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Many differential equations with which you will be confronted in applications are 
not amenable to exact solution techniques which you learn in an ODE class. One tool 
in the analysis of such equations is the use of numerical differential equation solving 
packages. Others involve advanced m athem atical analysis which seeks to describe the 
qualitative behavior and obtain estimates for the solution of a differential equation, 
even though an explicit formula for the solution is not available. We will just show 
here how MATLAB can be used as a tool to solve and plot approximate solutions to 
differential equations.

1 Scalar Differential Equations

First, le t’s study the case of a single differential equation with one state  variable, 
which has the general form:

dz
di =  F { t z ) ■

Z(t0) =  Z q .

where we think of the variable t  as time and г as the variable describing the state  of 
the system. In class, we have only discussed “autonomous” differentail equations in 
which the right hand side is only a function of the state  variable F(t ,  z) =  F(z) ,  but 
i t ’s just as easy for MATLAB to deal with the more general case in which the right 
hand side may depend explicitly on time and /or the state  of the system.

Let’s show how MATLAB could be used to solve the Verhulst model:

r/.Y N \
—  = r N  1 -  — ,
dt V  K J ’ ( i, i)

N ( t 0) = N 0.

The state variable is w ritten as N  instead of г, but this doesn’t m atter for MATLAB of
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course. The param eters r  and К  are specified constants representing the unhindered 
growth rate and carrying capacity, respectively. Suppose we forgot about how to 
solve the Verhulst model exactly by separation of variables, Here’s how MATLAB 
could plot an approximate solution without knowing about the explicit formula for 
the exact solution.

First we write a function M-file which computes F,  the right hand side of the 
differential equation. For the case of the Verhulst model,

Here’s the function M-file I wrote to do this, which I saved as verhulst.m: 
function F=verhulst(t,N)
*/. Function which returns the population rate of change for 
*/. Verhulst model.
*/. User should set parameters in USER PARAMETERS section
I
I dN/dt = F(N) = r (1 - N/K) N
I
I Input variables:
*/. t = time
*/. N = current population size
I
I Input parameters (external):
*/. r = unhindered per capita growth rate of population
*/. К = carrying capacity of population

*/. USER PARAMETERS 
r = 0.55;
К = 665;

*/. MAIN COMPUTATION 
F = r * ( 1 - N/K) * N;

return
Notice th a t even though F  doesn’t really depend on t, I included an input argument 
for t in the first line. You have to do this for the ODE solver to work properly. The 
first argument of the function should be the time variable t, and the second argument 
of the function should be the state variable, which in this case is called N.

%
I Output variables:
*/. F = rate of change of population (dN/dt)
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MATLAB of course requires specific numbers for all input parameters, so values 
of r  and К  must be provided. I t ’s convenient to collect all constant input parameters 
in one place (such as I did under the “% USEE PARAMETERS” section), so tha t 
the user can change them  easily.

Now suppose we want to solve the Verhulst model (1,1) over the interval of time
0 <  t < 18 hours, (You should always keep some consistent set of units, such as 
“hours” for t, but MATLAB of course doesn’t care what system of units you use. But 
i t ’s im portant to keep track of units to make sure your computations are consistent 
and so th a t you can intepret them  in terms of real world quantities). Suppose tha t 
at time t 0 = 0 hours, the population size is N 0 =  9,6 (as measured with respect to 
some biomass unit system), Here’s how MATLAB can do this for you:

»  tspan = [0 18];
»  No = 9.6;
»  [t,N] = ode45(’verhulst’,tspan,No);
»  plot(t,N)
»  title(’MATLAB Solution of Verhulst Model’)
»  xlabelC’t (hours)’)
»  ylabeK’N (biomass) ’ )

The variables t and N are actually column vectors which store the values of t  and N  
at each time step which MATLAB used to solve the ordinary differential equation. 
But you don’t need to concern yourself too much with this point if i t ’s confusing. 
The resulting plot is shown in Figure 1, Notice th a t the numerical solution indeed 
has the same shape as the exact solution. If we were to plot the explicit formula for 
the solution, it would match very closely.
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Figure 1: Solution of Verhulst model using MATLAB differential equation solver 
ode45. Parameters: r  =  0,55/hour and К  =  665, Initial condition: iV(0) =  9,6,
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2 System s of Differential Equations

Often times one is considering the evolution of a state which requires two or more 
variables to describe. If the rate of change of the system can be expressed as an 
instantaneous function of time and the current state of the system, then one can 
m athem atically model such a system as a differential equation for a vector:

dt  1 (2.2) 
z (to) = z (0),

where z is a vector describing the state  and F  is a vector-valued function of time. 
This can be written out in component form as follows:

dz i , ,
—  =  F i ( f , 2 i , 2 2 , . . . , 2 „ ) ,

^  =  F2( t , z l , z2, . ■ ■ • :„)•

dzn jp {л \—  = Fn( t , z i , z2, .. - , z n),

with initial conditions:
Zi{tQ) =  40),
^2 (to) = A(0)

zn(to) = 4 0)-
We assume here th a t the state requires n variables zi, z2, . . . ,  zn to describe.

