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PREFACE

The finite element method has become one of the most important and useful
engineering tools for engineers and scientists. This book presents introductory and
some advanced topics of the Finite Element Method (FEM). Finite element theories,
formulations, and various example programs written in MATLAB1 are presented. The
book is written as a textbook for upper level undergraduate and lower level graduate
courses, as well as a reference book for engineers and scientists who want to write
quick finite element analysis programs.

Understanding basic program structures of the Finite Element Analysis (FEA) is
an important part for better comprehension of the finite element method. MATLAB
is sUpMILaNy uwviimveuiwiiv Y BPLS Al U uishenid b a aUglirgis piugiauio
because a MATLAB program manipulates matrices and vectors with ease. These
algebraic operations constitute major parts of the FEA program. In addition,
MATLAB has built-in graphics features to help readers visualize the numerical results
in two- and/or three-dimensional plots. Graphical presentation of numerical data is
important to interpret the finite element results. Because of these benefits, many
examples of finite element analysis programs are provided in MATLAB.

The book contains extensive illustrative examples of finite element analyses using
MATLAB program for most problems discussed in the book. Subroutines (MATLAB
functions) are provided in the appendix and a computer diskette which contains all
the subroutines and example problems is also provided.

Chapter 1 has a brief summary of useful MATLAB commands which can be
used in programming FEA. Readers may refer to MATLAB manuals for additional
information. However, this chapter may be a good start for readers who have no
Nivr> dikIAM 18 ig0ieth 1T A

Subsequent chapters are presented in a logical order. Chapter 2 discusses the
weighted residual method which is used for the formulation of FEA in the remaining
chapters. Initially, continuous trial functions are used to obtain approximate solutions
using the weighted residual method. Next, piecewise continuous functions are selected
to achieve approximate solutions. Then, FEM is introduced from the concept
of piecewise continuous functions. Finally, classical variational formulations are
compared with the weighted residual formulations.

Chapter 3 shows the basic program structure of FEA using ordinary differential
equations for an one-dimensional system. MATLAB programs are provided to explain
the programming. Both program input and output as well as internal program
structure are fully discussed. A direct FEM approach using simple mechanics is
presented in Chapter 4. This chapter, presents the basic concept of FEM using an
intuitive and physical approach.

MATLAB is a registered trademark of The MathWorks, Inc. For additional
informationa contact:
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760
phone: (508) 647-7000, fax: (508) 647-7001



Finite element formulations for partial differential equations are presented in
Chapter 5. This chapter explains not only domain integration for computation of
the finite element matrices but also boundary integration to compute column vectors.
Applications of Laplace’s equation to two- and three-dimensional domains as well
as an axially symmetric domain are presented for both steady-state and transient
problems.

Chapter 6 shows concepts and programming of isoparametric finite elements.
Because a complex shape of domain with curved boundary can be easily handled using
isoparametric finite elements, these elements are very useful and common in FEA.
Both one-dimensional and two-dimensional isoparametric elements are presented. A
numerical technique and its programming concept are also discussed. As a program
example, Laplace’s equation is solved using isoparametric elements.

Chapters 7 and 8 discuss truss and frame structures. Static, dynamic, and
eigenvalue problems are solved. In addition, one-, two- and three-dimensional
structures are considered. As a result, coordinate transformation from local to global
axes is explained. In particular, various formulations for the beam structure are
compared; the relative advantages and disadvantages of each are cited. Modeling of
laminated beams with embedded cracks is also discussed. Further, Chapter 8 presents
the modal analysis and Fast Fourier TVansform.

Elasticity is studied in chapter 9. Plane stress/strain, axisymmetric and three
dimensional problems are included. Both static and dynamic analyses are presented.
The finite element formulations are presented in terms of the weighted residual
method. However, an energy method is also discussed for comparison. Plate
bending is given in Chapter 10. Similar to beam formulations, different plate bending
formulations are presented for comparison.

Finally, structural control using FEM is presented in Chapter 11. This chapter
is intended to provide a broad understanding of the basic concepts of control law in
conjunction with FEM. Due to limited space, only a few major control theories are
presented. It is assumed that readers are already familiar with fundamentals of linear
dynamic systems analysis.

This book contains more material than can be covered in a one-semester. Thus,
materials may be selected depending on course objectives. For an introductory FEM
course, Chapters 2 through 9 are recommended. Depending on the desired course
contents, some sections may be deleted.

