (N-point model) or as simple shape scatterers (N-shape model). In 
any case, knowledge of the scattering centers’ locations and strengths is critical 
in determining complex target RCS. This is true, because as seen in Section
2.3, relative spacing and aspect angles of the individual scattering centers dras
tically influence the overall target RCS. Complex targets that can be modeled 
by many equal scattering centers are often called Swerling 1 or 2 targets. Alter
natively, targets that have one dominant scattering center and many other 
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine 
coherently to produce a single value for the target RCS at every aspect angle. 
However, in WB applications, a target may straddle over many range bins. For 
each range bin, the average RCS extracted by the radar represents the contribu
tions from all scattering centers that fall within that bin.

As an example, consider a circular cylinder with two perfectly conducting 
circular flat plates on both ends. Assume linear polarization and let H = 1 m 
and r  = 0.125m . The backscattered RCS for this object versus aspect angle is 
shown in Fig. 2.23. Note that at aspect angles close to 0 ° and 180 ° the RCS is 
mainly dominated by the circular plate, while at aspect angles close to normal 
incidence, the RCS is dominated by the cylinder broadside specular return. 
This plot can be reproduced using MATLAB program 
“rcs_cyliner_complex.m” given in Listing 2.10 in Section 2.8.
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Aspect angle - degrees

Figure 2.23. Backscattered RCS for a cylinder with flat plates.

2.7. RCS Fluctuations and Statistical Models

In most practical radar systems there is relative motion between the radar 
and an observed target. Therefore, the RCS measured by the radar fluctuates 
over a period of time as a function of frequency and the target aspect angle. 
This observed RCS is referred to as the radar dynamic cross section. Up to this 
point, all RCS formulas discussed in this chapter assumed stationary target, 
where in this case, the backscattered RCS is often called static RCS.

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation 
is called glint, while amplitude fluctuation is called scintillation. Glint causes 
the far field backscattered wavefronts from a target to be non-planar. For most 
radar applications, glint introduces linear errors in the radar measurements, and 
thus it is not of a major concern. However, cases where high precision and 
accuracy are required, glint can be detrimental. Examples include precision 
instrumentation tracking radar systems, missile seekers, and automated aircraft 
landing systems. For more details on glint, the reader is advised to visit cited 
references listed in the bibliography.

Radar cross-section scintillation can vary slowly or rapidly depending on the 
target size, shape, dynamics, and its relative motion with respect to the radar.
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Thus, due to the wide variety o f RCS scintillation sources changes in the radar 
cross section are modeled statistically as random processes. The value o f an 
RCS random process at any given time defines a random variable at that time. 
Many o f the RCS scintillation models were developed and verified by experi
mental measurements.

2.7.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta
tistical models that apply to sea, land, and volume clutter, such as the Weibull 
and Log-normal distributions, will be discussed in a later chapter. The choice 
o f a particular model depends heavily on the nature o f the target under exami
nation.

Chi-Square of Degree 2 m

The Chi-square distribution applies to a wide range o f targets; its pd f is given 
by

where Г (m) is the gamma function with argument m , and o av is the average 
value. As the degree gets larger the distribution corresponds to constrained 
RCS values (narrow range o f values). The limit m ^  ^  corresponds to a con
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated 
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu
ation). In this case, the p d f  is

where o av denotes the average RCS overall target fluctuation. Swerling II tar
get fluctuation is more rapid than Swerling I, but the measurements are pulse to 
pulse uncorrelated. This is illustrated in Fig. 2.24. Swerling II RCS distribution 
is also defined by Eq. (2.69). Swerlings I and II apply to targets consisting o f 
many independent fluctuating point scatterers o f approximately equal physical 
dimensions.

Swerling III and IV (Chi-Square of Degree 4)

Swerlings III and IV have the same pdf, and it is given by

(2.68)

о > 0 (2.69)
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/ ( о )  =  4 f - e x p f -  o >  0 (2 .7 0 )

The fluctuations in Swerling III are similar to Swerling I; while in Swerling 
IV they are similar to Swerling II fluctuations (see Fig. 2.24). Swerlings III and
IV are more applicable to targets that can be represented by one dominant scat
terer and many other small reflectors. Fig. 2.25 shows a typical plot o f  the pdfs 
for Swerling cases. This plot can be reproduced using MATLAB program 
“Swerling_models.m”  given in Listing 2.11 in Section 2.8.

Swerling I Swerling II

Swerling III Swerling IV

Swerling V

Figure 2.24. Radar returns from targets with different Swerling fluctuations. 
Swerling V corresponds to a steady RCS target case.

2.8. MATLAB Program/Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters. All functions have companion MATLAB “filename_driver.m” 
files that utilize MATLAB Graphical User Interface (GUI). Figure 2.26 shows 
a typical GUI screen capture associated with the cylinder case.
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Figure 2.25. Probability densities for Swerling targets.
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Figure 2.26. GUI work space associated with the function “rcs_cylinder.m” .
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Listing 2.1. MATLAB Function “rcs_aspect.m”
function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Poit scatterers separated by scat_spacing meter. Initially the two scatterers 
% are aligned with radar line of sight. The aspect angle is changed from 
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated. 
eps = 0 .00001; 
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector 
aspect_degrees = 0.:.05:180.; 
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units 
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point 
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) ...

+ i * sin((2.0 * pi) .* elec_spacing)); 
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
% Plot RCS versus aspect angle 
figure (1);
plot (aspect_degrees,rcs,'k'); 
grid;
xlabel ('aspect angle - degrees'); 
ylabel ('RCS in dBsm');
%title (' Frequency is 3GHz; scatterer spacing is 0.5m');

Listing 2.2. MATLAB Function “rcs_frequency.m”
function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength
eps = 0 .0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ

index = index +1;
wavelength(index) = 3.0e+8 / freq; 

end
elec_spacing = 2.0 * scat_spacing ./ wavelength; 
rcs = abs ( 1 + cos((2.0 * pi) .* elec_spacing) ...

+ i * sin((2.0 * pi) .* elec_spacing)); 
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm 
% Plot RCS versus frequency 
freq = freql:delfreq:frequ;
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plot(freq,rcs);
grid;
xlabel('Frequency'); 
ylabel('RCS in dBsm');

Listing 2.3. MATLAB Program “rcs_sphere.m”.
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(2.7), and produce plots similar to Fig.2.9
% Spherical Bessel functions are computed using series approximation and recursion.
clear all
eps = 0 .00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points 
for kr = 0.05:0.05:15 

index = index + 1; 
sphere_rcs = 0 . + 0 .*i; 
f1 = 0 . + 1.*i; 
f2 = 1. + 0 .*i; 
m = 1.; 
n = 0.; 
q = -1.;
% initially set del to huge value 
del =100000+100000*i; 
while(abs(del) > eps)

q = -q;
n = n + 1; 
m = m + 2;
del = (2.*n-1) * f2 / kr-f1; 
f1 = f2; 
f2 = del;
del = q * m /(f2 * (kr * f1 - n * f2)); 
sphere_rcs = sphere_rcs + del; 

end
rcs(index) = abs(sphere_rcs); 
sphere_rcsdb(index) = 10. * log10(rcs(index)); 
end 

figure(1); 
n=0.05:.05:15; 
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel ('Normalized sphere RCS'); 
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]); 
xlabel ('Sphere circumference in wavelengths');
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ylabel ('Normalized sphere RCS - dB'); 
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k');
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');

Listing 2.4. MATLAB Function “rcs_ellipsoid.m”
function [rcs] = rcs_ellipsoid (a, b, c, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle angle phi is fixed,
eps = 0 .00001;
sin_phi_s = sin(phi)A2;
cos_phi_s = cos(phi)A2;
% Generate aspect angle vector 
theta = 0.:.05:180.0; 
theta = (theta .* pi) ./ 180.; 
if(a ~= b & a ~= c) 

rcs = (pi * aA2 * bA2 * cA2) ./ (aA2 * cos_phi_s .* (sin(theta)A2) + ... 
bA2 * sin_phi_s .* (sin(theta).A2) + ... 
cA2 .* (cos(theta).A2)).A2 ; 

else
if(a == b & a ~= c) 

rcs = (pi * bA4 * cA2) ./ ( bA2 .* (sin(theta)A2) + ... 
cA2 .* (cos(theta).A2)).A2 ;

else
if (a == b & a ==c) 

rcs = pi * cA2; 
end 

end 
end
rcs_db = 10.0 * log10(rcs); 
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k'); 
xlabel ('Aspect angle - degrees'); 
ylabel ('RCS - dBsm');
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter') 
grid;

Listing 2.5. MATLAB Function “rcs_circ_plate.m”
function [rcs] = rcs_circ_plate (r, freq)
% This function calculates and plots the RCS of a circular flat plate of radius r. 
eps = 0 .000001;
% Compute wavelength 
lambda = 3.e+8 / freq; % X-Band 
index = 0;
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for aspect_deg = 0.:.1:180 
index = index +1; 
aspect = (pi /180.) * aspect_deg;

% Compute RCS using Eq. (2.35) 
if (aspect == 0 | aspect == pi)

rcs_po(index) = (4.0 * piA3 * rA4 / lambdaA2) + eps; 
rcs_mu(index) = rcs_po(1); 

else
% Compute RCS using Eq. (2.36)

x = (4. * pi * r / lambda) * sin(aspect); 
val1 = 4. * piA3 * rA4 / lambdaA2; 
val2 = 2. * besselj(1,x) /  x;
rcs_po(index) = val1 * (val2 * cos(aspect))A2 + eps; 

% Compute RCS using Eq. (2.36) 
val1m = lambda * r;
val2m = 8. * pi * sin(aspect) * (tan(aspect)A2); 
rcs_mu(index) = val1m / val2m + eps; 

end 
end

rcsdb_po = 10. * log10(rcs_po); 
rcsdb_mu = 10 * log10(rcs_mu); 
angle = 0:.1:180;
plot(angle,rcsdb_po,'k',angle,rcsdb_mu,'k--')
grid;
xlabel ('Aspect angle - degrees'); 
ylabel ('RCS - dBsm');
%title ('Frequency = X-Band, radius = 0.25 m');

Listing 2.6. MATLAB Function “rcs_frustum.m”
function [rcs] = rcs_frustum (r1, r2, h, freq, indicator)
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed. To compute RCP or LCP RCS 
% one must use Eq. (2.24)
% Normal incidence is according to Eq.s (2.39) and (2.40)
index = 0;
eps = 0 .000001;
lambda = 3.0e+8 / freq;
% Comput half cone angle, alpha 
alpha = atan(( r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r1 /  tan(alpha);
delta = (z2A1.5 - z1A1.5)A2;
factor = (8. * pi * delta) / (9. * lambda);
large_small_end = indicator;
if (large_small_end == 1)

% Compute normal incidence, large end
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normal_incidence = (180./pi) * ((pi /2) + alpha)
% Compute RCS from zero aspect to normal incidence 
for theta = 0.001:.1:normal_incidence-.5 

index = index +1; 
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))A2) / ...

(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS 
index = index +1;
rcs_normal = factor * sin(alpha) / ((cos(alpha))A4) + eps; 
rcs(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees 
for theta = normal_incidence+.5:. 1:180 

index = index + 1; 
theta = theta * pi / 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))A2) / ...

(8. * pi *sin(theta)) + eps;
end

else
% Compute normal incidence, small end 
normal_incidence = (180./pi) * ((pi /2) - alpha)
% Compute RCS from zero aspect to normal incidence (large end) 
for theta = 0.001:.1:normal_incidence-.5 

index = index +1; 
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))A2) / ...

(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS 
index = index +1;
rcs_normal = factor * sin(alpha) / ((cos(alpha))A4) + eps; 
rcs(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees (small end of frustum) 
for theta = normal_incidence+.5:. 1:180 

index = index + 1; 
theta = theta * pi / 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))A2) / ...

(8. * pi *sin(theta)) + eps;
end

end
% Plot RCS versus aspect angle 
delta = 180 /index; 
angle = 0.001:delta:180; 
plot (angle,10*log10(rcs),'k'); 
grid;
xlabel ('Apsect angle - degrees'); 
ylabel ('RCS - dBsm');
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%title ('Wavelength = .861 cm ');

Listing 2.7. MATLAB Function “rcs_cylinder.m”
function [rcs] = rcs_cylinder (r, h, freq)
% This program computes RCS for a cylinder. Circular symmetry is assumed. 
% Plot of RCS versus aspect angle is produced 
index = 0; 
eps =0.00001;
% Compute wavelength 
lambda = 3.0e+8 / freq;
% Compute RCS from zero aspect to broadside 
for theta = 0.0:.1:90-.5 

index = index +1; 
theta = theta * pi /180.; 
rcs(index) = (lambda * r * sin(theta) / ...

(8. * pi * (cos(theta))A2)) + eps;
end
% Compute RCS for broadside specular 
theta = pi/2; 
index = index +1;
rcs(index) = (2. * pi * hA2 * r / lambda )+ eps;
% Compute RCS from 90 to 180 degrees 
for theta = 90+.5:.1:180. 

index = index + 1; 
theta = theta * pi / 180.; 
rcs(index) = ( lambda * r * sin(theta) / ...

(8. * pi * (cos(theta))A2)) + eps;
end
% Plot results 
delta= 180/(index-1) 
angle = 0:delta:180; 
plot(angle,10*log10(rcs),'k'); 
grid;
xlabel ('Aspect angle - degrees'); 
ylabel ('RCS - dBsm');
%title ('Frequency = 9.5 GHz');

Listing 2.8. MATLAB Function “rcs_rect_plate.m”
function [rcs] = rcs_rect_plate (a, b, freq)
% This function computes the backscattered RCS for a rectangular flat plate.
% The RCS is computed for vertical and horizontal polarization based on
% Eq.s(2.50)through (2.60). Also Physical Optics approximation Eq.(2.62)
% is computed.
eps = 0 .000001;
lambda = 3.0e+8 / freq;
ka = 2. * pi * a / lambda;
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% Compute aspect angle vector 
theta_deg = 0.05:0.1:85; 
theta = (pi/180.) .* theta_deg;
sigma1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta); 
sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)A1.5); 
sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...

(1. - sin(theta)).A2; 
sigma4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...

(1. + sin(theta)).A2; 
sigma5v = 1. - (exp(i * 2. * ka - (pi / 2)) / (8. * pi * (ka)A3)); 
sigma1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta); 
sigma2h = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka)); 
sigma3h = exp(-i * ka .* sin(theta)) ./ (1. - sin(theta)); 
sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta)); 
sigma5h = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);
% Compute vertical polarization RCS
rcs_v = (bA2 / pi) .* (abs(sigma1v - sigma2v .*((1. ./ cos(theta)) ...

+ .25 .* sigma2v .* (sigma3v + sigma4v)) .* (sigma5v).A-1)).A2 + eps; 
% compute horizontal polarization RCS
rcs_h = (bA2 / pi) .* (abs(sigma1h - sigma2h .*((1. ./ cos(theta)) ...

- .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigma5h).A-1)).A2 + eps; 
% Compute RCS from Physical Optics, Eq.(2.62) 
angle = ka .* sin(theta);
rcs_po = (4. * pi* aA2 * bA2 / lambdaA2 ).* (cos(theta)).A2 .* ...

((sin(angle) ./ angle).A2) + eps; 
rcsdb_v = 10. .*log10(rcs_v); 
rcsdb_h = 10. .*log10(rcs_h); 
rcsdb_po = 10. .*log10(rcs_po); 
subplot(1,2,1)
plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Vertical polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
legend('Solid Eq.(2.51)','Dashed Eq.(2.62)');
subplot(1,2,2)
plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Horizontal polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
xlabel ('aspect angle - deg');
legend('Solid eq.(2.50)','Dashed eq.(2.62)');

Listing 2.9. MATLAB Function “rcs_isosceles.m”
function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
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% conducting triangular flat plate, using Eq.s (2.63) through (2.65)
% The default case is to assume phi = pi/2. These equations are 
% valid for aspect angles less than 30 degrees 
% compute area of plate 
A = a * b / 2.; 
lambda = 3.e+8 / 9.5e+8; 
phi = pi / 2.; 
ka = 2. * pi / lambda; 
kb = 2. *pi / lambda;
% Compute theta vector 
theta_deg = 0.01:.05:89; 
theta = (pi /180.) .* theta_deg; 
alpha = ka * cos(phi) .* sin(theta); 
beta = kb * sin(phi) .* sin(theta); 
if (phi == pi / 2)
rcs = (4. * pi * AA2 / lambdaA2) .* cos(theta)A2 .* (sin(beta ./ 2)).A4 ...

./ (beta./2).A4 + eps; 
end 
if (phi == 0)

rcs = (4. * pi * AA2 / lambdaA2) .* cos(theta)A2 .* ...
((sin(alpha).A4 ./ alphaA4) + (sin(2 .* alpha) - 2.*alpha)A2 ...
./ (4 .* alpha.A4)) + eps;

end
if (phi ~= 0 & phi ~= pi/2) 

sigmao1 = 0.25 *sin(phi)A2 .* ((2. * a / b) * cos(phi) .* ...
sin(beta) - sin(phi) .* sin(2. .* alpha)).A2; 

fact1 = (alpha).A2 - (.5 .* beta).A2; 
fact2 = (sin(alpha).A2 - sin(.5 .* beta)A2 )A2; 
sigmao = (fact2 + sigmao1) ./ fact1;
rcs = (4. * pi * AA2 / lambdaA2) .* cos(theta).A2 .* sigmao + eps; 

end
rcsdb = 10. *log10(rcs); 
plot(theta_deg,rcsdb,'k') 
xlabel ('Aspect angle - degrees'); 
ylabel ('RCS - dBsm')
%title ('freq = 9.5GHz, phi = pi/2'); 
grid;

Listing 2.10. MATLAB Program “rcs_cylinder_complex.m”
% This program computes the backscattered RCS for a cylinder 
% with flat plates.

clear all 
index = 0; 
eps =0.00001; 
a1 =.125; 
h = 1.;
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lambda = 3.0e+8 /9.5e+9; 
lambda = 0.00861; 
index = 0;
for theta = 0.0:.1:90-.1 

index = index +1; 
theta = theta * pi /180.; 
rcs(index) = (lambda * a1 * sin(theta) / ...
(8 * pi * (cos(theta))A2)) + eps;

end
theta*180/pi; 
theta = pi/2; 
index = index +1;
rcs(index) = (2 * pi * hA2 * a1 / lambda )+ eps; 
for theta = 90+.1:.1:180. 

index = index + 1; 
theta = theta * pi / 180.; 
rcs(index) = ( lambda * a1 * sin(theta) / ...
(8 * pi * (cos(theta))A2)) + eps;

end 
r = a1; 
index = 0;
for aspect_deg = 0.:.1:180 

index = index +1; 
aspect = (pi /180.) * aspect_deg;

% Compute RCS using Eq. (2.37) 
if (aspect == 0 | aspect == pi)

rcs_po(index) = (4.0 * piA3 * rA4 / lambdaA2) + eps; 
rcs_mu(index) = rcs_po(1); 

else
x = (4. * pi * r / lambda) * sin(aspect); 
val1 = 4. * piA3 * rA4 / lambdaA2; 
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = val1 * (val2 * cos(aspect))A2 + eps; 

end 
end

rcs_t =(rcs_po + rcs); 
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k'); 
grid;
xlabel ('Aspect angle -degrees'); 
ylabel ('RCS -dBsm');

Listing 2.11. MATLAB Program “Swerling_models.m”
% This program computes and plots Swerling statistical models 
% sigma_bar = 1.5; 
clear all
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sigma = 0 :0 .001:6; 
sigma_bar = 1.5;
swer_3_4 = (4. / sigma_barA2) .* sigma .* ...

exp(-2. * (sigma ./ sigma_bar));
%t.*exp(-(t.A2)./2.
swer_1_2 = (1. /sigma_bar) .* exp( -sigma ./ sigma_bar);
plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k');
grid;
gtext ('Swerling I,II'); 
gtext ('Swerling III,IV'); 
xlabel ('sigma'); 
ylabel ('Probability density'); 
title ('sigma-bar = 1.5');

Problems
2 . 1 .  Design a cylindrical RCS calibration target such that its broadside RCS

2
(cylinder) and end (flat plate) RCS are equal to 10m at f  = 9.5G H z . The 

RCS for a flat plate o f area A  is Ofp = 4 n f  A 2/ c 2 .

2 . 2 .  The following table is constructed from a radar cross-section measure
ment experiment. Calculate the mean and standard deviation o f the radar cross 
section.

Number of samples RCS, m2
2 55

6 67

12 73

16 90

20 98

24 110

26 117

19 126

13 133

8 139

5 144

3 150
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2 . 3 .  Develop a MATLAB simulation to compute and plot the backscattered 
RCS for the following objects. Utilize the simple shape MATLAB functions 
developed in this chapter. Assume that the radar is located on the left side of 
the page and that its line o f sight is aligned with the target body axis. Assume 
an X-band radar.

frustum

30 cm

top view

frustum
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2 . 4 .  The backscattered RCS for a corner reflector is given by

-------------------------------  2

О Д6п a , . „.2 
— —  ( sin 0 ) +

4n a
. (2 n a . „ sin I sin 0

2n a . „ ---— sin 0 
A

This RCS is symmetric about the angle 0 =  45° . Develop a MATLAB pro
gram to compute and plot the RCS for a corner reflector. The RCS at the
0 = 45 ° is

2 2  
8 n a bО =

A2

corner reflector

© 2000 by Chapman & Hall/CRC



Chapter 3 Continuous Wave and 
Pulsed Radars

Continuous Wave (CW ) radars utilize CW  waveforms, which may be con
sidered to be a pure sinewave o f the form cos2 n f0t . Spectra o f the radar echo 
from stationary targets and clutter will be concentrated at f 0 . The center fre
quency for the echoes from moving targets will be shifted by f d , the Doppler 
frequency. Thus by measuring this frequency difference CW  radars can very 
accurately extract target radial velocity. Because o f the continuous nature o f 
C W  emission, range measurement is not possible without some modifications 
to the radar operations and waveforms, which will be discussed later.

3.1. Functional Block Diagram

In order to avoid interruption o f the continuous radar energy emission, two 
antennas are used in CW  radars, one for transmission and one for reception. 
Fig. 3.1 shows a simplified CW  radar block diagram. The appropriate values 
o f the signal frequency at different locations are noted on the diagram. The 
individual Narrow Band Filters (NBF) must be as narrow as possible in band
width in order to allow accurate Doppler measurements and minimize the 
amount o f noise power.

In theory, the operating bandwidth o f a CW  radar is infinitesimal (since it 
corresponds to an infinite duration continuous sinewave). However, systems 
with infinitesimal bandwidths cannot physically exist, and thus the bandwidth 
o f CW  radars is assumed to correspond to that o f a gated CW  waveform (see 
Chapter 5).
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mixer
®d ±  ®IF

amplifier

det.

indicator J
Figure 3.1. CW radar block diagram.

The NBF bank (Doppler filter bank) can be implemented using a Fast Fou
rier Transform (FFT). If the Doppler filter bank is implemented using an FFT 
o f size N fft  , and if  the individual NBF bandwidth (FFT bin) is Д /, then the 
effective radar Doppler bandwidth is N f f тД / /  2 . The reason for the one-half 
factor is to account for both negative and positive Doppler shifts.

Since range is computed from the radar echoes by measuring a two-way time 
delay, then single frequency CW  radars cannot measure target range. In order 
for C W  radars to be able to measure target range, the transmit and receive 
waveforms must have some sort o f timing marks. By comparing the timing 
marks at transmit and receive, CW  radars can extract target range.
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The timing mark can be implemented by modulating the transmit waveform, 
and one commonly used technique is Linear Frequency Modulation (LFM). 
Before we discuss LFM signals, we will first introduce the CW  radar equation 
and briefly address the general Frequency Modulated (FM) waveforms using 
sinusoidal modulating signals.

3.2. CW Radar Equation

As indicated by Fig. 3.1, the CW  radar receiver declares detection at the out
put o f a particular Doppler bin if that output value passes the detection thresh
old within the detector box. Since the NBF bank is inplemented by an FFT, 
only finite length data sets can be processed at a time. The length o f such 
blocks is normally referred to as the dwell time or dwell interval. The dwell 
interval determines the frequency resolution or the bandwidth o f the individual 
NBFs. More precisely,

Af  = \ / TDwell (31)

TDwell is the dwell interval. Therefore, once the maximum resolvable fre
quency by the NBF bank is chosen the size o f the NBF bank is computed as

n f f t  = 2 B // A f  (3-2)

B is the maximum resolvable frequency by the FFT. The factor 2 is needed to 
account for both positive and negative Doppler shifts. It follows that

TDwell = NFFT/ 2 B (33)

The CW  radar equation can now be derived from the high PRF radar equa
tion given in Eq. (1.69) and repeated here as Eq. (3.4)

P a J f i 2},2 О
SNR = av3 ‘ ---------- (3.4)

(4 n ) R kTeFL

In the case o f CW  radars, P av is replaced by the CW  average transmitted 
power over the dwell interval P CW, and Ti must be replaced by TDwell. Thus, 
the CW  radar equation can be written as

2
P CWTDwellG tGr^ О

SNR = Г Г  f Г------ (3.5)
(4 n ) R kTeFLLwin

where G t and G r are the transmit and receive antenna gains, respectively. The 
factor L win is a loss term associated with the type o f window (weighting) used 
in computing the FFT. Other terms in Eq. (3.5) have been defined earlier.

© 2000 by Chapman & Hall/CRC



3.3. Frequency Modulation

The discussion presented in this section will be restricted to sinusoidal mod
ulating signals. In this case, the general formula for an FM waveform can be 
expressed by

2 n/0t + /  cos2 n/mudu (3.6)

/0 is the radar operating frequency (carrier frequency), co s2n /mt is the mod
ulating signal, A is a constant, and kf  = 2пД/ реак, where Д/реак is the peak 
frequency deviation. The phase is given by

Y ( t) = 2 /  + 2 пД/реак\ cos2 n/mUdU = 2n/{) t + P sin2n/mt (3.7)

where в is the FM modulation index given by

в =
_  Д/petak

/m
(3.8)

Let sr( t) be the received radar signal from a target at range R . It follows 
that

sr( t ) = A rcos (2 n/0(t  -  Дt) + в sin2n/m( t -  Дt)) 

where the delay Дt is

2RДt = —
c

(3.9)

(3.10)

c is the speed o f light. CW  radar receivers utilize phase detectors in order to 
extract target range from the instantaneous frequency, as illustrated in Fig. 3.2. 
A  good measurement o f the phase detector output o ( t) implies a good mea
surement o f Дt, and hence range.

0

Sr( t) phase I O ( t) = K 1cos rnm

detector

Дt

Figure 3.2. Extracting range from an FM signal return. 
K1 is a constant.
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Consider the FM waveform s ( t) given by

s ( t) = A cos ( 2n f01 + P sin2nfmt) (3.11)

which can be written as

Лп г j 2 nf01 j P sin2nfmrns( t) = A R e{ e e }  (3.12)

where R e { ■ }  denotes the real part. Since the signal exp(]P sin2n fmt) is 
periodic with period T = l / f m, it can be expressed using the complex expo
nential Fourier series as

j P sin2nfmt „  jn2nfmt
e = X  Cne (3.13)

П = —̂

where the Fourier series coefficients Cn are given by

1 г /p sin2nfmt -jn2nfmt
Cn = 2 k  J e e dt (3.14)

Make the change o f variable u = 2 nfmt , and recognize that the Bessel func
tion o f the first kind o f order n is

Jn(P ) = J ej(PsinU- nU du (3.15)

Thus, the Fourier series coefficients are Cn = Jn ( P ) , and consequently Eq. 
(3.13) can now be written as

X  Jn(P)e]n lm  (3.16)

which is known as the Bessel-Jacobi equation. Fig. 3.3 shows a plot o f Bessel 
functions o f the first kind for n = 0, 1, 2, 3.

The total power in the signal s ( t) is

P  = 1a 2 X  |Jn(P)|2 = 1 A 2 (3.17)

Substituting Eq. (3.16) into Eq. (3.12) yields

n = -oo
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Figure 3.3. Plot of Bessel functions of order 0, 1, 2, and 3.

s ( t) = A R e
j2nfot

X  Jn(P)
jn2nfmt (3.18)

Expanding Eq. (3.18) yields

s ( t) = A X  Jn(P)cos (2 n f0 + n2n fm)t (3.19)

n = -̂ >

Finally, since Jn(P ) = J-n (P ) for n odd and Jn(P ) = - J -n (P ) for n even we 
can rewrite Eq. (3.19) as

s ( t) = A {  J0(P ) cos2n f01 + (3.20)
J1( P)[ cos ( 2f  + 2Kfm) t -  cos (2nf 0- 2nfm) t]

+ J2 ( P)[ cos ( 2 П/0 + 4nfm ) t + cos ( 2 П/0 - 4nfm ) t]
+ J3 (P )[ cos ( 2 п/0 + 6 nfm ) t -  cos ( 2 П/0-6 nfm) t ]

+ J4(P )[ cos ( (  2 П/0 + 8 nfm ) t + cos ( 2 П/0-8 nfm ) t)] + . . . }

The spectrum o f s ( t) is composed o f pairs o f spectral lines centered at f 0 , as 
sketched in Fig. 3.4. The spacing between adjacent spectral lines is f m . The 
central spectral line has an amplitude equal to A J o ( P ) , while the amplitude o f 
the nth spectral line is AJn( P ) .
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f0

P = 1

’b f0 ■ 

P = 2

f m

Figure 3.4. Amplitude line spectra sketch for FM signal.

As indicated by Eq. (3.20) the bandwidth o f FM signals is infinite. However, 
the magnitudes o f spectral lines o f the higher orders are small, and thus the 
bandwidth can be approximated using Carson’s rule,

B ~ 2 (P + 1  )fm (3.21)

When P is small, only J0(P ) and J1 (P ) have significant values. Thus, we 
may approximate Eq. (3.20) by

s ( t) «  A {  J0 (P ) cos2 n f)t + J 1(P ) (3.22)
[ cos (2 f  + 2 nfm) t — cos ( 2n f0—2 f ) t ] }

Finally, for small P , the Bessel functions can be approximated by

J0(P ) = 1 (3.23)

J 1 (P )“  1 P (3.24)

Thus, Eq. (3.22) may be approximated by

s ( t) «  A j  cos2 n f01 + 2 P[ cos (2 nf0 + 2nfm )t — cos (2 n f0—2 f ) t ]|  (3.25)

Example 3.1: I f  the modulation index is P = 0.5, give an expression fo r  the 
signal s ( t) .

Solution: From Bessel function tables we get J0(0 .5 ) = 0.9385 and 
J1( 0.5) = 0 .2423 ; then using Eq. (3.17) we get
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i  ( t ) =  Л { ( 0.9385) cos2 n f01 + (0.2423)
[ cos (2nfo + 2nfm) t -  c o s (2n fo -2nfm) t] }

Example 3.2: Consider an FM transmitter with output signal 
s ( t) = 100cos( 2000n t + ф (t) ) .  The frequency deviation is 4H z, and the 
modulating waveform is x ( t) = 10cos16n t. Determine the FM signal band
width. How many spectral lines will pass through a band pass filter whose 
bandwidth is 58Hz centered at 1000H z?

Solution: The peak frequency deviation is Afpeak = 4 x  10 = 40 H z. It fo l 
lows that

e = A fpeak = 40 = 5 
P = fm = 8 =

Using Eq. (3.16) we get

B «  2 (P + 1 )fm = 2 x  ( 5 + 1 )  x  8 = 96Hz

However, only seven spectral lines pass through the band pass filter as illus
trated in the figure shown below.

amplitude/100

40 ^  О  00 'О  4
t--. 00 OS О  О  ^
O n O s  O s  О  О  О  О

frequency

3.4. Linear FM  (LFM) CW Radar

CW  radars may use LFM waveforms so that both range and Doppler infor
mation can be measured. In practical CW  radars, the LFM waveform cannot be 
continually changed in one direction, and thus periodicity in the modulation is 
normally utilized. Fig. 3.5 shows a sketch o f a triangular LFM waveform. The 
modulation does not need to be triangular; it may be sinusoidal, saw-tooth, or 
some other form. The dashed line in Fig 3.5 represents the return waveform 
from a stationary target at range R . The beat frequency f b is also sketched in 
Fig. 3.5. It is defined as the difference (due to heterodyning) between the trans
mitted and received signals. The time delay At is a measure o f target range, as 
defined in Eq. (3.10).
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frequency A

Figure 3.5. Transmitted and received triangular LFM signals and beat 
frequency for stationary target.

In practice, the modulating frequency f m is selected such that

fm 2tn

The rate o f frequency change, f , is

(3.26)

(3.27)

where A f is the peak frequency deviation. The beat frequency f b is given by

2 R
fb = A tf  = c  f  (3.28)

Eq. (3.28) can be rewritten as

f  = 2 R f b

Equating Eqs. (3.27) and (3.29) and solving for f b yield

,  4RfmAf
Jb = „

(3.29)

(3.30)

Now consider the case when Doppler is present (i.e., non-stationary target). 
The corresponding triangular LFM transmitted and received waveforms are
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sketched in Fig. 3.6, along with the corresponding beat frequency. As before 
the beat frequency is defined as

f b f received f transmitted (3-31)

When the target is not stationary the received signal will contain a Doppler 
shift term in addition to the frequency shift due to the time delay A t . In this 
case, the Doppler shift term subtracts from the beat frequency during the posi
tive portion o f the slope. Alternatively, the two terms add up during the nega
tive portion o f the slope. Denote the beat frequency during the positive (up) 
and negative (down) portions o f the slope, respectively, as f bu and f bd.

It follows that

, _  2 R , 2R
/bu = c f  A < >

where R is the range rate or the target radial velocity as seen by the radar. The 
first term o f the right-hand side o f Eq. (3.32) is due to the range delay defined 
by Eq. (3.28), while the second term is due to the target Doppler. Similarly,

fbd = 2 R f + 2 R  <3-33>

Figure 3.6. Transmited and received LFM signals and beat frequency, for a 
moving target.
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Range is computed by adding Eq. (3.32) and Eq. (3.33). More precisely,

R = f f b u  + fbd) (3.34)

The range rate is computed by subtracting Eq. (3.33) from Eq. (3.32),

R = \Vbd -  fbu) (335)

As indicated by Eq. (3.34) and Eq. (3.35), CW  radars utilizing triangular 
LFM can extract both range and range rate information. In practice, the maxi
mum time delay Atmax is normally selected as

A tmax = 0 .110 (336)

Thus, the maximum range is given by

0.1 ct0 0 1c
Rmax = - у 0 = f  (337)

f m

and the maximum unambiguous range will correspond to a shift equal to 2 10 .

3.5. Multiple Frequency CW Radar

CW  radars do not have to use LFM waveforms in order to obtain good range 
measurements. Multiple frequency schemes allow CW  radars to compute very 
adequate range measurements, without using frequency modulation. In order 
to illustrate this concept, first consider a CW  radar with the following wave
form:

s ( t) = A  sin 2n f0t (3.38)

The received signal from a target at range R is

sr(t)=  A rsin (2 n f01 -  Ф) (3.39)

where the phase ф is equal to

2Rф = 2n f0—  (3.40)

Solving for R we obtain

R = ^ - ^  = Т -  ф (3.41)4 n f) 4
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Clearly, the maximum unambiguous range occurs when ф is maximum, i.e., 
Ф = 2n . Therefore, even for relatively large radar wavelengths, R is limited 
to impractical small values.

Next, consider a radar with two CW  signals, denoted by s 1 ( t) and s2 ( t) .  
More precisely,

s1( t) = A 1sin2 n/1t (3.42)

s2( t) = A 2sin2 n/2t (3.43) 

The received signals from a moving target are

51 r ( t) = Ar1 sin (2 n f 1-Ф 1) (3.44)

and

52 r ( t) = Ar2sin (2 / 1—Ф2 ) (3.45)

where ф1 = (4 n /1R ) / c and ф2 = (4 n /2R ) / c . After heterodyning (mixing) 
with the carrier frequency, the phase difference between the two received sig
nals is

. 4 n R , ,  . ,  4 n R . .
Ф2 -  Ф1 = А Ф = —  (/2 -  / 1) = - j -  AJ (3.46)

Again R is maximum when Аф = 2n ; it follows that the maximum unambig
uous range is now

R = Щ  (3-47)

and since A J«  c , the range computed by Eq. (3.47) is much greater than that 
computed by Eq. (3.41).

3.6. Pulsed Radar

Pulsed radars transmit and receive a train o f modulated pulses. Range is 
extracted from the two-way time delay between a transmitted and received 
pulse. Doppler measurements can be made in two ways. If accurate range mea
surements are available between consecutive pulses, then Doppler frequency 
can be extracted from the range rate R = A R /A  t . This approach works fine as 
long as the range is not changing drastically over the interval A t . Otherwise, 
pulsed radars utilize a Doppler filter bank.

Pulsed radar waveforms can be completely defined by the following: (1 ) car
rier frequency which may vary depending on the design requirements and
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radar mission; (2 ) pulse width, which is closely related to the bandwidth and 
defines the range resolution; (3) modulation; and finally (4) the pulse repetition 
frequency. Different modulation techniques are usually utilized to enhance the 
radar performance, or to add more capabilities to the radar that otherwise 
would not have been possible. The PRF must be chosen to avoid Doppler and 
range ambiguities as well as maximize the average transmitted power.

Radar systems employ low, medium, and high PRF schemes. Low PRF 
waveforms can provide accurate, long, unambiguous range measurements, but 
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both 
range and Doppler ambiguities; however, they provide adequate average trans
mitted power as compared to low PRFs. High PRF waveforms can provide 
superior average transmitted power and excellent clutter rejection capabilities. 
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar 
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR). 
Range and Doppler ambiguities for different PRFs are summarized in Table
3.1.

Distinction o f a certain PRF as low, medium, or high PRF is almost arbitrary 
and depends on the radar mode o f operations. For example, a 3KHz PRF is 
considered low if the maximum detection range is less than 30K m . However, 
the same PRF would be considered medium if the maximum detection range is 
well beyond 30K m .

Radars can utilize constant and varying (agile) PRFs. For example, Moving 
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind 
o f agility is known as PRF staggering. PRF agility is also used to avoid range 
and Doppler ambiguities, as will be explained in the next three sections. Addi
tionally, PRF agility is also used to prevent jammers from locking onto the 
radar’s PRF. These two latter forms o f PRF agility are sometimes referred to as 
PRF jitter.

TABLE 3.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes
High PRF Yes No

Fig. 3.7 shows a simplified pulsed radar block diagram. The range gates can 
be implemented as filters that open and close at time intervals that correspond 
to the detection range. The width o f such an interval corresponds to the desired 
range resolution. The radar receiver is often implemented as a series o f contig
uous (in time) range gates, where the width o f each gate is matched to the radar 
pulse width. The NBF bank is normally implemented using an FFT, where
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bandwidth o f the individual filters corresponds to the FFT frequency resolu
tion.

p u l s e  train 
g e n e r a t o r

R F  s o u rc e

Ш,

®0 ±  ®IF

LO

,  ^ ^ ^ p l e x e r

i

3 _
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r a n g e ra n g e
g ate gate

N B F  | N B F  I

t  —  i |  —  f

^ e t e c t o ^ J d e t e c t o r s  1

t h r e s h o ld  d e t e c t io n J
Figure 3.7. Pulsed radar block diagram.

ffliF A

3.7. Range and Doppler Ambiguities

As explained earlier, a pulsed radar can be range ambiguous if  a second 
pulse is transmitted prior to the return o f the first pulse. In general, the radar 
PRF is chosen such that the unambiguous range is large enough to meet the 
radar’s operational requirements. Therefore, long-range search (surveillance) 
radars would require relatively low PRFs.

The line spectrum o f a train o f pulses has sinx/ x  envelope, and the line 
spectra are separated by the PRF, f r , as illustrated in Fig. 3.8. The Doppler fil
ter bank is capable o f resolving target Doppler as long as the anticipated Dop
pler shift is less than one half the bandwidth o f the individual filters (i.e., one 
half the width o f an FFT bin). Thus, pulsed radars are designed such that
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x r>._c y rmax /л -_x
f r = 2fdmax = - y -  (348)

where f dmax is the maximum anticipated target Doppler frequency, vrmax is 
the maximum anticipated target radial velocity, and X is the radar wavelength.

If the Doppler frequency o f the target is high enough to make an adjacent spec
tral line move inside the Doppler band o f interest, the radar can be Doppler 
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems 
require high PRF rates when detecting high speed targets. When a long-range 
radar is required to detect a high speed target, it may not be possible to be both 
range and Doppler unambiguous. This problem can be resolved by using multi
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each 
dwell interval (scan or integration frame) or the radar can use a single PRF in 
one scan and resolve ambiguity in the next. The latter technique, however, may 
have problems due to changing target dynamics from one scan to the next.
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Figure 3.8. Spectra of transmitted and received waveforms, and Doppler 
bank. (a) Doppler is resolved. (b) Spectral lines have moved 
into the next Doppler filter. This results in an ambiguous 
Doppler measurement.

3.8. Resolving Range Ambiguity

Consider a radar that uses two PRFs, f r 1 and f r2, on transmit to resolve 
range ambiguity, as shown in Fig. 3.9. Denote Ru 1 and Ru 2 as the unambigu
ous ranges for the two PRFs, respectively. Normally, these unambiguous
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ranges are relatively small and are short o f the desired radar unambiguous 
range Ru (where Ru »  Rui,Ru2). Denote the radar desired PRF that corre
sponds to Ru as f rd.

We choose f r 1 and f r 2 such that they are relatively prime with respect to one 
another. One choice is to select f r 1 = N frd and f r2 = (N  + 1 ) f rd for some 
integer N . Within one period o f the desired PRI ( Td = 1/frd) the two PRFs 
f r 1 and f r 2 coincide only at one location, which is the true unambiguous target 
position. The time delay Td establishes the desired unambiguous range. The 
time delays t1 and t2 correspond to the time between the transmit o f a pulse 
on each PRF and receipt o f  a target return due to the same pulse.

Let M 1 be the number o f PRF1 intervals between transmit o f a pulse and 
receipt o f the true target return. The quantity M 2 is similar to M 1 except it is 
for PRF2. It follows that, over the interval 0 to Td, the only possible results 
are M 1 = M 2 = M  or M 1 + 1 = M 2 . The radar needs only to measure t1 
and t2 . First, consider the case when t1 < t2 . In this case,

t1 + M  = t2 + M  (3.49)
Jr1 Jr 2

Fgure 3.9. Resolving range ambiguity.

© 2000 by Chapman & Hall/CRC



for w h ich  w e  get

M  = —-----L (3.50)
T 1 -  T 2

where T1 = 1/fr1 and T2 = 1 / f r2. It follows that the round trip time to the 
true target location is

tr = M T 1 + t1

tr = M T2 + t2

and the true target range is

(3.51)

R = ctr/ 2 (3.52)

N ow if t1 > t2 , then

, M  t M  + 1
t1 + T- = t2 + — ----  (3.53)

f r1 f r2

Solving for M  we get

( t2 -  t1) + T2
M  =  ̂ 2 1 -- 2 (3.54)

1 1 -  T 2

and the round-trip time to the true target location is

tr 1 = M T1 + t1 (3.55)

and in this case, the true target range is

ctr 1
R = - y 1 (3.56)

Finally, if  t1 = t2 , then the target is in the first ambiguity. It follows that

tr 2 = t1 = t2 (3.57)

and

R = ctr2/ 2 (3.58)

Since a pulse cannot be received while the following pulse is being transmit
ted, these times correspond to blind ranges. This problem can be resolved by 
using a third PRF. In this case, once an integer N  is selected, then in order to 
guarantee that the three PRFs are relatively prime with respect to one another, 
we may choose fr  1 = N ( N  + 1  j , fr 2 = N ( N  + 2  )frd, and 
fr 3 = (N  + 1 ) (N  + 2 )frd .
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3.9. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that o f range ambiguity. 
Therefore, the same methodology can be used to resolve Doppler ambiguity. In 
this case, we measure the Doppler frequencies f d1 and f d2 instead o f t1 and 
t2 .

If f d 1 > f d2, then we have

M  =

And if fd1 < fd2 ,

and the true Doppler is

Finally, if f d1 = f d2 , then

M

</d2 - f d d + fr2
------f--r-1--- f---r-2-----

f d2 ~ f d1 
-f--r--1-----f--r--2-

fd = Mfr1 + fd1 

fd = Mfr2 + fd2

f d = f d1 = f d 2

(3.59)

(3.60)

(3.61)

(3.62)

Again, blind Dopplers can occur, which can be resolved using a third PRF.

Example 3.3: A certain radar uses two PRFs to resolve range ambiguities. 
The desired unambiguous range is Ru = 100Km . Choose N  = 5 9 .  Compute
f r 1 - f r2 - Ru1 - and Ru2 .

Solution: First let us compute the desired PRF, f rd

->8

f rd =
c 3 x  10°

->3 = 1.5 KHz
2Ru 200 X 103 

It follow s that

fr  1 = Nfrd = (59 )(1500) = 88.5KHZ 

fr 2  = (N  + 1 )frd = (5 9 +  1)(1500) = 90KHz

c
Ru1 2ft

3 X 108

r 1 2 X 88.5 X 10
= 1.695Km
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R u2 =
c

-2--- r--- 2
3 x  10°

2 X 90 X 10
=  1 .667Km.

Example 3.4: Consider a radar with three PRFs; f r 1 = 15KHz, 
f r2 = 18KHz, and f r3 = 21K H z. Assume f 0 = 9G H z. Calculate the fr e 
quency position o f  each PRF fo r  a target whose velocity is 550 m / s . Calculate 
f d (Doppler frequency) fo r  another target appearing at 8K H z, 2K H z, and 
17KH z fo r  each PRF.

Solution: The Doppler frequency is

vj q 2 X 550 X 9 X 109 
f d = 2 T  = -----------------8-------  = 33 K H z

c 3 X 10°

Then by using Eq. (3.61) n f ri + f di = f d where i = 1, 2, 3 , we can write

n1f r1+ f d1 = 15 n1+ f d1 = 33 

nf r 2 + f d2 = 18 n2 + f d2 = 33 

n3f r3+ f d3 = 21 n3 + f d3 = 33

We will show here how to compute n1 , 
n3 to the reader. First, if  we choose n1

and leave the computations o f  n2 and 
= 0 , that means f d1 = 33K H z, which

cannot be true since f d1 cannot be greater than f r 1. Choosing n1 = 1 is also 
invalid since f d1 = 18KHz cannot be true either. Finally, if we choose 
n1 = 2 we get f d1 = 3 K H z, which is an acceptable value. It follow s that the 
minimum n1, n2, n3 that may satisfy the above three relations are n1 = 2 , 
n2 = 1, and n3 = 1. Thus, the apparent Doppler frequencies are 
fd 1 = 2K H z, fd2 = 15KHz, and fd3 = 12KHz.
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Now fo r  the second part o f  the problem. Again by using Eq. (3.61) we have 

n1f r 1 + f d 1 = f d = 15n1 + 8

n f r2 + f d 2 = f d = 18n2 + 2 

n3f r3 + f d3 = f d = 21n3 + 17

We can now solve fo r  the smallest integers n1, n2, n3 that satisfy the above 
three relations. See the table below.

n 0 1 2 3 4

fd from f r1
8 23 38 53 68

f d from fr2 2 20 38 56

fd from fr3 17 38 39

Thus, n1 = 2 = n2, and n3 = 1, and the true target Doppler is 
f d = 38 K H z. It follow s that

vr = 38000 X 04 333 = 632.7 —  
r 2 sec
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3.10. MATLAB Program “rangejcalc.m”

The program “ range_calc.m”  solves the radar range equation o f the form

R
(4 п )3 kTeFL( SNR) 0y

(3.63)

where P t is peak transmitted power, т is pulse width, f r is PRF, G t is trans
mitting antenna gain, Gr receiving antenna gain, X is wavelength, о  is target 
cross section, k is Boltzman’s constant, Te effective noise temperature, F  is 
system noise figure, L is total system losses, and ( SNR)o is the minimum 
SNR required for detection. This equation applies for both CW  and pulsed 
radars. In the case o f CW  radars, the terms P f  must be replaced by the aver
age CW  power P CW. Additionally, the term Ti refers to the dwell interval; 
alternatively, in the case o f pulse radars Ti denotes the time on target. MAT- 
LAB-based GUI is utilized in inputting and editing all input parameters. The 
outputs include the maximum detection range versus minimum SNR plots. 
This program can be executed by typing “ range_calc_driver”  which is 
included in this book ’ s companion software. This software can be downloaded 
from CRC Press Web site “ www.crcpress.com” . The related MATLAB GUI 
workspace associated with this program is illustrated in Fig. 3.10.

Problems
3 . 1 .  Prove that

X  Jn (z ) = 1 .
n = -^

3 . 2 .  Show that J-n (z ) = ( -1  )nJn (z ) .  Hint: You may utilize the relation

п

Jn( z ) = 1 [ cos (z sin y -  ny) dy. п
0

3 . 3 .  In a multiple frequency CW  radar, the transmitted waveform consists o f 
two continuous sinewaves o f frequencies f 1 = 105KHz and f 2 = 115K H z . 

Compute the maximum unambiguous detection range.
3 . 4 .  Consider a radar system using linear frequency modulation. Compute 

the range that corresponds to f  = 20, 10M H z . Assume a beat frequency 

fb = 1200H z .
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Figure 3.10. GUI work space associated with the program 
“range_calc.m ” .

3 . 5 .  A  certain radar using linear frequency modulation has a modulation fre
quency f m = 300H z , and frequency sweep A f = 5 0M H z . Calculate the 

average beat frequency differences that correspond to range increments o f 10 

and 15 meters.
3 . 6 .  A  CW  radar uses linear frequency modulation to determine both range 
and range rate. The radar wavelength is X = 3 cm , and the frequency sweep is 

A f = 2 00K H z . Let t0 = 20 m s . (a) Calculate the mean Doppler shift; (b) 

compute f bu and f bd corresponding to a target at range R = 350K m , which is 

approaching the radar with radial velocity o f 250m / s .
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3 . 7 .  In Chapter 1 we developed an expression for the Doppler shift associ
ated with a CW  radar (i.e., f d = ± 2v / X , where the plus sign is used for clos
ing targets and the negative sign is used for receding targets). CW  radars can 
use the system shown below to determine whether the target is closing or 
receding. Assuming that the emitted signal is A  cos ю 01 and the received signal 

is kA cos ((ю 0 ±  rnd)t  + ф ), show that the direction o f the target can be deter

mined by checking the phase shift difference in the outputs y ^ t) and y 2( t) .

3 . 8 .  Consider a medium PRF radar on board an aircraft moving at a speed o f 
350 m/ s with PRFs f r1 = 10K H z, f r2 = 15K H z, and f r3 = 20 K H z ; the

radar operating frequency is 9 .5G H z . Calculate the frequency position o f a 

nose-on target with a speed o f 300 m / s . Also calculate the closing rate o f a 
target appearing at 6 , 5 , and 18KH z away from the center line o f PRF 10, 

15, and 20KHz, respectively.

3 . 9 .  Repeat Problem 3.8 when the target is 15° o ff the radar line o f sight.

3 . 1 0 .  A  certain radar operates at two PRFs, f r 1 and f r2, where 

Tr1 = ( 1/fr1) = T/ 5 and Tr 2 = ( 1 / f r 2) = T/ 6 . Show that this multiple 
PRF scheme will give the same range ambiguity as that o f a single PRF with 
PRI T.
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3 . 1 1 .  Consider an X-band radar with wavelength X = 3 cm  and bandwidth 

B = 10M H z . The radar uses two PRFs, f r 1 = 50KHz and f r2 = 55.55K H z . 

A  target is detected at range bin 46 for f r1 and at bin 12 for f r2. Determine 

the actual target range.
3 . 1 2 .  A  certain radar uses two PRFs to resolve range ambiguities. The 
desired unambiguous range is Ru = 150K m . Select a reasonable value for N . 

Compute the corresponding f r 1, f r 2 , R u1, and Ru 2 .

3 . 1 3 .  A  certain radar uses three PRFs to resolve range ambiguities. The 
desired unambiguous range is Ru = 250K m . Select N  = 43. Compute the

c° rresp °nding fr  1 , fr2 , fr3 , Ru1 , Ru2 , and Ru3.
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Chapter 4 Radar Detection

4.1. Detection in the Presence of Noise

A  simplified block diagram o f a radar receiver that employs an envelope 
detector followed by a threshold decision is shown in Fig. 4.1. The input signal 
to the receiver is composed o f the radar echo signal s ( t) and additive zero 
mean white Gaussian noise n( t) ,  with variance у  . The input noise is 
assumed to be spatially incoherent and uncorrelated with the signal.

The output o f the band pass IF filter is the signal v ( t) ,  which can be written
as

v( t) = Vj(t)cos  rn01 + Vq(t) sinю0 = r ( t) cos(rn0t -  ф (t))

vI( t) = r( t) cos ф( t) (4.1)

Vq ( t) = r( t) sin Ф( t)

where ю0 = 2n f0 is the radar operating frequency, r ( t) is the envelope o f 
v ( t) ,  the phase is ф( t) = atan (V q /vI) ,  and the subscripts I, Q , respectively, 
refer to the in-phase and quadrature components.

A  target is detected when r ( t) exceeds the threshold value VT, where the 
decision hypotheses are

s ( t) + n (t )>  VT D etection  
n (t )>  VT F alse alarm
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From antenna 
and low noise Amp. ------^ Band Pass

Filter (IF) V ( t f
Low Pass 1I----- ► Filter

Threshold VT

Figure 4.1. Simplified block diagram of an envelope detector and threshold 
receiver.

The case when the noise subtracts from the signal (while a target is present) to 
make r ( t) smaller than the threshold is called a miss. Radar designers seek to 
maximize the probability o f detection for a given probability o f false alarm.

The IF filter output is a complex random variable that is composed o f either 
noise alone or noise plus target return signal (sine wave o f amplitude A ). The 
quadrature components corresponding to the first case are

V; ( t) = n  ( t) 
Vq( t) = Hq ( t)

(4.2)

and for the second case,

v; ( t) = A + h; ( t) = r ( t) cos ф( t) ^  h; ( t) = r( t) cos ф (t) -  A 

Vq( t) = Hq( t) = r ( t) sin ф( t)
(4.3)

where the noise quadrature components h; ( t) and Hq ( t) are uncorrelated zero 
mean low pass Gaussian noise with equal variances, V  . The joint Probability 
Density Function (pdf) o f  the two random variables h; ;Hq is

f ( Н;, Hq) 

1

2 n v
exp

2 2  
h;  + h q

2 y 2
(4.4)

2 n v
exp ( r c o s ф - A )  + ( т и ф )

2y 2

The pdfs o f  the random variables r ( t) and ф (t) ,  respectively, represent the 
modulus and phase o f v ( t) .  The joint p d f  for the two random variables 
r ( t );ф ( t) is given by

f ( r, ф) = f ( Н;, Hq ) И 

where [ J ] is a matrix o f derivatives defined by

(4.5)
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[ J] =

dnI dnI 
d r дф

dnQ dnQ
dr дф_

cos ф - r  sin ф 
sin ф rcos  ф_

(4 .6 )

The determinant o f the matrix o f derivatives is called the Jacobian, and in this 
case it is equal to

IJ = r ( t) (4 .7 )

Substituting Eqs. (4.4) and (4.7) into Eq. (4.5) and collecting terms yield

f ( r, ф) =
2 п у '

exp
2 у '2

exp (  rA cos ф j

The pd f for r alone is obtained by integrating Eq. (4.8) over ф

2п 2 п

f ( r ) = [ f ( r ,  ф )dф = -^ exp  у2

2 2  
r + A

2у

(4.8)

(4.9)

where the integral inside Eq. (4.9) is known as the modified Bessel function o f 
zero order,

Thus,

2п
1 j* в cos 0

e d0 (4.10)

0

f (  r) = —210 (  Щ  exP у у

2 2  r + A

2y 2
(4.11)

which is the Rice probability density function. If A / y  = 0 (noise alone), 
then Eq. (4.11) becomes the Rayleigh probability density function

f (  r) = — exp 
у

2
r

2y 2
(4.12)

Also, when (A / y  ) is very large, Eq. (4.11) becomes a Gaussian probability 
density function o f mean A and variance у  :

0 0

I
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f (  r )■■
л/2

rexp
п у

( r - A ) 2)

2 y 2

2

(4 .1 3 )

Fig. 4.2 shows plots for the Rayleigh and Gaussian densities.

The density function for the random variable ф is obtained from

f W  = j f ( r, ф) dr (4.14)

While the detailed derivation is left as an exercise, the result o f Eq. (4.14) is

Л ф ) = 2П exp

2
-A  '
2у2

A  cos ф + . T exp
л/2п у

......2...у..2...... F ^A c o ^  j (4.15)

where

F  (x ) = j  - L  e Z 7 2 dt, 
J *j2/k

(4.16)

The function F  (x ) can be found tabulated in most mathematical formulas and 
tables reference books. Note that for the case o f noise alone (A = 0 ) , Eq. 
(4.15) collapses to a uniform pd f  over the interval {0 , 2 п }  .

r

0

x

x

Figure 4.2. Gaussian and Rayleigh probability densities.
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One excellent approximation for the function F  (x ) is

F  (x ) = 1 -
1 1 -x2 / 2

~F= e V2n
x  >  0 (4 .1 7 )

(4.18)

V0.661x + 0 .3 3 ^ x 2 + 5 .5 i ;  

and for negative values o f x

F  (- x ) = 1 -  F  (x )

MATLAB Function “ que_func.m ”

The function “queJuHC.m”  computes F (x ) using Eqs. (4.17) and (4.18) and 
is given in Listing 4.1 in Section 4.10. The syntax is as follows:

fo fx  = que_fuHC (x)

4.2. Probability of False Alarm

The probability o f false alarm P fa is defined as the probability that a sample 
R o f  the signal r( t) will exceed the threshold voltage VT when noise alone is 
present in the radar,

Pfa =
2

r

2v 2

dr = exp
( -V r4 

2v 2
(4.19a)

V
= i V l n  ( i )

(4.19b)

Fig. 4.3 shows a plot o f the normalized threshold versus the probability o f false 
alarm. It is evident from this figure that Pfa is very sensitive to small changes 
in the threshold value.

The false alarm time Tfa is related to the probability o f false alarm by

m  ̂ t
Tfa = pTPfa

(4.20)

where tiHt represents the radar integration time, or the average time that the 
output o f the envelope detector will pass the threshold voltage. Since the radar 
operating bandwidth B is the inverse o f tiHt, then by substituting Eq. (4.19) 
into Eq. (4.20) we can write Tfa as

Tfa = B

/ V _ 4

2V 2
(4 .2 1 )

T
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2.5

log ( 1/ Pfa)
Figure 4.3. Normalized detection threshold versus probability of false alarm.

Minimizing Tfa means increasing the threshold value, and as a result the 
radar maximum detection range is decreased. Therefore, the choice o f an 
acceptable value for Tfa becomes a compromise depending on the radar mode 
o f operation. The false alarm number n,fa was defined by Marcum (see bibliog
raphy) as the reciprocal o f Pfa . Using Marcum’s definition o f the false alarm 
number, the probability o f false alarm is given by Pfa ~ ln (2 ) ( np/nfa) , where 
np > 1 is the number o f pulses and Pfa < 0.007.

4.3. Probability of Detection
The probability o f detection P D is the probability that a sample R o f  r ( t) 

will exceed the threshold voltage in the case o f noise plus signal,

P I  Г  ' 0 ( - 2)J у  v— /
exp

(  2 ,2\ 
r + A

2—2
dr (4.22)

If we assume that the radar signal is a sine waveform with amplitude A, then its 
power is A / 2 . Now, by using SNR = A / 2— (single-pulse SNR) and 
( v T/2—2) = ln ( 1/Pfa) , then Eq. (4.22) can be rewritten as

VT
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Рг j  Г2 eXP

2 2  
r + A

72V2ln (1 / pfa)

dr = 2
2

/¥

2 [ a , p ]  = j  Z/0(a Z )e 4Z' + a V 2 dZ
JP

(4.23)

(4.24)

2  is called Marcum’s Q-function. When Pfa is small and P d is relatively 
large so that the threshold is also large, Eq. (4.24) can be approximated by

(5  -  H t )
(4.25)

where F  (x ) is given by Eq. (4.16).

Many approximations for computing Eq. (4.23) can be found throughout the 
literature. One very accurate approximation presented by North (see bibliogra
phy) is given by

P t ■ 0.5 x  e r fc (J -  ln Pfa -  J  SNR + 0.5)

where the complementary error function is

2 Cz 2 
e r fc (z )  = 1 -  ---2 I e-  dv

0

(4.26)

(4.27)

Table 4.1 gives samples o f the single pulse SNR corresponding to few values 
o f P d and Pfa , using Eq. (4.26). For example, if  P d = 0.99 and 
P fa = 10 , then the minimum single pulse SNR required to accomplish this 
combination o f P d and P fa is SNR  = 16 .12d5 .

MATLAB Function “marcumsq.m”

The integral given in Eq. (4.23) is complicated and can be computed using 
numerical integration techniques. Parl1 developed an excellent algorithm to 
numerically compute this integral. It is summarized as follows:

2 [a, b ] =

a < b

a > b

(4.28)

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans. 
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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T A B L E  4 .1 . S in g le  p u ls e  S N R  (d B ) .

