Beginning iPhone
Development
with Swift 4

Exploring the i0S SDK
Fourth Edition
Molly K. Maskrey

Apress’

http://www.allitebooks.org

Beginning iPhone
Development with
Swift 4

Molly K. Maskrey

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Beginning iPhone Development with Swift 4: Exploring the iOS SDK

Molly K. Maskrey
Parker, Colorado, USA

ISBN-13 (pbk): 978-1-4842-3071-8 ISBN-13 (electronic): 978-1-4842-3072-5
https://doi.org/10.1007/978-1-4842-3072-5

Library of Congress Control Number: 2017957132
Copyright © 2017 by Molly K. Maskrey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under
the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Bruce Wade
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Wimpsett
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springer.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

Printed on acid-free paper

[vww allitebooks.cond

https://doi.org/10.1007/978-1-4842-3072-5
orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Another year, another revision of this book, as well as one of my own personal tribe.

Still around after more than two years of ups and downs, KP stuck beside me during my
most difficult times. No matter what I did, her sanity and silliness kept me going. She was,
for a long while, my muse...my inspiration to write and to keep it as fun as possible...never
taking myself too seriously. Now, as our paths slightly diverge, the qualities she’s left permeate
my days and make me a better self.

Mellie has been my rock. We've been in and out of being friends, and I hope she knows
I consider her the closest friend I've ever had. I probably wouldn’t be doing this if it weren’t
for the love she’s shown me.

Tonya came into my life recently and has been such a godsend to help me become more
confident in all I say and do, and I can’t thank her enough.

She probably has no clue she’s in here, but Lauren kept me going for the past year.
When I would’ve preferred to lay in the dark and sleep and zone out, without any
aggressiveness Lauren would give me something in her words to keep to going...to
not give up. She—I won't say forced, but she was very persuasive—got me into a
program that is, this very day, putting me onto a better path for myself and my future and
the future of anyone alongside me for my journey.

Finally, to Jennifer...our lives have radically changed over the past year. But, as partners
in business and advocates for each other’s happy life, our relationship bond, while admittedly
very tumultuous, has solidified into something we both see as pretty damn good.

In my personal struggles over the preceding year, these friends kept me from falling into
an abyss so deep I might never have returned. Writing can be a lonely thing, and having
a support system such as these beautiful, wonderful women are the only reason this endeavor
was a success. A special friend told me last year that some friends are only in your life for
a season. I pray that these women are friends for a lifetime.

—MM, August 2017

[vww allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

About the AUtROrccvverimmmis s ———————————— xvii
About the Technical REVIEWETccussmsssmssssssmsssmsmsmsssssssssmsssmsssssssssssssssssssnssssssnns Xix
AcknowIedgmEeNtS.......cceerrmssssssssssnmmmmsssssssssssssssssssssssssssssnnnsssssssssssssnnnnnnssssssssssnnnnnns XXi
Chapter 1: Getting to Know the i0S LandSCapecccrrssssmnsmsssssnnsssssssnssssssssnnssssns 1
Chapter 2: Writing Your First App....ccccseemmmmmsssmmmmmsssnmmmssssssssssssssssssssssssssssssnsnns 13
Chapter 3: Basic User Interactions..........ccciunsemmmmnsssssmnmsssssssnmsssssssssssssssssssssssnnnns 51
Chapter 4: Adding Intermediate-Level User Interactionscccenrnsssennnnssssnnnnns 87
Chapter 5: Working with Device Rotations.........cccuccemmmnnsmmmmmsssssnnnssssssnnssssssnnns 131
Chapter 6: Creating a Multiview Application..........cccoorcemmmmmninnnsssssssssssnnnsennn. 179
Chapter 7: Using Tab Bars and PiCKersccuemmmmmsmmnmmsssssnsssssssssssssssssssssssssnnns 209
Chapter 8: Introducing Table VieWS.......cccussemmsssnsmsssnsssssnsssssssssssnsssssnsssssssssssnnsss 255
Chapter 9: Adding Navigation Controllers to Table Viewscccovuussnennsssssnnnnns 309
Chapter 10: Collection VieWs......ccoceermmmmmmmmssssssssssmmsssns 343
Chapter 11: Split Views and Popovers for iPad APPS ...c.uceemmmmsssnnsmmssssssnmsssssnnns 357
Chapter 12: App Customization with Settings and Defaults............ccceierrrinennns 383
Chapter 13: Persistence: Saving Data Between App Launches..........ccccrrnsssnnnnas 419
Chapter 14: Graphics and Drawing........cccouusssesnmmsssssssmsssssssnssssssssssssssssssssssssnnns 465
Appendix A: An Introduction to Swiftccceninmmmmnnn i ————— 491
INdeX.ciiiiiinii i ——————————————_———_——— 547
v

[vww allitebooks.cond

http://www.allitebooks.org

Contents

AboUt the AULNOKciiieeeiiireenerirsnsesrrss s nns s asnsa s s s nnas s annnna s nnnnnssssnnnnnnssnnnns Xvii

About the Technical REVIEWETccurrrrrmmmmenssssssmmmsssssssssssssssssssssnnssssssssnsssssnnssnssnsnns XIX

AcknowIedgmEeNtS.......cceerrmssssssssssnmmmmsssssssssssssssssssssssssssssnnnsssssssssssssnnnnnnssssssssssnnnnnns XXi
Chapter 1: Getting to Know the i0S LandSCapecccrrssssmnsmsssssnnsssssssnssssssssnnssssns 1
ADOUL The BOOK.......ciueeicerericiscsis s ss s se s s sa s s 2
ThINGS YOU' I NEEA......c.erereririrer sttt sn s sn s sn s sn s s nn e 2

Your OptionS @S @ DEVEIOPETc.ceveeereerereerererereresreraesersesessesessesasessesessssessssassessssessssesssnssassessesassesssneres 4
ThIiNgS YOU SROUIA KNOWccueerecreeereesere e rerereseraesessesesaesesaesassessesessssesassessessssesassessssssasessesassessssenes 6
Some Unique Aspects About Working in i0Sccvevrerrrererreseresereseseresersesessesesaesessesessessssessssenaes 6
What’s in ThiS BOOKcccoeriiiererircncnen s 10
What's NEeW in ThiS UPUALe?cccvveereerererireserereseresessssessssessessssesassessssessssessssssssssssessssessssesssnssssssaes 11
SWift ANA XCOUE VEISIONSecvevereeeeerersisrsiessssssssss s s s sssssssssssssssssssssssssssssssssssssasasasas 11
Let’s Get Started...........cooceeiicrnircsr i 12
Chapter 2: Writing Your First AppP....cccccussemmssmmssnmssasssssssssssssassssssssasssssssssnsssassssans 13
Creating the Hello World Project.........ccoceeeeeece et sse s sns e s 14
Taking a Look at the Xcode Project WiNdOW............cccceeeieoenrerccscnirreese s 18
Taking a Closer Look at the Hello World Project ... s senes 30
Introducing Xcode’s Interface BUIlerccceveverererers s 31
INtroducing File FOMALS.........ccveererere et v s res e rae e s e e s e sessesassesaesesassesassassesassessesessssesasanaens 32
EXPIOring the SOryho@rd..........cccoveeerereeererererererereres s saesesse e e se s e sas e saesesassesassessesassessesesassesasanaens 32
EXPIOFiNG the ULIHEIES Araccoveereeeere sttt res e sae e sae e e e saesa s e sae e sae e saesesaesassesassesassesasanaens 34
Adding a LaDel 10 The VIBWccceeeerereecreere e sererereres s ree e s e saesessesassesaesessesessssesaesassesassessssesasenas 36
Changing ALLHDULESccceve ettt s s ae e re s e s e s sae e ae e s e s e s e ae e s ae e saenenaenananes 38

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Adding the Finishing TOUCHES.........cccoiererirercrerr e ses s e ssesnssa s s nns 40
Exploring the LaunCh SCIEENccceverererrrrre s saeses s s s s e ssssassassnssnes 44
Running the Application 0n @ DEVICE.........c.cceerrerrersmrsersesses s sn s sna e 46
1111 1P SRS 50
Chapter 3: Basic User Interactions..........ccciumsmmmmmnsssssnmmsssssssnmsssssssnsssssssssssssssssnns 51
Understanding the MVC Paradigmccccevniennsensnnnesnsesessssessssesssssssessssssesssssssens 52
Creating the BULLONFUN APP ..cveveererererc e see e e sassaessssas s sassassasssssassassnssnns 52
Understanding the VieWCoNtroller...........o et ne e 53
Understanding Qutlets and ACHIONScovccrecierncrr e nneaens 55
Simplifying the VIeW CONTIOIIETcccoueeiecrerner et sn e sa s r e e nas 57
Designing the USEr INTEITACEccorerrcrrcrrre e e a e s se s sa e 57
Testing the BULLONFUN APP.......ooiccrecr e e b e s a e nn s 68
PrevieWing LAYOULco e se e n e s s st p s a e s s ne e anna s 80
Changing the TEXE SIYIE ... e e sa e 82
Examining the Application Delegate............cccerierenrienninennsc s 83
E3 1111 1P S 86
Chapter 4: Adding Intermediate-Level User Interactionsccccinnssnennnnssssnnnnns 87
Understanding Active, Static, and Passive CONtrolSccocvvvereerersesnensessessessessensenens 92
Creating the ControlFun AppliCatioN.........cccceeeeececesere e 93
Implementing the Image View and Text Fields...........ccovverniiiennncnesnenssesesessessesennens 93
Adding the IMAGE VIEWc.coveereeeeericesesiriee e se s nnns 94
ReSizing the IMAGE VIEW.......cc.ou et ne s 96
Setting VIeW AHIDULEScooveeceecc e 98
Using the Mode ATHDULE ... 98
Using the Semantic AtDULE..........couo e s 98
0] T o OSSP RPSTP 99
Using Interaction ChECK BOXESceeeeererreererrrineesesssseses s ssse s ss e s s s e ssssssssssssssssssssssnssnes 99
USiNG the AIPRAVAIUEcoeeeeecee et p s 99
USING BACKGIOUNG ...ttt nenp s 99
0] T T OSSR SP 99
viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Drawing ChECK BOXES......cviereeererrereerersererersssessssessssessssessessssessssessssessesessessssessssessssesssssssssassesassesssnenes 100
L1 (=] (11 PR 100
Adding the TEeXE FIEIUS......cvieeercerrer et sa s s sa s s sa s a e sa s e sa e e sa e e e e e sa e nn e n s 100
Using Text Field INSPECtOr SELHNGS.ccvvveverrerererrrere s s rss e ssssessesessesassesassessesessssessssassesassessssenes 106
Setting the Attributes for the Second TeXt Fieldcccccvevrereriererierrrere e see e ssesessesesaens 107
T [0 Ty 10 0] 5 (U 107
Creating and ConNECtiNg OULIETS........ccevvvcererrerererr s rer s rre s re e e e s e e sae e sae e sas e sae e s 108
CloSing the KEYDOAIT..........cceeereerereerererereresersesersssessssessessssessssessssessssesssssssessssessssesssssssssassesassesssnenes 110
Closing the Keyboard When Done IS TAPPEU.......cccvuererereriererieresrersesersesessessssessssessssessesssssssssessssessenenns 111
Touching the Background to Close the Keyboard............cceveeveerereererererseressersssessssessesesessssessesessenesaes 112
Adding the Slider and LADEL..........cccoveererererrre et see e se e sas e sassesse e saesassesassesasssnnes 114
Creating and Connecting the Actions and QULIELSccccvvcererrererererre s re e 116
Implementing the Action Method..........ccooiiirrn i —————— 117
Implementing the Switches, Button, and Segmented Control..........ccccccveeververrverereresererereresereesenns 117
Adding TWo Labeled SWILCREScccverererererrrer st sas e sae e sas e s e saesa s e sas e saesennes 119
Connecting and Creating Outlets and ACHONScccvevrerrierrrere s sa e e es 120
Implementing the SWItCh ACLIONSccccvcevrrerr e sa e sa e s a e 120
Adding the BUHTON........oceccr e s e s e e r s sa e s a e sa e e e a e n e e 120
Adding an Image t0 the BUHON ..o e n s 122
USing STretChable IMAQES.......cocveveveerererereres s serae e rss s e s e s e e ssesessesessesassesassesaesesassesassassesassesasnenes 122
USING CONEIOI STALEScveverereeeereererrerererereressersssersesesaesessesassesss e ssesessesessesassesassesassesassssasansesanserssnenes 123
Connecting and Creating the Button Qutlets and ACtIONS...........ccveveverrerenreressere s res e reeenes 124
Implementing the Segmented CONtrol ACHONcccvevrerrierr v ra e e 124
Implementing the Action Sheet and AlEIT...........ccvvvverrcerrierr e sa e sa e e 125
Displaying an ACtION SHEET.........cccvevrerrerrrer e sa e e ae e ae e e sa e s a e e 126
PreSenting @n AlBIT ... e e e e e e e e e e e e s 129
1111 11 SRS 130
Chapter 5: Working with Device Rotations.........ccuseemmnnsssmnnnnssssnsnsnssssssnssssssnnns 131
Understanding the Mechanics of Rotationcccceeeeeiececccc s 132
Understanding Points, Pixels, and the Retina Displayccococvivrrnncnnicnnrcnescsecse s 132
Handling ROTALIONccoveieeeeeee e 133
ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Creating Your Orientations Projectccoeeivrnnnncnnnsnessse s 133
Understanding Supported Orientations at the App LEVEL..........occeeeireeecrrsecrersee s 133
Understanding Per-Controller Rotation SUPPOIt ... 136

Creating Your Layout PrOJECE.........ccvevererereree s ses s ses e ssssassssssssnssessassassassassassessnns 137
Overriding Default CoNSIIAINTS.........cccvererrererrerr e s s s ree e sse e sse e sae e s e saesesae e saesesaerassesansenes 143
USINgG FUIl-Width LADEIS.......coveereeereerereerereresersesersesessesessessssessssessesessesesssssssessssessssessssssssnsssesassesssnenes 144

Creating Adaplive LayOutS........cccceeeeererresessessesse e ssessessesssssssssssssnssssssssssssssssssssssnsnns 147
Creating the Restructure AppliCation..........ccocceevrecnennc s 147
Setting the iPhone Landscape (wC hC) Configurationccccceenvernrnnsnesnesne s sesesenaens 156
Setting the iPad (iPhone Plus Landscape) (WR hR) Configurationscccooveeerernsnenenenssencnenenenes 169

SUMMEAIY ...ttt a s s ae s r s s r e s e a e e ae e n e nnnnnnnas 178

Chapter 6: Creating a Multiview Application...........cccinnmnmmnnmssssssnmsssssnssssssnnns 179

Looking at Common Types of MUItIVIEW APPScoeerrrereerererres e e sessessessenenns 179

Looking at the Architecture of a Multiview Application...........ccecvvverrvrrnressensensennnnns 185
Understanding the ROOt CONTIOIIETcveververeerereerererererererse e reesersesessesessesasesassessssessssassesassessssenes 188
CoNtent VIEW ANGLOMYcccovererereererererereserseseraesessssessesessessssessssessssesssssssesassessssessssssssassesassesssnenes 188

Creating the View Switcher Applicationcccooeeereresescsc s snnnnns 188
Renaming the View CONTIOIIET ... sn e sn s s re s 189
Adding the Content View CONIOIIErS ..o s ss s s seenes 191
Modifying SwitchingViewController.SWift ..o s 192
Building @ View With @ TOOIDATccoiirernirnsere e sr e e 192
Linking the Toolbar Button to the View Controller ... 195
Writing the Root View Controller Implementation............ccoorecnecncc e 196
Implementing the Content VIEWS.........cccierririrrccrrcrc e sns e sne s 201
Animating the TranSItioN...........ccvcreiicrrrr s s p e e s nrens 205

SUMMEAIY ...ttt a s s ae s r s s r e s e a e e ae e n e nnnnnnnas 207

Chapter 7: Using Tab Bars and PiCKersSccucemmmmmsssmnmmssssssnmsssssssnsssssssssssssssnnnss 209

The Pickers AppliCation..........cccvcerverserienses s e 210

Delegates and Data SOUICEScccvververrerserrenserser s se s snssn s snssassnssaenens 216

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Creating the Pickers ApPliCatioNccoeeieerererc s sne s 216
Creating the VIEW CONTIOIIEISccocevieeeerirsecsire et nens 216
Creating the Tabh Bar CONTIOIIEN...........occceerireecrieree st 217
Initial SIMUIALOT TEST ... 221
Implementing the Date PiCKENcoveeeriiiecrrresesirsee e 222

Implementing the Single-Component PiCKer.........coovverrrrnsnnses s sesseseens 226
BUIIAING ThE VIBWcveeeeeererercrtsc st saeres e rssseraesesassessesassesss e sassessssessssasaesassesassesssssassassesassesssnenes 226
Implementing the Data Source and DElEgate...........ccveververerrererrererere s res e rsesesaesesaerassessesenes 230

Implementing a Multicomponent PICKErcccoeieiecesesese e sns s snennns 233
BUIAING The VIBW ...ttt s e e e p e s 233
Implementing the CONTIOIIETcou e r e 233
Implementing Dependent COMPONENTS ..o e r s 236

Creating a Simple Game with @ Custom PiCKer.........ccccverriernnniennsenessese s 244
Preparing the VIEW CONTIOIIEN ...t se s se s sesasssssssnens 244
BUIIAING the VIBW ... 244
Implementing the CONIOIIET ... 245
Additional Details for YOUr GAMEc.covreririririrerisririsisesesesesese s seseses 249

E3 1111 P2 7S 253

Chapter 8: Introducing Table VieWS.......ccccuussesmmmssssssnmmssssssnmssssssssssssssnssssssssnnnns 255

Understanding Table VIew BasSiCS........ccoouverererernrennnssssssssssssssssssssssessssssssssssssssssssenns 256
Using Table Views and Table VIEW CelIS.........cccvererererererererserssrersesessesesssssssessssessssessesssssssssessssessenens 256
Understanding Grouped and Plain TADIES.........cccccvererererereniersesersesessesessesssessssessssessesesssssssessssessesenes 257

Implementing a SiMple TabIE ..o 258
DeSIgNINgG the VIBWccieeccccrctr et p s e e s n e p e e 258
Implementing the CONTIOIIETcou e r e 261
AdAINg @N IMAJE.......cceeeecirerirerrer s e s e e e b s e b e e R e e R e e s ae e et e R e e e nenrnns 265
Using Table VIEW Cell STYIES ...t sn s s 267
Setting the INAENT LEVEL..........oe e r e e e sn e 271
Handling ROW SEIECHON..........ccoiccrc e s p s s r e 272
Changing the Font Size and Row Height ..o 274

xi

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Customizing Table VIEW CellSccvceeriereericreirereseseses e 276
Adding Subviews t0 the Table VIieW Cell ... sesnns 277
Implementing a Custom Table Views Applicationccccevvverrnrnensessessessessessensensenns 277
Creating @ UITableVieWCEIl SUDCIASS.........ccerrerrererrerereerereresersssersesessesessessssessssessesessessssssessessssessssenes 278
Loading a UlTableViewCell from @ XIB Filcccceererereriererieresrereesersesessesessesssessesessesessssessessssessenenes 282
Using Grouped and Indexed SECLiONS..........ccceeeeerererese s e snenns 290
BUIING The VIBW ...ttt p s e e s p s e e 290
IMPOrting the DAta..........coiirrrrr e e e 291
Implementing the CONTIOIIETcou e r e 292
D (o LTy To I T o ORI 296
Adding @ SEAICH Bar.........ccouieiirere st s e e a s s r e e e e e p e e e ens 297
USING VIEW DEDUGGING.....cceierrrirrrcrieiie e sre e ss e s s e sesse st s e sas e s se s e nssnssssassesasnenns 305
SUMMEAIY ...ttt a s s ae s r s s r e s e a e e ae e n e nnnnnnnas 307
Chapter 9: Adding Navigation Controllers to Table Viewscccussmserssnnssssansas 309
Understanding Navigation Controller BasiCs..........ccceouserersnernnsssesssesessssessssessssensens 309
LT 2 T3 OO 310
Using @ Stack of CONEIOIIEYS ... 311
Fonts: Creating a Simple FONt BIOWSETccccvvvvernnnrsen s ses e e sessessessssenns 312
Seeing the Subcontrollers of the FONIS APPccvererrererrere e rae e sse e s e sas e saesesaesesaesasaens 313
Seeing the Fonts Application’s SKEIETONcccvevrrerrrererre s serse e res e ses e sassesassessssasaens 315
Creating the ROOt VIEW CONTIOIIEN..........coveverrererere e rerereseres e ssesessesessesessesassessssessssessssessesassessssenes 319
Doing the Initial Storyboard SETUP........covcevrrererre e sa e e s 322
First Subcontroller: Creating the FONt LISt VIEWcccceeverriererrere e reseres e sessesessesessesessesassenes 323
Creating the Font List STOrybhoard...........ccccevrererrrrne e e s sessesessesassesassenes 325
Creating the Font Sizes View CONtroller..........coeeeeecesesecesre s see e e e sennnns 328
Creating the Font Sizes View Controller Storyboard...........ccocovrvnncnircncc e 330
Implementing the Font Sizes View Controller Prepare for Segue..........ccevverrvernrnecnnsenesessessnenns 330
Creating the Font Info View CONTIOIIEr ...t sn e 331
Creating the Font Info View Controller Storyboardccooceervnnvnesnssnenness s sessesesessssenns 332

xii

CONTENTS

Adapting the Font List View Controller for Multiple SEQUESccccvereriererereerererersesesesessersesessesenses 337
Creating My Favorite FONTS.........ccccvevrerererercrrs e rs s seseses e ses e ssssessesessesassesassessssesssssssssassesassesasnenes 337
D0 o T T T UYL S SS S 338
Implementing SWIPE-10-DEIETEccerereriererrerererr s rre e sa e e ae e ae e sae e saesassesaenees 338
Implementing Drag-t0-REOIUENcoevirerirererere e sa e a e sa e a e e s 340
1111 11T SRS 342
Chapter 10: Collection VIeWS.......ccccurrmsssnsnmmssssssnsssssssssssssssssssssssssssssssssnnsssssssnnnss 343
Creating the DialogVieWer Project..........ccoveeeeeeeeresesie e sse e sse s ssssessnssnssnssnssnsssnnnns 343
Defining CUSTOM CEIIS ..ot 345
Configuring the View CONTIOIIEN ...t 348
Providing CONtENE CElIS.........coeurueeeereicccriree st 349
Creating the LAYOUL FIOW ...t 351
Implementing the Header VIBWS...........cccoreeeeeccrsece et 353
SUMMEAIY ...ttt e s ae s a s sae e s e ae e s e na e e nae e s e nnnnnnnnns 355
Chapter 11: Split Views and Popovers for iPad APPS ...c.uceemmmsssssnmmmssssnsnssssssnnnns 357
Building Master-Detail Applications with UISplitViewController...........ccoovvrvrrrrernnne 359
Understanding How the Storyboard Defines the StruCture..........ccocovvceerrsesesssesese s 361
Understanding How Code Defines the Functionality............cccovevernnncescnnnssesessesesesesesesesessseseens 363
Understanding How the Master-Detail Template Application WOrkS.........ccoueeeeeerenenesesesesesesessssenenens 367
Adding the President Data............covvereeerrnesesersssesessssese s s sesss s s sssssssssssssssssssssssssssssssssans 369
Creating YOUr OWN POPOVETcuccceerrireeeresrseesssssssesesssssese s sssssessasnns 375
E3 1111 1P 7S 381
Chapter 12: App Customization with Settings and Defaults........c.ccusseenrrisssnnnnns 383
Exploring the Settings BUNQIE..........c.ccvvvververiennerrerser s ses e sassaesnsnens 383
Creating the Bridge Control Applicationccceceeerereserese e snesneeens 385
Creating the Bridge CONtrol PrOJECT..........coouioeecrirerecririeecse e 390
Working with the Settings BUNCIE ... 391
Reading Settings in YOUr ApPlICAtIONcovouieeceeieeecireeecerer e 408
Changing Defaults from Your AppliCatioNcooe e 412

xiii

CONTENTS

Registering Default VAIUES........cocc e sas s sae s saess e s sa e saesa e sa s sa e s e sa s sasnae s 414
KEEPING IE REAI ... e sa e s e e e s b e e e e s e e e e e e e e e e e s 415
Switching to the Settings APPliCatioN...........cooiinn e ————— 417
1111 11 SRS 418
Chapter 13: Persistence: Saving Data Between App Launchescccnrnssnnnnas 419
Your Application’s SANADOXccccvirrriercersr s s 419
Getting the Documents and Library DIir@CtOriEs..........covureeererereieserirreescsessse s eeens 423
Getting the tMP DIrECIONY ... 424
File-Saving Strategiescooveerererrerrrsrresrssese s s ss s e sn s ens e 425
SiNgle-File PErSISTENCE........cccceeerrrrecrerre e ss e e re e s s 425
MUltiple-File PErSiSENCE........coverererrrreereresrsesesesssssesesssss e e sssss s e e ssss s s sssssssssssssssssssssssasnnes 425
USING Property LiStSccocceiiiriiirnerree s ses s s e s s sse s ssse s s snesessnsssessnens 425
Property List SEHalization...........ccccvererereriernrerererssesesesesesessssessesessesessessssessssessssesssssssssassesassessssenes 426
Creating the First Version of a Persistence Application..........ccccccveveverrerenieressene s sesesseenns 427
Archiving Model ODJECES.......ccceeeeeercreeece e 433
Conforming t0 NSCOUINGcocevrueeerereereriree st nas 433
IMplementing NSCOPYINGcoceeeeerereecrereesesiss s s ns e e 434
Archiving and Unarchiving Data ODJECEScoveereriieiercrreccrer e 435
The Archiving APPlICALIONcouierieerercr e s e e s p e e 436
Using i0S’s Embedded SQLITE3cccerrrieecrerreresiseseese e snns 438
Creating or Opening the DAtabase..........cccoreierererrencrirrecre e 439
USING BiNG VAIADIESeceeceereeeccere s nnas 440
Creating the SQLite3 APPlICALON........cccceeererererre e saesne e 441
Linking to the SQALILE3 LiDIaryccoveeererrrnsenesssssssesessssssesesssssesessenns 441
USING COre DAta.........cocereereerrerereersereessessesssssesssssssssssssasssssassssssssssssssssssssassassasssssssssssnns 447
Entities and Managed ODJECESccvcevererererere s e e ra e s sa e e s e sae e e sa s sa e es 448
The Core Data APPIICALIONcceceveererererererererere st re e s s s ssesessesassesas e sas e sae e saesasaesassesassesassenaes 451
Modifying the AppDelegate.SWift Filecccveiiienenincrerr e 456
L1 11T SR 463

xiv

CONTENTS

Chapter 14: Graphics and Drawing.........cccinnssemmmmmsssssssmmsssssssssssssssssssssssssssssssssss 469

(01T 1y 4] 0 PPV 466
The Quartz 2D Approach t0 Drawingccceevverrersersessesss s ses s ses e e s 466
Quartz 2D’s GraphiCs CONTEXLScccocvererererererererereresesese e 466
The Coordinate SYSTEBM........ccoieeeeerrecrr s 467
SPECITYING COIOIS.....coeieeeeereeeiririr e e R e e n e e e pnnn s 470
Drawing IMages in CONEXL..........cccorieiecrrresc s 471
Drawing Shapes: Polygons, Lines, and CUIVEScccevreerererenesesesssesesessssssesesssssssessssssssessssssssssnns 472
Quartz 2D Tool Sampler: Patterns, Gradients, and Dash Patterns............cccvvvrnrrenncenncenenserennens 472
The QuartzFun ApplICALioNc.ccevvververiersr e 474
Creating the QuartzFun AppPlICALIONcccvvreerererer et rae e ae e e sae s 474
Adding Quartz 2D Drawing COUEcceeereererrerrrerrerererererssersssessesersesessessssessssessssessessssessssessesessesssaes 482
Optimizing the QuartzFun APPlICALIONcoeccveecererre e se e e sa e es 487
SUMMEAIY ...t a e e s ae e e ae e s n e e ae e s ne e nnens 490
Appendix A: An Introduction to Swift.......cccceirinnnnen e ——————. 491
B2 T 491
Playgrounds, Comments, Variables, and Constants...........cccccovvvrnrrecnnennsesnscss s 493
Predefined Types, Operators, and Control Statements ... csccscrre e 496
Arrays, Ranges, and DiCHONAIIEs..........cccueerernrcrcscre e sr s sn e sre e snas 507
L0012 LSS 512
Control STAtBMENTS........ccocvviirir s —————————————— 517
FUNCEONS AN CIOSUIEScuvueiiiisiiisiiesssss s 522
Error HANGING.......cccoveicecire e s r e e e s n e p e s 527
Classes and StIUCTUIES........c.cvvrerenmsinisisisisiss s 533
STUCTUIES ...t 533
CIASSES .ucuesisiiiiiiisiit s 535
o (00 1C] 1TSS 536
MEENOGS.....cciiiii i ————————————————————— 539
Optional CRAININGc.coviecirerr e s e s bR e e e ae e e e r e e 540

XV

xvi

CONTENTS

Subclassing and Inheritance

Protocols

Extensions

Summary

T - RS | : ¥ |

About the Author

Molly K. Maskrey started as an electrical engineer in her 20s working for
various large aerospace companies including IBM Federal Systems, TRW
(now Northrup-Grumman), Loral Systems, Lockheed-Martin, and Boeing.
After successfully navigating the first dot-com boom, she realized that a
break was in order and took several years off, moving to Maui and teaching
windsurfing at the beautiful Kanaha Beach Park.

She moved back to Colorado in 2005 and, with Jennifer, formed
Global Tek Labs, an iOS development and accessory design services
company that is now one of the leading consulting services for new
designers looking to create smart attachments to Apple devices.

In 2014 Molly and Jennifer formed Quantitative Bioanalytics
Laboratories, a wholly owned subsidiary of Global Tek to bring high-
resolution mobile sensor technology to physical therapy, elder balance and fall prevention, sports
performance quantification, and instrumented gait analysis (IGA). In a pivot, Molly changed the direction of
QB Labs to a platform-based predictive analytics company seeking to democratize data science for smaller
companies.

Molly’s background includes advanced degrees in electrical engineering, applied mathematics, data
science, and business development. Molly generally speaks at a large number of conferences throughout
the year including the Open Data Science Conference (ODSC) 2017 West, advancing the topic of moving
analytics from the cloud to the fog for smart city initiatives. What fuels her to succeed is the opportunity to
bring justice and equality to everyone whether it’s addressing food insecurity with her business partner or
looking at options for better management of mental health using empirical data and tools such as natural
language processing, speech pattern recognition using neural networks, or perfusion analysis in brain

physiology.

xvii

About the Technical Reviewer

Bruce Wade is a software engineer from British Columbia, Canada. He started software development when
he was 16 years old by coding his first web site. He went on to study computer information systems at DeVry
Institute of Technology in Calgary; to further enhance his skills, he studied visual and game programming at
the Art Institute of Vancouver. Over the years he has worked for large corporations as well as several startups.
His software experience has led him to utilize many different technologies including C/C++, Python,
Objective-C, Swift, Postgres, and JavaScript. In 2012 he started the company Warply Designed to focus on
mobile 2D/3D and OS X development. Aside from hacking out new ideas, he enjoys spending time hiking
with his Boxer Rasco, working out, and exploring new adventures.

Xix

Acknowledgments

First, I want to acknowledge all my friends who gave me the support to persevere and go through with
writing when it would have been so easy to just give up. Thanks to Sam especially, another writer I met more
than a year ago, who was always there to provide support, drink tequila, and suggest fun things to do in order
to keep it real. He was my cohost at almost a year of rooftop parties at Galvanize.

Thanks to Children’s Hospital Colorado and the Center for Gait and Movement Analysis, both of which
have been so generous to let me be part of what they do for young adults with cerebral palsy and other gait
disorders. The understanding I've gained drives me to focus my efforts on helping the many who truly need
it. Thanks to the CEOs of 10.10.10 Health who let me see what they were doing and to provide my annoying
feedback.

Thanks to the clients and friends of Global Tek Labs who so generously allowed me to include some of
their projects in this book for illustrative purposes. Thanks to the hundreds of people who have attended my
talks over the past year and have given me ideas for what to include, such as John Haley who told me of his
personal woes in understanding the Auto Layout feature of Xcode. Those actual experiences helped drive
the subject matter I chose to include in this book.

Finally, I want to acknowledge all the authors before me who set the stage for my own little work to fit
into a much broader landscape.

xxi

CHAPTER 1

Getting to Know the i0S
Landscape

Coding for Apple mobile devices provides a rewarding and lucrative career path where you might not only
change people’s lives with your app (see Figure 1-1) but might also have a great time being with bright,
like-minded women and men such as yourself. Though you’re bound to find some difficulty in learning the
language, tools, and processes, these new associates will help you through the landscape of this new world
and will challenge you to be your best and to stand out from the mediocre.

Figure 1-1. One of the greatest feelings you can experience as an iOS developer is seeing other people using
your creation out in the real world

© Molly K. Maskrey 2017
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_1

https://doi.org/10.1007/978-1-4842-3072-5_1

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

For now, think of me as one of those friends along your journey of iOS discovery. I'm so proud to be
able to help you by providing this initiation into the world of iOS development, whether it is for iPhone, iPod
touch, or the iPad. iOS provides an exciting platform that has seen explosive growth since it first came out in
2007. The proliferation of mobile devices means that people are using software everywhere they go, whether
itis a phone or a wearable, such as the Apple Watch. With the release of iOS 11, Xcode 9, Swift 4, and the
latest version of the iOS software development kit (SDK), things continue to be exciting and generally have
become easier for new developers. What'’s more, you can now bring the world of data science and predictive
analytics to your app with CoreML as well as image and natural language processing frameworks.

About the Book

This book guides you down the path to creating your own iOS applications. I want to get you past the initial
difficulties to help you understand the way that iOS applications work and how they are built.

As you work your way through this book, you will create a number of small applications, each designed
to highlight specific i0S features and to show you how to control or interact with those features. If you
combine the foundation you’ll gain through this book with your own creativity and determination and then
add in the extensive and well-written documentation provided by Apple, you'll have everything you need to
build your own professional iPhone and iPad applications.

Note Throughout most of this book, | tend to refer to the iPhone and iPad, as they are the devices that
you’ll most commonly use in the examples. This does not preclude the iPod touch by any means; it is just a
matter of convenience.

Tip The authors of the previous editions of this book have set up a forum, which is a great place to meet
like-minded folks, get your questions answered, and even answer other people’s questions. The forum is at
http://forum.learncocoa.org. Be sure to check it out!

Things You’ll Need

Before you can begin writing software for iOS, you'll need a few items. For starters, you'll need an Intel-based
Macintosh running Sierra (macOS 10.12) or newer. Any recent Intel-based Macintosh computer—laptop or
desktop—should work just fine. Of course, as well as the hardware, you'll need the software. You can learn
how to develop iOS applications and get the software tools that you'll need as long as you have an Apple ID;
ifyou own an iPhone, iPad, or iPod, then you've almost certainly already have an Apple ID, but if you don't,
just visit https://appleid.apple.com/account to create one. Once you've done that, navigate to https://
developer.apple.com/develop. This will bring you to a page similar to the one shown in Figure 1-2.

http://forum.learncocoa.org/
https://appleid.apple.com/account
https://developer.apple.com/develop
https://developer.apple.com/develop

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Develop

Bring Your Ideas to Life

With the power of Xcode, the ease of Swift, and the revolutionary
features of cutting-edge Apple technologies, you have the freedom

to create your most innovative apps ever.

& Xeodo Fio Fdt Yew Fid Miigate Fditor Procuct Debug Source Cortrel Window Help MenfodlAM O O IE

ese » W Scence 5 Pmne 7 P Scance: Basdy | Toay ¥ 41 A A (===

DERQ & @ R e i e L R - T Y -1 e e Rl PR P

Figure 1-2. Apple’s development resources site

Click Downloads on the top bar to go to the main resources page (see Figure 1-3) for the current
production release and (if there is one) the current beta release of iOS. Here, you'll find links to a wealth
of documentation, videos, sample code, and the like—all dedicated to teaching you the finer points of
iOS application development. Be sure to scroll to the bottom of the page and check out the links to the
Documentation and Videos sections of the web site. You'll also find a link to the Apple Developer Forums,
where you can follow discussions on a wide variety of topics covering the whole iOS platform, as well as
macOS, watchOS, and tvOS. To post to the forums, you'll need to be a registered Apple developer.

Downloads

Get the latest beta releases of Xcode, macOS, 108, watchOS, tvOS, and more.

Featured Downloads wld

Xcode 9 beta 2 Reloase Notes SMI370 un 21, 2017
macOS High Sierra 10.13 beta 2 Rsloase Notes 17A297m Jun 29, 20
i.os 1.1.be.lf'a 2. |I' Rekse tes 1545304 n 6,2
i0S Restore Images Sea all
watchOS 4 beta 2 Release Notes 1575 Jun 21,20
tvOS 11beta 2 [Frreed Release Notes 16,531 26,201

Figure 1-3. You can download all the production and beta releases of the development tools from the
Downloads page. You will need to sign in with your Apple ID.

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Note At the developer conference WWDC 2016, Apple changed the name of OS X back to the previously
used macOS to become more in line with the other naming conventions used throughout the four major system
platforms.

The most important tool you'll be using to develop i0S applications is Xcode, Apple’s integrated
development environment (IDE). Xcode includes tools for creating and debugging source code, compiling
applications, and performance tuning the applications you've written.

You can download the current beta release of Xcode by following the Xcode link from the developer
Downloads page shown in Figure 1-3. If you prefer to use the latest production release, you'll find it in the
Mac App Store, which you can access from your Mac’s Apple menu.

SDK VERSIONS AND SOURCE CODE FOR THE EXAMPLES

As the versions of the SDK and Xcode evolve, the mechanism for downloading them has changed over
the past few years. Apple now publishes the current production version of Xcode and the i0S SDK on the
Mac App Store, while simultaneously providing developers with the ability to download preview versions
of upcoming releases from its developer site. Bottom line: unless you really want to work with the most
recent development tools and platform SDK, you usually want to download the latest released (nonbeta)
version of Xcode and the i0S SDK, so use the Mac App Store.

This book is written to work with the latest versions of Xcode and the SDK. In some places, new
functions or methods are introduced with i0S 11 that are not available in earlier versions of the SDK.

Be sure to download the latest and greatest source code archive for examples from this book’s page at
www . apress. com. The code is updated as new versions of the SDK are released, so be sure to check the
site periodically.

Your Options as a Developer

The free Xcode download includes a simulator that will allow you to build and run iPhone and iPad apps on
your Mac, providing the perfect environment for learning how to program for iOS. However, the simulator
does not support many hardware-dependent features, such as the accelerometer and camera. To test
applications that use those features, you'll need an iPhone, iPod touch, or iPad. While much of your code
can be tested using the iOS simulator, not all programs can be. And even those that can run on the simulator
really need to be thoroughly tested on an actual device before you ever consider releasing your application
to the public.

