The Finite Element method
using 1 TLDB

Young HI. Hiuon
Hyochoong Bang

CRC Press
London New York Washington, D.C

CRC MECHANICAL
ENGINEERING SERIES

Edited by Frank A. Kulacki, University of Minnesota

Published

Entropy Generation Minimization

Adrian Bejan, Duke University

The Finite Element Method Using MATLAB

Hyochoong Bang, Korea Aerospace Research Institute

To be Published

Fundamentals of Environmental Discharge Modeling
Lorin R, Davis, Oregon State University

Mechanics of Composite Materials
Autar K. Kaw, University of South Florida

Nonlinear Analysis of Structures
M. Sathyamoorthy, Clarkson University

Mechanics of Solids and Shells
Gerald Wempter, Georgia Institute of Technology

Viscoelastic Solids

Roderic Lakes, University of lowa

LIMITED WARRANTY

CRC Press warrants the physical diskette(s) enclosed herein to be free of defects in materials and workmanship
for a period of thirty days from the date of purchase. If within the warranty period CRC Press receives written
notification of defects in materials or workmanship, and such notification is determined by CRC Press to be correct,
CRC Press wiii replace the defective diskette(s).

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement
of defective diskette(s) and shall not include or extend to any claim for or right to cover any other damages, including
but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages or other
similar claims, even if CRC Press has been specifically advised of the possibility of such damages. In no event will
the liability of CRC Press for any damages to you or any other person ever exceed the lower suggested list price or
actual price paid for the software, regardless of any form of the claim.

CRC Press specifically disclaims all other warranties, express or implied, including but not limited to, any implied
warranty of merchantability or fitness for a particular purpose. Specifically, CRC Press makes no representation or
warranty that the software is fit for any particular purpose and any implied warranty of merchantability is limited to
the thirty-day duration of the Limited Warranty covering the physical diskette(s) only (and not the software) and is
otherwise expressly and specifically disclaimed.

Since some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long
an implied warranty lasts, some of the above may not apply to you.

DISCLAIMER OF WARRANTY AND LIMITS OF LIABILITY: The authors) of this book have used their best
efforts in preparing this material. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness. Neither the author{s) nor the publisher make warranties of any kind,
express or implied, with regard to these programs or the documentation contained in this book, including without
limitation warranties of merchantability or fitness for a particular purpose. No liability is accepted in any event for
any damages, including incidental or consequential damages, lost profits, costs of lost data or program material, or
otherwise in connection with or arising out of the furnishing, performance, or use of the programs in this book.

Library of Congress Cataloging-in-Publication Data

Kwon, Young W.
The finite element method using MATLAB / by Young W. Kwon and Hyochoong Bang,
p. cm. — (The mechanical engineering series)
Includes bibliographical references and index.
ISBN 0-8493-9653-0 (alk. paper)

1. Finite element method— Data processing. 2. MATLAB I. Bang, Hyochoong.
I1. Title 111. Series: Advanced topics in mechanical engineering series.
TA347.F5K86 1996
624.1'7'028553— dc20 96-19091

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made
to publish reliable data and information, but the author(s) and the publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corporate Blvd. N.W., Boca Raton, Florida 33431.

© 1997 by CRC Press LLC

No claim to original U.S, Government works

International Standard Book Number 0-8493-9653-0

Library of Congress Card Number 96-19091

Printed in the United States of America 34567890
Printed on acid-free paper

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION TO MATLAB

11
12
13
14
15
16
17
1.8
19
1.10
111
112
1.13
1.14
115

Finite Element Method
Overview of the Book

About MATLAB

Vector and Matrix Manipulations
Matrix Functions

Data Analysis Functions
Tools for Polynomials

Making Complex Numbers
Nonlinear Algebraic Equations
Solving Differential Equations
Loop and Logical Statement
Writing Function Subroutines
File Manipulation

Basic Input-Output Functions
Plotting Tools

CHAPTER 2. APPROXIMATION TECHNIQUES

2.1
2.2
2.3
P4
25
2.6
2.7

CHAPTER 3. FINITE ELEMENT PROGRAMMING

3.1
3.2
3.3
3.4
3.5

CHAPTER 4. DIRECT APPROACH WITH SPRING SYSTEM

4.1
4.2
4.3

Methods of Weighted Residual

Weak Formulation

Piecewise Continuous TVial Function
viaterkit™s Finide Fhewef! Puriiiulalileu
Variational Method