P n lO 'l W 4 W 5 . 6  7

Pf

i d К . К . К / 10 К . 1 к з п

5 4. Of) 6.17 7.85 8525 9.94 10А4 11.12 и . 78 12.16 П .70

.2 5.57 7.37 8.75 928. Ю.06 . .2 .9 U .88 12.31 12.85 13.25

3 6.79) S.24) 9.5(4 10.44 П Л 0 11.75 п з з 1231 13.25 в . м

.4 7.88 8.85 10.18 ю .8 8 ..257 12.18 12J6 В .2 6 В .М 14.(80

.5 8.44 9.49) 10.62 11.25 11.95 П .76 D .U 13.52 14.(80 1436

.6 8.75 9.95 u r n ..275 1236 12.88 13.50 B .D 6 14.25 14.62

.1 9.56 10.50 11.5(4 12.31 .6 .7 2 13.31 B.D 6 14.W 14.59 14.95

Я 10.18 ...... 1 12716) n . 7 i D .H 13.75 14.25 14.55 14.86 .0210

.9 10.90 11.85 12.66 13.31 13.8) 14.25 14.62 15.00 15.45 15.75

.95 11.50 12.40 13.12 D .H м л 14.64 .02.6 15.45 .0270 .72.1

.98 12.124 139)0 B .6 ) 14.25 14.66 15.12 15.42 15.85 16.25 М .06

.99 12.62 1336 14.DO 14.50 15 DO 15.38 .0270 16.12 M.O8 м л

.999 1231 13.66 1454 14..5 15..2 15..2 16.06 16.37 16.65 П .66

.999 13.31 14 DO) 14.62 .0 .07 .0203 16.05 16.30 М .8 .7289 17.27

.999 19.62 14.20 14.88 15.25 15.82 16.11 16.50 16.87 17.12 П .66

.9995 13.84 14.502 15.06 15.55 .0299 16.35 16..0 16.98 1735 17.55

.9999 14.38 M.9O 15.44 16.12 M.06 М.88 17.12 1735 П.71 17.88

, 2 n
a n -  dn + ab a n -  1 + a n -  2 (4.29)

Pn -  1 + ab Pn -  1 + Pn -  2

dn + 1 -  dnd 1

(4.30)

(4.31)

a n
1 a < b

0 a > b
(4.32)

d1 -
a / b 
b / a

a < b 
a > b

(4.33)

a -1 -  0 .0 , p0 -  0 .5 , and P-1 -  0 . The recursive Eqs. (4.29) through (4.31) 
are computed continuously until Pn > 10p for some value p  > 3 . The accuracy 
o f the algorithm is enhanced as the value o f p  is increased. The MATLAB 
function “marcumsq.m” given in Listing 4.2 in Section 4.10 implements Parl’s
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algorithm to compute the probability o f detection defined in Eq. (4.23). The 
syntax is as follows:

Pd = marcumsq (alpha, beta)

where alpha and beta are from Eq. (4.24). Fig. 4.4 shows plots o f  the probabil
ity o f detection, P d , versus the single pulse SNR, with the Pfa as a parameter. 
This figure can be reproduced using the MATLAB program “prob_snr1.m” 
given in Listing 4.3 in Section 4.10. This program uses the function “mar- 
cumsq.m” .

Example 4.1: A pulsed radar has the following specification: time o f  false 
alarm Tfa = 16.67 minutes; probability o f  detection P d = 0.9 and band
width B = 1  G H z. Find the radar integration time tint, the probability o f  
false alarm Pfa, and the SNR o f  a single pulse.

Solution:

1 1  
tint = B = “ I  = 1 n secint B 109

Р = J — __________ 1_______ „  10-12
Pfa = 'Г D = 9 ~ 10TfaB 109 X 16.67 X 60

and from Table 4.1 or from Fig. 4.4, we read

( SNR)1 «  15.75dB.

4.4. Pulse Integration

When a target is illuminated by the radar beam it normally reflects numerous 
pulses. The radar probability o f detection is normally enhanced by summing all 
(or most) o f  the returned pulses. The process o f adding radar echoes from 
many pulses is called radar pulse integration. Pulse integration can be per
formed on the quadrature components prior to the envelope detector. This is 
called coherent integration or pre-detection integration. Coherent integration 
preserves the phase relationship between the received pulses, thus a build up in 
the signal amplitude is achieved. Alternatively, pulse integration performed 
after the envelope detector (where the phase relation is destroyed) is called 
non-coherent or post-detection integration.

4.4.1. Coherent Integration

In coherent integration, if  a perfect integrator is used (100% efficiency), then
integrating np pulses would improve the SNR by the same factor. Otherwise,
integration loss occurs which is always the case for non-coherent integration.
In order to demonstrate this signal buildup, consider the case where the radar

threturn signal contains both signal plus additive noise. The m pulse is
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Single pulse SNR - dB

Figure 4.4. Probability of detection versus single pulse SNR, for several 
values of Pfa .

ym ( t) = s ( t) + nm( t) (4.34)

where s ( t) is the radar return o f interest and nm( t) is white uncorrelated addi
tive noise signal. Coherent integration o f np pulses yields

z( t ) = П- X  ym (t) = X  n  [s(t) + n m( t )]  = s ( t ) + X  n  n m( t ) (4.35)
m =1 m = 1 m = 1

The total noise power in z  ( t ) is equal to the variance. More precisely,

n n n
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¥nz = E

/  np

X  1  ” m(t) X  7  " i (t)

/  "p

Am = 1 y\l =1

where E[ ] is the expected value operator. It follows that

(4.36)

2
¥nz 1  X  E  [ "m( t) " l* ( t)] = "I  X  ^ 2 8ny ml

1 2

¥ ;y (4.37)

m, l =1 m, l =1

where ¥ ny is the single pulse noise power and 8ml is equal to zero for m Ф l 
and unity for m = l . Observation o f Eqs. (4.35) and (4.37) shows that the 
desired signal power after coherent integration is unchanged, while the noise 
power is reduced by the factor 1/np . Thus, the SNR after coherent integration 
is improved by np .

Denote the single pulse SNR required to produce a given probability o f 
detection as (SNR) 1. Also, denote ( SNR)n as the SNR required to produce 
the same probability o f detection when np pup lses are integrated. It follows that

( SNR); = -  (SNR)1np np 1
(4.38)

The requirements o f remembering the phase o f each transmitted pulse as well 
as maintaining coherency during propagation is very costly and challenging to 
achieve. In practice, most radar systems utilize non-coherent integration.

4.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector, 
also known as the quadratic detector. A  block diagram o f radar receiver utiliz
ing a square law detector and non-coherent integration is illustrated in Fig. 4.5. 
In practice, the square law detector is normally used as an approximation to the 
optimum receiver.

The pd f for the signal r( t) was derived earlier and it is given in Eq. (4.11). 
Define a new dimensionless variable y as

and also define

Уn = rn /V

A2
^ p = A  = 2 SNR 

¥

(4.39)

(4.40)

n np p

p
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from antenna 
and low noise Amp. ------^

Matched
Filtersingle pulse

Square Law
Detector ‘  x ( t) X x ( t ) Ь ш *

Threshold
DetectorгThreshold Vt

Figure 4.5. Simplified block diagram of a square law detector and 
non-coherent integration.

It follows that the p d f for the new variable is then given by

f ( yn ) = f (  r" )
drn
dyn

Уn 7o(У ' Л ) exp (
- ( Уп + ) (4.41)

The output o f a square law detector for the n pulse is proportional to the 
square o f its input, which, after the change o f variable in Eq. (4.39), is propor
tional to yn . Thus, it is convenient to define a new change variable,

1 2
xn = -2--yn (4.42)

The p d f for the variable at the output o f the square law detector is given by

f ( x " ) = f ( yn)
dyn
dxn

exp ( - ( xn + Q 2 x" % (4.43)

Non-coherent integration o f np pulses is implemented as

Z = X  Xn (4.44)

n =1

Since the random variables xn are independent, the p d f for the variable Z is

f (z ) = f (X1 )•  f (X2^  • f (X" ) (4.45)

the operator • symbolically indicates convolution. The characteristic func
tions for the individual pdfs can then be used to compute the joint pd f in Eq. 
(4.45). The details o f  this development are left as an exercise. The result is

(  2 Z \("p- 1)72 (  1 \ I-----------
f (  z ) = ( " Ж  j  exp I f  z -  2 "p  ̂ p j7". - 1U 2 "pZ^p ) (4.46)

np
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where In _, is the modified Bessel function o f order np -  1 . Therefore, therip 1 [J

probability o f detection is obtained by integrating f ( z > from the threshold 
value to infinity. Alternatively, the probability o f false alarm is obtained by let
ting ^ p be zero and integrating the pd f from the threshold value to infinity. 
Closed form solutions to these integrals are not easily available. Therefore, 
numerical techniques are often utilized to generate tables for the probability o f 
detection.

The non-coherent integration efficiency E ( np) is defined as

( SNR ) 1
E ("p> - ^ N i - x , s  1 ,4'47>

The integration improvement factor I (np> for a specific Pfa is defined as the 
ratio o f  ( SNR>, to ( SNR)n

p

( SNR) 1
1 ( np > -  т к Т  -  npE ( np > -  np (4.48)

np

Note that ( SNR>n corresponds to the SNR needed to produce the same P D as 
in the case o f a single pulse when np pulses are used. It follows that 
( SNR>np < ( SNR>1 .

An empirically derived expression for the improvement factor that is accu
rate within 0.8dB is reported in Peebles1 as

/  log ( 1/ P fa>j
[ I( np >]dB -  6.79( 1 + 0.235Pd)^ 1 + 46 6 J log ( np> (4.49)

(1 -  0.140log ( np > + 0.018310 ( log np >2 >

Fig. 4.6 shows plots o f the integration improvement factor as a function o f the 
number o f integrated pulses with PD and Pfa as parameters, using Eq. (4.49). 
This plot can be reproduced using the MATLAB program “fig6_0.m ”  given in 
Listing 4.4 in Section 4.10.

Example O.8: Consider the same radar defined in Example O.L Assume non
coherent integration o f  .6  pulses. Find the reduction in the SNR.

Solution: The integration improvement factor is calculated using the func
tion “ improv_fac.m” . It is I( 10> = 9.20dB, and from Eq. (O.O4) we get

(SNR>1
( SNR>n -  - , ^  ( SNR>n -  15.75 -  9.20 -  6.55dB

np I  ( np > np

1. Peebles Jr., P. Z., Radar Principles, John Wiley & Sons, Inc., 1998.
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Thus, non-coherent integration o f  10 pulses where ( SNR)10 = 6.55dB pro
vides the same detection performance as ( SNR) 1 = 15.75dB o f  a single pulse 
and no integration.

N u m b e r o f p u ls e s

Figure 4.6. Improvement factor versus number o f pulses (non
coherent integration). These plots were generated using 
the empirical approximation in Eq. (4.49).

MATLAB Function “improv_fac.m”

The function “ im provjac.m ”  calculates the improvement factor using Eq. 
(4.49). It is given in Listing 4.5 in Section 4.10. The syntax is as follows:

[impr_of_np] = im provjac (np, pfa, pd)

where

Symbol Description Units Status
np number of integrated pulses none input

pfa probability of false alarm none input

pd probability o f detection none input

impr_of_np improvement factor output dB
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So far when we addressed the probability o f detection, we assumed a con
stant target cross section (non-fluctuating target). However, when target scintil
lation is present, the probability o f detection decreases, or equivalently the 
SNR is reduced.

4.5. Detection o f Fluctuating Targets

4.5.1. Detection Probability Density Function

The probability density functions for fluctuating targets were given in Chap
ter 2. And for convenience, they are repeated here as Eqs. (4.50) and (4.51):

f (  A >
1 -expI -

for Swerling I and II type targets, and

f (  A  > -  ^ e x p  | -  
A ( -AaVJ

A > 0

A > 0

(4.50)

(4.51)

for Swerling III and IV type targets, where A av denotes the average RCS over 
all target fluctuations.

The probability o f detection for a scintillating target is computed in a similar 
fashion to Eq. (4.22), except in this case f ( r> is replaced by the conditional pd f 
f ( r / A >. Performing the analysis for the general case (i.e., using Eq. (4.46)) 
yields

f (  z/ A  > -  (
2z
2 2  npA / у

(np -  1>/2
exp

2
1 A J

z 2 np 2
2 ¥  .

-1
/  2  a !  j

2 npZ 2 
¥

To obtain f (  z > use the relations

f(z , A > -  f ( z /A >f(A >

f (  z > -  J f(  z, A > dA

Finally, using Eq. (4.54) in Eq. (4.53) produces

(4.52)

(4.53)

(4.54)

av

f(z>  -  J f (z/A  >f(A > dA (4.55)

where f ( z/ A > is defined in Eq. (4.52) and f ( A > is in either Eq. (4.50) or 
(4.51). The probability o f detection is obtained by integrating the pd f derived 
from Eq. (4.55) from the threshold value to infinity. Performing the integration 
in Eq. (4.55) leads to the incomplete Gamma function.
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4.5.2. Threshold Selection

In practice, the detection threshold, VT, is found from the probability o f 
false alarm P fa . DiFranco and Rubin1 give a general form relating the thresh
old and Pfa for any number o f pulses and non-coherent integration,

Pfa = 1 -  Г
VT

~ f= , np -  1 
A

(4.56)

where Г / is used to denote the incomplete Gamma function, and it is given by

Г
Vt

7 = ,  np - 1
J np

-Y npe Y
1 -1

( np -  1 -  1)! dY (4.57)

For our purposes, the incomplete Gamma function can be approximated by

Г
v t

7 = ,  np - 1 
> p

np -  1 -Vt
= 1 -  -

VT
( np -  1)!

1 + -*
nB -  1 ( np -  1) ( nB -  2 )

Vt Vt

(4.58)

... +
( np -  1)!

np -  1
VTp .

The threshold value Vt can then be approximated by the recursive formula 
used in the Newton-Raphson method. More precisely,

G ( VTm - 1 )
Vt = Vt 1 -

m m -  1 G '( Vt m -  1)
; m = 1, 2, 3, ... (4.59)

The iteration is terminated when |Vt ,m -  Vt m -1 < Vt m- 1/ 10000.0. The 
functions G  and G ' are

G ( Vt m) = (0 .5 ) P f  -  Г  ( Vt, np) (4.60)

G '(  VT, m ) = - 

The initial value for the recursion is

-Vt np -  1
e Vt 

( n p - 1)!
(4.61)

VT, 0 = np - Jnp + 2.3 V- l ° g Pfa Ц - l o g Pfa +Jnp  -  1 ) (4.62)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection. Artech House, 1980.

0
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In general, the incomplete Gamma function for some integer N  is

MATLAB Function “incomplete_gamma.m”

Г / x, N > -  J
-v N -  1e v 
( N - 1>!

dv (4.63)

The function “ incomplete_gamma2m”  implements Eq. (4.63). It is given in 
Listing 4.6 in Section 4.10. The syntax for this function is as follows:

where

[value] = incomplete_gamma ( x, N)

Symbol Description Units Status
x variable input to ГДx, N > units of x input

N variable input to ГДx, N > none / integer input

value Г I ( x, N  > none output

Fig. 4.7 shows the incomplete Gamma function for N  -  1, 3, 10. Note that 
the limiting values for the incomplete Gamma function are

Г  (0, N  > -  0 Г  («>, N  > -  1 (4.64)

F ig u r e  4 .7 . T h e  in c o m p le t e  G a m m a  fu n c t io n  f o r  f o u r  v a lu e s  o f  N .
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The function “ threshold.m”  calculates the threshold using the recursive for
mula used in the Newton-Raphson method. It is given in Listing 4.7 in Section
4.10. The syntax is as follows:

[pfa, vt] = threshold ( nfa, np)

MATLAB Function “threshold.m”

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input

np number of integrated pulses none input

pfa probability of false alarm none output

vt threshold value none output

Fig. 4.8 shows plots for the threshold value versus the number o f integrated 
pulses for several values o f nfa ; remember that Pfa ~ ln (2 ) ( np/nfa) .

Number of pulses

Figure 4.8. Threshold V t  versus np for several values of nfa
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4.6. Probability of Detection Calculation

Denote the range at which the single pulse SNR is unity (0 dB) as R 0 , and 
refer to it as the reference range. Then, for a specific radar, the single pulse 
SNR at R0 is defined by the radar equation and is given by

P tG 2 K2a
( SNR)r0 -  -------3---------------  ̂ -  1 (4.65)

0 (4 n> kTqBFLRq

The single pulse SNR at any range R is

2 2  
PtG  к  a

SNR -  -------3---------------4 (4.66)
(4 n>3kT0 BFLR

Dividing Eq. (4.66) by Eq. (4.65) yields

SNR ( R
-- (  Rr ) 4( SNR)rr

Therefore, if the range R0 is known then the SNR at any other range R is

(  R,

(4.67)

( SNR>dB -  40 log ( R J (4.68)

Also, define the range R50 as the range at which the probability o f detection is 
P d -  0.5 -  P 50 . Normally, the radar unambiguous range Ru is set equal to
2R50 .

4.6.1. Detection o f Swerling V Targets

Marcum defined the probability o f false alarm for the case when np > 1 as

Pfa -  1 -  (P 5 0 «  ln (2>(np/nfa> (4.69)

The single pulse probability o f detection for non-fluctuating targets is given in 
Eq. (4.23). When np > 1, the probability o f detection is computed using the 
Gram-Charlier series. In this case, the probability o f detection is

Pd ^ e r f^ V / J 2- -  e_ _ _ [ c 3( y 2 -  1 > + c 4 V (3 -  y2> ^ . ^
D 2 7 2 П

-  C6V( V4 -  10 V2 + 15>]
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where the constants C3 , C4 , and C6 are the Gram-Charlier series coefficients, 
and the variable V is

VT -  nn( 1 + SNR)
V = —------^ ------------- - (4.71)

ra

In general, values for C3 , C4 , C6 , and ra vary depending on the target fluctu
ation type. In the case o f Swerling V  targets, they are

SNR + 1 / 3  , . 7_, 
C3 = -  "T --------------------O  (4.72)

j n p( 2 SNR + 1 ) 1

SN R + 1 / 4  ........
C4 = --------------------- 2 (4.73)

np( 2SNR + 1)2

2
Сб = q / 2 (4.74)

ra = Jnp (2 SNR + 1) (4.75)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m”  calculates the probability o f detection for 
Swerling V  targets using Eq. (4.70). It is given in Listing 4.8 in Section 4.10. 
The syntax is as follows:

[pd] = pd_swerling5 (inputl, indicator, np, snr)

where

Symbol Description Units Status
inputl Pfa , or nfa none input

indicator 1 when inputl = Pfa

2 when inputl = nfa

none input

np number of integrated pulses none input

snr SNR dB input

pd probability o f detection none output

Fig. 4.9 shows a plot for the probability o f detection versus SNR for cases 
np = 1, 10. Note that it requires less SNR, with ten pulses integrated non
coherently, to achieve the same probability o f detection as in the case o f a sin
gle pulse. Hence, for any given PD the SNR improvement can be read from 
the plot. Equivalently, using the function “ improv_fac.m”  leads to about the 
same result. For example, when PD = 0.8 the function “ improv_fac.m”  gives
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an SNR improvement factor of I (10> « 8.55dB . Observation of Fig. 4.9 shows 
that the ten pulse SNR is about 5.03d B . Therefore, the single pulse SNR is 
about (from Eq. (4.48)) 14.5dB, which can be read from the figure. This fig
ure can be reproduced using M ATLAB program “figO_9.m”, which is part of 
the companion software of this book.

SNR -dB

Figure 4.9. Probability of detection versus SNR, Pfa - 10 , and 
non-coherent integration.

4.6.2. Detection o f Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets 
was derived by Swerling. It is

-_t/(1+ SNR>
P D - e ; np - 1 (4.76)

P d - 1 - Г ,( _ t ,np- 1 > + ( l+ n - S vR J ”p-
VT

1 +-
v npSNR

1 np - 1 (4.77)

-Vt/( 1+ npSNR-
x e ; np > 1
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The function “pd_swerling1.m” calculates the probability of detection for 
Swerling I type targets. It is given in Listing 4.9 in Section 4.10. The syntax is 
as follows:

[pd] = pd_swerling1 (nfa, np, snr)

MATLAB Function “pd_swerling1.m”

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 4.10 shows a plot of the probability of detection as a function of SNR 
for np = 1 and Pfa = 10 for both Swerling I and V  type fluctuating. Note 
that it requires more SNR, with fluctuation, to achieve the same P D as in the 
case with no fluctuation. Fig. 4.11a shows a plot of the probability of detection 
versus SNR for np = 1, 10, 50, 100, where Pfa = 10 6. Fig. 4.11b is similar 
to Fig. 4.11a; in this case Pfa = 10 .

SNR - dB

_9
F i g u r e  4 .1 0 .  P r o b a b i l i t y  o f  d e t e c t i o n  v e r s u s  S N R ,  s in g le  p u l s e .  Pfa = 1 0  .
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In the case of Swerling II targets, the probability of detection is given by

pd = ‘ _ r '(iT + S v R ) • ^  ; np s  50 (4-78)

For the case when nP > 50 Eq. (4.70) is used to compute the probability of 
detection. In this case,

1 C2 

C3 = _ Щ  ■ C‘ = T  <“ >

C4 = 4-n; (4-80)

ra = jn p (1 + s n r ) (4.81)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates P D for Swerling II type targets. 
It is given in Listing 4.10 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

4.6.3. Detection o f  Swerling II Targets

Symbol Description Units Status
nfa Marcum's false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 4.12 shows a plot of the probability of detection as a function of SNR 
for np = 1, 10, 50, 100, where Pfa = 10_9.

4.6.4. Detection o f Swerling III Targets

The exact formula, developed by Marcum, for the probability of detection 
for Swerling II I  type targets when np = 1, 2 is

P D = exp (  ----- Vr Y 1 + — 2— 1 n X (4.82)
D 4 1 +  npSN R/2 A  npSN R )

( 1 + 1 + npSNR/2  _  npSNR(np _  2))  = K °
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S N R  - d B

-9
Figure 4.12. Probability of detection versus SNR. Swerling II. Pfa - 10 .

For np > 2 the expression is

VnTp - 1 e~V
P d - (1+ npSNR/2>(np-2>! + 1-rI( Vt’ np - 1 > + K r (4.83)

VT
r I (1 + 2/npSNR ’ np 1)

MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates P D for Swerling II type targets. 
It is given in Listing 4.11 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr)

where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output
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-9Figure 4.13. Probability of detection versus SNR. Swerling III. Pfa - 10 .

Fig. 4.13 shows a plot of the probability of detection as a function of SNR 
for np - 1, 10, 50, 100, where Pfa - 10 9.

4.6.5. Detection o f Swerling IV Targets

The expression for the probability of detection for Swerling IV  targets for 
np < 50 is

P 1 - Yo + ( S N R ) nr Y_ + ( S N R )
I  2

(  N )  ”

2 . Y2 + (4.84)

where

Г ' (
---V-T---- ,

1 + (SNR-/2 , np + 1 (4.85)

By using the recursive formula

Г  (x, i + 1 > - Г  (x, i > - 7i.exp (x > (4.86)

then only Y0 needs to be calculated using Eq. (4.85) and the rest of Yi are cal
culated from the following recursion:
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Yi = Yi_ 1 _  Ai ;i > 0 (4.87)

VT/ ( 1 + (SN R )/2)
A i = — ---- — — ----- A,._ 1 ;i > 1 (4.88)' np + I - 1 11

(V T/(1 + (SN R )/2 )) p 
A1 = np! exp ( VT/ ( 1 + (SN R )/2 )) (4'89)

Y0 = Г/( (1 + (SN R )/2 ) ’ np) (4.90)

For the case when np > 50, the Gram-Charlier series and Eq. (4.70) can be 
used to calculate the probability of detection. In this case,

C3 = . 1-_  2в _  \ .s ; C6 = CC- (4.91)
3Jnp  (2 P2_ 1  ) 15 ’ 2

C = 1 2PZ'-  1 (492)
C4 = „2  - (4.92)

4 np (2  P2- 1) 

ra = 7np( 2 p2- 1 ) (4.93)

P = 1 + S- f  (4.94)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates P D for Swerling II type targets. 
It is given in Listing 4.12 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where

Symbol Description Units Status
nfa Marcum's false alarm number none input
np number of integrated pulses none input
snr SNR dB input

pd probability of detection none output

Fig. 4.14 shows a plot of the probability of detection as a function of SNR 
for np = 1, 10, 50, 100, where Pfa =10 9.

© 2000 by Chapman & Hall/CRC



SNR - dB

_9
Figure 4.14. Probability of detection versus SNR. Swerling IV. Pfa =10 .

4.7. Cumulative Probability o f Detection

The cumulative probability of detection refers to detecting the target at least 
once by the time it is range R . More precisely, consider a target closing on a 
scanning radar, where the target is illuminated only during a scan (frame). As 
the target gets closer to the radar, its probability of detection increases since the 
SNR is also increased. Suppose that the probability of detection during the nth 
frame is P D ; then, the cumulative probability of detecting the target at least 
once during the nth frame (see Fig. 4.15) is given by

n

P cn = 1  - П 1 - Pd )) (4.95)
i =1

P Di is usually selected to be very small. Clearly, the probability of not detect
ing the target during the nth frame is 1 - P c . The probability of detection for 
the ith frame, P D , is computed as discussed in the previous section.

Example 4.3: A radar detects a closing target at R  = 10Km, with probability 
of detection equal to 0.5. Assume Pfa = 10 . Compute and sketch the single 
look probability of detection as a function of normalized range (with respect to
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R  = 10Km ), over the interval (2 - 20)Km . If  the range between two succes
sive frames is 1 Km , what is the cumulative probability of detection at 
R  = 8 Km ?

nth frame frame 1

" p d;P d P

(n + 1)th frame

F igu re  4.15. D etect in g  a target  in m a n y  fram es.

n + 1

Solution: From the function “marcumsq.m” or from Table 4.1 the SNR cor
responding to P D = 0.5 and Pfa = 10- is approximately 12dB. By using a 
similar analysis to that which led to Eq. (4.68), we can express the SNR at any 
range R as

(SN R )r = ( SN R ) 10 + 40 log“  = 52-40 logRR

Then with the help of the function “marcumsq.m” we can construct the follow
ing table:

R Km (SNR) dB P d

2 39.09 0.999
4 27.9 0.999
6 20.9 0.999
8 15.9 0.999
9 13.8 0.9
10 12.0 0.5
11 10.3 0.25
12 8.8 0.07
14 6.1 0.01

16 3.8 £

20 0.01 £
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where e is very small. Below is a sketch of P D versus normalized range.

The cumulative probability of detection is given in Eq. (4.95), where the 
probability of detection of the first frame is selected to be very small. Thus, we 
can arbitrarily choose frame 1 to be at R  = 16Km . Note that selecting a dif
ferent starting point for frame 1 would have a negligible effect on the cumula
tive probability (we only need P D to be very small). Below is a range listing 
for frames 1 through 9, where frame 9 corresponds to R  = 8Km .

frame 1 2 3 4 5 6 7 8 9
range in Km 16 15 14 13 12 11 10 9 8

The cumulative probability of detection at 8 Km is then

P c  = 1 - (1 - 0.999)(1 -0.9)(1 - 0.5)(1 - 0.25)(1 - 0.07)(1 - 0.01)(1 - e) 3

= 0.9998

4.8. Solving the Radar Equation
The radar equation was developed in Chapter 1. It is given by

R =
P f T f i f i X o  

(4 n ) 3 kTeF L ( SN R) 0
(4.96)

where P t is peak transmitted power, т is pulse width, f r is PRF, Ti is dwell 
interval, Gt is transmitting antenna gain, Gr is receiving antenna gain, X is 
wavelength, о is target cross section, k is Boltzman’s constant, Te is effective 
noise temperature, F  is system noise figure, L  is total system losses, and 
(SN R )o is the minimum SN R  required for detection.
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Assuming that the radar parameters such as power, antenna gain, wave
length, losses, bandwidth, effective temperature, and noise figure are known, 
the steps one should follow to solve for range are shown in Fig. 4.16. Note that 
both sides of the bottom half of Fig. 4.16 are identical. Nevertheless, we pur
posely show two paths so that a distinction between scintillating and non-fluc
tuating targets is made.

Figure 4.16. Solving the radar equation.
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4.9. Constant False Alarm Rate (CFAR)

The detection threshold is computed so that the radar receiver maintains a 
constant pre-determined probability of false alarm. Eq. (4.19b) gives the rela
tionship between the threshold value VT and the probability of false alarm 
Pfa , and for convenience is repeated here as Eq. (4.97):

v t  = J 2 y 2 ‘”  ( f )  (4-97)
2If  the noise power у  is assumed to be constant, then a fixed threshold can sat

isfy Eq. (4.97). However, due to many reasons this condition is rarely true. 
Thus, in order to maintain a constant probability of false alarm the threshold 
value must be continuously updated based on the estimates of the noise vari
ance. The process of continuously changing the threshold value to maintain a 
constant probability of false alarm is known as Constant False Alarm Rate 
(CFAR).

Three different types of CFAR processors are primarily used. They are adap
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference.

In this book only analog Cell-Averaging CFAR (CA-CFAR) technique is 
examined. The analysis presented in this section closely follows Urkowitz1.

4.9.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 4.17. Cell averaging is performed 
on a series of range and/or Doppler bins (cells). The echo return for each pulse 
is detected by a square law detector. In analog implementation these cells are 
obtained from a tapped delay line. The Cell Under Test (CUT) is the central 
cell. The immediate neighbors of the CUT are excluded from the averaging 
process due to possible spillover from the CUT. The output of M  reference 
cells (M / 2 on each side of the CUT) is averaged. The threshold value is 
obtained by multiplying the averaged estimate from all reference cells by a 
constant K 0 (used for scaling). A  detection is declared in the CUT if

y 1 > K 0Z  (4.98)

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed 
Martin Co., Moorestown, NJ.
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Cell-averaging CFAR assumes that the target of interest is in the CUT and all 
reference cells contain zero mean independent Gaussian noise of variance у  . 
Therefore, the output of the reference cells, Z , represents a random variable 
with gamma probability density function (special case of the Chi-square) with 
2M  degrees of freedom. In this case, the gamma pdf is

(M/ 2)- 1 (-г / 2у2)
f ( г) = -«72— M ------  ; г >0 (4-99)2 2 у МГ (М / 2)

The probability of false alarm corresponding to a fixed threshold was 
derived earlier. When CA-CFAR is implemented, then the probability of false 
alarm can be derived from the conditional false alarm probability, which is 
averaged over all possible values of the threshold in order to achieve an uncon
ditional false alarm probability. The conditional probability of false alarm 
when y = VT can be written as

Pfa( Vt = y ) = e~y/2v (4.100)

It follows that the unconditional probability of false alarm is

P fa = J  P fa( VT = y )f(y )dy (4.101)
0
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where f (y ) is the pdf of the threshold, which except for the constant K 0 is the 
same as that defined in Eq. (4.99). Therefore,

M - 1 (-y/2K0у )

f ( y ) = y— V m —  ; y > 0 (4.102)
( 2K 0V 2) Г (M )

Substituting Eqs. (4.102) and (4.100) into Eq. (4.101) yields

Pfa = (1 * (4.103)
( 1 + Kq )

Observation of Eq. (4.103) shows that the probability of false alarm is now 
independent of the noise power, which is the objective of C FA R  processing.

4.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, C FA R  averaging is often implemented after non-coherent inte
gration, as illustrated in Fig. 4.18. Now, the output of each reference cell is the 
sum of np squared envelopes. It follows that the total number of summed ref
erence samples is Mnp . The output Y1 is also the sum of np squared enve
lopes. When noise alone is present in the CUT, Y1 is random variable whose 
pdf is a gamma distribution with 2np degrees of freedom. Additionally, the 
summed output of the reference cells is the sum of Mnp squared envelopes. 
Thus, Z  is also a random variable who has a gamma pdf with 2Mnp degrees of 
freedom.

The probability of false alarm is then equal to the probability that the ratio 
Y1/Z  exceeds the threshold. More precisely,

Pfa = P ro b { Y1/Z  > K 1}  (4.104)

Eq. (4.104) implies that one must first find the joint pdf for the ratio Y1/ Z . 
However, this can be avoided if  Pfa is first computed for a fixed threshold 
value VT , then averaged over all possible value of the threshold. Therefore, let 
the conditional probability of false when y = VT be Pfa( VT = y ) . It follows 
that the unconditional false alarm probability is given by

J  Pfa( v t = y )f (y )dyPfa = I P fa( VT = y )f (y )dy (4.105)

where f (y ) is the pdf of the threshold. In view of this, the probability density 
function describing the random variable K 1 Z  is given by

(y / K 1) Mnp- 1 e^y '  2K0V2 ’
f ( y ) = ---- 2M -----------  ; y > 0 (4.106)

(2 у 2) pK 1 Г (  M n„)
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It can be shown (see problems) that in this case the probability of false alarm 
is independent of the noise power and is given by

1 1 Г (M np + к )/ K i \к
a = ^  к  r (M n p) I Г + K J  (4-107)

к = 0
which is identical to Eq. (4.103) when K 1 = K 0 and np = 1.

np-1

4.10. MATLAB Function and Program Listings

This section presents listings for all M ATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters. A ll functions have companion M ATLAB “filename_driver.m” 
files that utilize M ATLAB Graphical User Interface (GU I).

Listing 4.1. MATLAB Function “que_func.m”
function fofx = que_func(x)
%  This function computes the value of the Q-function 
%  listed in Eq.(4.16). It uses the approximation in Eq.s (4.17) and (4.18) 
if (x >= 0)
denom = 0.661 * x + 0.339 * sqrt(xA2 + 5.51);
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expo = exp(-xA2 /2.0);
fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo; 

else
denom = 0.661 * x + 0.339 * sqrt(xA2 + 5.51); 
expo = exp(-xA2 /2.0);
value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo; 
fofx = 1.0 - value; 

end

Listing 4.2. MATLAB Function “marcumsq.m”
function PD = marcumsq (a,b)
%  This function uses Parl's method to compute PD 
max_test_value = 1000.; %  increase to more than 1000 for better results 
if (a < b) 

alphan0 = 1.0; 
dn = a / b; 

else 
alphan0 = 0.; 
dn = b / a; 

end
alphan_1 = 0.; 
betan0 = 0.5; 
betan_1 = 0.; 
d1 = dn; 
n = 0;
ratio = 2.0 / (a * b); 
r1 = 0.0; 
betan = 0.0; 
alphan = 0.0;
while betan < max_test_value, 

n = n + 1;
alphan = dn + ratio * n * alphan0 + alphan; 
betan = 1.0 + ratio * n * betan0 + betan; 
alphan_1 = alphan0; 
alphan0 = alphan; 
betan_1 = betan0; 
betan0 = betan; 
dn = dn * D1; 

end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b)A2 / 2.0); 
if ( a >= b)

PD = 1.0 - PD; 
end 
return
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Listing 4.3. MATLAB Program “prob_snrl.m”
%  This program is used to produce Fig. 4.3 
clear all 
for nfa = 2:2:12 

b = sqrt(-2.0 * log(10A(-nfa))); 
index = 0; 
hold on
for snr = 0:.1:18 

index = index +1; 
a = sqrt(2.0 * 10A(.1*snr)); 
pro(index) = marcumsq(a,b); 

end
x = 0: .1:18;
set(gca,'ytick',[.1 .2 .3 .4 .5 .6 .7 .75 .8 .85 .9 .95 .9999]) 
set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])

loglog(x, pro,'k'); 
end
hold off
xlabel ('Single pulse SNR - dB') 
ylabel ('Probability of detection') 
grid

Listing 4.4. MATLAB Program “fig4_5.m”
%  This program is used to produce Fig. 4.5 
%  It uses the function "improv_fac" 
pfa1 = 1.0e-2; 
pfa2 = 1.0e-6; 
pfa3 = 1.0e-10; 
pfa4 = 1.0e-13; 
pd1 = .5; 
pd2 = .8; 
pd3 = .95; 
pd4 = .999; 
index = 0; 
for np = 1:1:100 

index = index + 1;
I1(index) = improv_fac (np, pfa1, pd1);
I2(index) = improv_fac (np, pfa2, pd2);
I3(index) = improv_fac (np, pfa3, pd3);
I4(index) = improv_fac (np, pfa4, pd4); 

end
np = 1:1:100;
semilogx (np, I1, 'k', np, I2, 'k--', np, I3, 'k-.', np, I4, 'k:') 
set (gca,'xtick',[1 2 3 4 5 6 7 8 10 20 30 50 70 100]); 
xlabel ('Number of pulses');
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ylabel ('Improvement factor I - dB')
legend ('pd=.5, nfa=2','pd=.8, nfa=6','pd=.95, nfa=10','pd=.999, nfa=13');

Listing 4.5. MATLAB Function “improv_fac.m”
function impr_of_np = improv_fac (np, pfa, pd)
%  This function computes the non-coherent integration improvement
%  factor using the empirical formula defined in Eq. (4.49)
fact1 = 1.0 + log10( 1.0 / pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.253 * pd);
fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np)A2);
impr_of_np = fact1 * fact2 * fact3 * log10(np);
return

Listing 4.6. MATLAB Function “incomplete_gamma.m”
function [value] = incomplete_gamma ( vt, np)
%  This function implements Eq. (4.63) to compute the Incomplete Gamma Function
format long
eps = 1.000000001;
%  Test to see if np = 1 
if (np == 1) 

value1 = vt * exp(-vt); 
value = 1.0 - exp(-vt); 
return 

end
sumold = 1.0; 
sumnew =1.0; 
calc1 = 1.0; 
calc2 = np;
xx = np * log(vt) - vt - factor(calc2); 
temp1 = exp(xx); 
temp2 = np / vt; 
diff = .0; 
ratio = 1000.0; 
if (vt >= np) 

while (ratio >= eps) 
diff = diff + 1.0;
calc1 = calc1 * (calc2 - diff) / vt ; 
sumnew = sumold + calc1; 
ratio = sumnew / sumold; 
sumold = sumnew; 

end
value = 1.0 - temp1 * sumnew * temp2; 
return 

else 
diff = 0.; 
sumold = 1.;
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ratio = 1000.; 
calc1 = 1.; 
while(ratio >= eps) 

diff = diff + 1.0;
calc1 = calc1 * vt / (calc2 + diff); 
sumnew = sumold + calc1; 
ratio = sumnew / sumold; 
sumold = sumnew; 

end
value = temp1 * sumnew; 

end

Listing 4.7. MATLAB Function “threshold.m”
function [pfa, vt] = threshold (nfa, np)
%  This function calculates the threshold value from nfa and np. 
%  The newton-Raphson recursive formula is used (Eq. (4.59)
%  This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num / deno); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end

Listing 4.8. MATLAB Function “pd_swerling5.m”
function pd = pd_swerling5 (input1, indicator, np, snrbar)
%  This function is used to calculate the probability of 
%  for Swerling 5 or 0 targets for np>1. 
if(np == 1)

'Stop, np must be greater than 1' 
return 

end
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001;
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delmax = .00001; 
delta =10000.;
%  Calculate the threshold Vt 
if (indicator ~=1) 

nfa = input1; 
pfa = np * log(2) / nfa; 

else 
pfa = input1; 
nfa = np * log(2) / pfa; 

end
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num / (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
%  Calculate the Gram-Chrlier coefficients
temp1 = 2.0 * snrbar + 1.0;
omegabar = sqrt(np * temp1);
c3 = -(snrbar + 1.0 / 3.0) / (sqrt(np) * temp1A1.5);
c4 = (snrbar + 0.25) / (np * temp1A2.);
c6 = c3 * c3 /2.0;
V  = (vt - np * (1.0 + 2.*snrbar)) / omegabar;
Vsqr = V  *V;
val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 = c3 * (VA2 -1.0) + c4 * V  * (3.0 - VA2) -...

c6 * V  * (VA4 - 10. * VA2 + 15.0); 
q = 0.5 * erfc (V/sqrt(2.0)); 
pd = q - val1 * val2;

Listing 4.9. MATLAB Function “pd_swerling1.m”
function pd = pd_swerling1 (nfa, np, snrbar)
%  This function is used to calculate the probability of 
%  for Swerling 1 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
%  Calculate the threshold Vt
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pfa = np * log(2) / nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num / (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
if (np == 1) 

temp = -vt / (1.0 + snrbar); 
pd = exp(temp); 
return 

end
temp1 = 1.0 + np * snrbar;
temp2 = 1.0 / (np *snrbar);
temp = 1.0 + temp2;
val1 = tempA(np-1.);
igf1 = incomplete_gamma(vt,np-1);
igf2 = incomplete_gamma(vt/temp,np-1);
pd = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);

Listing 4.10. MATLAB Function “pd_swerling2.m”
function pd = pd_swerling2 (nfa, np, snrbar)
%  This function is used to calculate the probability of 
%  for Swerling 2 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
%  Calculate the threshold Vt 
pfa = np * log(2) / nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp);
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vt = vt0 + (num / (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
if (np <= 50) 

temp = vt / (1.0 + snrbar); 
pd = 1.0 - incomplete_gamma(temp,np); 
return 

else
temp1 = snrbar + 1.0; 
omegabar = sqrt(np) * temp1; 
c3 = -1.0 / sqrt(9.0 * np); 
c4 = 0.25 / np; 
c6 = c3 * c3 /2.0;
V  = (vt - np * temp1) / omegabar;
Vsqr = V  *V;
val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 = c3 * (VA2 -1.0) + c4 * V  * (3.0 - VA2) - ...

c6 * V  * (VA4 - 10. * VA2 + 15.0); 
q = 0.5 * erfc (V/sqrt(2.0)); 
pd = q - val1 * val2; 

end

Listing 4.11. MATLAB Function “pd_swerling3.m”
function pd = pd_swerling3 (nfa, np, snrbar)
%  This function is used to calculate the probability of 
%  for Swerling 2 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
%  Calculate the threshold Vt 
pfa = np * log(2) / nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num / (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
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temp1 = vt / (1.0 + 0.5 * np *snrbar); 
temp2 = 1.0 + 2.0 / (np * snrbar); 
temp3 = 2.0 * (np - 2.0) / (np * snrbar); 
ko = exp(-temp1) * temp2A(np-2.) * (1.0 + temp1 - temp3); 
if (np <= 2) 

pd = ko; 
return 

else
temp4 = vtA(np-1.) * exp(-vt) / (temp1 * exp(factor(np-2.))); 
temp5 = vt / (1.0 + 2.0 / (np *snrbar)); 
pd = temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ... 

incomplete_gamma(temp5,np-1.);
end

Listing 4.12. MATLAB Function “pd_swerling4.m”
function pd = pd_swerling4 (nfa, np, snrbar)
%  This function is used to calculate the probability of 
%  for Swerling 2 targets. 
format long
snrbar = 10.0A(snrbar/10.); 
eps = 0.00000001; 
delmax = .00001; 
delta =10000.;
%  Calculate the threshold Vt 
pfa = np * log(2) / nfa; 
sqrtpfa = sqrt(-log10(pfa)); 
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0); 
vt = vt0;
while (abs(delta) >= vt0) 

igf = incomplete_gamma(vt0,np); 
num = 0.5A(np/nfa) - igf;
temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1); 
deno = exp(temp); 
vt = vt0 + (num / (deno+eps)); 
delta = abs(vt - vt0) * 10000.0; 
vt0 = vt; 

end
h8 = snrbar /2.0; 
beta = 1.0 + h8; 
beta2 = 2.0 * betaA2 - 1.0; 
beta3 = 2.0 * betaA3; 
if (np >= 50) 

temp1 = 2.0 * beta -1; 
omegabar = sqrt(np * temp1); 
c3 = (beta3 - 1.) / 3.0 / beta2 / omegabar; 
c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;;
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c6 = c3 * c3 /2.0;
V  = (vt - np * (1.0 + snrbar)) / omegabar;
Vsqr = V  *V;
val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 = c3 * (VA2 -1.0) + c4 * V  * (3.0 - VA2) - ...

c6 * V  * (VA4 - 10. * VA2 + 15.0); 
q = 0.5 * erfc (V/sqrt(2.0)); 
pd = q - val1 * val2; 
return 

else 
snr = 1.0;
gamma0 = incomplete_gamma(vt/beta,np); 
a1 = (vt / beta)Anp / (exp(factor(np)) * exp(vt/beta)); 
sum = gamma0; 
for i = 1:1:np 

temp1 = 1; 
if (i == 1) 

ai = a1; 
else

ai = (vt / beta) * a1 / (np + i -1); 
end
a1 = ai;
gammai = gamma0 - ai; 
gamma0 = gammai; 
a1 = ai;

for ii = 1:1:i 
temp1 = temp1 * (np + 1 - ii); 

end
term = (snrbar /2.0)Ai * gammai * temp1 / exp(factor(i)); 
sum = sum + term; 

end
pd = 1.0 - sum / betaAnp; 

end
pd = max(pd,0.);

Problems
4 . 1 .  In the case of noise alone, the quadrature components of a radar return

2are independent Gaussian random variables with zero mean and variance у  . 
Assume that the radar processing consists of envelope detection followed by 
threshold decision. (a) Write an expression for the pdf of the envelope; (b) 
determine the threshold VT as a function of у  that ensures a probability of

—8false alarm Pfa < 10 .
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4 .2 .  (a) Derive Eq. (4.13); (b) derive Eq. (4.15).
4 .3 .  A  pulsed radar has the following specifications: time of false alarm 
Tfa = 10 minutes, probability of detection P D = 0.95, operating bandwidth 

B  = 1 M H z . (a) What is the probability of false alarm Pfa ? (b) What is the 
single pulse SN R ? (c) Assuming non-coherent integration of 100 pulses, what 
is the SN R  reduction so that P D and Pfa remain unchanged?

4 .4 .  An L-band radar has the following specifications: operating frequency 
f 0 = 1.5 G H z , operating bandwidth B  = 2M H z , noise figure F  = 8 d B ,

system losses L  = 4 d B , time of false alarm Tfa = 12 minutes, detection

range R  = 12Km , probability of detection P D = 0.5, antenna gain
2

G  = 5000, and target RCS о = 1 m . (a) Determine the P R F  f r , the pulse 

width т , the peak power P t , the probability of false alarm Pfa , and the mini

mum detectable signal level Smin. (b) How can you reduce the transmitter
power to achieve the same performance when 10 pulses are integrated non
coherently? (c) If  the radar operates at a shorter range in the single pulse mode, 
find the new probability of detection when the range decreases to 9Km .

4 .5 .  (a) Show how you can use the radar equation to determine the PR F  f r , 

the pulse width т , the peak power P t , the probability of false alarm Pfa , and 

the minimum detectable signal level Smin . Assume the following specifica

tions: operating frequency f 0 = 1.5M H z , operating bandwidth B  = 1 M H z , 

noise figure F  = 10dB, system losses L  = 5d B , time of false alarm 
Tfa = 20 minutes, detection range R  = 12Km , probability of detection 

P D = 0.5 (three pulses). (b) If  post detection integration is assumed, deter
mine the SNR.
4 .6 .  Show that when computing the probability of detection at the output of 
an envelope detector, it is possible to use Gaussian probability approximation 
when the SN R  is very large.
4 .7 .  A  radar system uses a threshold detection criterion. The probability of 

false alarm Pfa = 10-10. (a) What must be the average SN R  at the input of a 

linear detector so that the probability of miss is P m = 0.15 ? Assume large 
SN R  approximation (see Problem 4.6). (b) W rite an expression for the pdf at 
the output of the envelope detector.
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4 . 8 .  An X-band radar has the following specifications: received peak power 

10-10W , probability of detection P D = 0.95, time of false alarm 

Tfa = 8 minutes, pulse width т = 2|j.s, operating bandwidth B  = 2M H z , 
operating frequency f0 = 10G H z , and detection range R  = 100Km. Assume 

single pulse processing. (a) Compute the probability of false alarm Pfa . (b) 
Determine the SNR at the output of the IF  amplifier. (c) At what SNR would 
the probability of detection drop to 0.9 (Pfa does not change)? (d) What is the 
increase in range that corresponds to this drop in the probability of detection?
4 . 9 .  A  certain radar utilizes 10 pulses for non-coherent integration. The sin
gle pulse SNR is 15dB and the probability of miss is P m = 0.15. (a) Com
pute the probability of false alarm Pfa. (b) Find the threshold voltage VT.
4 . 1 0 .  Consider a scanning low PRF radar. The antenna half-power beam 
width is 1.5°, and the antenna scan rate is 35° per second. The pulse width is 
т = 2 |j.s, and the PRF is f r = 400Hz. (a) Compute the radar operating band
width. (b) Calculate the number of returned pulses from each target illumina
tion. (c) Compute the SNR improvement due to post-detection integration 
(assume 100% efficiency). (d) Find the number of false alarms per minute for a

probability of false alarm Pfa = 10-6.
4 . 1 1 .  Using the equation

1

P D = 1 - e~SNR J I 0 U -4 SNR ln u) du

P fa

calculate P D when SNR  = 10dB and Pfa = 0.01. Perform the integration 
numerically.

4 . 1 2 .  Repeat Example 4.3 with P D = 0.8 and Pfa =10 5.
4 . 1 3 .  Derive Eq. (4.107).
4 . 1 4 .  Write a M ATLAB program to compute the CA-CFAR threshold 
value. Use similar approach to that used in the case of a fixed threshold.
4 . 1 5 .  A  certain radar has the following specifications: single pulse SNR 
corresponding to a reference range R 0 = 200Km  is 10d B . The probability of

detection at this range is P D = 0.95 . Assume a Swerling I type target. Use the 
radar equation to compute the required pulse widths at ranges 
R  = 220Km, 250Km, 175Km so that the probability of detection is main
tained.
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4 . 1 6 .  Repeat Problem 4.15 for swerling IV  type target.
4 . 1 7 .  Utilizing the M A T LA B  functions presented in this chapter, plot the 
actual value for the improvement factor versus the number of integrated pulses. 
Pick three different values for the probability of false alarm.
4 . 1 8 .  Reproduce Fig. 4.10 for Swerling II, III,  and IV  type targets.
4 . 1 9 .  Develop a M A T LA B  program to calculate the cumulative probability 
of detection.
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Chapter 5 Radar Waveforms 
Analysis

Choosing a particular waveform type and a signal processing technique in a 
radar system depends heavily on the radar’s specific mission and role. The cost 
and complexity associated with a certain type of waveform hardware and soft
ware implementation constitute a major factor in the decision process. Radar 
systems can use Continuous Waveforms (CW ) or pulsed waveforms with or 
without modulation. Modulation techniques can be either analog or digital. 
Range and Doppler resolutions are directly related to the specific waveform 
frequency characteristics. Thus, knowledge of the power spectrum density of a 
waveform is very critical. In general, signals or waveforms can be analyzed 
using time domain or frequency domain techniques. This chapter introduces 
many of the most commonly used radar waveforms. Relevant uses of a spe
cific waveform will be addressed in the context of its time and frequency 
domain characteristics. In this book, the terms waveform and signal are being 
used interchangeably to mean the same thing.

5.1. Low Pass, Band Pass Signals and Quadrature 
Components

Signals that contain significant frequency composition at a low frequency 
band that includes DC are called Low Pass (LP ) signals. Signals that have sig
nificant frequency composition around some frequency away from the origin 
are called Band Pass (BP ) signals. A  real BP  signal x ( t) can be represented 
mathematically by

x ( t) = r ( t) cos (2 nf0t + Yx ( t)) (5.1)
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where r ( t) is the amplitude modulation or envelope, y x( t) is the phase modu
lation, f 0 is the carrier frequency, and both r( t) and ( t) have frequency 
components significantly smaller than f 0. The frequency modulation is

f - 't > = 2 ;  t) (5-2)

and the instantaneous frequency is

f i( t) = 2П f t( t + ¥x( t)) = f 0+ fm( t) (5-3)

If  the signal bandwidth is B , and if f 0 is very large compared to B, the signal 
x ( t) is referred to as a narrow band pass signal.

Band pass signals can also be represented by two low pass signals known as 
the quadrature components; in this case Eq. (5.1) can be rewritten as

x ( t) = X;( t) cos2nf01 - Xq ( t) sin2 nf0t (5.4)

where x; ( t) and Xq ( t) are real LP  signals referred to as the quadrature compo
nents and are given, respectively, by

Xj( t) = r( t) cos y x ( t)
(5.5)

xq ( t) = r ( t) sin ̂  ( t)

Fig. 5.1 shows how the quadrature components are extracted.

xi( t)

xq ( t)

-2 sin2nf01

F i g u r e  5 .1 .  E x t r a c t i o n  o f  q u a d r a t u r e  c o m p o n e n t s .

2 cos2 nf01

x( t) = x;( t) cos2nf01
- x q( t) sin 2 nf01 —

LP Filter!

— ►jmixaj- LP Filter!
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5.2. CW and Pulsed Waveforms

The spectrum of a given signal describes the spread of its energy in the fre
quency domain. An energy signal (finite energy) can be characterized by its 
Energy Spectrum Density (ESD ) function, while a power signal (finite power) 
is characterized by the Power Spectrum Density (PSD ) function. The units of 
the ESD  are Joules per Hertz, while the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a 
nonzero spectrum. In general, any signal can be defined using its duration 
(time domain) and bandwidth (frequency domain). A  signal is said to be band- 
limited if it has finite bandwidth. Signals that have finite durations (time-lim
ited) will have infinite bandwidths, while band-limited signals have infinite 
durations. The extreme case is being a continuous sine wave, whose bandwidth 
is infinitesimal.

A time domain signal f (t ) has a Fourier Transform (FT) F (a )  given by

F (ю ) = J f(t)e - ш dt (5.6)

where the Inverse FT (IFT) is

f ( t ) = 2П J  F ( “ ) ' dю (5.7)

The signal autocorrelation function Rf(T) is

Rf(T) = J J* (t )f(t  + t )  dt (5.8)

The asterisk indicates complex conjugate. The signal amplitude spectrum is 
|F(rn)|. If  f (t ) were an energy sjgnal, then its ESD  is |F(ю)| ; and if it were a 
power signal, then its PSD is S f(a ) which is the FT of the autocorrelation 
function,

Sf(ю) = J  Rf( t ) е-юю dx (5.9)

First, consider a C W  waveform given by
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cos2 n/0t

frequency

-/0 0 /0

F igu re  5.2. A m p li tu d e  spectrum  for a con t inu ou s  sine wave.

/1( t) = A cos ю01

The FT of /1 ( t) is

F 1(a )  = A п[5(ю  - ю 0) + 5(ю + ю 0)]

(5.10)

(5.11)

where 5( • ) is the Dirac delta function, and ю0 = 2п/0. As indicated by 
the amplitude spectrum shown in Fig. 5.2, the signal /1( t) has infinitesimal 
bandwidth, located at ±/0.

Next consider the time domain signal /2 ( t) given by

/2( t) = A R ect^  j
т т- - < t < - 
2 < < 2

otherwise

It follows that the FT is

F 2̂ )  = A TSinc( y

where

Sinc(x) = sin (п x)
пх

(5.12)

(5.13)

(5.14)

The amplitude spectrum of /2( t) is shown in Fig. 5.3. In this case, the band
width is infinite. Since infinite bandwidths cannot be physically implemented, 
the signal bandwidth is approximated by 2п/т radians per second or 1/т 
Hertz. In practice, this approximation is widely accepted since it accounts for 
most of the signal energy.

—сю сю
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Figure 5.3. Amplitude spectrum for a single pulse, or a train of 
non-coherent pulses.

Now consider the coherent gated CW  waveform f 3( t) given by

f3(t) = X  f2( t - nT) (5.15)

Clearly f 3( t) is periodic, where T is the period (recall that f r = 1/ T is the 
PRF). Using the complex exponential Fourier series we can rewrite f 3 ( t) as

jlnnt
f3(t) = X  Fne T (5.16)

n =
where the Fourier series coefficients F n are given by

A t ( птяЛ = T  Sinc\ —  I (5.17)F n

It follows that the FT of f 3 ( t) is

F 3(ю ) = 2п X  F n5(ю - 2nnfr) (5.18)

n = -oo
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fr

4 J ' f  fo f J J '

fo - ( 1/ t )  fo + ( 1/ t )

frequency

Figure 5.4. Amplitude spectrum for a coherent pulse train of infinite length.

The amplitude spectrum of f 3( t) is shown in Fig. 5.4. In this case, the spec
trum has a sin x/x envelope that corresponds to F n. The spacing between the 
spectral lines is equal to the radar PRF, f r .

Finally, define the function f4 ( t) as

f4( t) = ^  f 2( t - nT) (5.19)

n=o
Note that f4( t) is a limited duration f 3 ( t) .  The FT of f4( t) is

F 4(a )  = AN t Sinc^a-NT) • ^  Sinc(nnTfr)5(ю  - 2nnfr) (5.20)

where the operator ( • ) indicates convolution. The spectrum in this case is 
shown in Fig. 5.5. The envelope is still a sin x/x which corresponds to the 
pulse width. But the spectral lines are replaced by sin x/x spectra that corre
spond to the duration N T .

oo

N
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/ \

НРгЧу/'4
\

frequency

Figure 5.5. Amplitude spectrum for a coherent pulse train of finite length.

5.3. Linear Frequency Modulation Waveforms

Frequency or phase modulated waveforms can be used to achieve much 
wider operating bandwidths. Linear Frequency Modulation (LFM ) is com
monly used. In this case, the frequency is swept linearly across the pulse width, 
either upward (up-chirp) or downward (down-chirp). The matched filter band
width is proportional to the sweep bandwidth, and is independent of the pulse 
width. Fig. 5.6 shows a typical example of an LFM  waveform. The pulse width 
is т , and the bandwidth is B  .

The LFM  up-chirp instantaneous phase can be expressed by

where f 0 is the radar center frequency, and ц = (2nB )/т  is the LFM  coeffi
cient. Thus, the instantaneous frequency is

Similarly, the down-chirp instantaneous phase and frequency are given, respec
tively, by

(5.21)

f ( ' ) = 2n () = f »+ к (5.22)
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(a) (b)

Figure 5.6. Typical L F M  w a v efo rm s .  (a) up-ch irp;  (b) d ow n -c h irp .

* (  t) = 2 n f т t- - < t < - 2~  2

f (  t > = 2П I * t > = f " - ^  - 2 < t < 2

A  typical LFM  waveform can be expressed in complex notation by 

s^ t) = Rect^Tj e

(5.23)

(5.24)

J2n[f01 +2- r2
(5.25)

where Rect(t/ т ) denotes a rectangular pulse of width t  . Eq. (5.25) can be 
written as

J2nf01 ^  ( t) = e s ( t)

where

s ( t) = Rect(T  j  

is the complex envelope function of s^ t) .

(5.26)

(5.27)

The spectrum of the signal s: ( t) is determined from its complex envelope 
s( t) .  The complex exponential term in Eq. (5.26) introduces a frequency shift 
about the center frequency f o. Taking the FT of s( t) yields
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S (ю ) = J  Rect^T j e jmdt = J  exp j —--- j  e -

Let — = 2 -- = 2 п В / т , and perform the change of variable

£ (  t - Ю )
; dx dt

Thus, Eq. (5.28) can be written as

S (ю ) = Д  е-Ю72 - J  ejnx272 dx

S (ю ) — e~jra •/2-/ Г J —x2/2 , С j—x2/2 ,I e dx - I e dx

where

Cl = J l Q  + l ? )  = J f  ( 1 + B / 2 j

x2 -  ( T _  Ю ) 
n (  2

B -  (1  - J -
2 (  В / 2

The Fresnel integrals, denoted by C (x) and S (x), are defined by

2
C (x) = I'c o s  ( f

S (x) = J^ rn  (  -U-

Fresnel integrals are approximated by

1 1 (п  2)
C (x > = 2 + -xs,n ( 2x )

du

du

; x » 1 

; x » 1

x

x2

x

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)
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Note that, C (-x) = -C (x) and S (-x) = -S (x).  Fig. 5.7 shows a plot for 
both C (x) and S (x) for 0 < x < 10. This figure can be reproduced using 
M ATLAB function “fresnel_int.m” given in Listing 5.1 in Section 5.6.

Using Eqs. (5.34) and (5.35) into (5.31) and performing the integration yield, 

S ( ffl) = т J J ~  j 2/(4reB ) j [C f e )  + C(x1)] + j[S (x2) + S (x1) ] (538)

Fig. 5.8 shows a typical plot for the amplitude spectrum of an LFM  waveform. 
The square-like spectrum is widely known as the Fresnel spectrum.

x

Figure 5.7. Fresnel integrals.

5.4. High Range Resolution
An expression for range resolution AR in terms of the pulse width т was 

derived in Chapter 1. When pulse compression is not used, the instantaneous 
bandwidth B  of radar receiver is normally matched to the pulse bandwidth, 
and in most radar applications this is done by setting B  = 1 / т . Therefore, 
range resolution is given by

AR = ccT = c  (5.39)
2 2B
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1.4

N o r m a l i z e d  f r e q u e n c y

Figure 5.8. Typical spectrum for an LFM  waveform.

Radar users and designers alike seek to accomplish High Range Resolution 
(H RR) by minimizing AR. However, as suggested by Eq. (5.39) in order to 
achieve H RR one must use very short pulses and consequently reduce the aver
age transmitted power, and impose severe operating bandwidth requirements.