Previous versions of Xcode required you to register for the Apple Developer Program (which is not free)
to install your applications on a real iPhone or other device. Fortunately, this has changed. Xcode 7 started
allowing developers to test applications on real hardware, albeit with some limitations that I'll cover in this
book, without purchasing an Apple Developer Program membership. That means you can run most of the
examples in this book on your iPhone or iPad for free! However, the free option does not give you the ability
to distribute your applications on Apple’s App Store. For those capabilities, you'll need to sign up for one of
the other options, which aren't free.

e The Standard program costs $99/year: It provides a host of development tools and
resources, technical support, and distribution of your applications via Apple’s iOS
and Mac App Stores. Your membership lets you develop and distribute applications
for i0S, watchOS, tvOS, and macOS.

http://www.apress.com/

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

e The Enterprise program costs $299/year: It is designed for companies developing
proprietary, in-house iOS applications.

For more details on these programs, visit https://developer.apple.com/programs (see Figure 1-4).
If you are an independent developer, you can definitely get away with just buying the standard program
membership. You don’t have to do that until you need to run an application that uses a feature such as
iCloud that requires a paid membership, you want to post a question to the Apple Developer Forums, or you
are ready to deploy your application to the App Store.

& Developer Discover Design Develop Distribute Support Account Q

Apple Developer Program Owndew Whatsincluged Howktweores (el

Program Membership Details

Software and Tools Beta OS5 Releases Developer Account Tools
Download and install the latest beta OS Download the latest beta OS5 Access the resources you need lo
releases for development and distribution. releases and install them on your configure app services, manage your
Access your account to configure resources development Apple devices. devices and development teams, and
required for the development and . oSN to submit new apps and updates.
distribution process. « macO5 High Sierra
* watchOS
« w05
& &. , @
N
Advanced App Capabilities + CloudKit + Data Protection
. « Game Center » HomekKit
Get access to cutting-edge Apple .
« Wallet * HealthKit

technoloaies that help vou create

Figure 1-4. Signing up for a paid membership gives you access to beta and OS tools releases

Because i0S supports an always-connected mobile device that uses other companies’ wireless
infrastructures, Apple has needed to place far more restrictions on iOS developers than it ever has on Mac
developers (who are able—at the moment, anyway—to write and distribute programs with absolutely no
oversight or approval from Apple). Even though the iPod touch and the Wi-Fi-only versions of the iPad don’t
use anyone else’s infrastructure, they're still subject to these same restrictions.

Apple has not added restrictions to be mean but rather as an attempt to minimize the chances
of malicious or poorly written programs being distributed and degrading performance on the shared
network. Developing for iOS may appear to present a lot of hoops to jump through, but Apple has
expended quite an effort to make the process as painless as possible. Also consider that $99 is still much
less expensive than buying, for example, any of the paid versions of Visual Studio, which is Microsoft’s
software development IDE.

https://developer.apple.com/programs

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Things You Should Know

In this book, I'm going to assume you already have some programming knowledge in general and object-
oriented programming in particular (you know what classes, objects, loops, and variables are, for example).
But of course, I don’t assume you are already familiar with Swift. There’s an appendix at the end of the book
that introduces you to both Swift and the Playground feature in Xcode that makes it easy to try the features. If
you'd like to learn more about Swift after reading the material in the appendix, the best way to do so is to go
directly to the source and read The Swift Programming Language, which is Apple’s own guide and reference
to the language. You can get it from the iBooks store or from the iOS developer site at https://developer.
apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/index.html.

You also need to be familiar with iOS itself as a user. Just as you would with any platform for which you
wanted to write an application, get to know the nuances and quirks of the iPhone, iPad, or iPod touch. Take
the time to get familiar with the iOS interface and with the way Apple’s iPhone and/or iPad applications
look and feel.

Because the different terms can be a little confusing at first, Table 1-1 shows the relationships of IDEs,
application programming interfaces (APIs), and languages to the platform operating system for which you
are developing.

Table 1-1. Platform, Tools, Language Relationships

Develop For... IDE API Language
macOS Xcode Cocoa Objective-C, Swift
i0S Xcode Cocoa Touch Objective-C, Swift

Some Unique Aspects About Working in iOS

If you have never programmed for the Mac using Cocoa, you may find Cocoa Touch—the application
framework you'll be using to write iOS applications—a little alien. It has some fundamental differences from
other common application frameworks, such as those used when building .NET or Java applications. Don’t
worry too much if you feel a little lost at first. Just keep plugging away at the exercises and it will all start to
fall into place after a while.

Note You’ll see a lot of reference to frameworks in this book. Although the term is a little vague and used
in a few different ways depending on the context, a framework is a collection of “stuff,” which may include a
library, several libraries, scripts, Ul elements, and anything else in a single collection. A framework’s stuff is
generally associated with some specific function such as location services using the Core Location framework.

If you have written programs using Cocoa, a lot of what you'll find in the iOS SDK will be familiar to
you. A great many classes are unchanged from the versions that are used to develop for macOS. Even those
that are different tend to follow the same basic principles and similar design patterns. However, several
differences exist between Cocoa and Cocoa Touch.

Regardless of your background, you need to keep in mind some key differences between iOS
development and desktop application development. These differences are discussed in the following
sections.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/index.html

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

i0S Supports a Single Application at a Time—Mostly

On i0S, it’s usually the case that only one application can be active and displayed on the screen at any given
time. Since iOS 4, applications have been able to run in the background after the user presses the Home
button, but even that is limited to a narrow set of situations and you must code for it specifically. In iOS 9,
Apple added the ability for two applications to run in the foreground and share the screen, but for that, the
user needs to have one of the more recent iPads.

When your application isn’t active or running in the background, it doesn’t receive any attention
whatsoever from the CPU. i0OS allows background processing, but making your apps play nicely in this
situation will require some effort on your part.

There’s Only a Single Window

Desktop and laptop operating systems allow many running programs to coexist, each with the ability to
create and control multiple windows. However, unless you attach an external screen or use AirPlay and
your application is coded to handle more than one screen, iOS gives your application just one “window” to
work with. All of your application’s interaction with the user takes place inside this one window, and its size
is fixed at the size of the screen, unless your user has activated the Multitasking feature, in which case your
application may have to give up some of the screen to another application.

For Security, Access to Device Resources Is Limited

Programs on a desktop or a laptop computer pretty much have access to everything that the user who
launched it does. However, iOS seriously restricts which parts of the device your program can use.

You can read and write files only from the part of iOS’s file system that was created for your application.
This area is called your application’s sandbox. Your sandbox is where your application will store documents,
preferences, and every other kind of data it may need to retain.

Your application is also constrained in some other ways. You will not be able to access low-number
network ports on i0S, for example, or do anything else that would typically require root or administrative
access on a desktop computer.

Apps Need to Respond Quickly

Because of the way it is used, iOS needs to be snappy, and it expects the same of your application. When
your program is launched, you need to get your application open, the preferences and data loaded, and the
main view shown on the screen as fast as possible—in no more than a few seconds. Your app should have
low latency.

Note By latency, | do not mean speed. Speed and latency are commonly interchanged, but that is not really
correct. Latency refers to the time between an action is taken and a result happens. If the user presses the
Home button, i0S goes home, and you must quickly save everything before iOS suspends your application in the
background. If you take longer than five seconds to save and give up control, your application process will be
killed, regardless of whether you finished saving. There is an API that allows your app to ask for additional time
to work when it’s about to go dark, but you’ve got to know how to use it. So, in general, you want to get things
done quickly, which might mean dumping and losing unnecessary information.

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Limited Screen Size

The iPhone’s screen is really nice. When introduced, it was the highest-resolution screen available on a
handheld consumer device, by far. But even today, the iPhone display isn’t all that big, and as a result, you
have a lot less room to work with than on modern computers. The screen was just 320 x 480 on the first few
iPhone generations, and it was later doubled in both directions to 640 x 960 with the introduction of the
iPhone 4’s Retina display. Today, the screen of the largest iPhone (the iPhone 6/6s Plus) measures 1080 x
1920 pixels. That sounds like a decent number of pixels, but keep in mind that these high-density displays
(for which Apple uses the term Retina) are crammed into pretty small form factors, which has a big impact
on the kinds of applications and interactivity you can offer on an iPhone and even an iPad. Table 1-2 lists
the sizes of the screens of all the current commonly used iPhone devices that are supported by iOS 11 at the
time of writing.

Table 1-2. iOS Device Screen Sizes

Device Hardware Size Software Size Scaling
iPhone 7 750 x 1334 320 x 568 3x
iPhone 7s 1080 x 1920 375 x 667 3x
iPhone 6s 750 x 1334 375 x 667 3x
iPhone 6s Plus 1080 x 1920 414 x 736 3x
iPhone SE 640 x 1136 320 x 568 2x

The hardware size is the actual physical size of the screen in pixels. However, when writing software,
the size that really matters is the one in the Software Size column. As you can see, in most cases, the software
size reflects only half that of the actual hardware. This situation came about when Apple introduced the
first Retina device, which had twice as many pixels in each direction as its predecessor. If Apple had done
nothing special, all existing applications would have been drawn at half-scale on the new Retina screen,
which would have made them unusable. So, Apple chose to internally scale everything that applications
draw by a factor of 2 so that they would fill the new screen without any code changes. This internal scaling by
a factor of 2 applies iPhone 6s and iPhone SE, while the 6s Plus, 7, and 7 Plus use a factor of 3x. For the most
part, though, you don’t need to worry too much about the fact that your application is being scaled—all you
need to do is work within the software screen size, and iOS will do the rest.

The only exceptions to this rule center on bitmap images. Since bitmap images are, by their nature,
fixed in size, for best results you can'’t really use the same image on a Retina screen as you would on a non-
Retina screen. If you try to do that, you'll see that iOS scales your image up for a device that has a Retina
screen, which has the effect of introducing blur. You can fix this by including separate copies of each image
for the 2x and 3x Retina screens. i0OS will pick the version that matches the screen of the device on which
your application is running.

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Note If you look back at Table 1-1, you'll see that it appears that the scale factor in the fourth column is
the same as the ratio of the hardware size to the software size. For example, on the iPhone 6s, the hardware
width is 750 and software width is 375, which is a ratio of 2:1. Look carefully, though, and you’ll see that
there’s something different about the iPhone 6/6s Plus. The ratio of the hardware width to the software width is
1080/414, which is 2.608:1, and the same applies to the height ratio. So, in terms of the hardware, the iPhone
6s Plus does not have a true 3x Retina display. However, as far as the software is concerned, a 3x scale is
used, which means that an application written to use the software screen size of 414 x 736 is first logically
mapped to a virtual screen size of 1242 x 2208, and the result is then scaled down a little to match the actual
hardware size of 1080 x 1920. Fortunately, this doesn’t require you to do anything special because i0S takes
care of all the details.

Limited Device Resources

Software developers from just a decade or two ago laugh at the idea of a machine with at least 512MB of
RAM and 16GB of storage being in any way resource-constrained, but it’s true. Developing for iOS doesn’t
reside in the same league as trying to write a complex spreadsheet application on a machine with 48KB of
memory. But given the graphical nature of iOS and all it is capable of doing, running out of memory happens
from time to time. Lately, Apple has significantly boosted RAM to a minimum of 2GB.

The i0S devices available right now have either 2GB (iPad, iPad mini 4, iPhone 6s/6s Plus, and iPhone SE),
3GB (iPhone 7s Plus), or 4GB (both iPad Pro models), though this will likely increase over time. Some of
that memory is used for the screen buffer and by other system processes. Usually, no more than half of that
memory is left for your application to use, and the amount can be considerably less, especially now that
other apps can be running in the background.

Although that may sound like it leaves a pretty decent amount of memory for such a small computer,
there is another factor to consider when it comes to memory on iOS. Modern computer operating systems
like macOS take chunks of memory that aren’t being used and write them to disk in something called a
swap file. The swap file allows applications to keep running, even when they have requested more memory
than is actually available on the computer. iOS, however, will not write volatile memory, such as application
data, to a swap file. As a result, the amount of memory available to your application is constrained by the
amount of unused physical memory in the iOS device.

Cocoa Touch has built-in mechanisms for letting your application know that memory is getting low.
When that happens, your application must free up unneeded memory or risk being forced to quit.

Features Unique to i0S Devices

Since I've mentioned that Cocoa Touch is missing some features that Cocoa has, it seems only fair to
mention that the iOS SDK contains some functionality that is not currently present in Cocoa—or, at least, is
not available on every Mac.

e TheiOS SDK provides a way for your application to determine the iOS device’s
current geographic coordinates using Core Location.

e MostiOS devices have built-in cameras and photo libraries, and the SDK provides
mechanisms that allow your application to access both.

e i0S devices have built-in motion sensors that let you detect how your device is being
held and moved.

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

User Input and Display

Since i0S devices do not have a physical keyboard or a mouse, you interact differently with your user than
you do when programming for a general-purpose computer. Fortunately, most of that interaction is handled
for you. For example, if you add a text field to your application, iOS knows to bring up a keyboard when the
user touches that field, without you needing to write any extra code.

Note AlliOS devices allow you to connect an external keyboard via Bluetooth or the Lightning connector,
which provides a nice keyboard experience and saves you some screen real estate. Currently, iOS does not
support connecting a mouse.

What'’s in This Book

When I first started programming applications for iOS, then called iPhone OS, I picked up the original edition
of this book based on Objective-C. I became, at least in my mind, a capable and productive app developer,
even making some money with my products. So, I want to return the favor by providing this latest and greatest
edition to help you achieve that same level of success and more. So, here’s what I'm going to be covering:

e In Chapter 2, you'll learn how to use Xcode’s user interface (UI) developer tool,
Interface Builder, to create a simple visual result, placing some text on the screen.

e In Chapter 3, I'll show you how to start interacting with the user, building an
application that dynamically updates displayed text at runtime based on buttons the
user presses.

e Chapter 4 continues Chapter 3’s topic by introducing you to several more of iOS’s
standard user interface controls. I'll also demonstrate how to use alerts and action
sheets to prompt users to make a decision or to inform them that something out of
the ordinary has occurred.

e In Chapter 5, you'll look at handling rotation and Auto Layout, the mechanisms that
allow i0S applications to be used in both portrait and landscape modes.

e In Chapter 6, I'll start discussing more advanced user interfaces and explore creating
applications that support multiple views. I'll show you how to change which view is
shown to the user at runtime, which will greatly enhance the potential of your apps.

e iOS supports tab bars and pickers as part of the standard iOS user interface. In
Chapter 7, you'll learn how to implement these interface elements.

e In Chapter 8, I'll cover table views, the primary way of providing lists of data to the
user and the foundation of hierarchical navigation-based applications. You'll also
see how to let the user search your application data.

e One of the most common iOS application interfaces, the hierarchical list, lets you
drill down to see more data or more details. In Chapter 9, you'll learn what'’s involved
in implementing this standard type of interface.

10

http://dx.doi.org/10.1007/978-1-4842-3072-5_2
http://dx.doi.org/10.1007/978-1-4842-3072-5_3
http://dx.doi.org/10.1007/978-1-4842-3072-5_4
http://dx.doi.org/10.1007/978-1-4842-3072-5_3
http://dx.doi.org/10.1007/978-1-4842-3072-5_5
http://dx.doi.org/10.1007/978-1-4842-3072-5_6
http://dx.doi.org/10.1007/978-1-4842-3072-5_7
http://dx.doi.org/10.1007/978-1-4842-3072-5_8
http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

e From the beginning, iOS applications have used table views to display dynamic,
vertically scrolling lists of components. A few years ago, Apple introduced a new
class called UICollectionView that takes this concept a few steps further, giving
developers lots of new flexibility in laying out visual components. Chapter 10
introduces you to collection views.

e Chapter 11 shows you how to build master-detail applications and present a list of
items (such as the e-mails in a mailbox), allowing the user to view the details of each
individual item, one at a time. You'll also work with iOS controls that support this
concept, originally developed for the iPad and now also available on the iPhone.

e In Chapter 12, you'll look at implementing application settings, which is iOS’s
mechanism for letting users set their application-level preferences.

e Chapter 13 covers data management on iOS. I'll talk about creating objects to hold
application data and show how that data can be persisted to iOS’s file system. I'll
present the basics of using Core Data, allowing you to save and retrieve data easily;
however, for an in-depth discussion of Core Data, you'll want to check out Pro iOS
Persistence Using Core Data by Michael Privat and Robert Warner (Apress, 2014).

e Everyone loves to draw, so you'll look at doing some custom drawing in Chapter 14,
where I'll introduce you to the Core Graphics system.

e Finally, the appendix introduces the Swift programming language in its current state
and covers all the features that you'll need to know to understand the example code
in this book.

What’s New in This Update?

After the first edition of this book hit the bookstores, the i0S development community grew at a phenomenal
rate. The SDK continually evolved, with Apple releasing a steady stream of SDK updates. iOS 11 and Xcode 9
contain many new enhancements. I've been hard at work updating the book to cover the new technologies
that you'll need to be aware of to start writing iOS applications.

Swift and Xcode Versions

Though having been out for more than two years now, Swift is still in a state of flux and likely to remain so for
some time to come. Interestingly, Apple promised that the compiled binaries for applications written now
will work on later versions of iOS, but it is not guaranteed that the source code for those same applications
will continue to compile. As a result, it is possible that example code that compiled and worked with the
version of Xcode that was current when this book was published no longer works by the time you read it.
Xcode 6.0 shipped with Swift version 1, Xcode 6.3 had Swift version 1.2, Xcode 7 introduced Swift 2, and
Xcode 8 introduced Swift 3. In this book, I'm starting off with a beta 2 release of Xcode 9 and Swift 4.

If you find that some of the example source code no longer compiles with the release of Xcode that
you are using, please visit the book’s page at www.apress.com and download the latest version. If after
doing this you are still having problems, please bring it to my attention by submitting an erratum on the
Apress web site.

11

http://dx.doi.org/10.1007/978-1-4842-3072-5_10
http://dx.doi.org/10.1007/978-1-4842-3072-5_11
http://dx.doi.org/10.1007/978-1-4842-3072-5_12
http://dx.doi.org/10.1007/978-1-4842-3072-5_13
http://dx.doi.org/10.1007/978-1-4842-3072-5_14
http://www.apress.com/

CHAPTER 1 © GETTING TO KNOW THE I0S LANDSCAPE

Let’s Get Started

iOS provides an incredible computing platform and an exciting new frontier for your development career.
You'll likely find programming for iOS to be a new experience—different from working on any other
platform. For everything that looks familiar, there will be something alien, but as you work through the
book’s code, the concepts should all come together and start to make sense.

Keep in mind that the examples in this book are not simply a checklist that, when completed,
magically grants you iOS developer expert status. Make sure you understand what you did and why before
moving on to the next project. Don’t be afraid to make changes to the code. By observing the results of
your experimentation, you can wrap your head around the complexities of coding in an environment like
Cocoa Touch.

That said, if you've already downloaded and installed Xcode, turn the page and take your next steps to
becoming a real iOS app developer.

12

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2

Writing Your First App

I want to get you started right away with a feel for what this is all about and to motivate your continued
progress toward being a great developer, so let’s get to it and do something with your iPhone (see Figure 2-1).
In this chapter, using Xcode, let’s create a small iOS application that will display “Hello, World!” on the
screen. You'll look at what's involved in creating the project in Xcode, work through the specifics of using
Xcode’s Interface Builder to design your application’s user interface, and then execute your application on
the iOS simulator and an actual device. You'll finish up by giving your application an icon to make it feel
more like a real iOS application.

Figure 2-1. The results of the app you create in this chapter might seem simple, but your work will start you
down the road to potential iOS greatness

© Molly K. Maskrey 2017 13
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_2

https://doi.org/10.1007/978-1-4842-3072-5_2

CHAPTER 2 © WRITING YOUR FIRST APP

Creating the Hello World Project

By now, you should have installed Xcode 9 and the iOS SDK onto your Mac. You can also download the
book’s source code archive from the Apress web site (www.apress.com). While you're at it, take a look at
the book forums at http://forum.learncocoa.org. The book forums are a great place to discuss iOS
development, get your questions answered, and meet up with like-minded people.

Note Even though you have the complete set of project files at your disposal in this book’s source code
archive, you’ll get more out of the book if you create each project by hand, rather than simply running the
version you downloaded. By doing that, you’ll gain familiarity and expertise working with the various application
development tools.

The project you're going to build in this chapter is contained in the Hello World folder of the source
code archive.

Before you can start, you need to launch Xcode, the tool you'll be using to do most of what you do in
this book. After downloading it from the Mac App Store or the Apple Developer site, you'll find it installed in
the /Applications folder, as with most Mac applications. You'll be using Xcode a lot, so you might want to
consider dragging it to your dock so you'll have ready access to it.

If this is your first time using Xcode, don’t worry; I'll walk you through every step involved in creating a
new project. If you're already an old hand but haven’t worked with Xcode 7, you may find that some things
have changed (mostly for the better, I think).

When you first launch Xcode, you'll be presented with a welcome window like the one shown in
Figure 2-2. From here, you can choose to create a new project, connect to a version control system to check
out an existing project, or select from a list of recently opened projects. The welcome window gives you a
nice starting point, covering some of the most common tasks you might do after starting Xcode. All of these
actions can be accessed through the menu as well, so close the window to proceed. If you would rather not
see this window in the future, just deselect the “Show this window when Xcode launches” check box at the
bottom of the window before closing it.

14

http://www.apress.com/
http://forum.learncocoa.org/

CHAPTER 2 © WRITING YOUR FIRST APP

g
3
3
3
Welcome to Xcode 3
Version 9.0 beta 2 (9M137d))
" 3
Sl:l Get started with a playground ==
Explore new ideas quickly and easily.
3
A Create a new Xcode project —
~ M Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.
A, - - - a
)"(‘ Clone an existing project —
Start working on something from an SCM repository. &1
| Show this window when Xcode launches Open

Figure 2-2. The Xcode welcome window

Create a new project by selecting New » Project from the File menu (or by pressing 3 ' N). A new
project window will open, showing you the project template selection sheet (see Figure 2-3). From this sheet,
you'll choose a project template to use as a starting point for building your application. The bar at the top
is divided into five sections: i0S, watchOS, tvOS, macOS, and Cross-platform. Since you're building an iOS
application, select the iOS button to reveal the application templates.

15

CHAPTER 2 © WRITING YOUR FIRST APP

Choose a template for your new project:

m watchQs DS macOs Cross-platform

Application

a

AR - G

Single View App Game Augmented Document Based Master-Detail App
Reality App App
o0 [/_‘\.
e00 Ln e 0o —r’
Page-Based App Tabbed App Sticker Pack App iMessage App

Framework & Library

(= g LN
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel

Figure 2-3. The project template selection sheet lets you select from various templates when creating a new project

Each of the icons shown in the upper-right pane in Figure 2-3 represents a separate project template
that can be used as a starting point for your iOS applications. The icon labeled Single View App contains
the simplest template and the one you'll be using for the first several chapters. The other templates provide
additional code and/or resources needed to create common iPhone and iPad application interfaces, as
you'll see in later chapters.

Click the Single View App (see Figure 2-3) and then click the Next button. You'll see the project options
sheet, which should look like Figure 2-4. On this sheet, you need to specify the product name and company
identifier for your project. Xcode will combine these to generate a unique bundle identifier for your app.
You'll also see a field that lets you enter an organization name, which Xcode will use to automatically insert
a copyright notice into every source code file you create. Name your product Hello World and enter an
organization name and identifier in the Organization Name and Organization Identifier fields, as shown in
Figure 2-4. Don’t use the same name and identifier as the ones shown in Figure 2-4. For reasons that you'll
see when you try to run this application on a real device at the end of the chapter, you'll need to choose an
identifier that’s unique to you (or your company).

16

CHAPTER 2 © WRITING YOUR FIRST APP

Choose options for your new project:

Product Name: | Hello World]

Team: Molly Maskrev
* Your new product's name -

Organization Name: MollyMaskrey
Organization Identifi... com.mollymaskrey
Bundle Identifier: com.mollymaskrey.Hello-Worl

Language: Swift

oo

Devices: iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 2-4. Selecting a product name and organization identifier for your project

The Language field lets you select the programming language you want to use, choosing between
Objective-C and Swift, but since all the examples in the book are in Swift, the appropriate choice here is, of
course, Swift.

You also need to specify the devices. In other words, Xcode wants to know if you're building an app for
the iPhone and iPod touch, if you're building an app for the iPad, or if you're building a universal application
that will run on all iOS devices. Select iPhone in the Devices drop-down menu if it’s not already selected.
This tells Xcode that you'll be targeting this particular app at the iPhone. For the first few chapters of the
book, you'll be using the iPhone device, but don’t worry—TI'll cover the iPad also.

Leave the Core Data check box unselected—you’ll make use of it later. You can also leave the
Include Unit Tests and Include UI Tests check boxes unselected. Xcode has good support for testing your
applications, but that’s outside the scope of this book, so you don’t need Xcode to include support for them
in your project. Click Next again and you'll be asked where to save your new project using a standard save
sheet (see Figure 2-5). If you haven't already done so, use the New Folder button to create a new master
directory for these book projects and then return to Xcode and navigate into that directory. Before you
click the Create button, take note of the Source Control check box. Git isn’t covered in this book, but Xcode
includes some support for using Git and other kinds of source control management (SCM) tools. If you are
already familiar with Git and want to use it, select this check box; otherwise, feel free to turn it off.

17

CHAPTER 2 © WRITING YOUR FIRST APP

o < sBo & [EXAMPLES 2 Q Searc
Favorites Name Date Modified v Size Kind

£ Recents

] Dropbox

< iCloud Dri...

/% Applicatio...

£33 utilities

@ Documents

0 Downloads

[Desktop

81 Pictures

m kenmaskr...

QB_Light...
Devices

[user's Ma...

@ Remote D...

Source Control: Create Git repositoryon My Mac o]
Xcode will place your project under version control

New Folder Options Cancel Create

Figure 2-5. Savingyour project in a project folder on your hard drive

Taking a Look at the Xcode Project Window

After you dismiss the save sheet, Xcode will create and then open your project. You will see a new project
window, as shown in Figure 2-6. There’s a lot of information in this window; it’s where you’ll spend a lot of
iOS development time.

18

a8 M iy Helc World | i Phone 7 Hesto Workd: Ready | Today at 213 Pu
A E R4 M © @ c B\ E Helo weeid
¥ (5 Helo World.] Geners Capanites Resauece Tags iy Buid Setrngs B Phases
v [Hello World
B PROJICT
» AppDulegaty, swift . - igentity
B 4
+ Vi Contrator. swint _bomachiaics
Main ssorybaard TAREEIE Dispiay Mame
AEBO1E XEIBN - Hedic Wkt
e e Buncie identitier _ com molymaskrey Helo-Worid
LaunchScraen steryboard
Infe.plist Version 18
[Products Bulz 1
T Signing
Auenasicaily manage tigring
xeode 3 update peotdes, 3pp 0%, ed
Team Molly Masirey B
Provisioring Profile Yeoce Maroged Protle (1)
Sgring Certlfcate Phone Developer: Moty Maskrey @RI
* Beployment info.
Desloyment Target B
Devicts | Universal B
Maln iterface Main B
Device Oriesaotion B Portrai
T uproe Do
Landscape Left
Langscape fight
Statws Bar Siyle Defauit B
Hicke status bar
Requires full sereen
¥ App leons and Launch images
App leone Source _ Appicon Be
Lauseh imagos Sourcs Liso Asee: Canvog..
Launen Screen File Launchsereen B
T Embedded Binaries
+1® SEll+ - @ ad i

Figure 2-6. The Hello World project in Xcode

The Toolbar

CHAPTER 2

Build Rodes

WRITING YOUR FIRST APP

. e o |

E @ &
oe

Identity sed Tyne
News | Helo Word

AEXAMPLES{Holo Werld/
el Werlaocesepn o

wisjeet acument
Pusgoet Foumat | Meowle B0-compatnle |
Geganaation Malvhascrey
Clags Pretn

Toxt Sottings
wders Using | Spaces B
wictks 42 4
1) Wndent
B wrap Fnas
oDboen

N

o Malches

The top of the Xcode project window is called the toolbar (see Figure 2-7). On the left side of the toolbar
you'll see controls to start and stop running your project, as well as a pop-up menu to select the scheme you
want to run. A scheme brings together target and build settings, and the toolbar pop-up menus let you select

a specific setup quickly and easily.

Toolbar

-

oo Woad g #rona & Vot ot Maady | Today s 714 P

[o.>

0o Worid rcodepre

B R < s o @ 8 rete werg

Figure 2-7. The Xcode toolbar

The big box in the middle of the toolbar is the activity view. As its name implies, the activity view
displays any actions or processes that are currently happening. For example, when you run your project, the
activity view gives you a running commentary on the various steps it’s taking to build your application. If
you encounter any errors or warnings, that information is displayed here, as well. If you click the warning or
error, you'll go directly to the Issue Navigator, which provides more information about the warning or error,

as described in the next section.

19

CHAPTER 2 © WRITING YOUR FIRST APP

On the right side of the toolbar are two sets of buttons. The left set lets you switch between three
different editor configurations.

Editor Area: The Editor Area gives you a single pane dedicated to editing a file or
project-specific configuration values.

Assistant Editor: The powerful Assistant Editor splits the Editor Area into multiple
panes, left, right, top, and bottom. The pane on the right is generally used to display
a file that relates to the file on the left or that you might need to refer to while editing
the file on the left. You can manually specify what goes into each pane, or you can
let Xcode decide what’s most appropriate for the task at hand. For example, if you're
designing your user interface on the left, Xcode will show you the code that the user
interface is able to interact with on the right. You'll see the Assistant Editor at work
throughout the book.

Comparison view: The Version Editor button converts the editor pane into a time
machine-like comparison view that works with version control systems like Git. You
can compare the current version of a source file with a previously committed version
or compare any two earlier versions with each other.

To the right of the editor buttons is a set of toggle buttons that show and hide large panes on the left
and right sides of the editor pane, as well as the debug area at the bottom of the window. Click each of those
buttons a few times to see these panes in action. You'll explore how these are used soon.

The Navigator

Just below the toolbar on the left side of the project window is called the navigator. The navigator offers eight
views that show you different aspects of your project. Click each of the icons at the top of the navigator to
switch among the following navigators, going from left to right:

20

Project Navigator: This view contains a list of files in your project, as shown in

Figure 2-8. You can store references to everything you expect—from source code files
to artwork, data models, property list (or . plist) files (discussed in the “Taking a
Closer Look at the Hello World Project” section later in this chapter), and even other
project files. By storing multiple projects in a single workspace, those projects can
easily share resources. If you click any file in the navigator view, that file will display
in the Editor Area. In addition to viewing the file, you can edit it, if it’s a file that
Xcode knows how to edit.

06 M #\Hello World) 4§ iPhone 6

88 E)
] Gene
¥ [I Hell i
W }Hefo Yord PROJECT
»| AppDelegate.swift
R
»| ViewCantroller.awift I Hoto we
TARGETS

Main.storyboard

E!j Assets.xcassels
*| LaunchScreen.storybeard
Into.plist
» | | Producte

Project Navigator

CHAPTER 2 © WRITING YOUR FIRST APP

Figure 2-8. The Xcode Project Navigator. Click one of the eight icons at the top of the view to switch

navigators.

e Symbol Navigator: As its name implies, this navigator focuses on the symbols defined
in the workspace (see Figure 2-9). Symbols are basically the items that the compiler
recognizes, such as classes, enumerations, structs, and global variables.

21

CHAPTER 2 © WRITING YOUR FIRST APP

®~0®) | ¢ Hello World) §i§ iPhone -

H 8B Q A ©

AppDelegate
m application(_:didFinishLaunchingWithO...
m applicationDidBecomeActive(_:)
m applicationDidEnterBackground(_:)
m applicationWillEnterForeground(_:)
) applicationWillResignActive(_:)
[applicationwillTerminate(_:)
3 inito
(3 window
ViewController

[didrReceiveMemoryWarning()
[0 init(coder:)

[init(nibName:bundle:)

) viewDidLoad()

Figure 2-9. The Xcode Symbol Navigator. Open the disclosure triangle to explore the classes, methods, and
other symbols defined within each group.

e Find Navigator: You'll use this navigator to perform searches on all the files in your
workspace (see Figure 2-10). At the top of this pane is a multileveled pop-up control
letting you select Replace instead of Find, along with other options for applying
search criteria to the text you enter. Below the text field, other controls let you choose
to search in the entire project or just a portion of it and specify whether searching
should be case-sensitive.

22

CHAPTER 2 © WRITING YOUR FIRST APP

00 »r #\ Hell..orld) {i§ iPhone

Find) Text) Matching Word
Q- background
*=s In Hello World.xcodeproj Ignoring Casel

5 results in 1 file

»| AppDelegate.swift

_~ .. as an incoming phone call or SMS messa
ge) or when the user quits the application a
nd it begins the transition to the backgro...

= [l if your application supports background
execution, this method is called instead of
applicationWillTerminate: when the user qg...

=]I Called as part of the transition from the b
ackground to the active state; here you can
undo many of the changes made on enter...

= ..art of the transition from the background
to the active state; here you can undo man
y of the changes made on entering the ba...

— ... yet started) while the application was ina
ctive. If the application was previously in th
e background, optionally refresh the user...

Figure 2-10. The Xcode Find Navigator. Be sure to check out the pop-up menus hidden under the word Find
and under the buttons that are below the search field.

e Issue Navigator: When you build your project, any errors or warnings will appear
in this navigator, and a message detailing the number of errors will appear in the
activity view at the top of the window (see Figure 2-11). When you click an error in
the Issue Navigator, you'll jump to the appropriate line of code in the editor.

23

CHAPTER 2 © WRITING YOUR FIRST APP

00) B AHell.orld) {#i§ iPhone

(B ER QA © =0 @ |8
Rumime

No Buildtime Issues

Figure 2-11. The Xcode Issue Navigator. This is where you'll find your compiler errors and warnings.

e Test Navigator: If you're using Xcode’s integrated unit testing capabilities (a topic
that isn’t covered in this book), this is where you'll see the results of your unit tests.
Since you didn’t include unit tests in the example project, this navigator is empty
(see Figure 2-12).

24

CHAPTER 2 © WRITING YOUR FIRST APP

00) B AHell.ord) @@ iPhone;

(e Egano©=o 8

No Tests

2lick the + button to add test target:

Figure 2-12. The Xcode Test Navigator. The output of your unit tests will appear here.

e Debug Navigator: This navigator provides your main view into the debugging process
(see Figure 2-13). If you are new to debugging, you might check out this part of the
Xcode Overview: https://developer.apple.com/support/debugging/. The Debug
Navigator lists the stack frame for each active thread. A stack frame is a list of the
functions or methods that have been called previously, in the order they were called.
Click a method, and the associated code appears in the editor pane. In the editor,
there will be a second pane that lets you control the debugging process, display and
modify data values, and access the low-level debugger. A button at the bottom of
the Debug Navigator allows you to control which stack frames are visible. Another
button lets you choose whether to show all threads or just the threads that have
crashed or stopped on a breakpoint. Hover your mouse over each of these buttons in
turn to see which is which.

25

https://developer.apple.com/support/debugging/

CHAPTER 2 © WRITING YOUR FIRST APP

(BB 2 QA © = o @)% < > E vemoyrepon
142 Hello World PID 8277 @®
8 cru 0%

Memory Profi

&) Momory 38.4MB Memory Use Usage Compari

1110000010000 0100000

- 38.4me
m‘ 0.47« {

Memery 384w
Dwration: & min 87 sec

High: 38.5 MB

Low: Zeco K

Figure 2-13. The Xcode Debug Navigator. Controls at the bottom of the navigator let you control the level of
detail you want to see.

e Breakpoint Navigator: The Breakpoint Navigator lets you see all the breakpoints
that you've set, as shown in Figure 2-14. Breakpoints are, as the name suggests,
points in your code where the application will stop running (or break) so that
you can look at the values in variables and do other tasks needed to debug your
application. The list of breakpoints in this navigator is organized by file. Click a
breakpoint in the list and that line will appear in the editor pane. Be sure to check
out the plus sign (+) button at the lower-left corner of the project window when
in the Breakpoint Navigator. This button opens a pop-up that lets you add four
different types of breakpoints, including symbolic breakpoints, which are the ones
you will use most often.

26

CHAPTER 2 © WRITING YOUR FIRST APP

- — i
= H 2 Q A & = b B g8 £ [&) Hello World Hell
L ,5, Hello World 1 Breakpoint

¥ s AppDelegate.swift
v [application(_:didFinishLau... line 17
[E3 Hello_World.AppDelegat... line 1¢

AppDelegate: UI

window: UIWindow

application(_ ap

didFinishLaunchin

Figure 2-14. The Xcode Breakpoint Navigator. The list of breakpoints is organized by file.

Report Navigator: This navigator keeps a history of your recent build results and run

°
logs, as shown in Figure 2-15. Click a specific log, and the build command and any

build issues are displayed in the edit pane.

(B B 2 Q A © = o @ Y\

By Group By Time

¥ /-.Hello World Today, 1:55 PM
’ Debug Today, 1:55 PM
;"‘ Build Today, 1:55 PM
P Debug Today, 1:00 PM
/> Build Today, 1:00 PM
v [&) Project No Logs

Figure 2-15. The Xcode Report Navigator. The Report Navigator displays a list of builds, with the details
associated with a selected view displayed in the editor pane.

CHAPTER 2 © WRITING YOUR FIRST APP

The Jump Bar

Across the top of the editor, you'll find a control called the jump bar. With a single click, the jump bar allows
you to jump to a specific element in the hierarchy you are currently navigating. For example, Figure 2-16
shows a source file being edited in the editor pane.

e R——— [T

B window
M ication(_didFinishLaunchingWithDptions:]

[] @ > ;1_ Hell._orid | i Phone 7 Plus Finished running Hello Werld on iPhone 7 Plus

[B =2 Q N =, L = = {5 Hello World Hell_orid « AppDelegate.
[spplicationDidEnterBackground(_:}
() sppiicationWikEnterForeground_:)

&) Heslo world
¥ [Hello World

UIKit appiicationDidBocomeActive_:
B AppDelegate swilt > M| ivel_)
N ViewControler:swltt (] applicationWilTerminate(_:)
L Locauon 1
Main.storyboard AppDelegate: {
A
% Assets xcassets
indow: ? Full Path L
LaunchScreen.storyboard b D
Info.plist >
&
» [Products application(appl H
didFinishLaunchingh: A
©n Demand Reso
{_ application: 1 tion) Target Membersh
<Ay Hello Wor

Figure 2-16. The Xcode editor pane showing the jump bar, with a source code file selected. The submenu
shows the list of methods in the selected file.

The jump bar sits just above the source code. Here’s how it breaks down:

e The funky-looking icon at the left end of the jump bar is actually a pop-up menu that
displays submenus listing recent files, counterparts, superclasses and subclasses,
siblings, categories, includes, and more. The submenus shown here will take you to
just about any other code that touches the code currently open in the editor.

e To theright of the menu are left and right arrows that take you back to the previous
file and return you to the next file, respectively.

e Thejump bar includes a segmented pop-up that displays the hierarchical path to reach
the selected file in the project. You can click any segment showing the name of a group
or a file to see all the other files and groups located at the same point in the hierarchy.
The final segment shows a list of items within the selected file. In Figure 2-16, you see
that the tail end of the jump bar is a pop-up that shows the methods and other symbols
contained within the currently selected file. The jump bar shows the AppDelegate. swift
file with a submenu listing the symbols defined in that file.

Look for the jump bar as you make your way through the various interface elements of Xcode.

28

CHAPTER 2 © WRITING YOUR FIRST APP

Tip Like most of Apple’s macOS applications, Xcode includes full support for full-screen mode. Just click
the full-screen button in the upper right of the project window to try out distraction-free, full-screen coding!