Rayleigh-Ritz Method

Rayleigh-Ritz Finite Element Method
Problems

Overall Program Structure

Input Data

Assembly of Element Matrices and Vectors
Application of Constraints

Example Programs

Problems

Linear Spring
Axial Member
Torsional Member

A NN PR -

10
12
14
15
16
17
20
22
23
24

31
34
35
o
42
42
43
46

51
52
54
54
56
69

71
74
77

31

51

71

4.4

Other Systems
Problems

CHAPTER 5. LAPLACE'S AND POISSON’'S EQUATIONS

5.1
52
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Governing Equation

Linear Triangular Element

Bilinear Rectangular Element

Boundary Integral

Transient Analysis

Time Integration Technique

Axisymmetric Analysis

Three-Dimensional Analysis

MATLAB Application to 2-D Steady State Analysis
MATLAB Application to Axisymmetric Analysis
MATLAB Application to I'ransient Analysis
MATLAB Application to 3-D Steady State Analysis
Problems

CHAPTER 6. ISOPARAMETRIC ELEMENTS

6.1
6.2
6.3
6.4
6.5
6.6

One-Dimensional Elements

Quadrilateral Elements

Triangular Elements

Gauss Quadrature

MATLAB Application to Gauss Quadrature
MATLAB Application to Laplace Equation
Problems

CHAPTER 7. TRUSS STRUCTURES

7.1
7.2
7.3
7.4
7.5
7.6

One-Dimensional Truss

Plane Truss

Space Truss

MATLAB Application to Static Analysis
MATLAB Application to Eigenvalue Analysis
MATLAB Application to Transient Analysis
Problems

CHAPTER 8. BEAM AND FRAME STRUCTURES

Q 9(Euler-Bernoulli Beam

8.2
8.3
8.4
8.5

Timoshenko Beam

Beam Elements With Only Displacement Degrees of Freedom

Mixed Beam Element
Hybrid Beam Element

77
80

83
86
90
92
96
98
101
103
107
119
124
148
153

157
160
168
170
176
183
193

197
199
203
204
215
223
231

242
245
249
253

83

157

197

235

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

Composite Beams

Two-Dimensional Frame Element
Three-Dimensional Frame Element

MATLAB Application to Static Analysis
MATLAB Application to Eigenvalue Analysis
MATLAB Application to Transient Analysis

256
259
264
265
280
284

MATLAB Application to Modal Analysis of Undamped System 288

MATLAB Application to Modal Analysis of Damped System

MATLAB Application to Frequency Response Analysis
Problems

CHAPTER 9. ELASTICITY PROBLEM

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Plane Stress and Plane Strain

Force Vector

Energy Method

Three-Dimensional Solid

Axisymmetric Solid

Dynamic Analysis

MATLAB Application to 2-D Stress Analysis
MATLAB Application to Axisymmetric Analysis
MATLAB Application to 3-D Stress Analysis
Problems

CHAPTER 10. PLATE STRUCTURES

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Classical Plate Theory

Classical Plate Bending Element

Shear Deformable Plate Element

Plate Element With Displacement Degrees of Freedom
Mixed Plate Element

Hybrid Plate Element

MATLAB Application

Problems

CHAPTER 11. CONTROL OF FLEXIBLE STRUCTURES

111
11.2
11.3
11.4
11.5
11.6
11.7
11.8

R

11.10

Introduction

Stability Theory

Stability of Multiple Degrees of Freedom Systems
Analysis of a Second Order System

State Space Form Description

Transfer Function Analysis

Control Law Design for State Space Systems
Linear Quadratic Regulator

Modal Control for Second Order Systems
Dynamic Observer

296
299
304

307
311
313
315
318
320
321
334
345
356

361
364
366
368
373
378
382
391

393
394
398
401
406
417
427
438

451

307

361

393

PREFACE

The finite element method has become one of the most important and useful
engineering tools for engineers and scientists. This book presents introductory and
some advanced topics of the Finite Element Method (FEM). Finite element theories,
formulations, and various example programs written in MATLAB1 are presented. The
book is written as a textbook for upper level undergraduate and lower level graduate
courses, as well as a reference book for engineers and scientists who want to write
quick finite element analysis programs.

Understanding basic program structures of the Finite Element Analysis (FEA) is
an important part for better comprehension of the finite element method. MATLAB
is sUpMILaNy uwviimveuiwiiv Y BPLS Al U uishenid b a aUglirgis piugiauio
because a MATLAB program manipulates matrices and vectors with ease. These
algebraic operations constitute major parts of the FEA program. In addition,
MATLAB has built-in graphics features to help readers visualize the numerical results
in two- and/or three-dimensional plots. Graphical presentation of numerical data is
important to interpret the finite element results. Because of these benefits, many
examples of finite element analysis programs are provided in MATLAB.