Achieving fine range resolution while maintaining adequate average trans
mitted power can be accomplished by using pulse compression techniques, 
which w ill be discussed in Chapter 7. By means of frequency or phase modula
tion, pulse compression allows us to achieve the average transmitted power of 
a relatively long pulse, while obtaining the range resolution corresponding to a 
very short pulse. As an example, consider an LFM  waveform whose band
width is B  and uncompressed pulse width (transmitted) is т . After pulse com
pression the compressed pulse width is denoted by т ', where т ' « т , and the 
HRR is

AR = ^  « C2  (5.40)

Linear frequency modulation and Frequency-Modulated (FM ) CW  wave
forms are commonly used to achieve HRR. High range resolution can also be 
synthesized using a class of waveforms known as the “Stepped Frequency 
Waveforms (SFW ).”  Stepped frequency waveforms require more complex 
hardware implementation as compared to LFM  or FM-CW; however, the radar 
operating bandwidth requirements are less restrictive. This is true, because the
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receiver instantaneous bandwidth is matched to the SFW  sub-pulse bandwidth 
which is much smaller than an LFM  or FM-CW bandwidth. A  brief discussion 
of SFW  waveforms is presented in the following section.

5.5. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW ) produce Synthetic H RR target pro
files because the target range profile is computed by means of Inverse Discrete 
Fourier Transformation (IDFT) of frequency domain samples of the actual tar
get range profile. The process of generating a synthetic HRR profile is 
described in Wehner1. It is summarized as follows:

1. A  series of n narrow-band pulses are transmitted. The frequency from 
pulse to pulse is stepped by a fixed frequency step A f. Each group of n 
pulses is referred to as a burst.

2. The received signal is sampled at a rate that coincides to the center of each 
pulse.

3. The quadrature components for each burst are collected and stored.
4. Spectral weighting (to reduce the range sidelobe levels) is applied on the 

quadrature components. Corrections for target velocity, phase, and ampli
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu
lated to synthesize a range profile for that burst. The process is repeated for 
N  bursts to obtain consecutive synthetic H RR profiles.

Fig. 5.9 shows a typical SFW  burst. The Pulse Repetition Interval (PR I) is 
T , and the pulse width is т '. Each pulse can have its own LFM , or other type

where 8 ,- are the relative phases and Ct are constants. The received signal 
from a target located at range R 0 at time t = 0 is then given by

sri(t) = C ■ cos(2 —f i( t - T (t)) + 8 ;) ; iT  + T (t) < t < iT  + т '+ T (t) (5.43)

1. Wehner, D. R., High Resolution Radar, second edition. Artech House, 1995.

thof modulation; in this book LFM  is assumed. The center frequency for the i 
step is

fi = fo + iAf  ; i = 0  n - 1 (5.(5.41)
thWithin a burst, the transmitted waveform for the i step can be described as

(5.42)
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i  f r e q u e n c y

f n -  1

f3
f 2
f 1

f0

|A f

A time

У

Figure 5.9. Stepped frequency waveform burst.

where C ' are constant and the round trip delay t (  t) is given by

t ( t) = R 0 - vt
c/ 2

c is the speed of light and v is the target radial velocity.

(5.44)

The received signal is down converted to base-band in order to extract the 
quadrature components. More precisely, sri( t) is mixed with the signal

y {( t) = C cos (2f t  + 0i) ; i T < t < iT  + t ' 

After low pass filtering, the quadrature components are given by

' Xi ( t) ' A  cos V i( t )л

vxQ( t), v A i sin V i(t)/

(5.45)

(5.46)

where A i are constants, and

(A  ~ ^ ( 2 R 0 2vt V i ( t) = -2 n fi( -c- - T (5.47)

t
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where now f i = A f. For each pulse, the quadrature components are then sam
pled at

2 R 0ti = iT  + Tr + --- (5.48)
c

Tr is the time delay associated with range that corresponds to the start of the 
range profile.

The quadrature components can then be expressed in complex form as

)V;X i = A e  i (5.49)

Eq. (5.49) represents samples of the target reflectivity, due to a single burst, in 
the frequency domain. This information can then be transformed into a series 
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol
lows that

H  = n X  Xi exp ( j 2 ^ )  ; 0 < l < n - 1 (5.50)
i = 0

Substituting Eqs. (5.49) and (5.47) into (5.50) and collecting terms yield

n - 1

H  = n exp{< v '  - 2nfi( т °  - t -' ) ) }  (6-6,)
i = 0

B y  normalizing with respect to n and by assuming that A, = 1 and that the 
target is stationary (i.e., v = 0 ), then Eq. (5.51) can be written as

n - 1

h  = X  exp I 7' ( 2n ' - 2nfi t ° ) }  (5.52)
i = 0

Using f ' = iA f inside Eq. (5.52) yields

n - 1

H  = X  exp \j V  ( - 2n r Af + 0 \  (5.53)n V c
i = 0

which can be simplified to (see problems)
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Hi = =  exp ( j  rn-2 1
sin—%

—Xsin
- 1

n J (5 .5 4 )

n

where

-2 nRoAf 
% = — :—  + 1 (5.55)

Finally, the synthesized range profile is

sin—%
• —Xsin —

(5.56)

5.5.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth. 
Assuming a SFW  with n steps, and step size A f, then the corresponding range 
resolution is equal to

AR
2 nAf

(5.57)

Range ambiguity associated with a SFW  can be determined by examining 
the phase term that corresponds to a point scatterer located range R 0 . More 
precisely,

¥ i( t) = 2 —fi -
2R

(5.58)

It follows that

Ay- = 4—(fi+ 1-fO  Ro = 4—Rq 
A f ( f1--+1 c c

(5.59)

or equivalently,

R = ^ IQ C  
Ro = A/4—

(5.60)

It is clear from Eq. (5.60) that range ambiguity exists for A y  = A y  + 2 n —. 
Therefore,

Ro = (5.61)
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and the unambiguous range window is

(5 .6 2 )

Hence, a range profile synthesized using a particular SFW  represents the rel
ative range reflectivity for all scatterers within the unambiguous range win
dow, with respect to the absolute range that corresponds to the burst time delay. 
Additionally, if a specific target extent is larger than R u, then all scatterers fall
ing outside the unambiguous range window will fold over and appear in the 
synthesized profile. This foldover problem is identical to the spectral foldover 
that occurs when using a Fourier Transform (FFT) to resolve certain signal fre
quency contents. For example, consider an FFT with frequency resolution 
A f _  5oHz, and size N F F T  _  64. In this case, this FFT can resolve fre
quency tones between -16ooHz and 16ooHz. When this FFT is used to 
resolve the frequency content of a sine-wave tone equal to 18ooHz, foldover 
occurs and a spectral line at the fourth FFT bin (i.e., 2oo H z ) appears. There
fore, in order to avoid foldover in the synthesized range profile, the frequency 
step A f must be (from Eq. (5.62))

where E  is the target extent in meters.

Additionally, the pulse width must also be large enough to contain the whole 
target extent. Thus,

This is necessary in order to reduce the amount of contamination of the synthe
sized range profile caused by the clutter surrounding the target under consider
ation.

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m” computes and plots the synthetic H RR profile 
for a specific SFW. It is given in Listing 5.2 in Section 5.6. This function uti
lizes an IDFT of size equal to twice the number of steps. Hamming window of 
the same size is also assumed. The syntax is as follows:

(5.63)

(5.64)

and in practice,

(5.65)
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[h l] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote) 

where

Symbol Description Units Status
nscat number of scatterers that 

make up the target
none input

scat_range vector containing range to 
indiVidual scatterers

meters input

scat_rcs vector containing RCS of 
individual scatterers

meter square input

n number of steps none input
deltaf frequency step Hz input
prf PRF of SFW Hz input
V target velocity meter/second input

rnote profile starting range meters input
hl range profile dB output

For example, assume that the range profile starts at R 0 = 900 m and that

nscat tau n deltaf prf v
3 100ц sec 64 10 MHz 10 KHz 0.0

In this case,

AR = ---- ----------- = 0.235m
2 x 64 x 10 x 106

3 x 1 0 8
R u = ----------6 = 15m

2 x 10 x 106

Thus, scatterers that are more than 0.235 meters apart w ill appear as distinct 
peaks in the synthesized range profile. Assume two cases, where in the first 
case,

[scat_range] = [908, 910, 912] meters 

and in the second case,

[scat_range] = [908, 910, 910.4] meters

In both cases, let

[scat_rcs] = [  100, 10, 1] meter square
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Fig. 5.10 shows the synthesized range profiles generated using the function 
“hrr__profile.m” and the first case when the Hamming window is not used. Fig. 
5.11 is similar to Fig. 5.10, except in this case the Hamming window is used.

Fig. 5.12 shows the synthesized range profile that corresponds to the second 
case (Hamming window is used). Note that all three scatterers were resolved in 
Figs. 5.10 and 5.11; however, the last two yesteryears are not resolved in Fig.
5.12, since they are separated by less than A R .

Next, consider another case where

[scat_range] = [908, 912, 916] meters

Fig. 5.13 shows the corresponding range profile. In this case, foldover occurs, 
and the last Scatterer appears at the lower portion of the synthesized range pro
file. Also, consider the case where

[scat_range] = [908, 912, 923] meters

Fig. 5.14 shows the corresponding range profile. In this case, ambiguity is 
associated with the first and third scatterers since they are separated by 15m. 
Both appear at the same FFT bin.

F F T  bin

Figure 5.10. Synthetic range profile for three resolved scatterers. No window.
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F F T  bin

Figure 5.11. Synthetic range profile for three scatterers. Hamming window.

F F T  bin

Figure 5.12. Synthetic range profile for three scatterers. Two are unresolved.
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0 20  40 60 80 100  1 20  1 40

F F T  bin

Figure 5.13. Synthetic range profile for three scatterers. Third scatterer folds 
over.

F F T  bin

Figure 5.14. Synthetic range profile for three scatterers. The first and third 
scatterers appear at the same FFT bin.
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5.5.2. Effect o f  Target Velocity

The range profile defined in Eq. (5.56) was obtained by assuming that the 
target under examination was stationary. The effect of target velocity on the 
synthesized range profile can be determined by substituting Eqs. (5.47) and 
(5.48) into Eq. (5.50), which after normalization yields

П - 1
„  x " I -2nH ■ о ^Г2R  2v(  Ti 2RY ll  , c c c .

1 = I exp {j —  - j2  4  T  - 7 ( lT  +i  + 7 ^ |
i = 0

The additional phase term present in Eq. (5.66) distorts the synthesized range 
profile. In order to illustrate this distortion, consider the SFW  described in the 
previous section, and assume the three scatterers of the first case. Also, assume 
that v = 200m/ s . Fig. 5.15 shows the synthesized range profile for this case. 
Comparisons of Figs. 5.11 and 5.15 clearly show the distortion effects caused 
by the uncompensated target velocity.

This distortion can be eliminated by multiplying the complex received data 
at each pulse by the phase term

F F T  bin

F i g u r e  5 .1 5 .  I l l u s t r a t i o n  o f  r a n g e  p r o f i l e  d i s t o r t i o n  d u e  to  t a r g e t  v e lo c i ty .
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Ф  = exp
х, 2 R

iT  + i + 7
(5 .6 7 )

where v and R  are, respectively, estimates of the target velocity and range. 
This process of modifying the phase of the quadrature components is often 
referred to as “phase rotation.”  In practice, when good estimates of v and R 
are not available, then the effects of target velocity are reduced by using fre
quency hopping between the consecutive pulses within the SFW. In this case, 
the frequency of each individual pulse is chosen according to a predetermined 
code. Waveforms of this type are often called Frequency Coded Waveforms 
(FCW ). Costas waveforms or signals, which will be discussed in Chapter 7, are 
a good example of this type of waveform.

5.6. MATLAB Listings

This section presents listings for all M ATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters.

Listing 5.1. MATLAB Program “fresnel_int.m”
clear all 
n = 0;
for x = 0:.05:4 
n = n+1;
sx(n) = quad8('fresnels',.0,x); 
cx(n) = quad8('fresnelc',.0,x); 

end
plot( cx) 
x=0:.05:4;
plot (x,cx,'k',x,sx,'k--') 
grid
xlabel ('x')
ylabel ('Fresnel integrals: C(x); S(x)')
%
function cx = fresnelc(x) 
cx = cos(pi * .5 .* x.A2);
%
function cx = fresnels(x) 
cx = sin(pi * .5 .* x.A2);
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function [h l] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote) 
%  Range or Time domain Profile
%  Range_Profile returns the Range or Time domain plot of a simulated 
%  HRR SFW  returning from a predetermined number of targets with a prede
termined
c=3.0e8; %  speed of light (m/s) 
num_pulses = n;
SNR_dB = 40;
%carrier_freq = 9.5e9; %Hz (10GHz) 
freq_step = deltaf; %Hz (10MHz)
V = v; %  radial velocity (m/s) -- (+)=towards radar (-)=away 
P R I = 1. /prf; %  (s)
Inphase = zeros((2*num _pulses),1);
Quadrature = zeros((2*num _pulses),1);
Inphase_tgt = zeros(num_pulses,1);
Quadrature_tgt = zeros(num _pulses,1);
IQ_freq_domain = zeros((2*num _pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num _pulses),1); 
Weighted_IQ_time_domain = zeros((2*num_pulses),1); 
Weighted_IQ_freq_domain = zeros((2*num_pulses),1); 
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1); 
dB_abs_Weighted_IQ_time_domain = zeros((2*num _pulses),1); 
taur = 2. * rnote / c; 
for jscat = 1:nscat 

ii = 0;
for i = 1:num_pulses 

ii = ii+1;
rec_freq = ((i-1)*freq_step);
Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * ... 

cos(-2*pi*rec_freq*(2.*scat_range(jscat)/c - 2*(V/c)*...
((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));

Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))* ... 
sin(-2*pi*rec_freq*(2*scat_range(jscat)/c - 2*(V/c)*...
((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c))); 

end 
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num _pulses) = Inphase(1:num _pulses)...

.*(hamming(num _pulses));
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).*...

Listing 5.2. MATLAB Function “hrr_profile.m”

© 2000 by Chapman & Hall/CRC



(hamming(num _pulses));
Weighted_IQ_freq_domain(1:num _pulses)= Weighted_I_freq_domain + ... 
Weighted_Q_freq_domain *j;
Weighted_IQ_freq_domain(num __pulses:2*num __pulses)=0.+0.i; 
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain)); 
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain)); 
dB_abs_Weighted_IQ_time_domain = 
20.0*log10(abs_Weighted_IQ_time_domain )+SNR_dB;

plot((0:(2*num_pulses-1)), dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('FFTb in ')
ylabel ('Range profile - dB')
grid

Problems
5 . 1 .  Derive Eq. (5.17).
5 . 2 .  Derive Eq. (5.66).
5 . 3 .  Derive Eq. (5.54).
5 . 4 .  W rite a M A T LA B  program to perform H R R  synthesis for frequency 
coded waveforms.
5 . 5 .  Reproduce Fig. 5.5 for v = 10, 50, 100, 150, 250 m /s . Compare 
your outputs. What are your conclusions?
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Chapter 6 Matched Filter and 
the Radar Ambiguity 
Function

6.1. The Matched Filter SNR

The most unique characteristic of the matched filter is that it produces the 
maximum achievable instantaneous SNR at its output when a signal plus addi
tive white noise are present at the input. The noise does not need to be Gauss
ian. The peak instantaneous SNR at the receiver output can be achieved by 
matching the radar receiver transfer function to the received signal. We w ill 
show that the peak instantaneous signal power divided by the average noise 
power at the output of a matched filter is equal to twice the input signal energy 
divided by the input noise power, regardless of the waveform used by the 
radar. This is the reason why matched filters are often referred to as optimum 
filters in the SNR sense. Note that the peak power used in the derivation of the 
radar equation (SNR) represents the average signal power over the duration of 
the pulse, not the peak instantaneous signal power as in the case of a matched 
filter. In practice, it is sometimes difficult to achieve perfect matched filtering. 
In such cases, sub-optimum filters may be used. Due to this mismatch, degra
dation in the output SNR occurs.

Consider a radar system that uses a finite duration energy signal si ( t). 
Denote the pulse width as t ' , and assume that a matched filter receiver is uti
lized. The main question that we need to answer is: What is the impulse, or fre
quency, response of the filter that maximizes the instantaneous SNR at the 
output of the receiver when a delayed version of the signal si ( t) plus additive 
white noise is at the input?

The matched filter input signal can then be represented by

x( t) = C si(t - 11) + ni(t ) (6.1 )
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where C  is a constant, t1 is an unknown time delay proportional to the target 
range, and ni( t) is input white noise. Since the input noise is white, its corre
sponding autocorrelation and Power Spectral Density (PSD ) functions are 
given, respectively, by

R n (t ) = N  5 (t) (6.2)

- N 0Sni (ю ) = -2 (6.3)

where N 0 is a constant. Denote so ( t) and no ( t) as the signal and noise filter 
outputs. More precisely, we can define

у ( t) = C So( t - tO + no(t) (6.4)

where

So(t) = Si( t)^  h (t) (6.5)

no(t) = n (t )  • h ( t) (6.6)

The operator ( • ) indicates convolution, and h ( t) is the filter impulse 
response (the filter is assumed to be linear time invariant).

Let R h ( t) denote the filter autocorrelation function. It follows that the output 
noise autocorrelation and PSD  functions are

Rn0( t) = R n (t)^  R h( t) = -2 5 (t)^  R h(t ) = -2 R h(t) (6.7)

Sno(ю ) = S n (a ) |Я (ю )|2 = -20 \H(a)\2 (6.8)

where Н (ю ) is the Fourier transform for the filter impulse response, h ( t) .  The 
total average output noise power is equal to Rno ( t) evaluated at t = 0. More 
precisely,

Rn° ( 0) = N  1 h  ( u )i2 du (6.9)

The output signal power evaluated at time t is |Cso( t - 11 )|2, and by using Eq. 
(6.5) we get

© 2000 by Chapman & Hall/CRC



s0( t - tx) = J  Si(t - t! - u) h(u) du (6.10)

A general expression for the output SNR at time t can be written as

i2
SN R( t) = |Cso( t - t1 ) |2 (6.11)

Rno (0)
Substituting Eqs. (6.9) and (6.10) into Eq. (6.11) yields

C

SN R( t)

J  st(t - 11 - u) h ( u) du

(6.12)
N 0
-> J  |h( u)|: du

The Schwartz inequality states that

J  P  (x) Q (x) dx J  |P(x )|2dx J  |Q(x)|2dx (6.13)

where the equality applies only when P  = kQ* , where k is a constant and can 
be assumed to be unity. Then by applying Eq. (6.13) on the numerator of Eq. 
(6.12), we get

C2 J  |s;(t - t1 - u)|2 du J  |h(u)|2 du

SN R (t) < - (6.14)

-2- J  |h(u)|2du

2 C2 J  \s{(t - t1 - u)|2 d

N 0

2
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Eq. (6.14) tells us that the peak instantaneous SNR occurs when equality is 
achieved (i.e., from Eq. (6.13) h = ks* ). More precisely, if we assume that 
equality occurs at t = t0 , and that k = 1, then

h(u) = s * (t0 - 11 - u) (6.15)

and the maximum instantaneous SNR is

|2 du2 C2 J  |si ( t0 - t1 - u )|2

SN R( t0) = --- —---- - ---------- (6.16)
N 0

Eq. (6.16) can be simplified using Parseval’s theorem,

E  = C2 J  |s,( t0 - 11 - u)|2 du (6.17)

where E  denotes the energy of the input signal; consequently we can write the 
output peak instantaneous SNR as

SN R( t0) = ^  (6.18)
N 0

Thus, we can draw the conclusion that the peak instantaneous SNR depends 
only on the signal energy and input noise power, and is independent of the 
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq. 
(6.15). If  we desire the peak to occur at t0 = t1, we get the non-causal 
matched filter impulse response,

hnc( t) = Si*(-t) (6.19)

Alternatively, the causal impulse response is

hc(t) = s*(T  - 1) (6.20)

where in this case, the peak occurs at t0 = t1 + т . It follows that the Fourier 
transforms of hnc( t) and hc ( t) are given, respectively, by

Япс(Ю) = S;*(ffl) (6.21)

Hc (ю ) = S,*(ra) e- ют (6.22)
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where St(ю ) is the Fourier transform of s,-(t). Thus, the moduli of H (ю ) and 
S i(ю ) are identical; however, the phase responses are opposite of each other.

Example 6.1: Compute the maximum instantaneous SNR at the output of a 
linear filter whose impulse response is matched to the signal 
x( t) = exp(-t2/ 2 T ).

Solution: The signal energy is

E  = 1 |x(t)|2dt = 1 e( - )/Tdt = J k T Joules

It follows that the maximum instantaneous SNR is

J k TSNR
N 0/2

where N 0/ 2 is the input noise power spectrum density.

6.2. The Replica

Again, consider a radar system that uses a finite duration energy signal si ( t) , 
and assume that a matched filter receiver is utilized. The input signal is given 
in Eq. (6.1) and is repeated here as Eq. (6.23),

x( t) = C st ( t - t1) + ni ( t) (6.23)

The matched filter output y ( t) can be expressed by the convolution integral 
between the filter’s impulse response and x ( t) ,

y ( t) = 1 x( u )h( t - u )du (6.24)

Substituting Eq. (6.20) into Eq. (6.24) yields

y ( t) = 1 x( u) s,-*(T - t + u)du = Rxst( t - t )  (6.25)

where Rxs( t - t )  is a cross-correlation between x ( t) and st ( t  - 1). Therefore, 
the matched filter output can be computed from the cross-correlation between 
the radar received signal and a delayed replica of the transmitted waveform. If  
the input signal is the same as the transmitted signal, the output of the matched
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filter would be the autocorrelation function of the received (or transmitted) sig
nal. In practice, replicas of the transmitted waveforms are normally computed 
and stored in memory for use by the radar signal processor when needed.

6.3. Matched Filter Response to LFM Waveforms

In order to develop a general expression for the matched filter output when 
an LFM  waveform is utilized, we will consider the case when the radar is 
tracking a closing target with velocity v . The transmitted signal is

s1 ( t) = Rect(T-) e
j2n\f0t + 2- ?

(6.26)

The received signal is then given by

sri( t) = sj ( t - A (t)) (6.27)

A (t) = t0 - у ( t - t0) (6.28)

where t0 is the time corresponding to the target initial detection range, and c 
is the speed of light. Using Eq. (6.28) we can rewrite Eq. (6.27) as

sri( t) = s j( t - tg + c ( t - 10) J  = s j(Y (t - 10)) (6.29)

and

Y = 1 + 2v (6.30)
c

is the scaling coefficient. Substituting Eq. (6.26) into Eq. (6.29) yields

Y( t - t0 ) )  j2nf0Y(f -10) jn^Y2(t -10)
sri ( t) = Recty — т — J  e e (6.31)

which is the analytical signal representation for sr ( t). The complex envelope 
of the signal sr ( t) is obtained by multiplying Eq. (6.31) by exp(- j2nf0t). 
Denote the complex envelope by sr( t) , then after some manipulation we get

-j2nf0r0D ,(Y (t - 10) )  j2nf0(Y- j )(t-10) jn Ŷ2(t-10)2sr ( t) = e Rect\--- ;—  e e (6.32)0 Rec{^ Y ^ J

The Doppler shift due to the target motion is
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and since у - 1 = 2 v/  c , we get

f i  = (Y - 1 )f 0 O5.34)
Using the approximation y «  1 and Eq. (6.34), Eq. (6.32) is rewritten as

;2f  (t - tn)
sr( t) «  e d 0 s( t - 10) (6.35)

2 v
f d  =  --c--f 0 (6 .3 3 )

where

-j2nf0t ,
s( t - t0) = e s 1 ( t - 10) (6.36)

s1 ( t) is given in Eq. (6.26). The matched filter response is given by the convo
lution integral

so ( t) = 1 h ( u) sr( t - u) du (6.37)

For a non-causal matched filter the impulse response h (u) is equal to s*(- t) ;  
it follows that

so( t) = 1 s*(-u ) sr ( t - u) du (6.38)

Substituting Eq. (6.36) into Eq. (6.38), and performing some algebraic manipu
lations, we get

f j2Kf (t + u - fn)
so( t) = I s*( u) e s( t + u - 10)du (6.39)

Finally, making the change of variable t' = t + u yields

so ( t) = 1 s*( t - 1) s( t - 10) ej2nfd(r to) dt (6.40)

It is customary to set t0 = 0 , and it follows that

f j 2kfdt
so ( t;fd) = J  s( t ) s*( t - 1) e dt' (6.41)
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where we used the notation so( t f d) to indicate that the output is a function of 
both time and Doppler frequency.

The two-dimensional (2-D) correlation function for the signal s( t) is 
obtained from the matched filter response by replacing t by -t , then

C j2Kfj'
X (t ;fd) = 1 s ( t ) s*( t + t )  e dt' (6.42)

6.4. The Radar Ambiguity Function

The radar ambiguity function represents the output of the matched filter, and 
it describes the interference caused by range and/or Doppler of a target when 
compared to a reference target of equal RCS. The ambiguity function evalu
ated at (t, f d) = (0, 0 ) is equal to the matched filter output that is matched 
perfectly to the signal reflected from the target of interest. In other words, 
returns from the nominal target are located at the origin of the ambiguity func
tion. Thus, the ambiguity function at nonzero t  and f d represents returns from 
some range and Doppler different from those for the nominal target.

The radar ambiguity function is normally used by radar designers as a means 
of studying different waveforms. It can provide insight about how different 
radar waveforms may be suitable for the various radar applications. It is also 
used to determine the range and Doppler resolutions for a specific radar wave
form. The three-dimensional (3-D) plot of the ambiguity function versus fre
quency and time delay is called the radar ambiguity diagram. The radar 
ambiguity function for the signal s ( t) is defined as the modulus squared of its 
2-D correlation function, i.e., |% (tf d)| . More precisely,

1 s ( t )s * ( t +t )  e  2nf/(dt (6.43)

In this notation, the target of interest is located at (t, f d) = (0, 0 ), and the 
ambiguity diagram is centered at the same point. Note that some authors define 
the ambiguity function as |%(t f d)| . In this book, |%(T;fd)| is called the uncer
tainty function. Denote E  as the energy of the signal s( t),

2

E  = 1 |s ( t )| 2dt (6.44)

We w ill now list the properties for the radar ambiguity function:
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1) The maximum value for the ambiguity function occurs at (т, f d) = (0, 0) 
and is equal to 4 E ,

max{ |%(т fd )\2} = IX( 0;0 )|2 = (2 E ) 2

|х(т fd  )|2 < lx ( 0 ;0  )|2

2) The ambiguity function is symmetric,

\%(Tfd )\2 = |x(-T ;-fd ) |2

3) The total volume under the ambiguity function is constant,

(6.45)

(6.46)

(6.47)

j j l X(T;fd )|2 dT dfd = (2 E ) 2 (6.48)

4) If the function S(f) is the Fourier transform of the signal s ( t) ,  then by using 
Parseval’s theorem we get

J  S*(f) S ( f  -  fd ) e-j2 nfTd/ (6.49)
2

6.5. Examples o f the Ambiguity Function

The ideal radar ambiguity function is represented by a spike of infinitesimal 
width that peaks at the origin and is zero everywhere else, as illustrated in Fig.
6.1. An ideal ambiguity function provides perfect resolution between neigh
boring targets regardless of how close they may be with respect to each other. 
Unfortunately, an ideal ambiguity function cannot physically exist. This is 
because the ambiguity function must have finite peak value equal to (2  E) 
and a finite volume also equal to (2 E) . Clearly, the ideal ambiguity function 
cannot meet those two requirements.

6.5.1. Single Pulse Ambiguity Function

Consider the normalized rectangular pulse s ( t) defined by

JT

From Eq. (6.42) we have

s ( t) = R ect( ) (6.50)
R  \TJ

X(T fd) = J  s (t )s* ( t + т ) e 2Kfdtdt (6.51)
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Substituting Eq. (6.50) into Eq. (6.51) and performing the integration yield,

|t|) s i n ( f  (T' -  IT))
|%(T fd)\ = f (T' -  lTD

MATLAB Function “single_pulse_ambg.m”

IT < T' (6.52)

The function “single_pulse_ambg.m” implements Eq. (6.52). It is given in 
Listing 6.1 in Section 6.7. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulse width. Fig. 6.2 (a-d) shows 3-D and contour plots of single 
pulse uncertainty and ambiguity functions. These plots can be reproduced 
using MATLAB program “fig6_2.m ” given in Listing 6.2 in Section 6.7.

The ambiguity function cut along the time delay axis T is obtained by setting 
f d = 0 . More precisely,

Ix ( t ;0  )|2 IT <T' (6.53)

Note that the time autocorrelation function of the signal s ( t) is equal to 
X (t ;0 ). Similarly, the cut along the Doppler axis is

|x( 0 fd )|2
sin nTf

nT fd
(6.54)

Figs. 6.3 and 6.4, respectively, show the plots of the uncertainty function 
cuts defined by Eqs. (6.53) and (6.54). Since the zero Doppler cut along the 
time delay axis extends between - t' and t' , then, close targets would be 
unambiguous if  they are at least t' seconds apart.

2
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F igu re  6 .2a . S in g le  pu lse  3-D u n certa in ty  plot. P u lse  w id th  is 2  seconds.
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D o p p l e r - H z  De lay - s e co n d s

F igu re  6.2c. S in g le  pu lse 3-D am b igu ity  p lot. P u lse  w id th  is  2  seconds.

F ig u re  6 .2 d . C o n to u r  p lo t co rre sp o n d in g  to  F ig . 6 .2c .
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The zero time cut along the Doppler frequency axis has a ( sin x/ x ) shape. 
It extends from - ^  to ^ . The first null occurs at f d = ± 1/t’ . Hence, it is 
possible to detect two targets that are shifted by 1 / т ' , without any ambiguity.

We conclude that a single pulse range and Doppler resolutions are limited by 
the pulse width т ' . Fine range resolution requires that a very short pulse be 
used. Unfortunately, using very short pulses requires very large operating 
bandwidths, and may limit the radar average transmitted power to impractical 
values.

2

Figure 6.3. Zero Doppler uncertainty function cut along the time delay axis.

Freque ncy - Hz

Figure 6.4. Uncertainty function of a single frequency pulse (zero delay). This 
plot can be reproduced using MATLAB program “Fig6_4.m” given 
in Listing 6.3 in Section 6.7.

© 2000 by Chapman & Hall/CRC



6.5.2. LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

s ( t) = -j= R ect( ̂  1 (6.55)
JT' ( t )

In order to compute the ambiguity function for the LFM complex envelope, we 
w ill first consider the case when 0 < т < т ' . In this case the integration limits 
are from - т '/ 2 to (t '/ 2) -  т . Substituting Eq. (6.55) into Eq. (6.51) yields

X (t ;fd) = J - J  R ect( T ) Rect( ^ ) e jnM(r+T) dt
2 — 1П1 М t + T 1

(6.56)

It follows that

- *  T2 2 -  T
X(T;fd) = ^-гМ- f e- № - f d ydt (6.57)

We w ill leave the rest of the integration process to the reader. Finishing the 
integration process in Eq. (6.57) yields

sin (п т '(мт + fd ) ( 1 -  J'T)
X (t ;fd) = eJnfd(1 -  JO-------------------- -------- —  0 < т < t '  (6.58)

ПТ'(МТ + fd ) ( 1 -  ^

Similar analysis for the case when - т '  < т < 0 can be carried out, where in 
this case the integration limits are from ( - t '  / 2) -  т to t '/ 2 . The same result 
can be obtained by using the symmetry property of the ambiguity function 
( |%(-T, - f d)| = |x(t, f d)| ). It follows that an expression for %(t;fd) that is 
valid for any т is given by

. . sin( ПТ'(МТ + fd ) ( 1 -  T ) )
X<T f e  "Tf' (  1 -  J )  — -------  M < т ' (в-59)

ПТ'(МТ + fd ) ( 1 -  J )

and the LFM ambiguity function is
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|X( T f d ) 2 =
( 1  -  ? )

sin ( п т '(цт + fd) (
- ? ) )

(
пт'(д т + fd ) ( 1-?)

IT < T' (6 .60)

Again the time autocorrelation function is equal to %(т, 0 ) .  The reader can 
verify that the ambiguity function for a down-chirp LFM waveform is given by

|X(T fd  )| ( i -  T )

sin ( п т'(цт -  fd) (

я т '(ц т  -  fd ) ( 1 -?)
IT <T' (6.61)

MATLAB Function “lfm_ambg.m”

The function “lfm_ambg.m” implements Eqs. (6.60) and (6.61). It is given 
in Listing 6.4 in Section 6.7. The syntax is as follows:

lfm_ambg [taup, b, up_down]

where

Symbol Description Units Status
taup pulse width seconds input
b bandwidth Hz input
up_down up_down = 1 for up chirp 

up_down = -1 for down chirp
none input

Fig. 6.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi
guity functions for

taup b up_down
1 10 1

These plots can be reproduced using MATLAB program “fig6_5.m ” given in 
Listing 6.5 in Section 6.7.This function generates 3-D and contour plots of an 
LFM ambiguity function.

The up-chirp ambiguity function cut along the time delay axis т is

1х (т  ;0 )|
sin(л|л.тт'( 1 -  9 ) )

п цтт '1 1 -' ( .  -  b f)

IT <T' (6.62)
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F igu re  6 .5a . U p-chirp  L F M  3-D u n certa in ty  plot. P u lse  w id th  is 1 second; an d  
b andw id th  is 10 Hz.

F ig u re  6 .5b . C o n to u r  p lo t co rre sp o n d in g  to  F ig . 6 .5 a .
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Doppler - Hz ^  Delay - seconds

F igu re  6 .5c. U p-ch irp  L F M  3-D am b igu ity  p lot. P u lse  w id th  is  1 second; and  
b andw id th  is 10 Hz.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
Delay - seconds

F ig u re  6 .5 d . C o n to u r  p lo t co rre sp o n d in g  to  F ig . 6 .5c .
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Fig. 6.6 shows a plot for a cut in the uncertainty function corresponding to 
Eq. (6.62). Note that the LFM ambiguity function cut along the Doppler fre
quency axis is similar to that of the single pulse. This should not be surprising 
since the pulse shape has not changed (we only added frequency modulation). 
However, the cut along the time delay axis changes significantly. It is now 
much narrower compared to the unmodulated pulse cut. In this case, the first 
null occurs at

тл1 »  1/ B (6.63)

which indicates that the effective pulse width (compressed pulse width) of the 
matched filter output is completely determined by the radar bandwidth. It fol
lows that the LFM ambiguity function cut along the time delay axis is narrower 
than that of the unmodulated pulse by a factor

5 = ( i t b )  = «  (6-«>

5 is referred to as the compression ratio (also called time-bandwidth product 
and compression gain). A ll three names can be used interchangeably to mean 
the same. As indicated by Eq. (6.64) the compression ratio also increases as the 
radar bandwidth is increased.

Delay - s e c o n d s

Figure 6.6. Zero Doppler Ambiguity function of an LFM pulse ( Tr = 1,
b = 20 ). This plot can be reproduced using MATLAB 
program “fig6_6.m” given in Listing 6.6 in Section 6.7.
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Example 6.2: Compute the range resolution before and after pulse compres
sion corresponding to an LFM waveform with the following specifications: 
Bandwidth B = 1 GHz; and pulse width t ' = 10ms.

Solution: The range resolution before pulse compression is 

ct' 10 x 10-3 x  3 x  108 1C 1A6
ARuncomp = У  = ------------2------------  = 1,5 X 10 meters

Using Eq. (6.63) yields

1
Tn i = ---------9 = 1 ns

1 x 109

4л cT„i 3 x 1 0 8 x 1 x 1 0 -9 1Г
ARcomp = “ 'j-  = ----------- 2-----------  = 15 cm .

6.5.3. Coherent Pulse Train Ambiguity Function

Fig. 6.7 shows a plot of coherent pulse train. The pulse width is denoted as 
t ' and the PRI is T . The number of pulses in the train is N ; hence,the train’s 
length is (N -  1) T seconds. A normalized individual pulse s ( t  is definedby

s 1 ( t) = - “nR e ctiT ) (6.65)
Vt' ^t  '

When coherency is maintained between the consecutive pulses, then an expres
sion for the normalized train is

N -  1

s ( t) = ^ X  s i ( t -  iT) (6.66)
i = 0

The output of the matched filter is

f /2 f t  
X(t^/d) = J s ( t)s * (t  + t ) e  dt (6.67)

Substituting Eq. (6 .66 ) into Eq. (6.67) and interchanging the summations and 
integration yield,

N -  i N -  i ~

s, ( t -

i = 0 j  = 0 - ^

X(T ;fd) = N X  X  J  si ( t -  iT) s i* (  t -  jT  -  t )  e 2Kfdtdt (6.68)
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( N  -  1 )  T

F igu re  6.7. C oherent pu lse  t r a in . N=5.

Making the change of variable t1 = t -  iT yields

N-1 N -1
fd

X(Tfd) = N X  ^ 2Kfd'TX  1 S1 ( t1) s1* ( t1 -  [T -  ( i - ; ')T ] ) 2 n f d t1  dt1 (6.69)
i = 0 j = 0

The integral inside Eq. (6.69) represents the output of the matched filter for a 
single pulse, and is denoted by x 1 . It follows that

N -  1 
1 V  j 2 nfdiT

N -  1

x (T;f d) = n n X e  di X X 1[ T - ( i - j ) T f d]e X X11

i = 0 j = 0

(6.70)

When the relation q = i -  j  is used, then the following relation is true1:

N N 0 N -  1 -  |q|

X X  = X X
i = 0 m = 0 q = -(N -  1) i = 0

N- 1 N- 1 -  |q|

+ X  X
for j = i -  q q = 1 j = 0

(6.71)

for i = j + q

Using Eq. (6.71) into Eq. (6.70) gives

x ( t f )  = N X

N -  1

N1--- X

q = -(N -  1)

j2nfdqT

q = 1

N -  1 -  |q|
rj, f  4 X’ ’ j2nfdiT

%1(T -  q T fd) X  e
i = 0

N -  1 -  |q| "

%1(T -  qT fd) X  e 
j =0

(6.72)

0

1. Rihaczek, A. W., Principles of High Resolution Radar, Artech House, 1996.
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Setting z = exp ( j2nfdT) , and using the relation

N -  i -  |q|

X
j =0

1 -  zN -  |q|

1 -  z
(6 .73)

yield

N -  i -  |q|
^  j 2 f T  U fN  -  i -  |q|T)] sin [nf d(N -  1 -  |q T ) ]
X  e = e - sin (nfdT)

(6.74)

i =0

Using Eq. (6.74) into Eq. (6.72) yields two complementary sums for positive 
and negative q . Both sums can be combined as

N -  i
. , _ f )  1 V  ^  Wd (N -  i + q )T] sinW d(N -\q\T)]
X(T ;fd) = N X  (T -  qT;fd) e s i n f )  (6-75)

q = -(N -  i)
Finally, the ambiguity function associated with the coherent pulse train is com
puted as the modulus square of Eq. (6.75). For T  < T/2 , the ambiguity func
tion reduces to

N -  i

X(T;f d) = N X  Ix i(T -  qT;fd) l
q = -(N -  i)

sin [nfd(N -  |q|T) ]

sin (nfdT)
(6.76)

Thus, the ambiguity function for a coherent pulse train is the superposition 
of the individual pulse’s ambiguity functions. The ambiguity function cuts 
along the time delay and Doppler axes are, respectively, given by

IX(T ;0 )| =

N -  i

X  ( i -  N ) ( 1 -
q = -(N -  i )

; |t -  qT  < T  (6.77)

|x( 0;fd )|2
1 sin (nfdT') sin (nfdNT)

(6.78)
N nfdT' sin (nfdT)

MATLAB Function “train_ambg.m”

The function “train_ambg.m” implements Eq. (6.76). It is given in Listing 
6.7 in Section 6.7. The syntax is as follows:

train_ambg [taup, n, pri]

2
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Doppler - Hz Delay - seconds

Figure 6.8a. Three-dimensional ambiguity plot for a five pulse equal amplitude coherent 
train. Pulse width is 0.2 seconds; and PRI is 1 second, N=5. This plot can be 
reproduced using MATLAB program “fig6_8a.m” given in Listing 6.8 in 
Section 6.7.
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F igu re  6 .8d . Zero d e la y  cu t correspond ing to F ig . 6 .8a.

6.6. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given 
waveform, the corresponding ambiguity diagram is normally used to determine 
the waveform properties such as the target resolution capability, measurements 
(time and frequency) accuracy and its response to clutter. Three-dimensional 
ambiguity diagrams are difficult to plot and interpret. This is the reason why 
contour plots of the 3-D ambiguity diagram are often used to study the charac
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of 
a plane intersecting the 3-D ambiguity diagram that corresponds to some 
threshold value. The resultant plots are ellipses. It is customary to display the 
ambiguity contour plots that correspond to one half of the peak autocorrelation 
value.

Fig. 6.9 shows a sketch of typical ambiguity contour plots associated with a 
gated CW pulse. It indicates that narrow pulses provide better range accuracy 
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse 
than it is for a short one. This trade-off between range and Doppler measure
ments comes from the uncertainty associated with the time-bandwidth product 
of a single sinusoidal pulse, where the product of uncertainty in time (range) 
and uncertainty in frequency (Doppler) cannot be much smaller than unity. 
Note that an exact plot for Fig. 6.9 can be obtained using the function 
“single_pulse_ambg.m” and the MATLAB command contour.
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frequency frequency

F igu re  6 .9 . A m b igu ity  con tour p lo t assoc ia ted  w ith  a  sinuso id  
m o du lated  g a ted  C W  pulse . See F ig . 6.2.

Multiple ellipses in an ambiguity contour plot indicate the presence of multi
ple targets. Thus, it seems that one may improve the radar resolution by 
increasing the ambiguity diagram threshold value. This is illustrated in Fig.
6.10. However, in practice this is not possible for two reasons. First, in the 
presence of noise we lack knowledge of the peak correlation value; and sec
ond, targets in general w ill have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 6.7. For a 
pulse train, range accuracy is still determined by the pulse width, the same way 
as in the case of a single pulse, while Doppler accuracy is determined by the 
train length. Thus, time and frequency measurements can be made indepen
dently of each other. However, additional peaks appear in the ambiguity dia
gram which may cause range and Doppler uncertainties. This is illustrated in 
Fig. 6.11.

frequency frequency

F igu re  6.10. Effect o f thresho ld  v a lu e  on reso lution .
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F igu re  6.11. A m b igu ity  con tour p lo t correspond ing to F ig . 6.7. F o r an  exact 
p lo t see F ig . 6.8b .

As one would expect, high PRF pulse trains (i.e., small T) lead to extreme 
uncertainty in range, while low PRF pulse trains have extreme ambiguity in 
Doppler, as shown in Fig. 6.12. Medium PRF pulse trains have moderate ambi
guity in both range and Doppler, which can be overcome by using multiple 
PRFs, as illustrated in Fig. 6.13 for two medium PRFs. Note that the two dia
grams (in Fig. 6.13) agree only in one location (center of the plot) which corre
sponds to the true target location.

It is possible to avoid ambiguities caused by pulse trains and still have rea
sonable independent control on both range and Doppler accuracies by using a 
single modulated pulse with a time-bandwidth product that is much larger than 
unity. Figure 6.14 shows the ambiguity contour plot associated with an LFM 
waveform. In this case, T  is the pulse width and B is the pulse bandwidth. In 
this case, exact plots can be obtained using the function “lfm_ambg.m”.
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frequency

F igu re  6.14. A m b igu ity  con tour p lo t assoc iated  w ith  an  up -ch irp  L F M  
w avefo rm . F o r an  exact p lo t see F ig . 6.5b.

6.7. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is strongly advised to rerun the MATLAB programs in 
order to enhance their understanding of this chapter’s material.

Listing 6.1. MATLAB Function “single_pulse_ambg.m”
function x = single_pulse_ambg (taup) 
colormap (gray(1)) 
eps = 0 .000001;
i = 0 ;
taumax = 1.1 * taup; 
taumin = -taumax; 
for tau = taumin:.05:taumax

i = i + 1;
J = 0 ;
for fd = -5/taup:.05:5/taup 

j = j + i;
val1 = 1. - abs(tau) / taup; 
val2 = pi * taup * (1.0 - abs(tau) / taup) * fd; 
x(J,i) = abs( val1 * sin(val2+eps)/(val2+eps)); 

end 
end

Listing 6.2. MATLAB Program “fig6_2.m”
clear all
eps = 0 .000001;
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taup = 2 .;
taumin = -1.1 * taup; 
taumax = -taumin; 
x = single_pulse_ambg(taup); 
taux = taumin:.05:taumax; 
fdy = -5/taup:.05:5/taup; 
figure(1)
mesh(taux,fdy,x); 
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz') 
zlabel ('Ambiguity function') 
figure(2)
contour(taux,fdy,x); 
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz') 
y = x.A2; 
figure(3)
mesh(taux,fdy,y); 
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz') 
zlabel ('Ambiguity function') 
figure(4)
contour(taux,fdy,y); 
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz')

Listing 6.3. MATLAB Program “fig6_4.m”
clear all 
eps = 0 .0001; 
taup = 2 .;
fd = -10./taup:.05:10./taup;
uncer = abs( sinc(taup .* fd));
ambg = uncer.A2;
plot(fd, ambg)
xlabel ('Frequency - Hz')
ylabel ('Ambiguity - Volts')
grid
figure(2)
plot (fd, uncer);
xlabel ('Frequency - Hz')
ylabel ('Uncertainty - Volts')
grid

Listing 6.4. MATLAB Function “lfm_ambg.m”
function x = lfm_ambg(taup, b, up_down) 
eps = 0 .000001;
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i = 0 ;
mu = up_down * b / 2 . / taup; 
for tau = -1.1 *taup:.05:1.1 *taup

i = i + 1;
J = 0;
for fd = -b:.05:b 

J = J + 1 ;
val1 = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).A2; 

end 
end

Listing 6.5. MATLAB Program “fig6_5.m”
clear all 
eps = 0 .0001; 
taup = 1.; 
b =10.;
up_down = 1.;
x = lfm_ambg(taup, b, up_down);
taux = -1.1*taup:.05:1.1*taup;
fdy = -b:.05:b;
figure(1)
mesh(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
y = sqrt(x);
figure(3)
mesh(taux,fdy,y)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Uncertainty function')
figure(4)
contour(taux,fdy,y) 
xlabel ('Delay - seconds') 
y la b e l  ( 'D o p p le r  - Hz')

Listing 6.6. MATLAB Program “fig6_6.m”
clear all
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taup = 1; 
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup; 
fd = 0.;
mu = up_down * b / 2. / taup;
ii = 0 .;
for tau = -1.5*taup:.01:1.5*taup

ii = ii + 1;
val1 = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(ii) = abs( val1 * (sin(val+eps)/(val+eps))); 

end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds')
ylabel ('Uncertaunty')
figure(2)
plot(taux,x.A2)
grid
xlabel ('Delay - seconds') 
ylabel ('Ambiguity')

Listing 6.7. MATLAB Function “train_ambg.m”
function x = train_ambg (taup, n, pri) 
if( taup > pri / 2.)

'ERROR. Pulse width must be less than the PRI/2.' 
break 

end
gap = pri - 2.*taup; 
eps = 0 .000001; 
b = 1. / taup;
ii = 0 .;
for q = -(n-1):1:n-1 

tauo = q - taup ; 
index = -1.;
for tau1 = tauo:0.0533:tauo+gap+2.*taup 

index = index + 1; 
tau = -taup + index*.0533;
ii = ii + 1; 
j = 0 .;
for fd = -b:.0533:b 

j = j + 1 ;
if (abs(tau) <= taup)
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val1 = 1. -abs(tau) / taup; 
val2 = pi * taup * fd * (1.0 - abs(tau) / taup); 
val3 = abs(val1 * sin(val2+eps) /(val2+eps)); 
val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps))); 
x(j,ii)= val3 * val4 / n; 

else 
x(j,ii) = 0 .; 

end 
end 

end 
end

Listing 6.8. MATLAB Program “fig6_8a.m”
clear all 
taup =0.2; 
pri=1; 
n=5;
x = train_ambg (taup, n, pri);
figure(1)
mesh(x)
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz') 
zlabel ('Ambiguity function') 
figure(2) 
contour(x);
xlabel ('Delay - seconds') 
ylabel ('Doppler - Hz')

Problems

6 . 1 .  Define {x; (n) = 1, -1 , 1} and {Xq(n) = 1, 1, -1 }  . (a) Compute the 

discrete correlations: RXi , R , RxXa, and RXqXi . (b) A certain radar transmits 

the signal s (t) = x; ( t) cos2 nf0t -  Xq( t) sin2 nf01 . Assume that the autocorre

lation s ( t) is equal to y ( t) = y; (t) cos2 nf01 -  yq( t) sin2 nf0t . Compute and 

sketch y; (t) and yq(t) .

6 . 2 .  Compute the frequency response for the filter matched to the signal

(a ) x ( t) = exp ;  (b) x ( t) = u (t) exp ( - a t ) ,

where a  is a positive constant.

6 . 3 .  Repeat Example 6.1 for x ( t) = u (t) exp ( -  a t ).
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6 . 4 .  Derive Eq. (6.43).
6 . 5 .  Prove the properties of the radar ambiguity function.
6 . 6 .  Starting with Eq. (6.61) derive Eq. (6.62).
6 . 7 .  A radar system uses LFM waveforms. The received signal is of the 
form sr ( t) = As( t -  т ) + n ( t) ,  where т is a time delay that depends on range,

s ( t) = R ect(t/ т ')cos(2nf0t -  y ( t ) ) , and y ( t) = -n B t / т ' . Assume that 

the radar bandwidth is B = 5M H z , and the pulse width is т ' = 5|J.s. (a) Give 
the quadrature components of the matched filter response that matched to s ( t) .
(b) Write an expression for the output of the matched filter. (c) Compute the 
increase in SNR produced by the matched filter.
6 . 8 .  (a) Write an expression for the ambiguity function of an LFM wave
form, where т ' = 6.4ц s , and the compression ratio is 32 . (b) Give an expres
sion for the matched filter impulse response.
6 . 9 .  Repeat Example 6.2 for B = 2, 5 , and 10 GH z .
6 . 1 0 .  (a) Write an expression for the ambiguity function of a LFM signal 
with bandwidth B = 10MHz, pulse width т ' = 1цs , and wavelength 
X = 1cm . (b) Plot the zero Doppler cut of the ambiguity function. (c) Assume 
a target moving towards the radar with radial velocity vr = 100m / s . What is
the Doppler shift associated with this target? (d) Plot the ambiguity function 
for the Doppler cut in part (c). (e) Assume that three pulses are transmitted 
with PRF f r = 2000H z. Repeat part b.

6 . 1 1 .  (a) Give an expression for the ambiguity function for a pulse train 
consisting of 4 pulses, where the pulse width is т ' = 1ц s and the pulse repeti
tion interval is T = 10ц s . Assume a wavelength of X = 1 cm . (b) Sketch the 
ambiguity function contour.
6 . 1 2 .  Hyperbolic frequency modulation (HFM) is better than LFM for high 
radial velocities. The HFM phase is

where цл is an HFM coefficient and a  is a constant. (a) Give an expression 
for the instantaneous frequency of a HFM pulse of duration т\  . (b) Show that 
HFM can be approximated by LFM. Express the LFM coefficient ц  in terms 
of цл and in terms of B and т ' .

6 . 1 3 .  Consider a Sonar system with range resolution AR = 4 cm . (a) A 

sinusoidal pulse at frequency f 0 = 100KHz is transmitted. What is the pulse 
width, and what is the bandwidth? (b) By using an up-chirp LFM, centered at

2
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f 0 , one can increase the pulse width for the same range resolution. If you want 
to increase the transmitted energy by a factor of 2 0 , give an expression for the 
transmitted pulse. (c) Give an expression for the causal filter matched to the 
LFM pulse in part b.
6 . 1 4 .  A pulse train y (t) is given by

2

y ( t) = ^  w (n)x(t -  пт')

n =0
2

where x ( t) = exp (- t  / 2 ) is a single pulse of duration т ' and the weighting 
sequence is {w (n )} = {0.5, 1, 0.7} . Find and sketch the correlations Rx , 
Rw , and R y .

2
6 . 1 5 .  Repeat the previous problem for x (t) = ex p (-t / 2 ) cos2nf0t .

6 . 1 6 .  Modify the function “train_ambg.m” to accommodate the case 
т ' = T .
6 . 1 7 .  Using the MATLAB functions presented in this chapter, generate the 
exact plots that correspond to Figs. 6.13 and 6.14.
6 . 1 8 .  Using the function “lfm_ambg.m” reproduce Fig. 6 .6b for a down- 
chirp LFM pulse.
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Chapter 7 Pulse Compression

Range resolution for a given radar can be significantly improved by using 
very short pulses. Unfortunately, utilizing short pulses decreases the average 
transmitted power, which can hinder the radar’s normal modes of operation, 
particularly for multi-function and surveillance radars. Since the average trans
mitted power is directly linked to the receiver SNR, it is often desirable to 
increase the pulse width (i.e., increase the average transmitted power) while 
simultaneously maintaining adequate range resolution. This can be made pos
sible by using pulse compression techniques. Pulse compression allows us to 
achieve the average transmitted power of a relatively long pulse, while obtain
ing the range resolution corresponding to a short pulse. In this chapter, we w ill 
analyze analog and digital pulse compression techniques.

Two analog pulse compression techniques are discussed in this chapter. The 
first technique is known as “correlation processing” which is dominantly used 
for narrow band and some medium band radar operations. The second tech
nique is called “stretch processing” and is normally used for extremely wide 
band radar operations. Digital pulse compression w ill also be briefly pre
sented.

7.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the 
matched filter receiver bandwidth be denoted as B . Then, the noise power 
available within the matched filter bandwidth is given by

NoNi = 2 -2  B (7.1)
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F igu re  7 .1 . Inpu t noise power.

where the factor of two is used to account for both negative and positive fre
quency bands, as illustrated in Fig. 7.1. The average input signal power over a 
pulse duration t' is

S  = E (7'2>

E is the signal energy. Consequently, the matched filter input SNR is given by

( = N  = -N0 b  (7-3)

Using Eqs. (6.18) (from Chapter 6) and (7.3), one may compute the output 
peak instantaneous SNR to the input SNR ratio as

SNR( t0)
----- -0 -  = 2 B t' (7.4)
(SNR)i

The quantity Bt' is referred to as the “time-bandwidth product” for a given 
waveform, or its corresponding matched filter. The factor Bt' by which the 
output SNR is increased over that at the input is called the matched filter gain, 
or simply the compression gain.

In general, the time-bandwidth product of an unmodulated pulse approaches 
unity. The time-bandwidth product of a pulse can be made much greater than 
unity by using frequency or phase modulation. If the radar receiver transfer 
function is perfectly matched to that of the input waveform, then the compres
sion gain is equal to Bt' . Clearly, the compression gain becomes smaller than 
Bt' as the spectrum of the matched filter deviates from that of the input signal.
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7.2. Radar Equation with Pulse Compression
The radar equation for a pulsed radar can be written as

P.t 'G 2 X2 о
SNR = ---- -— ---------- (7.5)

(4 n) R kTeFL

where Pt is peak power, t '  is pulse width, G is antenna gain, о is target 
RCS, R is range, k is Boltzman’s constant, Te is effective noise temperature, 
F  is noise figure, and L is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation) 
and process the radar echo into very short pulses (compressed). One can view 
the transmitted pulse to be composed of a series of very short subpulses (duty 
is 100%), where the width of each subpulse is equal to the desired compressed 
pulse width. Denote the compressed pulse width as t c . Thus, for an individual 
subpulse, Eq. (7.5) can be written as

P, tcG2 X2o
(s n r )t = — 4C -4--------- (7.6)

c (4% yR kT eFL

The SNR for the uncompressed pulse is then derived from Eq. (7.6) as

P t ( t '  = htc ) G2 X2o
SNR = ----- г - С ---------  (7.7)

(4 n) R kTeFL

where n is the number of subpulses. Equation (7.7) is denoted as the radar 
equation with pulse compression.

Observation of Eqs. (7.5) and (7.7) indicates the following (note that both 
equations have the same form): For a given set of radar parameters, and as long 
as the transmitted pulse remains unchanged, then the SNR is also unchanged 
regardless of the signal bandwidth. More precisely, when pulse compression is 
used, the detection range is maintained while the range resolution is drastically 
improved by keeping the pulse width unchanged and by increasing the bandr 
width. Remember that range resolution is proportional to the inverse of the sig
nal bandwidth,

AR = с / 2 B (7.8)

7.3. Analog Pulse Compression

Correlation and stretch pulse compression techniques are discussed in this 
section. Two MATLAB programs which execute digital implementation of 
both techniques (using the FFT) are also presented.
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7.3.1. Correlation Processor

In this case, pulse compression is accomplished by adding frequency modu
lation to a long pulse at transmission, and by using a matched filter receiver in 
order to compress the received signal. As an example, we saw in Chapter 6 that 
using LFM within a rectangular pulse compresses the matched filter output by 
a factor £ = B t' , which is directly proportional to the pulse width and band
width. Thus, by using long pulses and wideband LFM modulation we can 
achieve large compression ratios. This form of pulse compression is known as 
“correlation processing.”

Fig. 7.2 illustrates the advantage of pulse compression. In this example, an 
LFM waveform is used. Two targets with RCS = 1m and o 2 = 0.5 m 
are detected. The two targets are not separated enough in time to be resolved. 
Fig. 7.2a shows the composite echo signal from those targets. Clearly, the tar
get returns overlap and, thus, they are not resolved. However, after pulse com
pression the two pulses are completely separated and are resolved as two 
targets. In fact, when using LFM, returns from neighboring targets are resolved 
as long as they are separated, in time, by тл: , the compressed pulse width.

Figure 7.2a. Composite echo signal for two unresolved targets.
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amplitude
А

range bins

F igu re  7.2b . C om posite echo s ig n a l co rrespond ing to F ig . 7 .2 a , a f te r  
pu lse com pression .

Radar operations (search, track, etc.) are usually carried out over a specified 
range window, referred to as the receive window and defined by the difference 
between the radar maximum and minimum range. Returns from all targets 
within the receive window are collected and passed through a matched filter 
circuitry to perform pulse compression. One implementation of such analog 
processors is the Surface Acoustic Wave (SAW) devices. Because of the recent 
advances in digital computer development, the correlation processor is often 
performed digitally using the FFT. This digital implementation is called Fast 
Convolution Processing (FCP) and can be implemented at base-band. The fast 
convolution process is illustrated in Fig. 7.3

Since the matched filter is a linear time invariant system, its output can be 
described mathematically by the convolution between its input and its impulse 
response,

where s(t) is the input signal, h(t) is the matched filter impulse response 
(replica), and the • operator symbolically represents convolution. From the 
Fourier transform properties,

And when both signals are sampled properly, the compressed signal y ( t) can 
be computed from

y ( t) = s ( t ) •  h ( t) (7.9)

F F T {s(» •  h(t)} = S (f) • H(f) (7.10)
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F igu re  7 .3 . C om puting the m atched  f ilte r  output u s in g  an  FFT.

у = FFT  1 {S • H} (7.11)

where FFT  is the inverse FFT. When using pulse compression, it is desirable 
to use modulation schemes that can accomplish a maximum pulse compression 
ratio, and can significantly reduce the side lobe levels of the compressed wave
form. For the LFM case the first side lobe is approximately 13.4dB below the 
main peak, and for most radar applications this may not be sufficient. In prac
tice, high side lobe levels are not preferable because noise and/or jammers 
located at the side lobes may interfere with target returns in the main lobe.

Weighting functions (windows) can be used on the compressed pulse spec
trum in order to reduce the side lobe levels. The cost associated with such an 
approach is a loss in the main lobe resolution, and a reduction in the peak value 
(i.e., loss in the SNR), as illustrated in Fig. 7.4. Weighting the time domain 
transmitted or received signal instead of the compressed pulse spectrum will 
theoretically achieve the same goal. However, this approach is rarely used, 
since amplitude modulating the transmitted waveform introduces extra bur
dens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e., 
matched filter). The receive window in meters is defined by

R R _ R
max min (7.12)

where Rmax and Rmin, respectively, define the maximum and minimum range 
over which the radar performs detection. Typically Rrec is limited to the extent 
of the target complex. The normalized complex transmitted signal has the form

i  ( t) = exp {j 2 n ( f )1 + 2212 0 < t < t' (7.13)

t '  is the pulse width, 2  = B / t ' , and B is the bandwidth. Note that this defi
nition of the LFM pulse is different from that in Chapter 6 . Earlier, f 0 denoted 
the chirp center frequency and in Eq. (7.13) it denotes the chirp start frequency.
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sample

F igu re  7 .4 . R educ in g  the f irs t sidelobe to -42 dB doub les the m a in  lobe w id th .