XCODE KEYBOARD SHORTCUTS

If you prefer navigating with keyboard shortcuts instead of mousing to on-screen controls, you'll like
what Xcode has to offer. Most actions that you will do regularly in Xcode have keyboard shortcuts
assigned to them, such as $€B to build your application or 38N to create a new file.

You can change all of Xcode’s keyboard shortcuts, as well as assign shortcuts to commands that don’t
already have one, using Xcode’s preferences on the Key Bindings tab.

A really handy keyboard shortcut is 36 £ 0, which is Xcode’s Open Quickly feature. After clicking it, start
typing the name of a file, setting, or symbol, and Xcode will present you with a list of options. When you
narrow down the list to the file you want, hitting the Return key will open it in the editing pane, allowing
you to switch files in just a few keystrokes.

The Utilities Area

As mentioned earlier, the second-to-last button on the right side of the Xcode toolbar opens and closes the
Utilities area. The upper part of the utilities area is a context-sensitive inspector panel, with contents that
change depending on what is being displayed in the editor pane. The lower part of the Utilities area contains
a few different kinds of resources that you can drag into your project. You'll see examples of this throughout
the book.

Interface Builder

Earlier versions of Xcode included a separate interface design application called Interface Builder
(IB), which allowed you to build and customize your project’s user interface. One of the major changes
introduced in later versions of Xcode integrated Interface Builder into the workspace itself. Interface Builder
is no longer a separate stand-alone application, which means you don’t need to jump back and forth
between Xcode and Interface Builder as your code and interface evolve.

You'll be working extensively with Xcode’s interface-building functionality throughout the book, digging
into all the various details. In fact, you'll start working with Interface Builder later in this chapter.

Integrated Compiler and Debugger

Xcode has a fast, smart compiler and low-level debugger, which improve with each release.

For many years, Apple used the GNU Compiler Collection (GCC) as the basis for its compiler
technology. But over the course of the past few years, it has shifted over completely to the Low Level Virtual
Machine (LLVM) compiler. LLVM generates code that is faster by far than that generated by the traditional
GCC. In addition to creating faster code, LLVM knows more about your code, so it can generate smarter,
more precise error messages and warnings.

29

CHAPTER 2 © WRITING YOUR FIRST APP

Xcode is also tightly integrated with LLVM, which gives it some new superpowers. Xcode can offer more
precise code completion, and it can make educated guesses as to the actual intent of a piece of code when it
produces a warning and offers a pop-up menu of likely fixes. This makes errors such as misspelled symbol
names and mismatched parentheses a breeze to find and fix.

LLVM brings to the table a sophisticated static analyzer that can scan your code for a wide variety of
potential problems, including problems with memory management. In fact, LLVM is so smart about this
that it can handle most memory management tasks for you, as long as you abide by a few simple rules when
writing your code. You'll begin looking at the new feature called Automatic Reference Counting (ARC) in the
next chapter.

Taking a Closer Look at the Hello World Project

Now that you've explored the Xcode project window, let’s take a look at the files that make up your new Hello
World project. Switch to the Project Navigator by clicking the leftmost of the eight navigator icons in your
workspace (as discussed in the “The Navigator” section earlier in the chapter) or by pressing 881.

Note You can access the eight navigator configurations using the keyboard shortcuts 61 to 3£8. The
numbers correspond to the icons starting on the left, so 31 is the Project Navigator, 862 is the Symbol
Navigator, and so on, up to 8, which takes you to the Report Navigator.

The first item in the Project Navigator list bears the same name as your project—in this case, Hello
World. This item represents your entire project, and it’s also where project-specific configuration can be
done. If you single-click it, you'll be able to edit a number of project configuration settings in Xcode’s editor.
You don’t need to worry about those project-specific settings now, however. At the moment, the defaults will
work fine.

Flip back to Figure 2-8. Notice that the disclosure triangle to the left of Hello World is open, showing a
number of subfolders (which are called groups in Xcode).

e Hello World: The first group, which is always named after your project, is where you
will spend the bulk of your time. This is where most of the code that you write will go,
as will the files that make up your application’s user interface. You are free to create
subgroups under the Hello World group to help organize your code. You're even
allowed to add groups of your own if you prefer a different organizational approach.
While you won'’t touch most of the files in this folder until the next chapter, there is
one file you will explore when you use Interface Builder in the next section. That file
is called Main.storyboard, and it contains the user interface elements specific to
your project’s main view controller. The Hello World group also contains files and
resources that aren’t Swift source files but that are necessary to your project. Among
these files is one called Info.plist, which contains important information about the
application, such as its name, whether it requires any specific features to be present
on the devices on which it is run, and so on. In earlier versions of Xcode, these files
were placed into a separate group called Supporting Files.

e Hello WorldTests: This group is created if you enable unit testing for the project (you
didn’t, so it’s not there for this project), and it contains the initial files you'll need
if you want to write some unit tests for your application code. I'm not going to talk
about unit testing in this book, but it’s nice that Xcode can set up some of these
things for you in each new project you create if you want. Like the Hello World group,
this one contains its own Info.plist file.

30

CHAPTER 2 © WRITING YOUR FIRST APP

e Products: This group contains the application that this project produces when it is
built. If you expand Products, you'll see an item called Hello World.app, which is
the application that this particular project creates. If the project had been created
with unit testing enabled, it would also contain an item called Hello WorldTests.
xctest, which represents the testing code. Both of these items are called build targets.
Because you have never built either of these, they're both red, which is Xcode’s way
of telling you that a file reference points to something that is not there.

Note The “folders” in the navigator area do not necessarily correspond to folders in your Mac’s file system.
They are just logical groupings within Xcode that help you keep everything organized and make it faster and
easier to find what you’re looking for while working on your application. Often, the items contained in those
groups are stored directly in the project’s directory, but you can store them anywhere—even outside your project
folder if you want. The hierarchy inside Xcode is completely independent of the file system hierarchy, so moving a
file out of the Hello World group in Xcode, for example, will not change the file’s location on your hard drive.

Introducing Xcode’s Interface Builder

In your project window’s Project Navigator, expand the Hello World group, if it’s not already open, and then
select the Main. storyboard file. As soon as you do, the file will open in the editor pane, as shown in Figure 2-17.
You should see something resembling an all-white iOS device centered on a plain white background, which
makes a nice backdrop for editing interfaces. This is Xcode’s Interface Builder, which is where you'll design
your application’s user interface.

e0e » A Hello World | il Phone 7 Finished running Holla Wedd on iPhone 7 Plus E O SO0 3 0
BER QAo B M8< B Hello World) [0 Helio..crid) Mol.oard) [Mok.Base) [View Controlier Scene | () View Controtier DeE oI ae
¥ [Hollo worid v [View Controlier Scana Simulated Motrics
e i s B
2| AppDelegate. swift 7 First Respongor Stabus Bar | Inferred B
| ViewCantrolor.gwift [exic Top Bar | Inferred =]
| Main storyboard Storybaard Entry Point
- g [-] Bettom Bar | Inferrec B
[55] Assots xcossels
LaunchScraen slofyboard View Contreller
Infopliat Tia
» [Products I3 15 Initial View Cortrolier
Layeut B Adjust Seroll View Insats
_ Hide Battom Bar on Push
Reslzo View From Nig
" Use Full Sereen [Deprecatad)
Extend Edges 3 Under Top Bars
Under Bottom Bars
Under Opague Bars.
~ 7 Traasition Stvla | Cover Vertical B
Presentation | Full Sereen B
Datires Contoxt
O 0en
View Controller - & controlier that
manages a view
Storyboard Reference - Provides
a placehcicer for a viaw contiallar in
an axtarnal storyboard.
Kavigation Contraller - A
< | contioller that manages navigation
"% throwgh o hirarchy of views.
Ei® GE @ [0 View as:iPhona 7 («C =R) Bl B|@®

Figure 2-17. Selecting Main.storyboard in the Project Navigator opens the file in Interface Builder

31

CHAPTER 2 © WRITING YOUR FIRST APP

Interface Builder has a long history. It has been around since 1988 and has been used to develop
applications for NeXTSTEP, OpenStep, OS X, macOS, and now iOS devices such as the iPhone, iPad,
Apple TV, and Apple Watch.

Introducing File Formats

Interface Builder supports a few different file types. The oldest is a binary format that uses the extension
.nib, now an XML-based format using the .xib extension. Both of these formats contain exactly the same
sort of document, but the .xib version, being a text-based format, has many advantages, especially when
you're using any sort of source control software. For the first 20 years of Interface Builder’s life, all of its files
had the .nib extension. As a result, most developers took to calling Interface Builder files nib files. Interface
Builder files are often called nib files, regardless of whether the extension actually used for the file is .xib or
.nib. In fact, Apple sometimes uses the terms nib and nib file interspersed through its documentation.

Each nib file can contain any number of objects, but when working on iOS projects, each one will
usually contain a single view (often a full-screen view) and the controllers or other objects to which it
connects. This lets you compartmentalize your applications, loading the nib file for a view only when
it’s needed for display. The end result is that you save memory when your app is running on a memory-
constrained iOS device. A newly created i0S project has a nib file called LaunchScreen.xib that contains a
screen layout that will be shown, by default, when your application launches. I'll talk more about this file at
the end of the chapter.

The other file format that IB has supported for the past few years is the storyboard. You can think of a
storyboard as a “meta-nib file” since it can contain several view controllers, as well as information about
how they are connected to each other when the application runs. Unlike a nib file, the contents of which
are loaded all at once, a storyboard cannot contain freestanding views, and it never loads all of its contents
at once. Instead, you ask it to load particular controllers when you need them. The iOS project templates in
Xcode 8 all use storyboards, so all of the examples in this book will start with a storyboard. Although you get
only one storyboard for free, you can add more if you need them. Now let’s go back to Interface Builder and
the Main.storyboard file for the Hello World application (see Figure 2-17).

Exploring the Storyboard

You're now looking at the primary tool for building user interfaces for iOS apps. Let’s say you want to create
an instance of a button. You could create that button by writing code, but creating an interface object by
dragging a button out of a library and specifying its attributes is so much simpler, and it results in the same
thing happening at runtime.

The Main.storyboard file you are looking at right now loads automatically when your application
launches (for the moment, don’t worry about how), so it is the right place to add the objects that make up
your application’s user interface. When you create objects in Interface Builder, they're instantiated in your
program when the storyboard or nib file in which you added them loads. You'll see many examples of this
process throughout the book.

Every storyboard gets compartmentalized into one or more view controllers, and each view controller
has at least one view. The view is the part you can see graphically and edit in Interface Builder, while the
controller is application code you will write to make things happen when a user interacts with your app.
The controllers are where the real action of your application happens.

In IB, you often see a view represented by a rectangle indicating the screen of an iOS device (actually,
it represents a view controller, a concept that you'll be introduced to in the next chapter, but this particular
view controller covers the whole screen of the device, so it’s pretty much the same thing). Near the bottom of
the IB window you'll see a drop-down control that begins with View as, with a default device type. Click the
device type. You can choose which device you'll be creating the layout for, as shown in Figure 2-18.

32

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 © WRITING YOUR FIRST APP

[0 View as:iPhone7 («C rR) =, (o] tai

00000 Doy e

Figure 2-18. In Xcode 8, IB lets you select the device type and orientation that you work in

Returning to the storyboard, click anywhere in the outline and you'll see a row of three icons at the top
of it, like those shown in Figure 2-17. Move your mouse over each of them and you'll see tooltips pop up with
their names: View Controller, First Responder, and Exit. Forget about Exit for now and focus instead on the

other two.

View Controller: This represents a controller object that is loaded from file storage
along with its associated view. The task of the view controller is to manage what the
user sees on the screen. A typical application has several view controllers, one for
each of its screens. It is perfectly possible to write an application with just one screen,
and hence one view controller, and many of the examples in this book have only one
view controller.

First Responder: This is, in basic terms, the object with which the user is currently
interacting. If, for example, the user is currently entering data into a text field, that
field is the current first responder. The first responder changes as the user interacts
with the user interface, and the First Responder icon gives you a convenient way to
communicate with whatever control or other object is the current first responder,
without needing to write code to determine which control or view that might be.

I'll talk more about these objects starting in the next chapter, so don’t worry if it’s a bit confusing right
now determining when you would use a first responder or how a view controller gets loaded.

Apart from those icons, the rest of what you see in the editing area is the space where you can place
graphical objects. But before you get to that, there’s one more thing you should see about IB’s editor area:
its hierarchy view. This view is the Document Outline, as shown in Figure 2-19.

33

CHAPTER 2 © WRITING YOUR FIRST APP

N [&) Hello World) 1] Hello...orld) . Mai...c
N

v [Z] view Controller Scene

¥ (U View Controller
|| Top Layout Guide
TI Bottom Layout Guide
] view
£ First Responder
[Exit

» Storyboard Entry Point

Figure 2-19. The Document Outline contains a useful hierarchical representation of the storyboard contents

If the Document Outline is not visible, click the little button in the lower-left corner of the editing area,
and you'll see it slide in from the left. It shows everything in the storyboard, split up into scenes containing
chunks of related content. In this case, you have just one scene, called View Controller Scene. You can see
that it contains an item called View Controller, which in turn contains an item called View (along with some
other things you'll learn about later). This provides a good way to get an overview of the content where
everything you see in the main editing area is mirrored here.

The View icon represents an instance of the UIView class. A UIView object is an area that a user can see
and interact with. In this application, you currently have only one view, so this icon represents everything
that the user can see in your application. Later, you'll build more complex applications that have several
views. For now, just think of this view as an object that the user can see when using your application.

If you click the View icon, Xcode will automatically highlight the square screen outline that I was talking
about earlier. This is where you can design your user interface graphically.

Exploring the Utilities Area

The Utilities area makes up the right side of the workspace. If it’s not currently selected, click the
rightmost of the three View buttons in the toolbar, select View » Utilities » Show Utilities, or press X380
(Option-Command-Zero). The bottom half of the Utilities area, shown in Figure 2-20, is the Library
pane, or just plain library.

34

CHAPTER 2 © WRITING YOUR FIRST APP

DO @ 3

\ View Controller - A controller that
i}/ manages a view.

Storyboard Reference - Provides
a placeholder for a view controller in
an external storyboard.

controller that manages navigation

(" Navigation Controller - A
" through a hierarchy of views.

1\ Table View Controller - A
adfl | |/ controller that manages a table view.

s |\ AGooR Collection View Controller - A y

8@

Figure 2-20. In the library you'll find stock objects from the UIKit that are available for use in Interface
Builder. Everything above the library but below the toolbar is known collectively as the inspector.

The library provides a collection of reusable items for use in your own programs. The four icons in the
bar at the top of the library divide it into four sections. Click each icon in turn to see what’s in each section.

e File Template Library: This section contains a collection of file templates you can use
when you need to add a new file to your project. For example, if you want to add a
new Swift source file to your project, one way to do it is to drag one type from the File
Template Library and drop it onto the Project Navigator.

e Code Snippet Library: This section features a collection of code snippets you can
drag into your source code files. If you've written something you think you’ll want to
use again later, select it in your text editor and drag it to the Code Snippet Library.

e Object Library: This section contains reusable objects, such as text fields, labels,
sliders, buttons, and just about any object you would ever need to design your iOS
interface. You'll use the Object Library extensively in this book to build the interfaces
for the sample programs.

e Media Library: As its name implies, this section is for all your media, including
pictures, sounds, and movies. It's empty until you add something to it.

Note The items in the Object Library come from the i0S UIKit, which is a framework of objects used
to create an app’s user interface. UIKit fulfills the same role in Cocoa Touch and as AppKit does in Cocoa on
mac0S. The two frameworks are similar conceptually; however, because of differences in the platforms, there
are obviously many differences between them. On the other hand, the Foundation framework classes, such as
NSString and NSArray, are shared between Cocoa and Cocoa Touch.

35

CHAPTER 2 © WRITING YOUR FIRST APP

Note the search field at the bottom of the library. If you want to find a button, type button in the search
field; the current library will show only items with button in the name. Don’t forget to clear the search field
when you are finished searching; otherwise, not all the available items will be shown.

Adding a Label to the View

Let’s start working with IB. Click the Object Library icon (it looks like a circle with a square in the center—
you can see it in Figure 2-20) at the top of the Library pane to bring up the Object Library. Just for fun, scroll
through the library to find a table view. That'’s it—keep scrolling and you'll find it. But, there’s a better way:
just type the words table view in the search field and you'll see it appear.

Now find a label in the library. Next, drag the label onto the view you saw earlier. (If you don’t see
the view in your editor pane, click the View icon in Interface Builder’s Document Outline.) As your cursor
appears over the view, it will turn into the standard “I'm making a copy of something” green plus sign you
know from the Finder. Drag the label to the center of the view. A pair of blue guidelines—one vertical and
one horizontal—will appear when your label is centered. It's not vital that the label be centered, but it’s good
to know that those guidelines are there; when you drop the label, it should appear, as shown in Figure 2-21.

Norid) i iPhone 7 Finished running Hello Warld on iPhane 7 Plus E @ Sl O
o B 8 < [E) Hello World) ') Hell._orid) B Mai_.ard) B Mai_.ase)) [vie_.cene) (@) vie...oller) [view) [L] Label 0 ® O 0 6
v [view Controller Scene Label
¥ () View Controller Text | Plain E
5] Top Layout Guide Labe!

£ iBollom Layout Guide - Color EEEE Default E
v (L View =~
[C]Labei » B Font | System 17.0 @

i First Responder Oynamic Type (| Automatically Adjusts Font
E exit agoment| = = = = [FY
» Storyboard Entry Point Uhss 1)

Behavior 3 Enabled
| Highlighted
Baseling | Align Baselines E
Line Break | Truncate Tail B
Autosheink | Fixed Font Size E
_| Tighten Letter Spacing
o—o0—0Q
N Qabel O OO @o
o—o—0
Label - A variably sized amaunt of
Label i o
[0 View as:iPhone7 («C nR) E3 = o af
I:I D D 0000 | 0y e

of) (© % (@ ave °

Figure 2-21. I'vefound a label in the library and dragged it onto the view

User interface items are stored in a hierarchy. Most views can contain subviews; however, there are
some, like buttons and most other controls, that can’t. Interface Builder is smart. If an object does not accept
subviews, you will not be able to drag other objects onto it.

36

CHAPTER 2 © WRITING YOUR FIRST APP

By dragging a label directly to the view you're editing, you add it as a subview of that main view
(the view named View), which will cause it to show up automatically when that view is displayed to the user.
Dragging a label from the library to the view called View adds an instance of UILabel as a subview of your
application’s main view.

Let’s edit the label so it says something profound. Double-click the label you just created and then
type Hello, World!. Next, click off the label and then reselect it and drag the label to recenter it or position it
wherever you want it to appear on the screen.

You've completed this part, so now let’s save it to finish up. Select File » Save, or press 3S. Now check out
the pop-up menu at the upper left of the Xcode project window, the one that says Hello World. This is actually
a multisegment pop-up control. The left side lets you choose a different compilation target and do a few other
things, but you're interested in the right side, which lets you pick which device you want to run on. Click the
right side and you'll see a list of available devices. At the top, if you have any iOS device plugged in and ready
to go, you'll see it listed. Otherwise, you'll just see a generic iOS Device entry. Below that, you'll see a whole
iOS Simulator section listing all the kinds of devices that can be used with the iOS simulator. From that lower
section, choose iPhone 7 so that your app will run in the simulator, configured as if it were an iPhone 7.

There are several ways to launch your application: you can select Product » Run, press 'R, or press the
Run button that’s just to the left of the simulator pop-up menu. Xcode will compile your app and launch it in
the i0S simulator (see Figure 2-22).

Hello, World!

T n
o o iPhane 7 - i0S

Figure 2-22. Here's your Hello World program running in the iPhone 7 simulator with iOS 11

37

CHAPTER 2 © WRITING YOUR FIRST APP

Note Prior to the added features of Xcode 8, the text would not automatically center and you would need to
work with Auto Layout to add things called constraints to make sure that it was centered on any device.

That’s really all there is to your first app at its most basic level—and notice that you wrote no Swift
code at all!

Changing Attributes

Back in Xcode single-click the Hello World label to select it, and notice the area above the Library pane. This
part of the utility pane is called the inspector. The inspector is topped by a series of icons, each of which
changes the inspector to view a specific type of data. To change the attributes of the label, you'll need the
fourth icon from the left, which brings up the Attributes Inspector (see Figure 2-23).

AR (El==

f Dom¢n o
Label
Text Plain
Hello, World!

Color HEEE Default

@
o @ @

Font System 17.0
Dynamic Type || Automatically Adjusts Font

Alignment = = = = n
Lines 1
Behavior @ Enabled
Highlighted
Baseline = Align Baselines

Line Break Truncate Tail
Autoshrink = Fixed Font Size
| Tighten Letter Spacing
Highlightec N Default
Shadow [_ Default

~cdd Bou

-

Shadow Offset 023 -
Width Height

View
Content Mode Left
Semantic Unspecified

\ Tag 0
™ r A m

o Bl

Figure 2-23. The Attributes Inspector showing your label’s attributes

38

CHAPTER 2 © WRITING YOUR FIRST APP

Tip The inspector, like the Project Navigator, has keyboard shortcuts corresponding to each of its icons.
The inspector’s keyboard shortcuts start with \-881 for the leftmost icon, \-&82 for the next icon, and so on.
Unlike the Project Navigator, the number of icons in the inspector is context-sensitive, and it changes depending
on which object is selected in the navigator and/or editor. Note that your keyboard may not have a key that’s
marked . If it doesn’t, use the Option key instead.

Change the label’s appearance any way you like, feeling free to play around with the font, size, and
color of the text. Note that if you change the font size, you'll need to add an Auto Layout constraint to make
sure that it has the correct size at run time. To do that, select the label and then choose Editor » Size to Fit
Content from the Xcode menu (see Figure 2-24). Once you've finished playing, save the file and select Run
again. The changes you made should show up in your application, once again without writing any code.

‘igate Product Debug Source Control Window Help
Canvas >
ne 7 Zoom > Thenn 7

8 < Hide Document Outline ryboard } [Mainsto..d (Base)) [5] View Co..er Scene | (0} View Controller) |
‘B \,ie' Reveal in Document Outline |

v Align > -
Arrange > —
I Size to Fit Content =

i

P | « Snap to Guides

El Guides >
Embed In >
Localization Locking >

v Automatically Refresh Views

N Glelo, Hiori)

Resolve Auto Layout Issues >

Refactor to Storyboard...

Figure 2-24. Changing the font size larger will force you to change the layout constraints by selecting Size to
Fit Content from the Editor menu

Note Don’t worry too much about what all the fields in the Attributes Inspector mean because as you make
your way through the book, you’ll learn a lot about the Attributes Inspector and what most of the fields do.

39

CHAPTER 2 © WRITING YOUR FIRST APP

By letting you design your interface graphically, Interface Builder frees you to spend time writing the
code that is specific to your application, instead of writing tedious code to construct your user interface.

Most modern application development environments have some tool that lets you build your user
interface graphically. One distinction between Interface Builder and many of these other tools is that
Interface Builder does not generate any code that must be maintained. Instead, Interface Builder creates
user interface objects, just as you would in your own code, and then serializes those objects into the
storyboard or nib file so that they can be loaded directly into memory at runtime. This avoids many of the
problems associated with code generation and is, overall, a more powerful approach.

Adding the Finishing Touches

Let’s refine the application by making it feel more like an authentic iPhone app. First, run your project again.
When the simulator window appears, press 3 {t H. That will bring you back to the iPhone home screen, as
shown in Figure 2-25. Notice that the app icon now shows as a plain, default image.

Carrier =

0 @4

Watch Extras Hello World

Figure 2-25. The Hello World application shown on the home screen

40

CHAPTER 2 © WRITING YOUR FIRST APP

Take a look at the Hello World icon at the top of the screen. To change from this boring, default image,
you need to create an icon and save it as a Portable Network Graphics (. png) file. Actually, for best results,
you should create five icons for the iPhone in the following sizes: 180 x 180 pixels, 120 x 120 pixels, 87 x
87 pixels, 80 x 80 pixels, and 58 x 58 pixels. There’s another set of four icons that are required if you plan
to release your application for the iPad. You'll also need an image that is 187 x 187 pixels for the iPad Pro.
The reason for so many icons is because they are used on the home screen, in the Settings app, and in the
results list for a Spotlight search. That accounts for three of them, but that’s not the end of the story—the
iPhone 7/6s Plus, with its larger screen, requires higher-resolution icons, adding another three to the list.
Fortunately, one of these is the same size as an icon from the other set, so you actually only need to create
five versions of your application icon for the iPhone. If you don’t supply some of the smaller ones, a larger
one will be scaled down appropriately; but for best results, you (or a graphic artist on your team) should
probably scale it in advance.

Do not try to match the style of the buttons that are already on the device when you create the icons;
your iPhone or iPad automatically rounds the edges. Just create normal, square images. You'll find a set of
suitable icon images in the project archive’s Hello World - icons folder.

Note For your application’s icon, you must use .png images; in fact, you should actually use that format for
all images in your i0S projects. Xcode automatically optimizes . png images at build time, which makes them
the fastest and most efficient image type for use in i0S apps. Even though most common image formats will
display correctly, use .png files unless you have a compelling reason to use another format.

Press 31 to open the Project Navigator, and look inside the Hello World group for an item called
Assets.xcassets. This is an asset catalog. By default, each new Xcode project is created with an asset
catalog, ready to hold your app icons and other resource files. Select Assets.xcassets and turn your
attention to the editor pane.

On the left side of the editor pane, you'll see a column with an entry labeled AppIcon. Select
this item, and to the right you'll see an area with the text AppIcon in the upper-left corner, as well as
dashed-line squares for the icons I just talked about (see Figure 2-26). This is where you'll drag all of
your app icons.

41

CHAPTER 2 © WRITING YOUR FIRST APP

b | W Ao) g Pera 7 RS ——— =%~ 0@ 0
ta s & B oS @ (B [viete waris | [Hait Woria | [Asvens usasaets | Appacen o e ¢
3 Aapdesn e Ao iogn | | e tem
snd same | Appicon >
Segmssun Bu
Semsbosamitt vt @ 01
e oy 7] AR
ancassats i = 2 3 P - S ey B
FSereen crond -
I IPoea Mot ot Fhoss Phone Soatigh sae Ol 1
o 711 Spasigh - 05 8.8 5311
. et Setsings - IG5 5-11 40 Sema | 2y
orit.sce e 105 fcan s are-rendered
Enone Asp
811
wopt
2 N '
Pad st tastions Fad Semngs 1Pad Spctight
ik 711 08511 [
t E) 40w
1 F 2
172 App s P App
108 7411 18811
e (Rt
0 a
105 Markating L &
T02ep

L] LB - 4 anabiy ssed amosst o

Figure 2-26. The Applcon boxes in your project’s assets catalog. This is where you set your application’s icon.

In the Finder, open the Hello World - icons folder, select all the files, and drag the bunch of them to
IB. Most of the icons should automatically fill with the correct name.

Note Early beta releases of Xcode 9 did not support this autofill function at the time of this writing. Also,
for now, you don’t need to worry about the 1024 i0S Marketing icon.

You'll likely have a few empty squares left over where you'll find the right file and drag them individually
to make sure that there are no empty squares. You do this by comparing the file size as part of the name to
the number of points on the square. Note, Figure 2-27, that you'll need to find the double or triple size file if
a square has 2x or 3x below it.

42

a? Finished running Helle World on iPhone 7

< > [B HelloWorld) 7] Hello World) [l Assets.xcassets | B Applcon) 5 iPad 20 2x

E| Applcon

CHAPTER 2 © WRITING YOUR FIRST APP

1024pt

Appleon
apress apress| |Apress
2x 3x 2% 3x
IPhone Notification IPhone
05 7-11 Spotlight - i05 5.6
20pt Settings - 105 5-11
20pt
2x 3x 2x 3x
iPhone Spotlight iPhone App
i0s 7-11 i0s 7-11
40pt B0pt
S e [apress
1z 2x 1% 2%
iPad Notifications iPad Settings
05 7-11 i0S 5-11
20pt 29pt
Apress Apress | |apress Apress
1 2x x 2x 2x
iPad Spotlight iPad App iPad Pro App
0% 7-11 i0s 7-11 0s 9-11
40pt 7Ept BAEM
1x
[0S Marketing

Figure 2-27. Be sure to match .png files to the proper size requirement for the icon

App leon App !

Lat

Now compile and run your app. When the simulator has finished launching, press # {H to go to the
home screen, and check out your icon (see Figure 2-28). To see one of the smaller icons in use, swipe down
inside the home screen to bring up the Spotlight search field, and start typing the word Hello—you'll see
your new app’s icon appear immediately.

43

CHAPTER 2 © WRITING YOUR FIRST APP

o Haic Word | () Proes 7 Frrihad runnng Hats Werld on #honae 7
B < B Heio Wora He'e Wera LiurcnSoreen soryoord LIunchSCresn Montond el No SEecTon

Viaw Controlier Scene

View Controlier

Label,
O View as:iPhone 7 (<€ -R) 0% B jof et | BR [(@uwe

Figure 2-28. The new app icon for your Hello World app

Note As you work through this book, your simulator’s home screen will get cluttered with the icons for the
example applications you’ll be running. If you want to clear out old applications from the home screen, choose
i0S Simulator » Erase All Content and Settings from the i0S simulator’s hardware menu.

Exploring the Launch Screen

When you launched your application, you may have noticed the white launch screen that appeared while
the application was being loaded. i0S applications have always had a launch screen. Since the process

of loading an application into memory takes time (and the larger the application, the longer it takes), the
purpose of this screen is to let the user see as quickly as possible that something is happening. Prior to i0S 8,
you could supply an image (in fact, several images of different sizes) to act as your app’s launch screen. i0S
would load the correct image and immediately display it before loading the rest of your application. Starting
with i0S 8, you still have that option, but Apple now strongly recommends that you use a launch file instead
of alaunch image, or as well as a launch image if your application still needs to support earlier releases.

A launch file is a storyboard that contains the user interface for your launch screen. On devices running
iOS 8 and newer, if a launch file is found, it is used in preference to a launch image. Look in the Project
Navigator and you'll see that you already have a launch file in your project—it’s called LaunchScreen. storyboard.
If you open it in Interface Builder, you'll see that it just contains a blank view, as shown in Figure 2-29.

44

CHAPTER 2 © WRITING YOUR FIRST APP

ece » i Hello Word | i Phone 7 Fisishedl running Helks Werld oe iPhose 7
BMERAQAA S Eo® |8 [fn #eete woria) [Hetia weels LaunchScreen sioryboard [o ®
* [Hellc Works » [View Controller Scene
¥ 1] Hello worid
= AppDelegate.switt
« ViewCoriroles vaift
T Main storybased

B Assots xcasseis View Contrallar

Info plist
w [Products
Ay Hello Woric spp.

Ne

]

Label
Label ...
Elm @l | W1 View as: iPhone 7 (+C »R) — Wik + B 1o ol | BR (@ 1ace

Figure 2-29. Your application’s default launch file

Apple expects you to build your own launch screen using Interface Builder, in the same way as you
would construct any other part of your application’s user interface. Apple recommends that you don’t try to
create a complex or visually impressive launch screen, so follow those guidelines. Here, you're just going to
add alabel to the storyboard and change the background color of the main view so that you can distinguish
the launch screen from the application itself. As before, drag a label onto the storyboard, change its text to
Hello World, and then use the Attributes Inspector (see Figure 2-23) to change its font to System Bold 32.
Making sure that the label is selected, click Editor » Size to Fit Content in the Xcode menu. Now center the
label in the view and click Editor » Resolve Auto Layout Issues » Add Missing Constraints to add layout
constraints that make sure that it stays there. Next, select the main view by clicking it in the storyboard or in
the Document Outline and use the Attributes Inspector to change its background color. To do that, locate the
Background control and choose any color you like—I chose green. Now run the application again. You'll see
the launch screen appear and then fade away as the application itself appears, as shown in Figure 2-30.

45

CHAPTER 2 © WRITING YOUR FIRST APP

Hello,"World!

Figure 2-30. A green launch screen for the Hello World application

You can read more about the launch file, launch images, and application icons in Apple’s iOS Human
Interface Guidelines document, which you'll find online at https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html.

Running the Application on a Device

Before bringing this chapter to a close, there’s one more thing I will cover. Let’s load your app and run it on
an actual device. The first step is to connect an iOS device to your Mac using its charging cable. When you do
that, Xcode should recognize it and will spend some time reading symbol information from it. You may also
see security prompts on both your Mac and your device asking whether you want one to trust the other. Wait
until Xcode finishes processing symbol files from the device (check the Activity View to see that) and then
open the device selector in the toolbar. You should see your device listed there, as shown in Figure 2-31.

46

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html

CHAPTER 2 © WRITING YOUR FIRST APP

ode File Edit View

[J Molly's iPhone 6

) [Running Hello
| 8 Q A © = [2 GenericiOS Device Norld) [Lav
\ World S Ret: :

#llo World i iPad (5th generation)

AppDelegate.swift @ iPad Air

ViewController.swift @8 iPad Air 2

Main.storyboard @8 iPad Pro (9.7-inch) -
Assets.xcassets ## iPad Pro (10.5-inch)

LaunchScreen storyboard @8 iPad Pro (12.9-inch)

Info.plist 8 iPad Pro (12.9-inch) (2nd generation)
oducts @ iPhone 5s
Hello Werld.app @8 iPhone 6
i iPhone 6 Plus
@@ iPhone 6s
#§ iPhone 6s Plus
v @ iPhone 7
@ iPhone 7 Plus
iPhone SE

Add Additional Simulators...
Download Simulators...

Figure 2-31. The list of devices and simulators now includes my iPhone 6 running iOS 11 beta

Select the device and click the Run button on the toolbar to start the process of installing and running
the application on it. Xcode will rebuild the application and run it on your device. However, because I'm
using an early beta release of Xcode 9, you may see a prompt like the one shown in Figure 2-32.

illo World | Build Hello World: Failed | Today at 7:49 PM 0:
Main.storyboard
L DOy
= S Failed to code sign "Hello World". .
No valid signing identities (i.e. certificate and private
key pair) were found.

Xcode can attempt to fix this issue. This will reset

your code signing and provisioning settings to 7
recommended values and resolve issues with signing
identities and provisioning profiles.

cancel | (TN

Figure 2-32. Ifthe automated provision features fail, you may see this message

47

CHAPTER 2 © WRITING YOUR FIRST APP

Note Apple made improvements to the provisioning system back in Xcode 8, and many of these “fix issue”
features have become obsolete. The process has become more seamless and successful. Here, | address the
topic in a way to make sure that you complete the provisioning to get the app to run on your actual device.

Before you can install an application on an iOS device, it has to have a provisioning profile, and it
needs to be signed. Signing the application allows the device to identify the author of the application and
to check that the binary has not been tampered with since it was created. The provisioning profile contains
information that tells iOS which capabilities, such as iCloud access, your application needs to have and
which individual devices it can run on. To sign the application, Xcode needs a certificate and a private key.

Tip You can read about code signing, provisioning profiles, certificates, and private keys in Apple’s App
Distribution Workflows in the App Distribution Guide at https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide.

In the early days of iOS development, you had to sign in to your developer program account, manually
create both of these items, and then register the test devices on which you want to install the application.
This was a nontrivial and frustrating process. Xcode 7 was improved to be smart enough to do this for you,
and Xcode 8 has improved things even more, so this should all just work; all you need do is to put an app
on a device for testing. In some cases, for different specialized builds to be distributed to particular users,
you’ll want to customize your provisioning process, but for your learning process, the default, easy-to-use
mechanisms work just fine.

There are a couple of things that can go wrong. First, if you see a message saying that your app ID
is not available, you'll need to choose a different one. The app ID is based on the project name and the
organization identifier that you chose when you created the project (see Figure 2-4). You'll see this message
if you used com.beginningiphone or another identifier that somebody else has already registered. To fix it,
open the Project Navigator and select the Hello World node at the top of the project tree. Then click the Hello
World node under the TARGETS section in the Document Outline. Finally, click the General button at the
top of the editor area (see Figure 2-33).

® L] > | 9\ Hello World .m‘ Processing symbol files

Hello World.xcodepra] Debug
B &% QA ¢ =o 8 |# B Hello World
) D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT
.| AppDalegate. swift 2 ¥ |dentity
) Vier or.swift |=] Hello World
Main.storyboard TARGETS Bundie Identifier | com.myorgid. Hello-World
A My Hallo World
S O Ata ks Rate)' Version 1.0
LaunchScroen.storyboard
Info.plist Build 1
¥ || Products
Team Mong E

Figure 2-33. Changing your application’s bundle identifier

48

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide

CHAPTER 2 © WRITING YOUR FIRST APP

The app ID that Xcode uses for signing is taken from the Bundle Identifier field in the editor. You'll see
that it contains the organization identifier that you selected when you created the project—it’s the part of the
field that’s highlighted in Figure 2-33. Choose another value and try building again. Eventually, you should
find an identifier that hasn’t already been used. When you've done that, make a note of it and be sure to
use it to fill in the Organization Identifier field whenever you create a new project. Once you've done that
correctly once, Xcode will remember it so you shouldn’t have to do it again.

The other thing that can go wrong is shown in Figure 2-34.

Finished running Hello World Dmg

A

Hello World.xcodeproj

Could not launch “Hello World”

Capal process launch failed: Security

ity

Figure 2-34. Failure to launch iniOS 9, 10, or 11

You'll see this message only if you are not enrolled in the developer program. It means that your
iOS device does not trust you to run applications signed with your Apple ID. To fix this, open the Settings
application on the device and then go to General » Profile. You'll reach a page with a table that contains
your Apple ID. Tap the table row to open another page that looks like Figure 2-35.

49

CHAPTER 2 © WRITING YOUR FIRST APP

iPod = 10:09 PM ¢}

< beginning.iphonedev@gmail....

Apps from developer "iPhone Developer:
beginning.iphonedev@gmail.com
(AGQETWZ573)" are not trusted on this iPod
and will not run until the developer is trusted.

Trust “beginning.iphonedev@gmail....

APPS FROM DEVELOPER “IPHONE

DEVELOPER:
BEGINNING.IPHONEDEV@GMAIL.COM
(AGQSTWZ573)"

[#=s| Hello World Verified

Figure 2-35. OniOS 9 and newer, developers without a developer program membership are not trusted by default

Summary

You should be pleased with the progress you've made in this chapter. Although it may not seem like you
accomplished all that much, you actually covered a lot of ground. You learned about the iOS project
templates, created an application, learned key knowledge about Xcode 9, started using Interface Builder,
learned how to set your application icon, and discovered how to run your application on the simulator and
on a real device.

The Hello World program, however, is a strictly one-way application. You show some information to the
users, but you never get any input from them. In the next chapter, you'll look at how to go about getting input
from the user of an i0S device and taking actions based on that input.

50

CHAPTER 3

Basic User Interactions

Your Hello World app provided a good introduction to iOS development using Xcode and Cocoa Touch, but
it lacked a crucial capability—the ability to interact with the user. Without the ability to accept user input,
you severely limit the usefulness of your efforts.

In this chapter, you'll write a slightly more complex application—one that will feature two buttons and
alabel (see Figure 3-1). When the user taps either of the buttons, the label’s text changes. This demonstrates
the key concepts involved in creating interactive iOS apps. You'll also learn about the NSAttributedString
class, which lets you use styled text with many Cocoa Touch visual elements.

