
The Finite Element method
using 1 TLDB

Young HI. Hiuon
Hyochoong Bang

@
CRC Press

Boca Raton London New York Washington, D.C.

CRC MECHANICAL
ENGINEERING SERIES
Edited by Frank A. Kulacki, University of Minnesota

Published

Entropy Generation Minimization
Adrian Bejan, Duke University

The Finite Element Method Using MATLAB
Younn W К won. Naval Postaraduate School---------a _ » — - --------- -------- —------ —----------

Hyochoong Bang, Korea Aerospace Research Institute

To be Published

Fundamentals of Environmental Discharge Modeling
Lorin R, Davis, Oregon State University

Mechanics of Composite Materials
Autar K. Kaw, University of South Florida

Nonlinear Analysis of Structures
M. Sathyamoorthy, Clarkson University

Mechanics of Solids and Shells
Gerald Wempter, Georgia Institute of Technology

Viscoelastic Solids
Roderic Lakes, University of Iowa

LIMITED WARRANTY

CRC Press warrants the physical diskette(s) enclosed herein to be free o f defects in materials and workmanship
for a period o f thirty days from the date o f purchase. If within the warranty period CRC Press receives written
notification o f defects in materials or workmanship, and such notification is determined by CRC Press to be correct,
CRC Press wiii replace the defective diskette(s).

The entire and exclusive liability and remedy for breach o f this Limited Warranty shall be limited to replacement
o f defective diskette(s) and shall not include or extend to any claim for or right to cover any other damages, including
but not limited to, loss o f profit, data, or use o f the software, or special, incidental, or consequential damages or other
similar claims, even if CRC Press has been specifically advised o f the possibility o f such damages. In no event will
the liability o f CRC Press for any damages to you or any other person ever exceed the lower suggested list price or
actual price paid for the software, regardless o f any form o f the claim.

CRC Press specifically disclaims all other warranties, express or implied, including but not limited to, any implied
warranty o f merchantability or fitness for a particular purpose. Specifically, CRC Press makes no representation or
warranty that the software is fit for any particular purpose and any implied warranty o f merchantability is limited to
the thirty-day duration o f the Limited Warranty covering the physical diskette(s) only (and not the software) and is
otherwise expressly and specifically disclaimed.

Since some states do not allow the exclusion o f incidental or consequential damages, or the limitation on how long
an implied warranty lasts, some o f the above may not apply to you.

D ISC LA IM E R OF W A R R A N TY AND LIM ITS O F LIA B IL IT Y : The authors) o f this book have used their best
efforts in preparing this material. These efforts include the development, research, and testing o f the theories and
programs to determine their effectiveness. Neither the author{s) nor the publisher make warranties o f any kind,
express or implied, with regard to these programs or the documentation contained in this book, including without
limitation warranties o f merchantability or fitness for a particular purpose. No liability is accepted in any event for
any damages, including incidental or consequential damages, lost profits, costs o f lost data or program material, or
otherwise in connection with or arising out o f the furnishing, performance, or use o f the programs in this book.

L ibrary o f Congress Cataloging-in-Publication Data

Kwon, Young W.
The finite element method using MATLAB / by Young W. Kwon and Hyochoong Bang,

p. cm. — (The mechanical engineering series)
Includes bibliographical references and index.
ISBN 0-8493-9653-0 (alk. paper)
1. Finite element method— Data processing. 2. M ATLAB I. Bang, Hyochoong.

II. Title III. Series: Advanced topics in mechanical engineering series.
TA347.F5K86 1996
624.1'7'028553— dc20 96-19091

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety o f references are listed. Reasonable efforts have been made
to publish reliable data and information, but the author(s) and the publisher cannot assume responsibility for the
validity o f all materials or for the consequences o f their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent o f CRC Press LLC does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corporate Blvd. N.W., Boca Raton, Florida 33431.

© 1997 by CRC Press LLC

No claim to original U.S, Government works
International Standard Book Number 0-8493-9653-0
Library o f Congress Card Number 96-19091
Printed in the United States o f America 3 4 5 6 7 8 9 0
Printed on acid-free paper

TABLE OF CONTENTS

C H A P T E R 1. IN T R O D U C T IO N T O M A T L A B 1

1.1 Finite Element Method 1
1.2 Overview of the Book 1
1.3 About MATLAB 2
1.4 Vector and Matrix Manipulations 2
1.5 Matrix Functions 4
1.6 Data Analysis Functions 10
1.7 Tools for Polynomials 12
1.8 Making Complex Numbers 14
1.9 Nonlinear Algebraic Equations 15

1.10 Solving Differential Equations 16
1.11 Loop and Logical Statement 17
1.12 Writing Function Subroutines 20
1.13 File Manipulation 22
1.14 Basic Input-Output Functions 23
1.15 Plotting Tools 24

C H A P T E R 2. A P P R O X IM A T IO N TE CH N IQ U E S 31

2.1 Methods of Weighted Residual 31
2.2 Weak Formulation 34
2.3 Piecewise Continuous TVial Function 35
О A £.*± _l_i_:_>_ тл:„ :а_ pi_____a t?____ i_j.i__vjaierKiu ъ пине глешеш ruriiiuia-iiou 0 г»01
2.5 Variational Method 42
2.6 Rayleigh-Ritz Method 42
2.7 Rayleigh-Ritz Finite Element Method 43

Problems 46

C H A P T E R 3. F IN IT E E LEM E N T P R O G R A M M IN G 51

3.1 Overall Program Structure 51
3.2 Input Data 52
3.3 Assembly of Element Matrices and Vectors 54
3.4 Application of Constraints 54
3.5 Example Programs 56

Problems 69

C H A P T E R 4. D IR E C T A P P R O A C H W IT H S P R IN G SYSTE M 71

4.1 Linear Spring
4.2 Axial Member
4.3 Torsional Member

71
74
77

4.4 Other Systems
Problems

77
80

C H A P T E R 5. L A P L A C E ’ S A N D PO ISSO N ’ S E Q U A TIO N S 83

5.1 Governing Equation 83
5.2 Linear Triangular Element 86
5.3 Bilinear Rectangular Element 90
5.4 Boundary Integral 92
5.5 Transient Analysis 96
5.6 Time Integration Technique 98
5.7 Axisymmetric Analysis 101
5.8 Three-Dimensional Analysis 103
5.9 MATLAB Application to 2-D Steady State Analysis 107

5.10 MATLAB Application to Axisymmetric Analysis 119
5.11 MATLAB Application to I'ransient Analysis 124
5.12 MATLAB Application to 3-D Steady State Analysis 148

Problems 153

C H A P T E R 6. IS O P A R A M E T R IC ELEM EN TS 157

6.1 One-Dimensional Elements 157
6.2 Quadrilateral Elements 160
6.3 Triangular Elements 168
6.4 Gauss Quadrature 170
6.5 MATLAB Application to Gauss Quadrature 176
6.6 MATLAB Application to Laplace Equation 183

Problems 193

C H A P T E R 7. TR U SS S T R U C T U R E S 197

7.1 One-Dimensional Truss 197
7.2 Plane Truss 199
7.3 Space Truss 203
7.4 MATLAB Application to Static Analysis 204
7.5 MATLAB Application to Eigenvalue Analysis 215
7.6 MATLAB Application to Transient Analysis 223

Problems 231

C H A P T E R 8. B E A M A N D F R A M E S T R U C T U R E S 235

Q 1u. X Euler-Bernoulli Beam очр;AUU
8.2 Timoshenko Beam 242
8.3 Beam Elements With Only Displacement Degrees of Freedom 245
8.4 Mixed Beam Element 249
8.5 Hybrid Beam Element 253

8.6 Composite Beams 256
8.7 Two-Dimensional Frame Element 259
8.8 Three-Dimensional Frame Element 264
8.9 MATLAB Application to Static Analysis 265

8.10 MATLAB Application to Eigenvalue Analysis 280
8.11 MATLAB Application to Transient Analysis 284
8.12 MATLAB Application to Modal Analysis of Undamped System 288
8.13 MATLAB Application to Modal Analysis of Damped System 296
8.14 MATLAB Application to Frequency Response Analysis 299

Problems 304

C H A P T E R 9. E L A S T IC IT Y P R O B LE M

9.1 Plane Stress and Plane Strain 307
9.2 Force Vector 311
9.3 Energy Method 313
9.4 Three-Dimensional Solid 315
9.5 Axisymmetric Solid 318
9.6 Dynamic Analysis 320
9.7 MATLAB Application to 2-D Stress Analysis 321
9.8 MATLAB Application to Axisymmetric Analysis 334
9.9 MATLAB Application to 3-D Stress Analysis 345

Problems 356

C H A P T E R 10. P L A T E ST R U C T U R E S

10.1 Classical Plate Theory 361
10.2 Classical Plate Bending Element 364
10.3 Shear Deformable Plate Element 366
10.4 Plate Element With Displacement Degrees of Freedom 368
10.5 Mixed Plate Element 373
10.6 Hybrid Plate Element 378
10.7 MATLAB Application 382

Problems 391

C H A P T E R 11. C O N T R O L OF FLE XIB LE S T R U C T U R E S

11.1 Introduction 393
11.2 Stability Theory 394
11.3 Stability of Multiple Degrees of Freedom Systems 398
11.4 Analysis of a Second Order System 401
11.5 State Space Form Description 406
11.6 Transfer Function Analysis 417
11.7 Control Law Design for State Space Systems 427
11.8 Linear Quadratic Regulator 438
■* ■* лI I .У Modal Control for Second Order Systems Л А П

11.10 Dynamic Observer 451

307

361

393

PREFACE

The finite element method has become one of the most important and useful
engineering tools for engineers and scientists. This book presents introductory and
some advanced topics of the Finite Element Method (FEM). Finite element theories,
formulations, and various example programs written in MATLAB1 are presented. The
book is written as a textbook for upper level undergraduate and lower level graduate
courses, as well as a reference book for engineers and scientists who want to write
quick finite element analysis programs.

Understanding basic program structures of the Finite Element Analysis (FEA) is
an important part for better comprehension of the finite element method. MATLAB
i s аог\АЛ1 o l l v tr\ m n f d a n r l n n o r c + o n A f l w i f л o r t o l i r o i oю vapwicu.ij' uv/iiTv>uiwiiv uv n in v unu unuvio и uiiu luuvu auaijraia p iu g iau io

because a MATLAB program manipulates matrices and vectors with ease. These
algebraic operations constitute major parts of the FEA program. In addition,
MATLAB has built-in graphics features to help readers visualize the numerical results
in two- and/or three-dimensional plots. Graphical presentation of numerical data is
important to interpret the finite element results. Because of these benefits, many
examples of finite element analysis programs are provided in MATLAB.

The book contains extensive illustrative examples of finite element analyses using
MATLAB program for most problems discussed in the book. Subroutines (MATLAB
functions) are provided in the appendix and a computer diskette which contains all
the subroutines and example problems is also provided.

Chapter 1 has a brief summary of useful MATLAB commands which can be
used in programming FEA. Readers may refer to MATLAB manuals for additional
information. However, this chapter may be a good start for readers who have no
MS vr» dlkl AM ms itn +U \ Я A T T A n vviuxi H im . jj/x u .

Subsequent chapters are presented in a logical order. Chapter 2 discusses the
weighted residual method which is used for the formulation of FEA in the remaining
chapters. Initially, continuous trial functions are used to obtain approximate solutions
using the weighted residual method. Next, piecewise continuous functions are selected
to achieve approximate solutions. Then, FEM is introduced from the concept
of piecewise continuous functions. Finally, classical variational formulations are
compared with the weighted residual formulations.

Chapter 3 shows the basic program structure of FEA using ordinary differential
equations for an one-dimensional system. MATLAB programs are provided to explain
the programming. Both program input and output as well as internal program
structure are fully discussed. A direct FEM approach using simple mechanics is
presented in Chapter 4. This chapter, presents the basic concept of FEM using an
intuitive and physical approach.

M A TLA B is a registered trademark of The Math Works, Inc. For additional
informationa contact:

The Math Works, Inc.
24 Prime Park Way
Natick, MA 01760

phone: (508) 647-7000, fax: (508) 647-7001

Finite element formulations for partial differential equations are presented in
Chapter 5. This chapter explains not only domain integration for computation of
the finite element matrices but also boundary integration to compute column vectors.
Applications of Laplace’s equation to two- and three-dimensional domains as well
as an axially symmetric domain are presented for both steady-state and transient
problems.

Chapter 6 shows concepts and programming of isoparametric finite elements.
Because a complex shape of domain with curved boundary can be easily handled using
isoparametric finite elements, these elements are very useful and common in FEA.
Both one-dimensional and two-dimensional isoparametric elements are presented. A
numerical technique and its programming concept are also discussed. As a program
example, Laplace’s equation is solved using isoparametric elements.

Chapters 7 and 8 discuss truss and frame structures. Static, dynamic, and
eigenvalue problems are solved. In addition, one-, two- and three-dimensional
structures are considered. As a result, coordinate transformation from local to global
axes is explained. In particular, various formulations for the beam structure are
compared; the relative advantages and disadvantages of each are cited. Modeling of
laminated beams with embedded cracks is also discussed. Further, Chapter 8 presents
the modal analysis and Fast Fourier TVansform.

Elasticity is studied in chapter 9. Plane stress/strain, axisymmetric and three
dimensional problems are included. Both static and dynamic analyses are presented.
The finite element formulations are presented in terms of the weighted residual
method. However, an energy method is also discussed for comparison. Plate
bending is given in Chapter 10. Similar to beam formulations, different plate bending
formulations are presented for comparison.

Finally, structural control using FEM is presented in Chapter 11. This chapter
is intended to provide a broad understanding of the basic concepts of control law in
conjunction with FEM. Due to limited space, only a few major control theories are
presented. It is assumed that readers are already familiar with fundamentals of linear
dynamic systems analysis.

This book contains more material than can be covered in a one-semester. Thus,
materials may be selected depending on course objectives. For an introductory FEM
course, Chapters 2 through 9 are recommended. Depending on the desired course
contents, some sections may be deleted.

We would like to thank individuals who have contributed to this book. The
authors would like to express our appreciation to Professor Aleksandra Vinogradov
for reviewing the manuscript and providing us with many useful suggestions. We
are also indebted to the staffs of CRC Press for their professional guidance in the
production of this book. Finally but not lastly the authors sincerely appreciate the
lifelong support and encouragement by their parents.

Y. W. Kwon
H. C. Bang

C H A P T E R ONE

INTRODUCTION TO MATLAB

1.1 F inite Elem ent M eth od

In order to analyze an engineering system, a mathematical model is developed to
describe the system. While developing the mathematical model, some assumptions are

c i m n l i f i r a f i n n F i n a l l v f Vm с г л и р р ш т г m a f h p m a f i / ' a l e v n r e c Q i n n i siliUUV 1V1 OUli|/UllVU>VlVll» A . 111M41J j VUV V̂ b̂ /L VWUI'-'J.i xu UV I V1VJ/VU

to describe the behavior of the system. The mathematical expression usually consists
of differential equations and given conditions.

These differential equations are usually very difficult to obtain solutions which
explain the behavior of the given engineering system. With the advent of high perfor­
mance computers, it has become possible to solve such differential equations. Various
numerical solution techniques have been developed and applied to solve numerous en­
gineering problems in order to find their approximate solutions. Especially, the finite
element method has been one of the major numerical solution techniques. One of the
major advantages of the finite element method is that a general purpose computer
program can be developed easily to analyze various kinds of problems. In particular,
any complex shape of problem domain with prescribed conditions can be handled with
ease using the finite element method.

The finite element method requires division of the problem domain into many
subdomains and each subdomain is called a finite element. Therefore, the problem
domain consists of талу finite element patches.

1.2 O verview o f the B ook

This book is written as a textbook for engineering students as well as a reference
book for practicing engineers and researchers. The book consists of two parts: theory
and program. Therefore, each chapter has initial sections explaining fundamental
theories and formulations of the finite element method, and subsequent sections
showing examples o f finite element programs written in the MATLAB program. The
collection of MATLAB function files (i.e. m-files) used in the example programs is
summarized in Appendix A and provided in a separate computer disc.

1

2 Introduction to MATLAB Chapter 1

A brief summary of some of MATLAB commands is provided in the following
sections for readers who are not familiar with them. Those are the commands which
may be used in finite element programs. Especially, the MATLAB commands for
matrix operation and solution are most frequently used in the programs. For visual­
ization of the finite element solution, some plotting commands are also explained.

1.3 A b ou t M A T L A B

MATLAB is an interactive software which has been used recently in various areas
of engineering and scientific applications. It is not a computer language in the normal
sense but it does most of the work of a computer language. Writing a computer code
is not a straightforward job; typically boring and time consuming for beginners. One
attractive aspect of MATLAB is that it is relatively easy to learn. It is written on
an intuitive basis and it does not require in-depth knowledge on operational principle
of computer programming like compiling and linking in most of other programming
languages. This could be regarded as a disadvantage since it prevents users from
understanding the basic principle in computer programming. The interactive mode
of MATLAB may reduce computational speed in some applications.

The power of MATLAB is represented by the length and simplicity o f the code.
For example, one page of MATLAB code may be equivalent to many pages of other
computer language source codes. Numerical calculation in MATLAB uses collections
of well written scientific/mathematical subroutines such as LINPACK and EISPACK.
MATLAB provides Graphical User Interface (GUI) as well as three-dimensional
graphical animation.

In general, MATLAB is a useful tool for vector and matrix manipulations.
Since the majority of the engineering systems are represented by matrix and vector
equations, we can relieve our workload to a significant extent by using MATLAB.
The finite element method is a well defined candidate for which MATLAB can be
very useful as a solution tool. Matrix and vector manipulations are essential parts in
the method. MATLAB provides help menu so that we can type help command when
we need help to figure out a command. The help utility is quite convenient for both
beginners and experts.

1.4 V ector and M atrix M anipulations

Once we get into the MATLAB, we meet a prompt > > called MATLAB prompt.
This prompt receives a user command and processes it providing the output on the
next line. Let us try the following command to define a matrix.

» A = [1,3,6; 2,7 ,8; 0,3,9]

Then the output appears in the next line as shown below.

1 3 6
A - 2 7 8

0 3 9

Section 1.4 Vector and Matrix Manipulations 3

Thus, a matrix is entered row by row, and each row is separated by the semi-colon(;).
Within each row, elements are separated by a space or the comma(,). Commands
and variables used in MATLAB are case-sensitive. That is, lower case letters are
distinguished from upper case letters. The size o f the matrix is checked with

> > size(.A)

ans = 3 3

Transpose o f a m atrix In order to find the transpose of matrix A, we type

> > A!

The result is
1 2 0

ans = 3 7 3
6 8 9

C olum n or row com ponents MATLAB provides columnwise or rowwise operation
o f a matrix. The following expression

» A (: , 3)

yields

6
ans = 8

9

which is the third column of matrix A. In addition,

» A (1,:)

represents the first row of A as

ans = 1 3 6

We can also try

» Л(1,:) + Л(3,:)

as addition of the first and third rows of A with the result

ans = 1 6 15

Now let us introduce another matrix В as

» В = [3,4,5; 6,7,2; 8,1,0];

Then there seems to be no output on the screen. MATLAB does not prompt output
on the screen when an operation ends with the semi-colon(;) at the end.

If we want to check the В matrix again, we simply type

» В

The screen output will be

4 Introduction to MATLAB Chapter 1

3 4 5
5 = 6 7 2

8 1 0

M atrix addition Adding two matrices is straightforward like

» C = A + B

4 7 11
С = 8 14 10

8 4 9

Thus we defined a new matrix С as sum of the previous two matrices.

M atrix subtraction In order to subtract matrix В from matrix A, we type

» С = A — В

- 2 - 1 1
С = - 4 0 6

- 8 2 9

Note that С is now a new matrix not the summation of A and В any more.

M atrix m ultiplication Similarly, matrix multiplication can be done as

» С = A * В

69 31 11
С = 112 65 24

90 30 6

1.5 M atrix Functions

Manipulation of matrices is a key feature of the MATLAB functions. MATLAB
is a useful tool for matrix and vector manipulations. Collections o f representative
MATLAB matrix functions are listed in Table 1.5.1. Examples and detailed explana­
tions axe provided for each function below.

M atrix inverse The inverse of a matrix is as simple as

» inv(A)

ans
1.8571 -0.4286 -0.8571

-0.8571 0.4286 0.1905
0.2857 -0.1429 0.0476

In order to verify the answer, we can try

> > A*inv(.A);

Table 1.5.1 Basic Matrix Functions

Section 1.5 Matrix Functions 5

Symbol Explanations

inv inverse of a matrix

det determinant o f a matrix

rank rank of a matrix

cond condition number of a matrix

eye(n) the n by n identity matrix

trace summation of diagonal elements of a matrix

zeros (n ,m) the n by m matrix consisting of all zeros

which should be a 3 by 3 identity matrix.

D eterm inant o f a m atrix

> > d =det(A)

produces the determinant of the matrix A. That is,

d = 21

Rank o f a m atrix The rank of a matrix A, which is the number of independent
rows or columns, is obtained from

» r a n k (A) ;

Identity m atrix

» eye(3)

yields

1 0 0
ans = 0 1 0

0 0 1
eye(n) produces an identity matrix of size n by n. This command is useful when we
initialize a matrix.

M atrix o f random numbers A matrix consisting of random numbers can be
generated using the following MATLAB function.

» r a n d f 3 . 3̂' ' \ * f

6.2190 0.6793 0.5194
ans = 0.0470 0.9347 0.8310

0.6789 0.3835 0.0346

6 Introduction to MATLAB Chapter 1

That is, rand(3,3) produces a 3 by 3 matrix whose elements consist of random
numbers. The general usage is rand(n,m).

trace Summation of diagonal elements o f a matrix can be obtained using the trace
operator.

For example,

» C = [1 3 9; 6 7 2; 8 - 1 - 2];

Then, trace(C) produces 6, which is the sum of diagonal elements of C.

zero m atrix

> > zeros(5,4)

produces a 5 by 4 matrix consisting of all zero elements. In general, zeros(n,m) is
used for an n by m zero matrix.

cond ition num ber The command cond(A) is used to calculate the condition
number o f a matrix A. The condition number represents the degree of singularity
of a matrix. An identity matrix has a condition number of unity, and the condition
number o f a singular matrix is infinity.

>>cond(ej/e(6))

ans =
1

An example matrix which is near singular is

A = 1 1 ‘
1 i + i o - 6J

The condition number is

>>cond(A)

ans =
4-0000e+006

Further matrix functions are presented in Table 1.5.2. They do not include all
matrix functions of the MATLAB, but represent only a part of the whole MATLAB
functions. Readers can use the MATLAB Reference’s Guide or help command to
check when they need more MATLAB functions.

M a trix exp on en tia l The e x p m (A) produces the exponential of a matrix A. In
other words,

» A = ran d (3 ,3)

0.2190 0.6793 0.5194
A = 0.0470 0.9347 0.8310

0.6789 0.3835 0.0346

Table 1.5.2 Basic Matrix Functions (Continued)

Section 1.5 Matrix Functions 7

Symbol Explanations

expm exponential of a matrix

eig eigenvalues/eigenvectors of a matrix

lu LU decomposition o f a matrix

svd singular value decomposition of a matrix

qr QR decomposition of a matrix

\ used to solve a set of linear algebraic equations

>> exp m (A)

1.2448 0.0305 0.6196
ans = 1.0376 1.5116 1.3389

1.0157 0.1184 2.0652

Eigenvalues The eigenvalue problem of a matrix is defined as

Аф = Л ф

where A is the eigenvalue of matrix A , and ф is the associated eigenvector.
^ _________________A \e

gives the eigenvalues o f A, and

» [V, D] = e ig (^)

produces V matrix, whose columns are eigenvectors, and the diagonal matrix D whose
values are eigenvalues of the matrix A.
For example,

» A = [5 3 2; 1 4 6; 9 7 2];

» [V ,D]= eig (A)

0.4127 0.5992 0.0459
V = 0.5557 -0.7773 -0.6388

0.7217 0.1918 0.7680

12.5361 0 0
D - 0 1.7486 0

0 0 -3.2847

LU D ecom position The LU decomposition command is used to decompose a
matrix into a combination of upper and lower triangular matrices, respectively.

» A = [1 3 5; 2 4 8; 4 7 3];

» [L,U] = lu(A)

8 Introduction to MATLAB Chapter 1

U.^&UU i.UUUU U
L = 0.5000 0.4000 1.0000

1.0000 0 0

4.0000 7.0000 3.0000
U = 0 1.2500 4.2500

0 0 4.8000

In order to check the result, we try

> > L * U

ans =
1 3 5
2 4 8
4 7 3

' I ’V» a l/мпа* m 7" ю n oiifan f lir 4ччп n rfi 1 1 «1 » r 1 'V» ам#ч ю м> ллуммчап Jx l i e i v n u b i i a i i g u i a i j i i a u i la . ±j ю u v t i p c i i c b u i j u l jL d iig u i c n . n i u c ю a u u u i c i v u i i u i i a i i u

available

> > [LfU,P] = lu(A)

1.0000 0 0
L - 0.2500 1.0000 0

0.5000 0.4000 1.0000

4.0000 7.0000 3.0000
U = 0 1.2500 4.2500

0 0 4.8000

0 0 1
P = 1 0 0

0 1 0

Here, the matrix P is the permutation matrix such that P * A = L *U .

Singular value decom position The svd command is used for singular value
decomposition of a matrix. For a given matrix,

A = UY.V'

where S is a diagonal matrix consisting of non-negative values. For example, we define
a matrix D like

> > £ > = [1 3 7; 2 9 5; 2 8 5]

The singular value decomposition of the matrix is

> > [U, Sigma, V] = sv d (D)

which results in

U
0.4295 0.8998 -0.0775
0.6629 -0.3723 -0.6495
0.6133 -0.2276 0.7564

Section 1.5 Matrix Functions 9

Sigma =
15.6492 0 0

0 4.1333 0
0 0 0.1391

0.1905 -0.0726 0.9790 '
0.7771 -0.5982 -0.1956
0.5999 0.7980 -0.0576

Q R decom position A matrix can be also decomposed into a combination of an
orthonormal matrix and an upper triangular matrix. In other words,

A - QR

where Q is the matrix with orthonormal columns, and R is the upper triangular
matrix. The QR algorithm has wide applications in the analysis of matrices and
associated linear systems. For example,

A =
0.2190 0.6793 0.5194
0.0470 0.9347 0.8310
0.6789 0.3835 0.0346

Application of the qr operator follows as

>> [Q, Щ =qr(̂)
yields

-0.3063 -0.4667 -0.8297
-0.0658 -0.8591 0.5076
_fl 0407V • V xv » П 91П1v> ia > J . V -L П 9.494

-0.7149 -0.6338 -0.2466
0 -1.0395 -0.9490
0 0 - 0.0011

Solution o f linear equations The solution of a linear system of equations is
frequently needed in the finite element method. The typical form of a linear system
of algebraic equations is written as

Ax = у

and the solution is obtained by
_ ^ ___;__ / л\ .

X * у

or we can use \ sign as

> > x = A\y

For example

» Л = [1 3 4; 5 7 8; 2 3 5];

Table 1.6.1 Data Analysis Functions

10 Introduction to MATLAB Chapter 1

Symbol Explanations

miii (m ax)

sum

std

sort

minimum(maximum) of a vector

sum of elements of a vector

standard deviation of a data collection

sort the elements of a vector

mean value of a vector

used for componentwise operation of a vector

mean

> > [i n v (A) * y A\y]

-4.2500 -4.2500
ans = 1.7500 1.7500

2.2500 2.2500

1.6 D ata Analysis Functions

Tip to now, we discussed matrix related functions and operators of MATLAB.

Table 1.6.1, some operators for data manipulation are listed.

M inim um (m axim um) The m in (m ax) finds a minimum (maximum) value of a
given vector. For example,

> > v — [11 23 73 25 49 92 28 23];

>>m in(v)

yields

ans =
11

» m a x (u)
ans =

92

MATLAB has also data analysis functions for a vector or a column of a matrix. In

sum The sum command produces the summation of elements o f a vector. For
example,

> > sum(u)

yields

ans =
324

Standard deviation The std command calculates the standard deviation of a
vector. For example,

» std ([l 4 10 - 5 6 9 -2 0])

ans =
4 Л Iiu.4 0 i f

Sort a vector The sort command is used to sort a vector in the ascending order.

» sort([l 4 10 - 5 6 9 - 20])

ans =
-20 -5 1 4 6 9 10

M ean value o f a vector The mean calculates the mean value of a vector.

> > m ean([l 4 10 — 5 6 9 — 20])

ans =
0.7ЦЗ

V ector com ponentw ise operation Let us define two vectors

» V i = [1 , 5 , 6 , 7] ; v 2 - [0 , 2 , 3 , 5] ;

Sometimes we want to multiply components of Vi with the corresponding components
of «2- The operation is

> > V3 = t>i. * V2

ans =
0 10 18 35

In other words, ().*() represents the componentwise multiplication of two vectors.
Another useful operator is

> > V4 = V2./Vi

with

t>4 = 0 0.4 0.5 0.7143

Note that the data analysis tools explained in the above are applicable to matrices
too. Each matrix column is regarded as a vector for data analysis.

Section 1.6 Data Analysis Functions 11

12 Introduction to MATLAB Chapter 1

Table 1.7.1 Polynomial Functions

Symbol Explanations

poly converts collection o f roots into a polynomial equation

roots finds the roots of a polynomial equation

polyval evaluates a polynomial for a given value

conv multiply two polynomials

deconv decompose a polynomial into a dividend and a residual

polyfit curve fitting of a given polynomial

1 <7 ''П -------1 „ Г -------j.« i x u v ia lu i j. uijr i iu u iia io

Polynomials are frequently used in the analysis of linear systems. MATLAB
provides some tools for handling polynomials. The summary of polynomial functions
is provided in Table 1.7.1.

R oots o f a polynom ial equation A polynomial equation is given by

ai£n + a2xn~l H------- \- anx + an+i = 0

The roots of the polynomial equation is solved using roots command

roots([ai a2 ••• an an+i])

For example,
x 4 + 4ar3 — 5a;2 + 6a; — 9 = 0

> > ro o ts ([l 4 — 5 6 — 9])

yields

ans =
-5.2364
1.2008
0.0178 + 1.1963i
0.0178 - l.l963i

G eneration o f a polynom ial equation using roots The poly command takes
the roots, and converts them into a polynomial equation. For instance, if we know
[ri, r2, •••, rn] in

(ar - n)(as - r2) •• - (a; - rn) = xn + aixn“ 1 + a2xn~2 -\------- h ап_ 1Х + ап

then

» p o l y ([r i , r2, •••, rn})

provides us the coefficients([ai, 02, • • •, an]) of the polynomial equation. For example,

> > p o ly ([—1 —2 + 2* г —2 — 2 *г —5 + 7* г —5 — 7* г])

produces

ans =
1 15 136 498 968 592

In order to check the result, we use roots command again.

» r o o t s ([l 15 136 498 968 592])

The result should be [—1 —2 + 2* г — 2 — 2 * г —5 + 7* г — 5 — 7 * г].

Polynom ial value When we want to calculate the value of a polynomial at a certain
point, we can use polyval.

» У =p olyva l([l 3 4 - 5], 2)

ans =
23

which evaluates the polynomial s4 + 3s3 + 4s — 5 at s = 2.

M ultip lication o f tw o polynom ials The conv command is used to multiply two
polynomials. For example,

a(s) = s2 + 3s — 1, fc(s) = s3 — 2 s2 + 6s — 7

The multiplication of a(s) and 6fs) follows as* \ / \ /

» с = con v ([l 3 — 1], [1 - 2 6 — 7])

с =

1 1 -1 13 -27 7

In other words, we obtain the coefficient vector с of the product of a(s) and b(s).

D ecom p osition o f a polynom ial The deconv is used to decompose a polynomial
as a multiplicand and a residue. Let

a($) = 6(s)m(s) + r(s)

That is, the polynomial a(s) is represented in terms of a multiplicand m(s) and a
residue r(s) via b(s). The MATLAB command is

> > [m,r] =deconv(a, b)

where the parameters are coefficient vectors for given polynomials. An example is
given by

» [m, r] = d econ v([l —2 6 — 7], [1 3 — 1])

m =

Section 1.7 Tools for Polynomials 13

1 -5

0 0 22 - 1 2

If we change the order of polynomials,

> > [m,r] = d econ v([l 3 — 1], [1 —2 6 —7])

m =

0

r =
1 3 -1

U a I «m /\пл m l <Сч ̂ f I ’1ч л m л1« » ^ aawiwiaviiJ i л л>/чп а гл л1 ттп m l яимгл tnlt* jtitх u i j и и ш л ш u i> j . u c p u i j i t b t u i i u i i a u u ю u u ^ i i c i a b c cl p u t j u u i u i a i t u i v c w m t i i u iiS

a given set of data. The polynomial is obtained by minimizing the error between the
polynomial and the given data set. The synopsis is

p = polyfit(a:,y,n)

where z and у are vectors of the given data set in (ж, у) form, and n is the order of the
desired polynomial to fit the data set. The output result is p, the coefficient vector of
the fitting polynomial. An example is provided below,

> > * = [1 2 3 4 5 6];

» у = [-1 3 5 2 - 3 1];

» p =polyfit(a:,j/, 1)

P =
2.1714 -1.2667

A linear curve fitting is performed for data set (x , y).

14 Introduction to MATLAB Chapter 1

1.8 M aking C om plex N um bers

In order to make a complex number 2 -b 3 * г, we use

> > 2 + 3*i

or

> > 2 + 3*j

MATLAB takes г and j as a pure complex number. In case i or j is defined already,
we can use as

> > г = sq rt(— 1)

г = 0 + l.OOOOi

Section 1.9 Nonlinear Algebraic Equations 15

Table 1.9.1 Functions for Nonlinear Algebraic Equations

Symbol Explanations

fm in

fzero

finds minimum of a function of one variable

solves a nonlinear algebraic equation of one variable

abs, angle For a given complex number, we use abs and angle commands to find
out the magnitude (abs) and phase angle (angle) of the given complex number. For
example, if

» c = —1 + i;

then

» abs(c)

ans = 1.4142

> > angle(c)

ans = 2.3562

R eal, im aginary parts o f a com plex num ber The real and imag are used to
take the real and imaginary parts of a complex number. For example,

» с = -1 0 + 9 * i

» [real(c) ,imag(c)j

ans = —10 9

C onjugate The con j command is used to generate a complex conjugate number.
For example

» co n j(—1 4- 5 * i)

ans — —1 — 5*i

1.9 N onlinear A lgebraic Equations

Nonlinear algebraic equations are frequently adopted in many different areas.
The nonlinear equations are different from linear equations, and there is no unique
analysis tool to the nonlinear equations. MATLAB is equipped with some functions
which can handle nonlinear equations. The list is presented in Table 1.9.1.

M inim um o f a function The MATLAB command fm in minimizes a function by
finding out a value which minimizes the given function. The synopsis is

fm in ('func', x ijxz)

16 Introduction to MATLAB Chapter 1

Table 1.10.1 Numerical Techniques for Differential Equationp

Symbol Explanations

ode23

ode45

solution using the 2nd/3rd order Runge-Kutta algorithm

solution using the 4th/5th order Runge-Kutta algorithm

where Time’ is the name of a function to be minimized and x\{xi) represents a
lower(upper) limit of the interval of the function argument. For example,

» f m i n (/® * cos(x)', —2, 2)

produces

ans = —0.8603

Solution o f a nonlinear algebraic equation When a nonlinear algebraic equation
is written as

x3 4- 3 * sin(x) — x5 — 0

the MATLAB function fzero can be used to find a solution of the nonlinear algebraic
equation. The synopsis is

» sol = fzero ('function' , zO)

where ’function1 is a MATLAB function subroutine and *0 is an initial condition
vector of the variables. For the given example, we write a function subroutine fcin.m
as

function [/] = fctn (x);
/ = аГЗ + x * cos(x) — 4x;

Then, we use fzero command as

» sol = fzero (//ctfn/ , — 5)

sol = -2.1281

In order to check the solution

» f c t n (—2.1281)

ans =
1.9192e-004

The error is due to the numerical format error. The number is truncated for screen
display purpose, even if it is calculated using double precision format inside MATLAB.

1.10 Solving Differential Equations

Linear and nonlinear differential equations can be also solved using MATLAB.
List of numerical techniques solving differential equations is in Table 1.10.1.

Section 1.11 Loop and Logical Statement 17

R unge-K utta second and third order algorithm MATLAB uses the Runge-
Kutta algorithm to solve a differential equation or a set of differential equations. The
general synopsis is

[<,*] = ode23('/tm c',<0,< /, *0);

where ‘‘fun o' is a function containing the derivative information, tO (t f) is the initial
(final) time, and *0 is an initial condition vector. The outputs are t, which contains
the returned time points, and x which is the integrated output.

For example, we want to solve

x + sin(x) = 0

which can be rewritten as

= x 2

X2 — - s i f l (l l)

where Xi = x and x2 — x. The ’func’ function should be provided as an independent
function subroutine as func.m in a directory, which MATLAB can locate. Now we
execute the ode23 command

» [£, x] = od e23 (//tm c/ ,0 ,10, *0);

where

l0 = {o}
is an initial condition and func.m is provided as

function m =func(t,x):
[/] = « 4 2 , 1) 1
/ (1) = * (2) ;
/(2) = —sm(a:(l));

R unge-K utta Fourth and Fifth order algorithm There is another Runge-Kutta
algorithm ode45 which is more accurate than ode23.

[f, x] = ode45(//im c/ ,20, </, xO)

The same calling synopsis as ode23 can be applied to make use of the ode45
function.

1.11 L oop and Logical Statement

There are some logical statements available in MATLAB which help us writing
combinations of MATLAB commands. Furthermore, loop commands can be used as
in other programming languages. In fact, we can duplicate the majority of existing
programs using MATLAB commands, which significantly reduces the size of the source

Table 1.11.1 Loop and Logical Statements

18 Introduction to MATLAB Chapter 1

Symbol Explanations

for loop command similar to other languages

while used for a loop combined with conditional statement

i f produces a conditional statement

elseif, else used in conjunction with if command

break breaks a loop when a condition is satisfied

codes. A collection of loop and logical statements in MATLAB is presented in Table
1.11.1.

for loop The for is a loop command which ends with end command.

» for i — 1 : 100
a(i, i) = 2 * i\
end

In the above example, t is a loop index which starts from 1 and ends at 100. There
may be also multiple loops.

> > for i = 1 : 100
for j — 1 : 50

for к = 1 : 50
n(i. =r b(i. k} * r,(k. Л -I- a(i. -П:

end
end

end

w hile The while command is useful for an infinite loop in conjunction with a
conditional statement. The general synopsis for while command is as follows

while condition
statements
end

For example,

г =■ 1
while (i < 100)

i = t + 1;
end

Another example of the while command is

n ~ 1000;
var = [];

while (n > 0)
n = n/2 — 1;
var = [ivar, n] ;

end

The result is

var =
Columns 1 through 6

4.9900e+002 2.4850e+002 1.2325e+002 6.0625e+001 2.9313e+001 1.3656e+001

Columns 7 through 9
5.8281e+000 1.9141e+000 -4.2969e-002

where we used [] in order to declare an empty matrix.

if, elseif, else The if, elseif, and else commands are conditional statements which
are used in combination.

if condition ф\
statement ф\
elseif condition ф 2
statement #2
else
statement #3
end

For example,

n = 100;
i f (rem (n, 3) = = 0)

x = 0;

elseif (rem (n, 3) = = 1)
* = 1;

else
x — 2 ;

end

where rem (x ,y) is used to calculate the remainder of x divided by y.

break The break command is used to exit from a loop such as i f and while. For
example ?

for i = l : 100
i = i + 1;

t f (i = = 10) break;
end

end

Section 1.11 Loop and Logical Statement 19

20 Introduction to MATLAB Chapter 1

Table 1.11.2 Loop and Logical Statements

Symbol Explanations

= = two conditions are equal

~= two conditions are not equal

< = (> =) one is less (greater) than or equal to the other

< (>) one is less (greater) than the other

& and operator - two conditions are met
- not operator

1 or operator - either one condition is met

Logical and relational operators The logical and relational operators of
MATLAB are as listed in Table 1.11.2.

The above command sets are used in combination.

1.12 W riting Function Subroutines

MATLAB provides a convenient tool, by which we can write a program using
collections of MATLAB commands. This approach is similar to other common
programming languages. It is quite useful especially when we write a series of
A i f A ' I ' T A 13 Л 1П «4 4- лчг4- -ft 1 A T U l f l f A V ^ f t lf t 1 Л Л/3 i f Л /J П П /] П М f/M* 1а^/ЧМ 11ПА
1У1 Л _l и л и w iiu u a u u s in a исли inc. д. н ю и ели u ic id cm ucu auu oavcu aui iauci hog.

The text file should have filename.m format normally called m-file. That is,
all MATLAB subroutines should end with .m extension, so that MATLAB recognizes
them as MATLAB compatible files. The general procedure is to make a text file using
any text editor. If we generate a file called funcl.m, then the file funcl.m should start
with the following file header

function[ov!, ov2,. . .] = fu n c l(iv i, iv2, .. •)

where iv i,iv2,-- - are input variables while ovi,ov2, . . . are output variables. The
input variables are specific variables and the output variables are dummy variables,
for which we can use any variables.

For example, let us solve a second order algebraic equation.

ax2 + bx + с = 0

The solution is given in analytical form as

—b ± л/62 — 4 * a * c
2 * a

Section 1.12 Writing Function Subroutines 21

We want to write an m-file with the name secrootm, which produces the analytical
solution.

function [rl, r2]=secroot(a, 6, c);
%
% Find Determinant------ Any command in MATLAB which starts with
% % sign is a comment statement
Det = 6Л2 — 4 * a * c;
i f (Det < 0),
r l = (—6 + j * sqrt(—Det))/2/a;
r2 = (—6 — j * sqrt(—Det))/2/a;
dispi^The two roots are complex conjugates');
elseif\£)ei = = 0),
r l = —6/ 2/a ;
r2 = —6/ 2/a ;
disp('There are two repeated roots');
else(£)e< > 0)
r l = (—6 + sqrt(Det))/2/a;
r2 = (—6 — sqrt(Det))/2/a\
disp('The two roots are real');
end

Some commands appearing in the above example will be discussed later. Once the
secroot.m is created, we call that function as

» [rl,r2]=secroot(3 ,4 ,5)

or

» [pl,p2] =secroot(3 ,4 ,5)

One thing important about the function command is to set up the m-file
pathname. The m-file should be in the directory which is set up by MATLAB
configuration set up stage. In the recent version of MATLAB, the set up procedure is
relatively easy by simply adding a directory which we want to access in a MATLAB
configuration file.

Another function subroutine fct.m is provided below.

function [/] = fct(*)
/ = (1 —*)"2;

The above function represents f (x) = (1 — x)2. In the MATLAB command prompt,
we call the function as

» у = fct(9);

The function subroutine utility of MATLAB allows users to write their own subrou­
tines. It provides flexibility of developing programs using MATLAB.

Table 1.13.1 File Manipulation Commands

22 Introduction to MATLAB Chapter 1

Symbol Explanations

save save current variables in a file

load load a saved file into MATLAB environment

diary save screen display output in text format

1.13 File M anipulation

Manipulating files is another attractive feature of MATLAB. We can save
MATLAB workspace, that is, all variables used, in a binary file format and/or a
text file format. The saved file can be also reloaded in case we need it later on. The
list of file manipulation commands is presented in Table 1.13.1.

вялю ТЪр вялю г л т т л п Н iq nsprl in sa.vp variables whpn w p я .г р wr*rlrin0* in M ATT, A R
The synopsis is as follows

save /ЦеТЪйтб Vdr\ Vdr2

where filename is the filename and we want to save the variables, vari, var2, The
filan om o гт̂ апp i * a K v e a v o г лгпmonH bas pvtpneinn n f m n i rallprl я тлУ-Ут/^ T4* w eД ^VUVt WVVU WJ l?U T W1&U11U11U u««u VAVVUUIWII V L r IIVUVj vuiuvvt ui J*«V* 1L IF V

do not include the variables name, then all current variables axe saved automatically.
In case we want to save the variables in a standard text format, we use

save filename vari var2 ■■■/ascii/double

load The load command is the counter-part of save. In other words, it reloads
the variables in the file which was generated bv save command. The synopsis is as
follows

load filename vari var2 ...

where filename is a mat-file saved by save command. Without the variables name
specified, all variables are loaded. For example,

» a = [1 3 4];
» b = 3;
>> save test
> > clear all
» w h o
> > loa d test
> > w h o

diary Using diary command, we can capture all MATLAB texts including command
and answer lines which are displayed on the screen. The texts will be saved in a file,
so that we can edit the file later. For example,

» d i a r y on

% clear all variables
% display current variables being used

Table 1.14.1 Input-Output Functions

Section 1.14 Basic Input/Output Functions 23

Symbol Explanations

input save current variables in a file

disp load a saved file into MATLAB environment

form at check the file status in the directory

> > a = 1; 6 = 4; с = 5;
> > [a b с]

» d = a *b
» e = g * h
> > d ia ry o ff

Now we can use any text editor to modify the diary file. The diary command is
useful displaying the past work procedures. Also, it can be used to save data in a text
format.

1.14 Basic Input-O utput Functions

Input/output functions in MATLAB provide MATLAB users a friendly pro­
gramming environment. Some input/output functions are listed in Table 1.14.1.

input The input command is used to receive a user input from the keyboard. Both
numerical and string inputs are available. For example,

> > age= input ('How Old are you?')

» name =input('VP/iaf is your name','s')

The ’s’ sign denotes the input type is string.

disp The disp command displays a string of text or numerical values on the screen. It
is useful when we write a function subroutine in a user-friendly manner. For example,

> > disp ('This is a M ATLAB tutorial]')

» c=3*4;

> > disp('T7ie computed value o f с turns out to be')

» с

form at The form at command is used to display numbers in different formats.
MATLAB calculates floating numbers in the double precision mode. We do not want
to, in some situations, display the numbers in the double precision format on the
screen. For a display purpose, MATLAB provides following different formats

> > x — 1/9

24 Introduction to MATLAB Chapter 1

lable 1.15.1 Plotting Commands

Symbol Explanations

plot basic plot command

xlabel(y label) attach label to x(y) axis

axis manually scale x and у axes

text place a text on the specific position of graphic screen

title place a graphic title on top of the graphic

ginput produce a coordinate of a point on the graphic screen

gtext receives a text from mouse input

grid add a grid mark to the graphic window

pause hold graphic screen until keyboard is hit

subplot breaks a graphic window into multiple windows

x — 0.1111

> >form at short e

x - l . l l l l e -0 0 1

> > form at long

x = 0.11111111111111

> form at long 6

x - l . l l l l l l l l l l l l l l l e —001

>> form at hex

x = 3/6c71c71c71c71c

1.15 P lotting Tools

MATLAB supports some plotting tools, by which we can display the data in
a desired format. The plotting in MATLAB is relatively easy with various options
available. The collection of plotting commands is listed in Table 1.15.1.

A sample plotting command is shown below.

> > t = 0 : 0.1 : 10;
» у = sin(i);
» p lo t (y)
» title(’plot(y)’)

Section 1.15 Plotting Tools 25

The resultant plot is presented at the top of Fig. 1.15.1.

» t = 0 : 0.1 : 10;
> > у = sin(t);
» p lo t (t,y)
» title(’plot(t,y)’)

The resultant plot is presented at the bottom of Fig. 1.15.1. In the above example,
t = 0 : 0.1 : 10 represents a vector t which starts from 0 and ends at 10 with an
interval of 0.1. We can use just у or both у and t together. In the first case, the
horizontal axis represents number of data, from 0 to 101. In the second case, the
horizontal axis is the actual time scale t in the p lo t(t ,y) command.

P lotting m ultiple data We plot multiple data sets as shown below.

> > * = 0 : 1 : 1 00 ;
> > у 1 = sin(t). * t;
» y2 = cos(<). * t;
» p lot

where and represent line styles. The line styles, line marks, and colors are
listed in Table 1.15.2.

For example, if we want to plot a data in a dashed blue line, the command becomes

» p lo t(y ,’ - b ’);

xlabel, y label The x label(’^ea;f) and y label(’fea;f) are used to label the x and у
axes.

axis The axis command sets up the limits of axes. The synopsis is

a x is [®mm) %max j Vmin i Утах\

text The text command is used to write a text on the graphic window at a designated
point. The synopsis is

tex t(x ,y ,' text contents')

where x, у locates the x ,y position of the iexi contents'. In case we want to normalize
the graphic window size from 0 to 1, we use

text(x, y ' text contents' / sc')

ginput This command allows us to pick up any point on a graphic window. The
synopsis is

[я, у] - ginput

26 Introduction to MATLAB Chapter 1

plot(y)

plot(try)

Figure 1.15.1 A Sample Plot

We can pick as many points as we want on the graphic screen. The vector [x, y) then
contains all the points.

gtext The gtext command is used to place a text on the graphic window using the
mouse input. The synopsis is

gtext ('text')

Table 1.15.2 Line, Mark, and Color Styles

Section 1.15 Plotting Tools 27

Style Line marks Color

solid point red r

dashed star * green g

dotted V circle о blue b

dashdot plus + white w

x-mark X invisible i

Once the above command is entered or read in a function subroutine, the cursor on
the graphic window is activated waiting for the mouse input, so that the ’text’ is
located at the point selected by the mouse.

grid The grid command adds grids to the graphic window. It is useful when we
want to clarify axis scales.

An example plot constructed using some of the commands described above is
presented in Fig. 1.15.2. The following commands are used for the plot output.

» t= 0:0.1:20;
> > plot(<, sin(<))
> > xlabel('T im e(sec)'))
> > ylabel^ydafa')
> > title('This is a plot example')
> > erida

> > gtext('sm (i)')
> > axis([0 20 — 1.5 1.5])

pause This command is useful when we display multiple graphic windows sequen­
tially. It allows us to display one at a time with the keyboard interrupt.

subplot The subplot is used to put multiple plots on the same MATLAB figure
window. The command is

> > subplot (pgr)

The plot size is adjusted by a p by q matrix on the whole size of the graphic window.
Then the third index r picks one frame out of the p by q plot frames. An example
subplot is presented in Fig. 1.15.3 with the following commands entered.

> > x = 0 : 0.1 : 3 *p i,y = sin(x)-, z = cos(x);
» subplot(222)
» p lot(z , y)
> > title(’x and y’)
> > subplot(223)
> > plot(x , z)

28 Introduction to MATLAB Chapter 1

Figure 1.15.2 A Plot Example With Some Commands

x and у

x and z x and [y z]

Figure 1.15.3 A Subplot Example

> > title(’x and z’)
> > subplot(224)
» p l o t ---- ')

> > title(’x and [y z]’)

where pi is an internally defined variable equivalent to i

Section 1.15 Plotting Tools

C H A P T E R TWO

APPROXIMATION TECHNIQUES

2.1 M eth ods o f W eighted Residual

Methods of weighted residual axe useful to obtain approximate solutions to a
differential governing equation. In order to explain the methods, we consider the
following sample problem:

{
^ 0 < ж < 1 (2 1 1)

it(0) = 0, and u(l) = 0
The first step in the methods of weighted residual is to assume a trial function which
contains unknown coefficients to be determined later. For example, a trial function,
й = ax(1 — x), is selected as an approximate solution to Eq. (2.1.1). Here, ~ denotes
an approximate solution which is usually different from the exact solution. The trial
function is chosen here such that it satisfies the boundary conditions (i.e., £t(0) = 0
and 6(1) = 0) , and it has one unknown coefficient a to be determined.

In general, accuracy of an approximated solution is dependent upon proper
selection of the trial function. However, a simple form of trial function is selected for
the present example to show the basic procedure of the methods of weighted residual.
Once a trial function is selected, residual is computed by substituting the trial function
into the differential equation. That is, the residual R becomes

сР й
R = — й + x = —2a — ax(1 — x) + x (2.1.2)

dx£
Because й is different from the exact solution, the residual does not vanish for all
values of x within the domain. The next step is to determine the unknown constant a
such that the chosen test function best approximates the exact solution. To this end,
a test (or weighting) function w is selected and the weighted average of the residual
over the problem domain is set to zero. That is,

Г 1 f 1 (d 2u \

Table 2.1 .1 Comparison of Solution to Eq. (2.1.1) at x=0.5

32 Approximation Techniques Chapter 2

Exact Solution Collocation Least Squares Galerkin

0.0566 0.0556 0.0576 0.0568

The next step is to decide the test function. The resulant approximate solution
differs depending on the test function. The methods of weighted residual can be
classified based on how the test function is determined. Some of the methods of
weighted residual are explained below. Readers may refer to Refs [1-3] for other
methods.

1. Collocation Method. The Dirac delta function, 8(x — ж,), is used as the test
function, where the sampling point xi must be within the domain, 0 < ж» < 1.
In other words,

w = 6(x — Xi) (2.1.4)

Let Xi — 0.5 and we substitute the test function into the weighted residual,
Eq. (2.1.3), to find a = 0.2222. Then, the approximate solution becomes
й = 0.2222ж(1 — ж).

2. Least Squares Method. The test function is determined from the residual such
that

w = ^ (2.1.5)
da v ’

к _____1-.!_______TT' _ / о 1 er\ A- - /П 1 n\ ..! .1 J ... П ../1 _.\ n T_ j ' j . J* r ,1Appiym g to Ljq* (z . i . i) yieias w = — z — x (i — x) . suDsmiution 01 tine
test function into Eq. (2.1.3) results in a = 0.2305. Then u = 0.2305ж(1 — ж).

3. Galerkin’s Method. For Galerkin’s method, the test function comes from the
chosen trial function. That is,

du
<2-L6>

For the present trial function, w = ж(1 — ж). Applying this test function to
Eq. (2.1.3) gives a = 0.2272 so that й = 0.2272ж(1 — ж). Comparison of these
three approximate solutions to the exact solution at x — 0.5 is provided in Table
2.1.1. As seen in the comparison, all three methods result in reasonably accurate
approximate solutions to Eq. (2.1.1).

In order to improve the approximate solutions, we can add more terms to
the previously selected trial function. For example, another trial function is й =
aix(l — ж) + a2x 2(1 — x). This trial function has two unknown constants to be
determined. Computation of the residual using the present trial function yields

R = ах(—2 — x + ж2) 4- a2(2 — 6ж — ж2 4- ж3) 4- ж (2.1.7)

We need the same number of test functions as that of unknown constants so that the
constants can be determined properly. Table 2.1.2 summarizes how to determine test

Section 2.1 Methods of Weighted Residual 33

Table 2.1.2 lest Functions for Methods of Weighted Residual

Method Description

Collocation Wi = 6(x — Xj), г = 1,2, ...,n

where ж,- is a point within the domain

Least Squares W i=dR/dai, г = 1, 2,..., n,

where R is the residual and

a,- is an unknown coefficient in the trial function

Galerkin Wi = du/dai, i = l , 2,...,n

where й is the selected trial function

functions for a chosen trial function which has n unknowns coefficients. Application
of Table 2.1.2 to the present trial function results in the following test functions for
each method.

Collocation Method : Wi = 6(x — x x), w2 = 8(x — x 2) (2.1.8)

Least Squares Method : wi = — 2 — x + x2, w2 = 2 — 6x — x 2 + x3 (2.1.9)
Galerkin’s Method : ti>i = x (l — ж), tu2 = ж2(1 — x) (2.1.10)

For the collocation method, x x an x2 must be selected such that the resultant weighted
residual, i.e. Eq. (2.1.3), can produce two independent equations to determine
unknowns ai and a2 uniquely. The least squares method produces a symmetric matrix
regardless of a chosen trial function. Example 2.1.1 shows symmetry o f the matrix
resulting from the least squares method. Galerkin’s method does not result in a
symmetric matrix when it is applied to Eq. (2.1.1). However, Galerkin’s method may
produce a symmetric matrix under certain conditions as explained in the next section.

ф Exam ple 2.1.1 A differential equation is written as

L{u) = / (2.1.11)

where £ is a linear differential operator. A trial solution is chosen such that

n

It
* = 1

in which gj is a known function in terms of the spatial coordinate system and it
is assumed to satisfy boundary conditions. Substitution of Eq. (2.1.12) into Eq.

(2.1.11) and collection of terms with the same coefficient a,- yield the residual as
seen below;

П
Д = + p (2.1.13)

i=i

Here, hi and p are functions in terms of the spatial coordinate system. Test
functions for the least squares method are

W j= h j, j = 1,2, . . . , n (2.1.14)

The weighted average of the residual over the domain yields the matrix equation

f "
1 = j WjR dQ = S^Aijai — bj = Q, j = l ,2 , . , . ,n (2.1.15)

Ja i=l

34 Approximation Techniques Chapter 2

where
A y = j hihjdtt (2.1.16)

Jci

Equation (2.1.16) shows that A;j = Aji (symmetry). J

2.2 W eak Form ulation

We consider the previous sample problem, Eq. (2.1.1), again. The formulation
described in the preceeding section is called the strong formulation o f the weighted
residual method. The strong formulation requires evaluation of w(d2it/dx2)dx,
which includes the highest order of derivative term in the differential equation. The
integral must have a non-zero finite value to yield a meaningful approximate solution
to the differential equation. This means a trial function should be differentiable twice
and its second derivative should not vanish.

So as to reduce the requirement for a trial function in terms of order of
differentiability, integration by parts is applied to the strong formulation. Then Eq.
(2.1.3) becomes

- a

d2a
dx2

— й + x) dx

1 / dw du _ \
— -— ------wu + xw I dx +

q dx dx J
w

du
dx

= 0 (2 .2 .1)
Jo

As seen in Eq. (2.2.1), the trial function needs the first order differentiation instead
of the second order differentiation. As a result, the requirement for the trial function
is reduced for Eq. (2.2.1). This formulation is called the weak formulation.

Weak formulation has an advantage for Galerkin’s method where test functions
are obtained directly from the selected trial function. If a governing differential equa­
tion is the self-adjoint operator, Galerkin’s method along with the weak formulation

Section 2.3 Piecewise Continuous Trial Function 35

|- hi |

Figure 2.3.1 Piecewise Linear Functions

u = a 1̂ 14-a-,^2

Figure 2 .3 .2 Piecewise Linear Trial Function

results in a symmetric matrix in terms of unknown coefficients of the trial function.
Using a trial function й = ax(1 — x) for the weak formulation, Eq. (2.2.1) results
i n f .b p к я т р s n l i i f . i n T i я а n b f f t i n f t d i f r o m f l i p s i T n n n f n r m . i t l / i f i n n . я л H n w p v p r

when a piecewise function is selected as a trial function, we see the advantage of the
weak formulation over the strong formulation.

2.3 Piecewise Continuous Trial Function

Regardless of the weak or strong formulation, the accuracy of an approximate
solution so much depends on the chosen trial function. However, assuming a proper
trial function for the unknown exact solution is not an easy task. This is especially
true when the unknown exact solution is expected to have a large variation over
the problem domain, the domain has a complex shape in two-dimensional or three-
dimensional problems, and/or the problem has complicated boundary conditions. In
nrrlfir tn nvprfnm p пгпЫ(чпя я. frial fu n ction ran he described lisincr rviprewifieWV ж---- ~ ---- --- ---- ------ --------- ' ---- -----' “ ' “ ‘ O JГ-----• • —-
continuous functions.

Consider piecewise linear functions in an one-dimensional domain as defined
below:

{
(x — Xi-i)/hi for ж,_1 < x < Xi
(ж»+1 - x)/hi + 1 for Xi < x < ajj+i (2.3.1)

0 otherwise
The function defined in Eq. (2.3.1) is plotted in Fig. 2.3.1 and Example 2.3.1
illustrates the use of the function as a trial function.

36 Approximation Techniques Chapter 2

Exam ple 2.3.1 Consider the same problem as given in Eq. (2.1.1). It is
rewritten here

{ ~ u = ~ x , 0 < ж < 1
tt(0) = 0, and « (1) = 0

The weak formulation is also rewritten as below:

d2u

(2.1.1)

‘ J. ” (
-f(

dx2 — tt + x]dx

1 / dw du _ \ .— -— ------wu + xw J dx -)-q ̂ dx dx J
w

du
dx

= 0
Jo

(2.2.1)

A trial function is chosen such that u = Oi^j(®) + 02^2(2) in which a* and a2
are unknown constants to be determined, and ф\ and ф2 are defined as below:

фг(х) =

ф2(х) =

0 < X < A
2 - 3 ® , I < x < 3 (2.3.2)

i < x < \

0 < ж < |
Зж — 1 , A < X <

1 < * < 1

(2.3.3)

ф\(x) and ф2(х) are plotted in Fig. 2.3.2. For the present trial function,
the problem domain is divided into three subdomains and two piecewise linear
functions are used. Of course, more piecewise functions can be used along with
more subdomains to improve accuracy of the approximate solution. The trial
function can be rewritten as

f a i (3z) ,
й ~ < ax(2 — Зж) + a2(Зж — 1), | < ж < |

1 02(3 — Зж), | < x < 1

0 < x < A
I
3 (2.3.4)

Use of Galerkin’s method yields the following test functions

tl>i = i

Зж,
2 — Зж, ̂ < x <

I » .
(2.3.5)

I < * < 1

and
0, 0 < x < i

w2 = { 3x — 1, A < x < 3
3 - Зж, I < x < 1

Averaged weighted residuals are

dwi du

(2.3.6)

r, = /'(-
Jo

r2 = Д
J 0

dx dx

dw2 du
dx dx

— wiv, + xwi)dx = 0

— w2u + xw2)dx = 0

(2.3.7)

(2.3.8)

Section 2.4 Galerkin’s Finite Element Formulation 37

where [u; ^] q is omitted because lWj(0) =lOi(l)=iU2(0)=lt)2(l)=0. Substitution
of both trial and test functions into Eq. (2.3.7) and Eq. (2.3.8) respectively gives

f aIi = I [— 3(3ai) — 3a;(3aia:) + ж(Зж)]с£ж-|-
Jo

[3(—3a* + 3a2) — (2 — 3s)(2ai — 3aia: -|- 3a2x — a2) (2.3.9)

(2 — 3x)]dx + J 0dx

/J3
+ x ,

3

= - 6.222a! + 2.9444a2 + 0.1111 = 0
. x 2

— I _L I Г Q / I 9 „ _ \a2 — j uuj. ~r j I— — uu.J т)
Jo
— (Зж — l)(2ai — 3ai:c + Ъа2х — a2) + х(Ъх — 1)] rfa:+ (2.3.10)

1

j [3(— За2) — (3 — 3ж)(3а2 — За2ж) + ж(3 — Зж)1с?ж
h

=2.94440! - 6.2222а3 + 0.2222 = О

Solutions for ai and а2 are a± — 0.0488 and 02 = 0.0569 from Eq. (2.3.9)
and Eq. (2.3.10). That is, the approximate solution is u = 0.0448^1 (ж) +
0.0569^2(ж)- И the trial function Eq. (2.3.4) were used for the strong
formulation Eq. (2.1.3), it would not give a reasonable, approximate solution

because ^5 vanishes completely over the domain. |

2.4 Galerkin’s Finite Element Formulation

As seen in the previous section, use of piecewise continuous functions for the trial
function has advantages. As we increase the number of subdomains for the piecewise
functions, we can represent a complex function by using sum of simple piecewise linear
functions. Later, the subdomains are called finite elements. From now on, ~ used to
denote a trial function is omitted unless there is any confusion.

This section shows how to compute weighted residual in a systematic manner
using finite elements and piecewise continuous functions. In the previous section, the
piecewise continuous functions were defined in terms of the generalized coefficients
(i.e. a j, аг, etc.). For a systematic formulation, the piecewise continuous functions
are defined in terms of nodal variables.

Consider a subdomain or a finite element shown in Fig. 2.4.1. The element has
two nodes, one at each end. At each node, the corresponding coordinate value (xt- or

1) and the nodal variable (it* or «i+i) are assigned. Let us assume the unknown
trial function to be

и = с 1Ж + c2 (2-4.1)

38 Approximation Techniques Chapter 2

X

*

U,

*1+1

It 1+1

Figure 2.4.1 Two-Node Linear Element

We want to express Eq. (2.4.1) in terms of nodal variables. In other words, c\
and с2 need to be replaced by щ and itj+i. To this end, we evaluate и at x = x,- and
x = x,+i . Then

и(х{) = c\Xi -f- C2 = щ (2.4.2)
« (s ;+ i) = ci* i+i + c2 = tii+i (2.4.3)

Solving Eq. (2.4.2) and Eq. (2.4.3) simultaneously for Cj and c2 gives

^* + 1 /П A A \ci = ------------- (2.4.4)
Zf+l - Xi

c2 = ~ (2.4.5)
*i+l - Xi

Substitution of Eq. (2.4.4) and Eq. (2.4.5) back into Eq. (2.4.1) and rearrangement
o f the resultant expression result in

и = Ну(х)щ + # 2(x)u,-+1 (2.4.6)

where

t f lW = Д,+) ~ X (2.4.7)

I. /Л A r \ \«• = 3f+l - ■&£

Equation (2.4.6) gives an expression for the variable и in terms of nodal variables,
and Eq. (2.4.7) and Eq. (2.4.8) are called linear shape functions. The shape functions
are plotted in Fig. 2.4.2. These functions have the following properties:

1. The shape function associated with node i has a unit value at node г and vanishes
at other nodes. That is,

Hi(xi) = 1, Н г(х,i+1) = 0, H2(xi) = 0, H2(xi+l) = 1 (2.4.10)

Section 2.4 Galerkin’s Finite Element Formulation 39

Figure 2 .4 .2 Linear Shape Functions

elemm elem#2 elemtt3

4 ------ 1 , I , 1 ■*
*1 = 0 *2=3 Ж3=3 *4 = 1
\ из Щ

Figure 2.4 .3 Finite Element Mesh With 3 Linear Elements

2. Sum of all shape functions is unity.
2

Е Я‘М = 1 (2-4U)
<=i

These are important properties for shape functions. The first property, Eq.
(2.4.10), states that the variable и must be equal to the corresponding nodal variable
at each node (i.e. и(ж») = щ and «(ж,+1) = u,-+i as enforced in Eq. (2.4.2) and Eq.
(2.4.3)). The second property, Eq. (2.4.11), tells that the variable и can represent
a uniform solution within the element. If the solution remains constant within the
element, и = = u,+ i. Substitution of this condition into Eq. (2.4.6) gives

и = { H i(x) + Н2(х)}щ = щ (2.4.12)

Equation (2.4.12) results in the second property of shape functions, Eq. (2.4.10).

ф E xam p le 2 .4 .1 We solve the same problem as given in Example 2.3.1
using the linear finite elements. The weighted residual can be written as

l=t Г (-i= 1 Jxi 4

dw du \
—------ :-------- W U + XXV d x +
dx dx J

u'w = 0 (2.4.13)

for n elements. If the problem domain is discretized into three equal size of
elements, i.e. n — 3, Fig. 2 .4 .3 shows the corresponding finite element mesh.
Consider the ith element (i.e. *=1, 2, or 3). The integral for this element is

40 Approximation Techniques Chapter 2

The trial function и is expressed as

и = H i(x)ut + H2(x)ui+i (2.4.6)

and test functions for Galerkin’s method are Wi = H\(x) and ti>2 = # 2(®)-
Putting these и and w into Eq. (2.4.13) gives

- / Л ® [я!яЧ У [Н Ч « : . }
+ / Г Ч £ Ь (2 A i 5)

where H- denotes and Hi is given in Eq. (2.4.7) and Eq. (2.4.8).
Computation of these integrals finally yields

1 I hi
h i 3

_ i + Ai hi ^ 6
For each element, Eq. (2.4.16) can be written as

Element # 1
" —3.111

2.9444
2.9444 1 f « i 1 Г 0.0185 \
-3.111 J \ «2 J \ 0.0370 J

Element $ 2

Element # 3

-3.111 2.9444
2.9444 -3.111

' f «2 \ , f 0.07411
\ «з J 1 0.0926 J

Г О 1 1 1 n n A A A ^ ^ f t\ 1 П П /? ^— 0*111 I lt3 I I u.izyu I
[2.9444 -3.111 J \ «4 J \ 0.1481 J

(2.4.17)

(2.4.18)

(2.4.19)

As shown in Eq. (2.4.13), we need to sum Eqs (2.4.17) through (2.14.19). Each
element has different nodes associated with it. As a result, we expand each
equation such that the equation has a matrix and a vector of size Ш which is
the total number of degrees of freedom in the system. For the present problem,
m = 4. The number of total degrees of freedom is the same as the total number
of nodes because each node has one degree of freedom for the present problem.
Rewriting Eq. (2.4.17) for the expanded matrix and vector gives

—3.111 2.9444 0 0 ‘
f Ul)2.944 -3.111 0 0 s N0 0 0 0

. 0 0 0 0. l «4)

(2.4.20)

Similarly, Eq. (2.4.18) and Eq. (2.4.19) can be rewritten as

Г 0

0
0

L 0

0
-3.111
2.9444

0

0
2.9444

-3.1111
0

0 l
0
0
0J

(2.4.21)

Section 2.4 Galerkin’s Finite Element Formulation 41

0 0
0 0
0 -3.1111
0 2.9444

0
0

2.9444
—3.1111 J

Adding directly Eqs. (2.4.20) through (2.4.22) results in

+

-3.1111 2.9444
2.9444 -6.2222

0 2.9444
0 0

0.0185 - « '(0)
0 .1 1 1 1
0.2222

I 0.1481+ «''(1)

0
2.9444

- 6.2222
2.9444

= 0

0
0

2.9444
—3.1111 J

(2.4.22)

(2.4.23)

The Neuman boundary conditions are added to the right-hand, side vector from
Eq. (2.4.13). For the present problem, the Dirichlet boundary conditions are
provided at both ends (i.e. « i = 0 and «4 = 0). Therefore, the Neumann
boundary conditions (i.e. «'(O) and t /(l)) are not provided. Equation (2.4.23)
can be solved with the given boundary conditions, « j = 0 and Щ — 0, to
find the rest of nodal variables and unknown Neumann boundary conditions.
In actual finite element programming, Eqs (2.4.17) through (2.4.19) are directly
summed into Eq. (2.4.23) without using Eqs (2.4.20) through (2.4.22). Equations
(2.4.20) through (2.4.22) are used here only to help the conceptual understanding
of the assembly process. Furthermore, in computer programming, unknown
nodal values, called the primary variables, are solved first and then the unknown
boundary conditions are solved later. To this end, Eq. (2.4.23) is modified with
the known boundajy conditions.

- 1 0 0 0 - (щ '
2.9444 - 6 . 2 2 2 2 2.9444 0 I U2

0 2.9444 - 6 . 2 2 2 2 2.9444 | «3
. 0 0 0 1 . l Щ .

(2.4.24)

The first and last equations in Eq. (2.4.23) are replaced by the Dirichlet
boundary conditions. FromEq. (2.4.24), the solution gives « 1 = 0, U2 = 0.0448,
« 3 = 0.0569, and « 4 = 0. These nodal solutions can be substituted into Eq.
(2.4.23) to find u'(0) and « '(l) . Once the nodal variables are determined,
the solution within each element can be obtained from corresponding nodal
variables and shape functions. For example, the solution within the first element
(0 < x < |) is и = Hi(x)ui + H2 (x)u2 = 0.1344ж. |

2.5 Variational Method

The variational method is also commonly used to derive the finite element matrix
equation. We want to derive the functional for the sample problem

42 Approximation Techniques Chapter 2

{
^ - и - -X , 0 < £ < 1
u(0) = 0, and tt(l) — 0 (2 .1.1)

The variational expression for Eq. (2.1.1) is

- j f (-
. . . d2u \
oJ = I \ + и — x Jouax +

du
— o u
dx (2.5.1)

where 6 is the variational operator. The first term in the above equation is
the differential equation and the second term is the unknown Neumann boundary
condition (or natural boundary condition). Applying integration by parts to the first
term of Eq. (2.5.1) yields

6J = J o i X ^ d r + u S u ~ x6u) dx

Since the variational operator is commutative with both differential and integral
operators (i.e. an<̂ f ̂f udx), Eq. (2.5.2) can be written
as

sj=sL{l(%i) +lu2~xu}dx (2 - 5 - 3)

The functional is obtained from Eq. (2.5.3) as

J = I 0(S) +\u2- xu}ix (2-54)
Conversely, taking variation of Eq. (2.5.4) will result in the differential equation as
given in Eq. (2.1.1). Functional represents energy in many engineering applications.
For example, the total potential energy in solid mechanics is a functional. The solution
to the governing equation is obtained by minimizing the functional. The principle of
minimum total potential energy in solid mechanics is one example to determine the
stable equilibrium solution [4,5]. Energy principles are discussed in later chapters.
For more detailed information for variational method, readers may refer to Refs [6-8].

2.6 Rayleigh-Ritz Method

The Rayleigh-Ritz method obtains an approximate solution to a differential
equation with given boundary conditions using the functional of the equation. The
procedure of this technique can be summarized in two steps as given below:

Section 2.7 Rayleigh-Ritz Finite Element Method 43

1. Assume an admissible solution which satisfies the Dirichlet boundary condition
(or essential boundary condition) and contains unknown coefficients.

2. Substitute the assumed solution into the functional and find the unknown
coefficients to minimize the functional.

£ E xam ple 2.6 .1 In order to solve Eq. (2.1.1) using the Rayleigh-Ritz
method, we assume the following function as ал approximate solution.

и = ax{\ — x) (2.6.1)

where a is an unknown coefficient. This function satisfies the essential boundary
conditions. Substituting Eq. (2 .6 .1) into the functional, Eq. (2 .5 .4) , yields

1 r1 r1
J = ^aJ I [(1 — 2x)2 -f x2(l — x)2]dx — a I x 2(l~ x)d x (2.6.2)

2 Jo Jo

Minimizing the functional with respect to the unknown coefficient a, i.e. ^ ~ = 0 ,

yields a = 0 .2 2 7 2 . Therefore, the approximate solution is и = 0.2272x(l — x)
which is the same as that obtained in Sec. 2.1 using Galerkin’s method. In order
to improve the approximate solution, we need to add more terms. For example,
we may assume

и = a ix (l - x) -f a2x2(l - x) (2.6.3)

where cti and a2 are two unknown coefficients. We substitute the expression
into the functional and take derivatives with respect to and a2 in order to
minimize the functional.

(2.6.4)

This operation will give solutions for unknown coefficients cti and a2. t

dJ
da\

0 and
dJ
da2

= 0

2.7 Rayleigh-Ritz Finite Element Method

The Rayleigh-Ritz method can be applied to a problem domain using continuous
piecewise functions. As a result, the problem domain is divided into subdomains of
finite elements. For elements with two nodes apiece, the linear shape functions as
in Eqs (2.4.7) and (2.4.8) can be used for the Rayleigh-Ritz method. The following
example explains the finite element procedure using the Rayleigh-Ritz method.

ф Example 2.7.1 We will solve Example 2.4.1 again using the Rayleigh-
Ritz method. The problem domain and its discretization are shown in Fig. 2.4.3.
The functional can be expressed for the discretized domain as

Approximation Techniques Chapter 2

where n — 3, ®i = 0, x 2 = 1/3, ®з = 2/3 and ®4 = 1 as shown in Fig. 2.4.3.
Using the linear shape functions, the solution и for the itfl element is expressed
as

where

и = H i(x) щ + H2(x) iti+i — [#] { « '}

[H] = [Hl H2\

{«*} = {ut- ui+1f

(2.7.2)

(2.7.3)

(2.7.4)

л/nrl TT1 ят)Н / /о ятя crivpn in Fins f9.4.7^ япН f9.4.8V fin Hsti tilting *En. (0 7 9̂— — x — — л ~ o- * v.-— * j — — у ------) - ~ ------- -- ‘ о —'а* Ч-* ■
into the functional yields

2П К Э
; { » < } W W { « ' } - { « ' } W * ! * *

dH' T dH'
dx dx

{ « * }+

2

in which
'dH' ' dH\ dH2
dx dx dx

(2.7.5)

(2.7.6)

Evaluation of the integral in Eq. (2.7.5) gives

1
; { “ < «.•+!>

h ■ ~r 3
_ + i i ̂ + 6hL h;

J -L- AiЛ* ’ 6
X _L iii.
hi + 3 К c l

(2.7.7)

Here, the matrix expression in Eq. (2.7.7) came from the first and second terms of
the right-hand side of Eq. (2.7.5) while the vector expression came from the last
term. Summing Eq. (2.7.7) over the total number of elements and substituting
proper values give the functional

1
J «9 «a « 4}

■ 3.1111 -2.9444 0 0 - ' «1 ’
-2.9444 6.2222 -2.9444 0

4 «2
0 Л <4 1 J J

— 2.У444 Л ЛЛЛЛo.zzzz Л A i i i
— 2.У4ад «3

. 0 0 —2.9444 3.1111 . к "U 4 *
0.0185

s 1 Jо ни I { « ! u2 u3 u4} { q 2222 j

0.1481J

(2.7.8)

The summation process for Eq. (2.7.8) is the same as explained in Example 2.4.1.
In order to find the solution, we need to minimize the functional with respect to

Section 2.7 Rayleigh-Ritz Finite Element Method

the unknown nodal vector { « } = { « i «2 «з щ } Т ■ Invoking =
in

■ 3.1111 -2.9444 0 0 - /

-2.9444 6.2222 -2.9444 0
0 -2.9444 6.2222 -2.9444 *

. 0 0 -2.9444 3.1111 .
0.0185'j
0 .1 1 1 1 I
0.2222 [
0.1481 J

= 0

0 results

(2.7

Applying the boundary conditions «1 = 0 and щ = 0 to Eq. (2.7.9) yields
Eq. (2.4.24) in Example 2.4.1. The solutions for nodal variables are tti = 0,
«2 = 0.0448, «3 = 0.0569, and «4 = 0 again as before, f

Problems

2.1 Find an approximate solution to the boundary value problem

d2u—— = x 0 < x < 1
dx1

it(0) = 0 and «(1) = 0

Use a trial function it = a x (l—x) where a is a constant to be determined. Apply
the collocation method with a collocation point located at x = 0.5.

2.2 Redo Prob. 2.1 using the least squares method.

2.3 Redo Prob. 2.1 using Galerkin’s method.

2.4 Solve the following two-point boundary value problem using the collocation
method.

2d2u n .x ~—~ — 2w = 1 l < x < 2
d x 1

tt(l) = 0 and «(2) -- 0

Use a trial function и = a(x — l)(x — 2) where a is a constant to be determined.

2.5 Redo Prob. 2.4 using the least squaxes method.

2.6 Redo Prob. 2.4 using Galerkin’s method.

2.7 Determine an approximate solution to the differential euqation

9 dr и „ du n ,x ——— — 2x -;— b 2u — 0 l < x < 4
dx1 dx

u(l) = 0 and «(4) = 12

Use a quadratic polynomial for the trial function and the collocation method.

2.8 Redo Prob. 2.7 using the least squares method.

2.9 Redo Prob. 2.7 using Galerkin’s method.

2.10 Apply Galerkin’s .method to find an approximate solution to the following
differential equation:

d2u du n . _
-t-t + ------2u = 0 0 < x < lW rnZ /4 n/*U«L UO/

u(0) = 0 and «(1) = 1

Assume (a) a quadratic polynomial and (b) a cubic polynomial as a trial
function, respectively.

2.11 Redo Prob. 2.10 using the collocation method.

46 Approximation Techniques Chapter 2

Problems 47

Figure P 2.14 Problem 2.14

2.12 Redo Prob. 2.10 using the least squares method.

2.13 Use Galerkin’s method to determine an approximate solution to

d?u du
~—z + ------2 u = x 0 < x < 1
dx* dx

u(0) = 0 and tt(l) = 1

Assume a quadratic polynomial as a trial function.

2.14 Solve the problem given below using Galerkin’s method and piecewise linear
functions. The piecewise function is shown in Fig. P.2.14.

d2u
= 1 0 < x < 2

dx2

u(0) = 0 and tt(2) = 0

2.15 Solve the boundary value problem using piecewise linear functions.

d?u
dx2

= 1 0 < x < 3

u(0) = 0 and tt(3) = 0

(a) Derive the weak fomulation. (b) Develop the matrix equation using three
equal sizes of subdomains, (c) What is the approximate solution at x=1.5?

2.16 Apply the piecewise linear functions to

d2u du л л „
-r-r + ------ 2u = 0 0 < x < l
ахг dx

w(0) = 0 and u(l) = 1

Divide the domain into three equal sizes of subdomains.

Uj Ug U3 ^4

- 4 — I — J — t — x

48 Approximation Techniques Chapter 2

1.0 го з.о 4.o

Figure P 2.17 Problem 2.17

Uj Ug

4 ----------------f-
X 1 X2

Figure P 2.19 Problem 2.19

2.17 A differential equation with boundary conditions is given below:

9 cPu _ du . . „
x T T + 2x— + 2 = 0 l < x < 4ax^ dx

w(1) = 1 and tt(4) = 0

(a) Derive the weak formulation, (b) Compute element matrices and vectors for
the given mesh discretization using linear shape functions, (c) Assemble them
into the global matrix and vector, (d) Apply the boundary conditions to the
matrix equation, (e) Solve for the unknown nodal values.

2.18 Redo Prob. 2.16 using the linear finite elements.

2.19 (a) For a finite element with two end nodes, derive shape functions using the
polynomial u(x) = a + bx2. In other words, find # i (x) and H2 (x) such that
u(x) = H i(x)ui + # 2(x)tt2- (b) Using the shape functions obtained from (a),
compute the following integral:

f 1 fdudw \ .
/ \ 1Z 7 7 + Wu) dxJ0 \dx dx J

where w is the test function. Use Galerkin’s method.

2.20 For a two-node element, (a) develop the shape functions H i (x) and # 2(х)
using u(x) = ax + bx2 such that tt(x) = Hi(x)u% + H2 (x)u2 , and (b) compute

dx using Galerkin’s method, (c) Does the element converge as the mesh
is refined? Explain why.

2.21 (a) Develop the functional of the differential equation given in Prob. 2.1. (b)
With the functional derived in (a), redo Prob. 2.1 using the Rayleigh-Ritz
method.

Problems 49

U1 ue
1

-H
H 1

T
V I

Figure P 2.20 Problem 2.20

2.22 (a) Develop the functional of the differential equation given in Prob. 2.14. (b)
With the functional derived in (a), redo Prob. 2.14 using the Rayleigh-Ritz
method.

2.23 Redo Prob. 2.21 using the Rayleigh-Ritz finite element method along with linear
elements.

2.24 Redo Prob. 2.22 using the Rayleigh-Ritz finite element method along with linear
elements.

C H A P TE R THREE

FINITE ELEMENT PROGRAMMING

3.1 Overfill Program Structure

In order to understand fundamental concepts of the finite element method, it
is very useful (or sometimes essential) to understand the skeleton of the program
structure of the finite element analysis. This chapter explains the basic structure of
the program. The main procedures in the finite element analysis are

1. Read input data and allocate proper array sizes.
2. Calculate element matrices and vectors for every element.
3. Assemble element matrices and vectors into the system matrix and vector.
4. Apply constraints to the system matrix and vector.
5. Solve the matrix equation for the primary nodal variables.
6. Compute secondary variables.
7. Plot and/or print desired results.

Each procedure is explained in the subsequent sections using the following second
order ordinary differential equation

ti(0) = 0 and u(L) = 0 (3.1.1)

The weak formulation of the equation is

du lL
aw—

If we use the linear shape functions, Eqs (2.4.7) and (2.4.8), the element matrix for
the ith element becomes

[K ‘] = j * ' * ‘ (- a | j. [я [я а + b { ^ + с { £ } [Я,Яа]) dx (3.1.3)

51

where () ' denotes the derivative with respect to x. Evaluation of the integration gives

52 Finite Element Programming Chapter 3

a ' 1 - Г b -1 Г с hi '2 Г
-1 1 -f - 2 -1 1 + — -

6 1 2[K 1 = - -

On the other hand, the element vector is

'■=Г ,/(х)Ц Ь
If f (x) = 1, the element vector becomes

А , Г i 'I

(3.1.4)

(3.1.5)

(3.1.6)

3.2 Input Data

The major input parameters needed for the finite element analysis program for
Eq. (3.1.1) are

the number of total nodes in the system,
the number of total elements in the system,
coordinate values of every node in terms of the global coordinate system,
types of every element,
informations for boundary conditions, and
coefficients for Eq. (3.1.1).

Most of these input data are associated with the finite element mesh upon which a
user decides. The mesh can be generated either using an automatic mesh generation
program so called pre-processor or manually. The type of element incudes how many
nodes per element as well as how many degrees of freedom for each node of the element.
If the same type of elements are used over the whole domain, these informations are
needed for one element. However, if the system (or domain) has many different types
of elements, these informations should be supplied for every different elements. For
the present problem, Eq. (3.1.1), we use the same type of finite elements for the
sake of simplicity. The problem domain is discretized in Fig. 3.2.1. Here five equal
size of linear elements are used. Therefore, the number of total nodes in the system
(nnode) is 6 and the number of total elements in the system (net) is 5. Since it is a
one-dimensional problem, each node has only x coordinate value. If gcoord denotes
the array storing the coordinate values, then

gcoord(1)=0.0, gcoord(2)=0.2, gcoord(Z)=0A,
gcoord(A)~03, gcoord(5)=0.8, gcoord(6)=1.0

in which the index in the parenthesis is the node number which varies from 1 to 6 and
the size of array gcoord is the same as the total node number nnode. The number of

Section 3.2 Input Data 53

elem # 1 2 3 4 5

+ - Ч — J I I I -
X1 = 0 x2 = 0 . 2 X3 = 0 . 4 x 4 = 0 . 6 x 5 = 0 . 8 x 6= 1

U1 u2 li3 u4 u5 u6

Figure 3 .2 .1 A Mesh W ith 5 Linear Elements

nodes per element (nnel) is 2 and the number of degrees of freedom per node (ndof)
is 1. Then the number of degrees of freedom per system is sdof=nnode*ndof.

In general, information for nodal connectivity for each element is an input to
the program. This is also called element topology. This information is important
to evaluate element matrices and vectors as well as to assemble these matrices and
vectors into the system (or global) matrix and vector. For the present one-dimensional
problem using linear elements, this information can be constructed in the program in
a simple way if the node numbering and element numbering axe sequential from one
end of the domain to the other end of the domain. It is stored in array called nodes.
The array is a two-dimensional array. The first index indicates the element number
and the second index denotes the nodes associated with element. For the example
problem, the iih element has two nodes, iih and (i + 1)*л nodes. That is,

nodes(i,l)=i and nodes(i,2)—i + l for i=l ,2 ,3 ,4 ,5

This can be coded easily in the program and it is shown in examples in the later
section.

Information for boundary conditions includes the nodal degrees of freedoms
where constraints and external forces (or fluxes) are applied. In order to specify the
nodal degrees of freedom, we need to provide node numbers and corresponding degrees
o f freedom of the specified nodes. In addition, the prescribed constraint values should
be provided. For the present problem, the information for constrained nodes is

6сйоД1)=1, bcdoj{ 2)=6

where bcdof contains the node numbers where constraints are given. In other words,
the size of array bcdof is 2 because there are two constrained nodes, and the first
and second constrained node numbers are 1 and 6, respectively. Furthermore, the
constrained values are read in bcval such as

6сш/(1)=0.0 and bcval(2)=0.0.

Here the first value is for node 1 and the second value is for node 6.
The element matrix Eq. (3.1.4) is derived for arbitrary constants a, b and с as in

Eq. (3.1.1). As a result, the coefficients should be provided. For the present problem,
let a = 1, b = —1 and с = 2 .

54 Finite Element Programming Chapter 3

3 .3 A s s e m b ly o f E le m e n t M a tr ic e s a n d V e c to rs

The element matrix and vector are expressed in Eqs (3.1.4) and (3.1.6). These
expressions are function of the length of each element. As a result, the length of
each element is computed from the coordinate values of the nodes associated with the
element. For example, the ith element is associated with the iih and (i + l) th nodes.
The coordinate values of the nodes are gcoord(i) and gcoord(i-hl). As a result, the
element length hi is equal to gcoord(i + 1) — gcoord(i). If the element length is the
same for the whole domain, the length can be provided as an input.

Once, these matrices and vectors are computed, they need to be assembled into
the system matrix and vector. To this end, we need the information where the element
matrix and vector are to be located in the system matrix and vector. This information
is obtained from array index whose size equals to the number o f degrees of freedom
per element, i.e. 2 for the present problem. Because each node has a single degree of
freedom (i.e. nodf=l), the size of array index is the same as that for array nodes.

index(l)=i and index(2) = i + l for the iih element

The following example shows assembly of element matrices and vectors.

ф E x a m p le 3 .3 .1 Let к and / be the element matrix and vector for any
element. In addition, kk and / / are the system matrix and vector. Array index
contains the degrees of freedom associated with the element. Then, к and / are
stored into kk and / / i n the following way. This is repeated for every element.

edof=nrtel*ndof; % edof=number of degrees of freedom per jjode
for ir = l:edof; % loop for element rows

irs = index(ir); % address for the system row
fF(irs) = f(ir); % assembly into the system vector

for ic = l:edof; % loop for element columns
ics = index(ic); % address for the system column
kk(irs,ics) = kk(irs,ics) + k(ir,ic); % assembly into system matrix

end % end of row loop
end % end of column loop \

3 .4 A p p lic a t io n o f C o n stra in ts

The information for constraints or boundary conditions is provided in arrays
called bcdof and bcval as described in the previous section. The system matrix equation
is modified using this information. The size of system matrix equation is equal to the
total number of degrees of freedom in the system. Without applying the constraints to
the system of equations, the matrix equation is singular so that it cannot be inverted.
In context of solid/structural mechanics, this means that the matrix equation contains
rigid body motions. As a result, the constraints prevent the matrix equation from
being singular. If a constraint is applied to the nih degree of freedom in the matrix
equation, the nth equation in the matrix is replaced by the constraint equation.

Section 3.4 Application of Constraints 55

4k Exam ple 3.4.1 For the present example, the system of matrix equation
is

[kk]{u} = { / / } (3.4.1)

The size of the matrix equation is sdof= 6 and there are two constraints. These
constraints are applied to the system matrix equation as shown below:

for ic = 1:2; % loop for two constraints
id = bcdof(ic); % extract the degree of freedom of a constraint
val = bcval(ic); % extract the corresponding constrained value

for i = l:sdof; % loop for number of equations in system
~thkk(id,i) = 0; % set all the id row to zero

end
kkfid.id'l = 1- % set the id^ diagonal to uni tv----v--- }--- / — J ---- ------- -- ---- O----------- -------- J

ff(id) = val; % put the constrained value in the column
end J

The algorithm shown in Example 3.4.1 destroys the symmetry if the system
matrix, before applying the boundary conditions, is symmetric. If we want to maintain
the symmetry even after applying the boundary conditions, the next example shows
the algorithm.

4k E xam ple 3.4.2 This example shows another way to apply the boundary
condition without destroying the symmetry of the system matrix.

for ic = 1:2; % loop for two constraints
id = bcdof(ic); % extract the degree of freedom for constraint
val = bcval(ic); % extract the corresponding constrained value

for i = l:sdof; % loop for number of equations in system
ff(i) = ff(i)-val*kk(i,id) % modify column using constrained value
kk(id,i) = 0; % set all the idih row to zero

* thkk(i,id) = 0; % set all the id column to zero
end
kk(id,id) = 1; % set the id}*1 diagonal to unity
ff(id) = val; % put the constrained value in the column

end t

Once the system of matrix equation is modified as shown in the above example,
the modified matrix equation is solved for the primary nodal unknowns. In the
MATLAB program, it can be solved as

u = kk' \ ff

56 Finite Element Programming Chapter 3

where kk' denotes the modified matrix equation. Once the primary nodal variable
и is determined from the matrix equation, the natural boundary conditions (i.e. the
secondary variable) are found from

ff = kk*u

3.5 Example Programs

This section shows examples of finite element analysis programs. The second-
order ordinary differential equations are used as governing equations.

4k Example 3.5.1 We want to solve Eq. (3.1.1) using the finite element
method. The coefficients in the differential equation are assumed a = 1, b = — 3
and с = 2 while function /(ж) is assumed 1 . The domain size is equal to 1 (i.e.
L — \) and five linear elements of equal size are used for the present analysis.
The computer program written in MATLAB is provided below along with the
results. The main program is first shown below.

%----------------------- ------------------------------- --------------------------------------- --
% EX3.5.1.m
% to solve the ordinary differential equation given as
% a u” + b u’ + с u = 1 , 0 < ж < 1

% u(0) = 0 and u(l) = 0

% using 5 linear elements
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%--------- ------------------------------------- --
%
%--
% input data for control parameters
%--
nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=l; % number of dofe per node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%

Section 3.5 Example Programs 57

%---
% input data for nodal coordinate values
%---
gcoord(l)=0.0; gcoord(2)=0.2; gcoord(3)=0.4; gcoord(4)=0.6;
gcoord(5)=0.8; gcoord(6)=1.0;
%
%---
% input data for nodal connectivity for each element
%---
n o d e s(l,l)= l; nodes(l,2)=2; nodes(2,l)s=2; nodes(2,2)=3;
nodes(3,l)=3; nodes(3,2)=4; nodes(4,l)=4; nodes(4,2)=5;
nodes(5,l)=5; nodes(5,2)=6;
%
%---
% input data for coefficients of the ODE
%---
acoef=l;
bcoef=-3;
ccoef=2 ;
%
%-----------

% coefficient ’a’ of the diff eqn
% coefficient ’b’ of the diff eqn
% coefficient ’c’ of the diff eqn

% input data for boundary conditions
%---
b cd o f(l)= l;
b cval(l)= 0 ;
bcdof(2) = 6 ;
bcval(2) = 0 ;
%
%--------------

% first node is constrained
% whose described value is 0

% 6 th node is constrained
% whose described value is 0

% initialization of matrices and vectors
%---
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
index=zeros(nnel*ndof, 1);
%
%---------------------- ------------

% initialization of system force vector
% initialization of system matrix

% initialization of index vector

% computation of element matrices and vectors and their assembly
%---
for iel=l:nel %
%
nl=nodes(iel,l); nr=nodes(iel,2);
v l— ГГЛЛ /”«1^ • УУм •
Л1— j I Л1 J j

eleng=xr~xl;
index—feeldofl (iel,nnel,ndof);
%
k=feode2 l(acoef,bcoef,ccoef,eleng);
f=fefll(xl,xr);
[kk,ff]=feasmbl2 (kk,ff,k,f,index); %

loop for the total number of elements

% extract nodes for (iel)-th element
TQpt q! ЛЛЛ»»̂ iralnao/V v<avii№v uvutu w u iu raiuv<o

% element length
% extract system dofe associated

% compute element matrix
% compute element vector

assemble element matrices and vectors

58 Finite Element Programming Chapter 3

%
end % end of loop for total elements
%
%-- -
% apply boundary conditions
%--
[kk,ff]=feaplyc2 (kk,ff, bcdof, bcval);
%
%---------------------------------------_ _

% solve the matrix equation
%---
fsol=kk\ff;
%
%----------------------------------
% analytical solution
%------------------------- — -
c l= 0 .5 /e x p (l);
c 2 = -0 .5 * (l+ l/e x p (l)) ;
for i=l:nnode
x=gcoord(i);
esol(i)=cl*exp(2 *x)+c 2 * e x p (x)+ l/2 ;
end
%
%--- -
% print both exact and fern solutions
%--
num =l:l:sdof;
results—Г1Шт’ feol esol^
%-------- --------------------— _ _ _ — ,— ------------- --------- „ ------------

The function programs (i.e. m-files) used in the main program are also given
below.

function pck,ff]=feaplyc2 (kk,ff,bcdof,bcval)
% --
% Purpose:
% Apply constraints to matrix equation [kk]x=ff
%
% Synopsis:
% [kk,ff]=feaplybc(kk,ff,bcdof,bcval)
%
oz \ r __n -------------------/U vanauic ucov.iipuwn.

% kk - system matrix before applying constraints
% ff - system vector before applying constraints
% bcdof - a vector containing constrained d.o.f
% bcval - a vector containing constrained value
%
% For example, there are constraints at d.o.f=2 and 10

Section 3.5 Example Programs 59

% and their constrained values are 0.0 and 2.5,
% respectively. Then, bcdof(l)=2 and bcdof(2) = 1 0 ; and
% bcval(l)=1.0 and bcval(2)=2.5.
%------------------------------------ -------------^
%
n=length(bcdof);
sdof=size(kk);
%
for i= l:n
c=bcdof(i);
for j= l:sd o f
k k (c j)= 0 ;
end
%
kk(c,c)=l;
ff(c)=bcval(i);
end
%--- ----------------------- -

function [kk,ffj=feasmbl2 (kk,ff,k,f,index)
% ---
% Purpose:
% Assembly of element matrices into the system matrix and
% Assembly of element vectors into the system vector
%
% Svrtonsis:
* - J --------Г ----------

% [kk,ff]=feasmbl2 (kk,ff,k,f,index)
%
% Variable Description:
% kk - system matrix
% ff - system vector
% к - element matrix
% f - element vector
% index - d.o.f. vector associated with an element
%--
%
edof = length (index);
for i=l:ed of
ii=index(i);

i tn \ .uyuj—uyuj-ri. î),
for j= l:ed o f
jj=index(j);
kk(ii,ij)=kk(iijj)-|-k(ij);
end
end
%------- ------------------------

Finite Element Programming Chapter 3

function [indexJ=feeldofl (iel, nnel, ndof)
%--- ------

Pll ГПАОО •
/V Л.

% Compute system dofe associated with each element in one-
% dimensional problem
%
% Synopsis:
% [index]=feeldofl(iel,nnel,ndof)
%
% Variable Description:
% index - system dof vector associated with element iel
% iel - element number whose system dofs are to be determined
% nnel - number of nodes per element
% ndof - number of dofs per node
%----------- .--- ------ -----
%
edof = nnel*ndof;
start = (iel-1) * (nnel- 1)*ndof;
%
for i=l:ed of
index(i)=start+i;
end
%--- -

function [f]=fefll(xl,xr)
%----------- ------------------
% Purpose:
% element vector for f(x)= l
% using linear element
%
% Synopsis:
% [f]=fefll(xl,xr)
%
% Variable Description:
% f - element vector (size of 2 x 1)
% xl - coordinate value of the left node
% xi - coordinate value of the right node

%-- ---------
%
% element vector
M/о
% eleng=xr-xl; % element length
f= [eleng/2 ; eleng/2];
%--

Section 3.5 Example Programs

function [k3=feode21(acoef,bcoef,ccoef,eleng)
%-- ------------------------- -
% Purpose:
% element matrix for (a u” + b u’ 4 - с u)
% using linear element
%
% Synopsis:
% [k]=feode2 l(acoef,bcoef,ccoef,eIeng)
%
% Variable Description:
% к - element matrix (size of 2 x2)
% acoef - coefficient of the second order derivative term
% bcoef - coefficient of the first order derivative term
% ccoef - coefficient of the zero-th order derivative term
% eleng - element length
%-- „----------
%
% element matrix
%
al=-(acoef/eleng); a2=bcoef/2; a3=ccoef*eleng/6;
k =[al-a2+2*a3 -a l+ a 2+ a 3 ;...
-a l-a2+a3 al+a2+2*a3];
%----------------------------------- — ^ --------------- --------------

The finite element solutions axe compared to the exact solutions at the nodal
points.

results —
node # fem sol exact sol
1 .0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 % solution at x = 0

2 . 0 0 0 0 -0.0621 -0.0610 % solution at x = 0 .2

3.0000 -0.1133 - 0 .1 1 1 0 % solution at x —0.4
4.0000 -0.1388 -0.1355 % solution at ж =0 .6

5.0000 -0.1142 - 0 .1 1 1 1 % solution at x = 0.&
6 . 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 % solution at ж= 1

i

E x a m p le 3 .5 .2 The same differential equation as that in Example 3.5.1
is solved here. However, the boundary conditions are different. They are

«(0) — 0 and = 1 (3.5UhJ

The left end is the essential boundary condition as before while the right end is
the natural boundary condition. As seen in Eq. (3.1.2), the boundary condition

with a known value of 4й contributes to the right hand side column vector. For

Finite Element Programming Chapter 3

example, Eq. (2.4.23) shows how the natural boundary condition is incorporated
into the column vector. Because the column vector moves to the right-hand-side

of the matrix equation, we end with subtracting = 1 from the right-hand-
side column vector. The program list is given below for completeness. Comparing
the program to that given in the previous example tells the difference between

the essential (i.e. u (l) = 0) and natural (i.e. = 1) boundary conditions.