The radar echo signal is similar to the transmitted one with the exception of a 
time delay and an amplitude change that correspond to the target RCS. Con
sider a target at range R : . The echo received by the radar from this target is

sr( t) = fljexp (/' 2 n fo  (t -  Tj) + ^ (t -  Tj )2j J  (7.14)

where a 1 is proportional to target RCS, antenna gain, and range attenuation. 
The time delay Tj is given by

Tj = 2 R 1/ С (7.15)

The first step of the processing consists of removing the frequency f 0 . This 
is accomplished by mixing sr( t) with a reference signal whose phase is 2 nf0t . 
The phase of the resultant signal, after low pass filtering, is then given by

y (  t) = 2n^ -foT + |2 (t -  т,. )2j  (7.16)

and the instantaneous frequency is

1 d B (  2 R,\
f -(t) = 2П л ¥ (t) = « t -  т > = T l t -  —  J (7-,7)

The quadrature components are
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xI( t ) | (  cos w ( t )\
= ( . , J  (7.18)sin.sin y (  t)

Sampling the quadrature components is performed next. The number of sam
ples, N , must be chosen so that foldover (ambiguity) in the spectrum is 
avoided. For this purpose, the sampling frequency, f i (based on the Nyquist 
sampling rate), must be

f s > 2 B (7.19)

and the sampling interval is

At < 1/ 2B (7.20)

Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the fre
quency resolution of the FFT is

Af = 1/ t' (7.21)

The minimum required number of samples is

1 t '
N = 7 7 Г  = Г" (7.22)AfAt At

Equating Eqs. (7.20) and (7.22) yields

N > 2B t ' (7.23)

Consequently, a total of 2B t' real samples, or B t' complex samples, is suf
ficient to completely describe an LFM waveform of duration t ' and bandwidth 
B . For example, an LFM signal of duration t  = 20 |2 i  and bandwidth 
B = 5 MHz requires 200 real samples to determine the input signal (100 
samples for the I-channel and 100 samples for the Q-channel).

For better implementation of the FFT N is extended by zero padding, to the 
next power of two. Thus, the total number of samples, for some positive inte
ger m , is

N f f t  = 2 > N (7.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam
pled sequence; (2 ) multiplying the frequency domain sequence of the signal 
with the FFT of the matched filter impulse response; and (3) performing the 
inverse FFT of the composite frequency domain sequence in order to generate 
the time domain compressed pulse (HRR profile). Of course, weighting, 
antenna gain, and range attenuation compensation must also be performed.
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Assume that I targets at ranges R 1 , R2 , and so forth are within the receive 
window. From superposition, the phase of the down converted signal is

I

y ( t) = X  2n (-/oTi + 12( t -  Ti)2)  (7.25)
I = 1

The times { t1 = (2R / c); i = 1, 2, . . . ,  I } represent the two-way time delays, 
where t 1 coincides with the start of the receive window.

MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is 
given in Listing 7.1 in Section 7.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where

Sym bo l D escrip tion U nits S ta tu s

nscat number o f point scatterers within the 
received window

none input

rmin minimum range of receive window Km input

rrec receive window size m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector o f scatterers range Km input

scat_rsc vector o f scatterers RCS 2m2 input

win 0 = no window 

1 = Hamming 

2 = Kaiser with parameter pi 

3 = Chebychev - sidelobes at -60dB

none input

у compressed output volts output

The user can access this function either by a MATLAB function call, or by exe
cuting the MATLAB program “matched_filter_driver.m” which utilizes MAT
LAB based GUI. The outputs of this function are the complex array у and 
plots of the uncompressed and compressed signal versus relative. This function 
utilizes the function “power_integer_2.m” which implements Eq. (7.24):
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function n = power_integer_2 (x) 
m = 0.; 
fo r j  = 1:30  

m = m + 1.; 
delta = x - 2.Am; 
if(delta < 0.) 

n = m; 
return 

else 
end 

end

As an example, consider the case where

nscat 2 b 16 MHz
rrnin 150 Km scat_range rmin in Km + {0, 50} meters
rrec 200 m scat_rsc {1, 1} m2
taup 0.005 ms win 2 (Kaiser)

f0 14 MHz

Note that the compressed pulsed range resolution, without using a window, 
is AR = 9 .3m . Figs. 7.5 and 7.6, respectively, show the uncompressed and 
compressed echo signal corresponding to this example.

0 0.5 1 2 2.5 3
Relative delay - s e c o n d s

4 4.5 5

x 10-6

0.5

F ig u re  7 .5 . U n co m p re ssed  echo  s ig n a l.  S c a t t e r e r s  a r e  u n re so lv e d .
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Relative delay - seconds

F igu re  7 .6 . C om pressed  echo s ig n a l. S ca tte re rs  a re  reso lved .

7.3.2. Stretch Processor

Stretch processing, also known as “active correlation,” is normally used to 
process extremely high bandwidth LFM waveforms. This processing technique 
consists of the following steps: First, the radar returns are mixed with a replica 
(reference signal) of the transmitted waveform. This is followed by Low Pass 
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in 
order to extract the tones that are proportional to target range, since stretch pro
cessing effectively converts time delay into frequency. All returns from the 
same range bin produce the same constant frequency. Fig. 7.7 shows a block 
diagram for a stretch processing receiver. The reference signal is an LFM 
waveform that has the same LFM slope as the transmitted LFM signal. It exists 
over the duration of the radar “receive-window,” which is computed from the 
difference between the radar maximum and minimum range. Denote the start 
frequency of the reference chirp as f r .

Consider the case when the radar receives returns from a few close (in time 
or range) targets, as illustrated in Fig. 7.7. Mixing with the reference signal and 
performing low pass filtering are effectively equivalent to subtracting the 
return frequency chirp from the reference signal. Thus, the LPF output consists 
of constant tones corresponding to the targets’ positions. The normalized trans
mitted signal can be expressed by
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F igu re  7.7. S tre tch  p rocessing b lock d iag ram .
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s 1( t) = cos( 2 n(/0t + Дt2j )  0 < t < x' (7.26)

where д  = B/x' is the LFM coefficient and /0 is the chirp start frequency. 
Assume a point scatterer at range R . The received signal by the radar is

sr( t) = a cos 2n / o (t -  Ax) + 22( t -  Ax)2) (7.27)

where a is proportional to target RCS, antenna gain, and range attenuation. 
The time delay Ax is

Ax = 2 R/c (7.28)

The reference signal is

Sre/(t) = 2 cos( 2 п/ t  + 2-t2 )) 0 < t :sre/y^ = 2cos( 2 ^^)rl + 2 1 j j  0 < t < Trec (7.29)

The received window in seconds is

rp _  2(R max ^min) 2R rec
recrec c c 

It is customary to let /r = /0 . The output of the mixer is made of the product of 
the received and reference signals. After low pass filtering the signal is

s0( t) = a cos (2 п/0 tAx + 2 n^Axt -  п д(А х)2) (7.31)

Substituting Eq. (7.28) into (7.31) and collecting terms yield

s0( t) = a cos 

and since x ' »  2R / c , Eq. (7.32) is approximated by

s0( t) «  a cos 

The instantaneous frequency is

:(4-nB-R)  t + 2 R (2  п/0 -  ^  i

( 4 nB R ) 4nR '
( - W )  t + — /0

(7.32)

(7.33)

, = 1_ d ( 4nBR 4 n R , )  = 2B  (734)
^  2 п £/t( cx ' c /0J  cx ' ( . )

which clearly indicates that target range is proportional to the instantaneous 
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
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the sampled sequence lead to the following conclusion: a peak at some fre
quency f 1 indicates presence of a target at range

R 1 = f 1 c Т / 2 B (7.35)

Assume I  close targets at ranges R 1 , R2 , and so forth (R 1 < R2 < ... < RI ). 
From superposition, the total signal is

sr ( t) = X  a i( t) cos 2 п|(f>(t -  т ) + !2 (t -  т )2 (7.36)

i =1

where {a t( t); i = 1, 2 , I } are proportional to the targets’ cross sections, 
antenna gain, and range. The times { t, = (2Ri/ c ); i = 1, 2, I } represent 
the two-way time delays, where т 1 coincides with the start of the receive win
dow. Using Eq. (7.32) the overall signal at the output of the LPF can then be 
described by

I

„  r (  4 п B R a 2 R, (  2 п BR;Yi
so( t) = X  a icos t + ~  l 2nf> CT

(7.37)

And hence, target returns appear at constant frequency tones that can be 
resolved using the FFT. Consequently, determining the proper sampling rate 
and FFT size is very critical. The rest of this section presents a methodology 
for computing the proper FFT parameters required for stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is 
T  and the chirp bandwidth is B . Since stretch processing is normally used in 
extreme bandwidth cases (i.e., very large B ), the receive window over which 
radar returns w ill be processed is typically limited to few meters to possibly 
less than 1>> meters. The compressed pulse range resolution is computed from 
Eq. (7.8). Declare the FFT size by N and its frequency resolution by A f. The 
frequency resolution can be computed using the following procedure: consider 
two adjacent point scatterers at range R 1 and R2 . The minimum frequency 
separation, A f, between those scatterers so that they are resolved can be com
puted from Eq. (7.34). More precisely,

Af = f 2 - f 1 = 22-p(R2 -  R 1) = CB'AR (7.38)

Substituting Eq. (7.8) into Eq. (7.38) yields

2B _c_ =
cT  2B  = т

I
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The maximum resolvable frequency by the FFT is limited to the region 
±NAf/2 . Thus, the maximum resolvable frequency is

N A f 2 B (Rmax— Rmin) 2 BRrec
“ -Г1 > ------------ ;---------  = ------Г-  (7.40)

2 c t  cx'

Using Eqs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yield

N > 2BTrec (7.41)

For better implementation of the FFT, choose an FFT of size

NFFt  ^ N = 2 (7.42)

m is a nonzero positive integer. The sampling interval is then given by

Af = ----1----^  Ts = — ------  (7.43)
TsNFFT AfNFFT

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro
cessing. It is given in Listing 7.2 in Section 7.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0 , b, rmin, rrec, scat_range, scat_rcs, win)

where

Sym bo l D escrip tion U nits S ta tu s

nscat number o f point scatterers within the 
received window

none input

rmin minimum range o f receive window Km input

rrec range receive window m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector o f scatterers range Km input

scat_rsc vector o f scatterers RCS 2m2 input

win 0 = no window 

1 = Hamming 

2 = Kaiser with parameter pi 

3 = Chebychev - sidelobes at -60dB

none input

у compressed output volts output
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The user can access this function either by a MATLAB function call or by exe
cuting the MATLAB program “stretch_driver.m” which utilizes MATLAB 
based GUI. The outputs of this function are the complex array y and plots of 
the uncompressed and compressed echo signal versus time. As an example, 
consider the case where

nscat 3
rmin 150 Km

rrec 30 m
taup 10 ms

f0 5.6 GHz
b 1 GHz

scat_range rmin in Km+ {1.5, 7.5, 15.5} m
scat_rsc {1, 1, 2} m2

win 2 (Kaiser)

Note that the compressed pulse range resolution, without using a window, is 
AR = 0 .15cm . Figs. 7.8 and 7.9, respectively, show the uncompressed and 
compressed echo signals corresponding to this example.

-4 I----------------- 1------------------1----------------- 1------------------1----------------- 1----------------- 1------------------1----------------- 1------------------1----------------- 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0 .008  0 .009  0.01

Relat ive delay - seconds

F ig u re  7 .8 . U n co m p re ssed  echo  s ig n a l.  T h re e  t a r g e t s  a r e  u n re so lv e d .
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7.3.3. Distortion Due to Target Velocity

Up to this point, we have analyzed pulse compression with no regards to tar
get velocity. In fact, all analyses provided assumed stationary targets. Uncom
pensated target radial velocity, or equivalently Doppler shift, degrades the 
quality of the HRR profile generated by pulse compression. In Chapter 5, the 
effects of radial velocity on SFW were analyzed; similar distortion in the HRR 
profile is also present with LFM waveforms when target radial velocity is not 
compensated for.

The two effects of target radial velocity (Doppler frequency) on the radar 
received pulse were developed in Chapter 1. When the target radial velocity is 
not zero, the received pulse width is expanded (or compressed) by the time 
dilation factor. Additionally, the received pulse center frequency is shifted by 
the amount of Doppler frequency. When these effects are not compensated for, 
the pulse compression processor output is distorted. This is illustrated in Fig.
7.10. Fig. 7.10a shows a typical output of the pulse compression processor 
with no distortion. Alternatively, Figs. 7.10b, 7.10c, and 7.10d show the output 
of the pulse compression processor when 5% shift of the chirp center fre
quency and 10% time dilation are present.
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Relative delay - seconds

Figure 7.10a. Compressed pulse output of a pulse compression processor. No 
distortion is present. This figure can be reproduced using 
MATLAB program “fig7_10” given in Listing 7.3 in Section 7.5.

Relative delay - seconds

F ig u re  7 .1 0 b . M ism a tc h e d  co m p re ssed  p u ls e ; 5 %  D o p p le r sh ift .
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Correction for the distortion caused by the target radial velocity can be over
come by using the following approach. Over a period of few pulses, the radar 
data processor estimates the radial velocity of the target under track. Then, the 
chirp slope and pulse width of the next transmitted pulse are changed to 
account for the estimated Doppler frequency and time dilation.

7.3.4. Range Doppler Coupling

Plots and characteristics of the ambiguity function for an LFM waveform 
were presented in Chapter 6 . However, the distinctive property of range Dop
pler coupling associated with LFM was not presented. Range Doppler coupling 
is a phrase used to describe the shift in the delay/range response of an LFM 
ambiguity function due to the presence of a Doppler shift. The nature of range 
Doppler coupling can be better understood by analyzing the LFM ambiguity 
function. An expression for an LFM ambiguity function was developed in 
Chapter 6 , and is repeated here as Eq. (7.44):

For this purpose, consider the sketch of an LFM ambiguity function shown in 
Fig. 7.11.

|т| < т' (7.44)

 ̂  ̂ a m b i g u i t y

fo

F ig u re  7 .11 . I l lu s t r a t io n  o f  r a n g e  D o p p le r  co u p lin g  fo r a n  L F M  p u lse .
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The ambiguity surface extends from - t '  to t '  in range and from - ^  to ^  
in Doppler. The response has a maximum at the point (t , f D) = (0, 0 ) .  Pro
files parallel to the Doppler axis have maxima above the line f D = -|J.t which 
passes through the origin. The presence of radial velocity forces the peak of the 
ambiguity surface to a point that has a peak value smaller than the maximum 
that occurs at the origin. However, as long as the shift is less than the line 
f D = 1 / t ' , the ambiguity function response exerts acceptable reduction in 
peak values, as illustrated in Fig. 7.11. This is the reason why some times LFM 
waveforms are called Doppler invariant.

7.4. Digital Pulse Compression

In this section we w ill briefly discuss three digital pulse compression tech
niques. They are frequency codes, binary phase codes, and poly-phase codes. 
Costas codes, Barker Codes, and Frank codes w ill be presented to illustrate, 
respectively, frequency, binary phase, and poly-phase coding. We will deter
mine the pulse compression goodness of a code, based on its autocorrelation 
function since in the absence of noise, the output of the matched filter is pro
portional to the code autocorrelation. Given the autocorrelation function of a 
certain code, the main lobe width (compressed pulse width) and the side lobe 
levels are the two factors that need to be considered in order to evaluate the 
code’s pulse compression characteristics.

7.4.1. Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro
cess of Stepped Frequency Waveforms (SFW) described in Chapter 5. In SFW, 
a relatively long pulse of length t '  is divided into N subpulses, each of width 
t 1 ( t '  = N t1 ). Each group of N subpulses is called a burst. Within each burst 
the frequency is increased by Af from one subpulse to the next. The overall 
burst bandwidth is N A f . More precisely,

T1 = t '  /N (7.45)

and the frequency for the ith  subpulse is

f  = fo + iA f ; i = 1, N (7.46)

where f 0 is a constant frequency and f 0 »  A f. It follows that the time-band- 
width product of this waveform is

AfT' = N (7.47)
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Costas signals (or codes) are similar to SFW, except that the frequencies for 
the subpulses are selected in a random fashion, according to some predeter
mined rule or logic. For this purpose, consider the N x  N matrix shown in Fig.
7.12. In this case, the rows are indexed from i = 1, 2, N and the columns 
are indexed from j  = 0, 1, 2, . . . ,  (N -  1 ) . The rows are used to denote the 
subpulses and the columns are used to denote the frequency. A “dot” indicates 
the frequency value assigned to the associated subpulse. In this fashion, Fig. 
7.12a shows the frequency assignment associated with a SFW. Alternatively, 
the frequency assignments in Fig. 7.12b are chosen randomly. For a matrix of 
size N x  N , there are a total of N! possible ways of assigning the “dots” (i.e., 
N! possible codes).

The sequences of “dots” assignment for which the corresponding ambiguity 
function approaches an ideal or a “thumbtack” response are called Costas 
codes. A near thumbtack response was obtained by Costas1 by using the fol
lowing logic: only one frequency per time slot (row) and per frequency slot 
(column). Therefore, for an N x  N matrix the number of possible Costas codes 
is drastically less than N ! . For example, there are Nc = 4 possible Costas 
codes for N = 3 , and Nc = 40 possible codes for N = 5 . It can be shown 
that the code density, defined as the ratio Nc/ N !, significantly gets smaller as 
N becomes larger.

0 1 2 3 4 5 6  7 8 9
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2

0 1 2 3 4  5 6 7  8 9
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'T)
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cn
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(a )  (b )

F igu re  7 .12. F requ en cy  ass ign m ent fo r a  b u rs t o f N subpu lses. (a ) S F W  (stepped 
L F M ); (b) C ostas code o f len g th  Nc = 10.

1. Costas, J. P., A study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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There are numerous analytical ways to generate Costas codes. In this section 
we w ill describe two of these methods. First, let q be an odd prime number, 
and choose the number of subpulses as

N = q -  1 (7.48)

Define у  as the primitive root of q . A primitive root of q (an odd prime num
ber) is defined as у  such that the powers J , J , J , . , J q -  modulo q generate 
every integer from 1 to q -  1.

In the first method, for an N x  N matrix, label the rows and columns, respec
tively, as

i = 0 , 1, 2 , . . . , (q -  2 )
(7.49)

j  = 1, 2, 3, . . . ,  (q -  1)

Place a dot in the location ( i, j ) corresponding to the frequency f  (from Eq. 
(7.46)) if and only if

i = (Y)j (modulo q) (7.50)

In the next method, Costas code is first obtained from the logic described 
above; then by deleting the first row and first column from the matrix a new 
code is generated. This method produces a Costas code of length N = q -  2 .

Define the normalized complex envelope of the Costas signal as

N -  1

5(t) = - p L  У  s (  t -  lT i) (7.51)
JNTi

l = 0

/ exp O'2 f ) 0 < t < Ti 

*  °  = (  0  e S w h e r J  (7-6!>

Costas showed that the output of the matched filter is

N -  i

X( t > fD) = N У  exp ' ПlfDT)
l =0

N -  i

Ф11(т> fD) + У  Ф^ (Т -  (l -  q)T1  fD) (7.53)

Ф ^  fD) = ( Ti -  ^  exp ( -  j P -  j 2 nfqT) , N <Ti (7.54)
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а  = n ( f  - fq -  fD)(T 1 -  KD (7.55)

P = n (fl -  fq -  fo )(T 1 + lT ) (7.56)

Three-dimensional plots for the ambiguity function of Costas signals show 
the near thumbtack response of the ambiguity function. All sidelobes, except 
for few around the origin, have amplitude 1/ N . Few sidelobes close to the ori
gin have amplitude 2/ N , which is typical of Costas codes. The compression 
ratio of a Costas code is approximately N .

7.4.2. Binary Phase Codes

In this case, a relatively long pulse of width т' is divided into N smaller 
pulses; each is of width Ат = т'/N . Then, the phase of each sub-pulse is ran
domly chosen as either 0 or n radians relative to some CW reference signal. It 
is customary to characterize a sub-pulse that has 0 phase (amplitude of +1 
Volt) as either “1” or “+.” Alternatively, a sub-pulse with phase equal to n 
(amplitude of -1 Volt) is characterized by either “0” or “-.” The compression 
ratio associated with binary phase codes is equal to £ = т '/ А т , and the peak 
value is N times larger than that of the long pulse. The goodness of a com
pressed binary phase code waveform depends heavily on the random sequence 
of the phase for the individual sub-pulses.

One family of binary phase codes that produce compressed waveforms with 
constant side lobe levels equal to unity is the Barker code. Fig. 7.13 illustrates 
this concept for a Barker code of length seven. A Barker code of length n is 
denoted as Bn . There are only seven known Barker codes that share this 
unique property; they are listed in Table 7.1. Note that B2 and B4 have com
plementary forms that have the same characteristics. Since there are only seven 
Barker codes, they are not used when radar security is an issue.

+ + + + +

J L

F ig u re  7 .1 3 . B in a r y  p h a se  co d e o f  le n g th  7 .
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TABLE 7 .1 . Barker codes.

Code
symbol

Code
length Code elements

Side lode 
reduction (dB)

B 2 2 +- 6.0

+ +

B3 3 ++- 9.5

B4 4 + +- + 12.0

+ ++-

B5 5 +++-+ 14.0

B7 7 +++--+- 16.9

B 11 11 +++---+--+- 20.8

B 13 13 +++++--++-+-+ 22.3

In general, the autocorrelation function (which is an approximation for the 
matched filter output) for a BN Barker code w ill be 2^ т  wide. The main 
lobe is 2 Ат wide; the peak value is equal to N . There are (N -  1)/ 2 side 
lobes on either side of the main lobe; this is illustrated in Fig. 7.14 for a B 13. 
Notice that the main lobe is equal to 13, while all side lobes are unity.

The most side lobe reduction offered by a Barker code is -2 2 .3 d B , which 
may not be sufficient for the desired radar application. However, Barker codes 
can be combined to generate much longer codes. In this case, a Bm code can be 
used within a Bn code (m within n ) to generate a code of length m n . The 
compression ratio for the combined Bmn code is equal to mn . As an example, 
a combined B54 is given by

B54 = {11101, 11101, 00010, 11101} (7.57)

and is illustrated in Fig. 7.15. Unfortunately, the side lobes of a combined 
Barker code autocorrelation function are no longer equal to unity.

Some side lobes of a Barker code autocorrelation function can be reduced to 
zero if  the matched filter is followed by a linear transversal filter with impulse 
response given by

N

h( t) = X  в k§(t -  2кАт) (7.58)

к = -N
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F igu re  7 .14. B a rk e r  code o f length  13, an d  its  correspond ing 
au to co rre la tio n  function .
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F igu re  7.15. A  com bined B54 B a rk e r  code.

+ +
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where N is the filter’s order, the coefficients P  ̂ ( P  ̂ = P-Jt) are to be deter
mined, 5( • ) is the delta function, and A t is the Barker code sub-pulse 
width. A filter of order N produces N zero side lobes on either side of the 
main lobe. The main lobe amplitude and width do not change. This is illus
trated in Fig. 7.16.

In order to illustrate this approach further, consider the case where the input 
to the matched filter is B i i , and assume N = 4 . The autocorrelation for a B ii 
code is

ф11 = {- l ,  0 , - l ,  0 , - l ,  0 , - l ,  0 , - l ,  0 , l l ,  
0 , - l ,  0 , - l ,  0 , - l ,  0 , - l ,  0 , - l }

(7.59)

The output of the transversal filter is the discrete convolution between its 
impulse response and the sequence ф11. At this point we need to compute the 
coefficients P  ̂ that guarantee the desired filter output (i.e., unchanged main 
lobe and four zero side lobe levels). Performing the discrete convolution as 
defined in Eq. (7.58), and collecting equal terms ( P  ̂ = P-Jt) yield the follow
ing set of five linearly independent equations:

l l  - 2  - 2  - 2  - 2 Pc l l
- l  10 - 2  - 2  - l Pi 0
- l  - 2  10 - 2  - l P2 = 0
- l  - 2  - l  l l  - l Рз 0

- l  - l  - l  - l  l l P i _0 _

(7.60)

The solution of Eq. (7.60) is left as an exercise. Note that by setting the first 
equation equal to l l  and all other equations to 0 and then solving for P  ̂
guarantees that the main peak remains unchanged, and that the next four side 
lobes are zeros. So far we have assumed that coded pulses have rectangular 
shapes. Using other pulses of other shapes, such as Gaussian, may produce bet
ter side lobe reduction and a larger compression ratio.

4 m a t c h e d A V W v j i v W W 4  (
f i l t e r

t r a n s v e r s a l  

f i l t e r ;  o r d e r  N>
F igu re  7 .16. A  lin e a r  tran sv e rsa l f ilte r  o f o rd er N can  be used  to 

p roduce N zero  side  lobes in  the au to co rre la tio n  
function . In  th is f igu re , N = 4.
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Codes that use any harmonically related phases based on a certain funda
mental phase increment are called poly-phase codes. We w ill demonstrate this 
coding technique using Frank codes. In this case, a single pulse of width t ' is 
divided into N equal groups; each group is subsequently divided into other N 
sub-pulses each of width A t . Therefore, the total number of sub-pulses within 
each pulse is N , and the compression ratio is £ = N .  As before, the phase 
within each sub-pulse is held constant with respect to some CW reference sig
nal.

2
A Frank code of N sub-pulses is referred to as an N-phase Frank code. The 

first step in computing a Frank code is to divide 360° by N , and define the 
result as the fundamental phase increment Аф. More precisely,

7.4.3. Frank Codes

Аф = -3---6---0---°--N--- (7.61)

Note that the size of the fundamental phase increment decreases as the number 
of groups is increased, and because of phase stability, this may degrade the per
formance of very long Frank codes. For N-phase Frank code the phase of each 
sub-pulse is computed from

/
0 0 0 0

\
0

0 1 2 3 . N -  1
0 2 4 6 . 2 (N -  1)

V 0 (N -  1) 2 (N - 1) 3 (N -  1) . • (N -  1) 2 ,

Аф (7.62)

where each row represents a group, and a column represents the sub-pulses for 
that group. For example, a 4-phase Frank code has N = 4 ,  and the fundamen
tal phase increment is Аф = (360 °/4) = 90°. It follows that

(7.63)

/
0 0 0

\
0

/
1 1 1

\
1

0 90° 180° 270 ° 1 j -1 - j
0 180 ° 0 180 ° 1 - 1 1 - 1

V 0 270° 180° 90 ° , 1 - j -1 j  /

Therefore, a Frank code of 16 elements is given by

F i6 = { 1 1 1 1 1  j  - 1  - j  1 - 1 1  - 1 1  - j  - 1  j } (7.64)
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The phase increments within each row represent a stepwise approximation 
of an up-chirp LFM waveform. The phase increments for subsequent rows 
increase linearly versus time. Thus, the corresponding LFM chirp slopes also 
increase linearly for subsequent rows. This is illustrated in Fig. 7.17, for F 16.

16 At
F igu re  7 .17. S tepw ise  approx im atio n  o f an  up -ch irp  w avefo rm , 

u s in g  a  F ran k  code o f 16 elem ents.

7.4.4. Pseudo-Random (PRN) Codes

Pseudo-random (PRN) codes are also known as Maximal Length Sequences 
(MLS) codes. These codes are called pseudo-random because the statistics 
associated with their occurrence is similar to that associated with the coin-toss 
sequences. Maximum length sequences are periodic with period L and the 
code values take on two binary values (+1 and -1). The MLS correlation func
tion is

ГL n = 0,±L,±2L, ... I 
Ф( n) = I  ̂ (7.65)

[-1  elsewhere  J

Fig. 7.18 shows a typical sketch for an MLS autocorrelation function. Clearly 
these codes have the advantage that the compression ratio becomes very large 
as the period is increased. Additionally, adjacent peaks (grating lobes) become 
farther apart.

Maximum length sequences exist for all integer values m , with a period 
equal to 2m -  1 . They can be generated using shift register circuits with the 
proper feedback connections, where the sum is a modulo-2 operation. This is
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illustrated in Fig. 7.19 for m = 4 (i.e., L = 15). Note that the circuit shown 
in Fig. 7.19 is not the only one that can produce this code.

In radar applications, long codes are very desirable. However, having very 
long codes presents many possibilities for the feedback connections through 
the modulo-2 adder. For example, for m = 80 , the period is L = 2 -  l , 
which is very huge and may take years to produce the corresponding code. 
Therefore, there is a need for a more systematic method for producing MLS 
codes.

In practice, typical MLS codes are produced by using the primitive polyno
mials with the proper degree that corresponds to the code, and the feedback 
connections are made according to the chosen polynomial, as illustrated in Fig. 
7.19 for m = 4 .  In this example the primitive polynomial is x + X + l . Of 
course the initial loading for the registers must be different from all zeros. 
More details on primitive polynomials can be found in many sited references.

Figure 7.18. Typical autocorrelation of an MLS code of length L.

1 2 3l X X  X

Figure 7.19. Circuit for generating an MLS sequence of length L = 15 .
4

The primitive polynomial is X + X + l .
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7.5. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters.

Listing 7.1. MATLAB Function “matched_filter.m”
function [y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, 
scat_rcs, winid)
%
eps = 1.0e-16; 
htau = taup / 2.; 
c = 3.e8;
n = fix(2. * taup * b); 
m = power_integer_2(n); 
nfft = 2.Am;
X(nscat,1:nfft) = 0.; 
y(1:nfft) = 0.; 
replica(1:nfft) = 0.; 
if( winid == 0.) 

win(1:nfft) = 1.; 
win =win'; 

else
if(winid == 1.)

win = hamming(nfft); 
else

if( winid = = 2.)
win = kaiser(nfft,pi); 

else
if(winid == 3.)

win = chebwin(nfft,60); 
end 

end 
end 

end
deltar = c / 2. / b; 
maX_rrec = deltar * nfft / 2.; 
maXr = maX(scat_range) - rmin; 
if(rrec > maX_rrec | maXr >= rrec )

'Error. Receive window is too large; or scatterers fa ll outside window’ 
break 

end
trec = 2. * rrec / c;
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deltat = taup / nfft; 
t = 0: deltat:taup-eps; 
uplimit = max(size(t));
replica(1:uplimit) = exp(i * 2 . *pi  * (.5 * (b/taup) .* t.A2));
figure(3)
subplot(2,1,1)
plot(real(replica))
title('Matchedfilter time domain response') 
subplot(2,1,2)
plot(fftshift(abs(fft( replica)))); 
title('Matched filter frequency domain response') 
f o r j  = 1:1:nscat 

t_tgt = 2. * (scat_range(j) - rmin) / c +htau; 
x(j,1:uplimit) = scat_rcs(j) .* exp(i * 2 . *pi  * ...

(.5 * (b/taup) .* (t+t_tgt).A2));
У = У + x(j,:); 

end
figure(1)
plot(t,real(y),’k ’)
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
rfft = fft(replica,nfft);
yfft = M ynffO ;
out= abs(ifft((rfft .* conj(yfft) ) .* win') ) ./(nfft); 
figure(2)
time = -htau:deltat:htau-eps; 
plot(time,out,'k')
xlabel ('Relative delay - seconds')
ylabel ('Compressed echo')
title ('Zero delay coincide with minimum range')
grid

Listing 7.2. MATLAB Function “stretch.m”
function [y] = stretch(nscat,taup,f0,b,rmin,rrec,scat_range,scat_rcs,winid) 
eps = 1.0e-16; 
htau = taup / 2.; 
c = 3.e8;
trec = 2. * rrec / c; 
n = fix(2. * trec * b); 
m = power_integer_2(n); 
nfft = 2.Am; 
x(nscat,1:nfft) = 0.;
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y(1:nfft) = 0.; 
if( winid == 0.) 

win(1:nfft) = 1.; 
win =win';

else
if(winid == 1.)

win = hamming(nfft); 
else

if( winid = = 2.)
win = kaiser(nfft,pi); 

else
if(winid == 3.)

win = chebwin(nfft,60); 
end 

end 
end 

end
deltar = c / 2. / b; 
maX_rrec = deltar * nfft / 2.; 
maXr = maX(scat_range) - rmin; 
if(rrec > maX_rrec | maXr >= rrec )

'Error. Receive window is too large; or scatterers fa ll outside window’ 
break 

end
deltat = taup / nfft; 
t = 0: deltat:taup-eps; 
uplimit = maX(size(t)); 
f o r j  = 1:1:nscat 

psi1 = 4. * pi * scat_range(j) * f() / c -...
4. * pi * b * scat_range(j) * scat_range(j) / c / c/ taup; 

psi2 = (4. * pi * b * scat_range(j) / c / taup) .* t;
X(j,1:uplimit) = scat_rcs(j) .* eXp(i * psi1 + i .* psi2);
У = У + X(j,:); 

end
figure(1)
plot(t,real(y),'k')
Xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
ywin = y .* win';
yfft = fft(y,nfft)./ nfft;
out=fftshift( abs(yfft));
figure(2)
time = -htau:deltat:htau-eps;
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plot(tim e,out,'k')
x la b e l ('R elative de lay  - seconds')
y la b e l ('C om pressed echo')
title ('Zero de lay  coincide w ith  minimum range')
grid

Listing 7.3. MATLAB Program “fig7_10.m’
clear a ll
eps = 1.5e-5;
t = 0:0 .001:.5 ;
y  = ch irp(t,0 ,.25 ,20);
figure(1)
p lo t(t,y );
yfft = fft(y ,512)  ;
ycom p = fftsh ift(abs(ifft(yfft .*  conj(yfft))));
m axval = m ax (ycom p);
ycom p = eps + ycom p . /  maxval;
figure(1)
d e l = .5  /5 1 2 .;
tt = 0 :del:.5 -eps;
p lo t  (tt,ycom p,'k')
x la b e l ('R elative de lay  - seconds');
ylabel('N orm alized  com pressed  pu lse')
grid
% change cen ter frequ en cy  
y1 = chirp (t,0 ,.25 ,21);  
y1fft = fft(y1 ,512);
y1 com p = fftsh ift(abs(ifft(y1fft .*  conj(yfft)))); 
m axval = m ax (y1com p); 
y1com p = eps + y1com p . /  maxval; 
figure(2)
p lo t  (tt,y1com p,'k') 
x la b e l ('R elative de lay  - seconds'); 
ylabel('N orm alized  com pressed  pu lse') 
g rid
% change pu lse  w idth  
t = 0:0 .001:.45; 
y2 = chirp (t,0 ,.225 ,20); 
y2fft = fft(y2 ,512);
y2com p = fftsh ift(abs(ifft(y2fft .*  conj(yfft)))); 
m axval = m ax (y2com p); 
y2com p = eps + y2com p . /  maxval; 
figure(3)
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p lo t (tt,y2com p,'k')
Xlabel ('R elative de lay  - seconds'); 
ylabel('N orm alized  com pressed  pu lse') 
g rid

Problems
7 . 1 .  Starting with Eq. (7.17), prove Eq. (7.21).

7 . 2 .  The smallest positive primitive root of q  = l l  is у = 2 ; for N  = 10 
generate the corresponding Costas matrix.
7 . 3 .  Develop a MATLAB program to plot the ambiguity function associ
ated with Costas codes. Use Eqs. (7.53) through (7.56). Your program should 
generate 3-D plots, contour plots, and zero delay/Doppler cuts. Verify the side 
lobe behaviour and the compression ratio of Costas codes.

7 . 4 .  Consider the 7-bit Barker code, designated by the sequence x (n ) .  (a) 
Compute and plot the autocorrelation of this code. (b) A radar uses binary 
phase coded pulses of the form s ( t ) = r( t ) cos (2n f01) , where

r ( t) = x (0), f o r  0 < t < A t , r ( t ) = x (n ), f o r  n A t  < t < ( n + 1  )A t , and 

r ( t) = 0, f o r  t > 7A t . Assume At = 0.5|J.s. (a) Give an expression for the 

autocorrelation of the signal s ( t ) ,  and for the output of the matched filter when 

the input is s ( t -  10At) ;  (b) compute the time bandwidth product, the increase 
in the peak SNR, and the compression ratio.

7 . 5 .  (a) Perform the discrete convolution between the sequence ф11

defined in Eq. (7.59), and the transversal filter impulse response (i.e., derive 
Eq. (7.60). (b) Solve Eq. (7.60), and sketch the corresponding transversal filter 
output.
7 . 6 .  Repeat the previous problem for N  = 13 and k  = 6 . Use Barker 
code of length 13.

7 . 7 .  Develop a Barker code of length 35. Consider both B75 and B57.

7 . 8 .  Write a computer program to calculate the discrete correlation between 
any two finite length sequences. Verify your code by comparing your results to 
the output of the MATLAB function “x c o r r ” .

7 . 9 .  Compute the discrete autocorrelation for an F i6 Frank code.

7 . 1 0 .  Generate a Frank code of length 8, F 8 .
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Chapter 8 Radar Wave Propagation

In the earlier chapters, radar systems were analyzed with the assumption that 
the radar waves which traveled to and from targets are in free space. Signal 
interference due to the earth and its atmosphere was not considered. Despite 
the fact that “free  space a n a lys is” may be adequate to provide a general under
standing of radar systems, it is only an approximation. In order to accurately 
predict radar performance, we must modify free space analysis to include the 
effects of the earth and its atmosphere. This modification should account for 
ground reflections from the surface of the earth, diffraction of electromagnetic 
waves, bending or refraction of radar waves due to the earth atmosphere, and 
attenuation or absorption of radar energy by the gases constituting the atmo
sphere.

8.1. Earth Atmosphere

The earth atmosphere is compromised of several layers, as illustrated in Fig.
8.1. The first layer which extends in altitude to about 20 Km is known as the 
troposphere. Electromagnetic waves refract (bend downward) as they travel in 
the troposphere. The troposphere refractive effect is related to its dielectric 
constant which is a function of the pressure, temperature, water vapor, and gas
eous content. Additionally, due to gases and water vapor in the atmosphere 
radar energy suffers a loss. This loss is known as the atmospheric attenuation. 
Atmospheric attenuation increases significantly in the presence of rain, fog, 
dust, and clouds.

The region above the troposphere (altitude from 20 to 50 Km) behaves like 
free space, and thus little refraction occurs in this region. This region is known 
as the interference zone.
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Figure 8.1. Earth atmosphere geometry.

The ionosphere extends from about 50 Km to about 600 Km. It has very low  
gas density compared to the troposphere. It contains a significant amount of 
ionized free electrons. The ionization is primarily caused by the sun’s ultravio
let and X-rays. This presence of free electrons in the ionosphere affects electro
magnetic wave propagation in different ways. These effects include refraction, 
absorption, noise emission, and polarization rotation. The degree of degrada
tion depends heavily on the frequency of the incident waves. For example, 
frequencies lower than about 4 to 6 MHz are completely reflected from the 
lower region of the ionosphere. Frequencies higher than 30 MHz may pene
trate the ionosphere with some level o f attenuation. In general, as the fre
quency is increased the ionosphere’s effects become less prominent.

The region below the horizon, close to the earth’s surface, is called the dif
fraction region. Diffraction is a term used to describe the bending of radar 
waves around physical objects. Two types of diffraction are common. They are 
knife edge and cylinder edge diffraction.

8.2. Refraction

In free space, electromagnetic waves travel in straight lines. However, in the 
presence of the earth atmosphere, they bend (refract). Refraction is a term used
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to describe the deviation of radar wave propagation from straight lines. The 
deviation from straight line propagation is caused by the variation of the index 
of refraction. The index of refraction is defined as

n = c / v  (8 .1)

where c is the velocity of electromagnetic waves in free space and v  is the 
wave velocity in the medium. Close to the earth’s surface the index of refrac
tion is almost unity; however, with increasing altitude the index of refraction 
decreases gradually. The discussion presented in this chapter assumes a well 
mixed atmosphere, where the index of refraction decreases in a smooth mono
tonic fashion with height. The rate of change of the earth’s index of refraction 
n with altitude h is normally referred to as the refractivity gradient, d n / d h . 
As a result o f the negative rate of change in d n / d h , electromagnetic waves 
travel at slightly higher velocities in the upper troposphere than the lower part. 
As a result o f this, waves traveling horizontally in the troposphere gradually 
bend downward. In general, since the rate of change in the refractivity index is 
very slight, waves do not curve downward appreciably unless they travel very 
long distances through the troposphere.

Refraction affects radar waves in two different ways depending on height. 
For targets that have altitudes, typically above 100 meters, the effect of refrac
tion is illustrated in Fig. 8.2. In this case, refraction imposes limitations on the 
radar’s capability to measure target position. Refraction introduces an error in 
measuring the elevation angle.

Figure 8.2. Refraction high altitude effect on electromagnetic waves.
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In a well mixed atmosphere, the refractivity gradient close to the earth’s sur
face is almost constant. However, temperature changes and humidity lapses 
close to the earth’s surface may cause serious changes in the refractivity pro
file. When the refractivity index becomes large enough electromagnetic waves 
bend around the curve of the earth. Consequently, the radar’s range to the hori
zon is extended. This phenomenon is called ducting, and is illustrated in Fig.
8.3. Ducting can be serious over the sea surface, particularly during the hot 
summertime.

Using ray tracing (geometric optics) an integral-relating range-to-target 
height with the elevation angle as a parameter can be derived and calculated. 
However, such computations are complex and numerically intensive. Thus, in 
practice, radar systems deal with refraction in two different ways, depending 
on height. For altitudes higher than 3 Km, actual target heights are estimated 
from look-up tables or from charts of target height versus range for different 
elevation angles.

Simpler methods that are valid for altitude less than 3 Km, for calculating 
target height, can also be employed. In this case, the most common way of 
dealing with refraction is to replace the actual earth with an imaginary earth 
whose effective radius is re = k r0 , where r 0 is the actual earth radius, and k 
is

When the refractivity gradient is assumed to be constant with altitude and is 
equal to 39 x 10-9 per meter, then k  = 4 / 3. Using an effective earth radius 
re = (4 / 3 )r0 produces what is known as the “fo u r  third earth m o d e l .” In 
general, choosing

k
1 (8.2)

1 + r 0 (d n / d h )

re = r0(1 + 6.37 x 10 3(d n / d h ) ) (8.3)

straight line 
radar waves

h r

F ig u re  8 .3 . R e f r a c t io n  lo w  a l t i tu d e  e f fe c t o n  e le c tro m a g n e t ic  w av es .
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produces a propagation model where waves travel in straight lines. Selecting 
the correct value for k  depends heavily on the region’s meteorological condi
tions. Blake1 derives the “height-finding equ a tion ” for the 4/3 earth. It is

h = h r + 6076R sin 0 + 0.6625R 2( cos 0 )2 (8.4)

where h and h r are in feet and R  is nautical miles. All variables are defined in 
Fig. 8.4.

The distance to the horizon for a radar located at height h r can be calculated 
with the help of Fig. 8.5. For the right-angle triangle OBA we get

rh = */( Г0 + hr)2 -  r2 (U.5)

where r h is the distance to the horizon. By expanding Eq. (8.5) and collecting 
terms we can derive the expression for the distance to the horizon as

2 2  
rh = 2 r 0hr + hr (8.6)

Finally, since r0 » h r Eq. (8.6) is approximated by

rh ~ J 2 r0hr (8.7)

and when refraction is accounted for, Eq. (8.7) becomes

rh " J 2 reh r (8.8)

Figure 8.4. M easuring target height for 4/3 earth.

1. Blake, L. V., Radar Range-Performance Analysis, Artech House, 1986.
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A

Figure 8.5. M easuring the distance to the horizon.

8.3. Ground Reflection

When radar waves are reflected from the earth’s surface, they suffer a loss in 
amplitude and a change in phase. Three factors that contribute to these changes 
that are the overall ground reflection coefficient are the reflection coefficient 
for a flat surface, the divergence factor due to earth curvature, and the surface 
roughness.

8.3.1. Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, on the 
surface dielectric coefficient, and on the radar grazing angle. The vertical 
polarization and the horizontal polarization reflection coefficients are

where is the grazing angle (incident angle) and e is the complex dielectric 
constant of the surface, and are given by

г (8.9)

(8.10)

e  =  e ' -  je" (8.11)
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Typical values of e' and e'' can be found tabulated in the literature. For exam
ple, seawater at 28°C  has e' = 65 and e'' = 30.7 at X-band. Fig. 8. 6 shows 
the corresponding magnitude plots for r h and r v, while Fig. 8.7 shows the 
phase plots. The plots shown in those figures show the general typical behavior 
of the reflection coefficient.

g r a z i n g  a n g l e  - d e g r e e s

Figure 8.6. Reflection coefficient magnitude.

F ig u re  8 .7 . R e f le c tio n  c o e ff ic ie n t p h a s e .
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Note that when = 90 ° we get

rh  = 1— ^  = - r v  (8.12)
1 + V e e + л/ e

while when the grazing angle is very small ( « 0 ), we have

r h = - 1 = r v (813)

Observation of Figs. 8. 6 and 8.7 yield the following conclusions: (1) The 
magnitude of the reflection coefficient with horizontal polarization is equal to 
unity at very small grazing angles and it decreases monotonically as the angle 
is increased. (2) The magnitude of the vertical polarization has a well defined 
minimum. The angle that corresponds to this condition is called Brewster’s 
polarization angle. For this reason, airborne radars in the look-down mode uti
lize mainly vertical polarization to significantly reduce the terrain bounce 
reflections. (3) For horizontal polarization the phase is almost n ; however, for 
vertical polarization the phase changes to zero around the Brewster’s angle. (4) 
For very small angles (less than 2° ) both Ir h| and |r v| are nearly one; 
Z r h and Z r  v are nearly n . Thus, little difference in the propagation of hori
zontally or vertically polarized waves exists at low grazing angles.

MATLAB Function “ref_coef.m”

The function “ref_coef.m” calculates and plots the horizontal and vertical 
magnitude and phase response of the reflection coefficient. It is given in Sec
tion 8.7. The syntax is as follows

[rh,rv,ph,pv] = ref_coef (epsp,epspp)

where

Symbol Description Status

epsp e' input

epspp e" input

rh vector of |Г а| output

rv vector of |T v| output

ph vector of Z r h output

vh vector of Z r v output
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8.3.2. Divergence

The overall reflection coefficient is also affected by the round earth diver
gence factor, D . When an electromagnetic wave is incident on a round earth 
surface, the reflected wave diverges because of the earth’s curvature. This is 
illustrated in Fig. 8 .8a. Due to divergence the reflected energy is defocused, 
and the radar power density is reduced. The divergence factor can be derived 
using geometrical considerations. A widely accepted approximation for the 
divergence factor is given by

D  "  , 1 ---- (8.14)
2 r, r21 + - 1 2

rer sin Yg

where all variables in Eq. (8.14) are defined in Fig. 8 .8b.

(b)

F ig u re  8.8 .  I l lu s tra t ion  o f  d ivergen ce .  (a) Solid line: R ay  p e r im e te r  for  
spherica l  earth. D a s h e d  line: R ay  p er im ete r  for flat  earth.  
(b) D efin it ion  of  variab les  in Eq. (8.14)
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In addition to divergence, surface roughness also affects the reflection coef
ficient. Surface roughness is given by

_2( 2nhrmssinVg 'j2

S r = e X j  (8.15)

where h rms is the rms surface height irregularity. In general, rays reflected 
from rough surfaces undergo changes in phase and amplitude, which results in 
the diffused (non-coherent) portion of the reflected signal. Combining the 
above three factors, we can express the total reflection coefficient r t as

r t  = r (  v) D S r  (8.16)

r  (A; v) is the horizontal or vertical smoothed surface reflection coefficient.

8.3.3. Rough Surface Reflection

8.4. The Pattern Propagation Factor

In general, the pattern propagation factor is a term used to describe the wave 
propagation when free space conditions are not met. This factor is defined sep
arately for the transmitting and receiving paths. The propagation factor also 
accounts for the radar antenna pattern effects. The basic definition of the prop
agation factor is

F  = \E /  E0| (8.17)

where E  is the electric field in the medium and E0 is the free space electric 
field.

Near the surface of the earth, multipath propagation effects dominate the for
mation of the propagation factor. In this section, a general expression for the 
propagation factor due to multipath will be developed. In this sense, the propa
gation factor describes the constructive/destructive interference of the electro
magnetic waves diffracted from the earth surface (which can be either flat or 
curved). The subsequent sections derive the specific forms of the propagation 
factor due to flat and curved earth.

Consider the geometry shown in Fig. 8.9. The radar is located at height h r . 
The target is at range R , and is located at a height h t . The grazing angle is . 
The radar energy emanating from its antenna will reach the target via two 
paths: the “direct path” A B  and the “indirect path” ACB. The lengths of the 
paths A B  and A C B  are normally very close to one another and thus, the differ
ence between the two paths is very small. Denote the direct path as R d, the 
indirect path as R t , and the difference as AR = R t _  R d. It follows that the 
phase difference between the two paths is given by
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Fig u re  8.9. G e o m e tr y  for  m u lt ip a th  p ro p a g a t io n .
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АФ = -т- AR  (8.18)
Л

where Л is the radar wavelength.

The indirect signal amplitude arriving at the target is less than the signal 
amplitude arriving via the direct path. This is because the antenna gain in the 
direction of the indirect path is less than that along the direct path, and because 
the signal reflected from the earth surface at point C  is modified in amplitude 
and phase in accordance to the earth’s reflection coefficient, Г . The earth 
reflection coefficient is given by

г  = р e ф (8.19)

where р is less than unity and ф describes the phase shift induced on the indi
rect path signal due to surface roughness.

The direct signal (in volts) arriving at the target via the direct path can be 
written as

■ 2-П R
„  № 0 t 1 Л R dE d = e e (8 .20)

where the time harmonic term exp ( j a 0t ) represents the signal’s time depen
dency, and the exponential term exp ( j (2 п / Л ) R d) represents the signal spatial 
phase. The indirect signal at the target is

’ 2П R
j ф 1 ® 0 t  1 Л R‘

E i = р e’ e e (8 .21)

where р exp (1ф) is the surface reflection coefficient. Therefore, the overall 
signal arriving at the target is

E  = Ed + E ,■ =
1 ra<,t

e e
j X Rd

1 + р e

2n ,n
ф + T  (R‘~Rd)

(8.22)

Due to reflections from the earth surface, the overall signal strength is then 
modified at the target by the ratio of the signal strength in the presence of earth 
to the signal strength at the target in free space. From Eq. (8.17) the modulus of 
this ratio is the propagation factor. By using Eqs. (8.20) and (8.22) the propa
gation factor is computed as

F
Ed + E,

I1 + р e фe
АФ (8.23)

which can be rewritten as
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where a  = АФ + ф . Using Euler’s identity ( j  = cos a  + j  sin a ), Eq. (8.24) 
can be written as

F  = | 1 +  p  e a\ (8 .24)(8.24)

F  = л/1 + p2 + 2 p cos a (8.25)
2

It follows that the signal power at the target is modified by the factor F  . By
using reciprocity, the signal power at the radar is computed by multiplying the 
radar equation by the factor F  . In the following two sections we will develop 
exact expressions for the propagation factor for flat and curved earth.

The propagation factor for free space and no multipath is F  = 1 . Denote the 
radar detection range in free space (i.e., F  = 1 ) as R 0 . It follows that the 
detection range in the presence of the atmosphere and multipath interference is

where L a is the two-way atmospheric loss at range R . Atmospheric attenua
tion will be discussed in a later section. Thus, for the purpose of illustrating the 
effect of multipath interference on the propagation factor, assume that L a = 1 . 
In this case, Eq. (8.26) is modified to

Fig. 8.10 shows the general effects of multipath interference on the propaga
tion factor. Note that, due to the presence of surface reflections, the antenna 
elevation coverage is transformed into a lobed pattern structure. The lobe 
widths are directly proportional to X, and inversely proportional to h r . A target 
located at a maxima will be detected at twice its free space range. Alterna
tively, at other angles, the detection range will be less than that in free space.

8.4.1. Flat Earth

Using the geometry of Fig. 8.9, the direct and indirect paths are computed as

Eqs. (8.28) and (8.29) can be approximated using the truncated binomial series 
expansion as

(8.26)

(8.27)

(8.28)

(8.29)
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Figure 8.10. Vertical lobe structure due to the reflecting surface as a 
function o f the elevation angle.

(h t -  h r )2 
R d ~~R + - v -

(8.30)

(hf + hr) 2 
-----2---R---- (8.31)

This approximation is valid for low grazing angles, where R  » h t, h r . It follows 
that

AR = R, -  R j
2 h th r

R
(8.32)

Substituting Eq. (8.32) into Eq. (8.18) yields the phase difference due to multi
path propagation between the two signals (direct and indirect) arriving at the 
target. More precisely,

АФ = 2 5 AR ; 4Пh h (8.33)
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At this point assume smooth surface with reflection coefficient r  = _1. This 
assumption means that waves reflected from the surface suffer no amplitude 
loss, and that the induced surface phase shift is equal to 180°. Using Eq. (8.18) 
and Eq. (8.25) along with these assumptions yield

2 2  
F  = 2 _ 2cos АФ = 4 ( sin (А Ф /2)) (8.34)

Substituting Eq. (8.33) into Eq. (8.34) yields

2 (  2 n h th r\ 2

F = 4  Vs‘n - s r j  (8-35>

By using reciprocity, the expression for the propagation factor at the radar is 
then given by

4 (  2 n  h th r\ 4 

F  = 16 ( s in ^ j  (8-36)

Finally, the signal power at the radar is computed by multiplying the radar 
equation by the factor F  ,

9 9
P tG X2o  (  2n h th r\ 4

Pr  = -------3“ 4 16 H - T R T  (8.37)(4 n )3R  V XR j

Since the sine function varies between 0 and 1, the signal power will then 
vary between 0 and 16. Therefore, the fourth power relation between signal 
power and the target range results in varying the target range from 0 to twice 
the actual range in free space. In addition to that, the field strength at the radar 
will now have holes that correspond to the nulls of the propagation factor.

The nulls of the propagation factor occur when the sine is equal to zero. 
More precisely,

2 h rh t
T R -  = я (8.38)

where n = {0, 1, 2, ...} . The maxima occur at

4hrht
n +  1 (8.39)

The target heights that produce nulls in the propagation factor are 
{h t = n (XR / 2 h r) ;n = 0 , 1, 2 , . . . } ,  and the peaks are produced from target 
heights {h t = n (X R /4 h r);n = 1, 2, .  }. Therefore, due to the presence of sur
face reflections, the antenna elevation coverage is transformed into a lobed pat
tern structure as illustrated by Fig. 8.10. A target located at a maxima will be 
detected at twice its free space range. Alternatively, at other angles, the
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detection range will be less than that in free space. At angles defined by Eq. 
(8.38) there would be no measurable target returns.

For small angles, Eq. (8.37) can be approximated by

2
4n P tG  о  4

P r « — r - y -  (h th r) (8.40)
Л2 R

Thus, the received signal power varies as the eighth power of the range instead 
of the fourth power. Also, the factor GЛ is now replaced by G / Л .

8.4.2. Spherical Earth

In order to model the effects of multipath propagation on radar performance 
more accurately, we need to remove the flat earth condition and account for the 
earth’s curvature. When considering round earth, electromagnetic waves travel 
in curved paths because of the atmospheric refraction. And as mentioned ear
lier, the most commonly used approach to mitigating the effects of atmospheric 
refraction is to replace the actual earth by an imaginary earth such that electro
magnetic waves travel in straight lines. The effective radius of the imaginary 
earth is

re = k r  0 (8.41)

where k  is a constant and r 0 is the actual earth radius (6371 K m ). Using the 
geometry in Fig. 8.11, the direct and indirect path difference is

AR = R 1+ R2 -  R d (8.42)

The propagation factor is computed by using AR from Eq. (8.42) in Eq. (8.18) 
and substituting the result in Eq. (8.25). To compute (R 1 , R2 , and R d) the fol
lowing cubic equation must first be solved for r 1 :

3 2 2
2 r 1 -  3 r r 1 + ( r  -  2 re(h r + h t) ) r 1 + 2 r eh rr  = 0 (8.43)

The solution is

r  ■ £ 
r 1 = 2 - P sin§ (8.44)

where

P = -723 i r e (h t + h r) + 4
(8.45)
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. ( 2TeT(h t _ hr) '
£ = asin V — — 3-----t- J  (8.46)

Next, we solve for R 1 , R2 , and R d . From Fig. 8.11,

Ф1 = Tx/ r e (8.47)

Ф2 = T2/Tc (8.48)

Using the law of cosines to the triangles ABO and BOC yields

Figure 8.11. Geometry associated with multipath propagation 
over round earth.
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I~2 2
R 1 = 4 r e + ( r e + h r) -  2 re( re + h r) cosФ1 (8.49)

R2 = л/г2 + ( re + h t)2 -  2 re ( re + h t) cos Ф2

Eqs. (8.49) and (8.50) can be written in the following simpler forms:

(8.50)

R 1 = i jh 2r + 4re( re + hr) ( sin (Ф1/  2 ) ) 2 (8.51)

R 2 = A/h2T 4 re ( re + h t) ( s in (^ ^ 2 ) )2

Using the law of cosines on the triangle AOC yields

(8.52)

(8.53)

Substituting Eqs. (8.51) through (8.53) directly into Eq. (8.42) may not be 
conducive to numerical accuracy. A more suitable form for the computation of 
AR is then derived. The detailed derivation is in Blake. The results are listed 
below. For better numerical accuracy use the following expression to compute 
A R :

4Ri R2( s i n )2 AR = ----L_2-------- V .  (8 .54)
R 1 + R2 + Rd

where

■ ( ht R 1 )W « asin -  —  (8.55)

8.5. Diffraction

Diffraction is a term used to describe the phenomenon of electromagnetic 
waves bending around obstacles. It is of major importance to radar systems 
operating at very low altitudes. Hills and ridges diffract radio energy and make 
it possible to perform detection in regions that are physically shadowed. In 
practice, experimental data measurements provide the dominant source of 
information available on this phenomenon. Some theoretical analyses of dif
fraction are also available. However, in these cases many assumptions are 
made, and perhaps the most important assumption is that obstacles are chosen 
to be perfect conductors.

The problem of propagation over a knife edge on a plane can be described 
with help of Fig. 8.12. The target and radar heights are denoted, respectively,
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by h t and h r . The edge height is h e . Denote the distance by which the radar 
rays clear (or do not clear) the tip of the edge by 5 . As a matter of notation 5 
is assumed to be positive when the direct rays clear the edge, and is negative 
otherwise. Because of the fact that ground reflection occurs on both sides of 
the edge, then the propagation factor is composed of four distinct rays, as illus
trated in Fig. 8.13. An expression for the propagation factor corresponding to 
the four rays is reported in Meeks (see Bibliography).

Figure 8.12. Diffraction over a knife edge. (a) Positive 5 . (b) Negative 5 .

Figure 8.13. Four ray formation.

8.6. Atmospheric Attenuation

Electromagnetic waves travel in free space without suffering any energy 
loss. Alternatively, due to gases and water vapor in the atmosphere radar
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energy suffers a loss. This loss is known as the atmospheric attenuation. Atmo
spheric attenuation increases significantly in the presence of rain, fog, dust, 
and clouds. Most of the lost radar energy is normally absorbed by gases and 
water vapor and transformed into heat, while a small portion of this lost energy 
is used in molecular transformation of the atmosphere particles.

The two-way atmospheric attenuation over a range R  can be expressed as

L = -2 aR
L atmosphere = e (o.oo)

where a  is the one-way attenuation coefficient. Water vapor attenuation peaks 
at about 22.3 G H z,  while attenuation due to oxygen peaks at between 60 and 
118GHz. Atmospheric attenuation is severe for frequencies higher than 
35 GHz. This is the reason why ground-based radars rarely use frequencies 
higher than 35 G H z .

Atmospheric attenuation is a function range, frequency, and elevation angle. 
Fig. 8.14 shows a typical two-way atmospheric attenuation plot versus range at 
3 G H z ,  with the elevation angle as a parameter. Fig. 8.15 is similar to Fig.
8.14, except it is for 10GHz. For further details on this subject the reader is 
advised to visit Blake.

0 .0 °

0.5° 

1.0 °

2 .0 °

5.0°

10.0 °

Range - Km

F ig u re  8 .1 4 . A t te n u a t io n  v e r s u s  r a n g e ;  f re q u e n c y  is  3 GHz.
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Range - Km

Figure 8.15. Attenuation versus range; frequency is 10 GHz.

8.7. MATLAB Program “ref_coef.m”
function  [rh ,rv,ph ,pv] = ref_coef (epsp ,epspp)
eps = epsp - i * epspp; % 65.0-30.7i;
p s i  = 0:0 .1:90;
p s ira d  = p si. *(pi/180.);
a rg l = eps-(cos(psirad).A2);
arg2 = sq r t(a rg l);
arg3 = sin(psirad);
arg4 = eps. *arg3;
rv = (arg4-arg2)./(arg4+ arg2);
rh = (arg3-arg2)./(arg3+ arg2);
gam am odv = abs(rv);
gam am odh = abs(rh);
f ig u re (l)
p lot(psi,gam am odv,'k ',psi,gam am odh,'k  - . ’);
axis tight
g rid
xlabel('grazing  angle - degrees'); 
ylabel('reflection  coefficien t - am plitude')
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legend ('Vertical Polarization', 'Horizontal Polarization')  
p v  = -angle(rv);  
p h  = angle(rh);  
figure(2)
plot(psi ,pv,'k',psi ,ph,'k -.'); 
grid
xlabel('grazing angle - degrees');
ylabel('reflection coefficient - phase')
legend ('Vertical Polarization', 'Horizontal Polarization')

Problems

8 . 1 .  Using Eq. (8.4), determine h when h r = 15 m  and R  = 35 K m .

8 . 2 .  An exponential expression for the index of refraction is given by

n = 1 + 315 x 10-6exp (-0 .136h)

where the altitude h is in Km. Calculate the index of refraction for a well 
mixed atmosphere at 10% and 50% of the troposphere.

8 . 3 .  Rederive Eq. (8.34) assuming vertical polarization.