Carrigr ¥ 12:42 PM

Left button pressed

one 7 - 105 11.0

Figure 3-1. In this chapter, you'll develop this simple two-button app.

© Molly K. Maskrey 2017 51
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_3

https://doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 3 BASIC USER INTERACTIONS

Understanding the MVC Paradigm

If you don’t know of MVC, you will. It stands for model-view-controller (MVC) and represents a logical way of
dividing the code that makes up a GUI-based application. These days, almost all object-oriented frameworks
build upon MVC, but few adhere to the MVC model as much as Cocoa Touch.

The MVC pattern divides all functionality into three distinct categories.

e Model: The classes that hold your application’s data.

° View: Made up of the windows, controls, and other elements that the user can see
and interact with.

e Controller: The code that binds together the model and view. It contains the
application logic that decides how to handle the user’s inputs.

MVC makes certain that the objects implementing these three types of code are as distinct from one
another as possible. Any object you create should be readily identifiable as belonging in one of the three
categories, with little or no functionality that could be classified as being either of the other two. An object
that implements a button, for example, shouldn’t contain code to process data when that button is tapped,
and an implementation of a bank account shouldn’t contain code to draw a table to display its transactions.

MVC helps ensure maximum reusability. A class that implements a generic button can be used in any
application. A class that implements a button that does some particular calculation when it is clicked can be
used only in the application for which it was originally written.

When you write Cocoa Touch applications, you primarily create your view components using Interface
Builder, although you will sometimes modify, and sometimes even create, parts of your user interface in code.

You create your model by writing Swift classes to hold your application’s data. You won'’t be creating
any model objects in this chapter’s application because you do not need to store or preserve data. I will
introduce model objects as the sample applications get more complex in future chapters.

Your controller component contains classes that you create and that are specific to your application.
Controllers are completely custom classes, but more often they exist as subclasses of one of several existing
generic controller classes from the UIKit framework, such as UIViewController. By subclassing one of
these existing classes, you get a lot of functionality for free and won’t need to spend time recoding the
wheel, so to speak.

As you get deeper into Cocoa Touch, you quickly start to see how the classes of the UIKit framework
follow the principles of MVC. By keeping this concept in the back of your mind as you develop, you will end
up creating cleaner, more easily maintained Swift code.

Creating the ButtonFun App

It's time to create your next Xcode project. You'll use the same template that you used in the previous
chapter: Single View App. By starting with this simple template again, it’s easier to see how the view and
controller objects work together in an iOS application. You'll use some of the other templates in later
chapters.

Launch Xcode and select File » New » Project or press #{'N. Select the Single View App template and
then click Next.

52

CHAPTER 3 * BASIC USER INTERACTIONS

You'll be presented with the same options sheet that you saw in the previous chapter. In the Product
Name field, type the name of your new application, ButtonFun. The Organization Name, Company
Identifier, and Language fields should still have the values you used in the previous chapter, so you can leave
those alone. Once again, you are going to use Auto Layout to create an application that works on all iOS
devices, so in the Devices field, this time select Universal. Figure 3-2 shows the completed options sheet.

Choose options for your new project:

Product Name: | ButtonFun

Team: Molly Maskrey
Organizaticn Name:
[izati ifier: com.me
Bundle Identifier: com.mallymaskrey.ButtanFun
Language: Swift E
Devices: Universal B
Use Core Data

Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 3-2. Naming your project and selecting options

Hit Next. You'll be prompted for a location for your project. You can leave the Create Git repository
check box selected or not, whichever you prefer. Click Create and save the project with the rest of your book
projects.

Understanding the ViewController

Alittle later in this chapter, you'll design a view (or user interface) for your application using Interface
Builder, just as you did in the previous chapter. Before you do that, let’s look at the files that were created for
you and then make some changes to them. In the Project Navigator, the ButtonFun group should already be
expanded; if it's not, click the disclosure triangle next to it (see Figure 3-3).

53

CHAPTER 3 BASIC USER INTERACTIONS

© @ } il gﬂg ButtonFun)

B R QA ©

v & ButtonFun
¥ ButtonFun

o 3

= AppDelegate.swift

ViewController.swift

Main.storyboard
1| Assets.xcassets
LaunchScreen.storyboard
Info.plist
> Products

Figure 3-3. The Project Navigator shows the class files created for you by the project template

The ButtonFun group should contain two source code files along with the main storyboard file, the
launch screen storyboard file, an asset catalog for containing any images your app needs, and an Info.plist
file, which I'll discuss in later chapters. The two source code files implement the classes your application
needs: your application delegate and the view controller for your application’s only view. You'll look at the
application delegate a little later in the chapter. First, you'll work with the view controller class that was
created for you.

The controller class called ViewController manages your application’s view. The name identifies that
this class is, well, a view controller. Click ViewController.swift in the Project Navigator and take a look at
the contents of the view controller file (see Listing 3-1).

Listing 3-1. ViewController Code Generated by Your Template
import UIKit

class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

54

CHAPTER 3 * BASIC USER INTERACTIONS

Because it was generated by the template, clearly there’s not much there yet. ViewController exists as a
subclass of UIViewController, which is one of those generic controller classes mentioned earlier. It is part of
the UIKit framework, and by subclassing this class, you get a bunch of functionality included. Xcode doesn’t
know what your application-specific functionality is going to be, but it does know that you're going to have
some, so it has created this class for you to write that specific functionality yourself.

Understanding Outlets and Actions

In Chapter 2 you used Xcode’s Interface Builder to design a simple user interface, and in Listing 3-1 you saw
the shell of a view controller class. I'll now discuss how the code in this view controller class can interact with
the objects (buttons, labels, etc.) in the storyboard. A controller class can refer to objects in a storyboard or
nib file by using a special kind of property called an outlet. Think of an outlet as a pointer that points to an
object within the user interface. For example, suppose you created a text label in Interface Builder (as you
did in Chapter 2) and wanted to change the label’s text from within your code. By declaring an outlet and
connecting that outlet to the label object, you would then be able to use the outlet from within your code to
change the text displayed by the label. You'll do that later in this chapter.

Going in the opposite direction, interface objects in your storyboard or nib file can be set up to trigger
special methods in your controller class. These special methods are known as action methods (or just
actions). For example, you can tell Interface Builder that when the user taps a button, a specific action
method within your code should be called. You could even tell Interface Builder that when the user first
touches a button, it should call one action method; and then later, when the finger is lifted off the button, it
should call a different action method.

Xcode supports multiple ways of creating outlets and actions. One way is to specify them in your source
code before using Interface Builder to connect them with your code, but Xcode’s Assistant View gives you
a much faster and more intuitive approach that lets you create and connect outlets and actions in a single
step, a process you're going to look at shortly. Before you start making connections, let’s talk about outlets
and actions in a little more detail. Outlets and actions are two of the most basic building blocks you’ll use to
create i0S apps, so it’s important that you understand what they are and how they work.

Outlets

Outlets are ordinary Swift properties that are tagged with the decoration @IBOutlet. An outlet looks
something like this:

@IBOutlet weak var myButton: UIButton!

This example depicts an outlet called myButton, which can be set to point to any button in the user
interface.

The Swift compiler doesn’t do anything special when it sees the @1BOutlet decoration. Its sole purpose
is to act as a hint to tell Xcode that this is a property that you're going to want to connect to an object in
a storyboard or nib file. Any property that you create and want to connect to an object in a storyboard or
nib file must be preceded by @I1BOutlet. Fortunately, as you'll see, you can create outlets in Xcode just by
dragging from the object to the property that you want to link it to, or even just by dragging to the class in
which you'd like to have a new outlet created.

You may be wondering why the declaration of the myButton property ends with an !. Swift requires all
properties to be fully initialized before the completion of every initializer, unless the property is declared to
be optional. When a view controller loads from a storyboard, the values of its outlet properties get set from
information saved in the storyboard, but this happens after the view controller’s initializer has been run. As
aresult, unless you explicitly give them dummy values (which is not desirable), outlet properties have to be
declared as optional. That gives you two ways to declare them, using either ! or ?, as shown in Listing 3-2.

55

http://dx.doi.org/10.1007/978-1-4842-3072-5_2
http://dx.doi.org/10.1007/978-1-4842-3072-5_2

CHAPTER 3 BASIC USER INTERACTIONS

Listing 3-2. Two Ways to Declare Optional Variables
@IBOutlet weak var myButtoni: UIButton?
@IBOutlet weak var myButton2: UIButton!

Generally, you'll find the second one easier to use because there is no need to explicitly unwrap the
optional later when it’s used in the view controller’s code (see Listing 3-3). Be aware that if you do use the
second version, you must make sure that it gets set and does not become nil later.

Listing 3-3. Eliminating the Need to Explicitly Unwrap an optional

let buttoni = myButtoni! // Optional needs to be unwrapped
let button2 = myButton2 // myButton2 is implicitly unwrapped

Note The weak specifier attached to the declaration of the outlet property means that the property does
not need to create a strong reference to the button. Objects are automatically deallocated as soon as there are
no stronger references to them. In this case, there is no risk that the button will be deallocated because there
will be a strong reference to it as long as it remains part of the user interface. Making the property reference
weak allows deallocation to happen if the view is no longer required and is removed from the user interface at
some point. If this happens, the property reference is set to nil.

Actions

In a nutshell, actions are methods that are tagged with the decoration @IBAction, which tells Interface
Builder that this method can be triggered by a control in a storyboard or nib file. The declaration for an
action method will usually look like this:

@IBAction func doSomething(sender: UIButton) {}
It might also look like this:
@IBAction func doSomething() {}

The actual name of the method can be anything you want, and it must either take no arguments or take
a single argument, usually called sender. When the action method is called, sender will contain a pointer
to the object that called it. For example, if this action method was triggered when the user tapped a button,
sender would point to the button that was tapped. The sender argument exists so that you can respond to
multiple controls using a single action method, which gives you a way to identify which control called the
action method.

56

CHAPTER 3 * BASIC USER INTERACTIONS

Tip There’s actually a third, less frequently used way to declare an action method that looks like this:
@IBAction func doSomething(sender: UIButton, forEvent event: UIEvent) {}

You would use this form if you need more information about the event that caused the method to be called. I'll
talk more about control events in the next chapter.

It won't hurt anything to declare an action method with a sender argument and then ignore it. You'll
likely see a lot of code that does just that. Action methods in Cocoa and NeXTSTEP needed to accept sender
whether they used it or not, so a lot of iOS code, especially early iOS code, was written that way.

Now that you understand what actions and outlets are, you'll see how they work as you design your user
interface. But first, let’s take care of a little bit of housekeeping.

Simplifying the View Controller

Single-click ViewController.swift in the Project Navigator to open the implementation file. As you can see,
there’s a small amount of boilerplate code in the form of viewDidLoad() and didReceiveMemoryWarning()
methods that were provided for you by the project template you chose. These methods are commonly

used in UIViewController subclasses, so Xcode gave you stub implementations of them. If you need to use
them, you can just add your code there. However, you don’t need either of these stub implementations for
this project, so all they’re doing is taking up space and making your code harder to read. You're going to do
yourself a favor and clear away methods that you don’t need, so go ahead and delete both of them. When
you've done that, your file should look like Listing 3-4.

Listing 3-4. Your Simplified ViewController.swift File
import UIKit

class ViewController: UIViewController {

}

Designing the User Interface

Make sure that you save the changes you just made and then single-click Main.storyboard to open your
application’s view using Interface Builder (see Figure 3-4). As you'll remember from the previous chapter,
the white window that shows up in the editor represents your application’s one and only view. If you look
back at Figure 3-1, you can see that you need to add two buttons and a label to this view.

57

CHAPTER 3 BASIC USER INTERACTIONS

eoe » 7 ButtonFun)) iPhone 7 ButtonFun: Ready | Todsy 8t 2:04 PM Fs) [=ll=l=]
BEHR QM&S & o @ B > [bumonkn)Ebunecfun Mainstorybosed | [Main.stoeyboard (Base)) [] View Contraller Scena) (5 View Caontroties De@adn e
¥ [& Bunenfun w 1] View Gantrolier Scane Smoluiad Macricn
v 2 Butontan s e B
S et 3 Firet Rocaender Statws Bar | Interrog B
< ViewContioer.switt E e [« BEO) Wop B | Inferroe B
MEAHCYBCRd * Storyboard Entry Point
— Batiom Bar _Inferred =]
[Asaeta.xconsets
LaunehScieen siorybasd View ContreBer
into plist -
» [Preducts s Iritial View Controller
Layout [Adjust Scroll View insets
"\ Hige Bettom Bar an Push
Resizo View From NIB
"I Use Ful Screen (Deprocated)
Emend Eages 0 Uncer Top Bars
B uncer Bottom Bars
Under Opaque Bars
Transinion Style _Cover Vertical B
Presentation Ful Screen B
Defines Context
_| Provides Cortest
0O @D
Wiew Gontrollos - & contreler that
| masages a view
Mavigatian Controller - &
(ontroBer thal manages navigation
! theough a hissaschy of views.
+ 1 mbl & F1 Viewas:iPhone7 («CrR) — 78% 4 E kiR &

Figure 3-4. Main.storyboard open for editing in Xcode's Interface Builder

Let’s take a second to think about your application. You're going to add two buttons and a label to your
user interface, and that process is similar to what you did to add a label to the application that you built
in the previous chapter. However, you're also going to need outlets and actions to make your application
interactive.

The buttons will each need to trigger an action method on your controller. You could choose to make
each button call a different action method, but since they’re going to do essentially the same task (update
the label’s text), you will need to call the same action method. You'll differentiate between the two buttons
using that sender argument discussed earlier. In addition to the action method, you'll also need an outlet
connected to the label so that you can change the text that the label displays.

You'll add the buttons first and then place the label, creating the corresponding actions and outlets as
you design your interface. You could also manually declare your actions and outlets and then connect your
user interface items to them, but Xcode can handle this for you.

Adding the Buttons and Action Method

First you'll add two buttons to your user interface. You'll then have Xcode create an empty action method for
you, and you will connect both buttons to it. Any code you place in that method will be executed when the
user taps the button.

Select View » Utilities » Show Object Library to open the Object Library. Type UIButton in the Object
Library’s search box. (You actually need to type only the first four characters, uibu, to narrow down the list.
You can use all lowercase letters to save yourself the trouble of pressing the Shift key.) Once you're finished
typing, only one item should appear in the Object Library: Button (see Figure 3-5).

58

CHAPTER 3 * BASIC USER INTERACTIONS

L 0 @ &

Button - Intercepts touch events and
Button sends an action message to a target
object when it's tapped.

® uibu Q

Figure 3-5. A button as it appears in the Object Library

Drag the button from the library and drop it on the white window inside the editing area to add the
button to your application’s view. Place the button along the left side of the view the appropriate distance
from the left edge by using the vertical blue guideline that appears as you move the button toward the left
edge of the view. For vertical placement, use the horizontal blue guideline to place the button halfway down
in the view. You can use Figure 3-1 as a placement guide, if that helps.

Note The little blue guidelines that appear as you move objects around in Interface Builder are there to
help you stick to the i0S Human Interface Guidelines (HIG). Apple provides the HIG for people designing iPhone
and iPad applications. The HIG tells you how you should—and shouldn’t—design your user interface. You really
should read it because it contains valuable information that every i0OS developer needs to know. You'll find it at
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/.

Double-click the newly added button. This will allow you to edit the button’s title. Give this button the
title Left.

Select View » Assistant Editor » Show Assistant Editor, or press X 88<J to open the Assistant Editor. You
can also show and hide the Assistant Editor by clicking the middle editor button in the collection of seven
buttons on the upper-right side of the project window (see Figure 3-6).

_.a ool

‘ Show the Assistant editor

I Button

Figure 3-6. The Show the Assistant Editor toggle button (double circles)

59

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/

CHAPTER 3 " BASIC USER INTERACTIONS

The Assistant Editor appears to the right of the editing pane, which continues to show Interface Builder.
The Assistant Editor should automatically display ViewController.swift, which is the implementation file
for the view controller that “owns” the view you're looking at.

Tip After opening the Assistant Editor, you may need to resize your window to have enough room to work.
If you're on a smaller screen, like the one on a MacBook Air, you might need to close the Utility View and/or
Project Navigator to give yourself enough room to use the Assistant Editor effectively (see Figure 3-7). You can
do this easily using the three view buttons in the upper right of the project window (see Figure 3-6).

poe » < ButtonFun | Sl IProne 7 ButtonFun: Ready | Today a1 2:11 PM

1 E e Q y, @ B o @ B < 5 View..1 Scene View Comtrolier 5 & Mutic | s ViewConarolerswilt | No Selection -+ X

[& Butiorfun
¥ [ButtonFun
| AppDelegate swift
o] ViewContralier. swit (®]
Main toryboard

Iederred
Iderred

Bemem Bar Inferred

2]] o o

5 Assets.xcassots
LaunchScreen. storyboard View Cantraller
Inéa.plist uIkit
» [Products

Tiske
VienController: UiViest: €1 b= it View Comtoboc
Layeut) Adjust Scroll View Insets
iewDis Hide Bottom Bar on Push
o Riesize View From NIE

Use Ful Sereen (Doprecated)

Extend Edges) Under Top Bars
Bl under Bottom Bars
Under Opague Bars

digReceivaMessryWarning

Tramsition Siyle | Gaver Vertical

] <

Pragennstien Full Serogn
Detings Conteat
Provides Contoxt

0DboO0eao

] View as: iPhone 7 (~C 1R]

Figure 3-7. You may have to close other views to see both editing windows on smaller displays

Xcode knows that your view controller class is responsible for displaying the view in the storyboard, so
the Assistant Editor knows to show you the implementation of the view controller class, which is the most
likely place you’ll want to connect actions and outlets. However, if it is not displaying the file you want to
see, you can use the jump bar at the top of the Assistant Editor to fix that. Locate the Automatic segment of
the jump bar and click it. In the pop-up menu that appears, select Manual » ButtonFun » ButtonFun »
ViewController.swift. You should now be looking at the correct file.

You'll now let Xcode automatically create a new action method for you and associate that action with
the button you just created. You're going to add these definitions to the view controller’s class extension. To
do this, begin by clicking the button that you added to the storyboard so that it is selected. Now, hold down
the Control key on your keyboard and then click and drag from the button to the source code in the Assistant
Editor. You should see a blue line running from the button to your cursor, as shown in Figure 3-8. This blue
line allows you to connect objects in IB to code or other objects. Moving your cursor so it’s inside the class
definition, as shown in Figure 3-8, a pop-up appears, letting you know that releasing the mouse button will
insert an outlet, an action, or an outlet collection for you.

60

CHAPTER 3 " BASIC USER INTERACTIONS

UIKit

viewController: UIV {

oF .Insart Outlet, Action, or Outlet CD"EI',‘N-DHI

Figure 3-8. Control-dragging to the source code will give you the option to create an outlet, action, or outlet
collection

Note You use actions and outlets in this chapter, and you’ll use outlet collections later in the book. Outlet
collections allow you to connect multiple objects of the same kind to a single array property, rather than
creating a separate property for each object.

To finish this connection, release your mouse button, and a floating pop-up will appear, like the one
shown in Figure 3-9.

)) B vi.ne Vi...ler View ; B Left | 55 Automatic © & ViewController.swift v

Connection | Outlet

Object View Controller

; ViewController: UIV

Name
Type UlButton
Storage | Weak

Cancel

Figure 3-9. The floating pop-up that appears after you Control-drag to source code

61

CHAPTER 3 " BASIC USER INTERACTIONS

This window lets you customize your new action. In the window, click the Connection pop-up menu
and change the selection from Outlet to Action. This tells Xcode that you want to create an action instead
of an outlet (see Figure 3-10). In the Name field, type buttonPressed. When you're finished, do not hit the
Return key. Pressing Return would finalize your outlet; you're not quite ready to do that. Instead, press the
Tab key to move to the Type field and type UIButton, replacing the default value of AnyObject.

Outlet
Connecticl .= {11
Objet 9utlet Collection ..':: UIKit
Name | | 1 ViewController:

Type AnyObject
Event | Touch Up Inside

Arguments | Sender

Cancel

Figure 3-10. Changing from Outlet to Action

There are two fields below Type, which you will leave at their default values. The Event field lets you
specify when the method is called. The default value of Touch Up Inside fires when the user lifts a finger off
the screen if-and only if-the finger is still on the button. This is the standard event to use for buttons. This
gives the user a chance to reconsider. If the user moves a finger off the button before lifting it off the screen,
the method won't fire.

The Arguments field lets you choose between the three different method signatures that can be used for
action methods. You want the sender argument so that you can tell which button called the method. That’s
the default, so you just leave it as is.

Hit the Return key or click the Connect button, and Xcode will insert the action method for you. The
ViewController.swift file in the Assistant Editor should now look like Listing 3-5. You'll come back here to
write the code that needs to execute when the user taps either this button or the one you'll add shortly.

Listing 3-5. Your ViewController.swift File with the Added IBAction
import UIKit
class ViewController: UIViewController {

@IBAction func buttonPressed(sender: UIButton) {

}

In addition to creating the method code segment, Xcode connected that button to that method and
stored that information in the storyboard. That means you don’t need to do anything else to make that
button call this method when your application runs.

62

CHAPTER 3 " BASIC USER INTERACTIONS

Go back to Main.storyboard and drag out another button, this time placing the button on the right side
of the screen. The blue guidelines will appear to help you align it with the right margin, as you saw before,
and they will also help you align the button vertically with the other button. After placing the button,
double-click it and change its name to Right.

Tip Instead of dragging out a new object from the library, you could hold down the “C key (the Option
key) and drag a copy of the original object (the Left button in this example) over. Holding down the C key tells
Interface Builder to make a copy of the object you drag.

This time, you don’t want to create a new action method. Instead, you want to connect this button to the
existing one that Xcode created for you a moment ago. After changing the name of the button, Control-click
itand drag toward the declaration of the buttonPressed() method code in the Assistant Editor. This time, as
your cursor gets near buttonPressed(), that method should highlight, and you'll get a gray pop-up saying
Connect Action (see Figure 3-11). If you don’t see it straightaway, move the mouse around until it appears.
When you see the pop-up, release the mouse button, and Xcode will connect the button to the action
method. That will cause the button, when tapped, to trigger the same action method as the other button.

ece » % BustenFun | il IPhone 7 BustenFur: Ready | Today at 3:03 FiM r Gl [e |
B E S a & ¥ = BB < B buun h'h View ; [B| Right | BE 5 A B viewCentroller swift ViewContioler + X [B - L | <
v & ButlonFun Button
v [ButionFun i Troe | Systom]
:Annnclcnuc awilt Sl ey i
B ViewControlier swilt
Main storyboard e LEbin i
5] Aot cassats Rt
LaunchScreen.storyboard Font | System 15.0 i
Info plist UIKit Teat Color | SR | Default]
» [Products Shadow Color | =0 | Defeuit i
ViewController: UIVi ¥
Image]
L ere——]

3-0-0 i
¥ B3 Highlighted Adiusts Image

) Disabled Adjusts image
Line Broa | Truncate Midcle]

o-0-0

Drag and Drep | Spring Loaded

0

Button -
HULEON sead:
sbjac

1 0 Viewas:iPhone 7 («C rR)

Figure 3-11. Dragging to an existing action will connect the button to that action

63

CHAPTER 3 * BASIC USER INTERACTIONS

Adding the Label and Outlet

In the Object Library, type lab into the search field to find the Label user interface item (see Figure 3-12).
Drag the label to your user interface, somewhere above the two buttons you placed earlier. After placing it,
use the resize handles to stretch the label from the left margin (as indicated by the blue guideline) to the
right margin. That should give it plenty of room for the text you'll be displaying to the user.

1 ®
Label - A variably sized amount of
I—abe static text.
88 |®1ab o

Figure 3-12. The label as it appears in the Object Library

The text in a label, by default, is left-aligned, but you want the text in this one to be centered. Select
View » Utilities » Show Attributes Inspector (or press X 384) to bring up the Attributes Inspector
(see Figure 3-13). Make sure that the label is selected and then look in the Attributes Inspector for the
Alignment buttons. Select the middle Alignment button to center the label’s text.

64

CHAPTER 3 * BASIC USER INTERACTIONS

Label
Text Plain kel
Label
Color HEEE Default
Font System 17.0 (M
Alignment = E = = -

Lines 1S
Behavior [Enabled
Highlighted
Baseline Align Baselines

Line Breaks Truncate Tail

oMol o)

Autoshrink Fixed Font Size
Tighten Letter Spacing
Highlighted NN Default

Shadow Default

Figure 3-13. Use the Attributes Inspector to center the label’s text

Before the user taps a button, you want the label blank, so double-click the label (so the text is selected)
and press the Delete button on your keyboard. That will delete the text currently assigned to the label. Hit

Return to commit your changes. Even though you won'’t be able to see the label when it’s not selected, it’s
still there.

Tip If you have invisible user interface elements, such as empty labels, and want to be able to see where
they are, select Canvas from the Editor menu. Next, from the submenu that pops up, turn on Show Bounds
Rectangles. If you just want to select an element that you can’t see, just click its icon in the Document Outline.

Finally, let’s create an outlet for the label. You do this exactly the way you created and connected actions
earlier. Make sure that the Assistant Editor is open and displaying ViewController.swift. If you need to
switch files, use the pop-up in the jump bar above the Assistant Editor.

Next, select the label in Interface Builder and Control-drag from the label to the header file. Drag until
your cursor is right above the existing action method. When you see something like Figure 3-14, let go of the
mouse button and you'll see the pop-up window again (shown in Figure 3-9).

65

CHAPTER 3 " BASIC USER INTERACTIONS

UIKit

{

® 13@—grERcTIoT TOTT -Inserll‘}utletoromlet Calle:tion‘
}
5 }

- 1 ViewController: UIVi

Figure 3-14. Connecting the UlLabel outlet

Leave the Connection option at the default type of Outlet. You want to choose a descriptive name for
this outlet so you'll remember what it is used for when you're working on your code. Type statusLabel into
the Name field. Leave the Type field set to UILabel. The final field, labeled Storage, can be left at the default
value.

Hit Return to commit your changes, and Xcode will insert the outlet property into your code. Your code
should now look like Listing 3-6.

Listing 3-6. Adding Your Label Outlet to the View Controller
import UIKit
class ViewController: UIViewController {

@IBOutlet weak var statuslLabel: UILabel!

@IBAction func buttonPressed(_ sender: UIButton) {

}

Now you have an outlet where Xcode has “automagically” connected the label to your outlet. This means
that if you make any changes to statusLabel in code, those changes affect the label in your user interface.
Setting the text property on statusLabel, for example, changes the text that is displayed to the user.

AUTOMATIC REFERENCE COUNTING

If you’re familiar with languages like C or C++ where you have to be careful to release memory that you
allocate when you no longer need it, you might be somewhat concerned that you seem to be creating
objects but not destroying them.

The LLVM compiler that Apple includes with Xcode these days is smart enough to release objects for
you, using a feature called Automatic Reference Counting (ARC).

ARC applies only to Swift objects and structures, not to Core Foundation objects or to memory allocated
with C-language library functions such as malloc(), and there are some caveats and gotchas that can
trip you up. But for the most part, worrying about memory management is a thing of the past.

To learn more about ARC, check out the ARC release notes at this URL:

66

CHAPTER 3 * BASIC USER INTERACTIONS

http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-
TransitioningToARC/

ARC is helpful, but it’s not magic. You should still understand the basic rules of memory management
in i0S to avoid getting in trouble with ARC. To learn about the i0S (and macOS) memory management
contract, read Apple’s Memory Management Programming Guide at this URL:

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/
Articles/MemoryMgmt.html

Writing the Action Method

So far, you've designed your user interface and wired up both outlets and actions. All that’s left to do is to use
those actions and outlets to set the text of the label when a button is pressed. Single-click ViewController.
swift in the Project Navigator to open it in the editor. Find the empty buttonPressed() method that Xcode
created for you earlier.

To differentiate between the two buttons, you'll use the sender parameter. You'll retrieve the title of the
button that was pressed using sender and then create a new string based on that title and assign that as the
label’s text. Change the buttonPressed() method to that shown in Listing 3-7.

Listing 3-7. Completing the Action Method

@IBAction func buttonPressed(sender: UIButton) {
let title = sender.title(for: .selected)!
let text = "\(title) button pressed"
statusLabel.text = text

This is pretty straightforward. The first line retrieves the tapped button’s title using sender. Since
buttons can have different titles depending on their current state (although not in this example), you use
the UIControlState.selected parameter to specify that you want the title when the button is in its selected
state since the user selected it by tapping it. You'll look at control states in more detail in Chapter 4.

Tip You probably noticed that the argument you used to call the title(for:) method was .selected,
not UIControlState.selected. Swift already understands that the argument must be one of the values of the
UIControlState enumeration, so you can omit the enumeration name to save typing.

The next line creates a new string by appending this text to the title you retrieved in the previous line:
button pressed. So, if the left button, which has a title of Left, is tapped, this line will create a string that reads
Left button pressed. The final line assigns the new string to the label’s text property, which is how you change
the text that the label is displaying.

67

http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/
http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html
http://dx.doi.org/10.1007/978-1-4842-3072-5_4

CHAPTER 3 " BASIC USER INTERACTIONS

Testing the ButtonFun App

Select Product » Run. If you run into any compile or link errors, go back and compare your code changes to
those shown in this chapter. Once your code builds properly, Xcode will launch the iOS simulator and run
your application. If you run with an iPhone 7 simulator and tap the Left button, you'll see something like
Figure 3-15.

30PM

Left button pressed

Right

iPhone 7 - i0S 11.0

Figure 3-15. Running the application on an iPhone 6s

68

CHAPTER 3 * BASIC USER INTERACTIONS

While everything seems to be good with this, the layout of everything needs some work. To see why,
change the active scheme, as shown in Figure 3-16, to an iPhone SE and run the application again.

Xcode File Edit View

Add Additional Simulators...
Download Simulators...

® A B"“""j
% ButtonFun) | ButtonFu
i
—
/

B MollysiPhone 65

/" Generic iOS Device

B8 Pad Air

B8 iPad Air 2

8 iPad Pro (9.7 inch)
8 iPad Pro (12.9 inch)
@ iPad Retina

¥ iPhone 5

8 iPhone 5s

W iPhone 6

&8 Phone 6 Plus

&# iPhone 6s

B8 iPhone Bs Plus

Product Debug Sc

Finished running Bul

ward (Base) ; No Selection

Figure 3-16. Changing the scheme, and thus the target of execution, to a different size and shape

69

CHAPTER 3 " BASIC USER INTERACTIONS

The result, displayed in Figure 3-17, shows the problems. Note that while the Left button still works, the
label itself is off to the right a bit, and the Right button has completely vanished.

Figure 3-17. Compared to an iPhone 7, the iPhone SE layout is a little off using a different simulated device

To start to see why, in Xcode underneath your Interface Builder window, tap the Right button to select
it and see the outline, and then below select the “View as” option of iPhone SE, as shown in Figure 3-18. You
can see that because you set up your layout to work on a device with a larger screen size, when you move to a
smaller device, some of the controls have moved within your new display.

70

CHAPTER 3 * BASIC USER INTERACTIONS

@O0® b H | A vunoorun) il iProne SE Running BuitenFun on Phons S E @S DO O LC
BE QA S ac B B¢ B ButtonFun ButtenFun Main.s..yboord) [Msin.s. (Bose) wiew_er Scene) () View Controtier)] View) [B] Right O ®a ¢ 0 &
v [& BunenFun ¥ [7] View Contrelier Seene peem
 [11] ButtonFun v (5 View Contralior Tyem | Syrstean
+ AppDelegate switt
App gate s v .\lltv‘ State Conlig Defaut
« ViewControler.swift 0| Sate Aron
~ 1 Tele Plain
__ Mainstorytoard B Lok
[Assets xcassots [B]megnt » B o
LOUPENSoreen. storyoaes T First Rozpancer oot | System 15.0 m
Info plist L Teat Color | M Defouit
» Storyboard Entry Point
[Products Shadaw Celor | =) Defauit
Image.
Beckyronnd
accessibasy (| Adusts image Size
Shacow Offsat ol= o
width Haight

| Reverses On Mighiight
Orawing (] Shows Touch On Mighligh
Highlighted Acjusts image
Disabled Adjusts Inage
Line Broak | Truncase Micdie
Drag and Drop [_| Spring Loaded

0ODo0e@ao

Label - & vaciabiy sioed amaunt of

Label 0

[0 View as: iPhone SE [+ «R) 7% -+ BH = ol kad
DDD..E]] lo Yoy o e
+ @ mEl = o= n 1 2o | 5 sumonFun B G

Figure 3-18. When viewing your layout on a device with a smaller screen area, your Right button shifted so
that it is no longer visible

Fixing Issues Using Auto Layout

The Left button is in the right place, but the label and the other button are not. In Chapter 2, you fixed a
similar problem by using Auto Layout. The idea behind Auto Layout is that you use constraints to specify
how you want your controls to be placed. In this case, here’s what you want to happen:

e The Left button should be vertically centered and close to the left margin of the
screen.

e The Right button should be vertically centered and close to the right margin of the
screen.

e Thelabel should be horizontally centered, a little down from the top of the screen.

Each of the preceding statements contains two constraints—one of them a horizontal constraint, the
other a vertical constraint. If you apply these constraints to your three views, Auto Layout will take care of
positioning them correctly on any screen. So, how do you do that? You can add Auto Layout constraints to
views in code by creating instances of the NSLayoutConstraint class. In some cases, that’s the only way to
create a correct layout, but in this case (and in all the examples in this book), you can get the layout that you
want by using Interface Builder. Interface Builder lets you add constraints visually by dragging and clicking.
First, in the “View as” list under the IB window, reselect 6s as your device so that you see all your controls as
you had them. Set the scale to where you can see the whole screen; I'm using 75%. You'll use Auto Layout to
fix the other device configurations as well (see Figure 3-19).

71

http://dx.doi.org/10.1007/978-1-4842-3072-5_2

CHAPTER 3 * BASIC USER INTERACTIONS

Running ButtanFun on iPhone SE

ButtonFun } [l Main.storyboard) [l Wain.st.(Base)) [View C_.r Scene) (0) View Controller) [[]] view) [L] Label

B

oo|@

% Left Right

[0 View as: iPhone 7 («C nR) — 7% + EB 2 0] taf
0000008 1e
Device Orientation

[9o | # ButtonFun

Figure 3-19. You'll use Auto Layout with the same device you started with to configure for all other device types

You'll start by positioning the label. Select Main.storyboard in the Project Navigator and open the
Document Outline to show the view hierarchy. Find the View icon. This represents the view controller’s
main view, and it’s the one relative to which you need to position the other views. Click the disclosure
triangle to open the View icon, if it's not already open, and reveal the two buttons (labeled Left and Right)
and the label. Hold down the Control key and drag the mouse from the label to its parent view, as shown on
the left in Figure 3-20.

72

CHAPTER 3

® ®) /A, ButtonFun) g iPhone SE Finished

- 2 ButtonFun) ButtonFun | . Main.storyboard . Main.storyboard (Base)

* [Z] View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
Leading Space to Container Margin
Trailing Space to Container Margin
Vertical Spacing to Top Layout Guide
Vertical Spacing to Bottom Layout Guide
- Center Horizontally in Container
{4 First Rg Center Vertically in Container
[Exit
- Storybd Equal Widths
Equal Heights
Aspect Ratio

Figure 3-20. Positioning the label with Auto Layout constraints

BASIC USER INTERACTIONS

By dragging from one view to another, you are telling Interface Builder that you want to apply an Auto
Layout constraint between them. Release the mouse, and a gray pop-up with various choices will appear, as
shown on the right in Figure 3-20. Each choice in this pop-up is a single constraint. Clicking any of them will
apply that constraint, but you know that you need to apply two constraints to the label, and both of them are
available in the pop-up. To apply more than one constraint at a time, you need to hold down the Shift key
while selecting them. So, hold down the Shift key and click Center Horizontally in Container and Vertical
Spacing to Top Layout Guide. To actually apply the constraints, click the mouse anywhere outside the
pop-up or press the Return key. When you do this, the constraints that you have created appear under the
heading Constraints in the Document Outline and are also represented visually in the storyboard, as shown

in Figure 3-21.

73

CHAPTER 3 BASIC USER INTERACTIONS

sos » A Buttonfun) W iPhone SE Finished nunning ButtonFun on [Prone SE ' = o < OO
BR QAN EHD B B B ButtonFun | [0 BatonFun) [l Mainstoryboard | [Main storyboand (Base) | [5] View Contralier Soone () View Controlar) || View § L Status Label ¢
EEEE Auntime v [view Cantroller Seene
* 2 ButtoeFun 1 issue ¥) Vimw Contoiler
¥ [\ Masplaced View Top Layout Guide

® /L Frame for "Status Label” wil be ByomLue e,
ditfarent at run time. ¥ L1 View -
Main_storyboard B|Left ® B
B Right
L | Statue Label -
» [corstraints 3
W Fist Responde:] o
e o o o
 Storyboard Entry Poirt

Left Right

Figure 3-21. Two Auto Layout constraints have been applied to the label

Tip If you make a mistake when adding a constraint, you can remove it by clicking its representation in the
Document Outline, or in the storyboard, and pressing Delete.

You'll probably also see that the label has an orange outline. Interface Builder uses orange to indicate an
Auto Layout problem. There are three typical problems that Interface Builder highlights in this way.

e Youdon't have enough constraints to fully specify a view’s position or size.

e The view has constraints that are ambiguous—that is, they don’t uniquely pin down
its size or position.

e The constraints are correct, but the position or size of the view at runtime will not be
the same as it is in Interface Builder.

You can find out more about the problem by clicking the yellow warning triangle in the activity view
to see an explanation in the Issue Navigator (see Figure 3-21, far left). If you do that, you'll see that it says
“Frame for ‘Status Label” will be different at run time”—the third of the problems listed. You can clear this
warning by having Interface Builder move the label to its correct runtime position and give it its configured
size. To do that, look at the bottom-right side of the storyboard editor. You'll see four buttons, as shown in
Figure 3-22.

74

CHAPTER 3 * BASIC USER INTERACTIONS

E3 I o] taf

Vary for Traits

Figure 3-22. Auto Layout buttons at the bottom right of the storyboard editor

You can find out what each of these buttons does by hovering your mouse over them. The leftmost
shaded button, Update Frames, provides a convenience feature for updating after you make changes. The
next button relates to the UIStackView control, which I'll talk about later. Working from left to right, here’s
what the other three buttons are:

e The Align button lets you align the selected view relative to another view. If you click
this button now, you'll see a pop-up that contains various alignment options. One of
them is Horizontal Center in Container, a constraint that you have already applied to
the label from the Document Outline. There is often more than one way to achieve
Auto Layout-related things in Interface Builder. As you progress through this book,
you'll see alternate ways to do the most common Auto Layout tasks.

e The pop-up for the Pin button contains controls that let you set the position of a
view relative to other views, and to apply size constraints. For example, you can set a
constraint that limits the height of one view to be the same as that of another.

e The Resolve Auto Layout Issues button lets you correct layout problems. You can use
menu items in its pop-up to have Interface Builder remove all constraints for a view
(or the entire storyboard), guess which constraints might be missing, add them, and
adjust the frames of one or more views to what they will be at runtime.

You can fix the label’s frame by selecting it in the Document Outline or the storyboard and clicking the
Resolve Auto Layout Issues button. The pop-up for this button has two identical groups of operations
(see Figure 3-23).