The book contains extensive illustrative examples of finite element analyses using
MATLAB program for most problems discussed in the book. Subroutines (MATLAB
functions) are provided in the appendix and a computer diskette which contains all
the subroutines and example problems is also provided.

Chapter 1 has a brief summary of useful MATLAB commands which can be
used in programming FEA. Readers may refer to MATLAB manuals for additional
information. However, this chapter may be a good start for readers who have no
Nivr> dikIAM 18 ig0ieth 1T A

Subsequent chapters are presented in a logical order. Chapter 2 discusses the
weighted residual method which is used for the formulation of FEA in the remaining
chapters. Initially, continuous trial functions are used to obtain approximate solutions
using the weighted residual method. Next, piecewise continuous functions are selected
to achieve approximate solutions. Then, FEM is introduced from the concept
of piecewise continuous functions. Finally, classical variational formulations are
compared with the weighted residual formulations.

Chapter 3 shows the basic program structure of FEA using ordinary differential
equations for an one-dimensional system. MATLAB programs are provided to explain
the programming. Both program input and output as well as internal program
structure are fully discussed. A direct FEM approach using simple mechanics is
presented in Chapter 4. This chapter, presents the basic concept of FEM using an
intuitive and physical approach.

MATLAB is a registered trademark of The MathWorks, Inc. For additional
informationa contact:
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760
phone: (508) 647-7000, fax: (508) 647-7001

Finite element formulations for partial differential equations are presented in
Chapter 5. This chapter explains not only domain integration for computation of
the finite element matrices but also boundary integration to compute column vectors.
Applications of Laplace’s equation to two- and three-dimensional domains as well
as an axially symmetric domain are presented for both steady-state and transient
problems.

Chapter 6 shows concepts and programming of isoparametric finite elements.
Because a complex shape of domain with curved boundary can be easily handled using
isoparametric finite elements, these elements are very useful and common in FEA.
Both one-dimensional and two-dimensional isoparametric elements are presented. A
numerical technique and its programming concept are also discussed. As a program
example, Laplace’s equation is solved using isoparametric elements.

Chapters 7 and 8 discuss truss and frame structures. Static, dynamic, and
eigenvalue problems are solved. In addition, one-, two- and three-dimensional
structures are considered. As a result, coordinate transformation from local to global
axes is explained. In particular, various formulations for the beam structure are
compared; the relative advantages and disadvantages of each are cited. Modeling of
laminated beams with embedded cracks is also discussed. Further, Chapter 8 presents
the modal analysis and Fast Fourier TVansform.

Elasticity is studied in chapter 9. Plane stress/strain, axisymmetric and three
dimensional problems are included. Both static and dynamic analyses are presented.
The finite element formulations are presented in terms of the weighted residual
method. However, an energy method is also discussed for comparison. Plate
bending is given in Chapter 10. Similar to beam formulations, different plate bending
formulations are presented for comparison.

Finally, structural control using FEM is presented in Chapter 11. This chapter
is intended to provide a broad understanding of the basic concepts of control law in
conjunction with FEM. Due to limited space, only a few major control theories are
presented. It is assumed that readers are already familiar with fundamentals of linear
dynamic systems analysis.

This book contains more material than can be covered in a one-semester. Thus,
materials may be selected depending on course objectives. For an introductory FEM
course, Chapters 2 through 9 are recommended. Depending on the desired course
contents, some sections may be deleted.

We would like to thank individuals who have contributed to this book. The
authors would like to express our appreciation to Professor Aleksandra Vinogradov
for reviewing the manuscript and providing us with many useful suggestions. We
are also indebted to the staffs of CRC Press for their professional guidance in the
production of this book. Finally but not lastly the authors sincerely appreciate the
lifelong support and encouragement by their parents.

Y. W. Kwon
H. C. Bang

CHAPTER ONE

INTRODUCTION TO MATLAB

1.1 Finite Element Method

In order to analyze an engineering system, a mathematical model is developed to
describe the system. While developing the mathematical model, some assumptions are
moony v SRR ARG £ ALk O cravppwtr mafhpmafilfal gupheGRing; 5, Gorvavano
to describe the behavior of the system. The mathematical expression usually consists
of differential equations and given conditions.