As an example, consider the model described in class for two competing species. 
(See also Giordano and Wehr, Section 10.2 and Mesterton-Gibbons Section 1.5). 
The state  of the system is specified by two variables x  and y, which represent the 
populations of each of the species. The system of differential equations describing 
this model is:

dx , , ,
—  =  (o -  by)x ,
7  (2.3a)
dy . ,—  =  (m -  nx)y,

where o, b, m, and n are constant param eters which need to be specified externally
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to the model, and we must supply some initial conditions of the form:

x (t0) =  x0, 

У (to) =  Уо-

(2.3b)

We don’t have an explicit solution available for this system of differential equa­
tions. But we can ask MATLAB to give us an approximate solution with the ODE 
package ode45. Conceptually, i t ’s much the same as for the case of a differential 
equation for a single state  variable. But you have to be careful with the notation. 
The MATLAB ODE solver expects you to describe the state  of the system with a 
vector. Therefore, to solve (2,3) with MATLAB, we should first define a state  vector 
with components equal to the various state variables:

Re-expressing the system of differential equations (2,3) in terms of this state  vector, 
we have:

which is in the form of (2,2),

Now we can write a function M-file which computes the right hand sides of the 
system of differential equations in the form of a vector F (t,z ) ,

Zi = x,

= У-

(2.4)
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function F=compspec(t,z)
*/. Evaluates rates of change of populations of simple 
*/. competing species model
*/. User should set parameters in USER PARAMETERS section
I
I dx/dt = a x - b x у 
*/. dy/dt = m у - n x у
I
I Input variables:
*/. t = time
*/. z = state vector with components z(l)=x, z(2)=y,
*/. with x and у representing populations of species
I
I Input parameters (external):
*/. a, m = isolated per capita growth rates of each species
*/. b, n = interaction parameters
I
I Output variables:
*/. F = column vector with F(l) = dx/dt and F(2) = dy/dt

*/. USER PARAMETERS
a=3;
b=5/2;
m=2;
n=l;

I  TRANSLATE STATE VECTOR TO MORE CONVENIENT VARIABLES 
x=z(l); 
y=z(2);

*/. SET UP F AS A COLUMN VECTOR WITH TWO ENTRIES 
F = zeros(2,1);

% MAIN COMPUTATION 
F(1)=a*x-b*x*y;
F(2)=m*y-n*x*y;

return
Now suppose we want to solve for the evolution of the competing species popula­

tions over the time interval 0 <  t < 2,5, starting with initial population sizes x$ =  0,2 
and уо =  0.18 (imagining tha t population size is measured in units of thousands, say). 
Then here is how MATLAB can be instructed to do this:
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»  tspan=[0 2.5];
»  zo=[0.2 0.18];
»  [t,z] = ode45(’compspec’,tspan,zo);
The variable t is again a column vector storing the values of t which MATLAB used 
to discretize time. The variable z is now a matrix. The first column refers to the 
values of zi  at the various times, and the second column refers to the values of z2 at 
the various, and so forth.

There are a number of plots you can make using this information. Perhaps, we 
would like to plot x  (which is the same as z{) versus t  (see Figure 2):

»  plot(t,z(:,1))
»  title(’Population of First Species versus Time’)
»  xlabel(’t ’)
»  ylabel(’x ’)
Or maybe we’d like to plot у (which is the same as z2) versus t  (see Figure 3):

»  plot(t,z(:,2))
»  title(’Population of Second Species versus Time’)
»  xlabel(’t ’)
»  ylabel(’y ’)
And we can plot all state  variables simultaneously as a function of time (Figure 4): 

»  plot(t,z)
»  title(’Populations versus Time’)
»  xlabel(’t ’)
»  ylabel(’Population size’)

Finally, particularly for systems of two variables, it is often interesting to make a 
state  space (or phase space) plot of one state  variable versus another (Figure 5):

»  plot(z(:,1),z(: ,2))
»  title(’State Space Plot’)
»  xlabel(’x ’)
»  ylabel(’y ’)
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Figure 2: Solution of competing species model (2,3), Parameters: a = 3, b =  5/2, 
m  =  2, n = 1, Initial condition: ж(0) =  0,2, y(0) =  0,18,
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Figure 3: Solution of competing species model (2,3), Parameters: a = 3, b =  5/2, 
m  =  2, n = 1, Initial condition: ж(0) =  0,2, y(0) =  0,18,
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Figure 4: Solution of competing species model (2,3), Parameters: a = 3, b =  5/2, 
m  =  2, n = 1, Initial condition: ж(0) =  0,2, y(0) =  0,18,
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Figure 5: Solution of competing species model (2,3), Parameters: a =  3, b =  5/2, 
m  =  2, n  =  1, Initial condition: ж(0) =  0,2, y(0) =  0,18,
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