%------------------ -- ----------------------------
% EX3.5.2.m
% to solve the ordinary differential equation given as
% a a* + b u’ + с u = 1 , 0 < г < 1

% u(0) = 0 and u’ (l) — 1

% using 5 or 10 linear elements
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%--
%
%--
% input data for control parameters
%--
nel=5; % number of elements
nnel—2 ; % number of nodes per element
ndof=l; % number of dofs per node
nnode=6 ; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%
%---
% input data for nodal coordinate values
%---
gcoord(l)=0.0; gcoord(2)=0.2; gcoord(3)=0.4; gcoord(4)=0.6;
gcoord(5)=0.8; gcoord(6)=1.0;
%
%---
% input data for nodal connectivity for each element
%---

/ л л\ nnoaes(i,iJ=i; nocies(i,J)='iJ; noaes(iJ,ij=^; noaes(^,isj=.j;
nodes(3,l)=3; nodes(3,2)=4; nodes(4,l)=4; nodes(4,2)=5;
nodes(5,l)=5; nodes(5,2)=6;
%

Section 3.5 Example Programs 63

%---
% input data for coefficients of the ODE
%---
acoef=l; % coefficient ’a’ of the diff eqn
bcoef=-3; % coefficient Ъ’ of the diff eqn
ccoef=2; % coefficient ’c’ of the diff eqn
%
%---
% input data for boundary conditions
%---
bcdof(l)=l; % first node is constrained
bcval(l)=0; % whose described value is 0
%
%---
% initialization of matrices and vectors
%---
ff=zeros(sdof,l); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,l); % initialization of index vector
%
%--
% computation of element matrices and vectors and their assembly
%--
for iel=l:nel % loop for the total number of elements
%
nl=nodes(iel,l); nr=nodes(iel,2); % extract nodes for (iel)-th element
xl=gcoord(nl); xr=gcoord(nr); % extract nodal coord values
р1(»пег=хт-х1: % element, leno-t.h—-----o — —J ' w —----------------О —
index=feeldofl(iel,nnel,ndof); % extract system dofs associated
%
k=feode21(acoef,bcoef,ccoef,eleng); % compute element matrix
f=fefll(xl,xr); % compute element vector
[kk,ff]=feasmbl2(kk,ff,k,f,index); % assemble element matrices and vectors
%
end % end of loop for total elements
%
%---
% apply the natural boundary condition at the last node
%---
ff(nnode)=ff(nnode)-l; % include /«(1) = 1 in column vector
%
<w.__________________ _________fи---------- -------------------
% apply boundary conditions
%--
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%
%-- -
% solve the matrix equation

64 Finite Element Programming Chapter 3

%------------
fsol=kk\ff;
%
%------------
% analytical solution
%-----------------------------------
c l=(1 +0.5*exp(1)) / (2 *exp(2)-exp(1));
c2=-(l+exp(2))/(2*exp(2)-exp(l));
for i=l:nnode
x=gcoord(i);
esol(i)=cl*exp(2*x)+c2*exp(x)+l/2;
end
%
*w7c---
% print both exact and fem solutions
%---
num=l:l:sdof;
results=[num’ fsol esol’]
%---

The solutions using 5 elements and 10 elements are shown below, respectively.
Comparing the two finite element solutions to the exact solution shows the
convergence of the finite element solution as the mesh is refined.

results for five elements=

% solution at x=0
W оr»l n ti/чп о 4- О/и OVlUlllUU Cfcll *Lf — \J. id

% solution at x = 0 A
% solution at ж—0.6
% solution at a?=0.8

% solution at x = l

node # fem sol exact si
1.0000 0.00000 0.00000
о nnnn«•UUUU n ncsc"U.UUVU П ПК7Й- У ,uu (V
3.0000 -0.1043 -0.1024
4.0000 -0.1203 -0.1180
5.0000 -0.0802 -0.0792
6 . 0 0 0 0 0.0586 0.0546

results for ten elements=
node # fem sol exact si
1.0000 0.00000 0.00000
2 . 0 0 0 0 -0.0300 -0.0298
3.0000 -0.0580 -0.0578
4.0000 -0.0829 -0.0825
5.0000 -0.1028 -0.1024
6 . 0 0 0 0 -0.1157 -0.1151
7.0000 -0.1186 -0.1180
8 . 0 0 0 0 -0.1080 -0.1075
9.0000 -0.0794 -0.0792
1 0 . 0 0 0 -0.0273 -0.0275
1 1 . 0 0 0 0.0556 0.0546

% solution at x=0
% solution at ж=0.1
% solution at x=0.2
% solution at ж =0.3
% solution at a?=0.4
% solution at ж=0.5
% solution at ж=0.6
% solution at x=0.7
% solution at ж=0.8
% solution at x=0.9

% solution at x = l

t

Section 3.5 Example Programs 65

4» Exam ple 3.5.3 This example solves the following differential equation:

o32it 0 du ,
ж — « — 2ж- 4u = x 2, 10 < x < 20

o x 1 ox
(3.5.2)

with the boundary conditions «(10) = 0 and «(20) = 100. The weak
formulation of Eq. (3.5.2) is

f 20(2d w d u du \ f 20 2
I I x ———— h 4 x w — + 4wu)dx — — j wx ax +

Ло \ d x d x dx J J l0
x 2w

du\
dx

20

10
(3.5.3)

Discretizing the domain into a number of linear elements and evaluating the
element matrix and vector using Galerkin’s method yield

[к ,] = ц
4х 2х/ — 6 xrxf — x 3 4- 3arf 2 x 2xi — x3 — xf

—2 xrxf + x 3 + x 3 bx2x\ - 4xrxf — Зж̂ + x 3i J
(3.5.4)

and

{ F e}
1

12 ht
—4 x rxf + х* + Зж

4xfx, + Sxj + !} (3.5.5)

where he is the length of the linear element, and Xj and x r are nodal coordinate
values of left and right nodes of the element. The MATLAB program using 1 0

elements is provided below along with new necessary functions.

%--- ---
% EX3.5.3.m
% to solve the ordinary differential equation given as
% ж2 u” - 2x u’ -4 u = Ж2, 10 < x < 20
% u(1 0) =s 0 and u(2 0) = 1 0 0

% using 1 0 linear elements
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%--
%
%--
% input data for control parameters
%--
nel=10;
nnel=2;

% number of elements
% number of nodes per element

Finite Element Programming Chapter 3

ndof=l; % number of dofs per node
n n od e=ll; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%
%---
% input data for nodal coordinate values
%---
gcoord(l)=10; gcoord(2)=ll; gcoord(3)=12; gcoord(4)=13;
gcoord(5)=14; gcoord(6)=15; gcoord(7)=16; gcoord(8)=17;
gcoord(9)=18; gcoord(10)=19; gcoord(ll)=20;
%
%---
% input data for nodal connectivity for each element
%---
n o d e s(l,l)= l; nodes(l,2)=2; nodes(2,l)=2; nodes(2,2)=3;
nodes(3,l)=3; nodes(3,2)=4; nodes(4,l)=4; nodes(4,2)=5;
nodes(5,l)=5; nodes(5,2)=6; nodes(6 , l) = 6 ; nodes(6,2)=7;
nodes(7,l)=7; nodes(7,2)=8; nodes(8 , l) = 8 ; nodes(8,2)=9;
nodes(9,l)=9; nodes(9,2)=10; nodes(10,l)=10; nodes(10,2)=ll;
%
%---—
% input data for boundary conditions
%--—
b cd o f(l)= l; % first node is constrained
bcval(l)= 0 ; % whose described value is 0

bcdof(2) = l l ; % 1 1 th node is constrained
bcval(2) = 1 0 0 ; % whose described value is 1 0 0

%
%---
% initialization of matrices and vectors
%---
ff=zeros(sdof,l); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,l); % initialization of index vector
%
%--
% computation of element matrices and vectors and their assembly
%--
for iel=l:nel % loop for the total number of elements
%
nl=nodes(iel,l); nr=nodes(iel,2); % extract nodes for (iel)-th element
vl — / пП • v f —пгллгй f n>Л • % Avtrart nnrlnl гллгг! valnocЛ1—^ v v v iu y m ̂ j At— j y t v v hv«mu w v a « » u>iuv^

eleng=xr-xl; % element length
index=feeldofl(iel,nnel,ndof); % extract system dofs associated
%
k=feodex2 l(xl,xr); % compute element matrix
f=fefx2 l(xl,xr); % compute element vector
[kk,ff]=feasmbl2 (kk,ff,k,f,index); % assemble element matrices and vectors

Section 3.5 Example Programs

%
end % end of loop for total elements
%
%--- -
% apply boundary conditions
%--
[kk,ff]=feaplyc2 (kk,ff,bcdof,bcval);
%
%---
% solve the matrix equation
%---
fsol=kk\ff;
%
%-----------------------------------
% analytical solution
%-----------------------------------
for i=l:nnode
x=gcoord(i);
esol(i)=0.00102*x‘ 4-0.16667*x‘ 2+64.5187/x;
%
%--
% print both exact and fem solutions
%--
nnm =l:l:sdof;
results=[num’ feol esol’]
%--- -

function [k]=feodex2 1(xl,xr)
%--
% Purpose:
% element matrix for (x2 u” - 2x u’ - 4 u)
% using linear element
%
% Synopsis:
% [k]=feodex2 l(xl,xr)
%
% Variable Description:
% к - element matrix (size of 2 x2)
% xl - coordinate value of the left node of the linear element
% v> _ глпгЯ in a tp valno n f til a rifflit nnrlo n f fltA Tin ear ol em en t/V o-l - VVV<-\4UIU>W TMUUV V*, W11V MU\4V VI VUV UUVU4 VIV1UV1I»

%--
%
% element matrix
%
eleng=xr-xl;
k =(l/e len g '2)*[(4*хг‘ 2*х1-6*хг*хГ2-хглЗ+3*хГЗ) ...

Finite Element Programming Chapter 3

(2*xr'2*xl-xr‘ 3-xT3);...
(-2*xr*xT2+xr'3-t-xT3) ...
(6*хг‘ 2*х1-4*хг*хГ2-3*хг'3+хГЗ)];
%---

function [f]=fefx2 l(xl,xr)
%-------------------------------
% Purpose:
% element vector for f(x) = £ 2

% using linear element
%
% Synopsis:
% [f]=fefx2 l(xl,xr)
%
% Variable Description:
% f - element vector (size of 2 x1)
% xl - coordinate value of the left node
% xr - coordinate value of the right node
%--

% element vector
%
eleng=xr-xl;
f=(l/(12*eleng))*[(-4*хг*хГЗ+хг'4+3*хГ4);.
(-4*xr*3*xl+3*xr‘ 4+xT4)];
%---

% element length

The results are
node # fem sol exact
1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 . 0 0 0 0 0.6046 0.6321
3.0000 2.4650 2.5268
4.0000 5.8421 5.9280
5.0000 11.028 11.126
6 . 0 0 0 0 18.343 18.438
7.0000 28.137 28.212
8 . 0 0 0 0 40.785 40.819
9.0000 56.689 56.659
1 0 .0 0 0 76.276 76.155
1 1 . 0 0 0 1 0 0 .0 0 1 0 0 .0 0

% solution at x = 0

% solution at ж =0 .1

% solution at x = 0 . 2

% solution at ж=0.3
% solution at x=0.4
% solution at x=0.5
% solution at x = 0 .6

% solution at x=0.7
% solution at x = 0 .8

% solution at ж=0.9
% solution at x = l

Problem s

3.1 Modify the MATLAB programs provided in Sec. 3.5 and solve Prob, 2.15 using
the programs.

3.2 Solve Prob. 2.16 using the modified computer program.

3.3 Solve Prob. 2.17 using the modified computer program.

3.4 Redo Prob. 3.1 using twice more elements as that used in the problem. Compare
the two finite element solutions to the exact solution.

3.5 Redo Prob. 3.2 with increasing number of elements and observe the convergence
to the exact solution.

Problems 69

C H A P TE R FOUR

DIRECT APPROACH W ITH SPRING SYSTEM

4.1 Linear Spring

Consider a linear spring as shown in Fig. 4.1.1 (a). The displacements of the
two end points of the spring are «1 and «2 and the two points are subjected to axial
forces /1 and / 2, respectively. Both displacements and forces are assumed in the
right-hand side direction which is assumed to be positive in the present finite element
formulation. If the spring is in equilibrium, the sum of forces becomes zero. That is,

/1 + /2 = 0 (4.1.1)

As a result, /2 = —/1 and Fig. 4.1.1 (b) shows the equilibrated linear spring. The
spring is compressed by these forces and the contraction of the spring is proportional
to them. Using the spring constant k, the force and displacement relationship becomes

k (u i - u 2) = fi (4.1.2)

From Eqs (4.1.1) and (4.1.2), we obtain

A (- « i + u2) = /2 (4.1.3)

Rewriting Eqs (4.1.2) and (4.1.3) in matrix form yields

к —к
—к к

/ А 1 Л \

This is the matrix equation for a linear spring. A spring is like a linear finite element.
As a result, the matrix is called the element stiffness matrix and the right-hand side

71

72 Direct Approach With Spring System Chapter 4

к } г

- ш — •c -
u , u *

(*)

U* Uz
(b)

Figure 4.1.1 Linear Spring

vector is called the element force vector. A system consisting of serial and parallel
linear springs can be analyzed using the finite element analysis concept.

ф E x a m p le 4 .1 .1 Consider three springs connected in series as shown
in Fig. 4.1.2. The matrix equation for each spring is similar to Eq. (4.1.4).
Assembling them into the system of matrix equation yields

Г *1 - * 1 0 o -
~ki (&i + k2) - k 2 0 4 «2 I

0 —k2 (k2 + *3) —кз «3 |
. 0 0 —кз k3 . > W4)

(4.1.5)

Depending on the constraints, the system may be statically determinate or
statically indeterminate. For example, only lii is constrained to be zero, the
system is statically determinate. On the other hand, if both tti and «4 are
constrained to zero, then the system becomes statically indeterminate. In terms
of the finite element formulation, there is no distinction between the statically
determinate and indeterminate systems because the formulation uses not only
equilibrium equations but also compatibility of the displacements. As an example
of a statically indeterminate system, let k\ = 20 MN/m, k2 = 30 MN/m
and кз = 10 MN/m. In addition, an external force is applied at node 2, i.e.
/2 = 1000 N. Then, the matrix equation becomes

106

r 9П _on«V nV П лV / 4f« 4I “ 1
-2 0 50 -3 0 0 u

0 -3 0 40 -1 0 I «3
. 0 0 -1 0 10 . I «4 ,

. (4-1.6)

Note that / 3 is set to zero because there is no external force applied at the node.
Applying the constraints tti = 0 and « 4 = 0 to the above equation results in

Section 4.1 Linear Spring 73

/ .
f,h w 4

/,

U u , u.

Figure 4 .1 .2 Linear Springs in Serial Connection

the modified matrix equation

10®

' 1 0 0 o ■ (« i '
-2 0 50 -3 0 0 1 1*2

0 -3 0 40 -1 0 1 «3
. 0 0 0 1 . I U4 -

(4.1.7)

I 0 J
Solution of the matrix equation yields the displacements «2 = 36.36 X 10- 6 m
and из = 27.27 X 10-6 m. Substitution of these displacements along with the
constrained displacements into Eq. (4.1.6) determines the reaction forces at both
constrained ends, i.e. Д = —727.3N and / 2 = —272.7N. |

4» Example 4.1.2 Linear springs are connected as shown in Fig. 4.1.3.
The rigid and massless plates are assumed to move vertically without rotation.
We want to find the deflection of the system. Each spring constitutes one linear
element and there are 7 elements in the system. The number of total nodes in
the system is 6 because some nodes are shared by more than two elements. As
a result, the number of degrees of freedom before applying the constraint is 6.
Assembling these elements into the system matrix yields

- 1 - 1 0 0 0 o ■ ' Я1 ' ' h 1
- 1 7 - 2 - 1 - 3 0 X2 w
0 - 2 3 - 1 0 0 X3 w
0 - 1 - 1 4 - 2 0

4
X4

> -- A J
w

0 - 3 0 - 2 7 - 2 X5 w
. 0 0 0 0 - 2 2 . К Xq л . 0 j

(4.1.8)

There is no weight at node 6 and the sixth component of the right-hand-side
column vector is zero as the result. In addition, f\ is unknown here because
Xi = 0 is known. Applying the constraint to Eq. (4.1.8) gives

- 1 - 1 0 0 0 o ■ ’ 0 >
- 1 7 - 2 - 1 - 3 0 X2 w
0 - 2 3 - 1 0 0 «3 w
0 - 1 - 1 4 - 2 0

<
x4

> = i
w

0 - 3 0 - 2 7 - 2 Xb w
. 0 0 0 0 - 2 2 . ■. Xq * k 0 ,

(4.1.9)

74 Direct Approach With Spring System Chapter 4

Figure 4 .1 .3 A Mass-Spring System

The matrix equation determines the displacements of the springs. J

4.2 Axial Member

The linear spring can represent various systems in engineering applications. One direct
application is the axial member. Consider an axial member with length L, uniform cross-

section A and elastic modulus E. The elongation 6 of the axial member subjected to an
axial force P is computed from

PT

* = A E ^

Rewriting Eq. (4.2.1) gives
A H'

P - — 6 (4.2.2)
Ij

As a result, the equivalent spring constant for the axial bar is

Section 4.2 Axial Member

I V *1 4 4

L L 2 . h

j. . ' W к , - ^ г к
/Л k <~ L, 2 ‘ X J' X

|% - m - ■ Ш — ,
I—

u u,
u .

u 3

Figure 4 .2 .1 Axial Members Represented by Equivalent Springs

Example 4.2.1 Axial members can be represented by serial and/or
parallel linear springs. For example, a bar of telescoped shape can be replaced
by a series of springs as shown in Fig. 4,2.1. There are three linear spring
elements and each element has matrix expression as shown in Eq. (4.1.4) with
proper spring constant *,-. Assembling them gives

Г -An 0 0 - (Ul) (h
- * i *1 + fa — * 2 0 J «2 1 _ J 0

0 - f a f a + *3 - * 3 1 “ 3 I 1 0n_ v n
KJ — *3 f a -

1 1
\ U4 /

1 D
\ 1

(4.2

where k{ — and / i is the unknown reaction force at the left end support.

Instead, Ui = 0 is given as the boundary condition. Solution of Eq. (4.2.4) with
this boundary condition will result in f\ — —P which can be also obtained from
the static equilibrium. However, the finite element formulation already includes
equations of static equilibrium so that we may not use additional equilibrium
equations. These equations are redundant, f

A Example 4.2.2 Consider a statically indeterminant system as shown in
Fig. 4.2.2. The axial member can be replaced by two linear springs as seen in
the figure. The finite element matrix equation for this system is

' 0.5* —0.5* 0 ' Г Щ
-0 .5* 1.5* - * < «2

0 —* * I «3 ,

(4.2

where к — and f\ and / 3 are the unknown forces at the supports. Because
the system is statically indeterminate, we cannot find the forces from the static

76 Direct Approach With Spring System Chapter 4

4 3 A ,E

2L

i к - A $ K ' — Z T

Л/WV
p k * Y S

- — v w v —
/ /

u . Ъ1 ъс

h 2L +

Figure 4 .2 .2 A Statically Indeterminate Axial Member

УА

AE

4 a e

AE

' I

k,
j m r -

^2
— Ш — - * 1 “ ^

k = 2 k + k 2

Figure 4 .2 .3 A Spring Representing a Statically Indeterminate System

equilibrium equation only. However, the finite element formulation includes not
only equilibrium but also geometric compatibility (compatibility of deformation).
Therefore, Eq. (4.2.5) along with boundary conditions « i = « 3 = 0 can solve
the deformation as well as the reaction forces.

Another statically indeterminate system made of axial rods can be represented
by a spring constant as shown in Fig. 4.2.3. f

Section 4.4 Other Systems 77

1
✓ j

1

ад
A

VT

^ T

= 3 !

, A -
1

.S
'

GtJ,

T 1

T
[I
J

L L _
г I 1

1 Torsional Members

/ у

1
« r j ,

//1

u Щ Щ

/ /

к

U - M
Чг ц

4.3 Torsional Member

A circular rod subjected to a twisting moment produces an angle of twist

TL
GJ

(4.3.1)

in which в is the angle of twist, T is the applied torque, L is the length of the member,
G is the shear modulus, and J is the polar moment of inertia of the circular cross-
section. Rewriting the equation yields

Т ш Щ - »
JU

(4.3.2)

The equivalent spring constant is keg = Off- . Torque T corresponds to the spring force
Г and angle of twist 9 to the spring displacement u. As examples, both statically
determinate and indeterminate torsional members are shown in Fig. 4.3.1 along with
their equivalent spring systems.

4.4 Other Systems

Other frequently used engineering systems, which can be easily substituted with
a spring system, are heat conduction, simple fluid flow along pipes and electric cir­
cuits. For one-dimensional heat conduction, heat flux is proportional to temperature

78 Direct Approach With Spring System Chapter 4

fc, k .

Figure 4 .4 .1 Mechanical Forces From Newton’s Third Law

difference. That is, heat flux q is
q = - k tA T (4.4.1)

w b p ro К ie t.hp boat, rn n rln rtin n (■npflfiripnt. ялг! A T 1 ia flip tp m n era tii№»T IWJ U11 'j uuu>u u v u u u v H1.V** vwxuviv/iiu UJL IV Vliu vuiiipviUVVilV UliLVl

between two end points of a one-dimensional bar. The minus sign in the equation
denotes heat flux is in the opposite direction as the temperature increases along the
positive axis. The equivalent spring system has the spring constant keg = —kt , the
spring force F = q and the spring displacement и = T.

Fluid flow rate through a pipe of constant cross-section is proportional to the
pressure difference of the two ends. That is,

Q = —kpAp (4.4.2)
Here, Q is the flow rate, A p is the pressure difference, and kP is the proportional
constant. For a laminar flow, the proportional constant can be expressed as

kp = 12 8» L (4‘4 '3)
where fx is the fluid viscocity, d is the pipe diameter, and L is the pipe length. The
equivalent spring system has the spring constant keq = —kp, the spring force F ~ Q
and the spring displacement и = p.

Electric current flow i through a resistance R is

i = ^ (4.4.4)

where V is voltage. The equivalent spring system has spring constant keq = ^ , force
F = i, and displacement и = V. One may think what about V = i R such that
F — V, keg = R and и = i. Which one is correct? Is the equivalent spring constant
R or One is right and the other is wrong. One way to select the right form is
to understand the nature of spring force and to find the parameter equivalent to the
force. Then, the rest of parameters can be determined accordingly.

When two springs are separated each other, internal forces occur between the
two springs. These forces are equal in magnitude and opposite in direction. When the
two springs are put together, the forces cancel each other and become zero if there is
no external force applied at the joint as seen in Fig. 4.4.1. This is known as Newton’s
third law. When considering electric current, its sum at the joint of resistants (i.e.
the middle point in Fig. 4.4.2) is also zero like the force. However, voltage does not
vanish at such a joint. As a result, electric current is similar to the mechanical force.
Therefore, the equivalent spring constant for the electric circuit is i but not R.

Section 4.4 Other Systems

Figure 4 .4 .2 Flow Through a Pipe System

ф Example 4.4.1 Consider a pipe system for fluid flow as seen in Fig.
4.4.2. The pressure at the inlet is 200 while the flow rate at the outlet is 50,
The proportional constants kp in Eq. (4.4.2) are given in the figure. All units
are assumed consistent. We want to determine the flow rate between node 3 and
node 4.

Using the linear spring equivalency, the matrix equation becomes

- - 1 1 0 0 0 0 ■ ' Pi ' Q i
1 -1 3 4 - 8 0 0 P2 0
0 4 -2 2 2 16 0 Рз 0
0 8 2 -1 1 1 0

<
P4

► = i
0

0 0 16 1 -4 9 32 Pb 0
. 0 0 0 0 32 -3 2 . <■Pe J • C?6 — 50 /

(4.4.

Applying the known pressure pi = 200 to this equation yields the following
pressure at each node.

P2 = 150, рэ = 142.2, P4 = 147.6, ps = 139.6, p& ~ 138

Therefore, the flow rate between nodes 3 and 4 is

Q z - 4 = - 2 x (147.6 - 142.2) = - 10.8

Hence, the flow is upward with rate of 1 0 .8 . J

80 Direct Approach With Spring System Chapter 4

k=200 k=400 k=100 k=300

u=0.1
F=20

Figure P 4 .1 Problem 4.1

Problems

4.1 Find the system of equations for the spring system shown in Fig. P4.1. Solve
the matrix equation to find the displacements of the nodal points.

4.2 A circular shaft is made of two different materials and fixed at both ends. It is
subjected to torsions as shown in Fig. P4.2. The diameter of the shaft is 0.1 m.
Find the angles of twist at the nodal points.

4.3 For the given mass-spring system (see Fig. P4.3), (a) develop the system mass
and stiffness matrices to determine natural frequencies of the system, (b) Apply
the given boundary conditions to the matrix equations.

4.4 An electric circuit is shown in Fig. P4.4. Find the current flow using the
equivalent spring system.

4.5 For a laminar pipe flow, the flow rate is proportional to pressure difference.
Construct the system of equations for the given pipe flow as shown in Fig. P4.5
in order to find the flow rate through each pipe.

4.6 Heat conduction through a circular pipe is expressed as

_ 2irkL
q ln(rQ/ri)

in which к is the heat conduction coefficient, L is the length of the cylinder, and
r0 and г,- are the outer and inner radii of the cylinder, respectively. Therefore,
two concentric cylinders with radii ri < r2 < Г3 can be represented by two
springs in serial connection. Find the equivalent spring constants for the two
linear springs in Fig. P4.6 and construct the system of equations.

Problems

гг KN-m гг KN-m

Fixed elem #1 elem #2 elem #3 Fixed

2 m __ 2 m 1.5 m

D iam eter = 0,1 rn
Element 1 & 2 i G = 80 GPa
Elem ent 3 ■ G = 40 GPa

Figure P 4 .2 Problem 4.2

rigid bar

/

^5
-лЛЛЛЛа-

kV ' '

vwvv

— v / W W — — ^ A A /V ^ / Пр — A W V —
----- к

rigid bar

■►Us -►u* -►U,

Figure P 4 .3 Problem 4.3

/
/
v

Figure P 4 .4 Problem 4.4

82 Direct Approach With Spring System Chapter 4

Fiffure P 4 .5 Problem 4.5

Figure P 4 .6 Problem 4.6

C H A P T E R FIVE

LAPLACE’S AND POISSON’S EQUATIONS

5.1 Governing Equation

Laplace's and Poisson’s equations are common field governing equations to de­
scribe various physical natures. For example, these differential equations can represent
heat conduction, potential flow and torsion of noncircular members. Therefore, we
study the finite element formulation of these equations. Laplace’s equation is

V 2« = 0 (5.1.1)

while Poisson’s equation is
V 2u = g (5.1.2)

Because Poisson’s equation is more general than Laplace’s equation as seen above, we
consider Poisson’s equation in the following formulation.

Poisson’s equation in terms of the Cartesian coordinate system becomes

дги , д2и . /r 1 o\
dx* + d y i = 0(ж’ у) т П (5-L3)

for the two-dimensional domain Q. The boundary conditions are

u = й on Ге (5.1.4)

(5.1,5)

where й and q denote known variable and flux boundary conditions, and n in Eq.
(5.1.5) is the outward normal unit vector at the boundary. Furthermore, Ге and Гп
are boundaries for essential and natural boundary conditions, respectively. For the
well-posed boundary value problem,

Ге и Г „ = Г (5.1.6)

and
du _
» - = ! опГ„

83

and
Ге П Г„ = 0 (5.1.7)

in which U and П denote sum and intersection respectively, and Г is the total boundary
of the domain Cl.

Integration of weighted residual of the differential equation and boundary
condition is

1 = L w Ш + w - ° (x - v)} - / . w ^ dr (5 i -8)

In order to develop the weak formulation of Eq. (5.1.8), integration by parts is applied
to reduce the order of differentiation within the integral. The subsequent example
shows the integration by parts.

84 Laplace’s and Poisson’s Equations Chapter 5

ф E x a m p le 5 .1 .1 Consider a two-dimensional domain as seen in Fig. 5.1.1,
First of all, we want to evaluate the first term of Eq. (5.1.8)

Jtoin dx2

The domain integral can be expressed as

d2u
w ^ —̂ dCl (5.1.9)

Г (5110)

where y\ and y2 are the minimum and maximum values of the domain in the
у-axis as the strip along the ж-axis moves in the у-direction as seen in Fig. 5.1.1.

Integration by parts with respect to x yields

*1
dy (5.1.11)

Xi

and rewriting the expression using the domain and boundary integrations as
shown in Fig. 5.1.1 results in

(5112)

in which nx is the ж-component of the unit normal vector which is assumed to
be positive in the outward direction as shown in Fig. 5.1.1. Finally combining
the two boundary integals gives

r ci_ a .. r a ..I <J W UU J u u . .

- + i w a i n i d r (5 U 3)

where the boundary integral is in the counter-clockwise direction

Section 5.1 Governing Equation 85

о n V- j ? ~

d y ^ r ay: Cn°d? dl
d x *

Figure 5 .1 .1 Two-Dimensional Domain

Similarly, the second term in Eq. (5.1.8) сал be written as

f dw du f du
__ I ____________ W l I I ft\ 4 I I -a-____ «

~ J n d y d y — J r - d y " »

Adding Eqs (5.1.13) and (5.1.14) produces

f , d 2u d2u

L w^ + w)dn=

yfr /Z. 1 1 A\U1 ytf. A . XIJ

f f dw du dw du\ f f du du \ . .

- L b i l i + Ц a-y) d a + f A a i n‘ + * "0 ® (5 1 1 5)

Since the boundary integral can be written as

du du du— = — «_ д .— п., 1 Ш
dn dx '* ' dy 'y v----------7

we can rewrite Eq. (5.1.15) as

f (d2u d2u . jn .

f (dw du d w d u \ f du . .

- М ъ + ъ - ь Г + к " * ; * (5 U 7)

The symbol § to denote the line integral around a closed boundary is replaced

by f for simplicity in the following text. Equation (5.1.17) is known as Green’s
theorem. \

86 Laplace’s and Poisson’s Equations Chapter 5

Use of Eq. (5.1.17) to Eq. (5.1.8) results in

_ f (dw du dw du\ / du ^
* = - Д вГ * + а» в »)" ~ 1 юя(х'у),1П + 1 п wb , dr <51Л8>

The first volume integral becomes a matrix term while both the second volume integral
and the line integral become a vector term. In the context of heat conduction, the
second volume integral is related to heat source or sink within the domain, and the
line integral denotes the heat flux through the natural boundary.

5.2 Linear Triangular Element

Discretization of the domain in Eq. (5.1.18) is performed using selected two-
dimensional finite elements. One of the simplest two-dimensional elements is the
three-noded triangular element. This is also known as linear triangular element. The
element is shown in Fig. 5.2.1. It has three nodes at the vertices of the triangle and
the variable interpolation within the element is linear in x and у like

и = cti + а2х + а3у (5.2.1)

or

и = [1 (5.2.2)

where a,- is the constant to be determined. The interpolation function, Eq. (5.2.1),
eVl ли 1 rl гоптосрп ! l b p n n ria l varm Ы м аf f Tio nr»info c u K o fifn fin rrU11VV41V* i v y i WliV I.J.VUWA f (M1UIW1VU WV vuv UVUUU pVlAlVUt OUVOIIlVUVlll^

the x and у values at each nodal point gives

«1 'I '1 V\
« 2 > = 1 X2 У2 <
« 3 J 1 Хз у з . \

(5.2.3)

Here, X{ and yi are the coordinate values at the ith node and щ is the nodal variable
as seen in Fig. 5.2.1. Inverting the matrix and rewriting Eq. (5.2.3) give

х 2Уз — х г У 2 хзУ1 — х^уз x\y2 - x 2yi
У2 - УЗ У з - Ух У1 - У2
Х з — Х 2 — Х з Х 2 — Х\ { 2 } (5.2.4)

where

А = -det
1 Xl yi
1 X2 У2
1 x 3 уз

(5.2.5)

Magnitude of A is equal to the area of the linear triangular element. However, its value
is positive if the element node numbering is in the counter-clockwise direction and

Section 5.2 Linear Triangular Element 87

У

(*3 f y3)

(x2 , У 2)

x

Figure 5.2.1 Linear Triangular Element

negative otherwise. For the finite element computation, the element nodal sequence
must be in the same direction for every element in the domain.

Substitution of Eq. (5.2.4) into Eq. (5.2.2) produces

и - H\(x, y)u\ + H 2 {x ,y)u 2 + Н 3 (х ,у)и 3 (5.2.6)

in which Hi(x, y) is the shape function for linear triangular element and it is given
below:

i = 2^ [(ж2Уз - x 3 y2) + (y2 ~ Уз)® + (®з - х 2)у] (5.2.7)

н 2 = 2^[(®зУ1 - %1 Уз) + (Уз ~ Ух)х + (жг ~ Х3)у] (5.2.8)

#3 = - Х2Ух) + (й - у2)х + (х2 - £i)y] (5.2.9)

These shape functions also satisfy the conditions

H i{xj ,y j) = 6ij (5.2.10)

and
3

J 2 H i = 1 (5.2.11)
t=i

Here, 6ij is the Kronecker delta. That is,

^ = { o if (5212)

A problem domain is discretized into a number of finite elements using the linear
triangular elements. An example o f finite element mesh discretization is illustrated in
Fig. 5.2.2. As seen in the discretization, the actual curved boundary is approximated
by a piecewise linear boundary. The crude mesh in the figure may be refined for

88 Laplace’s and Poisson’s Equations Chapter 5

У

x

Figure 5.2.2 Finite Element Discretization

closer approximation of the actual boundary using linear triangular elements. Another
alternative is to use higher order finite elements which can fit the curved boundary
using higher order of polynomial expressions.

For a linear triangular element shown in Fig. 5.2.1, the element matrix is
computed as derived below.

[K ’]
dw du dw du
dx dx dy dy W o .

dH
dx

дни
dx

dH*
dx

dBx
dx

am
dx

M i\ +
dx

(1 1 ,
1 # Г d H ,

dy
dHi
dy

Л
dy IJ

jr\иъс /С fl 1 o\

where ft® is the element domain.
Performing integration after substituting the shape functions Eqs (5.2.7) through

(5.2.9) into Eq. (5.2.13) gives

[K ‘ } =
*11 *12 &13
*21 *22 *23
*31 *32 *33

(5.2.14)

in which

kn = 4^ [(*з - *2)2 + (3/2 - Уз)2]

*12 = 7 7 [(х з - x 2)(xi - x3) + (У2 ~ уз)(уз - У г)]

*i3

4 А 1

1
— \(хг - х 2)(х2 - х 1) + (у2 - Уз)(У1 ~ Уг)]

*21 = *12

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

Section 5.2 Linear Triangular Element 89

oc

Figure 5 .2 .3 Triangular Domain With One Element

1
k22 = 4A ^ Xl ” Хз ̂ + У̂з “ У1 ̂ ^

&23 = ^ [(* 1 - Хз)(я 2 - Жх) + (уз - У1)(У1 - у2)]

*31 = *13

*32 = *23

^33 = i I ^ X2 _ X l)2 + (yi ~~ У2^

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

(5.2.23)

Because and are constant for the linear triangular element, the integrand
in Eq. (5.2.13) is constant. As a result, the integration in Eq. (5.2.13) becomes the
integrand multiplied by the area of the element domain and the result is given in Eqs
(5.2.15) through (5.2.23).

ф E x a m p le 5 .2 .1 We compute the element matrix for Poisson’s equation
for the linear triangular element shown in Fig. 5.2.3. Element node numbering
is in the counter-clockwise direction. The area of the triangular element is 0.5
and the element matrix is

[K e] =

1.0
-0 .5
-0 .5

-0 .5
0.5
0

-0 .5
0

0.5
(5.2.24)

The other domain integral term to be evaluated in Eq. (5.1.18) is

f wg(x,y)Q (5.2.25)
Jn

This integration results in a column vector as shown below. Computation of this
integral over each linear triangular element yields

90 Laplace’s and Poisson’s Equations Chapter 5

/Jn I H
tf2 ̂g(x,y)dQ (5.2.26)

з

Analytical integration may not be simple depending on function g(x ,y) . Then, a
numerical integration technique may be applied to compute this integral. Some
numerical techniques are discussed in Chapter 6.

5.3 Bilinear Rectangular Element

The bilinear rectangular element is shown in Fig. 5.3.1. The shape functions
for this element can be derived from the following interpolation function:

и = aj + a2x + a3y + a4xy (5 .3.1)

This function is linear in both x and y. Applying the same procedure as used in the
previous section results in

Я ‘ = 4 Ь (*
(5.3.2)

я а = 4 £ (‘ + *) (« - ! /) (5.3.3)

Я з = ^ (6 + *) (c + y) (5.3.4)

(5.3.5)

where 2b and 2с are length and height of the element, respectively.
The shape functions Eqs (5.3.2) through (5.3.5) can be obtained by product of

two sets of one-dimensional shape functions. Let the linear shape functions in the
x-direction with nodes located at x = — b and x = b be

Ф Л Х) = 7 ^ (b ~ x) (5.3.6)

and

Ф ъ (х) = 7^ (b + x) (5.3.7)

Similarly, the linear shape functions in the y-direction are

M x) = 7 ^ (С ~ У) (5.3.8)

and

Ф2(х) = g~(С + У) (5.3.9)

Section 5.3 Bilinear Rectangular Element 91

У

Figure 5 .3 .1 Bilinear Element

Product of Eqs (5.3.6) and (5.3.7) and Eqs (5.3.8) and (5.3.9) yields Eqs (5.3.2)
through (5.3.5). The shape functions obtained by products as shown above are called
the Lagrange shape functions.

ф Example 5.3.1 We want to compute the element matrix for Poisson’s
equation using the bilinear shape functions.

Г дНл дН-1 ЭН:
У дх дх дх дх

Г д н л д Н 7 д Н я дН.
I ду ду ду ду ОdQ (5.3.10)

where Hi is the bilinear shape function. This will be a matrix of 4 x 4 . The first
component is

rb re
I f / Л ч i f П ■» / М П Л 1 Г П +

dydxK en
г dHi № | d H i d H j

- f Г \d H i d H i
~ j -ь J -c L dx dx

= L J _ c m & [(y - c) 2 + (x - b)2]dyi

+ b2
3bc

(5.3.11)

Performing integrations for all terms results in the following element matrix for
the bilinear rectangular element.

*11 *12 *13 *14
*12 *22 *23 *24
*13 *23 *33 *34

.* 1 4 *24 *34 *44-

[* '] = (5.3.12)

92 Laplace’s and Poisson’s Equations Chapter 5

in which
, b2 + c2
*” = - * ь г (6-зл з>

b2 — 2c2
= - « Г " (5.3.14)

, 62 + C2
k i 3 = - ^ b T <5 iU 5 >

c2 - 262
fel4 ” 66c (5.3.16)

*22 = *11 (5.3.17)

*23 = *14 (5.3.18)

*24 = *13 (5.3.19)

*33 = *11 (5.3.20)

*34 = *12 (5.3.21)

*44 = *11 (5.3.22)

The other domain integral becomes

Hi

J bJ | # з | g(X’ y)dydx (5.3.23)
Я 4

This is similar to that in Eq. (5.2.26).

5.4 Boundary Integral

The boundary integral in Eq. (5.1.18) is

where subscript n denotes the natural boundary and superscript e indicates the
element boundary. Here, the summation is taken over the elements which are located

Section 5.4 Boundary Integral 93

Ш = 9 'bverx

at the boundary of the domain and whose element boundaries are subjected to the
natural boundary condition as shown in Fig. 5.4.1.

For simplicity, we consider an element boundary which is parallel to the ж-axis
as seen in Fig. 5.4.2. The element boundary is subjected to a positive constant
flux. That is, the flux is in the outward direction which is assumed to be positive.
Since linear triangular elements are used for the domain discretization, the element
boundary has two nodes as shown in Fig. 5.4.2. As a result, linear one-dimensional
shape functions are used to interpolate the element boundary. The boundary integral
along the element boundary becomes

L w — dT =
ox

(5.4.2)

where
hij — xj — Xi : length o f the element boundary (5.4.3)

This colume vector is added to locations associated with nodes i and j . If the element
boundary is along the у-axis or is in an arbitrary orientation about the xy-axes, the
result is obtained as long as hij is the length o f the element boundary.

4» Exam ple 5,4.1 We consider a heat conduction problem with a triangular
shape of domain which is discretized into four linear triangular elements (see
Fig. 5.4.3). There are six nodes in the domain. One boundary is insulated or

symmetric so that there is no flux (^ = 0) through the boundary. Another
boundary has a constant heat flux and the third boundary has a known
temperature. Find the temperature at the nodal points.

Each element matrix can be obtained from Eqs (5.2.14) through (5.2.23). The
local and global node numbering is shown for each element in Fig. 5.4.4. The

94 Laplace’s and Poisson’s Equations Chapter 5

Figure 5 .4 .2 Triangular Element Subjected to Constant Flux

global node numbering is used to identify what nodes are associated with each
element while the local node numbering is related to the assignment of shape
functions to the nodes. Therefore, the local node numbers are always 1 , 2 and
3 for the linear triangular element. For the present elements, element matrices
are the same and one of them is given below:

[K>] =
0.5 - 0 .5 0 . 0

- 0 .5 1 . 0 - 0 .5
0 . 0 - 0 .5 0.5

(5.4.4)

If the local node numbering changes for each element, the element matrix
becomes different from that in Eq. (5.4.4). Assembling the element matrices
into the system matrix based on the global node numbers results in

[K) =

г 0.5 -0 .5 0.0 0.0 0.0 0.0 1
-0 .5 2.0 - 1.0 -0 .5 0.0 0.0
0.0 - 1.0 2.0 0.0 - 1.0 0.0
0.0 -0 .5 0.0 1.0 -0 .5 0.0
0.0 0.0 - 1.0 -0 .5 2.0 -0 .5

. 0.0 0.0 0.0 0.0 -0 .5 0.5 .

(5.4.5)

for the system nodal vector { U\ U2 Из И4 W5 Mg }•

The system column vector is obtained from the boundary integration of the given
flux. Element boundaries with specified nonzero flux are boundaries 4 — 5 and
5 — 6 . Using Eq. (5.4.2), the equivalent nodal fluxes are

« И » (5.4.6)

and

(5.4.7)

Section 5.4 Boundary Integral 95

u=0
Figure 5 .4 .3 A Triangular Domain

On the other hand, element boundaries 1 — 3 and 3 — 6 have zero nodal fluxes
because they are insulated. Combining all these vectors yields the system column
vector

{ F } = { F ! F2 0-0 F4 4.0 2.0 f (5.4.8)

where F\, F% and F4 are unknown nodal fluxes. At node 4 flux is known at the
edge 4 — 5 but it is not known at the edge 2 — 4. The nodal flux at node 4 is
affected by fluxes at the both edges and one of them is not known. As a result,
F4 is unknown. The same explanation holds for F\. Since temperature is known
at nodes 1, 2 and 4, we can solve the matrix equation

В Д М = {F } (5.4-9)

with щ = 0.0, ii2 = 0-0 u 4 = 0-0- The solution gives Из = 3.0, «5 = 6.0
and Kg = 10.0. t

& E x a m p le 5 .4 .2 One common boundary condition in heat transfer is heat
convection at the boundary. This boundary condition is expressed as

fill
— = a(u - u0) (5.4.10)

where a is the heat convection coefficient and u0 is the ambient temperature.
That is, heat flux is proportional to the temperature difference of the body
surface and the environment. Rewritting this in a more general expression gives

96 Laplace’s and Poisson’s Equations Chapter 5

<D
Z 4

Ф ©
element §2 element §3

3 5

<3) ©
element #4

Figure 5 .4 .4 Elements With Local and Global Node Numbers

where a and b are known functions because u0 is a known value. Substituting
Eq. (5.4.11) into the element boundary integral in Eq. (5.4.1) results in

[w ^ -d T — f w{a(x ,y)u + 6(x,*/)}cfr (5.4.12)
JpB C/П J pe

Whenever there is a product of test function and trial function, the term becomes
a matrix while the test function only produces a vector. As a result, the first
term of Eq. (5.4.12) becomes using linear shape functions to interpolate the
element boundary

where st- and Sj are the coordinate values of the local axis located along the
element boundary as seen in Fig. 5.4.4, and it,- and Uj are the nodal variables at
the element boundary. This integral results in a matrix of 2 x 2 for an element
with two nodes on the boundary. This matrix should be added to the system
matrix. The rest term in Eq. (5.4.12) can be dealt in the same way described in
this section $

5.5 Transient Analysis

The governing equation for transient heat conduction is

ди 1 (d2u d2u\ .
bt ~ a (d * 2 + dy2) ̂ ^

where t denotes time and a is a known function. Usually, for heat conduction problems
with constant material properties a is equal to ^ where к is the coefficient of heat

Section 5.5 Transient Analysis 97

conduction, p is density and cp is specific heat. Here, heat generation or heat sink is
neglected.

Applying the method of weighted residual to Eq. (5.5.1) in the same way as
given in Section 5.1 gives

4 A da+USdw du dw du\-----------1----------- Idfl
dx dx ^ dy d y)

I t du
-----I

a Jr dn
dT (5.5.2)

As noticed here, the method of weighted residual is applied to the spatial domain but
not to the temporal domain regardless it is a steady state or a transient problem. As
a result, the difference between the transient and steady state problems is the first
term in Eq. (5.5.2). The other difference is, of course, the variable и is a function of
both space and time for the transient problem.

The variable и = u(x. y. /) is interpolated within a finite element in a similar
way as before using shape functions.

u(x, y, t) - ^ Я ,(а т , y)ui(t) (5.5.3)
s=i

where Hi(x, y) is the shape function and n is the number of nodes per element. One
thing to be noted here is that the shape functions are used to interpolate the spatial
variation within the element while the temporal variation is related with the nodal
variables. Applying Eq. (5.5.3) to the first term in Eq. (5.5.2) yields

[M*] = / { £ }
Jci' I Яз I

{ H i H 2 H 3 }d Q
(Ul
< «2
1 йя

(5.5.4)

for a linear triangular element. On the other hand, the matrix and vector obtained
from the second and third integrals o f Eq. (5.5.2) are the same as those developed in
the previous sections other than that a should be included in the matrix.

Computation of Eq. (5.5.4) results in

2 1 1
1 2 1
1 1 2

(5.5.5)

where A is the area of the triangular element. Similarly, the bilinear rectangular
element yields

(5.5.6)

■4 2 1 2 "
AA 2 4 2 1

36 1 2 4 2
.2 1 2 4.

Therefore, the final matrix equation for Eq. (5.5.1) becomes

[Af]{«>1 + [*]{«}* = {F}1 (5.5.7)

98 Laplace’s and Poisson’s Equations Chapter 5

Because this equation should be true at any time, we put superscript t in Eq. (5.5.7)
to denote the time when the equation is satisfied. Furthermore, matrices [M] and [K\
axe independent of time. Now, the parabolic differential equation has transformed
into a set of ordinary differential equations using the finite element method. In order
to solve the equations, we use the finite difference method for the time derivative.
The next sections show the solution techniques.

5.6 Time Integration Technique

First o f all, we explain the forward difference method for time derivative. The
forward difference is expressed as

r % + _L A+ f I t

w = (5 . 6 . 1)

Substitution o f Eq. (5.6.1) into Eq. (5.5.7) results in

[M]{it}t+* f = A t ({ F Y - [#]{« }*) + [Af]{«}* (5.6.2)

In the above equation, all the terms defined at time t are put on the right-hand
side of the equation while the term associated with time t -f A t is at the left-hand
side. Equation (5.6.2) can be solved from the given initial condition {it}0 and known
boundary conditions { i r} t as explained below:

1. Setting t = 0 in Eq. (5.6.2) can find the solution for {и }д* from {it} 0 and { i7*}0.
2. Once -fit)A* is found, we can continue the previous step again bv setting t — A t

in Eq. (5.6.2) in order to determine { « } зл*. This step is repeated until the
solution reaches the final time.

The forward difference technique in Eq. (5.6.1) has the local truncation error
0 (A t 2) and the global truncation error 0 (A t) where О denotes the order of error.
The forward difference technique is conditionally stable so that a proper size of time
step A t should be used to have a stable solution.

The next technique is the backward difference technique. For this technique,
Eq. (5.5.7) can be rewritten at time t + At.

[M]{ti}t+A* + [iC]{u}t+At = { F } t+д* (5.6.3)

The time derivative in the backward difference is

{ti}t+At = M t+A* ~ M * (5 6 4)
Д* v

Use of Eq. (5.6.4) with Eq. (5.6.3) results in

([M] + Д*[ЯГ]){и}'+д* = A * {F }t+At + [M]{uY (5.6.5)

The solution procedure is similar to that for the forward difference technique. The
local and global truncation errors are also the same as those for the forward difference
technique. However, the backward difference technique is unconditionally stable.
Therefore, any size of At can be used without worrying about stability. However,
the time step size is, of course, important for accuracy because of the truncation
error.

The other technque is the Crank-Nicolson method. For this technique, we write
Eq. (5.5.7) at time t + instead of t. Then,

[M]{«}*+ ^ + [K] { u Y + ^ = { F } t+£? (5.6.6)

The time derivative term is expressed using the central difference technique like

(5, . 7)

On the other hand, the other terms are computed as average like

M ‘ +“ = 5 « “ } ‘ + W +“) (5-6.8)

and
{*•}•+* = 1 ({F } ‘ + {-F}‘ + i ’) (5.6.9)

Substitution o f Eqs (5.6.7) through (5.6.9) into Eq. (5.6.6) yields

(О П Л _i_ Л+ГЬ,Ш „.\ *+ Д 1 — _i_ Л Г*+Д*1 -L (01 АЛ _ Л + Г й 'Ш ».!* (К R 1 (YiJ т I 1 j) i J/1 “ J yv.v.j-uy

The Crank-Nicolson method is also unconditionally stable and the global truncation
error is 0(At2) so that it is one-order higher than the other two techniques.

Section 5.6 Time Integration Technique 99

& E x a m p le 5 .6 .1 Let us solve the following set of ordinaxy differential
equations using the backward difference method.

[м]{й} + [л :] М = О Т (5.6.11)

where

Глл1
L-1" J

1
6

Г2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

(ь. fi i o\yVtVi ХШJ

[K) =

1 - 1 0 0
- 1 2 - 1 0
0 - 1 2 - 1
0 0 - 1 1

(5.6.13)

Laplace’s and Poisson’s Equations Chapter 5

and

{ F } = { F l 0 0 F4 } T (5.6.14)
Here, Fi and Fa are unknown while Mi = 100 and « 4 = 100 are known
as boundary conditions. In addition, the initial condition states { u } ° = 0.
Substitution of Eqs (5.6.12) through (5.6.14) into Eq. (5.6.5) yields

At
- 1 + At £ - At 0

I - At I + 2 A t i
0 i - Д * | + 2Й
0 0 | - Д «

3 U\ + ^ul + F iA t
Ы + Ы + ^ u l

h l + i «3 + 1«4

f A t .

t+At

t+At
2 .
t+At
3 A
t+At

(5.6.15)

5^3 H- 3 Fa A t

Applying the boundary conditions with A t = 1 as the time step size, Eq. (5.6.15)
becomes

г 1 0 0 0 - Г « ! + д * 1 /
5
6

0
8
55

6

5
8*
3

0
5
6

< 4 +д* ► — i

. 0 0 0 1 . *4+Д* J к

100
Ы + Ы + Ы
6u2 + 3U3 + 6U4

100

(5.6.16)

Let t = 0 in Eq. (5.6.16) and use the initial condition to find the solution at
t = 1. The solution is

{u\ u\ u l3 u*} = {100 45.5 45.5 100} (5.6.17)
where superscript 1 denotes the solution at time t = 1. To continue the solution,
let t = 1 in Eq. (5.6.16) and use the previous solution in Eq. (5.6.17). Then,
the solution at time t = 2 is

/ « ? i ” i 1/.5-3 «? 1 = / 1ПП
“ 4 J — I 100} (К fi 1 ft\y v w . A. w у

This process continues until the final time. As expected, the solution approaches
to the steady state of uniform value of 1 0 0 . |

A E x a m p le 5 .6 .2 Let us solve Example 5.6.1 using the Crank-Nicolson
method. Applying Eqs (5.6.12) through (5.6.14) to Eq. (5.6.10) yields

-I- At
- At
0
0

- At
-)- At
0
0

1

| + 2A t
i - a *

0

3 + At
f — 2 At
°I
3 -I- At

0
At(F* + F*+At)

0

0

A t (F l + i^ +**)

0

I - At
I + 26t
3 — A t

0

h + A t
I* — 2 At 4
3 + At

0
0

- A t
+ At

0
0

t+At

t+At
2
t+At
3 „
t+At

u\
ut

i + At 1 ul
l - д * . U

+

(5.6.19)

Section 5.7 Axisymmetric Analysis 101

Figure 5 .7 .1 Cylindrical Coordinate

Applying the boundary conditions Hi = 100 and U4 = 100 with At = 1 results
in the following matrix equation.

Г 1 0 0 0 ■ *

2
3

0

10
32

3

2

i<?
3

0
2
3

J <4+At ► = <

. 0 0 0 1 . l <4+д* J 4

100
Ы - Ы +
Ы - Н + Ы

100

Applying the initial condition with t = 0 yields the solution at time t = 1.

{u\ ui. u l3 U4 } = { 100 25 25 100}

The solution at the next step, i.e. t = 2, becomes

{ « ? u\ ul 114} = { 100 81.3 81.3 100}

using the solution in Eq. (5.6.21) and t = 2 for Eq. (5.6,20). |

(5.6.20)

(5.6.21)

(5.6.22)

5.7 Axisymmetric Analysis

Laplace’s equation in the cylindrical coordinate system is written as below:

d2u 1 du 1 d2u d2u _
dr2 r dr r2 d<f)2 dz2 (5.7.1)

where г, ф and z are the radial, circumferential, and axial axes, respectively, as
shown in Fig. 5.7.1. For the axisymmetric problem, variable и is independent of the
circumferential axis ф. This is the case where the domain is axisymmetric and all the
described loading and/or boundary conditions are also axisymmetric. Therefore, the
governing equation is simplified to

for the axisymmetric analysis.

(5.7.2)
д 2и 1 du d и _
dr2 r dr dz2

102 Laplace’s and Poisson’s Equations Chapter 5

Let us apply the weighted residual method. The integral becomes

[f д 2и 1 du d2 u\ , .
L w{ a ? + + w) dCl (573)

The first two terms in Eq. (5.7.3) can be rewritten as

f f 1 d (du\ d2u\
1 А г а - г Ы) + а ^ Г <6 7 -4>

Now, the domain integral can be expressed as

[ч f f ff f(r,z)d\i = I I I f(r,z)a<paraz
JCl Jф Jr Jz

= 2 ж J J rf(r ,z)drdz (5.7.5)

where f (r , z) is any function which is independent of ф. Applying Eq. (5.7.5) to Eq.
(5.7.4) gives

2*JJAi{rt)+r̂ }in (5-7-6)

The weak formulation o f Eq. (5.6.7) using the integration by parts becomes

„ f f f d w d u dw du\ f du-2тг I I r { — — + — — }dzdr + I r w — dT (5.7.7)
j r j z \ or or oz oz j j r on -

where the boundary integral is on the r^-plane and n is also the outward normal unit
vector to the boundary.

Equation (5.7.7) is now expressed in terms of the radial and axial axes, i.e. r
and z. As a result, we need a finite element discretization in the rz-plane like a
two-dimensional analysis. The same kinds of shape functions can be used for both
two-dimensional and axisymmetric analyses of Laplace’s equation. However, there is
one difference between the two formulations. The axisymmetric analysis contains г
within the integral while the two-dimensional analysis does not include r. Let us use
the linear triangular element for the axisymmetric analysis. The element matrix for
the triangular element can be written as

ik‘]=2*UA
dr „

dHz I г дН! эн 2 дн3
dr I I dr dr dr

8 H 3
dr

dH\

dz (I- dz dz dz ' 1
8 На I /
dz

Section 5.8 Three-Dimensional Analysis 103

2 ’

Figure 5 .7 .2 Triangular Axisymmetric Element

where Hi is given in Eqs (5.2.7) through (5.2.9) with replacing x and у by г and
z. The element is shown in Fig. 5.7.2. As discussed in Sec. 5.2, and are
independent of r and z. We also know that

j j rdrdz — Arc (5.7.9)

where A is the area of the triangular element as defined in Eq. (5.2.5), and
rc = i (r i + Г2 + Г3) is the r coordinate value of the centroid of the triangle as seen in
Fig. 5.7.2. Consequently, the element matrix for the linear triangular axisymmetric
element is

ku k\2 ki3
\Ke 1 — 2irr„ fcn----- — - - . A ±

кз1 кз2 кзз
(5.7.1 fAV------- /

in which kij is the same as given in Eqs (5.2.15) through (5.2.23) except that ж,- and
yi sure replaced by ri and z% for the axisymmetric analysis.

The flux at the boundary is also handled in the similar way as the two-
dimensional analysis. However, the boundary integral for the axisymmetric analysis
also contains r. If there is a uniform flux on the boundary of a linear triangular
element for the axisymmetric problem as shown in Fig. 5.7.3, the equivalent nodal
flux vector becomes 7ггд/{1 1}T where r = |(г,- + rj) is the average r coordinate value
of the two boundary nodes i and j , q is the value of uniform flux per unit area, and I
is the side length of the element as seen in Fig. 5.7.3.

5.8 Three-Dimensional Analysis

For the three-dimensional analysis o f Poisson’s equation, Eq. (5.1.18) can be
extended directly into

[(d w d u d w d u d w d u \ f ч f 9 n _
1 = - L l S ' di + di d~v + Tz a l } ia ~ L W9(* ’ y' z)d + J r . (4

104 Laplace’s and Poisson’s Equations Chapter 5

FirViii*r * *6 “ *̂ R 7 FIiiv ATi A vievm m A^n/' П й т ati +v« ■ «v x лил _Tii XIAIOJ UllUVVllV ui^uivuv

After discretization o f the domain into finite elements, we can compute element
matrices and vectors as before. For further explanation, we use a tetrahedral element
as shown in Fig. 5.8.1. The variable interpolation for this element is assumed

where

and

и = { X } T{ C }

{ C } = { Cl C2 Сз C4 }

{ X } = {1 X у Z У

(5.8.2)

(5.8.3)

(5.8.4)

That is, the interpolation function is assumed to be linear in terms of every axis.
Evaluation of the variable at the nodal points gives

(5.8.5)

■1 *1 У1 Z 1 ' (Cl1 «2 У2 22) c 2
1 *3 Уз 23 1C3.1 X4 Ул 24. V C4

or Eq. (5-8.5) can be put in the following way

{u } = [X] {C }

in which
{ « } = { «1 «2 «3 1*4 }

(5.8.6)

(5.8.7)
a xv__i . ___ . 4.1,л :___ ___rvi л и Л-Г т?~
AlliCl Id&lilg LUC inverse U 1 IliatliA. \j\ j ailU ^IC’lUUiUl^lJ'Uig 10 uy UUIill 9IUC9 Ui. ИгЦ.
(5.8.6), we substitute the resulting expression into Eq. (5.8.2). Then we obtain

u = { x n x j - 4 4 = < я)ТМ

where
T r v l - l{ H } T = { H x H 2 H3 Н а } = { Х У [Х]

(5.8.8)

(5.8.9)

Section 5.8 Three-Dimensional Analysis 105

ac

Figure 5.8.1 Tetrahedral Element

are the shape functions for the tetrahedral element with four nodes.
Substitution of the shape functions into Eq. (5-8.1) with element discretization

results in an element matrix which is

M i
dx

dH-z
dx

8H3
dx

+

f M l ч

It!
dz

дн*
dz

дНл
dz

[H J
V dz f

From Eq. (5.8.9), let

dH-*
dz

dH*
dz

dH 4
dz /

' а ц <*12 <*13 <*14 ‘
1 _ <*21 <*22 <*23 <*24

«31 <*32 <*33 <*34
-<*41 <*42 <*43 <*44 -

Then, the shape functions can be expressed as

z) = an + « 21̂ + 031 у + a4lz

Нъ(х, y, z) = ai2 + a22X + a32y + а42г
H 3 (x, y, z) = ai3 + a23x + a33y + a43z

H4 (x, y, z) = ai4 + 024® + <*34 У + « 44Z

Inserting Eqs (5.8.12) through (5.8.15) into Eq. (5.8.10) yields

[K e] = V

Г * 1 1

*21
*31

.*41

*12 1̂3
*22 *23
*32 *33
*42 *43

*14

*24
*34
*44 J

dHc
dy

dH* M a 1
dy dy j

(5.8.10)

(5.8.11)

(5.8.12)

(5.8.13)
(5.8.14)
/г Л 1r\(o.o.ioj

(5.8.16)

in which

106 Laplace’s and Poisson’s Equations Chapter 5

*11 = (° 2 l) 2 + (<*31) 2 + (<*4i) 2 (5.8.17)

*12 = <*21 <*22 + <*31 «32 + <*41 <*42 (5.8.18)

*13 = <*21 <*23 + <*31 <*33 + <*41 <*43 (5.8.19)

*14 = <*21 <*24 + <*31 <*34 + <*41 <*44 (5.8.20)

*21 = *12 (5.8.21)

*22 = (<*22)2 + (<*32)2 + (<*42)2 (5.8.22)

*23 = <*22 <*23 + <*32 <*33 + <*42 <*43 (5.8.23)

*24 = <*22<*24 + <*32 <*34 + <*42<*44 (5.8.24)

*31 = *13 (5.8.25)

*32 = *23 (5.8.26)

*33 = (<*2з)2 + (<*33) 2 + (<*43)2 (5.8.27)

*34 = <*23 <*24 + <*33 <*34 + <*43 <*44 (5.8.28)

IIH (5.8.29)

*42 = *24 (5.8.30)

*43 — *34 (5.8.31)

*44 = (<*24)2 + (<*34) 2 + (<*44)2 (5.8.32)

Furthermore, V is the element volume.
The flux boundary condition on the three-dimensional analysis can be treated in

the following way. For a uniform flux on one side of the tetrahedral element, the flux
column vector becomes A^ {1 1 1}T for the nodes on the element boundary as shown
in Fig. 5-8.2. Here, A s is the surface area of the element side on which a uniform flux
of q is applied.

The element matrix for the transient term (i. e- §) is

Г2 1 1 1-
1 2 1 1
1 1 2 1

LI 1 1 2.

(5.8.33)

Section 5.9 MATLAB Application to 2-D Steady State 107

Figure 5 .8 .2 Triangular Boundary With Constant Flux

У

10.0

xi— 1 0 Osin(-IfQ-')

21 22 23 24

% / % / © / <

25

u —O
Ш = 0

1 г 3 4 5
u=0

Figure 5 .9 .1 Mesh With Linear Triangular Elements

for the tetrahedral element.

5.9 MATLAB Application to 2-D Steady State Analysis

This section shows some examples for two-dimensional steady state problems
using MATLAB programs. Both linear triangular and bilinear rectangular elements
are used.

Laplace’s and Poisson’s Equations Chapter 5

4b E x a m p le 5 .9 .1 We want to solve the two-dimensional Laplace equation
for the following given conditions. The domain and the finite element discretiza­
tion is shown in Fig. 5.9.1.

d2u d2u
№ + dy* ^

for 0 < x < 5 and 0 < у < 10. The boundary conditions are и(а:,0) = 0
for 0 < x < 5, « (0,y) = 0 for 0 < у < 10, u(x, 10) = 100sin(7nr/10) for

0 < x < 5, and = 0 for 0 < у < 10. The MATLAB main program
along with function programs are listed below. Some function programs listed
in previous chapters are not listed here. Appendix A lists all the function files.

%---

% EX5.9.1.m
% to solve the two-dimensional Laplace equation given as
% u,xx + u,yy = 0 , 0 < x < 5 , 0 < y < 1 0

% u(x,0) = 0 , u(x,1 0) = 1 0 0 sin(pi*x/1 0),
% u(0,y) = 0, u,x(5,y) = 0
% using linear triangular elements
%(see Fig. 5.9.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
%--
%
%---
% input data for control parameters
%---
nel=32; % number of elements
nnel=3; % number of nodes per element
ndof=l; % number of dofe per node
nnode=25; % total number of nodes in system

__ _— QZ.
9uui—liuviuc iiuviij ли iiv/uai djdiiciii u u u

%
%---
% input data for nodal coordinate values
% gcoord(ij) where i -> node no. and j - > x or у
%---
gcoord (l,l)= 0 .0 ; gcoord(l,2) = 0 .0 ;

Section 5.9 MATLAB Application to 2-D Steady State 109

gcoord(2 ,l
gcoord(3,l
gcoord(4,l
gcoord(5,l
gcoord(6 ,l
gcoord(7,l
gcoord(8 ,l
gcoord(9,1
gcoord(1 0 ,
gcoord(ll,
gcoord(1 2 ,
gcoord(l3,
gcoord(14,
gcoord(15,
gcoord(16,
gcoord(l7,
gcoord(18,
gcoord(19,
gcoord(2 0 ,
gcoord(2 1 ,
gcoord(2 2 ,
gcoord(23,
gcoord(24,
gcoord(25,
%
%-----------

=1.25; gcoord(2,2)=0.Q;
=2 .5 ; gcoord(3,2)=0.0;
=3.75; gcoord(4,2)=0.0;
=5.0 ; gcoord(5,2)=0.0;
= 0 .0 ; gcoord(6,2)=2.5;
=1.25; gcoord(7,2)=2.5;
= 2.5 ; gcoord(8,2)=2.5;
=3.75; gcoord(9,2)=2.5;
)=5 .0 ; gcoord(10,2)=2.5;
)=0.0 ; gcoord(ll,2)=5.0;
)=1.25; gcoord(12,2)=5.0;
)=2.5 ; gcoord(13,2)=5.0;
)=3.75; gcoord(14,2)=5.0;
) = 5 .0; gcoord(15,2)=5.0;
)=0 .0 ; gcoord(16,2)=7.5;
) = 1 .25; gcoord(17,2)=7.5;
)=2.5 ; gcoord(18,2)=7.5;
)=3.75; gcoord(19,2)=7.5;
)=5 .0 ; gcoord(20,2)=7.5;
) = 0 .0 ; gcoord(2 1 ,2) = 1 0 .;
)=1.25; gcoord(2 2 ,2) = 1 0 .;
)=2 .5 ; gcoord(23,2)=10.;
)=3.75; gcoord(24,2)=10.;
)=5.0 ; gcoord(25,2)=10.;

% input data for nodal connectivity for each element
% nodes(ij) where i -> element no. and j - > connected nodes
%---

n o d e s(l,l)= l; nodes(l,2)=2; nodes(l,3)=7;
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8;
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9;
nodes(4,l)=4; nodes(4,2)=5; nodes(4,3)=10;
n od es(5,l)= l; nodes(5,2)=7; nodes(5,3)=6;
nodes(6,l)=2; nodes(6,2)=8; nodes(6,3)=7;
nodes(7,l)=3; nodes(7,2)—9; nodes(7,3)=8;
nodes(8,l)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,l)=6; nodes(9,2)=7; nodes(9,3)=12;
nodes(10.1)=7: nodes(10.2)=8: nodesflO.SWlS:

\ • / ' \ * / • \ * / ’

n o d e s(ll,l)= 8 ; nodes(ll,2)=9; nodes(ll,3)=14;
nodes(12,l)=9; nodes(12,2)=10; nodes(12,3)=15
nodes(13,l)~6; nodes(13,2)=12; nodes(13,3)=ll
nodes(14,l)=7; nodes(14,2)=13; nodes(14,3)=12
nodes(15,l)=8; nodes(15,2)=14; nodes(15,3)=13
nodes(16,l)=9; nodes(16,2)=15; nodes(16,3)=14
n o d es(17 ,l)= ll; nodes(17,2)=12; nodes(17,3)=17
nodes(18,l)=12; nodes(18,2)=13; nodes(18,3)=18
nodes(19,l)=13; nodes(19,2)=14; nodes(19,3)=19

Laplace’s and Poisson’s Equations Chapter 5

nodes(2 0 ,l)=
nodes(2 1 ,l)=
nodes(2 2 ,l)=
nodes(23,l)=
nodes(24,l)=
nodes(25,l)=
nodes(26,l)=
nodes(27,l)=
nodes(28,l)=
nodes(29,l)=
nodes(30,l)=
nodes(31,l)=
nodes(32,l)=
%
%-------------

=14
=11

=12
=13
=14
=16
=17
=18
=19
=16
=17
=18
=19

nodes(2 0 ,2

nodes(2 1 ,2

nodes(2 2 ,2

nodes(23,2
nodes(24,2
nodes(25,2
nodes(26,2
nodes(27,2
nodes(28,2
nodes(29,2
nodes(30,2
nodes(31,2
nodes(32,2

=15; nodes(20,3)=20;
=17 ; nodes(21,3)=16;
= 1 ; nodes(22,3)=17;
=19; nodes(23,3)=18
=20; nodes(24,3)=19
=17; nodes(25,3)=22
=18; nodes(26,3)=23
=19 ; nodes(27,3)=24
=20 ; nodes(28,3)=25
=22; nodes(29,3)=21
=23; nodes(30,3)=22
=24; nodes(31,3)=23
=25; nodes(32,3)=24

% input data for boundary conditions
%---
b cd of(l)= l
bcval(l) = 0

bcdof(2) = 2

bcval(2) = 0

bcdof(3)=3
bcval(3)=0
bcdof(4)=4
bcval(4)=0
bcdof(5)=5
bcval(5)=0
bcdof(6) = 6

bcval(6) = 0 ;
b cd of(7)= ll;
bcval(7)=0;
bcdof(8)=16;
bcval(8) = 0 ;
bcdof(9)=21;
bcval(9)=0;
bcdof(1 0) = 2 2 ;
bcval(10)=38.2683;
bcd of(ll)=23;
bcval(ll)=70.7107;
bcdof(12)=24;
bcval(12)=92.3880;

1 —OK. ̂—ли,

bcval(13)=100;
%
%---
% initialization of matrices and vectors
%---

% first
% whose
% second
% whose

% third
% whose

% 4th
% whose

% 5th
% whose

% fit.h

node is constrained
described value is 0

node is constrained
described value is 0

node is constrained
described value is 0

node is constrained
described value is 0

node is constrained
described value is 0

ппЛа is mnsfrainprl

% whose described value is 0

% 1 1 th node is constrained
% whose described value is 0

% 16th node is constrained
% whose described value is 0

% 2 1 st node is constrained
% whose described value is 0

% 2 2 nd node is constrained
% whose described value is 38.2683

% 23rd node is constrained
% whose described value is 70.7107

% 24th node is constrained
% whose described value is 92.3880

Otv4-Vi nл/J a/и «uiiii uuuc io ^uusiiiaiiicu

% whose described value is 1 0 0

ff=zeros(sdof,l); % initialization of system force vector

Section 5.9 MATLAB Application to 2-D Steady State 111

kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,l); % initialization of index vector
%
%--
% computation of element matrices and vectors and their assembly
%--
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(ieI,l); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2); % coord values of 1st node
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=ecoord(ndf3^.1^: v3=gcoord(nd(3').2l; % coord values of 3rd nodeW \ \ / • / ’ f W \ \ f I r ■

%
index=feeldof(nd,nnel,ndof); % extract system dofe for the element
%
k=felp2dt3(xl,yl,x2,y2,x3,y3); % compute element matrix
%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end

%-
% apply boundary conditions
% ---

[kk,ff]=feaplyc2 (kk,ff, bcdof, bcval);
%
%------------------------------------
% solve the matrix equation
%------------------------------------
fsol=kk\ff;
%
%------------------------- -
% analytical solution
%----------------------------------

for i=l:nnode
x=gcoord(i,l); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x)/sinh(3.1415927);
end
%

% print both exact and fem solutions
%--
num=l:l:sdof;
store=[num’ feol esoP]
%
%--

Laplace’s and Poisson’s Equations Chapter 5

function pck]=feasmbll(kk,k,index)
%-- ------
% Purpose:
% Assembly of element matrices into the system matrix
%
% Synopsis:
% [kk]=feasmbll(kk,k,index)
%
% Variable Description:
% kk - system matrix
% к - element matri
% index - d.o.f. vector associated with an element
%--
%
edof = length (index);
for i=l:edof
ii=index(i);
for j= l:edof
jj=index(j);
kk(ii,jj)= kk(iijj)-i-k(i j) ;
end
end
%—------ --------~------- — ------ -----------------------------

function [index]=feeldof(nd,nnel,ndof)
%-- --------------------- a------------
% Purpose:
% Compute system dofs associated with each element
%
% Synopsis:
% [index]=feeldof(nd,nnel,ndof)
%
% Variable Description:
% index - system dof vector associated with element tel
% nd - element node numbers whose system dofs are to be determined
% nnel - number of nodes per element
% ndof - number of dofs per node
% --: --— ,—

%
edof = nnel*ndof;
k=0 ;
for i=l:nnel
start = (nd(i)-l)*ndof;
for j= l:ndof
k=k+l;
index(k)=start-(-j;

Section 5.9 MATLAB Application to 2-D Steady State 113

end
end
%—

function [k]=felp2dt3(xl,yl,x2,y2,x3,y3)
%--
% Purpose:
% element matrix for two-dimensional Laplace’s equation
% using three-node linear triangular element
%
% Synopsis:
% [k]=felp2dt3(xl,yl,x2,y2,x3,y3)
%
% Variable Description:
% к - element stiffness matrix (size of 3x3*1
% x l, y l - x and у coordinate values of the first node of element
% x2 , y2 - x and у coordinate values of the second node of element
% x3, y3 - x and у coordinate values of the third node of element
%--
%
% element matrix
%
A=0.5*(x2*y3-|-xl*y2+x3*yl-x2*yl-xl*y3-x3*y2);
% % area of the triangle
к(1,1)=((хЗ-х2)*(хЗ-х2)+(у2-уЗ)*(у2-уЗ))/(4*А);
k(l,2)=((x3-x2)*(xl-x3)+(y2-y3)*(y3-yl))/(4*A);
k(l,3)=((x3-x2)*(x2-xl)+(y2-y3)*(yl-y2))/(4*A);
к(2Д)=к(1 ,2);
W9 aWf7-ir1_'ir.4*/Vl_Y -̂L^3-wn*/V4-VlU/r,d*AV-—j I VJ“ j -4 \J “ •̂-)1
k(2,3)=((xl-x3)*(x2-xl)+(y3-yl)*(yl-y2))/(4*A);
k(3,l)=k(l,3);
k(3,2)=k(2,3);
k(3,3)=((x2-xl)*(x2-xl)+(yl-y2)*(yl-y2))/(4*A);

% ..- ..-

The finite element and analytical solutions are compared below:
store =
dof # fem sol exact
1.0000 0.0000 0.0000 % at x=0.00 and y=0.0
2.0000 0.0000 0.0000 % at x=1.25 and y—0.0
3.0000 0.0000 0.0000 % at x=2.50 and y=0.0
4.0000 0.0000 0.0000 % at x=3.75 and y=0.0
5.0000 0.0000 0.0000 % at x=5.00 and y=0.0
6.0000 0.0000 0.0000 % at x=0.00 and y=2.5
7.0000 3.6896 2.8785 % at x=1.25 and y=2.5
8.0000 6.5689 5.3187 % at x=2.50 and y=2.5

114 Laplace’s and Poisson’s Equations Chapter 5

< ►-----------<

< Q >

|-----------1

&

»---------- 1

©

>---------- о

© <0> <g>

© © ©

CD

i

®
>-----------1

<D
> - 1

©
> < >

Figure 5.9 .2 Mesh With Bilinear Elements

9.0000 8.4046 6.9492 % at И II СП and y=2.5
10.000 9.0361 7.5218 % at x=5.00 and y=2.5
11.000 0.0000 0.0000 % at x=0.00 and y=5.0
12.000 10.621 7.6257 % at x=1.25 and y=5.0
13.000 17.312 14.090 % at x=2.50 and y=5.0
14.000 21.626 18.410 % at x=3.75 and y=5.0
15.000 23.124 19.927 % at x=5.00 and y=5.0
16.000 0.0000 0.0000 % at x=0.00 and y=7.5
17.000 14.044 17.324 % at x=1.25 and y=7.5
18.000 37.568 32.010 % at x=2.50 and y=7.5
19.000 46.108 41.823 % at x=3.75 and y=7.5
20.000 49.199 45.269 % at x=5.00 and y=7.5
21.000 0.0000 0.0000 % at x=0.00 and y= 10 .
22.000 38.268 38.268 % at x=1.25 and y= 10 .
23.000 70.711 70.711 % at x=2.50 and y= 10 .
24.000 92.388 92.388 % at x=3.75 and y = l0 .
25.000 100.00 100.00 % at x=5.00 and y= 10 .

t

4> Example 5.9.2 We solve the same problem as given in Example 5.9.1
using bilinear rectangular elements. The mesh is shown in Fig. 5.9.2 and the
MATLAB programs are listed below.

%--------------
% EX5.9.2.m

Section 5.9 MATLAB Application to 2-D Steady State 115

% to solve the two-dimensional Laplace equation given as
% u,xx + u,yy = 0, 0 < x < 5 , 0 < y < 1 0
% u(x,0) = 0 , u(x,10) = 100sin(pi*x/10),
% u(0,y) = 0, u,x(5,y) = 0
% using bilinear rectangular elements
%(see Fig. 5.9.2 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dob associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dob in bcdof
%---
%
%--
% input data for control parameters
%--
nel=16; % number of elements
nnel=4; % number of nodes per element
ndof=l; % number of dofe per node
nnode=25; % total number of nodes in system
sdof=nnode*ndof; % total system dofe
%
%---
% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%---
gcoord(l,l)=0 .0 ; gcoord(l,2)=0.0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=0.0;
gcoord(4,l)=3.75; gcoord(4,2)=0.0;
gcoord(5,l)=5.0; gcoord(5,2)=0.0;
ecoord(6.lW0.0: gcoord(6.2)=2.5:U \ • S »«_» \ ’ / f
gcoord(7,l)=1.25; gcoord(7,2)=2.5;
gcoord(8,l)=2.5; gcoord(8,2)=2.5;
gcoord(9,l)=3.75; gcoord(9,2)=:2.5;
gcoord(10,l)=5.0; gcoord(10,2)=2.5;
gcoord(ll,l)=:0.0; gcoord(ll,2)=5.0;
gcoord(12,l)=1.25; gcoord(12,2)=5.0;
gcoord(13,l)=2.5; gcoord(13,2)=5.0;
gcoord(14,l)=3.75; gcoord(l4,2)=5.0;
gcoord(15,l)=5.0; gcoord(15,2)=5.0;

Laplace’s and Poisson’s Equations Chapter 5

gcoord(16,l)=0.0; gcoord(16,2)=7.5;
gcoord(17,l)=1.25; gcoord(17,2)=7.5;
gcoord(18,l)=2.5; gcoord(18,2)=7.5;
gcoord(19,l)=3.75; gcoord(19,2)=7.5;
gcoord(20,l)=5.0; gcoord(20,2)=7.5;
gcoord(2 1 ,l)= 0 .0 ; gcoord(21 ,2)= 10 .;
gcoord(22,l)=1.25; gcoord(22,2)=10.;
gcoord(23,l)=2.5; gcoord(23,2)=10.;
gcoord(24,l)=3.75; gcoord(24,2)=10.;
gcoord(25,l)=5.0; gcoord(25,2)=10.;
%
%--
% input data for nodal connectivity for each element
% nodes(ij) where i-> element no. and j-> connected nodes
%--------U ---

L; nodes(l,2)=2; nodes(l,3)=7; nodes(l,4)=6;
J; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
I; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
1; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
>; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=ll;
Г; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
3; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;

nodes(8,l)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
nodes(9,l)= ll; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=16;
nodes(10,l)=12; nodes(10,2)=13; nodes(10,3)=18; nodes(10,4)=17;
nodes(ll,l)= 13; nodes(ll,2)=14; nodes(ll,3)=19; nodes(ll,4)=18;
nodes(12,l)=14; nodes(12,2)=15; nodes(12,3)=20; nodes(12,4)=19;
nni1ps/is n=1fi' n n rW ia 2 t 1 7 ' rinrl(*sf1 Я.3^=22: nndpsf 1 3 4W 21 • ---, ------------------------- ---------------------- ------------- , -------

nodes(l,l)= l
nodes(2 ,l)= 2;
nodes(3,l)=3;
nodes(4,l)=4;
nodes(5,l)=6;
nodes(6,l)=7;
nodes(7,l)=8;

nodes(14,l)=17;
nodes(15,l)=18;
nodes(16,l)=19;
%
%-

nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22;
nodes(15,2)=19; nodes(15,3)=24; nodes(15,4)=23;
nodes(16,2)=20; nodes(16,3)=25; nodes(16,4)=:24;

% input data for boundary conditions
%--
bcdof(l)=l;
bcval(l)=0 ;
bcdof(2)= 2 ;
bcval(2)=0 ;
bcdof(3)=3;
bcval(3)=0;

___A♦

bcval(4)=0;
bcdof(5)=5;
bcval(5)=0;
bcdof(6)=6 ;
bcval(6)=0 ;
bcdof(7)=ll;

% first
% whose
% second
% whose

% third
% whose

f\) l li l l
% whose

% 5th
% whose

% 6th
% whose

% 11 th

node is constrained
described value is 0
node is constrained
described value is 0
node is constrained
described value is 0
пЛ/Ia io 1LVUV Id
described value is 0
node is constrained
described value is 0
node is constrained
described value is 0
node is constrained

Section 5.9 MATLAB Application to 2-D Steady State 117

bcval(7)=0;
bcdof(8)=16;
bcval(8)=0 ;
bcdof(9)=21;
bcval(9)=0;
bcdof(10)=22;
bcval(10)=38.2683;
bcdof(ll)=23;
bcval(ll)=70.7107;
bcdof(12)=24;
bcval(12)=92.3880;
bcdof(13)=25;
bcval(13)=100;
%
%---------------------

% whose described value is 0
% 16th node is constrained

% whose described value is 0
% 21st node is constrained

% whose described value is 0
% 22nd node is constrained

% whose described value is 38.2683
% 23rd node is constrained

% whose described value is 70.7107
% 24th node is constrained

% whose described value is 92.3880
% 25th node is constrained

% whose described value is 100

% initialization of matrices and vectors
%--
%
ff=zeros(sdof,l);
kb —ЧоТле(a

U O yO V lV lfO U V A J j

index=zeros(nnel*ndof,l);
%
%------------------------------

% initialization of system force vector
finn A'f CVÔ -ATV) m 4 + i>iv f \ J UilVlUiUllUVlVlL VI OJ ОWUL lliaV A lA

% initialization of index vector

% computation of element matrices and vectors and their assembly
%---
for iel=l:nel
%
for i=l:nnel
nd(i)=nodes(iel,i);
x(i)=gcoord(nd(i),l);
1J /l \ — ГГ/'ПЛ1>«4J \L)—
end
%
xieng = x(2)-x(l);
yleng = y(4)-y(l);
index=feeldof(nd,nnel,ndof);
%
k=felp2dr4(xleng,yleng);
%
kk=feasmbll(kk,k,index);
%
end
%
%-------------------------------------
% apply boundary conditions
%-------------------------------------
[kk,fF]=feaplyc2 (kk,ff, bcdof, bcval);
%

% loop for the total number of elements

% loop for number of nodes per element
% extract connected node for (iel)-th element

% extract x value of the node
W, nvfvQ ТГ it& liia f l i e ti n/] a/ U ^AUlOi^V J T UdU ̂ Vi. VilC 1IUUC

Yo length of the element in x-axis
% length of the element in y-axis

% extract system dofs for the element

% compute element matrix

% assemble element matrices

Laplace’s and Poisson’s Equations Chapter 5

%-------------------------------- —
% solve the matiix equation
%--------------------------------------- -
fsol=kk\ff;
%
%----------------------------------
% analytical solution
%----------------------------------
for i=l:nnode
x=gcoord(i,l); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x)/sinh(3.1415927);
end
%

% print both exact and fem solutions
%---
num=l:l:sdof;
store=[num’ fsol esol’]
%

function [k]=felp2dr4(xleng,yleng)
%--
% Purpose:
% element matrix for two-dimensional Laplace’s equation
% using four-node bilinear rectangular element
%
% Synopsis:
% [k]=felp2dr4(xleng,yleng)
%
% Variable Description:
% к - element stiffness matrix (size of 4x4)
% xleng - element size in the x-axis
% yleng - element size in the y-axis
%--
%
% element matrix
%
k(l,l)=(xleng*xleng+yleng*yleng)/(3*xleng*yleng);
k(1.2 W (xlene*xlenc-2 *vlene*vlene) / (6*xlene*vlene^:

v •— / \ -------О ---------------О - «■»-----U f -------------О/ f \ - ------- ^ ̂ -------О/ •

k(l,3)= -0.5*k(l,l);
k(l ,4)=(yleng*yleng-2 *xleng*xleng) / (6*xleng*yleng);
k(2,l)=k(l,2); k(2,2)=k(l,l); k(2,3)=k(l,4); k(2,4)=k(l,3)
k(3,l)=k(l,3); k(3,2)=k(2,3); k(3,3)=k(l,l); k(3,4)=k(l,2)
k(4,l)=k(l,4); k(4,2)=k(2,4); k(4,3)=k(3,4); k(4,4)=k(l,l)
%---

Section 5.10 MATLAB Application to Axisymmetry 119

The finite element solution is shown below. The same number of nodes were
used for this case as that in the previous example. By comparing the two finite
element solutions using either linear triangular elements or bilinear rectangular
elements, we see that the rectangular elements produced more accurate solution
in the present example.

store —
d o f# fem sol exact
1.0000 0.0000 0.0000 % at x=0.00 oоII>>т?rt&

2.0000 0.0000 0.0000 % at x=1.25 ооIIТЗи

3.0000 0.0000 0.0000 % at x=2.50 and у= 0.0
4.0000 0.0000 0.0000 % at x=3.75 and у= 0.0
5.0000 0.0000 0.0000 % at x=5.00 and у= 0.0
6.0000 0.0000 0.0000 % at x=0.00 and у=2.5
7 ПЛПП 1 .uuuu О fiOflO«•UUUU о o7oi;UiU I uu w/V*» fan ^—1 OKЛ— /1 1>_о К. aiiu у —л.и
8.0000 4.9683 5.3187 % at x=2.50 and у=2.5
9.0000 6.4914 6.9492 % at x=3.75 and у=2.5
10.000 7.0263 7.5218 % at x=5.00 and у—2.5
11.000 0.0000 0.0000 % at x=0.00 and у=5.0
12.000 7.2530 7.6257 % at x=1.25 and у—5,0
13.000 13.402 14.090 % at x=2.50 and у=5.0
14.000 17.510 18.410 % at x=3.75 and у=5.0
15.000 18.953 19.927 % at x=5.00 and у=5.0
16.000 0.0000 0.0000 % at x=0.00 and у=7.5
17.000 16.876 17.324 % at x=1.25 and у=7.5
18.000 31.182 32.010 % at x=2.50 and у=7.5
19.000 40.742 41.823 % at x=3.75 and у=7.5
20.000 44.098 45.269 % at x=5.00 and у=7.5
21.000 0.0000 0.0000 % at x=0.00 and у= 10 .
22.000 38.268 38.268 % at x=1.25 and у= 10 .
23.000 70.711 70.711 % at x=2.50 and у= 10 .
24.000 92.388 92.388 % at x=3.75 and у= 10 .
25.000 100.00 100.00 % at x=5.00 and у= 10 .

t

5.10 MATLAB Application to Axisymmetric Analysis

This section shows an example of an axisymmetric steady state problem using
MATLAB programs. Linear triangular elements are used.

£ Example 5.10.1 An axisymmetric Laplace equation is solved using
linear triangular elements. The governing equation is given in Eq. (5.7.2) for a
cylinder whose inside and outside radii are 4 and 6 , and whose height is 1 . The
finite element mesh used for the present analysis is shown in Fig. 5.10.1. The
boundary conditions are и = 100 at the inside of the cylinder and ^ = 20

120 Laplace’s and Poisson’s Equations Chapter 5

Figure 5 .10 .1 An Infinite Cylinder Modeled With Symmetric Boundaries

at the outside of the cylinder. Both top and bottom surfaces of the cylinder
have §7 = 0, i.e. insulated. Ten triangular elements with 12 nodes are used
and the MATLAB programs are provided below. As seen in the main program,
the constant flux at the outside surface is converted into the nodal flux at the
outside surface. Each node takes a half of the total flux over the element which
is 2Trrql = 2407Г where r= 6 , q= 20 and /=1 as explained in Sec. 5.7.

%-
% EX5.10.1.m
% to solve the axisymmetric Laplace equation given as
% u,rr + (u,r)/r + u,zz =0, 4 < r < 6 , 0 < z < l
% u(4,z) = 100, u,r(6 ,z) = 20
% u,z(r,0) = 0 , u,z(r,l) = 0
% using linear triangular elements
%(see Fig. 5.10.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval ~ a vector соntdining boundary condition values associated with
%
Го-

the dofs in bcdof

%-
% input data for control parameters
%---

Section 5.10 MATLAB Application to Axisymmetry 121

nel=10 ;
nnel=3;
ndof=l;
nnode=12 ;
sdof=nnode*ndof;
%
%--------------------

% number of elements
% number of nodes per element

% number of dois per node
% total number of nodes in system

% total system dob

% input data for nodal coordinate values
% gcoord(ij) where i-> node no. and j-> x or у
%--
gcoord(l,l)=4.0; gcoord(l,2)=0.0; gcoord(2,l)=4.0; gcoord(2,2)=1.0;
gcoord(3,l)=4.4; gcoord(3,2)=0.0; gcoord(4,l)=4.4; gcoord(4,2)=1.0;
gcoord(5,l)=4.8; gcoord(5,2)=0.0; gcoord(6,l)=4.8; gcoord(6,2)=1.0;
gcoord(7,l)=5.2; gcoord(7,2)=0.0; gcoord(8,l)=5.2; gcoord(8,2)=1.0;
gcoord(9,l)=5.6; gcoord(9,2)=0.0; gcoord(10,l)=5.6; gcoord(10,2)=:1.0;
gcoord(ll,l)= 6 .0 ; gcoord(ll,2)=0 .0 ; gcoord(12 ,l)= 6.0 ; gcoord(12 ,2)= 1 .0 ;
%
%-- ---------------
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%--
nodes(l,l)= l; nodes(l,2)=4; nodes(l,3)=2;
nodes(2,l)=l; nodes(2,2)=3; nodes(2,3)=4;
nodes(3,l)=3; nodes(3,2)=6; nodes(3,3)=4;
nodes(4,l)=3; nodes(4,2)=5; nodes(4,3)=6;
nodes(5,l)=5; nodes(5,2)=8; nodes(5,3)=6;
nodes(6,l)=5; nodes(6,2)=7; nodes(6,3)=8;
nodes(7,l)=7; nodes(7,2)=10; nodes(7,3)=8;
nodes(8,l)=7; nodes(8,2)=9; nodes(8,3)=10;
nodes(9,l)=9; nodes(9,2)=12; nodes(9,3)=10;
nodes(10,l)=9; nodes(10,2)=ll; nodes(10,3)=12;
%
%--
% input data for boundary conditions
%--
bcdof(l)=l;
bcval(l)=100 ;
bcdof(2)=2 ;
bcvalf2)= 100 :\ f r
%
%---------------

% first node is constrained
% whose described value is 100

% second node is constrained
% whose described value is 100

% initialization of matrices and vectors
%--
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
index=zeros (nnel*ndof, 1);
%
pi=4*atan(l);

initialization of system force vector
% initialization of system matrix

% initialization of index vector

% define pi

122 Laplace’s and Poisson’s Equations Chapter 5

f f (l l)= 120*pi; % nodal flux at the outside boundary
ff(12)= 120*pi; % nodal flux at the outsdie boundary
%
%---
% computation of element matrices and vectors and their assembly
%---
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(iel,l); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
rl=gcoord(nd(l),l); zl=gcoord(nd(l),2); % coordinate of 1st node
r2=gcoord(nd(2),l); z2=gcoord(nd(2),2); % coordinate of 2nd node
i3=KC00rdfndf’3').l'); z3=gcoordfndf3').2'l: % coordinate of 3rd node

v-r Л Л / ' / ' *-» Л \ / ' / '

%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=felpaxt3(rl,zl,r2,z2,r3,z3); % compute element matrix
%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end
%
%---------------------------------------
% apply boundary conditions
%---------------------------------------
[kk,fF]=feaplyc2 (kk,ff, bcdof, bcval);
%
%---------------------------------------
% solve the matrix equation
%---------------------------------------
fsol=kk\fF;
%
%-----------
% analytical solution
%---------------------------------
for i=l:nnode
r=gcoord(i,l); z=gcoord(i,2);
esol(i)=100-6*20*log(4)+6*20*log(r);
end
%
Of
/ 0 ---

% print both exact and fem solutions
%--
num=l:l:sdof;
store=[num’ feol esol’]
%
%-------------------------

Section 5.10 MATLAB Application to Axisymmetry 123

function [k]=felpaxt3(rl ,zl ,12,22,13,23)
%---
% Purpose:
% element matrix for axisymmetric Laplace equation
% using three-node linear triangular element
%
% Synopsis:
% [k]=felpaxt3(rl,zl,r2,z2,r3,z3)
%
% Variable Description:
% к - element stiffness matrix (size of 3x3)
% r l , z l - r and z coordinate values of the first node of element
% i 2, z2 - r and z coordinate values of the second node of element
% r3, z3 - r and z coordinate values of the third node of element
%— ---
%
% element matrix
%
A=0.5*(r2*z3+rl*z2+r3*zl-r2*zl-rl*z3-r3*z2); % area of the triangle
rc=(rl+r2+r3)/3; % r coordinate value of the element centroid
twopirc=8 *atan(1) *rc;
k(l,l)=((r3-r2)*(r3-r2)+(z2-z3)*(z2-z3))/(4*A);
k(l,2)=((r3-r2)*(rl-r3)+(z2-z3)*(z3-zl))/(4*A);
k(l,3)=((r3-r2)*(r2-rl)-+(z2-z3)*(zl-z2))/(4*A);
k(2 ,l)= k (l,2);
k(2,2)=((rl-r3)*(rl-r3)4-(z3-zl)*(z3-zl))/(4*A);
k(2,3)=((rl-r3)*(r2-rl)+(z3-zl)*(zl-z2))/(4*A);
k(3,l)= k(l,3);
k(3,2)=k(2,3);
k(3,3)=((r2-rl)*(r2-rl)-|-(zl-z2)1,t(zl-z2))/(4*A);
k=twopirc*k;
%
%-- ---------------------------

The results axe
store —
d o f# fem sol exact
1.0000 100.000 100.000 % at r=4.0 and z=0.0
2.0000 100.000 100.000 % at r=4.0 and z=1.0
3.0000 111.413 111.437 % at r=4.4 and z=0.0
4.0000 111.444 111.437 % at r=4.4 and z=1.0
c nnnn 1 Ol COO ioi Q/C. n t _л a чп/J r* _ л л*J .uuuu J l^l.U 1 J /и a>lf 1 ---4.U aiLU u.u

6.0000 121.889 121.879 % at r=4.8 and z=1.0
7.0000 131.427 131.484 % at r=5.2 and z=0.0
8.0000 131.501 131.484 % at r=5.2 and z=1.0
9.0000 140.290 140.377 % at r=5.6 and z=0.0
10.000 140.417 140.377 % at r=5.6 and z=1.0
11.000 148.510 148.656 % at r= 6.0 and z=0.0

124 Laplace’s and Poisson’s Equations Chapter 5

У
&u._n
m ~ °

z.o

1.0

u = 1 0O

"1 1 ? ' iz У
О /

*13 У У • 1 5

/ (§) / /<о>
Ю

* У
<§>/

8 У
< 2> /

9 У
а у ■и.= ЮО

У ® / О) /< 3> У ® X

f l u _

m — о

Figure 5 .1 1 .1 Mesh With Triangular Element

Z 3 4 5
1.Z5 2 .5 3.75 5.0

12.000 148.749 148.656 % at r= 6.0 and z=1.0

5 .11 MATLAB Application to Transient Analysis

Examples are given for some transient analyses using MATLAB programs.
Forward difference, backward difference and Crank-Nicolson techniques are used.

ф Example 5 .11.1 The transient Laplace equation as described below
is solved using the forward difference technique for time integration. The
differential equation is

du <92ti d2u ,
at ~ dx2 + dy2 (5.U.1)

over a rectangular domain defined by 0 < X < 5 and 0 < у < 2. The whole
domain has the initial value of и = 0 , and suddenly the left and right boundaries
(i.e. edges with x=0 and x=5) are maintained at и — 100. On the other hand,
the top and bottom boundaries (i.e. edges with y =0 and y=2) are insulated (i.e.
щ = 0). We want to find the solution as a function of time. A finite element
mesh of the domain is shown in Fig. 5.11.1 using 16 linear triangular elements.
The finite element analysis program is shown below.

%--- --------------------------------------
% E X S.ll.l.m
% to solve the transient two-dimensional Laplace’s equation
% u,t = u,xx + u,yy , 0 < x < 5 , 0 < y < 2
% boundary conditions:
% u(0,y,t) = 100, u(5,y,t) = 100,

Section 5.11 MATLAB Application to Transient Analysis 125

% Variable descriptions
% к = element matrix for time-independent term (u,xx + u,yy)

% f = element vector
% kk = system matrix of к
% mm = system matrix of m
% ff = system vector
% fn = effective system vector
% fsol — solution vector
% sol = time history solution of selected nodes
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof — a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

gcoord(l,l)=0 .0 ; gcoord(l,2)=0 .0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=:0.0;
gcoord(4,l)=3.75; gcoord(4,2)=0.0;
gcoord(5,l)=5.0; gcoord(5,2)=0.0;
gcoord(6 ,l)= 0 .0 ; gcoord(6 ,2)= 1 .0 ;
gcoord(7,l)=1.25; gcoord(7,2)=1.0;

% m = element matrix for time-dependent term (u,t)

%

deltt=0 .1 ;
stime=0.0 ;
ftime=10 ;

nel=16
nnel=3
ndof=l
nnode=15;
sdof=nnode*ndof;

ntime=fix((ftime-stime) / deltt);

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofe
% time step size for transient analysis

% initial time
% termination time

% number of time increment

%

Laplace’s and Poisson’s Equations Chapter 5

gcoord(8 ,l)=
gcoord(9,l)=
gcoord(10 ,l)
gcoord(ll,l)
gcoord(12 ,l)
gcoord(13,1)
gcoord(14,l)
gcoord(15,l)
%
%------

2.5; gcoord(8,2)=1.0;
3.75; gcoord(9,2)=1.0;

=5.0; gcoord(10,2)=1.0;
= 0 .0; gcoord(ll,2)=2.0 ;
=1.25; gcoord(12,2)=2.0;
=2.5; gcoord(13,2)=2.0;
=3.75; gcoord(14,2)=2.0;
=5.0; gcoord(15,2)=2.0;

% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%--
nodes(l,l)= l
nodes(2 , l)=2
nodes(3,l)=3
nodes(4,l)=4
nodes(5,l)=l
nodes(6 , l)=2
nodes(7,l)=3
nodes(8,l)=4
nodes(9,l)=6

nodes(l,2)=2; nodes(l,3)=7;
nodes(2,2)=3; nodes(2,3)=8;
nodes(3,2)=4; nodes(3,3)=9;
nodes(4,2)=5; nodes(4,3)=10;
nodes(5,2)=7; nodes(5,3)=6
nodes(6,2)=8; nodes(6,3)=7
nodes(7,2)=9; nodes(7,3)=8
nodes(8,2)=10; nodes(8,3)=9;
nodes(9,2)=7; nodes(9,3)=12;

nodes(10,l)=7; nodes(10,2)=8; nodes(10,3)=13;
nodes(ll,l)= 8 ; nodes(ll,2)=9; nodes(ll,3)=14;
nodes(12,l)=9; nodes(12,2)=10; nodes(12,3)=15
nodes(13,l)=6; nodes(13,2)=12; nodes(13,3)=ll
nodes(14,l)=7; nodes(14,2)=13; nodes(14,3)=12
nodes(15,l)=8; nodes(15,2)=14; nodes(15,3)=13
nodes(16,l)=9; nodes(16,2)=15; nodes(16,3)=14
%
%--
% input data for boundary conditions
%--
bcdof(l)= l;
bcval(l)=100
bcdof(2)=5;
bcval(2)=100
bcdof(3)=6;
bcval(3)=100
bcdof(4)=10;
bcval(4)=100

—11 .
y — A l j

bcval(5)=100
bcdof(6)=15;
bcval(6)=100
%
%--------------

%

%

%

%

%

%

% 1st node is
whose described

% 5th node is
whose described

% 6th node is
whose described

% 10th node is
whose described

Q/л 1 ie
/ V l l b l l I I U U ^ Ю

whose described
% 15th node is

whose described

constrained
value is 100
constrained
value is 100
constrained
value is 100
constrained
value is 100
uvuo vi cu iicu

value is 100
constrained
value is 100

% initialization of matrices and vectors

Section 5.11 MATLAB Application to Transient Analysis 127

%------------------------------
ff=zeros(sdof, 1);
fn=zeros(sdof, 1);
fsol=zeros(sdof, 1);
sol=zeros (2 ,n time+1);
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
index=zeros(nnel*ndof,l);
%
%------------------------------

% initialization of system vector
% initialization of effective system vector

% solution vector
% vector containing time history solution

% initialization of system matrix
% initialization of system matrix

% initialization of index vector

% computation of element matrices and vectors and their assembly
%--
for iel=l:nel
%
nd(l)=nodes(iel,l);
nd(2)=nodes(iel,2);
nd(3)=nodes(iel,3);
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2)
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2)
x3=gcoord(nd(3), 1); y3=gcoord(nd(3),2)
%
index=feeldof(nd,nnel,ndof);
%
k=felp2dt3(xl,yl,x2,y2,x3,y3);
m=felpt2t3(xl ,yl,x2,y2,x3,y3);
%
kk=feasmbl 1 (kk, k,index);
mm=feasmbll(mm,m, index);
%
end
%
%-----------------------------------
% loop for time integration
%-----------------------------------
for in=l:sdof
feol(in)=0 .0;
end
%
sol(l.l)=fsol(8);
sol(2,l)=fsol(9);
%
for it~l:ntime
%
fn=deltt*ff+(mm-deltt*kk)*fsol;
%
[mm,fn]=feaplyc2 (mm,fn,bcdof,bcval);
%
fsol=mm\fn;

% loop for the total number of elements

% 1st connected node for (iel)-th element
% 2nd connected node for (iel)-th element
% 3rd connected node for (iel)-th element

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node

% extract system dofs for the element

% compute element matrix
% compute element matrix

% assemble element matrices
% assemble element matrices

% initial condition

% store time history solution for node no. 8
% store time history solution for node no. 9

% start loop for time integration

% compute effective column vector

% apply boundary condition

% solve the matrix equation

Laplace’s and Poisson’s Equations Chapter 5

%
sol(l,it+ l)= fsol(8); % store time history solution for node no. 8
sol(2,it-(-l)=fsol(9); % store time history solution for node no. 9
%
end
%
%---
% plot the solution at nodes 8 and 9
%---
time=0 :deltt:ntime*deltt;
plot(time,sol(l, :),’*’, time, sol(2 ,
xlabel(’Time’)
ylabel(’Solution at nodes’)
%
%------------------ --------------------------------------- --------------------- --------

function [m]=felpt2t3(xl,yl,x2,y2,x3,y3)
%-- ----------------------------------
% Purpose:
% element matrix for transient term of two-dimensional
% Laplace’s equation using linear triangular element
%
% Synopsis:
% [m]=felpt2t3(xl,yl,x2,y2,x3,y3)
%
% Variable Description:
% m - element stiffness matrix (size of 3x3)
% x l, y l - x and у coordinate values of the first node of element
% x2 , y2 - x and у coordinate values of the second node of element
% x3, y3 - x and у coordinate values of the third node of element
%---
%
% element matrix
%
A=0.5*(x2*y3+xl*y2+x3*yl-x2*yl-xl*y3-x3*y2);

% area of the triangle
%
m = (A/12)* [2 1 1 ;
1 2 1;
1 1 2];
%---

The finite element solutions are plotted in Fig. 5.11.2 and Fig. 5.11.3. Time-
history of nodes 8 and 9 in Fig. 5.11.1 is plotted in both figures. While A t — 0.1
was used for Fig. 5.11.2, A t = 0.12 was used for Fig. 5.11.3. As noticed, the
finite element solution is unstable when A t = 0.12 is used because the forward
difference technique is conditionally stable.