75

CHAPTER 3 * BASIC USER INTERACTIONS

Update Frames
Update Constraints

Reset to Suggested Constraints
Clear Constraints

Update Frames

Update Constraints

Add Missing Constraints
Reset to Suggested Constraints
Clear Constraints

B3 B o fad

Figure 3-23. The pop-up for the Resolve Auto Layout Issues button

Tip If none of the items in the pop-up is enabled, click the label in the Document Outline to ensure that it’s
selected and try again.

If you select an operation from the top group, it’s applied only to the currently selected view, whereas
operations from the bottom group are applied to all the views in the view controller. In this case, you just
need to fix the frame for one label, so click Update Frames in the top part of the pop-up. When you do
this, both the orange outline and the warning triangle in the activity view disappear because the label now
has the position and size that it will have at runtime. In fact, the label has shrunk to zero width, and it’s
represented in the storyboard by a small, empty square, as shown in Figure 3-24.

¥ [view Controlier Scene
w [} View Controller
Top Laycut Guide
Bottom Layout Guide
v Wiew
| Lett
8 | Right
v [B) Constrains
[status Label.centerX = c...
[status Labeltop = Top L...
& First Responder
[E Exit

Storyboard Entry Point

Figure 3-24. After fixing its frame, the label has shrunk to zero size
76

CHAPTER 3 * BASIC USER INTERACTIONS

It turns out that this is actually what you want to see. Many of the views that UIKit provides, including
UILabel, are capable of having Auto Layout set their size based on their actual content. They do this by
calculating their natural or intrinsic content size. At its intrinsic size, the label is just wide enough and tall
enough to completely surround the text that it contains. At the moment, this label has no content, so its
intrinsic content size really should be zero along both axes. When you run the application and click one of
the buttons, the label’s text is set and its intrinsic content size changes. When that happens, Auto Layout will
resize the label automatically so that you can see all of the text.

Now that you've taken care of the label, you'll fix the positions of the two buttons. Select the Left button
on the storyboard and click the Align button at the bottom right of the storyboard editor (the second button
in Figure 3-22, counting from the left). You want the button to be vertically centered, so select Vertical Center
in Container in the pop-up and then click Add 1 Constraint (see Figure 3-25).

Add New Alignment Constraints

@ Horizontally in Container
€3 vertically in Container

Update Frames | None

Add 1 Constraint

B3 & o] tad

Figure 3-25. Using the Align pop-up to vertically center a view

7

CHAPTER 3 * BASIC USER INTERACTIONS

You need to apply the same constraint to the Right button, so select it and repeat the process. While
you were doing this, Interface Builder found a couple of new issues, indicated by the orange outlines in the
storyboard and the warning triangle in the activity view. Click the triangle to see the reasons for the warnings
in the Issue Navigator, as shown in Figure 3-26.

C EON TN 2 #% ButtonFun) i iPho
B2 Qi © = 8 |8 (<
GG Runtime va!

v

v /A ButtonFun 2 issues
v Ambiguous Layout

Horizontal position is ambiguous
for "Left".
Main.storyboard

Horizontal position is ambiguous
for "Right".
Main.storyboard

Figure 3-26. Interface Builder warnings for missing constraints

Interface Builder warns you that the horizontal positions of both buttons are ambiguous. In fact, since
you haven’t yet set any constraint to control the buttons’ horizontal positions, this should not be a surprise.

Note While setting Auto Layout constraints, it is normal for warnings like this to appear. You should use
them to help you set a complete set of constraints. You should have no warnings once you have completed the
layout process. Most of the examples in this book have instructions for setting layout constraints. While you
are adding those constraints, you will usually encounter warnings, but don’t be concerned unless you still have
warnings when you have completed all of the steps. In that case, you missed a step, you performed a step
incorrectly, or possibly there is an error in the book. In the latter case, please let me know by submitting an
erratum on the book’s page at www.apress.com.

You want the Left button to be a fixed distance from the left side of its parent view and the Right button
to be the same distance from the right side of that view. You can set those constraints from the pop-up for
the Pin button (the one to the right of the Align button in Figure 3-22). Select the Left button and click the
Pin button to open its pop-up. At the top of the pop-up, you'll find four input fields connected to a small
square by orange dashed lines, as shown on the left in Figure 3-27. The small square represents the button
that you are constraining. The four input fields let you set the distances between the button and its nearest
neighbors above it, below it, to its left, and to its right. A dashed line indicates that no constraint yet exists.
In the case of the Left button, you want to set a fixed distance between it and the left side of its parent view,
so click the dashed orange line to the left of the square. When you do this, it becomes a solid orange line
indicating that there is now a constraint to apply. Next, enter 32 in the left input field to set the distance from
the Left button to its parent view.

78

http://www.apress.com/

CHAPTER 3 * BASIC USER INTERACTIONS

Add New Constraints

298 ot
39 - | 264 =
oo EE] -
I Spacing to nearest neighbor
j Constrain to margins
o—o—0
Width 30 .
Height 0 .
B
@
(&) Aspect Ratio
g3 Leading Edges
(=] g Edg

Update Frames | Nong

Figure 3-27. Using the Pin pop-up to set the horizontal position of a view

To fix the position of the Right button, select it, click the Pin button, click the orange dashed line to the
right of the square (since you are pinning this button to the right side of its parent view), enter 32 in the input
field, and click Add 1 Constraint.

You have now applied all the constraints that you need, but there may still be warnings in the activity
view. If you investigate, you'll see that the warnings are because the buttons are not in their correct runtime
locations. To fix that, you'll use the Resolve Auto Layout Issues button again. Click the button (it's the
rightmost one) to open its pop-up and then click Update Frames from the bottom group of options. You use
the option from the bottom group because you need the frames of all the views in the view controller to be
adjusted.

Tip You may find that none of the options in the top group is available. If this is the case, select the View
Controller icon in the Document Outline and try again.

The warnings should now go away, and your layout is finally complete. Run the application on an
iPhone simulator. You'll see a result that’s almost like Figure 3-1 at the beginning of this chapter. When you
tap the Right button, this text should appear: Right button pressed. If you then tap the Left button, the label
will change to Left button pressed. Run the example on an iPad simulator, and you'll find that the layout still
works, although the buttons are farther apart because of the wider screen. That’s the power of Auto Layout.

Tip When running the application on simulated devices with large screens, you may find that you can’t
see the whole screen at once. You can fix this by selecting Window » Scale in the i0S simulator menu and
choosing a scale that’s appropriate for the screen you’re using.

79

CHAPTER 3 * BASIC USER INTERACTIONS

If you look back at Figure 3-1, you'll see that one thing is missing. The screenshot of the end result
displays the name of the chosen button in bold text; however, what you've made just shows a plain string.
You'll bring on the boldness using the NSAttributedString class in just a second; first let’s look at another
useful feature of Xcode—layout previews.

Previewing Layout

Return to Xcode, select Main.storyboard, and then open the Assistant Editor if it’s not already showing
(refer to Figure 3-6 if you need a reminder of how to do this). At the left of the jump bar at the top of the
Assistant Editor, you'll see that the current selection is Automatic (unless you changed it to Manual to select
the file for the Assistant Editor to display). Click to open the pop-up for this segment of the jump bar, and
you'll see several options, the last of which is Preview. When you hover the cursor over Preview, a menu
containing the name of the application’s storyboard will appear. Click it to open the storyboard in the
Preview Editor.

When the Preview Editor opens, you'll see the application as it appears on an iPhone in portrait mode.
This is just a preview, so it won’t respond to button clicks and, as a result, you won't see the label. If you
move your mouse over the area just below the preview, where it says iPhone 6s, a control will appear that
will let you rotate the phone into landscape mode. You can see the control on the left of Figure 3-28 and the
result of clicking it to rotate the phone.

A ButtonFun | il Phona 7 ButtoriFun | Bl ButicnFun: Succeeded | Today ot 12:24 P P S [ell=]
B o E B < = Butionfun DuatonFun Main_ yboad Maln storyboard (Dase) © NoSelection ¢ 4 > | BH ¢ & Praview Main storyboard (Preview) - 4
¥ [View Corteoller Scena a

v () view Controlier
Top Layout Guide
[Botom Layowt Gaice
v [view
[B]Len ® B
6] figh
[L] Stasus Lobal
v [#] Constrairs
(B et nading = eacingMa
B et centery « centery
B righ.contery = conter
ralkngMargin = Rightra...
B starwe abei contorX = ¢
I8 stacus Labeitop = Top L
T Fiest Respondar
B ek

Storyboard Entry Point

yooard

Phoce 7| Landscaps

oEl 0 View as: iPhona 7 («C +R) B M k| + Eng

Figure 3-28. Previewing the layout of the iPhone in landscape mode

80

CHAPTER 3 * BASIC USER INTERACTIONS

Using Auto Layout, when you rotate the phone, the buttons move so that they remain vertically centered
and the same distance away from the sides of the device as in portrait orientation. If the label were visible,
you would see that it is in the correct position as well.

You can also use the Preview Assistant to see what happens when you run the application on a different
device. At the bottom left of the Preview Assistant (and in Figure 3-28), you'll see a + icon. Click this to open
alist of devices and then select iPhone SE to add the new preview to the Preview Assistant. If you still can’t
see everything, you can zoom the Preview Assistant in a couple of different ways. The easiest is to double-
click the Preview Assistant pane—this toggles between a full-size view and a much smaller view. If you'd
like more control over the zoom level, you can use a pinch gesture on your trackpad (unfortunately, this is
not supported on the magic mouse, at least not at the time of writing). Figure 3-29 shows the two iPhone
previews, zoomed out to fit in the space available on my screen. Once again, Auto Layout has arranged for
the buttons to be in the correct locations. Rotate the iPhone SE preview to see that the layout also works in
landscape mode.

W iProne 7 ButtonFun | Build ButicnFun: Sueceeded | Today at 12:24 PM 2 E o <00 &8
B < 5 ButionFun ButicaFun Main.__yboard Main storyboard (Base] | Mo Selection € 0 > | B < & Proview Main storybaard (Preview] B+ ox
¥ [View Controlier Scene -]

w () View Cantroller
T Top Layout Guide
| Bottom Layout Guide
v [View
B Lel ® ®
A Right
L Suatus Labe!
v &) Consraints
(B8 Lt seading = leadingMa
B Lot contery = centary
B rightcortery = cortery
(28 wrailingMargin = Right sra_
[Status LabolconterX = ¢
[5tatus Lobeitep = Top L.
7 First Respondor
Eos

Storypoard Entry Point

] View as: iPhone 7 [« =R) Bl kad | English

Figure 3-29. Previewing layouts on two devices at the same time

Note You can zoom the preview size in the Assistant Editor by clicking in a blank area and then using two
fingers to zoom in or out using the pinch gesture.

81

CHAPTER 3 * BASIC USER INTERACTIONS

Changing the Text Style

The NSAttributedString class lets you attach formatting information, such as fonts and paragraph
alignment, to a string. This metadata can be applied to an entire string, or different attributes can be applied
to different parts. If you think about the ways that formatting can be applied to pieces of text in a word
processor, that’s basically the model for how NSAttributedString works. Most of the main UIKit controls
let you use attributed strings. In the case of a UILabel like the one you have here, it’s as simple as creating an
attributed string and then passing it to the label via its attributedText property.

So, select ViewController.swift and update the buttonPressed() method, as shown in Listing 3-8.

Listing 3-8. Updated buttonPressed() Method to Add Bold Font Characteristic

import UIKit
class ViewController: UIViewController {
@IBOutlet weak var statuslLabel: UILabel!

@IBAction func buttonPressed(sender: UIButton) {
let title = sender.title(for: .selected)!
let text = "\(title) button pressed"
let styledText = NSMutableAttributedString(string: text)
let attributes = [
NSFontAttributeName:
UIFont.boldSystemFont(ofSize: statusLabel.font.pointSize)
]
let nameRange = (text as NSString).range(of: title)
styledText.setAttributes(attributes, range: nameRange)

statuslLabel.attributedText = styledText

The first thing the new code does is create an attributed string—specifically, an NSMutableAttributedString
instance—based on the string you are going to display. You need a mutable attributed string here because you
want to change its attributes.

Next, you create a dictionary to hold the attributes you want to apply to your string. You have just one
attribute right now, so this dictionary contains a single key-value pair. The key, NSFontAttributeName, lets
you specify a font for a portion of an attributed string. The value you pass in is the bold system font of the
same size as the font currently used by the label. Specifying the font this way is more flexible in the long run
than specifying a font by name since you know that the system will always have a reasonable idea of what to
use for a bold font.

Next, you ask your text string to give you the range (consisting of a start index and a length) of the
substring where your title is found. You use the range to apply the attributes to the part of the attributed
string that corresponds to the title and pass it off to the label. Let’s take a closer look at the line that locates
the title string:

let nameRange = (text as NSString).range(of: title)

Notice that the text variable is cast from the Swift type String to the Core Foundation type NSString.
That’s necessary because both String and NSString have methods called range(of: String). You need
to call the NSString method to get the range as an NSRange object, since that’s what the setAttributes()
method on the next line expects.

82

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 * BASIC USER INTERACTIONS

Now you can hit the Run button. You'll see that the app shows the name of the clicked button in bold
text, as shown in Figure 3-1.

Examining the Application Delegate

Now that your application works, let’s take a minute to look through the source code file you have not yet
examined—AppDelegate.swift. This file implements your application delegate.

Cocoa Touch makes extensive use of delegates, which are objects that take responsibility for
doing certain tasks on behalf of another object. The application delegate lets you do things at certain
predefined times on behalf of the UTApplication class. Every iOS application has exactly one instance
of UTApplication, which is responsible for the application’s run loop and handles application-level
functionality, such as routing input to the appropriate controller class. UIApplication is a standard part of
the UIKit; it does its job mostly behind the scenes, so you generally don’t need to worry about it.

At certain well-defined times during an application’s execution, UIApplication calls specific
methods on its delegate, if the delegate exists and implements the method. For example, if you have
code that needs to be executed just before your program quits, you would implement the method
applicationWillTerminate() in your application delegate and put your termination code there. This type
of delegation allows your application to implement behavior without needing to subclass UIApplication
or, indeed, without needing to know anything about the inner workings of UIApplication. All the Xcode
templates create an application delegate for you and arrange for it to be linked to the UIApplication object
when the application launches.

Click AppDelegate.swift in the Project Navigator to see the stub application delegate that the project
template provides. The first couple of lines should look like that shown in Listing 3-9.

Listing 3-9. Application Delegate Initial Code
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

The code highlighted in bold indicates that this class conforms to a protocol called UIApplication
Delegate. Hold down the ~\-key. Your cursor should turn into crosshairs. Move your cursor so that it
is over the word UIApplicationDelegate. Your cursor will turn into a question mark, and the word
UIApplicationDelegate will be highlighted, as if it were a link in a browser (see Figure 3-30).

import UIKit

1 @IApplicationMain
2 class AppDelegate: UIResponder, UIApplication®plegate {

var window: UIWindow?

Figure 3-30. When you hold down the ~_ key (the Option key) in Xcode and point at a symbol in your code,
the symbol is highlighted and your cursor changes into a pointing hand with a question mark.

83

CHAPTER 3 " BASIC USER INTERACTIONS

With the ~\ key still held down, click this link. A small pop-up window will open, showing a brief
overview of the UTApplicationDelegate protocol (see Figure 3-31).

: Anbﬁelégate': UIResponder

protocol UIApplicationDelegate : NSObjectProtocol

The UIApplicationDelegate protocol defines methods that are called
by the singleton UlApplication object in response to important events in
the lifetime of your app.

The app delegate works alongside the app object to ensure your app
interacts properly with the system and with other apps. Specifically, the
methods of the app delegate give you a chance to respond to important
changes. For example, you use the methods of the app delegate to
respond to state transitions, such as when your app moves from
foreground to background execution, and to respond to incoming
notifications. In many cases, the methods of the app delegate are the
only way to receive these important notifications.

Xcode provides an app delegate class for every new project, so you do
not need to define one yourself initially. When your app launches, UIKit
automatically creates an instance of the app delegate class provided by
Xcode and uses it to execute the first bits of custom code in your app.
All you have to do is take the class that Xcode provides and add your
custom code.

The app delegate is effectively the root object of your app. Like the
UIApplication object itself, the app delegate is a singleton object and
is always present at runtime. Although the UIApplication object does
most of the underlying work to manage the app, you decide your app’s
overall behavior by providing appropriate implementations of the app
delegate’s methods. Although most methods of this protocol are
optional, you should implement most or all of them.

The app delegate performs several crucial roles:

Figure 3-31. When you ~:-clicked UlApplicationDelegate from within your source code, Xcode popped up
this window, called the Quick Help panel, which describes the protocol

Scrolling the pop-up to the bottom, you'll find two links (see Figure 3-32).

ML IR I D I IS G TR YIS M A e

For more information about the role of the app delegate and how it fits
into the app architecture, see App Programming Guide for iOS. For more
information about the UIApplication singleton class, see
UlApplication.

iOS (8.0 and later), tvOS (9.0 and later)
UIKit

Protocol Reference

Figure 3-32. Links to additional information about the selected item

84

CHAPTER 3 * BASIC USER INTERACTIONS

Notice the two links at the bottom of this new pop-up documentation window; click the More link to
view the full documentation for this symbol or click the Declared In link to view the symbol’s definition in a
header file. This same trick works with class and protocol names, as well as method names displayed in the
editor pane. Just Option-click a word, and Xcode searches for that word in the documentation browser.

Knowing how to look up things quickly in the documentation is definitely worthwhile, but looking
at the definition of this protocol is perhaps more important. Here’s where you'll find which methods the
application delegate can implement and when those methods will be called. It's probably worth your time to
read the descriptions of these methods.

Back in the Project Navigator, return to AppDelegate. swift to see the implementation of the
application delegate. It should look something like Listing 3-10.

Listing 3-10. The AppDelegate.swift File
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

// Override point for customization after application launch.

return true

}

func applicationWillResignActive(_ application: UIApplication) {
// Sent when the application is about to move from active to inactive state. This
can occur for certain types of temporary interruptions (such as an incoming phone
call or SMS message) or when the user quits the application and it begins the
transition to the background state.
// Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL
ES frame rates. Games should use this method to pause the game.

}

func applicationDidEnterBackground(_ application: UIApplication) {
// Use this method to release shared resources, save user data, invalidate timers,
and store enough application state information to restore your application to its
current state in case it is terminated later.
// If your application supports background execution, this method is called instead
of applicationWillTerminate: when the user quits.

}

func applicationWillEnterForeground(_ application: UIApplication) {
// Called as part of the transition from the background to the active state; here
you can undo many of the changes made on entering the background.

85

CHAPTER 3 BASIC USER INTERACTIONS

func applicationDidBecomeActive(application: UIApplication) {
// Restart any tasks that were paused (or not yet started) while the application was
inactive. If the application was previously in the background, optionally refresh
the user interface.

}

func applicationWillTerminate(application: UIApplication) {
// Called when the application is about to terminate. Save data if appropriate. See
also applicationDidEnterBackground:.

At the top of the file, you can see that your application delegate has implemented one of those protocol
methods covered in the documentation, called application(_: didFinishLaunchingWithOptions:). As
you can probably guess, this method fires as soon as the application has finished all the setup work and is
ready to start interacting with the user. It is often used to create any objects that need to exist for the entire
lifetime of the running app.

You'll see more of this later in the book, where I'll say a lot more about the role that the delegate plays
in the application life cycle. I just wanted to give you a bit of background on application delegates and show
how this all ties together before closing this chapter.

Summary

This chapter’s simple application introduced you to MVC, creating and connecting outlets and actions,
implementing view controllers, and using application delegates. You learned how to trigger action methods
when a button is tapped. And you saw how to change the text of a label at runtime. Although you built a
simple application, the basic concepts used are the same as those that underlie the use of all controls under
iOS, not just buttons. In fact, the way you used buttons and labels in this chapter is pretty much the way that
you will implement and interact with most of the standard controls under iOS.

It’s critical to understand everything you did in this chapter and why you did it. If you don’t, make sure
to review the parts that you don’t fully understand. If things are not completely clear, you will only get more
confused as you get into creating more complex interfaces later in this book.

In the next chapter, you'll take a look at some of the other standard iOS controls. You'll also learn how to
use alerts to notify the user of important happenings and how to use action sheets to indicate that the user
needs to make a choice before proceeding.

86

CHAPTER 4

Adding Intermediate-Level User
Interactions

In Chapter 3, I discussed MVC, and you built an application using it. You learned about outlets and actions,
and you used them to tie a button to a text label. In this chapter, you'll build an application with a broader
set of controls to increase your familiarity with developing a user interface, like the one shown in Figure 4-1.

Apress’

iPhone 7 - i0S 11.0

Figure 4-1. This chapter’s project increases your Ul skills by adding several new controls to the mix

© Molly K. Maskrey 2017 87
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_4

http://www.sigsoft.org/SEN/parnas.html
http://dx.doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

You'll implement an image view, a slider, two different text fields, a segmented control, a couple of
switches, and an iOS button that looks like buttons did before iOS 7. You'll see how to set and retrieve the
values of various controls. You'll learn how to use action sheets to force the user to make a choice and
how to use alerts to give the user important feedback. You'll also learn about control states and the use of
stretchable images to change the appearance of buttons.

Because this chapter’s application uses so many different user interface items, you're going to work
a little differently than you did in the previous two chapters. You'll break your application into pieces,
implementing one piece at a time. Bouncing back and forth between Xcode and the iOS simulator, you'll test
each piece before you move on to the next. Dividing the process of building a complex interface into smaller
components makes it much less intimidating, as well as more like the actual process you'll go through
when building your own applications. This code-compile-debug cycle makes up a large part of a software
developer’s typical day.

Your app uses only a single view and controller, but as you can see in Figure 4-1, there’s a lot more
complexity in this one view.

The logo at the top of the screen exists in an image view, which, in this app, does nothing more than
display a static image. I placed two text fields below the logo: one allowing the entry of alphanumeric text
and the other permitting only numbers. A slider sits just below the text fields. As the user moves the slider,
the value of the label next to it changes so that it always reflects the slider’s current value.

Below the slider are a segmented control and two switches. The segmented control toggles between
two different types of controls in the space underneath it. When the application first launches, two switches
appear below the segmented control. Changing the value of either switch causes the other one to change its
value to match. While this isn’t something you would likely do in a real application, it demonstrates how to
change the value of a control programmatically and how Cocoa Touch animates certain actions without you
needing to do any work.

Figure 4-2 shows what happens when the user taps the segmented control. The switches disappear and
are replaced by a button.

88

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Apress:

Switches TGO

iPhone 7 - 108 11.0

Figure 4-2. Tapping the segmented controller on the left side causes a pair of switches to be displayed. Tapping
the right side causes a button to be displayed, as shown here.

89

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Pressing Do Something causes an action sheet to pop up, asking if the user really meant to tap the
button (see Figure 4-3). Notice how the action sheet is now highlighted and in the foreground, while the
other controls become dimmed.

Yes, I'm sure!

No way!

iPhone 7 - i0

Figure 4-3. An action sheet requests a response from the user

90

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

This provides a standard way of responding to input that is potentially dangerous or that could have
significant repercussions, and it gives the user a chance to stop potential problems from happening. If Yes,
I'm Sure! is selected, the application displays an alert, letting the user know that everything is OK
(see Figure 4-4).

Something Was Done

You can breathe easy, everything
went OK.

Phew!

iPhone 7 - i0S

Figure 4-4. Alerts notify the user when important things happen. This app uses one to confirm that everything
went OK.

91

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Understanding Active, Static, and Passive Controls

Interface controls operate in three basic modes: active, static (or inactive), and passive. The buttons that
you used in the previous chapter provide classic examples of active controls. You push them, and something
happens—usually, a piece of Swift code you've written executes.

Although many of the controls you use directly trigger action methods, not all controls work this
way. The image view that you'll be implementing in this does nothing other than show an image in your
application; however, it can be configured to trigger action methods—here, the user doesn’t do anything
with it. Labels and image controls often work in this manner.

Some controls operate in a passive mode, simply holding on to a value that the user has entered until
you're ready for it. These controls don’t trigger action methods, but the user can interact with them and
change their values. A classic example of a passive control is a text field on a web page. Although it’s possible
to create validation code that fires when the user tabs out of a field, the vast majority of web page text fields
simply contain data that’s submitted to the server when the user clicks the submit button. The text fields
themselves usually don’t cause any code to fire, but when the submit button is clicked, the text field’s data
gets passed to the associated Swift code.

On an iOS device, most of the available controls function in all three modes, and nearly all of them
can function in more than one mode, depending on your needs. All iOS controls exist as subclasses of
UIControl, which makes them capable of triggering action methods. Many controls can be used passively,
and all of them can be made inactive or invisible. For example, using one control might trigger another
inactive control to become active. However, some controls, such as buttons, really don’t serve much purpose
unless they are used in an active manner to trigger code.

Some behavioral differences exist between controls on iOS and those on your Mac. Here are a few examples:

e Because of the multitouch interface, all iOS controls can trigger multiple actions,
depending on how they are touched. The user might trigger a different action with a
finger swipe across the control than with just a tap.

e You could have one action fire when the user presses down on a button and a
separate action fire when the finger is lifted off the button.

e You could have a single control call multiple action methods on a single event. For
example, you could have two different action methods fire on the Touch Up Inside
event when the user’s finger is lifted after touching that button.

Note Although controls can trigger multiple methods on i0S, the vast majority of the time you're better
off implementing a single action method that does what you need for a particular use of a control. You won't
usually need this capability, but it’s good to keep it in mind when working in Interface Builder. Connecting an
event to an action in Interface Builder does not disconnect a previously connected action from the same control!
This can lead to surprising misbehaviors in your app, where a control will trigger multiple action methods.
Keep an eye open when retargeting an event in Interface Builder, and make sure you remove old actions before
connecting to new ones.

Another major difference between iOS and the Mac stems from the fact that, normally, iOS devices do
not have a physical keyboard. The standard iOS software keyboard is actually just a view filled with a series
of button controls that are managed for you by the system. Your code will likely never directly interact with
the iOS keyboard.

92

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Creating the ControlFun Application

Open Xcode and create a new project called ControlFun. You'll use the Single View App template again, so
create the project just as you did in the previous two chapters.

Now that you've created your project, let’s get the image you'll use in your image view. The image must
be imported into Xcode before it will be available for use inside Interface Builder, so let’s do that now. You'll
find three files in the 04 - Logos folder in the example source code archive, named apress_logo.png,
apress_logo@2x.png, and apress_logo@3x.png, which are a standard version and two Retina versions of the
same image. You're going to add all three of these to the new project’s asset catalog and let the app decide
which of them to use at runtime. If you'd rather use a set of images of your own choosing, make sure they are
.png images sized correctly for the space available. The small version should be less than 100 pixels tall and
a maximum of 300 pixels wide so that it can fit comfortably at the top of the view on the narrowest iPhone
screen without being resized. The larger ones should be twice and three times the size of the small version,
respectively.

In Xcode, select Assets.xcassets in the Project Navigator; then go to the Logos folder in the Finder and
select all three images. Now drag the images onto the editor area in Xcode and release the mouse. Xcode
uses the image names to figure out that you are adding three versions of an image called apress_logo and
does the rest of the work for you (see Figure 4-5). You'll see that there is now an apress_logo entry in the
left column of the editing area below the ApplIcon entry that you started with. You can now use the name
apress_logo in code or in Interface Builder to refer to this image set and the correct one will be loaded at
runtime.

e b i ContralFun | i Phone 7 ContralFun: Ready | Today at 10:43 AM

BE g asno = 3 B < & controiFun ControiFun | [5] Assets.ucassots | = apress_logo
ContralFun Applcon 3
ControlFun = apeess logo

= AppDelegate switt

.| ViewController switt Apress: Apress Apress:

apress_logo Image

Main. storyboard

[Assets xcassots £ 2
ix 2x I

LaunchScreen storyboard
Info.plist Universal

Products

Figure 4-5. Adding the apress_logo images into the Xcode project

Implementing the Image View and Text Fields

With the image added to your project, your next step is to implement the five interface elements at the top of
the application’s screen: the image view, the two text fields, and the two labels, as shown in Figure 4-6.

93

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Apress

Name:

Number:

Figure 4-6. The image view, labels, and text fields you implement first

Adding the Image View

In the Project Navigator, clickMain.storyboard to open the main storyboard in Interface Builder. You'll see
the familiar white background and a single square view where you can lay out your application’s interface.
Asyou did in the previous chapter, beneath the IB window select iPhone 7 as your “View as” choice.

Note This section below the canvas, which came out with Xcode 8 and is known as the view dimension,
allows you to select how you view the scene you’re working with in your IB canvas.

If the Object Library is not open, select View » Utilities » Show Object Library to open it. Scroll about
one-fourth of the way through the list until you find ImageView (see Figure 4-7) or just type image in the
search field. Remember that the Object Library corresponds to the third icon on top of the Library pane.

«A ContralFun | i IPhone 7 CentrolFun: Roady | Today at 10-06 AM
o B8 < B ContecFun Controifun [l Mains.ryboaed | [l Main.s...(Base} Vigw C..5cene Vigw Controlior View [
¥ [view Controtler Scene Ve
v (L) View Corrolliar Santant &
w [C]] view @ Sem.
[z sate A0a
7B st Respondor
E e Interam
ol Staryboard Entry Point
.
Backgn
Dra
Suste
ol @ i Viewas:iFhone7 (~C Rl — 75% -+ B o kel B8 @

Figure 4-7. The Image View element in Interface Builder’s Object Library
94

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Drag an image view onto the view in the storyboard editor and drop it somewhere near the top of the
view, as shown in Figure 4-8. Don’t worry about exactly positioning yet—you’ll adjust that in the next section.

rolFun ; {ilp iPhone 7 ControlFun: Ready | Today at 10:47 AM
> B |8 < E’, ControlFun ControlFun) i Main..card) [Main..ase) View...cene view...roller) [| view) [] Image View
¥ [7] view Controller Scene
v View Controller
il _.Vigw @ B
|0 | Sate Area
[“1image view
7} First Responder
& Exit
» Storyboard Entry Point)
Lk (u} u]
a o
|
(=} O o
7
@Al |® [0 Viewas:iPhone7 («ChrR) — 75% -+ == ==

Figure 4-8. Adding a UllmageView to your storyboard

With the image view selected, bring up the Attributes Inspector by pressing =3t 4. You should see the
editable options of the ULImageView class. The most important setting for your image view is the topmost
item in the inspector, labeled Image. Click the little arrow to the right of the field to see a pop-up menu that
lists the available images. This list includes any images you added to your project’s assets catalog. Select the
apress_logo image you added earlier, and it should appear in your image view, as shown in Figure 4-9.

95

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

un) @ iPhone 7 ControlFun: Ready | Today at 10:50 AM = @ <0020
= | < [E controiFun ControlFun) [l Main..cerd) [l Main._ase) vigw...cene) () View..oller View apress_logo O e @ 9 0
[View Controller Scene inegeNlew
v (0) View Controller Image|| Bpress_logo_]
¥ [0 view ? B Highlighted 1
0| Safe A —r
a: “Im = State (| Highlighted
oo ._,:nr 55_log Accessibility || Adjusts Image Size
30 First Responder
[exit View
Star ard Entry Point
o v L © — Centont Mode | Scale To Fil]
Semantic | Unspecified]
- Apress: - :
interaction | User Interaction Enabled
5 a & 1 Multiple Touch
Alpha 1
————]
1
Tint | NN | Default |

Drawing [Opaque
Hidden
Ciears Graphics Context
| Clip t0 Bounds
Autoresize Subviews

Stietching o2 ']

DOEeO

| Image View - Displays a single
image, or an animation described by
| aes asray of images.

=l @ O Viewas:iPhone7 («CrR) — 78% EEE 1o tal| B @®ima

Figure 4-9. The image view Attributes Inspector. You selected your image from the Image pop-up at the top of
the inspector, and this populated the image view with your image.

Resizing the Image View

The image you used is not the same size as the image view in which it was placed. Xcode, by default, scales
the image to completely fill its image view. A big clue that this is so is the Mode setting in the Attributes
Inspector, which is set to Scale To Fill. Though you could keep your app this way, it’s generally a good idea

to do any image scaling that’s needed before runtime, as image scaling takes time and processor cycles. In
this case, you don’t want any scaling at all, so let’s resize your image view to the exact size of your image.
Start by changing the Mode attribute to Center, which says that the image should not be scaled and should
be centered in whatever space is assigned to the image view. Now let’s fit the image view to the size of the
image. To do that, make sure the image view is selected so that you can see its outline and resize handles and
then press #= or select Editor » Size to Fit Content in Xcode’s menu. If pressing $= does not work or Size to
Fit Content is grayed out, reselect the image view, drag it a little way to the side, and try again.

96

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Tip If you encounter difficulty selecting an item in the editing area, you can open the Document Outline
by clicking the small rectangular icon in the lower-left corner. Now, click the item you want selected in the
Document Outline and, sure enough, that item will be selected in the editor.

To get at an object that is nested inside another object, click the disclosure triangle to the left of the enclosing
object to reveal the nested object. In this case, to select the image view, first click the disclosure triangle to the
left of the view. Then, when the image view appears in the Document Outline, click it, and it will be selected in
the editing area.

Now that the image view is resized, let’s move it back to its centered position. You already know how to
do that because you did the same thing in Chapter 3. Drag the image view until it’s horizontally centered,
click the Align icon at the bottom right of the editor area, check the Horizontally in Container check box, and
click Add 1 Constraint.

You may notice that Interface Builder shows some solid lines running from an edge of one view to an
edge of its superview (not to be confused with the dashed blue lines that are shown while you're dragging
things around) or from one side of the superview to another. These solid lines represent the constraints that
you have added. If you select the constraint that you just added by clicking it, you'll see that it becomes a
solid orange line that runs the entire height of the main view, as shown in Figure 4-10.

Figure 4-10. Once you have resized your image view to fit the size of its image, you drag it into position using
the view’s blue guidelines and create a constraint to keep it centered

97

http://dx.doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

The solid line indicates that you have selected the constraint. The fact that it is orange means that the
position or size of the image view is not yet fully specified and so you need to add more constraints. You
can find out what the problem is by clicking the orange triangle in the activity view. In this case, Xcode is
telling you that you need to set a vertical constraint for the image view. You can either do so now, using the
techniques you saw in Chapter 3, or wait until you fix all the constraints for your layout later in the chapter.

Tip Dragging and resizing views in Interface Builder can be tricky. Don’t forget about the Document
Outline, which you can open by clicking the small rectangular icon at the bottom left of the editing area. When
it comes to resizing, hold down the » key, and Interface Builder will draw some helpful red lines on the screen
that make it much easier to get a sense of the image view’s position. This trick won’t work with dragging since
the » key will prompt Interface Builder to make a copy of the dragged object. However, if you select Editor
» Canvas » Show Bounds Rectangles, Interface Builder will draw a line around all of your interface items,
making them easier to see. You can turn off those lines by selecting Show Bounds Rectangles a second time.

Setting View Attributes

Select your image view and then switch your attention back over to the Attributes Inspector. Below the Image
View section in the inspector is the View section. As you may have deduced, the pattern here is that the
attributes that are specific to the selected object are shown at the top, followed by more general attributes
that apply to the selected object’s parent class. In this case, the parent class of UIImageView is UIView, so the
next section is simply labeled View, and it contains attributes that any view class has.

Using the Mode Attribute

The first option in the view inspector is a pop-up menu labeled Mode. The Mode menu defines how the view
will display its content. As you've already seen, in the case of the image view, this determines how the image
will be aligned inside the view and whether it will be scaled to fit. Feel free to try various options for apress_
logo, but remember to reset it to Center when you have finished.

As noted earlier, choosing any option that causes the image to scale will potentially add processing
overhead at runtime, so it’s best to avoid that whenever possible and size your images correctly before you
import them. If you want to display the same image at multiple sizes, generally it’s better to have multiple copies
of the image at different sizes in your project, rather than force the iOS device to do scaling at runtime. Of course,
there are times when scaling at runtime is appropriate and even unavoidable; this is a guideline, not a rule.

Using the Semantic Attribute

Immediately below Mode, you'll find the Semantic attribute. Added in iOS 9, this attribute lets you specify
how the view should be rendered in a locale that uses a right-to-left reading order, such as Hebrew or Arabic.
By default, the view is unspecified, but you can change this by selecting an appropriate value here. Refer to
the description of the semanticContentAttribute property in the Xcode documentation for the UIView class
for more details.

98

http://dx.doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Using Tag

The next item, Tag, is worth mentioning, though you won’t be using it in this chapter. All subclasses of UIView,
including all views and controls, have a property called tag, which is just a numeric value that you can set
here or in code. The tag is designed for your use—the system will never set or change its value. If you assign a
tag value to a control or view, you can be sure that the tag will always have that value unless you change it.

Tags provide an easy, language-independent way of identifying objects in your interface. Let’s say that
you have five different buttons, each with a different label, and you want to use a single action method to
handle all five buttons. In that case, you probably need some way to differentiate among the buttons when
your action method is called. Unlike labels, tags will never change, so if you set a tag value here in Interface
Builder, you can use it as a fast and reliable way to check which control was passed into an action method by
using the sender argument.

Using Interaction Check Boxes

The two check boxes in the Interaction section have to do with user interaction. The first check box, User
Interaction Enabled, specifies whether the user can do anything at all with this object. For most controls,
this box will be selected because, if it’s not, the control will never be able to trigger action methods. However,
image views default to unchecked because they are often used just for the display of static information. Since
all you're doing here is displaying a picture on the screen, there is no need to turn this on.

The second check box is Multiple Touch, and it determines whether this control is capable of receiving
multitouch events. Multitouch events allow complex gestures such as the pinch gesture used to zoom in on
many iOS applications. Since this image view doesn’t accept user interaction at all, there’s no reason to turn
on multitouch events, so leave this check box deselected.

Using the Alpha Value

The next item in the inspector is Alpha. Be careful when using Alpha as it defines how transparent your view
is—how much of what’s beneath it shows through. It’s defined as a floating-point number between 0.0 and
1.0, where 0.0 is fully transparent and 1.0 is completely opaque. If you use any value less than 1.0, your iOS
device will draw this view with some amount of transparency so that any objects behind it show through. With
avalue of less than 1.0, even if there’s nothing interesting behind your view, you will cause your application to
spend processor cycles compositing your partially transparent view over the emptiness behind it. Therefore,
don’t set Alpha to anything other than 1.0 unless you have a very good reason for doing so.

Using Background

The next item down, Background, determines the color of the background for the view. For image views,
this matters only when an image doesn’t fill its view and is letterboxed or when parts of the image are
transparent. Since you've sized your view to perfectly match your image, this setting will have no visible
effect, so you can leave it alone.

Using Tint

The next control lets you specify a tint color for the selected view. This is a color that some views use when
drawing themselves. The segmented control that you'll use later in this chapter colors itself using its tint
color, but the UIImageView does not.

99

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Drawing Check Boxes

Below Tint you'll find a series of Drawing check boxes. The first one is labeled Opaque. That should be
checked by default; if not, click to select that check box. This tells iOS that nothing behind your view needs to
be drawn and allows iOS’s drawing methods to do some optimizations that speed up drawing.

You might be wondering why you need to select the Opaque check box when you've already set the value
of Alpha to 1.0 to indicate no transparency. The Alpha value applies to the parts of the image to be drawn; if
an image doesn’t completely fill the image view or there are holes in the image thanks to an alpha channel,
the objects below will still show through, regardless of the value set in Alpha. By selecting Opaque, you are
telling iOS that nothing behind this view ever needs to be drawn, no matter what, so it does not need to waste
processing time with anything behind your object. You can safely select the Opaque check box because you
selected Size To Fit earlier, which caused the image view to match the size of the image it contains.