8 . 4 .  Reproduce Figs. 8. 6 and 8.7 by using f  = 8 G H z  and (a) e ' = 2.8 

and e" = 0.032 (dry soil); (b) e ' = 47 and e" = 19 (sea water at 0 ° C ); (c) 

e ' = 50.3 and e" = 18 (lake water at 0 ° C ).

8 . 5 .  In reference to Fig. 8.9, assume a radar height of h r = 100m  and a 

target height of h t = 500m  . The range is R  = 20K m  . (a) Calculate the

lengths of the direct and indirect paths. (b) Calculate how long it will take a 
pulse to reach the target via the direct and indirect paths.
8 . 6 .  In the previous problem, assuming that you may be able to use the 
small grazing angle approximation: (a) Calculate the ratio of the direct to the 
indirect signal strengths at the target. (b) If the target is closing on the radar 
with velocity v  = 300m /  s , calculate the Doppler shift along the direct and 

indirect paths. Assume X = 3cm.
8 . 7 .  Utilizing the plots generated in solving Problem 8.4, derive an emperi- 
cal expression for the Brewster’s angle.

8 . 8 .  A radar at altitude h r = 10m  and a target at altitude h t = 300m , and 

assuming a spherical earth, calculate r 1, r2 , and .

8 . 9 .  Derive an asymptotic form for r h and Tv when the grazing angle is 

very small.
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8 . 1 0 .  In reference to Fig. 8.8, assume a radar height of h r = 100m  and a 

target height of h t = 5 0 0 m . The range is R  = 2 0 K m . (a) Calculate the 

lengths of the direct and indirect paths. (b) Calculate how long it will take a 
pulse to reach the target via the direct and indirect paths.
8 . 1 1 .  Using the law of cosines, derive Eqs. (8.51) through (8.53).
8 . 1 2 .  In the previous problem, assuming that you may be able to use the 
small grazing angle approximation: (a) Calculate the ratio of the direct to the 
indirect signal strengths at the target. (b) If the target is closing on the radar 
with velocity v  = 300m /  s , calculate the Doppler shift along the direct and 

indirect paths. Assume X = 3cm.

8 . 1 3 .  In the previous problem, assuming that you may be able to use the 
small grazing angle approximation: (a) Calculate the ratio of the direct to the 
indirect signal strengths at the target. (b) If the target is closing on the radar 
with velocity v  = 300m /  s , calculate the Doppler shift along the direct and 

indirect paths. Assume X = 3cm.

8 . 1 4 .  Calculate the range to the horizon corresponding to a radar at 5 K m  

and 10Km of altitude. Assume 4/3 earth.

8 . 1 5 .  Develop a mathematical expression that can be used to reproduce 
Figs. 8.14 and 8.15.
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Chapter 9 Clutter and Moving Target 
Indicator (MTI)

9.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted 
radar returns that may interfere with normal radar operations. Parasitic returns 
that enter the radar through the antenna’s main lobe are called main lobe clut
ter; otherwise they are called side lobe clutter. Clutter can be classified in two 
main categories: surface clutter and airborne or volume clutter. Surface clutter 
includes trees, vegetation, ground terrain, man-made structures, and sea sur
face (sea clutter). Volume clutter normally has large extent (size) and includes 
chaff, rain, birds, and insects. Chaff consists of a large number of small dipole 
reflectors that have large RCS values. It is released by hostile aircaft or mis
siles as a means of ECM in an attempt to confuse the defense. Surface clutter 
changes from one area to another, while volume clutter may be more predict
able.

Clutter echoes are random and have thermal noise-like characteristics 
because the individual clutter components (scatterers) have random phases and 
amplitudes. In many cases, the clutter signal level is much higher than the 
receiver noise level. Thus, the radar’s ability to detect targets embedded in 
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather 
than the SNR.

White noise normally introduces the same amount of noise power across all 
radar range bins, while clutter power may vary within a single range bin. And 
since clutter returns are target-like echoes, the only way a radar can distinguish 
target returns from clutter echoes is based on the target RCS a t , and the antic
ipated clutter RCS a c (via clutter map). Clutter RCS can be defined as the 
equivalent radar cross section attributed to reflections from a clutter area, A c . 
The average clutter RCS is given by
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0 2 2where о  (m / m  ) is the clutter scattering coefficient, a dimensionless quan
tity that is often expressed in dB. Some radar engineers express о  in terms of 
squared centimeters per squared meter. In these cases, о  is 4 0 d B  higher than 
normal.

The term that describes the constructive/destructive interference of the elec
tromagnetic waves diffracted from an object (target or clutter) is called the 
propagation factor (see Chapter 8 for more details). Since target and clutter 
returns have different angles of arrival (different propagation factors), we can 
define the SCR as

2 2
SC R  = CtFtF. r (9.2)

о cF 2c

where F c is the clutter propagation factor, F t and F r are, respectively, the 
transmit and receive propagation factors for the target. In many cases 
F t = F r .

о с =  ° Ч  (9 1 )

9.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area 
clutter. Area clutter manifests itself in airborne radars in the look-down mode. 
It is also a major concern for ground-based radars when searching for targets at 
low grazing angles. The grazing angle is the angle from the surface of the 
earth to the main axis of the illuminating beam, as illustrated in Fig. 9.1.

Three factors affect the amount of clutter in the radar beam. They are the 
grazing angle, surface roughness, and the radar wavelength. Typically, the clut
ter scattering coefficient о  is larger for smaller wavelengths. Fig. 9.2 shows a 
sketch describing the dependency of о 0 on the grazing angle. Three regions 
are identified; they are the low grazing angle region, flat or plateau region, and 
the high grazing angle region.

The low grazing angle region extends from zero to about the critical angle. 
The critical angle is defined by Rayleigh as the angle below which a surface is 
considered to be smooth, and above which a surface is considered to be rough. 
Denote the root mean square (rms) of a surface height irregularity as h rms, 
then according to the Rayleigh critera the surface is considered to be smooth if

4 п h rms •  ̂П--- 7----sin W < -  (9.3)

© 2000 by Chapman & Hall/CRC



Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to 
surface height irregularity (surface roughness), the “rough path” is longer than 
the “smooth path” by a distance 2 h rms sin y g . This path difference translates 
into a phase differential Ay:

2 П
AV = у  2 hrmssin Vg (9-4)

The critical angle y gc is then computed when A y  = n  (first null), thus

4 n  h‘'rms • _x--- —  sin ̂  = П (9.5)

Figure 9.1. Definition o f grazing angle.

F ig u re  9 .2 . C lu t t e r  r e g io n s .
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N '

Figure 9.3. Rough surface definition.

or equivalently,

vrms

In the case of sea clutter, for example, the rms surface height irregularity is

1 72
hrms ~ 0.025 + 0.046 (9-7)

where Sstate is the sea state, which is tabulated in several cited references. The 
sea state is characterized by the wave height, period, length, particle velocity, 
and wind velocity. For example, Sstate = 3 refers to a moderate sea state, 
where in this case the wave height is approximately equal to between 
0.9144 to  1.2192 m , the wave period 3.5 to 4.5 seconds, wave length 
1.9812 to  33.528 m, wave velocity 20.372 to  25.928 K m / h r , and wind 
velocity 22.224 to  29.632 K m / h r .

there are a large number of clutter returns in the radar beam (non-coherent 
reflections). In the flat region the dependency of о  on the grazing angle is 
minimal. Clutter in the high grazing angle region is more specular (coherent 
reflections) and the diffuse clutter components disappear. In this region the 
smooth surfaces have larger о 0 than rough surfaces, opposite of the low graz-
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Consider an airborne radar in the look-down mode shown in Fig. 9.4. The 
intersection of the antenna beam with ground defines an elliptically shaped 
footprint. The size of the footprint is a function of the grazing angle and the 
antenna 3dB beam width 83dB, as illustrated in Fig. 9.5. The footprint is 
divided into many ground range bins each of size ( c x / 2 ) sec y g , where т is 
the pulse width.

9.2.1. Radar Equation for Area Clutter

Figure 9.4. Airborne radar in the look-down mode.

From Fig. 9.5, the clutter area A c is

Л r , n  cT 
A c ~  t f0 3 d B y se c Vg (9.8)

The power received by the radar from a scatterer within A c is given by the 
radar equation as

St =

j-. 2 
P tG  X o f

(4 n )3R4
(9.9)

where as usual, P t is the peak transmitted power, G  is the antenna gain, X is 
the wavelength, and a t is the target RCS. Similarly, the received power from 
clutter is

Sac =

2 2  
P tG  X ° c

(4 k )3R 4
(9.10)

where the subscript A c is used for area clutter. Substituting Eq. (9.1) for o c 
into Eq. (9.10), we can then obtain the SCR for area clutter by dividing Eq. 
(9.9) by Eq. (9.10). More precisely,
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2 o t cos
(S C R )Ac = ^  (9.11)

о  0 зdBR CX

E xam ple 9.1: C onsider an a irborn e radar shown in Fig. 9.4. L e t the antenna  
3dB beam  w idth  be  03dB = 0.02r a d ,  the p u lse  w idth  т = 2 |j.s, range  
R  = 20K m , an d  grazing  angle  ^ g = 20° . A ssum e target R C S o t = 1 m , 
and c lu tter reflection coefficien t о  = 0 .0 1 3 6 m  / m . C om pute the SCR.

Solution: The SCR is g iven  by  Eq. (9.11) as

2 o t cos w 
(S C R )ac  = 0 ' g ^

о  0з dBR cT

(S C R )AC = -------------------- (2 )(1 )(cos20 ) ------------ _____ = 2.48 x 10-4
(0.0136)(0.02)(20000)(3 x 10-)(2  x 10 6)

It fo llow s that

( S C R )Ac = -36.06dB

Thus, fo r  reliable detec tion  the radar m ust som ehow  increase its SCR by  a t 
least (36 + X )dB , where X  is on the o rder o f  10dB  o r  better.
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9.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds, 
and insects. The volume clutter coefficient is normally expressed in squared 
meters (RCS per resolution volume). Birds, insects, and other flying particles 
are often referred to as angel clutter or biological clutter. The average RCS for 
individual birds or insects as a function of the weight of the bird or insect is 
reported in the literature1 as

( o b^dBsm “  -  46 + 5.- l °g W b (9.12)

where Wb is the individual bird or insect weight in grams. Bird and insect 
RCSs are also a function of frequency; for example, a pigeon’s average RCS is 
- 2 6 d B s m  at S-band, and is equal to -2 7 d B s m  at X-band.

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It 
consists of a large number of dipole reflectors with large RCS values. Histori
cally, chaff was made of aluminum foil; however, in recent years most chaff is 
made of the more rigid fiber glass with conductive coating. The maximum 
chaff RCS occurs when the dipole length L  is one half the radar wavelength. 
The average RCS for a single dipole when viewed broadside is

2
0 chaff 1 ~ ° .- - ^  (9.13)

and for an average aspect angle, it drops to

2
0 chaff1 ~ 0 .15X (9.14)

where the subscript chaff1  is used to indicate a single dipole, and X is the 
radar wavelength. The total chaff RCS within a radar resolution volume is

2
0 chaff ~ 0 .15X N d (9.45)

where N D is the total number of dipoles in the resolution volume.

Weather or rain clutter is easier to suppress than chaff, since rain droplets 
can be viewed as perfect small spheres. We can use the Rayleigh approxima
tion of perfect sphere to estimate the rain droplets’ RCS. The Rayleigh approx
imation, without regard to the propagation medium index of refraction, is 
given in Eq. (2.30) and is repeated here as Eq. (9.16):

2 4о  = 9n r  (k r )  r « X (9.16)

where k  = 2n / X , and r  is radius of a rain droplet.

1. Edde, B., Radar - Principles, Technology, Applications, Prentice-Hall, 1993.
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Electromagnetic waves when reflected from a perfect sphere become 
strongly co-polarized (have the same polarization as the incident waves). Con
sequently, if the radar transmits, say, a right-hand-circularly (RHC) polarized 
wave, then the received waves are left-hand-circularly (LHC) polarized, 
because it is propagating in the opposite direction. Therefore, the back-scat
tered energy from rain droplets retains the same wave rotation (polarization) as 
the incident wave, but has a reversed direction of propagation. It follows that 
radars can suppress rain clutter by co-polarizing the radar transmit and receive 
antennas.

Defining n  as RCS per unit resolution volume VW, it is computed as the 
sum of all individual scatterers RCS within the volume,

N

П = (9.17)

i =1

where N  is the total number of scatterers within the resolution volume. Thus, 
the total RCS of a single resolution volume is

N

° w  = ^ ° i VW (9.18)

i =1

A resolution volume is shown in Fig. 9.6, and is approximated by

П 2
Vw « 8 0ЯM  cT (9.19)

where 0 a , 0 e are, respectively, the antenna beam width in azimuth and eleva
tion, т is the pulse width in seconds, c is speed of light, and R  is range.

F ig u re  9 .6 . D e f in it io n  o f  a  r e s o lu t io n  v o lu m e .
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Consider a propagation medium with an index of refraction m . The ith  rain 
droplet RCS approximation in this medium is

5П __2 ,^6
c i ~ - 4K  D

where

K
2m  -  1
2m  + 2

(9.20)

(9.21)

and D i is the ith  droplet diameter. For example, temperatures between 32°F  
and 68°F  yield

П5
с,-« 0.93^4D 6

Л
(9.22)

and for ice Eq. (9.20) can be approximated by

5
с , = 0 .2 ^- D 6 

‘ Л4 ‘
(9.23)

Substituting Eq. (9.20) into Eq. (9.17) yields

5

n  = 5? k2 z
(9.24)

where the weather clutter coefficient Z  is defined as

N

Z  = I  d6

i = 1

(9.25)

In general, a rain droplet diameter is given in millimeters and the radar reso
lution volume in expressed in cubic meters, thus the units of Z  are often 
expressed in m il l ie m e te r  / m  .

9 .3 .1 . R a d a r  E q u a tio n  f o r  V o lu m e  C lu t te r

The radar equation gives the total power received by the radar from a c t tar
get at range R  as

2 2  
-P---t--G--2---Л--2--с- t
(4 n )3 R 4

(9 .26)

2
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where all parameters in Eq. (9.26) have been defined earlier. The weather clut
ter power received by the radar is

P tG 2X2o w
S w = - -----3ГТ  (9.27)

(4 n )3 R

Using Eq. (9 .1-) and Eq. (9.19) into Eq. (9.27) and collecting terms yield

N
P tG 2 X2 n  2 v  

Sw = - H - 4  8 R 0 a0 ecт У о i (9.28)
(4 n )3 R  -  jL-1

i = 1

The SCR for weather clutter is then computed by dividing Eq. (9.26) by Eq. 
(9.28). More precisely,

£, -  о г
sw

( S C R )v = у - = --------------L- N—  (9.29)

n 0 a0 ecTR2 X ° i

i = 1

where the subscript V  is used to denote volume clutter.
2

E xam ple 9.2: A  certain  radar has target R C S о { = 0.1 m , pu lse  w idth  
т = 0 .2цs, antenna beam  w idth  0 a = 0e = 0.02r a d ia n s .  A ssum e the d e tec 
tion range to be R  = 5 0 K m , an d  com pute the SCR if  
У о .  = 1.6 x 10 - (m 2/ m3).

Solution: From Eq. (9 .29) w e have

-о..
( S C R )v  = ------------- '— Nr—

n 0  a0 ec t r 1  X ° i

i = 1

substitu ting the p ro p er  values w e g e t

(S C R )V = -------------------------------< Ж Ц ) -------------- ^ = 0.265
n (0 .02 )2(3 x 10- ) (0.2 x 10 6)(50 x 103) ( 1.6 x 10 - )

( S C R )v  = -5 .7 6 -d B .
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9.4. Clutter Statistical Models

Since clutter within a resolution cell (or volume) is composed of a large 
number of scatterers with random phases and amplitudes, it is statistically 
described by a probability distribution function. The type of distribution 
depends on the nature of clutter itself (sea, land, volume), the radar operating 
frequency, and the grazing angle.

If sea or land clutter is composed of many small scatterers when the proba
bility of receiving an echo from one scatterer is statistically independent of the 
echo received from another scatterer, then the clutter may be modeled using a 
Rayleigh distribution,

f (  x )
2 x ( - x \

x - exp Ы ;
x > 0 (9.30)

where x0 is the mean squared value of x.

The log-normal distribution best describes land clutter at low grazing angles. 
It also fits sea clutter in the plateau region. It is given by

f(  x )
1

Ол/2 я
exp

( lnx -  lnxm)

2 a 2

2
x > 0 (9.31)

where x m is the median of the random variable x  , and a  is the standard devi
ation of the random variable ln (x ) .

The Weibull distribution is used to model clutter at low grazing angles (less 
than five degrees) for frequencies between 1 and 10 G H z . The Weibull proba
bility density function is determined by the_Weibull slope parameter a (often 
tabulated) and a median scatter coefficient a 0 , and is given by

b x b - 1 
f (  x ) = - = —  exp 

a 0

/  - \  
x_
ao

; x > 0 (9.32)

where -  = 1 / a is known as the shape parameter. Note that when -  = 2 the 
Weibull distribution becomes a Rayleigh distribution.

x

9.5. Clutter Spectrum
The power spectrum of stationary clutter (zero Doppler) can be represented 

by a delta function. However, clutter is not always stationary; it actually exhib
its some Doppler frequency spread because of wind speed and motion of the 
radar scanning antenna. In general, the clutter spectrum is concentrated around
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f  = 0  and integer multiples of the radar PRF f r , and may exhibit some small 
spreading.

The clutter power spectrum can be written as the sum of fixed (stationary) 
and random (due to frequency spreading) components. For most cases, the ran
dom component is Gaussian. If we denote the fixed to the random power ratio 
by W , then we can write the clutter spectrum as

5c (ю) = о  о W

1 + W
5(Юо) +

Оо exp
2 п о ю

x ( ю - ю 0)24 

2 оЮ
(9.33)

where ю0 = 2 n f0 is the radar operating frequency in radians per second, о ю 
is the rms frequency spread component (determines the Doppler frequency 
spread), and o 0 is the Weibull parameter.

The first term of the right-hand side of Eq. (9.33) represents the PSD for sta
tionary clutter, while the second term accounts for the frequency spreading. 
Nevertheless, since most of the clutter power is concentrated around zero Dop
pler with some spreading (typically less than 100 Hz), it is customary to model 
clutter using a Gaussian-shaped power spectrum (which is easier to analyze 
than Eq. (9.33)). More precisely,

S M  =

I
exp

2 п о ю

(ю — О-q )

2 оЮ

2
(9.34)

where P c is the total clutter power; о ю and ю0 were defined earlier. Fig. 9.7 
shows a typical PSD sketch of radar returns when both target and clutter are 
present. Note that the clutter power is concentrated around DC and integer 
multiples of the PRF.

Figure 9.7. Typical radar return PSD when clutter and target are present.
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9.6. Moving Target Indicator (MTI)

Clutter spectrum is normally concentrated around DC ( f  = 0 )  and multiple 
integers of the radar PRF f r , as illustrated in Fig. 9.8a. In CW radars, clutter is 
avoided or suppressed by ignoring the receiver output around DC, since most 
of the clutter power is concentrated about the zero frequency band. Pulsed 
radar systems may utilize special filters that can distinguish between slowly 
moving or stationary targets and fast moving ones. This class o f filters is 
known as the Moving Target Indicator (MTI). In simple words, the purpose of 
an MTI filter is to suppress target-like returns produced by clutter, and allow  
returns from moving targets to pass through with little or no degradation. In 
order to effectively suppress clutter returns, an MTI filter needs to have a deep 
stop-band at DC and at integer multiples of the PRF. Fig. 9.8b shows a typical 
sketch of an MTI filter response, while Fig. 9.8c shows its output when the 
PSD shown in Fig. 9.8a is the input.

Figure 9.8. (a) Typical radar return PSD when clutter and target are
present. (b) MTI filter fre quency response. (c) Output from an 
MTI filter.
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MTI filters can be implemented using delay line cancelers. As we will show 
later in this chapter, the frequency response of this class of MTI filters is peri
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre
quencies equal to n fr are severely attenuated. And since Doppler is 
proportional to target velocity ( fd = 2 v /X ), target speeds that produce Dop
pler frequencies equal to integer multiples of f r are known as blind speeds. 
More precisely,

X f
Vblind = f  ; П > 0 (9.35)

Radar systems can minimize the occurrence of blind speeds by either 
employing multiple PRF schemes (PRF staggering) or by using high PRFs 
where in this case the radar may become range ambiguous. The main differ
ence between PRF staggering and PRF agility is that the pulse repetition inter
val (within an integration interval) can be changed between consecutive pulses 
for the case of PRF staggering.

Fig. 9.9 shows a block diagram of a coherent MTI radar. Coherent transmis
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the 
STALO, f LO, and the COHerent Oscillator (COHO), f c , are mixed to produce 
the transmission frequency, fLO + f c . The Intermediate Frequency (IF), f c  ± f d , 
is produced by mixing the received signal with f LO. After the IF amplifier, the 
signal is passed through a phase detector and is converted into a base band. 
Finally, the video signal is inputted into an MTI filter.

fLO + f c

fLO + fc  ±  fd

f c  ±  fd

IF amplifier

f c  ±  fd

Pulse modulator

power amplifier
f LO + f c

f LO

Г
STALO

f LO
mixer | 

n

COHO
f c

f c

phase detector
f d

MTI to detector

F ig u re  9 .9 . C o h e re n t  M T I  r a d a r  b lo c k  d ia g r a m .
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9.7. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 9.10. The 
canceler’s impulse response is denoted as h ( t). The output y( t ) is equal to the 
convolution between the impulse response h ( t) and the input x  ( t). The single 
delay canceler is often called a “two-pulse canceler” since it requires two dis
tinct input pulses before an output can be read.

The delay T  is equal to the PRI of the radar ( 1 / f r ). The output signal y ( t) is

h(t)

Figure 9.10. Single delay line canceler.

y ( t) = x ( t ) -  x ( t -  T) (9.36)

The impulse response of the canceler is given by

h ( t ) = 8 ( t ) -  8 ( t  -  T) (9.37)

where 8 ( • ) is the delta function. It follows that the Fourier transform (FT) 
of h ( t) is

H (ю) = 1 -  e~j “T (9.38)

where ю = 2 n f .

In the z-domain, the single delay line canceler response is

H (z ) = 1 -  Z_1 (9.39)

The power gain for the single delay line canceler is given by

|Н (ю ) |2 = Н (ю) Н*(ю) = (1 -  e-raT)( 1 -  e raT) (9.40)

It follows that

|Н (ю ) |2 = 1 + 1 -  (ejaT + e-raT) = 2( 1 -  cosюT) (9.41)

and using the trigonometric identity (2  -  2 cos2Ф) = 4 ( sinФ)2 yields
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|Н ( ю ) |2 =  4  ( s in  ( ю  T /  2  ) ) 2 (9.42)

The function “single_canceler.m” computes and plots (as a function of f / f r ) 
the amplitude response for a single delay line canceler. It is given in Listing 9.1 
in Section 9.14. The syntax is as follows:

[re sp ]  = single_canceler (fofr)

where fo f r  is the number of periods desired. Typical output of the function 
“single_canceler.m” is shown in Fig. 9.11. Clearly, the frequency response of a 
single canceler is periodic with a period equal to f r . The peaks occur at 
f  = (2 n + 1) / ( 2 f r) ,  and the nulls are at f  = nfr , where n > 0 .

MATLAB Function “single_canceler.m”

Normalized frequency f / f r 

Figure 9.11. Single canceler frequency response.
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In most radar applications the response of a single canceler is not acceptable 
since it does not have a wide notch in the stop-band. A double delay line can
celer has better response in both the stop- and pass-bands, and thus it is more 
frequently used than a single canceler. In this book, we will use the names “sin
gle delay line canceler” and “single canceler” interchangeably.

9.8. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
9.12. Double cancelers are often called “three-pulse cancelers” since they 
require three distinct input pulses before an output can be read. The double line 
canceler impulse response is given by

h ( t ) = 5 ( t ) -  2 5 ( t  -  T) + 5 ( t  -  2 T ) (9.43)

Again, the names “double delay line” canceler and “double canceler” will be 
used interchangeably. The power gain for the double delay line canceler is

|Я (ю ) |2 = |Я 1(Ю)| > 1  (ю ) |2 (9.44)

where |Я 1(ю ) |2 is the single line canceler power gain given in Eq. (9.42). It 
follows that

|Я (ю ) |2 = 16^ sin (ю  (9.45)

I-------------------------------------------------- 1 I-------------------------------------------------- 1

F ig u re  9 .1 2 . T w o  c o n f ig u ra t io n s  f o r  a  d o u b le  d e la y  lin e  c a n c e le r .
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And in the z-domain, we have

-1 2 - 1 - 2 
H (z ) = (1 -  z ) = 1  -  2z + Z (9.46)

MATLAB Function “double_canceler.m”

The function “ single_canceler.m” computes and plots (as a function of f / f r ) 
the amplitude response for a single delay line canceler. It is given in Listing 9.2 
in Section 9.14. The syntax is as follows:

[resp ]  = double_canceler  (fofr)

where fo f r  is the number of periods desired.

Fig. 9.13 shows typical output from this function. Note that the double can- 
celer has a better response than the single canceler (deeper notch and flatter 
pass-band response).

Normalized frequency f/fr 

Figure 9.13. Normalized frequency responses for single and double cancelers.
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9.9. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The 
advantage of a recursive filter is that through a feedback loop we will be able 
to shape the frequency response of the filter. As an example, consider the sin
gle canceler shown in Fig. 9.14. From the figure we can write

y  ( t ) = x ( t) -  (1 -  K )  w  ( t) 

v ( t) = y ( t) + w  ( t ) 

w  ( t) = v  ( t -  T)

Applying the z-transform to the above three equations yields

(9.47)

(9.48)

(9.49)

Y (z ) = X ( z ) -  (1 -  K ) W ( z )

V( z ) = Y  (z) + W( z )

W  (z ) = z ^ V  (z)

Solving for the transfer function Я  (z ) = Y  (z ) /X  (z ) yields

Я  (z) 1 - z
-i1 -  K z

The modulus square of Я  (z ) is then equal to

Я  (z )| 2 _ ( 1 -  z ^  )( 1 -  z) 2 -  (z + z )

(1 -  K z - )(1 -  K z )  (1 +  K 2) -  K (z + z_1)
юТUsing the transformation z  = yields

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)
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z  +  z  1 =  2 c o s  ю T (9 .55)

Thus, Eq. (54) can now be rewritten as

I -  cos ю T)
(9.56)|H (ej “T) 2 _  2(1  -  cos юT)

(1 + K ) -  2 K  cos (ю T )

Note that when K  = 0 ,  Eq. (9.56) collapses to Eq. (9.42) (single line can
celer). Fig. 9.15 shows a plot of Eq. (9.56) for K  = 0.25, 0.7, 0.9. Clearly, by 
changing the gain factor K  one can control of the filter response.

In order to avoid oscillation due to the positive feedback, the value of K  
should be less than unity. The value (1 -  K)-  is normally equal to the number 
of pulses received from the target. For example, K  = 0.9 corresponds to ten 
pulses, while K  = 0.98 corresponds to about fifty pulses.

N orm alized frequency f / fr

Figure 9.15. Frequency response corresponding to Eq. (9.56). This 
plot can be reproduced using MATLAB program 
“fig9_15.m ” given in Listing 9.3 in Section 9.14.

9.10. PRF Staggering

Blind speeds can pose serious limitations on the performance of MTI radars 
and their ability to perform adequate target detection. Using PRF agility by 
changing the pulse repetition interval between consecutive pulses can extend

© 2000 by Chapman & Hall/CRC



the first blind speed to tolerable values. In order to show how PRF staggering 
can alleviate the problem of blind speeds, let us first assume that two radars 
with distinct PRFs are utilized for detection. Since blind speeds are propor
tional to the PRF, the blind speeds of the two radars would be different. How
ever, using two radars to alleviate the problem of blind speeds is a very costly 
option. A more practical solution is to use a single radar with two or more dif
ferent PRFs.

For example, consider a radar system with two interpulse periods T1 and 
T2 , such that

T1 П1--1- = -- 1 (9.57)
T2 n 2

where n 1 and n 2 are integers. The first true blind speed occurs when

n 1 n 2
— = — (9.58)
T1 T2

This is illustrated in Fig. 9.16 for n 1 = 4 and n2 = 5. Note that if 
n 2 = n 1 + 1, then the process of PRF staggering is similar to that discussed in 
Chapter 3.

The ratio

n 1k s = — (9.59)
S n 2

is known as the stagger ratio. Using staggering ratios closer to unity pushes the 
first true blind speed farther out. However, the dip in the vicinity of 1 /  T1 
becomes deeper, as illustrated in Fig. 9.17 for stagger ratio ks = 6 3 / 64. In 
general, if there are N  PRFs related by

— = — = ... = —  (9.60)
T1 T2 Tn ( )

and if the first blind speed to occur for any of the individual PRFs is v blind1, 
then the first true blind speed for the staggered waveform is

_  n 1 + n2 + !" + nN
v blind n  v blind1 ( . )
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Figure 9.16. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, 
bottom plot corresponds to stagger ratio T1/T2 = 4/3. 
This plot can be reproduced using MATLAB program 
“fig9_16.m ” given in Listing 9.4 in Section 9.14.
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target velocity relative to first blind speed; 63/64

m
43

Соp

target velocity relative to first blind speed; 33/34

Figure 9.17. MTI responses, staggering ratio 63/64. This plot can be 
reproduced using MATLAB program “fig9_17.m ” given 
in Listing 9.5 in Section 9.14.

9.11. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)” 
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio 
between the MTI filter input clutter power C t to the output clutter power C o ,

CA  = C /  C o (9.62)
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T h e  M T I  im p r o v e m e n t  f a c to r  is  d e f in e d  a s  t h e  r a t io  o f  th e  S ig n a l  to  C lu t te r

(S C R )  a t  th e  o u tp u t  to  t h e  S C R  a t  th e  in p u t ,

( C X
(9.63)

which can be rewritten as

C A (9.64)

The ratio So/ S i is the average power gain of the MTI filter, and it is equal to 
\H (ю)| . In this section, a closed form expression for the improvement factor 
using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped 
clutter power spectrum is given by

W f )  = exp (- f  /  2 a 2) (9.65)

where P c is the clutter power (constant), and a c is the clutter rms frequency 
and is given by

a 2 a„ /X (9.66)

where X is the wavelength, and a v is the rms wind velocity, since wind is the 
main reason for clutter frequency spreading. Substituting Eq. (9.66) into Eq. 
(9.65) yields

W (f)
X P„

exp f X  -8---a--
2 7 2 Л a

The clutter power at the input of an MTI filter is

(9.67)

C i
л/2П a c

Factoring out the constant P c yields

exp ---f--2---2---a--2- d f (9.68)

I

2

л/2П a ,
exp --f--2--

2 a c
d f (9.69)

It follows that (Why?)

Ci = Pc (9.70)
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We will continue the analysis using a single delay line canceler. The fre
quency response for a single delay line canceler is given by Eq. (9.38). The sin
gle canceler power gain is given in Eq. (9.42), which will be repeated here, in 
terms of f  rather than ю, as Eq. (9.72),

|Я  ( f  |2 = 4 ( sin ( f  J  (9.72)

It follows that

T h e  c lu t t e r  p o w e r  a t  th e  o u tp u t  o f  a n  M T I  is

C o =  J  W(f)  |Я ( f 1 2 df  (9 .71)

C o = J 7 2 П o,
exp ---f--2--

2 o 2
d f (9.73)

Now, since clutter power will only be significant for small f , then the ratio 
f / f r is very small (i.e., o c « f r ). Consequently, by using the small angle 
approximation Eq. (9.73) is approximated by

C o
Т 2Л o,

which can be rewritten as

exp ---f--2---2---o--c2- d f (9.74)

C o

2

f 2 1 J:
-exp

2 no„

---f--2---2---o--2- f 2 d f (9.75)

The integral part in Eq. (9.75) is the second moment of a zero mean Gaussian 
distribution with variance o c . Replacing the integral in Eq. (9.75) by o c yields

4 P cn  
C  = — c—Co = --- f--r2-- o c (9.76)

Substituting Eqs. (9.76) and (9.70) into Eq. (9.62) produces

C  (  f r  "2
CA C- = ( _ f _  12 

C n l 2 n o J
(9.77)
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It follows that the improvement factor for a single canceler is

f  f - 1  V 2 n a jI  - i f r  ) 2 ' |  ( » - )

The power gain ratio for a single canceler is (remember that \H(f)| is periodic 
with period f r )

f / 2
2i ’ H  f  12 = f J4 f  f  d f

- f /2

(9.79)

2Using the trigonometric identity (2 - 2cos2Ф) = 4 ( sinФ) yields

f / 2

H (f)l2 = f  J  (2  - 2 c o s f f  = 2

f  2

(9.80)

It follows that

2 ( f / ( 2 n a c ) )2 (9.81)

The expression given in Eq. (9.81) is an approximation valid only for 
a c « f r . When the condition a c « f r is not true, then the autocorrelation func
tion needs to be used in order to develop an exact expression for the improve
ment factor.

Example 9.3: A  certain radar  has f r = 800Hz. I f  the clutter rms is 
a c = 6.4H z  (w ooded  hills with a v = 1.16311xm /hr,), f in d  the improvement  

fa c to r  when a single delay line canceler  is used.

Solution: The clutter attenuation CA is

CA  = ( 2! - ;-  J  = f r _80°  , - 12 = 395.771 = 25.974dB
((2 n )(  6.4)

and since So/ S i  = 2 = 3 dB  we g e t

IdB = ( CA  + S y S i ) dB = 3 + 25.97 = 28.974 dB.

9.12. Subclutter Visibiliy (SCV)

The phrase Subclutter Visibility (SCV) describes the radar’s ability to detect 
non-stationary targets embedded in a strong clutter background, for some
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probabilities of detection and false alarm. It is often used as a measure of MTI 
performance. For example, a radar with 10dB  subclutter visibility will be able 
to detect moving targets whose returns are ten times smaller than those of clut
ter. A sketch illustrating the concept of SCV is shown in Fig. 9.18.

If a radar system can resolve the areas of strong and weak clutter within its 
field of view, then the phrase Interclutter Visibility (ICV) describes the radar’s 
ability to detect non-stationary targets between strong clutter points. The sub
clutter visibility is expressed as the ratio of the improvement factor to the min
imum MTI output SCR required for proper detection for a given probability of 
detection. More precisely,

S C V  = I / (  S C R ) o (9.82)

When comparing different radar systems’ performances on the basis of SCV, 
one should use caution since the amount of clutter power is dependent on the 
radar resolution cell (or volume), which may be different from one radar to 
another. Thus, only if the different radars have the same beam widths and the 
same pulse widths can SCV be used as a basis of performance comparison.

C i

S

p o w e r

r ~ \
t a r g e t  л

fc f r e q u e n c y

(a) ( b )

Figure 9.18. Illustration o f SCV. (a) M TI input. 
(b) M TI output.

9.13. Delay Line Cancelers with Optimal Weights
The delay line cancelers discussed in this chapter belong to a family of trans

versal Finite Impulse Response (FIR) filters widely known as the “tapped 
delay line” filters. Fig. 9.19 shows an N-stage tapped delay line implementa
tion.
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When the weights are chosen such that they are the binomial coefficients (coef
ficients o f the expansion (1 -  x ) ) with alternating signs, then the resultant 
MTI filter is equivalent to N-stage cascaded single line cancelers. This is illus
trated in Fig. 9.20 for N  = 4. In general, the binomial coefficients are given by

*■ = ( -1  ) i - 1 (W- , - + N) ! ( , - 1 ) ! ; ‘ = ' ..........N  + 1 (9'83)

Using the binomial coefficients with alternating signs produces an MTI filter 
that closely approximates the optimal filter in the sense that it maximizes the 
improvement factor, as well as the probability of detection. In fact, the differ
ence between an optimal filter and one with binomial coefficients is so small 
that the latter one is considered to be optimal by most radar designers. How
ever, being optimal in the sense of the improvement factor does not guarantee a 
deep notch, nor a flat pass-band in the MTI filter response. Consequently, 
many researchers have been investigating other weights that can produce a 
deeper notch around DC, as well as a better pass-band response.

In general, the average power gain for an N-stage delay line canceler is

S  = П  M 3 = П  4 ( sin f  (9.84)
i = 1 i = 1

where |# 1  ( f  |2 is given in Eq. (9.72). For example, N  = 2  (double delay line 
canceler) gives

N N

Figure 9.19. N-stage tapped delay line filter.
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(a)

(b)
Figure 9.20. Two equivalent three delay line cancelers.

(a) Tapped delay line.
(b) Three cascaded single line cancelers.

So = 16 (  sin ( f )  (9.85)
Si (  ( f ,

Equation (9.84) can be rewritten as

St, -  I“ 1 A ”  = 23X( s ‘” (9.86)

As indicated by Eq. (9.86), blind speeds for an N-stage delay canceler are iden
tical to those of a single canceler. It follows that blind speeds are independent 
from the number of cancelers used. It is possible to show that Eq. (9.86) can be 
written as

So ( N (N  -  1 ) ) 2 ( N (N  -  1 ) ( N  -  2 ) ) 2
+ ... (9.87)| = , +  n 3 + ( N t ! - )  2 + ( W - i X " - 2 - ) 2

A general expression for the improvement factor of an N-stage tapped delay 
line canceler is reported by Nathanson1 to be

1. Nathanson, F. E., Radar Design Principles, second edition, McGraw-Hill, Inc., 
1991.
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(S o /S i)
1 = --- -----N------------------------ (9.88)

X  X 4 w ? p f )

k =1 j  = 1

where the weights w k and Wj are those of a tapped delay line canceler, and 
P(( k  -  j  ) / f r) is the correlation coefficient between the k th  and j th  samples. 
For example, N  = 2 produces

1 = 4 1 1------  (9.89)
1 - j P ^ + 3 P ^

9.14. MATLAB Program/Function Listings

This section contains listings of all MATLAB programs and functions used 
in this chapter. Users are encouraged to rerun these codes with different inputs 
in order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “single_canceler.m”
function  [re sp ] = sing le_can celer f o f r l )
eps = 0 .00001;
fo fr  = 0:0.01:fo fr l;
a rg l = p i  .* fofr;
resp = 4 .0  .* ((sin (arg1)).A2);
m a x l = m ax(resp);
resp = resp . / m ax l;
subplot(2 ,1 ,1)
plot(fofr,resp, 'k')
x labe l ('N orm alized  frequ en cy - f/fr') 
y labe l( 'Amplitude response - Volts') 
g rid
su b p lo t(2 ,l,2 )
re s p = l0 . * lo g l0 (resp + ep s);
plot(fofr,resp, 'k');
axis tight
grid
x labe l ('N orm alized  frequ en cy - f/fr') 
y labe l( 'Amplitude response - dB')

© 2000 by Chapman & Hall/CRC



function  [re sp ] = double_can celer(fofr1)
eps = 0 .00001;
fo fr  = 0:0.01:fofr1;
a rg l = p i  .* fofr;
resp = 4 .0  .*  ((sin (arg1)).A2);
max1 = m ax(resp);
resp = resp . /  max1;
resp2 = resp . * resp;
subplot(2 ,1 ,1);
plot(fofr,resp,'k--',fofr, resp2,'k'); 
y la b e l ('Am plitude response - Volts') 
resp2 = 20. .* log10(resp2+ eps);  
resp1 = 20. .* log10(resp+ eps);  
subplot(2 ,1 ,2)
plot(fofr,resp1,'k--',fofr,resp2,'k'); 
legen d ('single canceler','double canceler') 
x labe l ('N orm alizedfrequency f/fr') 
y la b e l ('Am plitude response - Volts')

Listing 9.2. MATLAB Function “double_canceler.m”

Listing 9.3. MATLAB Program “fig9_15.m”
clear a ll
fo fr  = 0:0 .001:1; 
arg = 2. *pi. *fofr; 
nume = 2 .* (1 .-cos(arg)); 
den11 = (1. + 0 .25  * 0 .25); 
den12 = (2. * 0.25) .*  cos(arg); 
den1 = den11 - den12; 
den21 = 1 .0  + 0 .7  * 0.7; 
den22 = (2. * 0.7) .*  cos(arg); 
den2 = den21 - den22; 
den31 = (1 .0  + 0 .9  * 0.9); 
den32 = ((2. * 0.9) .*  cos(arg)); 
den3 = den31 - den32; 
resp1 = nume . /  den1; 
resp2 = nume . /  den2; 
resp3 = nume . /  den3;
plot(fofr,resp1,'k',fofr,resp2,'k-. ’,fofr,resp3,’k -- ’); 
xlabel('N orm alized  frequency') 
ylabel('A m plitude response') 
legend('K = 0.25 ','K = 0.7 ','K = 0.9 ')  
g rid
axis tight
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clear a ll
fo fr  = 0:0 .001:1;
f1 = 4 .0  .*  fofr;
f2  = 5 .0  * fo fr;
arg1 = p i  .* f1 ;
arg2 = p i  .* f2 ;
resp1 = abs(sin (arg1));
resp2 = abs(sin (arg2));
resp = resp1+ resp2;
max1 = m ax(resp);
resp = resp./m ax1;
plot(fofr, resp1,fofr, resp2,fofr, resp);
x label('N orm alized  frequ en cy f/fr')
y label('F ilter response')

Listing 9.4. MATLAB Program “fig9_16.m”

Listing 9.5. MATLAB Program “fig9_17.m”
clear a ll
fo fr  = 0 .01 :0 .001:32; 
a = 63 .0  /  64.0;
term1 = (1. - 2 .0  .* cos(a*2*pi*fofr) + co s(4 * p i* fo fr))A2;
term 2 = (-2. .*  sin (a*2*pi*fofr) + sin (4*pi*fofr)).A2;
resp = 0 .2 5 .  * sqrt(term 1 + term 2);
resp = 10. .*  log(resp);
plot(fofr,resp);
ax is([0  32 -40 0]);
g rid

Problems

9 . 1 .  Compute the signal-to-clutter ratio (SCR) for the radar described in

Example 9.1. In this case, assume antenna 3dB beam width Q3dB = 0.03 ra d ,

pulse width т = 10|j.s, range R  = 50K m , grazing angle = 15°, target
2 0 2 2 

RCS o t = 0.1 m  , and clutter reflection coefficient о  = 0 .02 ( m / m  ).
2

9 . 2 .  Repeat Example 9.2 for target RCS o t = 0.15m , pulse width 

т = 0.1ц s , antenna beam width 0Я = 0e = 0.03 r a d i a n s ; the detection

range is R  = 100K m  , and ^  o , = 1.6 x  10 9(m 2/ m 3).
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9 . 3 .  The quadrature components of the clutter power spectrum are, respec
tively, given by

S i (f) = 5(f) + -7=  exp (- / / 2  o 2)
л/2Пn o c

S Q (f)
=

‘exp ( - f  / 2o2  )
V2n o c

Compute the D.C. and A.C. power of the clutter. Let o c = 10H z .

9 . 4 .  A certain radar has the following specifications: pulse width 
T  = 1 |j.s , antenna beam width Q = 1.5°, and wavelength X = 3cm.  The 

radar antenna is 7.5m high. A certain target is simulated by two point targets
2

(scatterers). The first scatterer is 4 m  high and has RCS o 1 = 20m . The sec-
2

ond scatterer is 12m high and has RCS o 2 = 1 m  . If the target is detected at

10K m , compute (a) SCR when both scatterers are observed by the radar; (b) 
the SCR when only the first scatterer is observed by the radar. Assume a reflec

tion coefficient of -1  , and o 0 = -3 0 dB  .

9 . 5 .  A certain radar has range resolution of 300m and is observing a target 

somewhere in a line of high towers each having RCS o tower = 106m2 . If the
2

target has RCS o t = 1 m  , (a) How much signal-to-clutter ratio should the 

radar have? (b) Repeat part a for range resolution of 30m.

9 . 6 .  (a) Derive an expression for the impulse response of a single delay line 
canceler. (b) Repeat for a double delay line canceler.
9 . 7 .  One implementation of a single delay line canceler with feedback is 
shown below:

(a) What is the transfer function, H (z )? (b) If the clutter power spectrum is 
W  (f) = w0exp ( - f  / 2  o 2), find an exact expression for the filter power gain. 
(c) Repeat part b for small values of frequency, f . (d) Compute the clutter 
attenuation and the improvement factor in terms of K  and o c .
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9 . 8 .  Plot the frequency response for the filter described in the previous 

problem for K  = -0 .5 , 0, a n d  0.5.

9 . 9 .  An implementation of a double delay line canceler with feedback is 
shown below:

(a) What is the transfer function, H (z ) ? (b) Plot the frequency response for 
K 1 = 0 = K2 , and K 1 = 0.2, K2 = 0.5.

9 . 1 0 .  Consider a single delay line canceler. Calculate the clutter attenua
tion and the improvement factor. Assume that o c = 4 H z  and a PRF

9 . 1 1 .  Develop an expression for the improvement factor of a double delay 
line canceler.
9 . 1 2 .  Repeat Problem 9.10 for a double delay line canceler.
9 . 1 3 .  An experimental expression for the clutter power spectrum density is

expression leads to the same result obtained for the improvement factor as 
developed in Section 9.11.
9 . 1 4 .  Repeat Problem 9.13 for a double delay line canceler.
9 . 1 5 .  A certain radar uses two PRFs with stagger ratio 63/64. If the first 

PRF is f r1 = 5 0 0 H z , compute the blind speeds for both PRFs and for the 

resultant composite PRF. Assume X = 3 cm .

9 . 1 6 .  A certain filter used for clutter rejection has an impulse response 

h (n ) = 5 (n ) -  3 5 (n  -  1) + 3 5 (n  -  2 ) -  5 (n  -  3). (a) Show an implementation 
of this filter using delay lines and adders. (b) What is the transfer function? 
(c) Plot the frequency response of this filter. (d) Calculate the output when the 
input is the unit step sequence.
9 . 1 7 .  The quadrature components of the clutter power spectrum are given 

in Problem 9.3. Let o c = 10H z  and f r = 5 0 0 H z . Compute the improvement 

of the signal-to-clutter ratio when a double delay line canceler is utilized.

f r = 4 5 0 H z .

W ( f  = w0exp (- f 2 / 2 о 2), where w0 is a constant. Show that using this
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9 . 1 8 .  Develop an expression for the clutter improvement factor for single 
and double line cancelers using the clutter autocorrelation function. Assume 
that the clutter power spectrum is as defined in Eq. (9.65).
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Chapter 10 Radar Antennas

An antenna is a radiating element which acts as a transducer between an 
electrical signal in a system and a propagating wave. The Institute of Electrical 
and Electronic Engineers (IEEE)’s Standard Definition of Terms for Antennas 
(IEEE std. 145-1973) defines an antenna as “a mean for radiating or receiving 
radio power.”

10.1. Directivity, Power Gain, and Effective Aperture

Radar antennas can be characterized by the directive gain Gd , power gain 
G , and effective aperture A e . Antenna gain is term used to describe the ability 
of an antenna to concentrate the transmitted energy in a certain direction. 
Directive gain, or simply directivity, is more representative of the antenna radi
ation pattern, while power gain is normally used in the radar equation. Plots of 
the power gain and directivity, when normalized to unity, are called antenna 
radiation pattern. The directivity of a transmitting antenna can be defined by

„  maximum ra d ia tio n  in tensity
Gd = ------------------- Г— ------- :-------- :—  (10.1)ave ra g e  ra d ia tio n  in tensity

The radiation intensity is the power per unit solid angle in the direction 
(0 , ф) and denoted by P (0 , ф ). The average radiation intensity over 4n radi
ans (solid angle) is the total power divided by 4 n . Hence, Eq. (10.1) can be 
written as

G = 4K(m axim um  ra d ia te d  p o w er/ u n it so lid  an g le) (10 2 ) 
D to ta l ra d ia te d  p o w e r
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It follows that

4 nP ( P> ф )max ..........
Gd = 77-------------------  (103)

J J  Р (р ,ф ) dp#

As an approximation, it is customary to rewrite Eq. (10.3) as

Gd “  Ш  (10'4)

where p3 and ф3 are the antenna half-power (3-dB) beamwidths in either 
direction.

The antenna power gain and its d irectivity are related by

G = p G  (10.5)

where pr is the radiation efficiency factor. In this book, the antenna power 
gain w ill be denoted as gain. The radiation efficiency factor accounts for the 
ohmic losses associated with the antenna. Therefore, the definition for the 
antenna gain is also given in Eq. (10.1). The antenna effective aperture A e is 
related to gain by

Ae = (»•*>

where X is the wavelength. The relationship between the antenna’s effective 
aperture A e and the physical aperture A is

Ae = pA (10.7)
0 < p <  1

p is referred to as the aperture efficiency, and good antennas require p — 1 
(in this book p = 1 is alw ays assumed, i.e ., A e = A ).

Using simple algebraic manipulations of Eqs. (10.4) through (10.6) (assum 
ing that pr = 1 ) yields

4nA e 4 n

G = ""х2 - ”  Р3Ф- (10.8)

Consequently, the angular cross section of the beam is

„ , X2
p3Ф3 «  A" (10-9)
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Eq. (10.9) indicates that the antenna beamwidth decreases as J A e increases. It 
follows that, in surveillance operations, the number of beam positions an 
antenna w ill take on to cover a volume V is

_V_
Рэф3

NBeams > —  (10.10)

and when V represents the entire hemisphere, Eq. (10.10) is modified to

2 n 2 nAe g

NBeams > р3-(ф3 ~ 2 (1°.'l1)

10.2. Near and Far Fields

The electric field intensity generated from the energy emitted by an antenna 
is a function of the antenna physical aperture shape and the electric current 
amplitude and phase distribution across the aperture. Plots of the modulus of 
the electric field intensity of the emitted radiation, |£(P, ф)|, are referred to as 
the intensity pattern of the antenna. A lternatively, plots of |£(P, ф)| are called 
the power radiation pattern (the same as P (P , ф )).

Based on the distance aw ay from the face of the antenna, where the radiated 
electric field is measured, three distinct regions are identified. They are the 
near field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel 
regions, rays emitted from the antenna have spherical wavefronts (equi-phase 
fronts). In the Fraunhofer regions the wavefronts can be locally  represented by 
plane waves. The near field and the Fresnel regions are norm ally of little inter
est to most radar applications. Most radar systems operate in the Fraunhofer 
region, which is also known as the far field region. In the far field region, the 
electric field intensity can be computed from the aperture Fourier transform.

Construction of the far criterion can be developed with the help of F ig. 10.1. 
Consider a radiating source at point O that emits spherical waves. A receiving 
antenna of length d is at distance r  aw ay from the source. The phase differ
ence between a spherical wave and a lo ca lly  plane w ave at the receiving 
antenna can be expressed in terms of the distance 5 r . The distance 5 r  is given 
by

g ) 2 - r <10-12)

and since in the far field d «  r , Eq. (10.12) is approximated v ia  binomial 
expansion by

5 r  = AO  -  OB = r2 +
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8 r = r ( Я 1  -  0 -  t
(10.13)

It is customary to assume far field when the distance 8 r  corresponds to less 
than 1 / 16 of a wavelength (i.e., 22.5 ° ). More precisely, if

8 r  = d / 8 r  < X / 16 

then a useful expression for far field is

(10.14)

r  > 2d /X (10.15)

Note that far field is a function of both the antenna size and the operating 
wavelength.

10.3. Circular Dish Antenna Pattern

Circular dish reflectors are widely used in microwave and radar applications 
because of their simplicity in design and fabrication. Additionally, closed form 
far field expressions can be easily computed for all existing modes over the
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circular aperture. Fig. 10.2 shows the geometry associated with a circular aper
ture. Denote the aperture radius as r . A far field observation point P  is 
defined by range R and angular position (P , ф ). The aperture factor at P  is 
given by

E (P, ф) = J  J D(x', y ’ ) e V(x'’y )dx'dy ' (10.16)

a p e r tu r e

Y (x ', y ' ) = k (xr sin P cos ф + y' sin P sin ф) (10.17)

where k = ( 2 п )/ Х , X is the wavelength, and D (x', y ' ) is the current distri
bution over the aperture. Due to the circular nature of the aperture, it is more 
convenient to adopt cylindrical coordinates. It follows that

(10.18)
x' = p cos ф' 

y' = p sin ф'

x' sin P cos ф + y' sin P sin ф = p sin P cos (ф -  ф') (10.19)

dx' dy' = p dp dф' (10.20)

r 2n

E (р ,ф ) = J p  d p J  ejkp sin P “ 8(ф -  Г) dф' (10.21)

0 0

F ig u re  10 .2 . C ir c u la r  a p e r tu r e  g e o m etry .
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where the current distribution over the aperture is assumed to be unity. The 
second integral in Eq. (10.21) is of the form

2n

J  ^ c°sZdZ = 2 J z ) (10.22)

0

where J 0 is the Bessel function of the first kind of order zero. Because of the 
circular symm etry over the aperture, the electric field is independent of ф. 
Hence, E (P , ф) = E (P ) , and Eq. (10.21) can now be rewritten as

E (P ) = 2 n J p  J 0 (k p sin P) dp

0

Using the Bessel function identity

(10.23)

J p J 0( qp)dp = -  J 1 (qr) (10.24)
q

0

leads to the following expression for the aperture factor

2 2 J 1(k rs in P )
E®  = n  r  k r s .n j i <10'251

The far field circular dish antenna pattern is computed as the modulus of the 
aperture factor defined in Eq. (10.25). The first null occurs when the Bessel 
function is zero. More precisely,

^ s in P „ 1  = 1.22П ^  p„1 -  1.222х-  (10'26)

Through tapering (w indowing) the current distribution across the aperture, one 
can sign ificantly reduce the side lobe levels.

MATLAB Function “circ_aperture.m”

The function “circ_aperture.m” computes and plots the antenna patter for a 
circular aperture of diameter d . It is given in L isting 10.1 in Section 10.9. The 
syntax is as follows:

[emod] = circ_aperture (lambda, d)

where lambda is the wavelength and d is the aperture diameter; both param e
ters should be in meters. F ig. 10.3 shows typ ical outputs produced using this 
function. In this example, d = 0 .3 m and X = 0 .1 m .

r

r
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-1 0 -8 -6 -4 -2 0 2 4 6 8 10
kr*s in (angle)

Figure 10.3a. Circular aperture radiation pattern. Typical output produced
by “circ_aperture.m”. d = 0 .3 m ; X = 0.1 m .

Figure 10.3b. Three-dimensional array pattern corresponding to Fig. 10.3a. 
Typical output produced by “circ_aperture.m”.
d = 0 .3 m ; X = 0 .1  m .
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1

Figure 10.3c. Polar plot for a  c ircu lar aperture. Typical output produced by
"circ_aperture.m”. d = 0.3m ; X = 0.1 m .

10.4. Array Antennas

An array is a composite antenna formed from two or more basic radiators. 
Each radiator is denoted as an element. The elements forming an array could 
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator. 
Array antennas synthesize narrow directive beams that may be steered, 
mechanically or electronically, in many directions. Electronic steering is 
achieved by controlling the phase of the current feeding the array elements. 
Arrays with electronic beam steering capability are called phased arrays. 
Phased array antennas when compared to other simple antennas such as dish 
reflectors, are costly and complicated to design. However, the inherent flexibil
ity of phased array antennas to steer the beam electronically and also the need 
for specialized multi-function radar systems have made phased array antennas 
attractive for radar applications.

10 .4 .1 . L in ear A rra y  A ntennas

F ig .10.4 shows a linear array antenna consisting of N identical elements. 
The element spacing is d (normally measured in wavelength units). The com
bined electric field measured at a far field observation point P is computed as 
the product between the array factor and the element pattern,
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E (P ) = E(one elem ent)(array fa c to r) (10.27)

The array factor is a general function of the number of elements, their spacing, 
and their relative phases and magnitudes.

Consider the linear array shown in F ig. 10.4. Let element #1 serve as a phase 
reference for the array. From the geometry, it is clear that an outgoing wave at 
the nth element leads the phase at the (n + 1) th element by k d s in в , where 
k = 2 n / X . The electric field at a far field observation point with direction- 
sine equal to sin в  (assuming isotropic elements) is

(i -  1)(kd sin в) (10.28)

i = 1

Expanding the summation in Eq. (10.28) yields

N

Figure 10.4. L inear a r ra y  of equally  spaced elements.
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• о\ 1 /kdsinВ /(N-1 )(kdsinB)E( sin P) = 1 + e  + .. .  + e  (10.29)

The right-hand side of Eq. (10.29) is a geometric series, which can be 
expressed in the form

N, 2 3 (N -1) 1 -  a ______1 + a + a + a + ...  + a = --------  (10.30)
1 -  a

Replacing a by ejkd:sin P yields

E ( sin B) = 1 -  ejNkdsmfe = 1 -  cosN kdsinP -js in N kdfsin P
1 __ j ^ m f - 1 -  t̂ -Osj jk'C/si-Ш f-- ^ j  sin kd sin в

(10.31)

The far field array intensity pattern is then given by

|E( sin P)| = J e (  sin P) E *( sin P) (10.32)

Substituting Eq. (10.31) into Eq. (10.32) and collecting terms yie ld

I 2 2
|E( sin p )  = (1 -  cosN kdsinP ) -i- ( s i- n -"-/̂jk: <-/ s i- n |3>

'V (1 -  cos kd sin P )2 + ( sin kdsin  p 2)

1 -  cos Nkds in P
1 -  cos kd sin P

2
and using the trigonometric identity 1 -  cos 0 = 2 ( sin 0 / 2) yields

(10.33)

|E ( sin P)| sin (N kd sin P / 2 )
sin (kd sin P/2)

which is a periodic function of kdsin  P , and its period is equal to 2 n .

(10.34)

The maximum value of |E( sin P)| occurs at P = 0 ,  and it is equal to N . It 
follows that the normalized intensity pattern is equal to

\En( sin p )  = N
s in ((N k d sin P )/ 2 )
sin ((kd sin P )/ 2)

The normalized two-way array pattern (radiation pattern) is given by

- 4 2
N2 V s in ( ( k d s in P )/ 2)

(10.35)

. n , ,  . qn|2 1 ( sin ((Nkd sin P )/ 2  ) j  
G (S,nP ) = |En (s . .  p )  = - |  V isinW tdsin В)/ 2 ) j  <10-361

Fig. 10.5 shows a plot of Eq. (10.36) versus sinP for N = 8 . The radiation 
pattern G ( sin P) has cylindrical symm etry about its axis ( sin P = 0 ) ,  and it is 
independent of the azimuth angle. Thus, it is com pletely determined by its va l
ues within the interval (0 < P < n ) . This plot can be reproduced using MAT
LAB program “fig10_5.m ” given in L isting 10.2 in Section 10.9.
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Figure 10.5a. Normalized radiation pattern for a linear array; 
N = 8  and d  = X .

90
1

F ig u re  10 .5b . P o la r  p lo t fo r  th e  r a d ia t io n  p a t te rn  in  F ig . 10 .5 a .
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The main beam of an array can be steered electronically by varying the 
phase of the current applied to each array element. Steering the main beam into 
the direction-sine sin в 0 is accomplished by making the phase difference 
between any two adjacent elements equal to kds in в 0 . In this case, the normal
ized radiation pattern can be written as

If в 0 = 0 then the main beam is perpendicular to the array axis, and the array 
is said to be a broadside array. A lternatively, the array is called an endfire array 
when the main beam points along the array axis.

The radiation pattern m axim a are computed using L’Hopital’s rule when 
both the denominator and numerator of Eq. (10.36) are zeros. M ore precisely,

where the subscript m is used as a m axim a indicator. The first maximum 
occurs at в 0 = 0 ,  and is denoted as the main beam (lobe). Other m axima 
occurring at |m| > 1 are called grating lobes. Grating lobes are undesirable and 
must be suppressed. The grating lobes occur at non-real angles when the abso
lute value of the arc-sine argument in Eq. (10.39) is greater than unity; it fol
lows that d < X . Under this condition, the main lobe is assumed to be at 
в  = 0 (broadside array). A lternatively, when electronic beam steering is con
sidered, the grating lobes occur at

Thus, in order to prevent the grating lobes from occurring between ± 90°, the 
element spacing should be d < X/2 .

The radiation pattern attains secondary m axima (side lobes). These second
ary m axima occur when the numerator of Eq. (10.36) is maximum, or equiva
lently

G( sin в )  = -
N

(10.37)

(10.38)

Solving for в  y ields

; m = 0, 1, 2, . . . (10.39)

sin в  -  sin в 0| = ±-^- ; n = 1, 2, . . . (10.40)

Nkd sin в------2------

Solving for в  y ields

= ±(2 1 + 1 )n  ; l = 1, 2, . . . (10.41)
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Л  X 2 l + 14  , , „
в  = as,n (±  s n H  : l = ‘ - 2 , .

(10 .42 )

where the subscript l is used as an indication of side lobe m axima. The nulls of 
the radiation pattern occur when only the numerator of Eq. (10.36) is zero. 
M ore precisely,

N n = 1 ,  2, . . .
-  kdsin  В = ±n n ; (10.43)
2 v n Ф N, 2N, .. .

Again solving for в  yields

в ” = asin (± sN J
n = 1, 2, . . .