We would like to thank individuals who have contributed to this book. The
authors would like to express our appreciation to Professor Aleksandra Vinogradov
for reviewing the manuscript and providing us with many useful suggestions. We
are also indebted to the staffs of CRC Press for their professional guidance in the
production of this book. Finally but not lastly the authors sincerely appreciate the
lifelong support and encouragement by their parents.

Y. W. Kwon
H. C. Bang



CHAPTER ONE

INTRODUCTION TO MATLAB

1.1 Finite Element Method

In order to analyze an engineering system, a mathematical model is developed to
describe the system. While developing the mathematical model, some assumptions are
moony v SRR ARG £ ALk O cravppwtr mafhpmafilfal gupheGRing; 5, Gorvavano
to describe the behavior of the system. The mathematical expression usually consists
of differential equations and given conditions.

These differential equations are usually very difficult to obtain solutions which
explain the behavior of the given engineering system. With the advent of high perfor-
mance computers, it has become possible to solve such differential equations. Various
numerical solution techniques have been developed and applied to solve numerous en-
gineering problems in order to find their approximate solutions. Especially, the finite
element method has been one of the major numerical solution techniques. One of the
major advantages of the finite element method is that a general purpose computer
program can be developed easily to analyze various kinds of problems. In particular,
any complex shape of problem domain with prescribed conditions can be handled with
ease using the finite element method.

The finite element method requires division of the problem domain into many
subdomains and each subdomain is called a finite element. Therefore, the problem
domain consists of Tany finite element patches.

1.2 Overview of the Book

This book is written as a textbook for engineering students as well as a reference
book for practicing engineers and researchers. The book consists of two parts: theory
and program. Therefore, each chapter has initial sections explaining fundamental
theories and formulations of the finite element method, and subsequent sections
showing examples of finite element programs written in the MATLAB program. The
collection of MATLAB function files (i.e. m-files) used in the example programs is
summarized in Appendix A and provided in a separate computer disc.
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A brief summary of some of MATLAB commands is provided in the following
sections for readers who are not familiar with them. Those are the commands which
may be used in finite element programs. Especially, the MATLAB commands for
matrix operation and solution are most frequently used in the programs. For visual-
ization of the finite element solution, some plotting commands are also explained.

1.3 About MATLAB

MATLAB is an interactive software which has been used recently in various areas
of engineering and scientific applications. It is not a computer language in the normal
sense but it does most of the work of a computer language. Writing a computer code
is not a straightforward job; typically boring and time consuming for beginners. One
attractive aspect of MATLAB is that it is relatively easy to learn. It is written on
an intuitive basis and it does not require in-depth knowledge on operational principle
of computer programming like compiling and linking in most of other programming
languages. This could be regarded as a disadvantage since it prevents users from
understanding the basic principle in computer programming. The interactive mode
of MATLAB may reduce computational speed in some applications.

The power of MATLAB is represented by the length and simplicity of the code.
For example, one page of MATLAB code may be equivalent to many pages of other
computer language source codes. Numerical calculation in MATLAB uses collections
of well written scientific/mathematical subroutines such as LINPACK and EISPACK.
MATLAB provides Graphical User Interface (GUI) as well as three-dimensional
graphical animation.

In general, MATLAB is a useful tool for vector and matrix manipulations.
Since the majority of the engineering systems are represented by matrix and vector
equations, we can relieve our workload to a significant extent by using MATLAB.
The finite element method is a well defined candidate for which MATLAB can be
very useful as a solution tool. Matrix and vector manipulations are essential parts in
the method. MATLAB provides help menu so that we can type help command when
we need help to figure out a command. The help utility is quite convenient for both
beginners and experts.

1.4 Vector and Matrix Manipulations

Once we get into the MATLAB, we meet a prompt >> called MATLAB prompt.
This prompt receives a user command and processes it providing the output on the
next line. Let us try the following command to define a matrix.

» A= [1,3,6;2,7,8;0,3,9]
Then the output appears in the next line as shown below.