These differential equations are usually very difficult to obtain solutions which
explain the behavior of the given engineering system. With the advent of high perfor-
mance computers, it has become possible to solve such differential equations. Various
numerical solution techniques have been developed and applied to solve numerous en-
gineering problems in order to find their approximate solutions. Especially, the finite
element method has been one of the major numerical solution techniques. One of the
major advantages of the finite element method is that a general purpose computer
program can be developed easily to analyze various kinds of problems. In particular,
any complex shape of problem domain with prescribed conditions can be handled with
ease using the finite element method.

The finite element method requires division of the problem domain into many
subdomains and each subdomain is called a finite element. Therefore, the problem
domain consists of Tany finite element patches.

1.2 Overview of the Book

This book is written as a textbook for engineering students as well as a reference
book for practicing engineers and researchers. The book consists of two parts: theory
and program. Therefore, each chapter has initial sections explaining fundamental
theories and formulations of the finite element method, and subsequent sections
showing examples of finite element programs written in the MATLAB program. The
collection of MATLAB function files (i.e. m-files) used in the example programs is
summarized in Appendix A and provided in a separate computer disc.

2 Introduction to MATLAB Chapter 1

A brief summary of some of MATLAB commands is provided in the following
sections for readers who are not familiar with them. Those are the commands which
may be used in finite element programs. Especially, the MATLAB commands for
matrix operation and solution are most frequently used in the programs. For visual-
ization of the finite element solution, some plotting commands are also explained.

1.3 About MATLAB

MATLAB is an interactive software which has been used recently in various areas
of engineering and scientific applications. It is not a computer language in the normal
sense but it does most of the work of a computer language. Writing a computer code
is not a straightforward job; typically boring and time consuming for beginners. One
attractive aspect of MATLAB is that it is relatively easy to learn. It is written on
an intuitive basis and it does not require in-depth knowledge on operational principle
of computer programming like compiling and linking in most of other programming
languages. This could be regarded as a disadvantage since it prevents users from
understanding the basic principle in computer programming. The interactive mode
of MATLAB may reduce computational speed in some applications.

The power of MATLAB is represented by the length and simplicity of the code.
For example, one page of MATLAB code may be equivalent to many pages of other
computer language source codes. Numerical calculation in MATLAB uses collections
of well written scientific/mathematical subroutines such as LINPACK and EISPACK.
MATLAB provides Graphical User Interface (GUI) as well as three-dimensional
graphical animation.

In general, MATLAB is a useful tool for vector and matrix manipulations.
Since the majority of the engineering systems are represented by matrix and vector
equations, we can relieve our workload to a significant extent by using MATLAB.
The finite element method is a well defined candidate for which MATLAB can be
very useful as a solution tool. Matrix and vector manipulations are essential parts in
the method. MATLAB provides help menu so that we can type help command when
we need help to figure out a command. The help utility is quite convenient for both
beginners and experts.

1.4 Vector and Matrix Manipulations

Once we get into the MATLAB, we meet a prompt >> called MATLAB prompt.
This prompt receives a user command and processes it providing the output on the
next line. Let us try the following command to define a matrix.

» A= [1,3,6;2,7,8;0,3,9]
Then the output appears in the next line as shown below.

1 3 6
A-2 7 8
0 3 9

Section 14 Vector and Matrix Manipulations 3

Thus, a matrix is entered row by row, and each row is separated by the semi-colon(;).
Within each row, elements are separated by a space or the comma(,). Commands
and variables used in MATLAB are case-sensitive. That is, lower case letters are
distinguished from upper case letters. The size of the matrix is checked with

>> size(.A)

ans =3 3

Transpose of a matrix In order to find the transpose of matrix A, we type
>> Al

The result is

1 2 O
ans= 3 7 3
6 8 9

Column or row components MATLAB provides columnwise or rowwise operation
of a matrix. The following expression

»A (:,3)
yields
6
ans = 8
9

which is the third column of matrix A. In addition,
» A (1))
represents the first row of A as
ans =13 6
We can also try
» J1(1,) + J1(3,)
as addition of the first and third rows of A with the result
ans =1 6 15
Now let us introduce another matrix B as
» B = [3,4,5;6,7,2;8,1,0];
Then there seems to be no output on the screen. MATLAB does not prompt output
on the screen when an operation ends with the semi-colon(;) at the end.
If we want to check the B matrix again, we simply type
» B

The screen output will be

4 Introduction to MATLAB Chapter 1

(671

I
® o w
N

N
o

Matrix addition Adding two matrices is straightforward like

» C = A+B

4 7 1
C=8 14 10
8 4 9

Thus we defined a new matrix C as sum of the previous two matrices.