(10.44)
n ФN, 2N, .. .

where the subscript n is used as a null indicator. Define the angle which corre
sponds to the half power point as в * . It follows that the half power (3 dB) 
beam width is 2 |в,„ -  в *  . This occurs when

/ x 2 782J
kd sin в* = 1.391 rad ians  ^  в* = asin f д- J (10.45)

MATLAB Function “linear_array.m”

The function “linear_array.m” computes and plots the linear array radiation 
pattern, in linear and polar coordinates. This function is given in L isting 10.3 in 
Section 10.9. The syntax is as follows:

[emod] = linear_array (ne, d, betaO)

where

Symbol Description Units Status
ne number of elements in array none input

d element spacing (e.g.,
d = X; d = X/2 )

wavelengths input

betaO steering angle degrees input

emod radiation pattern vector dB output

Fig. 10.6 shows typ ical outputs produced using this function. In this exam 
ple, ne = 8 , d = X/2 ,  and beta0 = 30° . The array axis is assumed to be 
aligned with the line passing through the 90-to-270 degrees line. Fig. 10.7 is 
sim ilar to Fig. 10.6 except in this case d = X and beta0  = 0 ° . Note how the 
grating lobes get closer to the main beam as the element spacing is increased, 
thus, lim iting the electronic steering capability of the array to within the first 
pair of grating lobes.
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Figure 10.6a. Normalized radiation pattern for a linear array. N = 8  ,
d = X/2 , and Pq = 3 0 ° .
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F ig u re  10 .6b . P o la r  p lo t co rre sp o n d in g  to  F ig . 10 .6 a .
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Figure 10.7a. Normalized radiation pattern for a linear array. N = 8  ,
d = 1.5X , and Pq = 0 ° .
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F ig u re  10 .7b . P o la r  p lo t co rre sp o n d in g  to  F ig . 10 .7 a .
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10.5. Array Tapering

Fig. 10.8 shows a normalized two-way radiation pattern of a uniformly 
excited linear array of size N = 8 , element spacing d = X/ 2 . The first side 
lobe is about 13.46 dB below the main lobe, and for most radar applications 
this may not be sufficient.

In order to reduce the side lobe levels, the array must be designed to radiate 
more power towards the center, and much less at the edges. This can be 
achieved through tapering (windowing) the current distribution over the face 
of the array. There are many possible tapering sequences that can be used for 
this purpose. However, as known from spectral analysis, windowing reduces 
side lobe levels at the expense of widening the main beam. Thus, for a given 
radar application, the choice of the tapering sequence must be based on the 
trade-off between side lobe reduction and main beam widening.

s i ne  a n g l e  - d i m e n s i o n l e s s

Figure 10.8. Normalized rad iation  pattern  for a  lin ear a rray .
N = 8  and d = X/ 2 .

10.6. Computation o f the Radiation Pattern via the DFT
Fig. 10.9 shows a linear array of size N , element spacing d , and wavelength 

X . The radiators are circular dishes of diameter D = d . Let w (n) and n ) ,  
respectively, denote the tapering and phase shifting sequences. The normalized 
electric field at a far field point in the direction-sine sin в is
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D
Figure 10.9. L inear a r ra y  of size 5, w ith tapering and phase shifting hardw are.

N - 1 'лжГ fN-1J&ф\ n - 1 ——
E( sin в )  = ^  w (n)e (10.46)

n = 0
where in this case the phase reference is taken as the physical center of the 
array, and

&ф = ^ -^ s in  в  (10.47)
X

Expanding Eq. (10.46) and factoring the common phase term 
exp [ j (N -  1 )&ф/2 ] y ie ld

w  • 04 j(N -  1)&ф/2г s -j (N -  1)&ф /14 -J(N -  2)&ф .„„.„IE ( sin в )  = e  {w (0 ) e + w ( 1) e Jy ’  ̂ (10.48)
+ .. .  + w (N -  1)}

B y using the symm etry property of a window sequence (remember that a w in
dow must be sym m etrical about its central point), w e can rewrite Eq. (10.48) as

E( sin в )  = A  w(N  -  1 )e-(N -  1)Лф + w (N  -  2 ) e- '(N-  2)&ф (10.49)
+ ...  + w (0 )}

where ф0 = (N -  1 )&ф/2 .

Define { V[ = exp ( ̂ &Фп ) ;n = 0, 1, . . .  , N -  1} . It follows that
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E( sin в )  = e^° [ w (0 ) + w (1 ) v j + . . .  + w (N -  1) ̂  1 ] (10.50)

N -  1
)Фо '

e 0 ^  w ( n ) V

The discrete Fourier transform of the sequence w ( n) is defined as

N 1 Jj2nnk)
N

W (k) = ^  w ( n ) e ; k = 0, 1 , . . .  , N -  1 (10.51)

n = 0

The set { sin e k} which makes V1 equal to the DFT kernel is 

Xk
sin e k = Nd ; k = 0  1> -  > N -  1 (10.52)

Then by using Eq. (10.52) in Eq. (10.51) yields

E( sin в )  = в Ф0 W( k) (10.53)

The one-way array pattern is computed as the modulus of Eq. (10.53). It fol
lows that the one-way radiation pattern of a tapered linear array of circular 
dishes is

G( sin в )  = Ge(Nd)| W(k)| (10.54)

where Ge is the element pattern. F ig. 10.10 shows the one-way array pattern 
for a linear array of size N = 16 , element spacing d = X/ 2 ,  and the e le 
ments being circular dishes of diameter D = d ; no tapering is utilized.

10.7. Array Pattern fo r Rectangular Planar Array

Fig. 10.11 shows a sketch of an N x  N planar array formed from a rectangu
lar grid. Other planar array configurations m ay be composed using a circular or 
hexagonal grid. Planar arrays can be steered electronically in both azimuth and 
elevation (в , ф).

If the array were composed of only one line of elements distributed along the 
x-axis, then the electric field at a far field observation point defined by (в , ф) 
is
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s i ne a n g l e  - d i m e n s i o n l e s s

isotropic elements

s i ne a n g l e  - d i m e n s i o n l e s s

circular dishes
Figure 10.10. Normalized one-way pattern for lin ear a r ra y  of size 8, 

isotropic elements, and c ircu lar dishes. This plot can be 
reproduced using MATLAB program  “fig10_10.m” 
given in L isting 10.4 in Section 10.9.
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Figure 10.11. P lanar a r ra y  geometry.

E (в ,Ф ) = x
j( n -  1) kdx sin p cos ф

e

n=1

(10.55)

where dx is the element spacing along the x-axis. Now, if  N of these linear 
arrays are placed next to one another along the y-axis, a rectangular array 
would be formed. In this case, the total electric field at a far field observation 
point is computed as

e  (в ,ф ) = Е х(в,ф ) Е у(в ,ф ) = x  Е х(в,ф ) e
j(m -  1)kdy sin в sin ф

(10.56)

m=1

where

E ,(в ,ф ) = x
j(m -  1)kdy sin в sinф

e (10.57)

=1

and dy is the element spacing along the y-axis.

N

N

N
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The rectangular array one-way intensity pattern is then equal to the product of 
the individual patterns. M ore precisely,

Е (в , ф) =
sin ( (Nkdx sin в  cos ф)/2) sin ( (Nkdy sin в  sin ф)/2)
sin ( (kdx sin в  cos ф)/2) sin ( ( kdy sin в  sinф)/2)

(10.58)

The radiation pattern maxima, nulls, side lobes, and grating lobes in both the x- 
and y-ax is are computed in a sim ilar fashion to the linear array case. Addition
ally, the same conditions for grating lobes control are applicable.

MATLAB Function “rect_array.m”

The function “rect_array.m” computes and plots the linear array radiation 
pattern, in linear and polar coordinates. This function is given in L isting 10.5 in 
Section 10.9. The syntax is as follows:

[emod] = rect_array (nex, ney, dx, dy)

where

Symbol Description Units Status
nex number of elements in x-direction none input

ney number of elements in y-direction none input

dx element spacing in x-direction 
(e.g. d = X; d = X/2 )

wavelengths input

dy element spacing in y-direction 
(e.g. d = X; d = X/2 )

wavelengths input

emod radiation pattern vector dB output

Fig. 10.12 shows a three-dimensional radiation pattern for a rectangular array 
of size 5 x  5 ,  element spacing dx = dy = X/2 , and isotropic elements.

10.8. Conventional Beamforming

Adaptive arrays are phased array antennas that are norm ally used to auto
m atically  sense and elim inate unwanted signals entering the radar's F ield of 
View (FOV), w hile enhancing reception about the desired target returns. For 
this purpose, adaptive arrays utilize a rather complicated combination of hard
ware and require demanding levels of software implementation. Through feed
back networks, a proper set of complex weights is computed and applied to 
each channel of the array. Adaptive array operation can be considered a special 
case of beamforming, where the basic idea is to enhance the signal in a certain 
direction w hile attenuating noise in a ll other directions.

© 2000 by Chapman & Hall/CRC



F ig u re  10 .12b . C o n to u r  p lo t c o rre sp o n d in g  to  F ig . 10 .1 2a .
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M ultip le beams can be formed at the transmitting or receiving modes. Also, 
it can be carried out at the RF, IF, base band, or d igital levels. RF beamforming 
is the simplest and most common technique. In this case, multiple narrow 
beams are formed through the use of phase shifters. IF and base band beam- 
forming require complex coherent hardware. However, the system  is operated 
at lower frequencies where tolerance is not as critical. D igital beamforming is 
more flexib le than RF, IF, or base band techniques, but it requires a demanding 
level of parallel VLSI processing hardware.

A successful implementation of adaptive arrays depends heavily on two fac
tors: first, a proper choice of the reference signal, which is used for comparison 
against the received target/jammer returns. A good estimate of the reference 
signal makes the computation of the weights system atic and effective. On the 
other hand, a bad estim ate of the reference signal increases the array's adapting 
time and lim its the system  to im practical (non-real time) situations. Second, a 
fast (real time) computation of the optimum weights is essential. There have 
been many algorithms developed for this purpose. Nevertheless, they all share 
a common problem, that is the computation of the inverse of a complex matrix. 
This drawback has lim ited the implementation of adaptive arrays to experi
mental systems or small arrays.

Consider a linear array of N equally spaced elements, and a plane wave inci
dent on the aperture with direction-sine sin в  , as shown in Fig. 10.13. Conven
tional beamformers appropriately delay the outputs of each sensor to form a 
beam steered at angle в  . The output of the beamformer is

where d is the element spacing and c is the speed of light. Fourier transforma
tion of Eq. (10.59) yields

N -  1

У( t) = X  xn(t -  Tn) (10.59)

n =0

Tn = (N -  1 -  n) c- sin в ; n = N -  1 (10.60)

N -1

Y(w) = X  Xn ( w )ex p (-jrnXn) (10.61)

n=0
which can be written in vector form as

(10 .62 )
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Figure 10.13. A lin ear a r ra y  of size N , element spacing d , and 
an incident p lane wave defined by sin в  .

a = [ exp (j a x  o) exp(jaT 1) . . .  exp(jaTN -1)] (10.63)

->f
X = [X0(Ю) X 1 (f f l) . . .Xn- 1(ffl)]* (10.64)

where the superscript f indicates complex conjugate transpose.

Let A 1 be the amplitude of the wavefront defined by sin в 1 ; it follows that 
the vector X  is given by

X = A 1 sk1 (10.65)

where sk1 is a steering vector, and in general sk is given by

sk = [ 1 • exp( -jk )  • • exp( - j (  N -  1) k) ] ;  k = = =  • sin в  (10.66)
X

Ignoring the phase term exp(-j(N  -  1) k) ,  we can write Eq. (10.63) as

a = sk (10.67)

and the beamformer output w ill be
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The array pattern of the beam steered at k 1 is computed as the expected value 

of Y . In other words,

Y = a X = A 1sk1 sk (10.68)

Г * *  T i
YY »

= P 1 sk Ksk (10.69)
> *

where P 1 = E [ |A 1\2] and И is the correlation matrix. If X  = A 1 sk1 , then 
the power spectrum is

S (k) = P 1sk sk1 sk1 sk (10.70)

Consider L incident plane waves with directions of arrival defined by

k: = ^ p -s in  в ; ; i = 1, L (10.71)
X

The nth sample at the output of the mth sensor is

y m( n) = u (  n ) + X  Aj ( n) exp( -jm ki) ; m = 0, N -  1 (10.72)

i = 1

where A ;( n) is the amplitude of the ith plane wave, and u ( n) is white, zero- 
mean noise with variance , and it is assumed to be uncorrelated with the 
signals. Eq. (10.72) can be written in vector notation as

y ( n) = u (  n) + X  A ; ( n) ski (10.73)

A set of L steering vectors is needed to sim ultaneously form L beams. 
Define the steering matrix N as

N > > >
sk1 sk2 . skL (10.74)

Then the autocorrelation matrix of the field measured by the array is

И = E {ym ( n) ym  ( n)}  = oU I  + N C Nf (10.75)

where C = d ig | P 1 P 2 . . .  PL] , and I  is the identity matrix.

The array pattern can now be computed using standard spectral estimators. 
For example, using the Bartlett beamformer yields

L

L
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S ( k) = sk ^ s k (10 .76 )

The spectrum defined by Eq. (10.76) generates spectral peaks at angles в; for 
each wavefront defined by k{. Assuming the ith wavefront, then the SNR is

10.9. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used 
in this chapter. Users are encouraged to rerun these codes with different inputs 
in order to enhance their understanding of the theory.

Listing 10 .1 . M ATLAB F unction “circ_ap ertu re.m ”

function [emod] = circ_aperture (lambda, d) 
eps = 0 .0 00001 ; 
k = 2. * p i / lambda; 
r  = d /2.;
beta = -pi:pi/200.:pi; 
sinbet = sin(beta);
var = k * r  .* sinbet; % 2.0 * pi * (-2 :0 .001:2);
pattern = (2. * rA2) .* besselj(1,var)./ (var);
maxval = max(abs(pattern));
pattern = pattern ./ maxval;
emod = 20. * log10(abs(pattern));
figure(1)
plot(var,emod,'k')
grid;
xlabel('kr*sin(angle)') 
ylabel('Normalized radiation pattern'); 
minval = fix(m in(var)); 
maxval = fix(m ax(var)); 
var3d  = minval:.5:m axval;
[X,Y] = meshgrid(var3d,var3d);
U = sqrt(X.A2 + Y.A2) + eps;
z = 2. * besselj(1,U )./ U;
figure (2)
mesh(abs(z))
axis o ff
figure(3)

(10.77)
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polar(beta,pattern,'k')

clear all
eps = 0 .0000001;
beta = -p i : p i / 10 7 91  : p i;
v a r = sin(beta);
% var = -1 .:0 .0 0 10 1 :1 .;  
num = sin((8. * 2. * pi * 0.5) .* var); 
if(abs(num) <= eps) 

num = eps; 
end
den = sin((2. * p i * 0.5) .* var); 
if(abs(den) <= eps) 

den = eps; 
end
pattern = num ./ den; 
maxval = max(abs(pattern)); 
pattern = abs(pattern./ maxval); 
i=0;
mod=abs(pattern); 
figure (1) 
plot(var,mod,'k'); 
grid;
xlabel('sine angle - dimensionless') 
ylabel('array pattern') 
figure(2)
polar(beta,abs(pattern), 'k')

Listing 10.2. MATLAB Program “fig10_5.m”

Listing 10 .3 . M ATLAB F unction “lin ear_array .m ”

function [emod] = linear_array (ne, d, beta0) 
eps = 0 .0000001; 
beta = 0 : p i / 10 7 91  : 2.*pi; 
beta0 = beta0 * p i /180.; 
var = sin(beta) - sin(beta0); 
num = sin((0.5 * ne * 2. * pi * d) .* var); 
if(abs(num) <= eps) 

num = eps; 
end
den = sin((0.5 * 2. * pi * d) .* var); 
if(abs(den) <= eps) 

den = eps;
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end
pattern = num ./ den; 
maxval = max(abs(pattern)); 
pattern = abs(pattern./ maxval); 
emod=abs(pattern); 
figure(1)
plot(sin(beta),emod, 'k'); 
grid;
xlabel('sine angle - dimensionless') 
ylabel('array pattern') 
figure(2)
polar(beta,abs(pattern), 'k')

Listing 10 .4 . M ATLAB P rogram  “f ig 1 0 _ 1 0 .m ”

pattern = num ./ den; 
maxval = max(abs(pattern)); 
pattern = abs(pattern ./ maxval);
i = 0.;
fo r  ii= -1 :0 .0 01 :1
i = i + 1.;
if(pattern(i) < 0 .001)  

pattern(i) = 0 .0011 ;  
end 
end
mod = abs(pattern); 
subplot(2,1,1);
plot(var,20.0  .* log10(mod),'k'); 
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern')
gtext('main lobe');
gtext('grating lobe');
gtext('grating lobe');
var1 = 1. * pi .* var;
patternj = 2. .* b esse lj(1,var1)./ va r1 ;
mod = abs(pattern) .* abs(patternj);
subplot(2,1,2);
plot(var,20.0  .* log10(mod),'k'); 
grid;
xlabel('sine angle - dimensionless') 
ylabel('array pattern') 
gtext('main lobe'); 
gtext('grating lobe');
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gtext('grating lobe');

function emod = rect_array(nex,ney,dx,dy) 
eps = 0 .0000001; 
factx = nex * 2. * pi * 0.5  * dx ; 
facty  = ney * 2. * pi * 0.5  * dy ;
ii = 0.;
delpi = p i / 10 .;
fo r  betax = 0 .+ d elp i: p i/ 10 1 : 2.*pi-delpi

ii = ii + 1.;
numx = sin(factx * sin(betax)); 

if(abs(numx) <= eps) 
numx = eps; 

end
denx = sin(factx * sin(betax) / nex); 
if(abs(denx) <= eps) 

denx = eps; 
end 

j j  = ° . ;
fo r  betay = 0 .+ d elp i: p i/ 10 1 : 2.*pi-delpi 

j j  = j j  + 1 .;
numy = sin(facty * sin(betay)); 
if(abs(numy) <= eps) 

numy = eps; 
end
deny = sin(facty * sin(betay) / ney); 
if(abs(deny) <= eps) 

deny = eps; 
end
emod(ii,jj) = abs(numx / denx) * abs(numy / deny); 

end 
end
maxval = max(max(emod));
emod = emod ./ maxval;
figure(1)
mesh(emod)
figure(2)
contour(emod)

Listing 10.5. MATLAB Function “rect_array.m”
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Problems

1 0 . 1 .  Consider an antenna whose diameter is d = 3 m . W hat is the far 
field requirement for an X-band or an L-band radar that is using this antenna?
1 0 . 2 .  Consider an antenna with electric field intensity in the xy-plane 
E ( c ) . This electric field is generated by a current distribution D (y ) in the yz- 
plane. The electric field intensity is computed using the integral

r / 2

E (c ) = J  D ( y ) exp{2n j^ sin c^dy

-r / 2

where X is the wavelength and r  is the aperture. (a) W rite an expression for 
E (c ) when D ( Y) = d0 (a constant). (b) W rite an expression for the normal
ized power radiation pattern and plot it in dB.

1 0 . 3 .  A linear phased array consists of 50 elements with X/2 element 
spacing. (a) Compute the 3dB beam width when the main beam steering angle 
is 0 ° and 45° . (b) Compute the electronic phase difference for any two con

secutive elements for steering angle 60° .

1 0 . 4 .  A linear phased array antenna consists of eight elements spaced with 
d = X element spacing. (a) Give an expression for the antenna gain pattern 
(assume no steering and uniform aperture weighting). (b) Sketch the gain pat
tern versus sine of the off boresight angle в  . W hat problems do you see is 

using d = X rather than d = X/2 ?

1 0 . 5 .  In Section 10.6 we showed how a DFT can be used to compute the 
radiation pattern of a linear phased array. Consider a linear of 64 elements at 
h alf wavelength spacing, where an FFT of size 512 is used to compute the pat
tern. W hat are the FFT bins that correspond to steering angles в  = 30°, 45° ?

© 2000 by Chapman & Hall/CRC



Chapter 11 Target Tracking

Part I: Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in 
range, azimuth angle, elevation angle, and velocity. Then, by using and keep
ing track of these measured parameters the radar can predict their future val
ues. Target tracking is important to military radars as well as to most civilian 
radars. In military radars, tracking is responsible for fire control and missile 
guidance; in fact, m issile guidance is almost impossible without proper target 
tracking. Commercial radar systems, such as civilian airport traffic control 
radars, may utilize tracking as a means of controlling incoming and departing 
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle 
tracking. It is also customary to distinguish between continuous single-target 
tracking radars and multi-target track-while-scan (TW S) radars. Tracking 
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason 
that a separate search radar is needed to facilitate target acquisition by the 
tracker. Still, the tracking radar has to search the volume where the target’s 
presence is suspected. For this purpose, tracking radars use special search pat
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

11.1. Angle Tracking

Angle tracking is concerned with generating continuous measurements of 
the target’s angular position in the azimuth and elevation coordinates. The 
accuracy of early generation angle tracking radars depended heavily on the 
size of the pencil beam employed. Most modern radar systems achieve very 
fine angular measurements by utilizing monopulse tracking techniques.
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Tracking radars use the angular deviation from the antenna main axis of the 
target within the beam to generate an error signal. This deviation is normally 
measured from the antenna’s main axis. The resultant error signal describes 
how much the target has deviated from the beam main axis. Then, the beam 
position is continuously changed in an attempt to produce a zero error signal. If 
the radar beam is normal to the target (maximum gain), then the target angular 
position would be the same as that of the beam. In practice, this is rarely the 
case.

In order to be able to quickly achieve changing the beam position, the error 
signal needs to be a linear function of the deviation angle. It can be shown that 
this condition requires the beam’s axis to be squinted by some angle (squint 
angle) off the antenna’s main axis.

1 1 .1 .1 .  Seq uen tia l Lobing

Sequential lobing is one of the first tracking techniques that was utilized by 
the early generation of radar systems. Sequential lobing is often referred to as 
lobe switching or sequential switching. It has a tracking accuracy that is lim
ited by the pencil beam width used and by the noise caused by either mechani
cal or electronic switching mechanisms. However, it is very simple to 
implement. The pencil beam used in sequential lobing must be symmetrical 
(equal azimuth and elevation beam widths).

Tracking is achieved (in one coordinate) by continuously switching the pen
cil beam between two pre-determined symmetrical positions around the 
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is 
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 11.1.

As the beam is switched between the two positions, the radar measures the 
returned signal levels. The difference between the two measured signal levels 
is used to compute the angular error signal. For example, when the target is 
tracked on the tracking axis, as the case in Fig. 11.1a, the voltage difference is 
zero and, hence, is also the error signal. However, when the target is off the 
tracking axis, as in Fig. 11.1b, a nonzero error signal is produced. The sign of 
the voltage difference determines the direction in which the antenna must be 
moved. Keep in mind, the goal here is to make the voltage difference be equal 
to zero.

In order to obtain the angular error in the orthogonal coordinate, two more 
switching positions are required for that coordinate. Thus, tracking in two 
coordinates can be accomplished by using a cluster of four antennas (two for 
each coordinate) or by a cluster of five antennas. In the latter case, the middle 
antenna is used to transmit, while the other four are used to receive.
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beam A beam B 
return return

beam A
return beam B 

return

(b)

Figure 11.1. Sequential lobing. (a) Target is located on track  axis. 
(b) Target is off track  axis.

11 .1 .2 . C onical Scan

Conical scan is a logical extension of sequential lobing where, in this case, 
the antenna is continuously rotated at an offset angle, or has a feed that is 
rotated about the antenna’s main axis. Fig. 11.2 shows a typical conical scan 
beam. The beam scan frequency, in radians per second, is denoted as rns . The 
angle between the antenna’s LOS and the rotation axis is the squint angle ф. 
The antenna’s beam position is continuously changed so that the target will 
always be on the tracking axis.

Fig. 11.3 shows a simplified conical scan radar system. The envelope detec
tor is used to extract the return signal amplitude and the Automatic Gain Con
trol (AGC) tries to hold the receiver output to a constant value. Since the AGC 
operates on large time constants, it can hold the average signal level constant 
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth and elevation) are functions of the target’s RCS; they are 
functions of its angular position with the main beam axis.

In order to illustrate how conical scan tracking is achieved, we w ill first con
sider the case shown in Fig. 11.4. In this case, as the antenna rotates around the 
tracking axis all target returns have the same amplitude (zero error signal). 
Thus, no further action is required.

feed

Figure 11.2. Conical scan beam.
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F ig u re  11 .3 . S im p lif ie d  co n ic a l s c a n  r a d a r  sy s tem .
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axis for conical scan.

Next, consider the case depicted by Fig. 11.5. Here, when the beam is at 
position B, returns from the target w ill have maximum amplitude. And when 
the antenna is at position A, returns from the target have minimum amplitude. 
Between those two positions, the amplitude of the target returns w ill vary 
between the maximum value at position B, and the minimum value at position 
A. In other words, Amplitude Modulation (AM) exists on top of the returned 
signal. This AM envelope corresponds to the relative position of the target 
within the beam. Thus, the extracted AM envelope can be used to derive a 
servo-control system in order to position the target on the tracking axis.

Now, let us derive the error signal expression that is used to drive the servo- 
control system. Consider the top view of the beam axis location shown in Fig.
11.6. Assume that t = 0 is the starting beam position. The locations for maxi
mum and minimum target returns are also identified. The quantity £ defines 
the distance between the target location and the antenna’s tracking axis. It fol
lows that the azimuth and elevation errors are, respectively, given by

£a = £ sin ф (11.1)

£e = £ cos ф (11.2)

These are the error signals that the radar uses to align the tracking axis on the 
target.
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Figure 11.5. E rror signal produced when the target is off the 
track ing axis for conical scan.

F ig u re  11 .6 . Top v iew  o f  b ea m  a x is  fo r  a  co m p le te  scan .
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T h e  A M  s ig n a l  E ( t)  c a n  th en  b e  w r it t e n  a s

E( t) = E0cos ( a st -  ф) = E0ee cos a st + E0ea sin a st (11 .3)

where E0 is a constant called the error slope, ras is the scan frequency in rad i
ans per seconds, and ф is the angle already defined. The scan reference is the 
signal that the radar generates to keep track of the antenna’s position around a 
complete path (scan). The elevation error signal is obtained by m ixing the sig
nal E(t) with cos o>st (the reference signal) followed by low pass filtering. 
M ore precisely,

Ee( t) = E0cos(a>st -  ф )cos a>st = -  2E0cosф + 1-cos (2 a>st -  ф) (11.4) 

and after low pass filtering w e get

Negative elevation error drives the antenna beam downward, w hile positive 
elevation error drives the antenna beam upward. S im ilarly, the azimuth error 
signal is obtained by m ultiplying E ( t) by sin a st followed by low pass filter
ing. It follows that

The antenna scan rate is lim ited by the scanning mechanism (m echanical or 
electronic), where electronic scanning is much faster and more accurate than 
mechanical scan. In either case, the radar needs at least four target returns to be 
able to determine the target azimuth and elevation coordinates (two returns per 
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of 
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error 
signal can be measured. However, due to the squint angle, the antenna gain in 
the direction of the tracking axis is less than maximum. Thus, when the target 
is in track (located on the tracking axis), the SNR suffers a loss equal to the 
drop in the antenna gain. This loss is known as the squint or crossover loss. 
The squint angle is norm ally chosen such that the two-way (transmit and 
receive) crossover loss is less than a few decibels.

11.2. Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is sim ilar to lobing in the sense 
that four squinted beams are required to measure the target’s angular position. 
The difference is that the four beams are generated sim ultaneously rather than

Ee (t) = -  1 E0cos ф (11.5)

Ea ( t) = ^ E0sin ф (11.6)
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sequentially. For this purpose, a special antenna feed is utilized such that the 
four beams are produced using a single pulse, hence the name “monopulse.” 
Additionally, monopulse tracking is more accurate and is not susceptible to 
lobing anomalies, such as AM  jam m ing and gain inversion ECM. Finally, in 
sequential and conical lobing variations in the radar echoes degrade the track
ing accuracy; however, this is not a problem for monopulse techniques since a 
single pulse is used to produce the error signals. Monopulse tracking radars can 
employ both antenna reflectors as w ell as phased array antennas.

F ig. 11.7 show a typ ical monopulse antenna pattern. The four beams A, B, C, 
and D represent the four conical scan beam positions. 
horns, are used to produce the monopulse antenna 
monopulse processing requires that the four signals have 
different amplitudes.

A

Figure 11.7. Monopulse antenna pattern .

A good w ay to explain the concept of amplitude monopulse technique is to 
represent the target echo signal by a circle centered at the antenna’s tracking 
axis, as illustrated by Fig. 11.8a, where the four quadrants represent the four 
beams. In this case, the four horns receive an equal amount of energy, which 
indicates that the target is located on the antenna’s tracking axis. However, 
when the target is off the tracking axis (F igs. 11.8b-d ), an unbalance of energy 
occurs in the different beams. This unbalance of energy is used to generate an 
error signal that drives the servo-control system. Monopulse processing con
sists of computing a sum X and two difference A (azimuth and elevation) 
antenna patterns. Then by dividing a A channel voltage by the X channel volt
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of a ll beam 
returns to sense the amount of target displacement off the tracking axis. It is 
critical that the phases of the four signals be constant in both transmit and 
receive modes. For this purpose, either d igital networks or m icrowave compar
ator circuitry are utilized. Fig. 11.9 shows a block diagram  for a typ ical m icro
wave comparator, where the three receiver channels are declared as the sum 
channel, elevation angle difference channel, and azimuth angle difference 
channel.

Four feeds, m ainly 
pattern. Amplitude 
the same phase and
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(c)

Figure 11.8. Illustration of monopulse concept. (a) Target is on the 
track ing axis. (b) - (d) Target is off the track ing axis.

To generate the elevation difference beam, one can use the beam difference 
(A-D) or (B -C ). However, by first forming the sum patterns (A+B) and (D+C) 
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva
tion difference signal, Ae l. Similarly, by first forming the sum patterns (A+D) 
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi
muth difference signal, Aaz, is produced.

A simplified monopulse radar block diagram is shown in Fig. 11.10. The 
sum channel is used for both transmit and receive. In the receiving mode the 
sum channel provides the phase reference for the other two difference chan
nels. Range measurements can also be obtained from the sum channel. In order 
to illustrate how the sum and difference antenna patterns are formed, we w ill 
assume a sin ф/ф single element antenna pattern and squint angle ф0 .The 
sum signal in one coordinate (azimuth or elevation) is then given by

sin (ф -  ф0 ) sin (ф + ф0) 
Х(ф) — ---------------- + -----------------

( ф -  ф 0) ( ф + ф0 )
(11 .7)
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Figure 11.10. Sim plified am plitude comparison monopulse rad a r  block d iagram .
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an d  a  d if f e r e n c e  s ig n a l  in  th e  s a m e  c o o rd in a te  is

= ЗШ( ф -ф 0) -  Ш1(ф + ф.;)

(ф -  ф .) (ф + Ф .)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (11.7) and (11.8). Its output 
includes plots of the sum and difference antenna patterns as w ell as the differ- 
ence-to-sum ratio. It is given in L isting 11.1 in Section 11.10. The syntax is as 
follows:

mono_pulse (phi0) 

where phi0 is the squint angle in radians.

F ig. 11.11 (a -c) shows the corresponding plots for the sum and difference 
patterns for ф. = 0.15 radians. F ig. 11.12 (a -c) is sim ilar to Fig. 11.11, except 
in this case ф. = 0.75 radians. C learly, the sum and difference patterns 
depend heav ily  on the squint angle. Using a relatively small squint angle pro
duces a better sum pattern than that resulting from a larger angle. Additionally, 
the difference pattern slope is steeper for the sm all squint angle.

A n g l e  - r a d i a n s

F ig u re  11 .11a. Tw o sq u in te d  p a t te rn s . S q u in t  a n g le  is  ф . = 0 .1 5  r a d ia n s .
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Figure 11.11b. Sum pattern  corresponding to Fig. 11.11a.

A n g l e  - r a d i a n s

F ig u re  11 .11c. D iffe ren ce  p a t te rn  co rre sp o n d in g  to  F ig . 11 .11a.
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ure 11.12a. Two squinted patterns. Squint angle is ф0 — 0.75 rad ians.

Angle - radians

F ig u re  11 .12b . S u m  p a t te rn  co rre sp o n d in g  to  F ig . 11 .12a .
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1 .5

- 4 - 3 - 2 - 1 0 1 2 3 4  

A n g l e  - r a d i a n s

Figure 11.12c. Difference pattern  corresponding to Fig. 11.12a.

The difference channels give us an indication of whether the target is on or 
off the tracking axis. However, this signal amplitude depends not only on the 
target angular position, but also on the target’s range and RCS. For this reason 
the ratio A/E (delta over sum) can be used to accurately estimate the error 
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the 
azimuth error signal. Define the signals Sj and S2 as

51 = A + D (11.9)

52 = B + C (11.10)

The sum signal is E = S j + S2 , and the azimuth difference signal is 
Аяг= S j -  S2 . If Sj > S2 , then both channels have the same phase 0° (since 
the sum channel is used for phase reference). Alternatively, if  Sj < S2 , then the 
two channels are !80° out of phase. Similar analysis can be done for the ele
vation channel, where in this case Sj = A + B and S2 = D + C. Thus, the 
error signal output is

|A| t
Еф = jE| cos ̂  (11/l1)
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where £ is the phase angle between the sum and difference channels and it is 
equal to 0° or 180°. More precisely, if  £ — 0, then the target is on the track
ing axis; otherwise it is off the tracking axis. F ig. 11.13 (a ,b) shows a plot for 
the ratio A/X for the monopulse radar whose sum and difference patterns are 
in F igs. 11.11 and 11.12.

A n g l e  - r a d i a n s

Figure 11.13a. Difference-to-sum ratio  corresponding to Fig. 11.11a.

A n g l e  - r a d i a n s

F ig u re  11 .13b . D iffe ren ce-to -su m  r a t io  c o rre sp o n d in g  to  F ig . 11 .12a.
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11.3. Phase Comparison Monopulse

Phase comparison monopulse is sim ilar to amplitude comparison monopulse 
in the sense that the target angular coordinates are extracted from one sum and 
two difference channels. The main difference is that the four signals produced 
in amplitude comparison monopulse w ill have sim ilar phases but different 
amplitudes; however, in phase comparison monopulse the signals have the 
same amplitude and different phases. Phase comparison monopulse tracking 
radars use a m inimum of a two-element array antenna for each coordinate (az i
muth and elevation), as illustrated in Fig. П Л 4. A phase error signal (for each 
coordinate) is computed from the phase difference between the signals gener
ated in the antenna elements.

Figure 11.14. S ingle coordinate phase comparison monopulse antenna.

Consider Fig. И Л 4; since the angle a  is equal to ф + п / 2 ,  it follows that

target

d

(1112)

2 d2 
= R + -- -  dR sin ф 

4

and since d «  R we can use the binom ial series expansion to get
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(11 .13 )

Sim ilarly,

( 1 -  2 R sin ф)
(11.14)

The phase difference between the two elements is then given by

ф — ^  (R 1 -  R 2) — у  d sin ф (11.15)

where X is the wavelength. The phase difference ф is used todeterm ine the 
angular target location. Note that if  ф — 0 ,  then the target would be on the 
antenna’s main axis. The problem with this phase comparison monopulse tech
nique is that it is quite difficult to maintain a stable measurement of the off 
boresight angle ф , which causes serious performance degradation. This prob
lem  can be overcome by implementing a phase comparison monopulse system 
as illustrated in Fig. 11.15.

The (single coordinate) sum and difference signals are, respectively, given

where the 5 1 and S2 are the signals in the two elements. Now, since S 1 and
S2 have sim ilar amplitude and are different in phase by ф, we can write

by

Х(ф) — S 1 + S2 (11.16)

A ^ )  — S 1 -  S2 (11.17)

S 1 — S2e- ф (11.18)

Figure 11.15. Single coordinate phase monopulse antenna, 
with sum and difference channels.
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It follows that

А(ф) = S2( I -  e~sф) (1119)

Е(ф) = S2 ( !+  e~s ф) (11.20)

The phase error signal is computed from the ratio A / E . M ore precisely,

which is purely im aginary. The modulus of the error signal is then given by

This kind of phase comparison monopulse tracker is often called the half-angle 
tracker.

11.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit
ted pulses. The process of continuously estimating the range of a moving target 
is known as range tracking. Since the range to a moving target is changing with 
time, the range tracker must be constantly adjusted to keep the target locked in 
range. This can be accomplished using a split gate system, where two range 
gates (early and late) are utilized. The concept of split gate tracking is illu s
trated in Fig. П Л 6, where a sketch of a typ ical pulsed radar echo is shown in 
the figure. The early gate opens at the anticipated starting time of the radar 
echo and lasts for h alf its duration. The late gate opens at the center and closes 
at the end of the echo signal. For this purpose, good estimates of the echo dura
tion and the pulse centertime must be reported to the range tracker so that the 
early and late gates can be placed properly at the start and center times of the 
expected echo. This reporting process is w idely  known as the “designation pro
cess.”

The early gate produces positive voltage output w hile the late gate produces 
negative voltage output. The outputs of the early and late gates are subtracted, 
and the difference signal is fed into an integrator to generate an error signal. If 
both gates are placed properly in time, the integrator output w ill be equal to 
zero. A lternatively, when the gates are not timed properly, the integrator output 
is not zero, which gives an indication that the gates must be moved in time, left 
or right depending on the sign of the integrator output.

(1121)

(11.22)
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Part II: Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval, 
and use sophisticated smoothing and prediction filters to estimate the target 
parameters between scans. To this end, the Kalman filter and the Alpha-Beta- 
Gamma ( a P y ) filter are commonly used. Once a particular target is detected, 
the radar may transmit up to a few pulses to verify the target parameters, before 
it establishes a track file for that target. Target position, velocity, and accelera
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in 
this part. First, an overview of state representation for Linear Time Invariant 
(LTI) systems is discussed. Then, second and third order one-dimensional 
fixed gain polynomial filter trackers are developed. These filters are, respec
tively, known as the a p  and a P y  filters (also known as the g-h and g-h-k fil
ters). Finally, the equations for an n-dimensional multi-state Kalman filter is 
introduced and analyzed. As a matter of notation, small case letters, with an 
underneath bar, are used.

11.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations, 
such as detection, tracking, and discrimination. With the aid of sophisticated 
computer systems, multi-function radars are capable of simultaneously track
ing many targets. In this case, each target is sampled once (mainly range and 
angular position) during a dwell interval (scan). Then, by using smoothing and 
prediction techniques future samples can be estimated. Radar systems that can 
perform multi-tasking and multi-target tracking are known as Track-While- 
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for 
that detection; this ensures that sequential detections from that target are pro
cessed together to estimate the target’s future parameters. Position, velocity, 
and acceleration comprise the main components of the track file. Typically, at 
least one other confirmation detection (verify detection) is required before the 
track file is established.

Unlike single target tracking systems, TWS radars must decide whether each 
detection (observation) belongs to a new target or belongs to a target that has 
been detected in earlier scans. And in order to accomplish this task, TWS radar 
systems utilize correlation and association algorithms. In the correlation pro
cess each new detection is correlated with all previous detections in order to 
avoid establishing redundant tracks. If a certain detection correlates with more 
than one track, then a pre-determined set of association rules are exercised so
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that the detection is assigned to the proper track. A simplified TWS data pro
cessing block diagram is shown in Fig. 11.17.

Choosing a suitable tracking coordinate system is the first problem a TWS 
radar has to confront. It is desirable that a fixed reference of an inertial coordi
nate system be adopted. The radar measurements consist of target range, veloc
ity, azimuth angle, and elevation angle. The TWS system places a gate around 
the target position and attempts to track the signal within this gate. The gate 
dimensions are normally azimuth, elevation, and range. Because of the uncer
tainty associated with the exact target position during the initial detections, a 
gate has to be large enough so that targets do not move appreciably from scan 
to scan; more precisely, targets must stay within the gate boundary during suc
cessive scans. After the target has been observed for several scans the size of 
the gate is reduced considerably.

Figure. 11.17. Sim plified block d iagram  of TW S data processing.

Gating is used to decide whether an observation is assigned to an existing 
track file, or to a new track file (new detection). Gating algorithms are nor
mally based on computing a statistical error distance between a measured and 
an estimated radar observation. For each track file, an upper bound for this 
error distance is normally set. If the computed difference for a certain radar 
observation is less than the maximum error distance of a given track file, then 
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance 
of a given track are said to correlate with that track. For each observation that 
does not correlate with any existing tracks, a new track file is established 
accordingly. Since new detections (measurements) are compared to all existing 
track files, a track file may then correlate with no observations or with one or 
more observations. The correlation between observations and all existing track 
files is identified using a correlation matrix. Rows of the correlation matrix
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represent radar observations, w hile columns represent track files. In cases 
where several observations correlate with more than one track file, a set of pre
determined association rules can be utilized so that a single observation is 
assigned to a single track file.

11.6. State Variable Representation o f an LTI System

Linear time invariant system  (continuous or discrete) can be describe mathe
m atically  using three variables. They are the input, output, and the state vari
ables. In this representation, any LTI system  has observable or measurable 
objects (abstracts). For example, in the case of a radar system, range m ay be an 
object measured or observed by the radar tracking filter. States can be derived 
in m any different w ays. For the scope of this book, states of an object or an 
abstract are the components of the vector that contains the object and its time 
derivatives. For example, a third-order one-dimensional (in this case range) 
state vector representing range can be given by

(11.23)

where R , R , and R are, respectively, the range measurement, range rate 
(velocity), and acceleration. The state vector defined in Eq. (11.23) can be rep
resentative of continuous or discrete states. In this book, the emphasis is on 
discrete time representation, since most radar signal processing is executed 
using digital computers. For this purpose, an n-dimensional state vector has the 
following form:

x

x = x 1 x i . . .  x 2 X2 . . .  Xn Xn (11.24)

where the superscript indicates the transpose operation.

The LTI system of interest can be represented using the following state equa
tions:

x ( t) = A x ( t) + Bw(t) (11.25)

y ( t) = C x ( t) + Dw(t) (11.26)

where: X is the value of the n x  1 state vector; y is the value of the p x  1 out
put vector; w is the value of the m x  1 input vector; A is an n x  n m atrix; B 
is an n x  m m atrix; C is P x  n m atrix; and D is an p x  m matrix. The
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homogeneous solution (i.e., w = 0 )  to this linear system, assuming known 
in itial condition x(0 ) at time t0 , has the form

X( t) = Ф ( t -  t0)X( t -  t0) (11-27)

The matrix Ф is known as the state transition matrix, or fundamental matrix, 
and is equal to

A (t - 10)
ф (t -  to) = e- (11 -28)

Eq. (11.28) can be expressed in series format as

Ф (t -  to)|
l f 0

= e
A (t)

(11-29)

Example 11 .1 : Compute the state transition matrix fo r  an LTI system when

A = 0 1 
-0 .5  -1

Solution:

The state transition matrix can be computed using Eq. (11.29). For this pur
pose, compute A and A __ It follows

a 2 =

1 -1 1 1
2 A3 = 2 2
1 1 — 1

0
_ 2 2_ _-  4

Therefore,

Ф

1 12 1 13 2 t 2 t 

1 + 0 1 -  2 ! + 3! + 

1 12 1 13 
n К  2 4 
0 -  2 t + T -  3! +

1 ,3
-  t  2
0 + t -  2 -+  3! + -

1 12
1 , 2 t 0 t3
1 - 1  + 2Г + 1Г  + -

The state transition matrix has the following properties (the proof is left as 
an exercise):

1- Derivative property
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д д ф ( t - 1о) = А ф ( t -  to)

2 . Identity property

(11 .30 )

Ф ( to -  to) = ф (о ) = I

3. Initial value property

& * ( t - 1 о)
= A

4. Transition property

ф (t2 -  to) = ф (t2 - 11 )ф (t1 -  to)

5. Inverse property

to -  t1 -  t2

ф (to - 11) = Ф ( t1 -  to)

6. Separation property

ф (t1 -  to) = ф (t1 )Ф _ ( to)

(11.31)

(11.32)

(11.33)

(11.34)

(11.35)

The general solution to the system  defined in Eq. (11.25) can be written as

t

x ( t) = Ф ( t -  to) x  ( to) + | ф ( t -  t ) B w ( t )  dT (11.36)

The first term of the right-hand side of Eq. (11.36) represents the contribution 
from the system response to the in itial condition. The second term is the contri
bution due to the driving force w . B y combining Eqs. (11.26) and (11.36) an 
expression for the output is computed as

y  ( t) = Ce
A (t - 10) f A (t -  T)

X( to) + J [Ce B -  D 8 (t -  t ) ] w (t)dT (11.37)

At
Note that the system im pulse response is equal to Ce B -  D 8 ( t) .

The difference equations describing a discrete time system, equivalent to 
Eqs. (11.25) and (11.26), are

o

o
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X(n + 1) = A X(n ) + B w (n ) (11.38)

y ( n) = C X( n) + D w (n ) (11.39)

where n defines the discrete time nT and T is the sampling interval. A ll other 
vectors and matrices were defined earlier. The homogeneous solution to the 
system defined in Eq. (11.38), with in itial condition x ( no) , is

X ( n) = A °X ( n o) (11.40)

In this case the state transition matrix is an n x  n matrix given by

ф (n, no) = ф (n -  no) = A o (11.41)

The following is the list of properties associated with the discrete transition 
matrix

ф (n +1 -  no) = A Ф (n -  no) (11.42)

ф (no -  no) = ф (o) = I (11.43)

ф ( no +1 -  no) = ф ( 1) = A (11.44)

ф (n2 -  no) = ф (n2 -  n1 )ф (n1 -  no) (1145)

1 ( n 0 - 1n = 1 ф
1

1n - n о (11.46)

ф (n1 -  no) = ф(П1) ф  1 ( no) (1147)

The solution to the general case (i.e ., non-homogeneous system) is given by

n-1

X( n) = ф (n -  no)x ( no) + X  ф (n -  m -  1 )B w (m ) (11.48)

m = n0

It follows that the output is given by

n-1

y ( n ) = Cф (n -  no)x ( no) + X  C ф (n -  m -  1 )Bw(m) + D w (n) (11.49)

m = no

where the system  im pulse response is given by
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h (n ) = X  C Ф (n -  m -  1 )B § (m) + D 5 (n) (11.50)

m = n0

Taking the Z-transform for Eqs. (11.38) and (11.39) y ields

zx( z) = A x( z) + Bw( z) + zx( 0 ) (11-51) 

y ( z ) = C x( z) + D w( z) (11-52)

M anipulating Eqs. (11.51) and (11.52) yields

x ( z ) = [ zI -  A ] 1B w ( z) + [ zI -  A] 1 zx( 0 ) (11-53) 

y  ( z ) = { C[zI -  A ] 1B + D } w (z ) + C [ zI -  A ] 1z x (0 ) (11-54)

It follows that the state transition matrix is

Ф ( z ) = z [ z I - A  ] 1 = [ I - z ^ A  ] 1 (11-55)

and the system  im pulse response in the z-domain is

h ( z ) = C Ф ( z ) z 1B + D (11-56)

n

11.7. The LTI System o f Interest

For the purpose of establishing the framework necessary for the Kalman fil
ter development, consider the LTI system shown in F ig. 11.18. This system 
(which is a special case of the system  described in the previous section) can be 
described by the following first order differential vector equations

x ( t) = A x ( t) + u ( t) (11-57)

y ( t) = G x( t) + V( t) (11-58)

where y is the observable part of the system  (i.e ., output), u is a driving force, 
and v is the measurement noise. The matrices A and G vary depending on the 
system. The noise observation v is assumed to be uncorrelated. If the in itial 
condition vector is x ( t0) ,  then from Eq. (11.36) we get

t

x ( t) = Ф ( t - t 0 )x  ( t0) + | ф ( t - t )  u ( t )  dT (11-59)

t0
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Figure 11.18. An LTI system.

The object (abstract) is observed only at discrete times determined by the 
system. These observation times are declared by discrete time nT  where T is 
the sampling interval. Using the same notation adopted in the previous section, 
the discrete time representations of Eqs. (11.57) and (11.58) are

X(n) = A X(n -  1) + U(n ) (11.60)

y (n ) = G x ( n ) + v (n ) (11.61)

The homogeneous solution to this system is given in Eq. (11.27) for continuous 
time, and in Eq. (11.4o) for discrete time.

The state transition matrix corresponding to this system can be obtained 
using Taylor series expansion of the vector x . More precisely,

■ T2 •• 
x  = x  + Tx + — x  + ...

• • •• (11.62)
x  = x  + Tx + ...

X = X + ...

It follows that the elements of the state transition matrix are defined by

Using matrix notation, the state transition matrix is then given by

(11.63)
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1 T

ф = o 1
o o

-T-- 2
2!
T
1

(11 .64 )

The matrix given in Eq. (11.64) is often called the Newtonian matrix.

11.8. Fixed-Gain Tracking Filters

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil
ters. The most common examples of this class of filters are the a p  and a P y  
filters and their variations. The a p  and a P y  trackers are one-dimensional sec
ond and third order filters, respectively. They are equivalent to special cases of 
the one-dimensional Kalman filter. The general structure of this class of esti
mators is sim ilar to that of the Kalman filter.

The standard a P y  filter provides smoothed and predicted data for target 
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor
rector linear recursive filter. This filter can reconstruct position, velocity, and 
constant acceleration based on position measurements. The a P y  filter can also 
provide a smoothed (corrected) estim ate of the present position which can be 
used in guidance and fire control operations.

Notation:

For the purpose of the discussion presented in the remainder of this chapter, 
the following notation is adopted: x ( n|m) represents the estimate during the 
nth sampling interval, using all data up to and including the mth sampling 
interval; yn is the nth measured value; and en is the nth residual (error).

The fixed-gain filter equation is given by

X( n|n) = ф х(n -  1 |n -  1) + K[yn -  G Ф x(n -  1 |n -  1)] (11.65)

Since the transition matrix assists in predicting the next state,

X ( n +1 |n) = ф х ( n|n) (11.66)

Substituting Eq. (11.66) into Eq. (11.65) yields

X(n|n) = x(n|n -  1) + K [yn -  GX(n|n -  1)] (11.67)
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The term enclosed within the brackets on the right hand side of Eq. (11.67) is 
often called the residual (error) which is the difference between the measured 
input and predicted output. Eq. (11.67) means that the estimate of x (n) is the 
sum of the prediction and the weighted residual. The term Gx(n\n  -  1) repre
sents the prediction state. In the case of the a P y  estimator, G  is row vector 
given by

G  = [ 1 0 0  ...] (1168)

and the gain matrix K  is given by

K
а  

p / T

у /  T2_

(11.69)

One of the main objectives of a tracking filter is to decrease the effect o f the 
noise observation on the measurement. For this purpose the noise covariance 
matrix is calculated. More precisely, the noise covariance matrix is

C (n |n ) = E { ( x (n |n ) )x  (n |n )} ; yn (11.70)

where E  indicates the expected value operator. N oise is assumed to be a zero 
mean random process with variance equal to o v . Additionally, noise measure
ments are also assumed to be uncorrelated,

E { VnVm}
К

0

n = m

n Ф m
(1171)

Eq. (11.65) can be written as

x (n |n ) = A x ( n - 1  |n - 1 )  + K y n (11.72)

where

A = (i  -  K G )Ф (11.73)

Substituting Eqs. (11.72) and (11.73) into Eq. (11.70) yields

C (n |n ) = E {(A x (n  - 1  |n - 1 ) + K y n)(A x(n  - 1  |n - 1 )  + K y n)Г} (11.74)

Expanding the right hand side of Eq. (11.74) and using Eq. (11.71) give
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C (n |n ) = A C (n  -  1 1n -  1 )A t + K a i K  (11.75)

Under the steady state condition, Eq. (11.75) collapses to

C (n | n) = A C A ‘ + K a 2vK  (11.76)

where C  is the steady state noise covariance matrix. In the steady state,

C (n |n ) = C (n -  1 |n -  1) = C f o r  any n (11.77)

Several criteria can be used to establish the performance of fixed-gain track
ing filter. The most commonly used technique is to compute the Variance 
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker 
is noise measurements. It follows that in the steady state case, the VRR is the 
steady state ratio of the output variance (auto-covariance) to the input measure
ment variance.

In order to determine the stability of the tracker under consideration, con
sider the Z-transform for Eq. (11.72),

x  (z ) = Az~lx  (Z) + K y n (Z) (11.78)

Rearranging Eq. (11.78) yields the following system transfer functions:

x (z ) -1 -1
h(z)  = = (I -  A z  ) K  (11.79)
-  Уп (z ) - -  -

where (I -  A z -1) is called the characteristic matrix. Note that the system trans
fer functions can exist only when the characteristic matrix is a non-singular 
matrix. Additionally, the system is stable if  and only if  the roots o f the charac
teristic equation are within the unit circle in the z-plane,

|(I  -  A z  1 )| = 0 (11.80)

The filter’s steady state errors can be determined with the help of Fig. 11.19. 
The error transfer function is

У (z )
e (z)  = 7 T T 7 -;  (11.81)- 1 +  h (z )

and by using A bel’s theorem, the steady state error is

= lim e ( t ) = lim ( M e (z ) (11.82)
t z 1V z J
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z -  1 y (z )

S u b s t i tu t in g  E q . ( 1 1 .8 2 )  in to  ( 1 1 .8 1 )  y ie ld s

e = lim (11.83)

y (z )

+
e (z ) x (z )

Figure 11.19. Steady state errors computation.

11.8.1. The ap Filter

The a p  tracker produces, on the nth  observation, smoothed estimates for 
position and velocity, and a predicted position for the (n + 1) th observation. 
Fig. 11.20 shows an implementation of this filter. Note that the subscripts “p ” 
and “s” are used to indicate, respectively, the predicated and smoothed values. 
The a p  tracker can follow an input ramp (constant velocity) with no steady 
state errors. However, a steady state error will accumulate when constant 
acceleration is present in the input. Smoothing is done to reduce errors in the 
predicted position through adding a weighted difference between the measured 
and predicted values to the predicted position, as follows:

xs ( n) = x  (n |n ) = xp ( n) + a ( x 0( n ) -  xp( n ))

Xs(n) = x'(n | n ) = Xs(n -  1) + T (x0( n ) -  xp(n))

x0 is the position input samples. The predicted position is given by

xp (n ) = xs(n |n  -  1) = xs(n -  1) + Txs(n -  1)

The initialization process is defined by

xs (1 ) = xp( 2) = x0 (1)

xs ( 1 ) = 0

■ x0( 2 ) - x  0( 1 - 
xs( 2) = -------- ----------

(11.84)

(11.85)

(11.86)
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Figure 11.20. An implementation for an а в  tracker.

A general form for the covariance matrix was developed in the previous sec
tion, and is given in Eq. (11.75). In general, a second order one-dimensional 
covariance matrix (in the context of the а в  filter) can be written as

C (n |n ) =
Cxx C

C  C ..xx xx

where, in general, Cxy is

(1187)

By inspection, the а в  filter has

(11.88)

A 1 -  а  (1 -  a ) T  
- в / T (1 -  в)

(11.89)

K а  

3 / t
(11.90)

G  = [ 1 0 ] (1191)

Ф = 1 T

0  1
(11.92)
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Finally, by using Eqs. (11.89) through (11.92) in Eq. (11.72) yields the steady 
state noise covariance matrix,

C
a ( 4 -  2 a  -  P)

2 a 2 -  3 a p  + 2 p

P ( 2 a - p )
T

P ( 2 a - p )
T

21-2 --T---2--

(11.93)

It follows that the position and velocity VRR ratios are, respectively, given by

( VRR) x = C xx /ov
2 _  2 a 2 -  3 (X P -i- 2 P 

a  (4 -  2 a  -  P )

( VRR)- = C / a
2 1 2 в 2

xx v t 2 a ( 4 -  2 a  -  P)

(11.94)

(11.95)

The stability of the aP  filter is determined from its system transfer func
tions. For this purpose, compute the roots for Eq. (11.80) with A from Eq. 
(11.89),

I  -  Az_1| = 1 -  (2 -  a  -  P)z 1 + (1 -  a )z~2 = 0 

Solving Eq. (11.96) for z  yields

z 1, 2 = 1 -  ^  ± У  ( a  -  p )2 -  4 p

and in order to guarantee stability

lz 1,2 < 1

(11.96)

(1197)

(11.98)

Two cases are analyzed. First, z 1; 2 are real. In this case (the details are left as 
an exercise),

P >  0 ; a >  -P  (11.99)

The second case is when the roots are complex; in this case we find

a >  0 (11.100)

The system transfer functions can be derived by using Eqs. (11.79), (11.89), 
and (11.90),

hx( z )

Ы  z )

1

z  -  z (2 -  a  -  P) + (1 -  a )

( a - P )
a

P z (z -  1) 
T

(11 .101)

2
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Up to this point all relevant relations concerning the а в  filter were made 
with no regard to how to choose the gain coefficients ( a  and в ). Before con
sidering the methodology of selecting these coefficients, consider the main 
objective behind using this filter. The purpose of the а в  tracker can be 
described twofold:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual 
(tracking error) as possible.

The reduction of measurement noise reduction is normally determined by the 
VRR ratios. However, the maneuverability performance of the filter depends 
heavily on the choice of the parameters a  and в .

A special variation of the а в  filter was developed by Benedict and Bord- 
ner1, and is often referred to as the Benedict-Bordner filter. The main advan
tage of the Benedict-Bordner is reducing the transient errors associated with 
the а в  tracker. This filter uses both the position and velocity VRR ratios as 
measure of performance. It computes the sum of the squared differences 
between the input (position) and the output when the input has a unit step 
velocity at time zero. Additionally, it computes the squared differences 
between the real velocity and the velocity output when the input is as described 
earlier. Both error differences are minimized when

In this case, the position and velocity VRR ratios are, respectively, given by

Another important sub-class o f the а в  tracker is the critically damped filter, 
often called the fading memory filter. In this case, the filter coefficients are 
chosen on the basis of a smoothing factor £ ,  where 0 < £ < 1. The gain coeffi
cients are given by

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations. IRE Transaction on Automatic Control, AC-7.
July 1962, pp. 27-32.

(11.102)

(11.103)

( VRR) x =
3

2_ а 3/ ( 2 - а )  

T2 а 2 -  8 а  + 8
(11.104)

2а  = 1  -  с, (11.105)
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в = (1 -  £ )2 (11.106)

Heavy smoothing means £ ^  1 and little smoothing means £ ^  0 . The ele
ments of the covariance matrix for a fading memory filter are

Cxx = ( 1 + 4 £  + 5 ) ° 2 (11.107)
(1 + £ )3

Cxx = Cxx = T  ( ^  ( 1 + 2£ + 3£2) о 2 (11108)

Cxx = 4; (1 -  £ )2 O2 (11.109)
T  (1 + £)

11.8.2. The apy Filter

The a P y  tracker produces, for the nth  observation, smoothed estimates of 
position, velocity, and acceleration. It also produces predicted position and 
velocity for the ( n + 1) th observation. An implementation of the a P y  tracker 
is shown in Fig. 11.21.

The a P y  tracker will follow an input whose acceleration is constant with no 
steady state errors. Again, in order to reduce the error at the output of the 
tracker, a weighted difference between the measured and predicted values is 
used in estimating the smoothed position, velocity, and acceleration as follows:

F ig u re  11 .21. A n  im p le m e n ta t io n  f o r  a n  a P y  t r a c k e r .
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xs(n ) = xp(n ) + а ( xq(n) -  xp(n ))

xs(n ) = xs( n -  1) + txs(n -  1) + -- (xq(n ) -  xp(n))

2y  -T---2-xs(n ) = xs(n -  1) + -2  (xq( n) -  x„(n ))

• t 2 ••
xp (n + 1) = xs (n ) + T xs (n ) + — xs (n )

and the initialization process is

xs (1) = xp( 2) = xq (1) 

xs (1) = x s (1) = xs (2) = 0

xq (2) -  xq( 1)
xs( 2) =

xs (3 ) =
x0(3 ) + x0( 1 ) - 2 x 0(2) 
--------------- T---2--------------

Using Eq. (11.63) the state transition matrix for the а в у  filter is

T2

Ф =
1 T

2
0 1 T
0 0 1

The covariance matrix (which is symmetric) can be computed 
(11.76). For this purpose, note that

K =
а  

в / T 

у /  T2

and

A = (I -  K G )Ф =

G  = [ 1 0 0 ]

1 -  а  (1 -  а ) T  (1 -  а ) T2/ 2 

- в / T -  в + 1  (1 -  в / 2 ) T 

- 2  у /  T2 - 2  у /  T  (1 -  у) _

(11.110)

(11.111)

(11.112)

(11.113)

(11.114)

from Eq.

(11.115)

(11.116)

(11.117)
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Substituting Eq. (11.117) into (11.76) and collecting terms the VRR ratios 
are computed as

( 2 р (2 а 2 + 2в -  3 а в )  -  а у (4  -  2 а  -  p) 118)
(VRR) x  = ( 4 - 2 а - в ) ( 2 а в  + а у - 2 у )  (11.118)

( VRR)• = ^  4в  - 4 в  Y + 2T ( 2 - а ) ----- (11.119)
x  Г ( 4 -  2 а  -  в ) (2 а в  + а у -  2у)

( VRR) x = -------------------4-в1--------------------  (11.120)
T  (4 -  2 а  -  в ) (2 а в  + а у  -  2у)

As in the case of any discrete time system, this filter will be stable if  and only if 
all of its poles fall within the unit circle in the z-plane.