1 3 6
A-2 7 8
0 3 9
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Thus, a matrix is entered row by row, and each row is separated by the semi-colon(;).
Within each row, elements are separated by a space or the comma(,). Commands
and variables used in MATLAB are case-sensitive. That is, lower case letters are
distinguished from upper case letters. The size of the matrix is checked with

>> size(.A)

ans =3 3

Transpose of a matrix In order to find the transpose of matrix A, we type
>> Al

The result is

1 2 O
ans= 3 7 3
6 8 9

Column or row components MATLAB provides columnwise or rowwise operation
of a matrix. The following expression

»A (:,3)
yields
6
ans = 8
9

which is the third column of matrix A. In addition,
» A (1))
represents the first row of A as
ans =13 6
We can also try
»  J1(1,) + J1(3,)
as addition of the first and third rows of A with the result
ans =1 6 15
Now let us introduce another matrix B as
» B = [3,4,5;6,7,2;8,1,0];
Then there seems to be no output on the screen. MATLAB does not prompt output
on the screen when an operation ends with the semi-colon(;) at the end.
If we want to check the B matrix again, we simply type
» B

The screen output will be
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Matrix addition Adding two matrices is straightforward like

» C = A+B

4 7 1
C=8 14 10
8 4 9

Thus we defined a new matrix C as sum of the previous two matrices.

Matrix subtraction In order to subtract matrix B from matrix A, we type

» C=A—B
-2 -1 1

C= -4 0O 6
-8 2 9

Note that C is now a new matrix not the summation of A and B any more.

Matrix multiplication Similarly, matrix multiplication can be done as

» C=A*B
69 31 11

C= 112 65 24
90 30 6

1.5 Matrix Functions

Manipulation of matrices is a key feature of the MATLAB functions. MATLAB
is a useful tool for matrix and vector manipulations. Collections of representative
MATLAB matrix functions are listed in Table 1.5.1. Examples and detailed explana-
tions axe provided for each function below.

Matrix inverse The inverse of a matrix is as simple as
» inv(A)
ans

1.8571 -0.4286 -0.8571
-0.8571  0.4286 0.1905
0.2857 -0.1429 0.0476

In order to verify the answer, we can try

>> A*inv(.A);
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Table 1.5.1 Basic Matrix Functions

Symbol Explanations

inv inverse of a matrix

det determinant of a matrix

rank rank of a matrix

cond condition number of a matrix
eye(n) the n by n identity matrix
trace summation of diagonal elements of a matrix

zeros(n,m) the n by m matrix consisting of all zeros

which should be a 3 by 3 identity matrix.

Determinant of a matrix
>> d=det(A)
produces the determinant of the matrix A. That is,
d =21
Rank of a matrix The rank of a matrix A, which is the number of independent
rows or columns, is obtained from

»rank(A);

Identity matrix

» eye(3)
yields
1 0 O
ans= 010
0O 0 1

eye(n) produces an identity matrix of size n by n. This command is useful when we
initialize a matrix.

Matrix of random numbers A matrix consisting of random numbers can be
generated using the following MATLAB function.

»randf3.3}

6.2190 0.6793 0.5194
ans = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346
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That is, rand(3,3) produces a 3 by 3 matrix whose elements consist of random
numbers. The general usage is rand(n,m).

trace Summation of diagonal elements of a matrix can be obtained using the trace
operator.

For example,
»C =139 672 8 -1 -2

Then, trace(C) produces 6, which is the sum of diagonal elements of C.

zero matrix
>> zeros(5,4)

produces a 5 by 4 matrix consisting of all zero elements. In general, zeros(n,m) is
used for an n by m zero matrix.

condition number The command cond(A) is used to calculate the condition
number of a matrix A. The condition number represents the degree of singularity
of a matrix. An identity matrix has a condition number of unity, and the condition
number of a singular matrix is infinity.

>>cond(ej/e(6))

ans =
1

An example matrix which is near singular is

1 1 ‘

A= 1 i+io-6J

The condition number is
>>cond(A)

ans =
4-0000e+006

Further matrix functions are presented in Table 1.5.2. They do not include all
matrix functions of the MATLAB, but represent only a part of the whole MATLAB
functions. Readers can use the MATLAB Reference’s Guide or help command to
check when they need more MATLAB functions.

M atrix exponential The expm (A) produces the exponential of a matrix A. In
other words,

» A =rand(3,3)

0.2190 0.6793 0.5194
A = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346
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Table 1.5.2 Basic Matrix Functions (Continued)

Symbol Explanations
expm exponential of a matrix
eig eigenvalues/eigenvectors of a matrix
lu LU decomposition of a matrix
svd singular value decomposition of a matrix
qr QR decomposition of a matrix
\ used to solve a set of linear algebraic equations

>>expm (A)

1.2448 0.0305 0.6196
ans = 1.0376 1.5116 1.3389
1.0157 0.1184 2.0652

Eigenvalues The eigenvalue problem of a matrix is defined as
Ad = Jkp

where A is the eigenvalue of matrix A, and ¢ is the associated eigenvector.