Matrix subtraction In order to subtract matrix B from matrix A, we type

» C=A—B
-2 -1 1

C= -4 0O 6
-8 2 9

Note that C is now a new matrix not the summation of A and B any more.

Matrix multiplication Similarly, matrix multiplication can be done as

» C=A*B
69 31 11

C= 112 65 24
90 30 6

1.5 Matrix Functions

Manipulation of matrices is a key feature of the MATLAB functions. MATLAB
is a useful tool for matrix and vector manipulations. Collections of representative
MATLAB matrix functions are listed in Table 1.5.1. Examples and detailed explana-
tions axe provided for each function below.

Matrix inverse The inverse of a matrix is as simple as
» inv(A)
ans

1.8571 -0.4286 -0.8571
-0.8571 0.4286 0.1905
0.2857 -0.1429 0.0476

In order to verify the answer, we can try

>> A*inv(.A);

Section 1.5 Matrix Functions 5

Table 1.5.1 Basic Matrix Functions

Symbol Explanations

inv inverse of a matrix

det determinant of a matrix

rank rank of a matrix

cond condition number of a matrix
eye(n) the n by n identity matrix
trace summation of diagonal elements of a matrix

zeros(n,m) the n by m matrix consisting of all zeros

which should be a 3 by 3 identity matrix.

Determinant of a matrix
>> d=det(A)
produces the determinant of the matrix A. That is,
d =21
Rank of a matrix The rank of a matrix A, which is the number of independent
rows or columns, is obtained from

»rank(A);

Identity matrix

» eye(3)
yields
1 0 O
ans= 010
0O 0 1

eye(n) produces an identity matrix of size n by n. This command is useful when we
initialize a matrix.

Matrix of random numbers A matrix consisting of random numbers can be
generated using the following MATLAB function.

»randf3.3}

6.2190 0.6793 0.5194
ans = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346

6 Introduction to MATLAB Chapter 1

That is, rand(3,3) produces a 3 by 3 matrix whose elements consist of random
numbers. The general usage is rand(n,m).

trace Summation of diagonal elements of a matrix can be obtained using the trace
operator.

For example,
»C =139 672 8 -1 -2

Then, trace(C) produces 6, which is the sum of diagonal elements of C.

zero matrix
>> zeros(5,4)

produces a 5 by 4 matrix consisting of all zero elements. In general, zeros(n,m) is
used for an n by m zero matrix.

condition number The command cond(A) is used to calculate the condition
number of a matrix A. The condition number represents the degree of singularity
of a matrix. An identity matrix has a condition number of unity, and the condition
number of a singular matrix is infinity.

>>cond(ej/e(6))

ans =
1

An example matrix which is near singular is

1 1 ‘

A= 1 i+io-6J

The condition number is
>>cond(A)

ans =
4-0000e+006

Further matrix functions are presented in Table 1.5.2. They do not include all
matrix functions of the MATLAB, but represent only a part of the whole MATLAB
functions. Readers can use the MATLAB Reference’s Guide or help command to
check when they need more MATLAB functions.

M atrix exponential The expm (A) produces the exponential of a matrix A. In
other words,

» A =rand(3,3)

0.2190 0.6793 0.5194
A = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346

Section 1.5 Matrix Functions 7

Table 1.5.2 Basic Matrix Functions (Continued)

Symbol Explanations
expm exponential of a matrix
eig eigenvalues/eigenvectors of a matrix
lu LU decomposition of a matrix
svd singular value decomposition of a matrix
qr QR decomposition of a matrix
\ used to solve a set of linear algebraic equations

>>expm (A)

1.2448 0.0305 0.6196
ans = 1.0376 1.5116 1.3389
1.0157 0.1184 2.0652

Eigenvalues The eigenvalue problem of a matrix is defined as
Ad = Jkp

where A is the eigenvalue of matrix A, and ¢ is the associated eigenvector.

AN

e
gives the eigenvalues of A, and

» [V,D] =eig(™)
produces V matrix, whose columns are eigenvectors, and the diagonal matrix D whose

values are eigenvalues of the matrix A.
For example,

» A =[53 2 14 6; 97 2
» [V,D]=eig(A)

0.4127 0.5992 0.0459
V = 05557 -0.7773 -0.6388
0.7217 0.1918 0.7680

12.5361 0 0
D - 0 1.7486 0
0 0 -3.2847

LU Decomposition The LU decomposition command is used to decompose a
matrix into a combination of upper and lower triangular matrices, respectively.