The а в у  characteristic equation is computed by setting

|I -  A z  1 = 0 (11.121)

Substituting Eq. (11.117) into (11.121) and collecting terms yield the following 
characteristic function:

3 2
f(z )  = z + ( -  3 а  + в + Y)z + (3 -  в -  2 а  + y)z -  (1 -  а )  (11.122) 

The а в у  becomes a Benedict-Bordner filter when

2 в -  а ^ а  + в + DJ = 0 (11.123)

Note that for у = 0  Eq. (11.123) reduces to Eq. (11.102). For a critically 
damped filter the gain coefficients are

3
а  = 1  -  £ (11.124)

в = 1.5( 1 -  £2)(1 -  £) = 1.5( 1 -  £ )2( 1 + £) (11.125)

у = (1 -  £ )3 (11.126)

Note that heavy smoothing takes place when £ ^  1, while £ = 0 means that 
no smoothing is present.
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The function “ghkjracker .m ”1 implements the steady state a P y  filter. It is 
given in Listing 11.2 in Section 11.10. The syntax is as follows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

MATLAB Function “ghk_tracker.m”

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array o f  position measurements input

npts number o f  points in input position input

T sampling interval input

nvar desired noise variance input

residual array o f position error (residual) output

estimate array o f  predicted position output

Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to gener
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 
If this toolbox is not available to the user, then “ghk_tracker.m” function-call 
must be modified to

[residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)

which is also part o f Listing 11.2. In this case, noise measurements are either to 
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk_tracker.m and ghk_tracker.m1, 
consider the inputs shown in Figs. 11.22 and 11.23. Fig. 11.22 assumes an 
input with lazy maneuvering, while Fig. 11.23 assumes an aggressive maneu
vering case. For this purpose, the program called “fig11_21.m” was written. It 
is given in Listing 11.3 in Section 11.10.

Figs. 11.24 and 11.25 show the residual error and predicted position corre
sponding (generated using the program “fig11_21.m”) to Fig. 11.22 for two 
cases: heavy smoothing and little smoothing with and without noise. The noise 
is white Gaussian with zero mean and variance of o v = 0.05 . Figs. 11. 26 and 
11.27 show the residual error and predicted position corresponding (generated 
using the program “fig11_20.m”) to Fig. 11.23 with and without noise.

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts
ville, AL.
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Figure 11.22. Position (truth-data); lazy maneuvering.

Sample number

Figure 11.23. Position (truth-data); aggresive maneuvering.
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igure 11.24a-1. Predicted and true position. £ = 0.1 (i.e., large gain 
coefficients). No noise present.

Sample number

Figure 11.24a-2. Position residual (error). Large gain coefficients.
No noise. The error settles to zero fairly quickly.
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S a m p l e  n u m b e r

Figure 11.24b-1. Predicted and true position. £ = 0.9 (i.e., small 
gain coefficients). No noise present.

S a m p l e  n u m b e r

Figure 11.24b-2. Position residual (error). Small gain coefficients. No noise.
It takes the filter longer time for the error to settle down.
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Figure 11.25a-1. Predicted and true position. £ = 0.1 (i.e., large 
gain coefficients). Noise is present.
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Sample number

Figure 11.25a-2. Position residual (error). Large gain coefficients. Noise present.
The error settles down quickly. The variation is due to noise.
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igure 11.25b-1. Predicted and true position. £ = 0.9 (i.e., small gain 
coefficients). Noise is present.

Sample number

Figure 11.25b-2. Position residual (error). Small gain coefficients. Noise present.
The error requires more time before settling down. The 
variation is due to noise.
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Figure 11.26a. Predicted and true position. £ = 0.1 (i.e., large gain 
coefficients). Noise is present.

Sample number

Figure 11.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.

x 1 0
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Figure 11.27a. Predicted and true position. £ = 0.8 (i.e., small gain coefficients). 
Noise is present.
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Figure 11.27b. Position residual (error). Small gain coefficients. Noise present.
The error stays fairly large; however, its average is around zero. 
The variation is due to noise.
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11.9. The Kalman Filter
The Kalman filter is a linear estimator that minimizes the mean squared error 

as long as the target dynamics are modeled accurately. All other recursive fil
ters, such as the a P y  and the Benedict-Bordner filters, are special cases of the 
general solution provided by the Kalman filter for the mean squared estimation 
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same 
fil ter can be used fo r  a variety o f  maneuvering target environments.

2. The Kalman filter gain computation adapts to varying detection histories, 
including missed detections.

3. The Kalman filter provides an accurate measure o f  the covariance matrix. 
This allows fo r  better implementation o f  the gating and association pro
cesses.

4. The Kalman filter makes it possible to partially compensate fo r  the effects 
o f  miss-correlation and miss-association.

Many derivations of the Kalman filter exist in the literature; only results are 
provided in this chapter. Fig. 11.28 shows a block diagram for the Kalman fil
ter. The Kalman filter equations can be deduced from Fig. 11.28. The filtering 
equation is

x (n |n ) = xs(n ) = x (n |n  -  1) + K (n ) [y (n ) -  G x(n |n  -  1)] (11.127) 

The measurement vector is

y  (n) = Gx(  n) + v (n ) (11.128)

where v (n ) is zero mean, white Gaussian noise with covariance ,

= E { y (n ) yr(n ) }  (11.129)

The gain (weights) vector is dynamically computed as

K (n ) = P (n |n  -  1 )G [ G P ( n \n  -  1 )G  + ]-1 (11.130)

where the measurement noise matrix P  represents the predictor covariance 
matrix, and is equal to

P  (n + 1  |n ) = E  {x s (n + 1 )  x*s( n )}  = ФP (n |n  )Ф Г + Q (11.131) 

where Q is the covariance matrix for the input u ,
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The corrector equation (covariance of the smoothed estimate) is

P  (n |n ) = [ I  -  K  (n )G  ] P  (n |n  -  1) (11.133)

Finally, the predictor equation is

x  (n + 1  |n ) = Фх (n |n ) (11.134)

Q =  E { u ( n )  u ( n ) }  (11 .132)

11.9.1. The Singer -Kalman Filter

The Singer1 filter is a special case of the Kalman where the filter is gov
erned by a specified target dynamic model whose acceleration is a random pro
cess with autocorrelation function given by

_ы
•• •• 2 Tm

E { x ( t) x ( t  + t1)}  = c a e (11.135)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu
vering Targets, IEEE Transaction on aerospace and Electronics, AES-5, July, 1970. 
pp. 473-483.
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where Tm is the correlation time of the acceleration due to target maneuver or 
atmospheric turbulence. The correlation time Tm may vary from as low as 10 
seconds for aggressive maneuvering to as large as 60 seconds for lazy maneu
ver cases.

Singer defined the random target acceleration model by a first order Markov 
process given by

x (n + 1 )  = Pm x ( n ) + 7 l  -  pm Om w ( n ) (11.136)

where w  (n ) is a zero mean, Gaussian random variable with unity variance, 
o m is the maneuver standard deviation, and the maneuvering correlation coef
ficient Pm is given by

T
Tm

Pm = в m (11.137)

The continuous time domain system that corresponds to these conditions is as 
the Wiener-Kolmogorov whitening filter which is defined by the differential 
equation

d v ( t ) = -  Pm^( t) + w ( t ) (11.138)

where Pm is equal to 1 /T m. The maneuvering variance using Singer’s model 
is given by

A2 A
O2m = - f ! [  1 + 4  Pmax -  Po ] (11.139)

A max is the maximum target acceleration with probability P max and the term 
P 0 defines the probability that the target has no acceleration.

The transition matrix that corresponds to the Singer filter is given by

Ф

1 T  -1  ( -  1 +  Pm^ + Pm )
pm

0 1 j f  (1 -  Pm)
m

0 0 Pm

(11.140)

Note that when TPm = T /T m is small (the target has constant acceleration), 
then Eq. (11.140) reduces to Eq. (11.114). Typically, the sampling interval T  is 
much less than the maneuver time constant Tm; hence, Eq. (11.140) can be 
accurately replaced by its second order approximation. More precisely,
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ф

1 T T  /  2 

0 1 T( 1 -  T /  2Tm)

0 0  Pm

(11 .141)

The covariance matrix was derived by Singer, and it is equal to

C  =
2 o : C 11 C 12 C 13

C21 C22 C23 

C31 C32 C33

(11.142)

where

C u = Ov =
2 1

2 p:

л 2 PmT ^P rr , 2 PmT  p2 ,̂ 2 л p rr PmT
1 -  e + 2P„T  + — -—  -  2 P„ r  -  4 p„Te (11.143)

C 12 = C21 = - 1 -[e~2KT + 1  - 2 e~KT  + 2 PmTe~K T - 2 p„T  + в У ] (11.144)12 21 2P4m m m m

1 -2B„T „ -PmT
C13 = C31 = — 3 [ 1 - e  Pm - 2 P„Te Pm ]

2 P i
(11.145)

1 -BmT -2B„T
C22 = —  [4 e m -  3 - e  Pm + 2 pmT]

2 pm
(11.146)

1 -2RraT -RT
C23 = C32 = — 2 [ e Pm  + 1  -  2 e Pm  ]

2 pm
(11.147)

n ____1_ M - 2 PmT]
= 2fim[ 1 '  '  1

Two limiting cases are of interest:

1. The short sampling interval case ( T  « Tm),

(11.148)

lim C  =
2 o “ Г5/ 20 T4/ 8  T3/ 6 

T4/ 8 T3/ 3  Tl / 2  

T3/ 6 T  /  2 T

(11.149)

m

m
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and the state transition matrix is computed from Eq. (11.141) as

lim Ф =
PmT ̂  0 -

1 T T  /  2 
0 1 T 
0 0 1

(11 .150)

which is the same as the case for the a P y  filter (constant acceleration).

2. The long sampling interval ( T  » Tm). This condition represents the case 

when acceleration is a white noise process. The corresponding covariance 
and transition matrices are, respectively, given by

lim
PmT

C

2 T31
3

T  т„

T2 тm
2тm

2 Ttm Tm

тm 1

(11.151)

2
Tm

lim Ф
R T —m

1 T TTm
0 1 Tm
0 0 0

(11.152)

Note that under the condition that T  » Tm, the cross correlation terms C13 and 
C23 become very small. It follows that estimates of acceleration are no longer 
available, and thus a two state filter model can be used to replace the three state 
model. In this case,

C  = 2 a„T„ I 3/ 3 T2/ 2 

T  /  2 T
(11.153)

Ф = 1 T 
0 1

(11.154)

11.9.2. Relationship between Kalman and a^y Filters

The relationship between the Kalman filter and the a P y  filters can be easily 
obtained by using the appropriate state transition matrix Ф , and gain vector K  
corresponding to the a P y  in Eq. (11.127). Thus,
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x (n |n ) x (n |n  - 1) k1( n )

x (n |n ) = x (n |n  - 1) + k2( n )

x (n |n ) x (n |n  - 1) k3( n )

with (see Fig. 11.21)

[x 0( n ) - x ( n | n  -  1 ) ]

T2

(11 .155)

x (n |n  -  1) = xs( n -  1) + T xs( n -  1) + у  xs(n -  1) (11.156)

x (n |n  -  1) = xs(n -  1) + T xs(n -  1) 

x ( n |n  -  1) = Xs(n -  1)

(11.157)

(11.158)

Comparing the previous three equations with the a P y  filter equations 
yields,

a _

-P--
k

T = k

Y. k-T---2-

(11.159)

Additionally, the covariance matrix elements are related to the gain coeffi
cients by

(11.160)
k1 C 11

1
k2 = ^  2 C12

C11 + o v
k3 C13

Eq. (11.160) indicates that the first gain coefficient depends on the estimation 
error variance to the total residual variance, while the other two gain coeffi
cients are calculated through the covariances between the second and third 
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalm anjil ter .m ”1 implements the Singer- a P y  Kalman filter. 
It is given in Listing 11.4 in Section 11.10. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts
ville, AL.
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where

Symbol Description Status

npts number o f points in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (11-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array o f predicted position output

Note that “kalman_filter.m” uses MATLAB’s function “normrnd.m” to gener
ate zero mean Gaussian noise, which is part o f MATLAB’s Statistics Toolbox.

To illustrate how to use the functions “kalman_filter.m”, consider the inputs 
shown in Figs. 11.22 and 11.23. Figs. 11.29 and 11.30 show the residual error 
and predicted position corresponding to Figs. 11.22 and 11.23. These plots can 
be reproduced using the program “fig11_28.m” given in Listing 11.5 in Sec
tion 11.10.

Sample number

Figure 11.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman _filter.m”.

© 2000 by Chapman & Hall/CRC



R
e

s
id

u
a

l

50  1 00  1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  5 0 0  

S a m  ple n u m b e r

Figure 11.29b. Residual corresponding to Fig. 11.29a.

S a m p l e  n u m b e r

Figure 11.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman f l t e r .m ”.
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Figure 11.30b. Residual corresponding to Fig. 11.30a.

11.10. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used 
in this chapter. Users are encouraged to rerun these codes with different inputs 
in order to enhance their understanding of the theory.

Listing 11.1. MATLAB Function “mono_pulse.m”
function mono_pulse(phi0) 
eps = 0.0000001; 
angle = -pi:0.01:pi; 
yl = sinc(angle + phi0); 
y2 = sinc((angle - phi0)); 
ysum = yl + y2; 
ydif = -yl + y2;
figure (1)
plot (angle,y1,'k',angle,y2,'k');
grid;
xlabel ('Angle - radians') 
ylabel ('Squinted patterns') 
figure (2)
plot(angle,ysum,'k');
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grid;
xlabel ('Angle - radians') 
ylabel ('Sum pattern') 
figure (3)
plot (angle,ydif,'k'); 
grid;
xlabel ('Angle - radians') 
ylabel ('Difference pattern') 
angle = -pi/4:0.01:pi/4; 
y1 = sinc(angle + phi0); 
y2 = sinc((angle - phi0)); 
ydif = -y1 + y2; 
ysum = y1 + y2; 
dovrs = ydif ./ ysum; 
figure(4)
plot (angle,dovrs,'k'); 
grid;
xlabel ('Angle - radians') 
ylabel ('voltage gain')

Listing 11.2. MATLAB Function “ghk_tracker.m”
function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar) 
rn = 1.;
% read the initial estimate for the state vector 
X = X0;
theta = smoocof;
%compute values for alpha, beta, gamma 
w1 = 1. - (thetaA3);
w2 = 1.5 * (1. + theta) * ((1. - theta)A2) / T; 
w3 = ((1. - theta)A3) / (TA2);
% setup the transition matrix PHI 
PHI = [1. T (TA2)/2.;0. 1. T;0. 0. 1.]; 
while rn < npts ;

%use the transition matrix to predict the next state 
XN = PHI * X;
error = (inp(rn) + normrnd(0,nvar)) - XN(1);
residual(rn) = error;
tmp1 = w1 * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state 
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1); 
rn = rn + 1.; 

end
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re tu rn

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T) 
rn = 1.;
% read the initial estimate for the state vector 
X = X0;
theta = smoocof;
%compute values for alpha, beta, gamma 
w1 = 1. - (thetaA3);
w2 = 1.5 * (1. + theta) * ((1. - theta)A2) / T; 
w3 = ((1. - theta)A3) / (TA2);
% setup the transition matrix PHI 
PHI = [1. T (TA2)/2.;0. 1. T;0. 0. 1.]; 
while rn < npts ;

%use the transition matrix to predict the next state
XN = PHI * X;
error = inp(rn) - XN(1);
residual(rn) = error;
tmp1 = w1 * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state 
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1); 
rn = rn + 1.; 

end 
return

MATLAB Function “ghk_traker1.m”

Listing 11.3. MATLAB Program “fig11_21.m”
clear all
eps = 0.0000001; 
npts = 5000; 
del = 1./ 5000.; 
t = 0. : del : 1.;
% generate input sequence
inp = 1.+ t.A3 + .5 .*t.A2 + cos(2.*pi*10 .* t) ;
% read the initial estimate for the state vector 
X0 = [2,.1,.01]';
% this is the update interval in seconds 
T = 100. * del;
% this is the value of the smoothing coefficient 
xi = .91;
[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
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figure(1)
plot (residual(1:500)) 
xlabel ('Sample number') 
ylabel ('Residual error') 
grid
figure(2)
NN = 4999.; 
n = 1:NN;
plot (n,estimate(1:NN),'b',n,inp(1:NN),'r') 
xlabel ('Sample number') 
ylabel ('Position') 
legend ('Estimated','Input')

Listing 11.4. MATLAB Function “kalman_filter.m”
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
rn=1;
% read the initial estimate for the state vector 
X = X0;
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the state noise variance 
VAR = nvar;
% setup the initial value for the predication covariance.
S = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
% setup the transition matrix PHI 
PHI = [1. T (TA2)/2.; 0. 1. T; 0. 0. 1.];
% setup the state noise covariance matrix 
Q(1,1) = (VAR * (TA5)) / 20.;
Q(1,2) = (VAR * (TM)) / 8.;
Q(1,3) = (VAR * (TA3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (TA3)) / 3.;
Q(2,3) = (VAR * (TA2)) / 2.;
Q(3,1) = Q(1,3);
Q(3,2) = Q(2,3);
Q(3,3) = VAR * T; 
while rn < N ;

%use the transition matrix to predict the next state 
XN = PHI * X;
% Perform error covariance extrapolation 
S = PHI * S * PHI' + Q;
% compute the Kalman gains 
ak(1) = S(1,1) / (S(1,1) + R); 
ak(2) = S(1,2) / (S(1,1) + R); 
ak(3) = S(1,3) / (S(1,1) + R);
%perform state estimate update: 
error = inp(rn) + normrnd(0,R) - XN(1);
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residual(rn) = error; 
tmp1 = ak(1) * error; 
tmp2 = ak(2) * error; 
tmp3 = ak(3) * error;
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3; 
estimate(rn) = X(1);
% update the error covariance 
S(1,1) = S(1,1) * (1. -ak(1)); 
S(1,2) = S(1,2) * (1. -ak(1)); 
S(1,3) = S(1,3) * (1. -ak(1)); 
S(2,1) = S(1,2);
S(2,2) = -ak(2) * S(1,2) + S(2,2); 
S(2,3) = -ak(2) * S(1,3) + S(2,3); 
S(3,1) = S(1,3);
S(3,3) = -ak(3) * S(1,3) + S(3,3); 
rn = rn + 1.; 

end

Listing 11.5. MATLAB Program “fig11_28.m”
clear all 
npts = 2000; 
del = 1/2000; 
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.A2) + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the update interval in seconds 
T = 1.;
% enter the measurement noise variance 
R = .035;
% this is the state noise variance 
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual)
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp)
axis tight
ylabel ('position - truth') 
subplot(2,1,2) 
plot(estimate) 
axis tight
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xlabel ('Sample number') 
ylabel ('Predicted position')

Problems
1 1 . 1 .  Show that in order to be able to quickly achieve changing the beam 
position the error signal needs to be a linear function of the deviation angle.
1 1 . 2 .  Prepare a short report on the vulnerability of conical scan to amplitude 
modulation jamming. In particular consider the self-protecting technique 
called “Gain Inversion.”

1 1 . 3 .  Consider a conical scan radar. The pulse repetition interval is 10цs . 
Calculate the scan rate so that at least ten pulses are emitted within one scan.
1 1 . 4 .  Consider a conical scan antenna whose rotation around the tracking 
axis is completed in 4 seconds. If during this time 20 pulses are emitted and 
received, calculate the radar PRF and the unambiguous range.

1 1 . 5 .  Reproduce Fig. 11.11 for ф0 = 0.05, 0.1, 0.15 radians.

1 1 .  6 . Reproduce Fig. 11.13 for the squint angles defined in the previous 
problem.
1 1 . 7 .  Derive Eq. (11.33) and Eq. (11.34).
1 1 . 8 .  Consider a monopulse radar where the input signal is comprised of 
both target return and additive white Gaussian noise. Develop an expression 
for the complex ratio E / A .

1 1 . 9 .  Consider the sum and difference signals defined in Eqs. (11.7) and 

(11.8). What is the squint angle ф0 that maximizes Е(ф = 0) ?

1 1 . 1 0 .  A certain system is defined by the following difference equation:

y  ( n ) + 4y  (n -  1) + 2y  (n -  2 ) = w  (n )

Find the solution to this system for n > 0 and w  = 5 .

1 1 . 1 1 .  Prove the state transition matrix properties (i.e., Eqs. (11.30) through 
(11.36)).
1 1 . 1 2 .  Suppose that the state equations for a certain discrete time LTI sys
tem are

x 1 (n + 1) = 0 1 X1 ( n ) + 0

x2 (n + 1) - 2  -3 X2 ( n ) _1_

If y ( 0 ) = y  (1 ) = 1 , find y  (n ) when the input is a step function.

1 1 . 1 3 .  Derive Eq. (11.55).
1 1 . 1 4 .  Derive Eq. (11.75).
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1 1 . 1 5 .  Using Eq. (11.83), compute a general expression (in terms of the 
transfer function) for the steady state errors when the input sequence is:

u1 = {0 , 1, 1, 1, 1 , . . . }

u2 = {0, 1, 2, 3, . . . }

u3 = {0 , 12, 2 2, 32, . . . }

u4 = {0 , 13, 2 3, 33, . . . }

1 1 . 1 6 .  Verify the results in Eqs. (11.99) and (11.100).
1 1 . 1 7 .  Develop an expression for the steady state error transfer function for 

an a p  tracker.

1 1 . 1 8 .  Using the result o f the previous problem and Eq. (11.83), compute 
the steady-state errors for the a p  tracker with the inputs defined in Problem
11.13.

1 1 . 1 9 .  Design a critically damped a p , when the measurement noise vari-
2

ance associated with position is o v = 50m  and when the desired standard 

deviation of the filter prediction error is 5 .5 m .

1 1 . 2 0 .  Derive Eqs. (11.118) through (11.120).
1 1 . 2 1 .  Derive Eq. (11.122).

1 1 . 2 2 .  Consider a a P y  filter. We can define six transfer functions: H 1 (z ) ,  

H 2(z ) ,  H 3(z ) ,  H4(z) ,  H 5(z) ,  and H 6(z ) (predicted position, predicted

velocity, predicted acceleration, smoothed position, smoothed velocity, and 
smoothed acceleration). Each transfer function has the form

-1 -2 
a 3 + a2 z  + a, z 

H ( z ) = 3 2 1-1 -2 -3
1 +  b2z  + b 1 z  + b0 z

The denominator remains the same for all six transfer functions. Compute all 
the relevant coefficients for each transfer function.

1 1 . 2 3 .  Verify the results obtained for the two limiting cases of the Singer- 
Kalman filter.
1 1 . 2 4 .  Verify Eq. (11.160).
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Chapter 12 Synthetic Aperture Radar

12.1. Introduction

Modern airborne radar systems are designed to perform a large number of 
functions which range from detection and discrimination of targets to mapping 
large areas of ground terrain. This mapping can be performed by the Synthetic 
Aperture Radar (SAR). Through illuminating the ground with coherent radia
tion and measuring the echo signals, SAR can produce high resolution two
dimensional (and in some cases three-dimensional) imagery of the ground sur
face. The quality of ground maps generated by SAR is determined by the size 
of the resolution cell. A resolution cell is specified by range and azimuth reso
lutions of the system. Other factors affecting the size of the resolution cells are
(1) size of the processed map and the amount of signal processing involved;
(2) cost consideration; and (3) size of the objects that need to be resolved in the 
map. For example, mapping gross features of cities and coastlines does not 
require as much resolution when compared to resolving houses, vehicles, and 
streets.

SAR systems can produce maps of reflectivity versus range and Doppler 
(cross range). Range resolution is accomplished through range gating. Fine 
range resolution can be accomplished by using pulse compression techniques. 
The azimuth resolution depends on antenna size and radar wavelength. Fine 
azimuth resolution is enhanced by taking advantage of the radar motion in 
order to synthesize a larger antenna aperture. Let N r denote the number of 
range bins and let N a denote the number of azimuth cells. It follows that the 
total number of resolution cells in the map is N rN a . SAR systems that are
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generally concerned with improving azimuth resolution are often referred to as 
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro
cessed to resolve targets in Doppler which correspond to azimuth. This chapter 
is presented in the context of DBS.

Due to the large amount of signal processing required in SAR imagery, the 
early SAR designs implemented optical processing techniques. Although such 
optical processors can produce high quality radar images, they have several 
shortcomings. They can be very costly and are, in general, limited to making 
strip maps. Motion compensation is not easy to implement for radars that uti
lize optical processors. With the recent advances in solid state electronics and 
Very Large Scale Integration (VLSI) technologies, digital signal processing in 
real time has been made possible in SAR systems.

12.2. Real Versus Synthetic Arrays

A linear array of size N , element spacing d , isotropic elements, and wave
length X is shown in Fig. 12.1. A synthetic linear array is formed by linear 
motion of a single element, transmitting and receiving from distinct positions 
that correspond to the element locations in a real array. Thus, synthetic array 
geometry is similar to that of a real array, with the exception that the array 
exists only at a single element position at a time.

The two-way radiation pattern (in the direction-sine sin в ) for a real linear 
array was developed in Chapter 10; it is repeated here as Eq. (12.1):

Since a synthetic array exists only at a single location at a time, the array 
transmission is sequential with only one element receiving. Therefore, the 
returns received by the successive array positions differ in phase by 5 = kA r , 
where k = 2 n / X , and Ar = 2 d sin в is the round-trip path difference 
between contiguous element positions. The two-way array pattern for a syn
thetic array is the coherent sum of the returns at all the array positions.

Thus, the overall two-way electric field for the synthetic array is

n = 1

By using similar analysis as in Section 10.4, the two-way electric field for a 
synthetic array can be expressed as

(12.1)

N

E( sin в) = 1 +  e^'25 + e^'45 + ... + e-j2(N- 1)5 = X  e
-j2 (N-  1)kdsin в (12.2)
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Figure 12.1. Geometry of real or synthetic array.

в )  = s i n (N k d  s in e ) 
в s i n (к d  s i n в )

and the two - way radiation pattern is 

G(  sin в) = |£ (  sin P)| sin (N kd  sin в )
sin (kd  sin в)

(12.3)

(12.4)

Comparison ofE q. (12.4) and Eq. (12.1) indicates that the two -way radiation 
pattern for a real array is o f the form ( sin 8 / 8 )  , while it is of the form 
sin2 8 / 28 for the synthetic array. Consequently, for the same size aperture, 
the main beam of the synthetic array is twice as narrow as that for the real 
array. Or equivalently, the resolution of a synthetic array of length L  (aperture 
size) is equal to that o f a real array with twice the aperture size (2 L ) ,  as illus
trated in Fig. 12.2.
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a n g l e  - r a d i a n s

Figure 12.2. Pattern difference between real and synthetic arrays. This plot
can be reproduced using MATLAB program “fig12_2.m” given in 
Listing 12.1 in Section 12.12.

12.3. Side Looking SAR Geometry

Fig. 12.3 shows the geometry for the standard side looking SAR. We will 
assume that the platform carrying the radar maintains both fixed altitude h and 
velocity v . The antenna 3dB  beam width is 8 ,  and the elevation angle (mea
sured from the z-axis to the antenna axis) is в . The intersection of the antenna 
beam with the ground defines a footprint. As the platform moves, the footprint 
scans a swath on the ground.

The radar position with respect to the absolute origin O = (0, 0, 0 ) ,  at any 
time is the vector a ( t) .  The velocity vector a'( t) is

л л л
a'( t) = 0 x  ax + v x  ay + 0 x  az (12.5)

The Line of Sight (LOS) for the current footprint centered at q  ( tc) is defined 

by the vector r  ( tc) ,  where tc denotes the central time of the observation inter
val Tob (coherent integration interval). More precisely,

T  T/х х . х ч  ob ^ ^ ob /..ллх
(t = ta + tc) ; - " y  -  t -  "2" (12.6)
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F ig u re  12 .3 . S id e  lo o k in g  S A R  g e o m e try .
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where ta and t are the absolute and relative times, respectively. The vector mg 
defines the ground projection of the antenna at central time. The minimum 
slant range to the swath is Rmin, and the maximum range is denoted Rmax, as 
illustrated by Fig. 12.4. It follows that

Rm

R

h /  cos (в  -  9 / 2) 

h / c o s  (в  + 9 / 2) (12.7)

R ( tc) h /c o s  в

Notice that the elevation angle в is equal to

в = 90 -  Yg (12.8)

where Y g is the grazing angle. The size of the footprint is a function of the 
grazing angle and the antenna beam width, as illustrated in Fig. 12.5. The SAR  
geometry described in this section is referred to as SAR “strip mode” of opera
tion. Another SAR mode of operation, which will not be discussed in this 
chapter, is called “spot-light mode,” where the antenna is steered (mechani
cally or electronically) to continuously illuminate one spot (footprint) on the 
ground. In this case, one high resolution image of the current footprint is gen
erated during an observation interval.

Figure 12.4. Definition of minimum and maximum range.

12.4. SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso
lution cell shown in Fig. 12.6. The range resolution, A R , is computed on the 
beam LOS, and is given by

A R  =  ( c t ) / 2  (12.9)
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R ( tc)

R ( tc)
-n

Figure 12.5. Footprint definition.

swath

F ig u re  12 .6 . D e f in it io n  o f  a  r e s o lu t io n  ce ll.
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where т is the pulse width. From the geometry in Fig. 12.7 the extent of the 
range cell ground projection ARg is computed as

c т
ARg = у  sec Yg (12.10)

The azimuth or cross range resolution for a real antenna with a 3 dB  beam  
width 8 (radians) at range R is

A A r = 8R (12.11)

However, the antenna beam width is proportional to the aperture size,

n A,8 »  (12.12)

where A is the wavelength and L  is the aperture length. It follows that

AAr = L  (12.13)

And since the effective synthetic aperture size is twice that o f a real array, the 
azimuth resolution for a synthetic array is then given by

AA = |R  (12.14)

I I
ct
y sec Yg

F ig u re  12 .7 . D e f in it io n  o f  a  r a n g e  c e ll o n  th e  g ro u n d .

x

© 2000 by Chapman & Hall/CRC



Furthermore, since the synthetic aperture length L  is equal to vTob, Eq. 
(12.14) can be rewritten as

AA = - M -  (12.15)
2 vTob

The azimuth resolution can be greatly improved by taking advantage of the 
Doppler variation within a footprint (or a beam). As the radar travels along its 
flight path the radial velocity to a ground scatterer (point target) within a foot
print varies as a function of the radar radial velocity in the direction of that 
scatterer. The variation of Doppler frequency for a certain scatterer is called the 
“Doppler history.”

Let R ( t ) denote range to a scatterer at time t , and v r be the corresponding 
radial velocity; thus the Doppler shift is

A  = -  T  -  I  <12-1«)

where R' ( t) is the range rate to the scatterer. Let t1 and t2 be the times when 
the scatterer enters and leaves the radar beam, respectively, and let tc be the 
time that corresponds to minimum range. Fig. 12.8 shows a sketch of the corre
sponding R ( t ) (see Eq. (12.16)). Since the radial velocity can be computed as 
the derivative of R ( t ) with respect to time, one can clearly see that Doppler 
frequency is maximum at t1 , zero at tc , and minimum at t2 , as illustrated in 
Fig. 12.9.

In general, the radar maximum PRF, f r , must be low enough to avoid 
range ambiguity. Alternatively, the minimum PRF, f r , must be high enough 
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide 
as the extent of a footprint. More precisely, since target returns from maximum  
range due to the current pulse must be received by the radar before the next 
pulse is transmitted, it follows that SAR unambiguous range is given by

R u = R max -  Rmin (12.17)

An expression for unambiguous range was derived in Chapter 1, and is 
repeated here as Eq. (12.18),

R u = f  (12'18)

Combining Eq. (12.18) and Eq. (12.17) yields

f rmax < 2(R - R  ■ ) (12.19)max min
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Figure 12.8. Sketch o f range versus time for a scatterer.

Figure 12.9. Point scatterer Doppler history.

SAR minimum PRF, f r , is selected so that Doppler ambiguity is avoided. 
In other words, f r , must be greater than the maximum expected Doppler 
spread within a footprint. From the geometry of Fig. 12.10, the maximum and 
minimum Doppler frequencies are, respectively, given by

( fdmax = T  cos ( 90 -  2 ) sin P)  ; a t t1 (12.20)

(f dmn = X  cos ( 90 + 2 ) sin в)  ; a t  ^  (12.21)
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(b)

F ig u re  12 .10 . D o p p le r  h is to ry  c o m p u ta t io n .  (a ) F u l l  v iew ; (b )  to p  view .
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It follows that the maximum Doppler spread is

A fd  =  f dmax _  fd min (1 2 .22)

Substituting Eqs. (11.20) and (11.21) into Eq. (12.22) and applying the proper 
trigonometric identities yield

Afd -  у  sin;- sin в (12.23)

Finally, by using the small angle approximation we get

Afd “  "V 2- sin в -  Y  9 sin в (12.24)

Therefore, the minimum PRF is

f r > 2 - 9 sin в (12.25)J rmin X

Combining Eqs. (11.19) and (11.25) we get

> f r > y -  9 sin в (12.26)
2 (Rmax -  Rmin) ^  X

It is possible to resolve adjacent scatterers at the same range within a foot
print based only on the difference of their Doppler histories. For this purpose, 
assume that the two scatterers are within the kth  range bin. Denote their angu
lar displacement as A 9 , and let Afd be the minimum Doppler spread 
between the two scatterers such that they will appear in two distinct Doppler 
filters. Using the same methodology that led to Eq. (12.24) we get

where вк is the elevation angle corresponding to the kth  range bin.

The bandwidth of the individual Doppler filters must be equal to the inverse of 
the coherent integration interval Tob (i.e., Afd -  1 / Tob). It follows that

X
A9 -  ----------- г -  (12.28)

2 vTob sin вк

Substituting L  for vT ob yields
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A
A 8 = ----- —5-  (12.29)

2L sin Pk

Therefore, the SAR azimuth resolution (within the kth  range bin) is

A
A A g = A8Rk = R k -— —5- (12.30)

g k k 2L  sin pk

Note that when Pk = 9 0 ° , Eq. (12.30) is identical to Eq. (12.14).

12.5. SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated 
here as Eq. (12.31),

Tt 2PtG  A a
SNR  = -------3--t---4--------------- (12.31)

(4 n) RkkT0BLloSS

where: P t is peak power; G  is antenna gain; A is wavelength; a  is radar cross 
section; Rk is radar slant range to the kth  range bin; k is Boltzman’s constant; 
T0 is receiver noise temperature; B is receiver bandwidth; and LLoss is radar 
losses. The radar cross section is a function of the radar resolution cell and ter
rain reflectivity. More precisely,

0 0 ct
a  = a  ARgAAg = a  AAg у  sec Yg (12.32)

where a 0 is the clutter scattering coefficient, AAg is the azimuth resolution, 
and Eq. (12.10) was used to replace the ground range resolution. The number 
of coherently integrated pulses within an observation interval is

n = frTob = f jL  (12.33)

where L  is the synthetic aperture size. Using Eq. (12.30) in Eq. (12.33) and 
rearranging terms yield

ARfr
n = 2A V  CSC (12.34)

The radar average power over the observation interval is

Pav = (P / B  )fr (12.35)

The SNR for n coherently integrated pulses is then
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(SNR)n -  nSNR  -  n ------ г -у ---------------
(4 n ) R kkToBLLoSS

2 2  P tG  X о
(12 .36)

Substituting Eqs. (11.35), (11.34), and (11.32) into Eq. (12.36) and performing 
some algebraic manipulations give the SAR radar equation,

Eq. (12.37) leads to the conclusion that in SAR systems the SNR is (1) 
inversely proportional to the third power of range; (2) independent of azimuth 
resolution; (3) function of the ground range resolution; (4) inversely propor
tional to the velocity v ; and (5) proportional to the third power of wavelength.

12.6. SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR 
map or image; they are line-by-line processing and Doppler processing. The 
concept of SAR line-by-line processing is as follows. Through the radar linear 
motion a synthetic array is formed, where the elements of the current synthetic 
array correspond to the position of the antenna transmissions during the last 
observation interval. Azimuth resolution is obtained by forming narrow syn
thetic beams through combination of the last observation interval returns. Fine 
range resolution is accomplished in real time by utilizing range gating and 
pulse compression. For each range bin and each of the transmitted pulses dur
ing the last observation interval, the returns are recorded in a two-dimensional 
array of data that is updated for every pulse. Denote the two-dimensional array 
of data as M A P .

To further illustrate the concept of line-by-line processing, consider the case 
where a map of size N a x  N r is to be produced, N a is the number of azimuth 
cells, and N r is the number of range bins. Hence, M A P  is of size N a x  N r , 
where the columns refer to range bins, and the rows refer to azimuth cells. For 
each transmitted pulse, the echoes from consecutive range bins are recorded 
sequentially in the first row of M A P . Once the first row is completely filled 
(i.e., returns from all range bins have been received), all data (in all rows) are 
shifted downward one row before the next pulse is transmitted. Thus, one row 
of M A P  is generated for every transmitted pulse. Consequently, for the current 
observation interval, returns from the first transmitted pulse will be located in 
the bottom row of M A P  , and returns from the last transmitted pulse will be in 
the first row of M A P  .

(12.37)

© 2000 by Chapman & Hall/CRC



In SAR Doppler processing, the array M A P  is updated once every N  pulses 
so that a block of N  columns is generated simultaneously. In this case, N  
refers to the number of transmissions during an observation interval (i.e., size 
of the synthetic array). From an antenna point of view, this is equivalent to 
having N  adjacent synthetic beams formed in parallel through electronic steer
ing.

12.7. Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.11, and assume that the scatterer C t 
is located within the kth  range bin. The scatterer azimuth and elevation angles 
are and P; , respectively. The scatterer elevation angle P; is assumed to be 
equal to Pk, the range bin elevation angle. This assumption is true if  the 
ground range resolution, ARg , is small; otherwise, P; = Pk + e ; for some 
small e ; ; in this chapter e ; = 0 .

The normalized transmitted signal can be represented by

i  ( t ) = cos (2 nfot -  £o) (12.38)

F ig u re  12 .11. A  s c a t t e r e r  Ci w i th in  th e  kth r a n g e  b in .
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where f 0 is the radar operating frequency, and £ 0 denotes the transmitter 
phase. The returned radar signal from C i is then equal to

Si(t,Vi) -  A icos [2n f  ( t -  Ti( t ,^ i)) -  £0] (12.39)

where Ti( t, ) is the round-trip delay to the scatterer, and A i includes scat- 
terer strength, range attenuation, and antenna gain. The round-trip delay is

2 ri( t, цЛ
Ti( t, ^ i) -  ----- -c-----  (12.40)

where c is the speed of light and ri( t, ) is the scatterer slant range. From the 
geometry in Fig. 12.11, one can write the expression for the slant range to the 
i th  scatterer within the kth  range bin as

r i( t’ ^ ) -  o h T  j 1 " ^ cos в co s^ sin в i + ( v  cos в i) (12.41)

And by using Eq. (12.40) the round-trip delay can be written as

Ti( ^ > -  1 -  ¥ c o sв c o s s i n в + ( h cosp i) 3 <12-421

The round-trip delay can be approximated using a two-dimensional second 
order Taylor series expansion about the reference state ( t, ц ) -  (0, 0 ) .  Per
forming this Taylor series expansion yields

- - - t2 Ti( t ,^ i)« T  + Ttц Ц-t + T„ -  (12.43)

where the over-bar indicates evaluation at the state (0, 0), and the subscripts 
denote partial derivatives. For example, tv  means

_ d 2
V  -  - r ^ T i( t, Д;)| (12.44)гц дtдц i y , ^ iJ l( t, ц) -  (0,0) ' '

The Taylor series coefficients are (see Problem 11.6)

“ H r (12.45)c J cos e i

ч  ц (12.46)

© 2000 by Chapman & Hall/CRC



т" = ( h - ) с“  в
(12.47)

Note that other Taylor series coefficients are either zeros or very small, hence 
they are neglected. Finally, by substituting Eqs. (12.45) through (12.47) into 
Eq. (12.43), w e can rewrite the returned radar signal as

Si( t ,|I ;) = Ai cos ty i(  t ,|I ;) -  £ о ]
2̂  (12.48)

Yi ( t ,V i ) = 2 nfo (1 -  T ) t -  т -  t „ -
z z  t_ 

2

Observation of Eq. (12.48) indicates that the instantaneous frequency for the 
ith  scatterer varies as a linear function of time due to the second order phase 
term 2 n f0(Tttt / 2) (this confirms the result we concluded about a scatterer 
Doppler history). Furthermore, since this phase term is range-bin dependent 
and not scatterer dependent, all scatterers within the same range bin produce 
this exact second order phase term. It follows that scatterers within a range bin 
have identical Doppler histories. These Doppler histories are separated by the 
time delay required to fly between them, as illustrated in Fig. 12.12.

Suppose that there are I  scatterers within the kth  range bin. In this case, the 
combined returns for this cell are the sum of the individual returns due to each 
scatterer as defined by Eq. (12.48). In other words, superposition holds, and the 
overall echo signal is

sr ( t ) = X  Si ( t ,^ i) (12.49)

I

F ig u re  12 .12 . D o p p le r  h is to r ie s  f o r  s e v e ra l  s c a t t e r e r s  w ith in  th e  s a m e  r a n g e  b in .
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A signal processing block diagram for the kth  range bin is illustrated in Fig.
12.13. It consists o f the following steps. First, heterodyning with carrier fre
quency is performed to extract the quadrature components.

This is followed by LP filtering and A/D conversion. Next, deramping or 
focusing to remove the second order phase term of the quadrature components 
is carried out using a phase rotation matrix. The last stage of the processing 
includes windowing, performing FFT on the windowed quadrature compo
nents, and scaling of the amplitude spectrum to account for range attenuation 
and antenna gain.

The discrete quadrature components are

x i( tn) = x i (n ) = Ai cos [Yi ( t„ ,^ i) -  £o ]
(12.50)

XQ ( tn ) = XQ (n) = Ai sin [Yi ( tn, V ) -  £o ]

Y  i( t^V-i) = Y  i( t^V-i) -  2nfo tn (12.51)

and tn denotes the nth  sampling time (remember that - T ob/ 2 < tn < Tob/ 2 ) . 
The quadrature components after deramping (i.e., removal of the phase
Y = -n fo Tttt2n ) are given by

Xi( n ) cos y -  sin y XI (n )

Xq ( n ) sin y soc x  q (n)
(12.52)

12.8. SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo
nal dimensions (range and azimuth). Range resolution is controlled by the 
receiver bandwidth and pulse compression. Azimuth resolution is limited by 
the antenna beam width. A one-to-one correspondence between the FFT bins 
and the azimuth resolution cells can be established by utilizing the signal 
model described in the previous section. Therefore, the problem of target 
detection is transformed into a spectral analysis problem, where detection is 
based on the amplitude spectrum of the returned signal. The FFT frequency 
resolution A f  is equal to the inverse of the observation interval Tob .It follows 
that a peak in the amplitude spectrum at k1 A f indicates the presence of a scat
terer at frequency f d1 = k1 A f .

For an example, consider the scatterer C i within the kth  range bin. The 
instantaneous frequency f di corresponding to this scatterer is
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D o p p le r  h isto ries

Figure 12.13. Signal processing block diagram for the kth range bin.
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,  1 dw - 2v . D
f di -  2П d t  = ^ ц .  -  X s‘n PiMi (12 .53)

which is the same result derived in Eq. (12. 27), where ц  -  Д0 . Therefore, 
the scatterers separated in Doppler by a frequency greater than Д f  can then be 
resolved.

12.9. Range Walk

As shown earlier SAR Doppler processing is achieved in two steps: first, 
range gating and second, azimuth compression within each bin at the end of the 
observation interval. For this purpose, azimuth compression assumes that each 
scatterer remains within the same range bin during the observation interval. 
However, since the range gates are defined with respect to a radar that is m ov
ing, the range gate grid is also moving relative to the ground. As a result a scat- 
terer appears to be moving within its range bin. This phenomenon is known as 
range walk. A small amount of range walk does not bother Doppler processing 
as long as the scatterer remains within the same range bin. However, range 
walk over several range bins can constitute serious problems, where in this 
case Doppler processing is meaningless.

12.10. Case Study

Table 12.1 lists the selected design system parameters. The 3 dB element 
beamwidth is 0 -  63.75 m i l l i r a d i a n s . The maximum range interval 
spanned by the central footprint is

Substituting the proper values from Table 12.1 into Eqs. (12.54), (12.55), and 
(12.56) yields

which indicates that the system should have a total of 82 range bins. Doppler 
shift over the footprint is proportional to the radial velocity. It is given by

(12.54)

(12.55)

(12.56)

{ R span, R mx, Rmn}  -  {81.448, 1315.538, 1234.090} m (12.57)

y c o s  (90 + 0 / 2) sin в* < f  < y c o s  (90 -  0 / 2) sin в* 
X X

(12 .58)

For this example, f d is
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TABLE 12.1. List of selected system parameters.

Parameter Symbol Value

#  subintervals M 64

size o f  array N 32

wavelength X 3.19 mm

element spacing d 16 X

velocity v 65 m /  s

height h 900 m

elevation angle P* 35 °

range resolution dr 1m

observation interval D ob 20ms

-1489 .88H z < f d < 1489.88Hz (12.59)

To avoid range and Doppler ambiguities the Pulse Repetition Frequency (PRF) 
should be

Y 0 <  P R F  < - C —  (12.60)
X 2R span

Using the system parameters defined in Table 12.1, we find 
5.995KHz  < P R F  < 1.31579M H z . The DFT frequency resolution A f is com 
puted as the inverse of the observation interval, and it is equal to 5 0 H z . The 
size of the DFT, denoted as N F F T , is equal to the number of positions the 
antenna takes on along the flight path. The maximum Doppler variation 
resolved by this DFT is less than or equal to A f x  N F F T / 2 .

12.11. Arrays in Sequential Mode Operation

Standard Synthetic Aperture Radar (SAR) imaging systems are generally 
used to generate high resolution two-dimensional (2-D) images of ground ter
rain. Range gating determines resolution along the first dimension. Pulse com 
pression techniques are usually used to achieve fine range resolution. Such 
techniques require the use of wide band receiver and display devices in order 
to resolve the time structure in the returned signals. The width of azimuth cells

© 2000 by Chapman & Hall/CRC



provides resolution along the other dimension. Azimuth resolution is limited 
by the duration of the observation interval.

An approach for multiple target detection using linear arrays operated in 
sequential mode was previously presented by Mahafza. This technique is based 
on Discrete Fourier Transform (DFT) processing of equiphase data collected in 
sequential mode (DFTSQM). DFTSQM processing was also developed for 2-D  
real and synthetic arrays to include applications such as SAR imaging. The 
Field of View (FOV) of an array utilizing DFTSQM operation and signal pro
cessing is defined by the 3 dB beamwidth of a single element. Advantages of 
DFTSQM are (1) simultaneous detection of targets within the array’s FOV 
without using any phase shifting hardware; and (2) the two-way array pattern 
is improved due to the coherent integration of equiphase returns. More specifi
cally, the main lobe resolution is doubled while achieving a 27 dB sidelobe 
attenuation. However, the time required for transmission and processing may 
become a limitation when using this technique. A brief description of 
DFTSQM is presented in the next section.

12.11.1. Linear Arrays

Consider a linear array of size N , uniform element spacing d , and wave
length X . Assume a far field scatterer P  located at direction-sine sin Rl . 
DFTSQM operation for this array can be described as follows. The elements 
are fired sequentially, one at a time, while all elements receive in parallel. The 
echoes are collected and integrated coherently on the basis of equal phase to 
compute a complex information sequence { b (m ) ;m -  0, 2N  -  1} . The x- 
coordinates, in d -units, of the xnth element with respect to the center of the 
array are

(12.61)

The electric field received by the xt2h element due to the firing of the x t1h, and 
reflection by the lth far field scatterer P  is

(12.62)

ф(X1, x2;si) -  у (X1+ X2) ( si) (12.63)

Si -  sin в (12.64)
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where J a l is the target cross section, G 2(s l) is the two-way element gain, and 
(R 0/ R )4 is the range attenuation with respect to reference range R 0 . The scat- 
terer phase is assumed to be zero, however it could be easily included.

Assuming multiple scatterers in the array’s FOV, the cumulative electric 
field in the path x1 ^  X2 due to reflection from all scatterers is

E (X1, X2) -  ^ [ EI(X1, X2';Sl) + ] E q ( Xb X1;sl)] (12.65)

all l

where the subscripts (I, Q ) denote the quadrature components. Note that the 
variable part of the phase given in Eq. (12.63) is proportional to the integers 
resulting from the sums {(Xn1 + Xn2); (n 1, n 2 ) -  0, N  -  1} . In the far field 
operation there are a total o f (2 N  -  1) distinct (Xn1 + Xn2) sums. Therefore, 
the electric fields with paths of the same (Xn1 + Xn2) sums can be collected 
coherently. In this manner the information sequence { b (m ) ;m -  0, 2N  -  1} is 
computed, where b ( 2N  -  1) is set to equal zero. At the same time one forms 
the sequence { c (m ) ;m -  0, 2N  -  2 }  which keeps track of the number of 
returns that have the same (Xn1 + Xn2) sum. More precisely, for 
m -  n 1 +  n2; (n1, n2) -  0, N  -  1

b ( m ) -  b (m ) + E (Xn1, Xn2) (12.66)

c (m ) -  c (m ) + 1

It follows that

(12.67)

{ c (m ) ;m -  0, 2N  -  2 }

m + 1  ; m - 0 ,  N  -  2 

N  ; m -  N  -  1

2 N  -  1 -  m m -  N, 2 N  -  2

(12.68)

which is a triangular shape sequence.

The processing of the sequence { b (m )}  is performed as follows: (1) the 
weighting takes the sequence { c (m ) }  into account; (2) the complex sequence 
{ b (m )}  is extended to size N F, a power integer of two, by zero padding; (3) 

the DFT of the extended sequence { b'(m ) ;m -  0, NF -  1} is computed,

Nr -  1

B (q ) 2nqm ^, 
N„ ) ;

q  -  0, N f  -  1 (12.69)

-0
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and (4) after compensation for antenna gain and range attenuation, scatterers 
are detected as peaks in the amplitude spectrum |B (q )| . Note that step (4) is 
true only when

sinPq = N  ; q  = 0, 2N  -  1 (12.70)

where sin Pq denotes the direction-sine of the q th scatterer, and NF = 2N  is 
implied in Eq. (12.70).

The classical approach to multiple target detection is to use a phased array 
antenna with phase shifting and tapering hardware. The array beamwidth is 
proportional to (X /N d ) , and the first sidelobe is at about -13 dB. On the other 
hand, multiple target detection using DFTSQM provides a beamwidth propor
tional to ( X /2N d)  as indicated by Eq. (12.70), which has the effect of dou
bling the array’s resolution. The first sidelobe is at about -27 dB due the 
triangular sequence { c (m ) }  . Additionally, no phase shifting hardware is 
required for detection of targets within a single element field of view.

12.11.2. Rectangular Arrays

DFTSQM operation and signal processing for 2-D arrays can be described as 
follows. Consider an Nx x  Ny rectangular array. All NxNy elements are fired 
sequentially, one at a time; after each firing, all the NxN y array elements 
receive in parallel. Thus, N xNy samples of the quadrature components are col
lected after each firing, and a total of (NxNy )2 samples will be collected. How
ever, in the far field operation, there are only (2Nx -  1) x  (2Ny -  1) distinct 
equiphase returns. Therefore, the collected data can be added coherently to 
form a 2-D information array of size (2Nx -  1) x  (2Ny -  1 ) . The two-way 
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of 
the information array. The processing includes 2-D windowing, 2-D Discrete 
Fourier Transformation, antenna gain, and range attenuation compensation. 
The field of view of the 2-D array is determined by the 3 dB pattern of a single 
element. All the scatterers within this field will be detected simultaneously as 
peaks in the amplitude spectrum.

Consider a rectangular array of size N  x  N , with uniform element spacing 
dx = dy = d , and wavelength X . The coordinates of the nth element, in d  - 
units, are

xn = ( -  ^  1 + n ) ; n = 0, N  -  1 (12.71)

y n = ( -  ^ Г " - + n ) ; n = 0, N  -  1 (12.72)
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Assume a far field point P  defined by the azimuth and elevation angles (a , P ) . 
In this case, the one-way geometric phase for an element is

2 П
9'(x, y ) -  -г- [xsin p cos a  + y  sin p sin a ]  (12.73)

A

Therefore, the two-way geometric phase between the (x 1, y 1) and (x2, y2) 
elements is

2 n
9 ( x 1, y 1, x2, y 2) -  ---sin  p [(x 1 + x 2) cos a  + (y 1 + y2) sin a ]  (12.74) 

A

The two-way electric field for the l th scatterer at ( a l, Pl) is

/R  \4
E (x l , x 2, Уl, У2;a l, Pl) -  G 2(Pl) /-r0J J a l exp [j ( ф(x l , Уl, ^  y2))] (12.75)

Assuming multiple scatterers within the array’s FOV, then the cumulative 
electric field for the two-way path (x 1, y 1) ^  (x2, y2) is given by

E (Xl, X2, Уl, y2) -  X  E (Xl, X2, Уl, У 2;^  Pl) (12.76)

all scatterers

All formulas for the 2-D case reduce to those of a linear array case by setting 
Ny -  1 and a  -  0 .

The variable part of the phase given in Eq. (12.74) is proportional to the inte
gers (x 1 + x2) and (y 1, y2) .  Therefore, after completion of the sequential fir
ing, electric fields with paths of the same ( i, j ) sums, where

{ i -  Xnl + Xn2;i -  - ( N -  1), ( N -  1 )} (12.77)

{j -  Уп1 + yn2j  -  - ( N -  1X ( N -  1) }  (12.78)

can be collected coherently. In this manner the 2-D information array 
{ b (mx, my);(mx, my) -  0, 2 N  -  1} is computed. The coefficient sequence 
{ c (mx, my);(mx, my) -  0, 2N  -  2 } is also computed. More precisely,

f o r  mx -  n 1 + n2 an d  my -  n l + n 2; (12.79)
n 1 - 0 ,  N  -  1 , an d  n2 -  0, N  -  1

b (^  my) -  b (^  my) + E (xn ̂  Уn1, ^  Уп2) (12.80)

It follows that
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c ( Mx, My) = (Nx -  К  -  (Nx -  1 ) |) x (N y  -  |my -  (Ny -  1 )|)  (12.81)

The processing of the complex 2-D information array { b ( mx, my)}  is simi
lar to that o f the linear case with the exception that one should use a 2-D DFT. 
After antenna gain and range attenuation compensation, scatterers are detected 
as peaks in the 2-D amplitude spectrum of the information array. A scatterer 
located at angles ( a ;, Pl) will produce a peak in the amplitude spectrum at 
DFT indexes (p t, q t) ,  where

a l = atan (12.82) 

. о XPl M l  ...........sin e l = --------------  = ------- :-----  (12.83)
l 2N dcos a l 2 N d  sin a l

In order to prove Eq. (12.82), consider a rectangular array of size N  x  N , 
with uniform element spacing dx = dy = d , and wavelength X . Assume 
sequential mode operation where elements are fired sequentially, one at a time, 
while all elements receive in parallel. Assuming far field observation defined 
by azimuth and ̂ levation angles (a , P ) . The unit vector u on the line of sight, 
with respect to O , is given by

U = sin p cos a  ax + sin p sin a  ay + cos P az (12.84)

The (nx, ny) th element of the array can be defined by the vector

/  n  - 1 )   ̂ (  N  - 1 )  ■*
e (nx, ny) = I nx -  22 Id  ax + I ny -  — Id  ay (12.85)

where (nx, ny = 0, N  -  1 ) . The one-way geometric phase for this element is

ф'(nx, ny) = k ( U •  e (nx, ny)) (12.86)

where k = 2п /X  is the wave-number, and the operator ( •  ) indicates dot 
product. Therefore, the two-way geometric phase between the (nx1, ny1) and 
( nx2, ny2) elements is

ф( nx^ ny1  ^  ny2) = k [U •  { e ( nxV ny1) + e (nx2, ny2) } ] (12.87)

The cumulative two-way normalized electric due to all transmissions in the 
direction (a , P) is

E  ( u) = Et ( u) Er (u ) (12.88)
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where the subscripts t and r , respectively, refer to the transmitted and received 
electric fields. More precisely,

N-1 N - 1

E, (5 )  -  X  X  w (nxp ny,) e x p [j k { и •  e (nxP ny,)} ] (12.89)

N -  1 N -  1

E ( и) -  X X  w ( nxr, nyr) e x p [ jk { и •  e (nxr, nyr) } ]  (12.90)

In this case, w ( nx, ny) denotes the tapering sequence. Substituting Eqs. 
(12.87), (12.89), and (12.90) into Eq. (12.88) and grouping all fields with the 
same two-way geometric phase yield

E ( U) -  ejS X  X  W (m, n )exp[jkdsin  P(m cos a  + n sin a ) ]  (12.91)

m -  0 n -  0

Na -  2N  -  1

m -  nxt + nxr;m -  0, 2N  -  2 

n -  nyt + nyr;n -  0, 2N  -  2

5 -  i  d f P ) (N  -  1 ) ( cos a  + sin a )  

The two-way array pattern is then computed as

(12.92)

(12.93)

(12.94)

(12.95)

E (  U )| X X  w'( m, n ) ex p [ jk d  sin P( m cos a  + n sin a ) ]

m -  0 n -  0

(12.96)

Consider the two-dimensional DFT transform, W (p ,  q ) ,  o f the array
w' ( nx, ny)

W (p, q ) -  X  X  w (m, n)<

■2 n, , -j n  (pm + qn)
; (p, q ) -  0, Na -  1 (12.97)

m -  0 n0 n -  0

n xt  -0 n yt  -0

n x r  -0 n y r  -0

Na -  1 Na -  1

Na -  1 Na -  1

Na -  1 Na -  1
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Comparison of Eq. (12.96) and (12.97) indicates that |e(и)| is equal to 
\W(p, q)\ if

which is the same as Eq. (12.82).

12.12. MATLAB Programs

This section contains the MATLAB programs used in this chapter.

Listing 12.1. MATLAB Program “fig12_2.m”
clear all
var -  -pi:0.001:pi; 
y l -  (sinc(var)) .л2; 
y2 -  abs(sinc(2.0 * var)); 
plot (var,y1,var,y2); 
axis tight 
grid;
xlabel ('angle - radians'); 
ylabel ('array pattern');

Problems

1 2 . 1 .  A side looking SAR is traveling at an altitude of 15K m ; the elevation 
angle is в -  15°. If the aperture length is L -  5m , the pulse width is 
т -  20|j.s and the wavelength is X -  3 .5cm . (a) Calculate the azimuth reso
lution. (b) Calculate the range and ground range resolutions.
1 2 . 2 .  A MMW side looking SAR has the following specifications: radar 
velocity v -  70m / s , elevation angle в -  35° , operating frequency 
f 0 -  94GH z , and antenna 3dB beam width 03dB -  65m ra d . (a) Calculate

(12.98)

(12.99)

It follows that

(12.100)
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the footprint dimensions. (b) Compute the minimum and maximum ranges. (c) 
Compute the Doppler frequency span across the footprint. (d) Calculate the 
minimum and maximum PRFs.
1 2 . 3 .  A side looking SAR takes on eight positions within an observation 
interval. In each position the radar transmits and receives one pulse. Let the 
distance between any two consecutive antenna positions be d , and define

5 = 2n ■-(sin в -  sin в 0) to be the one-way phase difference for a beam steered 
X

at angle во . (a) In each of the eight positions a sample of the phase pattern is 
obtained after heterodyning. List the phase samples. (b) How will you process 
the sequence of samples using an FFT (do not forget windowing)? (c) Give a 
formula for the angle between the grating lobes.
1 2 . 4 .  Consider a synthetic aperture radar. You are given the following Dop
pler history for a scatterer: {1000Hz, 0, -1000HZ} which corresponds to 
times { -1 0 ms, 0, 10ms} . Assume that the observation interval is 
Tob = 20m s , and a platform velocity v = 200m / s . (a) Show the Doppler 
history for another scatterer which is identical to the first one except that it is 
located in azimuth 1 m earlier. (b) How will you perform deramping on the 
quadrature components (show only the general approach)? (c) Show the Dop
pler history for both scatterers after deramping.
1 2 . 5 .  You want to design a side looking synthetic aperture Ultrasonic radar 
operating at f 0 = 60KHz and peak power P t = 2 W . The antenna beam is 

conical with 3dB beam width 93 dB = 5 ° . The maximum gain is 16 . The radar 

is at a constant altitude h = 15m and is moving at a velocity of 10m / s . The 
elevation angle defining the footprint is в = 45 ° . (a) Give an expression for 
the antenna gain assuming a Gaussian pattern. (b) Compute the pulse width 
corresponding to range resolution of 10m m  . (c) What are the footprint dimen
sions? (d) Compute and plot the Doppler history for a scatterer located on the 
central range bin. (e) Calculate the minimum and maximum PRFs; do you need 
to use more than one PRF? (f) How w ill you design the system in order to 
achieve an azimuth resolution of 10MM ?
1 2 . 6 .  Derive Eq. (12.45) through Eq. (12.47).
1 2 . 7 .  In Section 12.7 we assumed the elevation angle increment e is equal 
to zero. Develop an equivalent to Eq. (12.43) for the case when e Ф 0 .  You 
need to use a third order three-dimensional Taylor series expansion about the 
state ( t, ц, e) = (0, 0, 0) in order to compute the new round-trip delay 
expression.
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Chapter 13 Signal Processing

13.1. Signal and System Classifications

In general, electrical signals can represent either current or voltage, and may 
be classified into two main categories: energy signals and power signals. 
Energy signals can be deterministic or random, while power signals can be 
periodic or random. A signal is said to be random if  it is a function of a random 
parameter (such as random phase or random amplitude). Additionally, signals 
may be divided into low pass or band pass signals. Signals that contain very 
low frequencies (close to DC) are called low pass signals; otherwise they are 
referred to as band pass signals. Through modulation, low pass signals can be 
mapped into band pass signals.