The Hidden check box does exactly what you think it does. If it’s selected, the user can'’t see this object.
Hiding an object can be useful at times, as you'll see later in this chapter when you hide your switches and
button; however, the vast majority of the time—including now—you want this to remain unchecked.

The next check box, Clears Graphics Context, will rarely need to be selected. When it is selected, i0S
will draw the entire area covered by the object in transparent black before it actually draws the object. Again,
it should be turned off for the sake of performance and because it’s rarely needed. Make sure this check box
is deselected (it is likely selected by default).

Clip Subviews is an interesting option. If your view contains subviews and those subviews are not
completely contained within the bounds of its parent view, this check box determines how the subviews will
be drawn. If Clip Subviews is selected, only the portions of subviews that lie within the bounds of the parent
will be drawn. If Clip Subviews is deselected, subviews will be drawn completely, even if they lie outside the
bounds of the parent.

Clip Subviews is deselected by default. It might seem that the default behavior should be the opposite
of what it actually is so that child views won't be able to draw all over the place. However, calculating the
clipping area and displaying only part of the subviews is a somewhat costly operation, mathematically
speaking; most of the time, a subview won't lie outside the bounds of its superview. You can turn on Clip
Subviews if you really need it for some reason, but it is off by default for the sake of performance.

The last check box in this section, Autoresize Subviews, tells iOS to resize any subviews if this view
is resized. Leave this selected, but since you don’t allow your view to be resized, it really does not matter
whether it’s selected or not.

Stretching

Next you'll see a section simply labeled Stretching, which refers to the form of rectangular views being
redrawn as they're resized on the screen. The idea is that, rather than the entire content of a view being
stretched uniformly, you can keep the outer edges of a view, such as the beveled edge of a button, looking
the same even as the center portion stretches.

The four floating-point values set here let you declare which portion of the rectangle is stretchable by
specifying a point at the upper-left corner of the view and the size of the stretchable area, all in the form of a
number between 0.0 and 1.0 that represents a portion of the overall view size. For example, if you wanted to
keep 10 percent of each edge not stretchable, you would specify 0.1 for both X and Y and specify 0.8 for both
Width and Height. In this case, you're going to leave the default values of 0.0 for X and Y and 1.0 for Width
and Height. Most of the time, you will not change these values.

Adding the Text Fields

With your image view finished, it’s time to bring on the text fields. Grab a text field from the Object Library
and drag it onto the storyboard. Use the blue guidelines to align it with the right margin and place it a little
way below the image view, as shown in Figure 4-11.

100

iew...r Scene) ([View...ntroller) | View) F | Round Style Text Field
@ =
-
APIESs
o o
N\
d
— 75% EA & o] tad

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

he= ¥ B 6

Text Field

Text Plain
Color W Default
+ Font System 14.0 Mz
wignment = = = = [

Placeholder
+ Background n
¢ Disabled
Border Style .1 [O E
Clear Button Never appears

Clear when editing begins

Min Fant Size 172

Adjust to Fit

Capitalization MNone
Correction Default
Spell Checking Default
Keyboard Type Default
Appearance Default
Return Key Default

~ Auto-enable Return Key

Secure Text Entry
O one
~— Text Field - Displays editable text
Text] and sends an action message to a

- target object when Return is tapped.

Text View - Displays multiple lines
of editable text and sends an action
message to a target object when Re...

El

B ®text)

Figure 4-11. Drag a text field out of the library and drop it onto the view, just below the image view and

touching the right side’s blue guideline

Next, grab a label from the library and then drag that over so it is aligned with the left margin of the
view and vertically with the text field you placed earlier. Notice that multiple blue guidelines will pop up as
you move the label around, making it easy to align the label to the text field using the top, bottom, or middle
of the label. You're going to align the label and the text field using the baseline, which shows up as you're
dragging around the middle of those guidelines (see Figure 4-12).

101

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

BE < & cortrol Fun Conteal Fun) [l Main.storyboard) [l Main.staryboard (Base]) [5] View Cantroller Scene

View Controller View
w [view Controller Scene

¥ [View Controlier

Top Layout Guide
Bottom Layout Gulde
v View
spress_logo 2 B
F Round Style Text Field T
L Label
» [@] constraints
@ First Responder
B ext
+ Steryboard Entry Point

Apress'

Figure 4-12. Aligning the label and text field using the baseline guide

Double-click the label you just dropped, change it to read Name: instead of Label (note the colon
character at the end of the label), and press the Enter key to commit your changes.

Next, drag another text field from the library to the view and use the guidelines to place it below the first
text field, as shown in Figure 4-13.

102

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

APIess

Name:

Figure 4-13. Adding the second text field

Once you've added the second text field, grab another label from the library and place it on the left side,
below the existing label. Again, use the middle blue guideline to align your new label with the second text
field. Double-click the new label and change it to read Number: (again, don’t forget the colon).

Now, let’s expand the size of the bottom text field to the left, so it is up against the right side of the label. Why
start with the bottom text field? You want the two text fields to be the same size, and the bottom label is longer.

Single-click the bottom text field and drag the left resize dot to the left until a blue guideline appears
to tell you that you are as close as you should ever be to the label, as shown in Figure 4-14. This particular
guideline is somewhat subtle—it’s only as tall as the text field itself, so be sure to look closely.

® B

Apress'

Name:

Number: |

Figure 4-14. Expand the width of the bottom text field

103

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Now, expand the top text field in the same way so that it matches the bottom one in size. Once again, a
blue guideline provides some help, and this one extends all the way down to the other text field, making it
easier to spot.

You're basically finished with the text fields, except for one small detail. Look back at Figure 4-1. Do
you see how the Name: and Number: are right-aligned? Right now, yours are both against the left margin.
To align the right sides of the two labels, click the Name: label, hold down the { (Shift) key, and click the
Number: label so both labels are selected. Next, press “\-384 to bring up the Attributes Inspector and make
sure the Label section is expanded so you can see the label-specific attributes. If it's not expanded, click the
Show button on the right of the header to open it. Now use the Alignment control in the inspector to make
the content of these labels right-justified and then make a constraint to make sure that these two fields are
always the same width by clicking the Pin icon at the bottom of the editing area, checking the Equal Widths
check box in the pop-up that appears, and clicking Add 1 Constraint. At this point, you'll have an orange
warning triangle in the activity view and some layout warnings in the Issue Navigator. Ignore these for
now—you'll fix them later.

When you are finished, this part of the interface should look very much like Figure 4-1. The only
difference is the light-gray text in each text field. You'll add that now. Select the top text field (the one next to
the Name: label) and press “\=3t4 to bring up the Attributes Inspector (see Figure 4-15). The text field is one
of the most complex iOS controls, as well as one of the most commonly used. Let’s look through the settings,
beginning from the top of the inspector. Make sure you've selected the text field and not the label or other
elements.

104

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

h e E ¢ § @

Label
Text Plain
Color HEEEE Default
i Font System 17.0 A
Alignment & = E = -
Lines 112
Behavior £ Enabled
Highlighted

Baseline Align Baselines

Line Breaks Truncate Tail

Autoshrink Fixed Font Size

Tighten Letter Spacing

+ Highlighted NN Defaui_t
+ Shadow [——1 Default

-~

Shadow Offset 0.
Horizontal Vertical

0
-

View
Mode Left

Semantic Unspecified

8l o] o]

o

Tag

Interaction User Interaction Enabled
Multiple Touch

Alpha 1S

+ Background [—————]

1 Tint mEm Nafault
0D o e

Figure 4-15. The inspector for a text field showing the default values

105

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Using Text Field Inspector Settings

In the first section, the Text label is linked to two input fields that give you some control over the text that
will appear in the text field. The upper one is a pop-up button that lets you choose between plain text and
attributed text, which can contain a variety of fonts and other attributes. You used attributed text to add
bold to part of the text in your example in Chapter 3. Let’s leave that pop-up button set to Plain for now.
Immediately below that, you can set a default value for the text field. Whatever you type here will show up in
the text field when your application launches, instead of just a blank space.

After that comes a couple of controls that let you set the font and font color. You'll leave Color at the
default value of black. Note that the Color pop-up is divided into two parts. The right side allows you to
select from a set of preselected colors, and the left side gives you access to a color picker to more precisely
specify your color.

The Font setting is divided into three parts. On the right side is a control that lets you increment or
decrement the text size, one point at a time. The left side allows you to manually edit the font name or size.
You can click the T-in-a-box icon to bring up a pop-up window that lets you set the various font attributes.
You'll leave the font at its default setting of System 14.0 or to whatever size your configuration may be set.

Below these fields are five buttons for controlling the alignment of the text displayed in the field. You'll
leave this setting at the default value of left-aligned (the leftmost button).

Rounding out this first section, Placeholder allows you to specify a bit of text that will be displayed in
gray inside the text field, but only when the field does not have a value. You can use a placeholder instead of
adding a label to the layout (as you did) if space is tight, or you can use it to clarify what the user should type
in this text field. Type the text Type in a name as the placeholder for your currently selected text field and
then hit Enter to commit the change.

The next two fields, Background and Disabled, are used only if you need to customize the appearance of
your text field, which is unnecessary and actually ill-advised the vast majority of the time. Users expect text
fields to look a certain way. You'll leave these set to their defaults.

Next are four buttons labeled Border Style. These allow you to change the way the text field’s edge will
be drawn. The default value (the rightmost button) creates the text field style that users are most accustomed
to seeing for normal text fields in an i0S application. You may want to look at all four different styles, but
when you're finished, put this setting back to the rightmost button.

Below the border setting is a Clear button pop-up button, which lets you choose when the Clear
button should appear. The Clear button is the small X that can appear at the right end of a text field. Clear
buttons are typically used with search fields and other fields where you would be likely to change the value
frequently. They are not typically included on text fields used to persist data, so leave this at the default value
of “Never appears.”

The Clear When Editing Begins check box specifies what happens when the user touches this field. If
this box is checked, any value that was previously in this field will be deleted, and the user will start with an
empty field. If this box is unchecked, the previous value will remain in the field, and the user will be able to
edit it. Leave this deselected.

The next section starts with a control that lets you set the minimum font size that the text field will use
for displaying its text. Leave that at its default value for now. The Adjust to Fit check box specifies whether
the size of the text should shrink if the text field is reduced in size. Adjusting to fit will keep the entire text
visible in the view, even if the text would normally be too big to fit in the allotted space. This check box works
in conjunction with the minimum font size setting. No matter the size of the field, the text will not be resized
below that minimum size. Specifying a minimum size allows you to make sure that the text doesn’t get too
small to be readable.

The next section defines how the keyboard will look and behave when this text field is being used. Since
you're expecting a name, let’s change the Capitalization pop-up to Words. This causes the first letter of every
word to be automatically capitalized, which is what you typically want with names.

The next four pop-ups—Correction, Spell Checking, Keyboard Type, and Appearance—can be left at
their default values. Take a minute to look at each to get a sense of what these settings do.

106

http://dx.doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Next is the Return Key pop-up. The Return key is on the lower right of the virtual keyboard, and its
label changes based on what you're doing. If you are entering text in Safari’s search field, for example, it says
Search. In an application like this one, where the text fields share the screen with other controls, Done is the
right choice. Make that change here.

If the Auto-enable Return Key check box is selected, the Return key is disabled until at least one
character is typed into the text field. Leave this deselected because you want to allow the text field to remain
empty if the user prefers not to enter anything.

The Secure check box specifies whether the characters being typed are displayed in the text field. You
would check this check box if the text field was being used as a password field. Leave it unchecked for your app.

The next section (which you will probably have to scroll down to see) allows you to set control attributes
inherited from UIControl; however, these generally don’t apply to text fields and, with the exception of the
Enabled check box, won't affect the field’s appearance. You want to leave these text fields enabled so that the
user can interact with them. Leave the default settings in this section.

The last section on the inspector, View, should look familiar. It’s identical to the section of the same
name in the Image View Inspector you looked at earlier. These are attributes inherited from the UIView class;
since all controls are subclasses of UIView, they all share this section of attributes. As you did earlier for the
image view, select the Opaque check box and deselect Clears Graphics Context and Clip Subviews—for the
reasons discussed earlier.

Setting the Attributes for the Second Text Field

Next, single-click the lower text field (the one next to the Number: label) in the storyboard and return to the
Attributes Inspector. In the Placeholder field, type Type in a number and make sure Clear When Editing
Begins is deselected. A little farther down, click the Keyboard Type pop-up menu. Since you want the user
to enter only numbers, not letters, select Number Pad. On the iPhone, this ensures that the users will be
presented with a keyboard containing only numbers, meaning they won’t be able to enter alphabetical
characters, symbols, or anything other than numbers. You don’t need to set the Return Key value for

the numeric keypad because that style of keyboard doesn’t have a Return key; therefore, all of the other
inspector settings can stay at the default values. As you did earlier, select the Opaque check box and deselect
Clears Graphics Context and Clip Subviews. On the iPad, selecting Number Pad has the effect of bringing up
a full virtual keyboard in numeric mode when the user activates the text field, but the user can switch back
to alphabetic input. This means that in a real application, you would have to verify that the user actually
entered a valid number when processing the content of the Number field.

Tip If you really want to stop the user from typing anything other than numbers into a text field, you
can do so by creating a class that implements the textView(_ textView: shouldChangeTextInRange:
replacementText text:) method of the UITextViewDelegate protocol and making it the text view’s delegate.
The details are not too complex but are beyond the scope of this book.

Adding Constraints

Before you continue, you need to adjust some layout constraints. When you drag a view into another view
in Interface Builder (as you just did), Xcode doesn’t create any constraints for it automatically. The layout
system requires a complete set of constraints, so when it’s time to compile your code, Xcode generates a
set of default constraints describing the layout. The constraints depend on each object’s position within
its superview; when it’s nearer the left or right edge, it will be pinned to the left or the right, respectively.
Similarly, depending on whether it’s nearer the top or the bottom edge, it will be pinned to the top or the
bottom. If it’s centered in either direction, it typically gets a constraint pinning it to the center.

107

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

To complicate matters further, Xcode may also apply automatic constraints pinning each new object to
one or more of its “sibling” objects within the same superview. This automatic behavior may or may not be
what you want, so normally you're better off creating a complete set of constraints within Interface Builder
before your app is compiled, and in the previous two chapters, you worked through some examples.

Let’s again look at where you're at on this. To see all the constraints that are in play for any particular
view, try selecting it and opening the Size Inspector. If you select either of the text fields, you'll see that the
Size Inspector shows a message claiming that there are no constraints for the selected view. In fact, this GUI
you've been building has only the constraints that you applied earlier, binding the horizontal centers of the
image view and the container view and making the labels equally sized. Click the image view and the labels
to see these constraints in the inspector.

What you really want is a full set of constraints to tell the layout system precisely how to handle all of
your views and controls, just as it would get at compile time. Fortunately, this is pretty simple to accomplish.
Select all the views and controls by click-dragging a box around them, from inside the upper-left corner of
your container view down toward the lower right. If you start dragging and find that the view starts moving
instead, just release the mouse, move it a little bit further inside the view, and try again. When all items
are selected, use the menu to execute the Editor » Resolve Auto Layout Issues » Add Missing Constraints
command from the All Views in View Controller section of the menu. After doing that, you'll see that all your
views and controls now have some little blue sticks connecting them to one another and to the container
view. Each of those sticks represents a constraint. The advantage of creating these now instead of letting
Xcode create them at compile time is that you have a chance to modify each constraint if you need to do so.
You'll explore more of what you can do with constraints throughout the book.

Tip Another way to apply constraints to all the views owned by a view controller is to select the view
controller in the Document Outline and then choose Editor » Resolve Auto Layout Issues » Add Missing
Constraints.

At this point, with all the necessary constraints in place, you can fix the layout warnings in the Issue
Navigator. To do that, select the view controller in the Document Outline and then click Editor » Resolve
Auto Layout Issues » Update Frames in the Xcode menu. The layout warnings should be gone.

Creating and Connecting Outlets

For this first part of the interface, all that’s left is creating and connecting your outlets. The image view and
labels on your interface do not need outlets because you don’t need to change them at runtime. The two text
fields, however, will hold data you'll need to use in your code, so you need outlets pointing to each of them.

As you probably remember from the previous chapter, Xcode allows you to create and connect outlets at the
same time using the Assistant Editor, which should already be open (but if it's not, open it as described earlier).

Make sure your storyboard file is selected in the Project Navigator. If you don’t have a large amount of
screen real estate, you might also want to select View » Utilities » Hide Utilities to hide the Utilities area
during this step. In the Assistant Editor’s jump bar, select Automatic. You should see the ViewController.
swift file, as shown in Figure 4-16.

108

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

BRAaA A= @ 8 < & contral Fun can) B -
¥ & Control Fun
¥ [Control Fun

[J

5] view Controlier Scene View Controlier | 55 @ Autormatic »

+ AppDalegate.swift
= ViewCantroller.swift

B Main.storybaara
Assets xoassels rt UIKit
LaunchScrean.storyboard o ViewController:
nfo.plist B o E
B | Products o
APIESS
(= @E O Viewas:iPhone 83 («C nR) 5% B o ta

Figure 4-16. The storyboard editing area with the Assistant Editor open. You can see the Assistant Editor on
the right, showing the code from ViewController.swift.

Let’s start connecting things up. Control-drag from the top text field to the ViewController.swift
file, right below the ViewController line. You should see a gray pop-up that reads Insert Outlet, Action, or
Outlet Collection (see Figure 4-17). Release the mouse button and you'll get the same pop-up you saw in the
previous chapter. You want to create an outlet called nameField, so type nameField into the Name field and
then hit Return or click the Connect button.

109

CHAPTER 4 ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

« ViewControlerswift

B Main.storybonrd

ssets it
LaunchSeseen, Mornyboand e
Into pst

» | Preducis -

Apress'

= AL T Uiew se- [Bhane Re L0 W31 — mx L EA Sl sl

Figure 4-17. With the Assistant Editor open, you Control-drag over to the source code in order to
simultaneously create the nameField outlet and connect it to the appropriate text field.

You now have a property called nameField in ViewController, and it has been connected to the top
text field. Do the same for the second text field, creating and connecting it to a property called numberField.
When you've done that, your code should look like Listing 4-1.

Listing 4-1. Your Connected Text Fields

class ViewController: UIViewController {
@IBOutlet weak var nameField: UITextField!
@IBOutlet weak var numberField: UITextField!

Closing the Keyboard

Let’s see how the app works so far, select Product » Run. The application should come up in the i0OS
simulator. Click the Name text field, and the traditional keyboard should appear.

Tip If the keyboard does not appear, the simulator may be configured to work as if a hardware keyboard
had been connected. To fix that, deselect Hardware » Keyboard » Connect Hardware Keyboard in the i0S
simulator menu and try again.

Type a name and then tap the Number field. The numeric keypad should appear, as shown in Figure 4-18.
Cocoa Touch gives you all this functionality for free just by adding text fields to your interface.

110

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Carrier ¥ 8:45 AM -

APIess

A Good Friend

123456789

1 2 3
ABC DEF

4 5 6
GHI JKL MNO

7 8 9
PORS TUV wxYz

0 &)

Figure 4-18. The keyboard comes up automatically when you touch either the text field or the number field

But there’s a little problem. How do you get the keyboard to go away? Go ahead and try. You'll see that
nothing happens.

Closing the Keyboard When Done Is Tapped

Because the keyboard is software-based rather than a physical keyboard, you need to take a few extra steps
to make sure the keyboard goes away when the user is finished with it. When the user taps the Done button
on the text keyboard, a Did End On Exit event will be generated. When that happens, you need to tell the text
field to give up control so that the keyboard will go away. To do that, you need to add an action method to

your controller class.
Select ViewController.swift in the Project Navigator and add the action method in Listing 4-2 at the

bottom of the file, just before the closing brace.
Listing 4-2. Method to Close the Keyboard When Done

@IBAction func textFieldDoneEditing(sender: UITextField) {
sender.resignFirstResponder()

}

111

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Asyou saw in Chapter 2, the first responder acts as the control with which the user is currently
interacting. In your new method, you tell your control to resign as a first responder, giving up that role to
the previous control the user worked with. When a text field yields first responder status, the keyboard
associated with it goes away.

Save the ViewController.swift file. Let’s look back at the storyboard and arrange to trigger this action
from both of your text fields.

Select Main.storyboard in the Project Navigator, single-click the Name text field, and press =6 to
bring up the Connections Inspector. This time, you don’t want the Touch Up Inside event that you used in
the previous chapter. Instead, you want Did End On Exit since that event will fire when the user taps the
Done button on the text keyboard.

Drag from the circle next to Did End On Exit to the yellow View Controller icon in the storyboard,
in the bar that’s just above the view you've been configuring, and let go. A small pop-up menu will
appear containing the name of a single action, the one you just added. Click the textFieldDoneEditing
action to select it. You can also do this by dragging from the circle in the Connections Inspector to the
textFieldDoneEditing() method in the Assistant Editor, if you still have it open. Repeat this procedure with
the other text field, save your changes, and then run the app again.

When the simulator appears, click the Name field, type something, and then tap the Done button. As
expected, the keyboard drops away, but what about the Number field, since there is no Done button, as you
can see back in Figure 4-18?

Not all keyboard layouts, including the numeric keypad, include a Done button. You could force the
user to tap the Name field and then tap Done, but that’s not very user-friendly. And you most definitely want
your application to be user-friendly. Let’s see how to handle this situation.

Touching the Background to Close the Keyboard

Apple’s iPhone applications allow tapping in most text fields—anywhere in the view where there’s no active
control that causes the keyboard to go away. Let’s implement that for your app.

The answer may surprise you because of its simplicity. The view controller includes a property called
view that it inherited from UIViewController. This view property corresponds to the main view in the
storyboard. The view property points to an instance of UIView that acts as a container for all the items in
your user interface. It is sometimes referred to as a container view because its main purpose is to simply hold
other views and controls. Essentially, the container view provides the background to your user interface.

All you need to do is detect when the user taps it. There are a couple of ways to do that. First, there are
methods in the UIResponder class, from which UIView is derived, that are called whenever the user places
one or more fingers onto a view, moves those fingers around, or lifts them up. You can override one of those
methods (specifically the one that’s called when the user lifts a finger from the screen) and add your code in
there. The other way to do this is to add a gesture recognizer to the container view. Gesture recognizers listen
to the events that are generated when the user interacts with a view and try to figure out what the user is
doing. There are several different gesture recognizers that respond to different sequences of actions. The one
that you need to use is the tap gesture recognizer, which signals an event when the user puts a finger on the
screen and then lifts it up again within a reasonably short time.

To use a gesture recognizer, you create an instance, configure it, link it to the view that you want it to
monitor for touch events, and attach it to an action method in your view controller class. When the gesture
is recognized, your action method is called. You can create and configure the recognizer in code, or you
can do it in Interface Builder. Here, you'll use Interface Builder because it’s easier. Return to the storyboard
and make sure that the Object Library is showing and then locate a tap gesture recognizer, drag it over the
storyboard, and drop it onto the container view. The recognizer is not visible at runtime, so you can'’t see it in
the storyboard, but it appears in the Document Outline, as shown in Figure 4-19.

112

http://dx.doi.org/10.1007/978-1-4842-3072-5_2

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

v [Z] View Controller Scene

v View Controller
| Top Layout Guide
_ Bottom Layout Guide
v View
: apress_logo
F Name Field
b L Label
¥ F Number Field
> Constraints
L Label
> Constraints
@'{l First Responder
Exit

B Tap Gesture Recognizer

—> Storyboard Entry Point

Figure 4-19. Tap gesture recognizer in the Document Outline

Selecting the gesture recognizer reveals its configurable attributes in the Attributes Inspector, as shown
in Figure 4-20.

Tap Gesture Recognizer

1S

<>

Recognize 1
Taps Touches

Gesture Recognizer
State % Enabled
Behavior Cancels touches in view

Delays touches began
Delays touches ended

Figure 4-20. The attributes of the tap gesture recognizer

113

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

The Taps field specifies how many times the user needs to tap before the gesture is recognized, and
the Touches field controls how many fingers need to be tapped. The defaults of one tap with one finger are
exactly what you need, so leave both fields unchanged. The other attributes are fine too, so all you need
to do is link the recognizer to an action method. To do that, open ViewController.swift in the Assistant
Editor and Control-drag from the recognizer in the Document Outline to the line just above the closing
brace in ViewController.swift. Release the mouse when you see the usual gray pop-up like the one shown
in Figure 4-16. In the pop-up that opens, change the connection type to Action and the method name to
onTapGestureRecognized to have Xcode add the action method and link it to the gesture recognizer. This
method will be called whenever the user taps the main view. All you need to do is add the code to close the
keyboard, if it’s open. You already know how to do that, so change the code to that shown in Listing 4-3.

Listing 4-3. Your Gesture Recognizer Code to Remove the Keyboard

@IBAction func onTapGestureRecognized(sender: AnyObject) {
nameField.resignFirstResponder()
numberField.resignFirstResponder()

This code simply tells both text fields to yield first responder status if they have it. It is perfectly safe to
call resignFirstResponder() on a control that is not the first responder so you can call it on both text fields
without needing to check whether either is the first responder. Build and run your application again, and
this time, the keyboard should disappear not only when the Done button is tapped but also when you tap
anywhere that’s not an active control, which is the behavior that your users will expect.

Adding the Slider and Label

Let’s add a slider and a label, the idea being that the value shown by the label will change as the slider is
moved. Select Main.storyboard in the Project Navigator so you can add more items to your application’s
user interface. From the Object Library, bring over a slider and arrange it below the Number text field, using
the right side’s blue guideline as a stopping point and leaving a little breathing room between the slider and
the bottom text field. Single-click the newly added slider to select it and then press ~\-3£4 to go back to the
Attributes Inspector if it’s not already visible (see Figure 4-21).

114

Conttral Fun

+ Applrelegate swify

+ WiewControlier swift

[Main storboard

) ASS0LE. XCITEME
Launchicrean.storyboand
Infopist

Products.

> B control Fun
v [view Contrallar Scene
¥ (£ View Controlier
Tog Layout Guide
Botiom Layout Guide
v vew
acress loge
F hame Fiakd
» L Label
T F B Fisld
¥ [l Corataints
L Label
- Horizontal Siider
» B Coentraints
&l First Respondsr
[E exit
Tap Gesturs Recognizer
Storyboard Entry Point

Control Fun) [lj Main.storybeard & [l Mainsto_d (Base)) B view Co_er Soena

| D View as: iPhone 85 (C -R)

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

o -F'l
APIess
— 7% == =)

Figure 4-21. The inspector showing default attributes for a slider

Horizontal Shdor

14 bed

D= Q08 @
xdar

vaka

i
Manun
i nage
Max ke
MinTrack | = Dwfauit
L0 Defawt
Ihursn tint| =1 Dafauit

Max Track

Evers B Cortiruous Usdates

Control
agomer| [M O 8
Hedizantal
TEEE O
Vertical
5 e eited
@ Erabled

Highiighted

Mode | Scade To Fll]
Unspeciied I
Teg a

Semarkic

ntaraction @ Usar nteraction Enabied
Multgie Touen
Higha 1
Bockgourd ———" |
Tint | NN Dufau't]
0 {eo
Sticler - Disclays s cokinucus rangm

- o valuts and 9o tho cokction of
shge valus.

A slider lets you choose a number in a given range. Use the inspector to set the Minimum value to 1,
the Maximum value to 100, and the Current value to 50. Leave the Events Continuous Update check box
selected. This ensures a continuous flow of events as the slider’s value changes.

Bring over a label and place it next to the slider, using the blue guidelines to align it vertically with the
slider and to align its left edge with the left margin of the view (see Figure 4-22).

115

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

™ E
Apress
Name:

Number:
R Y N it S, ORI |

S

L+

=

Figure 4-22. Placing the slider’s label

Double-click the newly placed label, and change its text from Label to 100. This is the largest value that
the slider can hold, and you can use that to determine the correct width of the slider. Since 100 is shorter
in length than Label, Interface Builder automatically makes the label smaller for you, as if you had dragged
the right-middle resize dot to the edge. Despite this automatic behavior, you're still free to resize the label
however you want, of course. If you later decide you want the tool to pick the optimum size for you again,
just press 3= or select Editor » Size to Fit Content.

Next, resize the slider by single-clicking the slider to select it and dragging the left resize handle to the
left until the blue guidelines indicate that you're getting close to the label’s right-side edge.

Now that you've added two more controls, you need to add the matching Auto Layout constraints. You'll
do it the easy way again this time, so just select the View Controller icon in the Document Outline and then
click Editor » Resolve Auto Layout Issues » Add Missing Constraints. Xcode adjusts the constraints so that
they match the positions of all of the controls on-screen.

Creating and Connecting the Actions and Outlets

All that's left to do with these two controls is to connect them to an outlet and an action—you need an
outlet that points to the label so that you can update the label’s value when the slider is used, and you are
also going to need an action method for the slider to call as it’s changed. Make sure the Assistant Editor
is open and showing ViewController.swift and then Control-drag from the slider to just below the
onTapGestureRecognized() method in the Assistant Editor. When the pop-up window appears, change
the Connection field to Action, type onSliderChanged in the Name field, set Type to UISlider, and then hit
Return to create and connect the action.

Next, Control-drag from the newly added label (the one showing 100) over to the Assistant Editor. This
time, drag to just below the numberField property declaration at the top of the file. When the pop-up comes
up, type sliderLabel in the Name text field, and then hit Return to create and connect the outlet.

116

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Implementing the Action Method

Though Xcode has created and connected your action method, it’s still up to you to actually write the
code that makes up the action method so it does what it's supposed to do. Change the onS1liderChanged()
method to that shown in Listing 4-4.

Listing 4-4. Changing the Label Based on the Slider Position/Value

@IBAction func onSliderChanged(sender: UISlider) {
sliderLabel.text = "\(lroundf(sender.value))"
}

The call to the 1roundf() function (which is part of the standard C library) takes the current value of the
slider and rounds it to the nearest integer. The rest of the line converts the value to a string containing that
number and assigns it to the label.

That takes care of your controller’s response to the movements of the slider; but to be really consistent,
you need to make sure that the label shows the correct slider value before the user even touches it. To do
that, add the following line of code to the viewDidLoad() method: sliderLabel.text = "50".

This method executes immediately after the running app loads the view from the storyboard file but
before it’s displayed on the screen. The line you added makes sure that the user sees the correct starting
value right away.

Save the file. Next, press ¥R to build and launch your app in the iOS simulator, and try out the slider. As
you move it, you should see the label’s text change in real time. Another piece falls into place. But if you drag
the slider toward the left (bringing the value below 10) or all the way to the right (setting the value to 100),
you'll see an odd thing happen. The label to the left will shrink horizontally when it drops down to showing
a single digit and will grow horizontally when showing three. Now, apart from the text it contains, you don’t
actually see the label itself, so you can’t see its size changing, but what you will see is that the slider actually
changes its size along with the label, getting smaller or larger. It’s maintaining a size relationship with the
label, making sure the gap between the two is always the same.

This is simply a side effect of the way Interface Builder works, helping you create GUIs that are
responsive and fluid. You created some default constraints previously, and here you're seeing one in action.
One of the constraints created by Interface Builder keeps the horizontal distance between these elements
constant.

Let’s override this behavior by making your own constraint. Back in Xcode, select the label in the
storyboard and click the Pin icon at the bottom of the storyboard. In the pop-up, click the Width check box
followed by Add 1 Constraint. This makes a new high-priority constraint that tells the layout system, “Don’t
mess with the width of this label.” If you now press 3R to build and run again, you'll see that the label no
longer expands and contracts as you drag back and forth across the slider.

You'll see more examples of constraints and their uses throughout the book. But for now, let’s look at
implementing the switches.

Implementing the Switches, Button, and Segmented Control

Let’s go back to Xcode once again; this back and forth may seem a bit strange, but it’s fairly common to
bounce around between source code, storyboards, and nib files in Xcode, testing your app in the iOS
simulator while you're developing.

Your application will have two switches, which are small controls that can have only two states: on and
off. You'll also add a segmented control to hide and show the switches. Along with that control, you'll add a
button that is revealed when the segmented control’s right side is tapped.

In the storyboard, drag a segmented control from the Object Library (see Figure 4-23) and place it on
the View window, a little below the slider and horizontally centered.

117

CHAPTER 4 = ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Type in a name

Type in a number

100 L

e

Figure 4-23. Placing a segmented control onto your storyboard

Double-click the word First on the segmented control and change the title from First to Switches. After
doing that, repeat the process with the other segment, renaming it Button (see Figure 4-24), and drag the
control back into its centered position.

[swicnes | [outer]

Figure 4-24. Renaming the segments in the segmented control

118

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Adding Two Labeled Switches

Next, take a switch from the library and place it on the view, below the segmented control and against the
left margin. Then drag a second switch and place it against the right margin, aligned vertically with the first
switch, as shown in Figure 4-25.

Apress’

J/

100

Switches | Button
© <

Figure 4-25. Adding switches to the view

Tip Holding down the C key and dragging an object in Interface Builder will create a copy of that item.
When you have many instances of the same object to create, it can be faster to drag only one object from the
library and then Option-drag as many copies as you need.

The three new controls you've added need layout constraints. This time, you'll add the constraints
manually. Start by selecting the segmented control and aligning it to the center of the view by clicking the
Align icon, checking Horizontally in Container in the pop-up, and clicking Add 1 Constraint. Next, select the
segmented control again and Control-drag upward a little until the background of the main view turns blue.
Release the mouse and select Vertical Spacing to Top Layout Guide in the pop-up menu to fix the distance
from the segmented control to the top of the view.

Now let’s adjust the switches. Control-drag from the left switch diagonally left and upward relative to
the switch and release the mouse. Hold down the Shift key and select Leading Space to Container Margin
and Vertical Spacing to Top Layout Guide from the pop-up, release Shift, and press the Return key or click
anywhere outside the pop-up to apply the constraints. Do a similar action with the other switch, but this
time Control-drag to the upper right relative and select Trailing Space to Container Margin and Vertical
Spacing to Top Layout Guide. When you apply constraints by dragging, Xcode offers you different options
depending on the direction in which you drag. If you drag horizontally, you'll have options that let you
attach the control to the left or right margins of its parent view, whereas if you drag vertically, Xcode assumes
you want to set the position of the control relative to the top or bottom of its parent. Here, you needed one
horizontal and one vertical constraint for each switch, so you dragged diagonally to indicate that to Xcode,
and you got both horizontal and vertical options.

119

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Connecting and Creating Outlets and Actions

Before you add the button, you'll create outlets for the two switches and connect them. The button that you'll
be adding next will actually sit on top of the switches, making it harder to Control-drag to and from them, so
you want to take care of the switch connections before you add the button. Since the button and the switches
will never be visible at the same time, having them in the same physical location won’t be a problem.

Using the Assistant Editor, Control-drag from the switch on the left to just below the last outlet in
ViewController.swift. When the pop-up appears, name the outlet leftSwitch and hit Return. Repeat this
process with the other switch, naming its outlet rightSwitch.

Now, select the left switch again by single-clicking it. Control-drag once more to the Assistant Editor.
This time, drag to just above the brace at the end of the class declaration before letting go. When the pop-up
appears, change the Connection field to Action, name the new action method onSwitchChanged(), and
set the type of its sender argument to UISwitch. Next, hit Return to create the new action. Now repeat this
process with the right switch, with one change: instead of creating a new action, drag the mouse over the
onSwitchChanged() method that was just created and connect to it instead. Just as you did in the previous
chapter, you're going to use a single method to handle both switches.

Finally, Control-drag from the segmented control to the Assistant Editor, right below the
onSwitchChanged() method. Insert a new action method called toggleControls(), just as you've done
before. This time, set the type of its sender parameter to UISegmentedControl.

Implementing the Switch Actions

Save the storyboard and let’s add some more code to ViewController.swift, which is already open in the
Assistant Editor. Look for the onSwitchChanged() method, changing it to that, as shown in Listing 4-5.

Listing 4-5. Your New onSwitchChanged() Method

@IBAction func onSwitchChanged(sender: UISwitch) {
let setting = sender.isOn
leftSwitch.setOn(setting, animated: true)
rightSwitch.setOn(setting, animated: true)

The onSwitchChanged() method gets called whenever one of the two switches is tapped. In this
method, you simply grab the value of the isOn property of sender (which represents the switch that was
pressed) and use that value to set both switches. The idea here is that setting the value of one switch will
change the other switch at the other time, keeping them in sync at all times.

Now, sender is always going to be either leftSwitch or rightSwitch, so you might be wondering why
you're setting them both. You do it that way out of practicality since it’s less work to set the value of both
switches every time than to determine which the switch made the call and set only the other one. Whichever
switch called this method will already be set to the correct value, and setting it again to that same value
won'’t have any effect.

Adding the Button

Next, go back to Interface Builder and drag a button from the library to your view. Add this button directly
on top of the leftmost switch, aligning it with the left margin and vertically aligning its top edge with the top
edge of the two switches, as shown in Figure 4-26.

120

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

APIress’

100

Switches | Button |

Figure 4-26. Adding a button on top of the existing switches

Now, grab the button’s right-center resize handle and drag all the way to the right until you reach
the blue guideline that indicates the right-side margin. The button should completely overlay the space
occupied by the two switches, but because the default button is transparent, you will still see the switches
(see Figure 4-27).

Apress’

100

[Swilcncs Button
. a] tu]
) Button (g
a

Figure 4-27. The button, once placed and resized, fills the space occupied by the two switches

Double-click the newly added button to give it the title Do Something.

121

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

The button needs Auto Layout constraints. You're going to pin it to the top and to both sides of the main
view. Control-drag upward from the button until the view background turns blue and then release the mouse
and select Vertical Spacing to Top Layout Guide. Then Control-drag horizontally to the left until the main
view background turns blue again and select Leading Space to Container Margin. You'll only get this option
if you drag far enough to the left, so if you don'’t see it, try again by dragging left until the mouse is outside the
bounds of the button. Finally, Control-drag to the right until the main view background turns blue and then
select Trailing Space to Container Margin. Now run the application to see what you've just done.

Adding an Image to the Button

If you compare your running application to Figure 4-2, you'll immediately notice a difference. Your Do
Something button doesn’t look like the one in the figure. That’s because, starting with iOS 7, the default
button displays a very simple appearance: it’s just a piece of plain text with no outline, border, background
color, or other decorative features. That conforms nicely to Apple’s design guidelines for iOS 7 and later, but
there are still cases where you’ll want to use custom buttons, so I'm going to show you how to do that.
Many of the buttons you see on your iOS device are drawn using images. I've provided images that
you can use for this example in the Button Images folder of the source code archive for this book. In the
Project Navigator in Xcode, select Assets.xcassets (the same assets catalog that you used earlier when
you added images for the Apress logo) and then just drag both images from the Button Images folder in the
Finder straight into the editing area in your Xcode window. The images are added to your project and will be
immediately available to your app.

Using Stretchable Images

If you look at the two button images you just added, you'll see they’re very small and seem much too narrow
to fill out the button you added to the storyboard. That’s because these graphics are meant to be stretchable.
It so happens that UIKit can stretch graphics to nicely fill just about any size you want. Stretchable images are
an interesting concept. A stretchable image is a resizable image that knows how to resize itself intelligently
so that it maintains the correct appearance. For these button templates, you don’t want the edges to stretch
evenly with the rest of the image. Edge insets are the parts of an image (measured in pixels) that should not
be resized. You want the bevel around the edges to stay the same, no matter what size you make the button,
so you need to specify how much nonstretchable space makes up each edge.