AN

e
gives the eigenvalues of A, and

» [V,D] =eig(™)
produces V matrix, whose columns are eigenvectors, and the diagonal matrix D whose

values are eigenvalues of the matrix A.
For example,

» A =[53 2 14 6; 97 2
» [V,D]=eig(A)

0.4127 0.5992 0.0459
V = 05557 -0.7773 -0.6388
0.7217 0.1918 0.7680

12.5361 0 0
D - 0 1.7486 0
0 0 -3.2847

LU Decomposition The LU decomposition command is used to decompose a
matrix into a combination of upper and lower triangular matrices, respectively.

» A=[135 248; 47 3
» [L,U] =lu(A)
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u~&UU  i.UUUU U
L = 0.5000 0.4000 1.0000
1.0000 0 0
4.0000 7.0000 3.0000
U= 0 1.2500 4.2500
0 0 4.8000

In order to check the result, we try

>> L*U
1 3 5
ans = 2 4 8
4 7 3

KME T8 biiaiiguiai [Tiauila. £ 8 uvti PRV IBRAN] GIPCQTUIER . WYEE' B auuu il COYMMIEND

available
>> [LfU,P] =lu(A)
1.0000 0 0

L - 0.2500 1.0000 0
0.5000 0.4000 1.0000

4.0000 7.0000 3.0000
U= 0 1.2500 4.2500
0 0 4.8000
0O 0 1
P=1 0 O
0 10

Here, the matrix P is the permutation matrix such that P *A = L*U.

Singular value decomposition The svd command is used for singular value
decomposition of a matrix. For a given matrix,

A= UY.V

where S is a diagonal matrix consisting of non-negative values. For example, we define
a matrix D like

>>£>=[13 7, 2 95 2 8 §

The singular value decomposition of the matrix is
>> [U, Sigma, V] =svd (D)

which results in

0.4295 0.8998 -0.0775
U 0.6629 -0.3723 -0.6495
0.6133 -0.2276  0.7564
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15.6492 0 0
Sigma = 0 4.1333 0
0 0 0.1391

0.1905 -0.0726  0.9790 '
0.7771 -0.5982 -0.1956
0.5999 0.7980 -0.0576

QR decomposition A matrix can be also decomposed into a combination of an
orthonormal matrix and an upper triangular matrix. In other words,

A - QR

where Q is the matrix with orthonormal columns, and R is the upper triangular
matrix. The QR algorithm has wide applications in the analysis of matrices and
associated linear systems. For example,

0.2190 0.6793 0.5194
A = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346

Application of the gr operator follows as

>> [Q LL=ar(™)

yields

-0.3063 -0.4667 -0.8297
-0.0658 -0.8591  0.5076
A5 DOUL 1M19.494

-0.7149 -0.6338 -0.2466
0 -1.0395 -0.9490
0 0 - 0.0011

Solution of linear equations The solution of a linear system of equations is
frequently needed in the finite element method. The typical form of a linear system
of algebraic equations is written as

and the solution is obtained by
N A\,
T Sy
or we can use \ sign as
>> x = A\y
For example

»J1=[1 3 4 578, 23 5
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Table 1.6.1 Data Analysis Functions

Symbol Explanations
miii(max) minimum(maximum) of a vector
sum sum of elements of a vector
std standard deviation of a data collection
sort sort the elements of a vector
mean mean value of a vector

used for componentwise operation of a vector

>>Jinv(A)*y A\y]

-4.2500 -4.2500
ans = 1.7500 1.7500
2.2500 2.2500

1.6 Data Analysis Functions

Tip to now, we discussed matrix related functions and operators of MATLAB.
MATLAB has also data analysis functions for a vector or a column of a matrix. In
Table 1.6.1, some operators for data manipulation are listed.

Minimum (maximum) The min (max) finds a minimum (maximum) value of a
given vector. For example,

>> v —[11 23 73 25 49 92 28 23]
>>min(v)
yields

ans =
11

»max(u)
ans =
92

sum The sum command produces the summation of elements of a vector. For
example,
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>> sum(u)
yields

ans =
324

Standard deviation The std command calculates the standard deviation of a
vector. For example,

» std([l 4 10 -5 6 9 -20])
ans =
idlaoif
Sort a vector The sort command is used to sort a vector in the ascending order.
» sort([l 4 10 - 56 9 - 20)

ans =
-20 -5 1 4 6 9 10

Mean value of a vector The mean calculates the mean value of a vector.
>> mean([l 4 10 —5 6 9 —20])

ans =
0.7L13

Vector componentwise operation Let us define two vectors
» Vi = [1,5,6,7]; v2- [0,2,3,5];