» A=[135 248; 47 3
» [L,U] =lu(A)

8 Introduction to MATLAB Chapter 1

u~&UU i.UUUU U
L = 0.5000 0.4000 1.0000
1.0000 0 0
4.0000 7.0000 3.0000
U= 0 1.2500 4.2500
0 0 4.8000

In order to check the result, we try

>> L*U
1 3 5
ans = 2 4 8
4 7 3

KME T8 biiaiiguiai [Tiauila. £ 8 uvti PRV IBRAN] GIPCQTUIER . WYEE' B auuu il COYMMIEND

available
>> [LfU,P] =lu(A)
1.0000 0 0

L - 0.2500 1.0000 0
0.5000 0.4000 1.0000

4.0000 7.0000 3.0000
U= 0 1.2500 4.2500
0 0 4.8000
0O 0 1
P=1 0 O
0 10

Here, the matrix P is the permutation matrix such that P *A = L*U.

Singular value decomposition The svd command is used for singular value
decomposition of a matrix. For a given matrix,

A= UY.V

where S is a diagonal matrix consisting of non-negative values. For example, we define
a matrix D like

>>£>=[13 7, 2 95 2 8 §

The singular value decomposition of the matrix is
>> [U, Sigma, V] =svd (D)

which results in

0.4295 0.8998 -0.0775
U 0.6629 -0.3723 -0.6495
0.6133 -0.2276 0.7564

Section 1.5 Matrix Functions 9

15.6492 0 0
Sigma = 0 4.1333 0
0 0 0.1391

0.1905 -0.0726 0.9790 '
0.7771 -0.5982 -0.1956
0.5999 0.7980 -0.0576

QR decomposition A matrix can be also decomposed into a combination of an
orthonormal matrix and an upper triangular matrix. In other words,

A - QR

where Q is the matrix with orthonormal columns, and R is the upper triangular
matrix. The QR algorithm has wide applications in the analysis of matrices and
associated linear systems. For example,

0.2190 0.6793 0.5194
A = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346

Application of the gr operator follows as

>> [Q LL=ar(™)

yields

-0.3063 -0.4667 -0.8297
-0.0658 -0.8591 0.5076
A5 DOUL 1M19.494

-0.7149 -0.6338 -0.2466
0 -1.0395 -0.9490
0 0 - 0.0011

Solution of linear equations The solution of a linear system of equations is
frequently needed in the finite element method. The typical form of a linear system
of algebraic equations is written as

and the solution is obtained by
N A\,
T Sy
or we can use \ sign as
>> x = A\y
For example

»J1=[1 3 4 578, 23 5

10 Introduction to MATLAB Chapter 1

Table 1.6.1 Data Analysis Functions

Symbol Explanations
miii(max) minimum(maximum) of a vector
sum sum of elements of a vector
std standard deviation of a data collection
sort sort the elements of a vector
mean mean value of a vector

used for componentwise operation of a vector

>>Jinv(A)*y A\y]

-4.2500 -4.2500
ans = 1.7500 1.7500
2.2500 2.2500

1.6 Data Analysis Functions

Tip to now, we discussed matrix related functions and operators of MATLAB.
MATLAB has also data analysis functions for a vector or a column of a matrix. In
Table 1.6.1, some operators for data manipulation are listed.

Minimum (maximum) The min (max) finds a minimum (maximum) value of a
given vector. For example,

>> v —[11 23 73 25 49 92 28 23]
>>min(v)
yields

ans =
11

»max(u)
ans =
92

sum The sum command produces the summation of elements of a vector. For
example,

Section 1.6 Data Analysis Functions 11

>> sum(u)
yields

ans =
324

Standard deviation The std command calculates the standard deviation of a
vector. For example,

» std([l 4 10 -5 6 9 -20])
ans =
idlaoif
Sort a vector The sort command is used to sort a vector in the ascending order.
» sort([l 4 10 - 56 9 - 20)

ans =
-20 -5 1 4 6 9 10

Mean value of a vector The mean calculates the mean value of a vector.
>> mean([l 4 10 —5 6 9 —20])

ans =
0.7L13

Vector componentwise operation Let us define two vectors
» Vi = [1,5,6,7]; v2- [0,2,3,5];

Sometimes we want to multiply components of Vi with the corresponding components
of «2- The operation is

>> V3= ti.*\W2

ans =
0O 10 18 35

In other words, ().*() represents the componentwise multiplication of two vectors.
Another useful operator is

>> Vi = \2./Vi
with
t4=0 04 0.5 0.7143

Note that the data analysis tools explained in the above are applicable to matrices
too. Each matrix column is regarded as a vector for data analysis.