*

Section 5.11 MATLAB Application to Transient Analysis

Figure 5 .1 1 .2 Finite Element Solution With A t= 0.1

Figure 5 .1 1 .3 Finite Element Solution With A t= 0.12

4k Example 5.11.2 The same example as Example 5.11.1 is solved using
bilinear rectangular elements. The mesh is the same as that shown in Fig. 5.11.1
except that 8 rectangular elements are used instead of 16 triangular elements.

%----------------------------------- --------------- ------------------- -----------------
% EX5.11.2.m
% to solve the transient two-dimensional Laplace’s equation
% u,t = u,xx + u,yy , 0 < x < 5 , 0 < y < 2
% boundary conditions:
% u(0,y,t) = 100, u(5,y,t) = 100,
% u,y(x,0 ,t) = 0 , u,y(x,2 ,t) = 0
% initial condition:
% u(x,y,0) = 0 over the domain
% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.1 for the finite element mesh except for

Laplace’s and Poisson’s Equations Chapter 5

% Variable descriptions
% к = element matrix for time-independent term (u,xx + u,yy)
% m = element matrix for time-dependent term (u,t)
% f = element vector
% kk = system matrix of к
% mm = system matrix of m
% ff = system vector
% fn = effective system vector
% fsol = solution vector
% sol = time history solution of selected nodes
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

% input data for nodal coordinate values
% gcoord(i j) where i->node no. and j-> x or у

gcoord(l,l)=0 .0 ; gcoord(l,2)=0.0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=0.0;
gcoord(4,l)=3.75; gcoord(4,2)=0.0;

 ̂ 1 \ R П• R Q\ —fi fl *
g W V lU ^ V fi, y —V.V) j —UlUj

gcoord(6 ,l)=:0 .0 ; gcoord(6 ,2)= 1 .0 ;
gcoord(7,l)=1.25; gcoord(7,2)=1.0;
gcoord(8,l)=2.5; gcoord(8 ,2)= 1 .0 ;
gcoord(9,l)=3.75; gcoord(9,2)=1.0;
gcoord(10,l)=5,0; gcoord(10,2)=1.0;
gcoord(ll,l)= 0 .0 ; gcoord(ll,2)=2 .0 ;

%—
clear

%
nel=8 ;
nnel=4;
ndof=l;
nnode=15;
sdof=nnode*ndof;
deltt=0 .1 ;
stime=0.0 ;
ftime=10 ;
ntime=fix((ftime-stime)/deltt);
%
%-----------------------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% time step size for transient analysis

% initial time
% termination time

% number of time increment

%

Section 5.11 MATLAB Application to Transient Analysis 131

gcoord(l2,l)=1.25; gcoord(12,2)=2.0;
gcoord(13,l)=2.5; gcoord(13,2)=2.0;
gcoord(14,l)=3.75; gcoord(14,2)=2.0;
gcoord(15,l)=5.0; gcoord(15,2)=2.0;
%
%--
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%--
nodes(l,l)= l; nodes(l,2)=2; nodes(l,3)=7; nodes(l,4)=6;
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;

nodes(4,4)=9;
nodes(5,4)=ll;
nodes(6,4)=12;
nodes(7,4)=13;

nodes(4,l)=4; nodes(4,2)=5; nodes(4,3)=10;
nodes(5,l)=6; nodes(5,2)=7; nodes(5,3)=12;
nodes(6,l)=7; nodes(6,2)=8; nodes(6,3)=13;
nodes(7,l)=8; nodes(7,2)=9; nodes(7,3)=14;
nodes(8,l)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
%
%--
% input data for boundary conditions
%--
bcdof(l)=l;
bcval(l)= 100 ;
bcdof(2)=5;
bcval(2)= 100;
bcdof(3)=6;
bcval(3)=100;
bcdof(4)=10;
bcval(4)=100;
bcdof(5)=ll;
bcval(5)=100;
bcdof(6)=15;
bcval(6)= 100;
%
%---------------

% 1st node is constrained
% whose described value is 100

% 5th node is constrained
% whose described value is 100

% 6th node is constrained
% whose described value is 100

% 10th node is constrained
% whose described value is 100

% 11 th node is constrained
% whose described value is 100

% 15th node is constrained
% whose described value is 100

% initialization of matrices and vectors
%--
ff=zeros(sdof,l);
fn=zeros(sdof, 1);
fsol=zeros(sdof,l);
sol=zeros(2 ,ntime+l);
ы_____/„aЛЛ—/iCIUiŜ OUVJÎ UUI
mm=zeros(sdof,sdof);
index=zeros(nnel*ndof, 1);
%
%------------------------------

% initialization of system vector
% initialization of effective system vector

% solution vector
% vector containing time history solution

W m i^ in lin n iin n zi'f s ire io m m nivi vнии сш йаьш и u i ш а к и л

% initialization of system matrix
% initialization of index vector

% computation of element matrices and vectors and their assembly
%---

Laplace’s and Poisson’s Equations Chapter 5

for iel=l:nel
%
nd(l)=nodes(iel,l);
nd(2)=nodes(iel,2);
nd(3)=nodes(iel,3);
nd(4)=nodes(iel,3);

% loop for the total number of elements

% 1st connected node for (iel)-th element
% 2nd connected node for (iel)-th element
% 3rd connected node for (iel)-th element
% 4th connected node for (iel)-th element

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node
% coord values of 4th node

% element size in x-axis
% element size in y-axis

% time-independent element matrix
% transient element matrix

% assemble element matrices
% assemble element matrices

xl=gcoord(nd(l),l); yl=gcoord(nd(l),2)
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2)
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2)
x4==gcoor d (nd(4), 1); у4=gcoord(nd (4) ,2)
xleng=x2-x l;
yleng=y4-yl;
%
index=feeldof(nd,nnel,ndof);%
k=felp2dr4(xleng,yleng);
m=felpt 2r4 (xlen g,y leng);
%
kk=feasmbll(kk,k, index);
mm=feasmbll(mm,m,index);
%
end
%
%-------------------------------------
% loop for time integration
%-------------------------------- -----
%
for in=l:sdof
fsol(in)=0 ,0 ; % initial condition
end
%
sol(l,l)=fsol(8);
sol(2,l)=fsol(9);
%
for it=l:ntime
%
fn=deltt*ff+(mm-deltt*kk)*fsol; % compute effective column vector
%
[mm,fh]=feaplyc2(mm,fn,bcdof,bcval); % apply boundary condition
%
fsol=mm\fh; % solve the matrix equation
%
onlf 1 U-Ll\—-rô lfoV OUl l̂jillTA ̂ — Jj
sol(2,it+l)=fsol(9);
%
end
%
%----------------------------

% store time history solution for node no. 8
% store time history solution for node no. 9

% start loop for time integration

o4ni>a m a n n l i ib n n fnw nn/1 a vm Q/ V Ob U l t lilO V V lj ЗШШШИ Ш1 IIWUC 11U. %J

% store time history solution for node no. 9

% analytical solution at node 8

Section 5.11 MATLAB Application to Transient Analysis

%------------------------------------ ---
pi=4*atan(l);
esol=zer os(1 , ntime+1);
xx=2.5; xl=5;
ii=0 ;
for ti= 0 :deltt:ntime*deltt;
ii= ii+ l;
for i= l :100
esol(ii)=esol(ii)+(l/i)*exp(-i*i*pi*pi*ti/ (xl*xl))*sin(i*pi*xx/xl);
end
end
esol=100-(100*4/pi)*esol;
%
%--
% plot fern and exact solutions at node 8
%--
time=0 :deltt:ntime*deltt;
plot(time,sol(l,:),,*’,time,esol,’- ’);
xlabel(’Time’)
у label (’Solution at nodes’)
%
%---------------- -̂---

function [m]=felpt2r4(xleng,yleng)
%--
% Purpose:
% element matrix of transient term for two-dimensional Laplace’s
% equation using four-node bilinear rectangular element
%
% Synopsis:
% [m]=felpt2r4(xleng,yleng)
%
% Variable Description:
% m - element stiffness matrix (size of 4x4)
% xleng - element size in the x-axis
% yleng - element size in the y-axis
%--
%
% element matrix
%
m=(xleng*yleng/36)*[4 2 1 2 ;
0 4 0 1 .i t 1 id J .?

1 2 4 2;
2 1 2 4];
%--

The finite element solution obtained using rectangular elements is comparable
to that obtained using triangular elements. Figure 5.11.4 compares the finite

134 Laplace’s and Poisson’s Equations Chapter 5

Figure 5 .1 1 .4 Analytical and Finite Element Results at Node 8

Figure 5 .1 1 .5 Time History of Nodes 8 and 9

element solution to the exact solution at node 8 (see Fig. 5.11.1). The finite
element solution approaches the steady state solution slower than the exact
solution. This is due to the very crude mesh in the ^-direction.

t

4k Example 5.11.3 The present example solves the same problem as that
m VI 1?ч»*тп1л К 11 1 nmntr 4 lia JiffavanK a 4nnli Vimlio -fr\l> Iiwia nvtш UAOiiipic t_i.-L-L.-L uoiug vnt ua^A naiu u in c ic u o c ucuuLiijuc lu i biiiic m v^giauiuii.
Because this technique is unconditionally stable, we use a time step size Д t = 0.4
which exceeds the critical time step size for the forward difference technique.
Figure 5.11.5 shows the time-history of nodes 8 and 9.

%---------------
% EX5.11.3.m

Section 5.11 MATLAB Application to Transient Analysis 135

% to solve the transient two-dimensional Laplace’s equation
% u,t = u,xx + u,yy , 0 < x < 5 , 0 < y < 2
% boundary conditions:
% u(0,y,t) = 100, u(5,y,t) = 100,
% u,y(x,0 ,t) = 0 , u,y(x,2 ,t) = 0
% initial condition:
% u(x,y,0) = 0 over the domain
% using linear triangular elements and backward difference method
%(see Fig. 5.11.1 for the finite element mesh)

% f = element vector
% kk = system matrix of к
% mm = system matrix of m
% ff = system vector
% fn = effective system vector
% fsol = solution vector
% sol = time history solution of selected nodes
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof

%
% input data for control parameters
%
nel=16;
nnel=3;
ndof=l;
nnode=15;
sdof= nnode* ndof;
deltt=0.4;
stime=0 .0 ;
ftime=10 ;
ntime=fix((ftime-stime)/deltt);
%

% number of elements
% number of nodes per element

% number of dofe per node
% total number of nodes in system

% total system dofs
% time step size for transient analysis

% initial time
% termination time

% number of time increment

%
% input data for nodal coordinate values
% gcoord(i j) where i->node no. and j-> x or у
%
gcoord(l,l)=0 .0 ; gcoord(l,2)=0 .0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=0.0;

Laplace’s and Poisson’s Equations Chapter 5

gcoord(4,l)=
gcoord(5,l)=
gcoord(6 ,l)=
gcoord(7,l)=
gcoord(8 ,l)=
gcoord(9,l)=
gcoord(10 ,l)
gcoord(ll,l)
gcoord(12 ,l)
gcoord(13,l)
gcoord(14,l)
gcoord(15,l)
%
%-------------

3.75; gcoord(4,2)=0.0;
5.0; gcoord(5,2)=0.0;
0 .0 ; gcoord(6 ,2)= 1 .0 ;
1.25; gcoord(7,2)=1.0;
2.5; gcoord(8,2)=1.0;
3.75; gcoord(9,2)=1.0;

=5.0; gcoord(10,2)=1.0;
= 0 .0 ; gcoord(ll,2)=2 .0 ;
=1.25; gcoord(12,2)=2.0;
=2.5; gcoord(13,2)=2.0;
=3.75; gcoord(14,2)=2.0;
=5.0; gcoord(15,2)=2.0;

% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes

nodes(l,l)= l; nodes(l,2)=2; nodes(l,3)=7
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9
nodes(4,l)=4; nodes(4,2)=5; nodes(4,3)=10;
nodes(5,l)=l; nodes(5,2)=7; nodes(5,3)=6
nodes(6,l)=2; nodes(6,2)=8; nodes(6,3)=7
nodes(7,l)=3; nodes(7,2)=9; nodes(7,3)=8
nodes(8,l)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,l)=6; nodes(9,2)=7; nodes(9,3)=12;
nodes(10,l)=7; nodes(10,2)=8; nodes(10,3)=13;

= 8: nodfisM 1.21=9: n o d esf l 1 ..4^=14r
---------------------- J ---v -------->“■ / ---------J

=9; nodes(12,2)=10; nodes(12,3)=15
=6 ; nodes(13,2)=12; nodes(13,3)=ll
=7; nodes(14,2)=13; nodes(14,3)=12
= 8 ; nodes(15,2)=14; nodes(15,3)=13
=9; nodes(16,2)=15; nodes(16,3)=14

nodes(l 1 j 1)
nodes(12 ,l)
nodes(13,l)
nodes(14,l)
nodes(15,l)
nodes(16,l)
%
%-------
% input data for boundary conditions
%---
bcdof(l)= l;
bcval(l)= 100 ;
bcdof(2)=5;
bcval(2)= 100 ;

—c.UlUUl^U J--U,
bcval(3)= 100 ;
bcdof(4)=10;
bcval(4)=100;
bcdof(5)=ll;
bcval(5)=100;
bcdof(6)=15;

% 1st node is
% whose described

% 5th node is
% whose described

c* й+i._
/и и ш 1IUUC Ю

% whose described
% 10th node is

% whose described
% 11 th node is

% whose described
% 15th node is

constrained
value is 100
constrained
value is 100
n n v i v t n / jbuuavi (uncu
value is 100
constrained
value is 100
constrained
value is 100
constrained

Section 5.11 MATLAB Application to Transient Analysis 137

%
%---------------

bcval(6)=100; whose described value is 100

initialization of matrices and vectors

ff=zeros(sdof, 1);
fn=zeros(sdof,l);
feol=zeros(sdof,l);
sol=zeros(2 ,ntime-f 1);
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
index=zeros(nnel*ndof,l);

% initialization of system vector
% initialization of effective system vector

% solution vector
% vector containing time history solution

% initialization of system matrix
% initialization of system matrix

% initialization of index vector

%---
% computation of element matrices and vectors and their assembly
%---

1 £»1 — 1 ►liol
l Ui 1^1™ X tXLVl

%
nd(l)=nodes(iel,l);
nd(2)=nodes(iel,2);
nd(3)=nodes(iel,3);
xl=gcoord(nd(l),l); yl=
x2=gcoord(nd(2),l); y2=
x3=gcoord(nd(3),l); y3=

4. 1ллт% frtl* t i l А +Л+ q} n llm kaV гЛ olomon^o f \) xw |/ iv i vuv vwua uuuiiy^i u i

& 1st connected node for (iel)-th element
2nd connected node for (iel)-th element

) 3rd connected node for (iel)-th element
=gcoord(nd(l),2)
=gcoord(nd(2),2)
=gcoord(nd(3),2)

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node

index=feeldof(nd,nnel,ndof);
%
k=felp2dt3(xl,yl,x2,y2,x3,y3);
m=felpt2t3(xl,yl,x2,y2,x3,y3);
%
i . i f . i _n/ i _ i _ i ; J . \KK=ieasmDii(KK,K,inaexj;
mm=feasmbll (mm,m,index);

% extract system dofe for the element

% compute element matrix
% compute element matrix

% assemble element matrices
% assemble element matrices

end
%

% loop for time integration
%-
for in=l:sdof
feol(in)=0 .0;
end
%
sol(l,l)=feol(8);
sol(2,l)=fcol(9);
%
kk=mm+deltt*kk;

% initial condition

% sol contains time-history solution of node 8
% sol contains time-history solution of node 9

for it=l:ntime

138 Laplace’s and Poisson’s Equations Chapter 5

uoo=50 convection coefficient — 100

11 12 13 14 15

u=300
© ©

6
Ф

7 8
(3)

9

2 3 4
insulated
0.02m

Figure 5 .1 1 .6 Finite Element Mesh

u=300
10

0.01m

% compute effective column vector

% apply boundary condition

% solve the matrix equation

fn=deltt*ff+mm*fsol;
%
[kk,fn]=feaplyc2(kk,fn,bcdof,bcval);
%
feol=kk\fn;
%
sol(l,it+l)=feol(8); % sol contains time-history solution of node 8
sol(2,it+l)=feol(9); % sol contains time-history solution of node 9
%
end
%
%---
% plot the solution at nodes 8 and 9
%---
time=0: delt t :ntime*deltt;
plot(time,sol(1 ,:), ’* ’,time,sol(2,:),’- ’);
xlabel(’Time’)
ylabel(’Solution at nodes’)
%

4k E x am p le 5 .1 1 .4 A plate of size 0.02 m by 0.01 m, whose heat conduction
coefficient is Ar = 0.3 W/mC, is initially at a temperature of 300 C. While its left
and right sides are maintained at the same temperature of 300 C, the bottom
side is insulated and the top side is subjected to heat convection with convection
coefficient of hc = 100 W/m2 С and the ambient temperature of 50 C. The
material has also density ^>=1600 Kg/m2 and specific heat c=0.8 J/KgC. The

Section 5.11 MATLAB Application to Transient Analysis

Figure 5 .1 1 .7 Time History Plot

MATLAB program using the backward difference technique is listed below and
the mesh is shown in Fig. 5.11.6. The time-history of the solution of node 8 is
given in Fig. 5.11.7.

%---

% EX5.11.4.m
% to solve the transient two-dimensional Laplace’s equation
% a*u,t = u,xx + u,yy , 0 < x < 0 .02 , 0 < у < 0.01
% boundary conditions:
% u(0,y,t) = 300, u(0.02,y,t) = 300,
% u,y(x,0,t) = 0, u,y(x,0.01,t) = 20(u-50)
% initial condition:
% u(x,y,0) = 0 over the domain
% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.6 for the finite element mesh)
%
% Variable descriptions
% к = element matrix for time-independent term (u,xx -f u,yy)
% m = element matrix for time-dependent term (u,t)
% f = element vector
% kk = system matrix of к
% mm = system matrix of m
% ff = system vector
% fn = effective system vector
% feol = solution vector
% sol = time-history solution vector of selected nodes
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof

Laplace’s and Poisson’s Equations Chapter 5

% k l = element matrix due to Cauchy-type flux
% f l = element vector due to flux boundary condition
% indexl = index for nodal dofe with flux

%--
gcoord(l,l)=0 .0 ; gcoord(l,2)=0.0 ;
gcoord(2,l)=0.005; gcoord(2,2)=0.0;
ecoord(3_11=0.010 : ecoordf3.21= 0 .0 :О-------- \~7 — / --------f O - - ■ -J
gcoord(4,l)=0.015; gcoord(4,2)=0.0;
gcoord(5,l)=0.020; gcoord(5,2)=0.0;
gcoord(6,l)=0.0; gcoord(6,2)=0.005;
gcoord(7,l)=0.005; gcoord(7,2)=0.005;
gcoord(8,l)=0.010; gcoord(8,2)=0.005;
gcoord(9,l)=0.015; gcoord(9,2)=0.005;
gcoord(10,l)=0.020; gcoord(10,2)=0.005;
gcoord(ll,l)= 0 .0 ; gcoord(ll,2)=0 .0 1 ;
gcoord(12,l)=0.005; gcoord(12,2)=0.01;
gcoord(13,l)=0.010; gcoord(13,2)=0.01;
gcoord(14,l)=0.015; gcoord(14,2)=0.01;
gcoord(15,l)=0.020; gcoord(15,2)=0.01;
%

% input data for nodal connectivity for each element
% nodes(ij) where i*> element no. and j-> connected nodes

nodes(l,l)= l; nodes(l,2)=2; nodes(l,3)=7; nodes(l,4)=6;
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;

%—
clear

%
nel=8 ;
nnel=4;
ndof=l;
nnode=15;
sdof=nnode*ndof;
deltt=0.1 ;
stime=0 .0;
ftime=1 .0 ;
ntime=fix ((ftime-stime) / deltt);
a=4266.7;
nf=4;
nnels=2 ;

% number of elements
% number of nodes per element

% number of dofe per node
% total number of nodes in system

% total system dofe
% time step size for transient analysis

% initial time
% termination time

% number of time increment
% coefficient for the transient term

% number of element boundaries with flux
% number of nodes per side of each element

%
%---
% input data for nodal coordinate values
% gcoord(ij) where i-> node no. and j-> x or у

%

Section 5.11 MATLAB Application to Transient Analysis 141

nodes(4,l)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,l)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=ll;
nodes(6,l)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,l)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,l)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
%
%---
% input data for boundary conditions

bcdof(l)=l;
bcval(l)=300;
bcdof(2)=5;
bcvat(2)=300;
bcdof(3)=6;
bcval(3)=300;
bcdof(4)=10;
bcval(4)=300;
bcdof(5)=ll;
bcval(5)=300;
bcdof(6)=15;
bcval(6)=300;
%
%---------------

% 1st node is constrained
% whose described value is 300

% 5th node is constrained
% whose described value is 300

% 6th node is constrained
% whose described value is 300

% 10th node is constrained
% whose described value is 300

% 11 th node is constrained
% whose described value is 300

% 15th node is constrained
% whose described value is 300

% input for flux boundary conditions
% nflx(ij) where i-> element no. and j-> two side nodes
%--
n flx (l,l)= ll; nflx(l,2)=12
n fl^ 2 .1 b l2 : nflxf 2.21=13----y - , - , -- , -----\—f — / --
nflx(3,l)=13; nflx(3,2)=14
nflx{4,l)=14; nflx(4,2)=15
%
b=100; c=50; %

% nodes on 1st element side with flux
% nodes on 2nd element side with flux
% nodes on 3rd element side with flux
% nodes on 4th element side with flux

% initialization of matrices and vectors
%--
ff=zeros(sdof,l);
fn=zeros(sdof, 1);
fsol=zeros(sdof, 1);
sol=zer os (1 ,ntime+1);
kk=zeros(sdof,sdof);
mm=zeros (sdof,sdof);
1 n OV—170ТЛС / n n o l 1 ̂•l U U V A — W ^ u u v i UUVI.) X J }

fl=zeros(nnels*ndof, 1);
kl=zeros(nnels*ndof,nnels*ndof);
indexl=zeros(nnels*ndof,l);
%
%---------------------------------------

% system vector
% effective system vector

% solution vector
% time-history of a selected node

% of system matrix
% system matrix

fV UlU^A
% element flux vector

% flux matrix
% flux index vector

% computation of element matrices and vectors and their assembly

142 Laplace’s and Poisson’s Equations Chapter 5

for iel=l:nel
%
nd(1)=nodes(iel, 1);
nd(2)=nodes(iel,2);
nd(3)=nodes(iel,3);
nd(4)=nodes(iel,4);

% loop for the total number of elements

% 1st connected node for (iel)-th element
% 2nd connected node for (iel)-th element
% 3rd connected node for (iel)-th element
% 4th connected node for (iel)-th element

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node
% coord values of 4th node

% element size in x-axis
% element size in y-axis

x 1=gcoord (nd(1), 1); у l=gcoord(nd(l) ,2)
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2)
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2)
x4=gcoord(nd(4), 1); y4=gcoord(nd(4) ,2)
xleng=x2-x l;
yleng=y4-yl;
%
index=feeldof(nd,nnel,ndof);
%
k=felp2dr4(xleng,yleng);
m=a*felpt2r4(xleng,yleng);
%
lrlr—fpaembl 1 /lflf Ir iiiHpyV - v**—»— — ,
mm=feasmbll (mm,m,index);
%
end
%
%---
% additional computation due to flux boundary condition
%---
for ifx= l:nf
%
nds(l)=nflx(ifx,l);

% extract system dofe for the element

% compute element matrix
% compute element matrix

% a ccpmKl p p1 pm on t m a+ri ro cf V v i v i u v i m « u u i v i i w u

% assemble element matrices

nflY / ify
% node with flux BC for (ifx)-th element
% nn^P wifli fliiY ВП fnr PlYIOnff V л - * А. J и 11 v t a v i u v x iv

xl=gcoord(nds(l),l); yl=gcoord(nds(l),2); % nodal coordinate
x2=gcoord(nds(2),l); y2=gcoord(nds(2),2); % nodal coordinate
eleng=sqrt((x2-xl)*(x2-xl)-j-(y2-y l) :!t(y2-yi)); % element side length
%
indexl=feeldof(nds,nnels,ndof); % find related system dofs
%
kl=b*feflxl2(eleng); % compute element matrix due to flux
fl=b*c*fefll(0 ,eleng); % compute element vector due to flux
%
[kk,ff]=feasmbl2(kk,ff,kl,fl,indexl); % assembly
%
end
%
%--
% loop for time integration
%--
for in=l:sdof

Section 5.11 MATLAB Application to Transient Analysis 143

fsol(in)=300.0;
end
%
sol(l)=fsol(8);
%
kk=mm+deltt*kk;
%
for it=l:ntime
%
fn=deltt*fF+mm*fsol;
%
[kk,fn] =fe aplyc2 (kk ,fn ,b cdof, bcval);
%
fsol=kk\fn;

% initial condition

% sol contains time-history solution at node 8

% effective system matrix

sol(it+l)=fsol(8);
%
end
%
%--------------------

% compute effective column vector

% apply boundary condition

% solve the matrix equation

% sol contains time-history solution at node 8

% plot the solution at node 8
%-----------------------------------
time=0 :deltt:ntime*deltt;
plot(time,sol);
xlabel(’Time’)
ylabelf’Solution at the center’)
%
%-----------------------—----—

function [k]=feflxl2(eleng)
%--- -------- ------------
% Purpose:
% element matrix for Cauchy-type boundary such as du/dn=a(u-b)
% using linear element where a and b are known constants.
%
% Synopsis:
% [k]=feflxl2(eleng)
%
% Variable Description:
% к - element vector (size of 2x2)
% eleng - length of element side with given flux
% -- --

%
% element matrix
%
k=(eleng/6)*[2 1 ;

144 Laplace’s and Poisson’s Equations Chapter 5

Figure 5 .1 1 .8 Transient Finite Element Solution

1 2];
%
%—

4k E x am p le 5 .1 1 .5 We use the Crank-Nicolson technique to solve the
following problem.

du d2u d2u
0 M M + w m

The problem domain is the same as that shown in Fig. 5.9.1 and the boundary
conditions are the same as those described in Example 5.9.1. The initial condition
is 100 . The transient solution is plotted in Fig. 5.11.8. The steady state solution
is that obtained in Example 5.9.1. As a result, the present solution must approach
the steady state solution. The program is given below.

%------------------- -------- ------- ------------- ------- ------ ----- ----- -------------- -
% EX5.11.5.m
% to solve the two-dimensional Laplace’s equation given as
% 0.04*u,t = u,xx + u,yy , 0 < x < 5 , 0 < y < 1 0
% ufSr.O'i = 0. u^.lOl = inOsin<m*y/inVr „ — 1 _ J _ 7 _ v — J ----- J --------------------— t --------------------/ I

% u(0,y) = 0, u,x(5,y) = 0
% using linear triangular elements
% (see Fig. 5.9.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector

Section 5.11 MATLAB Application to Transient Analysis 145

% fn = effective system vector
% kn = effective system matrix
% fsol = solution vector
% sol = time-history solution of selected nodes
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%---
gcoord(l,l)=0 .0 ; gcoord(l,2)=0 .0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=0.0;
gcoord(4,l)=3.75; gcoord(4,2)=0.0;
gcoord(5,l)=5.0; gcoord(5,2)=0.0;
gcoord(6,l)=0.0; gcoord(6,2)=2.5;
gcoord(7,l)=1.25; gcoord(7,2)=2.5;
gcoord(8,l)=2.5; gcoord(8,2)=2.5;
gcoord(9,l)=3.75; gcoord(9,2)=2.5;
gcoord(10,l)=5.0; gcoord(10,2)=2.5;
gcoord(ll,l)=0.0; gcoord(ll,2)=5.0;
gcoord(12,l)=1.25; gcoord(12,2)=5.0;
gcoord(13,l)=2.5; gcoord(13,2)=5.0;
gcoord(14,l)=3.75; gcoord(14,2)=5.0;
gcoord(15,l)=5.0; gcoord(15,2)=5.0;
gcoord(16,l)=0.0; gcoord(16,2)=7.5;
gcoord(17,l)=1.25; gcoord(17,2)=7.5;
gcoord(18,l)=2.5; gcoord(l8,2)=7.5;

%—
clear
%--
% input data for control parameters
%
nel=16;
nnel=4;
ndof=l;
nnode=25;
sdof=nnode*ndof;
deltt=0.04;
stime=0.0 ;
ftime=2 ;
n time=fix((ftime-stime)/deltt);
a=0.04;
%

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% time step size for transient analysis

% initial time
% termination time

% number of time increment
% coefficient

%

gcoord(19,l)=3.75; gcoord(19,2)=7.5;
gcoord(20,l)=5.O; gcoord(20,2)=7.5;
gcoord(2 1 ,l)= 0 .0; gcoord(21 ,2)= 10 .;
gcoord(22,l)=l-25; gcoord(22,2)=10.;
gcoord(23,l)=2.5; gcoord(23,2)=10.;
gcoord(24,l)=3.75; gcoord(24,2)=10.;
gcoord(25,l)=5.0; gcoord(25,2)=10.;
%
%---^

% input data for nodal connectivity for each element
% nodes(ij) where i-> element no. and j-> connected nodes
%--
nodes(l,l)= l; nodes(l,2)=2; nodes(l,3)=7; nodes(l,4)=6;
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,l)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,l)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=ll;
nodes(6,l)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,l)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,l)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
nodes(9,l)= ll; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=16;
nodes(10,l)=12; nodes(10,2)=13; nodes(l0,3)=18; nodes(10,4)=17;
nodes(ll,l)= 13; nodes(ll,2)=14; nodes(ll,3)=19; nodes(ll,4)=18;
nodes(12,l)=14; nodes(12,2)=15; nodes(12,3)=20; nodes(12,4)=19;
nodes(13,l)=16; nodes(13,2)=17; nodes(13,3)=22; nodes(13,4)=21;
nodes(14,l)=17; nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22;
nodes(l5,l)=18; nodes(15,2)=19; nodes(l5,3)=24; nodes(15,4)=23;
nnrtesM fi.l 1=1 flr norlpsf 1 fi.2l=2f): nnrteafl 6.31=25: nodssM 6.4-1=24-:-----------V.- '-J*/ ----—-----3—/ ---------1---------------------------------? ------------V,----7 ~ / 7

%
%--
% input data for boundary conditions
%-------------
bcdof(l)=l;
bcval(l)=0 ;
bcdof(2)=2;
bcvaJ(2)=0 ;
bcdof(3)=3;
bcvaJ(3)=0;
bcdof (4)=4;
bcval(4)=0;
bcdof(5)=5;

f tz_П.ULVOl^J }--U J
bcdof(6)=6 ;
bcval(6)=0 ;
bcdof(7)=ll;
bcval(7)=0;
bcdof(8)=16;
bcval(8)=0 ;

Laplace’s and Poisson’s Equations Chapter 5

% 1st node is constrained
% whose described value is 0

% 2nd node is constrained
% whose described value is 0

% 3rd node is constrained
% whose described value is 0

% 4th node is constrained
% whose described value is 0

% 5th node is constrained
К nrli/\OA tr^ lna in П/V TT11UOC Y C U U b io 1/

% 6th node is constrained
% whose described value is 0

% 11 th node is constrained
% whose described value is 0

% 16th node is constrained
% whose described value is 0

Section 5.11 MATLAB Application to Transient Analysis 147

bcdof(9)=2 1 ;
bcval(9)=0;
bcdof(10)=22 ;
bcval(10)=38.2683;
bcdof(ll)=23;
bcval(ll)=70.7107;
bcdof(12)=24;
bcval(12)=92.3880;
bcdof(13)=25;
bcval(13)=100;
%
%------------------------

% 21st node is constrained
% whose described value is 0

% 22nd node is constrained
% whose described value is 38.2683

% 23rd node is constrained
% whose described value is 70.7107

% 24th node is constrained
% whose described value is 92.3880

% 25th node is constrained
% whose described value is 100

initialization of matrices and vectors
%-
ff=zeros(sdof, 1);
fn=zer os (sdof, 1);
fsol=zeros(sdof ,1);
sol=zeros (1 ,ntime+1);
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
kn=zeros(sdof,sdof);
index=zeros(nnel*ndof,l);
%
%------------------------------

% system vector
% effective system vector

% solution vector
% time-history solution

% initialization of system matrix
% initialization of system matrix

% effective system matrix
% initialization of index vector

% computation of element matrices and vectors and their assembly

for iel=l:nel
%
nd(l)=nodes(iel,l)
nd(2)=nodes(iel,2)
nd(3)=nodes(iel,3)
nd(4)=nodes(iel,4)
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2)
x2=gcoord(nd(2), 1); y2=gcoord(nd(2),2)
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2)
x4=gcoord(nd(4),l); y4=gcoord(nd(4),2)
xleng=x2-x l ;
yleng=y4-yl;
%
index=feeldof (nd,nnel,ndof);
%
k=felp2dr4(xleng,yleng);
m=a*felpt2r4(xleng,yleng);
%
kk=feasmbll (kk,k,index);
mm=feasmbll (mm, m, index);
%
end

% loop for the total number of elements

% 1st connected node for (iel)-th element
% 2nd connected node for (iel)-th element
% 3rd connected node for (iel)-th element
% 4th connected node for (iel)-th element

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node
% coord values of 4th node

% element size in x-axis
% element size in y-axis

% extract system dofs for the element

% compute element matrix
% compute element matrix

% assemble element matrices
% assemble element matrices

148 Laplace’s and Poisson’s Equations Chapter 5

%
%-----------------------------------
% loop for time integration
%------------------------
for in=l:sdof
fsol(in)=100 .0 ;
end
%
sol(l)=fsol(13);
%
kn=2*mm+deltt*kk;
%
for it=l:ntime
%
fn=deltt*ff+(2*mm-deltt*kk)*fsol;
%
[kn ,fn]=feaplyc2(kn,fn,bcdof,bcval);
%
fsol=kn\fn;
%
sol(it+l)=fsol(13); % sol contains time-history at node 13

% initial condition

% sol contains time-history solution at node 13

% rnm nntp pffw tivp svstem ma.t.riv

% compute effective vector

% apply boundary condition

% solve the matrix equation

end
%
%—
% plot the solution at node 13
%---------------------------------------

time=0 :deltt:ntime*deltt;
plot(time,sol);
xlabel(’Time’)
ylabel(’Solution at the center’)
%

5 .1 2 M A T L A B A p p lic a tio n to 3-D S te a d y S ta te A n a ly s is

ф E x am p le 5 .1 2 .1 A pyramid shape of three-dimensional domain as seen
in Fig. 5.12.1 is analyzed for the Laplace equation. The bottom face of the
pyramid has specified nodal variables as given in the figure while the side faces
have no flux (i.e. ^ = 0). Four tetrahedral elements are used for the present
three-dimensional analysis. The MATLAB program is also listed.

Section 5.12 MATLAB Application to 3-D Steady State

(0.5,0.5, 1)
= 1OO

=0 xlz =20
L

Figure 5 .1 2 .1 A Pyramid With Four Tetrahedral Elements

% EX5.12.1.m
% to solve the three-dimensional Laplace equation
% for a pyramid shape of domain
% using four-node tetrahedral elements.
% Bottom face has essential boundary condition and the
% side faces are insulated.
%(see Fig. 5,12.1 for the finite element mesh)

% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

%

%

%
%
%--
% input data for control parameters

nnode=6 ;
sd of=n node* ndof;
%

nel=4;
nnel=4;
ndof=l;

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs

Laplace’s and Poisson’s Equations Chapter 5

%---—
% input data for nodal coordinate values
% gcoord(ij) where i-> node no. and j-> x or у
%--
gcoord(l,l)=
gcoord(2 ,l)=
gcoord(3,l)=
gcoord(4,l):
gcoord(5,l)=
gCOOrd(6 ,l):
%
%------------

=0.0 ; gcoord(l,2)=
=1 .0 ; gcoord(2 ,2)=
=0.5; gcoord(3,2)=
=0.0; gcoord(4,2);
=1.0; gcoord(5,2);
=0.5; gcoord(6,2):

=0.0; gcoord(l,3)=0.0
=0 .0 ; gcoord(2,3)=0.0
=0.5; gcoord(3,3)=0.0
=1.0; gcoord(4,3)=0.0
= 1.0; gcoord(5,3)=0.0
=0.5; gcoord(6,3)=1.0

% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%--
nodes(l,l)=4; nodes(l,2)=l; nodes(l,3)=3; nodes(l,4)=6
nodes(2,l)=l; nodes(2,2)=2; nodes(2,3)=3; nodes(2,4)=6
nodes(3,l)=2; nodes(3,2)=5; nodes(3,3)=3; nodes(3,4)=6
nodes(4,l)=5; nodes(4,2)=4; nodes(4,3)=3; nodes(4,4)=6
%
%---
% input data for boundary conditions
/0 ------
bcdof(l)=l; % 1st node is constrained
bcval(l)=0 ; % whose described value is 0
bcdof(2)=2 ; % 2nd node is constrained
bcval(2)= 20; % whose described value is 20
bcdof(3)=4; % 4th node is constrained
bcval(3)=50; % whose described value is 50
bcdof(4)=5; % 5th node is constrained
bcval(4)=100; % whose described value is 100
%
%
% initialization of matrices and vectors
%--
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
index=zeros(nnel*ndof,l);
%
%------------------------------

% system vector
% system matrix

% index vector

computation of element matrices and vectors and their assembly
%--------------------
for ie l= l:0 el
%
nd(l)=nodes(iel,l)
nd(2)=nodes(iel,2)
nd(3)=nodes(iel,3)
nd(4)=nodes(iel,4)

% loop for the total number of elements

% 1st connected node for (iel)-th element
% 2nd connected node for (iel)-th element
% 3rd connected node for (iel)-th element
% 4th connected node for (iel)-th element

x(l)=gcoord(nd(l),l); y(l)=gcoord(nd(l)t2);
z(l)=gcoord(nd(l),3);
x(2)=gcoord(nd(2),l); y(2)=gcoord(nd(2),2);
z(2)=gcoord(nd(2),3);
x(3)=gcoord(nd(3),l); y(3)=gcoord(nd(3),2);
z(3)=gcoord(nd(3),3);
x(4)=gcoord(nd(4),l); y(4)=gcoord(nd(4),2);
z(4)=gcoord(nd(4),3);
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=felp3dt4(x,y,z); % compute element matrix
%
kk=feasmbll(kk,k,index1: % assemble element matrices
%
end
%
%--
% apply boundary conditions
%--------------------------------
[kk,ff]=feaplyc2(kk,ff, bcdof, bcval);
%
%--
% solve the matrix equation
%-------------------------------------
fsol=kk\ff;
%

Section 5.12 MATLAB Application to 3-D Steady State 151

% print both exact and fem solutions
%---
num=l:l:sdof;
store=[num’ fsol]
%
%---

% coordinate of 1st node

% coordinate of 2nd node

% coordinate of 3rd node

% coordinate of 4th node

function [k]=felp3dt4(x,y,z)
%--------------------------------
% Purpose:
% element matrix for three-dimensional Laplace’s equation
% using four-node tetrahedral element
%
% Synopsis:
% [k]=felp3dt4(x,y,z)
%
% Variable Description:
% к - element matrix (size of 4x4)

152 Laplace’s and Poisson’s Equations Chapter 5

% x - x coordinate values of the four nodes
% у - у coordinate values of the four nodes
% z - z coordinate values of the four nodes
%--

%
xbar= [1 x (l) y (l) z(l);
1 x(2) y(2) z(2);
1 x(3) y(3) z(3);
1 x(4) y(4) z(4)];
xinv = inv(xbar);
vol = (l/6)*det(xbar); %
% element matrix
%
k(l,l)=xinv(2,l)*xinv(2,l)+xinv(3,l)*xinv(3,l)+xinv(4,l)*xinv(4,l)
k(l,2)=xinv(2,l)*xinv(2,2)+xinv(3,l)*xinv(3,2)+xinv(4,l)*xinv(4,2)
k(l,3)=xinv(2,l)*xinv(2,3)+xinv(3,l)*xinv(3,3)-|-xinv(4,l)*xinv(4,3)
k(l,4)= xinv(2,l)!,!xinv(214)+xinv(3,l)*xinv(3)4)-|-xinv(4,l)!,'xinv(4,4)
k(2 ,l)= k (l,2);
k(2,2)=xinv(2,2)*xinv(2,2)+xinv(3,2)*xinv(3,2)-f-xinv(4,2)*xinv(4,2)
k(2,3)=xinv(2,2)*xinv(2,3)-l-xinv(3,2)*xinv(3)3)-(-xinv(4,2)*xinv(4)3)
k(2,4)=xinv(2,2)*xinv(2,4)+xinv(3,2)*xinv(3,4)-|-xinv(4,2)*xinv(4,4)
k(3,l)= k(l,3);
k(3,2)=k(2,3);
k(3,3)=xinv(2,3)*xinv(2,3)+xinv(3t3)*xinv(3,3)-|-xinv(4,3)*xinv(4)3);
k(3,4)=xinv(2,3)*xinv(2,4)+xinv(3,3)*xinv(3,4)-|-xinv(4,3)*xinv(4,4);
k(4,l)= k(l,4);
k(4,2)=k(2,4);
кГ4.31=кГ3.41:
—v - 3 " / —\ ~ * - / >

k(4,4)=xinv(2,4)*xinv(2,4)+xinv(3,4)*xinv(3,4)+xinv(4,4)*xinv(4,4);
k=vol*k;
%

The finite element solution is
store =
node no. fem sol
1 .0 0 0 0 0 .0 0 0 0 0

2.0000 20.0000
3.0000 42.5000
4.0000 50.0000
5.0000 100.000
Л Л Л Л ЛO.IFUUU 42.5000

Problems 153

Problems

5.1 Repeat Example 5.1.1 to derive Eq. (5.1.14).

5.2 A square domain is modeled using either one bilinear element or two linear
triangular elements as shown in Fig. P5.2. Compute the system matrix for the
Laplace equation for each discretization.

5.3 Flux through an element boundary is shown in Fig. P5.3. Determine the
equivalent nodal fluxes.

5.4 A uniformly distributed flux is given on a side of a biquadratic element as shown
in Fig P5.4. Compute the boundary integral to determine the equivalent nodal
flux. The interpolation functions for the boundary nodes are

2 (a?) = x(2 — x)

H3(x) = ~ x (x - 1)

5.5 A linear triangular element has three vertices like (» j, y\), (x2) У2) and (хз, y3).
Evaluate Eq. (5.2.26) for the element vector if a concentrated source of
magnitude Q is located at (xs,y s) which lies within the element.

5.6 Explain how to incorporate the boundary condition given at the edge of Fig.
P5.6 into the finite element equation for the Laplace equation.

5.7 Apply the Galerkin method and the Crank-Nicolson method to solve the
following parabolic partial differential equation.

du 1 d2u
Ж - Г о м = 1 0 0 < x < 3

Initially и is 50 all over the domain and the domain is subjected to boundary
conditions it=100 at the left end and = 100e-f at the right end. Using Д<=1,
find the nodal solution at time t= l. The domain is discretized into two linear
elements. As a result, the three nodal points are located at ari=0, x2= l, and
2:3=3 , respectively.

5.8 Redo Prob. 5.7 using the backward difference method.

5.9 For a thermally orthotropic material, the two-dimensional heat conduction
equation is

d (du\ d (du\
dx \ dx J d y \ d y j

where kx and ky are heat conduction coefficients along the orthotropic axes x
and y, respectively. Q is heat generation per unit volume. Develop the element
matrix equation using linear triangular elements.

154 Laplices and Poiseon^ Equations Chapter 5

Figure P6.2 Problem 5,2

Figure Рй.Э

Figure P5«4

5.10 Repeat Example 5-9,1 for various m «b patterns shown in Fig, P5,1Q using the
computer program. Compare the aoiutione at the center of the domain.

5.11 A domain h normalised such that 0< x <1 and Q< у <L Solve the Laplace

Problems 156

Figure РБ.Л Problem 5.6

Figure РйЛО Problem 6,10

equation ovet the domain using the provided program and 16 bilinear elements
(4 dements in the я and у-алвт respectively). The boundary conditions are ti=0
at x= 0t u—lVC s i f —l, si=Q &i y=rf)> and t/-2W at &>—}

5.12 Solve the Laplace equation for the domain shown in Fig, P5.12, The boundary
condition is &leo shown in the figure.

5.13 Redo Prob. $.1L using the transient analysis assuming initial condition u=Q all
over the domain* Use the forward difference time integration technique,

5.14 Redo Prob. f i.ll using the transient analysis assuming initial condition u=0 all
over the domain. Иве the backward difference time integration technique.

5-15 Redo Prob. £.11 using the transient analysis assuming initial condition u=0 all
over the domain, Use the Crank-Nicobon time integration technique,

5 16 Redo Prob, 5.12 using the transient an&lysU with initial eobdition u=400. Uee
the Crank-Nicoteon technique for time integration-

1&6 Liplace’e and Poiasan’s Equations

Insulated
(Ш)

(j*5D

a m >

и=Ш
u=3W (-

■

СЗйЮЗ

Chapter 5

Figure PS .12 Рк*Ые*а £.11

CHAPTER SIX

ISOPARAMETRIC ELEMENTS

6 .1 Ofte-Dimensional Elements

Isoparametric elements [10] use mathematical mapping from one coordinate
system into the other coordinate system. The former coordinate system is called the
Adfriml coordinate system while the latter is called the physical coordinate system.
The problem domain is provided in the physical coordinate system denoted лгцг-аяез
in the following discussion. Oh the other l ^ d , element shape functions aie defined
in terms of the natural coordinate system denoted £rjf'-axeE, As a result, mapping is
needed between the two coordinate system*.

We consider a. linear one-dimensional isoparametric element to discuss the basic
characteristics of isoparametric elements. Multi-dimensional isoparametric elements
will be discussed in the subsequent sections. Shape functions for the isoparametric
element are given in terms of the nafum/ coordinate system as seen in Fig. (5.1 .1 ,
The two nodes are located at £| =. —1.(3 and — I,ffr These nodal ptwitioiitf are
arbitrary but the proposed selection is very useful for numerical integration because
the element in the nafara? coordinate system is normalized between -1 and 1. The
shape functions can he written ш

* i «) = j (i - 0 (e .1 .1)

and

Я»({) = | (1 + 0 (6-1-2)

The physical linear element may be located at any portion in the physical coordinate
system од shown in Fig, 6.1.24 The element has two nodal coordinate values x1 and
fa with corresponding nodal variables ui and щ-

Any point between £i = - 1,0 and £j = 10 щ tht natural coordinate system can
he mapped onto a point between z-\ and z j in the physical coordinate system using
the shape functions defined in Eqs (6.1.1) and (6-1.2).

z = t f ! (0 * i (6.1-3)

157

158 Isoparametric Elements Chapter &

n o d e t n o d e 2 t
--------------------------------1 --- * --

| = - J ^=/

Figure АЛ.1 Linear Element In the Nitor*! Coordinate

“ i *
x i
\-------- **------ 4

Figure 6 .1 .Z Lineir Element in the Physical Qsoidiiiit*

The ваше shape functions are also u*ed to interpolate the variable u within the
element

« = Я 1(0 «1 + В Д)ы , (6Л.4)
If the дате shape functions ftre used for the geometric mapping as well as nodal
variable interpolation such ал Eq? (0,1,3) and (6,1.4)* the element is coJlkd thfi
isopar&Wittnr element.

Id order to compute j| , which IB necessary in moet coses to compute element
matrices, w* u№ the chain rule such that

d« f) .

3; =

Jjb . _ J _ ____

where the expression require ^ which is the invenw? of The latter can be
computed from Eq. (6.1,3).

dx rfHi(£) dH i(0 l,_
= —5e— И14— 5ё— 3 г ' - (1

Substituting Eq, (6.1.6) into &q. (0.1,5) yields

p = — uL + Ц - ч а (6.1.7)
dx i j — xi X? — t j

As a, jreault, derivatives of shape functions with raspect to the physicai coordinate
eyetem are

dH i (0 1 1
dx 13 — Ti ft,
j rr Srf-ч. « 4

4 ^ = —1— = £ (61#)dz — r i Ы
in whidi hi — — t]) is the element size in tlie p^yjtcdi coordinate system,
T h «e derivative values are identical to thoee obtained directly from the lifteei shape
functions expressed in Verms of the physical coordinate system Hite Eqe (2-4.7) and
(2.4. ft).

Section б Л О не-Dimensional Elements 159

nod* f nod* & iu>dr 3
---- ■------------- *--------------*-----
f=-f *=<> f = /

F igure 6 .1 .3 QqMratic iBopar&rcietric Element

Let uu compute the following integral гшпд the Linear isoparametric element

f Va (dtu diz N
/ . , (* = + “ T r t*-1-10»

The integration is in teimb of the phi/stcaJ coordinate system while the integrand
is expressed in terms of the natural coordinate system because isoparametric shape
functions are used for the trial and test functions u and if. Hence, we want to write
the integral in teims of the natural coordinate system To this end, obtain

f 1 f dw db \
A . U s + ^ H (61U)

where J — ^ is called the Jacobean.
Substitution of the iaoparunetnc shape functions for both и and w results in

Ш 1 - .
- l l 1 [{ ! - {) = <1 - ^) 1

U « l (i - t ’) 0 + 0 5J) N l }
Г J_ + ti- bi + 3

- _-L + *i L t. T й ■■“i T
(6- J J 2)

This expression is the same as that obtained from the conveoLiurial l in e » element.
At this point, the isoparametric element do-еэ not seem to have an advantage over

the cotrventiotial element because the isoparametric element requires more procedure»
such as mapping and chain rule. The major advantage of isoparametric elements
ctHiee when SfiaJytica] integration to compute element matrices and column vectors is
either very complicated or almost impossible. This is the case either element shapes
in the physical domain are Dot regular such ay in the multi-dimensional problem
or the differentia] equation ia quite complex. Therefore, the numerical integration
technique ia needed, Because each isoparametric element is defined in terms of the
normalised domain such as — —1 and £a — 1 , it ie much easier to apply any
numerical integration technique The application of numerical integration technique
is discussed Later in this chapter.

& E x a m p le 0 .1 - 1 Lei ua L-uaaider i quadratic one-dimensional isoparametric
dement as seen in Fig fi.1^3, Shtpe functions for thie element *rr

ft2 - О
Н1(0 = ' 5 ~ ^ Л 1 (вЛЛ|>

160 Isoparametric Elements Chapter 6

t f 2(£) = l - £ 2 (6.1.14)

and

The variable и can be interpolated using these shape functions.

« = + -Нг(£)г(2 (6.1.16)

Geometric mapping from the natural coordinate to the physical coordinate is

ж = Hi (0 * 1 + ЯзЮ * 2 + Я з(0 *з (6.1.17)

The Jacobian becomes

J = % = X) = К - °-5)*i - 2?*2 + « + 0.5)», (6.1.18)
at i=1 at

If the mid-node X2 is located between the two end-nodes Xi and £3 (i.e.
x2 = (iCl+!C3))? the Jacobian becomes 4* in which Л,- = «С3 — X\ is the element
length.
Derivatives of the shape functions, Eqs (6.1.13) through (6.1.15), are

l (2 f _ 1} (6 .U 9)
dx J d£ Ы v '

dH2{j) _ 1 dH2 _ 4£
cte J Л* (6 .1.20)

6.2 Quadrilateral Elements

The shape functions for the bilinear isoparametric element are given below:

#i(£,!7) = i (l - 0 (l - » 7) (6 .2 .1)

Я з(« ,Ч)= 4 (> + 0 (1 - 4) <6-2-2)4'
1
4»Я з « , ч)= 7(1 + 0 0 + 4) (6.2.3)

Section 6.2 Quadrilateral Elements 161

7 , - 1
и 3

■Ay II 1 £=i

J 2iT) = ~1

Figure 6 .2 .1 Bilinear Element in the Natural Coordinate

Figure 6 .2 .2 Bilinear Element in the Physical Coordinate

Я4« , ч) = | (1 - 0 (1 + 4) (6.2.4)

for the nodes shown in Fig. 6.2.1. These shape functions are defined in terms of the
normalized natural domain (i.e. — 1 < £ < 1 and — 1 < rj < 1).

While the element shape is a square in the natural coordinate system, it can be
mapped into a general quadrilateral shape with distortion as seen in Fig. 6.2.2. When
this mapping is undertaken, the relative positions of nodal points should be consistent
between the two elements in the natural and physical domains. In other words, the
second node is next to the first node in the counter-clockwise direction and similarly
for the rest of the nodes. Then, a point (£, rj) within the natural element is mapped
into a point (x, y) within the physical element using the shape functions given in Eqs
(6.2.1) through (6.2.4) as shown below:

4

* = (6.2.5)
»=1

4

»=l
(6.2.6)

162 Isoparametric Elements Chapter 6

in which Xi and у,- are the coordinate values of the iih node. Similarly, any physical
variable can be interpolated using the same shape functions.

(6.2.7)
i= 1

in which щ is the nodal variable at node i.
Let us apply this bilinear isoparametric element to the Laplace equation dis­

cussed in Chapter 5. Then, we need to compute дН̂ '^ and дН$у '^ , respectively.
In order to compute these derivatives, we use the chain rule, again.

d _ d дх d dy
d£ ~ d x d t * du Q£ (6.2 .8)

d _ d dx d dy
drj dx drj dy dr}

Rewriting these in the matrix form provides

|2}= fi 2 If}
 ̂ di)) L dq drj J v. dy *

(6.2.9)

(6.2.10)

Here, the derivative shown in the left-hand-side column vector is called local deriva­
tive while that in the right-hand-side column vector is called global derivative. Fur­
thermore, the square matrix in this equation is called the Jacobian matrix for the
two-dimensional domain and denoted as

[J] = J 11 J 12
J n J 22

г dx_ djL
ae ae

dx dy
■ dr] dtl

(6 .2 .11)

The Jacobian matrix can be easily extended for the three-dimensional domain.
Inverse of the Jacobian matrix is denoted by

[R] = [J] ' 1 = Rn R12
R21 # 22

(6 .2 .12)

Then, Eq. (6.2.10) can be rewritten as

f l L U n Д12Н Й 1
l £ j № Rk \ A & S

(6.2.13)

As a result, the derivatives of shape functions with respect to x and у can be obtained
from the above equation.

Г т ё Ч Г Я п dHj
d(
IHi
df)

(,6.2.14)

Section 6.2 Quadrilateral Elements 163

(a.cL)

У

(a,b)

x

(o.b)

Figure 6 .2 .3 Rectangular Element

The components in the Jacobian matrix are computed as shown below:

7 _ ^ _ V "
11 ~ i=1

J 12 =

ae

dy
dt

0Щ (,ч)
ее

ад<(е,1)
se

a g j(e ,4)
dr}

Xi

Уг

= ду _ Л щ , » ;)

дг} h i дг}

(6.2.15)

(6.2.16)

(6.2.17)

(6.2.18)

Substitution of bilinear shape functions, Eqs (6.2.1) through (6.2.4), into the above
expressions yields

J l l = - i (l - !/)*! + ^(1 - 1])X2 + ^(1 + T})x3 - i (l + J])x4

1 1 1 1
J n = - ^ (1 ” v)yi + ^(1 “ Ч)«2 + ^(1 + V)V3 ~ ^(1 + v)V*

J% 1 = - ^ (1 - 0 * 1 “ + 0 * 2 + ^ (1 + 0 * 3 + ^(1 - 0 * 4

J 22 — ' ^ (1 - ()Vl — ^(1 + ОУ2 + ^(1 + 0^3 + ^(1 “ 0^4

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)
These components are in general a function of £ and r). However, they may be constant
for a special case as shown in the following example. Once the Jacobian matrix is
---------- e______ (а о in\ (a о oo\ л _____________________________^uiiiputcu liv in ^jvuai ucuvauvco 1̂ 1 опаре
are computed as

вя̂ е.ч) „ вя,-(е,ч). „ вя,(е,1))
~ ~ в Г ~ = R n ~ 9 T ~ + R l2~ з Г ~
вя,«, ч) „ вя,(е,ч). „ вя,(е,1))
— д^— = b l — Щ— + ^ 2—

(6.2.23)

(6.2.24)

164 Isoparametric Elements Chapter 6

ф E x a m p le 6 .2 .1 Let us compute the Jacobian matrix for the physical
element shown in Fig. 6.2.3. Substituting the nodal coordinate values into Eqs
(6.2.19) through (6.2.22) yields the following matrix.

[J] =
0c—a

2
о *=* (6.2.25)

As seen in this example, the Jacobian matrix becomes a diagonal matrix (i.e.
all off-diagonal components vanish) when the element in the physical domain is
a rectangular shape. In addition, the diagonal components are constant not a
function of £ and T).
The inverse of the Jacobian matrix becomes

ГР1
L"*VJ

2
e—a
0

0
2

d-b

The global derivatives of shape functions become

dHx 1 -Г)
dx 2 (c — a)

№ i - V
dx 2 (c — a)

dHz 1 + rj
dx 2 (c — a)

dH4 I + 17
dx 2 (c — a)

dHx 1 - *
dy 2 (d - b)

dH2 1 + *
dy ~

S'1

1

dH3 i + e
dy ~ 1CM

dH4 i - e
dy 2 (d - b)

(а о
у у

(6.2.27)

(6.2.28)

(6.2.29)

(6.2.30)

(6.2.31)

(6.2.32)

(6.2.33)

(6.2.34)

ф E x a m p le 6 .2 .2 Let us compute the following integral using the same
element as given in Example 6.2.1.

dxdy (6.2.35)

Section 6.2 Quadrilateral Elements 165

Figure 6 .2 .4 Element of Trapezoidal Shape

dxdy

Substitution of Eqs (6.2.27) and (6.2.31) into Eq. (6.2.35) results in

rd r e

'6

The lower and upper limits of the integrals can be changed using

dxdy = | J\d£dr)

/'/•[(6.2.36)

(6.2.37)

where |7| is the determinant of the Jacobian matrix and is equal to (e aXrf b)
for the present element. That is, jj| is a constant value for a rectangular shape
of physical element. Then, we obtain

a : , k h
(c — a)(d — b)

d£dri (6.2.38)

Integration of Eq. (6.2.37) finally yields Ĉ3^-a)(d-b) • $

ф E x am p le 6 .2 .3 Fine the Jacobian matrix for the quadrilateral element
shown in Fig. 6.2.4. Equations (6.2.19) through (6 .2 .22) along with the nodal
coordinate values as specified in the figure yield

[J] = 4 (1 + I?)

1(3+0 (6.2.39)

The determinant of Jacobian is |Jj = which is always positive for
— 1 < £ < 1. Inverting the matrix gives

166 Isoparametric Elements Chapter 6

Figure 6.2 .5 Element of Quadrilateral Shape

The determinant of the Jacobian matrix is 1Л = i(3+€).
In order to compute the integration as given in Eq. (6.2.35) for the present
element, we first compute

8H i
dx

1 - V + (1 “ Ш + 1?)
4

dHl

4(3 + 0

£ - 1
dy 3 + £

The expression for the integral becomes

(6.2.41)

(6.2.42)

f 1 f 1
J-J-r

f i - т , , (i - o (i + ? ?) i 2 , г е - n
LI 4 (з + « ; 1 \ з + 4 / j

(3 + 0 A t ArN “’i

This integral can be conducted analytically. However, if the shape of the physical
element has more severe distortion, the integral becomes more complicated and
may be beyond the analytical computation. Even if analytical integration may
be possible, performing the analytical integration for every element of different
shape is not pratically possible. Therefore, the numerical integration technique
is used along with the isoparametric element. J

ф E xam ple 6.2.4 The physical element has a severe distortion as seen in
Fig. 6.2.5. The corresponding Jacobian matrix is

[J] =
1 1-3»?
2 4

_ 1 l - 3 f
2 4

(6.2.44)

and its determinant is |(2 — 3£ — Зт?). This determinant can be zero or negative
for — 1 < £ < 1 and — 1 < rf < 1. Hence, this shape of element should be
avoided in discretizing the physical domain. J

Section 6.2 Quadrilateral Elements 167

Some other popular quadrilateral isoparametric elements are eight-node and
nine-node elements as shown in Fig. 6.2.6. Their shape functions are given below.

Eight-node element:

Я, = i (l - 0 (1

Яа = j (l + «) (! - ч) (- 1 + е - ч)

Яз = j (l + f) (l + 4) (- l + f + 4)

Я4 = +<?) (- ! - f + l)

^5 = i (l - « 2) (l - 4)

tf6 = i (l + {) (l - 4 2)

^ 7 = j (1 - { 2) (1 + 4)

Ha = \(l - 0 (l - 4 2)

(6.2.45)

(6.2.46)

(6.2.47)

(6.2.48)

(6.2.49)

(6.2.50)

(6.2.51)

(6.2.52)

Nine-node element:

Hi = -A(.e - t)(v2 - v)

я 2 = j « 2 + 0 (i ? 2 - 4)

Яз = ^ « 2 +«)(ч2 + ч)

Я 4 = J « 2 - 0 (ч 2 + ч)

я 5 = i (l - ?2)(1?2 - ч)

я 6 = 2 « 2 + 0 (1 - Ч 2)

1
H r = ~ { i - e) (r i 2 + r1)

я 8 = 5 « 2 - 0 (1 - ч2)

Я , = (1 - { 2)(1 - ч2)

(6.2.53)

(6.2.54)

(6.2.55)

(6.2.56)

(6.2.57)

(6.2.58)

(6.2.59)

(6.2.60)

(6.2.61)

168 Isoparametric Elements Chapter 6

77 = 1
*4 *7 3 {

6.
= - /

i1 tt5 2 t

HIIк
A

v ~ — 1

Figure 6 .2 .6 Eight-Node Isoparametric Element

T) = l
*4 — '

t8 |

7 3

>9 6 t
= - 1

t5 2

e = i

T) = ~ 1

Figure 6 .2 .7 Nine-Node Isoparametric Element

6.3 T riangular Elem ents

Like quadrilateral isoparametric elements, triagular isoparametric elements can
be defined. Shape functions of the linear triangular element are in terms of the natural
coordinate system

tf i = 1 - £ - jj (6.3.1)

Ho =£

H3 = v

(6.3.2^\ ------/

(6.3.3)

for the nodes shown in Fig. 6.3.1. The quadratic triangular element has the following
shape functions with reference to Fig. 6.3.2.

1 = (1 - £ - i j) (l - - 2£ - 2t?) (6.3.4)

я 2 = « 2С - 1) (6.3.5)

Hz = Т7(2т7 - 1) (6.3.6)

H4 = 4£(1 — £ -Ч) (6.3.7)

Section 6.3 Triangular Elements 169

Figure 6 .3 .1 Three-Node Triangular Element in the Natural Coordinate

V

Figure 6 .3 .2 Six-Node Triangular Element in the Natural Coordinate

H5 = 4£ij (6.3.8)

He = 4 ,(1 - (- I,) (6.3.9)

Jft E x am p le 6 .3 .1 Consider an element as shown in Fig. 6.3.3. The Jacobian
matrix for the element is

[J] = *1 У2 - 2/1
*1 Уз - yi

(6.3.10)

and its determinant is |J| = (x2 — Х\){уз — y\) — (x3 — xi)(y% — y\) which
equals twice the triangular area in the physical domain. J

170 Isoparametric Elements Chapter 6

Figure 6.3.3 Three-Node Triangular Element in the Physical Coordinate

6 .4 G au ss Q u a d ra tu re

Integral is defined as

,b n
j f (x)d x = lim ^ ffxA dxi/- n—t-OO

Ja j=l
(6.4.1)

This is shown in Fig. 6.4.1. In the numerical integration, we take a finite number of
calculations. Therefore, Eq. (6.4.1) is approximated as

f b N
/ f (x)d x = ^ f (x i)A x i

;_ 1

(6.4.2)
i=i

where N is a finite number. Rewriting this expression in a general way gives

M
f f(x)dx = ^Tf(xi)Wi

Ja i=l
(6.4.3)

in which M is the number of integration points, Xi is the integration point (or sampling
point), and Wi is called the weighting coefficient. The weighting coefficient can be interpreted
as the width of the rectangular strip whose height is / (x ,) by comparing Eqs (6.4.2) and
(6.4.3). Any numerical integration may be expressed in this form. In order to derive
standard values for the integration points and weighting coefficients, the integration domain
is normalized such that —1 < x < 1. Of course, there are other ways for normalization.

E x a m p le 6 .4 .1 Let us find the proper integration points and weighting
coefficients for the two point trapezoidal rule. The trapezoidal rule gives

= ($ (- !) + 0(1)) (6.4.4)

Section 6.4 Gauss Quadrature 171

Figure 6 .4 .1 Integration

Comparing Eq. (6.4.4) to Eq. (6.4.3) indicates that the integration points for
this case are x\ = — 1 and = 1 while the weighting coefficients are W\ = 1
and W i = 1. t

ф Example 6.4.2 Repeat Example 6.4.1 using Simpson’s | rule with three
point integration. This integration results in

J = | (f f (- l) + 4jr(0) + flr(l)) (6.4.5)

Therefore, we obtain X\ = —1, X2 = О, X3 = 1, W\ — W 2 = and

w i = J. t

Gauss-Legendre quadrature is very useful for integration of polynomial func­
tions. It can integrate a polynomial function of order 2n — 1 using the n-point
quadrature exactly. Integration points and weighting coefficients for Gauss-Legendre
quadrature are provided in Table 6.4.1. Similarly, Table 6.4.2 gives integration points
and weighting coefficients for the triangular domain shown in Fig. 6.3.1 and Fig.
6.3.2. If the integrand is not a polynomial expression, Gauss-Legendre quadrature
gives an approximate result. In this case, an optimal number of integration points
should be selected in consideration of accuracy and computational cost. The next
example shows how to determine the integration points and weighting coefficients for
the Gauss-Legendre quadrature.

ф Example 6.4.3 This example shows a way how to compute the sampling
points and weighting coefficients for GaUss-Legendre quadrature. Let us integrate

Table 6.4.1 Sampling points and weights in Gauss-Legendre numerical integration

Isoparametric Elements Chapter 6

n Int. Point Weight

1 0 . 0.00000 00000 00000 2.00000 00000 00000

2 ±0.57735 02691 89626 1.00000 00000 00000

3 ±0.77459 66692 41483 0.55555 55555 55556

0.00000 00000 00000 0.88888 88888 88889

4 ±0.86113 63115 94053 0.34785 48451 37454

±0.33998 10435 84856 0.65214 51548 62546

5 ±0.90617 98459 38664 0.23692 68850 56189

±0.53846 93101 05683 0.47862 86704 99366

0.0000 00000 00000 0.56888 88888 88889

6 ±0.93246 95142 03152 0.17132 44923 79170

±0.66120 93864 66265 0.36076 15730 48139

±0.23861 91860 83197 0.46791 39345 72691

a cubic polynomial as shown in Fig. 6.4.2. In Gauss-Legendre quadrature, we
want to make the integration o f the cubic polynomial the same as that of a linear
function. In other words, the two different hatched areas in Fig. 6.4.2 are the
same (i.e. Area(A)=Area(B) in Fig. 6.4.2). Then we can write

f 1 2
/ f(x)d x = / g(x)dx = y 2 w sf (x s) (6.4.6)

J-i J- i , =1

where
/ (x) = cto + a.\x + 02a;2 -f a3x3 (6.4.7)

g(x) = c0 + cix (6.4.8)

and W s and xs are the weighting coefficient and sampling point for the two
point Gauss-Legendre quadrature because the two point rule integrates a cubic
polynomial exactly.

Let us rewite the cubic polynomial in the following way.

/ (x) = c0 + Cix + (ж - xi)(x - x2)(60 + fcix) (6.4.9)

In this expression, Si and X2 are fixed constants to be determined later. However,
there are still four general constants Co, c i, 6q and 6i to be determined to make

Table 6.4.2 Numerical integrations over triangular domains

Section 6.4 Gauss Quadrature

Int.

order ^-coordinate ^/-coordinate Weight

0.16666 66666 667 0.16666 66666 667 0.33333 33333 333

3-points 0.66666 66666 667 0.16666 66666 667 0.33333 33333 333

0.16666 66666 667 0.66666 66666 667 0.33333 33333 333

0.10128 65073 235 0.10128 65073 235 0.12593 91805 448

0.79742 69853 531 0.10128 65073 235 0.12593 91805 448

0.10128 65073 235 0.79742 69853 531 0.12593 91805 448

7-points 0.47014 20641 051 0.05971 58717 898 0.13239 41527 885

0.47014 20641 051 0.47014 20641 051 0.13239 41528 885

0.05971 58717 898 0.47014 20641 051 0.13239 41528 885

0.33333 33333 333 0.33333 33333 333 0.22500 00000 000

0.06513 01029 022 0.06513 01029 022 0.05334 72356 088

0.86973 97941 956 0.06513 01029 022 0.05334 72356 088

0.06513 01029 022 0.86973 97941 956 0.05334 72356 088

0.31286 54960 049 0.04869 03154 253 0.07711 37608 903

0.63844 41885 698 0.31286 54960 049 0.07711 37608 903

13-points 0.04869 03154 253 0.63844 41885 698 0.07711 37608 903

0.63844 41885 698 0.04869 03154 253 0.07711 37608 903

0.31286 54960 049 0.63844 41885 698 0.07711 37608 903

0.04869 03154 253 0.04869 03154 253 0.07711 37608 903

0.26034 59660 790 0.26034 59660 790 0.17561 52574 332

0.47930 80678 419 0.26034 59660 790 0.17561 52574 332

0.26034 59660 790 0.47930 80678 419 0.17561 52574 332

0.33333 33333 333 0.33333 33333 333 -0.14957 00444 677

Eq. (6.4.9) the same as Eq. (6.4.7) for arbitrary constants Gfj. Substitution of
Eq. (6.4.9) into Eq. (6.4.6) states

174 Isoparametric Elements Chapter 6

Figure 6.4.2 Two-Point Gauss-Legendre Quadrature

Equation (6.4.10) must be true independent of bo and b\ because the integration
rule holds for a general cubic polynomial. Therefore,

• 1
(x — Xi)(ar — x 2)dx = 0 (6.4.11)£ '

and

f x (x — x i) (x — X2)dx — 0
j -1

(6.4.12)

These two equations determine Xj — — ̂ 3 an<̂ x 2 —- These are two
sampling points for the two-pont Gauss-Legendre quadrature. In order to find
the corresponding weighting coefficients, we integrate

/ = J (cq + C\x)dx = 2co (6.4.13)

From Eq. (6.4.6), this integration is equal to
2

1 = = W i(c0 + Cixi) + W 2(co + c1x 2)
8=1

1
= cQ(W i + W 2) - - W 2) (6.4.14)

Equating Eq. (6.4.13) and Eq. (6.4.14) yields two weighting coefficients W\ = 1
and W 2 = 1. t

E x a m p le 6 .4 .4 Perform the following integral:

j о + 2{ + зe w (6.4.15)

Section 6.4 Gauss Quadrature 175

Because the order of polynomial is 2, 2n — 1 = 2. From this, we get n = 1.5.
The number of integration points should be an integer. So, we use the two
point quadrature rule. From Table 6.4.1, the two integration points are —
and ^ with weighting coefficient 1 for each point, respectively. The numerical
integration becomes

p1
(l + 2£ + 3 Z2)dx

(1){1 + + 3 (_ ^) !) + (1){1 + 2 (^ + 3(Т з)2} = 4 (6A16)
This is the exact solution. If we use the three point quadrature to integrate Eq.
(6.4.15) (i.e. 6 = - 4 * . £2 = 0 ,6 = ^ = I ’ W * = l> “ d ^ 3 = |),
we also obtain the same exact solution. Therefore, the quadrature rule using two
or higher number of integration points will always yield the exact solution for
this problem. }

The quadrature rule can be extended for multi-dimensional integration. For ex­
ample, numerical integral in the normalized two-dimensional domain can be conducted
in the following way.

• 1 /-1J J
rl Mi

= / £ ^ (6 , 77) ^
»=i

M-i M L

jzz 1 i= l

Mi M2

= (6-417>
»= ij= i

in which Mi and М 2 are the number of integration points in the £ and rj axes,
respectively. In addition, (£,■, r]j) are the integration points and W{ and Wj are
weighting coefficients. Table 6.4.1 can be used for these values. Similarly, numerical
integration in three-dimension becomes

/ 1 *1 »1 M i m 2 m 3
/ / g(Z,r},0<%dr)d<; = Z E E W t W j W b g f a n j 'b) (6.4.18)

. i J - x J - i i=1j =lk =l

Jft Exam ple 6.4.5 Integrate the following expression:

/ 1 / 1 ^ 2r}2<̂ dri (6.4.19)

176 Isoparametric Elements Chapter 6

The integrand is the second order in terms of £ and r], respectively. That is,
2M\ — 1 = 2М 2 — 1 = 2 for both axes. Therefore, we use two point quadrature
in both £ and rj directions. The integration points are £1 = щ = — ̂

and £2 — Щ — ^ 3 - The weighting coefficients are W\ = Wi = 1 and

W 2 = W 2 = 1. Applying these values to Eq. (6.4.17) results in 4. $

E x a m p le 6 .4 .6 We want to integrate

15£2r/4d$drj (6.4.20)

The integrand is the second order in terms of £ and fourth order in terms of
rj. Therefore M\ = 2 and М 2 = 3. Using the two point quadrature in the
£ direction and three point quadrature in the r) direction from Table 6.4.1, we
obtain the solution of 4. J

6.5 M A T L A B A p p lic a t io n to G au ss Q u a d ra tu re

This section shows MATLAB examples for numerical integration of one-, two-
or three-dimensional functions using Gauss-Legendre quadrature. The domain of
integration is normalized between -1 and 1 for every axis.

4k E x a m p le 6 .5 .1 We want to integrate

f (x) = 1 + x 2 - Зж3 + 4x5 (6.5.1)

over the domain — 1 < x < 1 using Gauss-Legendre quadrature. Because the
highest order of polynomial is 5, we need the 3-point quadrature rule for exact
integration from 2тг— 1 = 5. The numerical result is |. The MATLAB program
is shown below.

%-- :-------
% ExamDle 6.5.1' ---------------------------С---------------------

% Gauss-Legendre quadrature of a function in 1-dimension
%
% Problem description
% Integrate f (x)= l+ x 2-3x34-4x5 between x = -l and x = l
%
% Variable descriptions
% pointl = integration (or sampling) points
% weightl = weighting coefficients
% ngl = number of integration points

Section 6.5 MATLAB Application to Gauss Quadrature

%-
%

% (2*ngl-l)=5ngl=3;
%
[pointl,weightl]=feglqdl(ngl); % extract sampling points and weights
%
%--
% summation for numerical integration
%--
%
value=0.0;
%
for int=l:ngl
x=pointl(int);
wt=weightl(int);
func=l-fx2-3*x3+4*x5;
value=vaiue-f-func*wt;
end
%
value
%
%---—

% evaluate function at sampling point

% print the solution

function [pointl,weightl]=feglqdl(ngl)
%--
% Purpose:
% determine the integration points and weighting coefficients
% of Gauss-Legendre quadrature for one-dimensional integration
%
% Synopsis:
% [pointl,weightl]=feglqdl(ngl)
%
% Variable Description:
% ngl - number of integration points
% pointl - vector containing integration points
% weightl - vector containing weighting coefficients
%--
%
% initialization
%
pointl=zeros(ngLl);
weight 1 =zeros (ngl,l);
%
% find corresponding integration points and weights
%
if n g l= = l % 1-point quadrature rule

178 Isoparametric Elements Chapter 6

p o in tl(l)= 0 .0;
weightl(l)=2.0;
%
elseif ngl= = 2
p oin tl(l)= -0 .577350269189626;
pointl(2)= -pointl(l);
w eightl(l)= 1.0;
weightl (2)=weightl (1);
%
elseif ngl==3
poin tl(l)= -0 .774596669241483;
pointl(2)= 0.0;
pointl(3)=-pointl(l);
w eightl(l)=0.555555555555556;
weightl(2)=0.888888888888889;
weightl (3)=weightl(l);
%
elseif ngl==4
p oin tl(l)= -0 .861136311594053;
pointl(2)=-0.339981043584856;
pointl(3)=-pointl(2);
p oint 1 (4) =-point 1 (1);
weight 1(1)=0.347854845137454;
weight 1(2)=0.652145154862546;
weightl (3)=weightl (2);
weightl(4)=weightl(l);
%
else
p oin tl(l)= -0 .906179845938664;
pointl(2)=-0.538469310105683;
pointl(3)=0.0;
pointl(4)=-pointl(2);
pointl(5)=-pointl(l);
w eightl(l)=0.23692688 5056189;
weightl(2)=0.478628670499366;
weightl (3)=0.568888888888889;
weight 1(4)=weight 1 (2);
weightl(5)=weightl(l);
%
end
%
%----------------- -----------------------

% 2-point quadrature rule

% 3-point quadrature rule

% 4-point quadrature rule

% 5-point quadrature rule

£ Exam ple 6.5.2 Use Gauss-Legendre quadrature for integration of

f (x , y) = 1 + 4жу - Заг2у2 + x 4 y 6 (6.5.2)

over the domain — 1 < x < 1 and — 1 < у < 1. We use 3-point quadrature
rule along the x-axis and 4-point quadrature rule along the у-axis. The result is
2.7810.

Section 6.5 MATLAB Application to Gauss Quadrature 179

%--
% Example 6.5.2
Of,
/ 0 vjauDO"'iJcgcuuiv« ijuauiaiiu iw <Ji a. lu iilu u ii h i awuiu ivudivu

%
% Problem description
% Integrate f(x,y)=l-b4xy-3x2y2-fx4y6 over - l < x < l and - l < y < l
%
% Variable descriptions
% point2 = integration (or sampling) points
% weight2 = weighting coefficients
% nglx = number of integration points along x-axis
% ngly = number of integration points along y-axis
%--- --------
%
nglx=3;
ngly=4;
%
[p oint2 , weight 2]=feglqd 2 (nglx ,ngly);

% (2*nglx-l)=4
% (2*ngly-l)= 6

% sampling points and weights

%--
% summation for numerical integration
%--
%
value=0 .0;
%
for intx=l:nglx
x=point2(intx,l);
wtx=weight2(intx, 1);
for inty=l:ngly
у=p oint 2 (inty, 2);
wty=weight2(inty,2) ;
func=l+4*x*y-3*x2*y2+x4*y6;
value=value+func*wtx*wty;
end
end
%
Value %
%---

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% evaluate function

180 Isoparametric Elements Chapter 6

function [point2,weight2]=feglqd2 (nglx, ngly)
%--- —
% Purpose:
% determine the integration points and weighting coefficients
% of Gauss-Legendre quadrature for two-dimensional integration
%
% Synopsis:
% [point2,weight2]=feglqd2(nglx,ngly)
%
% Variable Description:
% nglx - number of integration points in the x-axis
% ngly - number of integration points in the y-axis
% point2 - vector containing integration points
% weight2 - vector containing weighting coefficients
%---
%
% determine the largest one between nglx and ngly
%
if nglx > ngly
ngl=nglx;
else
ngl=ngly;
end
%
% initialization
0/
70

point2=zeros(ngl,2);
weight2=zeros (ngl,2);
%
% find corresponding integration points and weights
%
[pointx,weightx]=feglqdl(nglx); [pointy,weighty]=feglqdl(ngly); %
% quadrature for two-dimension
%
for intx=l:nglx point2(intx,l)=pointx(intx);
weight2 (intx, 1)= weightx(intx);
end
%
for inty=l:ngly point2(inty,2)=pointy(inty);
weight2(inty,2)=weighty(inty);
end
%
%-- -

Section 6.5 MATLAB Application to Gauss Quadrature 181

4b E x a m p le 6 .5 .3 The following three-dimensional function is integrated
using Gauss-Legendre quadrature.

over the normalized domain — 1 < x < 1, — 1 < у < 1 and — 1 < z < 1. The
integrated value is 10.1841.

%------------------------------ ------------------------- — ---- — ------------------ ------
% Example 6.5.3
% Gauss-Legendre quadrature of a function in 3-dimension
%
% Problem description
% Integrate ffx.v.z'l=l4'4x2v2-3x2z4+ v 4z6 over - l< fx .v .z)< l\ r v r f ’ ~ " \ ftf • f

% Variable descriptions
% point3 = integration (or sampling) points
% weight3 = weighting coefficients
% nglx = number of integration points along x-axis
% ngly = number of integration points along y-axis
% nglz = number of integration points along z-axis

f (x , y, z) = 1 + 4x2y2 - 3x2z4 + y4z6 (6.6.3)

%

%
%
nglx=2;
ngly=3;
nglz=4;
%

% (2*nglx-l)= 2
% (2*ngly-l)=4
% (2*nglz-l)= 6

-----------------t - --CJ— — j - “СЭ--Ж---------v—о --------5—a-*» 5—о — ,

%
%---
% summation for numerical integration

rn o in t3 .w eis 'h t3l= f e e la d 3fn e lx .n e lv .n e lz 'i:i r ------- f —a-* — j —a—i ----v—о— r—a-*» j—о— / ; % samDline Doint &; weierht. _ -------------J,-----------о м . ------------- - - - - О-------

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

% evaluate function

Isoparametric Elements Chapter 6

end
%
value % print the solution
%
%---

function (jp oint3, weight3]=feglqd3 (nglx, ngly, nglz)

% Purpose:
% determine tile integration points ctiid weighting coefficients
% of Gauss-Legendre quadrature for three-dimensional integration
%
% Synopsis:
% [point3,weight3]=feglqd3 (nglx,ngly,nglz)
%
% Variable Description:
% nglx - number of integration points in the x-axis
% nelv - number of integration Doints in the v-axis• v —o -** ------------------------------------- u -----------------it -------

% nglz - number of integration points in the z-axis
% point3 - vector containing integration points
% weights - vector containing weighting coefficients
% -

% determine the largest one between nglx and ngly
%
if nglx > ngly
if nglx > nglz
ngl=nglx;
else
ngl=nglz;
end
else
if ngly > nglz
ngl=ngly;
else
ngl=nglz;
end
end
%
% initialization
%
point3=zeros(ngl,3);
weight3=zeros(ngl,3);
%
% find corresponding integration points and weights
%

Section 6.6 MATLAB Application to Laplace Equation 183

[pointx, weightx] =feglqd 1 (nglx);
[pointy, weighty]=feglqd 1 (ngly);
[pointz,weightz]=feglqd l(nglz);
%
% quadrature for two-dimension
%
for intx=l:nglx
point3(intx,l)=pointx(intx);
weight3(int x, 1)= weightx(intx);
end
%
for inty=l:ngly
point3(inty,2)=pointy(inty);
weight3(inty,2)=weighty(inty);
end
%
for intz=l:nglz
point3(intz,3)=pointz(intz);
weight3(intz, 3)= weightz (intz);
end
%
%------------------------------- -----------

% quadrature rule for x-axis
% quadrature rule for y-axis
% quadrature rule for z-axis

% quadrature in x-axis

% quadrature in y-axis

% quadrature in z-axis

6 .6 M A T L A B A p p lic a t io n t o L a p la ce E q u a tio n

Isoparametric elements are used to solve the Laplace equation which was
discussed in Chapter 5.

ф E x a m p le 6 .6 .1 This example shows how to compute the element matrix
for the Laplace equation. The element matrix is expressed as

The element domain is shown in Fig. 6.2.4. The MATLAB program is listed
below to evaluate the element matrix.

о//о-
% Example 6.6.1
% Compute element matrix for two-dimensional Laplace equation
%
% Problem description
% Determine the element matrix for Laplace equation using
% isoparametric four-node quadrilateral element and Gauss-Legendre

Isoparametric Elements Chapter 6

% quadrature for a single element shown in Fig. 6.2.4.
%
% Variable descriptions
% к - element matrix
% point2 - integration (or sampling) points
% weight2 - weighting coefficients
% nglx - number of integration points along x-axis
% ngly - number of integration points along y-axis
% xcoord - x coordinate values of nodes
% ycoord - у coordinate values of nodes
% jacob2 - Jacobian matrix
% shape - four-node quadrilateral shape functions
% dhdr - derivatives of shape functions w.r.t. natural coord, r
% dhds - derivatives of shape functions w.r.t. natural coord, s
% dhdx - derivatives of shape functions w.r.t. physical coord, x
% dhdy - derivatives of shape functions w.r.t. physical coord, у
%--
%
nnel=4;
ndof=l;
edof=nnel*ndof;
%
nglx=2; ngly= 2;
%
xcoord=[-l 1 1 - 1];
ycoord=[-0.75 -0.75 1.25 0.25];
%
Гпл1т»*9 w*»i ab 19l=f̂ crlnH 9 rialr

j " f j

%
%-----------------------------------
% numerical integration
%-----------------------------------
k=zeros(edof,edof);
%
for intx=l:nglx
x=point2(intx,l);
wtx=weight2(intx,l);
for inty=l:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;
%
r„i_____ r j - ju jJ _[»iLapc,ui.i.uj;,ui.i.uoj— j,

% number of nodes per element
% degrees of freedom per node

% degrees of freedom per element

% use 2x2 integration rule

% x coordinate values
% у coordinate values

% яятлпНпс nnint.s kr. wpierbt.s

% initialization to zero

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

OZ. 1 nnci чг>/1/О i t on ap t 1и т .ы ш ю aitu
% derivatives at sampling point

%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%

Section 6.6 MATLAB Application to Laplace Equation 185

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate

4/,
/ V

%-------------------------------
% element matrix loop
%-------------------------------
for i= l:edof
for j= l:ed o f
k(i,j)=k(i,j)+(dhdx(i)*dhdx(j)+dhdy(i)*dhdy(j))*wtx*wty*detjacob;
end
end
%
end
end % end of numerical integration loop
%
к % print the element matrix
%
%---.---

function [dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)
%--
% Purpose:
% determine derivatives of 2-D isoparametric shape functions with
% respect to physical coordinate system
%
% Synopsis:
% ГНЬНу rlhrl vl=rfprlpriv9^Tm#»l rlbrlr rlbrl« inviarnW,v . j~.----------- j

%
% Variable Description:
% dhdx - derivative of shape function w.r.t. physical coordinate x
% dhdy - derivative of shape function w.r.t. physical coordinate у
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% invjacob - inverse of 2-D Jacobian matrix
%--
%
for i=l:nnel
dhdx(i)=invjacob(l,l)*dhdr(i)+invjacob(l,2)*dhds(i);
UlLUy yi j—1UVJCU,UÛ)1 ̂ U1LU1 1̂̂ T1UV f UllUÔ l J j
end
%
%--- ^ ----------------------

Isoparametric Elements Chapter

%---
% Purpose:
% compute isoparametric four-node quadrilateral shape functions
% and their derivatves at the selected (integration) point
% in terms of the natural coordinate
%
% Synopsis:
% [shapeq4,dhdrq4,dhdsq4]—feisoq4(rvalue,svalue)
%
% Variable Description:
% shapeq4 - shape functions for four-node element
% dhdrq4 - derivatives of the shape functions w.r.t. r
% dhdsq4 - derivatives of the shape functions w.r.t. s
% rvalue - r coordinate value of the selected point
% svalue - s coordinate value of the selected point
%
% Notes:
% 1st node at (-1,-1), 2nd node at (1,-1)
% 3rd node at (1,1), 4th node at (-1,1)
%--- ------------ -
%
% shape functions
%
shapeq4(l)=0.25*(l-rvalue)*(l-svalue);
shapeq4(2)=0.25*(l+rvalue)*(l-svalue);
shapeq4(3)=0.25*(l+rvalue)*(l+s value);
shapeq4(4)=0.25*(l-rvalue)*(l+s value);
%
% derivatives
%
dhdrq4(l)=-0.25*(l-svalue);
dhdrq4(2)=0.25*(l-svalue);
dhdrq4(3)=0.25*(l+svalue);
dhdrq4(4)=-0.25*(l+svalue);
%
dhdsq4(l)=-0.25*(l-rvalue);
dhdsq4(2)=-0.25*(l-|-rvalue);

o/*i A (—Л 04*(1 111 •UUUOVJI^U ̂X T 1 liuuv^)

dhdsq4(4)=0.25*(l-rvalue);
%
%------------------- ----------------- ----------- -------------------------------------

function [shapeq4,dhdrq4,dhdsq4]=feisoq4(rvalue,svalue)

function [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)
%--
% Purpose:

Section 6.6 MATLAB Application to Laplace Equation

% determine the Jacobian for two-dimensional mapping
%
% Synopsis:
% [jacob2]=fejacob2 (nnel,dhdr,dhds,xcoord,ycoord)
%
% Variable Description:
% jacob2 - Jacobian for one-dimension
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% xcoord - x axis coordinate values of nodes
% ycoord - у axis coordinate values of nodes

%
jacob2=zeros(2,2);
%
for i=l:nnel
jacob2(l,l)= ja co b 2(l,l)+dhdr(i)*xcoord(i)
jacob2(l ,2)= jacob2(l ,2)+dhdr(i)*ycoord(i)

jacob2(2,2)= jacob2(2 ,2)+dhds(i)*ycoord(i)
end
JW7c

The computed element matrix is

[K} =

Г 0.7500
0.0000

-0.2500
-П КПП0

0.0000
0.7500

-0.2500
—П Ш 1П

-0.2500
-0.2500
0.5000
n.nnnn

-0.5000
-0.5000
0.0000
1 ПППП

(6-

4» Exam ple 6.6.2 Repeat Example 5.9.2 using isoparametric elements.
Four-node quadrilateral elements are used. The finite element solution is the
same as that obtained in Example 5.9.2. As a result, the solution is not repeated
here. The MATLAB program is shown below.

%--
% Example 6.6.2
% to solve the two-dimensional Laplace’s equation given as
% u,xx + u,yy = 0, 0 < x < 5 , 0 < y < 1 0
% u(x,0) = 0 , u(x,10) = 100sin(pi*x/l0),
% u(0,y) = 0, u,x(5,y) = 0
% using isoparametric four-node quadrilateral elements

188 Isoparametric Elements Chapter 6

% (see Fig. 5.9.2 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
% point2 - integration (or sampling) points
% weight2 - weighting coefficients
% nglx - number of integration points along x-axis
% ngly - number of integration points along y-axis
% xcoord - x coordinate values of nodes
% ycoord - у coordinate values of nodes
% jacob2 - Jacobian matrix
% shape - four-node quadrilateral shape functions
% dhdr - derivatives of shape functions w.r.t. natural coord, r
% dhds - derivatives of shape functions w.r.t. natural coord, s
% dhdx - derivatives of shape functions w.r.t. physical coord, x
% dhdy - derivatives of shape functions w.r.t. physical coord, у

gcoord (l,l)= 0.0; gcoord(l,2)=:0.0 ;
gcoord(2,l)=1.25; gcoord(2,2)=0.0;
gcoord(3,l)=2.5; gcoord(3,2)=0.0;
gcoord(4,l)=3.75; gcoord(4,2)=0.0;
gcoord(5,l)=5.0; gcoord(5,2)=0.0;
gcoord(6, l)= 0.0; gcoord(6,2)=2.5;

%----------------------
nel=16;
nnel=4;
ndof=l;
nnode=25;
nglx=2; ngly=2;
sdof—nnode*ndof;
edof=nnel*ndof;
%

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% use 2x2 integration rule
% total system dofs
% dofs per element

%---
% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j -> x or у
%

gcoord(7,l)=1.25; gcoord(7,2)=2.5;
gcoord(8,l)=2.5; gcoord(8,2)=2.5;
gcoord(9,l)=3.75; gcoord(9,2)=2.5;
gcoord(10,l)=5.0; gcoord(l0,2)=2.5;
gcoord (ll,l)=0 .0 ; gcoord(ll,2)=5.0;
gcoord(12,l)=1.25; gcoord(12,2)=5.0;
gcoord(13,l)=2.5; gcoord(13,2)=5.0;
gcoord(14,l)=3.75; gcoord(14,2)=5.0;
gcoord(15,l)=5.0; gcoord(15,2)=5.0;
gcoord(16,l)=0.0; gcoord(16,2)=7.5;
gcoord (17 ,l)= l.25; gcoord(l7,2)=7.5;
gcoord(18,l)=2.5; gcoord(18,2)=7.5;
gcoord(19,l)=3.75; gcoord(19,2)=7.5;
gcoord(20,l)=5.0; gcoord(20,2)=7.5;
gcoord(21, l)= 0.0; gcoord(21,2) = 10.;
gcoord(22,l)=1.25; gcoord(22,2)=10.;
gcoord(23,l)=2.5; gcoord(23,2)=10.;
gcoord(24,l)=3.75; gcoord(24,2)=10.;
gcoord(25,l)=5.0; gcoord(25,2)=10.;
%
%---

Section 6.6 MATLAB Application to Laplace Equation 189

% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%----------------------------- --
n od es(l,l)= l; nodes(l,2)=2; nodes(l,3)=7; nodes(l,4)=6;
nodes(2,l)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,l)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;

nnrlpsM П* nnrlps/i 4Л—Q*--) - / -JWJ------- « I ~ ,

nodes(5,l)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=ll;
nodes(6,l)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,l)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,l)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
n od es(9 ,l)= ll; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=l6;
nodes(10,l)=12; nodes(10,2)=13; nodes(10,3)=18; nodes(10,4)=17
nodes(ll,l)= 13 ; nodes(ll,2)=14; nodes(ll,3)=19; nodes(ll,4)=18
nodes(12,l)=14; nodes(12,2)=15; nodes(12,3)=20; nodes(12,4)=19
nodes(13,l)=16; nodes(13,2)=17; nodes(13,3)=22; nodes(13,4)=21
nodes(14,l)=17; nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22
nodes(l5,l)=18; nodes(15,2)=19; nodes(l5,3)=24; nodes(15,4)=23
nodes(16,l)=19; nodes(16,2)=20; nodes(16,3)=25; nodes(16,4)=24
%
о//0--------------------—----------------------------
% input data for boundary conditions
%--
%
b cd o f(l)= l; % first node is constrained
bcva l(l)= 0; % whose described value is 0
bcdof(2) = 2; % second node is constrained

Isoparametric Elements Chapter 6

bcval(2)= 0 ;
bcdof(3)=3;
bcval(3)=0;
bcdof(4)=4;
bcval(4)=0;
bcdof(5)=5;
bcval(5)=0;
bcdof(6)= 6 ;
bcval(6)= 0;
b cd of(7)= ll;
bcval(7)=0;
bcdof(8)=16;
bcval(8)= 0;
bcdof(9)=21;
bcval(9)=0;
bcdof(l0)= 22;
bcval(10)=38.2683;
bcdof(ll)=23 ;
bcval(ll)=70.7107;
bcdof(12)=s24;
bcval(12)=92.3880;
bcdof(l3)=25;
bcval(13)=100;
%
%------------------------

% whose described value is 0
% third node is constrained

% whose described value is 0
% 4th node is constrained

% whose described value is 0
% 5th node is constrained

% whose described value is 0
% 6th node is constrained

% whose described value is 0
% 11th node is constrained

% whose described value is 0
% 16th node is constrained

% whose described value is 0
% 21st node is constrained

% whose described value is 0
% 22nd node is constrained

% whose described value is 38.2683
% 23rd node is constrained

% whose described value is 70.7107
% 24th node is constrained

% whose described value is 92.3880
% 25th node is constrained

% whose described value is 100

% initialization of matrices and vectors
%---
f F = z f * r r W s H n f . 1 ̂■“ " -y - —- - 7- / 1

kk=zeros (sdof, sd of);
index=zeros(nnel*ndof, 1);
%
%---------------------------------

% initialization of system force vector
% initialization of system matrix

% initialization of index vector

% loop for computation and assembly of element matrices
%---
[point2 ,weight2]=feglqd2 (nglx,ngly); % sampling points & weights
%
for iel=l:nel % loop for the total number of elements
%
for i=l:nnel
nd(i)=nodes(iel,i); % extract connected node for (iel)-th element
xcoord(i)=gcoord(nd(i),l); % extract x value of the node
______ov
JfLUUlU^l J y

IT ТГЧ 111 A n f f lia ПЛ/I A
/и VAiiia^i j vaiut. u i but uwuu

end
%
k=zeros(edof,edof);
%
%------------------------

% initialization o f element matrix to zero

% numerical integration

Section 6.6 MATLAB Application to Laplace Equation 191

%-----------------------------------
for intx=l:nglx
x=point2(intx,l);
wtx=weight2(intx,l);
for inty=l:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;
%
[shape,dhdr,dhds]=feisoq4(x,y);

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

%
jacob2=fejaCob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
%
%-----------------------------------
% compute element matrix
%-----------------------------------
for i= l:edof
for j= l:ed o f
k(i,j)=k(i,j)-|-(dhdx(i)*dhdx(j)-f-dhdy(i)*dhdy(j))*wtx*wty5,cdetjacob;
end
end
%
end
end
%
index=feeldof(nd,nnel,ndof);
%
%--------------------------------------

% end of numerical integration loop

% extract system dofs for the element

% assemble element matrices
%-------------------------------------
%
kk=feasmbl 1 (kk,k,index);
%
end %
%--
№ ___i„ i___ j -_„ „„-j;* ;___/U a p p ij u u u u u a ij tuuuiuuuo
%--
[kk,fF]=feaplyc2(kk,fF, bcdof, bcval);
%
%--------------------------------------
% solve the matrix equation
%--------------------------------------

192 Isoparametric Elements Chapter 6

fsol=kk\ff;
%
%-----------------------------
% analytical solution
%-----------------------------
for i=l:nnode
x=gcoord(i,l); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.3l415927*x)/sinh(3.1415927);
end
%
%--
% print both exact and fern solutions
%--
num=l:l:sdof;
store=[num’ fsol esol’]
%
%----------- _ _ _ --------- ----------- --------- ------ --------------------------

t

Problems 193

Problems

6.1 Compute the following integral using the quadratic isoparametric element:

has nodes a?i=2, x2=4, and x3=6 in the physical coordinate system.

6.2 Consider one-dimensional isoparametric shape functions as given in Eqs (6.1.13)
through (6.1.15). The isoparametric element is mapped into a physical domain
with nodal points located at z i = 0, a?2 = a, and *3 = 4, where a — 1.5, a — 1,
or a = 0.5. Compute the Jacobian J and its inverse for these cases.

6.3 Compute the Jacobian matrix for the following bilinear element shown in Fig.
P6.3 and evaluate

in which Hi and # 2 are quadratic shape functions of f and 77, respectively.
What order of integration is necessary for exact integration of the integral if the
element has no distortion (i.e. a rectangular shape of element in the physical
domain)?

6.7 Two different isoparametric elements are used together as shown in Fig. P6.7.
There is an interelement boundary between (x, y)= (l ,l) and (x,y)=(2,2). Show
that variable is continuous across the interface boundary. In other words,
variable interpolation from the quadrilateral element is the same as that from
the triangular element at the interface.

6.8 Consider two elements shown in Fig. P6.7 again. For the elements, we use the
following interpolation for each element. For the triangular element, we use

The shape functions are given in Eqs (6.1.13) through (6.1.15) and the element

Using the isoparametric element and 3 by 3 Gauss-Legendre quadrature. The
shape functions are provided in Eqs (6.2.1) through (6.2.4).

6.4 For the linear triangular isoparametric element shown in Fig. P6.4, (a) compute
the Jacobian matrix and (b) find in which Н г is given in Eq. (6.3.1).

6.5 Evaluate the Jacobian matrix for the four-node element shown in Fig. P6.5
using the bilinear isoparametric element.

6.6 Gauss-Legendre quadrature rule is used to evaluate the integral

u = a0 + aix + a2y

194 Isoparametric Elements Chapter 6

Figure P6.3 Problem 6.3

У

and for the quadrilateral element we use

и = b0 + biX + b2y + b3xy

Is u compatible at the element interface of the two elements?