The average power P for the current or voltage signal x (t) over the interval 
( t1, t2) across a 1О resistor is

-  J i x (t )iP  = ------- I |x( t)| dt (13.1)

The signal x ( t) is said to be a power signal over a very large interval 
T = t2 - 11, if and only if  it has finite power; it must satisfy the following rela
tion:

T / 2

0 < lim
T ^ T  J l x ( t ) l 2 dt <™ (13 .2 )

-T / 2
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Using Parseval’s theorem, the energy E dissipated by the current or voltage 
signal x ( t) across a 1О resistor, over the interval ( t1, t2) ,  is

t 2

E = J  |x( t)|2 dt (13.3)

f 1

The signal x ( t) is said to be an energy signal if  and only if  it has finite 
energy,

E = J  |x( t)|2 dt (13.4)

A signal x ( t) is said to be periodic with period T if  and only if

x ( t) = x ( t + nT) fo r  a l l  t (13.5)

where n is an integer.

Example 13 .1: Classify each o f the following signals as an energy signal, as 
a power signal, or as neither. A ll signals are defined over the interval 
(— t < m ) : x 1( t) = cos t + co s2 t, x2( t) = exp (—a t ) .

Solution:

t/ 2
1 2  

Px  = T J ( cost + cos21) dt =1 ^  pow er signal

—T/ 2

Note that since the cosine function is periodic, the limit is not necessary.

^ f ( —a2t2  ̂  ̂ f —2a2t2  ̂  ̂ -УП 1- /П . . ,EXl = J ( e ) dt = 2J e dt = 2 ——  = — /-■ ^  energy s ig n a l .
2 aJ 2 — V

—m 0

Electrical systems can be linear or nonlinear. Furthermore, linear systems 
may be divided into continuous or discrete. A system is linear if  the input sig
nal x 1 ( t) produces y 1( t) and x2( t) produces y 2( t) ;  then for some arbitrary 
constants a 1 and a 2 the input signal a 1 x 1 ( t) + a 2x2( t) produces the output 
a 1 y 1 ( t) + a 2y2( t ) . A linear system is said to be shift invariant (or time invari
ant) if a time shift at its input produces the same shift at its output. More pre
cisely, if  the input signal x ( t) produces y ( t) then the delayed signal x ( t — t0) 
produces the output y ( t — t0) .  The impulse response of a Linear Time Invariant 
(LTI) system, h ( t) ,  is defined to be the system’s output when the input is an 
impulse (delta function).
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13.2. The Fourier Transform

The Fourier Transform (FT) of the signal x (t) is

F {x(t)}  = X (ю) = J x ( t ) e d t  (13.6)

or

F {x(t)}  = X(f) = J x ( t)e-2nft dt (13.7)

and the Inverse Fourier Transform (IFT) is

F^1 {Х(ю)} = x (t) = J  X (ю)eim dю (13.8)

or

F^1 {X (f)} = x ( t) = J  X (f)j n f t  df (13.9)

where, in general, t represents time, while ю = 2n f  and f  represent fre
quency in radians per second and Hertz, respectively. In this book we w ill use 
both notations for the transform, as appropriate (i.e., X ^ )  and X (f) ).

A detailed table of the FT pairs is listed in Appendix C. The FT properties are 
(the proofs are left as an exercise):

1. Linearity:

F  { a 1x 1 ( t) + a2 x2 ( t)} = а ^ ^ ю )  + a 2X2^ )  (13.10)

2. Symmetry: If F {x ( t)} = X (ю) then

2 nX(-ю ) = J  X ( t) e-m dt (13.11)

3. Shifting: For any real time t0
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F {x (t ± t0)} = e+m° X ^ )

4. Scaling: If F {x ( t)} = Х(ю) then

(13 .12 )

F{ x(at>} = h x (  ю)

5. Central Ordinate:

(13.13)

X  (0 ) = J  x ( t) dt (13.14)

x (0) = ——■ J Х(ю) dю 
2n J

(13.15)

6. Frequency Shift: If F {x ( t)} = X (ю) then

±йп t
F { e x ( t)} = Х(ю + ю 0)

7. Modulation: If F {x ( t)} = Х(ю) then

F { x ( t) cos ю 01} = 1 [ Х(ю + ю0) + Х(ю -  ю 0)] 

F {x ( t)s in (ю01)} = — [Х(ю -  ю0)-Х(ю  + ю0)]

8. Derivatives:

F \ - i -  (x( t)) \ = (i'ю)nX(ю)
I dt

(13.16)

(13.17)

(13.18)

(13.19)

9. Time Convolution: if x ( t) and h ( t) have Fourier transforms X (ю) and 

H(ю ), respectively, then

F J  x ( t ) h(t -  t)dx = Х (ю Щ ю ) (13.20)
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10. Frequency Convolution:

F {x ( t)h ( t)} = t 1-  J Х (т)H(m — т )dT
2 П J

(13 .21 )

11. Autocorrelation:

F J  x (т )x*(x — t)dT X(m)X*(m) = |X(m)|2 (13.22)

12 . Parseval’s Theoerem: The energy associated with the signal x ( t) is

E = J  |x( t)2 dt = J  |X(m)|:"dm (13.23)

13. Moments: The nth moment is

m = J  tnx ( t) dt = — X(m)|
d mn

(13.24)

13.3. The Fourier Series

A set of functions S = {фп(t) ; n = 1, . . . ,  N} is said to be orthogonal over 
the interval ( t1, t2) if  and only if

J  Ф1*( 0ф/ t) dt = J 9 i (  t )ф /( t) dt = (13.25)

where the asterisk indicates complex conjugate, and Xi are constants. If 
X; = 1 for all i , then the set S is said to be an orthonormal set.

An electrical signal x ( t) can be expressed over the interval ( t1, t2) as a 
weighted sum of a set of orthogonal functions as

x ( t X  X n 9 n ( t) (13 .26 )

n =1

0

2

N
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where Xn are, in general, complex constants, and the orthogonal functions 
фл ( t) are called basis functions. If the integral-square error over the interval 
( t—, t2) is equal to zero as N approaches infinity, i.e.,

lim JN
X ( t) -  ^  Xn9n ( t)

n = 1

dt = 0 (13.27)

then the set S = {фп ( t)} is said to be complete, and Eq. (13.12) becomes an 
equality. The constants Xn are computed as

J  x ( t )9 n* (t)dt

X = ---t--1----------------- (13.28)

J  Wn( t )|' dt

Let the signal x ( t) be periodic with period T , and let the complete orthogo
nal set S be

r /2nnf
S = s e T ; n = -ro, ro 

Then the complex exponential Fourier series of x ( t) is

x ( t)

(13.29)

•2nnt
T (13.30)

Using Eq. (13.28) yields

X

t/ 2

T J  x (t)

-/2-tnf
Te dt (13.31)

-T/ 2

The FT of Eq. (13.30) is given by

X (ю) = 2 ,  X  X ,8(ю  -  - p ) (13.32)

where 5( • ) is delta function. When the signal x( t) is real we can compute 
its trigonometric Fourier series from Eq. (13.30) as

N 2

n=-

n
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X( 0  = a 0 + X  an cos ( 22T t)  + X  ^n sin ( 22T t)  (13.33)
n =1 n =1

a 0 = X0 
T/ 2

an = r J  x ( t) cos ̂  2T - t)  dt
TJ —T/2 (  T )  (13.34)

T 2 ( / 2,J x( t) sin ( -
T / 2

bn = T J X( t) sin ( - T ^ I  dt
—T/2 ^

The coefficients a n are all zeros when the signal x ( t) is an odd function of 
time. Alternatively, when the signal is an even function of time, then all bn are 
equal to zero.

Consider the periodic energy signal defined in Eq. (13.33). The total energy 
associated with this signal is then given by

t + T ^
2 2 т 2

E = T J  lx( t)l2dt = J  + X ( у  + y )  (13.35)

n =1

13.4. Convolution and Correlation Integrals

The convolution фхЛ( t) between the signals x ( t) and h ( t) is defined by

фхЛ( t) = x ( t ) •  h ( t) = J  х (т ) h ( t — т ) dT (13.36)

where т is a dummy variable, and the operator • is u sed to sym bo lica lly  
describe the convolution integral. Convolution is commutative, associative, 
and distributive. More precisely,

x ( t) •  h ( t) = h ( t) •  x ( t)
(13.37)

x ( t ) •  h( t ) •  g ( t) = ( x ( t ) •  h ( t ) ) •  g ( t) = x ( t ) • (  h( t ) •  g ( t))

For the convolution integral to be finite at least one of the two signals must be 
an energy signal. The convolution between two signals can be computed using 
the FT

фхЛ( t) = F— { X(m) H (m )} (13.38)

0
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Consider an LTI system with impulse response h ( t) and input signal X( t) .  It 
follows that the output signal y ( t) is equal to the convolution between the 
input signal and the system impulse response,

y ( t) = J  x ( t ) h ( t -  x)dx = J  h (x )x ( t -  x)dx (13.39)

The cross-correlation function between the signals x ( t) and g ( t) is defined
as

Rxg(t) = J  x * ( t )g ( t + x)dx (13.40)

Again, at least one of the two signals should be an energy signal for the corre
lation integral to be finite. The cross-correlation function measures the similar
ity between the two signals. The peak value of RXg(t) and its spread around 
this peak are an indication of how good this similarity is. The cross-correlation 
integral can be computed as

Rxg( t) = F_1{ X * ^ )G  (ю)} (13.41)

When x ( t) = g ( t) we get the autocorrelation integral,

RX( t) = J  X*(x)X( t + x)dx (13.42)

Note that the autocorrelation function is denoted by RX( t) rather than RXX(t) .  
When the signals x ( t) and g ( t) are power signals, the correlation integral 
becomes infinite and thus, time averaging must be included. More precisely,

t/ 2

Rxg(t) = lim 1 J x * (x )g ( t + x)dx (13.43)
T T J

-T/ 2

13.5. Energy and Power Spectrum Densities

Consider an energy signal x ( t) .  From Parseval’s theorem, the total energy 
associated with this signal is
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E = J  |x( t)|2dt = 1■  J  | X ^ )| 2dю (13 .44 )

When x ( t) is a voltage signal, the amount of energy dissipated by this signal 
when applied across a network of resistance R is

(13.45)E = R J  |x ( t)|2dt = 2-1R J  № ) | 2dю

Alternatively, when x ( t) is a current signal we get

E = R J  |x( t)|2dt = R  J  |X^)|2dю (13.46)

The quantity J  | X ^)|  2dю represents the amount of energy spread per unit fre
quency across a 1О resistor; therefore, the Energy Spectrum Density (ESD) 
function for the energy signal x( t) is defined as

ESD = |X(o>)|2 (13.47)

The ESD at the output of an LTI system when x ( t) is at its input is

|У(ю)|2 = № ) | 2 |Я(ю)|2 (13.48)

where Н(ю) is the FT of the system impulse response, h ( t) .  It follows that the 
energy present at the output of the system is

Ey = 21; J  ^ (ю )! 2| Н(ю)| 2dю (13.49)

Example 13.2: The voltage signal x ( t) = e~5t ; t > 0 is applied to the 
input o f a low pass LTI system. The system bandwidth is 5Hz, and its input 
resistance is 5О . If H ^ )  = 1 over the interval ( -1 0 п < ю < 10n) and zero 
elsewhere, compute the energy at the output.

Solution: From Eqs. (13.45) and (13.49) we get

10 п

Ey = d R  J  X  (ю)| 2| H ^ )| 2 dюy 2п R
ю = -10п
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Using Fourier transform tables and substituting R = 5 yield

10 n

Ey = IT f - T —  dm 
y 5n J m2 + 25

0

Completing the integration yields

Ey = -i-1- [ atanh(2n) — atanh(0 )] = 0.01799 Jou les  
y 25n

Note that an infinite bandwidth would give Ey = 0.02, only 11% larger.

The total power associated with a power signal g ( t) is

t/ 2

P = lim 1 J |g( t)|2dt (13.50)
T^  — T J

—T/ 2

Define the Power Spectrum Density (PSD) function for the signal g ( t) as 
Sg (m ), where

T / 2 —

P = rim  T J  g ( t)!2dt = 2“  J  Sg(m)dm (13.51)
—T/2 —-

It can be shown that (see Problem 1.13)

Sg(m) = lim (13.52)
T — T

Let the signals х ( t) and g ( t) be two periodic signals with period T . The 
complex exponential Fourier series expansions for those signals are, respec
tively, given by

j’2-tnf

x ( t) = X  x ne T (13.53)

j2TCmf

g ( t) = X  Gme T (13.54)

The power cross-correlation function Rgx(t) was given in Eq. (13.43), and is 
repeated here as Eq. (13.55),

n=—

m = ——
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Rgx(t) = T J  g*(T )x( t + T)dT (13.55)

—T / 2

Note that because both signals are periodic the limit is no longer necessary. 
Substituting Eqs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and 
using the definition of orthogonality, we get

T / 2

j 2nn t

Rgx(t) = X  Gn*Xne T (13.56)

n = ——

When x ( t) = g ( t) ,  Eq. (13.56) becomes the power autocorrelation function,

y'2nTCf j 2nKt
Rx( t) = X  \Xn\2e T = |X0|2 + 2 X  \Xn\2e T (13.57)

n=1

The power spectrum and cross-power spectrum density functions are then 
computed as the FT of Eqs. (13.57) and (13.56), respectively. More precisely,

Sx(ra) = 2п X  \Xn\2§ (® T j2 s L  — ^nn)

(13.58)

Sgx(rn) = 2п X  Gn*Xn5(ю — ^ T -)

The line (or discrete) power spectrum is defined as the plot of |Xn| versus n , 

where the lines are A f  = 1/ T apart. The DC power is |X0| , and the total

power is X  \XJi".

13.6. Random Variables
Consider an experiment with outcomes defined by a certain sample space. 

The rule or functional relationship that maps each point in this sample space 
into a real number is called “random variable.” Random variables are desig
nated by capital letters (e.g., X, Y, . . . ) ,  and a particular value of a random vari
able is denoted by a lowercase letter (e.g., x, y, . . . ) .

n = ——

n =

n = ——

n=—
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The Cumulative Distribution Function (cdf) associated with the random vari
able X  is denoted as FX(x) ,  and is interpreted as the total probability that the 
random variable X is less or equal to the value x . More precisely,

FX( x) = P r{  X  < x }  (13.59)

The probability that the random variable X  is in the interval (x 1; x2 ) is then 
given by

Fx(X2) -  Fx(X1) = P r{X 1 < X < X2 } (13.60)

The cdf has the following properties:

0 < Fx ( x ) < 1 

Fx(-ro) = 0
(13.61)

Fx(ro) = 1

Fx (X1 )<  Fx (X2 ) <  ̂X1 < X2

It is often practical to describe a random variable by the derivative of its cdf, 
which is called the Probability Density Function (pdf). The pdf of the random 
variable X is

fx  ( x ) = d Fx( x ) (13.62)
dx

or, equivalently,

X

Fx( x) = P r{ X < x }  = J  fx  (k ) dk (13.63)

The probability that a random variable X  has values in the interval (x 1; x2) is

X2

Fx(X2) -  Fx(X1) = P r{X 1 < X < X2} = J fx (X)dx (13.64)

X1

Define the nth moment for the random variable X as

E [ Xn ] = Xn = J  xnf X( X) dx (13.65)

The first moment, E [X ] ,  is called the mean value, while the second moment,2
E[X ] ,  is called the mean squared value. When the random variable X
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represents an electrical signal across a 1О resistor, then E [ X ] is the DC com
ponent, and E[X  ] is the total average power.

The nth central moment is defined as

E [(X  — X)n] = (X — X)n = J  (x — x) f X(x)dx (13.66)

and thus, the first central moment is zero. The second central moment is called2
the variance and is denoted by the symbol oX,

2 -  2 
Ox = (X  — X ) (13.67)

Appendix E has some common pdfs and their means and variances.

In practice, the random nature of an electrical signal may need to be 
described by more than one random variable. In this case, the joint cdf and pdf 
functions need to be considered. The joint cdf and pdf for the two random vari
ables X  and Y are, respectively, defined by

Fxy(x, y ) = P r{X  < x;Y < y} (13.68)

d 2
f XY(x  y ) = x  y > (,3 '69>

The marginal cdfs are obtained as follows:

— x

Fx(x ) = J  J  fuv(u, v)dudv = Fxy(x, —)

(13.70)

Fy(y ) = J  J  fuv(u, V)dvdu = Fxy(—, y )

If the two random variables are statistically independent, then the joint cdfs and 
pdfs are, respectively, given by

Fxy(x, y ) = Fx(x ) F y(y) (13.71)

fxY(x, y ) = fx (x )fY(y ) (13.72)

Let us now consider a case when the two random variables X  and Y are 
mapped into two new variables u  and v  through some transformations T1 
and T2 defined by

y
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U = T1( X, Y)

V = T2( X, Y)
(13 .73 )

The joint pdf, f UV(u, v ) ,  may be computed based on the invariance of proba
bility under the transformation. One must first compute the matrix of deriva
tives; then the new joint pdf is computed as

fUV(u  v) = fxY(X, y ) | J

J  =

dx dx
d u d v

dy dy
d u d v

(13.74)

(13.75)

where the determinant of the matrix of derivatives |J is called the Jacobian. 

The characteristic function for the random variable X is defined as

Cx (ю) = E [ j X  ] = J  fx( X)j dx (13.76)

The characteristic function can be used to compute the pdf for a sum of inde
pendent random variables. More precisely, let the random variable Y be equal 
to

Y = X1 + X2 + ... + XN (13.77)

where {X{ ; i = 1 , . . .N} is a set of independent random variables. It can be 
shown that

Cy (ю) = Cx1 (ю) Cx2 (ю )— Cxn (ю) (13.78)

and the pdf f Y(y ) is computed as the inverse Fourier transform of Cy(ю) (with 
the sign of y reversed),

/y(y) = 2^  J  Cy^ ) e-}юydю (13.79)

The characteristic function may also be used to compute the nth moment for 
the random variable X as

© 2000 by Chapman & Hall/CRC



E [X  ] = ( - } ) " - ^ C x (ю) 
d ю

n
(13 .80 )

13.7. Multivariate Gaussian Distribution

Consider a joint probability for m random variables, X1; X2, ... ,  Xm. These 
variables can be represented as components of an m x  1 random column vec
tor, X . More precisely,

Xr = [X1 X2 ... x ^  (13.81)

where the superscript indicates the transpose operation. The joint pdf for the 
vector X is

fx_ (X) = 4 ,  X2,..., xm 4m  m - - - ’ Xm) (13.82)

The mean vector is defined as

lx  = [e  [ X1 ] E [ X 2 ] . .. E [ Xm j ' (13.83)

and the covariance is an m x  m matrix given by

Cx = E [X X ] -  |X |X (13.84)

Note that if  the elements of the vector X are independent, then the covariance 
matrix is a diagonal matrix.

By definition a random vector X  is multivariate Gaussian if  its pdf has the 
form

fx_ (X) = [(2 n )m/2| C J 1 /2 ]-1exp ( - 1  (x -  lx  ) tC -1( X -  l x ) )  (13.85)

where |X is the mean vector, Cx is the covariance matrix, Cx is inverse of 
the covariance matrix and |Cx| is its determinant, and X  is of dimension m . If 
A is a k x  m matrix of rank k , then the random vector Y = AX  is a k-variate 
Gaussian vector with

|y = A lx  (13.86)

and

Cy = ACxA  (13.87)

The characteristic function for a multivariate Guassian pdf is defined by
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Cx = E [ exp { j  (Ю1 Xi + Ю2 X2 + ... + ®mXm)} ] (13.88)

exP \j  - 1  ® C x ю

Then the moments for the joint distribution can be obtained by partial differen
tiation. For example,

E [ X 1X2X3 ] = d 3
dfflidffl2dffl3

Сх(ют, ю2, ю3) at ю = 0 (13.89)

Example 13.3: The vector X is a 4-variate Gaussian with

Mx = [ 2 1 1  0] '

Cx =

Define

Xi =

6 3 2 1
3 4 3 2 
2 3 4 3 
1 2  3 3

X2 =

Find the distribution o f X T and the distibution of

Y =
2 X 1 

X 1 + 2X2 

X3 + X4

Solution:

X T has a bivariate Gaussian distribution with

Mxt =
2

c Xl =
6 3

1 _3 4_

The vector Y can be expressed as

3

2 4
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It follows that

2  0  0  0

1 2  0  0

0  0  1 1

AX

My = A Mx = [4  4 l ] '

Cy = a CxA  =
24 24 6 
24 34 13
6 13 13

3

4

13.8. Random Processes

A random variable X  is by definition a mapping of all possible outcomes of 
a random experiment to numbers. When the random variable becomes a func
tion of both the outcomes of the experiment as well as time, it is called a ran
dom process and is denoted by X ( t) .  Thus, one can view a random process as 
an ensemble of time domain functions that are the outcome of a certain random 
experiment, as compared to single real numbers in the case of a random vari
able.

Since the cdf and pdf of a random process are time dependent, we w ill denote 
them as FX(x ;t) and f X(x ;t) ,  respectively. The nth moment for the random 
process X ( t) is

E [ Xn ( t)] = J  xnf X(x ;t) dx (13.90)

A random process X  ( t) is referred to as stationary to order one if  all its sta
tistical _properties do not change with time. Consequently, E [X (t)] = X , 
where X is a constant. A random process X ( t) is called stationary to order two 
(or wide sense stationary) if

fx  (Xi, X2;ti, t2) = fx  (Xi, X2;ti + At, t2 + A t) (13.91)

for all tT, t2 and At .

© 2000 by Chapman & Hall/CRC



D e f in e  th e  s ta t is t ic a l  a u to c o r r e la t io n  fu n c t io n  fo r th e  r a n d o m  p ro c e s s  X  ( t)
as

* x ( t1, t2) = E [X( t1)X( t2)] (13.92)

The correlation E [X (t1 )X( t2)] is, in general, a function of ( t1; t2) . As a con
sequence of the wide sense stationary definition, the autocorrelation function 
depends on the time difference т = t2 - 11, rather than on absolute time; and 
thus, for a wide sense stationary process we have

E [X( t)] = X
(13.93)

^ x  (т ) = E [ X ( t )X ( t + т )]

If the time average and time correlation functions are equal to the statistical 
average and statistical correlation functions, the random process is referred to 
as an ergodic random process. The following is true for an ergodic process:

t/ 2

lim 1 J x ( t)dt = E [X ( t)] = X  (13.94)
t T J

-T/ 2

T / 2

lim 1 J X*(t)X( t + т )dt = ^ x ( t )  (13.95)
t T J

-T/ 2

The covariance of two random processes X  ( t) and Y ( t) is defined by 

Cxy(t, t + т ) = E [{X (t ) - E [X (t)]} { Y( t + т ) - E [ Y(t + т ) ]} ] (13.96) 

which can be written as

Cxy( t, t + т) = ^ ет(т ) -  XY (13.97)

13.9. Sampling Theorem

Most modern communication and radar systems are designed to process dis
crete samples of signals bearing information. In general, we would like to 
determine the necessary condition such that a signal can be fully reconstructed 
from its samples by filtering, or data processing in general. The answer to this 
question lies in the sampling theorem which may be stated as follows: let the 
signal X( t) be real-valued and band-limited with bandwidth B ; this signal can 
be fully reconstructed from its samples if  the time interval between samples is 
no greater than 1/ (2B ) .
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Fig. 13.1 illustrates the sampling process concept. The sampling signal p ( t) 
is periodic with period Ts , which is called the sampling interval. The Fourier 
series expansion of p ( t) is

“ ;27tnf

p (t) = X  Pne T“
n = -^

The sampled signal xs( t) is then given by

“ j2nnt
ж i T

Xs( t) = X  x ( t)Pne
n = -^

Taking the FT of Eq. (13.99) yields

Xs (Ю) = X  Pn -  T -)  = P q X (®) + X  Pn K ®  -  (13'100)
n = -^ n = -^

n Ф 0

where X (ю) is the FT of x ( t) .

(13.98)

(13.99)

X ( t) Xs ( t)

Х(ю) = 0 fo r  |ю| > 2n B

LPF
P qX( t)

p ( t)

Figure 13.1. Concept o f sampling.

Therefore, we conclude that the spectral density, Xs (ю ), consists of replicas 
of X  (ю) spaced (2 п/ Ts) apart and scaled by the Fourier series coefficients 
Pn . A Low Pass Filter (LPF) of bandwidth B can then be used to recover the 
original signal x ( t) .
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When the sampling rate is increased (i.e., Ts decreases), the replicas of 
Х(ю) move farther apart from each other. Alternatively, when the sampling 
rate is decreased (i.e., Ts increases), the replicas get closer to one another. The 
value of Ts such that the replicas are tangent to one another defines the mini
mum required sampling rate so that x ( t) can be recovered from its samples by 
using an LPF. It follows that

2n 1
— = 2n (2B) «  Ts = —  (13.101)

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling 
rate. When Ts > ( 1/ 2B ) ,  the replicas of Х(ю) overlap and thus, x ( t) cannot 
be recovered cleanly from its samples. This is known as aliasing. In practice, 
ideal LPF cannot be implemented; hence, practical systems tend to over-sam
ple in order to avoid aliasing.

Example 13.4: Assume that the sampling signal p ( t) is given by

p ( t) = I  § ( t -  nTs)

n = -^

Compute an expression fo r  Xs (ю ).

Solution: The signal p ( t) is called the Comb function. Its exponential Fourier 
series is

It follows that

xs( t) = I  x ( t) T-

2nnf
1 T

e

n

Taking the Fourier transform o f this equation yields

n=-
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Before proceeding to the next section, we w ill establish the following nota
tion: samples of the signal x ( t) are denoted by x (n) and referred to as a dis
crete time domain sequence, or simply a sequence. If the signal x ( t) is 
periodic, we w ill denote its sample by the periodic sequence x (n) .

13.10. The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time 
domain sequence into a new domain known as the z-domain. It is defined as

Z{x (n)} = X (z) = X  x (n)z n (13.102)

where z = re ;Ю, and for most cases, r  = 1. It follows that Eq. (13.102) can 
be rewritten as

X ( e '“ ) = X  x (n)e jna (13.103)

n = -^

In the z-domain, the region over which X  (z) is finite is called the Region of 
Convergence (ROC). Appendix D has a list of most common Z-transform 
pairs. The Z-transform properties are (the proofs are left as an exercise):

1. Linearity:

Z { a x 1( n) + bx2 (n)} = aX 1( z) + bX2 (z) (13.104)

2. Right-Shifting Property:

Z{x (n -  к)} = z kX (z) (13.105)

3. Left-Shifting Property:

к -1

Z{x (n + к)} = z X ( z ) -  X x ( n)zk-n (13.106)

n = 0

4. Time Scaling:

Z{anx(n )} = X (a 1 z) = X (a 1 z) "x (n) (13.107)

n=0
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5. Periodic Sequences:

Z{ x (n)} = ——  Z{ x (n)} 
z - 1

where N is the period. 

6. Multiplication by n :

Z { nx (n)} = -z —X (z)
dz

7. Division by n + a ; a is a real number:

■ - k -  a -  1 ,-  u du

8. Initial Value:

9. Final Value:

10. Convolution:

x ( -o ) = z 0 X (z) I

lim x (n) = lim (1 -  z )X(z)
n ^ z 1

I  h (n -  k) x (k)

_ k = 0

11. Bilateral Convolution:

= H(z )X( z)

I  h (n -  k) x (k) H (z) X (z )

Example 13.5: Prove Eq. (13.109).

Solution: Starting with the definition o f the Z-transform,

N
(13 .108)

(13.109)

(13.110)

(13.111)

(13.112)

(13.113)

(13.114)
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X (z) = X  x (n)z n
n = -^

Taking the derivative, with respect to z, o f the above equation yields 

J -X (z ) = X  x (n) ( - n )z n - 1

It follows that

(-z  1) X  nx(n)z

Z { nx (n)} = (-z  )d X (z)
dz

In general, a discrete LTI system has a transfer function H(z) which 
describes how the system operates on its input sequence x (n) in order to pro
duce the output sequence y (n) .  The output sequence y (n) is computed from 
the discrete convolution between the sequences x (n) and h (n) ,

y  (n) = X  x (m) h (n - m ) (13.115)

m = -^

However, since practical systems require that the sequence x (n) be of finite 
length, we can rewrite Eq. (13.115) as

N

у (n) = X  x (m)h (n - m ) (13.116)

m=0

where N denotes the input sequence length. Taking the Z-transform of Eq. 
(13.116) yields

Y (z) = X (z) H (z ) (13.117)

and the discrete system transfer function is

H (z  > = а д  (1 3 -1 ,8 )

n

n =
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Finally, the transfer function H (z) can be written as 

H( z )| = = H ( Л 1 eZH(‘") (13 .119)

where |h( e ю)| is the amplitude response, and ZH ( e 'ra) is the phase response.

13.11. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that 
transforms a discrete sequence, usually from the time domain into the fre
quency domain, in order to explicitly determine the spectral information for the 
sequence. The time domain sequence can be real or complex. The DFT has 
finite length N , and is periodic with period equal to N .

The discrete Fourier transform for the finite sequence x (n) is defined by

N -  1

X  (k) = I  x (n) e

n =0
The inverse DFT is given by

N -  1

x (n) = N I X (k )
k=0

j2iznk
N ; k = 0 , N  -  1 (13.120)

j'2nnk
N ; n = 0 , N  -  1 (13.121)

The Fast Fourier Transform (FFT) is not a new kind of transform different 
from the DFT. Instead, it is an algorithm used to compute the DFT more effi
ciently. There are numerous FFT algorithms that can be found in the literature. 
In this book we w ill interchangeably use the DFT and the FFT to mean the 
same. Furthermore, we w ill assume radix-2 FFT algorithm, where the FFT size 
is equal to N = 2m for some integer m .

13.12. Discrete Power Spectrum
Practical discrete systems utilize DFTs of finite length as a means of numeri

cal approximation for the Fourier transform. It follows that input signals must 
be truncated to a finite duration (denoted by T ) before they are sampled. This 
is necessary so that a finite length sequence is generated prior to signal pro
cessing. Unfortunately, this truncation process may cause some serious prob
lems.
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To demonstrate this difficulty, consider the time domain signal 
x ( t) = sin2nf0t . The spectrum of x ( t) consists of two spectral lines at ±f0 . 
Now, when x ( t) is truncated to length T seconds and sampled at a rate 
Ts = T/N , where N is the number of desired samples, we produce the 
sequence {x (n) ; n = 0, 1, . .. ,  N -  1} . The spectrum of x (n) would still be 
composed of the same spectral lines if T is an integer multiple of Ts and if  the 
DFT frequency resolution Af is an integer multiple of f 0 . Unfortunately, those 
two conditions are rarely met and as a consequence, the spectrum of x (n) 
spreads over several lines (normally the spread may extend up to three lines). 
This is known as spectral leakage. Since f 0 is normally unknown, this discon
tinuity caused by an arbitrary choice of T cannot be avoided. Windowing tech
niques can be used to mitigate the effect of this discontinuity by applying 
smaller weights to samples close to the edges.

A truncated sequence x (n) can be viewed as one period of some periodic 
sequence x( n) with period N . The discrete Fourier series expansion of x( n) 
is

N 1 j2nnk

x (n) = X  Xke N (13.122)

k=0

It can be shown that the coefficients Xk are given by

N 1 -j2-tnk

Xk = N X  x (n) e N = NNX (k) (13.123)
n=0

where X (k) is the DFT of x( n) .  Therefore, the Discrete Power Spectrum 

(DPS) for the band lim 

the lines are Af apart,

(DPS) for the band limited sequence x (n) is the plot of |Xk|2 versus k , where

Po = -1- |X( 0 )|2 
N

Pk = -1 {|X(k)|2 + |X(N-k)|2} ; k = 1, 2 , . ,  N- - 1  (13 .124) N 2

Pn/2 = - 2lX(N/2 )|2 
N

Before proceeding to the next section, we w ill show how to select the FFT 
parameters. For this purpose, consider a band limited signal x ( t) with band
width B . If the signal is not band limited, a LPF can be used to eliminate
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frequencies greater than B . In order to satisfy the sampling theorem, one must 
choose a sampling frequency f s = 1/ Ts , such that

The truncated sequence duration T and the total number of samples N are 
related by

13.13. Windowing Techniques

Truncation of the sequence x (n) can be accomplished by computing the 
product,

where f ( n) < 1 . The finite sequence w (n) is called a windowing sequence, or 
simply a window. The windowing process should not impact the phase 
response of the truncated sequence. Consequently, the sequence w (n) must 
retain linear phase. This can be accomplished by making the window symmet
rical with respect to its central point.

If f(n ) = 1 for all n we have what is known as the rectangular window. It 
leads to the Gibbs phenomenon which manifests itself as an overshoot and a

fs > 2 B (13.125)

T = NTs
(13.126)

or equivalently,

(13.127)

It follows that

N 
fs = N > 2B (13.128)

and the frequency resolution is

f  = 1 > 2B 
N T > N

(13.129)

xw( n) = x (n )w (n ) (13.130)

where

f ( n)
0

(13.131)
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ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum 
of a rectangular window. Note that the first side lobe is about -13 .46^ 5  below 
the main lobe. Windows that place smaller weights on the samples near the 
edges w ill have lesser overshoot at the discontinuity points (lower side lobes); 
hence, they are more desirable than a rectangular window. However, side lobes 
reduction is offset by a widening of the main lobe (loss of resolution). There
fore, the proper choice of a windowing sequence is continuous trade-off 
between side lobe reduction and main lobe widening.

The multiplication process defined in Eq. (13.131) is equivalent to cyclic 
convolution in the frequency domain. It follows that Xw (k) is a smeared (dis
torted) version of X (k) . To minimize this distortion, we would seek windows 
that have a narrow main lobe and small side lobes. Additionally, using a win
dow other than a rectangular window reduces the power by a factor P w, where

N - 1 N - 1

Pw = N X  w2(П) = X  W (k )l2 (13-132>
n = 0 k  = 0

It follows that the DPS for the sequence xw (n) is now given by

s a m p l e  n u m b e r

Figure 13.2. Normalized amplitude spectrum for rectangular window.
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P J  = - Ц  |X( 0 )|2
P j N

P J  = —Ц  (I X( k)|2 + |X (N -  k)|2} ; k = 1, 2, -2- -  1 (13.133)
p n  2 ( )

P WN/ 2 = - Ц IX (N/ 2 )|2 
P NN

where PN is defined in Eq. (13.133). Table 13.1 lists some common windows.
Figs. 13.3 through 13.5 show the frequency domain characteristics for these 
windows.

TABLE 13.1. Some common windows. n = 0, N -  1.

Window Expression

First side 

lobe

Main lobe 

width

rectangular N (П) = 1 -13.46dB 1

Hamming
N (n) = 0.54 -  0.46cos

-41  dB 2

Hanning
n  (n) = 0.5 " ( 2n n V

L1 -  cos ( « - J J
-32dB 2

Kaiser -4 6  dB 
fo r  

P = 2 n

75
fo r
P = 2 n

/ l 0[pV  1 -  (2n/N )2 ]

N (n > = a w

I0 is the zero-order modified Bessel
function of the first kind
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s a m p l e  n u m b e r

Figure 13.3. Normalized amplitude spectrum for Ham ming window.

s a m p l e  n u m b e r

Figure 13.4. Normalized amplitude spectrum for Hanning window.
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s a m p l e  n u m b e r

Figure 13.5. Normalized amplitude spectrum for Kaiser 

window (parameter П ).

Problems

1 3 . 1 .  Classify each of the following signals as an energy signal, as a power 
signal, or as neither. (a) exp(0 .5 J) ( t > 0 ) ;  (b) exp( - 0 .5t) ( t > 0 ) ;  (c)

cos t + cos2 1 ( - ^ <  t < ro ); (d) (a > 0 ) .

1 3 . 2 .  Compute the energy associated with the signal x ( t) = AR ect(t/ т ) .

1 3 . 3 .  (a) Prove that ф1 ( t) and ф2( t) ,  shown in Fig. P13.3, are orthogonal 

over the interval ( -2  < t < 2 ) .  (b) Express the signal x ( t) = t as a weighted 
sum of ф1 ( t) and ф2( t) over the same time interval.

1 3 . 4 .  A periodic signal xp ( t) is formed by repeating the pulse 

x ( t) = 2Д ((t -  3)/ 5) every 10 seconds. (a) What is the Fourier transform of 
x ( t) .  (b) Compute the complex Fourier series of xp ( t) ? (c) Give an expression

for the autocorrelation function Rxp( t) and the power spectrum density 

Sxp(rn).
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Figure P13.3

1 3 . 5 .  If the Fourier series is

j2 Knt / T

define y ( t) = x ( t - 10) .  Compute an expression for the complex Fourier series 

expansion of y ( t) .

1 3 . 6 .  Show that (a) R x(-t) = Rx ( t) .  (b) If x ( t) = f ( t ) + m1 and 

y ( t) = g ( t) + m2 , then Rxy(t) = m1 m2 , where the average values for f ( t) 

and g ( t) are zeroes.
1 3 . 7 .  What is the power spectral density for the signal

x ( t) = A cos (2 nf0 1 + 0O)

1 3 . 8 .  A certain radar system uses linear frequency modulated waveforms of 
the form

x ( t) = Rect\
( T) cos ('

What are the quadrature components? Give an expression for both the modula
tion and instantaneous frequencies.

1 3 . 9 .  Consider the signal x ( t) = R ect(t/ т )cos(rn0t-B t2/ 2t )  and let 

т = 15|ms and B = 10M H z . What are the quadrature components?
1 3 . 1 0 .  Determine the quadrature components for the signal

h ( t)
*  t > -  ( a

-2 t • . /.чe sinrn0t u( t) .

tt

n
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1 3 . 1 1 .  If x( t) = x 1( t ) - 2 x 1( t - 5) + x 1( t -  10), determine the autocorrela-
2

tion functions Rxi ( t) and Rx( t) when x 1( t) = exp (- t  / 2) .

1 3 . 1 2 .  Write an expression for the autocorrelation function Ry( t) ,  where

5

У( t) = X  Yn R e c { t-=2n-5)
n = 1

and {Yn} = {0.8, 1, 1, 1, 0.8}. Give an expression for the density function 

Sy(m ).

1 3 . 1 3 .  Derive Eq. (13.52).
1 3 . 1 4 .  An LTI system has impulse response

h = [ exp ( - 2 0  j > 01 

{ 0 t < 0

(a) Find the autocorrelation function Rh(T ). (b) Assume the input of this sys

tem is x ( t) = 3cos(1001). What is the output?

1 3 . 1 5 .  Suppose you want to determine an unknown DC voltage vdc in the
2

presence of additive white Gaussian noise n ( t) of zero mean and variance on . 

The measured signal is x ( t) = vdc + n( t) .  An estimate of vdc is computed by 

making three independent measurements of x ( t) and computing the arithmetic

mean, vdc ~ (x 1 + x2 + x3)/ 3 . (a) Find the mean and variance of the random

variable vdc. (b) Does the estimate of vdc get better by using ten measure
ments instead of three? Why?
1 3 . 1 6 .  Consider the network shown in Fig. P13.16, where x ( t) is a random 
voltage with zero mean and autocorrelation function ^ x(т ) = 1 + exp(-a|t|) .  

Find the power spectrum Sx(r a ) . What is the transfer function? Find the power 

spectrum Sv(r a ) .

© 2000 by Chapman & Hall/CRC



w - W r

x(t)t
v(t)

Figure P13.16.

1 3 . 1 7 .  (a) A random voltage v ( t) has an exponential distribution function 
f V(v ) = a exp (-a v )  where (a > 0 );(0  < v < ^ ) . The expected value 

E [ V] = 0 .5 . Determine P r{ V > 0.5} .

1 3 . 1 8 .  Assume the X and Y miss distances of darts thrown at a bulls-eye
2

dart board are Gaussian with zero mean and variance о . (a) Determine the 
probability that a dart w ill fall between 0.8о and 1 .2 о . (b) Determine the 
radius of a circle about the bulls-eye that contains 80% of the darts thrown. (c) 
Consider a square with side s in the first quadrant of the board. Determine s 
so that the probability that a dart w ill fall within the square is 0.07.

1 3 . 1 9 .  Let Sx(ra) be the PSD function for the stationary random process 
X ( t) .  Compute an expression for the PSD function of 
Y( t) = X( t)-2 X ( t -  T ) .

1 3 . 2 0 .  Let X  be a random variable with

f X( x)
1 13 e - t > 0 
о
0 elsewhere

(a) Determine the characteristic function CX(r a ) . (b) Using CX(ra ) , validate 

that f X(x ) is a proper pdf. (c) Use CX(ю) to determine the first two moments 

of X . (d) Calculate the variance of X .

1 3 . 2 1 .  Let X  ( t) be a stationary random process, E [ X( t)] = 1 and the 
autocorrelation ^ x ( t )  = 3 + exp (-| t|) . Define a new random variable

= J  x( t) dt

R
L

+
с

2

0
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Compute E [ Y ( t)] and o Y.

1 3 . 2 2 .  In Fig. 13.1, let

p ( t) = X  ARect^t- n -'ji

n = -^

Give an expression for Xs(ю ).

1 3 . 2 3 .  Compute the Z-transform for

(a) x 1 (n) = n-u(n) ;  (b) x2 (n ) = — u( - n ) .

1 3 . 2 4 .  (a) Write an expression for the Fourier transform of

x ( t) = Rect( t/3)

(b) Assume that you want to compute the modulus of the Fourier transform 
using a DFT of size 512 with a sampling interval of 1 second. Evaluate the 
modulus at frequency ( 80/512)H z . Compare your answer to the theoretical 
value and compute the error.

1 3 . 2 5 .  A certain band-limited signal has bandwidth B = 20K H z . Find the 
FFT size required so that the frequency resolution is Д/ = 50H z. Assume 
radix 2 FFT and record length of 1 second.
1 3 . 2 6 .  Assume that a certain sequence is determined by its FFT. If the 
record length is 2ms and the sampling frequency is f s = 10KHz, find N .

2
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Appendix A Noise Figure

Any signal other than the target returns in the radar receiver is considered as 
noise. This includes interfering signals from outside the radar and thermal 
noise generated within the receiver itself. Thermal noise (thermal agitation of 
electrons) and shot noise (variation in carrier density of a semiconductor) are 
the two main internal noise sources within a radar receiver.

The power spectral density of thermal noise is given by

where |ю| is the absolute value of the frequency in radians per second, T is 
temperature of the conducting medium in degrees Kelvin, к is Boltzman’s 
constant, and h is Plank’s constant (h = 6.625 x  10- jo u le  secon d s ). 
When the condition |ю| « 2пkT/h is true, it can be shown that Eq. (A.1) is 
approximated by

This approximation is w idely accepted, since, in practice, radar systems oper
ate at frequencies less than 100 G H z ; and, for example, if T = 290K , then 
2пkT/h = 6000 GH z .

The mean square noise voltage (noise power) generated across a 1 ohm 
resistance is then

Sn(u) =
|g)|h (A.1)

Sn( a ) ~  2kT (A.2)

<n2> = -1-  [ 2kT d a  = 4kTB 
2п

(A .3)

-2пЕ

where Е is the system bandwidth in hertz.
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Any electrical system containing thermal noise and having input resistance 
Rin can be replaced by an equivalent noiseless system with a series combina
tion of a noise equivalent voltage source and a noiseless input resistor Rin 
added at its input. This is illustrated in Fig. A.1.

R

< n )  = 4 kTBRin
noiseless
system

Figure A.1. Noiseless system with an input noise 
voltage source.

2
The amount of noise power that can physically be extracted from (n ) is 

one fourth the value computed in Eq. (A.3). The proof is left as an exercise.

Consider a noisy system with power gain A P , as shown in Fig. A.2.

Figure A.2. Noisy amplifier replaced by its noiseless equivalent 
and an input voltage source in series with a resistor.

The noise figure is defined by

>______tc
’ noise pow er out due to Rin alone

, to ta l noise pow er out /A „
FdB = 10 log ,.„ ,._____________ л ,,, т-— TT-:-: (A4)

More precisely,

FdB = 10 logN \  (A-61

where No and Nt are, respectively, the noise power at the output and input of 
the system.
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If we define the input and output signal power by St and SO, respectively, 
then the power gain is

S ;
Ap = 7 °  (A.6)

It follows that

= 1 0 l o g = m  -
4'dE \iyo'dE

where

( - )  > ( - )
W J d B  W d

S
(A.8)

JdE \«oSdE

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio 
due to the added thermal noise of the amplifier 
( ( SNR)O = (SNR); -  F in dE).

We can also express the noise figure in terms of the system’s effective tem
perature Te . Consider the amplifier shown in Fig. A.2, and let its effective 
temperature be Te . Assume the input noise temperature is TO. Thus, the input 
noise power is

Ni = kTOE (A.9)

and the output noise power is

NO = kTOE Ap + kTeE Ap (A.10)

where the first term on the right-hand side of Eq. (A.10) corresponds to the 
input noise, and the latter term is due to thermal noise generated inside the sys
tem. It follows that the noise figure can be expressed as

(SNR): St TO + Te Te
F  = (SNR)o = kJ°E kEAp S° = 1 + T° (A.11)

Equivalently, we can write

Te = (F  -  1) T° (A.12)

Example A .1: An amplifier has a 4dE noise figure; the bandwidth is 
E = 500 KH z. Calculate the input signal power that yields a unity SNR at 
the output. Assume To = 290 degree Kelvin and an input resistance o f one 
ohm.
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Solution: The input noise power is

kToB = 1.38 x  10-23 x  290 x 500 x 103 = 2.0 x 10-15w 

Assuming a voltage signal, then the input noise mean squared voltage is 

(щ) = kToB = 2.0 x  10-15 v2

F  = 1004 = 2.51 

From the noise figure definition we get

and

<s2) = F <n2) = 2.51 x 2.0 x  10-15 = 5.02 x  10-15 v2

Finally,

J i s f )  = 70.852nv

Consider a cascaded system as in Fig. A.3. Network 1 is defined by noise 
figure F 1, power gain G1; bandwidth B , and temperature Te1. Similarly, net
work 2 is defined by F2 , G2 , B , and Te2. Assume the input noise has temper
ature T0 .

network 1 network 2

Figure A.3. Cascaded linear system.

The output signal power is

So = S,-G1 G2 (A.13)

The input and output noise powers are, respectively, given by

Ni = kToB (A .14)

© 2000 by Chapman & Hall/CRC



where the three terms on the right-hand side of Eq. (A.15), respectively, corre
spond to the input noise power, thermal noise generated inside network 1 , and 
thermal noise generated inside network 2 .

Now if  we use the relation Te = (F -  1) T0 along with Eq. (A.13) and Eq. 
(A.14), we can express the overall output noise power as

No = F 1 NiG 1 G2 + (F 2 -  1) NiG2 (A.16)

It follows that the overall noise figure for the cascaded system is

(S/N i) F 2 -  1 
F  = — ------  = F, + —----- (A.17)

(So/No) 1 G1 ( )

In general, for an n-stage system we get

F  = F1 + ^  + FGg - + + G G f i n̂  (A ’ 81

Also, the n-stage system effective temperatures can be computed as 

T T Te2 e3 en
Te = Te 1 + G  + 77-77- + • • • + r r G --------------G----  <A.19)

G1 G1G2 G1G2G3 • • • Gn - 1

As suggested by Eq. (A.18) and Eq. (A.19), the overall noise figure is mainly 
dominated by the first stage. Thus, radar receivers employ low noise power 
amplifiers in the first stage in order to minimize the overall receiver noise fig
ure. However, for radar systems that are built for low RCS operations every 
stage should be included in the analysis.

Example A.2: A radar receiver consists of an antenna with cable loss 
L = 1 dB = F 1, an RF amplifier with F 2 = 6 dB , and gain G2 = 20dB, 
followed by a mixer whose noise figure is F 3 = 10 dB and conversion loss 
L = 8 dB , and finally, an integrated circuit IF amplifier with F4 = 6 dB and 
gain G4 = 60 dB. Find the overall noise figure.

Solution:

From Eq. (A.18) we have
г* „  F 2 -  1 . F 3 -  1 F4 -  1
F  = F, +

No = kT0 B G 1G 2 + kTe1 B G 1G 2 + kTe 2 BG2 (A .15)

^  G1 ■ G1G2 ■ G1G2 G3
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G1 G2 G3 G4 F 1 F 2 F 3 F4

-1  dE 20 dE - 8  dE 60 dE 1 dE 6 dE 10dE 6 dE

0.7943 100 0.1585 1 0 6 1.2589 3.9811 10 3.9811

It follows that

j-* _  , ^ 3 .9 8 1 1 -1  , 1 0 - 1  3 .9 8 1 1 -1  _ ,  _ 08
. (0 7 943 1 0)0 x  0.7943 0) . 158 x  1 0)0) 0 .7943 ^

F  = 10log (5.3628) = 7.294dE

Problems

A . 1 .  A source with equivalent temperature Te = 500K  is followed by 
three amplifiers with specifications shown in the table below.

Amplifier F, dB G, dB Txe
1 You must compute 12 350
2 10 22
3 15 35

Assume a bandwidth of 150KHz. (a) Compute the noise figure for the three 
cascaded amplifiers. (b) Compute the effective temperature for the three cas
caded amplifiers. (c) Compute the overall system noise figure.

A . 2 .  Derive Eq. (A.19).

© 2000 by Chapman & Hall/CRC



Appendix B Decibel Arithmetic

The decibel, often called dB, is w idely used in radar system analysis and 
design. It is a way of representing the radar parameters and relevant quantities 
in terms of logarithms. The unit dB is named after Alexander Graham Bell, 
who originated the unit as a measure of power attenuation in telephone lines. 
By B ell’s definition, a unit of Bell gain is

l o g ^ )  (В.Ч

where the logarithm operation is base 10, P 0 is the output power of a standard 

telephone line (almost one mile long), and P t is the input power to the line. If
voltage (or current) ratios were used instead of the power ratio, then a unit Bell 
gain is defined as

log ̂ ° )  or  log ( y )  (B.2)

A decibel, dB, is 1 / 10 of a Bell (the prefix “deci” means 10-1 ). It follows 
that a dB is defined as

10log (P )  = 10log ( ^ ) 2 = 10log (B.3)

The inverse dB is computed from the relations

P 0/ P i = 10dB/10

V0/ Vi = 10dB720 (B.4)

I0/ l i = 10dB 720
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Decibels are w idely used by radar designers and users for several reasons. 
Perhaps the most important of them all is that utilizing dBs drastically reduces 
the dynamic range that a designer or a user has to use. For example, an incom
ing radar signal may be as weak as 0.000000001 V , which can be expressed in 
dBs as 10log (0.000000001) = -9 0 dB . Alternatively, a target may be located 
at range R = 1000000m = 1000Km  which can be expressed in dBs as

Another advantage of using dB in radar analysis is to facilitate the arithmetic 
associated with calculating the different radar parameters. The reason for this 
is the following: when using logarithms, multiplication of two numbers is 
equivalent to adding their corresponding dBs, and their division is equivalent 
to subtraction of dBs. For example,

Other dB ratios that are often used in radar analysis include the dBsm (dB - 
squared meters). This definition is very important when referring to target 
RCS, whose units are in squared meters. More precisely, a target whose RCS is

equivalent to a -20d B sm .

Finally, the units dBm and dBW are power ratios of dBs with reference to 
one milliwatt and one Watt, respectively.

To find dBm from dBW, add 30 dB, and to find dBW from dBm, subtract 30 
dB.

60d B .

250 x  0.0001 =
455

[ 10log(250) + 10log(0.0001) -  10log(455 )]dB = -42 .6dB

(B.5)

In general,

10logA + 10logB -  10log C (B.6)

10logA q = q x  10logA (B.7)

2 2 2 о m can be expressed in dBsm as 10log (o  m ) . For example, a 10m tar-
2

get is often referred to as 10dBsm target, and a target with RCS 0.01 m is

(B.8)

(B.9)
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Appendix C Fourier Transform
Table

X ( t) X(ffl)

AR ect(t/T) ; rectangular pulse A TSinc(aT/2)

A A( t/T) ; triangular pulse A 2 S inc2 (тю/ 4)

> exp f-  ; Gaussian pulse 
л/2п о  ̂ 2o

f  о 2 ю2 ̂
eXp I-  2 )

e atu ( t) 1/( a + j  ю)

-a te 2 a
2 2 a + ю

-ate sinrn0t u( t) ю 0

ю0 + (a + jrn )2

-ate cos ю0 1 u(t) a + j  ю 

ю0 + (a + jrn )2

5( t) 1

1 2 п8(ю )

u ( t) п 8 (ю )+ —
j  ю

sgn ( t)

j
2
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Х(ю)

cos ю0 1 п[5(ю  -  ю0) + 5(ю + ю 0)]

sin ю0 1 у'п[5(ю + ю0)-5 (ю  -  ю0)]

u( t) cosrn0t 2 [8(ю Ю0) + 5(ю + Ю0) ]  + - -/ — 2 
2 ю0 -  ю

u ( t) sin ю 0t
2 .[8(ю  + Ю0) 8(ю ю0)] + 2 0 2
2 j ю0 -  ю

\t\ -2
2ю
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Appendix D Some Common 
Probability Densities

Chi-Square with N  degrees o f freedom

(N/2) -1 r _x 1
fx (x) = — -----------exP 1 T  \ ; x > 02 2r(N / 2 ) [ 2 J

X = N ; a 2X = 2N

gamma function = r ( z )  = J x z-1 e~XdX ; R e{z} > 0

0

Exponential

(fx (x) = a exp { _ a x }) ; x > 0

-  1 2 1 X = -  ; Ox = у
a X a 2

Gaussian

f x (x) = _;==_ e x P I  _1- j  \ ; x  = xm ; O X  = ° 2
n -

Laplace

f X(x ) = 2-e x P { _- |x _ xm\ } 
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. 2 _ 2x  Xm ; 0 x 2
о

Log-Normal

fx (x ) x o jb k
exp

'  ( lnx -  lnX m) 24

2 о 2
; x > 0

X = exp j  ln xm + О  [ ; o 2X = [ exp { 2ln xm + о 2} ][ exp {о2} -  1 ]

Rayleigh

f x ( x )
x Г —x 2 1 . 0 

= ~ exp j “  r ; x ^ 0
о  у2 о 2

Г~ 2
x  О ; О Х  = 0 (4 - n )

Uniform

f x ( x ) = b -  a
; a < b -  a + b _2 ( b -  a ) 

X = 2 ; 0x  = 12

Weibull

bxb - 1 
fx (x) = exp

00

( b\ ( (x ) M ; (x, b, 0 0 ) > 0

X = г  ( 1 + b- ) . о 2 = г  ( 1 + 2 b- 1) -  [ г  ( 1 + b-  1 ) ] 2

(bl ° 0) X  1 / [--/c0 7  ]
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Appendix E Z  - Transform Table

x (n); n > 0 X  (z) ROC; |z| > R

8( n) 1 0

1 z
z -  1

1

n

(z -  1 )2

1

2n z ( z + 1) 

(z -  1 ) 3

1

na z
z -  a

\a\

nna a 
-

\a\

na
n!

a / ze 0

(n + 1 ) a

2z 
-

\a\

sin n ю T z sin юТ

z2-2  z cos ю T + 1
1

cos n юT z ( z -  c o s ю T) 
z2-2  z cos ю T + 1

1
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x (n); n > 0 X (z) ROC; |d > R

an sin n юГ a z sin ю T
2 2 z - 2 az cos юГ + a

1
1 a |

an cos пю T
2

z(z -  a cos ю T) 1
1 a |2 2  z - 2 az cos юГ + a

n ( n -  1) z 1
2! (z -  1 )3

n ( n -  1) ( n -  2 ) z 1
3! (z -  1 )4

(n + 1) ( n + 2 ) an 3
z |a|

2! (z -  a ) 3

( n + 1 ) ( n + 2  ) . . .  ( n + m ) a n m + 1
z |a|

m! z 4m + 1
(z -  a )
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Appendix F MATLAB Program 
and Function Name 
List

A MATLAB program and function1 name list is provided in this appendix on 
a per-chapter basis. Programs and functions that have associated MATLAB 
GUI are identified. All these programs and functions can be downloaded from 
CRC Press Web site (www.crcpress.com). For this purpose, create the follow
ing directory in your C-drive: C:\RSA. Copy all programs into this directory. 
The path tree should be as shown in Fig. F.1. Users can execute a certain func
tion / program GUI by typing: file_name_driver, where file names are as indi
cated in the left columns of the tables listed in this appendix.

C

\- -  RSA

| -  —  -  c h a p t e r  1 
---------- ~ l ---------

L _____

and so on

I

c h a p t e r  2

programs

programs

\ - ------ chapter 3
i

l __  _ programs

Figure F.1. Path tree.

1. All MATLAB programs and functions provided in this book were developed using 
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98 
operating system.
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Chapter 1:

Name Purpose

pulse_train compute duty cycle, average power, pulse energy

range_resolution compute range resolution

doppler_frequency compute Doppler frequency

radar_equation implement the radar equation - with GUI

lprf_req implement the LPRF radar equation - with GUI

hprf_req implement the HPRF radar equation - with GUI

power_aperture implement the surveillance radar equation - with 
GUI

ssj_req implement self-screening jammer radar equation - 
with GUI

soj_req implement the stand-off jammer radar equation - 
with GUI

range_red_fac compute and plot the range reduction factor associ
ated with ECM - with GUI

Chapter 2:

Name Purpose (all functions have associated GUI)

rcs_aspect compute and plot RCS dependency on aspect 
angle

rcs_frequency compute and plot RCS dependency on frequency

rcs_sphere compute and plot RCS of a sphere

rcs_ellipsoid compute and plot RCS of an ellipsoid

rcs_circ_plate compute and plot RCS of a circular flat plate

rcs_frustum compute and plot RCS of a truncated cone

rcs_cylinder compute and plot RCS of a cylinder

rcs_rect_plate compute and plot RCS of a rectangular flat plate

rcs_isoceles compute and plot RCS of a triangular flat plate

rcs_cylinder_complex reproduce Fig. 2.22

swerlin_models reproduce Fig. 2.24
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Chapter 3:

Name Purpose

range_calc perform radar range equation calculation - with 
MATLAB-based GUI

Chapter 4:

Name Purpose

marcumsq compute and plot single pulse probability of detec
tion versus SNR

improv_fac compute and plot non-coherent integration 
improvement factor

incomplete_gamma compute and plot Incomplete Gamma function

threshold compute appropriate threshold for probability of 
detection calculation

pd_swerling5 compute and plot probability of detection for 
Swerling 5 targets

pd_swerling1 compute and plot probability of detection for 
Swerling 1 targets

pd_swerling2 compute and plot probability of detection for 
Swerling 2 targets

pd_swerling3 compute and plot probability of detection for 
Swerling 3 targets

pd_swerling4 compute and plot probability of detection for 
Swerling 4 targets
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Chapter 5:

Name Purpose

fresnel compute and plot Fresnel functions

hrr_profile compute and plot High Range Resolution Profiles 
associated with Stepped Frequency waveforms

Chapter 6:

Name Purpose

single_pulse_ambg compute and plot single ambiguity function

fig6_3 reproduce Fig. 6.3

fig6_5 reproduce Fig. 6.5

lfm_ambg compute and plot LFM ambiguity function, with 
GUI

fig6_6 reproduce Fig. 6.6

fig6_7 reproduce Fig. 6.7

train_ambg compute and plot ambiguity function for a coher
ent pulse train

fig6-9a reproduce Fig. 6.9a

Chapter 7:

Name Purpose

matched_filter Compute and plot compressed output from a 
matched filter

stretch implements stretch pulse compression

fig7_10 reproduce Fig. 7.10
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Chapter 8:

Name Purpose

ref_coef 

Chapter 9:

compute and plot reflection coefficient - vertical 
and horizontal

Name Purpose

single_canceler

double_canceler

fig9_15

fig9_16

fig9_17

Chapter 10:

plot output from a single delay line canceler 

plot output from a double delay line canceler 

reproduce Fig. 9.15 

reproduce Fig. 9.16 

reproduce Fig. 9.17

Name Purpose

circ_aperture

fig10_5

fig10_10

linear_array

rect_array

compute and plot antenna radiation pattern for a 
circular aperture, including 3-D

reproduce Fig. 10.5

reproduce Fig. 10.10

compute and plot radiation pattern for a linear 
phased array

compute and plot radiation pattern for a rectangu
lar array
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Chapter 11:

Name Purpose

mono_pulse compute and plot sum and difference patterns for 
monopulse antenna

ghk_tracker implement ghk 3-state tracker

fig 11_21 reproduce Fig. 11.21

kalaman_filter implement a 3-state Kalman filter

fig 11_28 reproduce Fig. 11.28

Chapter 12:

Name Purpose

fig12_2 reproduce Fig. 12.2
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