12 Introduction to MATLAB Chapter 1

Table 1.7.1 Polynomial Functions

Symbol Explanations

poly converts collection of roots into a polynomial equation
roots finds the roots of a polynomial equation
polyval evaluates a polynomial for a given value

conv multiply two polynomials
deconv decompose a polynomial into a dividend and a residual
polyfit curve fitting of a given polynomial

1 <7 "Me-1, [S -
J«1 xXuvid lui j. dijriiuuiiaio

Polynomials are frequently used in the analysis of linear systems. MATLAB
provides some tools for handling polynomials. The summary of polynomial functions
is provided in Table 1.7.1.

Roots of a polynomial equation A polynomial equation is given by
aiEn + a2xn~| H---—-- \anx + an+i = 0
The roots of the polynomial equation is solved using roots command

roots([ai a2 ee= an an+i])

For example,
X4+ 4a3 —552+ 6 —9 =0

>>roots([l 4 —5 6 —9)])
yields

ans =
-5.2364
1.2008
0.0178 + 1.1963i
0.0178 - 1.1963i

Generation of a polynomial equation using roots The poly command takes
the roots, and converts them into a polynomial equation. For instance, if we know
[ri, r2, === rn]in

(@a- n)(as- r2)e-(&- rn) = xn+ aixn“1+ a2xn~2\------han_1X+ an

then

Section 1.7 Tools for Polynomials 13

»poly([ri, r2, == rn}

provides us the coefficients([ai, 02, ===, an]) of the polynomial equation. For example,
>>poly([—1 —2+ 2*r —2—2*r —5+ 7*1 —5—7*7])

produces

ans =
1 15 136 498 968 592

In order to check the result, we use roots command again.

»roots ([l 15 136 498 968 592])
The result should be [1 —2+ 2*r —2—2*r —5+ 7*r —5—7*1].
Polynomial value When we want to calculate the value of a polynomial at a certain
point, we can use polyval.

» Y=polyval([l 3 4 -5 1,2

ans =
23

which evaluates the polynomial s4+ 3s3+ 4s —5 at s = 2

Multiplication of two polynomials The conv command is used to multiply two
polynomials. For example,

a(s) = s2+ 3s —1, fc(s) = s3—2s2+ 6s—7

The multiplication of a(s) and 6fs) follows as
» c¢=conv([l 3 —1,[1 - 2 6 —7)]

CcC =

1 1 -1 13 -27 7

In other words, we obtain the coefficient vector ¢ of the product of a(s) and b(s).

Decomposition of a polynomial The deconv is used to decompose a polynomial
as a multiplicand and a residue. Let

a($) = 6(s)m(s) + r(s)
That is, the polynomial a(s) is represented in terms of a multiplicand m(s) and a
residue r(s) via b(s). The MATLAB command is
>> [m,r] =deconv(a, b)

where the parameters are coefficient vectors for given polynomials. An example is
given by

» [m,r] =deconv([l —26 —7],[1 3 —1])

m =

14 Introduction to MATLAB Chapter 1

0 0 22 -12
If we change the order of polynomials,

>> [m,r] =deconv([l 3 —1],[1 —26 —7))

1 3 -1

Vi TS U8 B aTives eETIIRCY 16 uu ATtiab e a FUETuiu R BTV WY uiis
a given set of data. The polynomial is obtained by minimizing the error between the
polynomial and the given data set. The synopsis is

p = polyfit(a:,y,n)

where z and y are vectors of the given data set in (%, y) form, and n is the order of the
desired polynomial to fit the data set. The output result is p, the coefficient vector of
the fitting polynomial. An example is provided below,

>>*

1 23 45 6]

» y=1]-1 352 -3 1
» p =polyfit(a:,j/, 1)

P =
2.1714 -1.2667

A linear curve fitting is performed for data set (x,Y).