6.9 Two kinds of quadrilateral isoparametric elements are utilized together to mesh
a domain as seen in Fig. P6.9. One is a bilinear element and the other is a
biquadratic element. Is it compatible between the element interface?

6.10 Solve Prob. 5.11 using isoparametric elements and computer programs provided
in this chapter.

6.11 Solve Prob. 5.12 using isoparametric elements and MATLAB programs.

Problems

Figure P6 .5 Problem 6.5

Figure P6 .7 Problem 6.7

0 •

---------§--------- 1

Figure Р 6 .Э Problem 6.9

4

C H A P T E R SEVEN

TRUSS STRUCTURES

7.1 One-Dimensional Truss

The one-dimensional truss is also called a rod or an axial bar which was described
in Chapter 4. The governing equation to describe the motion of rod is derived below.
Let E , A and p indicate the elastic modulus, cross-sectional area and density of the
rod, respectively. Applying Newton’s second law to the free body diagram shown in
Fig. 7.1.1 gives

M ^ = (p + ^ d x) - F (7.1.1)

where и is the axial displacement along the rod direction, and x and t are the spatial
and temporal axes, respectively. Hooke’s law states

j = Ее (7.1.2)

The strain-displacement relation is

Substituting Eq. (7.1.3) into Eq. (7.1.2) and the result into (7.1.1) yields

d2u д (ЛГ1ди\
p' dt* ~ Yx V dx) (^

In En. (7.1.4V o. A and E mav varv as a function of x.--------------------1- ̂-----------------Г 1 ---------------- ------------- ----- ------------V V

The weak formulation for Eq. (7.1.4) is

198 Truss Structures Chapter 7

Figure 7.1.1 Free Body Diagram for Axial Member

in which w is the test function. The first term is the inertia term and the second term
is the stiffness term. Discretization of the domain into a number of elements breaks
the global integral in Eq. (7.1.5) into element integrals over the element domains.

Use o f Galerkin’s method and linear shape functions for a rod element whose
l o « rrfVi io 7 тйопИо m Рл1 1 л«т 1 п гг o fi f fn occ m a f r i vШ I 111 VXiVi iUliVTVUlg UVillllbOO 111UV1 1Л»

[*•]= f АЕ { Ж \
Jo I til J

dffl
dx (7.1.6)

for the element nodal degrees of freedom { « i u2} as shown in Fig. 7.1.2. Superscript
e denotes element. Here i/,- is the linear shape function which is

H 1 =

I — x
(7.1.7)

(7.1.8)

substitution ot tnese snape tunctions into njq. (Y.i.oj results in tne element stillness
matrix for rod.

" 1 - 1'
- i i (7.1.9)

This is the same as given in Chapter 4.
The element mass matrix for rod is obtained from the first term in Eq. (7.1.5)

using the linear shape functions.

pAl
6

2 1
1 2 (7.1.10)

for the constant density and cross-sectional area. This is called the consistent mass
matrix for rod. The lumped mass matrix is

[M e] =
pAl 1 0

0 1 (7.1.11)

This is obtained by lumping the distributed mass within the element into the
concentrated masses at the two nodal points as seen in Fig. 7.1.3.

Section 7.2 Plane Truss 199

U, u,

node 1 node 2

Figure 7.1.2 Two-Node Axial Bar

PA

PAl
§-лл/w v

PAl

AE
I

Figure 7.1.3 Equivalent Spring-Mass System

7.2 Plane Truss

The truss is a structure which consists of axial members connected by pin joints.
Therefore, each member of the truss structure supports the external load through its
axial force and it does not undergo the bending deformation. The stiffness matrix for
a truss member shown in Fig. 7.2.1 is given in Eq. (7.1.9). However, the matrix size
becomes 4 x 4 because the nodal degrees of freedom of the truss element are expressed
as

К } = { « ! Щ «2 v2 f (7.2.1)

Here superscript e denotes the element level. The corresponding stiffness matrix is

[* '] =

■ к 0 —к 0 -
0 0 0 0

- к 0 к 0
. 0 0 0 0 .

(7.2.2)

in which
k =

A E
I

(7.2.3)

For a uniform member, A and E are the area of the cross-section and the elastic
modulus, respectively. In addition, 1 is the length of the member. The second
and fourth columns and rows of the stiffness matrix associated with the transverse
displacement v are null since the truss member has axial deformation only.

The plane truss structure consists of axial members in different orientations. For
example, Fig. 7.2.2 shows that members a, b and с lie in three different directions.
In order to assemble the stiffness matrices related to these truss members, we need

200 Truss Structures Chapter 7

v t
A E

v ,

u , u .

H

Figure 7.2.1 Two-Dimensional Truss Element

Figure 7.2.2 Triangular Truss

to have the element degrees of freedom given in terms of the common reference axes.
In other words, the element nodal displacements are expressed in terms of the fixed
global coordinate system.

Figure 7.2.3 shows a plane truss element oriented in an arbitrary angle (3 with
respect to the horizontal axis x. The figure shows two sets of nodal displacements.
One set has nodal displacements along and perpendicular to the element axis (i.e. u
and v) while the other set has the displacements in terms of the global reference axes
(i.e. « and v). Because the element stiffness matrix Eq. (7.2.2) is expressed in terms
of u and v, it should be transformed such that the stiffness matrix is expressed in
terms of й and v.

To the end, we find the relationship between xy- and xy-coordinate systems.
This relationship is called the coordinate transformation and the same relationship
holds for the two sets of nodal displacements (i.e. u, v and й, и). The relationship is

U1 ' ' С s 0 o-
Vl —s с 0 0 Й1
«2

 ̂ " 0 0 с s i
tt2

«2 - . 0 0 —s с .

where с = cos3 and s — sin3. Let us rewrite Ea. (7.2.4) asi i » \ r

{<П = p n j } (7.2.5)

Section 7.2 Plane Truss 201

Figure 7.2.3 Generalized Two-Dimensional Truss Element

To transform the element stiffness matrix from the xy-coordinate system to
xy-coordinate system, consider the concept of strain energy. The strain energy is
expressed as

р = | к № '] { < П (7.2.6)

in terms of the xy-coordinate system. If we substitute Eq. (7.2.5) into Eq. (7.2.6),
we obtain

U = l { d e}T [T\T [K e][T\{de} (7.2.7)

The strain energy is now expressed in terms of the xy-coordinate system.

(7.2.8)

in which [K e] is the transformed element stiffness matrix in terms of the xy-coordinate
system. The strain energy in Eq. (7.2.8) should be the same as that in Eq. (7.2.7)
because strain energy is independent of the coordinate system. Equating Eq. (7.2.7)
to Eq. (7.2.8) shows that

[K e] = [T\T [K e][T] (7.2.9)

Substitution of Eqs (7.2.2) and (7.2.4) into Eq. (7.2.9) results in the transformed
stiffness matrix

\K°]
A E

for the nodal degrees of freedom

■ c2 cs ~ c2 —cs'
cs s2 —cs - s2

- c 2 —cs с2 cs
. —cs - s 2 cs s2 .

1 «1 «2 W2 }

(2.7.10)

(7.2.11)

This element stiffness matrix can be assembled into the global matrix as usual for the
shared nodal points.

202 Truss Structures Chapter 7

£ E x a m p le 7 .2 .1 Let us compute element stiffness matrices for the truss
structure shown in Fig. 7.2.2. The structure has three elements (a, b and c)
and three nodes (1, 2 and 3). Let each truss member have the same material
and geometric properties. In the following derivation, the superimposed () is
omitted for simplicity

Member a: Let i= l and j —2. Then /3=0 so that с = c o s /3=0 and s = sin /?=0 .
The element stiffness matrix is

{ K ° } =

- 1 0 - 1 0 -
A E 0 0 0 0

I - 1 0 1 0
. 0 0 0 0 .

(7.2.12)

Member b: Let i = 2 and j = 3. Then /? = Щ so that с — cos /?=-0.5 and
s = sin /3 = ^ . The element stiffness matrix is

{ * * }b\ —
A E

0.250 -0.433 -0.250 0.433
-0.433 0.750 0.433 -0.750
-0.250 0.433 0.250 -0.433
0.433 -0.750 -0.433 0.750

(7.2.13)

Member c: Let 2=1 and j = 3. Then /3 = ^ so that с = cos /3=0.5 and

s — sin (З—^ф ■ The element stiffness matrix is

{ K ' } =
A E

Г 0.250 0.433
0.433 0.750

-0.250 -0.433
-0.433 -0.750

-0.250 -0.433
-0.433 -0.750
0.250 0.433
0.433 0.750

(7.2.14)

The element mass matrix for the plane truss member can be calculated using
the same coordinate transformation. Using the kinetic energy expression, as similar
to the strain energy expression for derivation of the element stiffness matrix, we can
write

[M e] = [T\T [M e][T\ (7.2.15)

Carrying out this matrix multiplication using the consistent mass matrix gives

[*•] =

' 2c2 2cs c2 cs '
pAl 2 cs 2 s 2 cs s 2

c2 cs 2 c2 2 cs
cs s2 2cs 2s2.

(7.2.16)

The lumped mass matrix can be obtained similarly and shown below:

m =

Section 7.3 Space Truss 203

'c 2 cs 0 0 ■
pAl cs s2 0 0

2 0 0 c2 cs
. 0 0 cs g2 ̂

(7.2.17)

7.3 Space Truss

Development o f the element stiffness matrix for the space truss member is similar
to that for the plane truss member. The element stiffness matrix in terms of the global
Cartesian coordinate system is obtained in the same way as given in Eq. (7.2.9).
However, the sizes of both the transformation matrix and the element stiffness matrix
in terms of the body coordinate system are 6 x 6 for the space truss member. Here, the
body coordinate system denotes the coordinate system one of whose axes lies along
the member direction. The stiffness matrix in terms of the body coordinate system is

- 1 0 0 - 1 0 0 -
0 0 0 0 0 0

A E 0 0 0 0 0 0
I - 1 0 0 1 0 0

0 0 0 0 0 0
. 0 0 0 0 0 0 .

[K*] =

for the nodal degrees of freedom of

{de} = { « i vi Wi u2 v2 w2 }

(7.3.1)

(7.3.2)

where и is the displacement along the x-axis as shown in Fig. 7.3.1.
The transformation matrix between the two coordinate systems is given below:

m =

- 6 £2 6 0 0 0 -
m *?2 m 0 0 0
Cl C2 Сз 0 0 0
0 0 0 6 £2 £3
0 0 0 VI m V3

. 0 0 0 Cl C2 Сз-

(7.3.3)

where {£i щ Cl} is the direction cosines of x-axis with respect to хуг-coordinate
system. Similarly, { 6 Щ C2} and {£3 773 Сз} are the direction cosines of y- and
г-axis with respect to хуг-coordinate system, respectively. Conducting the matrix
manipulation yields

[*•] =

\ Я 6 6 6 6 —6 6 - 6 6 ■
6 6 £242 6 6 -6 6 _C242 - 6 6

A E 6 6 6 6 p2 43 - 6 6 - 6 6 - t 243
I - c l -6 6 - 6 6 Й 6 6 6 6

“ 6 6 -6 2 - 6 6 6 6 3 6 6
-—6 6 “ 6 6 -el 6 6 6 6 в J

(7.3.4)

204 Truss Structures Chapter 7

x

Figure 7.3.1 Generalized Three-Dimensional Truss Element

The corresponding element degrees of freedom are

{rfe} = {S i ui u)i й2 v2 w2 }

The consistent mass matrix for the space truss element is

[M e]

г X l 2 6 6 2 6 6 6 6 6 6 '
2 6 6 262 2 6 6 6 6 t242 6 6

pAl 2 6 6 2 6 6 4 1 6 6 6 6 f 2S3
6 6 6 6 6 2 e, 2 6 6 2 6 6

t+tr*sisz f2 6 6 Of.
• "S I S - i ■ "S 2

- 6 6 6 6 a 2 6 6 2 6 6 2^1

(7.3.5)

(7.3.6)

while the lumped mass matrix is

Г 6 6 6 6 0 0 0 -
6 6 t2S2 6 6 0 0 0

pAl 6 6 6 6 a 0 0 0
2 0 0 0 62 6 6 6 6

0 0 0 6 6 e2 6 6
. 0 0 0 6 6 6 6 62 J

(7.3.7)

7.4 M A T L A B A pp lication to Static Analysis

The static analysis of a truss structure is to solve the following matrix equation:

{K]{d} = {-F} (7.4.1)

where the system stiffness matrix [К] and the system force vector { F } are obtained
by assembling each element matrix and vector. This section shows some examples of
MATLAB programs and m-filesiox static analyses of two-dimensional tttiss structures.

Section 7.4 MATLAB Application to Static Analysis

10

(7) A=0.5xn, E=30X10* psi

A=0.4in* E=30X106psi

1 0 0 0 lb

Figure 7.4.1 Truss With Two Axial Members

& Exam ple 7.4.1 Figure 7.4.1 shows a simple truss structure made of
two members. Each member has elastic modulus of £'=30 X 106 psi and cross-
sectional areas are j4i=0.4 in2 and А г= 0.5 in2 where subscript indicates the
element number as shown in the figure. A 1000 lb force is applied at the tip in
the downward direction. Find the displacements and stresses of members. The
MATLAB program and m-files are provided below.

% --:--------------------------- .-------------

% Example 7.4.1
% to solve static 2-D truss structure
%
% Problem description
% Find the deflection and stress of the truss made of two members
% as shown in Fig. 7.4.1.
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% disp = nodal displacement vector
% elforce = element force vector
% eldisp = element nodal displacement
^ olroeo — eirocc v erin r fnr PvPrv plpmPTiff\ J т VV.WW* iVi v> » j

% elprop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
%--^ -----------------------

Ttuss Structures Chapter 7

%
%---------------------------
% control input data

nel=2;
nnel=2;
ndof=2;
nnode=3;
sdof=nnode*ndof;
%
%--------------------------
% nodal coordinates

% number of elements
% number of nodes per element

% number of dofe per node
% total number of nodes in system

% total system dofe

g co ord (l,l)= 0.0; gcoord(l,2) = 0.0;
gcoord(2, l) = 10.0; gcoord(2,2)= 0.0;
gcoord(3,l)=0.0; gcoord(3,2)=10.0;
%
%--
% material and geometric properties

/V

elprop(l,l)=30000000;
elprop(l,2)=0.4;

1 /л -I \ Л АЛЛ АЛЛЛeiprop(z,x)=^uuuuuuu;
elprop(2,2)=0.5;
%
%-----------------------------------'
% nodal connectivity
%-----------------------------------
n od es (l,l)= l; nodes(l,2)= 2;
nodes(2,l)=2; nodes(2,2)=3;
czf\J
%--------------------------------

% x, у-coordinate of node 1
% x, у-coordinate of node 2
% x, у-coordinate of node 3

% elastic modulus of 1st element
% cross-section of 1st element

% elastic modulus of 2nd element
% cross-section of 2nd element

% nodes associated with element 1
% nodes associated with element 2

% applied constraints
Vo----------------

b cd o f(l)= l
bcval(l)= 0
bcdof(2)=2
bcval(2)=0
bcdof(3)=5
bcval(3)=0
bcdof(4)=6
bcval(4)=0
%
%------------

% 1st dof (horizontal displ) is constrained
% whose described value is 0

% 2nd dof (vertical displ) is constrained
% whose described value is 0

% 5th dof (horizontal displ) is constrained
% whose described value is 0

% 6th dof (vertical displ) is constrained
% whose described value is 0

initialization to zero
%--------------------------
fF= zeros (sdof, 1);
kk=zeros(sdof,sdof);

% system force vector
% system stiffness matrix

index=zeros(nnel*ndof,l); % index vector
elforce=zeros(nnel*ndof,l); % element force vector
eldisp=zeros(nnel*ndof,l); % element nodal displacement vector
k=zeros(nnel*ndof,nnel*ndof); % element stiffness matrix
stress=zeros(nel,l); % stress vector for every element
%
%-----------------------------------

Section 7.4 MATLAB Application to Static Analysis 207

% applied nodal force
%---------------------------
ff(4)=-1000; % 2nd node has 1000 lb in downward direction
%
%-- .

% loop for elements
%-------------------------
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(iel,l); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%
xl= gcoord (n d (l),l); y l=gcoord(nd(l),2); % coordinate of 1st node
x2=gcoord(nd(2) ,l) ; y2=gcoord(nd(2),2); % coordinate of 2nd node
%
Ieng=sqrt((x2-x l) ''2+ (y 2- y l) '2); % element length
%
if (x2-x l)= = 0;
beta=2*atan(l); % angle between local and global axes
else
bet.a.=a.t.a.Tif (v2-v11 К v^-vl --------- —-----vvj - j - п v— *—rn
end
%
el=elprop(iel,l); % extract elastic modulus
area=elprop(iel,2); % extract cross-sectional area
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=fetruss2(el,leng,area,0 ,beta,1); % compute element matrix
%
kk=feasmbll(kk,k,index); % assemble into system matrix
%
end

ы/0“
% apply constraints and solve the matrix
%--
[kk,fF]=feaplyc2(kk,ff,bcdof,bcval); % apply boundary conditions
%
disp=kk\ff; % solve matrix equation for nodal displacements
%

Truss Structures Chapter 7

%--
% post computation for stress calculation
%--
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(iel,l); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%
xl= gcoord (n d (l),l); yl=gcoord(nd(l),2); % coordinate of 1st node
x2=gcoord(nd(2),l) ; y2=gcoord(nd(2),2); % coordinate of 2nd node
%
Ieng=sqrt((x2- x l) ‘ 2+ (y 2-y l) " 2); % element length
%
if (x2- x l)= = 0;
beta=2*atan(l); % angle between local and global axes
else
beta=atan((y2-y l) / (x 2-x l));
end
%
el=elprop(iel,l); % extract elastic modulus
area=elprop(iel,2); % extract cross-sectional area
%
index=feeldof(nd,nnel,ndof); % extract system dofe for the element
%
k=fetruss2(el,leng,area,0 ,beta,1); % compute element matrix
%
for i=l:(nnel*ndof) % extract displacements associated with
eldisp(i)=disp(index(i)); % (iel)-th element
end
%
elforce=k*eldisp; % element force vector
stress(iel)—sqrt(elforce(l)2+elforce(2)2)/area; % stress
%
if ((x2-xl)*elforce(3)) < 0 ; % check if tension or compression
stress(iel)=-stress(iel);
end
%
end
%

% print fem solutions
%---------------------------
num =l:l:sdof;
displ=[num’ disp] % print displacements
%
numm=l:l:nel;
stresses=[numm’ stress] % print stresses
%

%

Section 7.4 MATLAB Application to Static Analysis 209

function [k,m]=fetruss2(el,leng,area)rho,beta,ipt)
%--
% Purpose:
% Stiffness and mass matrices for the 2-D truss element
% nodal dof { u_l v_l u_2 v_2 }
%
% Synopsis:
% [k,m]=fetruss2(el,leng,area,rho,beta,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 4x4)
% m - element mass matrix (size of 4x4)
% el - elastic modulus
% leng - element length
% area - area of truss cross-section
% rho - mass density (mass per unit volume)
% beta - angle between the local and global axes
% positive if local axis is in ccw direction from
% the global axis
% ipt = 1 - consistent mass matrix
% ipt = 2 - lumped mass matrix
%--- ---------------------
%
% stiffness matrix
%
c=cos(beta); s=sin(beta);
k= (area*el/leng)*[c*c

c*s

-c*s

c*s -c*c -c*s
s*s -c*s -s*s;...
-c*s c*c c*s;..
-s*s c*s s*s];

%
% consistent mass matrix
%
if ipt==l
%
m=(rho*area*leng/6)*[2 0 1 0;...

0 2 0 1;...
1 0 2 0;...
0 1 0 2];

%
% lumped mass matrix
%
else
%

210 Truss Structures Chapter 7

E=200Gpa

Figure 7.4.2 Truss Structure

m=(rho*area*Ieng/2)*[1 0 0 0;...
0 1 0 0;
0 0 1 0;
0 0 0 11

%
end
%
%..........»,...— ------- ------------------ -

The results from the finite element analysis are given below. The minus sign in
the stress indicates compressive stress.

displ =
dofs displacement
1.0000 0.0000 % horizontal displ. of node 1
2.0000 0.0000 % vertical displ. of node 1
3.0000 -0.0008 % horizontal displ. of node 2
4.0000 -0.0027 % vertical displ. of node 2
5.0000 0.0000 % horizontal displ. of node 3
6.0000 0.0000 % vertical displ. of node 3

stresses =
element stress
1.00000 -2500. % compressive stress for element 1
2.00000 2828. % tensile stress for element 2

t

Jft E x a m p le 7 .4 .2 Find the stresses of the truss structure shown in Fig.
7.4.2. All members have elastic modulus of 200 GPa and cross-sectional area of
2.5 x 10" 3 m2.

Section 7.4 MATLAB Application to Static Analysis

%--- -
% Example 7.4.2
% to solve static 2-D truss structure
%
% Problem description
% Find the deflection and stress of the truss made of two members
% as shown in Fig. 7.4.2.
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% disp = nodal displacement vector
% elforce = element force vector
% eldisp = element nodal displacement
% stress = stress vector for every element
% prop = material and geometric property matrix
4̂ nnrlpc — nnrlal rnnnprt.ivif.v т я +.riv fnr carli р1ртпрп1

the dofe in bcdvf

% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
О/7o
%-------------
%
%-------------
% control input data
%--------------------------
nel=9;
nnel=2;

9-UVtVA------Л»)

nnode=6 ;
sdof= nnod e* ndof;
Vo
%--------------------------

% number of elements
% number of nodes per element

nnmbpr rvf A r»"fe прг лл<4в------------------------L JTV " - - - -- - -UVUV

total number of nodes in system
% total system dofe

% nodal coordinates
%-------------------------
gcoord(1,1
gcoord(2,1
gcoord(3,1
gcoord(4,1
gcoord(5,l
gcoord(6,l

= 0.0; gcoord(l,2)= 0.0
=4.0; gcoord(2,2)=0.0
=4.0; gcoord(3,2)=3.0
=8.0; gcoord(4,2)=0.0
=8.0; gcoord(5,2)=3.0
= 12.; gcoord(6,2)= 0.0

%-
% material and geometric properties
%--
prop(l)=200e9; % elastic modulus

Truss Structures Chapter 7

prop(2)=0.0025; % cross-sectional area

%---------------------------
% nodal connectivity
%---------------------------
nodes(l,l
nodes(2 ,l
nodes(3,l
nodes(4,l
nodes(5,l
nodes(6 ,l
nodes(7,l
nodes(8,l
nodes(9,l
%
%----------

nodes(l,2
nodes(2,2
nodes(3,2
nodes(4,2
nodes(5,2
nodes(6,2
nodes(7,2
nodes(8,2
nodes(9,2

=2
=3
=3
—4
=4
=5
=5
= 6
=6

% applied constraints

b cd o f(l)= l;
b cva l(l)= 0;
bcdof(2)= 2;
bcval(2)= 0 ;
bcdof(3)=12;
bcval(3)=0;
%
%----------------

% 1st dof (horizontal displ) is constrained
% whose described value is 0

% 2nd dof (vertical displ) is constrained
% whose described value is 0

% 12th dof (vertical displ) is constrained
% whose described value is 0

% initialization to zero
%-----------------------------------
ff=zeros(sdof, 1);
kk=zeros(sdof,sdof);
index=zeros(nnel*ndof,l);
elforce=zeros(nnel* ndof, 1);
eldisp=zeros(nnel*ndof, 1);
k=zeros(nnel*ndof,nnel*ndof);
stress=zeros(nel, 1);
%
%---------------------------- —

% system force vector
% system stiffness matrix

% index vector
% element force vector

% element nodal displacement vector
% element stiffness matrix

% stress vector for every element

% applied nodal force
%----------------------------
ff(8)=-600;
ff(9)=200;
w/V
%-------------

4th node has 600 N in downward direction
% 5th node has 200 N in r.h.s. direction

% loop for elements
%------------------ ------
for iel=l:nel
%
nd(l)=nodes(iel,l);

% loop for the total number of elements

% 1st connected node for the (iel)-th element

nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2); % coordinate of 1st node
x2—gcoord(nd(2),l); y2=gcoord(nd(2),2); % coordinate of 2nd node
%
Ieng=sqrt((x2-x l) ‘ 2-|-(y2-y l) '2); % element length
%
if (x2-x l)= = 0;
beta=2*atan(l); % angle between local and global axes
else
beta=atan((y2-y l)/(x 2-xl));
end
%
el=prop(l); % extract elastic modulus
area=prop(2); % extract cross-sectional area
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=fetruss2(el,leng,area,0,beta,1); % compute element matrix
%
kk=feasmbll(kk,k,index); % assemble into system matrix
%
end
%
%--

Section 7.4 MATLAB Application to Static Analysis 213

% apply constraints and solve the matrix
%--
[kk,ff]=feaplyc2(kk,if,bcdof,bcval); % apply boundary conditions
%
disp=kk\ff; % solve matrix equation to find nodal displacements
%
%---
% post computation for stress calculation
%--
%
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(iel,l); % 1st connected node for the (iel)-th element
ndf2'i=nodesl'iel.2'i: % 2nd connected node for the fielVth element

- \ - / \ ' t ' ' ~ ------------ — V / • -------

%
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2); % coordinate of 1st node
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2); % coordinate of 2nd node
%
Ieng=sqrt((x2-x l)"2-|-(y2-y l)"2); % element length
%
if (x2-x l)= = 0;
beta=2*atan(l); % angle between local and global axes
else

Truss Structures Chapter 7

beta=atan((y2- y l) / (x 2-x l));
end
%
el=prop(l); % extract elastic modulus
area=prop(2); % extract cross-sectional area
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=fetruss2(el,leng,area,0 ,beta,1); % compute element matrix
%
for i=l:(nnel*ndof) % extract displacements associated with
eldisp(i)=disp(index(i)); % (iel)-th element
end
%
elforce=k*eldisp; % element force vector
stress(iel)=sqrt(elforce(l)2-(-elforce(2)2)/area; % stress
%
if ((x2-xl)*elforce(3)) < 0 ; % check if tension or compression
stress(iel)=-stress(iel);
tlLU
%
end
%
%-------------------------------------
% print fem solutions
%-------------------------------------
num =l:l:sdof;
displ=fnum’ displ % print displacements
%
numm=l:l:nel;
<!»4~ CIClflP ̂ Г̂ 11 OJL WVlVlf nf «(ЛПЛЛЛam tooco—^ицшш owtooj /U p iu it оы.соэсо
%
%--- ----------------

The nodal displacements and stresses of members are shown below.

displ —
dofs displacement
1.0000 0.0000e-0
2.0000 0.0000e-5
3.0000 0.3200e-5
4.0000 -1.5700e-5
5.0000 0.8650e-5
6.0000 -1.5700e-5
7.0000 0.6400e-5
8.0000 -2.2867e-5
9.0000 0.5450e-5
10.000 -2.0167e-5

Section 7.5 MATLAB Application to Eigenvalue Analysis 215

10 ii
o

@
E-200GPa

p = 7 8 6 0 kg /rn

Figure 7.5.1 Finite Element Discretization

11.000 1.1200e-5
12.000 0.0000e-5

stresses =
element stress

2.0000 -100000
3.0000 000000
4.0000 160000
5.0001 100000
6.0001 -160000
7.0001 180000
8.0001 240000
Q ППП1 -ЧПППЛПI/ • v w a vj v/ w u v

7.5 MATLAB Application to Eigenvalue Analysis

Once the system mass and stiffnes matrices are computed for the truss structure,
the matrix equation becomes

In order to compute natural frequencies of the structure, we assume a harmonic motion
for the displacement. The resultant equation is the eigenvalue problem given as

1.0000 160000

t

[M]{u} + [*] { « } = 0 (7.5.1)

([К } - и , 2[М]){й} = 0 (7.5.2)

where u> is the circular natural frequency and { « } is the vector for mode shape.

4k Example 7.5.1 Determine the natural frequency of a free bar using the
finite element method. The bar is shown in Fig. 7.5.1 and it has elastic modulus
of 200 GPa, cross-sectional area of 0.001 m2, and density of 7860 Kg/m 3.

Truss Structures Chapter 7

%-- — ---
% Example 7.5.1
% to solve natural frequency of 1-D bar structure
%
% Problem description
% Find the natural frequency of a bar structure
% as shown in Fig. 7.5.1.
%
% Variable descriptions
% к = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%------------------- -- —--------
%
%-------------------------------
% control input data
%---------------------------
neb=4;
nnel=2;
n_dof=l;
nnode=5;
sdof=nnode*ndof;
%
%---------------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs

% nodal coordinates
%--------------------------------
gcoord (l,l)= 0.0;
gcoord(2, l) = 1.0;
gcoord(3,l)=2.0;
gcoord(4,l)=3.0;
gcoord(5,l)=4.0;
%
%--
W __ i_:~ i__ j ____ ------- -------
/ 0 uiabCitoi auu gcuiucbiiL. р&ирсхысв

%----------------------------------- -------------
prop(l)=200e9;
prop(2)= 0.001;
prop(3)=7860;
%

% elastic modulus
% cross-sectional area

% density

Section 7.5 MATLAB Application to Eigenvalue Analysis 217

% nodal connectivity
%-----------------------------------
n o d es (l,l)= 1; nodes(l,2)=2
nodes(2,l)=2; nodes(2,2)=3
nodes(3,l)=3; nodes(3,2)=4
nodes(4,l)=4; nodes(4,2)=5
%
%-----------------------------------
% initialization to zero
%-----------------------------------
kk=zeros(sdof,sdof);
mm=zeros (sdof, sdof);
index=zeros(nnel*ndof,l);
%
%-------------------------------
% loop for elements
%-------------------------------

% system stiffness matrix
% system mass matrix

% index vector

% loop for the total number of elements

% 1st connected
% 2nd connected

for iel=l:nel
%
nd(l)=nodes(iel,l);
nd(2)=nodes(iel,2);
%
x l= gcoord (n d (l),l);
x2=gcoord(nd(2) ,l) ;
%
leng=(x2-x l);
%
1̂ — 1 ̂ •

area=prop(2);
rho=prop(3);
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
ip t= l;
[k,m]=fetrussl(el,leng,area,rho,ipt);
%
kk=feasmbll(kk,k,index);
mm=feasmbll (mm, m, index);
%
end
%

node for the (iel)-th element
node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% ©xtrsict elastic modulus
% extract cross-sectional area

% extract mass density

% flag for consistent mass matrix
% element matrix

% assemble system stiffness matrix
% assemble system mass matrix

MЛГ
% solve for eigenvalues
%-----------------------------
fsol=eig(kk,mm);
fsol=sqrt(fsol);
%
%-----------------------------

218 Truss Structures Chapter 7

% print fem solutions
%--------------------------------
num =l:l:sdof;
freqcy=[num’ fsol] % print natural frequency
%
%----- ■-------------- ------ --- ----------

function [k,m]=fetrussl (el,leng,area,rho,ipt)
% Purpose:
Crf О a : Л*_ ___I ____ _____*1.л i П 4 -.»^ J/0 OllJLILC&S dllU XUO»» XUdlllLCO Ш1 (*1LC J.-JJ U-U&S CICXUCllt
% nodal dof { u_l u_2 }
%
% Synopsis:
% [k,m]=fetrussl(el,leng,area,rho,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 4x4)
% m - element mass matrix (size of 4x4)
% el - elastic modulus
% leng - element length
% area - area of truss cross-section
% rho - mass density (mass per unit volume)
% ipt = 1 - consistent mass matrix
% ipt = 2 - lumped mass matrix
%-- ^ --------------
%
% stiffness matrix
%
If— /атря*р1/1рпа̂ *Г 1 -1*« — L *

-i i];
%
% consistent mass matrix
%
if ip t= = l
%
m=(rho*area*leng/6)*[2 1;...

1 21;
%
% lumped mass matrix
%
else
%
m=(rho*area*leng/2)*[1 0;...

0 1];
%
end

Section 7.5 MATLAB Application to Eigenvalue Analysis 219

%
%---

The natural frequencies are computed from the finite element analysis and
compared to the exact solution.

freqcy =
mode nat. freq.
1.00 0.0000 % exact 0.0000
2.00 4060.0 % exact 3962.0
3.00 8737.0 % exact 7924.0
4.00 14198. % exact 11895.
5.00 17474. % exact 15847.

+
T

£ E x a m p le 7 .5 .2 We want to find the natural frequency of the truss
structure shown in Fig. 7.4.2. Each member has density of 7860 Kg/m 3.

%-
% Example 7.5.2
% to solve natural frequency of 2-D truss structure
%
% Problem description
% Find the natural frequency of a truss structure
% as shown in Fig. 7.4.2.
trf/о
% Variable descriptions
% к = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in ’bcdof’

ft//0
%-
% control input data
%-----------------------------
nel=9; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node

Truss Structures Chapter 7

nnode=6 ;
sdof=nnode*ndof;
%
%-----------------------------
% nodal coordinates
%--------------------------------
g co o rd (l,l)= 0.0; gcoord(l,2)= 0.0
gcoord(2,l)=4.0; gcoord(2,2)=0.0
gcoord(3,l)=4.0; gcoord(3,2)=3.0
gcoord(4,l)=8.0; gcoord(4,2)=0.0
gcoord(5,l)=8.0; gcoord(5,2)=3.0
gcoord(6, l) = 12,; gcoord(6,2)= 0.0
%
%---
% material and geometric properties
%---
prop(l)=200e9;
prop(2)=0.0025;
prop(3)=7860;
%
%---------------------------

% total number of nodes in system
% toted system dofs

nodal connectivity
%----------
nodes(l,l
nodes(2,l
nodes(3,l
nodes(4,l
nnrlmfK 1
nodes(6,l
nodes(7,l
nodes(8,l
nodes(9,l
%
%----------

=1 nodes(l,2) = 2;
=1 nodes(2,2)=3;
=2 nodes(3,2)=3;
=2 nodes(4,2)=4;
=3 ппЯмГ.Ч 9^=4*
=3 nodes(6,2)=5;
=4 nodes(7,2)=5;
- 4 nodes(8,2)= 6;
=5 nodes(9,2)=6;

% applied constraints
%------------------
b cd o f(l)= l;
bcva l(l)= 0;
bcdof(2)= 2;
bcval(2)= 0;
bcdof(3)=12;
I__ n.J — Uj
%
%-----------------------------
% initialization to zero
%-----------------------------
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);

% elastic modulus
% cross-sectional area

% density

% 1st dof (horizontal displ) is constrained
% whose described value is 0

% 2nd dof (vertical displ) is constrained
% whose described value is 0

% 12th dof (vertical displ) is constrained
ink nn д Vx л/l «л Л/и wuuoc uciSLiiucu vaiuc ю и

% system stiffness matrix
% system mass matrix

Section 7.5 MATLAB Application to Eigenvalue Analysis 221

index=zeros (n nel*ndof, 1);
%
%---------------------------
% loop for elements
%---------------------------
for iel=l:nel
%
nd (1)=nodes (iel, 1);
nd(2)=nodes(iel,2);
%
xl=gcoord (nd(1), 1); у 1=gcoord(nd (1) ,2);
x2=gcoord(nd(2) ,l) ; y2=gcoord(nd(2),2);
%
leng=sqrt((x2-x l) * 2+ (y 2-y l) * 2);
%
if (x2- x l)= = 0;
beta=2*atan(l);
else
beta=atan((y2- y l) /(x 2-x l));
end
%
el=prop(l);
area=prop(2);
rho=prop(3);
%
index=feeldof(nd,nnel,ndof);
%
ip t= l; 1
[k,m] =fetruss2 (el ,leng ,are a,rho, bet a,ipt);
%
kk=feasmbll(kk,k, index);
mm=feasmbl 1 (mm, m,index);
%
end
%
%---------------------------------------
% apply constraints and solve
%---------------------------------------

% index vector

% loop for the total number of elements

% 1st connected node for the (iel)-th element
% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% angle between local and global axes

% extract elastic modulus
% extract cross-sectional area

% extract mass density

% extract system dofs for the element

flag for consistent mass matrix
% element matrix

% assemble system stiffness matrix
% assemble system mass matrix

[kk,mm]=feaplycs(kk, mm, bcdof);
%
fsol=eig(kk,mm);
fenl—enrtf fenlV

% apply the boundary conditions

%
%~
% print fem solutions

num =l:l:sdof;
freqcy=[num’ fsol] % print natural frequency

Truss Structures Chapter 7

%
%■

function [kk,mm]=feaplycs(kk,mm,bcdof)
%--
% Purpose:
% Apply constraints to eigenvalue matrix equation
% [kk]x—lambda[mm]x
%
% Synopsis:
% [kk,mm]=feaplycs(kk,mm,bcdof)
%
% Variable Description:
% kk - system stiffness matrix before applying constraints
% mm - system mass matrix before applying constraints
% bcdof - a vector containing constrained d.o.f
%
% Notes:
% This program does not reduce the matrix size depending on
% the number of constraints. Instead the system matrix size
% is preserved regardless of constraints. As a result, the
% matrix obtained after applying the constraints contain fictitious
% zero eigenvalues as шалу as the number of constraints in
% addition to actual eigenvalues. Users neglect the zero
% fictitious eigenvalues from the results.
%---
%
n=length(bcdof);
sdof=size(kk);
%
for i= l:n
c=bcdof(i);
for j= l:sd o f
k k (c j)= 0;
kk(j,c)=0;
m m (c,j)=0;
m m (j,c)=0;
end
%
m m (c,c)= l;
end
%
%---

The first five natural frequencies of the truss structure are provided below.

Section 7.6 MATLAB Application to Transient Analysis 223

1st frequency = 240.9 rad/s
2nd frequency = 467.9 rad/s
3rd frequency = 739.8 rad/s
4th frequency = 1243. rad/s
5th frequency = 1633. rad/s

7.6 MATLAB Application to Transient Analysis

The dynamic equation of motion for the truss structure is

with prescribed initial conditions which are usually initial displacements and initial
velocities. We apply the central difference technique for time integration of Eq.
(7.6.1). The details of the techniques are described in Sec. 8.11 and are omitted
here. In particular, the summed form of central difference technique is used for the
following examples.

4k Example 7.6.1 A bar is fixed at the left end and it is subjected to a step
function of magnitude of 200 N (see Fig. 7.5.1). The bar has elastic modulus
of 200 GPa, cross-sectional area of 0.001 m2, and density of 7860 Kg/m 3. It is
initially at rest. The MATLAB program is shown below.

%-
% Example 7.6.1
% to solve transient response of 1-D bar structure
%
% Problem description
% Find the dynamic behavior of a bar structure,
% as shown in Fig. 7.5.1, subjected to a step
% force function at the right end.
%
% Variable descriptions
% к = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
oz — cvetom m sec iwr+nrf v iiiu i — k3J UV^lll ШШ0 T^VWVl

% ff = system force vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions

Truss Structures Chapter 7

% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
% --,--------------------

%
%--------------------------------
% control input data
%--------------------------
nel=10;
nnel=2 ;
ndof=l;
nnode= ll;
sdof=nnode*ndof;
d t= 0 .0001;
t i= 0;
tf=0.05;
nt=fix((tf-ti) /d t) ;
%
%---------------------------
% nodal coordinates
%---------------------------
g co ord (l,l)= 0.0;
gcoord(2, l) = 1.0 ;
gcoord(3,l)=2.0;
gcoord(4,l)=3.0;
gcoord(5,l)=4.0;
gcoord(6,l)=5.0;
gcoord(7,l)=6.0;
gcoord(8,l)=7.0;
gcoord(9,l)=8.0;
gcoord(10,l)=9.0;
g c o o r d (ll ,l)= 10,0 ;
%
%--------------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% time step size

% initial time
% final time

% number of time steps

% material and geometric properties

prop(l)=200e9;
prop(2)= 0 .001;
prop(3)=7860;
%

% elastic modulus
% cross-sectional area

% density

% nodal connectivity
%-----------------------------------
r V

n od es(l,l)= l; nodes(l,2)=2
nodes(2,l)=2; nodes(2,2)=3
_ _ ч\ _ _ J ___{ rt\ Anoaes(^,i)=^; noaes(o,^;=*t
nodes(4,l)=4; nodes(4,2)=5
nodes(5,l)=5; nodes(5,2)=6
nodes(6 , l)= 6; nodes(6,2)=7

Section 7.6 MATLAB Application to Transient Analysis 225

nodes(7,l)=7; nodes(7,2)=8;
nodes(8, l)= 8; nodes(8,2)=9;
nodes(9,l)=9; nodes(9,2)=10;
nodes(l0, l)= 10; nodes(10,2) = l l ;
%
%-------------------------------------
% applied constraints
%----------------------------------
n bc= l;
b cd o f(l)= l;
%
%------------------------------ -
% initialization to zero
%--
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
ff=zeros(sdof,l);
index=zeros(nnel*ndof,l);
acc=zeros(sdof,nt);
vel=zeros(sdof,nt);
disp=zeros(sdof,nt);
%
%--------------------------------
% loop for elements
%--------------------- ------

% number of constraints
% 1st dof is constrained

% system stiffness matrix
% system mass matrix
% system force vector

% index vector
% acceleration matrix

% velocity matrix
% displacement matrix

for iel=l:nel
%

nd(2)=nodes(iel,2);
%
xl=gcoord (nd(1), 1);
x2=gcoord(nd(2) ,l) ;
%
leng=(x2-x l);
%
el=prop(l);
area=prop(2);
rho=prop(3);
%
index=feeldof(nd, nnel, ndof);
%
I_i-___1 *

[k,m]=fetrussl (el,leng,area,rho,ipt);
%
kk=feasmbll (kk,k,index);
mm=feasmbll(mm,m, index);
%
end

% loop for the total number of elements

% 1st connected node for tlie îel)~tli element
% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% extract elastic modulus
% extract cross-sectional area

% extract mass density

% extract system dofs for the element

/ 0 u a g LUJ. 1 1 1 0 9 9 l i i a t x i A

% element matrix

assemble system stiffness matrix
% assemble system mass matrix

Truss Structures Chapter 7

%
%-
% initial condition
%------------------ —
vel(:, 1) =zeros(sdof, 1);
disp (:, 1)=zeros(sdof, 1);
%
f f (l l)= 200;
%
%-----------------------------

% initial zero velocity
% initial zero displacement

% step force at node 11

% central difference scheme for time integration
%--

mm=inv(mm);
%
for it= l:nt
%
acc(:,it)==mm*(fF-kk*disp(:,it));
%
for i= l:nbc
ibc=bcdof(i);
acc(ibc,it)=0;
end
%
vel(:,it+l)=vel(:,it)+acc(:,it)*dt;
disp(:,it-fl)=disp(:,it)-f-vel(:,it-f l)*dt;
%
end
%
acc(:,nt+l)=mm*(fF-kk*disp(:,nt-f 1));
%
tim e=0:dt:nt*dt;
plot (time, disp(11,:))
xlabel(’Time(seconds)>)
ylabel(’Tip displ. (m)’)
%
%--

% invert the mass matrix

% compute acceleration

% apply constraints

% compute velocity
compute displacement

% acceleration at last step

The tip displacement at the right end (i.e. node 11) is plotted in Fig. 7.6.1. as a
function of time. As expected, the displacement has oscillation about the static
displacement. X

4b E x a m p le 7 .6 .2 Find the transient response of the truss structure as
shown in Fig. 7.4.2. The structure has the same geometric and material data as
those given Example 7.5.2. However, the load is applied at node 5 in the upward
direction as a step function. The load magnitude is 200 N. The response of the
same node where the load is applied is plotted in Fig. 7.6.2.

Section 7.6 MATLAB Application to Transient Analysis

тм___ _ rv л» i Ф:__ ________„x n :_1______ i
-Г I g U X C I . U * X 1 Ш 1 С n j & i u r ^ U l H i e l i p L / l & p i d L C l U C U t

с

t
J&

Figure 7,6=2 Time History of Node 5

%----------------------- - . — :-------------------------

% Example 7.6.2
% to solve transient response of 2-D truss structure
sw
7o

% Problem description
% Find the dynamic behavior of a truss structure,
% as shown in Fig. 7.4.2, subjected to a step
% force function at node 5 in the upward direction.
%
% Variable descriptions
% к = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass vector
% ff = system force vector

Tim*(Moond*)

Truss Structures Chapter 7

% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
% ..— -------------------%
%-------------------------------

% control input data
%-----------------------------
nel=9;
nnel=2;
ndof=2;
nnode=6 ;
sdof—nnode*ndof;
dt=0.0005;
t i= 0; tf=0.15;
nt=fix((tf-ti)/dt);
%
%------------------------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% time step size

% initial and final times
% number of time steps

nodal coordinates
%-
gcoord (l,l)= 0.0; gcoord(l,2)= 0.0
gcoord(2,l)=4.0; gcoord(2,2)=0.0
gcoord(3,l)=4.0; gcoord(3,2)=3.0
gcoord(4,l)=8.0; gcoord(4,2)=0.0
ffcoordfK .I^=8.0: eroo'rdf5.2'l=3.0
o -----------\ ~ 7 ~ / ------------------j a ---------------------\ ~ J — / ----------

gcoord(6, l) = 12.; gcoord(6,2)= 0.0
%
%---
% material and geometric properties
%---
prop(l)=200e9;
prop(2)=0.0025;
prop(3)=7860;
%
%--

% elastic modulus
% cross-section aJ area

% density

nodal connectivity

n od es(l,l)= l; nodes(l,2)= 2;
nnJ.,,/1) 1у -

nodes(3,l)=
nodes(4,l)=
nodes(5,l)=
nodes(6 ,l)=
nodes(7,l)=
nodes(8 ,l)=

-1 . «л/toc/O O'! —• J. J j — Wj

■2; nodes(3,2)=3;
=2; nodes(4,2)=4;
=3; nodes(5,2)=4;
=3; nodes(6,2)=5;
=4; nodes(7,2)=5;
=4; nodes(8,2)=6;

Section 7.6 MATLAB Application to Transient Analysis 229

nodes(9,l)=5; nodes(9,2)=6;
%
%--------------------------------
% applied constraints
%------------------------------ --
nbc=3;
bcdof(l)= l;
bcval(l)=0 ;
bcdof(2)= 2;
bcval(2)= 0;
bcdof(3)=12;
bcval(3)=0;
%
%-----------------------------------
% initialization to zero
%-----------------------------------
kk=zeros(sdof,sdof);
mm=zeros (sdof, sdof);
ff=zeros(sdof,l);
index=zeros(nnel*ndof, 1);
acc=zeros(sdof,nt);
vel=zeros (sdof, nt);
disp=zeros(sdof,nt);
%
%-----------------------------
% loop for elements
%-----------------------------

% number of constraints
% 1st dof (horizontal displ) is constrained

% whose described value is 0
% 2nd dof (vertical displ) is constrained

% whose described value is 0
% 12th dof (horizontal displ) is constrained

% whose described value is 0

% system stiffness matrix
% system mass matrix
% system force vector

% dofs index vector
% acceleration matrix

% velocity matrix
% displacement matrix

for ieb==l:ne!
%
nd(l)=nodes(iel,l);
nd(2)=nodes(iel,2);
%
xl=gcoord(nd(l),l); yl=gcoord(nd(l),2);
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2);
%
leng =sqr t ((x2-xl) ' 2-f(y2-y l)“2);
%
if (x2-x l)= = 0;
beta=2*atan(l);
else
beta=atan((y2-y l) /(x 2-xl));
„ JCllU
%
el=prop(l);
area=prop(2);
rho=prop(3);

% Innn for t.hft total number of Îpmpnt.s

% 1st connected node for the (iel)-th element
% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

angle between local and global axes

% extract elastic modulus
% extract cross-sectional area

% extract mass density

index=feeldof(nd,nnel,ndof); % extract system dofs for the element

Truss Structures Chapter 7

ipt= l; % flag for consistent mass matrix
[k,m]=fetruss2(el,leng,area,rho,beta,ipt); % element matrix

kk=feasmbll(kk,k,index);
mm=feasmbll (mm,m,index);
%
end
%
%-----------------------------------
% initial condition
%-----------------------------------
vel(:, 1)=zeros (sdof, 1);
disp (:, 1)=zeros (sdof, 1);
%
ff(10)= 200;
%
%-------------------------------------

assemble system stiffness matrix
% assemble system mass matrix

% initial zero velocity
% initial zero displacement

% step force at 10th dof

% central difference scheme for time integration
%---
mm=inv(mm);
%
for it=l:nt
%
acc(:,it)=mm*(fF-kk*disp(:,it));
%
for i=l:nbc
ibc=bcdof(i);
acc(ibc,it)=0;
end
%
vel(:,it+l)=vel(:,it)-facc(:,it)*dt;
disp(:,it+l)=disp(:,it)+vel(:,it+l)*dt;
%
end
%
acc(:,nt+l)=mm*(ff-kk*disp(:,nt+l));
%
time=0:dt:nt*dt;
plot(time,disp(10,:))
xlabel(’Time(seconds)’)
vlabelTTm displ. TmV)V \ * * \ / /

%

% invert the mass matrix

% compute acceleration

% apply constraints

% compute velocity
compute displacement

% acceleration at last step

% displacement plot

Problems 231

Problems

7.1 (a) Develop the element stiffness matrix for the one-dimensional axial rod using
quadratic shape functions, (b) Apply the stiffness matrix to solve an axial
member whose one end is fixed and the other end is subjected to a force P.
The member has elastic modulus E and cross-sectional area A, respectively.
Use one quadratic element to model the axial member, (c) Compare the nodal
displacement at the center o f the member to the end displacement.

7.2 A telescope shape o f axial member (see Fig. P7.2) is modeled using a single
linear element. Derive the element stiffness matrix.

7.3 A taper shape of axial member (Fig. P7.3) is modeled as a single linear element.
Derive the element stiffness matrix.

7.4 Develop the element mass matrix for the one-dimensional axial member using
quadratic shape functions.

7.5 Develop the element mass matrix for Prob. 7.2.

7.6 Develop the element mass matrix for Prob. 7.3.

7.7 For the truss structure shown in Fig. P7.7, derive the finite element matrix
equation using two elements. Find the displacements and stresses in the member.

7.8 One-dimensional wave equation for an axial member is given as

dt2 dx2

The second order equation can be rewritten as

du dv 0d2u- - „ = 0 ала ^ - 2^ 3 = 0

using two first order equations in time. These two equations are solved using
one linear finite element and the backward difference method for time derivative.
The member is initially displaced such that it(x,0)=0.001x. The left end of the
member is held fixed all the time while the right end is released at time 0 from
the initial displacement. Find the displacement и and velocity v at the right
end at time t~ 1 sec. using a time step size A t= l.

7.9 Redo Prob. 7.8 using the central finite difference method for time derivative.
Find the critical time step size for stability.

7.10 Solve the truss structure shown in Fig. P7.10 using the computer programs.
Compare the finite element solution to the analytical solution obtained from
statics.

7.11 Obtain the natural frequencies o f the structures in Fig. P7.10 using the computer
programs.

232 TVuss Structures Chapter 7

gA E. A

L/2 I L/2

Figure P7.2 Problem 7.2

E, A = txx+b

Figure P7.3 Problem 7.3

E =200 G P a
A = 0.004 m 2

Figure F7 .7 Problem 7.7

800 If

Ш 7.

h
lm im i 7771

E=70GPA A=0.002m2

Figure P7.10 Problem 7.10

250 N
1--------------1>------------- (

1.2m

/-1--- <-------------1•------------- 1 1------------ й

im 1ТП

7.12 If the structure in Fig. P7.10 is initially at rest and the forces are applied

suddenly at time 0, determine the dynamic response of the structure using the
computer programs.

C H A P T E R E IG H T

BEAM AND FRAME STRUCTURES

8.1 Euler-Bernoulli Beam

The Euler-Bernoulli equation for beam bending is

- S ' S H S - 1- " (“ •»

where v(x, t) is the transverse displacement of the beam, p is mass density per volume,
El is the beam rigidity, q(x,t) is the externally applied pressure loading, and t and x
indicate time and the spatial axis along the beam axis. We apply one of the methods
of weighted residual, Galerkin’s method, to the beam equation, Eq. (8.1.1) to develop
the finite element formulation and the corresponding matrix equations.

The averaged weighted residual of Ea. (8.1.11 is■------— -------- О--- О------------------------ - ------ X- \ - ---- / —

[L (d2v d2 f d2v\ \
~ J o \p s ^ + a ^ \ a ^) ~ i)

wdx = 0 (8.1.2)

where L is the length of the beam and w is a test function. The weak formulation
of Eq. (8.1.2) is obtained from integrations by parts twice for the second term of the
equation. In addition, discretization of the beam into a number of finite elements
gives

- Ш
d2v f

Pw wdx+Lae
r~,Td2v d2w

dx2 dx2
M

dw
dx

= 0 (8.1.3)

__i______т г n т t a ft I Cs. „ £ \ i _ j.i_ _ _i________ г ________ x / _ г о т / ^ 2 / cs „ 2 \ *_ n . _ i_______i : ___________________±wnere v = £ti\u~v/ux~) is tue snear шгсе, m = rji\u~v/ux~) is ine D t s i iu in g шошеш,
Q,e is an element domain and n is the number of elements for the beam.

We consider shape functions for spatial interpolation of the transverse deflection,
v, in terms of nodal variables. Interpolation in terms of the time domain will be
discussed later. To this end, we consider an element which has two nodes, one at each

235

236 Beam and Frame Structures Chapter 8

У

v2

V

^ = 0 Х г - I

Figure 8.1.1 Two-Noded Beam Element

end, as shown in Fig. 8.1.1. The deformation of a beam must have continuous slope
as well as continuous deflection at any two neighboring beam elements. To satisfy
this continuity requirement each node has both deflection, t/,- and slope, 9{y as nodal
variables. In this case, any two neighboring beam elements have common deflection
and slope at the shared nodal point. This satisfies the continuity of both deflection
and slop. The Euler-Bernoulli beam equation is based on the assumption that the
plane normal to the neutral axis before deformation remains normal to the neutral
axis after deformation (see Fig. 8.1.2). This assumption denotes 9 — dv/dx (i.e.
slope is the first derivative of deflection in terms of x). Because there axe four nodal
variables for the beam element, we assume a cubic polynomial function for v(x)

>(x) = c0 + c\x + C2X2 + С3Ж3 (8.1.4)
Ргагп i.Vio dcciirnnfinn •firvr P.nlpr-Rprnnnlli Ьрягп clnno ic frnm T?n 1 A.\X ЛЧ/11Л V11V UUU VIVU 1\/A «li *-< xyviliwuifl К/vuuilj U1U yj V aw Wtli^/uuvu 11V111 XJ vj • < 1 t J. J

9(x) — ci + 2c2® + 3c3a;2 (8.1.5)

Evaluation of deflection and slope at both nodes yields
v(0) = co = v 1
0(0) = cl = 9l

v(l) = cQ + c j + c2l2 + csl3 = v2 (8.1.6)

9(1) — C\ + 2 c2l + ЗС3/2 = 92

Solving Eq. (8.1.6) for c* in terms of the nodal variables Vi and 9i and
substituting the results into Eq. (8.1.4) give

v(x) = Hi(x)vi 4- H2(x)9i 4- H$(x)v2 + H4(x)92 (8.1.7)

where
Ъх2 2ж3

Section 8.1 Euler-Bernoulli Beam 237

Figure 8.1.3 Hermitian Beam Element

The functions Hi(x) are called Hermitian shape functions and shown in Fig. 8.1.3.
The Hermitian shape functions are of C 1-type which means they make both v and
dv/dx continuous between two neighboring elements. Further discussion on Cn-type
continuity, where n is an integer equal to or larger than zero, is provided in Chapter
12.

Application of Hermitian shape functions and Galerkin’s method to the second
term of Eq. (8.1.3) results in the stiffness matrix of the beam element. That is,

[K e] = f [B]TEI[B]dx (8.1.9)
Jo

where
[B] = {H[' Щ Щ Щ } (8.1.10)

and the corresponding element nodal degrees of freedom is {de} = {^i $i v2 #г}Т- In
Eq. (8.1.10), double prime denotes the second derivative of the function and / in Eq.
(8.1.9) is the length of a beam element. Assuming the beam rigidity E l is constant

238 Beam and Frame Structures Chapter 8

within the element, the element stiffness matrix is

Г 12 6/ -1 2 61 -l
E l 61 4I2 - 6/ 212
13 -1 2 -61 12 -61

. 6/ 2I2 - 6/ 412 .

In case the beam rigidity is not constant within a beam element, the integral in Eq.
(8.1.9) must be evaluated including E l as a function of x. If the beam element is
relatively short, for example in a refined mesh, the average value of E l for the element
may be used with Eq. (8.1.11) for a simple and reasonable approximation.

The third term in Eq. (8.1.3) results in the element force vector. For a generally
distributed pressure loading, we need to compute

[F * } = f q (x)
Jo

(8.1.12)

in which { F e} is the element force vector. If we have a uniform pressure load qo
within the element, the element force vector becomes

{ П = q o f
J o

f f f n Г 6*
j q o > d x — — < I 2

H z 12 6 1
Я 4 J I - / 2

(8.1.13)

Another common load type is a concentrated force within a beam element as shown
in Fig. 8.1.4. In this case, the element force vector is

{ F * } = f P08(x - *0)
Jo

dx — Pn<

f Я ,(*0)
Нч{хо)
Hz(x0)

, #4(®o)

(8.1.14)

where P q is the concentrated force applied at x = xq and S(x — xq) is the Dirac delta
function. Element force vectors for some other cases are summarized in Fig. 8.1.4.

The last term in Eq. (8.1.3) is the boundary conditions of shear force and
bending moment at the two boundary points, x — 0 and x = L> of the beam. If
these boundary conditions are known, the known shear force and/or bending moment
are included in the system force vector at the two boundary nodes. Otherwise,
they remain as unknowns. However, deflection and/or slope are known as geometric
boundary conditions for this case. For static bending analyses of beams, the first term
in Eq. (8.1.3) which is the inertia force term is neglected. As a result, assembling
the element stiffness matrices and vectors results in the system matrix equation given
below:

[*]{<*} = {F } (8.1.15)

Section 8.1 Euler-Bernoulli Beam 239

x [/]= ^[eie -if

if.
x [РеЩ [6х,(х ,-1) l(l‘- 4 ^ 3 {)

6x„(xfl) x j.(3 x f2 l) f

[/]= | [9 21 21 -S lf

Figure 8.1.4 Element Force Vectors for Various Pressure Loads

Given boundary conditions are applied to Eq. (8.1.15) and the matrix equations are
solved for the unknown nodal variables, deflections and slopes. An example is given
in Example 8.1.1.

E xam ple 8.1.1 Solve a cantilever beam subjected to a tip load as shown in
Fig. 8.1.5. Let us use one Hermitian beam element to solve the tip deflection. In
this case, the element stiffness matrix is the same as the system stiffness matrix.
The resultant element matrix equations

■ 12 6£ -1 2 6£ 1 (Vl 1 f
E l 6L 4 L2 ~6 L 2 L2 1 9i ► - J Ml
Lz -1 2 - 6L 12 - 6 1 I v2 M - p

. 6L 2 L2 - 6L 4 L2 . u 2 J l 0 .

In this equation, Vi and M\ are unknown reactions at the clamped support.
The minus sign indicates the tip force is applied to the opposite direction to the
deflection. The boundary conditions prescribed in terms of nodal variables are
Vi — 0 and f?i = 0. Applying these conditions to Eq. (8.1.16) as described in

240 Beam and Frame Structures Chapter 8

Figure 8.1.5 Cantilever Beam

X

the previous chapter and solving the resultant equation yield

РЬг
ЪЕ1

(й 1 VU.±,

which is the exact solution for the cantilever beam. The reason the finite element
analysis with one element results in the exact solution is the following. The
Hermitian shape functions are based on a general cubic polynomial as seen in
Eq. (8.1.4). The exact solution for the cantilever beam with a tip force is also
a cubic function. As a result, the Hermitian shape functions can result in the
exact solution. |

1 '7'»A4

For dynamic analyses of beams, the inertia force needs to be included. In this
case, the transverse deflection is a function of x and t. The deflection is interpolated
within a beam element as given below:

т;(*,<) = H tix ^ ^ t) + H2(x)9x(t) + H3(x)v2(t) + H4(x)92(t) (8.1.18)

Equation (8.1.18) states that the shape functions are used to interpolate the deflection
in terms of the spatial domain and the nodal variables are functions of time. The first
term in Eq. (8.1.3) becomes

where

f p[H]T[H)dx{d>}
Jo

[H] = [Hi H2 Я3 Я4]

(8.1.19)

(8.1.20)

and superimposed dot denotes temporal derivative. From Eq. (8.1.19), the element
mass matrix becomes

[M e] = / pA[H]T
Jo

[H]dx

Г 156 221 54 -1 3 /1
pAl 221 412 13/ - 3 /2

~ 420 54 13/ 156 - 22/
. -1 3 / —3/2 - 22/ 4/2 .

(8.1.21)

Section 8.1 Euler-Bernoulli Beam 241

The mass matrix in Eq. (8.1.21) is called the consistent mass matrix. Archer [11,12]
is credited for the first development of the consistent mass matrix. Adding the
components in the mass matrix, which are associated with only the displacement
nodal variables (i.e. Vi and V2), yields pAl, total mass of the beam element. The
beam element conserves the mass in terms of its translational degrees of freedom.

In the dynamic analysis, the system mass matrix is usually required to be in­
verted. From this aspect, a diagonalized mass matrix has a computational advantage.
One such matrix is

[M*] =

-1 0 0 0 -
pAl 0 0 0 0

2 0 0 1 0
.0 0 0 0

1__
__

__

(8.1.22)

This matrix is called the lumped mass matrix, which was developed earlier than the
Л/1М А*л4ми4 »V4 ПЛП »V4 ni-WI V Г I 'V» 1 Cl 1ч Г» PI Pllf л1 ЛГМ ЛГ« т п л о «1+ Л П л1ч 4-КП л! n 4-1 /\vt Jk. 1
i s U n v i O L b i i . i ’ 11ЛСЮ9 iu c l i ja ia . . x i i i o ш а ь и л l i a s i i a i i ш ш с c i c i n c i i i ш с ю э a t c a u i t i a u s i d t i u i i a i

nodal degree of freedom. Both mass matrices conserve the mass associated with their
translational degrees of freedom.

Another way to develop a diagonalized mass matrix from the consistent mass
matrix is summarized below[13].

1. Add the diagonal components of the consistent mass matrix associated with the
translational degrees of freedom, i.e. the first and third diagonal components
for the present beam element. The sum is called a.

2. Divide the diagonal components by a and also multiply them by the element
total mass.

3. Set all off-diagonal components to zero.

Applying this procedure to Eq. (8.1.21) results in

-39 0 0 o-
pAl 0 /2 0 0
78 0 0 39 0

. 0 0 0 I2.

(8.1.23)

This matrix is called the diagonal mass matrix and also conserves the mass for the
translational degrees of freedom. Another technique to develop a diagonalized mass
matrix is discussed in Refs [14,15] using numerical quadrature points located only at
the nodes.

The element stiffness matrix does not change for the dynamic analysis because
the shape functions are the same for both static and dynamic analyses. However, the
force term may vary as function of time. The force vector is for the dynamic analysis

{ F e(i) } = f q(x, t)[H)Tdx
Jo

(8.1.24)

Thus, Eq. (8.1.24) is in general different from Eq. (8.1.12). As a result, the matrix
equation for a dynamic beam analysis is after assembly of element matrices and vectors

[M M + И {<0 = {?(*)} (8.1.25)

For free vibration o f a beam, the eigenvalue problem is [16].

([K] - u 2[M]) {d } = 0 (8.1.26)

where и is the angular natural frequency in radians per second and {rf} is the mode
shape. Example problems for static, dynamic, and eigenvalue analyses of beams are
provided at later sections using the MATLAB program.

8.2 Timoshenko Beam

The Timoshenko beam theory includes the effect of transverse shear deformation.
As a result, a plane normal to the beam axis before deformation does not remain
normal to the beam axis any longer after deformation. Figure 8.2.1 shows the
deformation in contrast to that in Fig. 8.1.2. While Galerkin’s method was used
to derive the finite element matrix equation for the Euler-Bernoulli beam equation,
the energy method is used for the present formulation for the Timoshenko beam.

Let и and v be the axial and transverse displacements of a beam, respectively.
Because of the transverse shear deformation, the slope of the beam в is different from
dv/dx. Instead, the slope equals (dv/dx) — 7 where 7 is the transverse shear strain.
As a result, the displacement field in the Timoshenko beam can be written as

u(x,y) = -у в (х) (8.2.1)

v(*) = v (8.2.2)

where the x-axis is located along the neutral axis of the beam and the beam is not
subjected to an axial load such that the neutral axis does not have the axial strain. A
beam subjected to both axial and transverse loads is considered in a next section for
frame structures. From Eq. (8.2.1) and Eq. (8.2.2), the axial and shear strains are

< = - v f x (8-2-3)

T = - » + ! (8.2.4)

As explained in the previous chapter on the energy method, the element stiffness
matrix can be obtained from the strain energy expression for an element. The strain
energy for an element of length I is

242 Beam and R-ame Structures Chapter 8

l r! rhf2 l rl rhj2
U = - I I eTEe dy dx + — I I JTGy dy dx (8.2.5)

t Jo J~h/2 * Jo J -h /2

in which the first term is the bending strain energy and the second term is the shear
strain energy. Moreover, b and h axe the width and height of the beams respectively,
and ft is the correction factor for shear energy whose value is normally f .

Section 8.2 Timoshenko Beam 243

y , v

x , u

Figure 8.2.1 Timoshenko Beam

First, substituting Eq. (8.2.3) and Eq. (8.2.4) into Eq. (8.2.5) and taking
integration with respect to у gives

u = \ L (£) X i) * * + f / (- * +£ f G4 - * +9 <8-2-6>
where I and A are the moment of inertia and area of the beam cross-section.

In order to derive the element stiffness matrix for the Timoshenko beam, the
variables v and в need to be interpolated within each element. As seen in Eq. (8.2.6), v
and 9 are independent variables. That is, we can interpolate them independently using
proper shape functions. This results in satisfaction of inter-element compatibility, i.e.
continuity o f both the transverse displacement v and slope $ between two neighboring
elements. As a result, any kind of C° shape functions can be used for the present
beam element. Shape functions of order C° are much easier to construct than shape
functions of order C 1. It is especially very difficult to construct shape functions of
order C 1 for two-dimensional and three-dimensional analyses such as the classical
plate theory.

We use the simple linear shape functions for both variables. That is,

v = [Я, Я ,] { £ } (8.2.7)

t = [Hi Hi] { £ } (8.2.8)

where H i and i/ 2 are linear shape functions. The linear element looks like that
in Fig. 8.1.1, but the shape functions used are totally different from those for the
Hermitian beam element. Using Eq. (8.2.7) and Eq. (8.2.8) along with the strain

244 Beam and Frame Structures Chapter 8

energy expression Eq- (8.2.6) yields the following element stiffness matrix for the
Timoshenko beam:

\Ke\ = ГК Я + \Ke\L“ ‘ J L----0 J ' L— S i

where

[Kt] =
E l

[Kt] =
fiGA

41

r ° 0 0 o ■
Г 0 1 0 -1

0 0 0 0
.0 -1 0 1 .

r 4 21 - 4 21 -I
21 12 - 2 1 I2
-4 —21 4 --21

. 21 12 - 2 1 P .

(R 0
---------j

(8.2.10)

(8.2.11)

One thing to be noted here is that the bending stiffness term, Eq. (8.2.10), is obtained
using the exact integration of the bending strain energy but the shear stiffness term,
F.n fft 0 11̂ is nKt.niTlpH n Gin it t.bp lnt.Ptfrat.ion fprbninnp И 7 1Я1 Fnrx x ID vuiimwu U11V x VV4VCWU am v w^x ur и w iiij.x 4JU.<u> x̂ ■ |X vj> x vx unv

present calculation, the one-point Gauss quadrature rule is used as shown in the
example given below. The major reason is if the beam thickness becomes so small
compared to its length, the shear energy dominates over the bending energy. As seen
in Eq. (8.2.10) and Eq. (8.2.11), the bending stiffness is proportional to while the
transverse shear stiffness is proportional to hi, where h and I are the thickness and
length of a beam element, respectively. Hence, as j becomes smaller for a very thin
beam, the bending term becomes negligible compared to the shear term. This is not
correct in the physical sense. As the beam becomes thinner, the bending strain energy
is more significant than the shear energy. This phenomenon is called shear locking. In
order to avoid the shear locking, the shear strain energy is under-integrated. Because
of the under-integration the present beam stiffness matrix is rank deficient. That is,
it contains some fictitious rigid body modes (i.e. zero energy modes). Example 8.2.1
shows the comoutation of the shear stiffness term.

ф Exam ple 8.2.1 We use the linear isoparametric element to integrate the
shear energy term in Eq. (8.2.6) to produce the shear stiffness matrix Eq.
(8.2.11). Using the concept of isoparametric mapping explained in Chapter 6,
the shear stiffness term becomes

[КП = fiGA
Г - 1/ ' 1- (1 - r)/2 1 1 — r l 1 + r

1/1 / 2 1 2
L—(1 + r)/2 J

(8.2.12)

The expression is a quadratic polynomial in terms of r so that the two-point
Gauss quadrature will evaluate the integration exactly. For under-integration
of one order less, we use the one-point Gauss quadrature rule. The integration
point is 0 and the weight is 2. Applying this to Eq. (8.2.12) results in Eq.
(8 .2 .11) . J

Section 8.3 Beam Elements with Only Displacement 245

These kinds of beam elements can be derived for any order of shape functions
higher than one. That is, beam elements can have three or larger number of nodes per
element depending on the order of shape functions. For each case, the shear stiffness
matrix should be under-integrated consistently. The order of integration for the shear
stiffness matrix is one less than what is required for exact integration.

The consistent mass matrix for the Timoshenko beam is computed from

[Me) = f pA [N f[N]dx
Jo

(8.2.13)

[N} = (8.2.14)

for a linear beam element. This equation results in

[M*} =
pAl

-2 0 1 o-
0 0 0 0
1 0 2 0

.0 0 0 0.
(8.2.15)

The same lumped and diagonal mass matrices as given in Eq. (8.1.22) can be used for
the present beam element.

8.3 Beam Elements with Only Displacement Degrees of Freedom

In this section, we develop a family of beam elements which have only displace­
ments as nodal degrees of freedom and no slope as nodal degrees o f freedom [19]. In
this aspect, these beam elements are similar to plane stress elements as given in Chap­
ter 9. Therefore, when a beam needs to be discretized along its thickness direction
as well as along its axial direction, these beam elements can be easily applied for the
mesh. Figure 8.3.1 shows one example which uses stacked beam elements along the
beam thickness. If there are multiple embedded cracks in a beam like interlaminar
delamination in a laminated composite beam, it may require more beam elements
through its thickness. If we plan to use beam elements which have displacements
and rotations as nodal degrees of freedom for this application, we need special care
at the interface of the neighboring top and bottom beam elements. As seen in Fig.
8.3.2, complicated constraint equations should be applied to maintain the continuous
deformation across interface.

Let us derive a linear beam element with displacement degrees of freedom only,
which is the simplest element of this family. The element has six degrees of freedom
which are axial and lateral displacements. There are axial displacements at the four
corner points and lateral displacements at the two ends of the element as seen in Fig.
8.3.3.

In Fig. 8.3.3 and the subsequent formulation, и represents the axial displace­
ments at the corner points and v represents the lateral displacements at the ends.

246 Beam and Frame Structures Chapter 8

Crack

S t - , h

Figure 8.3.1 A Beam with an Imbedded Crack (L » h)

The subscripts ‘ 1’ and ‘2’ refer to the left and right ends while the superscripts 4 ’
and ‘6’ indicate the top and bottom sides of the element, respectively.

The displacement field of the element is

} (8.3.1)

where [TV] is the matrix of shape functions and {de} is a vector of nodal displacements.
The axial displacement is assumed to vary linearly along both axial and lateral
directions. It can be written as

u(*>y) = ^2 Ni(x) [^ i(y)u«- + Щ у) и1] (8.3.2)
1 = 1

= N ^ H ^ u l + N i{x)H 2{y)u[+ N2(x)H 1(y)u\ + N2(x)H 2(y)u\

The lateral displacement, which is assumed to be constant through the thickness
o f the element, varies linearly along the axial direction and can be written as

2

v(x) = Nj(x)vj
i= 1

= Ni(x)v\ + N 2(x)v2 (8.3.3)

Here, Ni and H{ are the linear shape functions in the axial and lateral directions. The
beam element may use a higher order shape function for the axial direction if there
are more nodal points in the axial direction, and the linear shape function for lateral
direction. However, in this study, the linear shape function is used for both Ni and
Hi for simplicity. That is,

N 2 {x) =
x
1

(8.3.4)

N3(y) = 1 - У

У
Щ у) = 1

Section 8.3 Beam Elements with Only Displacement 247

4 г>„

4

I

I t) * :
.Z.

г;.

T̂s>

C o n t i n u i t y a t I n t e r f a c e

^4i

D Л-г
T

г 1̂ =
'*г>2 - u

% * ! = - Ц ? * 3

l_ 2*4?2=

Figure 8.3.2 Continuity Requirements at the Interface for Conventional Beam Elements

h

0J- 0)V1

b
4

1

U n

X

Figure 8.3.3 Four-Noded Beam Element with Six Degrees of Freedom

where I and h are the length and height o f the beam element, respectively, if the beam
is a rectangular shape.

For simplicity, notations, Ni, iV2, H1 and #2 will be used instead of Ni(x),
N2(x), Hi(y), and H2(y) in the following derivation. Axial normal strain can be
written as

= ^ = i t * 1' * * + a- £ H>■*>+ 8- £ H + a- B H <8-3-5)

and the shear strain is

du dv
lxy ~~ dy + dx (8.3.6)

248

дН2 лг t дН г
dy dy

Beam and Frame Structures Chapter 8

&HX b dH2 t dM\ b dH2 t сiNt . <tN2
- ^ N 1ul + - z —N1u\ + - z —N2u°2 + - z —N2ul +

dx
■vi +

dx V2

The element stiffness matrix can be obtained by minimizing the total strain en­
ergy which contains both bending and the transverse shear energy. This minimization
yields the following element stiffness matrix

[k ‘] = [* a + [k d (8.3.7)

where the subscripts ‘6’ and V indicate bending and the transverse shear, respectively.
The bending and transverse shear stiffness matrices are given as

f f { B i f E { B t)dydx
Jo Jo

\Kl) = f f {в,}т а {в,} dydx
Jo Jo

(8.3.8)

(8.3.9)

where E and G are the elastic and shear modulii of the beam and the vectors {£&}
and {B s} are derived below.

The strain-displacement relationship for the axial strain and shear strain can be
written as from Eqs (8.3.5) and (8.3.6)

and

where

Try = {B , } {< f}

(8.3.10)

(8.3.11)

}№) . (- > * , ? £ « , . ! £ h , .

5 i ? } >*“ >
K } = {«1 «1 V1 «2 u2 V2} T

The bending stiffness matrix can be obtained by carrying out the integration in Eq.
(8.3.8) which will result in

К h

■ 2 1 0 —2 -1 o-
1 2 0 -1 -2 0
n\j n\j n n\j n\J n\j

-2 -1 0 2 1 0
-1 -2 0 1 2 0

. 0 0 0 0 0 0 .

(8.3.13)

For Eq. (8.3.9) the reduced integration technique is used along the ж-axis to
prevent shear locking which occurs when the ratio of beam length to beam thickness

Section 8.4 Mixed Beam Element 249

is large. That is, one-point Gauss quadrature is used for integration in the ж-direction.
This integration yields the transverse shear stiffness matrix of the form

Г Gl2 - Gl2 2 Glh Gl2 - Gl2 1 to о >-

- Gl2 Gl2 - 2 Glh - Gl2 Gl2 2Glh
1 2Glh - 2 Glh 4 Gh2 2 Glh —2Glh -4 G h 2

4lh Gl2 - G l 2 2 Glh Gl2 - Gl2 - 2 Glh
- Gl2 Gl2 - 2 Glh - Gl2 Gl2 2Glh

. - 2 Glh 2Glh -4 G h 2 - 2 Glh 2Glh 4Gh2 .

The element stiffness matrix, which is obtained by adding the bending and
transverse stiffness matrices, can be expressed in the following form

■ ai + 2 a3 - o i + a3 a4 ai — 2аз —ai — 03 —a4"
—ai + a3 ai + 2a3 —a4 —a\ — a3 d — 2аз 04

<34 —04 <*2 <34 —04 - a 2
ai — 2a3 —ai — 03 Д4 ai + 2a3 —ai a3 —04
- a i - аз ai — 2аз —a4 - a i + a3 ai + 2аз 04

— 04 <24 - a 2 —04 04 a2 .

where each symbol denotes

Gl Gh Eh G ,0 , , яч
ai = 4h “2 = T “э = _бГ “4 = T <8'316)

The mass matrix can be derived similarly as shown in previous sections. The
lumped mass matrix for the linear element is

[M e] =

■1 0 0 0 0 0-
0 1 0 0 0 0

раб 0 0 2 0 0 0
~ r 0 0 0 1 0 0

0 0 0 0 1 0
.0 0 0 0 0 2 .

(8.3.17)

Here pab is the element mass, and the element is assumed to have a unit width.
Otherwise, the matrix is multiplied by the beam width.

8.4 Mixed Beam Element

Гол m l_L 11IS u cv c iu p o V^CLUl i A j . X 11C IIO-VC bllC
transverse deflection and bending moment as primary degrees of freedom. In the finite
element method, the primary variables are more accurate than secondary variables
which are usually obtained from derivatives of the primary variables. When the
transverse deflection and slope are the primary variables, bending stress is a secondary
variable which is related to derivative of the primary variables. On the other hand,
the mixed beam elements have the bending moment as a primary variable and the

250 Beam and Frame Structures Chapter 8

bending stress is computed directly from the bending moment without taking any
derivative. As a result, there is no loss in accuracy in computing the bending stress
in the mixed beam elements. The bending stress is usually one of the most important
solutions needed in the beam analysis.

In order to derive the mixed elements, we consider the governing equations shown
below:

M d?v = 0 (8.4.1)
E l dx2

d2M
dx2 = Q (8.4.2)

Galerkin’s method is applied to Eq. (8.4.1) and (8.4.2) using the same shape functions
for both v and M. Then, for an element of length /, we obtain

± i j \ Nf [N]dxlM] + H = [N]T9 (8.4.3)

a dN~\T
dx J

V7V1
J x \

dx [M] = — f [N]Tq dx +
Jo

[N]TV (8.4.4)

in which [N] is the vector of shape functions, and в and V are the slope and shear
force, respectively. The element stiffness matrix from these equations becomes

[K*] K n K l2
K 21 0 (8.4.5)

whPfP

[KU}=±-I J'mTmd*

dx

(8.4.6)

(8.4.7)

For the linear mixed beam element shown in Fig. 8.4.1, Eq. (8.4.5) becomes

[i H K] = { / ' } (8.4.8)

where

[K e} =

■ 21 I 6E I
1 I 21 - 6E I

6ЕП 6E I - 6EI 0
. - 6E I 6E I 0

{<f} = {Mi M2 vx v2}T

6E I
0
0

{ f e} = {01 02 Vi - Qx V2 - Q 2}'J

(8.4.9)

(8.4.10)

(8.4.11)

and Qi is the equivalent pressure load applied to the nodal points.

Section 8.4 Mixed Bearn Element 251

У

v< V ,

--------- X

Figure 8.4.1 Linear Mixed Beam Element

Boundary conditions are applied to the element in the following way. For a
simply supported node, both displacement v and bending moment M are set to zero
while only displacement v and 9 are set to zero at a clamped node. If a node is free
without any applied moment, moment M is zero at the node. Example 8.4.1 shows
the application of these boundary conditions. Any higher order shape functions may
be introduced to Eq. (8.4.3) and Eq. (8.4.4) to obtain a stiffness matrix for a higher
order mixed beam element.

4» E xam p le 8.4.1 Figure 8.4.2 shows a beam whose half is modeled using
two linear mixed beam elements. The left end is either simply supported or
clamped and the right end is symmetric. Assembly of two beam elements gives
the following system matrix equation.

- 2 1 0 6E I - 6 E l o ■ -M i] Г 01 1
1 4 1 - 6EI 12 E l - 6E I Mi 0

1 0 1 2 0 - 6 E l 6 E l M3 0
6E I 6E I - 6 E l 0 0 0 0 vi Vi + 0.5

- 6E I 12 E l - 6 E l 0 0 0 V2 1.0
. 0 - 6EI 6E I 0 0 0 . - V3 . . 0.5 .

(8.4.12)
Since the right end is symmetric in this problem, the slope at the right end node
(i.e. the third node in Fig. 8.4.2) which corresponds to the third component in
the right-hand-side column vector in this equation is set to zero. On the other
hand, the slope at the left end (i.e. the first node) is given as while the
shear force at the left end support is given as V\. Depending on the boundary
condition, the slope may or may not be known.

First of all, let us consider the simply supported left end. In this case,
41̂ — fi Л/f. — ПVJ — V/ U>1IU IfJ | .>v .

conditions to Eq. (8.4.12) gives
TTлшочтлг $i anrl 1/ ■ зго nr»lrr>лшпaXiv ?tVT Vi J l»] l»uu r J_UU№UV? Annltn nor MOi. j lllg «uvgv

6 E l

4 1 12 E l - 6 E I
1 2 - 6 E I 6E I

12 E l - 6 E I 0 0
- 6 E I 6E I 0 0

1 [M 21 • o -
M 3 0

1.0
J - - .0.5.

(8.4.13)

252 Beam and Frame Structures Chapter 8

щ m

node 1
K

node 2
Im I.

Beam Rigidity —E l

Z E E
nodq 3

Im 2 m

Figure 8.4.2 A Uniformly Loaded Beam Modeled Using Two Linear Mixed Beam Elements

19
6EI forSolving this matrix equation provides v2 — and v3 =

deflections, and also gives bending moments of 1.5 and 2 at nodes 2 and 3.
Substituting these solutions back into Eq. (8.4.12) gives the shear force at the

v\v\ f О f 111n ЛПЛ n In л ч к 'Р/мичп «n >1 Ua*i Jmw wmm Avtf л <\Т.Л Av #4 wn 4-
O U | /| /U it CV^UOl t u £t. X 1LC9C OlLCOl 1U 1LC O liU U C l lU l l l g I l lU lU C llt a Ш С C A O L l i S U lU t lU ilO .

Next, we consider the clamped left end. The corresponding boundary
condition is vx — 0 and 9\ = 0. Applying these conditions to Eq. (8.4.12)
results in

6E I

- 2 1 0 ~ 6E I 0 ■ ■M r ■ 0 -
1 4 1 YIEI - 6 E l M2 0
0 1 2 —QEI QEI M3 — 0

- 6E I 12Я / - 6E I 0 0 v2 1.0
. 0 - 6E I QEI 0 0 . - V3 - -0.5,

(8.4.14)

3E I-The nodal deflections from this matrix equation are v2 = — g g j and 1)3 =
The bending moments are M\ = — M 2 — ̂ and М 3 = |. The shear force at

1 o ff oil rm nrt ic О Тт» + hi с ra ce tlio olioov fn rro +nm c ли + t n Ka c v art K11 + tltAV1LV 1V1V OU|>pVlV IO *... ------~............... — -------— -•l-ll V1UU

bending moment is not exact. %

The formulation provided above is based on the Euler-Bernoulli beam assump­
tion. If the transverse shear deformation is included in the formulation, the governing
equations are modified as given in Ref. [22]

M
E l fiGh dx2

1 d2M d2v
dx2 = 0 (8.4.15)

d2M
dx2 (8.4.2")

where ц is the shear correction factor, h is the beam thickness and the beam is assumed
to have unit width. Application of Galerkin’s method to these equations yields the
element matrix shown as

'£11 k 12
k 2X 0[k ‘) = (8.4.16)

Section 8.5 Hybrid Beam Element 253

where

[̂ = m l lN]T[N]dx + 1 ж М .

[*■>] = [* » r = j f g]
dN_
dx

dN_
dx

dx

dx (8.4.17)

(8.4.18)

Again, the same shape functions are used for v and M in Eq. (8.4.17) and Eq. (8.4.18).
For the lineax element, Eq. (8.4.18) becomes

[*•] =

where

' 212 + a I2 - a ЬЕ1 - b E I -
1 I2 — a 2 l2 + a - 6 E l 6 E l

6EII QEJ —QEI 0 0
. - 6E I 6E I 0 0 .

6E I
d —

fiGh

(8.4.19)

(8.4.20)

We call the latter the thick beam element and the former the thin beam element
because the effect of transverse shear deformation increases as the plate thickness to
length ratio increases. Table 8.4.1 compares the thin beam and thick beam solutions
for various loading and boundary conditions.

The lumped mass matrix for the linear mixed beam element is

m =

-o 0 0 0 -
pAl 0 0 0 0

о
n

o n
V

1 nV

.0 0 0 1.

(8.4.21)

8.5 H ybrid Beam Element

A hybrid beam element is introduced in this section. The hybrid element is
based on the assumed strains within the beam element [23]. This element requires
C° continuity. The formulation is based on a modified potential energy expression as
given below for a beam with unit width

П = I (- ^ e j D beb - + e jD bLb{d} + eTt DsLs{d }) dx - ^ {d }T{<*} dx
v — v U

where
(8.5.1)

d9

254 Beam and Frame Structures Chapter 8

Table 8.4.1 Thin and Thick Beam Solutions for Various Beams with Unit Width

Configuration Maximum deflections

I
1

T

Thin Beam : Щ

Thick Beam:

PL3
3EI

w __= PL3 + PLh2
3EI 10GI

Ш i

T

I
Thin Beam :w __= 8EI

±ллх\̂ л, и с а ш » qL* L2h2
W__= — r+ —8EI 20GI

A

i
5qL4

'"■» 384EI

A T Thick Beam:
w_ _ 5ql* qL2h8

» 384EI 80GI

L / 2

„Л Г

i
Thin Beam : ги =■ PL

— 48 El

X l T Thick Beam:
//AW I _3 ___2

it/
48EI 40GI

i

1:
Thin Beam :%u =

qL4
384EI

Thick Beam:
ш

qL4 qifh2
W 384EI 80 GI

L / 2 PIThin Beam :w _ = j e ^

Thick Beam:
PL . PLhoyt s — 4- * ****,

wump 1Q9T7T А П П Т

(E: Elastic modulus, G: Shear modulus, I: Moment of inertia of cross section)

{d} = {9 v }T (8.5.4)

and other parameters are defined below: D b is the bending stiffness equal to E l,
Ds is the shear stiffness equal to fiGA, Lb is the bending strain-displacement
operator and Ls is the shear strain-displacement operator. Invoking a stationary
value of the equation results in the equilibrium equation and the generalized strain-
displacement relation. In order to obtain the finite element model, generalized strains
and displacements are discretized as the following:

fb = [Яь]{а;ь} (8.5.5)

<rs = [B8] {a s] (8.5.6)

{d} = (8.5.7)

where generalized strains ctre assumed independently within еясЬ element stnd gener-
alized displacements are interpolated using generalized nodal displacement {rf}. Thus,
[Bj,] and [Bg\ are matrices (or vectors for the beam problem) consisting of the poly­
nomial terms of the generalized strain parameter vectors {аь} and {a , } , respectively.
Substituting Eq. (8.5.5) through Eq. (8.5.7) into Eq. (8.5.1) yields

Section 8.5 Hybrid Beam Element 255

where

- -- 5 { “ . } TP .] { a , } + b } T№ Hci}

+ {<*,}TlX.]{d} - W T{ F } (8.5.8)

[G.] = f l[Bb]TDb[Bb]dx
Jo

(8.5.9)

[G.] =
rl

1 [BS]T D t [Bs]dx
Jo

(8.5.10)

№] = f [Bbf D bLb[N]dx
Jo

(8.5.11)

[Я.] = f [B ,]TD,Ls[N]dx
Jo

(8.5.12)

{F } = / V] T № *
Jo

(8.5.13)

and

Invoking stationary values of Eq. (8.5.8) with respect to a b and a, respectively
results in

rv"f H . 1 . Г г г 1 Г J l r\ / Л r *1 J \-H jrb jlQ b J -h [Л ь д а / = V

- [G ,] { a . } + [H.]{d} = 0 (8.5.15)

Eliminating {аь} and { a , } from Eq. (8.5.8), Eq (8.5.14) and Eq. (8.5.15) gives

П = | { i } T(№ f [G ,] - 1№] + [я . П с . Г Ч я . М й - {d}T{ F } (8.5.16)

256 Beam and Frame Structures Chapter 8

[*]{<*} = W (8-5.17)

in which
[K] = [if,]T[Gl] - 1[ffj] + [H.]T[G,]-'[H,] (8.5.18)

For a linear beam element, the generalized strain vectors are assumed as

[Bb] = [1 *] (8.5.19)

and
[B,] = 1 (8.5.20)

These expressions represent that the bending strain varies linearly and the shear strain
is constant within the linear beam element. Example 8.5.1 shows the derivation of
the stiffness matrix for the linear beam element. The hybrid beam element can be
also generalized for general higher order shape functions.

Equation (8.5.16) finally gives the following finite element system of equations

ф E xam ple 8.5.1 Substituting the generalized strain vectors, Eq.
and Eq. (8.5.20), into Eq. (8.5.9) through (8.5.12) gives

(8.5.19)

[Gb]
m
6

Г 6/ з / 2
З/2 2l3 (8.5.21)

[G,\ = fiGAl

ят
m = ^

= o
0 - I 0 I

[я .] = Щ ^ [- 2 - 1 2 - J]

(8.5.22)

(8.5.23)

(8.5.24)

Applying these expressions into Eq. (8.5.18) yields the same element stiffness
matrices as in Eqs (8.2.9) through (8.2.11). The first term in Eq. (8.5.18)
results in Eq. (8.2.10) while the second term in Eq. (8.5.18) yields that in
Eq. (8.2.11). However, no reduced integration technique is used for the present
stiffness matrix. J

8 .6 C om p osite B eam s

Laminated composite beams are made of multiple layers which have in general
different material properties. More general cases axe dealt with in the chapter for
plates and shells. In this section, we consider a simple case. The laminated beam is
symmetric about the midplane axis so that there is no coupling between the inplane
deformation and bending deformation. For this simple case, the beam formulations
developed in the previous sections axe directly applicable to the laminated beam. One

Section 8.6 Composite Beams 257

У

Layer n

Layer j
■V

Layer 2
Layer 1

-1 V| X

V - -7Г*4) 2

Figure 8 .6.1 Laminated Beam

thing to be generalized for the laminated beam is the beam rigidity. For a symmetric
laminated composite beam with unit width, the equivalent beam rigidity is computed
as

= I J 2 Ш - » f - i) (8.6.1)
»=1

Here, n is the number of layers, and y,_i and у,- are the y—coordinate values of the
bottom and top planes of the ith layer as seen in Fig. 8.6.1. In addition Ej is the
elastic modulus in the x —direction of the ith layer. This equivalent beam rigidity
is substituted into the previous beam elements to compute the stiffness matrices for
laminated composite beams.

However, one more important fact in laminated beam applications is the effect of
transverse shear. Composite beams axe not usually isotropic and their shear modulus
is in general much lower than the elastic modulus. In this case, the shear deformation
plays an important role [24,25]. For example, see Fig. 8.4.3. As the shear modulus
G becomes much smaller than the elastic modulus E in the thick beam solutions, the
thick beam solutions deviate much more from thin beam solutions. As a result, thin
beam solutions may not be accurate any more. In other words, the Euler-Bernoulli
beam equation may not be suitable any more especially for rather thick laminated
composite beams.

As a result, the beam formulations including the effect of shear deformation can
be used for analyses of laminated composite beams. In this case, the equivalent shear
modulus is computed from

П
(пл\ . (a a\yjj-L)tqiv — / _ "'-jiyy> — yt-i j

i=l

where 6 is the width o f the beam. The bending stress in a laminated composite beam
can be determined from

_ _ MEjy . .

‘ " (EI)„i„ (8 -6 3)

258 Beam and Frame Structures Chapter 8

Figure 8.6.2 Laminated Beam Element

where «г* is the bending stress in the ith layer and у is a coordinate value in the ith layer.
Example 8.6.1 shows an application of beam elements with displacement degrees of
freedom only developed in section 8.3 to an analysis of a laminated composite beam.

4k Exam ple 8.6.1 Two different techniques can be used to model a laminated
beam using beam elements with displacement degrees of freedom only. The
first technique discretizes respective layers in the finite element analysis. As
a result, the total number of elements is proportional to the number of layers
in a laminated beam. The condensation technique can be applied to reduce
the number of total degrees of freedom by eliminating internal layers degrees
of freedom. This modeling technique is computationally expensive but it can
describe a general shape of inplane deformation through the beam thickness. The
oA/i/xn/t t r»l rtll й ItoAO Лп А £ 1 n УУ1 aIaIYi ATtf nil tllfi КааУП till йОС l>AniS^uiiu bd.uiui|uu uouo wut. ucaxu uiuuugii uii ̂ vuiv.mi^ra lugaiuium wi
the number of layers. This technique is computationally efficient but it assumes
a linear deformation through the beam thickness. The development of this
technique is described in the following paragraphs.

Let ujt and v* represent the axial and lateral displacements of the kth layer
and let h be the beam thickness while hk and hk+i represent heights of the top
and bottom sides of the kth layer measured from the bottom of the beam (see
Fig. 8.6.2). The relationship between the layer displacements and the global
beam displacements can be written as

uk,l = c l u l + C2U1 (8.6.4)

UJM = C3U1 + C4«l (8.6.5)

ffe .l = VI (8.6.6)

4 ,2 = Ci«2 + C2U*2 (8.6.7)

*4,2 = c3«2 + c4u2 (8.6.8)

vk,2 = V2 (8.6.9)

Section 8.7 Two-Dimensional Frame Element 259

where constants c ’s are

Ci =
h — hk

C2~ T

c3 =

h

h - h k + i
h

hk+lc4 =

This relationship can be expressed in the matrix form

uJm
4.1
vk,i
U k , 2
4 .2
Vjfe,2

or in a short notation
{dk} = [T]{d}

'Cl C2 0 0 0 0* f “ h
Сз c4 0 0 0 0 ui
0 0 1 0 0 0 Vl
0 0 0 Cl C2 0

i
ub2

0 0 0 сз c4 0 «2
. 0 0 0 0 0 1 . - Vz >

(8.6.10)

(8 .6.11)

(8.6.12)

(8.6.13)

(8.6.14)

(8.6.15)

where {d * } and {rf} are the displacement vectors of the kth layer and the beam,
respectively. [T] is the transformation matrix shown in Eq. (8.6.14). Now, the
stiffness and mass matrices of a laminated beam element can be expressed as

i _ \ ^ rn Tr^fcim
L“ J / yL* J 1“ JL* J

Jfc = l

(а й.^U»Vi X \9 J

[m ' i = (8.6.16)
jfc=i

Here, \Kk\ and [M k] are the stiffness and mass matrices of the kth layer,
respectively. Using this technique, a single beam element can include all the
layers of a laminated beam.

Figure 8.6.3 illustrates a simply supported laminated beam with four
layers. The elastic modulus E\ is assumed to be either 20 or 100 times greater
than i?2. The finite element solutions are provided in Fig. 8.6.4. Figure 8.6.5
also shows the solutions for the same beam but with eight layers. X

8.7 Tw o-D im ensional Frame Element

A frame structure is made of many beam members connected together. It may
be of planar or spatial geometry. For a planar frame structure, each beam member is
generally subjected to both bending and axial loads as illustrated in Fig. 8.7.1. As a

260 Beam and Frame Structures Chapter 8

length, m.

Figure 8.6.4 Static Deflections of the Laminated Composite Beam with 4 Layers:
E i/E2= 20, 100 for top and bottom

result, a planar (2-D) frame element must include both axial and bending deformation.

Section 8.7 Two-Dimensional Frame Element 261

Figure 8.6.5 Static Deflections of the Laminated Composite Beam with 8 Layers:
E i/E 2= 20, 100 for top and bottom

If the deformation is small, we may neglect the coupling between the two deformations.
As a result, the element stiffness matrix for a 2-D frame element can be constructed by
superimposing both axial and bending stiffnesses. For example, the stiffness matrix
of a linear 2-D frame element is using Hermitian beam element

' Al2 0 0
0 127 67/
0 611 All2

—Al2 0 0
0 -127 -6 7 /

- 0 611 27/2

- A l 2 0 o ■
0 -127 67/
0 -6 7 / 27/2

Al2 0 0
0 127 -6 7 /
0 -6 7 / All2 .

for the element degrees of freedom {u j 9i u2 v2 в2} as seen in Fig. 8.7.2. Other
C° type beam elements may be used to develop a frame stiffness matrix.

In general, a beam member is inclined to the global coordinate system as
shown in Fig. 8.7.3. In this case, the element stiffness matrix requires the planar
transformation. Figure 8.7.4 shows two coordinate systems: local and global systems.

262 Beam and Frame Structures Chapter 8

В с В

p

P L

Q

у/}//'//// '//Ш/Л

Figure 8.7.1 A Planar Frame Structure with Free Body Diagrams

У

ЯЛ

X

Figure 8.7.2 A Linear Frame Element

The global system is denoted by a superimposed bar on both coordinate axes and
displacements. The relation between the local and global displacements is

(8.7.2)

where с = cos/3 and s = sin/3. In a short notation, Eq. (8.7.2) can be written as

К } = P 1 K) (8-7.3)
Then, the stiffness matrix for a planar frame element is expressed in terms of the
global coordinate system as given below:

[K e] = [T f [K e][T] (8.7.4)
Carrying out the matrix multiplication gives

Ul ' ‘ С s 0 0 0 0 - ' Ul 4
Vl —S с 0 0 0 0 Ul
Ox 0 0 1 0 0 0 h> — 0 0 0 с s 0 <

«2
V2 0 0 0 —s с 0 v2

. 02 - . 0 0 0 0 0 1 . I 9 2 J

[*•] =

а з Cl 4 О 5 - 0 3 — Ct 4 O5

CI4 a 6 07 —a 4 —Og 07

«5 07 Ol —05 —a 7 a 2

- а з —a 4 — 05 03 a 4 —o 5

— 04 - o 6 - O 7 04 o 6 —07

O5 «7 02 —05 — «7 O l

(8.7.5)

Section 8.7 Two-Dimensional Frame Element 263

Ur

Figure 8.7.3 Inclined Frame Element

V , v

where
4 E l

«1 = , (8.7.6)

2 E l (8.7.7)

(“)•■ * (
12 E I\ 2

p У
(8.7.8)

m - - (
12 E I\

,3 J cs (8.7.9)

(6EI
°5 — ̂ p) ' (8.7.10)

(“) - * (
12jKJ\ 2

/3) c (8.7.11)

(ЬЕ1\
° 7 = l P ,Iе (8.7.12)

264 Beam and Frame Structures Chapter 8

8.8 Three-Dimensional Frame Element

A beam member in a spatial (3-D) frame is generally subjected to axial, bending
and torsional loads as illustrated in Fig. 8.8.1. If beam members have circular cross-
sections, the element stiffness in a local axis is as seen in Fig. 8.8.2

[Ke] = *ie2
щ 2 (8 .8 .1)

where

[* f i] =

[K{2] = [K ^ f =

[* и] =

~ a \ 0 0 0 0
0 1

0 6l 0 0 0 62
0 0 Cl 0 - c 2 0
0 0 0 a 2 0 0
0 0 -C 2 0 2c3 0

. 0 b2 0 0 0 263 .

' ~ a i 0 0 0 0 0 -
0 - 6 1 0 0 0 b 2
0 0 - c i 0 c2 0
0 0 0 —a 2 0 0
0 0 C2 0 сз 0

. 0 —62 0 0 0 Ьз-

' a i 0 0 0 0 0 ■
0 61 0 0 0 — b2
0 0 Cl 0 C2 0
0 0 0 «2 0 0
0 0 C2 0 2c3 0

. 0 —62 0 0 0 2 Ь з .

TP A t 'j /1 п T
\JTiJ

Cti :
" / ’

a 2 = ~T
12 E lz

= /3

12EL

b2 =

Ci =
J3 с 2 =

6EJ,
P

6EIy
I2

bx =

сз

2 E L

2Ely
I

(8 .8 .2)

(8.8.3)

(8.8.4)

(8.8.5)

(8.8.6)

(8.8.7)

In these equations, Iy and Iz are moments of inertia of the cross-section about y—
and z—axes and J is the polar moment of inertia. The corresponding element degrees
of freedom is

{c?e } — { til V\ Wi 9\ 02 03 u 2 v 2 w 2 03 04 06 } (8.8.8)

in which Q\ and 64 are the rotational degrees of freedom associated with the twisting
moment, and 62, p3) 95 and uq are slopes associated with bending moments ГГ1 • .inis
stiffness matrix in terms of a local coordinate system needs to be transformed into
that in terms of the global coordinate system in the same way as shown in Eq. (8.7.4).
In this case, the transformation matrix [T] is of size 12 x 12.

Section 8.9 MATLAB Application to Static Analysis 265

Q Q
M=QL1

Figure 8.8.1 A Simply Supported Beam

w/s/s.