In the past, this could be accomplished only in code. You'd have to use a graphics program to measure
pixel boundaries of your images and then use those numbers to set edge insets in your code. Xcode 6
eliminated the need for this by letting you visually “slice” any image you have in an assets catalog! That’s
what you're going to do next.

Select the Assets.xcassets asset catalog in Xcode, and inside that select whiteButton. At the bottom
right of the editing area, you'll see a button labeled Show Slicing. Click that to initiate the slicing process,
which begins by simply putting a Start Slicing button right on top of your image. Click it. You'll see three new
buttons that let you choose whether you want the image to be sliced (and therefore stretchable) vertically,
horizontally, or both. Choose the button in the middle to slice both ways. Xcode does a quick analysis of
your image and then finds the sections that seem to have unique pixels around the edges and vertical and
horizontal slices in the middle that should be repeatable. You'll see these boundaries represented by dashed
lines, as shown in Figure 4-28. If you have a tricky image, you may need to adjust these (it’s easy to do; just
drag them with the mouse). However, for this image, the automatic edge insets will work fine.

122

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

i
o

whit...n - 1x

Figure 4-28. Default slicing for the white button

Next, select blueButton and do the same automatic slicing for it. Now it’s time to put these graphics to use.

Go back to the storyboard you've been working on and single-click the Do Something button. With the
button selected, press ~"dt4 to open the Attributes Inspector. In the inspector, use the Type pop-up menu to
change the type from System to Custom. At the bottom of the Button section in the Inspector, you'll see that
you can specify an image and a background for your button. You're going to use the background to show
your resizable graphic, so click in the Background pop-up and select whiteButton. You'll see that the button
now shows the white graphic, perfectly stretched to cover the entire button frame.

You want to use the blue button to define the look of this button’s highlighted state, which is what you
see while the button is pressed. I'll talk more about control states in the next section of this chapter; but for
now, just take a look at the second pop-up from the top, labeled State Config. A UIButton can have multiple
states, each with its own text and images. Right now you've been configuring the default state, so switch this
pop-up to Highlighted so that you can configure that state. You'll see that the Background pop-up has been
cleared; click it to select blueButton—and you're done.

Using Control States

Every iOS control has five possible control states and is always in one, and only one, of these states at any
given moment.

Default: The most common state is the default control state, which is the default
state. It's the state that controls are in when not in any of the other states.

Focused: In focus-based navigation systems, a control enters this state when it
receives the focus. A focused control changes its appearance to indicate that it
has focus, and this appearance differs from the appearance of the control when
it is highlighted or selected. Further interactions with the control can result in it
also becoming highlighted or selected.

Highlighted: The highlighted state is the state a control is in when it’s currently
being used. For a button, this would be while the user has a finger on the button.

123

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Selected: Only some controls support the selected state. It is usually used

to indicate that the control is turned on or selected. Selected is similar to
highlighted, but a control can continue to be selected when the user is no longer
directly using that control.

Disabled: Controls are in the disabled state when they have been turned off,
which can be done by deselecting the Enabled check box in Interface Builder or
setting the control’s isEnabled property to NO.

Certain iOS controls have attributes that can take on different values depending on their state. For
example, by specifying one image for isDefault and a different image for isHighlighted, you are telling iOS
to use one image when the user has a finger on the button and a different image the rest of the time. That'’s
essentially what you did when you configured two different background states for the button in the storyboard.

Note In previous versions of this book there were four states: Normal, Highlighted, Disabled, and
Selected, with the enumerated values in Objective-C as UIControlStateNormal, UIControlStateHighlighted,
UIControlStateEnabled, and UIControlStateSelected. You may see older, pre—Xcode 8 and Swift 3 reference
these values.

Connecting and Creating the Button Outlets and Actions

Control-drag from the new button to the Assistant Editor, just below the last outlet already in the section at
the top of the file. When the pop-up appears, create a new outlet called doSomethingButton. After you've

done that, Control-drag from the button a second time to just above the closing brace at the bottom of the

file. There, create an action method called onButtonPressed() and set Type to UIButton.

If you save your work and try running the application, you'll see that the segmented control will be live,
but it won’t do anything particularly useful since you still need to add some logic to make the button and
switches hide and unhide.

You also need to mark your button as hidden from the start. You didn’t want to do that before because it
would have made it harder to connect the outlets and actions. Now that you've done that, however, let’s hide
the button. You'll show the button when the user taps the right side of the segmented control; but when the
application starts, you want the button hidden. In the storyboard, select the button and press ~\-34 to bring
up the Attributes Inspector. Scroll down to the View section and click the Hidden check box. The button will
still be visible in Interface Builder.

Implementing the Segmented Control Action

Save the storyboard and focus once again on ViewController.swift. Look for the toggleControls()
method that Xcode created for you and add the new code shown in Listing 4-6.

Listing 4-6. Hide or Unhide the Switches Depending on the Segmented Control

@IBAction func toggleControls(_ sender: UISegmentedControl) {
if sender.selectedSegmentIndex == 0 { // "Switches" is selected
leftSwitch.isHidden = false
rightSwitch.isHidden = false
doSomethingButton.isHidden = true
} else {

124

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

leftSwitch.isHidden = true
rightSwitch.isHidden = true
doSomethingButton.isHidden = false

This code looks at the selectedSegmentIndex property of sender, which tells you which of the sections
is currently selected. The first section, called switches, has an index of 0. I've noted this fact in a comment so
that when you revisit the code later, you will know what'’s going on. Depending on which segment is selected,
you hide or show the appropriate controls.

Before you run the application, let’s apply a small tweak to make it look a little better. With i0S 7,

Apple introduced some new GUI paradigms. One of these is that the status bar at the top of the screen is
transparent so that your content shines right through it. Right now, that yellow Apress icon really sticks

out like a sore thumb against your app’s white background, so let’s extend that yellow color to cover your
entire view. In Main.storyboard, select the main content view (it’s labeled View in the Document Outline)
and press =34 to bring up the Attributes Inspector. Click in the color swatch labeled Background (which
currently contains a white rectangle) to open the standard OS X color picker. One feature of this color picker
is that it lets you choose any color you see on the screen. With the color picker open, click the dropper icon
at the bottom right to open a magnifying glass. Drag the magnifying glass over the Apress image view in the
storyboard and click when it’s over a yellow part of the image. You should now see the background color of
the Apress image in the color picker next to the dropper icon in the color picker. To set it as the background
color for the main content view, select the main view in the Document Outline and then click the yellow
color in the color picker. When you're done, close the color picker.

On the screen, you may find that the background and the Apress image seem to have slightly different
colors, but when run in the simulator or on a device, they will be the same. These colors appear to be
different in Interface Builder because macOS automatically adapts colors depending on the display you're
using. On an i0S device and in the simulator, that doesn’t happen.

Run the app. You'll see that the yellow color fills the entire screen, with no visible distinction between
the status bar and your app’s content. If you don’t have full-screen scrolling content or other content that
requires the use of a navigation bar or other controls at the top of the screen, this can be a nice way to show
full-screen content that isn’t interrupted by the status bar quite as much.

If you've typed everything correctly, you should also be able to switch between the button and the pair
of switches using the segmented control. And if you tap either switch, the other one will change its value as
well. The button, however, still doesn’t do anything. Before you implement it, you need to talk about action
sheets and alerts.

Implementing the Action Sheet and Alert
Action sheets and alerts are both used to provide the user with feedback.

e Action sheets are used to force the user to make a choice between two or more items.
On iPhones, the action sheet comes up from the bottom of the screen and displays a
series of buttons (see Figure 4-3). On the iPad, you specify the position of the action
sheet relative to another view, typically a button. Users are unable to continue using
the application until they have tapped one of the buttons. Action sheets are often used
to confirm a potentially dangerous or irreversible action, such as deleting an object.

e Alerts appear as rounded rectangles in the middle of the screen (see Figure 4-4). Like
action sheets, alerts force users to respond before they are allowed to continue using
the application. Alerts are usually used to inform the user that something important
or out of the ordinary has occurred. Like action sheets, alerts may be presented with
only a single button, although you have the option of presenting multiple buttons if
more than one response is appropriate.
125

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

Note

is known as a modal view.

Displaying an Action Sheet

Switch to ViewController.swift and you'llimplement the button’s action method. Begin by looking for the
empty onButtonPressed() method that Xcode created for you and then add the code in Listing 4-7 to create

and show the action sheet.

Listing 4-7. Displaying the Action Sheet

@IBAction func onButtonPressed(sender: UIButton) {

let controller = UIAlertController(title: "Are You Sure?",
message:nil, preferredStyle: .actionSheet)

let yesAction = UIAlertAction(title: "Yes, I'm sure!",
style: .destructive, handler: { action in
let msg = self.nameField.text!.isEmpty
? "You can breathe easy, everything went OK."
¢ "You can breathe easy, \(self.nameField.text),
+ "everything went OK."
let controller2 = UIAlertController(
title:"Something Was Done",
message: msg, preferredStyle: .alert)
let cancelAction = UIAlertAction(title: "Phew!",
style: .cancel,
handler: nil)
controller2.addAction(cancelAction)
self.present(controller2, animated: true,
completion: nil)

1)

let noAction = UIAlertAction(title: "No way!",
style: .cancel, handler: nil)

controller.addAction(yesAction)
controller.addAction(noAction)

if let ppc = controller.popoverPresentationController {

ppc.sourceView = sender
ppc.sourceRect = sender.bounds

}

present(controller, animated: true, completion: nil)

What exactly did you do there? Well, first, in the onButtonPressed() action method, you allocated and

initialized a UIAlertController, which is a view controller subclass that can display either an action sheet
or an alert.

126

A view that forces users to make a choice before they are allowed to continue using their application

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

let controller = UIAlertController(title: "Are You Sure?",
message:nil, preferredStyle: .actionSheet)

The first parameter is the title to be displayed. Refer to Figure 4-3 to see how the title you're supplying
will be displayed at the top of the action sheet. The second parameter is a message that will be displayed
immediately below the title, in a smaller font. For this example, you're not using the message, so you supply
the value nil for this parameter. The final parameter specifies whether you want the controller to display an
alert (value UIAlertControllerStyle.alert) or an action sheet (UIAlertControllerStyle.actionSheet).
Since you need an action sheet, you supply the value UIAlertControllerStyle.actionSheet here.

The alert controller does not supply any buttons by default—you have to create a UIAlertAction object
for each button that you want and add it to the controller. Listing 4-8 shows the part of the code that creates
the two buttons for your action sheet.

Listing 4-8. Creating the Action Sheet Buttons

let yesAction = UIAlertAction(title: "Yes, I'm sure!",
style: .destructive, handler: { action in
// Code omitted - see below.

1)

let noAction = UIAlertAction(title: "No way!",
style: .cancel, handler: nil)

For each button, you specify the title, the style, and a handler to be called when the button is pressed.
There are three possible styles to choose from.

e UIAlertActionStyle.destructive should be used when the button triggers a
destructive, dangerous, or irreversible action, such as deleting or overwriting a file.
The title for a button with this style is drawn in red in a bold font.

e UIAlertActionStyle.default is used for a normal button, such as an OK button,
when the action that will be triggered is not destructive. The title is drawn in a
regular blue font.

e UIAlertStyle.cancel is used for the Cancel button. The title is drawn in a bold blue
font.

Finally, you add the buttons to the controller.

[controller addAction:yesAction];
[controller addAction:noAction];

To make the alert or action sheet visible, you need to ask the current view controller to present the alert
controller. Listing 4-9 shows how you present an action sheet.

Listing 4-9. Presenting an Action Sheet

if let ppc = controller.popoverPresentationController {
ppc.sourceView = sender
ppc.sourceRect = sender.bounds

}

present(controller, animated: true, completion: nil)

127

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

The first four lines configure where the action sheet will appear by getting the alert controller’s popover
presentation controller and setting its sourceView and sourceRect properties. I'll say more about these
properties shortly. Finally, you make the action sheet visible by calling your view controller’s present
(_:animated:completion:) method, passing it the alert controller as the controller to be presented. When
a view controller is presented, its view temporarily replaces that of the view controller that’s presenting it. In
the case of the alert view controller, the action sheet or alert partially covers the presenting view controller’s
view; the rest of the view is covered by a dark, translucent background that lets you see the underlying view
but makes it clear that you can’t interact with it until you dismiss the presented view controller.

Now let’s revisit the popover presentation controller configuration. On the iPhone, the action
sheet always pops up from the bottom of the screen, as shown in Figure 4-3, but on the iPad, it’s displayed in
a popover—a small, rounded rectangle with an arrow that points toward another view, usually the one that
caused it to appear. Figure 4-29 shows how your action sheet looks on the iPad Air simulator.

I ECd e A -
|

Apress’
1 50 @

(B |

Yer, Frmi sure!

Figure 4-29. Action sheet presented on an iPad Air

As you can see, the popover’s arrow points to the Do Something button. That’s because you set the
sourceView property of the alert controller’s popover presentation controller to point to that button and its
sourceRect property to the button’s bounds, as shown in Listing 4-10.

Listing 4-10. Setting the sourceView and sourceRect Properties

if let ppc = controller.popoverPresentationController {
ppc.sourceView = sender
ppc.sourceRect = sender.bounds

Notice the if let construction—this is necessary because on the iPhone, the alert controller does not
present the action sheet in a popover, so its popoverPresentationController property is nil.

128

CHAPTER 4 * ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

In Figure 4-29, the popover appears below the source button, but you can change this, if you need to,
by setting the popover presentation controller’s permittedArrowDirections property, which is a mask
of permitted directions for the popover’s arrow. The following code moves the popover above the source
button by setting this property to UIPopoverArrowDirection.down, as shown in Listing 4-11.

Listing 4-11. Setting the Direction of the Popover

if let ppc = controller.popoverPresentationController {
ppc.sourceView = sender
ppc.sourceRect = sender.bounds
ppc.permittedArrowDirections = .down

If you compare Figure 4-29 and Figure 4-3, you'll see that the No Way! button is missing on the iPad.
The alert controller does not use buttons with style UIAlertStyle.cancel on the iPad because users are
accustomed to dismissing a popover without taking any action by tapping anywhere outside of it.

Presenting an Alert

When the user presses the Yes, I'm Sure! button, you want to pop up an alert with a message. When a button
that was added to an alert controller is pressed, the action sheet (or alert) is dismissed, and the button’s
handler block is called with a reference to the UIAlertAction from which the button was created. The code
that’s executed when the Yes, I'm Sure! button is pressed is shown in Listing 4-12.

Listing 4-12. Popping Up the Alert Message

let yesAction = UIAlertAction(title: "Yes, I'm sure!",
style: .destructive, handler: { action in
let msg = self.nameField.text!.isEmpty
? "You can breathe easy, everything went OK."
: "You can breathe easy, \(self.nameField.text),"
+ "everything went OK."
let controller2 = UIAlertController(
title:"Something Was Done",
message: msg, preferredStyle: .alert)
let cancelAction = UIAlertAction(title: "Phew!",
style: .cancel, handler: nil)
controller2.addAction(cancelAction)
self.present(controller2, animated: true,
completion: nil)

1))

The first thing you do in the handler block is create a new string that will be displayed to the user. In
a real application, this is where you would do whatever processing the user requested. You're just going to
pretend you did something and notify the user by using an alert. If the user has entered a name in the top
text field, you'll grab that, and you’ll use it in the message that you'll display in the alert. Otherwise, you'll
just craft a generic message to show.

let msg = self.nameField.text!.isEmpty
? "You can breathe easy, everything went OK."
: "You can breathe easy, \(self.nameField.text),"

+ " everything went OK."

129

CHAPTER 4 © ADDING INTERMEDIATE-LEVEL USER INTERACTIONS

The next few lines of code are going to look kind of familiar. Alert views and action sheets are created
and used in a similar manner. You always start by creating a UTAlertController.

let controller2 = UIAlertControllex(
title:"Something Was Done",
message: msg, preferredStyle: .alert)

Again, you pass a title to be displayed. This time, you also pass a more detailed message, which is that
string you just created. The final parameter is the style, which you set to UIAlertControllerStyle.alert
because you want an alert, not an action sheet. Next, you create a UIALertAction for the alert’s cancel button
and add it to the controller.

let cancelAction = UIAlertAction(title: "Phew!",
style: .cancel, handler: nil)
controller2.addAction(cancelAction)

Finally, you make the alert appear by presenting the alert view controller.
self.present(controller2, animated: true, completion: nil)

You can see the alert that’s created by this code in Figure 4-4. You'll notice that your code does not
attempt to get and configure the alert controller’s popover presentation controller. That’s because alerts
appear in a small, rounded view in the center of the screen on both iPhone and iPad, so there is no popover
presentation controller to configure.

Save ViewController.swift and then build, run, and try out the completed application.

Summary

In this lengthy chapter, hope I didn’t hit you with too much new stuff, but I went through the use of a good
number of controls and showed many different implementation details. You got more practice with outlets
and actions, saw how to use the hierarchical nature of views to your advantage, and got some more practice
adding Auto Layout constraints. You learned about control states and stretchable images. You also learned
how to use both action sheets and alerts.

There’s a lot going on in your Control Fun application. Feel free to go back and try things out. Change
values, experiment by adding and modifying code, and see what different settings in Interface Builder
do. There’s no way I could take you through every permutation of every control available in iOS, but the
application you just put together is a good starting point and covers a lot of the basics.

In the next chapter, you're going to look at what happens when the user rotates an iOS device from
portrait to landscape orientation or vice versa. You're probably well aware that many apps change their
displays based on the way the user is holding the device, and I'm going to show you how to do that in your
own applications.

130

CHAPTER 5

Working with Device Rotations W,

The iPhone and iPad exude amazing engineering in form, fit, and function. Apple engineers found all kinds
of ways to squeeze maximum functionality into a very small and elegant package. One example of this
exists in the ability of these devices to be used in either portrait (tall and skinny) or landscape (short and
wide) mode and how that orientation can be changed at runtime simply by rotating the device. You see an
example of this autorotation behavior in the i0S Safari browser, as shown in Figure 5-1. In this chapter, I'll
cover rotation in detail, starting with an overview of the ins and outs of autorotation and then moving on to
different ways of implementing that functionality in your apps.

ApTess

Figure 5-1. Like many iOS applications, Mobile Safari changes its display based on how it is held, making the
most of the available screen space

© Molly K. Maskrey 2017 131
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_5

https://doi.org/10.1007/978-1-4842-3072-5_5

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

Prior to iOS 8, if you wanted to design an application that would run on both iPhones and iPads, you
created one storyboard with a layout for the iPhone and another one with your iPad layout. In iOS 8, that
all changed when Apple added APIs to UIKit and tools in Xcode, making it possible to build an application
that runs on (or, using its terminology, adapts to) any device with a single storyboard. You still must design
carefully for the different form factor of each type of device, but now you do it all in one place. Even better,
using the Preview feature that was introduced in Chapter 3, you see immediately how your application
would look on any device without even having to start up the simulator. You'll take a look at how to build
adaptive application layouts in the second part of this chapter.

Understanding the Mechanics of Rotation

The ability to run in both portrait and landscape orientations might not work for every application. Several
of Apple’s iPhone applications, such as the Weather app, may support only a single orientation. However,
iPad applications function differently, with Apple recommending that most apps, with the exception of
immersive apps like games, should support every orientation, and most of Apple’s own iPad apps work fine
in both orientations. Many of them use the orientations to show different views of your data. For example,
the Mail and Notes apps use landscape orientation to display a list of items (folders, messages, or notes) on
the left and the selected item on the right. In portrait orientation, however, these apps let you focus on the
details of just the selected item.

For iPhone apps, the base rule is that if autorotation enhances the user experience, you should add it to
your application. For iPad apps, the rule is you should add autorotation unless you have a compelling reason
not to. Fortunately, Apple did a great job of hiding the complexities of handling orientation changes in i0S
and in UIKit, so implementing this behavior in your own iOS applications becomes quite easy.

The view controller authorizes the image to rotate. If the user rotates the device, the active view
controller gets asked if it's okay to change to the new orientation (which you'll do in this chapter). If the view
controller responds in the affirmative, the application’s window and views rotate, and the window and view
resize to fit the new orientation.

On the iPhone and iPod touch, a view that starts in portrait mode exists taller than it is wide—you can
see the actual available space for any given device by referring to the Software Size column of Table 1-1
in Chapter 1. Note, however, that the vertical screen real estate available for your app decreases by 20 points
vertically if your app is showing the status bar, which is the 20-point strip at the top of the screen (see Figure 5-1)
that shows information such as signal strength, time, and battery charge.

When the device rotates to landscape mode, the vertical and horizontal dimensions switch around, so,
for example, an application running on an iPhone 6/6s would see a screen that’s 375 points wide and 667
points high in portrait but that’s 667 points wide and 375 points high in landscape. Again, though, on iPads
the vertical space actually available to your app gets reduced by 20 points if you're showing the status bar,
which most apps do. On iPhones, as of iOS 8, the status bar hides when in landscape orientation.

Understanding Points, Pixels, and the Retina Display

You might be wondering why I'm talking about “points” instead of pixels. Earlier versions of this book did, in
fact, refer to screen sizes in pixels rather than points. The reason for this change is Apple’s introduction of the
Retina display, which is Apple’s marketing term for the high-resolution screen on all versions of the iPhone
starting with iPhone 4 and later-generation iPod touches, as well as newer variants of the iPad. As you can
see by looking back at Table 1-1 again, it doubles the hardware screen resolution for most models and almost
triples it for the iPhone 6s/7 Plus.

132

http://dx.doi.org/10.1007/978-1-4842-3072-5_3
http://dx.doi.org/10.1007/978-1-4842-3072-5_1#Tab1
http://dx.doi.org/10.1007/978-1-4842-3072-5_1
http://dx.doi.org/10.1007/978-1-4842-3072-5_1#Tab1

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Fortunately, you don’t need to do a thing in most situations to account for this. When you work with
on-screen elements, you specify dimensions and distances in points, not in pixels. For older iPhones and
the iPad, iPad 2, and iPad Mini 1, points and pixels are equivalent—one point is one pixel. On more recent-
model Apple devices, however, a point equates to a 4-pixel square (2 pixels wide x 2 pixels high), and the
iPhone 5s screen (for example) still appears to be 320 points wide, even though it’s actually 640 pixels across.
On iPhone 6s/7 Plus, the scaling factor is 3, so each point maps to a 9-pixel square. Think of it as a “virtual
resolution,” with iOS automatically mapping points to the physical pixels of your screen.

In typical applications, most of the work of actually moving the pixels around the screen is managed by
iOS. Your app’s main function in all this is making sure everything fits nicely and looks proper in the resized
window.

Handling Rotation

To handle device rotation, you need to specify the correct constraints for all the objects making up your
interface. Constraints tell iOS how the controls should behave when their enclosing view is resized. How
does that relate to device rotation? When the device rotates, the dimensions of the screen are (more or less)
interchanged—so the area in which your views are laid out changes size.

The simplest way of using constraints is to configure them in Interface Builder (IB). Interface Builder
lets you define constraints that describe how your GUI components will be repositioned and resized as their
parent view changes or as other views move around. You did a little bit of this in Chapter 4, and you will
delve further into the subject of constraints in this chapter. You can think of constraints as equations that
make statements about view geometry and the iOS view system itself as a “solver” that will rearrange things
as necessary to make those statements true. You can also add constraints in code, but I'm not going to cover
that in this book.

Constraints were added to iOS 6 but have been present on the Mac for a bit longer than that. On both
i0S and macOS, constraints can be used in place of the old “springs and struts” system that was found in
earlier releases. Constraints can do everything the old technology could do, and more.

Creating Your Orientations Project

You'll create a simple app to see how to pick the orientations that you want your app to work with. Start a
new Single View App project in Xcode, and call it Orientations. Choose Universal from the Devices pop-up,
and save it along with your other projects.

Before you lay out your GUI in the storyboard, you need to tell iOS that your view supports interface
rotation. There are actually two ways of doing this. You can create an app-wide setting that will be the default
for all view controllers, and you can further tweak things for each individual view controller. You'll do both of
these things, starting with the app-wide setting.

Understanding Supported Orientations at the App Level

First, you need to specify which orientations your application supports. When your new Xcode project
window appeared, it should have opened to your project settings. If not, click the top line in the Project
Navigator (the one named after your project) and then make sure you're on the General tab. Among the
options available in the summary, you should see a section called Deployment Info, and within that, a
section called Device Orientation (see Figure 5-2) with a list of check boxes.

133

http://dx.doi.org/10.1007/978-1-4842-3072-5_4

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

¥ Deployment Info

Deployment Target

Devices iPhone

Main Interface Main

Device Orientation Portrait
"~ Upside Down
Landscape Left
Landscape Right

Status Bar Style Default B

~| Hide status bar
| Requires full screen

Figure 5-2. The General tab for your project shows, among other things, the supported device orientations

This is how you identify which orientations your app supports. It doesn’t necessarily mean that every
view will use all of the selected orientations, but if you are going to support an orientation in any of the
views, that orientation must be selected here. Notice that the Upside Down orientation is off by default.
That’s because Apple does not encourage the user to hold the phone upside down because if the phone rings
while it is in that orientation, the user would have to twist it through a full half-turn to answer it.

Open the Devices drop-down that’s just above the check boxes (see Figure 5-3) and you'll see that you
can actually configure separate sets of allowed orientations for the iPhone and the iPad. If you choose iPad,
you'll see that all four check boxes are selected because the iPad is meant to be used in any orientation.

¥ Deployment info

Deployment Targel \Pone (]
iPad

WL ' Universal ;

Main Interface Main B

Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right

Status Bar Style Default

Figure 5-3. You can configure different orientations for the iPhone and iPad

Note The four check boxes shown in Figures 5-2 and 5-3 are actually just a shortcut to adding and deleting
entries in your application’s Info.plist file. If you single-click Info.plist in the Project Navigator, you should
see two entries called “Supported interface orientations” and “Supported interface orientations (iPad),” with
subentries for the orientations that are currently selected. Selecting and deselecting those check boxes in the
project summary simply adds and removes items from these arrays. Using the check boxes is easier and less
prone to error, so using the check boxes is definitely recommended. However, you should know what they do.

134

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Again, you'll work with an iPhone 6s as your device. Now, select Main.storyboard. Find a label in the
Object Library and drag it into your view, dropping it so that it’s horizontally centered and somewhere near
the top, as shown in Figure 5-4. Select the label’s text and change it to This way up. Changing the text may
shift the label’s position, so drag it to make it horizontally centered again.

;}his \gay U;ﬁ

Figure 5-4. Setting your Portrait orientation label

You need to add Auto Layout constraints to pin the label in place before running the application, so
Control-drag from the label upward until the background of the containing view turns blue and then release
the mouse. Hold down the Shift key and select Vertical Spacing to Top Layout Guide and Center Horizontally
in Container in the pop-up and then press Return. Now, press #R to build and run this simple app on the
iPhone simulator. When it comes up in the simulator, try rotating the device a few times by pressing 36-Left
Arrow or 38-Right Arrow. You'll see that the entire view (including the label you added) rotates to every
orientation except upside down, just as you configured it to do. Run it on the iPad simulator to confirm that it
rotates to all four possible orientations.

You've identified the orientations your app will support, but that’s not all you need to do. You can also
specify a set of accepted orientations for each view controller, giving you more fine-grained control over
which orientations will work in different parts of your apps.

135

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

Understanding Per-Controller Rotation Support

Let’s configure your view controller to allow a different, smaller set of accepted orientations. The global
configuration for the app specifies a sort of absolute upper limit for allowed orientations. If the global
configuration doesn’t include upside-down orientation, for example, there’s no way that any individual view
controller can force the system to rotate the display to upside down. All you can do in the view controller is
place further limits on what is acceptable.

In the Project Navigator, single-click ViewController.swift. Here you'll implement a method defined
in the UIViewController superclass that lets you specify which subset of the global set of orientations you'll
accept for this view controller:

override func supportedInterfaceOrientations() -> UIInterfaceOrientationMask {
return UIInterfaceOrientationMask(rawValue:
(UIInterfaceOrientationMask.portrait.rawvalue
| UIInterfaceOrientationMask.landscapeleft.rawValue))

This method lets you return a ULInterfaceOrientationMask that specifies the acceptable orientations.
Calling this method is iOS’s way of asking a view controller if it’s allowed to rotate to a specific orientation.
In this case, we're returning a value that indicates that we’ll accept two orientations: the default portrait
orientation and the orientation you get when you turn your phone 90° clockwise so that the phone’s left edge
is at the top. You use the Boolean OR operator (the vertical bar symbol) to combine the raw values of these
two orientation masks and use the result to create a new UIInterfaceOrientationMask that represents the
combined value.

UIKit defines the following orientation masks, which you can combine in any way you like using the OR
operator (shown in the preceding example):

e UIInterfaceOrientationMask.portrait.rawValue

e UIInterfaceOrientationMask.landscapeleft.rawValue

e UIInterfaceOrientationMask.landscapeRight.rawValue

e UIInterfaceOrientationMask.portraitUpsideDown.rawValue

In addition, there are some predefined combinations of these for common use cases. These are
functionally equivalent to ORing them together on your own but can save you some typing and make your
code more readable.

e UIInterfaceOrientationMask.landscape.rawValue
e UIInterfaceOrientationMask.all.rawValue
e UIInterfaceOrientationMask.allButUpsideDown.rawValue

When the iOS device changes to a new orientation, the supportedInterfaceOrientations() method is
called on the active view controller. Depending on whether the returned value includes the new orientation,
the application determines whether it should rotate the view. Because every view controller subclass can
implement this differently, it is possible for one application to support rotation with some of its views but
not with others, or for one view controller to support certain orientations under certain conditions. Run
the example application again and verify that you can now rotate the simulator only to the two orientations
that are returned by the supportedInterfaceOrientations() method. The .rawValue at the end of each
orientation returns the integer value for the orientation to be used in comparison.

136

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Note You can actually rotate the device, but the view itself does not rotate, so the label is back to the top
except for the two selected orientations.

CODE COMPLETION IN ACTION

Have you noticed that the defined system constants on the iPhone are always designed so that values
that work together start with the same letters? One reason why UIInterfaceOrientationMask.
portrait, UIInterfaceOrientationMask.portraitUpsideDown, UIInterfaceOrientationMask.
landscapeleft, and UIInterfaceOrientationMask.landscapeRight all begin with
UIInterfaceOrientationMask is to let you take advantage of Xcode’s code completion feature.

You’ve probably noticed that as you type Xcode frequently tries to complete the word you are typing.
That’s code completion in action.

Developers cannot possibly remember all the various defined constants in the system, but you can
remember the common beginning for the groups you use frequently. When you need to specify an
orientation, simply type UlinterfaceOrientationMask (or even Ulinterf). You'll see a list of all matches
pop up. (In Xcode’s preferences, you can configure the list to pop up only when you press the Esc key).
You can use the arrow keys to navigate the list that appears and make a selection by pressing the Tab or
Return key. This is much faster than needing to look up the values in the documentation or header files.

Feel free to play around with this method by returning different orientation mask combinations. You
can force the system to constrict your view’s display to whichever orientations make sense for your app, but
don’t forget the global configuration I talked about earlier. Remember that if you haven’t enabled upside
down there (for example), none of your views will ever appear upside down, no matter what their view
controller’s supportedInterfaceOrientations() method declares.

Note i0S actually supports two different types of orientations. The one I'm discussing here is the interface
orientation. There’s also a separate but related concept of device orientation, which specifies how the device
is currently being held. Interface orientation is which way the views on the screen are rotated. If you turn a
standard iPhone upside down, the device orientation will be upside down, but the interface orientation will
almost always be one of the other three since iPhone apps don’t support portrait upside down by default.

Creating Your Layout Project

In Xcode, make another new project based on the Single View App template and name it Layout. Select
Main.storyboard to edit the storyboard in Interface Builder. A great thing about constraints is that they
accomplish quite a lot using very little code. To see how this works, drag four labels from the library to your
view and place them as shown in Figure 5-5. Use the dashed blue guidelines to help you line up each one
near its respective corner. In this example, you're going to use instances of the UILabel class to see how to
use constraints to build your GUI layout, but the same rules apply to many GUI objects.

137

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

® E
-
uL UR
LL LR

Figure 5-5. Adding four labels to your storyboard

Double-click each label and assign a title to each one so that you can tell them apart later. I've used UL
for the upper-left label, UR for the upper-right label, LL for the lower-left label, and LR for the lower-right
label. After setting the text for each label, drag all of them into position so that they are lined up evenly with
respect to the container view’s corners.

Let’s see what happens now, given that you haven’t yet set any Auto Layout constraints. Build and run
the app on the iPad Air simulator. Once the simulator starts up, you'll find that you can only see the labels
on the left—the other two are off-screen to the right. Furthermore, the label at the bottom left is not where it
should be—right in the bottom-left corner of the screen. Select Hardware » Rotate Left, which will simulate
turning the iPad to landscape mode. You'll find that you can now see the top-left and top-right labels, as
shown in Figure 5-6.

138

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Figure 5-6. Changing orientation without adding any constraints

Asyou can see, things aren’t looking so good. The top-left label is in the right spot after rotating, but all
of the others are in the wrong places, and some of them aren’t visible at all! What’s happened is that every
object has maintained its distance relative to the upper-left corner of the view in the storyboard. What you
really want is to have each label sticking tightly to its nearest corner after rotating. The labels on the right
should shift horizontally to match the view’s new width, and the labels on the bottom should move vertically
to match the new height. Fortunately, you can easily set up constraints in Interface Builder to make these
changes happen for you.

As you've seen in earlier chapters, Interface Builder is smart enough to examine this set of objects and
create a set of default constraints that will do exactly what you want. It uses some rules of thumb to figure
out that if you have objects near edges, you probably want to keep them there. To make it apply these rules,
first select all four labels. You can do this by clicking one label and then holding down the Shift key while
clicking each of the other three. With all of them selected, choose Editor » Resolve Auto Layout Issues »
Add Missing Constraints from the menu (you'll find there are two menu items with this name—in this case,
because you have selected all of the labels, you can use either of them). Next, just press the Run button to
launch the app in the simulator and then verify that it works.

Note Another way to easily select all the labels is to Shift-click the label names in the Document Qutline,
as shown in Figure 5-7.

139

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

v [view Controller Scene
v View Controller

Top Layout Guide

_ Bottom Layout Guide -

v View j{@

8
5]

() First Responder
[E5 Exit

» Storyboard Entry Point

Figure 5-7. Using the Document Outline view (to the left of the storyboard canvas) can sometimes make it
easier to select and work with multiple UI objects

140

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Knowing that this works is one thing, but to use constraints like this most effectively, it’s pretty
important to understand how it works, too. So, let’s dig into this a bit. Back in Xcode, click the upper-left label
to select it. You'll notice that you can see some solid blue lines attached to the label. These blue lines are
different from the dashed blue guidelines that you see when dragging objects around the screen, as shown in
Figure 5-8.

-

LU LR

Figure 5-8. The solid blue lines show constraints that are configured for the chosen object

141

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

Each of those solid blue lines represents a constraint. If you now press “\23t5 to open the Size Inspector,
you'll see that it contains a list of constraints. Figure 5-9 shows the constraints that Xcode applied to the
UL label in my storyboard, but the constraints that Xcode creates depends on exactly where you placed the
labels, so you may see something different.

DeE ¢ A e

Label |
Preferred Wi. [l2) Explicit |
View

Show Frame Rectangle

Ul 20 C [

X Y .

~ i

22|, 21 |

Width Height ;

[}

Arrange Position View |
Layout Margins Default

Preserve Superview Margins
+ Follow Readable Width

Constraints

A
(mi®

FX'B This Size Class

Leading Space to: Edit
E) Align Trailing to: LL Edit
E Top Space to: Top Layout.. Edit
[Align Baseline to: UR Edit

Showing 4 of 4

Figure 5-9. Four constraints generated by Xcode to pin a label in its parent view

In this case, two of the constraints deal with this label’s position relative to its superview, which is the
container view: it specifies the leading space, which generally means the space to the right, and the top space,
which means the space above the label. These constraints cause the label to maintain the same distance
to the top and right edges of its superview when the superview’s size changes, as it does when the device is
rotated. The other two constraints keep this label lined up with two of the other labels. Examine each of the
other labels to see what constraints they have and make sure that you understand how those constraints
work to keep the four labels in the corners of their superview.

142

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

You should know that in languages where text is written and read from right to left, leading space is
on the right, so adding a trailing constraint will cause a GUI to be laid out in the opposite direction if the
user has picked a language such as Arabic for their device. This is, in fact, what the user would expect. It's
automatic, so you don’t need to do anything special to make it happen.

Overriding Default Constraints

Grab another label from the library and drag it to the layout area. This time, instead of moving toward a
corner, drag it toward the left edge of your view, lining up the label’s left edge with the left edges of the
other labels on the left side and centering it vertically in the view. Dashed lines will appear to help you out.
Figure 5-10 shows you what this looks like.

r B
-
UL UR
LL LR

Figure 5-10. Placing the Left label

Let’s add a new constraint to force this label to stay vertically centered. Select the label, click the Align
icon below the storyboard, select Vertically in Container in the pop-up that appears, and then click Add 1
Constraint. Now make sure that the Size Inspector is on display (by pressing ~=3%5 if necessary). You'll see
that this label now has a constraint aligning its center Y value to that of its superview. The label also needs
a horizontal constraint. You can add this by making sure the label is selected and then choosing Editor »
Resolve Auto Layout Issues » Add Missing Constraints from the All Views section of the menu. Press &R to
run the app again. Do some rotating and you'll see that all the labels now move perfectly into their expected
places for the various device types.

143

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

Now, let’s complete your ring of labels by dragging out a new one to the right side of the view, lining
up its right edge with the other labels on the right, and aligning it vertically with the Left label. Change
this label’s title to Right and then drag it a bit to make sure that the right edge is vertically aligned with the
right edges of the other two labels, using the dashed blue line as your guide. You want to use the automatic
constraints that Xcode can provide you with, so select Editor » Resolve Auto Layout Issues » Add Missing
Constraints to generate them.

Build and run again. Do some rotating again. You'll see that all the labels stay on the screen and are
correctly positioned relative to each other (see Figure 5-11). If you rotate back, they should return to their
original positions. This technique works great for many applications you're likely to encounter.

Pameraas ae dasas sesane g ss tesamne saay

uL UR

Left Right

LL LR

Figure 5-11. The labels in their new positions after rotating

Using Full-Width Labels

You're going to create some constraints that make sure that your labels stay the same width as each other,
with tight spacing to keep them stretched across the top of the view even when the device rotates. Figure 5-12
should give you an idea of what you're trying to do.

144

CHAPTER 5 © WORKING WITH DEVICE ROTATIONS

Figure 5-12. The top labels, spread across the entire width of the display, in both portrait and landscape
orientations

You need to be able to visually verify that you have the result you want—namely, each label is precisely
centered within its half of the screen. To make it easier to see whether you have it right, let’s temporarily set
a background color for the labels. In the storyboard, select both the UL and UR labels, open the Attributes
Inspector, and scroll down to the View section. Use the Background control to select a nice, bright color.
You'll see that the (currently very small) frame of each label fills with the color you chose.