1.8 Making Complex Numbers

In order to make a complex number 2-b 3 *r, we use
>> 2+ 3%

or
>> 2+ 3%

MATLAB takes rand j as a pure complex number. In case i or j is defined already,
we can use as

>> r=sqrt(—1)
r= 0+ 1.OOOOI

Section 1.9 Nonlinear Algebraic Equations 15

Table 1.9.1 Functions for Nonlinear Algebraic Equations

Symbol Explanations
fmin finds minimum of a function of one variable
fzero solves a nonlinear algebraic equation of one variable

abs, angle For a given complex number, we use abs and angle commands to find
out the magnitude (abs) and phase angle (angle) of the given complex number. For
example, if

» c= —1+ i
then

» abs(c)

ans = 1.4142

>> angle(c)

ans = 2.3562

Real, imaginary parts of a complex number The real and imag are used to
take the real and imaginary parts of a complex number. For example,

» c=-10+9%*i
» [real(c) ,imag(c)j

ans = —10 9

Conjugate The conj command is used to generate a complex conjugate number.
For example

» conj(—14-5*1i)

ans ——1 —5%*j

1.9 Nonlinear Algebraic Equations

Nonlinear algebraic equations are frequently adopted in many different areas.
The nonlinear equations are different from linear equations, and there is no unique
analysis tool to the nonlinear equations. MATLAB is equipped with some functions
which can handle nonlinear equations. The list is presented in Table 1.9.1.

Minimum of a function The MATLAB command fmin minimizes a function by
finding out a value which minimizes the given function. The synopsis is

fmin(‘func’, xijxz)

16 Introduction to MATLAB Chapter 1

Table 1.10.1 Numerical Techniques for Differential Equationp

Symbol Explanations
ode23 solution using the 2nd/3rd order Runge-Kutta algorithm
ode45 solution using the 4th/5th order Runge-Kutta algorithm

where Time' is the name of a function to be minimized and x\{xi) represents a
lower(upper) limit of the interval of the function argument. For example,

»fm in (/®* cos(x)", —2,2)
produces

ans = —0.8603

Solution ofa nonlinear algebraic equation When a nonlinear algebraic equation
is written as
x34-3 *sin(x) —x5—0

the MATLAB function fzero can be used to find a solution of the nonlinear algebraic
equation. The synopsis is

» sol =fzero('function’, zO)

where ‘functionlis a MATLAB function subroutine and *0 is an initial condition
vector of the variables. For the given example, we write a function subroutine fcin.m
as

function [/] =fctn(x);
/| = a3+ x *cos(x) —4x;

Then, we use fzero command as
» sol =fzero(//ctfn/,—b)
sol = -2.1281

In order to check the solution
»fctn (—2.1281)

ans =
1.9192e-004

The error is due to the numerical format error. The number is truncated for screen
display purpose, even if it is calculated using double precision format inside MATLAB.

1.10 Solving Differential Equations

Linear and nonlinear differential equations can be also solved using MATLAB.
List of numerical techniques solving differential equations is in Table 1.10.1.

Section 1.11 Loop and Logical Statement 17

Runge-Kutta second and third order algorithm MATLAB uses the Runge-
Kutta algorithm to solve a differential equation or a set of differential equations. The
general synopsis is

[<,*] = ode23('/tmc',<0,</, *0);

where funo' is a function containing the derivative information, tO (tf) is the initial
(final) time, and *0 is an initial condition vector. The outputs are t, which contains
the returned time points, and x which is the integrated output.

For example, we want to solve

X+ sin(x) = o
which can be rewritten as

= x2
X2 —-sifl(ll)
where Xi = x and x2 —x. The 'func’ function should be provided as an independent

function subroutine as func.m in a directory, which MATLAB can locate. Now we
execute the ode23 command

» [E£X] =ode23(//tmc/,0,10, *0);

where

0 ={0}

is an initial condition and func.m is provided as

function m =func(t,x):
[[1=«42,1)1

(1) = *(2);

[(2) = —sm(a:(l));

Runge-Kutta Fourth and Fifth order algorithm There is another Runge-Kutta
algorithm ode45 which is more accurate than ode23.

[f, X] = ode45(//imc/,20, </, xO)

The same calling synopsis as ode23 can be applied to make use of the ode45
function.

1.11 Loop and Logical Statement

There are some logical statements available in MATLAB which help us writing
combinations of MATLAB commands. Furthermore, loop commands can be used as
in other programming languages. In fact, we can duplicate the majority of existing
programs using MATLAB commands, which significantly reduces the size of the source

18 Introduction to MATLAB Chapter 1

Table 1.11.1 Loop and Logical Statements

Symbol Explanations
for loop command similar to other languages
while used for a loop combined with conditional statement
if produces a conditional statement
elseif, else used in conjunction with if command
break breaks a loop when a condition is satisfied

codes. A collection of loop and logical statements in MATLAB is presented in Table
1.11.1.

for