Figure 8.8.2 Spatial Frame Element

8.9 MATLAB Application to Static Analysis

The static analysis of a beam or a frame is to soive the following matrix equation:

[K M = iF) (8-9-1)

where the system stiffness matrix [/<"] and the system force vector {F } are obtained
by assembling each element matrix and vector. Several m-files are written to compute
an element stiffness matrix and a mass matrix, which is used for dynamic problems

266 Beam and Frame Structures Chapter 8

100 №

node A 2 3 4 5 6
1 in

10 in ' 10 in

E=10X106 Psi
Figure 8.9.1 A Simply Supported Beam

►J
1 in

Cross section

in the next section, for various beam and frame elements formulated in this chapter.
The names of m-files are given below:

febeaml.m : Hermitian beam element (see Sec. 8.1)
febeamS.m : Timoshenko beam element (see Sec. 8.2)
febeamS.m : beam element with displacement degrees of freedom (see Sec. 8.3)
febeam4.m : mixed beam element (see Sec. 8.4)
feframeS.m: 2-D frame element (see Sec. 8.7)

Detailed informations regarding these m-files are provided in Appendix A. The
following examples show computer programs for finite element analyses of beam and
frame structures written in MATLAB and the m-files described above.

q n 1 _o n i ___ ______j i_______ „1___ 1___ л.«(V и л а ш р х с ; I ' lg u ie 0 .9 .1 s i h jw s a s im p iy s a p y u n c u u ca.n i w n u se le i i^ t n

is 20 in. The beam has also elastic modulus of 10 X 106 psi and its cross-section
is 1 in. by 1 in. The beam is subjected to a center load of 100 lb. We use 5
Hermitian beam elements for one half of the beam due to symmetry to find the
deflection of the beam. Figure 8.9.1 shows the finite element discretization. The
constraints applied to this problem are no deflection at the left boundary support
(i.e t>i = 0) and zero slope at the symmetric node (i.e. 9$ = 0). Their system
degrees of freedom are 1 and 12, respectively, in the present mesh. Furthermore,
only a half of the center load is applied at the symmetric node because of
symmetry. The finite element analysis program for the present static problem is
listed below.

%--
% EX891.m: MATLAB program to solve a static beam deflection using
% Hermitian beam elements
%
% Variable descriptions
% к = element stiffness matrix

Section 8.9 MATLAB Application to Static Analysis 267

% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
%-------- ------------------------------ ---
nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofe per node
nnode=(nnel-l)*nel+l; % total number of nodes in system
sdof=nnode*ndof; % total system dofe
el=10‘ 7; % elastic modulus
x i= l /12: % moment of inertia of cross-sectionf t

tleng=10; % length of a half of the beam
leng=10/nel; % element length of equal size
area=l; % cross-sectional area of the beam
rho=l; % mass density (arbitrary value for this problem because

% it is not used for the static problem)
ipt= l; % option for mass matrix (arbitrary value and not used here)
bcdof(l)= l; % first dof (deflection at left end) is constrained
bcval(l)=0; % whose described value is 0
bcdof(2)= 12; % 12th dof (slope at the symmetric end) is constrained
bcval(2)= 0; % whose described value is 0
ff=zeros(sdof,l); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,l); % initialization of index vector

КП- % Кр г я dcp я l ia lf n f fh p Inarl is ilnnlipH Hup t.n a v m m p frv ч ; —« « j fv ~ ~ -----“ — - r r “ ------- — ' ~ ------
for ieb=l:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofs for each element
k=febeaml(el,xi,leng,area,rho,ipt); % compute element stiffness matrix
kk=feasmbll(kk,k,index); % assembly into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\ff; % solve the matrix equation
%----------------------------------
% Analytical solution
%----------------------------------
e=10*7; 1=20; x i= l /12; P = 100;
for i = l:nnode
x= (i-l)*2;
______ть i f a/ y±0 С Alj,
k=(i-l)*ndof+l;
esol(k)=c*(3*l'2-4*x” 2)*x;
esol(k+l)=c*(3*r2-12*x‘ 2);
end
%---
% Print both exact and fem solutions

268 Beam and Frame Structures Chapter 8

%----------------------------
num=l:l:sdof;
store=[imm’ fsol esol’]
%----------------------------

function [k,m]=febeaml(el,xi,leng,area,rho,ipt)
%---
% Purpose:
% Stiffness and mass matrices for Hermitian beam element
% nodal dof vi thetai V2 theta2
%
% Synopsis:
% [k,m]=febeaml(el,xi,leng,area,rho,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 4x4)
% m - element mass matrix (size of 4x4)
% el - elastic modulus
% xi - second moment of inertia of cross-section
% leng - element length
% area - area of beam cross-section
% rho - mass density (mass per unit volume)
% ipt = 1: consistent mass matrix
% 2: lumped mass matrix
% otherwise: diagonal mass matrix
%--- ------*----------------------- --

%
% stiffness matrix
%

c=el*xi/(leng3);
k=c*[12 6*leng -12 6*leng;...

6*leng 4*leng2 -6*leng 2*leng2;...
-12 -6*leng 12 -6*leng;...
6*leng 2*leng2 -6*leng 4*leng2];

%
% consistent mass matrix
%

if ip t= = l
%

mm=rho*area*leng/420;
m=mm*[l56 22*leng 54 -13*leng;...

iiii XCUg 1 JLU - U ..

54 13*leng 156 -22*leng;...
-13*leng -3*leng2 -22*leng 4*leng2];

%
% lumped mass matrix
%

elseif ipt= = 2

Section 8.9 MATLAB Application to Static Analysis

%
m=zeros(4,4);
mass=rho*area*leng;
m—diag([mass/2 0 mass/2 0]);

%
% diagonal mass matrix
%

else
%

m=zeros(4,4);
mass=rho* area*leng;
m=mass*diag([l/2 leng2/78 1/2 leng2/78]);

%
end
%------------ -------------------------------- ------------------

The finite element solution obtained from this M ATLAB program as well as the
exact solution are

store =
d o f# fem sol exact
1.0000 0.0000 0.0000 % deflection at node 1
2.0000 0.0030 0.0030 % slope at node 1
3.0000 0.0059 0.0059 % deflection at node 2
4.0000 0.0029 0.0029 % slope at node 2
5.0000 0.0114 0.0114 % deflection at node 3
6.0000 0.0025 0.0025 % slope at node 3
7.0000 0.0158 0.0158 % deflection at node 4
8.0000 0.0019 0.0019 % slone. -----f - at node 4
9.0000 0.0189 0.0189 % deflection at node 5
10.000 0.0011 0.0011 % slope at node 5
11.000 0.0200 0.0200 % deflection at node 6
12.000 0.0000 0.0000 % slope at node 6

t

Jit E xam ple 8 .9 .2 We want to solve Example 8.9.1 using Timoshenko beam
elements. The computer program is almost the same as that given in Example
8.9.1. Instead of calling febeaml.m we need to call febeam2.m to compute the
element stiffness matrix. In the beginning of the program list shown in Example
S. 9.1 j wg suld

sh=3.8*10*6; % shear modulus of the beam
and the following line

k=febeaml(el,xi,leng,area,rho,ipt);
is replaced by

Beam and Frame Structures Chapter 8

k=febeam2(el,xi,leng,sh, area,rho,ipt);
The computed solution is also compared to the exact answer below.

store =
d o f# fem sol exact
1.0000 0.0000 0.0000 % deflection at node 1
2.0000 0.0030 0.0030 % slope at node 1
3.0000 0.0059 0.0059 % deflection at node 2
4.0000 0.0029 0.0029 % slope at node 2
5.0000 0.0113 0.0114 % deflection at node 3
6.0000 0.0025 0.0025 % slope at node 3
7.0000 0.0158 0.0158 % deflection at node 4
8.0000 0.0019 0.0019 % slope at node 4
9.0000 0.0188 0.0189 % deflection at node 5
10.000 0.0011 0.0011 % slope at node 5
11.000 0.0200 0.0200 % deflection at node 6
12.000 0.0000 0.0000 % slope at node 6

Jft Example 8.9.3 This example again solves the same problem in Example
8.9.1 using beam elements with displacement degrees of freedom. This beam
element is different from the beam elements used in previous examples. As a
result, the complete program is included in the following.

%---
% EX893.m: MATLAB program to solve a static beam deflection using
% beam elements with displacement degrees of freedom only
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
%--
nel=5; % number of elements
nneI ==2; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nnel-l)*nel+l; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=10*7; % elastic modulus
sh=3.8*10*6 % shear modulus
tleng=10; % length of a half of the beam

Section 8.9 MATLAB Application to Static Analysis 271

leng=10/nel; % element length of equal size
heig=l; % height of the beam
width=l; % width of the beam
rho=l; % mass density (arbitrary value for this problem because

% it is not used for the static problem)
bcdof(l)=3; % deflection at left end is constrained
bcval(l)=0; % whose described value is 0
bcdof(2)=16; % inplane displ. at the right end is constrained
bcval(2)= 0 ; % whose described value is 0
bcdof(3)=l7; % inplane displ. at the right end is constrained
bcval(3)=0; % whose described value is 0
ff=zeros(sdof,l); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof.l); % initialization of index vector
ff(18)=50; % because a half of the load is applied due to symmetry
for iel=l:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofe for each element
k=febeam3(el,sh,leng,heig,width,rho); % compute element matrix
kk=feasmbll(kk,k,index); % assembly into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\ff; % solve the matrix equation
%---------------------------- ----- ----
% Analytical solution
%---
e=10*7; 1=20; x i= l / l2 ; P = 100;
for i = l:nnode
-----fi 1 *o.л_v -v
c=P/(48*e*xi);
k=(i-l)*ndof+l;
esol(k-f 2) =c* (3*1 * 2-4*x * 2)*x;
esol(k+l)=c*(3*r2-12*x'2)*(-0.5);
esol(k)=c*(3*r2-12*x'2)*(0.5);
end
%---
% print both exact and fem solutions
%---
num=l:l:sdof;
store=[num’ feol esol’]
%------------------------ ----- ------------ ------

fiii'ir’t.irm n fm l= fph p am S /p l sli Ipiib hpiff wifjt.h ifhn^w » [U)AUJ ^ J ** “O5 3 /

%--
% Purpose:
% Stiffness and mass matrices for beam element with displacement
% degrees of freedom only
% nodal dof Uj Uj vi û Ug v2

%

272 Beam and Frame Structures Chapter 8

% Synopsis:
% [k,m]=febeaml(el,sh,leng,heig,rho)area,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 6x6)
% m - element mass matrix (size of 6x6)
% el - elastic modulus
% sh - shear modulus
% leng - element length
% heig - element thickness
% width - width of the beam element
% rho - mass density of the beam element (mass per unit volume)
% lumped mass matrix only
%..
%
% stiffness matrix
• v

al=(sh*leng*width)/(4*heig);
a2=(sh*heig*width)/leng;
a3=(el*heig*width)/(6*leng);
a4=sh* width/2;
k= [al-f-2*a3 -al-f-a3 a4 al-2*a3 -al-a3 -a4;...
-al-f-a3 al-f-2*a3 -a4 -al-a3 al-2*a3 a4;...
a4 -a4 a2 a4 -a4 -a2;...
al-2*a3 -al-a3 a4 al+2*a3 -al+a3 -a4;...
-al-a3 al-2*a3 -a4 -al-f-a3 al-f-2*a3 a4;...
-a4 a4 -a2 -a4 a4 a2];
%
% lumped mass matrix
%
m ci\.
il l— J j

mass=rho*heig*width*leng/4;
m=mass*diag([l 1 2 1 1 2]);
%---

The solution output is
store =
d o f# fem sol exact
1.0000 0.0015 0.0015 % axial displ. at bottom side of node 1
2.0000 -0.0015 -0.0015 % axial displ. at top side of node 1
3.0000 0.0000 0.0000 % transverse displ. at node 1
4.0000 0.0014 0.0014 % axial displ. at bottom side of node 2
5.0000 -0.0014 -0.0014 % axial displ. at top side of node 2
6.0000 0.0059 0.0059 % transverse displ. at node 2
7.0000 0.0013 0.0013 % axial displ. at bottom side of node 3
8.0000 -0.0013 -0.0013 % axial displ. at top side of node 3
9.0000 0.0113 0.0114 % transverse displ. at node 3
10.000 0.0010 0.0010 % axial displ. at bottom side of node 4

Section 8.9 MATLAB Application to Static Analysis 273

11.000 -0.0010 -0.0010 % axial displ. at top side of node 4
12.000 0.0158 0.0158 % transverse displ. at node 4
13.000 0.0005 0.0005 % axial displ. at bottom side of node 5
14.000 -0.0005 -0.0005 % axial displ. at top side of node 5
15.000 0.0188 0.0189 % transverse displ. at node 5
16.000 0.0000 0.0000 % axial displ. at bottom side of node 6
17.000 0.0000 0.0000 % axial displ. at top side of node 6
18.000 0.0199 0.0200 % transverse displ. at node 6

A E xam p le 8 .9 .4 Solve the same example again using the mixed beam
elements. The computer program list is provided below.

% EX894.m: MATLAB program to solve a static beam deflection
% problem using mixed beam elements
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval — a vector containing boundary condition values associated with
% the dofe in bcdof
%---------------------- -------------- ---
nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofe per node
nnode=(nnel-l)*nel+l; % total number of nodes in system
sdof=nnode*ndof; % total system dofe
bcdof(l)= l; % bending moment at node 1 is constrained
bcval(l)=0; % whose described value is 0
bcdof(2)= 2; % deflection at node 1 is constrained
bcval(2)= 0; % whose described value is 0
ff=zeros(sdof,l); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
mdex=zeros(nnel*ndof,l); % initialization of index vector
f lY lo W .^ n . % кш-з iioa я Tial-f n-f f lio 1ляН ic Hno tn cvm m o+rvy™”W) /и VVVUU0V Ui UUii VI V11V AVUIVJ. xo U.UV U W U j 111111V УА J

for iel—l:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofe for each element
k=febeam4(l(T7,0.083333,2,0,1,1,1); % compute element stiffness matrix
kk=feasmbll(kk,k,index); % assembly into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions

Beam and Frame Structures Chapter 8

fsol=kk\ff; % solve the matrix equation
%------------------------------ —
% analytical solution
%-----------------------------------
e=10‘ 7; 1=20; xi=l/12; P=100;
for i = l:nnode
x= (i-l)*2;
c=P/(48*e*xi);
k=(i-l)*ndof+l;
esol(k+l)=c* (3*1" 2-4*x' 2)*x;
esol(k)=-50*x;
end
%---
% print both exact and fem solutions
%---
num=l:l:sdof;
store=[num’ feol esol’]
%---------- ---------------------------------------.

function [k,m]=febeam4(el,xi,leng,sh,heig,rho,ipt)
%---
% Purpose:
% Stiffness and mass matrices for mixed beam element
% bending moment and deflection as nodal degrees of freedom
% nodal dof Mi Vi М2 V2
%
% Synopsis:
% [k,m]=febeam4(el,xi,leng,sh,heig,rho,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 4x4)
% m - element mass matrix (size of 4x4)
% el - elastic modulus
% xi - second moment of inertia of cross-section
% leng - length of the beam element
% sh - shear modulus
% heig - beam thickness
% rho - mass density of the beam element (mass per unit volume)
% ipt = 1 - lumped mass matrix
% = otherwise - diagonalized mass matrix
%--- — ----—-------------
%
% stiffness matrix
Л-У70
if sh = = 0
%
% thin beam (no shear deformation)

Section 8.9 MATLAB Application to Static Analysis 275

%
k= [leng/(3*el*xi) 1/leng leng/(6*el*xi) -1/leng;...

1/leng 0 -1/leng 0;...
leng/(6*el*xi) -1/leng leng/(3*el*xi) 1/leng;...
-1/leng 0 1/leng 0];

%
else
%
% thick beam (includes shear deformation)
%

a= 6 / (5 *sh *leng *heig) ;
k= [l/(3*el*xi)+a 1/leng l / (6*el*xi)-a -1/leng;...

1/leng 0 -1/leng 0;...
l / (6*el*xi)-a -1/leng l/(3*el*xi)+a 1/leng;...
- 1/leng 0 1/leng 0];

%
end
%
% lumped mass matrix
%
if ipt= —1
%

m=zeros(4,4);
mass=rho*heig*leng/2;
m=diag([0 1 0 1]);

%
% diagonal mass matrix
%
else
%

m=zeros(4,4);
mass=rho*heig*leng/2;
m=mass*diag([l 1 1 1]);

%
end
%------------------ --- ---

The solution from the computer program is given below.
store =
d o f# fem sol exact
1 .0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

о пппп П ЛЛЛЛ u .u u u u Гк ЛЛЛЛ u .v u u u

3.0000 - 100.00 -100.00
4.0000 0.0059 0.0059
5.0000 -200.00 -200.00
6.0000 0.0114 0.0114
7.0000 -300.00 -300.00
8.0000 0.0158 0.0158

% bending moment at node 1
__* __i

/0 U.CI1Ĉ tiUll л ь UUUC J.

% bending moment at node 2
% deflection at node 2

% bending moment at node 3
% deflection at node 3

% bending moment at node 4
% deflection at node 4

276 Beam and Frame Structures Chapter 8

У

л
Оcda;

cd
CO > *Яa;
saj
a)

сэCO

(3 e le m e n t s a t Ю in e a c h)
SO in

5 6

4

2 in

1 in
C ross s e c t io n

E = 1 0 X 1 0 P s i

^ *
A

■ oc

9 A n■ Ш Л I.J.LT_QVi gnadAJ UllU|/VU Pro m o
Л. lUHIV

9.0000 -400.00 -400.00 % bending moment at node
10.000 0.0189 0.0189 % deflection at node
11.000 -500.00 -500.00 % tending moment at node
12.000 0.0200 0.0200 % deflection at node

A E xam ple 8.9 .5 Find the deflection of a frame of L-shape (see Fig. 8.9.2)
which is made of two beams of lengths of 60 in. and 20 in., respectively. Both
beams have cross-sections of 2 in. height by 1 in. width. The elastic modulus is
30 X 106 psi. The frame is subjected to a concentrated load of 60 lb at the end
of the smaller beam and one end of the long member is fixed. Use 6 elements to
find the deflection of the frame. The MATLAB program is written below using
2-D frame elements.

% EX895.m: MATLAB program to solve static deflection for a 2-D frame
%
% Variable descriptions
% x and у = global x and у coordinates of each node
% к = element stiffness matrix
% kk = system stiffness matrix
% ff = system force vector
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%-........ — ... — ------------------------------------

Section 8.9 MATLAB Application to Static Analysis 277

nel=6;
nnel=2;
ndof=3;
nnode=(nnel-l)*nel+l;
sdof=nnode*ndof;
x (l)= 0 ; y (l)= 0 ;
x(2)=0; y(2)=15
x(3)=0; y(3)=30
x(4)=0; y(4)=45
x(5)=0; y(5)=60
x(6)= 10; y(6)=60;
x(7)=20; y(7)=60;
el=30*10‘ 6;
area=2;

% X, У coords.
% X, У coords.
% X, у coords.
% X, у coords.
% х, У coords.
% х, У coords.
% X, у coords.

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofe
of node 1 in terms of the global axis
of node 2 in terms of the global axis
of node 3 in terms of the global axis

xi=2/3;
rho=l;
bcdof(l)= l
bcval(l)= 0
bcdof(2)=2
bcval(2)=0
bcdof(3)=3
bcval(3)=0
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);

% elastic modulus
% cross-sectional area

% moment of inertia of cross-section
% mass density per volume (dummy value for static analysis)

% transverse deflection at node 1 is constrained
% whose described value is 0

% axial displacement at node 1 is constrained
% whose described value is 0

% slope at node 1 is constrained
% whose described value is 0

% initialization of system force vector
% initialization of system matrix

index=zeros(nnel*ndof,l); % initialization of index vector
ff(20)=-60; % load applied at node 7 in the negative у direction
for iel=l:nel
index=feeldof 1 (iel,nnel,ndof);
nodel=iel;
node2=iel-|-l;
xl=x(nodel); yl=y(nodel);
x2=x(node2); y2=y(node2);
Ieng=sqrt((x2-x l) ''2+(y2-y l)"2);

% loop for the total number of elements
% extract system dofe for each element

% starting node number for element *iel’
% ending node number for element 4el*
% x and у coordinate values of ’nodel’
% x and у coordinate values of ’node25

% length of element ’iel’

% compute element matrix
% assembly into system matrix

if (x2-x l)= = 0 ; % compute the angle between the local and global axes
beta=pi/2 ;
else
beta=atan((y2-y l) /(x 2-xl));
end
k=feframe2(el,xi,leng,area,rho,beta,l);
kk=feasmbll(kk,k, index);
end
[kk,ff]=feaplyc2(kk,fF,bcdof,bcval); % apply the boundary conditions
fsol=kk\fF; % solve the matrix equation and print
%---
% Print both exact and fem solutions
%--
num=l:l:sdof;
store=[num’ feol]

Beam and Frame Structures Chapter

%------------- ---

function [k,m]=feframe2(el,xi,leng,area,rho,beta,ipt)
%---
% Purpose:
% Stiffness and mass matrices for the 2-D frame element
% nodal dof ui vi thetaj u2 v2 theta2
%
% Synopsis:
% [k,m]=feframe2(el,xi,leng,area,rho,beta,ipt)
%
% Variable Description:
% к - element stiffness matrix (size of 6x6)
% m - element mass matrix (size of 6x6)
% el - elastic modulus
% xi - second moment of inertia of cross-section
% leng - element length
% area - area of beam cross-section
% rho - mass density (mass per unit volume)
% beta - angle between the local and global axes
% is positive if the local axis is in the ccw direction from
% the global axis
% ipt — 1 - consistent mass matrix
% = 2 - lumped mass matrix
% = 3 - diagonal mass matrix
%---
%
% stiffness matrix at the local axis
%
a=el*area/leng;
c=el*xi/(leng"3);
kl=[a 0 0 -a 0 0;...

0 12*c 6*leng*c 0 -12* с 6*leng*c;...
0 6*leng*c 4*leng"2*c 0 -6*leng*c 2*leng"2*c;...
-a 0 0 a 0 0;...
0 - 12*c -6*leng*c 0 12*c -6*leng*c;...
0 6*leng*c 2*leng"2*c 0 -6*leng*c 4*leng~2*c];

%
% rotation matrix
%

r=[cos(beta) sin(beta) 0 0 0 0;...
-sinfheta. ̂ rosfhfit.a.̂ 0 0 0 0: . . .----------f ---------f
0 0 1 0 0 0;...
0 0 0 cos(beta) sin(beta) 0 ;...
Л А Л * _ j. _ \ ______i 1 _ J. _ \ Л.и и и -s in ^ o e x a j co s^ D e ia j u ;,..

0 0 0 0 0 1];
%
% stiffness matrix at the global axis

Section 8.9 MATLAB Application to Static Analysis

%
k=r’*kl*r;
% consistent mass matrix
%
if ip t= = l
%

mm=rho*area*leng/420;
ma=rho* area*leng/6 ;
ml=[2*ma 0 0 ma 0 0;...

0 156*mm 22*leng*mm 0 54*mm -13*leng*mm;...
0 22*leng*mm 4*leng'2*mm 0 13*leng*mm -3*leng'2*mm;...
ma 0 0 2*ma 0 0;...
0 54*mm 13*leng*mm 0 156*mm -22*leng*mm;...
0 -13*leng*mm -3*leng"2*mm 0 -22*leng*mm 4*leng“2*mm];

%
% lumped mass matrix
%
elseif ipt= = 2
%

ml=zeros(6,6);
meiss=rho*area*leng;
ml=mass*diag([0.5 0.5 0 0.5 0.5 0]);

%
% diagonal mass matrix
%
else
%

ml=zeros(6.6 :̂
mass=rho*area*leng;
ml=mass*diag([0.5 0.5 leng,'2/78 0.5 0.5 leng'2/78]);

%
end
%
% mass in the global system
%
m=r’*ml*r;
%--- —--------------

The finite element solution is compared to the exact solution at some selected
nodes as given below:

store =
1 _ r Itaui ^ feui sui eXai;t
1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 % horizontal displ. at node 1
2.0000 0 .0 0 0 0 0 .0 0 0 0 % vertical displ. at node 1
3.0000 0 .0 0 0 0 0 .0 0 0 0 % slope at node 1
4.0000 0.0068 % horizontal displ. at node 2
5.0000 0 .0 0 0 0 % vertical displ. at node 2
6.0000 -0.0009 % slope at node 2

280 Beam and Frame Structures Chapter 8

7.0000 0.0270 % horizontal displ. at node 3
8.0000 0.0000 % vertical displ. at node 3

13.000 0.1080 0.1080 % horizontal displ. at node 5
14.000 -0.0001 % vertical displ. at node 5
15.000 -0.0036 -0.0036 % slope at node 5
16.000 0.1080 % horizontal displ. at node 6
17.000 -0.0386 % vertical displ. at node 6
18.000 -0.0040 % slope at node 6
19.000 0.1080 0.1080 % horizontal displ. at node 7
ЛЛ ЛЛЛ4U.UUU Гк ЛОЛ1-U.UOU1 n non 1

-U.UOU1
ОУ_______i'__l J !____1 ________1 Г9/с vertical aispi. nocie i

21.000 -0.0042 -0.0042 % slope at node 7

8.10 M A T L A B A p p lica tio n t o E igenvalue A nalysis

Eigenvalue problems of a beam or a frame structure are solved using the finite
element method written in MATLAB programs. The m-files described in the previous
section compute both the element stiffness and mass matrices so that they are used
in the present programs in order to compute the natural frequencies o f a beam or a
frame structure. To this end, we need to assemble element stiffness sixid msss matrices
into the system stiffness and mass matrices. One m-file used here is

feaplycs.m : application of constraints to both mass and stiffness matrices

This m-file modifies the eigenvalue matrix equation with given constraints. Instead
of redimensioning the matrix size because o f the constraints, the original matrix size
is conserved. However, the modified eigenvalue matrix equation will contain fictitious
zero eigenvalues in the same number of the constraints. As a result, the user should
exclude these zero eigenvalues from the computer solution. Except for these, the
structure o f computer programs is the same as that in examples in the last section.
The following examples show the computer programs written in MATLAB to compute
the natural frequencies.

£ E xam p le 8 .10.1 Find the natural frequencies of a free beam of unit
length. It has a cross-section 1 by 1 and it has also mass density of 1. The
elastic modulus of the beam is 12. All the units are consistent. Use 4 elements
to model the whole beam so that nonsymmetric mode shapes can be included.
Use Hermitian beam elements and consistent mass matrices. The computer
program is listed below:

%--
% EX8101.m: MATLAB program to find the natural frequencies of a free

Section 8.10 MATLAB Application to Eigenvalue Analysis 281

% beam using Hermitian elements
%
% Variable descriptions
% к = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass matrix
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofe in bcdof
%---
nel=4;
nnel=2;
ndof=2;
nnode=(nnel-l)*nel+l;
sdof=nnode*ndof;
el=12;
x i= l /12;
rho=l;
tleng=l;
leng=tleng/nel;
area=l;
ipt=l;
kk=zeros(sdof,sdof);
mm=zeros (sdof, sdof);
index=zeros(nnel*ndof,l);
for iel=l:nel
index=feeldofl(iel,nnel,ndof);
[k,m]=febeaml(el,xi,leng,area,
kk=feasmbll(kk,k,index);
mm=feasmbll (mm, m, index);
end
feol=eig(kk,mm);
feol=sqrt(fsoI)
%------------------------------

% number of elements
% number of nodes per element

% number of dofe per node
% total number of nodes in system

% total system dofs
% elastic modulus

% moment of inertia of cross-section
% mass density

% total length of the beam
% uniform mesh (equal size of elements)

% cross-sectional area
% flag for consistent mass matrix

% initialization of system stiffness matrix
% initialization of system mass matrix

% initialization of index vector
% loop for the total number of elements
% extract system dofs for each element

rho,ipt); % compute element matrices
% assembly of system stiffness matrix

% assembly of system mass matrix

% solve the eigenvalue problem
% print circular frequencies

The finite element solution is compared
m n d p JkIf fem sol exact

0 0 .0 0 0 0 0 .0 0 0 0

1 0 .0 0 0 0 0 .0 0 0 0

2 22.400 22.373
3 62.060 61.673
4 121.86 120.90
5 223.29 178.27

to the exact solution below:

% rigid body mode
% rigid body mode

% first non-zero circular frequency
% second non-zero circular frequency

% third non-zero circular frequency
% fourth non-zero circular frequency

As seen in the comparison, the two solutions agree well for lower frequencies.
However, the discrepancy becomes larger for higher natural frequencies. In order

Beam and Frame Structures Chapter 8

to obtain more accurate higher modes, the finite element model should have a
refined mesh to represent the corresponding mode shapes properly. As a result,
if we want to improve the fourth non-zero frequency in this example, we need to
refine the mesh. J

4» E xam ple 8.10.2 Find the natural frequencies of a cantilever beam whose
length is 1 m long. The beam has the cross-section of 0.02 m by 0.02 m and the
mass density is 1000 Kg/m3. The elastic and shear modulii are 100 GPa and 40
GPa, respectively. Use 4 elements. The MATLAB program is shown below.

% EX8102.m: MATLAB program to solve the natural frequencies of
% a beam using beam elements with displacement degrees of
% freedom only
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix
% m = element mass matrix
% mm = system mass matrix
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
%---
nel=4; % number of elements
nnel=2 ; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nneH)*nel+l; % total number of nodes in system
sdof=nnode*ndof; % total system dofe
el=100*10''9; % elastic modulus
sh=40*10~9; % shear modulus
tleng=l; % total beam length
leng=tleng/nel; % same size of beam elements
heig=0 .02; % height (or thickness) of the beam
width=0 .02; % width of the beam
rho=1000; % mass density of the beam
bcdof(l)= l; % bottom inplane displ. at node 1 is constrained
bcdof(2)= 2 ; % top inplane displ. at node 1 is constrained
bcdof(3)=3; % transverse displ. at node 1 is constrained
kk=zeros(sdof,sdof); % initialization of system stiffness matrix

+■* Ли cve+ л т m ace iriatriv111111 — ̂ ,̂1, \JO J у /и UUVlOilUJUVlUJI VI \ J J & U4/111 1IIIW0 ш иинл

index=zeros(nnel*ndof,l); % initialization of index vector
for iel=l:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofs for each element
[k,m]=febeam3(el,sh,leng,heig,width,rho); % compute element matrices
kk=feasmbll(kk,k,index); % assembly of system stiffness matrix
mm=feasmbll(mm,m,index); % assembly of system mass matrix

Section 8.10 MATLAB Application to Eigenvalue Analysis

end
[kk,mm]=feaplycs(kk,mm,bcdof); % apply the boundary conditions
feoI=eig(kk,mm); % solve the matrix equation and print
fsol=sqrt(fsol)
%---------------- ---------------- _ ---

The natural frequencies obtained from the finite element program are compared
to the exact solutions

mode # fem sol exact
1 200.00 203.00
2 1260.0 1272.0
3 4040.0 3562.0

% first circular natural frequency
% second circular natural frequency

% third circular natural frequency

ф E xam p le 8 .10.3 Find the natural frequencies of a frame of L-shape which
is made of two beams of length of 1 m each as seen in Fig. 8.9.2. Both beams
have cross-sections of 0.01 m by 0.01 m. The elastic modulus is 100 GPa. The
beam has mass density of 1000 Kg/m3. Use 10 elements.

%--

% EX8103.m: MATLAB program to find the natural frequencies for a 2-D
% frame using frame elements
%
% Variable descriptions
% x and у = global x and у coordinates of each node
% к = element stiffness matrix
% kk = system stiffness matrix
% m = element mass matrix
% mm = system mass matrix
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
%--

nel=10; % number of elements
nnel=2; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nnel-l)*nel+l; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
х(1)= 0 ; y (l)= 0 ; % x, у coord, of node 1 in terms of the global axis
x(2)= 0 ; y(2)= 0 .2; % x, у coord, of node 2 in terms of the global axis
v/,Q\ —П» / Q П A* Q£ v wr л-f Q in torm c svf п1лкя1 aviQ

J — \j j у j — v .1) /v Л) у ^ u u iu . v/i uuuv v in u i инч. giUL'w

x(4)=0; y(4)=0.6; % x, у coord, of node 4 in terms of the global axis
x(5)=0; y(5)=0.8; % x, у coord, of node 5 in terms of the global axis
x(6)= 0 ; y(6)= l; % x, у coord, of node 6 in terms of the global axis
x(7)=0.2; y(7)= l; % x, у coord, of node 7 in terms of the global axis
x(8)=0.4; y(8)= l; % x, у coord, of node 8 in terms of the global axis
x(9)=0.6; y (9)= l; % x, у coord, of node 9 in terms of the global axis

284 Beam and Frame Structures Chapter 8

x(10)= 0.8 ; y(10)= l;
x (l l)= l ; y (l l)= l ;
el=100*10"9;
area=0 .0001;
xi=8 .3333*10" (-10);
rho=1000;
bcdof(l)= l;
bcdof(2)= 2;
bcdof(3)=3;
kk=zeros(sdof,sdof);
mm=zeros (sdof,sdof);
index=zeros(nnel*ndof, 1);
for iel=l:nel
index=feeldof 1 (iel,nnel,ndof);
nodel=iel;
node2=iel+l;
xl=x(nodel); yl=y(nodel);
x2=x(node2); y2=y(node2);
Ieng=sqrt((x2-xl)~2+(y2-yl)~2);

% x, у coord, of node 10 in terms of the global axis
% x, у coord, of node 11 in terms of the global axis

% elastic modulus
% cross-sectional area

% moment of inertia of cross-section
% mass density per volume

% transverse deflection at node 1 is constrained
% axial displacement at node 1 is constrained

% slope at node 1 is constrained
% initialization of system stiffness matrix

% initialization of system mass matrix
% initialization of index vector

% loop for the total number of elements
% extract system dofs for each element

% starting node number for element ’iel’
% ending node number for element ’iel’
% x and у coordinate values of ’nodel’
% x and у coordinate values of 5node2’

% length of element ’iel’
if (x2-x l)= = 0; % compute the angle between the local and global axes
beta=pi/2 ;
else
beta=atan((y2-y l) /(x 2-xl));
end
[k,m]=feframe2(el,xi,leng,area,rho,beta,1); % element matrix
kk=feasmbll(kk,k,index); % assembly of system stiffness matrix
mm=feasmbll(mm,m,index); % assembly of system mass matrix
end
[kk,mm]=feaplycs(kk,mm,bcdof); % apply the boundary conditions
fsol=eig(kk,mm); % solve the matrix equation and print
fsol=sqrt(fsol)
%-- -- --

The numerical solutions are
mode #

1
2
3
4

fem sol.
34 % first circular natural
92 % second circular natural
455 % third circular natural
667 % fourth circular natural

8.11 MATLAB Application to Transient Analysis

In the transient analysis of a structure, the equation of motion at time t is

[M]{iy + \c\{iy + [K]{dy = { f }- (8.11.1)

Section 8.11 MATLAB Application to Transient Analysis 285

where [M], [C] and [A-] are the system mass, damping, and stiffness matrices and they
are assumed to be independent of time. Superscript t denotes time. We will present
the direct time integration scheme to solve Eq. (8.11.1). There are many integration
techniques which can be applied to the matrix equation. Readers may refer to Refs
[16-18]. In this section, the central difference scheme is explained because it is one of
the most popular techniques in the structural mechanics application.

There are two versions of the central difference scheme. The first method is
summarized below. Detailed derivation of this technique is provided in [16].

1. Compute system matrices like [M], [C], and [AT],
2. Solve for the initial acceleration {<f}° from
w r = [M] - 1 ({F } ° - [C\{d}° - [K]{d y)
where {</}° and {t/}° are the initial displacement and velocity vector.
3. Compute the fictitious displacement at time At from
{ d } " At = {rf}° - (At){d }° +
4. Compute the effective mass matrix.
{Ml = г Ы M) + 3y c]
5. Repeat 6 through 9 for each time step.
6. Compute the effective force vector.
{ F } ‘ = {*■}' _ ([*] - -& lM)){u } ‘ - (^ [M] - 5k [C]) {d } ‘ - "
7. Find the displacement at time t + At from
{</}*+** = [Щ -^ Ё У
8. Find the acceleration at time t.
W = г М М '+л‘ - 4 d Y + W " ")
9. Find the velocity at time t.

M = з Ы № +л‘ - М ‘ _л ‘)
U rllA P A A # Ifi t i l A t . i m p f i f p n C1T.Af V 11V Д- UU\« J. 111\> U^tiv

The second form of the central difference scheme, called summed form [19], is described
below.

1. Repeat 2 through 4 for each time step.
2. Compute the acceleration.
{<*}' = M ' W -[C\{iy - m i
3. Compute the velocity from the acceleration.
{j}*+o.5A« _ { j y - 0.ВД* + д<^ у
4. Compute the displacement from the velocity.

= {</}* + A «{d }l+0-BA*
The both central difference techniques are conditionally stable. The critical time step
size for stability is

A tcrii = (8.11.2)7Г
where Tmin is the smallest period of the discretized system with finite degrees of
freedom. Therefore, the time step size A t must be smaller than or equal to this
critical size to maintain numerical stability.

Comparison of the two central difference techniques are discussed below.
(1) The first technique computes nodal displacements, velocities, and accelerations
at the same time steps while the second technique computes them at different time

286 Beam and Frame Structures Chapter 8

steps. That is, nodal displacements and accelerations are determined at the same time
steps but velocities are found at the middle of the time steps. As a result, in order
to compute both kinetic and strain energies, for example, at the same time step, an
interpolation technique is used for the second central difference scheme to have both
displacements and velocities at the same time steps.
(2) The first technique does not have to calculate nodal velocities and accelerations
to march along the time if a user does not need them. On the other hand, the second
technique needs to computes all of them to progress along the time.
(3) In terms of computer programming, the second method is much easier than the
first method.
(4) Both techniques require initial solutions at some fictitious time steps. The first
scheme needs the displacements at time —A t while the second requires the velocities
at time — 0.5Д2 to initiate the computations. The first technique has the consistent
wav to determine the solution at the fictitious time steD but the second techniaue doesШ - ж л -- -
not have that. Hence, the first technique can be used to find the velocity solution
at the fictitious time step for the second technique and the procedure for the second
scheme is used after that. In other words, we compute {d } -A l from the first central
difference technique. Then the fictitious velocity vector {</}-0SAl is obtained from

5A1 = --- (8.11.3)

Numerical experimentation was conducted in Ref. [30]. Both central difference
schemes were applied to a crack propagation problem. The study showed that
solutions from the both schemes were almost identical. In the study, the fictitious
velocity for the second technique was assumed to be the same as the initial velocity
at time 0. The solution obtained with this assumption and the second method was
almost identical to the solution from the first method. The following example shows
the second central difference scheme applied to a beam problem.

X E xam ple 8.11.1 Find the transient response of a cantilever beam whose
length is 1 m long. The beam has the cross-section of 0.02 m by 0.02 m and
the mass density is 1000 Kg/m3. The elastic modulus is 100 GPa. The beam
is initially at rest and subjected to a constant tip load of 100 N at time 0.
The following computer program uses the second central difference method to
determine the transient response. Four Hermitian beam elements are used. The
critical time step size for this finite element system is 1.149 X 10-4 sec. The
program uses At = 1 X 10-4 sec. The program is listed below.

% EX8111.m: MATLAB program to find the transient response
% of a cantilever beam with a tip load
%
% Variable descriptions
% к = element stiffness matrix
% kk = system stiffness matrix

Section 8.11 MATLAB Application to Transient Analysis 287

% m = element mass matrix
% mm = system mass matrix
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofe associated with boundary conditions
% acc = acceleration of nodal variables
% vel = velocity of nodal variables
% disp = displacement of nodal variables
%---

% number of elements
% number of nodes per element

% number of dofe per node
% total number of nodes in system

% total system dofe
% elastic modulus

% total beam length
% same size of beam elements

% height (or thickness) of the beam
% cross-sectional area of the beam

% mass density of the beam
% option flag for mass matrix (consistent mass matrix)

% time step size
% initial time

% final time
% number of time steps

% number of constraints
% transverse displ. at node 1 is constrained

% slope at node 1 is constrained
% initialization of system stiffness matrix

% initialization of system mass matrix
% initialization of force vector

% initialization of index vector
% initialization of acceleration matrix

% initialization of velocity matrix
% initialization of displ. matrix

% initial zero velocity
% initial zero displacement

% tip load of 100
% loop for the total number of elements
% extract system dofe for each element

[k,m]=febeaml(el,xi,leng,area,rho,ipt); % compute element matrices
kk=feasmbll(kk,k,index); % assembly of system stiffness matrix
ШШ—16 юшЫ 1 (lu Ш, ш?1П u€x) j
end
mmin v=in v (mm);
% central difference scheme for time integration
for it=l:nt
acc(:,it)=;mminv*(force-kk*disp(:,it));
% application of constrained conditions

nel=4;
nnel=2;
ndof=2;
nnode=(nnel-l)*nel+l;
sdof=nnode*ndof;
el=100*10~9;
tleng=l;
leng=tleng/nel;
xi=0.02'-4/12;
area=0.004;
rho=1000;
ipt= l;
d t=0 .0001;
ti=0;
tf=0.2;
nt=fix((tf-ti)/dt);
nbc=2;
bcdof(l)= l;
bcdof(2)= 2 ;
kk=zeros(sdofjSdof) ‘
mm=zeros(sdof,sdof);
force=zeros(sdof, 1);
index=zeros(nnel*ndof,l);
acc=zeros(sdof,nt);
veI=zeros(sdof,nt);
disp=zeros(sdof,nt);
vel(:,l)=zeros(sdof,l);
disp (:, 1)=zeros(sdof, 1);
force(9)=100;
for iel=l:nel
index=feeldofl(iel,nnel,ndof);

(nL •ае1вАгм1ч1«т оirotam тпчпв m v/у u i o j iiiaoo ш аьил

% invert the mass matrix

% time integration loop
% compute acceleration

288 Beam and Frame Structures Chapter 8

for i= l:nbc % loop for number of constraints
ibc=bcdof(i); % nodal dof where constraint is applied
acc(ibc,it)=0; % acceleration at the constrained dof set to 0
end
vel(:,it+l)=vel(:,it)+acc(:,it)*dt; % compute velocity
disp(:?it+ l)=disp(:,it)+vel(:,it+ l)*dt; % compute displacement
end
acc(:,nt+l)=mminv*(force-kk*disp(:,nt+l)); % accel. at last time step
%---
% plot of the tip deflection
%---
tim e=0:dt:nt*dt;
plot(time,disp(9,:))
xlabelf’TimefsecondsV)
ylabel(’Tip displ. (m)’)
%---------------------------------

The plot of the tip deflection is shown in Fig. 8.11.1. The tip deflection shows
an oscillation around the static deflection. Figure 8.11.1 also shows the same
deflection when the time step size is 1.15 X 10'"*. Because the time step size is
larger than the critical step size, the deflection becomes unstable and diverges,
t +

8.12 MATLAB Application to Modal Analysis of Undamped System

In this section, the dynamic analysis of multiple degrees of freedom systems
is presented and applied to beam structure examples. The multiple degrees of
freedom systems are quite different from single degrees of freedom systems in terms
of mathematical formulations and associated time responses. For multiole decrees of------------- ... x 1 V

freedom system, we define modes which represent each component of overall dynamic
responses. The modes are essential in describing the nature of motion and provide
physical understanding o f the dynamic behavior of the system.

The modes are characterized by so-called eigenvalues and eigenvectors of the
system. The eigenvaules are related to usually natural frequencies and eigenvectors
to mode shapes of the given system. Unfortunately, these eigenvalues and eigenvectors
are limited mostly to linear systems. This limitation is not significant, in fact, the
majority of the dynamic systems are represented by linear systems. There are also
plenty of computer software tools available to linear system analyses.

Some key concepts are introduced in this section including a solution technique
for eigenvalue/eigenvector problems, which is sometimes called the modal analysis.
The time response of a system is obtained in a straightfoward manner once the modal
analysis results are ready. We consider an undamped system here and a damped
system is discussed in the subsequent section.

Section 8.12 Modal Analysis of Undamped System 289

o.i
Time(seconds)

Figure 8 .11.1 Time Responses using Central Difference Method

For a given n degree of freedom linear second order system, the governing
differential equation of motion is described by the second order matrix equation as

fa Ю n1A. XJ

We seek to find the natural motion of the system, i.e. response without any forcing
function. The form of response or solution is assumed as

{rf(t)} = {Ф} eiwt (8 .12.2)

where {ф} is the mode shape (eigenvector) and и is the natural frequency of the
motion. In other words, the motion is assumed to be purely sinusoidal due to zero
damping in the system. The general solution turns out to be a linear combination of
each mode as

(8.12.3)

where each constant(cj) is evaluated from initial conditions. Substituting Eq. (8.12.2)
into Eq. (8.12.1) with {F } = 0 yields [31,32]

[~ш2[М] + [К]){ф}е{шг = О (8.12.4)

The above equation has a nontrivial solution if (—w2[M] + [ЯГ]) becomes singular. In
other words, there exist n number of u>s which satisfy

| - u 2[M] + [K]\ = | - A[M] + [K]| = 0 (8.12.5)

where A = u>2 is the eigenvalue of the system. Equation (8.12.5) produces solutions,
. . . ,w2. Since the mass matrix is positive definite and the stiffness matrix is

at least positive semidefinite, all a/jS are nonnegative. This can be easily proven from

= M M (8.12.6)

for the ith eigenvalue and eigenvector. Let us multiply {<j>i}T on both sides of the
equation

« ? М ТМ М = M TM M (8.12.7)
According to the general property of mass and stiffness matrix in the form

{ x } T[M]{x } > 0, { x }T[tf]{x } > 0 for {x } ф 0

In addition, the eigenvectors are orthogonal to each other, which can be easily shown
from

" (M M = M M (8.12.8)

",2[M]{M = M M (8-12.9)

For proof, we premultiply {<j>j}T on both sides of Eq. (8.12.8) and subtract the
transpose of Eq. (8.12.9) which is post-multiplied by The result becomes

(w? - и ?) м т м м = { * №] { * } - Ш Т М М = 0 (8 .12.10)

ГП1______f _______ !Г .* /xnereiore, 11 г ^ J
Ш Т[М]Ш = №ЛТ[*] М = 0 (8.12.11)

and the eigenvectors are orthogonal with respect to the mass and stiffness matrices.
The above orthogonality property includes systems with non-repeated rigid body
degrees of freedom. For multiple rigid body modes, for example a three dimensional
translational motion, a special form of orthogonality exists (see Ref. [16] for the
special form). Orthogonality of eigenvectors in conjunction with positive and positive
semidefiniteness of mass and stiffness matrices of a vibrational system is one of the
distinct features of linear dynamic systems.

The orthogonality of eigenvectors provides a useful normalization technique in
the form

M T[Jlf]{A} = 1, Ш Т М М = ы ? (8.12.12)

Once the eigenvectors are normalized, the following coordinate transformation is
proposed

{<*} = [*] {* } (8.12.13)

where
№ = [* l , f c -------Фп] (8.12.14)

is called modal matrix whose columns consist of normalized eigenvectors, and { 77} =
[171, r}2 , • • •, >7n]T is the vector of modal coordinates. Substitution of Eq. (8.12.14) into
Eq. (8.12.1) yields

w m w + m m { 4} = i n (8 .12.15)

290 Beam and Frame Structures Chapter 8

Next, we premultipy Фт on both sides of Eq. (8.12.15), so that

[Ф]ТМ[Ф]{^} + [Ф]ТИ Ф] {г}} = Фт { ^ } (8.12.16)

According to the orthogonality in Eq. (8.12.12), Eq. (8.12.16) can be rewritten as

{t?} + diag[u?] {»?} = Фт { ^ } = { f t } (8.12.17)

In other words, the system of equations are decoupled.

й + w?T7f = f { (’8.12.18')
¥ •r * • N f

where i — 1 ,2 , . . . , n, and / j is the iih row of ФТ{.Р}. Equation (8.12.18) represents the
modal coordinate form of equations of motion, for which each independent vibrational
mode is described by a decoupled second order differential equation. The modal
coordinate equations are so useful since they provide the analytical solution for each
mode. Also, the input function into the iih modal coordinate (/ j) represents how
much the mode is excited from the external input.

Section 8.12 Modal Analysis of Undamped System 291

£ Exam ple 8.12.1 Consider a Euler-Bernoulli beam model with one end
fixed as in Fig. 8.12.1. For simplicity, the beam is modeled by two finite elements
using the consistent mass matrix. The numerical data for the structure are p
(linear mass density)=0.024 kg/m, E I= 6.09 N-m2, and £=1.27 m. A MATLAB
тп-file called femodal.m produces the following mass and stiffness matrices after
applying the boundary condition

[M} =

Г 0.0929
0

0.0161
L-0.0967

0
1.4881
0.0967

-0.5580

0.0161
0.0967
0.0464

-0.1637

-0.0967
-0.5580
-0.1637
0.7440

and

[К] - 104 x

0.0052
0

-0.0026
L 0.0326

0
1.0880

-0.0326
0.2720

-0.0026
—0.0326
0.0026

-0.0326

0.0326
0.2720

-0.0326
0.5440

The corresponding degrees of freedom for these matrices are {i>i 6\ $2} 35
shown in Fig. 8.12.1. The natural frequency and modal matrix are computed
from the MATLAB function file femodal.m as follows

3.6692 ч ■-1.3594 -2.9157 -0.4570 1.9102-
23.1786 1
78.3943 [’ [Ф] =

-0.0931
-4.0039

0.0351
4.0394

0.6871
-4.4925

0.7852
7.5441

. 227.5337 J . - 0.1102 0.3890 -0.8665 2.9165.

292 Beam and Frame Structures Chapter 8

^ X

Figure 8.12.1 Two Elements Beam Model

and the modal input force matrix

[Ф]Т {^ > =: [—4.0039 4.0394 -4 .4 9 2 5 7.5441]T

where the original input influence matrix is given by

{F } = [0 0 1 O f

The MATLAB source file is provided below as a reference

function [Omega,Phi,ModF]=femodal(M,K,F);
%--- ---------------
% PurDose- ■ _ -----1 ----------

% The function subroutine femodahm calculates modal parameters
% for a given structural system. It calculates natural frequency and
% eigenvector. The eigenvectors are normalized so that the modal
% mass matrix becomes an identity matrix.
%
% Synopsis:
% [Omega, Phi, ModF]=femodal(M,K,F)
%
% Variable Description:
% Input parameters -
% M, К - Mass and stiffness matrices
% F - Input or forcing function
% Output parameters -
ox/U
%
%
%
%-

О -mofT4 дпЛ1г/та/1 /оАг>̂ i-r* ^еллп^linrt nvrlavvyiii^gu — n u vu iu i in oovviim ug v iu v i

Phi - Modal matrix with each column corresponding to
the eigenvector.

ModF - Modal input matrices.

disp(* ’)
disp(’Please wait!! - The job is being performed.’)

%--
% Solve the eigenvalue problem and normalized the eigenvectors
% ---
[n,n]=size(M);{n,m]=size(F);
[V ,D]=eig(K,M);
[lambda,k]=sort(diag(D)); V=V(:,k);
Factor=diag(V’*M*V);
Phi=V*inv(sqrt(diag(Factor)));
Omega=diag(sqrt(Vnorm>*K*Vnorm));
Modf=Vnorm’*F;
%-- ---,

Note that each modal coordinate or finite element degree of freedom can be taken
as the output variables of femodal.m

t

Section 8.12 Modal Analysis of Undamped System 293

In order to find out the solution to Eq. (8.12.18), the Laplace transformation
technique is used.

_ STft(O) + 17,(0) f j (s)
s2 + w 2 s2 + w f*(') = ' Z ' I S ' + Х Г З (8-12.19)

where tfc-(O) and j)»(0) are related to the initial conditions as explained below. Taking
the inverse Laplace transform of Eq. (8.12.19) yields the time domain solution

m(t) = iu(0)co8UJit + ^ sinwd + [— sinuiit — T)fi(r)dr (8.12.20}
' Jo ^

As one might have expected, the solution consists o f two parts: i) excitation by initial
condition and ii) response due to the external forcing input. The convolution integral
in the solution is not easy to evaluate in general, except for some special cases such
as impulse and step inputs.

As shown above the initial conditions (*ft(0), 77, (0)) for the modal coordinate
are needed for the complete solution. This information can be directly obtained from
the original transformation equation, Eq. (8.12.13). That is,

{d(0)} = [*] (ч(0)} (8.12.21)

so that
iT

__1,,o u u iia r iy

М 0) } = [Ф т] [Ф] { О Д } (8 .12.22)

MO)} = [Ф]Т[М][Ф] {d(0)} (8.12.23)

Now the solution o f each modal coordinate is combined together to produce the
solution in physical coordinates.

№) } = [* К ч (*) } (8.12.24)

294 Beam and Frame Structures Chapter 8

Response at the middle

Response at the tip

Figure 8.12.2 Impulse Responses by Modal Analysis

In other words,
П

di(*) - X) for * = 1,2. ■ • •, n (8.12.25)
j =i

£ E x a m p le 8 .1 2 .2 In this example, the same model is used as in Example
8.12.1 to demonstrate the evaluation of impulse response of the beam. The
impulsive force is applied at the tip of the beam. The analytical solution,
Eq. (8.12.20), is incorporated into a MATLAB m-file feiresp.m. The initial
conditions, { C?(0) } and {rf(0) } are set to zero.
The time response results are presented in Fig. 8.12.2. Note that the response
time interval is so critical to show higher modes in the response. If the time
interval is too large, higher modes will not show up in the response. This issue
will be discussed later in frequency response analysis in Sec. 8.14.
The source MATLAB m-file is presented below:

function [eta,yim]=feiresp(M,K,F)u,t)C,qO,dqO);
O f/о--
% Purpose:
% The function subroutine feiresp.m calculates impulse response
% for a given structural system using modal analysis. It uses modal
% coordinate equations to evaluate modal responses anaytically, then
% convert modal coordinates into physical responses
%

Section 8.12 Modal Analysis of Undamped System 295

% Synopsis:
% [eta, yim]=feir esp (M, К , F ,u, t , С ,q0 ,dqO)
%
% Variable Description:
% Input parameters -
% M, К - Mass and stiffness matrices
% F - Input or forcing function
% u - Index for excitation
% t - Time period of evaluation
% С - Output matrix
% qO, dqO - Initial conditions
% Output parameters -
% eta - modal coordinate response
% yim - physical coordinate response
%.. -......................
disp(’ ’)
disp(’Please wait!! - The job is being performed:’)
%---
% Solve the eigenvalue problem and normalized the eigenvectors
% --
[n,n]=size(M);[n,m]=size(F);
nstep=size(t’);
[V,D]=eig(K,M);
[lambda,k]=sort(diag(D)); V=V(:,k);
Factor=diag(V’*M*V);
Vnorm=V*inv(sqrt(diag(Factor)));
omega=diag(sqrt(Vnorm,!,:K*Vnorm));
Fnorm=Vnorm’*F;
%------------------------- ---
% Find out impulse response of each modal coordinate analytically
%--
etaO=Vnorm’*M*qO; detaO=Vnorm,*M*dqO; eta=zeros(nstep,n);
for i= l:n phase=omega(i)*t;
eta(:,i)=etaO(i)*cos(phase’)+detaO(i)*sin(phase’)/om ega(i)+...
sin(phase’)*Fnorm(i,u);
end
% Convert into physical coordinates
yim=C*Vnorm3,teta’ ;
%--

t

8.13 MATLAB Application to Modal Analysis of Damped System

For a n degree of freedom system with inherent damping, the governing equation
of motion can be written as

[M]{d} + [C]{rf} + [K]{d} = { F } (8.13.1)

where [C] is a n by n damping matrix. The above system is stable due to the
introduction o f the damping term as explained below. The damping can be classified
into inherent structural damping or damping by active control. The stability o f the
above system can be discussed by taking the total energy(kinetic plus potential) of
the system

U = + i { d f [K] { d } (8.13.2)

296 Beam and Frame Structures Chapter 8

f 1-»̂Assuming tree vibration witn j= u , tbe time rate ol cnange oi и becomes

furthermore, using Eq. (8.13.1)

~ = -{dY[C\{d] (8.13.4)

Therefore, as long as the damping matrix [C] satisfies

{d }[C]{d} > 0, for {d} ф 0 (8.13.5)

it follows
JTT
^ < 0 (8.13.6)

and the system is stable with respect to the equilibrium state ({d } , {d }) = (0, 0).
Estimating the damping matrix for a physical system is not easy in general. There
are some methods of modeling the damping matrix. One of the special cases is to use
so-called proportional damping or Rayleigh damping in the form

[C\ = a[M]+p[K \ (8.13.7)

where a and /3 are constants. In other words, the damping matrix is proportional
to the mass and/or stiffness matrix. The proportional damping has an advantage of
possessing the same characteristic as the mass or stiffness matrix. The eigenvectors
obtained from the mass and stiffness matrices conserve orthogonality with respect to
the damping matrix. That is

{Ф*}ТШ Ф з) = 0, Ьг гф з (8.13.8)

and [Ф]Т [С][Ф] becomes a diagonal matrix. Now, the original governing equation, Eq.
(8.13.1), can be rewritten in the modal coordinate form

r)i + 2£,4jj rji + со?тц = ft (8.13.9)

Application of the Laplace transform yields

. . n.f01 -I- (s 4- 2i*.tj.'in.f0'l -I- fAs)
nt(s) = ' T 2 \ (8.13.10) (s2 + 2С ^ 5 -(-а;?) 7

The inverse Laplace transform of rji(s) becomes

Viit) =Tn(0)e~(iWitco8wdt + (*7*(0) -------j = = T}i(0))e~<iWits in (udt)
V 1 “ Ci

1 f*
+ — I e~<‘ iWi(t~T)sinud(t — r) /(r)d r (8.13.11)

Ud Jo

where сod = ui, \J\ — £? is the damped natural frequency and ш,- is the undamped
natural frequency. In most practical cases, the modal damping ratio Ci is less than
unity so that the damped natural frequency is smaller than the undamped natural
frequency. The modal coordinate solution in Eq.(8.13,ll) can be used to produce the
solution of the physical coordinates

{d(i)} = [Ф]{ч(()> (8.13.12)

where [Ф] is the modal matrix obtained from the damped system.

Section 8.13 Modal Analysis o f Damped System 297

4k Example 8.13.1 In this example, we test the impulse response of a damped
system. The system damping matrix is assumed as a proportional damping,
and the mass and stiffness matrices are the same as in Example 8.12.1. The
proportional constants are chosen as oc=0.2, /?=0.005. The same unit impulsive
force at the tip, as in Example 8.12.1, is applied. A MATLAB fediresp.m file is
written as presented below.
The simulation results axe presented in Fig. 8.13.1. They show the damped
responses at the two different positions of the beam.

function [eta,yim]=fediresp(M,K,F,u,t,C,qO,dqO,a,b);
%---
% Purpose:
% The function subroutine fediresp. m calculates impulse response
% for a damped structural system using modal analysis. It uses modal
% coordinate equations to evaluate modal responses anaytically, then
% convert modal coordinates into physical responses
%
% Synopsis:
% [eta,yim]=fediresp(M,K,F,u,t,C,qO,dqO,a,b)
%
% Variable Description:
% Input parameters : M, К - Mass and stiffness matrices
% F - Input or forcing influence matrix
% u - Index for excitation

298 Beam and Frame Structures Chapter 8

x 10 Middle response

с<D
Ev
S
«TJ
"ctfо
S'>

. x 10

Time(sec)

Tip response

S 10 12
Time (sec)

14 16 18 20

Figure 8.13.1 Impulse Responses for a Damped System

% t - Time of evaluation
% u - Index for the excitation
% С - Output matrix
% qO, dqO - Initial conditions
% a, b - Parameters for proportional damping [C]=a[M]+b[K]
% Output parameters : eta - modal coordinate response
% yim - physical coordinate response
%--- :— :------------------------------
disp(’ ’)
disp(’Please wait!! - The job is being performed.’)
%--
% Solve the eigenvalue problem and normalized the eigenvectors
%--
[n ,n] =size(M); [n ,m]=size(F);
nstep=size(t’);
[V,D]=eig(K,M);
[lambda,k]=sort(diag(D)); % Sort the eigenvaules and eigenvectors
V=V(:,k);
Factor=diag(V’*M*V);
\7nr»rm=\/*iTivf«rtTtYr1iaWFW'f.rvr^V % V.iupnvprf.mvQ я.гр. Tiftrmaliaprl» , V — O'"** • ---- -------------------- ------
omega=diag(sqrt(Vnorm,l,!K*Vnorm)); % Natural frequencies
Fnorm=Vnorm’*F;
%---
% Compute modal damping matrix from the proportional damping matrix
%---
Modamp=Vnorm’*(a*M+b*K)*Vnorm;

zeta=diag((l/2)*Modamp*inv(diag(omega)))
if (max(zeta) > = l),
disp(’Warnmg - Maximum damping ratio is greater than or equal to 1’)
disp(’You have to reselect a and b ’)
pause
disp(’If you want to continue, type return key’)
end
etaO=Vnorm’*M*qO; % Initial conditions for modal coordinates
detaO=Vnorm’*M*dqO; % - both displacement and velocity
eta=zeros(nstep ,n);
for i= l:n % Responses are obtained for n modes
omegad=omega(i)*sqrt(l-zeta(i)''2);
phase=omegad*t;
t .c n n s = 3 !e ta .f i^ * o m e e a f i^ * t :------- ------v-y ----- 0 _v_/ - J
eta(:,i)=exp(-tcons),.*(eta0(i)*(cos(phase’)+zeta(i)/sqrt(l-zeta(i)'2)*...
sin(phase,))+detaO(i)*sin(phase,)/omegad+sin(phase’)*Fnorm(i,u)...
/omegad);
end
%---
% Convert modal coordinate responses to physical coordinate responses
%---
yim=C*Vnorm*eta*;
%---

t

Section 8.14 Frequency Response Analysis 299

8.14 MATLAB Application to Frequency Response Analysis

The previous modal analysis of a system is mainly based upon the time domain
approach. The eigenvalues and eigenvectors directly produce solutions in time domain
in the form of time response functions. Modal coordinates make it possible to derive
sets of decoupled equations of motion. Each individual modal coordinate solution is
combined to result in the physical coordinate solution. The modal analysis provides
very convenient tools for understanding behavior of multiple degrees of dynamic
systems.

Sometimes, the time domain analysis is not the best choice, especially for modal
testing and other applications. One supplementary approach is the frequency domain
analysis. The frequency domain method has major advantages over the counterpart,
i e- t.imp rlr>main anal vs is In fart. it. is hpincr m nrp w irlplv aHrvnt.prl in sign a l nrnrfissin ffv“ “ v " —~-V -------------------------------- —---q --- ----- ------r
active control system design, modal testing, etc.

Most of the vibrational systems can be characterized by their inherent frequency
components which dictate both time and frequency responses. One key advantage of
the frequency domain analysis is that one can span a whole range of frequencies
which is not possible or impractical in the time domain analysis. Conversion of time
domain signals into frequency domain signals and vice versa is relatively easy due

300 Beam and Frame Structures Chapter 8

to the modern computational power. In this section, discussion on the frequency
domain analysis is presented. The Fast Fourier Transform (FFT) and evaluation of
the frequency response function for multiple degrees of freedom systems are presented.

Consider a general continuous time domain signal given by The signal x(t)
can be periodic or nonperiodic. It can be represented in the following expression

1 Г°°

* (<) = 2i / „ * (SJ) ° (8 1 4 1)

where is the Fourier transform of the time signal x(<)

rOQ
X (Q) = j x(t)e~intdt (8.14.2)

J — oo

The time signal x(t) is also called the inverse Fourier transform o f X (fl). For the
existence of the Fourier transform the following condition should be satisfied for x(t):

f J — I

|x(f)|da; (8.14.3)

should have a finite value. The above constraint is not strict in the sense that it covers
a wide range of signals of actual dynamic systems. On the other hand, introducing a
new variable / = Q /2tt, we have

/OO

X t f y ^ d f (8.14.4)
J—oo

and

/ oo

x (t) e ' ii2nft)dt (8.14.5)
'OO

Since the Fourier transform involves integral of general time varying complex vari-
ables, it is not easy to carry out the integration. Except for some special cases, a
numerical integration technique is needed. One efficient algorithm is to use the Dis­
crete Fourier transform. The numerical integration is conducted by a finite number
of summation at discrete points.

Assume that there are N sampled values as

xk = x (t k), tk = kAt, к - 0 ,1 ,2 , . . . ,N - 1 (8.14.6)

Based upon the sample data points, we assume that the time domain data project
into the corresponding frequency domain data. In other words, the Fourier transform
is defined for the N discrete frequency points.

(Л , h) (8-14.7)

where the frequency points should be in the range of the so-called Nyquist critical
frequency

1. = ^ (8-14.8)

In other words, the sampling period (Д t) should be at least a half of the period o f a
signal to sufficiently represent the signal.

roo N —l

X(fn) = / * (0 e 2’r,7nlA ~ x ke2*iJntkb t (8.14.9)
J~°° Jb=0

The above equation is called the Discrete Fourier transform. The Discrete Fourier
transform (DFT) has the symmetry property with respect to the input frequency (/ n).
In other words,

X (/ „) = * (/ * - „) , = » = (8 1 4 -10)

and only a half of the transform is needed to represent all frequency components. The
maximum frequency rage is given by

0 < f < m (8Л 411)

An enhanced version of the DFT is called Fast Fourier Transform (FFT) which
improves computational efficiency significantly. It turns out that term in Eq.
(8.14.9) repeats over the frequency range, and the FFT makes use of this property.
The FFT algorithm is implemented in a number of computer software packages and
being used in many different areas. The algorithm is known to be highly efficient
in terms of number of numerical operations. The number of operations for FFT is
(N/2)log2N when compared to N 2 for DFT. The detailed discussion on the FFT is
available in Refs. [16,33].

Section 8.14 Frequency Response Analysis 301

ф E x a m p le 8 .14 .1 The same model used in Example 8.12.1 and the impulse
response results in Example 8.12.2 are used in this example to demonstrate
the FFT. A MATLAB fefft.m file is written and the input data include both
time response data and the sampling time interval. The sampling time interval
is transformed into the corresponding frequency scale based upon the Nyquist
critical frequency using Eq. (8.14.20). The number of data points in the FFT
should be power of 2. Otherwise, the MATLAB built-in function j{ft fills the
discrepancy with blank data. Figure 8.14.1 represents both the time domain
impulse response and the corresponding FFT results. Also, provided below is
the MATLAB source file for fefft.m

function [yfft,freq]=fefFt(y,t)
%--
7o Purpose:
% This function subroutine calculates Fast Fourier Transform (FFT)
% using the time domain signal. The time domain data are provided
% with corresponding time interval.

302 Beam and Frame Structures Chapter 8

Response at the middle FFT result at the middle

Response at the tip FFT result at the middle

Figure 8.14.1 Impulsive Time Response and FFT

%
% Synopsis:
% [yf, freq]=fefft(y,t)
%
% Variable Description:
% Input parameters -
% у - Time domain data n by 1
% t - Time interval for у of n by 1 size
% Output parameters -
% y f - Absolute value of FFT of the time domain data у
% freq - Frequency axis values
%
% Notes:
% The number of data points for у should be power of 2, and
% truncation is needed to achieve the requirement
%--
%--- ------ -
% Compute number of data points and sampling time interval
%---

ntime=max(size(t));
d t= (t(1 ,ntime)-1(1,1)) / ntime;
%--

Section 8.14 Frequency Response Analysis 303

% Extract data points at the power of 2. Truncate extra data points
% so that the final number of data points is in the power of two and
% also as close as possible to the given number of data points
%---
N=fix(loglO(ntime)/loglO(2))
% Calculate FFT of the time domain data and take absolute value
yfft=fft(yN(l:2‘ N,:));
yfFt=abs(yfft(l:2"N /2,:))*dt;
%--
% Set up the frequency scale from the given sampling interval.
% Apply the Nyquist criterion to establish the maximum frequency.
%---
freq0= 0;
freqf= (l /d t) /2; % Maximum or final frequency value
df=freqf/(2~7V/2); % Frequency interval
freq=0:df:freqf-df; % Frequency axis values
%---

t

Problems

8.1 A 4 ft beam is subjected to a uniform load 10 lb/ft and clamped at one side and
simply supported at the other side. The beam has elastic modulus of 10xl06
psi and square cross-section of 2 in. by 2 in. Determine the system stiffness
matrix and column vector using two equal size Hermitian beam elements. Find
the maximum deflection.

8.2 Redo Prob. 8.1 using the linear Timoshenko beam elements.

8.3 Redo Prob. 8.1 using the linear mixed beam elements.

8.4 Redo Prob. 8.1 using the linear beam elements with displacement degrees of
freedom only.

8.5 A beam is 6 in. long, 0.2 in thick and 0.1 in wide as seen in Fig. P8.5. It is
subjected to a concentrated moment and a linear pressure load, (a) Construct
the system stiffness matrix and system column vector using the Hermitian beam
element, (b) apply the boundary conditions, and (c) determine the maximum
deflection and bending stress. Use E=10xl06 psi.

8.6 One beam element is loaded as seen in Fig. P8.6. Determine the element load
vector using the Hermitian beam element.

8.7 A Hermitian beam element is loaded as shown in Fig. P8.7. Find the element
column vector.

8.8 Redo Prob. 8.5 using the linear Timoshenko beam element.

8.9 Redo Prob. 8.6 using the linear Timoshenko beam element.

8.10 Redo Prob. 8.7 using the linear Timoshenko beam element.

8.11 Repeat Prob. 8.1 using the provided computer programs with 10 elements.

8.12 Repeat Prob. 8.2 using the provided computer programs with 10 elements.

8.13 Repeat Prob. 8.3 using the computer programs with 10 elements.

8.14 Repeat Prob. 8.4 using the computer programs with 10 elements.

8.15 Find the natural frequencies of a beam simply supported at both ends as well as
at the center of the beam. The beam is lm long, 2cm thick, and 1cm wide. It
has ela&tic modulus 108 Pa and density 400Kg/m3. Use 10 Hermitian elements
with the provided computer programs.

8.16 A simply supported beam is subjected to a load at the center with a sine function
The beam is 2m long and 4cm thick and 2cm wide. Beam has also elasti<
modulus of 50GPa and density 2000Kg/m3. The applied load is 1000sm(Trt)N
If the beam is initially at rest, find the motion of the center o f the beam usin,
10 Hermitian beam elements and provided computer programs.

304 Beam and Frame Structures Chapter 8

Problems 305

4 lb/in,

Figure P8.5 Problem 8.5

r П

8N/n

1 1 ' ' 1
4N/n

1 2
In I In------------------ &■

Figure P 8.6 Problem 8.6

Q

1 /2 1 /4 I 1 /4 ------- i^l̂ i------- »

Figure P 8 .7 Problem 8.7

8.17 A frame structure is shown in Fig. P8.17 with the applied load. The frame
is made of a circular cross-sectional beam whose diameter is 0.05m. Elastic
modulus of the beam is 200GPa. Find the nodal deflection using the computer
programs when the frame is subjected to a concentrated force as seen in the
figure.

306 Beam and Frame Structures Chapter 8

■П!__________г » n -4 m n ______l_ l______о i nf i g u r e r o . i i r r o u i c u i o . n

C H A P T E R NINE

E L A S T IC IT Y P R O B L E M

9.1 Plane Stress and Plane Strain

First of all, we derive the basic equations for theory of elasticity. Considering
the free body diagram of the infinitesimal element as shown in Fig. 9.1.1, summation
of forces in the horizontal and vertical axes become

д(т дт
Y . F* — (< rx + -^)d x d y -a xdxdy+(Txy + - j^ L)d xd y-rxydxdy+filsdxdy = 0 (9.1.1)

and
дт д(т

7 ^ Fy - (T*y + ~fa'-)dxdy-Txydxdy+(<Ty-\--^-)dxdy-<Tydxdy-\-fydxdy = 0 (9.1.2)

where f x and f y are body forces per unit area (or per unit volume assuming unit
thickness perpendicular to the plane) in the x- ana y-axes which are assumed to be
positive when acted along the positive axes. All the stress components in Fig. 9.1.1
are shown as positive. Simplifying these expressions yields equations of equilibrium
as given below:

t r + ^ f + / * = ° <91-3>

^ f + | f + / * = 0 (9X4)
The next set of equations is the consiiiutive equation. This set of equations

states the relationship between the stresses and strains. For an isotropic material, the
constitutive equation becomes

M = [£>]{e} (9-1-5)
where { с } = {<тх <xy rxy} T denotes the stress and {e} = {еж ey 7вУ} т is the strain.
The material property matrix [D] becomes

308 Elasticity Problem Chapter 9

arx

Txy

dy

dx

cr„

Figure 9.1.1 Free Body Diagram of Two-Dimensional Body

for the plane stress condition. Here, E and is are elastic modulus and Poisson’s ratio,
respectively. For the plane strain condition, matrix [D] becomes

[D] =
_ E(1 - u)

(1 + v)(\ - 2u)

1
V

1-i^
0

V
1- 1/

1
П 1~2v
u 4 ^)

0
0 (9.1.7)

The kinematic equations, which relate strains to displacements, are

du
dxQi)
dy (9.1.8)

where u and v are displacements in the x and у directions, respectively. Combining
Eqs (9.1.3), (9.1.4), (9.1.5) and (9.1.8) has eight unknowns (three stresses, three strains
and two displacements) for eight equations (two equilibrium, three constitutive, and
three kinematic equations).

Boundary conditions are either essential (or geometric) or natural (or traction)
types. Essential conditions are prescribed displacements and natural boundary
conditions are prescribed tractions which are expressed as

Фх = &x^x 4“ х̂уГЬу — (9*1.9)

Фу —— 7*£уТ1% -f“ & yT ly ---- Фу (9.1.10)

where п£ are пу are direction cosines of the outward unit normal vector at the
boundary; and Ф is the given traction value.

In order to develop the finite element formulation for the elasticity problem, let
us apply Galerkin’s method. The energy method is used to derive the finite element

Section 9.1 Plane Stress and Plane Strain 309

formulation in a next section. Applying the weighted residual method to Eqs (9.1.3)
and (9.1.4) and writing them together give

wi д о x I ^ Txtl
d x dy

ШП ~ a f + -d? (9 - u i)

where Ге is the boundary for essential condition and <*>,• (г = 1,2) is the weighting
function.

Applying integration by parts to the terms in the first integral in Eq. (9.1.11)
yields

- / „ { % Z \ % TZ } r f n + / Л " + L { $ } r f r = 0 (9 l l2)

where Г„ is the boundary for natural conditions and Equations (9.1.9) and (9.1.10)
are used to come to Eq. (9.1.12). Equation (9.1.12) can be rewritten as

/,[дш-1 Г) &UI l
dx dy
rv дш-j 8oia
U d y dx ? } д а = 1 { : З й + / , Ы ; Ь (9 i i 3)

~xy)

Substitution of the constitutive equation into Eq. (9.1.13) results in

LI
дш i л duii
d r U dy
Л dwn dw-3
u d y d x

One more substitution of the kinematic equation into Eq. (9.1.14) gives

LI
dw-i 0d x dy

дшъ дш'
d y dx •0

dxi
d x

[D) { f
d tl I dv_
dy d x

(9.1.15)
Let us discretize the domain using linear triangular elements as seen in Fig. 5.2.1.

Then, both displacements и and v are interpolated using the same shape functions
such as

з
u(x,y) = Y ^H i(*,y)u i (9.1.16)

»=i

(9.1.17)
>=i

These displacements can be also expressed as

310 Elasticity Problem Chapter 9

{:}= Hi 0 #2 0 H3 0
0 Hi 0 # 2 о Яз

' ul '
Vl

V2

U3
V3

(9.1.18)

Twhere { o f } = { щ t>i u2 v2 из г»з } is the nodal displacement vector. Use of
this expression for strains yields

1
du x r d H 1

0
d H a

0 d H x 0 Idx d x dx dx
dv n d H , n d H i c\ d H i r _n /Л 1
dy * — dy и dy \j dy t a j- < y . l

du 1 dv
dy dx '

8H i d H x dH ? d H i dH x dH *
L dy dx dy d x dy dx -

We use symbol [5] to denote the matrix expression in the above equation. That is,

(9.1.20)

Galerkin’s method states u>i = H, (i = 1,2,3) and u>2 = Я,- (i = 1,2,3).
Applying these weighting functions and Eq. (9.1.20) into Eq. (9.1.15) gives for the
finite element domain integral

/ [B]T[D][B]dQ{d}
Jsi*

(9.1.21)

in which fie denotes the element domain. As a result, the element stiffness matrix for
elasticity can be expressed as

\K‘) = f [B]T[D][B]da (9.1.22)

Equation (9.1.22) holds for any kind of element in any dimension.
Evaluation of the linear shape function provides

ГВ1 = A
‘ ' 2A

0(У2 - У 3) 0 (Уз- V i) 0 (У1 - У 2)
0 (x3 - x 2) 0 («1 - Ж3) 0 (x2 — xi)

_(x3 - x 2) (У2 - У 3) (x i - x 3) (y3 - y i) (x2 - x i) (У1 - У 2) .

Substitution of Eq.(9.1.23) into Eq. (9.1.22) results in

[K ‘] = / = \B\T\D][B]A
J П*

(9.1.23)

(9.1.24)

Section 9.2 Force Vector 311

since both [B\ and [D] are constant matrices independent of x and y. Here A is the
area of the element. This expression is true for both plane stress and plane strain
conditions. The material property matrix [.D] is selected properly for plane stress (i.e.
Eq. (9.1.6)) and plane strain (i.e. Eq. (9.1.7)) conditions. We assume a unit thickness
for the plane stress condition because the solution is independent of the thickness
direction for this case. However, if we want to include the thickness, the matrix in
Eq. (9.1.24) is multiplied by the thickness. When other kinds of shape functions
are used for the plane stress/strain condition, we just need to develop matrix [5] as
shown in Eq. (9.1.20) and put it into Eq. (9.1.22). The size of row of [B] is always
three for the plane stress/strain condition while the size of column equals twice the
n u m k / i v n /\ r lл с л 1 л т л п + К а л о Н о а + u о н а o v a + т п ^ r x F п /л /Jлi iu iiiu c i vsi u u u co pv>i L/c^auot uxicjic a i^ unv v i u cu u u iiio iiu u c.

9.2 Force Vector

The two right-hand-side terms in Eq. (9.1.15) are the force vector. The first
term is due to body forces and the other is due to tractions. The body force term is a
domain integral. As a result, the same computation can be performed to this term as
the stiffness matrix. Applying Galerkin’s method to this term in an element domain
yields

|̂ JdO = J [N]T ^ f * ^ d Q (9.2.1)

where [TV] is defined in Eq. (9.1.18).
On the other hand, the traction vector is a boundary integral. This boundary

integral is very similar to what is described in Sec. 5.4. Let us consider a traction as
shown in Fig. 9.2.1. The traction term can be evaluated as given below:

0

> n -J r

0

(9.2.2)

where sm and sn are the coordinate values along the temporary boundary axis s, and
m and n are the two nodes on the element boundary where the traction is described.
If the traction is constant, the traction vector becomes

’ sd&cosd
sji&sine
sd^cosd

> Sd^sind

(9.2.3)

in which Sd — sn — is the length of the boundary segment and Ф is a constant
traction value.

312 Elasticity Problem Chapter 9

Figure 9.2.1 Boundary Traction

A E x a m p le 9 .2 .1 Find the nodal displacements in Fig. 9.2.2. We use two
linear triangular elements as seen in the figure. Each element is also shown in a
separate figure indicating global node numbers and local node numbers necessary
for construction of the element stiffness matrix. Using the plane stress condition,
the element stiffness matrix for the first element is given below along with the
associated nodal displacements:

1ПИ

- 7 .3 3 .3 - 5 . 3 - 2 . 0 - 2 . 0 - 1 . 3 - ' u i ”
3 .3 7 .3 - 1 . 3 - 2 . 0 - 2 . 0 - 5 . 3 Vl

- 5 . 3 1 i—
1

CO 5 .3 0 .0 0 .0 1.3
j U3

- 2 . 0 - 2 . 0 0 .0 2 .0 2 .0 0 .0
<

V3
- 2 . 0 - 2 . 0 0 .0 2 .0 2 .0 0 .0 и 2

. - 1 . 3 - 5 . 3 1.3 0 .0 0 .0 5 .3 . . V2 .

(Q 9.A\v"-----/

The stiffness matrix of the second element is the same as that given in Eq. (9.2.4)
because the two elements have the same size and shape as well as the same way
of local node numbering.

Assembling the elements and computing the nodal forces from the given traction
using Eq. (9.2.3) results in

[K\{d} =

■ 7 .3 3 .3 - 2 . 0 - 1 . 3 - 5 . 3 - 2 . 0 0 .0 о

о

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
_

1

' “ 1 л
о г»
0 .0

rr о i .0 г» r\
—

с о
—а .о

*1 о
— 1*0

л л
—Z.U

Г\ л
и .и

/Л Л
и .и V I

- 2 . 0 - 2 . 0 7 .3 0 .0 0 .0 3.3 - 5 . 3 - 1 . 3 U 2

- 1 . 3 - 5 . 3 0 .0 7 .3 3 .3 0 .0 - 2 . 0 - 2 . 0 j г>2
- 5 . 3 - 1 . 3 0 .0 3 .3 7 .3 0 .0 - 2 . 0 - 2 . 0

S
и з

- 2 . 0 - 2 . 0 3.3 0 .0 0 .0 7.3 - 1 . 3 - 5 . 3 V 3

0 .0 0 .0 - 5 . 3 - 2 . 0 - 2 . 0 - 1 . 3 7 .3 3 .3 U .4

. 0 .0 0 .0 - 1 . 3 - 2 . 0 - 2 . 0 - 5 . 3 3 .3 7 .3 . , V4 ,

Section 9.3 Energy Method 313

N ®

\4

2 m

3

2 m

л (ft •*— local node number- w

global node number

E=10 Qpa
v =0.25

unit thickness
1® 3® 3 ®

Figure 9.2.2 Square Plate With Tangential Traction

Fls
Flv
103
0

F3x
Fzy
103
0

(9.2.5)

where F\x , F\y, F%x and F3y are unknown forces while the essential boundary
conditions state w1= v i= «3 = V 3 = 0 . Applying these conditions to Eq. (9.2.5) and
solving for the unknown nodal displacements give «2=6.135 X 10 7, «2=1.450
X 10 , «4=6.975 X 10 and г>4= - 1.660 X 10 . This is a very crude mesh
so that these solutions are not accurate. \

9.3 Energy Method

The total potential energy denoted by П consists of two parts: internal energy
U and external energy W which is equal to work done by external loads. That is,

П = U - W (9.3.1)

The internal energy is the strain energy caused by deformation of the body and can
be written as

U = l j j c) T {c}d n (9.3.2)

where { a } = {<тх ay тху }т denotes the stress and {e} = {ex cy j Xy }T is the
strain. Equation (9.3.2) also holds for three-dimensional state o f stresses. Use of
the constitutive equation for Eq. (9.3.2) gives

V = \ f {c} T № } < « 2 (9.3.3)
J fi

since [£>] = [D]T.
On the other hand, the external work can be written as

w=L [u (914)
Substitution of Eqs (9.3.3) and (9.3.4) into Eq. (9.3.1) and discretization of the
domain into a number of finite element domains yields

П = £ 1Г (9.3.5)

314 Elasticity Problem Chapter 9

e=l

П' = \ j U)T[D]{c)d£l-j {u v) l fA d a - j {u ®>{S'} ^ (®-3-6)
For each finite element, applying Eqs (9.1.18) and (9.1.20) to Eq. (9.3.6) gives

n* = \{d}T j jB]T[D][B]dn{d} - {d f J j N f { ^ } < m

- {d }T J j N f { I * } dT (9.3.7)

In order to find the equilibrium solution, we apply the principle of minimum
total potential energy. The principle states:

O f all kinematically admissible configurations, the deformation producing the mini­
mum total potential energy is the stable equlibrium condition.

Invoking the stationary value for Eqs (9.3.5) and (9.3.7) using this energy principle,
we obtain

я тте

= £ ([* *] № - m - { * » = о (9 -3 8)

where
[Ke] = f [B]T[D][B]dQ (9.3.9)

JS1‘

Section 9.4 Three-Dimensional Solid 315

= J j c t o (9.3.10)

{ * } = jf_ [J V f { | * } л - (9.3.11)

Here, Eqs (9.3.9), (9.3.10) and (9.3.11) are the element stiffness matrix, body force
vector and surface traction vector, respectively. By comparing Eq. (9.1.22) to Eq.
(9.3.9), it can be shown that Galerkin’s method results in the same matrix equation
as the energy method. In addition, the force terms are identical to those obtained
from Galerkin’s method. Especially, Eq. (9.3.11) looks different from Eq. (9.2.2) but
they are the same when actual calculation is performed.

9.4 Three-D im ensional Solid

The governing equations for three-dimensional elasticity are given below.

Equations of equilibrium:

da* дт~и В т -,
+ + -7Г1 + fx = 0Bx dy dz

dr.xv
dx

В т-

+
dav dT,,
dy dz

da -Вт,... __
dx dy oz

(9.4.1)

(9.4.2)

(9.4.3)

where stresses are shown in Fig. 9.4.1 in the positive direction and f x , f y and f z are
body forces per unit volume.

Constitutive equation for an isotropic material:

where

[D] =
E

(1 + u) (l - 2u)

M = [D]{e]

{<TX (Ту <JZ ТХу Туг Txz } T

{^1 Cy ez Уху 7 yz
лТ

Jxz }

- 1 - 1/ и V 0 0 0
V l - v V 0 0 0
V V 1 - 1/ 0 0 0
0 0 0 1—2v

2 0 0
0 0 0 0 1 — 2»/ 2 0

. 0 0 0 0 0 1 — 2 v
2

(9.4.4)

(9.4.5)

(9.4.6)

(9.4.7)

316 Elasticity Problem Chapter 9

У

Figure Э.4.1 Three Dimensional State of Stress

Kinematic equation for small displacements:

—d x
dv

4 dw

€z ► = < 8z
du i dv

7 x y dy ' d x

Ъ* dv , dw
d z T" dy

' *fxz - вы . dw
dz - T a x

(9.4.8)

where и, v and w are displacements in the x, у and z directions, respectively.

Traction boundary condition:

Ф* - + Txyny + Txz^z = Ф

фу = Txynx + а-уПу + Tyznz = Фу

фг = Txznx + Tyzny -f- <ТгПг — фг

(9.4.9)

(9.4.10)

(9.4.11)

where nx , ny and nz are cosine directions of the outward unit normal vector on the
traction surface and Ф is the known value.

We want to derive the element stiffness matrix for a tetrahedron element as seen
i n f t О А О T l i o o1<am<anf К а б f n n r п п г 1 м T K p cK si f n n r f 1лпо fn r f/h ia ^ U r n ^ n f л an111 X I/ Л. u v V1V111VUV 1.1 UW iv u i llV\lVk> • 11XJ Uliwpv 1UUVV1VUU 1VL V111V V1V111V11V VUll

be derived as given below: Let us assume a linear function in terms of x , у and z.

Section 9.4 Three-Dimensional Solid 317

Figure 9.4.2 Tetrahedron Element

Evaluation of и at every node yields

where

[*] =

■1 X i У\ Zl ■
1 Я2 У2 *2
1 x 3 У з z 3

Л ж4 3/4 Z4 .

(9.4.13)

(9.4.14)

Inverse of matrix [X] in Eq. (9.4.13) and substitution of the resulting expression into

(9.4.15)

/ft Л 10 ̂ДУЦ. g l VCO

where the shape functions are

[H] = [Hi (x ,y , z) H2{x , y , z) H3{x , y tz) H4{x , y , z)]

We use the same shape functions for the three displacements.

Яг 0 0 я 2 0 0 я з 0 0 Я 4 0 0
0 ffi 0 0 н 2 0 0 Я з 0 0 я 4 0
ли 0 ттtl 1 ли ли гт« 2

ли ли гтЛз Аи /чи ттЛ 4

(9.4.16)

' « i '
vi
tUl
«2
V2
W 2

U3
V3
w3
u4
v4
W 4

= rnv (9.4.17)

318 Elasticity Problem Chapter 9

where {d } is the nodal displacement vector. Substituting Eq. (9.4.17) into the three
dimensional kinematic equation Eq. (9.4.8) results in

{ C} = [B]{d]

in which

[B] =

dH i
dx
0
0

dHi
dy
0

dH,
a z

0
dH i
b y
0

dH\
Qx

дНл
dz
0

0
0

дНл
dz
0

dHx
by

dH1
dx

dHi
dx
0
0

dHi
by
0

dHi
dz

0
dm

0
dHi
dx

dHi
dz
0

0
0

dHi
dz
0

dHi
by

dHi
dx

8HS
dx
0
0

dHa
by
0

dHx
dz

0
dHx
by
0

dH„
dx

dHx
dz
0

0
0

dHx
dz
0

dHx
by

dHx
dx

dH*
dx
0
0

dH4
by
0

dHi
dz

0
dH*
by
0

dH*
dx

8H*
&z
0

(9.4.18)

0 1
0

dH4
Qz
о

ан*

s l
dx J

f f \ A 1 Г»\

Putting matrix [.D] from Eq. (9.4.7) and matrix [B] from Eq. (9.4.19) into Eq.
(9.1.22) computes the element stiffness matrix.

[K ‘] = [B]T [D][B1V

where V is the volume of the tetrahedron element.

(9.4.20)

9.5 Axisymmetric Solid

When the elasticity problem degenerates from three-dimension to axisymmetry,
two shearing stress components vanish. These vanishing components due to symmetry
are тгд and rzg in the rOz coordinate system where г is the radial direction, в is the
circumferential direction, and z is the axial direction. Hence, the remaining stress
components are

{fl-} = -{ Cr Cg <TZ Trz }

Similarly, the remaining strains are

{e} = { cr eg ег j rz }

The material property matrix [£)] for the axisymmetric problem is

(9.5.1)

(9.5.2)

[D} =
E

(1 + u)(l - 2v)

The kinematic equation is

- 1 - 1 / V V 0

V 1 - 1 / V 0

V V 1 - 1 / 0

. 0 0 0 l - 2 « /
2 J

(9.5.3)

Section 9.5 Axisymmetric Solid 319

where и and w are the radial and axial displacements, respectively.

ф Exam ple 9.5.1 Let us determine the circumferential strain eg. If a hoop
of radial r is uniformly displaced along the radial direction by displacement u.
Then, the deformed hoop has a uniform strain along the circumferential direction
and the strain is computed as

_ 2тг(г + и) — 2тгг и
t9 2жг г (9.5.5)

In order to develop the element stiffness matrix, we use the linear triangular
element again. We substitute x and у in the shape functions, Eqs (5.2.7) through
(5.2.9), with r and z for the axisymmetric problem. In addition, the axisymmetric
element is a ring element as shown in Fig. 9.5.1. Substitution of the shape functions
into the kinematic equation Eq. (9.5.4) gives

г йН\ 0
ан?

0
дН я

0 -dr dr Qr
H i 0 ih . 0 Ma 0r r r
0 дНл

dz 0
ЭЯз
dz 0

эня
dzан, анл dH-1 dH ? dH * M aL az ar dz ar dz dr -

= P M

The element matrix can be expressed as

(9.5.6)

[Ke] - f f [[B]T[D][B]dd dr dz = 2тг f f r[B]T[D][B]dr dz (9.5.7)
Jz jr j в Jr j 2

Because of the term in matrix [B], the matrix is not a constant matrix like the
plane stress/strain case. As a result, the integration needs to be undertaken. One

320 Elasticity Problem Chapter 9

simple approximation for the integration is to evaluate [B] at the centroid of the
element. That is, we calculate where f = ri+ra±ra and z = Then,
the element stiffness matrix can be written as

[Ke] = 2ттгА[В]т [D][B] (9.5.8)

in which [j3] is the matrix [S] evaluated at the centroid of the element cross-section
and A is its area.

9.6 Dynamic Analysis

While previous sections consider static problems, this section considers dynamic
problems. That is, we include the inertia force in equations of equilibrium. These
equations are also called equations of motion. For the two-dimensional case, these
equations are

д 2и д<тх дтх
dt2 dx + чсу

dy + fx

S?V _ Й д f
p a e dx dy

(9.6.1)

(9.6.2)

where t indicates time and p is the mass density. It can be easily extended to the
three-dimensional case. Therefore, the finite element formulation for the dynamic
problem contains one extra term compared to that for the static problem and the
term is derived as follows using Galerkin’s method.

(9.6.3)

in which superimposed dot denotes temporal derivative.
Using linear triangular elements, the accelerations can be interpolated as

('}■[Hi
0

0
Hi

H2
0

0
H2

Нз
0

0
Нз

«1 1

«2
v2
«3
V3

У = [JVJ{d} (9.6.4)

Tv< L'm / П ££ Л А ПТЛ ППП11 л 4- 1ч n 4- 4- 1ч л n «a f l l n /t^l ЛГ» О n Л 1i l l и / ц . j w c a s s u i n ^ t u a t t u c l u u ^ u u u o a . i c m u t i i u u d u i g p a n a i v a n a u i ^ a

only and the nodal displacements are functions of time. Hence, the temporal derivative
is performed for the nodal variable. Substituting Eq. (9.6.4) into Eq. (9.6.3) for each
element results in

L p f t £] { * } " = L <9-6-5)

Section 9.7 MATLAB Application to 2-D Stress Analysis 321

As a result, the mass matrix is defined as

[Me] = f p[N]T[N]d£l (9.6.6)

This is the consistent mass matrix and it becomes for the linear triangular element

[Ml = ff

-2 0 1 0 1 01
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0

L0 1 0 1 0 2J

(9.6.7)

This matrix is based on unit thickness of the element. Otherwise, it should be
multiplied by the plate thickness. On the other hand, the lumped mass matrix for the
linear triangular element is

IM'] = (9.6.8)

where [7] is the identity matrix of size 6 .
The consistent mass matrix for the bilinear element as shown in Fig. 5.3.1 is

m =
pA
36

-4 0 2 0 1 0 2 o-
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 nV 1 o 2 o 4 n

.0 2 0 1 0 2 0 4.

(9.6.9)

This matrix is based on unit thickness of the element. Otherwise, it should be
multiplied by the plate thickness. The lumped mass matrix for this element is

[Л П = (9.6.10)

where [/] is the identity matrix of size 8.

9 .7 M A T L A B A p p lic a t io n t o 2 -D S tress A n a lys is

Two-dimensional stress analyses axe performed using both conventional finite
elements and isoparametric elements in the following examples.

ф E x a m p le 9 .7 .1 A strip shown in Fig. 9.7.1 is subjected to an axial load.
A MATLAB program is written to solve the problem using linear triangular
elements. Eight elements are used as seen in the figure.

322 Elasticity Problem Chapter 9

Figure 9.7.1 Plate Subjected to Axial Load

%--
% Example 9.7.1
% plane stress analysis of a solid using linear triangular elements
% (see Fig. 9.7.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% fifrpce =f V WV4VUW ------

% strain =
% gcoord =
% nodes =
% index —
% bcdof =
% bcval =
%

m a t r i x CG l i t Still I I I g gtlSSSSS

matrix containing strains
= coordinate values of each node
nodal connectivity of each element
a vector containing system dofe associated with each element
a vector containing dofs associated with boundary conditions
a vector containing boundary condition values associated with

the dofs in bcdof

%
%-
% input data for control parameters
%---
nel=8;
UllCl—- J,
ndof = 2;
nnode=10;
sdof=nnode*ndof;
edof=nnel*ndof;
emodule=100000.0;
poisson=0.3;

% number of elements
m« WkKnr пЛ/1 йо n or alй т an4-/V u u u i l i / t l U1 UUUVO UVUlVUb

% number of dofs per node
% total number of nodes in system

% total system dofs
% degrees of freedom per element

% elastic modulus
% Poisson’s ratio

Section 9.7 MATLAB Application to 2-D Stress Analysis 323

%
%--

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j -> x or у
%--
gcoord=[0.0 0.0; 0.0 1.0; 1.0 0.0; 1.0 1.0; 2.0 0.0;
2.0 1.0; 3.0 0.0; 3.0 1.0; 4.0 0.0; 4.0 1.0];
%
%---
% input data for nodal connectivity for each element
% nodes(ij) where i-> element no. and j-> connected nodes
%-- -
nodes=[l 3 4; 1 4 2; 3 5 6; 3 6 4;
5 7 8; 5 8 6;7 9 10; 7 10 8];
%
%---
% input data for boundary conditions

bcdof= [l 2 3];
bcval=[0 0 0];
%

% first three dofs are constrained
% whose described values are 0

% initialization of matrices and vectors
%---
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
disp=zeros(sdof,l);
eldisp=zeros (edof, 1);
stress=zeros(nel,3);
strain=zeros(nel,3);
index=zeros(ed of, 1);
kinmtx=zeros(3,edof);
matmtx=zeros(3,3);
%
%-------------------------
% force vector
%----- --------------------
ff(17)=500;
ff(19)=500;
%
%-------------------------------

% system force vector
% system matrix

% system displacement vector
% element displacement vector

% matrix containing stress components
% matrix containing strain components

% index vector
% kinematic matrix

% constitutive matrix

% force applied at node 9 in x-axis
% force aDDlied at node 10 in x-axis

% compute element matrices and vectors, and assemble
%--
matmtx=fematiso(1 ,emodule,poisson);
%
for iel=l:nel
%
nd(l)=nodes(iel,l);

% constitutive matrix

% loop for the total number of elements

% 1st connected node for (iel)-th element

nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
%
x l= gcoord (n d (l),l); y l=gcoord(nd(l),2)
x2=gcoord(nd(2),l) ; y2=gcoord(nd(2),2)
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2)
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
%--
% find the derivatives of shape functions
IW7o--

Elasticity Problem Chapter 9

% coord values of 1st node
% coord values of 2nd node
% coord values of 3rd node

area=0.5*(xl*y2+x2*y3+x3*yl-xl*y3-x2*yl-x3*y2); % area of triangule
area2=area*2;
dhdx=(l/area2)*[(y2-y3) (y3-yl) (yl-y2)]; % derivatives w.r.t. x
dhdy=(l/area2)*[(x3-x2) (xl-x3) (x2-xl)]; % derivatives w.r.t. у
%
kinmtx2=fekine2d(nnel,dhdx,dhdy); % kinematic matrix
%

alom onf e+iffnoo m o + i-ivА—1Ш1ШИЛв XUaVlUVA nilllUVAM «VlJtllVO UiaVllA

%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end % end of loop for the total number of elements
%
%--
% apply boundary conditions
%--
[kk,ff]=feaplyc2(kk,ff, bcdof, bcval);
%
СЙ../U“
% solve the matrix equation
%---------------------------------------
disp=kk\ff;
%
%--
% element stress computation (post computation)
%---
for ielp=l:nel % loop for the total number of elements
%
nd(l)=nodes(ielp,l); % 1st connected node for (iel)-th element
nd(2)=nodes(ielp,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(ielp,3); % 3rd connected node for (iel)-th element
%
x l= gcoord (nd (l),l); yl=gcoord(nd(l),2); % coord values of 1st node
x2=gcoord(nd(2),l) ; y2=gcoord(nd(2),2)
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2)
%

% coord values of 2nd node
% coord values of 3rd node

Section 9.7 MATLAB Application to 2-D Stress Analysis 325

index=feeldof(nd,nnel,ndof);
%
%---

% extract system dofe for the element

% extract element displacement vector
%--
for i= l:edof
eldisp(i)=disp(index(i));
end
%
area=0.5*(xl*y2+x2*y3+x3*yl-xl*y3-x2*yl-x3*y2); % area of triangle
area2=area*2;
dhdx=(l/area2)*[(y2-y3) (y3-yl) (yl-y2)];
dhdy=(l/area2)*[(x3-x2) (xl-x3) (x2-xl)];
%

% derivatives w.r.t. x
% derivatives w.r.t. у

kinmtx2=fekine2d(nnel,dhdx,dhdy);
%
estrain=kinmtx2*eldisp;
estress=matmtx*estrain;
%
for i= l:3
strain (ielp,i)=estrain (i);
stress(ielp,i)=estress(i);
end
%
end
%
%-----------------------------------
% print fem solutions
%-----------------------------------

% kinematic matrix

% compute strains
% compute stresses

% store for each element
% store for each element

num =l:l:sdof;
displace=[num’ disp]
%
for i=l:nel
stresses=[i stress(i,:)]
end
%
%-----------------------------

% print nodal displacements

% print stresses

function [kinmtx2]=fekine2d(nnel,dhdx,dhdy)
%-- —
% Purpose:
% determine the kinematic equation between strains and displacements
% for two-dimensional solids
%
% Synopsis:
% [kinmtx2]=fekine2d(nnel,dhdx,dhdy)

Elasticity Problem Chapter 9

%
% Variable Description:
% nnel - number of nodes per element
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to у
%---
%
for i=l:nnel
i l= (i - l)* 2+ l ;
i2= i l+ l ;
kinmtx2(l,il)=dhdx(i);
kinmtx2(2,i2)=dhdy(i);
kinmtx2(3,il)=dhdy(i);
kinmtx2f3.i2'l=dhdxl'i’J:\ » / л / '
end
%
%---

function [matmtrx]=fematiso(iopt,elastic,poisson)
%...
% Purpose:
% determine the constitutive equation for isotropic material
%
% Synopsis:
% [matmtrx]=fematiso(iopt,elastic,poisson)
%
% Variable Description:
% elastic - elastic modulus
% poisson - Poisson’s ratio
% iopt= l - plane stress analysis
% iopt=2 - plane strain analysis
% iopt=3 - axisymmetric analysis
% iopt=4 - three dimensional analysis
%--

%
if iop t= = l % plane stress
matmtrx= elastic/(l-poisson*poisson)* ...
[l poisson 0; ...
poisson 1 0; ...
n rwi /ol.
U \J ^1-pUlOOUll^ A J)

%
elseif iopt= = 2 % plane strain
matmtrx= elastic/((l+poisson)*(l-2*poisson))* ...
[(1-poisson) poisson 0;
poisson (1-poisson) 0;
0 0 (l -2*poisson)/2];

Section 9.7 MATLAB Application to 2-D Stress Analysis

%
elseif iopt==3 % axisymmetry
matmtrx= elastic/((l+poisson)*(l-2*poisson))* ...
[(1-poisson) poisson poisson 0;
poisson (1-poisson) poisson 0;
poisson poisson (1-poisson) 0;
0 0 0 (l -2*poisson)/2];
%
else % three-dimension
matmtrx= elastic/((l+poisson)*(l-2*poisson))* ...
[(1-poisson) poisson poisson 0 0 0;
poisson (1-poisson) poisson 0 0 0;
poisson poisson (1-poisson) 0 0 0;
0 0 0 (l -2*poisson)/2 0 0;
0 0 0 0 (1-2*poisson)/2 0;
0 0 0 0 0 (l -2*poisson)/2];
%
end
%
%-- „

The nodal displacements are listed below and they agree with the analytical
solutions. On the other hand, t
and (Ту = TXy = 0 as expected.