Sometimes we want to multiply components of Vi with the corresponding components
of «2- The operation is

>> V3= ti.*\W2

ans =
0O 10 18 35

In other words, ( ).*( ) represents the componentwise multiplication of two vectors.
Another useful operator is

>> Vi = \2./Vi
with
t4=0 04 0.5 0.7143

Note that the data analysis tools explained in the above are applicable to matrices
too. Each matrix column is regarded as a vector for data analysis.
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Table 1.7.1 Polynomial Functions

Symbol Explanations

poly converts collection of roots into a polynomial equation
roots finds the roots of a polynomial equation
polyval evaluates a polynomial for a given value

conv multiply two polynomials
deconv decompose a polynomial into a dividend and a residual
polyfit curve fitting of a given polynomial

1 <7 "Me-1, [ S -
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Polynomials are frequently used in the analysis of linear systems. MATLAB
provides some tools for handling polynomials. The summary of polynomial functions
is provided in Table 1.7.1.

Roots of a polynomial equation A polynomial equation is given by
aiEn + a2xn~| H---—-- \anx + an+i = 0
The roots of the polynomial equation is solved using roots command

roots([ai a2 ee= an an+i])

For example,
X4+ 4a3 —552+ 6 —9 =0

>>roots([l 4 —5 6 —9)])
yields

ans =
-5.2364
1.2008
0.0178 + 1.1963i
0.0178 - 1.1963i

Generation of a polynomial equation using roots The poly command takes
the roots, and converts them into a polynomial equation. For instance, if we know
[ri, r2, === rn]in

(@a- n)(as- r2)e-(&- rn) = xn+ aixn“1+ a2xn~2\------han_1X+ an

then
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»poly([ri, r2, == rn}

provides us the coefficients( [ai, 02, ===, an]) of the polynomial equation. For example,
>>poly([—1 —2+ 2*r —2—2*r —5+ 7*1 —5—7*7])

produces

ans =
1 15 136 498 968 592

In order to check the result, we use roots command again.

»roots ([l 15 136 498 968 592])
The result should be [1 —2+ 2*r —2—2*r —5+ 7*r —5—7*1].
Polynomial value When we want to calculate the value of a polynomial at a certain
point, we can use polyval.

»  Y=polyval([l 3 4 -5 1,2

ans =
23

which evaluates the polynomial s4+ 3s3+ 4s —5 at s = 2

Multiplication of two polynomials The conv command is used to multiply two
polynomials. For example,

a(s) = s2+ 3s —1, fc(s) = s3—2s2+ 6s—7

The multiplication of a(s) and 6fs) follows as
» c¢=conv([l 3 —1,[1 - 2 6 —7)]

CcC =

1 1 -1 13 -27 7

In other words, we obtain the coefficient vector ¢ of the product of a(s) and b(s).

Decomposition of a polynomial The deconv is used to decompose a polynomial
as a multiplicand and a residue. Let

a($) = 6(s)m(s) + r(s)
That is, the polynomial a(s) is represented in terms of a multiplicand m(s) and a
residue r(s) via b(s). The MATLAB command is
>> [m,r] =deconv(a, b)

where the parameters are coefficient vectors for given polynomials. An example is
given by

» [m,r] =deconv([l —26 —7],[1 3 —1])

m =
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0 0 22 -12
If we change the order of polynomials,

>> [m,r] =deconv([l 3 —1],[1 —26 —7))

1 3 -1

Vi TS U8 B aTives eETIIRCY 16 uu ATtiab e a FUETuiu R BTV WY uiis
a given set of data. The polynomial is obtained by minimizing the error between the
polynomial and the given data set. The synopsis is

p = polyfit(a:,y,n)

where z and y are vectors of the given data set in (%, y) form, and n is the order of the
desired polynomial to fit the data set. The output result is p, the coefficient vector of
the fitting polynomial. An example is provided below,

>>*

1 23 45 6]

» y=1]-1 352 -3 1
» p =polyfit(a:,j/, 1)

P =
2.1714  -1.2667

A linear curve fitting is performed for data set (x,Y).