1 __ J. *____ 1Л- iL _ J.1____1_______1 1L - _A_A_ -X_____- Г _______1___________i : _ __ 1 ААЛs o iununs, v/n ъде иш ег пани, ш с stave ui stress ui eacn elem ent is u x — lutru

displace =
d.o.f. displ.
1.0000 0.0000 % x-displacement of node 1
2.0000 0.0000 % у-displacement of node 1
3.0000 0.0000 % x-displacement of node 2
4.0000 -0.0030 % у-displacement of node 2
5.0000 0.0100 % x-displacement of node 3
6.0000 0.0000 % у-displacement of node 3
n nnnn1 «UUUU n ni nnU.U1 uu cot „ j ; —i л/и A^uiopia^cui^iiv Vi uuuc *1
8.0000 -0.0030 % у-displacement of node 4
9.0000 0.0200 % x-displacement of node 5
10.000 0.0000 % у-displacement of node 5
11.000 0.0200 % x-displacement of node 6
12.000 -0.0030 % y-displacement of node 6
13.000 0.0300 % x-displacement of node 7
14.000 0.0000 % у-displacement of node 7
15.000 0.0300 % x-displacement of node 8
16.000 -0.0030 % у-displacement of node 8
17.000 0.0400 % x-displacement of node 9
18.000 0.0000 % y~displacement of node 9
19.000 0.0400 % x-displacement of node 10
20.000 -0.0030 % у-displacement of node 10

328 Elasticity Problem Chapter 9

‘k 4 S « 16 n 14 IS 18 го n

t

I07 © © © © 0 © ©
1 3 5 7 9 II IS 15 17 19 H
h

E=10psi , i/=0.3

Figure 9.7.2 Cantilever Beam Subjected to a Tip Load

4* Example 9 .7 .2 We want to analyze a short cantilever beam using two-
dimensional isoparametric elements assuming plane stress condition. To this end,
the beam is modeled using ten four-node quadrilateral elements as seen in Fig.
9.7.2.

%----------------------------- ------------------ --------------_ _ --_ --------------------

% Example 9.7.2
% plane stress analysis of a cantilever beam using isoparametric
% four-node elements
% (see Fig. 9.7.2 for the finite element mesh)
%
ccf л л. _ ui „ j___:~+; — „/V v a n a u ic u csL ixp u u n o

% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% stress = matrix containing stresses
% strain = matrix containing strains
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% point2 = matrix containing sampling points
% weight2 = matrix containing weighting coefficients
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%--- -----------------
%
%---
% input data for control parameters

Section 9.7 MATLAB Application to 2-D Stress Analysis 329

%--------------------—
nel=8;
nnel=4;
ndof=2;
nnode=18;
sdof—nnode*ndof;
edof=nnel*ndof;
emodule=le6;
poisson=0.3;
nglx=2; ngly=2;
nglxy=nglx*ngly;
%
%-------------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% degrees of freedom per element

% elastic modulus
% Poisson’s ratio

% 2x2 Gauss-Legendre quadrature
% number of sampling points per element

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%---
gcoord=[0.0 0.0; 0.0 1.0; 0.5 0.0; 0.5 1.0; 1.0 0.0;
1.0 1.0; 1.5 0.0; 1.5 1.0; 2.0 0.0; 2.0 1.0;
2.5 0.0; 2.5 1.0; 3.0 0.0; 3.0 1.0; 3.5 0.0;
3.5 1.0; 4.0 0.0; 4.0 1.0];
%
%--
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no, and j -> connected nodes
%--
nodes=[l 3 4 2; 3 5 6 4; 5 7 8 6; 7 9 10 8;
9 11 12 10; 11 13 14 12; 13 15 16 14; 15 17 18 16];
r v

%--
% input data for boundary conditions
%---
bcdof=[l 2 3 4];
bcval=[0 0 0 0];
%
%----------------------

% first four dofs are constrained
% whose described values are 0

% initialization of matrices and vectors
%---
ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
disp=zeros(sdof, 1);
eldisp=zeros(edof, 1);
stress=zeros(nglxy,3);
strain =zeros(nglxy, 3);
index=zeros(edof,l);
kinmtx=zeros(3,edof);
matmtx=zeros(3,3);
%
%----- *------------------

% system force vector
% system matrix

% system displacement vector
% element displacement vector

% matrix containing stress components
% matrix containing strain components

% index vector
% kinematic matrix

% constitutive matrix

Elasticity Problem Chapter 9

% force vector
%-------------------
ff(34)=500;
ff(36)=500;
%

% force applied at node 17 in y-axis
% force applied at node 18 in y-axis

compute element matrices and vectors, and assemble
%-
[p oint 2, weight 2]=fe glq d2 (n glx ,ngl у);
matmtx=fematiso(l,emodule,poisson);
%
for iel=l:nel
%
for i=l:nnel
nd(i)=nodes(iel,i);
xcoord(i)=gcoord(nd(i),l);
ycoord(i)=gcoord(nd(i),2);
end
%
k=zeros(edof,edof);
%
%------------------------------------
% numerical integration
%------------------------------------

% sampling points &; weights
% constitutive matrix

% loop for the total number of elements

% extract nodes for (iel)-th element
% extract x value of the node
% extract у value of the node

initialization of element matrix

for intx=l:nglx
x=point2(intx, 1);
wtx=weight2(intx,l);
for inty=l:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;
%
[shape,dhdr,dhds]=feisoq4(x,y);

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
%
detjacob=det(jacob2); % determinant o f Jacobian
mvjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
%
kinmtx2=fekme2d(nnel,dhdx,dhdy); % compute kinematic matrix
%

% compute element matrix
%-------------------------------------
k—k+kinmtx2,*matmtx*kinmtx2*wtx*wty*detjacob; % element matrix

Section 9.7 MATLAB Application to 2-D Stress Analysis 331

% end of numerical integration loop

%
end
end
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end % end of loop for the total number of elements
%
%--
% appiy boundary conditions
%--
[kk,fF]=feaplyc2(kk,ff,bcdof,be val);
%
%--
% solve the matrix equation
%--
disp=kk\ff;
4./V

num =l:l:sdof;
displace=[num’ disp]
IW70

% print nodal displacements

% element stress computation
%--
for ielp=l:nel
%
for i=l:nnel
nd(i)=nodes(ielp,i);
Y ГААГ|̂ fl'l — ГТГЛЛГ̂ f -n A lVAWVlU^l J — J у Л. J f

ycoord(i)=gcoord(nd(i),2);
end
IW7o
%------------------------------------
% numerical integration
%------------------------------------
intp=0;
for intx=l:nglx
x=p oint2 (intx, 1);
wtx=weight2(intx, 1);
for inty=l:ngly
у =p oint2 (inty, 2);
wty=weight2(inty,2) ;
intp=intp+l;
%
[shape,dhdr,dhds]=feisoq4(x,y);

% loop for the total number of elements

% extract nodes for (iel)-th element
a v i r a r t -v i r a l n o n f + Vi лf \J WVV Л V (MUV Vi UUV u v u c

% extract у value of the node

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

Elasticity Problem Chapter 9

%
jacob2=fejacob2(imel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
%
kinmtx2=fekine2d(nnel,dhdx,dhdy); % kinematic matrix
%
index=feeldof(nd,nnel,ndof); % extract system dofe for the element
%
%--
% extract element displacement vector
%--
for i—l:edof
eldisp(i)=disp(index(i));
end
%
kinmtx2=fekine2d(nnel,dhdx,dhdy);
%
estrain=kin mtx2 *eldisp;
estress=matmtx*estrain;
%
for i= l:3
strain (intp,i)=estrain(i);
я t. r pe e f l n t. iv 1 ̂ = *»e i. r pfiR ft 1 •

end

% compute kinematic matrix

% compute strains
% compute stresses

% store for each sampling point
% fit.nrp "fnr par'll «a m rJ i n a n n i n+

location=[ielp,intx,inty]
stress(intp,:)
%
end
end
%
end
%
%---------------------------------

% print location for stress
% print stress values

% end of integration loop

% end of loop for total number of elements

As expected, the displacements in the X-axis are positive at the bottom side of
 ̂ л jJ пллгп̂ 1*>л n ̂ + 1-w л oiy] л 1чИ/1Ч11йЛ ' I ’Vi « 1̂*4 ^1лк1 ял л т Ani

ou u ILCgailVC a.Li VilC tUp 91UC U^aUDC Ul UCUUilLg. X lie tip UiOpiOLCUICJIV

in the y-axis is 0.2238 in. while the beam bending theory gives 0.256. As a result,
the mesh needs to be refined to improve the accuracy. On the other hand, the
bending stress <rx is 11950 psi at the integration point nearest to the fixed edge.
The point is located 0.1057 in. away from the fixed edge in the x-axis and 0.2887
in. above from the midplane in the y-axis. The beam theory gives bending stress
of 13820.

Section 9.7 MATLAB Application to 2-D Stress Analysis 333

displace —

d.o.f. displ.
1.0000 0.0000 % x-displacement of node 1
2.0000 0.0000 % у-displacement of node 1
3.0000 0.0000 % x-displacement of node 2
4.0000 0.0000 % у-displacement of node 2
5.0000 0.0094 % x-displacement of node 3
6.0000 0.0060 % у-displacement of node 3
7.0000 -0.0094 % x-displacement of node 4
8.0000 0.0060 % у-displacement of node 4
9.0000 0.0176 % x-displacement of node 5
10.000 0.0208 % у-displacement of node 5
11.000 -0.0176 % x-displacement of node 6
12.000 0.0208 % у-displacement of node 6
13.000 0.0245 % x-displacement of node 7
14.000 0.0431 % у-displacement of node 7
15.000 -0.0245 % x-displacement of node 8
16.000 0.0431 % у-displacement of node 8
17.000 0.0301 % x-displacement of node 9
18.000 0.0717 % у-displacement of node 9
19.000 -0.0301 % x-displacement of node 10
20.000 0.0717 % у-displacement of node 10
21.000 0.0345 % x-displacement of node 11
22.000 0.1534 % у-displacement of node 11
23.000 -0.0345 % x-displacement of node 12
24.000 0.1053 % у-displacement of node 12
25.000 0.0377 % x-displacement of node 13
26.000 0.1427 % у-displacement of node 13
27.000 -0.0377 % x-displacement of node 14
28.000 0.1427 % у-displacement of node 14
29.000 0.0395 % x-displacement of node 15
30.000 0.1826 % у-displacement of node 15
31.000 -0.0395 % x-displacement of node 16
32.000 0.1826 % у-displacement of node 16
33.000 0.0402 % x-displacement of node 17
34.000 0.2238 % y-displacement of node 17
35.000 -0.0402 % x-displacement of node 18
36.000 0.2238 % у-displacement of node 18

334 Elasticity Problem Chapter 9

I OOOpsi

Г
V © /

)6 с

© /
Г)

9 /

710 С

0 /

Yi

л
/ ©

s J
/ ®
LS 1

/ @
17 1

/ 0
La 1L 11

10
.JL

E=2M10 psi

v =0.25

Figure 9.8.1 Axisymmetric Solid With Triangular Elements

9 .8 M A T L A B A p p lic a t io n t o A x is y m m e tr ic A n a lys is

The same axisymmetric solid is analyzed using both conventional triangular
elements and isoparametric quadrilateral elements.

4» E x a m p le 9 .8 .1 A thick walled cylinder is subjected to a uniform internal
pressure of 2000 psi. The cylinder has inside radius of 10 in. and outside radius
of 15 in. It is made of steel whose elastic modulus is 28x106 psi and Poisson’s
ratio is 0.3. Figure 9.8.1 shows the finite element mesh using 10 triangular
elements. For the present analysis, the cylinder is assumed to be constrained
along the axial direction. The resultant force applied on the inside surface is
2000 X 27Г X 10 = 20, ОООя- assuming unit length along the axial direction. As
a result, nodes 1 and 2 at the inside boundary has a concentrated nodal force
of 10,0007T along the radial direction, respectively. The value is provided to the
force vector in the finite element analysis program.

%-- .---------:-----------------------
% Example 9.8.1
% axisymmetric analysis of a solid subjected to an internal
% pressure using linear triangular elements
% (see Fig. 9.8.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector

Section 9.8 MATLAB Application to Axisymmetric Analysis 335

% stress = matrix containing stresses
% strain = matrix containing strains
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofe associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%------- -- -------------
%
%---
% input data for control parameters
%---
%
nel—10;
nnel=3;
ndof=2;
nnode=12;
sdof=nnode*ndof;
edof=nnel*ndof;
emodule=28e6;
poisson=0.25;
%
%--

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% degrees of freedom per element

% elastic modulus
% Poisson’s ratio

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j -> x or у
%--
gcoord=[10. 0.; 10. 1.; 11. 0.; 11. 1.; 12. 0.; 12. 1.;
13. 0.; 13. 1.; 14. 0.; 14. 1.; 15. 0.; 15. 1.];

%------------------------- :---
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j -> connected nodes
%---
nodes=[l 3 4; 1 4 2; 3 5 6; 3 6 4; 5 7 8;
5 8 6;7 9 10; 7 10 8; 9 11 12; 9 12 10];
%
%--
% input data for boundary conditions
% - - ------------------------------ -------------------
bcdof=[2 4 6 8 10 12 14 16 18 20 22 24];
bcval=[0 0 0 0 0 0 0 0 0 0 0 0];
%
%--
% initialization of matrices and vectors
%--
ff=zeros(sdof, 1);
kk=zeros(sdof,sdof);

% axial motion constrained
% constrained values are 0

% system force vector
% system matrix

Elasticity Problem Chapter 9

disp=zeros(sdof,l); % system displacement vector
eldisp=zeros(edof,l); % element displacement vector
stress=zeros(nel,4); % matrix containing stress components
strain=zeros(nel,4); % matrix containing strain components
index=zeros(edof,l); % index vector
kinmtax=zeros(4,edof); % kinematic matrix
matmtx=zeros(4,4); % constitutive matrix
%
%---------------------------
% force vector
%-------------------
pi=4.tratan(i); 7o pi=3.14l592
%
ff(l)=2e3*pi*2*10; % force applied at node 1 in x-axis
fF(3)=2e3*pi*2*10; % force applied at node 2 in x-axis
%
%---
% compute element matrices and vectors, and assemble
%---
m •* t m + v —'Гагп *5 Ат/\/1и1д пл 1осзпп \ • О*.
ш акш ъл—l e i u a b i o u ^ a ^ u i u v i j j f\) w u o u v u v it^ iu u v iia

%
for iel=l:nel % loop for the total number of elements
%
nd(l)=nodes(iel,l); % 1st node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd node for (iel)-th element
%
xl= gcoord (n d (l),l); yl=gcoord(nd(l),2); % coord values of 1st node
x2=gcoord(nd(2),l); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2); % coord values of 3rd node
«/V

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
%--
% find the derivatives of shape functions
%--
area=0.5*(xl*y2+x2*y3+x3*yl-xl*y3-x2*yl-x3*y2); % area of triangle
area2=area*2;
xcenter=(xl-fx2+x3)/3: % x-centroid of triangle
ycenter=(yl-fy2+y3)/3 ; % y-centroid of triangle
%
Shape(l)=((x2*y3-x3*y2)-f(y2-y3)*xcenter-t-(x3-x2)*ycenter)/area2;
shape(2)=((x3*yl-xl*y3)-f(y3-yl)*xcenter+(xl-x3)*ycenter)/area2;
shape(3)=((xl*y2-x2*yl)+(yl-y2)*xcenter-t-(x2-xl)*ycenter)/area2;
%
dhdx=(l/area2)*[(y2-y3) (y3-yl) (yl-y2)]; % derivatives w.r.t. x
dhdy=(1 / area2)*[(x3-x2) (xl-x3) (x2-xl)]; % derivatives w.r.t. у
%

kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
%
k= 2*pi*xcenter*area*kmmtax,*matmtx*kinmtax; % element matrix
%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end % end of loop for total number of elements
%
%--
% apply boundary conditions
%--

Section 9.8 MATLAB Application to Axisymmetric Analysis 337

[kk ,fF]=feaply c2 (к к, ff, bcdof, be val);
%
%--
% solve the matrix equation
%--
disp=kk\ff;
%
%---------------
% element stress computation (post-computation)
%--
for ielp=l:nel % loop for the total number of elements
%
nd(l)=nodes(ielp,l); % 1st node for (iel)-th element
nd(2)=nodes(ieIp,2); % 2nd node for (iel)-th element
nd(3)=nodes(ielp,3); % 3rd node for (iel)-th element
%
x l= f fe o o r d fn d (l V 1 V v l^ e-coord ^ n d M ^.2 :̂ % coord values o f 1st node----- a --------------V-------~ о -------------------------------------\ -------\ - / j— /» ' ------------------ ---

x2=gcoord(nd(2),l) ; y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),l); y3=gcoord(nd(3),2); % coord values of 3rd node
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
%---
% extract element displacement vector
%---
for i= l:edof
eldisp(i)=disp (index(i));
end
%
area=0.5*(xl*y2-(-x2*y3-(-x3*yl-xl*y3-x2*yl-x3*y2); % area of triangle

O_о.a ic a ^ —cuca 6,

xcenter=(xl-t-x2-fx3)/3; % x-centroid of triangle
ycenter=(yl-(-y2-(-y3)/3; % y-centroid of triangle
%
shape(l)=((x2*y3-x3*y2)+(y2-y3)*xcenter-(-(x3-x2)*ycenter)/area2;
shape(2)=((x3*yl-xl*y3)+(y3-yl)*xcenter-f-(xl-x3)*ycenter)/area2;
shape(3)=((xl*y2-x2*yl)+(yl-y2)*xcenter+(x2-xl)*ycenter)/area2;

338 Elasticity Problem Chapter 9

%
dhdx=(l/area2)*[(y2-y3) (y3-yl) (yl-y2)];
dhdy=(l/area2)*[(x3-x2) (xl-x3) (x2-xl)];
%
kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter);
%
estrain=kinmtax*eldisp;
estress=matmtx*estrain;
%
for i= l:4
strain (ielp,i)=estrain(i);
stress(ielp,i)=estress(i);
end
%
end
%
%----------------------------------
% print fem solutions
%----------------------------------
num =l:l:sdof;
displace—[num.’ disp]
%
for i=l:nel
stresses=|i stress(i,:)]
end
%
%---

% derivatives w.r.t. x
% derivatives w.r.t. у

% kinematic matrix

% compute strains
% compute stresses

% store for each element
% store for each element

% print nodal displacements

% print stresses

function [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)
%-- --— t—
% Purpose:
% determine kinematic equations between strains and displacements
% for axisymmetric solids
%
% Synopsis:
% [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)
%
% Variable Description:
% nnel - number of nodes per element
% shape - shape functions
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to у
% radist - radial distance of integration point or central point
% for hoop strain component
%-- — ----------------
%

Section 9.8 MATLAB Application to Axisymmetric Analysis 339

for i=l:nnel
i l= (i - l)* 2+ l ;
i2= i l + l ;
kmm txax(l,il)=dhdx(i);
kin mtxax(2 ,i 1)=shape(i) /r adist;
kinmtxax(3,i2)=dhdy(i);
kinmtxax(4,il)=dhdy(i);
kmmtxax(4,i2)=dhdx(i);
end
%
%

The results are

displace =
d.o.f. displ.
1.0000 0.0039
2.0000 0.0000
3.0000 0.0039
4.0000 0.0000
5.0000 0.0037
6.0000 0.0000
7.0000 0.0037
8.0000 0.0000
9.0000 0.0035
10.000 0.0000
11.000 0.0035
12.000 0.0000
13.000 0.0034
14.000 0.0000
15.000 0.0034
16.000 0.0000
17.000 0.0033
18.000 0.0000
19.000 0.0033
20.000 0.0000
21.000 0.0032
22.000 0.0000
23.000 0.0032
24.000 0.0000

stresses =
a1 £*m tileivui lOUlCU
1.00 -3277.
2.00 -3408.
3.00 -2281.
4.00 -2221.
5.00 -1457.
6.00 -1368.

% radial displacement of node 1

% radial displacement of node 2

% radial displacement of node 3

% radial displacement of node 4

% radial displacement of node 5

% radial displacement of node 6

% radial displacement of node 7

% radial displacement of node 8

% radial displacement of node 9

% radial displacement of node 10

% radial displacement of node 11

% radial displacement of node 12

Vt ЛЛП avi altt/UCW

9486. 1552.
10000 1649.
8434. 1538.
8877. 1664.
7637. 1545.
7995. 1657.

340 Elasticity Problem Chapter 9

2000psi

““—*r 1
V @/ <s>

03 r j
9 /

Г0 1
%/

CO

1

/® /0 /<э / @
Ш1 ft*

10

E=2M10 psi
и -f) 9?r — U.fall

Figure 9.8.1 Axisymmetric Solid With Rectangular Elements

7.00 -783.0 7017. 1558.
8.00 -724.0 7295. 1643.
9.00 -213.0 6529. 1579.
10.0 -242.0 6727. 1621.

I

£ E x a m p le 9 .8 .2 Example 9.8.1. is solved using isoparametric elements.
The same number of nodes is used but the number of element is 5 as seen in Fig.
9.8.2

%-
% Example 9.8.2
% axisymmetric analysis of a thick walled cylinder
% subjected to internal pressure using isoparametric
% four-node elements
% (see Fig. 9.8.2 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% H r — otrotAm m a t.r iv f\i IKiv ujevvm
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% stress = matrix containing stresses
% strain = matrix containing strains
% gcoord = coordinate values of each node

Section 9.8 MATLAB Application to Axisymmetric Analysis 341

% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% point2 = matrix containing sampling points
% weight2 = matrix containing weighting coefficients
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%--
%
%--
% input data for control parameters
%--
nel=5;
nnel=4;
ndof=2;
nnode=12;
sdof=nnode*ndof;
edof=nnel*ndof;
emodule=28.0e6;
poisson=0.25;
nglx=2; ngly=2;
nglxy=nglx*ngly;
%
%-------------------

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs
% degrees of freedom per element

% elastic modulus
% Poisson’s ratio

% 2x2 Gauss-Legendre quadrature
% number of sampling points per element

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%--
gcoord=[10. 0.; 10. 1.; 11. 0.; 11. 1.; 12. 0.; 12. 1.;
13. 0.; 13. 1.; 14. 0.; 14. 1.; 15. 0.; 15. 1.];
%
%--- —
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j -> connected nodes
%--
nodes=[l 3 4 2; 3 5 6 4; 5 7 8 6; 7 9 10 8; 9 11 12 10];
%
%---
% input data for boundary conditions
%---

bcdof=[2 4 6 8 10 12 14 16 18 20 22 24];
bcval=[0 0 0 0 0 0 0 0 0 0 0 0];
%
%--
% initialization of matrices and vectors
%--

% axial motion constrained
% constrained values are 0

ff=zeros(sdof,l);
kk=zeros(sdof,sdof);
disp=zeros(sdof,l);

% system force vector
% system matrix

% system displacement vector

Elasticity Problem Chapter 9

e!disp=zeros(edof,l);
stress=zeros(nglxy,4);
strain=zeros(nglxy,4);
index=zeros(edof, 1);
kinmtx=zeros(4,edof);
matmtx=zeros(4,4);
%
%-------------------------
% force vector
%-------------------
pi=4.0*atan(1.0);
%
ff(l)=2e3*2*pi*10;
ff(3)=2e3*2*pi*10;
%
%-------------------------------

% element displacement vector
% matrix containing stress components
% matrix containing strain components

% index vector
% kinematic matrix

% constitutive matrix

% pi=3.141592

% force applied at node 1 in x-axis
% force applied at node 2 in x-axis

% compute element matrices and vectors, and assemble
%---
[point2 ,weight 2]=feglqd2 (n glx ,ngly);
m at mtx=fem atiso (3, emod ule, poisson);
%
for iel=l:nel
%
for i—l:nnel
nd(i)=nodes(iel,i);
xcoord(i)=gcoord(nd(i),l);
ycoord(i)=gcoord(nd(i),2);
end
%
k=zeros(edof ,edof);
%
%------------------------------------
% numerical integration
%------------------------------------

% sampling points & weights
% constitutive matrix

% loop for the total number of elements

% extract node for (iel)-th element
% extract x value of the node
% extract у value of the node

% initialization of element matrix

for intx=l:nglx
x=point2(intx,l);
wtx=weight2(intx, 1);
for inty=l:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;
%
ГеЬяпр rlbrlr rlhrl«l— v vV--- j “ *“” 4 "A'4J >•>

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

%
1 л r. 1 Л / __ .1 11 1. П 1jacoD*:=iejacoD^nnei,cmar,anas,xcoora,ycooraj; /о compute jacoDian

%
detjacob=det(jacob2); % determinant of Jacobian
invjacob—inv(jacob2); % inverse of Jacobian matrix

Section 9.8 MATLAB Application to Axisymmetric Analysis 343

%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
%
xcenter=0;
for i=l:nnel % x-coordinate value
xcenter—xcenter+shape(i)*xcoord(i); % of the integration point
end
%
kinmtx=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
%
%-------------------------------------
% compute element matrix
%------------------------------ —
k = k + 2*pi*xcenter*kinmtx’*matmtx*kinmtx*wtx*wty*detjacob;

% element matrix

end
end
%
index=feeldof(nd,nnel,ndof);
%
kk=feasmbll(kk,k,index);
%
end
%

% end of numerical integration loop

% extract system dofs for the element

% assemble element matrices

% end of loop for total number of elements

% apply boundary conditions
%---------------------------------------
[kk,ff]=feaplyc2(kk,ff, bcdof, bcval);
%
%---------------------------------------
% solve the matrix equation
%---------------------------------------

disp=kk\ff;
%
num =l:l:sdof;
displace=[num’ disp] % print nodal displacements

%---
% element stress computation
(K_/U
for ielp=l:nel
%
for i=l:nnel
nd(i)=nodes(ielp,i);
xcoord(i)=gcoord(nd(i),l);
ycoord(i)=gcoord(nd(i),2);

% loop for the total number of elements

% extract node for (iel)-th element
% extract x value of the node
% extract у value of the node

344 Elasticity Problem Chapter 9

end
%
%------------------------------------
% numerical integration
%------------------------------------
intp=0;
for intx=l:nglx
x=point2(intx, 1);
wtx=weight2(intx,l);
for inty=l:ngly
у= p oint2 (inty, 2);
wty=weight2(inty,2) ;
intp=intp+l;
%
[shape,dhdr,dhds]=feisoq4(x,у);

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
%

Q/i / 4 a l a i > r n i n & n t л -f T ч K l 5 П/и ucbciiiiiuoiiiv u i if a^uuiau
% inverse of Jacobian matrixinvjacob=inv(jacob2);

%
[dhdx,dhdy]=federiv2(nnei,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
%
xcentei=0;
for i=l:nnel % x-coordinate value
xcenter=xcenter+shape(i)*xcoord(i); % of the integration point
end
%

ir бТкЗпах и ш ш л — lCIUUWaA^UlLCl|UllUA)UlEUJ j j Ql?!. m ltlhV/и fuuwiiiativ. iiiaviiA
%
index=feeldof(nd,nnel,ndof);
%
%--
% extract element displacement vector
%--
for i= l:edof
eldisp(i)=disp(index(i));
end
%
estr ain=kinmtx*eldisp;
estress=matmtx*estrain;
%
for i= l:4
strain(intp,i)—estrain(i);
stress(intp,i)=estress(i);
end

% extract system dofe for the element

% compute strains
% compute stresses

% store for each element
% store for each element

Section 9.9 MATLAB Application to 3-D Stress Analysis 345

% end of loop for total number of elements

% end of integration loop

% print stresses

%

The nodal displacements are the same as those obtained from Example 9.8.1.

2x 2 quadrature was used for numerical integration, there are four integration
points for each element.

stresses for element 1 =

radial stress=-3146. hoop stress=10289 axial stress=1786
2nd integration point
radial stress=-3146. hoop stress=10289 axial stress=1786.
3rd integration point
radial stress=-35Q5. hoop stress=9211. axial stress=1426.
4th integration point
radial stress=-3506. hoop stress=9211. axial stress=1426.

1st integration point
radial stress=-2104. hoop stress=9066. axial stress=1741.
2nd integration point
radial stress=-2104. hoop stress=9066. axial stress=1741.
3rd integration point
radial stress=-2377. hoop stress=8245. axial stress=1467.
4th integration point
radial stress=-2377. hoop stress=8245. axial stress=1467.

9 .9 MATLAB Application to 3 -D Stress Analysis

£ Example 9 .9 .1 A unit cube is subjected to a uniform load as shown in
Fig. 9.9.1. We use one eight-node isoparametric solid element for the problem.

The stresses are also very similar but a little different. Stresses for the first two
elements are listed below. They are printed for each integration point. Because

stresses for element 2 s

i

%---------------------------
% Example 9.9.1

346 Elasticity Problem Chapter 9

(о , 1,1)

(o,o, 1;

(1.1, О

(1, 1,0)
(0 , 1,0)

2
(0,0,0) (1.0,0)

Figure 9.9.1 A Cubic Solid

% three-dimensional analysis of a cube using isoparametric
% eight-node elements
% (see Fig. 9.9.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% stress = matrix containing stresses
% strain = matrix containing strains
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% point3 = matrix containing sampling points
% weight3 = matrix containing weighting coefficients
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
%
%
%

%

nnode=8;
sdof=nnode*ndof;

nel=l;
nnel=8;
ndof=3;

% number of elements
% number of nodes per element

% number of dofs per node
% total number of nodes in system

% total system dofs

Section 9.9 MATLAB Application to 3-D Stress Analysis 347

edof=nnel*ndof;
emodule=le5;
poisson=0.3;
nglx=2 ; ngly=2; nglz=2 ;
nglxyz=nglx*ngly*nglz;
%
%-------------------------------

% degrees of freedom per element
% elastic modulus
% Poisson’s ratio

% 2x2x2 Gauss-Legendre quadrature
number of sampling points per element

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%--
gcoord=[0.0 0.0 0 .0 ; 1.0 0.0 0 .0 ; 1.0 1.0 0 .0; 0.0 1.0 0 .0 ;
0.0 0.0 1 .0 ; 1.0 0.0 1 .0 ; 1.0 1.0 1 .0 ; 0.0 1.0 1 .0];
%
%--- -
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%---
nodes=[l 2 3 4 5 6 7 8];
%

% input data for boundary conditions
%-- -
bcdof=[l 2 3 5 6 9 12];
bcval=[0 0 0 0 0 0 0];
%
%--

% constrained dofs
% constrained values

initialization of matrices and vectors
%-
ffc=zeros(sdof, 1);
kk=zeros(sdof,sdof);
disp=zeros(sdof,l);
eldisp=zeros(edof,l);
stress=zeros(nglxyz,6);
strain=zeros(nglxyz,6);
index=zeros(edof, 1);
kinmtx=zeros(6 ,edof);
matmtx=zeros(6 ,6);
%
%----------------------
% force vector
%----------------------
ХГ/1 r \ ___o c n .ILy ±i)J=40U,
ff(l8)=250;
ff(2l)=250;
ff(24)=250;
%
%----------------------------

% system force vector
% system matrix

% system displacement vector
% element displacement vector

% matrix containing stress components
% matrix containing strain components

% index vector
% kinematic matrix

% constitutive matrix

/V 1UILC ______i: _ j
а р м и е й

n 4-
a t 11UUC 5 in z-axis

% force applied at node 6 in z-axis
% force applied at node 7 in z-axis
% force applied at node 8 in z-axis

% compute element matrices and vectors, and assemble

348 Elasticity Problem Chapter 9

%---
[point3,weight3]=feglqd3(nglx,ngly,nglz); % sampling points &; weights
matmtx=fematiso(4.emodule,poisson^; % compute constitutive matrix
%
for iel=l:nel % loop for the total number of elements
%
for i=l:nnel
nd(i)=nodes(iel,i);
xcoord(i)=gcoord(nd(i),l)
ycoord(i)=gcoord(nd(i),2)
zcoord(i)=gcoord(nd(i),3)
end
%
k=zeros(edof,edof);
%
%-------------------------------

% extract node for (iel)-th element
% extract x value of the node
% extract у value of the node
% extract z value of the node

% initialization of element matrix

ft&
/ V l i u i u v i iw c u a v i v u

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

%-------------------------------
for intx=l:nglx
x=point3(intx,l);
wtx=weight3(intx,l);
for inty=l:ngly
y=point3(inty,2);
wty=weight3(inty,2) ;
for intz=l:nglz
z=point3(intz,3);
wtz=weight3(intz,3) ;
%
[shape,dhdr,dhds,dhdt]=feisos8 (x,y,z); % compute shape functions

% and derivatives at sampling point
ЛУ
70

jacob3=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,у coord,zcoord);
% compute Jacobian

%
detjacob=det(jacob3); % determinant of Jacobian
invjacob=inv(jacob3); % inverse of Jacobian matrix
%
[dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob);

% derivatives w.r.t. physical coordinate
%
kinmtx=fekine3d(nnel,dhdx,dhdy,dhdz); % kinematic matrix
%
%------------------------------
% compute element matrix
%------------------------------
k=k+kinmtx’*matmtx*kinmtx*wtx*wty*wtz*detjacob;
%
end

% element

Section 9.9 MATLAB Application to 3-D Stress Analysis 349

end
end
%
index=feeldof(nd,nnel,ndof);
%
kk=feasmbl 1 (kk, k,index);
%
end
%
%-------------------------------------
% apply boundary conditions
%-------------------------------------
[kk,ff]=feaplyc2 (kk,ff, bcdof, bcval);
%
%------------------------------------
% solve the matrix equation
%-------------------------------------
disp=kk\ff;
%
num=l:l:sdof;
displace=[numJ disp]
%
%------------------------------------- -
% element stress computation
%---------------------------------------

% end of numerical integration loop

% extract system dofe for the element

% assemble element matrices

% end of loop for total number of elements

% print nodal displacements

for ielp=l:nel
%
for i=l:nnel
nd(i)=nodes(ielp,i);
xcoord(i)=gcoord(nd(i),l);
ycoord(i)=gcoord(nd(i),2);
zcoord(i)=gcoord(nd(i),3);
end
%
%-------------------------------
% numerical integration
%-------------------------------
intp=0 ;
for intx=l:nglx
x=point3 (intx, 1);
wtx=weight3(intx,l);
for inty=l:ngly
y=point3(inty,2);
wty=weight3(inty,2) ;
for intz=l:nglz
z=point3(intz,3);
wtz=weight3(intz,3) ;
intp=intp+l;

% loop for the total number of elements

% extract node for (iel)-th element
% extract x value of the node
% extract у value of the node
% extract z value of the node

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

Elasticity Problem Chapter 9

%
[shape,dhdr,dhds,dhdt]=feisos8(x,y,z); % compute shape functions

% and derivatives at sampling point
%
jacob3=fejacob3(nnel,dhdr,dhds)dhdt,xcoord,ycoord,zcoord);

% compute Jacobian
%
detjacob=det(jacob3); % determinant of Jacobian
invjacob=inv(jacob3); % inverse of Jacobian matrix
%
[dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob);

% derivatives w.r.t. physical coordinate
%
kinmtx=fekme3d(nnel,dhdx,dhdy,dhdz); % compute kinematic matrix
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
%--
% extract element displacement vector
%--
for i=l:edof
eldisp(i)=disp(index(i));
end
%
estrain=kinmtx*eldisp;
estress=matmtx*estrain;
%
for i= l :6
strain(intp,i)=estrain(i);
stress(intp,i)=estress(i);
end
%
location=[ielp,intx,inty,intz]
stress(intp,:)
%
end
end
end
f v

end
%
%-----------------------------------

% compute strains
% compute stresses

% store for each element
% store for each element

% print location for stress
% print stress values

% end of integration loop

% end of loop for total number of elements

function [dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)
%---
% Purpose:

Section 9.9 MATLAB Application to 3-D Stress Analysis 351

% determine derivatives of 3-D isoparametric shape functions with
% respect to physical coordinate system
%
% Synopsis:
% [dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)
%
% Variable Description:
% dhdx - derivative of shape function w.r.t. physical coordinate x
% dhdy - derivative of shape function w.r.t. physical coordinate у
% dhdz - derivative of shape function w.r.t. physical coordinate z
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% dhdt - derivative of shape functions w.r.t. natural coordinate t
% invjacob - inverse of 3-D Jacobian matrix
%-- ;--------
%
for i=l:nnel
dhdx(i)=invjacob(l,l)*dhdr(i)-{-invjacob(l,2)*dhds(i) ...
+invjacob(l,3)*dhdt(i);
dhdy(i)=invjacob(2 ,l)*dhdr(i)+invjacob(2 ,2)*dhds(i) ...
+invjacob(2,3)*dhdt(i);
dhdz(i)=invjacob(3,l)*dhdr(i)+invjacob(3,2)*dhds(i) ...
+invjacob(3,3)*dhdt(i);
end
%
%--- ;--------

function [shapes8 ,dhdrs8 ,dhdss8 ,dhdts8]=feisos8 (rvalue,svalue,tvalue)
%---
% Purpose:
% compute isoparametric eight-node solid shape functions
% and their derivatves at the selected (integration) point
% in terms of the natural coordinate
%
% Synopsis:
% [shapes8 ,dhdrs8 ,dhdss8 ,dhdts8]=feisos8 (rvalue,svalue,tvalue)
%
% Variable Description:
ot «ill fkmneQ Ат/'4'1ЛПС frtl* пл/1о «1 о т о +/у) онарсэи “ snapc luiLvniuui? iui lvui'iiuuc ciciu^iiu
% dhdrs8 - derivatives of the shape functions w.r.t. r
% dhdss8 - derivatives of the shape functions w.r.t. s
% dhdts8 - derivatives of the shape functions w.r.t. t
% rvalue - r coordinate value of the selected point
% svalue - s coordinate value of the selected point
% tvalue - t coordinate value of the selected point

%
% Notes:
% 1st node at (-1 ,-1 ,-1), 2nd node at (1 ,-1 ,-1)
% 3rd node at (1,1,-1), 4th node at (- l , l r l)
% 5th node at (-1,-1,1), 6th node at
% 7th node at (1,1,1), 8 th node at (-1,1,1)
% -- _ _ _ _ ----------

%
% shape functions
%
shapes8(l)=0.125*(l-rvalue)*(l-svalue)*(l-tvalue);
shapes8(2)=0.i25*(l+rvame)*(i-svaiue)*(i-tvahie);
shapes8(3)=G.125*(l+rvalue)*(l+svalue)*(l-tvalue);
shapes8(4)=0.125*(l-rvalue)*(l+svalue)*(l-tvalue);
shapes8(5)=0.125*(l-rvalue)*(l-svalue)*(l+tvalue);
shapes8(6)=Q.125*(l+rvalue)*(l-svalue)*(l+tvalue);
shapes8(7)=0.125*(l+rvalue)*(l+svalue)*(l+tvalue);
shapes8(8)=0.125*(l-rvalue)*(l+svalue)*(l+tvalue);
%
% <4 01*1173 +.1 ТГ4ЭС f\J UVllVttvi’VU

%
dhdrs8 (1)—-0.12 5* (1-svalue)* (1-tvalue);
dhdrs8(2)=0.125*(l-svaiue)*(l-tvaiue);
dhdrs8(3)=0.125*(H-svalue)*(l-tvalue);
dhdrs8 (4)=-0.12 5 * (1+svalue)* (1-1 value);
dhdrs8(5)=-0.125*(l-svalue)*(l+tvalue);
dhdrs8(6)=0.125*(l-svalue)*(l+tvalue);
dhdrs8(7)=0.125*(l+svalue)*(l+tvalue);
dhdrs8(8)=-0.125*(l+svalue)*(l+tvalue);
%
dhdss8(l)=-Q.125*(l-rvaiue)* (1-tvalue);
dhdss8(2)=-0.125*(l+rvalue)* (1-tvalue);
dhdss8(3)=0.125*(l+rvalue)*(l-tvalue);
dhdss8(4)=G.125*(l-rvaiue)*(i-tvaiue);
dhdss8(5)=-0.125*(l-rvalue)*(l+tvalue);
dhdss8(6)=-0.125*(l-|-rvalue)*(l+tvalue);
dhdss8(7)=0.125*(l+rvalue)*(l+tvalue);
dhdss8(8)=0.125*(l-rvalue)*(l+tvalue);
%
dhdts8(l)=-0.125*(l-rvalue)*(l-svalue);
dhdts8(2)=-0.125*(l+rvalue)*(l-s value);
dhdts8(3)=-0.125*(l+rvalue)*(l+s value);
dhdts8 (4) =-0.12 5 * (1-rvalue) * (1-j-svalue);
dhdts8 (5)=0.125* (1-rvalue)* (1-svalue);
dhdts8 (6)=0.125* (1+rvalue)* (1-svalue);
dhdts8 (7)=0.125* (1+r value)* (1+svalue);
dhdts8(8)=0.125*(l-rvalue)*(l+svalue);
%

Elasticity Problem Chapter 9

Section 9.9 MATLAB Application to 3-D Stress Analysis 353

%—— — ------------- ------------------------ ---------------

function [jacob3]~fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)
%---
% Purpose:
% determine the Jacobian for three-dimensional mapping
%
% Synopsis:
% [jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)
%
% Variable Description:
% jacob3 - Jacobian for one-dimension
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% dhdt - derivative of shape functions w.r.t. natural coordinate t
% xcoord - x axis coordinate values of nodes
% ycoord - у axis coordinate values of nodes
% zcoord - z axis coordinate values of nodes
%-- ------- ------------—
%
jacob3=zeros(3,3);
%
for i=l:nnel
jacob3(l,l)=
тягпЬ.ЯИ 9Л=

jacob3(l,3)=
jacob3(2,l)=
jacob3(2,2)=
jacob3(2,3)=
jacob3(3,l)=
jacob3(3,2)=
jacob3(3,3)=
end
%
%------------

acob3(l ,l)+dhdr(i)*xcoord(i);
яггпК.ЧМ 9.^4-Hlir1rn^vrnnrr1/iV---— >“/ ' ------ J -----
acob3(l,3)+dhdr(i)*zcoord(i);
acob3(2,l)+dhds(i)*xcoord(i);
acob3(2,2)+dhds(i)*ycoord(i);
acob3(2,3)+dhds(i)*zcoord(i);
acob3(3,l)+dhdt(i)*xcoord(i);
acob3(3,2)+dhdt(i)*ycoord(i);
acob3(3,3)+dhdt(i)*zcoord(i);

fimr+iAT» Пртпm+vQl— /̂ nnol /Uirlv /lli/lv
1UUV V1V1L у UllU U J

%--
% Purpose:
% determine the kinematic equation between strains and displacements
% for three-dimensional solids
%
% Synopsis:

Elasticity Problem Chapter 9

% [kinmtx3] =fekine3d(nnel,dhdx,dhdy,dhdz)
%
% Variable Description:
% nnel - number of nodes per element
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to у
% dhdz - derivatives of shape functions with respect to z
%--
%
for i=l:nnel
il= (i-l)*3+ l;
i2= il+ l;
i3=i2+l;
kinm tx3(l,il
kinmtx3(2,i2
kinmtx3(3,i3
kinmtx3(4,il
kinmtx3(4,i2
kinmtx3(5,i2
kinmtx3(5,i3
kinmtx3(6,il
kinmtx3(6,i3
end
%
%----- —-----

=dhdx(i);
=dhdy(i);
=dhdz(i);
=dhdy(i);
=dhdx(i);
=dhdz(i);
=dhdy(i);
=dhdz(i);
=dhdx(i);

Nodal displacements are given below and the state of stresses is az — 1000 and
the rest of stresses are zero at every integration point.

displace =
d.o.f. displ.
1.0000 0.0000 % x-displacement of node 1
2.0000 0.0000 % у-displacement of node 1
3.0000 0.0000 % z-displacement of node 1
4.0000 -0.0030 % x-displacement of node 2
5.0000 0.0000 % у-displacement of node 2
6.0000 0.0000 % z-displacement of node 2
7.0000 -0.0030 % x-displacement of node 3
8.0000 -0.0030 % y-displacement of node 3
9.0000 0.0000 % z-displacement of node 3
10.000 0.0000 % x-displacement of node 4
11.000 -0.0030 % у-displacement of node 4
12.000 0.0000 % z-displacement of node 4
13.000 0.0000 % x-displacement of node 5
14.000 0.0000 % у-displacement of node 5
15.000 0.0100 % z-displacement of node 5
16.000 -0.0030 % x-displacement of node 6
17.000 0.0000 % у-displacement of node 6

Section 9.9 MATLAB Application to 3-D Stress Analysis 355

18.000 0.0100 % z-displacement of node 6
19.000 -0.0030 % x-displacement of node 7
20.000 -0.0030 % у-displacement of node 7
21.000 0.0100 % z-displacement of node 7
22.000 0.0000 % x-displacement of node 8
23.000 -0.0030 % у-displacement of node 8
24.000 0.0100 % z-displacement of node 8

356 Elasticity Problem Chapter 9

Problems

9.1 An orthotropic material under the plane stress condition has the constitutive
equation

{*} = [D m

where {<r} and {<f} are the stress and strain vectors in terms of the material
orthotropic directions. Further, [D] is given as

p] =

where

Q n =

Q12 =

Q22 =

Q11 Q12 0
Ql2 Q 22 0

0 0 Q33

Ex
1 —1/12^21

V12E2

1 — V12V21

E2

1 —1/12 V21

Q 33 = G 12

Subscripts 1 and 2 denote the orthotropic axes, E\ and E2 are elastic modulii
in the 1 and 2-axis, and G\2 is the inplane shear modulus, i/у is Poisson’s ratio
for the normal strain ej resulting from the normal strain If the material
orthotroDic axes are rotated from the global coordinate axes bv angle в (seeЛГ - ----- --- о - --- - ---О---- \— • •
Fig. P9.1), show that the strain vectors between the two coordinate systems are
related as shown below:

f i
' = [T]

where

m =
cos29
sin2$

-2cos9sin9

sin2 в
cos2 9

2cos9sin9

cos9sin9
—cos9sin9

cos29 — sin26

9.2 From Prob. 9.1, also prove that [D] = [T]T[Z)][T] where [D] is the material
property matrix in terms of ж — у coordinate system and [D] is the material
property matrix in terms of 1 — 2 coordinate system.

9.3 A two-dimensional elastic body is discretized using six-node triangular elements
as shown in Fig. P9.3. Find the equivalent nodal forces for the three nodes
located on an element boundary.

9.4 Find the equivalent nodal forces for Fig. P9.4.

Problems 357

F igure P9.1 Problem 9.1

F igure P9.3 Problem 9.3

Find the equivalent nodal forces for Fig. P9.5.9.5

9.6

9.7

Find the deflection of a tapered cantilever beam as shown in Fig. P9.6 using
linear triangular elements and the computer programs. Assume unit width of
the beam.

Solve Fig. P9.7 using computer programs. Use different mesh discretization.
Some elements are distorted as shown in the figure.

9.8 Modify the computer programs so that linear triangular elements can be used
with rectangular elements. Then solve Fig. P9.8.

9.9 Using the computer programs, find the solution for a perforated plate under
tension as seen in Fig. P9.9.

y.iu solve rroD. y.o ior tne transient analysis assuming tne Deam is initially at rest
using the computer programs.

358 Elasticity Problem Chapter 9

20kN/m

0.1m | 0.1m I O.lm i O.ln

F igure P9 .4 Problem 9.4

F igure P9.5 Problem 9.5

2.5kN

E=210GPa

F igure P9.6 Problem 9.6

Problems

E=75GPq

F igure P 9 .7 Problem 9.7

0.3m

0.3m

0.3m

0,3m

Figure P9 .8 Problem 9.8

0.4m by 0.3m p la te with
0.05m rad iu s hole a t th e c e n te r

E=200Gra

Figure P9.9 Problem 9.9

C H A P T E R TEN

PLATE STRUCTURES

10.1 Classical Plate Theory

The basic assumptions for the classical Kirchhoff plate bending theory are very
similar to those for the Euler-Bernoulli beam theory. One of the most important
assumptions for both theories is that a straight line normal to the midplane of the
plate (or beam) before deformation remains normal even after deformation. In other
words, the transverse deformation is neglected. Therefore, as shown in Fig. 8.1.2,
inplane displacements и and v can be expressed as

dw
и = z —

dx

_ dw
dy

where x and у are the inplane axes located at the midplane of the plate, and z is
along the plate thickness direction as seen Fig. 10.1.1. In addition, и and v are the
displacements in the x- and t/-axes, respectively, while w is the transverse displacement
(or called deflection) along the z-axis.

Because we neglect the transverse shear deformation, inplane strains can be
written as in terms of the displacements

{e* ey j x y } = - z { k x Ky /c^} (10.1.3)

where
{ K}3' = { * 1 S = 2 ^ } (10.1.4)

is called curvature.
Assuming the plane stress condition for plate bending and substituting Eqs

(10.1.3) and (10.1.4) into Eq. (9.1.5) yield the constitutive equation as given below:

{a} = - z[D}{k) (10.1.5)

/1 n 1 o\

(1 0 .1 .1)

361

362 Plate Structures Chapter 10

Figure 1 0 .1 .1 Free Body Diagram of the Plate Element

л f • •in which {cr} = { crx cry тху } and [D\ is defined in Eq. (9.1.6). Moments are
defined as

rh/2
{M} = I {&}z dz (10.1.6)

J-h/2
rp

where {M} = {M x My Mxy } and h is the plate thickness. Substitution of Eq.
(10.1.5) into Eq. (10.1.6) gives the relationship between the moment and curvature.

{M } = -[£]{ «} (10.1.7)

where

[O] = (1 0 .1 .8)

Equilibrium equations are obtained from the free body diagram as shown in Fig.
10.1.1. Moment equilibriums about y~ and ж-axes and force equilibrium about г-axis
vi^ld я.Лрг n^crlprt.inff Viiffh^r nrrtar tprm sv'‘ vw* --- «‘“О “ ‘О-’'* ---

дМ х dM:
+ ту

дх ду - Q * = 0

дМ ху дМ у _
дх + ду Ч у ~ "

(10.1.9)

(10.1.10)

— 0 (1 0 .1 .1 1)

where Qx and Qy are the shear forces and p is the distributed pressure loading as seen
in Fig. 10.1.1. Elimination of the shear forces from Eqs (10.1.9) through (10.1.11)
gives

^ £ + 2 S + ^ + p = o (i o u 2)

Combining Eqs (10.1.4), (10.1.7) and (10.1.12) finally produces the biharmonic
governing equation for plate bending in terms of the transverse displacement w.

d4iu d4iu dAw p
d ^ + dx2dy2 + ~dy*~ D~r (Ю.1.13)

where Dr — *s ^ e plate rigidity.

Section 10.1 Classical Plate Theory 363

ф Exam ple 10.1.1 We want to derive the equilibrium equations, Eqs
(10.1.9) through (10 .1 .11), from Eqs (9.4.1) through (9.4.3). Integration of Eqs
(9.4.1) and (9.4.2) over the plate thickness after multiplying them by z yields

I

+ “ Q l + = 0 (1 0 1 1 4)

^ + ^ - O !, + [W] % = 0 (10.1.15)

in which

/h/2
Txydz (10.1.16)

-h/2

/h/2
Tyz dz (10.1.17)

-h/2
If there is no shear stress (тху = Tyz = 0) on the top and bottom surfaces of
the plate, Eqs (10.1.14) and (10.1.15) are equal to Eqs (10.1.9) and (10 .1 .10).
Integrating Eq. (9.4.3) over the plate thickness gives

Г (т * +^ +M =J - h i2 \ dx dy dz J■h/2
dQx , dQy

+ -£*- + <rt (h/2) - v z{~h/2) = 0 (10.1.18)dx dy

364 Plate Structures Chapter 10

Z

У

X

F igure 1 0 .2 . 1 Three-Node Plate Bending Element

If <Tz{h/2) = p and (Tz{—h j2) = 0, Eq. (10.1.18) equals to Eq. (10.1.11). $

10.2 Classical Plate Bending Element

We derive a three-node plate bending element based on the classical plate theory
[34]. The element is shown in Fig. 10.2.1. Each node of the element possesses three
degrees of freedom: displacement w in the z direction; a rotation about the x-axis, wy
(derivative of w with respect to y); and a rotation about the y-axis, wx (derivative of
w with respect to ж), as shown in the figure. The displacement function w is assumed
to be

w (x ,y) = a i + а2а: + азу + а4аг2 + а5ху + абу2 + а7:Е3 + а8(:Е2у + :Еу2) + а9у3 = [X]{a}
(1 0 .2 .1)

where
[X] = [1 x у x 2 xy y2 x3 (x2y + xy2) y3] (10.2.2)

T
{a} = {ai a2 аз a4 as ae ay a8 } (10.2.3)

Here constants a, are to be replaced by nodal variables w, wx and wy.
Taking derivatives of the displacement function with respect to x and у yields

Section 10.2 Classical Plate Bending Element 365

Evaluation of Eqs (10.2.1) through (10.2.5) at the three nodal points gives the
following matrix expression:

{ d} = [X]{a]

where

and

\X\ =

(w*)l ewvh ™2 (wx)2 (wy)2 W3 (wx) 3 (■wv)

-1 *1 2/1 Х\У\ У? «з*1 x\yi + X iy j У13
0 1 0 2a?i Vi 0 3arf 2xiyi + y l 0
0 0 1 0 Xl 2yi 0 x\ + 2x\yi Зу?
1 X2 У2 r 2*2 Х2У2 vl a?2 Х2У2 + Х2У2 У32
0 1 0 2x2 У2 0 3x% 2х2У2 + У2 0
0 0 1 o" X2 2у2 o' x\ + 2х 2У2 ЗУ2
1 хз Уз х з ХЗУЗ Уз Х3У3 + x3yl Уз3
0 1 0 2хз Уз 0 3x1 2хзуз + y l 0

.0 0 1 0 Хз 2уз 0 х\ + 2хзуз Зуз -

Inverting Eq. (10.2.6) and substituting the result into Eq. (10.2.1) yields

M = [#]{<*}

where the row vector of shape functions of size 9 x 1 is computed from

[ff] = [х р] - 1

Inplane strains are computed from Eq. (10.2.9) as

{e} = [J93M

in which
{e} = {ex ey j xy }T

[B] = -z[L][X]~'

m
0 0 0 2 0 0 6x 2у 0
0 0 0 0 0 2 0 2x 6y
0 0 0 0 2 0 0 Цх + у) 0

(1 0 .2 .6)

(10.2.7)

('1 0 .2 .8 ')

(10.2.9)

(1 0 .2 .10)

(10 .2 .1 1)

(1 0 .2 .12)

(10.2.13)

(10.2.14)

Substitution of the strain-nodal displacement relation, Eq. (10.2.11), into the
expression for element stiffness matrix, Eq. (9.1.24) yields

[K e] = I I [B]T[D][B]dz dti
Jn* Jz

= [X]~T f f z2[L]T[D][L]dz dtl [X]-1
Jcie Jz

= Й " т f [L]T[D][L]dQ[X]-1 (10.2.15)
Jsi«

366 Plate Structures Chapter 10

where

[D] = (10.2.16)

Here [D\ is the constitutive matrix of the plane stress condition, is the two-
dimensional element domain in the жу-plane, and h is the thickness of the plate.
The element domain is the triangular shape as seen in Fig. 10.2.1. The element
stiffness matrix is of size 9 x 9 and the corresponding element nodal vector is given in
Eq. (10.2.7).

10.3 Shear Deformable Plate Element

The Mindlin/Reissner plate theory includes the effect of transverse shear defor­
mation like the Timoshenko beam theory. Hence, a plane normal to the midplane of
the plate before deformation does not remain normal to the midplane any longer after
deformation. The internal energy expression for the shear deformable plate should
include transverse shear energy as well as bending energy. The internal energy is
expressed as

V = \ JvMT U i W + l j v{<r.}TU.}dv (10.3.1)

where
= { <TX (Ту TXy }

{cb} — { ear £y Уху }

are the bending stress and strain components while

{ * • } = { T X Z Tyz }

(10.3.2)

(10.3.3)

(10.3.4)

{ee} = {7r* 7y*V (10.3.5)

are the transverse shear components. In addition, к is the shear energy correction
factor and equal to

Substitution of the constitutive equations for both bending and shear compo­
nents yields

v = \ J {(b}T[Db]{4)dV + ^ (Ю.3.6)

in which

Гп 1Wb\
E 1 v

и 1
0 0 ±=*j1 — и2

is the constitutive equation for the plane stress condition and

/ 1 f\ О f7\(iU.O. t)

™ = [o o] (10.3.8)

Section 10.3 Shear Deformable Plate Element 367

Further, V is the three-dimensional domain which is equal to x dz. The xyz
coordinate axis is the same as shown in Fig. 10.1.1.

In order to derive the element stiffness matrix for the shear deformable plate,
we need to express the strains in terms of nodal variables. The inplane displacements
are given as

u = - z 9 x(x, y) (10.3.9)

v = - z 9 y(x, y) (10.3.10)

and the transverse displacement is

w = w(x, y) (10.3.11)

where 9r and 9„ are rotations of the midplane about у and x axes, respectively. The
midplane is assumed to have no inplane deformation. For the shear deformable plate,

(10.3.12)

(10.3.13)

where 7 is the angle caused by the transverse shear deformation as seen in Fig. 8.2.1.
Because the transverse displacement w and slope 9 are independent, we need

shape functions to interpolate them independently. As a result, the shear deformable
plate element requires C° compatibility. Isoparametric shape functions are used
for the plate element formulation. The transverse displacement and slopes are
interpolated as

П
w = (Ю.3.14)

1=1

fl
К = f f i« , 4)(6>)i (10.3.15)

J=1

n
= (10.3.16)

i=l

Here n is the number of nodes per element and the same shape functions are used
for the displacement and slope interpolations. For the following presentation, bilinear
isoparametric shape functions are used for simplicity. However, higher-order shape
functions can be used in the same manner. Both bending and shear strains are
computed from displacements.

{eb} = - z[Bb]{de} (10.3.17)

Vy - d 7y>

dw

{e,} = [B,]{de} (10.3.18)

368 Plate Structures Chapter 10

where

[Bb] =

Г - H x
0

and

г M i
dx
0

0Я, L dy

0
дНл
dy

dHt
dx О

О
О

о<
Н

р 0
dH-i
dy

dHi
dx

0
0
0

d m
dx
0

дн*
dy

0
анл
dy

dH*
dx

0
“ f f l

dH,
dx

dHj
dy

- t f 2
0

0
- H 2

dH-2
dx

dHn
dy

- Я 3
0

0
- H

{de} =

W l W\ (0*)2 (0yh w2 (0*)з (*,)*

д н 4
дх
О

О
дН.
dy

п Шл. Ш
а.. а_ду

дН*
дх

дНл
ду

дх

- н 4
о

0 1
о
о

о
-нл

(10.3.19)

дН.
дх dHi
ду J

(10.3.20)

(10.3.21)
Substitution of Eqs (10.3.17) and (10.3.18) into the energy expression Eq.

(10.3.6) yields for each plate element

и = U d'}T f f[B .fm iB ^ d z d in r] + £ k } t f f [J3,f
 ̂ JSl‘ Jz 1 Jn* Jz

(10.3.22)
As a result, the element stiffness matrix for plate bending can be expressed as

[K e] — [[Bb]T[Db]{Bb]dQ + Kh f [Bs]T[Ds][Bs]dti (10.3.23)
u J n« Jci*

in which h is the plate thickness. One thing to be noted here is that the shear energy
becomes dominant compared to the bending energy as the plate thickness becomes
very small compared to its side length. This is called shear locking. A heuristic
explanation for this can be given as below. The bending energy is proportional to
h3 while the shear energy is propotional to h. Therefore, as b gets smaller, the shear
energy becomes dominant over the bending energy. To resolve this problem, the
selective or reduced integration technique was proposed. The key of the technique is
to underintegrate the shear energy term. In general, the bending term is integrated
using the exact integration rule. For example, when four-node bilinear isoparametric
elements are used, the 2 x 2 Gauss-Legendre quadrature is used for the bending term
while 1-point integration is used for the shear term. Similarly, the bending term
utilizes 3 x 3 integrations and the shear term uses 2 x 2 integrations for the nine-node
biquadratic isoparametric shape function.

10.4 Plate Element W ith Displacement Degrees of Freedom

The plate bending element developed in this section is shown in Fig. 10.4.1
where x, у , and z describe the global coordinate of the plate and u, v, and w are the

Section 10.4 Plate Element With Displacement Degrees of Freedom 369

Z, 111

F igure 10.4.1 Plate Element With Displacement Degrees of Freedom

displacements, h is the plate thickness. The xy plane is parallel to the midsurface
plane prior to deflection.

The displacement of any point in the plate can be expressed as

и = u(x, y, z)

v = v (x ,y ,z)

w = w(x, y)

(10.4.1)

(10.4.2)

(10.4.3)

That is, the inplane displacements и and v vary through the plate thickness as well as
within the жу-plane while the transverse displacement w remains constant through the
plate thickness [35,36]. In order to interpolate the displacements using shape functions
and nodal displacements, two different interpolations are needed: one interpolation
within the ary-plane and the other in the z-axis. For the xy-plane interpolation, shape
functions Ni(x, y) are used where subscript i varies depending on the number of nodes
on the xy-plane. On the other hand, shape functions H j(z) are used for interpolation
along the г-axis, where subscript j varies depending on the number of nodes along
the plate thickness. Because two inplane displacements are functions of ж, у, and z,
both shape functions are used while the transverse displacement uses shape functions
Ni(x,y). Using isoparametric elements with mapping of ̂ -p lane onto ary-plane and
С-axis to z-axis, the three displacements can be expressed as

JVi

»= ij =l
(10.4.4)

N i N-i

® = Ё Х У < « .> » > я ж)*у
*^i j =l

Ny
w = ^r^Ni(£,r])wi

i= 1

(10.4.5)

(10.4.6)

370 Plate Structures Chapter 10

in which Ni and N2 are the numbers of nodes in the ary-plane (£r/-plane) and z-axis
(С-axis), respectively. In addition, the first subscript for и and v denotes the node
numbering in terms of xy-plane (^-plane) and the second subscript indicates the
node numbering in terms of z-axis (£-axis). In the present study, N±=4 and N2=2.
That is, four-node quadrilateral shape functions are employed for the жу-plane (£77-
plane) interpolation and linear shape functions are employed for the z-axis (C-axis)
interpolation. Nodal displacements иц and уц are displacements on the bottom
surface of the plate element and щ2 and V{2 are displacements on the top surface. As
seen in Eqs (10.4.4) through (10.4.6), there is no rotational degree of freedom for the
present plate bending element.

In the present formulation, both bending strain energy and transverse shear
strain energy are included. The bending strains and transverse shear strains are
expressed in terms of displacements.

Ы =

\
С*

r д_
дх 0 о-

м
Ч у — 0 д_

ду 0 1 v
7ХУ ; 8

ду
JL
дх 0 . { w

(10.4.7)

{<■
д_ 0 _д_ -1 и

dz дх V0 д _д_ <
dz ду . W

(10.4.8)

where {e&} is the bending strains and {e,} is the transverse shear strains. The normal
strain along the plate thickness ег is omitted here.

Substitution of displacements, Eqs (10.4.4) through (10.4.6), into the kinematic
equations, Eqs (10.4.7) and (10.4.8), with Ni=4 and N2=2 expresses both bending
and shear strains in the following way.

{(,} = [Bh]{de} (10.4.9)

where

[■Sw] —

[В ,] = [[В „] [В Ь2] [Вьз] [Вьл]]
г TJ dNi 0

тт dNi t i 2 - g ? 0 0 -

— 0
dNi
ду 0 ГГ M i

dy 0

тт dNi
L " i V Н\ dN,

дх
тт dNi TT dNj

н 1 ~ д ? 0 .

К > = { К > m {d\} m f

К) = { V il Щ2 vi2 Wi }

where

{ e j = [Bs){de}

[Я .] = [[Д в1] [З Д [В, 3] [5 rt]]

(10.4.10)

(10.4.11)

(10.4.12)

(10.4.13)

(10.4.14)

(10.4.15)

Section 10.4 Plate Element With Displacement Degrees of Freedom

The constitutive equation for the isotropic material is

{<rb} = [А,] {б*}

where

[A] = 1 — v2

1 v 0
v 1 0
0 0

(10.4.17)

(10.4.18)

(10.4.19)

371

f/\»t f Vl n л> лп-тпАПаЛ^О <1П rliwl uiic ut-nuiiig uuu

where

W = [D .] M

1
{ & s } = { Tyz Txz }

E
m = 2(1 + v)

1 0
0 1

(10.4.20)

(10.4.21)

(10.4.22)

where Eq. (10.4.19) is the material property matrix for the plane stress condition as
usually assumed for the plate bending theory.

For a unidirectional fibrous composite, the material property matrices become

P *] =

in which
Dn

П.Н П,«J.4 0
D12 D22 0

0 0 D33

Ei

(10.4.23)

D22 =

1 - Vl2»21

E\V2l
1 ~ ^12^21

E2

1 - If 12^21

D33 = G 12

and

m =
G 13 0

0 G\2

(10.4.24)

(10.4.25)

(10.4.26)

(10.4.27)

(10.4.28)

Here, 1 and 2 denote the longitudinal and transverse directions of the undirectional
composite, respectively. Further E is the elastic modulus, Gij is the shear modulus
of the i — j plane and 1/tj is Poisson’s ratio for strain in the j-direct ion when stressed
in the г-direction. There are five independent material properties for Eqs (10.4.23)
through (10.4.28) because of the reciprocal relation ^

372 Plate Structures Chapter 10

The total potential energy can be expressed as

Ti = U - W (10.4.29)

where the internal strain energy U consists of two parts like

U = Ub + Us (10.4.30)

The bending strain energy Ub is

Ub = I j {<г6}т {еь}(Ш (10.4.31)
1 Jn

and the transverse shear strain energy is

U, = 7i f {*.}T{e.}dn (10.4.32)
1 Jn

where 1) is the plate domain. After finite element discretization, substitution of the
previous equations into Eqs (10.4.31) and (10.4.32) gives

Vi = Y , U d‘ f f [B»]T[£>*][B*]<«{<0 (10.4.33)
e 1

and

v .= Y ,W ‘)T I (Ю.4.34)
e 1

where summation is performed over the total number of finite elements and superscript
e indicates each element. Kinematic matrices [J5j] and [J34] are provided in Eqs
(10.4.10) and (10.4.15) while the constitutive matrices [Dj] and [D,] are given in Eqs
(10.4.19) and (10.4.22) for the isotropic material, and in Eqs (10.4.23) and (10.4.28) for
the unidirectional composite. For a laminated composite plate, the material property
matrix of each layer must be transformed based on the fiber axis of each layer and
the global reference coordinate system.

The external work is written as

W = { d } T{F } (10.4.35)

in which {rf} is the system nodal displacement vector and {F} is the system force
vector. Because there is no rotational degree of freedom for the present element,
tlifl a v f o l тлтлп+ io onnliA/1 qo q ллпп1л onnliA^ ли fliд fлчпинь сли ы uui iiiuxit^uu иэ ауунъ и uw ииъ iw i^ uo a и|У|Уиъи uu uu^
and bottom nodes of the plate element as shown in Fig. 10.4.1. Finally invoking the
stationary value of the total potential energy yields the finite element matrix equation.
The element stiffness matrix can be expressed as

[tf ‘] = / + f [B ,f[D ,)[B ,W
Jn « J f l '

(10.4.36)

Section 10.5 Mixed Plate Element 373

One thing to be noted here is that the transverse shear strain energy term should be
under-integrated numerically to avoid shear locking, especially for a thin plate.

10.5 Mixed Plate Element

The basic equations for the classical plate theory are

. . / d2w d2w\
M’ = - D r{ d * +, ' w)

M> = ~Di w
d2w\

M-

d2Mx

ay — ~ D r {\ — 1/)

d2Mt

d2w

+ -I- 2

dxdy

d2M<
dxdy

^ = ~p

(10.5.1)

(10.5.2)

(10.5.3)

(10.5.4)
dx2 dy2

where M is the moment and Dr = f2(f-%) flexural rigidity of plate. E is the
elastic modulus, h is the plate thickness, v is Poisson’s ratio, and p is the pressure
loading. Equations (10.5.1) through (10.5.3) are the constitutive equations and Eq.
(10.5.4) is the equilibrium equation of moments.

Applying Galerkin’s method to Eqs (10.5.1) through (10.5.4) do not produce
the symmetric matrix. To this end, Eqs (10.5.1) through (10.5.3) are inverted so that
we have

S(M X - vM y) + | ^ = 0 (10.5.5)
dx2

S(M, - M .) + 0 = 0

25(1 + ^)M ,S + 2 | ^ = 0

(10.5.6)

(10.5.7)

where S = Now Galerkin’s method is applied to Eqs (10.5.4) through (10.5.7)
and integration by parts are performed to develop the weak formulation. The resultant
matrix equation for each element is given below [21]:

r ^ i I<2 0 K 3 1
К 2 К 1

Л
\J K 4

0 0 K b Ke
U 3 к А K 6 0 .

r F, 1
rn*2
F3
Fa j

(10.5.8)

where
K i — S f [N]T[N]dQ (10.5.9)

374 Plate Structures Chapter 10

K,

K A

К 2 = - v K i

т \дЫЛт
= - f \ f in . L o x .

= _ / [M l
Jn

K 6 - 1 (1

dx j
T r a ,r iT

= 2(1 + v)Kt

dN
dx

dQ

-|T dN' 'dN' T dN'
dy + dx dy

\dn

dT
J r « ax

5 to
dy

/« ЫГ« - W K
F4 = - f [N]TQndT + / [JVfpdO

Уге Jn e

Qn = Qx^x “b

10.5.10)

10.5.11)

10.5.12)

10.5.13)

10.5.14)

10.5.15)

10.5.16)

10.5.17)

10.5.18)

10.5.19)

Here, lx and ly are direction cosines of the unit normal vector, and Q is the shear force.
[N] is the shape function vector. Any isoparametric element, of either quadrilateral
or triangular shape, may be used for these equations.

However, the previous formulation does not include the effect of transverse shear
deformation. The mixed plate bending formulation for thick plates is derived below.
Equilibrium equations for plate can be written as below including transverse shear
forces.

дМ х д M.
dx

dM.

xy

xy
dx

dy

dMy
dy

— Qx — 0 (10.5.20)

— Qy = 0 (10.5.21)

+ p - 0 (10.5.22)dQx dQy
dx dy

The major discrepancy between the thin and thick plate theories is the relations
between the rotations and the transverse deflection. In the thin plate theory the
rotations are not independent of the transverse deflection but they are independent
of the deflection for the thick plate theory. Thus, the displacements in the x, у and z
directions are expressed as

и = —zBx(x,y) (10.5.23)

v = - г в у(х,у) (10.5.24)

Section 10.5 Mixed Plate Element 375

where вх and ву are rotations about у and x axes, respectively. Substitution of Eqs
(10.5.23) through (10.5.25) into the kinematic equations and use of the constitutive
equations give

w — w(x, y) (10.5.25)

86
S(M X - vM y) + - 0 (10.5.26)

dB
S(M y - vM x) + = 0 (10.5.27)

2S(1 4- ИМ.., 4- 4- = 0 ' ■ 7 " dy dx
(10.5.28')\--------’ /

If 9X and ву are replaced by and Eqs (10.5.26) through (10.5.28) are the same
as Eqs (10.5.5) through (10.5.7). Such relations, however, do not hold in the thick
plate theory.

Using the constituent and kinematic equations for transverse shear components,
the shear forces can be expressed in terms of rotations and the deflection.

л

Qx = KG h (-6 x + - ^) (10.5.29)
OX

Л
Qy = n G h {-9y + “) (10.5.30)

oy

where к is the shear correction factor equal to 5/6, G is the shear modulus, and h is
the plate thickness. Rewritting Eqs (10.5.29) and (10.5.30) for the rotations yields

= <10-5-31>

= (10-5-32>

Putting Eqs (10.5.31) and (10.5.32) into Eqs (10.5.26) through (10.5.27) to eliminate
the rotations gives

W _ ^ . ^ + g = 0 (Ю.5.33)

S(M V - vM x) - - 4 - ^ + = o (10.5.34)’ ’ кип oy oy*

25(1+^ - ^ ® +Э +2£ г 0 <10-5-35)
Examining Eqs (10.5.33) through (10.5.35) reveals that the coefficients of shear forces
and moments are of order 1/h and 1 /Л3, respectively. Thus, as the plate thickness
approaches zero, the shear force terms can be neglected compared to the moment
terms. This is reasonable because the shear deformation is negligible when the plate
thickness is very small compared to its length.

376 Plate Structures Chapter 10

In order to eliminate the shear forces, Eqs (10.5.20) and (10.5.21) are substituted
into Eqs (10.5.33) through (10.5.35) as well as Eq. (10.5.22). Then, the resultant
equations are

(* -

i a 2 1 d2M:
K G hdx2 ' *

- v S M x +

xy
Mx vSMy KGh Bxdy

d2w

v KGh dy2 J
M, xy

+

dx2

d2w

= 0

1 (d 2Mx d2My \ / ... л 1
KGh V dxdy + dxdy) + (* + ^ kG

y KGh dxdy ' dy2

d2 1 d2

= 0

(10.5.36)

(10.5.37)

KGh dx2 kGH dy2
d2w

(10.5.38)
___ ____1 1 ____¥71— / 1Л С Л\ П ________J.*_______/ 1Л ЕГ 0/?\ j.1_____________l_ / 1Л P Ort\ ____J / 1 Л P A \ l ________ i l .as wen as rjq. liquations (iu.u.oo; bnrougn (lu.u.aaj ana (lu.o.fij nave xne
same four variables, Mx , My, MTy and w, as those for the thin plate formulation.
If the terms associated with are neglected, these equations are reduced to the
thin plate equations. In fact, as the plate thickness approaches zero, these terms are
neglected. For the shear related terms are proportional to £ while bending related
terms are proportional to ^ .

Applying Galerkin’s method to the four equations yields the following matrix
expression.

Fi

(Ю.5.39)

[K n К 12 к 13 К и Л г м х \
K l2 K 22 K 23 К 2 4 J м » - i
K l3 К зз КзА

\
М г у \ ~

- *14 K 2A КзА К 44 . , U1)

where
TdiV

K n - - v S f [N]T[N]dQ

,Т 'dN'
dx

dQ

K is =
l Г ГдАгУ

KGh J ae [dx J
'dN
. d y .

т

d£l

dtl

(Ю.5.40)

(Ю.5.41)

(10.5.42)

(Ю.5.43)

(Ю.5.44)

(Ю.5.45)

(Ю.5.46)

Section 10.5 Mixed Plate Element 377

4 Elements 16 Elements

F igure 10.5.1 Square Plate Mesh Using 4 and 16 Elements

*33 =2(1 + ,) s / nJ * f [*]*> + JL J g
T 'dN'

dx

1

In-
\6NV

K 34

dN
KGh J ae [dy J [d y ,

'dN'

d£l

- K dx

, T
\dN1 'dN' T 'dN'

dy + dx dy
\dQ

К 44 = 0

' ■ - h <
f [N]TVylydT
J r*

(10.5.47)

(10.5.48)

(10.5.49)

(10.5.50)

(10.5.51)

F s ~ ~ l . lN]T{ ^ ‘i + '̂<i) dr+

I + + (10-5-52)

FA = - f [N]TQndT 4- f [NfpdQ
Jr* J fl“

KGh

(10.5.53)

Some finite element solutions obtained using the present mixed plate bending
elements are shown in Tables 10.5.1 through 10.5.5. Isoparametric shape functions
were used for both interpolation of moments and displacements. Tables 10.5.1 and
1 П К О сЬпш f lio ro c iilfc frvr c im n lv Q im nnrforl япИ r la m n o r l аппйТй n in th sIV/il/iA tfllVTT U11V 1VUU1VU 1V1 uv\i vwuvt Vturilli/VM vy 1UIU\>W w u, ki»j v>v>vuu

to uniform pressure loads. Because of symmetry, 4 or 16 four-node isoparametric
elements were used. The finite element mesh is seen in Fig. 10.5.1. The solutions
from the present mixed formulation are also compared with those from another mixed
formulation. Table 10.5.3 gives the finite element solutions obtained using 4 eight-
node isoparametric elements while Table 10.5.4 compares different isoparametric plate
bending elements. The accuracy of each isoparametric element is different even if the

378 Plate Structures Chapter 10

Table 1 0 .5.1 Comparison of Central Deflections and Bending Moments for a Uniformly
Loaded Simply Supported Square Plate.

Analytic

Solution

4 Elem.* 16 Elem.* 4 Elem.** 16 Elem.**

W D /PLA

MX/PL2

M y/PL2

0.00406

0.0479

0.0479

0.00424

0.0525

0.0525

0.00411

0.0489

0.0489

0.00409

0.0505

0.0505

0.00407

0.0485

0.0485

4-node quadrilateral element
(*) - Present F.E. Solution, (**) Solution from [20]

Table 10.5.2 Comparison of Central Deflections and Bending Moments for a Uniformly
Loaded Clamped Square Plate.

Analytic

Solution

4 Elem.* 16 Elem.* 4 Elem.** 16 Elem.**

W D fP L A

M x/PL2

My/PL*

0.00126

-0.0513

-0.0513

0.00141

-0.0476

-0.0476

0.00128

-0.0499

-0.0499

0.00148

-0.0487

-0.0487

0.00132

-0.0508

-0.0508

4-node quadrilateral element
Г*1! - Present F.E. Solution. Solution from Г201V/ ---------------- -------------f \ / — - ---- -- --t--- j

total numbers of nodes are almost the same. The elements with more nodes per
element give more accurate results.

Both the thin plate theory and the thick plate theory are compared in Table
6.5.5 for an orthotropic plate. The plate is shown in Fig. 6.5.2 with the mesh and
material properties. As expected, as the ratio of the plate thickness to the side length
increases, there is an increasing difference between the two solutions. The thick plate
solutions are very close to the three-dimensional elasticity solutions for thick plates.

10.6 Hybrid Plate Element

The hybrid element is based on the assumed strains within the plate element
[23]. This element requires C° continuity. The formulation is based on a modified
potential energy expression as given below for a plate.

П = J (- - i { e , № .] { £ . } + t o } T№ i] M +

Table 10.5.3 Deflections at a Center of Square Plate

Section 10.6 Hybrid Plate Element 379

Boundary Condition Analytic Soln Present Soln

All Edges Supported 0.00406 0.00406

All Edges Clamped 0.00126 0.00125

Two Opposite Edges Simply Supported

Two Other Edges Clamped 0.00191 0.00192

8-node quadrilateral element

Table 10.5.4 Comparison of Central Deflections Obtained Using Different Isoparametric
Elements for Uniformly Loaded Simply Supported Plates

w* Error (%) Remark

Analytic Solution 0.2363 Timoshenko

3-Node Triangular 0.1814 -22.81 32 Elements

(25 Nodes)

6-Node Triangular 0.2344 -0.80 8 Elements

(25 Nodes)

4-Node Quadrilateral 0.2392 1.23 16 Elements

(25 Nodes)

8-Node Quadrilateral 0.2365 0.08 4 Elements

(21 Nodes)

{e,}Tp,][£.]{<i})<ffi - J { d } T{p)dT (10.6.1)

where
{ « » = { ! ? T ? (^ + ^) } T (1 0 -6 .2)

Ы = { (- « . + £) (- « , + £) }T (10.6.3)

{d} = { 6 x 6y w f (10.6.4)

Further [Dft] is the material property matrix for bending strains and [£>»] is the matrix
for transverse shear strains. [Ьь] is the matrix for the bending strain-displacement
operator and [Ls] is the matrix for the shear strain-displacement operator, {p} is the
pressure loading on the plate.

380 Plate Structures Chapter 10

У

0
x

--------------- a ------------------

Orthotropic Porperties

f и 0 . 2 3 3 1 9 * E X

«
■

и 0 . 5 4 3 1 0 3 * E X

и■i? 0 . 2 6 2 9 3 1 * E X

& z x - 0 . 1 5 9 9 1 4 * E X

G y z = 0 . 2 6 6 8 1 * E X

F igure 10.5.2 Orthotropic Plate

Invoking a stationary value of the equation results in the equilibrium equation
and the generalized strain-displacement relation. In order to obtain the finite element
model, generalized strains and displacements are discretized as the following:

{eb} = [Bb]{a b} (10.6.5)

{с,} = [Be]{a,} (10.6.6)

{d} = [N]{d} (10.6.7)

where generalized strains are assumed independently within each element and gener­
alized displacements are interpolated using generalized nodal displacement {d}. Thus,
[Bb] and [£?,] are matrices consisting of the polynomial terms of the generalized strain
parameter vectors {aj} and {a,}, respectively. [N] is the matrix consisting of shape
functions. Substituting Eq. (10.6.5) through Eq. (10.6.7) into Eq. (10.6.1) yields

П = - | W TN W - 5{n.}T[G.]{«,} + {a i }T№]{d}

+ {a .) T[H.]{d) - {d}T{F} (10.6.8)

where
[Gb] = f [Bb]T[Db)[Bb)dQ (10.6.9)

Jn*

[G,] = / \B,f[D,\[B.}dSl (10.6.10)
Jn *

Section 10.6 Hybrid Plate Element 381

Table 10.5.5 Generalized Central Deflections (EXW jP t) for Thin or Thick Uniformly
Loaded Simply Supported Square Plates

b/a t/a

3-D

Theory*

Reissner’s

Theory*

Classical

Theory*

Thin Plate

Soln**

Thick Plate

Soln**

0.5

0.05

0.1

0.14

21542

1408.5

387.23

21542

1408.4

387.27

21201

1325.1

344.93

21268

1329.3

346.03

21606

1413.8

389.11

1.0

Л ЛРu.uo

0.1

0.14

Л /\ Л АПШЪЪд

688.57

191.07

1Л|14П

688.37

191.02

1 ЛП A /У1U440

640.39

166.70

1 лпл cr

642.81

167.33

1Л40ПIUHOO

692.30

192.49

2.0

0.05

0.1

0.14

2048.2

139.08

39.790

2047.9

138.93

39.753

1988.1

124.26

32.345

1964.6

122.79

31.962

2026.8

138.26

39.806

4-node quadrilateral element
(*) Analytical Solution, (**) Present F.E. Solution

A

[Нь]= I [Bb}T[Db][Lb)[N}dQ (10.6.11)

[Hs] = f [B,)T[Da][L,][N]dQ (10.6.12)
Jn e

and

{F}= f [JVfMdr
J r e

(10.6.13)

Invoking stationary values of Eq. (10.6.8) with respect to {aj} and {a*}
respectively results in

Ч О Д аь} + [Hh]{d] = 0 (10.6.14)

-lG .]{ « .} + [JTJ{<i} = 0 (10.6.15)

Eliminating {e*i} and {a,} from Eq. (10.6.8) using Eq (10.6.14) and Eq. (10.6.15)
gives

П = i {d)T(№ f [G ,]-T[K,] + [Я .]т [G .]-r [S.]){d} - Й т т (10.6.16)

Equation (10.6.16) finally gives the following finite element system of equations

В Д Й = {F } (10.6.17)

382 Plate Structures Chapter 10

z
□ 1.0

и
Ш
d 0,95 u
о
z
a:
□ 0,9 _L

2x2 4x4 6x6

MESH IN A QUARTER PLATE

(a) <b)

F igure 1 0 .6 .1 Uniformly Loaded Square Plate With: (a) Simply Suppport Boundary and
(b) Clamped Boundary

in which
[K] = [Gj]-T№] + [H .f [G,]-T [ff,] (10.6.18)

For a bilinear plate element, the generalized strain vectors are assumed as

[Вь) =
l O O z O O y O O
O l O O x O O t / O
O O l O O z O O y

and

[B.] =
1 0
0 1

(10.6.19)

(1 0 .6 .20)

These expressions represent that the bending strain varies linearly and the shear strain
is constant within the bilinear plate element.

Finite element results from the hybrid plate bending elements are provided in
Fig. 10.6.1 through 10.6.3. Convergence study for simply supported and clamped
square plates subjected to uniform pressure loading is shown in Fig. 10.6.1 while that
for a uniformly loaded circular plate with the clamped edge is seen in Fig. 10.6.2.
The mesh for the circular plate is shown in Fig. 10.6.3.

10.7 M A T L A B A p p lic a t io n

A static finite element analysis of plate bending is performed using the shear
deformable plate bending formulation discussed in Sec. 10.3. Some example problems
are solved using MATLAB programs below.

ф E x am p le 10 .7 .1 A simply supported square plate is subjected to a
concentrated load at the center. Find the deflection of the plate using the shear

Section 10.7 MATLAB Application

MESH IN A QUARTER PLATE

F igure 1 0 .6 .2 Unifromly Loaded Circular Plate With Clamped Edge

F igu re 10.6.3 Meshes for a Quarter of Circular Plate

deformable displacement formulation. The size of the plate is 10 in. by 10 in.
and its thickness is 0.1 in. It is made of a steel whose elastic modulus is 30 x 106
psi and Poisson’s ratio 0.3. The applied force is 40 lb at the center. A quarter of
the plate is modeled dne to symmetry and it is divided into 4 four-node elements
(see Fig. 7.1.1).

The MATLAB program is written for the finite element analysis. Two point
integration is used for the bending term while one point integration is used for
the shear term for the selective integration technique. As far as the boundary
conditions are concerned, two edges are simply supported and two edges are
symmetric. As a result, nodes 1 , 2 and 3 are constrained for 9X and w. Nodes
1 , 4 and 7 are constrained for ву and w. Nodes 3, 6 and 9 are constrained for
$x while nodes 7, 8 and 9 are constrained for 9y. The resultant constrained
degrees of freedom are 1 , 2 , 3, 4, 6 , 7, 9, 1 1 , 12 , 16, 20 , 21, 23, 25, and 26. The
external force is applied at node 9 with the third degree of freedom. Hence, the
concentrated force is applied at the 27th degree of freedom of the load vector.
Because of the quarter symmetry, a quarter of the force is applied to the load
vector. The finite element solution gives the center deflection of 0.0168 in. while
the analytical solution is 0.0169in.

384 Plate Structures Chapter 10

SYMMETRY

i— Q£
□
Q.
CL ID </)
Ы_1Q-Z
</)

7

4

Г я

8 9

©
5 6

©
1
X

1 i

©
О О
(— О

L- -----------Л

>-
QLI—
Ы

>-</)

SIMPLE SUPPORT

F igure 10.7.1 A Quarter of Square Plate With 4 Elements

%---.---

% Example 10.7.1
% A simply supported square plate is subjected to a concentrated load
% at the center. Find the deflection of the plate using 4 four-node
% isoparametric elements of the shear deformable displacement
% formulation. The size of the plate is 10 in. by 10 in. and its
% thickness is 0.1 in. It is made of steel and the applied
% force is 40 lb.
% (see Fig. 10.7.1 for the finite element mesh)
%
% Variable descriptions
% к = element matrix
% kb = element matrix for bending stiffness
% ks = element matrix for shear stiffness
% f = element vector
% kk = system matrix
Q£ ff oiTftonn/и II —— ojoiftui UVull
% disp = system nodal displacement vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% pointb = matrix containing sampling points for bending term
% weightb = matrix containing weighting coefficients for bending term
% points = matrix containing sampling points for shear term
% weights = matrix containing weighting coefficients for shear term
% bcdof = a vector containing dofe associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof
% kinmtpb = matrix for kinematic equation for bending
% matmtpb = matrix for material property for bending
% kinmtps = matrix for kinematic equation for shear

Section 10.7 MATLAB Application 385

% matmtps = matrix for material property for shear
%--.

%
%--

% input data for control parameters
%--

nel=4; % number of elements
nnel=4; % number of nodes per element
ndof=3; % number of dofs per node
nnode=9; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=30e6; % elastic modulus
poisson=0.3; % Poisson’s ratio
t=0 .1 ; % plate thickness
nglxb=2 ; nglyb—2 ; % 2x2 Gauss-Legendre quadrature for bending
nglxs=l; nglys=l; % lx l Gauss-Legendre quadrature for shear
%
%---

% input data for nodal coordinate values
% gcoord(i j) where i-> node no. and j-> x or у
%---
gcoord=[0.0 0.0; 2.5 0.0; 5.0 0.0;
0.0 2.5; 2.5 2.5; 5.0 2.5;
0.0 5.0; 2.5 5.0; 5.0 5.0];
%
%--
% input data for nodal connectivity for each element
% nodes(i j) where i-> element no. and j-> connected nodes
%--

nodes=[l 2 5 4; 2 3 6 5; 4 5 8 7; 5 6 9 8];
%
%--
% input data for boundary conditions
%---

bcdof=[l 2 3 4 6 7 9 11 12 16 20 21 23 25 26]; % constrained dofs
bcval=zeros(l,15); % whose described values are zeros
%
%---
% initialization of matrices and vectors
%--

JL — J. / V oj r ov^Ul IWiViU У UU IWi

kk=zeros(sdof,sdof); % system matrix
disp=zeros(sdof,l); % system displacement vector
index=zeros(edof,l); % index vector
kinmtpb=zeros(3,edof); % kinematic matrix for bending
matmtpb=zeros(3,3); % constitutive matrix for bending
kinmtps=zeros(2 ,edof); % kinematic matrix for shear

Plate Structures Chapter 10

matmtps=zeros(2,2); % constitutive matrix for shear
%
%------------------------------------- -

% force vector
% ---------------------------------- —

ff(27)=10; % applied concentrated force
%
%--
% computation of element matrices and vectors and their assembly
%--
%
% for bending stiffness
%
[pointb,weightb]=feglqd2 (ngIxb,nglyb);
% % sampling points iz weights
matmtpb=fematiso(l,emodule,poisson)*t3/ l2;
% % material property matrix
%
% for shear stiffness
%
{points,weights]=feglqd2(nglxs,nglys);
% % sampling points iz weights
shearm=0.5*emodule/(1.0+poisson); % shear modulus
shcof=5/6; % shear correction factor
matmtps=shearm*shcof*t*[l 0 ; 0 1]; % material property matrix
%
for iel=l:nel % loop for the total number of elements
%
for i=l:nnel
nd(i)=nodes(iel,i); % extract nodes for (iel)-th element
xcoord(i)=gcoord(nd(i),l); % extract x value of the nodes
ycoord(i)=gcoord(nd(i),2); % extract у value of the nodes
ehd
%
k=zeros(edof,edof); % initialization of element matrix
kb=zeros(edof,edof); % initialization of bending matrix
ks=zeros(edof,edof); % initialization of shear matrix
%
%---
% numerical integration for bending term
%---

«n 4 -шг ... 1 «mnlwVx
1UI 111UA*—A .llgXAL/

x=pointb(intx,l); % sampling point in x-axis
wtx=weightb(intx,l); % weight in x-axis
for inty—l:nglyb
y=pointb(inty,2); % sampling point in y-axis
wty=weightb(inty,2) ; % weight in y-axis
%

[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% % derivatives at sampling point
%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % Jacobian matrix
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% % physical coordinate
%
kinmtpb=fekinepb(nnel,dhdx,dhdy); % bending kinematic matrix
%
%---

% compute bending element matrix
%--
kb=kb+kinmtpb’*matmtpb*kinmtpb*wtx*wty*detjacob;
%
end
end % end of integration loop for bending term
%
%---
% numerical integration for bending term
%---

Section 10.7 MATLAB Application 387

for intx=l:nglxs
x=points(intx,l); % sampling point in x-axis
wtx=weights(intx,l); % weight in x-axis
for intv=l:nelvs-----------------------& ------------tri/ —

y=points(inty,2); % sampling point in y-axis
wty=weights(inty,2) % weight in y-axis
%
[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% % derivatives at sampling point
%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % Jacobian matrix
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
(K/U
kinmtps=fekineps(nnel,dhdx,dhdy,shape); % shear kinematic matrix
%
%---
% compute shear element matrix
% --

ks=ks+kinmtps,*matmtps*kinmtps*wtx*wty*detjacob;

388 Plate Structures Chapter 10

%
end
end % end of integration loop for shear term
%
%------------------------------------
% compute element matrix
%--
k=kb+ks;
%
index—feeldof(nd,nnel,ndof); % extract associated system dofe
%
kk=feasmbll(kk,k,index); % assemble element matrices
%
end
%
%--

% apply boundary conditions
%---

[kk,ff}=feaplyc2 (kk,ff,bcdof,bcval);
%
%------------------- .

% solve the matrix equation
%---

dxsp=kk\ff;
%
num=l:l:sdof;
displace=[num’ disp] % print nodal displacements
r v

%--------- -— ------- ------------------- ---

function [kinmtpb]=fekmepb(nnel,dhdx,dhdy)
%--

% Purpose:
% determine the kinematic matrix expression relating bending curvatures
% to rotations and displacements for shear deformable plate bending
%
% Synopsis:
% [kinmtpb]=fekinepb(nnel,dhdx,dhdy)
%

■л a K1 о Л еегттЬ л п ♦

% nnel - number of nodes per element
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to у
% --

%
for i=l:nnel

Section 10.7 MATLAB Application 389

il= (i-l)*3+ l;
i2= il+ l;
i3=i2+l;
kinmtpb(l,il)=dhdx(i);
kinmtpb(2 ,i2)=dhdy(i);
kinmtpb(3,il)=dhdy(i);
kinmtpb(3,i2)=dhdx(i);
kinmtpb(3,i3)=0;
end
%
%----------------------

function [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)
%---

% Purpose:
% determine the kinematic matrix expression relating shear strains
% to rotations and displacements for shear deformable plate bending
%
% Synopsis:
% [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)
%
% Variable Description:
% nnel - number of nodes per element
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to у
% shape - shape function
%--
%
for i=l:nnel
il= (i-l)*3+ l;
i2= il+ l;
i3=i2+l;
kinmtps(1 ,il)=-shape(i);
kinmtps(l,i3)=dhdx(i);
kinmtps(2,i2)=-shape(i);
kinmtps(2,i3)=dhdy(i);
end
%
%----- --- -------

4k E x am p le 10 .7 .2 The same square plate as that used in Example 10.7.1
is analyzed here. However, the boundary of the plate is clamped and the plate

390 Plate Structures Chapter 10

is subjected to a uniform pressure of 2 psi. Using the same number of elements
as before, determine the center deflection of the plate.
Because of different boundary conditions and loads compared to the previous
example, the following vectors substitute those in Example 10.7.1. Otherwise,
the rest of the program is the same. The Unite element result shows the center
deflection of 0.0088 in. while the analytical solution is 0.0092 in.

bcdof=[l 2 3 4 5 6 7 8 9 10 11 12 16 19 20 21 23 25 26];
bcval=zeros(l,19);
%
ff(3)=3.125; ff(6)=6.25; ff(9)=3.125;
ff(12)=6.25; ff(15)=12.5; ff(18)=6.25;
ff(21)=3.125; ff(24)=6.25; ff(27)=3.125;

t

Problems 391

О------------------17 ►------------------<
8 9

6

(

1
11------------------(£ --------------

F igure P10.4 Problem 10.4

Problems

10.1 Redo Example 10.7.1 for uniform pressure of 0.4 psi instead of the concentrated
load using the computer programs. Compare the present solution to that in
Example 10.7.1.

10.2 Redo Example 10.7.2 for a center load of 200 lb instead of the pressure load
using the computer programs. Compare the present solution to that in Example
10.7.2.

10.3 Redo Example 10.7.1 for a plate with two opposite edges simply supported and
the other two opposite edges clamped.

10.4 Redo Example 10.7.1 for a mesh shown in Fig. P10.4. Change the angle (3 in
the figure from 5 degrees to 30 degrees by an increment of 5 degrees. Compare
the present solutions to that in Example 10.7.1.

10.5 Solve a clamped circular plate which has elastic modulus of 200GPa, the radius
of 0.2m, and thickness of 10mm. The plate is subjected to a center load of
2.0kN. Find the deflection using the computer programs for meshes shown in
Fig. 10.6.3.

10.6 Redo Prob. 10.5 for a simply supported plate.

10.7 Find the deflection of a triangular shape of plate with simple support. The plate
dimension is given in Fig. P10.7 and its thickness is 2mm. Its elastic modulus
is 70GPA and it is subjected to a center force of 100N. Find the deflection of
the plate using the computer programs.

10.8 Redo Prob. 10.7 for the clamped plate.

392 Plate Structures Chapter 10

F igure P10.7 Problem 10.7

C H A P T E R ELEVEN

CONTROL OF FLEXIBLE STRUCTURES

11 .1 Introduction

The subject of flexible structures control consists of both dynamic analysis and
control theory. Usually, these two disciplines are mingled together in such a way that
we have to understand both disciplines to an equal extent in order to achieve our goal.
The dynamic analysis of flexible structures is dominated by the finite element analysis
as discussed in other chapters of this book. The control theory, on the other hand, is
introduced in this chapter. The essence of each exemplary control theory is discussed
in this chapter. In-depth discussion on control theories is available in a number of
literature. The control theories are introduced here to help the readers of this book to
understand the key features in conjunction with the finite element analysis of flexible
structures. Prsented in Fig. 11.1.1 is a flow diagram representing the relationship
between mathematical modeling and control system design for a given structural
system. The mathematical modeling represented by finite element method has been
discussed so far. The control system design in this chapter will mainly make use of
the finite element modeling results. The control system design is demonstrated also
using MATLAB. MATLAB m-files are generated in order to solve example problems.
The example problems in this chapter do not need a specific MATLAB Toolbox.

There are two distinct approaches for control system design. One is called the
frequency domain approach or classical control technique and the other one is the time
domain approach mainly adopted in the modern control technique. The frequency
domain approach relies upon analytical tools, and is still popular in majority of
existing control systems. For a given system, the frequency domain approach focuses
on the relationship between input and output. The input to the system is modified to
improve the output performance of a system. On the other hand, the modern control
technique is motivated by the rapid advance of computational power. The system
1ч П1Т1 ли in s i л/> Л111 к л /J г п л-Р 4- шчп /J /м«п mvt r I Л1ч л л/\п4 м л1 iU /чмu c iia -v i^ i ю и у а> эси u i v a . i иих иа ш. _l u c i a ju l iu i in p u t t iic n

tries to control each variable in order to satisfy desired system responses.
Each method has its own unique features. For the frequency domain approach,

plenty of analytical results and tools are available. On the other hand, the modern
control theory is easy to implement with the help of the abundant computational

393

394 Control of Flexible Structures Chapter 11

F igure 1 1 . 1 . 1 Flow Diagram for Structural Analysis and Control

software available. Modern control techniques impose another important issue on
estimation of all degrees of freedom with a limited number of sensors. The number
of sensors and actuators are usually less than the degrees of freedom of truncated
(approximate) systems. Estimating all the flexible modes is so critical to designing
an active control law in the time domain.

Active control of flexible structures is mainly represented by vibration control
using mechanical, electrical, and/or electromechanical devices. Inherent flexibility of
the structure raises a number of issues in the area of active vibration control. The
majority of flexible structures are distributed parameter systems. Therefore, they are
essentially infinite dimensional dynamic systems. Obviously, the infinite dimensional
systems are not practical for a control law design. Mathematical approaches like
finte element analysis can be used to derive finite dimensional systems which closely
duplicate the original infinite dimensional systems.

Before we work on the dynamic analysis and control system design for flexible
structures, we decide to introduce a basic stability theory. The stability theory is a
i________ 4. j- l___ л лг ___ ___ l 1__ i t -ney c u n c e p i esi>a.uii&iiiiig t i ic gucu u i a c u u tru i law ue& igu. и у s id u m iy , wc m e a n u ie
dynamic characeristic of a given dynamic system representing the behavior of dynamic
motion of the system; for example, whether the motion is decaying or growing with
respect to time.

The Lyapunov stability theory has been considered as a background for under­
standing the stability of a dynamic system.

11.2 Stability Theory

The Lyapunov stability theory is one of the most frequently referred tools for
stability analysis and control system design of a dynamic system [37].

Definition of Stability
Consider a general form of nonlinear system

x = f(x ,t) , x(to) = Xq (11.2.1)

Section 11.2 Stability Theory 395

F igu re 11.2.1 Time History of Stable(a) and Asymptotically Stable(b) System

where x is a vector and f (x ,t) represents a general nonlinear function.
The above system is stable in the Lyapunov sense with respect to the
equilibrium state if for any given value e > 0, there exists a number
5(e,to) > 0 for which the j|x(*)j| < e for all t > to and ||x(£o)|| < 6-

The above condition implies that the magnitude of z(t) remains within a finite
small value in the presence of small initial perturbation. This definition includes also
undamped pure oscillatory motions.

A sym pto tic S tab ility

The system is asymptotically stable if it satisfies the stability condition and
limt^oo ||a? (0 1 1 = 0 .

The asymptotic stability implies that the state vector converges to the equi­
librium point which is assumed zero at steady state in this case. The difference in
the time response of both stable and asymptotically stable cases is displayed in Fig.
11.2.1.

Lyapunov Second S tab ility Theory

The second Lyapunov stability theory uses a nonnegative energy function for a
given system. If the energy function decreases, then the system is stable toward an
equilibrium point. In other words, the system energy is taken to be minimum at the
equilibrium point.

Theorem : Let V(x) be an energy function or a Lyapunov function.
The system is stable if V (x) > 0 and V̂ (x) < 0 for all values of x. If the
4.:__ 1Л_т7/~\ ^ n
LI111C Г d i e U L C l l C L i I £ C U l У (iE J 1 9 1С&2Э bliail Z / C 1 U , tllClL I S V) V \ J , LllCil L11C

system is asymptotically stable.

It is important to note that we cannot draw any conclusion about stability
when a desired Lyapunov function is not found. In this case, we should try to find
a Lyapunov function or apply Lyapunov’s instability theorem which is not discussed
here. Another drawback of Lyapunov’s approach is that there is no systematic way of

396 Control of Flexible Structures Chapter 11

finding an appropriate Lyapunov function candidate for stability proof. As it will be
explained later in this chapter, the Lyapunov second stability theory is also used for a
control law design: the control law tries to decrease a Lyapunov function suppressing
the motion of a system.

Лк E x am p le 11 .2 .1 Consider a set of coupled first order systems given by

X\ = X 2 - z i (x 2 + Хз)

Х2 = —Xi — x2(x? + x \)

We want to check stability of the system. The equilibrium points of the system
can be obtained from

i i = 0, x2 = 0

Based upon the equilibrium point, we select a trial Lyapunov function as
V = Xi + x| which is always positive. The time derivative of the Lyapunov
function in conjunction with the above set of equations turns out to be

V = ~2{x\ + x\)

Obviously, the V is guaranteed to be negative, and the system is asymptotically
stable.

t

4k E x am p le 1 1 .2 .2 Consider a simple second order system whose governing
equation is given as

mq + cq + kq — 0

where m > 0 , c > 0 , > 0. There are many ways to check the stability of the
above system. In order to apply the Lyapunov theory, we transform the above
equation into a set of first order equations as

X i - X2

mx 2 = —cx 2 — kx i

where Xi = q, x2 = q. Now we take a Lyapunov function as

V(x) = ^(m xl + fcx?)

and the time derivative of the Lyapunov function becomes

K(x) =mx 2X2 + fcxixi
- - C X 2

Section 11.2 Stability Theory 397

Therefore, V (x) < 0 as long as X2 Ф 0, and the system is asymptotically stable.
Note that x 2 can be instantaneously zero but converges to zero only at the steady
equilibrium point.

t

S tab ility of a L inear F irst Order System

Consider a linear first order system given as

_ Г ytl / 1 1 о о Лг*/ - i ^

where {х} is ап гг by 1 vector. In order to set up the stability condition of the system,
we choose the following Lyapunov function

U = W T[P]M (11.2.3)

The time derivative of the Lyapunov function becomes

V = { * №]{ * } + { * №]{ * }

= { x f (A T[P\ + IP]A){*} (11-2.4)

For stability we require
-[<?] = H f[P] + [P p] (11.2.5)

where [Q] is a positive definite matrix satisfying the property {x}T[<5]{x} > 0 for
{x} ф 0 and \Q] = [Q]T. Thus,

V = -{x}T[Q]{x} < 0 (11.2.6)

Therefore, we have the following theorem for stability of the linear system.

Theorem : The linear system {x} = [Л]{х} is stable if and only if there
exists a positive definite [P] matrix which satisfies Eq. (11.2.5) for a given
positive definite matrix [Q].

A E xam ple 11.2.3 Let us assume a two degree of freedom system

{*} = [A]{*} = [_°2 {x}

In order to check the stability of the system, first we assume a [Q] matrix in Eq.
(11.2.5) as

[Q] = f 1 °1
10 1 .

Once we have [Q], then we solve Eq. (11.2.5)

398 Control of Flexible Structures Chapter 11

' l o' Pi P2 ■ 0 1 '

+
‘ 0 - 2 ' Pi P2

0 1 _ P2 P3. - 2 - 1 1 - 1 P2 P3d

The resultant [P] matrix, therefore, becomes

1
[P] = 7 1

1 3

It is not difficult to check that [P] is positive definite, thus the system is stable.

t

Bounded Input Bounded Output(BIBO) Stability
In the above definition of stability, we were concerned only about a system itself

without including an external input. When there is a certain external input to the
system, the stability of the system obviously should take the magnitude of the input
into account. This is defined els, in general, the BIBO stability of the system as
described below:

When a system is under excitation by an external input with bounded
magnitude, it is called BIBO stable if the output of the system is also
bounded.

we discuss the transfer function analysis of a system.

11.3 Stability of Multiple Degrees of Freedom Systems

In the previous section, we discussed the stability theory, especially stability
definition and Lyapunov function approach. Now, we want to discuss the stability
of linearized multiple degrees of freedom system which is the main outcome of finite
element analysis. Understanding the stability property of the multiple degrees of
freedom system is so important before we make any attempt to design a feedback
control law for a system.

System without Damping
Using the Lyapunov stability theory we want to analyze the stability of a

linearized multiple degrees of freedom system. Let us consider an n dimensional finite
dimensional dynamic system which is usually produced by finite element analysis.
The governing equations of motion without damping are described by

[M]{q} + [K]{q} = [F]{u} (11.3.1)

where [M] is the system mass matrix, [if] is the stiffness matrix, {q} is the generalized
coordinate vector, [F] is the input influence matrix, and {u} is the control input
vector. In case there is no forcing function, the free vibrational motion satisfies

[M]{q} + [X]{q} = 0 (11.3.2)

and the solution to Eq. (11.3.2) is a pure sinusoidal motion as explained in Chapter
8

П
Ы<)} = М е‘" ‘ ' (П.З.З)

fc=l

where { ф к } and u>k are system parameters. The stability of Eq. (11.3.2) can be proved
in various ways. One of them is the Lyapunov approach. Considering the fact that
the total system energy (kinetic plus potential energy) is a direct indicator of system
stability, a Lyapunov function candidate is suggested as

v = i{q}T[M]{q} + ^ { q № H q } (11.3.4)

Note that the Lyapunov function is always positive (U > 0) since the mass and
stiffness matrices satisfy

{x}T[M]{x} > 0, {x}T[tf]{x} > 0 (11.3.5)

for {x} ф 0, and they are symmetric ([M] = [M]T and [К] = [K]T). Next, the time
derivative of the Lyapunov function in Eq. (11.3.4) in conjunction with Eq. (11.3.1)
yields

6 = ж + M fo })
={q>T№ } (11.3.6)

Without the external forcing input, that is {u} = 0, Eq. (11.3.6) becomes

U = 0, or U = const (11.3.7)

In other words, the energy is conserved, therefore the motion should be a pure
sinusoidal type. It is important to note that the stability argument does not depend
upon the system property itself. That is, the mass and stiffness matrices axe dropped
from the final expression of U. This will be discussed again in the later part of this
chapter when we deal with deriving a stabilizing control law for infinite dimensional
systems.

If we want to design the input {u} so that the system is stabilized, then one
possible solution will be select {u} in such a way that

Section 11.3 Stability of Multiple Degrees of Freedom Systems 399

t / < 0 (11.3.8^

400 Control of Flexible Structures Chapter 11

In other words, the energy decreases toward an equilibrium point with the judicious
selection of the control input {u}.

System with Damping
A linearized multiple degrees of dynamic system with damping is described in

the form

M { q) + P K q } + M M = [^ { « } (11-3.9)

where [D] is a nonnegative definite damping matrix. The above system is intuitively
stable by the damping term introduced. In order to prove stability, we take a candidate
Lyapunov function

и = i « q } T[M]{q} + {q}T[A-]{q}) (11.3.10)

A c i+ i c сЬлшп tVif* T.vaminnv funrfinn fnrm is fbp сятпр яс f.liai rvf F!n /11 Я A\i LU III X*J T V &Д } IJ11V J u j u i y u u v i J-V*. V l i v vuu iv V i у Л- JL • V • X J I

It is not surprising that both expressions are identical considering the Lyapunov
function represents total energy (kinetic and potential energies) in both cases. The
time derivative of the Lyapunov function becomes

U = {q}T([M]{q} + [K]{q}) (11.3.11)

Using the governing equations of motion Eq. (11.3.9), we obtain

v = {q }T(-[D]{q} + [F]{u}) (11.3.12)

With the external control input ignored({u} = 0)

U = -{q}T[D]{q} (11.3.13)

Therefore, the time derivative of the Lyapunov function is a quadratic form in [D]
and {q}. If the damping matrix [D] is positive definite with {q}T[.D]{q} > 0, then
the system is asymptotically stable. In case the damping matrix is only semidefinite,
i.e. {q}T[-D]{q} > 0, then the asymptotic stability of the system is not guaranteed.
In this case, we can use another technique in order to prove the stability.

Section 11.4 Analysis of A Second Order System 401

Л» Exam ple 11.3.1 Consider a finite element beam model in Fig. 11.3.1.
The material properties are given as E l ~ 1.112 X 104, p = 0.003, / = 20
with consistent units. A set of dampers is assumed at a nodal point in order to
add damping to the system. The mathematical modeling of this system is given
by

[M]{q}+ [D]{q} + m { q } = 0

where
' 0.0223 0 0.0039 -0.0093-

Г1 #1 0 0.0571 0.0093 -0.0214[M] = 0.0039 0.0093 0.0111 -0.0157
.-0.0093 -0.0214 -0.0157 0.0286 .

- 0.2668 0 -0.1334 0.6671 - r0 0 0 ° 10 8.8946 -0.6671 2.2236 0 0 0 0
-0.1334 -0.6671 0.1334 -0.6671 . Yv \ = 0 0 с 0

. 0.6671 2.2236 -0.6671 4.4473 . .0 0 0 0.

[К] = 103 X

where с is the damping coefficient of the damper. When the Lyapunov function
is taken as the total energy of the system, the time derivative of the Lyapunov
function becomes

V = -{ q } r P]{q }

= - с « з 2

As long as qz ф 0, U < 0 and the system is asymptotically stable. Even if
the damping matrix has zero diagonal values, the system is still asymptotically
stable since qz ф 0 except for the equilibrium point.

$

11.4 A nalysis of a Second Order System

A scalar second order system is frequently adopted as a reference explaining
fundamental concepts of system responses. In fact, the majority of dynamical systems
can be explained by using a scalar second order system. In this section, we want
to introduce the natural frequency and damping ratio of a scalar system and key
parameters associated with time responses. One of the most typical exampies of the
scalar second order system is a spring mass and damper system in Fig. 11.4.1. The
governing equation of motion is given by

mx + cx + kx = f (t) (11,4.1)

where f (t) is the external force applied to the mass. Dividing both sides by the mass
yields

x + (c/m)x + (k/m)x ~ f(t)/m (11.4.2)

402
/ У У / У У У У .

Control of Flexible Structures Chapter 11

k .

m

x

F igure 11.4.1 An Example of a Second Order System

At this point, we define two parameters

шп - y/kfm, < - c/ccr (11.4.3)

where wn is the natural frequency and £ is the damping ratio. In addition, ccr = 2л/тк
is defined as the critical damping ratio. As a consequence, Eq. (11.4.2) can be
rewritten as

x + 2(шпх + ш%х ~ w2F(t) (11.4.4)

where we used f(t)/k = F(t). In order to derive the solution, we use the Laplace
transform technique ignoring initial conditions temporarily. This is also motivated by
the fact that, for linear systems, the stability condition is independent of the initial
conditions.

(S2 + 2 C ^ + ^)X (s) =o£F(*) (H.4.5)

Therefore,
X(s)/F(s) = u2J (s 2 + 2<uns + w2) (11.4.6)

where X (s) = i[x (f)] and F (s) = L[F(t)] are Laplace transforms of z (i) and F(t),
respectively. The equation obtained by setting the denominator of the transfer
function equal to zero is called characteristic equation. The characteristic equation of
the above transfer function, therefore, is given by

s2 + 2(>ns + ^ = 0 (11.4.7)

and the solution is given by

51,2 = ~Сшп ± wn\/C2 — 1 (11-4.8)

The above characteristic root is plotted on a complex plane in Fig. 11.4.2. The
dynamic behavior is dependent upon the magnitude of the damping ratio, £ and the
natural frequency un.

Section 11.4 Analysis of A Second Order System 403

Re

F igure 11.4.2 Characteristic Roots of the Second Order System

As a special case, we analyze a step response of the system by selecting

F(t) = 1, t > 0 or F (s) = 1/s (11.4.9)

that is, a unit step input. By substituting F(s) into the above equation, the output
can be found by the inverse Laplace transform technique x(t) = L-1 [JY(s)]. The
result turns out to be dependent upon the magnitude of the damping ratio (.

i). Underdamped case, 0 < С < 1 In this case, s 1,2 are complex conjugate, and the
motion turns out to be a damped oscillatory one.

ar(0 = 1 -

e-C"nt

\ Л - С а
:Sin(u)dt + ф) (11.4.10)

where ф — tan 1>/(1 — (2)/C and = >/(1 — С2)шп is the damped natural
frequency.

it). Critically damped case, £ = 1 In this case, s 1,2 are repeated real numbers. The
motion is monotonically increasing torward the steady state value

x(t) = 1 - е~ш̂ (1+и>п1) (11.4.11)

n i). Overdamped case, £ > 1 In this case are all negative real. The motion i
also monotonically increasing toward the steady state

_ t | { e-tVC1- 1)"-* c(v/Ca- 1>“ "1 ^

2^/C - 1 V(C + y/<? - I K ~ « - VC2 - I K J
(ЛЛ A 1 0 \

.1 . у

Three different motions are presented in Fig. 11.4.3. As seen in the figure,
the usual response trends are exponentially decaying motions dictated by e~ ^ nt
superimposed by damped sinusoidal motion with damped frequency, u)j. In particular,
the constant r = 1/Cu)n is called time constant which represents how long it takes for

404 Control of Flexible Structures Chapter 11

Under damptd. f < 0

time

F igure 11.4.3 Step Responses with Different Damping Ratios

the response to reach a certain level from an initial condition. The shorter the time
constant the quicker the response tends to be.

For an underdamped motion, some parameters are introduced characterizing
the transient response of the motion. Those parameters are sometimes used to
prescribe design specifications. In Fig. 11.4.4, different labels are used to denote
those specifications.

*') Rise time, tr :

The rise time is the required time for the response to start from zero value and
cross the unit steady state value. The rise time is found from

ii) Peak time, tp:

Peak time is the instance when the response reaches a maximum value. The
peak time can be obtained as

(11.4.13)

It turns out that

(11.4.14)

dx
dt

= 0 (11.4.15)

which produces
t 7Г 7Г

(11.4.16)

Section 11.4 Analysis of A Second Order System 405

F igure 11.4.4 Key Parameters in the Step Response

Hi) Maximum overshoot, Mp:

The maximum overshoot represents the amount of maximum deviation of the
response from the steady value. Prom Fig. 11.4.4, the maximum overshoot satisfies

Mp = x(tp) - 1

= (11.4.17)

iv) Settling time, ts:

The step response of the underdamped system experiences a transient response
finally reaching a steady state value. The settling time represents the amount of time
it takes for the response to stay within a certain band prescribed around the steady
state value. The size of the band can be selected as, for example, 2% or 5%. For 2%
band, the settling time turns to be approximated by the multiple of the time constant,
т.

ts = A r = - ^ - (11.4.18)
С шп

X E x am p le 11 .4 .1 A second order system is given by

where w=2.Q (rad/sec) and £=0 .2 . The unit step response results are calculated
by calling fesecndfe, u)n) command.

[tp, t r , t s,M p] = [1.603, 1.772, 10, 0.527]

function [t_p, t_r, t_s, M_p]=fesecnd(zeta, w_n)

406 Control of Flexible Structures Chapter 11

%--- -
% Purpose:
% The function subroutine f e s e cnd. m calculates dynamic characteristics
% of a typical standard second order system.
% w_n‘ 2
% H(s)— ----
% s“2+2*zeta*w_n*s+w_n"2
%
% Synopsis:
% [t-p, t_r, M-p, t_s]=fsecond(zeta, w_n)
%
% Variable Description:
% Input parameters : zeta - damping ratio
% w_n - natural frequency
% Output parameters : t_p - peak time, t_r - rise time
% t_s - settling time, M_p - maximum overshoot,
%--- ---------------
w_d=sqrt(l-zeta*2)*w_n; % Calculate undamped natural frequency
t_p=pi/w_d; % Calculate peak time
t_r=atan2(sqrt(l-zeta"2), -zeta); % Calculate rise time
t_s=4/zeta/w_n; % Calculate settling time
M-p=exp(-zeta*pi/sqrt(l-zeta'2)); % Calculate maximum overshoot
%----- --

t

The same analysis and definition can be applied to multiple degree of freedom
systems which may be generated by finite element analysis. From the original
governing equation

M W + M W + M { q } = И М (ii.4 .ie)

and assuming Rayleigh damping with [C] — a[M]+/3[K], we obtain modal coordinate
form governing equation

rii + 2Qu>iT)i+L}?T]i = f t , г = 1 ,2 ,.. . ,n (11.4.20)

Now for each modal coordinate param eters^-,£,-) we can check the dynamic charac-
eristics.

11.5 S ta te Space Form D escription

In general, the equations of motion of dynamic systems are described by second
order differential equations. Finite element modeling of dynamic systems also results
in second order differential equations of motion. The second order differential
equations cover a generic class of dynamic systems. The analytical solution of second

Section 11.5 State Space Form Description 407

F igu re 11.5.1 Graphical Representation of the State Space Equation

order equations of motion is essentially equivalent to solving ordinary differential
equations.

On the other hand, the first order state space form description of dynamic
systems has certain advantages over the second order form description. The second
order equations can be transformed into first order equations and the first order forms
also can be transformed into second order equations. Majority of existing computer
software tools are written for the first order systems. This is due to the inherent
nature of first order equations which are more convenient for numerical computations.
Another significant advantage of the first order form descriptions is that we can
analyze the equations in an explicit form.

Consider a linearized second order dynamic system

[M]«} + [£>]{q} + M {q} = [*!{«} (11 -5 .1)
In order to write the above equation in the first order form we introduce a vector
which is usually called the state v e c t o r

{x} ■ { 3 } (11.5.2)

+

Now we have the following relationship

{A} = dt { 4 } = { - [M]~'[D]q - [M]~'[K]q + [M]-'[F]r

- [° 1

= [A]{x} + [B]{u}
In other words, we rewrite the original second order differential equation in the first
order form by introducing the state v e c t o r {#}. The state v e c t o r and associated
properties constitute the so-called state space. The state space and related subjects

JW
]«}

0
[M] - 1[F]

«(11.5.3)

ПУй итлП А ЛОЛ1*1
d l t. Wt.J.1 Ut-k3Vi lU t U 111 XIÂ JLO . —i a j .

The size of the first order system, however, increases by twofold compared to
the original second order system. This may seem to be a drawback; however, the
modern computational capability resolves this concern to a considerable extent. As
mentioned earlier, the first order form has certain advantages being adopted in the
majority of engineering applications. Graphical representation of the first order state
space equation is presented in Fig. 11.5.1.

Eigenvalue Problem and Free Response

Let us consider a case without an external input, that is {«} = 0, sometimes
called the aut onomous sys t em. Thus, Eq. (11.5.3) reduces to

{*} = № } (11.5.4)

In order to find the solution {x(i)} to the above equation, we assume

{#(<)} = с е м {ф} (11.5.5)

where с is an arbitrary constant and {ф} is a vector of consistent size with {x(£)}.
Then we substitute Eq. (11.5.5) into Eq. (11.5.4) arriving at

с (Х1- [А]) ем {ф} = 0 (11.5.6)

In other words,
(A / - [4) W = 0 (11.5.7)

Since {^} should be a nonzero vector, for the existence of a nontrivial solution, it
should follow

|AJ — [A]| = 0 (11.5.8)

The above equation can be solved for A for the given system matrix [А]. There are n
A’s as the size of [A], For an arbitrary ith A w e can rewrite Eq. (11.5.7) as

(11.5.9)

Equation (11.5.9) is called the e i g envalue prob l em , which is a crucial concept in linear
dynamic system analysis. Even if we eliminate the control input temporarily for the
eigenvalue analysis, the eigenvalues and eigenvectors are used for stability analysis
and computing mode shapes of the system.

For a given system, there may exist repeated eigenvalues, for example, a system
with rigid body motion such as pure translational and rotational motions. This
situation is treated by somewhat different approaches. Momentarily, the analysis is
restricted to the case where the eigenvalues are all distinct. Let us write the eigenvalue
problem for each index

\ I a , \ — Г АЛ(a . \''ll.V'l/ — [,ЛЛТ1 j
A2 {<£2} =

: (11.5.10)
АП{<Ы = [А]{фп }

The above set of equations can be combined into a single matrix equation form

408 Control of Flexible Structures Chapter 11

[Г][£П = [f/P] (11.5.11)

Section 11.5 State Space Form Description 409

where [U] is a matrix whose columns consist of eigenvectors and [Г] is a diagonal
matrix for which each diagonal term consists of eigenvalues.

[U] = [{фг},{Ф2},-ч ,{Фп}]> [Л] = <Ко?[Л<], i= l ,2 , . . .A n (11.5.12)

Providing that the eigenvalues are all distinct, Eq. (11.5.11) turns into a relationship
[38-41]

[A] = O T-'M IP] (11.5.13)

That is, the matrix [A] can be rewritten as a combination of a matrix which consists
of eigenvectors and a diagonal matrix of eigenvalues. As discussed in the above, when
there are repeated eigenvalues, we should use a modified form of equation. Equation
(11.5.13) is named as s imilari ty transformation of A.

Note that the eigenvalue problem is invariant under the similari ty transformation

|A7 - l£T‘ [A M = IPT'AICT] - [PJ-'WIC/JI
I PtfI _1 |] i -r P i 1 I I Ггт1 I

= \Wl ‘ 11̂ -[AJ||L(/J|
= | А/ — [Л] | (11.5.14)

where we used |[£/]| = 1/|[Z7] x|.
As we might remember, the eigenvaule problem for second order systems in

Ghapter 8 can be similarly applied to a first order system in this case. The solution
of the eigenvalue problem leads us to the analytical expression for {#(/)}

{«(<)} = C\e + c2eA2<{<£2} + • • • + c n e n {фп } (11.5.15)

The constants (c j, c2, ■ ■ ■, c n) are obtained from the initial condition. Equation
(11.5.15) tells us that once we compute eigenvalues and eigenvectors, then we obtain
the expression for the response with respect to the initial condition.

A Example 11 .5 .1 Let us consider a finite element model for a beam with
only one element as shown in Fig. 11.5.2. The mass and stiffness matrices for
this system are

[M] = ph
420

156 — 22/i
—22 h 4/i2 , [*] =

Ш
h3

12 —6Л
- 6Л 4h2

where p = 0.002A;gr/m is the linear mass density, E l = 1 0 iVm2 is the beam
rigidity, and h = 1 m the element length. The second order system is converted
into the first order system in accordance with Eq. (11.5.3). The result is

0 0 1.0000 0 ■
0 0 0 1.0000

6.30 x 104 -4 .8 x 104 0 0
.5.04 x 105 -3.69 x 105 0 0 .

410 Control of Flexible Structures Chapter 11

Now we have a MATLAB built-in function [V,D]=eig([A]) command, as
explained in Chapter 1, in order to compute the eigenvalue and eigenvector of
[А]. Consequently,

A1i2 = ±550.35*, A3)4 = ±55.86*'

{
 2.3635 x 10"4 Л f 2.3635 x 10"4
1.8016 x 10"3 I r , , 1.8016 x 10"3

0.1301* [’ -0.1301*
0.9915i J I -0.9915*'

r -1.0516 x 10“2 'j f -1.0516 x 10"2 ’j
I 1 A A Q d чу 1П—2 I I 1 A A Q Z . 1 Л-2 I

r , -i I "i.'tlOU Л IV i f jr "I J —l.ttOU A 1U 1

{ Ф з} - < —0.5874* [5 ^ ~ | 0.5874* [
I -0.8091* J I 0.8091* J

The time response of the system due to the initial condition can be written as

{x(f)} = C!{^i}eAl* + с2{<ЫеА2‘ + сз{^з}еАэ* + с 4{фл}ех4<

In order to find the const ants (Ci, c 2, Сз, C4), we assume an initial condition as

(0.05 'i

M °)> = \ ~0T

Therefore, the constants are calculated as

c 1)C2 = -26.719 ± 8.4788 x 10~2*', c 3, c 4 = -2.9779 ± 0.1039*

Substituting the constants into {x(<)} and using the famous Euler’s formula as
[38]

e,tf = cos(0) + i stn(0)

we obtain the final form for {#(£)} analytically

(-1.2630 x 10~2 ̂ f -4.0079 x 10~5 Л
I _Q fi974 v in - 2 I I _5tnKR1 v 1П“ 4 I

<■<*»= i ; is-> \ c- (550-35*>+ \ \
l —1.6813 x 10-1 J I 5.2984 x 101 J

6.2673 x 10"2 ̂ f 2.1852 x 10-3
8.6328 x 10- 2 I од.л , I 3.0100 x 10“ 3
1.2206 x Ю- i <™(55-86<) + < —3.5008
1.6813 x 1 0 - 1 J I -4.8221

sm(55.86tf)

t

Section 11.5 State Space Form Description 411

F igure 11.5.2 A Finite Element Model with a Single Element

Forced H^sponse sii rj State Transition M atrix

The solution to the first order equation Eq. (11.5.3) can be also found by using
the Laplace transform technique

sX{s) - {x(0)> = [A]X(s) + [B]U(s) (11.5.16)

where X (s) = L[{a?(<)}] is the Laplace transform of {#(<)}> and U(s) = ^[{u(0}] ^
the Laplace transform of {tt(tf)}. Alternatively,

X(s) = (s i - [A j)-1* ^) + (s l - [A])-l [B]U(a) (11.5.17)

In order to find the time response, we take the inverse Laplace transform of X(s).
First, the inverse Laplace transform of (s i — [A])-1 should be evaluated. If a is a
scalar, we know

L - ' K s - a) - 1] = e at (11.5.18)

Generalization of Eq. (11.5.18) to a matrix [A], we can derive a similar relationship
as shown below.

L " 1[(s / - [A]) -1] = e ^ t (11.5.19)
Therefore,

{ж(<)} = е^*{ж(0)} + f т)[В]{«(г)}с£т (11.5.20)
Jo

where the second term on the right-hand represents a convolution integral. The
response consists of two parts; one is due to the initial condition ({#(0)}) and the
other one is due to the control input ({«})•

It is not as straightforward to understand e a s the scalar case e at. In order
4 - „ ________l . . ,— J A] t й ____t. „ « * ___________________________t™ ! tr/м* й аИ йй o v rv ЧП^1 ЛГ1
LU ailCÛ £C C-” “ , ULBb WC lllt i UUUtC tuc laijfUL OC1 1CO слршю1ии.

еМ , = [/] + [Л](+ Ь ^ + № ^ + . . . (11.5.21)

The first fundamental question is whether the infinite series converge or not. The
answer is yes from a physical intuition; the factorial term in the denominator

dominates the exponential term in the numerator. Efficient numerical algorithms
have been developed and a MATLAB built-in routine expm is also available.

Another interesting property can be derived from Eq. (11.5.13) which calculates
the exponential of a matrix

е [л] * = [ц] - 1 е Ш*[и] (11.5.22)

where
ê A|] = diag[eXit], i = 1 ,2 , . . . , n

The proof follows as

e^l* = [i] + [A]t + [A]42/21 + [Af t3/3! + • • •

= [и г ч т + (p / r ч л т а * + т - ч т т т - ч т }) * 2/*.
+ (^] - 1[Л][г/])(^]-1[А][^])([^]-1[Л]Ег7])<3/з! + • • •

= [U]~4 [Г] + [Л]* + [Л]2<2/2! + [Л3]*3/3! + • ■ -)[U]
= [U)-1^ ^ ^] (11.5.23)

Therefore, the eigenvalue solution can be used again to calculate e^* .
Let’s go back to the first order equation without the control input term. Thus,

{*}=[Л]{*} (11.5.4)

In order to derive the solution, we assume

{*(<)} = [Ф(<, г)] {«(i-)} (11.5.24)

where [Ф(<, r)] is the so-called s tat e transi t ion matrix which relates the state variable
af rlifforonf incf.antc fliaf ic irifK / fnr / S t nKviniidv \ < b (i Jc *
UV U111V1 V11V iiiu V U>11 UU j U11UIV lUj й̂/yv у j TV J.VU I у J iv/i К J » ' t • \/ M T J.VUU1JI f yj iU t*

time varying matrix. Now substitute Eq. (11.5.24) into Eq. (11.5.4).

[Ф(*, т)]{*(г)} = [Л][Ф(*, т)]{*(т)} (11.5.25)

Therefore,
[Ф(*,т)] = [А][Ф(*,т)] (11.5.26)

By solving Eq. (11.5.26) we can derive the analytical expression of {«(t)}. The above
differential equation is combined with the initial condition of [Ф(£, т)] by noting that

{#(7-)} = Ф (r, т){®(г)} (11.5.27)

In other words,
[Ф(т,г)] = / (11.5.28)

and the combination of Eqs. (11.5.26) and (11.5.28) constitutes a matrix differential
equation. Obviously, a numerical integration technique can be applied to the
differential equation. There are other useful properties of [Ф(£, r)j [38-41].

(*) Wt,T)] = [Ф(<, i2)][0(*2, 1-)], t < h < r

(«) [Ф((,г)] = [Ф (г,()]-1 (11.5.29)

412 Control of Flexible Structures Chapter 11

Section 11.5

u (t)

State Space Form Description

_»| Т ^ (г)=и (к)

413

У
/

/ ч
kT (к+1)Т

F igure 11.5.3 Graphical Representation of a Zero Order Hold(ZOH)

As it is the case, when [A] is a constant

[Ф(<,г)] = е ^ " т)

Equation (11.5.20) is generalized using the state transi t ion matrix

= W > r)K *(r)} + ^ [<£(*,0][5]{ « (£)R (11.5.31)

The state transi t ion matrix is a useful tool understanding a Unear first order system.
It also represents propagation of the initial condition which could be a perturbation
due to external disturbance. In celestial mechanics, orbit perturbation phenomenon
is analyzed quite often by the state transit ion matrix concept.

(11.5.30)

Time Response by Numerical Technique

frequently, the time response of a system due to the initial condition or external
control input is needed to analyze the behavior of the system. For nonlinear systems,
numerical techniques are used, and for linear systems we can use other approaches.
One of the useful techniques for linear system analysis and digital computation is to
set the control input constant, called zero order hold, during a certain interval of time.
The result becomes more accurate as the time interval, during which the control is
set to be constant, decreases.

The control input, for instance, is set to be [38]

u(t) = u(k) = cons tan t , kT < t < (k -f 1)T (11.5.32)

where T is the sampling period, u(k) is the magnitude of control input between kth
and (к + 1)|Л step. Let us assume the state vector is evaluated at k1h step. We are
interested in evaluating the time response of the state vector at (к + l) ift step by
utilizing information at kth step. Using Eq. (11.5.30)

{x((k + 1)T)} = [Ф((к + 1)Т,кТ)]{х(кТ)} + /Т[Ф (£ > 0)Р К «(*)К (11-5.33)
Jo

414 Control of Flexible Structures Chapter 11

1 kf
J №-

- E -
ТП/

k2
--- /yyyL.

—0—
m2

Figure 11.5.4 A Spring Mass and Damper System for Time Response Example

The state vector [Ф((& + 1)T, fcT)] is written as

Г ж. / / j_ i i.m \1 \АУТ /лл f c\ a\-t 1)1, K1)J = CL'"J“ (и.О.ОД)

In addition

/ [ФК, 0)]«(i)d£ = [Л]-1! ^ - I)u(k) (11.5.35)
J 0

Thus, Eq. (11.5.33) becomes

{x(fc + 1)} = е ^ Т{х(к)} + [A]'~1[e ^ T - I][B]uk = [Ф]{ж(&)} + [Г]«(&) (11.5.36)

where we used simple notation к -f 1 = (k -f 1)T and к = kT. Equation (11.5.36) is
a discretized state space equation by holding the control input constant during each
sampling period(T). The time response is easily computed by sequential substitution
for the discrete form of equation [38].

{*(1)} = [Ф]{*(0)}+[Г]{«(0)}
{*(2)} = [Ф]{*(1)} + [T]{it(l)} = [Ф]2{*(0)} + [Ф][Г]{«(0)} + [Г]{«(1)}
{*(3)} = [Ф]3{*(0)} + [Ф]2[Г]{«(0)} + [Ф][Г]{«(1)> + [Г]{«(2)}

(11.5.37)
П— 1

{z (™)}= [Ф]"{*(о)}+ j ; m j [r]{u(n - 1 -
3=0

4» Example 11 .5 .2 In this example, we apply the time response formula to
an example structural system. A spring, mass and damper system is given in
Fig. 11.5.4. The governing equation of motion for the system is given as

[M]{q} + [C]{q }+ [K]{q }= H M

Section 11.5 State Space Form Description 415

mi 0 ' ‘0.5 0 '
. 0 m2 . 0

Юо

where [M], \K\ are 2 by 2 matrices, and [F] is the input influence matrix given
as

[M} =

[C\ =

[K] =

W\ =

C1 + c2 —C2
c2 C2

4 - 2
- 2 2

ki +k2 - k 2 ’ 16 - 8 '
~k2 k2 - 8 8

1 0
0 1

«-■ po/iAti/I л i*/Jor rTAirai'nmn' a/41i4tiAn ю 1 Tî Л О fivof ЛТ/loT ofafа отчале
X UC O ^V IIU ULU^Ji gV/TV ilU llg 4.V|UUIfiVll 1£7 ifiUIlOWLUlVU i l l W U IIIOV V/k VIV±

form. In other words,

{ i} = [A]{x} + [B]{u}
l y} = [C]{x}+[D){u}

where [j4] and [5] matrices based upon Eq. (11.5.3). A MATLAB m-file
f e l r e sp .m is written for this example. The f e l r e sp .m computes time responses
by converting the original state space equation into a discrete equation by a zero
o rde r hold approximation for the control input. The initial condition vector
is assumed as {ж(0)} = [1 0.1 — 2 2]T. The external control inputs are
prescribed as

Ui(t) = sm(10i), « 2(<) = 3cos(10i)

Figure 11.5.5 Dresents the time resDonse result bv f elresp.m. As we can see, theu ■ * ■* * » * *

motion is oscillatory affected by the harmonic external input,
function [x,y]=felresp(A,BiC,D,xO,u,t)
%--- ------—
%
%
%
%
%
%
%
%
%
%
Of
/0

%
%
%
%
%
%

Purpose:
find the time response of a linear system driven by initial condition
and external input. The numerical algorithm used in this program is

zero order hold approximation for control input for discretized system.

Synopsis:
[x,y]=felresp(A,B,C,D,xO,u,t)

Variable Description:
А, В, C, D; system matrices in

xdot = Ax + Bu, у = Cx + Du

xO; initial condition vector for the state variables
t ; integration time at equal distance as t=0 :dt:tf
dt- time step, tf - final time
u ; control input vector with as many rows as the size of t

416 Control of Flexible Structures Chapter 11

0.5

-0.5

0.6

0.4

\ ____________________

0.2
CMСГ

0

-0.2

-0.4

Time(sec)
10 5

Ttme(sec)
10

о
1O'

А А Л . а Л А л л л л л л л

i ^ w w w m

-2

-3
5

Time(sec)
10

F igure 11.5.5 Time Response Result for Example 11.5.2

% x(y) ; state(output) vector
%
% Notes:
% The control input vector must have as many columns as
% the number of input
%-- ------------------------------
rn.m1=size^B'J:
к----J-------J -------------V----- / 7

%--------------------------------- --
% Transform into discrete equation by zero-holder approximation

Ts=t(2)-t(l);
Phi=expm(A*Ts);
Gamma=inv(A)*(Phi-eye(n))*B;
nc=max(size(t));
x=zeros(nc,n);
tx=zeros(n,l);
xi=xO;
tx=xi;
% Calculate time responses x first
for i= l:nc
x(i,:)=tx,;

Section 11.6 Transfer Function Analysis 417

tx=Phi*tx+Gamma*U(i,:)>;
end
% Calculate the output response by using y=Cx+Du
y=(C*x’+D*U’)’;
%...>........ -------

11 .6 Transfer Function Analysis

Transfer function analysis of linear dynamic systems is another useful too
attalvtzitttf t.b** r*hara.r*t.4ariQi.ir*fl C i f linear eVfitpms 'T'liic annrnarb bac otSHaI'« « W l j WWWW& AWV4 w <f*iv hiawuia w« vx&iv> J.1X1U VUIV11 UUW l/VVU T» 1414̂ 1

applied to various areas such as the control system design, modal testing of structures
and so forth. The basic idea of transfer function analysis is to convert a syster
described in the time domain into the Laplace transform domain (s domain) so tha
the relationship between input and output is written as an algebraic expression of th
Laplace transform variable.

Let us consider a state space representation of a dynamic system

{i} = [4 { * } + [*]{«} (11 .6.1
M = [C]{*} + [£>]{«} (11 .6 .:

Taking Laplace transform on both sides of Eqs. (11.6.1) and (11.6.2) yields

c W e ' i _ J W n U — г л 1 у с « л j_ m ir r(o \ (\ \ «
• J * i * J * * V,V J T ^ Л. .\ J .

Y(s) = [C\X(s)+[D]U{s) (11.6.

where X (s) = £[{ж(2)}] and U(s) — £[{«(£)}], and L is the Laplace transfoi
operator. Here, we drop the initial condition vector {^(0)} since the dynan
characteristics dynamic of linear systems are independent of the initial conditic
By collecting common terms, Eq. (11.6.3) becomes

X{s) = (s I - [A]) - l [B]U{s) (11.6

Substitution of Eq. (11.6.5) into Eq. (11.6.4) results in [40]

Y (s) = [[С 1(»/ -[Л])-1[В] + [В]]£/(8) = [Я (8)]£/М (l i e

It should be noted that [i/(s)j may be a matrix if the number of inputs and/or outp
are greater than one. As a special case of a single input and single output systi
[Я (5)] becomes a scalar quantity representing the ratio between input and outpu1

418 Control of Flexible Structures Chapter 11

U(s) Y(s)

F igure 11.6.1 Representation of a Transfer Function using a Block Diagram

In other words, the transfer function relates the output(Y(s)) to the given input (U(s))
in an algebraic expression. Figure 11.6.1 shows graphically the transfer function based
upon the input-output relationship. This is a significant advantage over the original
equation in the time domain, where the analytical expression for the input and output
is not readily available.

For the open-loop transfer function described as

я« = £ § <1L6-8>
the solutions of D(s) = 0 are called poles and that of N(s) = 0 are is called zeros of the
system [38-41]. The poles determine the stability of the system and the zeros usually
determine a time domain response shape. The zeros and poles of a given system in
state space form can be obtained by a MATLAB built-in function poly. The detailed
explanation for poly command is provided in Chapter 1.

ф E x am p le 1 1 .6 .1 Let us consider a finite element model of a Euler-Bernoulli
beam as shown in Fig. 11.6.2 . There is an actuator located at the tip of the
beam. Annlvine the standard beam element using Hermite Dolvnomials vields— —f —ЩГ (J - - - - - - ... I_I л. щ> - ml

[M m + [K]{4 } = [F){u}

where [M], [A'] are 4 by 4 matrices, and [F] is the input influence matrix given
as

' 4.46 0.00 0.77 -2.23-
0.00 16.5 2.23 -6.17
0.77 2.23 2.23 -3.77

.-2 .23 -6 .17 -3.77 8.23 .

and

■ 4.722 0.000 -2.361 14.17 ' -o-

[K) = 0.000
-2.361

226.7
-14.17

-14.17
2.361

56.67
-14.17 [F] =

0
0

. 14.17 56.67 -14.17 113.3 . . 1 .

The second order governing equation is transformed into a first order state space
form. In other words,

{i} = п н * } + д о м
M = [C]{*}+ [£>]{«}

Section 11.6 Transfer Function Analysis 419

Table 1 1 .6 .1 Coefficients of the Numerator Matrices

Output variables Coefficients of the numerator

Vi [0 21.10 0 -6.287 X104 0 -1.292X108 0 1.228ХЮ10]

0i [0 14.55 0 -7.509 XlO4 0 1.656X107 0 1.841 XlO9]

V2 [0 0 228.0 0 1.303X 106 0 8 .556x10s 3.928 XlO10]

&2 [0 0 121.1 0 3.825X105 0 1.295X108 0 2.455X109]

F igure 11.6.2 A Finite Beam Model with an Actuator Input

where [A] and [5] matrices generated from and [F]. A MATLAB
m-fiie f e s i o t f .m is written which converts a state space form into a transfer
function. The transfer functions are found between the actuator input and
different outputs. The denominator polynomial D(s) is given by

D(s) =s8 + 1.101 x 10V + 1.242 x 10V + 1.174 x 10V + 2.898 x 109

The coefficients of the numerator matrix are provided in Table 11.6.1

i____ Гхт__ тч__ 1 _a n г' тч
miLVUVU [П UUl, l/CWJ =

%--
% Purpose:
% The function subroutine f s s i o t f .m converts a state space form of
% system into a transfer function form.
%
% For a given system
%
% xdot = Ax+Bu у =Cx+Du
%
% The transfer function becomes
%
% N(s) -1
% H(s) = -------= C(sl-A) В + D
% D(s)

420 Control of Flexible Structures Chapter 11

%
% Synopsis:
% [Num,Den]=festotf(A,B,C,D,iu)
%
% Variable Description:
% Input parameters -
% System matrices [A,B,C,D]
% iu - Index for control input(iu-th input)
% Output parameters -
% D(s) - Vector of coefficients of the denominator polynomial
% N(s) - Vector of coefficients of the numerator polynomials
% Note -
% There are same number of rows in N(s) as the number of output
%---
Den = poly(A); % Determine denominator polynomial
В = B(:,iu); % Select the corresponding column
D = D(:,iu);
[m,n] = size(C);
Num = ones(m, n+1);
for i= l:m
Num(i,:) = poly(A-B*C(i,:)) + (D(i) - 1) * Den;
end
%--- -------------

_ т?~ /11 а сл /л г г у* 1 \ — 1 ~ i,~.* __1 л л _________________ лгги ш u q . уал — I/1]) p icijo <х ы с у ru te u c tc r iim iin g s ta u iu ty a i iu иш сг
dynamic characteristics of the system. According to a linear algebra theory, it is
rewritten as

(г 7 Г t^]) /11 p n\
(8 7 _ [л !) - Й - И 11 (6,9)

where js/ — [A]| represents the determinant of (s i — [Л]), which should be an n th order
polynomial in s

|s7 — [A]| = s n + ctjs” + 02 ”̂ 2 -f* • • ■ an_ is -1- an (11 ,6 .10)

and Adj() denotes adjoint of a matrix. The equation |s i — [Л]| = 0 is called
charac t e r i s t i c equation. Equation (11.6.10) also can be expressed as

Ic7 _ \ A 1 \ — (s — l . V e - \ . I . . . f e _ \ A /11 fi 1Пr l'^ji — r't) v“ "п/

and the solutions of the charac t er i s t i c equation are

в = Лъ A2, . . . ,Л П (11.6.12)

where Aj is called the i th eigenvaule or characteristic root of the system.

The transfer function can also be written as a combination of each first order
term in s called partial f rac t i on expansion [38-41]. That is

Я (*) = t C\ ̂ + T~C\ \ ’ + t CWi i (11.6.13)(s — Ai) (s - A 2) (s -A „)

where the coefficient Cj can be determined from

Ci = H(s) (s — Xi) (11.6.14)
s=A,

Here we consider a unit impulsive input. The impulsive input is a popular choice
in modal testing and structural system analysis. Mathematically, it is represented in
terms of the Dirac Delta function. For example, if the input is an impulse input with
unit magnitude, then

u(t) = 6(t - t0) (11.6.15)

Section 11.6 Transfer Function Analysis 421

for which
Jloo 6(t — to)dt = 1 , t = t о /ц 6 i 6\
*(<-to) = 0 , t ^ t 0 U i-o.ioj{

The Laplace transform of the unit impulse function at to = 0 is unity, that is (7(s) = 1.
Therefore, the output is equal to the transfer function itself. Thus,

Y(s) =H(s)U(s)
=H(s) (11.6.17)

Now the time domain response for Y(s) or H(s) can be obtained by taking the inverse
Laplace transform of Y(s). Based upon the expression in Eq. (11.6.13), the response
is expressed as

y (t) = I _1 [Y(s)] = CieAl< + с2еЛа* + • • ■ + c ne K t (11.6.18)

Equation (11.6.18) is sometimes called impulse response by the nature of the applied
impulsive input. It is obvious from the expression in Eq. (11.6.18) that the response
is stable if

Я е[А ,]< 0 , for, i = 1 , 2 ...П (11.6.19)

where i2e[A,] denotes a real part of A,-. In other words, the solution of the characteristic
equation should have negative real parts for stability.

When the input applied is a step function as

u(<) = U0 (11.6.20)

the system output becomes

Y(s) = H(s)Uo~s (11.6.21)

422 Control of Flexible Structures Chapter 11

The output t/(<) created by the step input is called step response

y(i) = i - ‘ [y(*)]

s L - ’ p fsJ i/ o i] (11 .6 .22)s

Bounded Input Bounded Output (BIBO) Stability

At this point, we want to go back to the stability discussion; BIBO stability
which was introduced in Sec. 11.2. For simplicity, we take a single-input and single­
output system. From Eq. (11.6.6), the time domain solution for the input and output
is given by the convolution integral

y (t) = / h(t - t)u(t)cLt (11.6.23)
Jo

where h(t) = L -1 [#(«)] is the impulse response of the system. In case the input to
the system is bounded

H r)[< M (11.6.24)

Then the output equation satisfies

l»(OI = I f К * - t) u (t)(1t \
Jo
r*

< I \h(t — t) u (t)\(1t
Jo

< [\h(t - T)\\u(T)\dT
Jo

< M f |h(t — r)\dr
Jo

Thus, the output of the system is bounded if f * |/i(t — r)\dr is bounded [37]. In
particular, the stability is based upon the steady-state condition, and the output is
bounded at steady-state when

(11.6.26}

Since the impulse response (h (t)) of the system depends upon poles or characteristic
roots of the system transfer function, the system BIBO stability depends upon th(
system poles and the magnitude of the input which must be bounded.

Basic Concept o f Feedback Control
The basic feedback control concept in frequency domain is represented in term!

of a block diagram in Fig. 11.6.3. It is represented by the transfer function descriptior
using Laplace transform. The system is under three different external inputs; reference

/Jo
|/i(oo — r)\dr < N

(11.6.25)

Section 11.6 Transfer Function Analysis 423

Sensor

F igure 11.6.3 Feedback Control Block Diagram

command input Uref (s)> disturbance d(s), and sensor noise n(s) . The three inputs
affect the system behavior in combination. The output (Y(s)) of the system is
measured by a sensor, and the output from the sensor is compared to the reference
input. The compared signal called e r ror s ignal is fed to the actuator, and the actuator
applies corrective signal to the system. By the actuator signal, we hope the error signal
goes to zero asymptotically. Here we can derive a relationship between the reference
input Uref (s) and the output Y(s) . Note

Since

Therefore,

E{s) = U r e f (s) - Y (s)

y (s) = H(s)G(s)E(s)
= H(s)G(s) (U„ f (s) - Y (s))

\/Tl (\ - # (* №)
()/ re/(S) “ 1 + G(s)H(s)

(11.6.27)

(11.6.28)

(11.6.29)

Similarly, we can derive the transfer functions such as Y(s)/d(s) and Y(s)/n(s).

1 (11.6.30)

(11.6.31)

Note that as we increase the feedback gain H(s), the output due to disturbance
decreases while the output due to noise increases. This is a typical aspect of a feedback
control law with a varying feedback gain. The feedback control law produces a new
transfer function and corresponding characteristic equation [39]

(11.6.32)

The new transfer function is called a closed-loop t rans f e r func t i on and the corre­
sponding system is called a c losed-loop syst em. As discussed earlier, the solution of

424 Control of Flexible Structures Chapter 11

the characteristic equation determines the stability of a system and the controller
block(Cr(s)) is designed so that the closed-loop system becomes stable. Obviously,
the closed-loop system stability depends on not only G(s) but also H(s). Depending
on the nature of H(s) , it is sometimes easy or difficult to design a stabilizing controller
G{s).

Also, an important performance criterion in the transfer function description of
a system is the e r r o r defined as the difference between the reference input and the
actual output

E(s) = Ur e f { s) - Y (s) (11.6.33)

which follows as

■Uref(s) (11.6.34)1 + G(s)H{s)

Similarly, the error due to disturbance and measurement noise is represented as

* (■ > / *)= i + G g w .) (» • «■ »)

•E(s)/n(s) = ! + g js)^ (s) (11.6.36)

The steady-state error can be obtained by the f inal value theor em of the Laplace
transform technique.

e(oo) = iim sE(s) (11.6.37)

Г\пд f Vi 1 П ГГ 1П + orocf ir» t r in F.n ^11 ft 1 C f IiqI f Ьл C l >7 £* nf П (Л И (in/'reacoo ас flio
Ulliug ii l у X X Л. J m VUUV UA1V VX yxx у * J J UiVi tJUUVO uu

size of the error signal decreases. This is a typical aspect of a control system using a
high feedback gain for performance improvement.

Proportional plus D erivative Control Law

One of the popular classical control law techniques is the Proportional plus
Derivative (PD) control law. The controller G(s) uses error signal and provides
command input to the system, and the input signal is a combination of proportional
plus derivative of the error signal. That is,

<ЭД = .Кр(тв+1) (11.6.38)

where the operator s represents a derivative operator in Laplace transform as L[e(t)\ =
sE(s) , and K p is a constant. The constant K p term contributes to eliminating a steady
state error and r contributes to a better transient response. For example, a spring
mass system is given by

mx + kx = f (t) (11.6.39)

or in transfer function form

*(.)/F(«) = Я (.) = - - i - j (11.6.40)
S т

Section 11.6 Transfer Function Analysis 425

Y(s)

S'ensnr

F igure 11.6.4 Proportional plus Derivative(PD) Control

where F(s) = f (s) / m and шп = (k/m)1/2. The open-loop characteristic equation
follows as

s 2 + u% = 0 (11.6.41)
The solutions are s = ±wnt and the system is neutrally stable or oscillatory. The
response never reaches a steady-state and it does not track input command. Now
we add a PD controller as in Fig.11.6.4, and the closed-loop characteristic equation
becomes

1 + K p(ts + 1)
1

s 2 + u l
= 0 (11.6.42)

Thus,
s 2 + K pr s + (Kp + ш2) = 0 (11.6.43)

The closed-loop system poles are governed by the parameters (t, K p) of the
controller. The parameters directly control the close-loop transient response through
damping ratio and natural frequency.

u>n — Kp -+■ u>n, 2£u>n — KpT (11.6.44)

where шп and С are the desired natural frequency and damping ratio, respectively.
Also, we consider a step- input response of the system with Uref(s) = 1/s. Thus,

_ G(s)H(s) 1
w 1 + G(s)H(s) s

According to the Laplace f inal value theorem is

lim y(t) — lim $У($)
t—oo v ’ j —о v '

(11.6.45)

(11.6.46)

In this case, Eq.(11.6.29) yields

y(oo) = lim G № (s)
»-+o 1 + G(s)H(s)

K p(r s + 1)= lim»-+0 S2 -I- KpTS + (w2 + K p) = 1 (11.6.47)

Now the steady state error, using Eq. (11.6.34), becomes

e(oo) — lim sE($)
' 5—fO ' '

= ,im , - ■ / « * +.^>------ * = 0 (11.6.48)
*-+o S2 + K PTS + (K PT + u;2)

In other words, by introducing a PD controller, the steady state output tracks the
input command with zero steady state error.

There axe other control actions such as integral and proportional plus intrgral
control actions. The integral control action is generally known to improve steady-state
performance by eliminating steady error due to external disturbances.

Proportional plus Integral Control Law

The Proportional plus Integral (PI) control law is useful eliminating external
disturbances source. The PI control law is represented by the following form

G(s) = K p(l + 7j/8) (11.6.49)

where K p and tj are constants. That is, the control signal is developed as a
combination of proportional and integral of error signal. In order to examine the
PI control law we use the same spring mass system used for the PD control law.
Therefore,

l_
■e* + w=*

426 Control of Flexible Structures Chapter 11

G(s)H(s) = K P{ 1 + t j / s) 2 t 2 (11.6.50)

We assume a situation where the system is under a constant disturbance of
magnitude W so that

d(s) = W/s (11.6.51)

Now the error signal due to the disturbance is given as

(11.6.52)

1 + G{s)H{s) d^
_______—(s2 + uj„)s____ W

s 3 + (w2 -\- Kp) s + K ptj s

Application of the f inal value theor em to E(s) yields

e(oo) = lim $E(s)

= lim з , = 0 (11.6.53)о s 3 + (u;2 + Kp) s + KpTj

mi________г _______ xi___t » t _________j.____i i ____________i_: _____________________j.________i__ _j___j_ __________________________i l _ _i? j.i _____j. _________tш егею ге, ш е r i comroi law acnieves йего error 111 spue 01 me external
disturbance. Note that if the control law is a PD control law, then the steady-state
error is a nonzero value. For disturbances such as linearly changing and parabolic
types, the integration order of the PI control law should change consequently.

Section 11.7 Control Law Design for State Space Systems 427

11.7 Control Law Design for S ta te Space System s

In the previous section, we discussed the state space form formulation of dynamic
systems, for example, finite element modeling of structural systems. There are certain
advantages in the state space form approach compared to its counterpart which is the
frequency domain technique. In this section, control law design issues based upon
the state space form of dynamic systems are discussed. Different control laws are
introduced accompanied by examples programmed in MATLAB. Since the majority
of modern computational tools in MATLAB Toolboxes are written for state space
form of equations, we elect to put more emphasis on the state space representation of
systems.

For a typical linear system, we start with

{i} = [Л]{*}+ [£]{«}

The open-loop stability of the above system without external input is determined by

|А/-[Л]| = 0

The solution to the above equation does not always ensure stability of the system,
and it is our goal to design the control input {«} so that the desired behavior of
the system can be achieved. Before we discuss the control law design, the important
Control labi l i ty definition of dynamic systems is discussed.

C on tro llab ility of System

Basically, the controllability represents the ability of a control input to control
or change all the state variables of a system. An example case is an actuator located
at the nodal point of a specific mode of a flexible structure. In this case, the particular
mode is not controllable by the actuator. For flexible structures, the actuator location,
therefore, is a significant factor for controllability.

It is important to design a control system under a condition where a pole is
cancelled by a zero in a transfer function. In this case we lose the cancelled pole;
same principle as losing controllability in a state space equation. The order of a
transfer function is directly related to the number of state variables in a state space
form representation and the reduced order of the transfer function also reduces the
order of the state space form equation. The precise definition of controllability is as
follows.

Definition o f C ontro llab ility

The system is controllable if there exists a control input {«(<)} antl time t f
by which an arbitrary {ar(t/)} can be reached from {®(<o)} with to < t < t f .

In a mathematical theorem, it is stated as:

Theorem : The controllability condition for a given linear system

{i} = [A\{x] + [fl]{u) (11.7.1)

is prescribed by the condition;

rtf

'to

should be positive definite [39].

428 Control of Flexible Structures Chapter 11

[G„(</>*°)] = / eW(’/-T)[B][B]Tet'4T(<' - I>dr (11.7.2)
Jto

The above matrix, [Grc(t/, <o)] > is called Controllabil ity Grammian. In order to
verify the above theorem, we start with the solution

f tf
I ~ (4 Л1 — r < b { 4 . 1 I Г t b (4 „ \ 1 Г п и . ,м и - (л л п ч \

— \ Y K V J , V Q j 1 X * \ b 0 ; j T I р»^ь, ; / u '

J t o

The control input {«(r)} can be rewritten as

{«(r)} = [Я]!Г[Ф(*/, -г)]7 [G?c(t/, *o)]“ 1 [{*(t/)} - Ф(</,<о){я(*о)}] (11.7.4)

This is verified by plugging {«(r)} into Eq.(l 1.7.3). Hence,

{*(</)} =[*(</. <o)H*(<o)}+

V to
={*(*/)} (11.7.5)

It is easily shown that the Controllabil ity Grammian should be positive definite in
order to guarantee the existence of {it(r)}. In order order words, [Gc]” 1 must exist,
and [Gc] is naturally symmetric.

Without loss of generality, we take t f — oo. In this case the Controllabil ity is
tested throughout the steady-state. The Controllabil ity Grammian , therefore, turns
into

/•со
[Ge(0] = / е [лЩB][B]TeW (11.7.6)

Jo
where £ = t f — т. We can show that [Gc(£)] satisfies

[A][GC] + [G M f + [S][S]T = 0 (11.7.7)

The above equation is called Lyapunov equation. In order to prove the above equation
we take

~ ^ АЩВ][В]Т e ^ T(= [А]е[лК[В][В]те М Г(+ e [A]t[B][B]T e [A]T *[А]Т (11.7.8)
“s

Integrating both sides over [0, oo] yields

OO fOO л oo
= [A] / , ^[B] [B] Te e W [B] { B f eW Ttd(AT

o Jo Jo
(11.7.9)

Section 11.7 Control Law Design for State Space Systems 429

F igure 11.7.1 Example Model for Controllability Test

F igu re 11.7.2 An Actuator Located at the Nodal Point

Assuming that [Gc] has a bounded value, we arrive at the final expression

-[ВЦВ]5- = [A][GC] + [Ge][A f (11.7.10)

In other to solve the above equation, we can use a MATLAB command l yap.m. It is
not easy to compute [Gc] even if we use the Lyapunov equation. There is an alternative
form of controllability condition. That is, the rank of a control labil ity matrix

[/>] = [[В], [Л][В], [Л]2[В],. . . , [Л] - ‘ [В]] (11.7.11)

should be the same as the order of the system [38-41]. The rank test is more attractive
than computing Control labil ity Grammian in the sense that we avoid the numerical
computational work.

ф E x am p le 11 .7 .1 In this example, we test the controllability of a given
dynamic system. A MATLAB m-file f e c t obt .m is written for this purpose. A
finite element model and an assumed set of sensors and actuators are shown in
Fig. 11.7.1. Using a standard beam element, both mass and stiffness matrices
are generated.

- 0.093 0.000 0.016 -0 .097“
Г Ml - 0.000 1.488 0.097 -0.558
L-— J 0.016 0.097 0.046 -0.164

.-0 .097 -0.558 -0.164 0.744 .

- 0.522 0.000 -0.261 3.264 л Г1!
0.000 108.8 -3.264 27.20 [F] = 0

-0.261 -3.264 0.261 -3.264 > 0
. 3.264 27.20 -3.264 54.40 . . 0 .

430 Control of Flexible Structures Chapter 11

For simplicity, a modal truncation technique is used including only the first two
flexible modes.

rf\ + 0.135771 = — 1.359u
ij 2 + 5.373772 = —2.916u

The above set of equations are transformed into the first order form with the
result

[A] =

- 0 0 1 0 - - 0 -
0 0 0 1

, [S] =
0

-0.134 0 0 -1.359
. 0 -5.373 0 0 . .-2 .916 .

111 ne coniroiiaDiuxy m atrix is caicm aiea as

[P] =

0 -1.359 0 0.184
0 -2.916 0 15.668

-1.359 0 0.184 0
-2.916 0 15.668 0

and the rank of the [P] matrix turns out to be equal to the order of the system.
Therefore, the given system is controllable. The MATLAB m-file source program
for this example is provided below. It produces yes/no type answers and the
condition number of the controllability matrix. The condition number is an
index which is equal to unity for an identity matrix and very large for a singular
or a near singular matrix.

Г г 1+ г\ к+ «т TPDnl? /'/'ЛП/ll— / A
J. U i l V / b l U i l V J J J. 1. U i l l f t j V V W l L V l J — U J

%-
%
%
%
%
%
%
%
%
%
%
%
%
Cat
/ V

%
%
%
%
%
%

Purpose:
The function subroutine f e c tob t .m calculates controllability matrix
and/or observability of a system described in state space form

xdot = Ax + Bu

Synopsis:
[Ctobty,rrank,ccond]=fectobt(A,B)

i) For controllability test, the input argument should follow as

fctobty(A,B)

ii) For observability test, we should provide the input argument as

fctobty(A*T, СГТ) : () 'T is transpose of ()

Variable Description:
Output parameters - Ctobty : Controllability or observability matrix

Section 11.7 Control Law Design for State Space Systems 431

% rrank : rank of Ctobty which determines yes or no
% ccond : Condition number of Ctobty
%--
n=max(size(A)); % Find out the size of the system matrix
%--
% Build the controllability/observability matrix (Ctobty)
%...
Ctobty=B;
Ao=A;
for i=l:n-l
Ctobty=[Ctobty Ao*B];
Ao=Ao*A;
end
rrank=rank(Ctobty);
ccond=cond(Ctobty);
%--- ------------------------------- -----------------------------

t

ф E xam ple 11.7.2 The system was controllable in the previous example
due to the location of the actuator. Therefore the actuator controls at least the
first two flexible modes. In this example, we examine an uncontrollable case
by selecting a specific actuator location. This is possible by pre-calculating the
nodal point of a flexible mode. Figure 11.7.2 presents the actuator location
which is at the nodal point of the second flexible mode. The governing equations
consequently are given as

щ + 0.135^! = 2.816u
»7 2 + 6 .789?72 = -0.41 l u

The size of the coefficient in front of the control input for the second mode is
relatively small (0.411) compared to that of the first mode (2.816). This is
because of the actuator located at the second mode nodal point. Theoretically,
this coefficient should be equal to zero. The numerical inaccuracy is due to
the number of elements which is equal to two and the finite element modeling
algorithm using Hermite polynomials.
The above set of equations are transformed into the first order form with the

result

’ 0 0 1 0] Г 0 '
U l - 0 0 0 1 , , 0
1 J ” -0.134 0 0 0 ’ 1 J ~ 2.816

. 0 -6.789 0 OJ L—0.411.

432 Control of Flexible Structures Chapter 11

Referenced

F igure 11.7.3 Feedback Control Concept for State Space Equation

The controllability matrix is calculated as

[P] =

г 0.000 2.816 0.000 -0.377
0.000 -0.411 0.000 2.790
2.816 0.000 -0.377 0.000
-0.411 0.000 2.790 0.000 .

Application of the rank test to the above matrix yields a full rank, and the system
is controllable. This is not surprising considering the numerical error caused by
the small number of elements. In case the size of coefficient —0.411 is small
enough by refining the modeling technique, the system will be uncontrollable.
This is also observable from the modal coordinate equation, and the second mode
is completely uncontrollable when the coefficient in front of {u} is equal to zero.

t

Feedback Control Law Design in State Space

Feedback control laws have various applications in many dynamic systems. The
key idea of a feedback control law is to utilize the measurement of the current state of
a system, and use the measured signal to construct an actuator signal. The feedback
control law design concept in state space form equation is presented in Fig. 11.7.3.
The state vector of a system is directly used for the actuator signal. Depending upon
the sensor available, sometimes the combination of state variables are used not whole
state vector for the actuator command.

The feedback control law has some inherent advantages such as overcoming
unknown external disturbance and initial condition off-set error. A number of linear
control system design tools for state space form of systems are developed in MATLAB
Control Toolbox [42,43], so that we can use them efficiently to design desired control
laws.

Suppose we have a dynamic system described as

{*} = № } + [*]{«}

{»} = № }

(11.7.12)
(11.7.13)

Section 11.7 Control Law Design for State Space Systems 433

where we assumed a disturbance-free condition and dropped [£>]{«} term which is
normally unused for control system design. By a feedback control, we mean a control
input {u} prescribed in the form

{«} = ~[<7]{у}, {у} = [С]{аг} (11.7.14)

or
{«} = ~[G]{x} (11.7.15)

The first control law in Eq. (11.7.14) uses the direct sensor output {y}, called
output feedback. While the second control law in Eq.(11.7.15) is called fu l l state
f eedback since it uses all state variables {ar}. In the case of the output feedback, the
closed-loop system becomes

{i} = ([Л] - [В Д [С]){*} (11.7.16)

Thus, the system is stable if

M M - [В И С]) < 0 , i = 1 ,2 n (11.7.17)

Since usually the number of sensors or outputs are limited compared to that of state
variables, it is not straightforward to satisfy the stability condition in the output
feedback control law. Usually, a stabilizing output feedback control law design is
technically more involved than a full state feedback control law design. There is no
unified tool for an output feedback design compared with full state feedback, and
numerical iterative techniques are frequently used for an output feedback law design.

Full S tate Feedback Law

On the other hand, the state feedback uses all state variables in order to stabilize
a system. In spite of the difficulty estimating the state variables, the state feedback
has elegant properties and has received significant attention. Therefore, we elect to
put more emphasis on the full state feedback rather than the output feedback. The
essence of the full state feedback law design is to find a feedback gain which makes
the closed-loop system stable. In other words,

А, (Л — BG) < 0, г — 1, 2, . . . , n (11.7.18)

In a full state feedback control law design, there are two distinct approaches; one is
pole p l a c emen t technique and the other is Linear Quadratic Regulator(LQR) method
based upon the optimal control theory.

Single input system

For simplicity and better understanding of the fundamental of feedback control
laws design, we start to form a single input system. In this case, we replace the input
distribution matrix, [J3] by a column vector [b]. As a consequence, we start with

= + [*]{«.} (11.7.19)

and the input is prescribed as
« = (11.7.20)

where [g] is a gain vector
[9] = [<7ь32,- •• ,9n] (11.7.21)

The closed-loop system is

{i} = ([A] - [b][g]){*} (11.7.22)

and the characteristic equation

|AI - [A] + [b][g]| = (A — Al)(A - A2) . - • (A - An) (11.7.23)

where A, is a closed-loop eigenvalue or pole. Suppose we want to have the closed-loop
eigenvalues placed at certain desired locations as

A ?,A * ,...,A j (11.7.24)

Therefore, it should follow as

(A - Ai)(A - A2) • • • (A - A„) = (A - Af)(A - Af) ■ ■ ■ (A - A') (11.7.25)

The above equation can be rewritten as

An -f- aiAn 1 + • • • + an-iA + an — An + afXn 1 + ■ • ■ + a ^ - iA + (11.7.26)

Since the coefficients of the left-hand side polynomial equations are functions of the
feedback gains, there are n set nonlinear algebraic equations

<*l(01,ff2, . . . , 0n) = « i

<*2(01)02, ••■><&») = «2

: (11.7.27)

a n (f l l) g2 > • ■ ■ j <7n) = a n

The right-hand side of the equations are given, and we can find a unique set of
feedback gains. Many algorithms are suggested in connection with the pole placement
technique.

Here, an exemplary algorithm is introduced.

Bass-Gura Formula

The Bass-Gura formula makes use of the determinant properties [40]. It starts
with the closed-loop characteristic equation

a „ (s) = |sjT — [A] + [4] [sr]|

= |[.J - [Л]][7+ (s i - [A]) '1! 6][3]]| (11.7.28)

= |s/ — A||7 + (s i — [A])-1 [&][</]!

= + t Я](« ̂- М Г ‘ [6])

434 Control of Flexible Structures Chapter 11

Section 11.7

where we used

Control Law Design for State Space Systems

|/ + («J - [A])-1! b][g]| = 1 + [g](,/ - [A])-1! b]

Therefore, Eq. (11.7.25) can be rewritten as

435

(11.7.29)

ae (s) - a(s) = a(s)[g] (s l - [A]) x[b j (11.7.30)

At this point, a special relationship for (s i — [A])-1 is introduced as [40]

(« М 4 Г 1 = -^ г [» " - ‘ / + ^ - 2(И]+ о,7)+ *”- 3([Л]2+а.И]+<12/)+ --] (11.7.31)a(s)

Equation (11.7.30), therefore, becomes

ac($)—°(5) = [9][en~1/+e" 2([A.]+a1/)+«n 3([A]2+ai[A]+a2/)H—][6] (11.7.32)

Comparing both sides of the polynomials, we obtain

oci - a i = [g][b], cx2 - a 2 = [g][A][b] + a L[g j[b]
а з - аз - [Я][A]2[b] + a i[g][Л][b] + a2[g][b]

or in matrix form [40]
[а] - [а] = [я][Р][Ф-]5

where

(11.7.33)

(11.7.34)

/ 1 1 *4 or \ 1̂ 1 ./. OO)

Furthermore, [Я] is the controllability matrix and [Ф_] is a l owe r tr iangular Toeplitz
matrix given as

- I
ai l

ф_ = «2 «I I (l l . 7.36)
: : : l

- Ojj On— l ' ' Ol l .

Assuming that the system is controllable so that the controllability matrix [P]
is full rank and invertible, the feedback gain is given by

(11.7.37)

ф Example 11.7 .3 The Bass-Gura algorithm is applied to an example
system. The system matrices are generated from a finite element analysis for a
beam model.

Control of Flexible Structures Chapter 11

and

[*] =

- 0.223 0.000 0.039 -0.139-

[M] = 0.000
0.039

1.286
0.139

0.139
0.111

-0.482
-0.236

.-0 .139 -0.482 -0.236 0.643 .

- 2.418 0.000 -1.209 9.067 ' r l]
0.000

-1.209
181.3

-9.067
-9.067
1.209

45.33
-9.067 , [F] =

0
0

. 9.067 45.33 -9.067 90.67 . . 0 .

The second order differential equation is transformed into a first order state form
as

{*} = [A]{*> +

where

[A] [B]
rn

Now the desired closed-loop poles are specified as

—0.5 ± О.бг, -1 .0 ±3.0*', —2.0 ± 2.0*, -0 .7 ± 0 .4 i

A MATLAB m-file f ebasgr .m is written to implement the Bass-Gura formula.
The resultant feedback gain vector turns out to be

[<?} = [— 2.0881 x 101, -2.6291 x 102 , 2.8713 x 101, -2.4912 x 102
o 1 o c i ^ 1 л —2 6.1001 A 1U . c aoAA O.OÔ tb. О O'TC’T 1Л -1 1 OO'TTl

- t . O i O i A i u J 1.001 f j

function [g]=febasgr(A,B,dc)
%---------------------------------
% Purpose:
% The function subroutine f ebasgr .m calculates a feedback gain for a
% single input system by Bass-Gura formula.
%

Synopsis:
[g]=febasgr(A,B,dc)

System equation : xdot = Ax + bu
%
%
%
oz i„ n ______—/V vanauic L/co'u.iipuvju.

Input variable : dc - A vector consisting of desired closed-loop poles
Output : g - A feedback gain vector.

%
%
%---
ao= poly (A); % Calculate coefficient of the given system
alpha = poly(dc); % Calculate coefficient of the desired polynomial
[P,rank,cond]=fctobty(A,B); % Compute controllability matrix

Section 11.7 Control Law Design for State Space Systems 437

n=max(size(A));
%---------------------------------------:-------------
% Build a Toeplitz matrix
%------------------------------------„

Toep=zeros(n,n);
for i= l:n
Toep(i:n,i)=[ao(l:n-i+l)]’;
end
g=[alpha(2:n+l)-ao(2:n+l)]*{mv(Toep))’*inv(P); % Calculate the gain
g=real(g); % Take the real part of the gain
%------------------------- ---------------------- ---

t

M ulti-input system

The pole placement technique for multi-input systems is rather different from
the single input system case. The feedback gains are not uniquely determined due to
the number of feedback gain elements which are greater than that of state variables
of the system.

o m ill f m l a in n it f oirof am wrifV» fliA (rnuerninff йлт n 4- iah
V7 t/noiuv/i a iiiu iu ip iu ui|/uu ojovwiii niuu unis g v w il lin g V/V̂ uauiL/u

{i} = [A]{x] + [B]{u} (11.7.38)

where [B] is a n x m(> 2) input influence matrix. The control law is assumed to be
a full state feedback law

{“} = - № } (11.7.39)

where [£?] i s a m x n gain matrix. The closed-loop system stability is determined by

|A/-[A] + [J3][G]| = 0 (11.7.40)
_ \n I _ \n—1 , I _ \ i _— Л TUI/» -t- • • • 1- “П-1Л -r u n

Therefore, the characteristic equation is a polynomial of order n same as the order
of the system. The size of the gain matrix [G], however, exceeds n: there are exactly
n x m elements in [G\. For example, let us consider a system with the following system
matrices

(11.7.41)

Then, the full state feedback law is suggested as {«} = — [6]{^}, where the gain
matrix, in order to satisfy dimensionality, should have the form

a il a i2 «13 ' bu bl2
[A] = 021 022 <*23 > [Щ = 621 i>22

_031 «33 033. _Ьз1 632 .

[0] = 9 l i 012 9 13
.321 922 9 23.

(11.7.42)

438 Control of Flexible Structures Chapter 11

The feedback control design goal is to produce the closed-loop poles of a system.
There are three closed-loop poles while the number of gain elements is six. Since we
have more parameters than the number of equations to be satisfied, the extra degree
of freedom can be used for other purposes such as improving system robustness. By
system robustness, we mean the property of a system; a system is called robust when
the performance of a controlled system is invariant with respect to system uncertainty.

11 .8 Linear Quadratic Regulator

Linear Quadratic Regular (LQR) theory is originated from the optimal control
theory. The key idea of this method is to take a performance function and design a
control law which minimizes the performance function.

In order to understand the LQR technique, first we should discuss the basic
principle of optimal control theory. The generic optimal control theory starts from
finding the control input {«(<)} which minimizes a performance index [44,45]

% [{x(t)}, {«(*)}.*]* (П-8 .1)
D

where <o and t f are starting and final times, respectively. On the other hand, the
state vector { (̂<)} and control input {«(<)} satisfy the nonlinear governing equations
of motion

{*} = /({*(i)}, {«(*)}.*) (H.8.2)

For notational simplicity, we temporarily drop { } sign for vector notation. Since
the control input must satisfy the governing equation while trying to minimize the
performance index, Eqs. (11.8.1) and (11.8.2) are combined together by the Lagrange
mult ipl i er (Л) as

J = h (x (t f) , t }) + f [<t>(x(t),u(t),t) + \T[f (x (t) , u (t) , t) - x }]d t (11.8.3)

For some reasons which axe not explained here, we define the Hamiltonian of the
system as

H = ф{х{1), u (t) , t) + \T f{x(t), «(<), t) (11.8.4)

so that Eq. (11.8.3) is rewritten as

[t f
J = h (x (t f) , t f) + I [H(x(t) ,u(t) ,\(t) , t) — \Tx\dt (11.8.5)

Jtf,

One of the optimal control theories is the variat ional principle, for which we assume
the variation of the state vector and control input from the optimal one. The
graphical representation for the variational principle is presented in Fig. 11.8.1. We

J = h({x(t f)} , t f) + I
J t :

Section 11.8 Linear Quadratic Regulator 439

J ? :optim al solution

F igu re 11.8.1 Variation of Trajectory about the Optimal One

assume an optimal trajectory and allow variations about the optimal trajectory. The
performance index is also varied about the optimal value.

The variation of the state vector and control input vector results in the variation
of the performance index. In order to satisfy the optimality condition, the variation
of the performance index should be equal to zero. That is, the performance index is
an optimal one with no variation [44,45].

8J(8x, 6x(i f) , 8u, <5A) = 0

where S() represents variation of () from the optimal value.
Based upon the variational principle we take the variation of the expression in

Eq. (11.8.5)

f t i . _
SJ — Sh(x(t f) , t) + / [<5#(ar(f), u(*),A(*),tf) + S\Tx(t)]dt (11.8.7)

When the final time (fy) is fixed

т
6x(t f) (1 1 .8.8)

dh
dx(t f)

(11.8.6)

Further properties of variation are given as

440 Control of Flexible Structures Chapter 11

where we used integration by parts on XT6x. Therefore, the combination of Eqs.
(11 .8 .8) through (11 .8 .10) yields

w = [^ r A(i')lT
. [’’ Г ^ я : T ^ / в я . т , , ,аи r s .

+ L l (f c +A) ** + (э ^ 6и + {Ж - ^
dt (11 .8 .11)

where we assumed that 6x(f0) = 0 since the initial condition is usually fixed allowing
no variation. Once again, for optimality, 8J = 0 must be satisfied. Therefore, we
obtain the following conditions from optimality condition

m =

dH
Л+ — = 0 (11.8.13)

dH
— - i = f (x , u , t) - x(t) = 0 (11.8.14)

ЭН
*T = » (4 -8 .15)

The above set of equations are solved numerically because of the nature of the problem.
The boundary condition on A at the final time (t j) and initial condition on the state
vector {x(<o)} turns into the so-called Two Point Boundary Value Problem (TPBVP).
Numerous solution techniques and applications have been developed to solve the
optimal control problem. For instance, in robotics areas, the rotational motion of
a robot arm is analyzed in terms of optimal performance such as minimum-time,
minimum-fuel, and minimum vibration during maneuver.

Due to the limited space we elect to directly jump into linear optimal control
theory. The linear optimal control theory has also wide applications. First, a
frequently used performance index is prescribed as

1 f°°
J = H K *} ЮИ*} + {” > W W) * (11.8.16)

where [Q] a positive definite or semidefinite weighting matrix such that {®}T[Q]{x} >
0 for {г} ф 0, and [Д] is a positive definite weighting matrix such that {i/}J [/?]{«} > 0 ,
for {«} ф 0. The upper limit of the performance index is oo which implies that we
are interested in the steady-state behavior of the system. In other words, the system
should be stabilized at the steady-state so that the peformance index is bounded
within a value.

Our goal is to find a control function for which the performance index is minimum
while the original system equation

{ir} = [А]{аг} + [£]{«}, forgiven {i(0)} (11.8.17)

is satisfied. In order to apply the optimal control theory in the previous part, we
define the Hamiltonian of the system as

н = i({ *} T [(?]{*} + { « №]{ « }) + {A}T([A]{*} + [J3H«}) (11.8.18)

Next we apply the optimality condition in Eqs. (11.8.12) through (11.8.15) in such a
way that

Я II

<A} = “ a W = - M W - W TW . {A(oo)} = о (И.8.19)
ЙГ1

= [Я]М + [J3]T{A} = 0 (11.8.20)

Section 11.8 Linear Quadratic Regulator 441

d{u}

Thus, the optimal control input is a function of A as

{«} = - [f lT ' I B f {A} (11.8.21)

In other words, once we solve for {A} the control input is obtained. However, it is not
easy to compute {A} since the boundary condition of {A} is given at the steady-state
as {A(oo)} = 0 while the initial condition of {ar} is given at the initial time t = 0.
There are different approaches solving the above set of equations. A popular method
is to start with

{A} = [5]{ar} (11.8.22)

where [S'] is a positive definite matrix called Ricatti matrix. Therefore, the control
input can be written as

{«} = -[GJ{*} (11.8.23)

where \G\ is a feedback gain matrix

[G) = [R]-1[S f [S l (11.8.24)

Substituting Eq.(11.8.22) into Eq.(11.8.19) and dropping [] notation temporarily
yields

5{ar} + S{i} = -Q{x} - ATS{x}

5{*} + S(A{ar} + J3{«}) = -Q{z} - ATS{x}

S{ar} + 5(A{r} - BR~l B TS{x}) = -Q{z} - ATS{x} (11.8.25)

Therefore,

- [S] = [SIM + M T[S] - [S p p r ' l S f [S] + [Q] (11.8.26)

The above equation is a matrix differential equation, and we can integrate numerically
from [5(</)] = 0 where t f is far enough. An alternative strategy of solving Eq.
(11.8.26) is to use the steady-state solution. When the system reaches a steady-state

442 Control of Flexible Structures Chapter 11

the Ricatti matrix satisfies [5] = 0. Therefore, we obtain the so-called Algebraic
Ricatti Equation (ARE)

[0] = [s p] + [A)T [5] - [S p p] - ‘ [B]T[S] + Ю] (11.8.27)

There are many algorithms studied to solve the ARE [46]. They are dominated
by numerical techniques due to the nature of the problem; nonlinear algebraic matrix
equation. It turns out that the feedback gain matrix([(?]) is also found from the
Hamiltonian matrix by Potter [47].

m = [А] - [В][Л] '1[В]Т
[-[<?] - w

(11.8.28)

The size of the Hamiltonian matrix is now 2n x 2n where n is the size of the original
system. Using the Hamiltonian matrix, we can solve the eigenvalue problem

[Я] М = А (М (11.8.29)

We can prove that there are two sets of eigenvalues for [H]: one set with negative real
parts, and the other set with positive real parts. For each eigenvalue, we arrange the
corresponding eigenvector as

№ =
[Фи], [Ф12]
[Ф21], [Ф22] (11.8.30)

Therefore, [Фц],[Ф21] correspond to eigenvalues with positive real parts and [Ф12],
[Ф22] correspond to eigenvalues with negative real parts. The solution of ARE turns
out be a function of the eigenvectors as

[5] — [Ф22НФ12]-1 (11.8.31)

Potter’s method is quite popular, and a MATLAB f e lqr .m is written, based upon this
algorithm. The feedback gain is computed from the result of eigenvalue solution of
the Hamiltonian matrix. The optimal cost function satisfies

Л*. = {*o}r [S]{*o}

where { xq} is the initial condition of {x}. The proof is provided as

(11.8.32)

' opt - i f l
= \ l° ° [<*}T(-[sp] - [S] + и м я г ч в т м + {« №]{«} dt

(11.8.33)

Section 11.8 Linear Quadratic Regulator 443

where we used the ARE for [Q]. Next, Eqs. (11.8.23) and (11.8.24) are utilized so
that

'opt = + № }) T[S]{*} + M T[S](M{*} + [B]M)

= -\j" [{i}T№ } + MT[S]{i}

dt

(11.8.34)

= - j M T№ }

2 v ' ' ' ' ' '

where the steady-state value {z(oo)} is assumed to be zero for a stable closed-loop
system. The optimum cost function is a function of the initial condition and Riccati
matrix [5].

In the LQR approach, once we solve the ARE, the feedback gain [G] is
automatically obtained. This is a significant advantage over the pole placement
technique where we have to specify the desired poles. In particular, there is no
essential difference for multiple input and output systems for the LQR approach.
The weighting matrices [Q] and [Д] are the only design parameters. The closed-loop
system poles are determined by [Q] and [R]. It is not easy to select those matrices in
general, however. The trial and error procedure is usually taken. Significant research
effort has been made in the LQR related subject. The solution of ARE is now readily
available in computational tools in MATLAB Control Toolbox.

£ E xam ple 11.8.1 The LQR technique is applied to an example system
which is to be stabilized by a fall state feedback. The finite element beam model
is given by

[M] =

6.240 0.000 1.080 -3.120
0.000 23.04 3.120 -8.640
1.080 3.120 3.120 -5.280

-3.120 -8.640 -5.280 11.520 J

x 10 - 2

■ 4.722 0.000 -2.361 14.17 - -o 1 -
0.000 226.7 -14.17 56.67

, [f\ =
0 0

-2.361 -14.17 2.361 -14.17 0 0
. 14.17 56.67 -14.17 113.3 . .1 0 .

[K\ =

The state space form equation is developed using the same convention in
Eq.(11.5.3). The state and control input weighting matrices are chosen as

[Q] — h x 8 , [Я] — 0.1 X /2x2

A MATLAB m-file f e lqr .m is written using Potter’s algorithm. The final
feedback gain matrix is computed as

[G] = 8.636 33.44 -5.040 63.10 0.404 -0.067 3.124 0.884
7.266 30.70 -5.961 47.55 3.354 0.337 -0.337 0.807

444 Control of Flexible Structures Chapter 11

function [G,S]=felqr(A,B.Q.R)i
%------------------------------------
% Purpose:
% The function subroutine felqr.m calculates the feedback gain matrix
% by Linear Quadratic Regulator(LQR) technique.
% The given system is
%
% xdot = Ax + Bu, u = -Gx
%
% and the performance index to be minimized is defined as
%
% J= (l/2)integral(x’Qx-fu’Ru)dt
% Synopsis:
% [G,S]=felqr(A,B,Q,R)
%
% Variable Description:
% Input arguments - A, B, Q, R
% Output parameters - G = R- 1G’S : feedback gain matrix
% S : Solution of the Algebraic Ricatti Equation (ARE)
% AS+A’S-SBR- 1S+Q=0
%
% Notes:
% i). (A,B) should be controllable.
% ii). Q is at least positive semidefinite.
% R is at least positive definite.
%---
H=[A -B*inv(R)*B’; % Build the Hamiltonian matrix
-O -A’l-

JJ

[V,D]=eig(H); % Solve eigenvalue problem
n=size(A); twon=max(size(H));
% Normalized each eigenvector to unity magnitude
av=abs(V);
magav=av’*av;
dmagav=diag(magav);
V=V*sqrt(inv(diag(dmagav))); % Normalize the eigenvector
%---
% Sort the eigenvalues with stable real parts
%---
rel=real(diag(D));
nindex=|];pindex=P;
for i=l:twon

nindex=[nindex i];
else
pindex=[pindex i];
end
end
V=V(:, tpindex,nindex]); % Rearrange the eigenvector order

Section 11.8 Linear Quadratic Regulator 445

3 ® 5 Actuator z

E-2.0 X 1QBN/m
p~ 786kg/m3

F igure 11.8.2 A Truss Structure Example for LQR Controller Design

S=real (V(n-f 1: twon, n-f 1: t wo n) *inv (V(1: n, n+1: twon)));
G=real(inv(R)*B’*S);

t

4b Exam ple 1 1 .8 .2 Another example of LQR design is applied to a
two-dimensional truss structure. The geometric configuration including two
actuator locations is presented in Fig. 11.8.2. As it is shown, the actuators
are acting both in vertical and horizontal directions. The structural parameters
are selected as E = 2.0 X lO^N/m? ,p = 7SQkg/m3,A = 0.00025m2. Using
the consistent mass matrix and the finite element modeling technique in Chapter
7 (See Example 7.5.2), we obtain

[M] = M i l [M]l2
№ [м ы

[K] = M u m i 2
№ И и

where

[M]„ =

[A/]i2 =

-0.7205 0 0.0983 0 0.1310-
0 0.7205 0 0.0983 0

0.0983 0 1.1135 0 0.1638
0 0.0983 0 1.1135 0

.0.1310 0 0.1638 0 1.0480.
- 0 0 0 o -
0.1310 0 0 0

0 0.1310 0 0
0.1638 0 0.1310 0

. 0 0.0983 0 0.1310.

446 Control of Flexible Structures Chapter 11

[MJ22 —

1.0480 0 0.0983 0
0 0.7860 0 0.1638

0.0983 0 0.7860 0
0 0.1638 0 0.5895J

Furthermore,

[К] и = Ю4 x

\K]22 = lo4 x

[K]12 = 104 x

' 2.5000 0.0000 0.0000 0.0000 -1.2500-
0.0000 1.6667 0.0000 -1.6667 0
0.0000 0.0000 2.5300 0.0000 -0.6400
0.0000 -1.6667 0.0000 2.3867 0.4800

.-1.2500 0 -0.6400 0.4800 3.1400 .
■ 0 0 0 0 -

0 0 0 0
0.4800 -1.2500 0 0

-0.3600 0 0 0
.-0.4800 0.0000 0.0000 - 1.2500.
- 2.0267 0.0000 -1.6667 0 -

0.0000 1.8900 -0.4800 -0.6400
-1.6667 -0.4800 2.0267 0.4800

. 0 -0.6400 0.4800 1.8900

The open-loop eigenvalues of the first order state space system based upon Eq.
(11.5.3) turn out to be

100 x [±0.2409г, ±0.4679г, ±0.7398г, ±1.2434г,
± 1.6334г,±2.1022г, ±2.1801г, ±2.3101г, ±2.8022г]

In order to design the LQR control law, first we select the weighting matrices,
[Q] and [Д] which appear in the performance index.

[Q] = Ii8xi8, [#] = 0.01 X /2x 2

where I is an identity matrix. The resultant feedback gain matrix ([(?]) is
computed using f e lqr .m as

[G\ = [£?i G2)

where

[^ l] -
1.427 -58.65 10.52
-10.78 28.01 -20.19

63.55 0.501 12.99 -11.25 -12.42 7.278 '
-35.49 24.68 9.153 17.54 -15.53 -2.489

[G2] -
-0 .57 -0 .47
-0 .83 0.38

-0 .47 0.14 -0 .39 6.49 -0 .49 0.06 -0.04
-1 .43 -0.45 0.25 -0.61 6.74 -0 .29 0.04

Section 11.8 Linear Quadratic Regulator

Horizontal at Node 2 Vertical at Node 2

200

100

S -100

-200.

5
Time(sec)

Horizontal Actuator

5
Time(sec)

10

300

Z 200

Time(sec)

Vertical Actuator

10
Time(sec)

F igure 11.8.3 Simulation Results for the Truss Structure by LQR Controller

In addition, the closed-loop system eigenvalues by the feedback control action
result in

[-0 .0 1 1 ±2.802i, -0.013 ±2.310i, -0.008 ± 2.180i, -0.010 ± 2.102i
- 0.006 ± 1.633г, —0.010 =t 1.243*% -0.008 ± 0.740i, -0.009 ± 0.468г] x 102

—0.59 ± 24.08i

Thus, the system is stabilized by the full state feedback action. The closed-loop
system stability is also verified by the numerical simulation. For this, we assume
the initial condition as

ж(0) = [0.1, 0, 0, 0.2, -0 .2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

The simulation result is presented in Fig. 11.8.3. The horizontal and vertical
displacements at the nodal point #2 are displayed. Also, the resultant actuator
responses in both directions are presented. The motions are stabilized decaying
as the time passes.

448 Control of Flexible Structures Chapter 11

11 .9 M odal Control for Second Order Systems

The modal control approach is generally applied to linearized second order
structural systems even if it is applicable to first order systems [48,49]. The linearized
second order systems are transformed into a decoupled set of modal coordinate
equations. The decoupled equations are controlled independently. A drawback of
the modal control is the number of input which is usually less than number of modal
coordinates. In order to have independent control over all modal coordinates, from
a physical sense, we should have the same number of actuators as that of modal
coordinates.

Consider an undamped second order system

[M]{qJ + K{q} = [F]{u} (11.9.1)

Using the earlier results, the above equation is transformed into modal coordinate
equations by introducing a coordinate transformation

f - l . ГШ I I f i lT rn lf 1 / 1 * Л Л\
m + l« j w = m~ ir j t u f

Let us assume that the size of the control input vector {u} is m x l, being prescribed
as a linear combination of the position and velocity vector.

{u} = [*Lp]{q} + [tf„]{q} (И.9.3)

where [Kp] and \KV] are gain matrices with appropriate dimensions. The above control
input is in physical coordinate systems which can be rewritten in modal coordinates
by using {q} - [Ф]т {ч}-

{“ } =[ЯрИч} + [к«]{ч}
=№>][*]{■» + М Ф К ч)
= [£ p]M + [& ,]{ « (l l .9.4)

Equation (l l .9.4), therefore, becomes

{t?} + Щ{г)} = [$№](# ? Ы + ^«/Ш) (П.9.5)

Unfortunately, the left hand side of the equation is in decoupled form for each
coordinate while the right hand side expressions are coupled. In addition, if the size
of control input is less than that of the given system, it is not feasible to control each
coordinate independently. When the number of control input vector is equal to that
of the system, it is possible to have independent control over each modal coordinate.

For further development, we go back to Eq. (II .9.2)

Ш + PH*?} = {/} (l l .9.2)

___i____ r — Г/ / / lT _ TAlTrc1! f -Л ____* 4- __.„u-------------------
w n e r e \J f = L J l > J2> * * * j Jnj — L^J I / ' J V UJ cui i n p u t v c t u u i vvnuac

elements match with each modal coordinate. Now, for an iih modal coordinate

Vi +и?гц = fi (11.9.6)

The modal input force vector is selected as

f i - ~ 9%Л ~9p*)i (11.9.7)

so that the closed-loop system becomes

Vi + 91m + («? + g*p)Vi = 0 (11.9.8)

As we can see, the feedback gains (д1,д*р) directly affect the closed-loop system of a
modal coordinate. Therefore, we can control the dynamics of each modal coordinate
independently.

The modal input force vector does not have physical meaning unless it is
fpancfXrino<4 in fn fVio ntivciral in n n f TllO nrim nal rplafm ncbm Кр и̂тррп flip т л ^ а 1
VI U lllO lV LlllV U 1UUV Ultv J/ il j UIVIAII lU ^U V t Д. liV VX l/xywff W l i VUV 111VUUJI

input force vector and the physical control input vector is

{/} = W T№ } (П.9.9)

The modal matrix is obtained from

[Ф]Т[М][Ф] = [7] (11.9.10)

Therefore,
[Фт]-1 = [M][Ф] (11.9.11)

and the control input vector satisfies

[F]{u} = [M p H / } (11.9.12)

Assuming that [F] is invertible, it follows as [48,49]

{u } = [J T ’ M [« H / } (11.9.13)

The invertability of [F] matrix depends upon the rank, and there should be at least
the same number of actuators in order to ensure the independent modal control.

Section 11.9 Modal Control for Second Order Systems 449

4b E x am p le 11 .9 .1 A finite element Euler-Bernoulli beam model is used to
demonstrate the modal control technique. The model is presented in Fig. 11.9.1.
Tlie»e -Ргчи т d п-if лго lrtr'a+A/'l earli nn/lal i~\ Л1 n + A titiI ir*r* tirni nf flip + o
J. 11 Ul ̂ UiX 1VU1 VUUIUIU 1VVUVW U U UVUH4 yvAUVi ч/I. Uil\i -»HI*

element method yields mass, stiffness, and input influence matrices as

[M] =

г 0.743 0.000 0.129 -0.619
0.000 7.619 0.619 -2.857
0.129 0.619 0.371 -1.048

L-0.619 -2.857 -1.048 3.810

450 Control of Flexible Structures Chapter 11

- 1.020 0.000 -0.510 5.100 ' -1 0 0 0 -
0.000 136.0 -5.100 34.00 0 1 0 0

-0.510 -5.100 0.510 -5.100 0 0 1 0
. 5.100 34.000 -5.100 68 .0 0 0 . .0 0 0 1 .

The modal matrix which consists of normalized eigenvectors is computed as

■-0.481 -1.031 -0.162 0.675-
-0.041 0.016 0.304 0.347
-1.416 1.428 -1.588 2.667

.-0 .049 0.172 -0.383 1.289.

The physical system is transformed into modal coordinate equations as in Eq.
(11.9.6).

щ + 0.033»7i = /i

fy + 1.312*72 = /2

щ + 15.00*73 = /3

щ + 126.4*74 = /4

where /j is the iih component of the modal input force vector as {/} =
^][F]{ «} . For each modal coordinate, we can design a proportional plus
derivative type feedback control law. That is,

/1 = —0 .018*71 - 0.080*7! Л
/2 = -0.115*72 - 0.504*72 I
/з = -0.387*7з - 1.704*7з f
/4 = -1.124*74 - 4 .947*74 J

where each control input added a 10% increase in natural frequency and damping
ratio of 0 .2 , respectively. Once the modal control input is specified, the physical
control input is obtained from Eq. (11.9.12) as

{u} = И-ММ1Ф}/}

where
-0.509 -0.689 -0.087 0.047 '
-1.051 0.511 2.425 0.613
-0.562 0.227 -0.021 -0.058

L 1.713 -0.248 -0.563 0.706 .

i

Section 11.10 Dynamic Observer 451

1 1 .1 0 D ynam ic Observer

O bservab ility

Another important issue in modern control design is observability. The observ-
ability of a dynamic system represents the ability of reconstructing all state variables
using a finite number of sensor outputs. In the previous discussion of full state feed­
back control laws design, we assumed that the state variables are available which is
not guaranteed in general situations. In the majority of modern control system de­
signs and analyses, the number of sensors is less than that of state variables due to
actual constraints. Also, it will be a significant advantage if we can estimate all state
variables using only a limited number of sensors or measurement devices.

The Observabil ity is a primary requirement estimating the state variables out of
direct sensor output. Mathematical description of Observability condition is similar
to that of Controllability.

D efinition of O bservability

A system is observable if and only if any state {ж(£)} can be
determined by using a finite output {у(т)}, for r < r < T.

The mathematical theorem is stated below.

Theorem : A system is observable if and only if the matrix

[G.CT,f)] = f [4>(r,i)f [C f [(7P(r,t)]<iT (11.10.1)

is positive definite [40]. The above matrix is called Observability Gram­
mian.

Proving the above theorem is similar to the controllability case and omitted here
for brevity. In the similar context as the controllability case, if we take T = oo, then
it follows

л О О

[GJ = / [« (« M W (11 .10 .2)
JO

Also, [£<>(£)] turns out to satisfy the Lyapunov equation.

[A]T[G0] + [G0][A] + [C]T[C] = 0 (11.10.3)

452 Control of Flexible Structures Chapter 11

Also, a MATLAB command lyap is available to find the solution to the Lyapuov
equation. An alternative condition for observability is provided as

The system is observable if and only if the observabi l i ty matrix

КИ= т ТЛЛ]т[С]т) . . . , [Ап- Г [С \ т}Т (11.10.4)

has rank n, the order of the system [38-41].

The observability test by rank test is similar to the Controllabil ity test as we
examine both of them. That is, the observability test of ([A], [C]) can be replaced by
the controllability test of ([A]T, [C]T). In other words, there exists duality between
controllability and ([A], [B]) and observability test of ([A], [C]).

4» Exam ple 1 1 .1 0 .1 In this example, we apply the observability test to a
spring mass system in Fig. 11.10.1. A sensor measuring displacement is assumed.
The equations of motion are established as

[M]{q] + [if]{q} = {0}

where the system mass and stiffness matrices are

mi 0 0 ' h\ "(■ k2 -* 2 0
[АП = 0 m 2 0 , [K] = - h &2 *3 —кз

0 0 ms 0 -*3 кз

and q = [д ь ? 2 ,дз]Т, [rrtx, m2, m3] = [0.5, 1.0, 0.5](fcfir), [k\, k2 , *з] =
[7, 3, 9](AT/m). The above second order equation can he rewritten in the first
order form using Eq. (11.5.3). The output equation becomes

y ~ q x = [1 , 0 , 0, 0 , 0 , 0]{я} = [C]{x)

where {ж} = [gi, <72, q$, <ji, q%, <?з]Т. The system matrix is given by

- 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

-2 0 6 0 0 0 0
3 - 1 2 9 0 0 0

. 0 18 -1 8 0 0 0

Therefore, the observability matrix is

■1 0 -2 0 0 418 о -
0 0 6 0 -192 0
0 0 0 0 54 0
0 1 0 -2 0 0 418
0 0 0 6 0 -192

.0 0 0 0 0 54 .

Section 11.10 Dynamic Observer 453

I 771/

Ш
4 № - Щ

ш
- л М h

m .

F igu re 11.10.1 Spring Mass Model for Observability Test

A MATLAB m-fi le f e c t ob i .m which has been used for controllability test, can be
used again for observability test. Thus, the rank of the [Q] matrix was estimated
a« six, and the condition number of [Q] was 2,5104 X IQ3. These results prove
that the system is observable. In other words, using one physical sensing device,
we can estimate all six variables.

t

Dynamic Observer Design

As discussed in the previous sections, one key aspect of modern control technique
is the so-called full state feedback. In other words, the system is described by a set
of state variables and all state variables are combined into a feedback control law as
it is named as fu l l state feedback.

In general, it is not easv even if not imDossible to measure all the state variables.— w ' •* *
This is mainly due to the number of sensors available compared to the number of state
variables. The ideal situation is probably implementing as many sensors as state
variables. This approach, however, is neither practical nor cost-effective. Therefore,
the fundamental question is how to estimate the state variables and one feasible
solution is a dynamic observer.

The dynamic observer is a popular mathematical algorithm in modern control
theory and analysis. Basically, the dynamic observer is a mathematical model based
upon the given physical system. The mathematical model is used to construct the
physical system based upon the sensor input.

Let us assume a dynamic system described in the form

{ i} = [Л]{а:} + [£]{«} (11.10.5)
r r >*41 € ■»
Ш =

then a dynamic observer can be prescribed by the following set of equations

{i} = [A]{i} + [B]{i.} + [I]({ y} -{ y})

Ш = [C\{£]

(11.10.6)

454 Control of Flexible Structures Chapter 11

System

Observer
F igu re 1 1 .10 .2 Graphical Representation of a Dynamic Observer

where \L\ is the observer gain to be determined and {y} is the sensor output which
is to be provided into the observer dynamics. Figure 11.10.2 shows us the graphical
representation of a dynamic observer.

In order to help understanding the observer, we combine Eqs. (11.10.4) and
(11.10.5) together obtaining

{*} - {x} = [A){x} - [A){x} - [L)({y} - Ш) (11.10.7)

Let us introduce a vector defined as { e } = {x} — {£} which represents error between
the physical system and dynamic observer. Also, by using the output equation as
{£} = [C]{£], it follows as

{e} = ([A] - [L)[C]){e)

Therefore, the error vector satisfies the equation and

{e(<)} = e®p^^- ^ ^ ^ { e (0)}

(11.10.8)

(11.10.9)

As it is shown, the error vector response is explicitly represented as a function of time.
The desired behavior of the dynamic observer will be the one with zero error, which
means a perfect matching between the system and the observer.

For stability of the error vector response, or Нт*_юо{е(£)} = {0}, it should
follow

М И - [ЩС\) < 0 (11 .10 .10)

where А,- is an ith eigenvalue of [A] — [L][C]. Since [Л] and [C\ are already defined, the
main strategy of a dynamic observer design is to design the observer gain matrix [L]
in such a way that the closed-loop system ([A] — [L][C]) is stable. It is interesting to
see the error vector remains trivially zero all the time when the system and observer
have the perfectly same initial condition {e(0)} = {0} ,—► {e(f)} = 0 , t > 0 .