1.8 Making Complex Numbers

In order to make a complex number 2-b 3 *r, we use
>> 2+ 3%

or
>> 2+ 3%

MATLAB takes rand j as a pure complex number. In case i or j is defined already,
we can use as

>> r=sqrt(—1)
r= 0+ 1.OOOOI
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Table 1.9.1 Functions for Nonlinear Algebraic Equations

Symbol Explanations
fmin finds minimum of a function of one variable
fzero solves a nonlinear algebraic equation of one variable

abs, angle For a given complex number, we use abs and angle commands to find
out the magnitude (abs) and phase angle (angle) of the given complex number. For
example, if

» c= —1+ i
then

» abs(c)

ans = 1.4142

>> angle(c)

ans = 2.3562

Real, imaginary parts of a complex number The real and imag are used to
take the real and imaginary parts of a complex number. For example,

» c=-10+9%*i
»  [real(c) ,imag(c)j

ans = —10 9

Conjugate The conj command is used to generate a complex conjugate number.
For example

» conj(—14-5*1i)

ans ——1 —5%*j

1.9 Nonlinear Algebraic Equations

Nonlinear algebraic equations are frequently adopted in many different areas.
The nonlinear equations are different from linear equations, and there is no unique
analysis tool to the nonlinear equations. MATLAB is equipped with some functions
which can handle nonlinear equations. The list is presented in Table 1.9.1.

Minimum of a function The MATLAB command fmin minimizes a function by
finding out a value which minimizes the given function. The synopsis is

fmin(‘func’, xijxz)
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Table 1.10.1 Numerical Techniques for Differential Equationp

Symbol Explanations
ode23 solution using the 2nd/3rd order Runge-Kutta algorithm
ode45 solution using the 4th/5th order Runge-Kutta algorithm

where Time' is the name of a function to be minimized and x\{xi) represents a
lower(upper) limit of the interval of the function argument. For example,

»fm in (/®* cos(x)", —2,2)
produces

ans = —0.8603

Solution ofa nonlinear algebraic equation When a nonlinear algebraic equation
is written as
x34-3 *sin(x) —x5—0

the MATLAB function fzero can be used to find a solution of the nonlinear algebraic
equation. The synopsis is

» sol =fzero('function’, zO)

where ‘functionlis a MATLAB function subroutine and *0 is an initial condition
vector of the variables. For the given example, we write a function subroutine fcin.m
as

function [/] =fctn(x);
/| = a3+ x *cos(x) —4x;

Then, we use fzero command as
»  sol =fzero(//ctfn/,—b)
sol = -2.1281

In order to check the solution
»fctn (—2.1281)

ans =
1.9192e-004

The error is due to the numerical format error. The number is truncated for screen
display purpose, even if it is calculated using double precision format inside MATLAB.

1.10 Solving Differential Equations

Linear and nonlinear differential equations can be also solved using MATLAB.
List of numerical techniques solving differential equations is in Table 1.10.1.
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Runge-Kutta second and third order algorithm MATLAB uses the Runge-
Kutta algorithm to solve a differential equation or a set of differential equations. The
general synopsis is

[<,*] = ode23('/tmc',<0,</, *0);

where funo' is a function containing the derivative information, tO (tf) is the initial
(final) time, and *0 is an initial condition vector. The outputs are t, which contains
the returned time points, and x which is the integrated output.

For example, we want to solve

X+ sin(x) = o
which can be rewritten as

= x2
X2 —-sifl(ll)
where Xi = x and x2 —x. The 'func’ function should be provided as an independent

function subroutine as func.m in a directory, which MATLAB can locate. Now we
execute the ode23 command

» [E£X] =ode23(//tmc/,0,10, *0);

where

0 ={0}

is an initial condition and func.m is provided as

function m =func(t,x):
[[1=«42,1)1

(1) = *(2);

[(2) = —sm(a:(l));

Runge-Kutta Fourth and Fifth order algorithm There is another Runge-Kutta
algorithm ode45 which is more accurate than ode23.

[f, X] = ode45(//imc/,20, </, xO)

The same calling synopsis as ode23 can be applied to make use of the ode45
function.

1.11 Loop and Logical Statement

There are some logical statements available in MATLAB which help us writing
combinations of MATLAB commands. Furthermore, loop commands can be used as
in other programming languages. In fact, we can duplicate the majority of existing
programs using MATLAB commands, which significantly reduces the size of the source
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Table 1.11.1 Loop and Logical Statements

Symbol Explanations
for loop command similar to other languages
while used for a loop combined with conditional statement
if produces a conditional statement
elseif, else used in conjunction with if command
break breaks a loop when a condition is satisfied

codes. A collection of loop and logical statements in MATLAB is presented in Table
1.11.1.

for