From the closed-loop system matrix [A] — [£][C], we find a useful property
designing the observer gain. Since the eigenvalues of the transpose of a matrix are
the same as those of the original matrix

Ai([A] - [i][C]) = A,-(MT - [C]T[L]T) (11.10.11)

Section 11.10 Dynamic Observer 455

0.4

0.2

0

- 0.2

-0.4

0.4

A A / 0.2 A A A
Щ Д Д J

R
ot

at
io

n

о

\ i \ i \ iW v
-0.2

-0.4

1 v V V
1 2

Time(sec)
1 2

Time(sec)

F igu re 11.10.3 Simulation Result of a Dynamic Observer(Solid line - System, Dotted line
- Observer)

the observer gain can be obtained by treating ([A]T, [C]T) as if they were ([A], [B])
in the feedback control law design. This duality [39,40] between a control law design
and an observer design thus eliminates the need for writing a separate observer gain
design algorithm.

ф Example 11 .10 .2 A dynamic observer design is demonstrated for
the same finite element model used in the previous example. A single sensor
measuring displacement is assumed and we want to estimate four state variables.
The observer gain is designed by a pole placement technique discussed in Sec.
11.7.4. The observer gain matrix becomes, as expected, 1 by 4 matrix.

[L] = [18.31 0.620 61.64 13.43 117.7 0.984 466.3 239.3]

Also, simulation results using the designed gain matrix and impulsive input at
the tip of the structure are presented in Fig. 11.10.3. A MATLAB source code
for simulation is provided below. The initial discrepancies between the actual
system and observer are shown to diminish asymptotically.

%
%

456 Control of Flexible Structures Chapter 11

% This program obss im.m demonstrates a dynamic observer
% design and display the simulation result. A finite beam element is
% adopted as a system. For observer gain design, the LQR technique
% is used, and the dynamic simulation is performed using f e i r e sp .m
%
%--- -

% Provide the system mass and stiffness matrix
M =[0.5571 0 0.0964 -0.3482
0 3.2143 0.3482 -1.2054
0.0964 0.3482 0.2786 -0.5893
-0.3482 -1.2054 -0.5893 1.6071];
К =[2.4178 0 -1.2089 9.0667
0 181.3333 -9.0667 45.3333
-1.2089 -9.0667 1.2089 -9.0667
9.0667 45.3333 -9.0667 90.6667];
F=[1;0;0;0];
% Transform into the first order state space form equation
A=[0*eye(4),eye(4);-inv(M)*K,0*eye(4)];
B=[0*ones(4,l);inv(M)*F];
C=[l 0 0 0 0 0 0 0];
% Use the f e lqr .m function to design the observer gain
[L,S]=felqr(A’,C’,eye(8),0.01);
% Now build the total closed-loop system for both system and observer
Atot=[A, 0*eye(8);L’*C, A-L’*C];
Btot=[B;B];
Ctot=eye(16);
Dtot=eye(16,l);
% Define simulation time, control input, and initial conditions
t=0:0.01:3.0-0.01;
u=zeros(300,l);
x0=zeros(16,l);
x0(l,l)= 0.1 ; x0(2,l)=-0.3; x0(3,l)=0.2;
% Use f e i r e sp .m to simulate the total system
[x,y]=felresp(Atot,Btot,Ctot,Dtot,xO,u,t);
%---

t

1 1 .1 1 Com pensator Design

In the previous sections, we discussed the control law design and the observer
design separately. The observer design is mainly needed in order to provide the
feedback control law with estimated state variables. Therefore, the control law and
observer are combined together into a complete system. The combined system is

Section 11.11 Compensator Design 457

f i g u r e i i . i i . i uom D inea .D ynam ic UDserver a n a г е е с т а с к u o n tro l baw

called compensator . The block diagram representation of a compensator is provided
in Fig. 11.11.1.

Consider a feedback control law and a dynamic observer as

{ * } = И З М + [Я] М (1 1 .1 1 .1)

At this point we assume the control input {«} as a full state feedback form

M = “ [G]M (11 .11 .2)

and the observer is given by

ш = ГА1Ш LBUu* + \ L](iu \ - rrru im rii.n .a>
l J L--J I J ’ L " J I J ' L— J V 1*7 J I , '" J l " J / V -------

As mentioned in the above, we want to use the estimated state variables from the
observer in the control law. In other words,

{«} = -[G]{i} (11.11.4)

The suggested control law is substituted into Eqs. (11.11.1) and (11.11.3) producing

{x} = [Л]{х} - [B][G]{x} (11.11.5)

{£} = ([Л] - [B][G\ - [L][C]){x} + [L]{y}

Substituting the output equation {y} = [C]{x} and rearranging the above equations
yield

m =
i * j

[A] ~[B][G\
[L)[C\ [A}-[B][G\-[L}[C]

J x \

l * J
Л 1 11\-------- /

In order to check the stability of the combined system, we solve

= 0Л/ - [A] [B]G
-[L}[C\ XI — [A] + [B][G] + [£][C] (11.11.7)

Here, for simplification, we want to make use of a property in linear algebra; the
determinant of a matrix is invariant by adding a constant multiple of a row (column)
to another row (column) [39,40]. Thus, it follows

Table 11.11.1 Closed-loop Eigenvalues for the Compensator

458 Control of Flexible Structures Chapter 11

Number Eigenvalue

1 -1024.2

2 -2.075± 20.22i

3 -8.059± 12.86i

4 -9.9833

5 -0.497± 7.177i

6 -0.775± 6.749i

7 -0.810± 1.623i

g -1.036± 0.9011

9 -1.010

10 -1.000

A / -[4] + [B][G] [B][G] , .
О А / -И] + [1][С] U i . i i .8J

Consequently, the characteristic equation of the combined system is simplified into

|A7 - [4] + [B][G]||A7 - [A] + [L][C]| = 0 (11.11.9)

Tlie pmiafinn rnncicfc nf 1шп cenarafp nart.fi* flie feerlKarlf лппfpnl lawJ. 11V VUUU. UV UV11U VIV V^UUIVIVU WUU1UVU V i IJffV uvy UU Uivv |/Uli VUj VUV IVVUVUIVU Д. 4S1 lUfTf

and the dynamic observer, respectively. This implies that one can design the feedback
gain [G] first, then the observer gain or vice versa. This property is very elegant, and
sometimes called separat ion principle.

ф E x am p le 11 .11 .1 A compensator design is demonstrated with simulation
results. The same finite element model is used as in the previous section.
According to the separat ion pr inc ipl e , the compensator is designed by two
stages. The first stage is a feedback control law by

[G] = [2.273 2.769 - 1.147 11.69 0.594e 1.3140.504 - 1.196] x 103

and the second stage is to design a dynamic observer with the result

[L] = [18.31 0.621 61.64 13.43 117.7 0.984 466.3 239.3]

from the result of Example 11.10.2. The closed-loop system eigenvalues are
provided in Table 11.11.1 Also simulation is performed with the results provided
in Fig. 11.11.2. As it is shown, the system is stabilized by the feedback control
law which makes use of estimated state variables from the dynamic observer.

Section 11.11 Compensator Design 459

%------------------ ------- --

%
% This program c ompen .m demonstrates a dynamic observer
% design and display the simulation result. A finite typical element is
% adopted as a system. For observer gain design, the LQR technique
% is used, and the dynamic simulation is performed using feiresp.m.
%
%---:-------------
% Provide the system mass and stiffness matrix
M =[0.5571 0 0.0964 -0.3482
0 3.2143 0.3482 -1.2054
0.0964 0.3482 0.2786 -0.5893
-0.3482 -1.2054 -0.5893 1.6071];
К =[2.4178 0 -1.2089 9.0667
0 181.3333 -9.0667 45.3333
-1.2089 -9.0667 1.2089 -9.0667
9.0667 45.3333 -9.0667 90.6667];
F=[1;0;0;0];
% Transform into the first order state space form equation
A=[0*eye(4),eye(4);-inv(M)*K,0*eye(4)];
B=[0*ones(4,l);inv(M)*F];
C=[l 0 0 0 0 0 0 0];
% Use the f e lqr.m function to design the observer gain and the
% full state feedback gain
[G,Sc]=felqr(A, B, 1000*eye(8), 0.01);
[L,So]=felqr(A,,C’, eye(8),0 .01);
% Now build the total closed-loop system for both closed-loop system
and observer
Atot=[A, -B*G;L’*C, A-L’*C-B*G3;
Btot=[B;B];
Ctot=eye(16);
Dtot=eye(16,l);
% Define simulation time, control input, and initial conditions
t=0:0.01:6 .0-0 .01;
u=zeros(600,l);
x0=zeros(16,l);
x0(l,l)= 0.1; x0(2,l)=-0.3; x0(3,l)=0.2;
% Use f e i r e sp .m to simulate the total system
[x,y]=felresp(Atot,Btot,Ctot,Dtot,u,t,xO);
%--- ;--

t

460 Control of Flexible Structures Chapter 11

Time(sec)

F igure 1 1 .1 1 .2 Simulation Result of a Compensator

1 1 .12 Output Feedback Design by Using Collocated Sensor/Actuator

Discrete M ultiple Degree of Freedom System

A control law design and implementation for flexible structures involves a
number of technical issues. One of them is the effect of sensor and actuator locations.
Since the vibrational motion of the structure induces phase error at different locations
of the structure, the sensor and actuator placement should take the phase difference
into account. The best strategy is to place the sensor and the actuator at the
same location called a collocated sensor/actuator system. The collocated sensor
and actuator pair has some inherent advantages such as stability guarantee despite
potential technical problems which may arise in the collocation process.

Consider a linearized undamped dynamic system

[M № + [K}{4} = [F]{u}

and assume a sensor measurement

(11.12.1)

{У} = [СТО (П.12.2)
The input influence matrix [F] and the output distribution matrix [C] represent
location of actuators and sensors, respectively. For a collocated sensor/actuator pair,
they are identical [50]. In other words,

\c\ = [F] (11.12.3)

Section 11.12 Output Feedback Design 461

A -
%0
ri•H

- a
li ”*
|
g £
V

(3 elements at l/3m in each)
lm

«г

E=5X10 N /m 2

Ul

0.01m
Cross section

F igure 11.12.1 An L-Shape Frame Structure with Three Actuators

Consider an output feedback control law defined as

M =
= - m F) { q}

(11.12.4)

where [G\ is a gain matrix. In order to check the stability of the system, we take a
Lyapunov function

v = i({q }T[M]{q} + {q}TM {q }) (11.12.5)

and the time derivative of the Lyapunov function follows as

rV гм Т г ni r i
о = t q r I ' l m

Substituting the suggested control law [50]

U = -{ q } T[F f [G][F]{q} (11.12.7)

and the condition for stability depends upon the feedback gain matrix [(*]. The gain
matrix should be positive definite for stability guarantee U < 0 for {q} Ф o. in
fact, {q} becomes zero only instantaneously, hence U remains negative except for the
perfect equilibrium point where ({q}, {q}) = (0,0). Therefore, the control law design
is rather simple for a collocated sensor/actuator pair guaranteeing the stability of the
system.

ф E xam ple 11 .12 .1 In this example, the output feedback law design example
with collocated sensors and actuators is demonstrated for an L-shaped frame
structure. The L-shaped frame structure in Fig. 11.12.1 is modelled by five
finite elements. Detailed finite element analysis is provided in Example 8.10.3.
Each node has three degrees of freedom; vertical and horizontal displacements,
and rotation. The material property is selected as E = 5 X 10SN/m2,

Control of Flexible Structures Chapter 11

p = 10Q0kg/m3 and A = 0.0001m2. There are three actuators located at
node number 2, 5 and 7. The direction of each actuator is also described in Fig.
11.12.1 - horizontal at node 2 (« i) , vertical at node 5(112), and rotational at node
7(«з). The finite element analysis result gives us

[M) { q] + [*] {q } =

where[M] and [fC] are 18 by 18 mass and stiffness matrices, respectively. The
control input vector {u} = [«1, U2 , Из]Т includes the three actuators. The
input influence matrix([F]) is easily computed as

[F} =
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

By assuming sensor measurement at the same location where the actuators are
located, the control law is designed as simply as

Ml = -f f iQh, «2 = ~32Ч1, «з = ~gz07

where g\ > 0, g 2 > 0, <73 > 0 are feedback gains. In addition, q ,̂ represent
horizontal and vertical displacements at node number 1 and 5, respectively, and
в7 represents rotation at the 1th node. The control law is easily rewritten as

{u} = -[G][F]{g>

where [G] and [.F] are matrices with appropriate dimension. The control law
should stabilize the system. In order to verify this, we apply the control law to
the orginal second order system, and the resultant closed-loop system has the
following form

M W + = 0
The above system is easily transformed into a first order system by Eq. (11.5.3)
as

Note [B] — 0 in this case, since the equation is developed from the closed-loop
system. The system now is simplified as {ir} = [yl]{x}. The initial condition is
selected in an arbitrary manner as

Horizontal displacement at node 1 = 0.1m
Vertical displacement at node 5 = 0.1m
Angular rotation at node 18 = 0.05 rad

The MATLAB m-file f e lresp. m is used for the simulation for 6 seconds. The time
responses of the horizontal and vertical displacement at the node number 2 and
5, and angular displacement at node number 7 are displayed in Fig. 11.12.2
including the actuator response at node number 2. The simulation results
indicate that the system is stabilized by the feedback control law. The big

Section 11.12 Output Feedback Design 463

Horizontal at Node 1 Vertical at Node 5

0.6

0.4

0.2

Rotation at Node 7

-0.2

-0.4
2 4

Time(sec)

Horizontal Actuator

2 4
Time(sec)

F igure 11.12.2 Siumlation Results for the L-Shape Frame Structure by DVF Controller

advantage of the control law used in this example is the robustness of the control
law. We used only three feedback gains, which is in significant contrast with the
LQR design where we need as many feedback gains as the size of the system.

t

Infinite Dimensional Continuous System

As mentioned earlier, control law design for flexible structures is complicated.
In particular, the controller performance relies upon the accuracy of mathematical
modeling. There are many issues in mathematical modeling such as finite dimensional
truncation, model uncertainty, and estimation of state variables.

One promising method for control law design is to retain the original govern­
ing equations of motion. Dynamics of the flexible structure is usually described by
partial differential equations of motion or combination of partial and ordinary differ­
ential equations of motion. A significant advantage of using the original governing
equations is the robustness of the control law without involving finite dimensional
approximation, and there is no modeling error issue in this approach.

Let us consider a flexible beam with one end fixed to the base and the other end
free as in Fig. 11.12.3. The governing equation of motion is given as

464 Control of Flexible Structures Chapter 11

X

d 2w . „ r d 4w „ г/ 4 _
p ~ d i ^ ^ £' 1 d ^ =zt' 0{x~ xc) i n . 1^

and the boundary conditions are given by

dw
w = - ^ = 0 at x = 0 (11 .12.9)

dw"2 d w 3
Е1-—-Г = EI^—r = 0 at * = /

d x J дхл

where p is the linear mass density and E l is the beam rigidity. The actuator located
at x = xe is represented by the Dirac Delta function (6(x — яс)).

In order to design a control law, the Lyapunov approach is adopted with the
candidate Lyapunov function

dx (11 .12.10)

The Lyapunov function represents the total kinetic plus potential energy of the
structure. Time derivative of the Lyapunov function is taken in combination with
the Eqs (11.12.8) and (11.12.9), and the final result becomes

U = / wF6{x - xc)dx (11.12.11)
Jo

Integration over the Dirac Delta function becomes

U - w(xe , t)F (11.12.12)

The natural choice of a stabilizing control input results in

F = ~gw (x c , t) (11.12.13)

where g > 0 is the feedback gain which guarantees stability with U < 0. Therefore, the
derived control law globally stabilizes the structure, and there is no need for modeling

Section 11.12 Output Feedback Design 465

the structure. This control law is usually called Direct Velocity Feedback(DVF)
control law.

Output Feedback Control Law Design for a Rotating Beam
Rotating flexible beams have been used in many engineering applications such

as robotics and space engineering. The mathematical modeling of a flexible beam
can be done using the finite element method or other methods. Once we have the
mathematical modeling, then we can develop a control law based upon the desired
control objective.

The governing equations of motion of a rotating flexible beam in Fig. 11.12.4
are derived as

ICQ + [px(ib + x9)dx + mtl(l9 + w (l,t)) + It(6 + 0 (1 ,1)) = и
J i 0

Ajt
p(w + x9) + E I ~ ^ = 0 (11.12.14)

with the boundary conditions

^ — П r.4 -r — /- П1 10 IMw — - — \J . XAfV " ----- • U 4 A i *
ox

= - I t (9 -f ti') , E l ^ f = mt(19+ w), at x = /
ux~ uX'~

where () = ^ and ()' = ^ .

Finite Element Modeling
For the finite element modeling, the extended Hamilton’s principle is used for

each element as [50-52]

(6L + 6W)d t~ 0 (11.12.16)L
where L = Te — Ve is the system Lagrangian which is the difference between the kinetic
(Te) and the potential (Ve) energies. The element kinetic and potential energies are

466 Control of Flexible Structures Chapter 11

Figure 11 .12 .5 A Finite Element of A Rotating Flexible Beam

given by

/xe+h t fx e+h /d2w \ 2
p(we + xe)2dx, Ve = J dx (11.12.17)

Now we introduce a finite dimensional discretization for the we over the ith element
as shown in Fig. 11.12.5.

we(x ,t) = ^ i(x)9 i(f) + <f>2(x)q 2(i) + фз(аОЫО + Фа(х)я 4(f) (11.12.18)

where ^i(i) is the vertical displacement and дг(0 is the rotation at the left-end of the
element, and similar definitions for qs(i) and q^(t) for the right-end of the element.
The shape functions are Hermite polynomials

^1М = 1 - з (' ^ У + 2 Г ^ У
' \ n / \ n /

* ,(*) = (* - * ,) - 2 ft(£ ^ i) 5 + A(^ i £ i) 3

« ■ > - (т а) , - * (т а) ’ (п л 2 л 9)

^ = -л(^) 2+л(^) 3
Substitution of the above expressions into Eq. (11.12.17) and integration by

parts yield [50-52]
M % + K iq e = 0 (11.12.20)

ttrliana fli<a a 1 flmant mooQ onrl ofiflFViocc mofm^oc оpo nrooonf<sr] in T̂ aKle 11 10 1 fI'Ко
ТУ llt-11- Vlit> C l^ illV U V ШСЮО O liu OV1&111V0O l i lU U ll WO U1V |/lVOVUVVU t u XUi|k/lV X Itv

same principle can be applied to the elements which include the tip and the rigid
center body. Once we set up the equations for every finite element, then we combine all
equations for each element into global governing equations as a typical finite element
analysis procedure. Therefore, the resultant governing equations of motion are derived
as

[M]{q} + [tf]{q} = { * > (11.12.21)

Section 11.12 Output Feedback Design

Table 11.12 .1 Element Matrix for the Rotating Beam

467

m i ,
m i
M i

Щ г
М̂ Ъ
M i2

Щ 3
M b
M 3 3

K P =
0 0
0 K L
0 K*32

Ц з
Кзз j

Mt = M il
M li

M [i — — {(х,- + /o) 2 + (£i + 0̂ + h)(.2 i + lo) + (^i + Jo + ^)2}

M{2 = [i l ^ f = ph

М\з — [Щ гГ — ph

3
20 + 2(*i + 'o)

7 L !/- Л + - (и + („)

МЬ = £ , :22 420

- h 1 + ~ h (Xi + Го)

20

156 22h
22h Ah2

1_
12 h(xi + /0)

M23 — [M32V —
ph
420

54
Ш

-13 ft
-3/i2

- 420
156 -2 2 h

-2 2 h Ah2

К 22 =
m
л3

12 6 h
6 h 4 h2

K 23 — [^зг]Т —
Ш
h3

- 1 2 6/i
-6/i 2h2

ю - E I Лзэ " h3
12

- 6 / i
—6/1
4/i2

+ mt(/0 + I)2

M b = [M j, f = [m, (/„ + /)/.]
mt 0
0 /,M l22

M<2
M b

where
{q} = [«, «1. «a, ■ • •, 1«]T, {F} = [1,0, . . ., 0]T

and the global mass and stiffness matrices are given by

[AT] = [7'
+ Мвв M$ q

MnM4g J " q q J

where Q is a zero vector of size 1 X N, and

[*] =
О й

0T K,q q J

N
Mgo — л/j! + m \x

t=i
-ЛГ

(11.12.22)

М вч = [M {3 + M x2 М {3 + М й л*Гз + л * 12 . . . А Ч з - + м й A *i3 + A * ;2 j

468 Control of Flexible Structures Chapter 11

Furthermore,

Mqq —

+ M
MI2

M|3
M33 -f M$2

M32 M33 + m A2

M.N - \
32 M

m £ Мзз

and

K,qq

t f 33 + t f 22

K h
K 23

K h + * 232
k Loz K 2 „ 4-- ‘ OO ’

K 3JV23
fTl

tf.JV-l
32 К Ш

I<& K N33 J

where M — M%3 1 + N22 and К = K^3 1 + K ^ . The second order system in Eq.
(11.12.20) can be transformed into a first order system for analysis purposes.

4» Exam ple 11.12.2 An example rotating beam model is used to verify the
modeling procedure discussed above. The material properties of the example
model are p = 0.003, E l = 1.1118 X 104, lQ = 3.5, L = 47.57, It = 0.0018,
mt ~ 0.156 and Ic ~ 9.06 with consistent units. A MATLAB m-file ferobem.m
IS W r i t t e n аП(1 t h e O u t p u t T c S u ltS a i c s y s t c lu . iT1clS s / S t ln l ic S S Iu a ,t l iC 6 S a£ id I lc t tU Ia l

frequencies. The first nine natural frequencies are listed in Table 11.12.2.

function [w,M,K]=ferobem(N,EI,rho,I^c,Lt,m_t,l_D,L)
%-- --

% Purpose:
% The MATLAB function subroutine ferobem.m produces a finite
% element modeling of a rotating flexible beam attached
% to a rigid base.
%
% Synopsis:
% [w,M,K]=ferobem(N,EI,rho,I_c,I-t,m_t,l-0,L)
%
% Variable Description:
Of. T n n 4 1 f •/0 n i p uv p a ia u t4 .v 4 . ia *

% N - number of elements
% El - beam rigidity
% rho - linear mass density
% I j c (U) - moment of inertia of the center body (tip mass)
% m_t - tip mass
% L0 - radius of the center body

Section 11.12 Output Feedback Design 469

% L - beam length
% Output : M, К - system mass, stiffness matrices
% w - natural frequency
%---
%--
% Calculate pare rigid body portion
%---

h—L/N; % Element length
M llt=I-t+m -t*(L+l-0)“2;Ml2t=[m-t*(L0+L) I_t];
M22t=[m.t 0; 0 I.t];M 21t=M l2t’;
xi=0;
for i=l:N
Mllr(l,i)=rho*h*((xi+l_0)"2+(xi+l-0+h)*(xi+l-0)+(xi+L0+h)'2)/3;
xi=xi+h;
end
Mthth=Mllt+sum(M llr)+I_c;
%--_ _

% Calculate element mass and stiffness matrices
%--

M33=rho*h*[l56,-22*h;-22*h,4*h'2]/420;
M22=rho*h*[l56, 22*h; 22*h,4*h'2]/420;
M23=rho*h*[54,-13*h;13*h,-3*h'2j/420;M32=M23’;
K22=EI*[12, 6*h; 6*h,4*h‘ 2]/h‘ 3;
K23=EI*[-12, 6*h;-6*h,2*lT2]/h‘ 3;K32=K23’;
K33=EI*[12,-6+h;-6*h,4*h*2]/h‘ 3;
%--- -
% Calculate global mass and stiffness matrices
%-- ------------------ ----------

Mqq(l:2,l:2)=M33+M22;Mqq(l:2!3:4)=M23;
for i=l:N-2
NI=2*i+l;
Mqq(NI:NI+l,NI-2:NI-l)=M32;Mqq(NI:NI+l,NI:NI+l)=M33+M22;
Mqq(NI:NI+l,NI+2:NI+3)=M23;
end
Mqq(2*N-l:2*N,2*N-3:2*N-2)=M32;
Mqq(2*N-l:2*N,2*N-l:2*N)-M33+M22t;
Kqq(l:2,l:2)=K33+K22;Kqq(l:2,3:4)=K23;
for i=l:N-2
NI=2*i+l;
Kqq(NI:NI+l,NI-2:NI-l)=K32;Kqq(NI:NI+l,NI:NI+l)=K33+K22;
Kqq(NI:NI+l,NI+2:NI+3)=K23;
йП /1
V1IU

Kqq(2*N-l:2*N,2*N-3:2*N-2)=K32; Kqq(2*N-l:2*N,2*N-l:2*N)=K33;
%---

% Compute rigid and flexible coupling terms
%--
xi=0;
for i= l:N -l,

Table 1 1 .1 2 .2 Natural frequencies of the rotating beam

470 Control of Flexible Structures Chapter 11

Mode Natural frequencies(Hz)

0 0.000

1 1.030

2 3.030

3 7.360

4 14.82

5 27.38

6 44.36

7 70.27

8 100.8

M13=rho*h*[7*h/20+(xi+l-0)/2 -h'2/20-h*(xi+L0)/12];
xi=xi+h;
Ml2=rho*h*[3*h/20+(xi+l_0)/2 h'2/30+h*(xi+1.0)/l2];
M thq(l,2*i-l:2*i)=M l3+M l2;
end
Ml3=rho*h*[7*h/20+(xi+L0)/2 -h ‘ 2/20-h*(xi+l_0)/l2];
Mthq(l,2*N-l:2*N)=Ml3+Ml2t;
%-- _

% Combine rigid, flexible, and coupling terms
%---

M=[Mthth,Mthq;Mthq’,Mqq]; % Global mass and stiffness matrices
K=[0,zeros(l,2*N);zeros(2*N,l),Kqq];
wo=sqrt(eig(K,M)); % Compute natural frequencies
w=sort(wo);
%-- -------------------------------------

t

Control Law Design by Lyapunov Approach

As a special case, we assume a collocated sensor/actuator pair for the rotating
beam. The actuator is located at the center body producing torque about the
vertical axis and the sensor is also located at the center body measuring the angular
displacement and/or angular velocity of the center body. With the collocated
sensor/actuator set, the control law design is relatively simple. In the previous section,

Section 11.12 Output Feedback Design 471

we used an original partial differential equation deriving a stabilizing control law, and
the same principle can be applied to the rotating beam case.

First, we select a candidate Lyapunov function as [53-55]

2U —Q.\Icd -f- 02 [р{хв + w)2 +]dx + mt(W +

+ It(0 + + Оз{9 — 6 f Y (11.12.23)

The Lyapunov function is shown as the combination of each sub-structure’s energy;
center body, beam and tip mass. Furthermore, Oi, a2 and 03 are positive weighting
constants determining the relative importance of sub-structure’s energy, and is a
constant final desired angle. The Lyapunov function is positive definite with respect
to the steady equilibrium point

(0 , 0, y, y)} = (6f , 0, 0 , 0) (11.12.24)

In other words, the Lyapunov function initially being positive approaches zero
at the steady equilibrium point. The control torque at the center body should be
designed in such a way that the Lyapunov function decreases asymptotically toward
the equilibrium point. For this purpose, we take the time derivative of the given
Lyapunov function, and make use of the governing equation and boundary condition
finally arriving at [53-55]

V = Qi u + 9i(@ ~ &f) + 9з0о$о — Mq) (11.12.25)

where g\ = аз/oi > 0 , дз = (a2 — ai)/ai > — 1 are design parameters or feedback
gains of the control law. Furthermore, M0 and So are the internal bending moment
and shear force, respectively at the root of the beam.

Mq = E l
d2w
d x 2

So ~ E l
a 3w

r= l o dx3 (11.12.26)
X—lo

Since our goal is to design a stabilizing control torque input, the most natural
choice is to make the time derivative of the Lyapunov function negative in such a way
that

и + gi(6 — 8 f) + дзЦоБо ~ M0) = —д2в, g2 > 0 (11.12.27)

Therefore,
и = — q\(6 — — Q2O — QsdnSn — Ma) (11.12.28)

so that
U — ~aig202 < 0 (11.12.29)

As we can see, U < 0 as long as (9 / 0. At 0 = 0, the Lyapunov function is equal to
zero which does not mean that the system is at equilibrium condition due to other
nonzero motions like angular position error and flexible motion. In order to reach the

472 Control of Flexible Structures Chapter 11

steady equilibrium state, the Lyapunov function continues to decrease as dictated by
Eq. (11.12.24).

The derived control law in Eq. (11,13.28^ globally stabilizes the flexible structure
with respect to the desired equilibrium point. Since we do not use any finite
approximation, the control law is free of usual issues such as robustness, truncation
error, and modeling uncertainty. The boundary force and moment term are modelled
using the Hermite polynomials as [56]

8 3y
IqS q — M 0 — IqE I y

dx3
E l d

!„ dx'J fo

- * ° (ДЗИ2 (^ 2 h &2̂ j (11.12.30)

where v2 and 6\ represent displacement and rotation at the right-hand side nodal
point of the first element.

Simulation results with the control law employed is provided in Figs 11.12.6
and 11.12.7 together with a MATLAB m-file. One significant difference in the two
simulation results is the effect of boundary force feedback gain. The boundary
force is shown to be a sensitive parameter which improves the closed-loop response
performance.

ф E xam ple 11.12.3 In this example, the feedback control law in Eq.
(11.12.18) is demonstrated for the same model used in Example 11.12.2. The
flexible beam was modelled with three finite elements. The feedback gains are
chosen as g\ = 100, <72 = 200, дз ~ 0, —0-5. The desired final angle is 1 radian.
The feedback gain (33) on the boundary force feedback is tested to investigate
its effect on the closed-loop performance.
As we can see, the center body angle converges to the final angle within 40
seconds of simulation time. Also, the feedback on boundary force with </3 = —0.5
enhances the closed-loop performance.

function [y]—ferbsim(M,К,F,gl,g2,g3,EI,h,10,thf,tf)
%---

% Purpose:
% This MATLAB m-file ferbsim.m is a simulation program for
% a rotating flexible beam attached to a base. The mathematical model
% is created from frobfem.m as system mass and stiffness matrices
%
% Synopsis:
% [y] = ferbsim(M,K,F,gl,g2,g3,EI,h,10,thf,tf)
%
% Variable Description:
% Input parameters - M, K, F - System matrices
% gl, g2, g3 - Feedback gains
% El, h, 10 - Parameters for boundary force calculation

% thf, tf - Final angle and final simulation time

% Output parameter - у
%
%--

[n,n]=size(M);
I=eye(n);
% Build closed-loop system matrices
K (l,l)= g l;
KlI=EI*(lO*[-12/h" 3,6/h' 2]-[6/h' 2,-2/h]);
K(l,2:3)=K(l,2:3)-|-g3*KlI;
Damp=0*I;
Damp(l,l)=g2;
% Generate state space form for simulation purpose
A=[0*I,I;-inv(M)*K,-inv(M)*Damp];
B=[zeros(n, 1) ;inv(M) * F];
C=eye(2*n);
D=zeros(2*n,l);
% Perform simulation using feiresp.m MATLAB function
nstep=1000;
dt=tf/nstep;
t=0:dt:tf-dt;
u= gl*thf*ones(l000,l);
x0=zeros(2*n,l);

Section 11.12 Output Feedback Design

474 Control of Flexible Structures Chapter 11

Time(sec)

Figure 11.12.6 Simulation Results of a Rotating Beam with g\ = 100, g% = 200, (fa = 0

Time(sec)

Figure 11.12,7 Simulation Results of a Rotating Beam with g\ = 100, <72 = 200, <73 =
-0 .5

Problems

Problems

Problems 475

11.1

.11.2

11.3

11.4

11.5

11.6

For a given system

= x 2

X2 — - X 2 — x i — (2 x 2 + X l) 2 X2

i) Find out the equilibrium point by setting x\ — 0,«2 = 0.
ii) Using a Lyapunov function V(x)=a:i + x2, find out the stability of the

system.

Calculate the state transition matrix for a system

'- 1 o' Гт,) о '

1 °. - 1 u(t)

A second order system is given as

x + 2x + 10ж — 10/(t)

with an unit step input f(t) = 1 , (t> 0) applied, find out parameters such as
i) Rise time(tfr),

ii) Peak time(tp),
iii) Maximum overshoot(Mp), and
iv) Settling time(£s)

A system is described as

U L f o i i Г xi 1
\ x2 J [- 4 Oj \ x 2 J + и

i) Derive the analytical expression for the impulse response due to u(t) = 6(t)
and [a?i, a?2](0) = [0,0].

ii) Use the same data in part i) to derive the analytical expression of the
response with respect to the unit step input.

Assume a transfer function is given by

H(s) 1
(s + l)(s •+• 3)

i) Find out unit impulse response.
ii) Do the same thing as in i) for unit step input.

Using the state transition matrix property, show that

^ = M M r)

476 Control of Flexible Structures Chapter 11

11.7 A typical linearized second order system is given as

mi 0
0 m21Ш &1 + &2 —&2

- k 2 k2 { ; } ■ и

i)

ii)

iii)

Find out the analytical expression of the transfer function between
5 i(0 ’ 9з(0 and u(t). In other words, find Qi(s)/f7(s) and Q2(s)/U(s).
For the given values [mi, m2] = [0.5, 0.5](fc</), and [Ari, k2] = [2, 4], plot
the poles and zeros of Qi(s)/U(s) and Q2(s)/t/(s) on the complex plane.
Also, compare the zeros of the two transfer function.
We want to design a feedback control law as

« (0 = - 0 i9 i (*) “ M i (*)

where g\ and 02 are positive position and velocity feedback gains, respec­
tively. Show that the control law stabilizes the closed-loop system.

11.8 A set of spring mass, and damper system is given in Fig. P11.8.

7, 7/
Figure P i 1.8 A Spring Mass, and Damper System

T h e g O V e m illg eQ uSiliO nS o f ГПО*ЮП 3-Г6

[M]{q} + [Z>Hq} + m {q} = №

where

mi 0 0 ' ’ Cl + C2 - c 2 0 '
M = 0 m 2 0 , [D] = -C2 C2 + C3 -Cs

_ 0 0 m3 0 -C3 C3 .

and
k\ + k2 ~k2 0 'O'

[K] = - k 2 k2 + к3 -к а , F = 0
0 - k3 k3 _ 1

y = qi(t)

The parameter values are given by [mi, m2, Ш3] = [1 , 1, lK&o), [ci, c2, C3]
[0.1 ,0.5 ,0.3](JV — sec/m), and [ki, fc2, ^3] = [5 ,8 ,9](iV/m).
i) Is this system controllable?

ii) Is this system observable?

11.9 A first order system is given by

{£} = [Л]{ж} + [b]u, и = -[fc]{x}

Problems Problems 477

where [6] is a column vector and и is a scalar control input. If a system ([Л], [6]) is
controllable, show that the system with feedback ([Л] — [6] [A;], [b]) is also controllable.
(Hint: Check the rank of the controllability matrix of the both systems.)

11.10 A dynamic system is modelled by finite element analysis, and the results are given as

‘ 0.5 0 0 ‘ ■ 3 - 2 O '
[M] = 0 0.5 0 > [*] = - 2 5 - 3

0 0 0.5

—
i

COCO1о
1

and
[F] = [1,0,0]T

where the notations are identical to those in the main text. The system is transformed
into the first order form of equation as

{i} = ИК*} + [£]{„}

i) Find out the open-loop eigenvalues of the system using the matrix [Л]. The desired
eigenvalues are prescribed as

— 1.5 ± 2.0i, -2.0 ± 4.0i, —1.0 ± 3.0i

ii) Use the Bass-Gura formula to compute the feedback gains which achieve the desired
closed-loop eigenvalues.

11.11 A finite element model of the longitudinal vibration of a beam is developed as a lumped-
mass model. The first order description of the system is given by

where

II Г /П f.Л 1 r u l f . .
J T 1 " Д «

1/> ;.. _ r n r ^ iч — ivn*/

г 0 0 0 1 0 0- rOi
0 0 0 0 1 0 0
0 0 0 0 0 1

, №] =
0

-3 6 36 0 0 0 0 2
18 -36 18 0 0 0 0

. 0 36 -36 0 0 0.

—
1о

[A] =

Use the MATLAB m-file felqr.m in order to design an optimal feedback gain matrix.
Use

[0] = W , [Д] = 0.1

11.12 Using the same data in problem 11, and

[C] = [1 0 0 0 0 0]

design a dynamic observer. Use same [Q] and [Д].

11.13 For a given scalar system
x = ax + и

478 Control of Flexible Structures Chapter 11

and a performance index
1 f°°

J = о j {qx2 + ru 2)dt

where q > 0, r > 0 are constant weighting factors, i) Find out the optimal feedback
gain by solving the Ricatti equation in Eq. (11.8.5). ii) Prove that the closed-loop
system is stable using the result of part i).

11.14 A flexible structure is under longitudinal vibration as in Fig. P11.14.

1 w(x,t) и

■ X

w
f ig u re r n . n л oar unaer bongnuainai vmrauon

The governing equation of motion is derived as

d 2w (x,t) _ d2w (x,t)
P Qt* dx2

If we want to place an actuator at x = xc of the beam, show that control law u{t) —

—ff2 ’ 52 > 0 stabilizes the system. Hint : Use the Lyapunov function approach.

11.15 A feedback control law for a rotating beam is derived in Eq. (11.12.28) as

и —gi($ — $ j) — <72# — <7з(*оЗо — Mq)

V erifv the above exDression takine th e LvaDunov function in Ea. (1 1.12.20^ . Yon m av• ------------ J ---------------------— - ----------------f -------------------------- ---------------1>----------—4 f --------------- --- \-------------------------- / ----------------------------у/

have to use the governing equations and boundary conditions in order to prove the
control law expression.

REFEREN CES

1. Crandall, S. H., Engineering Analysis, A Survey of Numerical Procedures,
McGraw-Hill, New York, 1956.

2. Finlayson, B, A., The Method of Weighted Residuals and Variational Principles,
Academic Press, New York, 1972.

3. Cook, R. D., Concepts and Applications of Finite Element Analysis, 2nd ed.,
John Wiley & Sons, New York, 1981.

4. Langhaar, H. L., Energy Methods in Applied Mechanics, Krieger, Malabar,
Florida, 1989.

5. Boresi, A. P., Schmidt, R. J., and Sidebottom, О. М., Advanced Mechanics of
Materials, 5th ed., John Wiley к Sons, New York, 1993.

6. Mikhlin, S. G-, Variational Methods in Mathematical Physics, Pergamon, New
York, 1964.

7. Washizu, K., Variational Methods in Elasticity and Plasticity, Pergamon, New
T Г 1 t

УОГК, 1У /0 .
8. Reddy, J . N., Applied Functional Analysis and Variational Methods in Engineer­

ing, McGraw-Hill, New York, 1986.
9. Akin, J. E., Finite Element Analysis fo r Undergraduates, Academic Press,

London, 1986.
10. Irons, В. М., “Engineering Applications of Numerical Integration in Stiffness

Methods” , Journal o f the American Institute of Aeronautics and Astronautics,
Vol. 4, No. 11, 1966, pp.2035-2037.

11. Archer J . S, “Consistent Mass Matrix for Distributed Systems”, Proceedings of
American Society of Civil Engineers, Vol. 89, ST4, 1963, pp. 161-178.

12. Archer J. S, “Consistent Matrix Formulations for Structural Analysis Using
Finite-Element Techniques”, Journal of American Institute of Aeronautics and
Astronautics, Vol. 3, No. 10, 1965, pp. 1910-1918.

13. Hinton, E., Rock, Т., and Zienkiewicz, “A Note on Mass Lumping and Related
Processes in the Finite Element Method”, International Journal of Earthquake
Engineering and Structural Engineering, Vol. 4, No. 3, 1976, pp. 245-249.

14. Tong, P., Pian, Т. H. H., and Bociovelli, L. L., “Mode Shapes and Frequencies by
the Finite Element Method Using Consistent and Lumped Matrices”, Computers
and Structures, Vol. 1, 1971, pp. 623-638.

15. Fried, I. and Malkus, D. S., “Finite Element Mass Matrix Lumping by Numerical
Integration With the Convergence Rate Loss” , International Journal of Solids
and Structures, Vol. 11, 1975, pp. 461-465.

16. Craig, Roy R., Jr., Structural Dynamics, An Introduction to Computer Methods,
John Wiley к Sons, Inc., New York, 1981.

17. Zienkiewicz, О. C. and Taylor, R. L., and Too, J . М., “Reduced Integration
Technique in General Analysis of Plates and Shells”, International Journal for
Numerical Methods in Engineering, Vol. 3, 1971, pp.275-290.

18. Hughes, T. J. R., Taylor, R. L., and Kanoknukulcnai, W., ”A Simple ana
Efficient Element for Plate Bending”, International Journal fo r Numerical
Methods in Engineering, Vol. 11, 1977, pp. 1529-1543.

19. Kwon, Y. W., Salinas, D., and Neibert, M. J., “Thermally Induced Stresses in
a Trilayered System”, Journal of Thermal Stresses, Vol. 17, 1994, pp. 489-506.

A7Q

480 References

20. Kwon, Y. W. and Akin, J . E., “A Simple Efficient Algorithm for Elasto-plastic
Plate Bending”, Engineering Computations, Vol. 3, No. 4, 1986, pp. 283-286.

21. Kwon, Y. W. and Akin, J . E., “Linear Elastic and Non-linear Elasoplastic
Plate Bending Analysis Using a Mixed Galerkin Finite Element Technique”,
Engineering Computations, Vol. 1, No. 3, 1984, pp.268-272.

22. Akin, J. E. and Kwon, Y. W., “A Mixed Finite Element Method for Lay­
ered Composite Plates”, Computational Mechanics’86: Theory and Application
(Edited by Yagawa et al.), Springer, Tokyo, 1986, pp. 195-1102.

23. Akin, J . E. and Kwon, Y. W., “Analysis of Plates With Through-Wall Cracks
Using a Hybrid-Strain Element”, The Mathematics of Finite Elements and
Applications VI (Edited by Whiteman, J. R.), Academic Press, London, 1988,
pp. 115-122.

24. Yang, P. C., Horris, С. H., and Stavsky, Y., “Elastic Wave Propagation in
TJ ДЛ11С Л / 7л»«<тл/ Л f л«// nr*£> о \7л1 О
U V U U l V J g V l l W U O X i O i U W O J ll>Ufr»vr«UI U \S U b 1 l b IX • VJ u v K U O u r t u U b l U t l) U r G O j V V - l l. J

1966, pp. 665-684.
25. Whitney, J . M. and Pagano, N. J ., “Shear Deformation in Heterogeneous

Anisotropic Plates”, Journal of Applied Mechanics, Vol. 37, 1970, pp. 1031-
1036.

26. Bathe K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

27. Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite
Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

28. Zienkiewicz, О. C. and Taylor, R. L., The Finite Element Method, Vol. 2
Solid and Fluid Mechanics Dynamics and Non-linearity, 4th Ed.,McGraw-Hill,
London, 1991.

29. Park, К. C., “Practical Aspects of Numerical Time Integration” , Computers and
Structures, Vol. 7, 1977, pp. 343-353.

30. Kwon, Y. W. and Christy, C., “An Efficient Finite Element Modeling of Dynamic
Crack Propagation Using a Moving Node Element” , Structural Engineering and
Mechanics, Vol. 2, No. 2, 1994, pp. 173-184.

31. Meirovitch, L. , Computational Methods in Structural Dynamics, Alphen a an
den Rijn, Sijthoff, and Noordhoff International Publishers, 1980.

32. Inman, D.J., Vibration with Control, Measurement, and Stability, Prentice-Hall,
Englewood Cliffs, New Jersey, 1989.

33. Press, W.H., Flaneery, B.P., Teukolsky, S.A., and Vetterling W.T., “Numerical
Recipes”, Cambridge University Press, New York, 1986.

34. Tocher, J . L., Analysis of Plate Bending Using Triangular Elements, Ph.D.
Dissertation, University of California, Berkeley, 1962.

35. Owen, D. R. J . and Li, Z. H., “A Refined Analysis of Laminated Plates by
Finite Element Displacement Methods - I. Fundamentals and Static Analysis” ,
Comnuters and Structures. Vol. 26. No. 6. 1987. dd. 907-914.----Г ----- _ ---- - - - - - f . - / - - - i --- ■ J f r --------- -

36. Kwon, Y. W., “Finite Element Analysis of Crack Closure in Plate Bending” ,
Computers and Structures, Vol. 32, No. 6, 1989, pp. 1439-1445.

37. Brogan, W.L., Modem Control Theory, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1985.

38. Ogata, K., Modem Control Engineering, Prentice-Hall, Englewood Cliffs, New
Jersey, 1990.

References 481

39. Chen, C.T., Linear System Theory and Design, Holt, Rinehart and Winston,
New York, NY, 1984.

40. Kailath, Т., Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.
41. Friedland, B., Control System Design, McGraw-Hill, 1986.
42. Ogata, K., Solving Control Engineering Problems with MATLAB, Prentice-Hall,

Inc., Englewood Cliffs, N.J., 1994.
43. Kuo, B.C., and Hanselman, D.C., “MATLAB Tools for Control System Analysis

and Design” , Prentice-Hall, Englewood Cliffs, N.J., 1994.
44. Athans, M. and Falb, P.L., Optimal Control, and Introduction to Theory and Its

Applications, McGraw-Hill, New York, NY, 1966.
45. Kirk, D.E., Optimal Control Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J.,

1970.
46. Laub, AL, “A Schur Method for Solving Algebraic Riccati Equations”, IEEE

Transactions on Automatic Control, Vol. AC-24, Jun. 1979, pp. 913-925.
47. Potter, J.E., “Matrix Quadratic Solutions,” Journal of SIAM, Applied Mathe­

matics, Vol. 14, No. 3, 1966, pp. 496-501.
48. Meirovitch, L., Introduction to Dynamics and Control, John Wiley &; Sons, Inc.,

1985.
49. Meirovitch, L., Elements of Vibration Analysis, McGraw-Hill Co., Singapore,

1986.
50. Junkins, J.L., and Kim, Y.D., Introduction to Dynamics and Control of Flexible

Structures, AIAA Education Series, AIAA, Washington, DC, 1993.
51. Bayo E., “A Finite-Element Approach to Control the End-Point Motion of a

Single-Link Flexible Robot”, Journal of Robotic Systems, Vol. 4, No. 1, 1987,
pp. 63-75.

52. Kim, Y., Junkins, and Kurdila, A.J., “On the Consequences of Certain Mod­
eling Approximations in Dynamics and Control of Flexible Space Structures”,
Preprint, Proceedings of the 33th SDM Conference, AIAA, Dallas, TX, April
1992, pp. 1173-1184.

53. Fujii, H., and Ishijima, S., “Mission Function Control for Slew Maneuver of a
Flexible Space Structure”, Journal of Guidance, Control, and Dynamics, Vol.
12, No. 6, November-December, 1989, pp. 858-865.

54. Junkins, J.L., Rahman, Z.H., and Bang, H., “Near-Minimum-Time Control of
Distributed Parameter Systems: Analytical and Experimental Results”, Journal
of Guidance, Control, and Dynamics, Vol. 14, No. 2, Mar.-Apr. 1991, pp. 406-
415.

55. Junkins, J.L., Rahman, Z.H., and Bang, H., “Near-Minimum-Time Maneuvers
of Flexible Vehicles: A Lyapunov Control Law Design Method”, Mechanics and
Control of Large Flexible Structures, Chapter 22, Progress in Astronautics and
Aeronautics, Vol. 129, edited by J.L. Junkins, AIAA, New York, NY, 1990.

56. Bang, H. and Kwon, Y.W., “Boundary Force Feedback for Flexible Structure
Maneuver and Vibration Control” , Proceedings fo r 1994 ASME Winter Meeting,
Chicago, IL, November 6-11, pp. 59-70.

482 References

FOR ADDITIONAL READING

Akin, J. E., Finite Elements fo r Analysis and Design, Academic Press, London,
1993.
Becker, E. B., Carey, G. F., and Oden, J . Т., Finite Elements: Vol. I An
Introduction, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
Bickford, W. B., A First Course in the Finite Element Method, Irwin, Home­
wood, Illinois, 1990.
Carey, G. F. and Oden, J . Т., Finite Elements: Vol. II A Second Course,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
Craig, Jr., R.R., Structural Dynamics - An Introduction to Computer Methods,
John Wiley Sons, 1981.
Gibson, R. F., Principles of Composite Material Mechanics, McGraw-Hill, New
York, 1994.

4 в ft4- orr>f»rt] О Л/f /"1 > Q TXT H ill TVT Л TIT 1 ("17
U U l i C S , i i . i v i . , i u c u c u r t t t o x/j i u u c c ((u i O] i u ^ v j i a w i m i , n e w j . u i a . } i ^ i

Reddy, J. N., An Introduction to the Finite Element Method, 2nd Ed., McGraw-
Hill, New York, 1993.
Skelton, R.E., Dynamic System Control - Linear System Analysis and Synihesis,
John Wiley &; Sons, New York, NY, 1988.
Zienkiewicz, О. C. and Taylor, R. L., The Finite Element Method, Vol. 1 Basic
Formulation and Linear Problems, 4th Ed.,McGraw-Hill, London, 1989.

Appendix A MATLAB Function Files

function [kk,mm] = feaplycs(kk,m m ,bcdof)

Purpose:
Apply constraints to eigenvalue matrix equation.
[kk] {x}=lamda[mm]{x}

Synopsis:
[kk, mm]=feaply cs (kk ,mm, b cdof)

Variable Description:
kk - system stiffness matrix before applying constraints
mm - system mass matrix before applying constraints
bcdof - a vector containing constrained d.o.f

function [kk,ff] = feaplyc2(kk,ff,bcdof,bcval)

Purpose:
Apply constraints to matrix equation [kk]{x}={ff}.

Synopsis:
[kk ,ff]=fe aply b с (kk ,ff ,b с dof, b с val)

Variable Description:
kk - system matrix before applying constraints
ff - system vector before applying constraints

_ a vo/*fnr mnfainincf гя 1п»Л rl n fW^LVA U> » W VV* W X I V i

bcval - a vector containing contained value

Note:
For example, there are constraints at d.o.f=2 and 10
and their constrained values are 0.0 and 2.5,
respectively. Then, bcdof(l)—2 and bcdof(2)=10; and
bcval(l)=1.0 and bcval(2)=2.5.

function [kk]= feasm b ll(kk ,k ,index)

O tl « и Л.ЛЛ*x uipuisc.
Assembly of element matrices into the system matrix.

Synopsis:
[kk]=feasmbll(kk,k,index)

Variable Description:
kk - system matrix

486 MATLAB Function Files Appendix A

к - element matrix
index - d.o.f. vector associated with an element

function [kk,ff] =feasmb!2(kk,ff,k,f,index)

Purpose:
Assembly of element matrices into the system matrix and
assembly of element vectors into the system vector.

Synopsis:
[kk ,ff]=feasmbl2 (kk ,ff ,k ,f .index)

Variable Description:
kk - system matrix
ff - system vector
к - element matrix
f - element vector
index - d.o.f. vector associated with an element

function [gJ=febasgr(A,B,dc)

Purpose:
Calculate a feedback gain for a single input system by
Bass-Gura formula.
System equation : xdot = Ax + bu

Synopsis:
[g]=fbasgur(A,B,dc)

Variable Description:
dc - a vector consisting of desired closed-loop poles
g - a feedback gain vector.

function rk.ml=febeamjUel,xi.lene,area,rho.ipt)
ь у j \ / / ' ' - /

Purpose:
Stiffness and mass matrices for Hermitian beam element,
nodal dof {v_l theta_l v_2 theta_2}

Synopsis:

Appendix A MATLAB Function Files

p£,m]=febeaml (el,xi,leng,area,rho,ipt)

Variable Description:
к - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - element length
area - area of beam cross-section
rho - mass density (mass per unit volume)
ipt = 1: consistent mass matrix

2: lumped mass matrix
otherwise: diagonal mass matrix

function [k,m] =febeam2(el,xi,leng,sh,area,rho,ipt)

Purpose:
Stiffness and mass matrices for the Timoshenko beam element,
nodal dof {v_l theta_l v_2 theta_2}

Synopsis:
[k,m] =febeam2(el,xi,leng,sh,area,rho,ipt)

Variable Description:
к - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - length of the beam element
rho - mass density of the beam element (mass per unit volume)
sh - shear modulus
area - area of cross-section
ipt = 1: consistent mass matrix

2: lumped mass matrix
otherwise: diagonal mass matrix

Г .___ J_I__ Г1_____ 1 __f _ l______ „L 1 __________ T________ ! J i l ___iuiiciioii wiuiiii^iuuj

Stiffness and mass matrices for beam element with displacement
degrees of freedom only.
nodal dof {и_ГЬ u _ rt v_l u_2*b u_2~t v_2}

488 MATLAB Function Files Appendix A

Synopsis:
[k,m]=febeaml(el,sh,leng,heig,rho,area,ipt)

Variable Description:
к - element stiffness matrix (size of 6x6)
m - element mass matrix (size of 6x6)
el - elastic modulus
sh - shear modulus
leng - element length
heig - element thickness
width - width of the beam element
rho - mass density of the beam element (mass per unit volume)

lumped mass matrix only

function [k,m] =febeam4(el,xi,leng,sh,heig,rho,ipt)

Purpose:
Stiffness and mass matrices for mixed beam element.
Bending moment and deflection as nodal degrees of freedom,
nodal dof {M_l v_l M_2 v_2}

Synopsis:
[k,m3=febeam4(el,xi,leng,sh,heig,rho,ipt)

Variable Description:
к - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - length of the beam element
sh - shear modulus
heig - beam thickness
rho - mass density of the beam element (mass per unit volume)
ipt = 1 - lumped mass matrix

= otherwise - diagonalized mass matrix

function [C tobty,rrank, ccon d]=fectobt(A,B)

rurpose:
Calculate controllability matrix and/or observability of
a system described in state space form

xdot = Ax + Bu

Synopsis:
[Ctobty,rrank,ccond]=fectobt(A,B)

Variable Description:
Ctobty - controllability or observability matrix
rrank - rank of Ctobty which determine yes/no type answer
ccond - condition number of Ctobty

Note:
For controllability test, the input argument should follow as
fctobty(A,B).
For observability test, we should provide the input argument as
fctobty(A~T, C~T). () ЛТ is transpose of () .

Appendix A MATLAB Function Files

function [dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

Purpose:
Determine derivatives of 2-D isoparametric shape functions with
respect to physical coordinate system.

Synopsis:
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

Variable Description:
dhdx - derivative of shape function w.r.t. physical coordinate x
dhdy - derivative of shape function w.r.t. physical coordinate у
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
invjacob - inverse of 2-D Jacobian matrix

function [dhdx,dhdy,dhdz] =federiv3(nnel,dhdr,dhds,dhdt,invjacob)

Purpose:
Determine derivatives of 3-D isoparametric shape functions with
respect to physical coordinate system.

Synopsis:
[dh dx, dhdy, dhdz]=federiv3(nnel, dhdr, dhds, dhdt, invjacob)

Variable Description:
dhdx - derivative of shape function w.r.t. physical coordinate x
dhdy - derivative of shape function w.r.t. physical coordinate у
dhdz - derivative of shape function w.r.t. physical coordinate z

490 MATLAB Function Files Appendix A

nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
dhdt - derivative of shape functions w.r.t. natural coordinate t
invjacob - inverse of 3-D Jacobian matrix

function [eta,yim]=fediresp(M,K,F,u,t,C,qO,dqO,a,b)

Purpose:
Calculate impulse response for a damped structural system
lioinff ivia/̂ qI analvoic Tf noae +л йЛПоЬлпо
uonig iiivuui u>uuijk»u, xи шииш w v i ^ N j u u u i v n o

to evaluate modal responses anaytically, then convert
modal coordinates into physical responses.

Synopsis:
[eta,yim]=fediresp(M,K,F,u,t,C,qO,dqO)a,b)

Variable Description:
M, К - mass and stiffness matrices
F - input or forcing influence matrix
u - index for excitation
t - time of evaluation
u “ irdex for the excitation
С - output matrix
q0, dqO - initial conditions

1_ ____________i . _____ J ? __________ __ . 1 ' . 1 J • __ r / ^ 1 . r » f l . 1_ r r r la, d - parameters ror proportional damping a llvlJ+DLJ:vJ
eta - modal coordinate response
yim - physical coordinate response

function [index] =feeldof(nd,nnel,ndof)

Purpose:
Compute system dofs associated with each element.

Synopsis:
[index]=feeldof(nd,nnel,ndof)

Variable Description:
index - system dof vector associated with element “iel”
iel - element number whose system dofs are to be determined
nnel - number of nodes per element
ndof - number of dofs per node

Appendix A MATLAB Function Files

function [index] = fee ld o fl (iel,nnel,ndof)

Purpose:
Compute system dofs associated with each element in one­
dimensional problem.

Synopsis:
[index]=feeldofl (iel, nnel ,ndof)

Variable Description:
index ~ system dof vector associated with element “iel”
iei - element number whose system dofs are to be determined
nnel - number of nodes per element
ndof - number of dofs per node

function [yfft,freq]= fefft(y,t)

Purpose:
Calculate Fast Fourier Transform (FFT) using the time domain
signal. The time domain data are provided with corresponding
time interval.

Synopsis:
[yf, freq]=fefft(y,t)

Variable Description:
у - time domain data n by 1
t - time interval for у of n by 1 size
yf - absolute value of FFT of у
freq - frequency axis values

Notes:
The number of data points for у should be power of 2, and
truncation is needed to achieve the requirement.

function [k]= feflxl2(eleng)

Purpose:
Element matrix for Cauchy-type boundary such as du/dn=a(u-b)
using linear element where a and b are known constants.

Synopsis:
[k]=feflxl2(eleng)

492 MATLAB Function Files Appendix A

Variable Description:
к - element vector (size of 2x2)
eleng - length of element side with given flux

function [k,m] =feframe2 (el,xi,leng,area,rho,beta,ipt)

Purpose:
Stiffness and mass matrices for the 2-d frame element,
nodal dof u .l v_l theta .l u_2 v_2 theta.2

Synopsis:
[k,m]=:feframe2(el,xi,leng,area,rho,beta,ipt)

Variable Description:
к - element stiffness matrix (size of 6x6)
m - element mass matrix (size of 6x6)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - element length
area - area of beam cross-section
rho - mass density (mass per unit volume)
beta - angle between the local and global axes

is positive if the local axis is in the ccw direction from
the global axis

ipt = 1 - consistent mass matrix
= 2 - lumped mass matrix
= 3 - diagonal mass matrix

function [f]=fefxl(xl,xr)

Purpose:
Element vector for f(x)=x using linear element.

Synopsis:
ГЛ1 Л 1 / 1 4[Ij=l€ixi(xi,xr)

Variable Description:
f - element vector (size of 2x1)
xl - coordinate value of the left node
xr - coordinate value of the right node

Appendix A MATLAB Function Files

function [f]=fefx21(xl,xr)

493

Purpose:
Element vector for f(x)=x*2 using linear element.

Synopsis:
[f]=fefx21(xl,xr)

Variable Description:
f - element vector (size of 2x1)
xl - coordinate value of the left node
xr - coordinate value of the right node

function [f]= fe fll(x l,x r)

Purpose:
Element vector for f(x)= l using linear element.

Synopsis:
[f]=fefll(xl,xr)

Variable Description:
f - element vector (size of 2x1)
xl - coordinate value of the left node
xr - coordinate value of the right node

function [point 1,weight 1]= feg lq d l(n g l)

Purpose:
Determine the integration points and weighting coefficients
of Gauss-Legendre quadrature for one-dimensional integration.

Synopsis:
[pointl,weightl]=feglqdl(ngl)

Variable Description:
ngl - number of integration points
point 1 - vector containing integration points
weightl - vector containing weighting coefficients

fun с t ion [p oint 2, weight 2] =feglqd2 (nglx, ngly)

494 MATLAB Function Files Appendix A

Purpose:
Determine the integration points and weighting coefficients
of Gauss-Legendre quadrature for two-dimensional integration.

Synopsis:
[p oint 2, weight 2]=fegl qd2 (nglx,ngly)

Variable Description:
nglx - number of integration points in the x-axis
ngly - number of integration points in the y-axis
point2 - vector containing integration points
weight2 - vector containing weighting coefficients

function [point3,weight3]=feglqd3(nglx,ngly,nglz)

Purpose:
Determine the integration points and weighting coefficients
of Gauss-Legendre quadrature for three-dimensional integration.

Synopsis:
[p oint 3, weight 3] =fegl qd3(nglx, ngly, nglz)

Variable Description:
nglx - number of integration points in the x-axis
ngly - number of integration points in the y-axis
nglz - number of integration points in the z-axis
point3 - vector containing integration points
weight3 - vector containing weighting coefficients

function [eta,yim]=feiresp(M,K,F,u,t,C,qO,dqO)

Purpose:
Calculate impulse response for a given structural system
using modal analysis. It uses modal coordinate equations
to evaluate modal responses analytically, then convert modal
coordinates into physical responses.

Synopsis:
[eta,yim]=impresp(M,K,F,u,t,C,qO,dqO)

Variable Description:

Appendix A MATLAB Function Files

M, К - mass and stiffness matrices
F - input or forcing function
u - index for excitation
t - vector of time duration
С - output matrix
qO, dqO - initial conditions
eta - modal coordinate response
yim - physical coordinate response

function [shapeq4,dhdrq4,dhdsq4] =feisoq4(rvalue,svalue)

Purpose:
Compute isoparametric four-node quadilateral shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

Synopsis:
[shapeq4,dhdrq4,dhdsq4]=feisoq4(rvalue, svalue)

Variable Пряг.гт+ллп*------- - -
shapeq4 - shape functions for four-node element
dhdrq4 - derivatives of the shape functions w.r.t. r
dndsq4 - derivatives of the shape functions w.r.t. s
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point

Notes:
1st node at (-1,-1), 2nd node at (1,-1)
3rd node at (1,1), 4tn node at (-1,1)

function [shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue,tvalue)

Purpose:
Compute isoparametric eight-node solid shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

Synopsis:
[shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue,tvalue)

Variable Description:
shapes8 - shape functions for four-node element
dhdrs8 - derivatives of the shape functions w.r.t. r

496 MATLAB Function Files Appendix A

dhdss8 - derivatives of the shape functions w.r.t. s
dhdts8 - derivatives of the shape functions w.r.t. t
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point
tvalue - t coordinate value of the selected point

Notes:
1st node at (-1,-1,-1), 2nd node at (1 ,-1,-1)
3rd node at (1,1,-1), 4th node at (-1 ,11)
5th node at (-1,-1,1), 6th node at (1,-1,1)
7th node at (1,1,1), 8th node at (-1,1,1)

function [shapet3, dhdrt 3, dhdst3]=feiso13 (rvalue, svalue)

Purpose:
Compute isoparametric three-node triangular shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

Synopsis:
[shapet3 ,dhdrt3 ,dhdst3]=feisot3(r value,svalue)

Variable Description:
shapet3 - shape functions for three-node element
dhdrt3 - derivatives of the shape functions w.r.t. r
dhdst3 - derivatives of the shape functions w.r.t. s
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point

Notes:
1st node at (0,0), 2nd node at (1,0), 3rd node at (0,1)

function [jacobl]=fejacobl (nnel,dhdr,xcoord)

Purpose:
Determine the Jacobian for one-dimensional mapping.

Synopsis:
p acob 1]=fej acob 1 (nnel, dh dr ,xcoor d)

Variable Description:
jacobl - Jacobian for one-dimension
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate

Appendix A MATLAB Function Files

xcoord - x axis coordinate values of nodes

497

function [jacob2] =fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

Purpose:
Determine the Jacobian for two-dimensional mapping.

Synopsis:
[jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

Variable Description:
jaco'b2 - Jacobian for one-dimension
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
xcoord - x axis coordinate values of nodes
ycoord - у axis coordinate values of nodes

function [jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)

Purpose:
Determine the Jacobian for three-dimensional mapping.

Synopsis:
[jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)

Variable Description:
jacob3 - Jacobian for one-dimension
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
dhdt - derivative of shape functions w.r.t. natural coordinate t
xcoord - x axis coordinate values of nodes
ycoord - у axis coordinate values of nodes
zcoord - z axis coordinate values of nodes

function [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)

Purpose:

498 MATLAB Function Files Appendix A

Determine kinematic equations between strains and displacements
for axisymmetric solids.

Synopsis:
[kinmtxax]=fekineax(nnel, dhdx, dhdy, shape, radist)

Variable Description:
nnel - number of nodes per element
shape - shape functions
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to у
radist - radial distance of integration point or central point

for hoop strain component

function [kinmtnbl =fekineobfnnel.dhdx.dhdv)к A J * \ / i f

Purpose:
Determine the kinematic matrix expression relating bending curvatures
to rotations and displacements for shear deformable plate bending.

Synopsis:
[kinmtpb]=fekinepb(nnel,dhdx,dhdy)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to у

function [kinmtps] =fekineps (nnel, dhdx,dhdy,shape)

Purpose:
Determine the kinematic matrix expression relating shear strains
to rotations and displacements for shear deformable plate bending.

Synopsis:
[kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

Variable Description:
nnel - number of nodes per element

1 rn + 1 тгло ekfma •Pltn/'llAno nnf Vi Мвпйл! f Л VUHUA ~ u t i l van ui oiicipt luii^oiuiio vnuii ьи л
dhdy - derivatives of shape functions with respect to у
shape - shape function

Appendix A MATLAB Function Files

function [kinmtx2] =fefcine2d(nnei,dhdx,cmdy)

rurpose:
Determine the kinematic equation between strains and displacements
for two-dimensional solids.

Synopsis:
[kinmtx2]=fekine2 d(nnel ,dh dx, dhdy)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to у

function [kinmtx3] = fekine3d(nnel,dhdx,dhdy,dhdz)

Purpose:
Determine the kinematic equation between strains and displacements
for three-dimensional solids.

Synopsis:
[kinmtx3]=fekine3d(nnel,dhdx,dhdy,dhdz)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to у
dhdz - derivatives of shape functions with respect to z

function [k}= fe lp ax t3 (rl,z l,r2 ,z2 ,r3 ,z3)

Purpose:
Element matrix for axisymmetric Laplace equation
using three-node linear triangular element.

Synopsis:
pt]=felpaxt3(rl,zl,r2,z2,r3,z3)

Variable Description:
к - element stiffness matrix (size of 3x3)
r l , z l - r and z coordinate values of the first node of element
r2, z2 - r and z coordinate values of the second node of element
r3, z3 - r and z coordinate values of the third node of element

500 MATLAB Function Files Appendix A

function [m]=felpt2r4(xleng,yleng)

Purpose:
Element matrix of transient term for two-dimensional Laplace’s
equation using four-node bilinear rectangular element.

Synopsis:
[m]=felpt2r4(xleng,yleng)

Variable Description:
m - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [m]=felpt2t3(xl,yl,x2,y2,x3,y3)

Purpose:
Element matrix for transient term of two-dimensional
Laplace’s equation using linear triangular element.

Synopsis:
[m]=felpt2t3(xl,y 1 ,x2,y2,x3,y3)

Variable Description:
m - element stiffness matrix (size of 3x3)
x l, y l - x and у coordinate values of the first node of element
x2, y2 - x and у coordinate values of the second node of element
x3, y3 - x and у coordinate values of the third node of element

function [m]=felpt3t4(x,y,z)

Purpose:
Element matrix of transient term for three-dimensional Laplace’s
equation using four-node tetrahedral element.

Synopsis:
[m]=felpt3t4(x,y,z)

Variable Description:

Appendix A MATLAB Function Files

m - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [k] =felp2dr4(xleng,yleng)

Purpose:
Element matrix for two-dimensional Laplace’s equation
using four-node bilinear rectangular element.

Synopsis:
[k]=felp2dr4(xleng, yleng)

Variable Description:
к - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [k] = felp2dt3(xl,yl,x2,y2,x3,y3)

Purpose:
Element matrix for two-dimensional Laplace’s equation
using three-node linear triangular element.

Synopsis:
[k] =felp2dt 3(x 1 ,y 1 ,x2 ,y 2 ,x3 ,y3)

Variable Description:
к - element stiffness matrix (size of 3x3)
x l, y l - x and у coordinate values of the first node of element
x2, y2 - x and у coordinate values of the second node of element
x3, y3 - x and у coordinate values of the third node of element

function [k]=felp3dt4(x,y,z)

Purpose:
Element matrix for three-dimensional Laplace’s equation
using four-node tetrahedral element.

Synopsis:

502 MATLAB Function Files Appendix A

[k]=felp3dt4(x,y,z)

Variable Description:
к - element matrix (size of 4x4)
x - x coordinate values of the four nodes
у - у coordinate values of the four nodes
z - z coordinate values of the four nodes

function [G,S]=felqr(A,B,Q,R)

Purpose:
Calculate the feedback gain matrix by Linear Quadratic
Regulator(LQR) technique. The given system is

vrlnf - Ay 4- Rn n — - Hy

and the cost function to be minimized is defined as
J=(l/2)integral(x,Qx+u,Ru)dt

Synopsis:
[G,S]=felqr(A,B,Q,R)

Variable Description:
A, B, Q, R - input arguments
G — R_1G’S - feedback gain matrix
S - solution of the Algebraic Ricatti Equation (ARE)

AS+A’S-SBR-1S+Q=0

Notes:
(A,B) should be controllable.
Q is at least positive semi-definite.
R is at least positive definite.

function [x,y]=felresp(A,B,C,D,xO,u,t)

Purpose:
Find the time response of a linear system driven by an initial condition
and an external input. The numerical algorithm used in this program is
a zero order hold approximation for control input for discretized
system.

Synopsis:
[x,y]=felresp(A,B,C)D,xO,u,t)

Variable Description:
А, В, C, D - system matrices in, xdot = Ax + Bu, у = Cx 4- Du

Appendix A MATLAB Function Files 503

xO - initial condition vector for the state variables
t - integration time at equal distance as t=0:dt:tf
dt - time step, tf - final time
u - control input vector with as many rows as the size of t
x(y) - state(output) vector

Notes:
The control input vector must have as many columns as the number of input.

function [matmtrx] =fematiso(iopt,elastic,poisson)

Purpose:
determine the constitutive equation for isotropic material.

Synopsis:
[matmtrx] =fematiso(iopt .elastic,poisson)

Variable Description:
elastic - elastic modulus
poisson - Poisson’s ratio
iopt=l - plane stress analysis
iopt=2 - plane strain analysis
iopt=3 - axisymmetric analysis
iopt=4 - three dimensional analysis

function [Omega,Phi,ModF] =femodal(M,K,F)

Purpose:
Calculate modal parameters for a given structural system.
It calculates natural frequency and eigenvector.
The eigenvectors are normalized so that the modal mass matrix
becomes an identity matrix.

Synopsis:
[Omega, Phi, ModF]=femodal(M,K,F)

Variable Description:
M, К - mass and stiffness matrices
F - input or forcing function
Omega - natural frequency (rad/sec)
Phi - odal matrix with each column corresponding to

the eigenvector
ModF - modal input matrices.

504 MATLAB Function Files Appendix A

function [k] = feodex21(xl,xr)

Purpose:
Element matrix for (x~2 u” - 2x u’ - 4 u) using linear element.

Synopsis:
[k]=feodex21 (xl,xr)

Variable Description:
к - element matrix (size of 2x2)
xl - coordinate value of the left node of the linear element

function [k] =feode21(acoef,bcoef,ccoef,eleng)

Purpose:
Element matrix for (a u” + b u 4 с u) using linear element.

Synopsis:
Пг1 — к лллГ лллд'Г
| J V J “ l b V U U A i ^ C l i V W L J L r W V l) V V V V < l | U i U U ^J

Variable Description:
к - element matrix (size of 2x2)\ /
acoef - coefficient of the second order derivative term
bcoef - coefficient of the first order derivative term
ЛЛЛЛ'Р _ n t a -Г f VkA f
V V U C 1 - V V y d U V l ^ J l l l U 1 U 1 1 & (J 1 U t l U b l I V C l l l l V t

eleng - element length

function [y] =terbsim(M,K,F,gl,g2,g3,EI,h,lO,thl',tf)

Purpose:
Simulate a rotating flexible beam attached to a base.
The mathematical model is created from frobfem.m
as system mass and stiffness matrices.

Synopsis:
[y] = ferbsim(M,K,F,gl,g2,g3,EI,h,10,thf,tf)

Variable Description:
M, K, F - system matrices
g l, g2, g3 - feedback gains
El, h, 10 - parameters for boundary force calculation
thf, tf - final angle and final simulation time

Appendix A MATLAB Function Files

у - output parameter

function [w,M,K]=ferobem(N,EI,rho,I_c,I_t,m_t,l_0,L)

Purpose:
Produce a finite element modeling of a rotating beam
attached to a rigid base.

Synopsis:
[w,M,K]=ferobem(N,EI,rho,Lc,I_t,m_t,l_0,L)

Variable Description:
N - number of elements
El - elastic rigidity
rho - linear mass density
I_c(I_t) - moment of inertia of center body(tip mass)
m_t - tip mass
1_0 - radius of the center body
L - beam length
M, К - system mass, stiffness matrices
w - natural frequency

function [t_p, t_r, t_s, M_p]=fesecnd(zeta, w_n)

Purpose:
Calculate dynamic characteristics of a typical standard
second order system. Transfer function is

w_n~2
H (s)=---------------------------------

sA 2+2*zeta*w~n*s+w_n ~ 2

Synopsis:
[t_p, t_r, M_p, t_s]=fsecond(zeta, w_n)

Variable Description:
zeta - damping ratioЯ V
w_n - natural frequency (rad/sec)
t_p - peak time
t_r - rise time
t_s - settling time
M_p - maximum overshoot,

506 MATLAB Function Files

function [num, den] = festo tf(A ,B ,C ,D ,iu)

Appendix A

Purpose:
Convert a state space form of system into a transfer function form
for the given system

xdot = Ax+Bu
у =Cx+Du

The transfer function becomes
N(s) -1

H(s) = ------- = C(sl-A) В + D
D(s)

Synopsis:
rnum.denl=festotffA.B.C.D.iu'l
t / - - J \ r * - ' * /

Variable Description:
А, В, C, D - system matrix
iu - index for control input (iu-th input)
D(s) - vector of coefficients of the denominator
N(s) - vector of coefficients of the numerator polynomials

Note:
There are same number of rows in N(s) as the number of output.

function [k,m] = fe tru ss l(e l,len g ,a rea ,rh o ,ip t)

Purpose:
Stiffness and mass matrices for the 1-d truss element,
nodal dof u_l u_2

Synopsis:
[k,m]=fetrussl(el,leng,area,rho,ipt)

Variable Description:
к - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
leng - element length
area - area of truss cross-section
rho - mass density (mass per unit volume)
ipt = 1 - consistent mass matrix

= 2 - lumped mass matrix

function [k,m] = fetruss2 (e l,leng ,area ,rho ,beta ,ip t)

Appendix A MATLAB Function Files 507

Purpose:
Stiffness and mass matrices for the 2-d truss element,
nodal dof u_l v_l u_2 v_2

Synopsis:
[k,m]=fetruss2(el, leng, area, rho, beta, ipt)

Variable Description:
к - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)-- . . . v f
el - elastic modulus
leng - element length
n«(\n nflAn /\f 1̂»11ЙЙ /> 1̂ АЙ Й ЙЛ 1 ЛУ1
CL1 - CU- ^CX U l l i l U 0 i 3 U l U O i J - O C U l i l U U

rho - mass density (mass per unit volume)
beta - angle between the local and global axes ipt = 1: consistent mass matrix

positive if the local axis is in the ccw direction from
the global axis

ipt = 1 - consistent mass matrix
= 2 - lumped mass matrix

INDEX

A

Acceleration, 285, 286
Active control, 296, 394
Actuator, 394, 423, 445, 447, 461, 462,

464
Adjoint, 420
Admissible solution, 43
Algebraic Ricatti Equation (ARE),

442, 443
Angle of twist, 77
Angular displacement, 470

velocity, 470
Approximate solution, 35
Asymptotically stable, 395, 396, 397,

400, 401
Automatic mesh generation, 52
Autonomous system, 408
Averaged weighted residual, 36, 235
Axial axis, 101
Axial bar (member), 74, 75, 197, 199,

see Truss
Axial displacement (deformation),

197, 242, 246, 260
Axial force (load), 71, 74,199, 259, 264
Axial member, 74, 75, 199
Axial (normal) strain, 242, 247
Axial stiffness, 261
Axisymmetric, 101-103, 119, 318, 319,

334

В

Backward difference, 98, 99, 124, 134,
139

Bar structure, see Truss
Bass-Gura formula, 434, 436, 477
Beam, see Chapter 8

element, 237, 238, 245, 247, 251, 258,
429

linear element, 245, 256
model, 443
rigidity, 235, 237, 409, 468

Bending curvature, 388
Bending deformation, 199, 256, 260
Bending energy, 368
Bending strain, 244, 256, 367, 372,

379, 382
Bending load, 264
Bending moment, 238, 249-252, 274
Bending stiffness, 244, 255, 261

matrix, 248
Bending strain, 366
Bending stress, 250, 257, 258, 332, 366
BIBO stability, 398, 422
Biharmonic governing equation, 363
Bilinear elements, 91, 114, 161
Bilinear isoparametric element, 160,

162, 368
Bilinear isoparametric shape function,

367
Biquadratic isoparametric shape

function, 368
Bilinear plate element, 382
Bilinear rectangular element, 90, 91,

97, 107, 114, 115, 118, 119, 129,
133, 139

Bilinear shape functions, 91, 163
Body coordinate system, 203
Body force, 311, 315
Boundary, 309

condition, 31, 41, 53, 54, 56, 57, 65,
66, 67, 75, 76, 83, 84, 100, 101,
108, 110, 111, 115, 116, 117, 119,
120, 125-127, 129, 130, 131, 132,
135, 138, 141, 143, 146, 189, 191,
207, 221, 228, 238, 239, 251, 267,
270, 271, 281-284, 308, 322-324,
328, 329, 331, 335, 341, 343, 347,
349, 383-385, 388, 464, 465, 478

force, 472

509

510 Index

integration, 84, 94
_____0 1 1 Ull
traction, 312

integral, 84, 85, 92, 102, 311

Cantilever beam, 239, 286, 328
Cauchy-type boundary, 143
Central difference, 99, 223, 226, 285,

286
Centroid, 320, 336, 337
Characteristic equation, 402, 420, 421,

423-425, 434, 437, 458
n b a ra / 'fe r ie tir ' r n n t АГ\0 49П
V llU lU V V V litfV iV I W V j x v Wj ДШ\/

Circumferential axis, 101
Circumferential direction, 318
Circumferential strain, 319
Circular frequency, 281, 283
Clamped, 251, 252
Closed boundary, 85
Closed-loop, 425

eigenvalue, 434, 447, 458
poles, 438
system, 423, 424, 425, 433, 434,
437, 443, 447, 449, 454, 456, 462,
473

J . _______ Л ______________ > 1 0 9tI<XU91Cl 1 6 0

Collocation method, 32, 33
Collocated sensor and actuator, 460,

461, 470
Command input, 423
Compatibility, 72
Compensator, 456, 458
Concentrated force, 238
Condensation technique, 258
Condition number, 430
Conditionally stable, 128, 285
C1 type, 237
C° compatibility (or continuity), 253,

0/1̂ 7 Oflft00/, O/O
C° type beam elements, 261
Consistent mass matrix, 198, 202, 204,

209, 218, 225, 241, 245, 268 278,
279, 281, 291, 321

A A llo f (Art ЧП7 Q nn Q1 Лw u p iiiu u u xvu v\ juau iu u ; uw i j u i i j

315, 326, 361, 366, 373, 375
Constitutive matrix, 323, 329, 336,

342, 347, 366, 372, 386
Constraint, 54, 55, 58, 72, 73, 206, 212,

213, 222, 225, 229, 280
equation, 245

Continuous slope, 236
Continuous deflection, 236
Continuity, 236, 247
Control input, 399, 412, 413, 415, 416,

427, 438, 439, 449, 462
Control system design, 393, 394, 417

y i o ^ r л о л Л С 1
V ^ U I l i r U l l c i U l U L ^ , 1

Grammian, 428, 429
matrix, 429, 430, 435, 436
test, 452, 453

Convection coefficient, 138
Convolution integral, 293, 411, 422
Coordinate transformation, 200, 263
Correction factor for shear energy, 242
Crank-Nicolson, 99, 100, 124
Critical time step, 285
Critically damped case, 403
Cubic polynomial, 172, 174
Current flow, 78
Cylindrical coordinate, 101

D

Damper, 401
Damped natural frequency, 297
Damped response, 297
Damping coefficient, 401
Damping matrix, 285, 296, 400
Damping ratio, 402, 403, 425, 450
Deflection, 205, 236, 239, 240, 274,

288, 375
T \ - i ______*______ i T _____________1 e c 1х^сьспшлаль ui jaC u u ia ii, iu u , iu u ,

350
Diagonalized mass matrix, 241, 245,

Index 511

268, 269, 275, 278, 279
Differential operator, 42

л f n п/»^1лп QO 0 ^ 8 401 Af\AJ l̂l UV UUVU 1 UUVV1V11) «VU) 1 «X j ~xvv~x

Direct Velocity Feedback (DVF), 465
Direction cosine, 203, 308, 374
Dirichlet boundary condition, 41, 43
Discrete Fourier transform (DFT),

300, 301
Discretization, 43, 87, 93, 102, 198,

215, 266, 314, 372
Discretized domain, 43
Displacement degree of freedom, 266
Displacement field, 246
Displacement function, 364
Displacement nodal variable, 241

___ __________ _________ O C\A
L J 1 S t r i U U L C U p d l d l l l C l C I s t y s b d l l , O V 4

Distributed pressure loading, 363
Disturbance, 423, 424, 426, 432
Domain integral, 84, 89, 92, 102, 311
Duality, 452, 455
Dynamic analysis, 241, 320
Dynamic characteristics, 420

E

Effective force vector, 285
Effective mass matrix, 285

01 К 01*7 ООО О ЛО ООПui^& uvaiu& j i j ял/*/, a i a j Auu,

281, 288, 295, 299, 408-410, 420,
442, 444, 454

Eigenvector, 288, 289, 292, 293, 295,
299, 408-410, 442, 444

Eight-node element, 167, 168
Elastic modulus, 74, 197, 199, 205,

207, 209, 213, 215-218, 223, 225,
228, 229, 248, 257, 266-268, 270,
272, 274, 276-278, 281, 283, 286,
322, 326, 329, 335, 341, 371, 373,
385

Elasticity, see Chapter 9
гм - __* j- ъп
Ej ICCI-TIC c i r c u i t , I (

Element boundary, 93-96, 106, 311
boundary integral, 96

Element domain, 88, 89, 310, 366
Element force vector, 72
P l a m o n t m o o e m e + i»iv 1 Qfi ОПО 01 Ajjiviiivuv inutw iiiaui IAj li/Uj AW]

218, 219, 223, 240, 268, 272, 274,
278, 280-283, 287, 466, 469

Element number, 53
Element (stiffness) matrix, 51, 54, 63,

67, 71, 89, 93, 106, 118, 123,
127, 128, 137, 147, 149, 183, 191,
200-203, 205, 207, 209, 211, 216,
218, 219, 223, 227, 238, 241-243,
248-250, 252, 256, 261,
266-268, 270, 272-274, 277, 278,
280, 281-283, 287, 310, 312, 315,
316, 318, 319, 324, 328, 334, 336,
о л л Ovin o a o о л а ОАО о с а о с о
о*±и, о*±*, о*±о, о ^ и - о ч о , о и и - о и о ,

372, 384, 386, 388, 466, 469
Element topology, 53
Elongation, 74
Embedded crack, 245
Energy function, 395
Energy principle, 42
Energy method, 242, 308, 313
Equation of equilibrium, 307
Equation of motion, 223, 414, 452,

463, 465, 476
Equilibrium, 71, 296, 471

point 395-397, 400, 401, 461, 471,
лгчсь iw r

Equilibrium equation, 362, 363, 380
of moments, 373

Equivalent beam rigidity, 257
Equivalent spring system, 78
Error signal, 423
Error vector, 454
Essential boundary condition, 43, 61,

83, 149, 308, 313
Estimated state variable, 456-458
Estimation of state variable, 463
Euler-Bernoulli beam, 235, 236, 242,

291, 361
Euler’s formula, 410
Exact integration rule, 368
Exponential of a matrix, 412

512 Index

Extended Hamilton’s principle, 465
External input, 293, 398, 408, 415
External load, 313
External work, 314

F

Factorial term, 411
Fast Fourier Transform (FFT),

300-302
Feedback control, 422, 432, 433, 447,

453, 456-458, 462, 472, 476
Feedback gain, 423, 433, 435-437,

442-444, 446, 458, 461-464
Fiber axis, 372
Fibrous composite, 371
Fictitious displacement, 285
Fictitious time step, 286
Fictitious velocity, 286
Final value theorem, 424-426
Finite difference method, 98
Finite dimensional approximation, 463
Finite element, 37, 43, 51, 52, 61, 64,

98, 119, 128, 134, 152, 215, 219,
240, 256, 269, 280, 282, 321, 372,
377, 383, 393, 398, 406, 461, 465,
466, 477

domain, 314
formulation, 71, 75, 76, 235, 308,
320

mesh, 39, 52, 87, 119, 124, 129, 138,
322, 334, 340, 377

model, 380, 406, 409, 418, 427, 445,
458, 465, 468

First order equation, 407
First order system, 407, 409, 413
Flexual rigidity of plate, 373
Flow rate, 78, 79
Fluid flow, 77, 78
Fluid viscosity, 78
Flux, 93, 103, 106, 107, 140

boundary condition, 83, 106, 142
Force equilibrium, 362

Forward difference, 98, 99, 124, 125,
134

Fourier transform, 300
Frame, see Chapter 8

element, 259, 261, 266, 283
Free body diagram, 197, 307, 362
Frequency domain, 300, 393, 422
Full state feedback, 433, 437, 443, 441

451, 453, 457
Functional, 42-44

G

Galerkin’s method, 32-34, 36, 40, 43,
65, 198, 235, 237, 242, 250, 252,
308, 310, 315, 320, 373, 376

Gauss-Legendre quadrature, 171, 172
174, 176, 177, 179-183, 329, 341,
347, 368, 385

Generalized coordinate vector, 399
Generalized strain, 255, 256, 380, 385
Geometric compatibity, 76
Global axes, 213, 229, 277
Global beam displacement, 258
Global derivative, 162-164
Global displacement, 262
Global coordinate matrix, 216, 219
Global coordinate system, 200, 261,

368
Global matrix, 201, 469
Global node number, 93, 94, 312
Global truncation error, 98, 99
Green’s theorem, 85

H

Hamiltonian, 438, 441, 442, 444
Harmonic motion, 215
Heat conduction, 77, 83, 86, 93, 96

coefficient, 138
Heat flux, 77, 78
Heat sink, 86
Heat source, 86

Index 513

Heat transfer, 95
Hermitian shape function, 237, 240
Hermitian beam element, 239, 243,

261, 266, 286
Hooke’s law, 197
Hybrid beam element, 253, 256
Hybrid plate element, 378, 382

I

Impulse response, 294, 295, 301, 421,
422

Implusive input, 455
Inertia, 198

force, 238, 320
Infinite dimensional system, 394, 399
Infinitesimal element, 307
Initial condition, 101, 135, 223, 226,

293, 294, 298, 402, 404, 409-413,
415, 432, 440, 443, 456, 459

Initial solution, 286
Inplane axis, 361
Inplane deformation

(or displacement), 256, 367, 369
Inplane strain, 365
Input influence matrix, 292, 399, 418,

460, 462
Insulated, 93
Integral operator, 42
Integration,

by parts, 34, 42, 84, 102, 235
muti-dimensional, 175
one point, 383
three-dimension, 175
two-dimensional, 175
two point, 383

Integration point, 170, 171, 173,
175-177, 179-182, 184, 188,
343-345, 354

Inter-element compatibility, 243
Interlaminar delamination, 245
Internal bending moment, 471
Internal energy, 313, 366

Internal forces, 78
Internal layers, 258
Internal pressure, 334, 340
Internal shear force, 471
Internal strain energy, 372
Interpolation, 367, 369, 370, 377

function, 90, 104
Inverse Fourier transform, 300
Inverse Laplace transform technique,

293, 297, 403, 411, 421
Isoparametric elements, see Chapter 6,

244, 321, 328, 340, 369, 374, 377,
379, 384

Isoparametric quadrilateral elements,
334

Isoparametric shape function, 185,
367, 368, 377

eight-node solid, 351
Isoparametric solid element, 345
Isotropic material, 257, 307, 315, 371,

372

J

Jacobian, 159, 160, 162-166, 169, 184,
185, 187, 188, 342, 344, 348, 350,
351, 353

Kinematic equation, 308, 309, 316,
318, 319, 325, 338, 370, 375, 384

Kinematic matrix, 323-325, 329, 332,
336, 338, 342, 344, 347, 348, 350,
372, 385, 387, 389

Kinetic energy, 286, 465
Kirchhoff plate bending theory, 361
Kronecker delta, 87

L

Lagrange multiplier, 438

514 Index

Lagrange shape functions, 91
Lagrangian, 465
Laminar flow, 78
Laminated (composite) beam, 245,

256-260
Laplace equation, see Chapter 5
Laplace transform, 297, 402, 411, 417,

421, 422, 424
Lateral displacement, 246
Layer displacement, 258
Least square method, 32, 33
Line integral, 86
Linear elements, 52, 56, 60, 61, 65,

67, 157
Linear frame element, 262
Linear Quadratic Regulator (LQR),

433, 438, 443, 446, 456, 459, 463
Linear shape functions, 51, 90, 96,198,

243
Linear springs, 72, 74, 75

equivalency, 79
Linear triangluar element,

see triangular element
Local axis, 213, 221, 229, 264, 277
Local coordinate system, 264
Local derivative, 162
Local node number, 312
Local truncation error, 98
Longitudinal vibration, 477, 478
Lower triangular Toeplitz matrix, 435
L-shape frame, 276
Lumped mass matrix, 198, 203, 204,

209, 218, 241, 245, 249, 253, 268,
275, 278, 279, 321

Lyapunov
equation, 428, 429, 451
function, 395-401, 461, 464, 471,
475, 478

instabilitv theorem. 395~ v i
stability theory, 394

M

259, 281-285, 287, 290-292, 296,
297, 399, 409, 429, 449, 462, 469

Mathematical modeling, 393, 463, 465
Matrix differential equation, 412, 441
Maximum overshoot, 405, 475
Measurement noise, 424
Mechanical force, 78
Midplane axis, 256
Mindlin/Reissner plate theory, 366
Mixed beam element, 249-251, 253,

266, 274
Mixed formulation, 377
Mixed plate bending formulation, 374
Modal

analysis, 288, 294, 296
control, 448-451
coordinate, 291, 293, 294, 297, 299,
406, 448-450

input force vector, 449
matrix, 291, 297, 449
testing, 421
truncation, 430

Modes, 288
Mode shape, 215, 282, 289
Moment, 362, 377

equilibrium, 362
of inertia, 243, 264, 468

Multi-input system, 437
Multiple degrees of freedom system,

288, 398, 406

N

Natural boundary condition, 42, 56,
61, 62, 83, 308, 309

Natural coordinate, 157-160, 169, 185,
351, 353

Natural frquency, 215, 221, 242,
280-284, 289, 292, 297, 401, 402,
425, 450, 468-470

Natural motion, 289
Neuman boundary condition 41, 42
Neutral axis, 236, 242

Mass matrix, 217, 221, 222, 225, 230,

Index 515

Neutrally stable, 425
Newton’s second law, 197
Newton’s third law, 78
Nine-node element, 167, 168
Nodal connectivity, 53, 57, 66, 108,

109, 115, 116, 120, 121, 125, 126,
130, 131, 135, 136, 139, 140, 145,
146, 149, 150, 188, 189, 205, 206,
211, 212, 216, 217, 219, 220, 223,
224, 228, 322, 323, 328, 329, 335,
Л i 4 n i /V Пп i Л Л P

3 4 1 , 3 4 0 , 3 6 4 , 3 6 0

Nodal coordinate, 164, 165, 188, 206,
211, 216, 228, 329, 335, 341, 347,
385

Nodal degrees of freedom, 53, 201
Nodal displacement, 200, 205, 207,

211, 214, 246, 310, 312, 320, 322,
327, 328, 340, 343, 345, 346, 349,
369, 372, 384, 388

Nodal flux, 94, 95, 120, 122
Nodal force, 212
Nodal point, 86, 104, 198, 201, 250,

365, 431, 447
Nodal sequence, 87
Nodal variable, 38, 41, 45, 86, 96, 97,

148, 162, 235, 236, 239, 240, 287,
320, 364, 367

Nodal vector, 45
Node numbering, 370
Nonlinear function, 395
Nontrivial solution, 408
Normal strain, 370
Normalization, 290
Normalized eigenvector, 290
Numerical integration, 90, 159, 170,

175-177, 181, 330, 331, 342, 343,
345, 348, 412

Nyquist, 301, 303

О

Observability, 430, 431, 451
Grammina, 451

matrix, 452
test, 452, 453

Observer, 451, 453-455, 457, 458
gain, 454, 455, 458, 459

One-dimensional truss, 197
One-point Gaussian quadrature, 244
Open-loop, 418

eigenvalues, 446, 477
Optimal control, 438, 440, 441
Optimal trajectory, 439
Optimality condition, 440, 441
Ordinary differential equation, 56, 65,

99, 406
Orthogonal, 290
Oscillation, 226, 288
Output distribution matrix, 460
Output feedback, 433, 461
Overdamped case, 403

P

Parabolic differential equation, 98
Parabolic type disturbance, 426
Partial fraction expansion, 421
Peak time, 404, 475
Performance index, 438-440, 444, 478
Perturbation, 395, 413
Physical coordinate, 157-160,185, 299,

330, 343, 344, 348, 351, 387
Physical element, 165, 166
Piecewise continuous function, 37, 43
Piecewise linear boundary, 87
Piecewise linear functions, 35
Pin joints, 199
Planar geometry, 259
planar frame structure, 262
Planar transformation, 261
Plane

strain, 307, 311, 326
stress, 245, 307, 308, 311, 312, 322,
326, 328, 366

truss, 200, 202, 203
Plate bending, see Chapter 10

516 Index

three-node element, 364
Plate rigidity, 363
Plate thickness, 362, 368, 375, 376
Poisson’s equation, see Chapter 5
Poisson’s ratio, 308, 322, 329, 334, 335,

341, 371, 373, 383, 385
Polar moment of inertia, 77, 264
Pole, 418
Pole placement technique, 434, 437,

443
Polynomial function, 171
Positive definite, 290, 398, 400, 428,

440, 444, 461
matrix, 397, 440

Positive semidefinite, 290, 440, 444
Potential energy, 42, 253, 372, 378, 465
Potential flow, 83
Potter’s algorithm, 443
Pre-processor, 52
Pressure difference, 78
Pressure loading, 373, 377, 382
Primary variable, 249
Principle of minimum potential

energy, 314
Proportional damping, 296-298
Proportional plus Derivative (PD)

control, 424-426
Proportional plus Integral (PI)

control, 426

Q
Quadratic form, 400
Quadratic isoparametric element, 159
Quadratic polynomial, 244
Quadratic triangular element, 168
Quadrature point, 241
Quadrature rule, 175, 177-179, 183
Quadrilateral

isoparametric element, 167
shape, 161, 184, 188, 374
element, 165, 187, 328, 381

R

Radial axis, 101
Radial direction, 318
Radial displacement, 319
Rank deficient, 244
Rank test, 452
Rayleigh damping, 296, 406
Rayleigh-Ritz method, 42, 43
Reaction forces, 75
Reciprocal relation, 371
Rectangular element, 163
Reduced integration, 244, 248, 256,

368
Residual, 31
Resistance, 78
Ricatti matrix, 441-443
Rigid body motions, 54, 408
Rise time, 404, 475
Robustness, 438, 463
Rotating beam, 465, 466, 468, 470,

474, 478
Rotational degree of freedom, 264
Rotational motion, 408

s
Sampling period, 301, 414
Sampling point, 172, 174, 177, 179,

184, 190, 329-331, 342, 344,
347-349, 384, 386, 387

Second order system, 289, 396, 401,
402, 409, 448

Secondary variable, 51, 249
Selective integration, 368, 383
Self-adjoint operator, 34
Sensor, 394, 423, 451, 461

noise, 423
output, 451, 454

Separation principle, 458
Settling time, 405
Shape function, 38, 39, 44, 87, 88, 90,

97, 105, 157-163, 235, 243, 245,

Index 517

246, 251, 253, 309, 310, 316, 317,
319, 320, 324, 330, 331, 336, 338,
342, 344, 348, 350, 351, 353, 365,
367, 369, 370, 380, 387

Shear correction factor, 252, 375, 386
Shear deformable, 366, 367, 382, 384,

388
Shear deformation, 257, 375
Shear energy, 244, 248, 368
Shear force, 251, 252, 363, 374-376
Shear locking, 244, 248, 368, 373
Shear modulus, 77, 257, 371, 375
Shear stiffness, 244, 255
Shear strain, 242, 247, 367, 370
Shear stress, 318
Similarity transformation, 409
Simply supported, 251, 266

plates, 379, 381, 382
Simpson’s rule, 171
Single input system, 437
Singular, 54
Sinusoidal motion, 399, 403
Slope, 236, 239, 243
Space truss, 203
Spatial coordinate system, 33, 34
Spatial frame, 264
Spatial variables, 320
Specific heat, 97
Spring constant, 71, 74, 75, 77, 78
Spring force, 78
Stability, see Chapter 11
State space form, 407, 419, 427, 432
State transition matrix, 412, 413
State variables, 432, 433, 453
State vector, 407, 413, 432, 438, 449
Static analysis, 204, 241, 265
Static equilibrium, 75
Statically determinate, 72
Statically indeterminate; 72

system, 75, 76
torsional members, 77

Stationary value, 255, 314, 372, 380,
381

Steady state, 97, 100, 107, 403-405,

422, 425, 440, 441
error, 424, 426
solution, 144

Step function, 226
Step input, 422, 425
Step response, 403, 405
Stiffness matrix, 199, 205, 211, 215,

217, 219, 221-223, 225, 229, 237,
239, 259, 262, 267, 270, 281, 283,
284, 286, 290-292, 295-298, 399,
409, 429, 449, 469

Strain analysis, see Chapter 9
Strain-displacement relation, 197, 248,

255, 380
Strain energy, 201, 202, 242, 248, 314

bending strain energy, 242
shear strain energy, 242

Stress analysis, see Chapter 9
Strong formulation, 34, 35
Structural damping, 296
Subdomains, 37
Sub-structure’s energy, 471
Surface traction, 315

T

Taylor series, 411
Temperature difference, 78
Temporal axis, 197
Temporal derivative, 240, 320
Test function, 31, 32, 37, 40, 96, 159,

198, 235
Tetrahedral element, 104-107, 148,149
Thick beam, 253, 254, 257
Thick plate theory, 374, 375, 378
Thin beam, 253, 254, 257
Thin plate theroy, 374, 378
Three-dimensional

analysis, 326
elasticity, 315
function, 181
mapping, 353
integration, 182

518 Index

solid, 353
truss element, 204

Three point integration, 171
Three point quadrature, 175, 176, 178
Time

constant, 403, 404
domain approach, 299, 393
domain data, 302
step size, 288

Timoshenko beam, 242, 243, 266, 366
Torque, 77
Torsion of noncircular members, 83
Torsional load, 264
Torsional members, 77
Total potential energy, 313
Total system energy, 399
Traction, 308, 311, 312

boundary condition, 316
surface, 316

Transfer function, 402, 418, 419, 421,
423, 424, 475

Transformation matrix, 259
Transformed stiffness matrix, 201
Transient

analysis, 284
heat conduction, 96
problem, 97
response, 226, 286, 404, 405, 425

Translational degree of freedom, 241
Translational motion, 408
Transverse

direction, 371
shear deformation, 242, 252, 253,
361, 366, 367, 374

shear energy, 366
shear force, 374
shear stiffness matrix, 249
shear strain, 242
strain energy, 370, 372, 373

Trapezoidal rule, 170
Trapezoidal shape, 165
Trial function, 31-37, 96, 159
Triangular domain, 89, 173
Triangluar elements, 97, 103, 133, 170,

linear, 86-89, 102, 107, 108, 113,
119, 120, 125, 128, 144, 312, 319,
321, 322

six-node, 169
Triangular isoparametric element, 168
Truss, see Chapter 7

1-D truss element, 218
2-D truss element, 209

Twisting moment, 77, 264
Two dimensional solid, 325
Two Point Boundary Value Problem,

440
Two point quadrature rule, 175, 176,

178

309, 334

U

Unconditionally stable, 99, 134
Underdamped case, 403
Under-integrated, 244, 245, 373
Unidirectional composite, 371, 372
Unit impulsive input, 421
Unit step input, 403, 475

V

Variable interpolation, 104
Variational

method, 42
operator, 42
principle, 438, 439

Vibration control, 394

w
Weighted average, 31
Weighted residual, 31, 32, 39, 84, 97,

102, 235
Weighting coefficient, 170-172,

174-177, 179-181, 341, 346, 384
Weighting function, 309, 310

Index 519

Weighting matrix, 440, 443, 446
Weak formulation, 34, 35, 51, 65, 84,

102, 197, 235, 373

Z

Zero order hold, 413