Drag the resizing control of the UL label from its right edge, pulling it almost to the horizontal midpoint
of the view. You don’t have to be exact here, for reasons that will become clear soon. After doing this, resize
the UR label by dragging its left-edge resizing control to the left until you see the dashed blue guideline
appear (if you don’t see the guide disappear, just drag it reasonably close), which tells you that it’s the
recommended width from the label to its left. Now you’ll add a constraint to make these labels retain their
relative positions. Control-drag from the UL label until the mouse is over the UR label and then release the
mouse. In the pop-up, select Horizontal Spacing and press Return. That constraint tells the layout system to
hold these labels beside one another with the same horizontal space they have right now. Build and run to
see what happens. You should see something like Figure 5-13; the longer label may appear on the left or right
depending upon your configuration.

145

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Carrier ¥

4:48 PM 3

Figure 5-13. The labels are stretched across the display but not evenly

That’s heading in the right direction but not yet what I had in mind. So, what’s missing? You've defined
constraints that control each label’s position relative to its superview and the allowed distance between the
two labels, but you haven'’t said anything about the sizes of the labels. This leaves the layout system free to
size them in whatever way it wants (which, as you've just seen, can be quite wrong). To remedy this, you
need to add one more constraint.

Make sure the UL label is selected and then hold down the Shift key ({1) and click the UR label. With both
labels selected, you can make a constraint that affects both of them. Click the Pin icon below the storyboard
and select the Equal Widths check box in the pop-up that appears (which you saw in Chapter 3); then click Add
1 Constraint. You'll now see a new constraint appear, as shown in Figure 5-14. You may notice two orange lines
have appeared below the labels; this means that the current positions and sizes of the labels in the storyboard
do not match what you will see at runtime. To fix this, select the View icon in the Document Outline and then
select Editor » Resolve Auto Layout Issues » Update Frames in Xcode’s menu. The constraints should change
to blue, and the labels will resize themselves so that their widths are equal.

H

Figure 5-14. The top labels are now made equal in width by a constraint

146

http://dx.doi.org/10.1007/978-1-4842-3072-5_3

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

If you run again at this point, you should see the labels spread across the entire screen, in both portrait
and landscape orientations (see Figure 5-12).

In this project, all of your labels are visible and are correctly laid out in multiple orientations; however,
there is a lot of unused space on the screen. Perhaps it would be better if you also set up the other two rows
of labels to fill the width of the view or allowed the height of your labels to change so that there will be less
empty space on the interface? Feel free to experiment with the constraints of these six labels and perhaps
even add some others. Apart from what I've covered so far, you'll find more actions that create constraints
in the pop-ups that appear when you click the Pin and Align icons below the storyboard. And if you end up
making a constraint that doesn’t do what you want, you can delete it by selecting it and pressing the Delete
key, or you can try configuring it in the Attributes Inspector. Play around until you feel comfortable with the
basics of how constraints work. You'll use constraints constantly throughout the book, but if you want the
full details, just search for Auto Layout in the Xcode documentation window.

Creating Adaptive Layouts

The layout for the simple example that you just created works well in portrait and landscape orientations.
It also works on both iPhone and iPad, despite their differing screen dimensions. As I already noted,
handling device rotation and creating a user interface that works on devices with different screen sizes are
really the same problem—after all, from the point of view of your application, when the device rotates, the
screen effectively changes size. In the simplest cases, you handle them both at the same time by assigning
Auto Layout constraints to make sure that all of your views are positioned and sized where you want them to
be. However, that’s not always possible. Some layouts work well when the device is in portrait mode but not
so well when it’s rotated to landscape; similarly, some designs suit the iPhone but not the iPad. When this
happens, you really have no choice but to create separate designs for each case. Prior to iOS 8, this meant
either implementing your whole layout in code, having multiple storyboards, or doing a combination of the
two. Fortunately, Apple has made it possible to design adaptive applications that work in both orientations
and on different devices while still using only a single storyboard. Let’s take a look at how this works.

Creating the Restructure Application

To get started, you'll design a user interface that works well for an iPhone in portrait mode but not so well
when the phone is rotated or when the application runs on an iPad. Then you'll see how to use Interface
Builder to adapt the design so that it works well everywhere.

Start by making a new Single View app like you've done before, naming this one Restructure. You're
going to construct a GUI that consists of one large content area and a small set of buttons that perform
various (fictional) actions. You'll place the buttons at the bottom of the screen and let the content area take
up the rest of the space, as shown in Figure 5-15.

147

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

o @ E

Figure 5-15. The initial GUI of the Restructure app, in portrait orientation on the iPhone

Note You may have noticed that some of the various illustrations of Apple devices | use in this book have
different configurations. While some, such as Figure 5-15, have an appearance closer to a “real” device, others
such as Figure 5-11, appear more basic. The differences should not be a concern as you’re likely to come
across any of them in technical documentation, including that from Apple.

Select Main.storyboard to start editing the GUL Since you don’t really have an interesting content view
you want to display, you'll just use a large colored rectangle. Drag a single UIView from the Object Library
into your container view. While it’s still selected, resize it so that it fills the top part of the available space,
leaving a small margin above it and on both sides, as shown in Figure 5-15. Next, switch to the Attributes
Inspector and use the Background pop-up to pick some other background color. You can choose anything
you like, as long as it’s not white, so that the view stands out from the background. In the storyboard in the
example source code archive, this view is green, so from now on I'll call it the green view.

Drag a button from the Object Library and place it in the lower left of the empty space below the green
view. Double-click to select the text in its label, and change it to Action One. Now Option-drag three copies
of this button and place them in two columns, like those in Figure 5-15. You don’t have to line them up
perfectly because you're going to use constraints to finalize their positions, but you should try to place the
two button groups approximately equal distances from their respective sides of the containing view. Change
their titles to Action Two, Action Three, and Action Four. Also, let’s add a different background color to
each button so they're easy to see; I've used red, blue, orange, and yellow in order, but you can choose any

148

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

colors you prefer. If you use a dark background color like blue, you want to make the text lighter as well.
Finally, drag the lower edge of the green view downward until it just touches the top row of buttons. Use the
blue guidelines to line everything up, as shown in Figure 5-15.

Now let’s set up the Auto Layout constraints. Start by selecting the green view. You're going to
start by pinning this to the top and to the left and right sides of the main view. That’s still not enough
to fully constrain it because its height isn’t specified yet; you're going to fix that by anchoring it to the
top of the buttons, once you've fixed the buttons themselves. Click the Pin button at the bottom right
of the storyboard editor. At the top of the pop-up, you'll see the now familiar group of four input fields
surrounding a small square. Leave the Constrain to Margins check box selected. Click the red dashed lines
above, to the left, and to the right of the small square to attach the view to the top, left, and right sides of its
superview (see Figure 5-16). Click Add 3 Constraints.

Add Hew Constraints
!
0 -0 -

[] -
Spacing to nearest neighbor
€ Constrain 1o margins
) & width 343 -
) (8 Height ss2 -
B
@ Equad ahs
[[Aspect Ratio
@D iign | Leading Edges :
Update Frames | None z)
l Add 3 Constraints |

Figure 5-16. Adding constraints to fix the green view to the top, left, and right sides

For now, you'll set a constant height for your buttons, starting with Action One, as shown in Figure 5-17.
I've used the value of 43 points simply because that’s where it was when I created the button. Anything around
this number should be okay for what you're trying to do in this example, which is deal with different devices
and orientations. Then repeat the operation for each of the other three buttons.

149

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Swﬁn\;:c; nearest neighbor
8 constrain to margins
1 [E) width w2 -
G [Height 43 -
@
@z

[[Aspect Ratio

@B i | Leading Edges

Update Frames | None z)
Add 1 Constraint]

Figure 5-17. Setting a height value for one of your buttons

If you performed the operations correctly so far, you should be able to see the results of all the
constraints in the Document Outline, as shown in Figure 5-18, where you see each of your four button
heights, as well as the three sides for the green view.

v [E) View Controller Scene 4]

v () View Controller
Top Layout Guide
Bottom Layout Guide
v [view
View
v | B Action One
v Constraints
height = 43
v |B| Action Two
v |&J Constraints
height = 43
v |B|Action Three
v (&) Constraints
height = 43
v [B] Action Four
v |& Constraints
height = 43
v Constraints
View.leading = leadingM...
View.trailing = trailingMa...
(B view.top = Top Layout G...
(7% First Resoonder

Figure 5-18. You can always see the progress of setting your constraints in the Document Outline

150

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Next pin the bottom-left (Action Two) and bottom-right (Action Four) buttons to the lower corners by
Control-dragging from each button to the lower left and lower right, respectively. For Action Two, Shift-select
the two options, as shown in Figure 5-19.

Action Two

Leading Space to Container Margin

Vertical Spacing to Bottom Layout Guide
—_ Center Horizontally in Container

Center Vertically in Container

Equal Widths

Figure 5-19. Control-drag down and to the left to pin the Action Two button to the lower left of the container
view

Perform the similar operation, Control-dragging out to the right and down to set the leading and
vertical spacing for the Action Four button, as shown in Figure 5-20.

ar Margin
Viargs

Layout Guide
Center Horiz f ainer

Center Vi

Figure 5-20. Control-drag down and to the right to pin the Action Four button to the lower right of the
container view

Next, Shift-select all four buttons, click the Pin icon, and set all the widths to be equal (see Figure 5-21).
Note that you haven’t set a width yet, so they could vary from small to extremely wide; but in a moment,
you'll take care of that through additional constraints.

151

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Spacing to nearest neighbor
Constrain to margins
— =) wigth -
[Height 23 -
B3 equal widths
(3 Eaqual Heights
Aspect Ratio

TR TR TR

——

"~ BB Align | Leading Edges =
Update Frames | None 0
Add 3 Constraints

T E—

Figure 5-21. Set all the buttons to be equal widths, although you haven't yet set any value for width in your
storyboard

For the top row of buttons, Action One and Action Three, Control-drag to the left and right, respectively,
to set Leading Space to Container Margin and Trailing Space to Container Margin (see Figure 5-22). This
ties the left edge of Action One and the right edge of Action Three to the edge of the view, setting one of your
width anchor points.

Figure 5-22. Setting the left edge of Action One and the right edge of Action Three to the edges of the
containing view

These final two constraints will be all you need to make sure that the buttons are half the width of the
green view and match each other. Control-drag from Action One to Action Three and set the horizontal
spacing. Do the same thing between Action Two and Action Four, as shown in Figure 5-23. What you've done
is to set the edge anchor to a fixed location, which is the left and right edges of the container in Figure 5-22.
And, as you saw in Figure 5-21, you set the buttons to be equal width. By setting the horizontal spacing so
that the buttons on the same row are up against each other, they work out to meet in the center of the view.
And since the green view is also pinned to the left and right edges, the buttons meet in the middle of the
green view.

152

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Action Two

— anne L

Figure 5-23. Attach each row of buttons together at the center of the view; this, by default, sets the width of
each button to be half the width of the view

Just a couple more things and you'll be ready to test your app in the various devices. Control-drag from
Action Three to Action Four to set the vertical spacing, like you just did with the horizontal spacing of rows,
as shown in Figure 5-24. Do the same between Action One and Action Two.

= Vertical Spacing
Action Two 2

L
C
100% - Tt = R =N

Figure 5-24. Set the vertical spacing between buttons in the same column like you did with the button rows

Finally, Control-drag between the green view and the Action One button to set the spacing so that the
green view and the top row of buttons are adjacent, as shown in Figure 5-25.

Figure 5-25. Setting the spacing between your green view and the top row of buttons

153

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Now you should be able to select any full-screen iPhone or iPad in either portrait or landscape
orientation and the buttons should maintain their position, as shown in Figure 5-26.

Actan Fas

UO0ote| 32 J00ooef0e Beiooioas

Davice
Figure 5-26. Selecting different devices in portrait orientation; the layouts should maintain their positioning

One other thing to note when looking at the Issue Navigator in Xcode is that there aren’t any issues. By
systematically setting just the constraints you needed, you were able to create a layout with minimal effort.
However, don’t expect it to be this easy all the time.

One last thing to do: let’s build and run your project in the simulator before moving forward just to
make sure it works as you expect. Figure 5-27 shows the two iPhone 6s orientations, while Figure 5-28 shows
the two orientations for a full-screen iPad Air.

154

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Figure 5-27. Your two orientations for an iPhone 6s

155

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

She ¥

I

Figure 5-28. Your two orientations for an iPad Air

While these look like you would expect them to, they’re not what you're after. For an iPhone in
landscape, still a wC hC configuration, you want a single column of buttons pressed up against the right side.
For an iPad, in any orientation, wR hR, you want a single row of buttons against the bottom of the view.

Note The notation w- h- refers to the width and height of the configuration being considered. To simplify
things, in Auto Layout this will be either C for compact or R for regular so that you have these options: wC hC,
wC hR, wR hC, and wR hR. By looking in the Device Configuration Bar, you can see how these apply to actual
Apple devices.

Setting the iPhone Landscape (wC hC) Configuration

You'll get to setting up your wC hC landscape configuration quickly, but first save your work and then close
the Xcode project. You can just click the red ball at the upper left of the Xcode window to close this project.
You don’t have to exit Xcode completely.

Go to Finder on your Mac to locate the Restructure folder and create a compressed version, as shown
in Figure 5-29. This creates your “master” copy of the project that you can come back to at any time if, during
the following changes, things get out of whack.

156

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

] MCIU ULLUIC

gmuan me| vl | O

Bm cho2 New Folder R |

9 cho3 Open in New Tab © [

[choa o>

B9 chos | Move to Trash ©»
Get Info
Rename

Compress “Restructure”

[ST

Figure 5-29. Create a master copy of your project as it exists now

Because you may want to do this again through the course of your following work, rename the .zip file
to RestructureBaseline, as shown in Figure 5-30, so you know that this is the original project you made that
works with all devices and orientations in the same manner.

E
(2]
-
(=
o

h || O v »

g8l
<

£+
<

'™ Adapt1 >
F Adapt1.zip

L]
<
[Layout (]
o
@

L
Yy vvyvw

[Orientations
Restructure

Li RestructureBaseline.zip @

vy vy

Figure 5-30. Saving your baseline project under a unique name

First, let’s create your iPhone landscape orientation. Select the iPhone 6s and the landscape orientation.
To the right of the Device Configuration Bar, click Vary for Traits and note that the bar turns blue, as shown
in Figure 5-31. In the pop-up select both height and width. You should see, again in Figure 5-31, that now
only iPhone devices are shown and only in landscape orientation. In this variation of traits, you'll develop
your Ul just for this configuration.

157

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Introduca Varlations Based On:
[widin
8 Hoigm

ying 2 Compact WIGIh and Compact Height Devices

Figure 5-31. The starting point for creating the UI for your iPhone landscape configuration

Next, and yes this will seem scary, click all five UI elements (your green view and the four buttons)
and press Delete. Don’t worry too much because you saved the project and created a compressed baseline
version that you can always get back to later. If you didn't, it might be a good idea to do that now. When
completed, your canvas will look, as you'd expect, like Figure 5-32. But, if you look at the Document Outline,
you'll still see the elements and even the constraints. That’s because they exist for the baseline configuration
and you're creating a new configuration or a new trait collection for just your wC hC landscape.

158

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

[View Controller Sceme
v (23 View Controlier
[Ton Layout Guice
[l Bottom Layout Guice
¥ [view
View
v | AstionOes
* [B] Comtrainns
([raighs - 43
v o Astion Twe
v [conmstraints
() reighs = 43
- Action Tarea
v [l constraims
[reghs = 43 .
v Astion Four | o8B |
v [B) Commirain -
(@ heighs - 42
v (B constraime
(B sction Foureacing = ac...
[trasingMargin = Action £
B Action Fourtop = Actien_
8 fction Fourwidih = Acto.
[H) rravingMacyin = Action T... }
B Actioe: Trwee sading = A |

[vz = Top Loyout 6.
[Action Do = View .
I Dottom Loyout Guigoaop..
B oo Layout Guldeasp..
3 Fiest Responder
B e
* Gtorybaard Entry Point

| =

& Fwe Varying 3 Compact Wik ad ompact Halght Devices

Figure 5-32. Starting over for just your iPhone landscape configuration. Note that you still have all the UIT
elements and constraints showing in your Document Outline but for your baseline configuration.

Asyou did for your baseline, drag out a UIView and four buttons, setting them up with colors and
titles as you did earlier. Place them in the approximate positions shown in Figure 5-33, but don’t set any
constraints just yet.

Figure 5-33. Drag new UI elements onto the storyboard and position them approximately as shown

159

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

In this section, let’s make your measurements a little more accurate. Select the green view. Using
the Size Inspector, set the dimensions to 500 x 340 points, as shown in Figure 5-34. The width (500pts) is
arbitrary; the height is 340, which when divided by 4 comes out to 85, which is what you will set as the height
of the buttons. Note that this is not necessarily a constraint but, rather, the appearance on the storyboard.
In fact, you don’t want any fixed size for the green view since it will vary depending on whether you go up in
size to a Plus or down to an SE.

show | Frame Rectangle [
15 <)

Arrange | Position View '

T

Figure 5-34. Set the dimensions of the green view

Select the green view and pin the top, left, and right sides to the edge, as shown in Figure 5-35.

@c
e » B Oc
@
E
- i.
In
=
~ @D wige | Leading Edges >
\pdate Frames | Nono z)

— (Add 3 Constraints J

Figure 5-35. Pin the green view to the top, left, and right for the landscape orientation

160

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Next, you're going to fix the width of the Action One button, but you're going to do it a little differently than
previously. Inside the Action One button, Control-drag from one point to another both the starting and ending
points within the red boundary and release. You're presented with a similar popover (see Figure 5-36), on
which you select Width. The width of the Action One button should now be 120 points, as shown in Figure 5-37.

Width

Aspect Ratio

Action 1...

Figure 5-36. Set the width of the Action One button

v [E] view Controller Scene (<]
v (O) View Controller
Top Layout Guide
Bottom Layout Guide
v || view
[:] View
v | B | Action One
v Constraints
width = 120
Action Two
M Action Three
m Action Four

Figure 5-37. Verify that the Action One button is set to 120 points

You want all four buttons to be the same width and the same height—the width being 120 points but
the height being adjust dynamically based on the available vertical area of the iPhone when in landscape
orientation. As before, you'll handle the equal height by setting the spacing between the buttons in the
column. For now, Shift-click all four buttons to select them all, click the Pin icon, and set the Equal Widths
and Equal Heights constraints, as shown in Figure 5-38.

161

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Shadow Offset
Drawing [
Add New Constraints ;
E
0 vt EI 1¥a v E
Action Two - [
Spacing to nearest neighbor
Constrain to margins
(] &) width 120 v
] @ Height 85 v
B equal widths [-
@ Equal Heights (
) 1 [E) Aspect Ratio
Action Four _ :
) BB Align [Leading Edges 3|
s} a Update Frames | None g E
(Add 6 Constraints) l
T ———)

Figure 5-38. Set all four buttons to equal width and height

Note You may have noticed that although you have four buttons with two constraints each, the actual
number of constraints you add is 6. This is because you're actually setting the equal quality of three buttons to
the fourth button.

162

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Pin the Action One button to the top and right of its containing view (see Figure 5-39) and the Action
Four button to the right and bottom (see Figure 5-40).

R

Shadow Offset |
OF
Drawing [| €
13
Add New Constraints ; 4
in
E
0 b -4 D Hi\7 - E_c
0 - L

Spacing to nearest neighbor
Constrain to margins

O @ width 120 v)
() () Height 85 -
E Equal Widths
3 @ Equal Heights

. [[Aspect Ratio
Action Four
@ Align | Leading Edges

Update Frames | None
(Add 2 Constraints

<>

g ™ m In l_;’_h_r m

S T

A

Figure 5-39. Pinning the Action One button to the top and right

163

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Image | D¢
Background | (-
Shadow Offset |
O
Drawing |
Add New Constraints
T
0 7 B
Action Two L
Spacing to nearest neighbor L
Constrain to margins
‘ O @ width 120 -
‘) [H) Height 85 v _|
| E Equal Widths ~1
| EcJaI:-‘.c ghts r
7 [[E Aspect Ratio
1 BB Align | Leading Edges
Update Frames | None 1
[(Add 2 Constraints)
™, "-"«-—gl
D

Figure 5-40. Pinning the Action Four button to the bottom and right

164

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

For the Action Two button, Control-drag to the right and choose Trailing Space to Container Margin to
pin it to the right side of the container, as shown in Figure 5-41. Repeat this operation with the Action Three
button.

Trailing Space to Container Margin
Center Vertically in Container

Equal Widths
Equal Heights
Aspect Ratio

Figure 5-41. Pin the middle buttons to the right side using Control-drag and set the Trailing Space to
Container Margin pop-up, as shown here for Action Two. Do the same operation for the Action Three button.

Between the Action One and Action Two buttons, Control-drag to set the vertical spacing, as shown
in Figure 5-42. Repeat for the spacing between Action Two and Action Three, as well as Action Three and
Action Four.

165

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Figure 5-42. Set the vertical spacing between each of the pairs of buttons in the column. This forces the height
of each button to be one-fourth the height of the container.

Finally, set the horizontal spacing between the green view and the Action One button (you could use
any of the four buttons), as shown in Figure 5-43.

Horizontal Spacing

Top

Center Vertically
Baseline

Bottom

Equal Widths
Equal Heights

Figure 5-43. Set the horizontal spacing between the green view and the row of buttons

166

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Click the Done Varying button in the Device Configuration Bar to finish adding, placing, and setting
constraints for this iPhone landscape configuration, as shown in Figure 5-44.

B3 & o] ad

Done Varying

Figure 5-44. Finish by clicking the Done Varying button in the Device Configuration Bar

The buttons should now be properly placed for any of the three iPhone wC hC configurations, as shown
in Figure 5-45. Note that if you were to select a 6/6s Plus, because that is a wR hC device, you would see the
earlier baseline layout.

%
00080/ 1 J0O0g00 0a

] View as: iPhoas 45 (<C 1C) — woN +

Figure 5-45. Changing the device type in the Device Configuration Bar shows that you have correctly set up
your constraints for the landscape orientation of wC hC iPhone devices

167

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Running the apps in the simulator should yield the results shown in Figure 5-46. Although you could
have made the alignment a little tighter to the edges, which would be appropriate for a production app, in
this example you wanted to stress the manipulations of UI elements for the various device and orientation
configurations. As you become more and more familiar with Auto Layout, you'll naturally get much better
with your designs.

Figure 5-46. Ifyou’ve done everything correctly, you should see the proper layout for any iPhone (except 6s/7
Plus) landscape configurations

The last thing you want to do before moving on to iPad is to save this project version by compressing it for
later and assigning a recognizable name. As shown in Figure 5-47, I used the name Restructure wChC.zip for
your file, which represents the compact width and height. Feel free to use any naming convention you like, as
long as you're able to keep track of the various iterations.

[Restructure

e o ERERNEE

9 Adapt1 ()
b Adapt1.zip)
]
o

[

[]

9 Layout
9 Orientations

B Restructure v

b Restructure wChC.zip @
b RestructureBaseline.zip @

vy oes.

- W
Yy v.v v

v

Figure 5-47. Save this version of the project in case you need to get back to this baseline
168

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Setting the iPad (iPhone Plus Landscape) (WR hR) Configurations

In the previous two sections, I walked you through each step along the way to creating your layouts for
the baseline and iPhone landscape configurations. You need to be able to quickly use Auto Layout when
designing your U], so if you need any review, I suggest running through the preceding sections another
couple of times, trying it without looking at the text or figures.

For this configuration, to save space, I've shown the key steps in Table 5-1 along with pointing to the
reference figures in case you might need a little help with understanding what the step is about. You’ll work
this way from now on, at least most of the time unless I need to address something new.

Follow the steps in Table 5-1 to set up the configuration for the iPad in all orientations and the iPhone
6/6s Plus in landscape orientation.

Table 5-1. Setting Up All Orientations on an iPad and the Landscape Orientation on iPhone 6/6s Plus

Step Action Figure
1 Click Vary For Traits and introduce variations based on width. 5-48
2 Delete the five Ul elements in the storyboard. Then add back five new elements 5-49

from the Object Library as you did in the previous section.

3 Select the green view you just added and, in the Size Inspector, set the width to 728and ~ 5-50
the height to 926. These are not constraints; they’ll just help you with visually laying out
the elements on the storyboard. (Note: These values work for the iPhone 6s. If using a
different device size, you will need to vary your height and width accordingly.)

4 Select the Action Four button and set its width to 182 using the Size Inspector; 5-51
again, this is for the iPhone 6s device. This is only for visual placement and not a
constraint.

5 Making sure you still have a blue Device Configuration Bar indicating that you're 5-52

still in the Vary for Traits mode, align the UI elements as shown: the green view
along the top and a single row of buttons along the bottom.

6 Similar to what you did before, pin the green view to the top, left, and right sides of ~ 5-53
the containing view.

7 Pin the Action One button to the lower-left corner of the containing view. 5-54

8 Pin the Action Four button to the lower-right corner of the containing view. 5-55

9 Pin the Action Two button to the bottom edge of the containing view. 5-56

10 Pin the Action Three button to the bottom edge of the containing view. 5-57

11 Add a constraint to set the height of the Action One button to a fixed value. I used 5-58

63 points because it fit the layout on my storyboard. There is no “right” answer;
adjust it to your needs for your layout.

12 Shift-select all four action buttons along the bottom row and set them to equal 5-59
height and width.
13 Click-drag from the green view to the Action One button and set the vertical 5-60

spacing. This forces the green view to sit against the row of buttons.

14 Click-drag from Action One to Action Two setting the horizontal spacing. Repeat for 5-61
Action Two to Action Three as well as Action Three to Action Four. This causes the
buttons to sit next to each other on the sides and to be one-quarter the width of the
enclosing container.

15 Click the Done Varying button to end the modifications for this set of traits. 5-62

169

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

ad 0.7" (wR rR)

Varying 8 Regular Width Devices

Pad 9.7 («R nR)

|

Figure 5-49. Delete the five UI elements

170

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Arrange Position View n

—

Figure 5-50. Add in the five new Ul elements from the UI Object Library and set the width and height of the
green view using the Size Inspector. This does not set constraints, only the visual aspects so you can adjust your
storyboard.

View

Show = Frame Rectangle

[566 0 953/

X Y
[w2 e[
width Height
Arrange | Position View
Autoresizing L "

Figure 5-51. Similarly, set the width and height of the Action Four button so you have a visual reference with
which to work and manipulate your storyboard

171

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Varying 8 Regular Width Devices

Figure 5-52. Align everything up as shown, making sure your Device Configuration Bar is still blue indicating
you're working with a particular set of traits

Add New Constraints

0 *H[o »

70 -
Spacing 1o nearest neighior
@ Constrain to margins.
1 B wigth 728 =
7 [Heignt 026 -

B Eoual widths
BB Equal Heights
7 [aspect Ratio

ﬂ Align | Leading Edges

Update Frames | None) |—
Add 3 Constraints] :

|] oEfect wt

Figure 5-53. Similar to what you did in the previous sections, pin the green view to the top, left, and right sides
of the containing view

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Add New Constraints
0 v HD 0 -
I

8 -
Spacing to nearest neighbor
Constrain to margins

) & width 182 -

7 [E) Heignt 63 .
E Equal Widths

B m Equal Heights

[[B) Aspect Ratio

= Align | Leading Edges 1

<>

Update Frames | None |
(Add 2 Constraints]p

Figure 5-54. Pin the Action One button to the lower-left corner of the containing view

Add New Constraints
033 -|
| 0 - | DH 0 ..
I

8 -
Spacing to nearest neighbor
Constrain to margins

O @ widtn 182 o~
) [Height '__33 p

Equal Widths

m Equal Heights
("1 [) Aspect Ratio

Action Four

o o

B EB Align | Leading Edges

€3

T

‘ Update Frames | None
| [Add 2 Constraints)

Figure 5-55. Pin the Action Four button to the lower-right corner of the containing view

173

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Action Two

Vertical Spacing to Bottom Layout Guide

Center Horizontally in Container

Equal Widths
Equal Heights
Aspect Ratio

Figure 5-56. Pin the Action Two button to the bottom edge of the containing view

Action Four

Vertical Spacing to Bottom Layout Guide

Center Honzontally in Container

Equal Widths
Equal Hei

Figure 5-57. Pin the Action Three button to the bottom edge of the containing view

174

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Add New Constraints
933 >
0 =i J-i0 -
a -

Spacing to nearest neighbor
Constrain to margins
) & widtn w2 -
Height 63 .

B E Align | Leading Edges

Update Frames | None
Add 1C

<

Figure 5-58. Add a constraint to set the height of the Action One button to a fixed value. I used 63 points
because it fit the layout on my storyboard.

8 B3 equal widths
9 [equal Heights
) [@ Aspect Ratio

. e

E

[+| =[O0 .

= ise

E

L] <]

Spacing to nearest neighbor P

@ Constrain to margins 50

= E
~ B widtn 82 - =5
T @ reigne [e3]
@ eight &3 | b
E

E

|| e

I

L

Figure 5-59. Shift-select all four action buttons along the bottom row and set them to equal height and width

175

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

Vertical Spacing

Leading

Center Horizontally

Trailing

Equal Widths
Equal Heights
Aspect Ratio

Figure 5-60. Click-drag from the green view to the Action One button and set the vertical spacing. This forces
the green view to sit against the row of buttons.

Figure 5-61. Click-dragfrom Action One to Action Two, setting the horizontal spacing. Repeat for Action Two
to Action Three as well as for Action Three to Action Four.

176

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

B3 I o] taf

Done Varying

Figure 5-62. Click the Done Varying button to end the modifications for this set of traits

T hope you were able to follow this abbreviated form of using Auto Layout. If you found any issues, the
best thing is to go back, delete your project, and start at the last baseline project. Until you work with Auto
Layout for a dozen or so times, you'll most likely make several mistakes and get frustrated. You're not alone.
When I'm away from Xcode and especially Auto Layout for a few weeks, I'm often walking away only to
restart and re-layout things until I get it the way I need or want it to be.

Assuming you made it to this point successfully, click a few different iPad and orientation configurations
to verify that things appear as you expect them, as shown in Figure 5-63.

i

!D View as: Pad 9.7° (R <R] — 60% 1 View as: iPhone Bs Pus 1.8 16

Oooee 00 oooe D000 G

Figure 5-63. Check to make sure your orientations appear correctly in the storyboard canvas

Finally, run the simulator for various devices making sure things appear as they should. Figure 5-64
shows what things should look like for an iPad Air in portrait and landscape orientations.

177

CHAPTER 5 WORKING WITH DEVICE ROTATIONS

T T L |

Figure 5-64. Verify things work as expected by running the simulator using various device types and checking
orientations

Summary

In this chapter, I covered the basics of handling device rotations including getting heavily involved with
using the new Xcode 8 Auto Layout and traits editor with the Device Configuration Bar. I started by talking
the basics of rotations and what happens when you change orientation on an Apple device. The first project,
Orientations, showed the basics of working with simple device rotations and maintaining positioning of
labels. In the second project, Layout, you refined your knowledge of label positioning by putting labels into
all four corners, as well as the left and right edges, to handle rotations.

Finally, in the Restructure project, you got very deep into understanding the use of Auto Layout for
creating device and orientation-specific layout configurations. As you will be using Auto Layout for the rest
of this book, as well as your career, make sure that you're comfortable with its use before proceeding. While
it can be very daunting at first, through practice, like with anything else, it will become second nature—until
Apple changes things next year.

178

CHAPTER 6

Creating a Multiview Application -

Up until this point, you've written applications using a single view controller. While single view apps can
often do what you need them to, the real power of the i0S platform emerges when you switch out views
based on user input. Multiview applications come in several different flavors, but the underlying mechanism
functions the same, regardless of how the app appears on the screen. In this chapter, you'll focus on
the structure of multiview applications and the basics of swapping content views by building your own
multiview app from scratch. By writing your own custom controller class that switches between two different
content views, you'll establish a strong foundation for taking advantage of the various multiview controllers
provided by Apple.

First, let’s look at some examples of your new area of exploration...multiviews.

Looking at Common Types of Multiview Apps

Strictly speaking, you have worked with multiple views in your previous applications, since buttons, labels,
and other controls are all subclasses of UIView and they can all go into the view hierarchy. But when Apple
uses the term view in documentation, it refers to a UIView or one of its subclasses having a corresponding
view controller. These types of views are also sometimes referred to as content views because they are the
primary container for the content of your application.

A utility app provides the simplest example of how a multiview application appears. It focuses primarily
on a single view but offers a second view typically used to configure the application or to provide more detail
than the primary view. The Stocks application that ships with the iPhone shows a good example of this
(see Figure 6-1). By clicking button in the lower-right corner, the view transitions to a new view that lets you
set the list of stocks tracked by the application.

© Molly K. Maskrey 2017 179
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_6

https://doi.org/10.1007/978-1-4842-3072-5_6

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

(et

109.27
600.70

DOowW J

NASDAQ

YHOO

Fall After New Amazon
nue is falling, and 5o

Figure 6-1. The Stocks application that ships with the iPhone provides two views: one to display the data and
another to configure the stock list

Several tab bar applications ship with the iPhone, including the Phone application (see Figure 6-2) and
the Clock application. A tab bar application displays a row of buttons, called the tab bar, at the bottom of
the screen. Tapping one of the buttons causes a new view controller to become active and a new view to be
shown. In the Phone application, for example, tapping Contacts shows a different view than the one shown
when you tap Keypad.

180

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

wsees Vorizon LTE 15:36

Figure 6-2. The Phone application provides an example of a multiview application using a tab bar

181

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

Another common type of multiview app uses a navigation-based mechanism featuring a navigation
controller that uses a bar to control a hierarchical series of views, as shown in the Settings app (see Figure 6-3).
In Settings, you first see a series of rows, with each row corresponding to a cluster of settings or a specific app.
Touching one of those rows takes you to a new view where you might customize one particular set of settings.
Some views present a list that allows you to dive even deeper. The navigation controller keeps track of how
deep you go and gives you a control to let you make your way back to the previous view.

eseses Varizon LTE 15:38

£ Sounds Ringtone

Vibration

RINGTONES
+ Opening (Default)
Apex
Beacon
Bulletin
By The Seaside
Chimes
Circuit
Constellation
Cosmic

Crystals

Figure 6-3. The iPhone Settings application provides a great example of a multiview application using a
navigation bar

For example, selecting the Sounds preference takes you to a view with a list of sound-related options.
The top of that view displays a navigation bar with a left arrow labeled Settings that takes you back to the
previous view if you tap it. Within the sound options you'll see a row labeled Ringtone. Tap Ringtone. You're
taken to a new view featuring a list of ringtones and a navigation bar that takes you back to the main Sounds
preference view, as shown in Figure 6-4. A navigation-based application provides a useful mechanism when
you want to present a hierarchy of views.

182

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

seews \Vorizon LTE

@® Library

RECENTLY ACDED »

> 3

Even In The Crisis? What Crisis? Crime Of The
Quistest Moments [Remastered] Century

Compilations

The Best Of Mendelssohn

Brahms: Symphenies #3 & 4

Carpenters Gold Greatest Hits [Disc
2]

Dvorak: Symphonies [Disc 1]

Pater liyich Tehaikovsky: ll.Andante Cantabile

Figure 6-4. The Music application uses both a navigation bar and a tab bar

On the iPad, you implement most navigation-based applications, such as Mail, using a split view, where
the navigation elements appear on the left side of the screen, and the item you select to view or edit appears
on the right. I'll talk about split views in Chapter 11.

Because views are themselves hierarchical in nature, you might combine different mechanisms for
swapping views within a single application. For example, the iPhone’s Music application uses a tab bar
to switch between different methods of organizing your music. It also uses a navigation controller and its
associated navigation bar to allow you to browse your music based on that selection. In Figure 6-4, the tab
bar is at the bottom of the screen, and the navigation bar is at the top of the screen.

Some applications use a toolbar, which is often confused with a tab bar. A tab bar selects one and
only one choice from among two or more options. A toolbar holds buttons and certain other controls, but
those items are not mutually exclusive. A perfect example of a toolbar is at the bottom of the main Safari
view, as shown in Figure 6-5. If you compare the toolbar at the bottom of the Safari view with the tab bar at
the bottom of the Phone or Music application, you'll find the two pretty easy to tell apart. The tab bar has
multiple segments, exactly one of which (the selected one) is highlighted with a tint color; but on a toolbar,
normally every enabled button is highlighted.

183

http://dx.doi.org/10.1007/978-1-4842-3072-5_11

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

wsesss \orizon (LTE 15:47

apress.com

Figure 6-5. Mobile Safari features a toolbar at the bottom, acting like a free-form bar that allows you to
include a variety of controls

Each of these multiview application types uses a specific controller class from the UIKit. Tab bar
interfaces are implemented using the UITabBarController class, and navigation interfaces are implemented
using UINavigationController. I'll describe their use in detail in the next few chapters.

184

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Looking at the Architecture of a Multiview Application

The application you're going to build in this chapter, called View Switcher, exhibits a fairly simple
appearance; however, in terms of the code, this is the most complex application you've yet tackled. View
Switcher consists of three different controllers, a storyboard, and an application delegate.

When first launched, View Switcher appears with a toolbar at the bottom containing a single button, as
shown in Figure 6-6. The rest of the view displays a blue background and a button to be pressed.

Press Me

Figure 6-6. When you first launch the View Switcher application, you'll see a blue view with a button and a
toolbar with its own button

185

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

Pressing the Switch Views button causes the background to turn yellow and the button’s title to change,
as shown in Figure 6-7.

Carrier =

Press Me, Too

Switch Views

Figure 6-7. Pressing the Switch Views button causes the blue view to flip, revealing the yellow view

186

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

If either the Press Me or Press Me, Too button activates, an alert appears indicating which view’s button
was pressed, as shown in Figure 6-8.

Yellow View Button Pressed

You pressed the button on the yellow
view

Yep, | did

Figure 6-8. Pressing the Press Me or Press Me, Too button displays the alert

Although you could achieve this same functionality writing a single-view application, I took this more
complex approach to demonstrate the actual mechanics of a multiview application. Three view controllers
interact in this simple application: one that controls the blue view, one that controls the yellow view, and a
third special controller that swaps the other two in and out when the Switch Views button is pressed.

Before you start building your application, let’s discuss how iOS multiview applications get put together.
Most multiview applications use the same basic pattern.

187

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

Understanding the Root Controller

The storyboard acts as the key player here since it contains all the views and view controllers for your
application. You'll create a storyboard with an instance of a controller class that is responsible for managing
which other view currently appears to the user. This controller is called the root controller (as in “the root of
the tree”) because it is the first controller the user sees and the controller that is loaded when the application
loads. This root controller often acts as an instance of UINavigationController or UITabBarController,
although it can also be a custom subclass of UIViewController.

In a multiview application, the root controller takes two or more other views and presents them to the
user as appropriate, based on the user’s input. A tab bar controller, for example, swaps in different views and
view controllers based on which tab bar item was last tapped. A navigation controller does the same thing
when the user drills down and backs up through hierarchical data.

Note The root controller provides the primary view controller for the application and, as such, specifies
whether it is OK to automatically rotate to a new orientation. However, the root controller may pass
responsibility for tasks like that to the currently active controller.

In multiview applications, the content view takes up most of the screen and each content view has its
own view controller containing outlets and actions. In a tab bar application, for example, taps on the tab
bar will go to the tab bar controller, but taps anywhere else on the screen get processed by the controller
corresponding to the content view currently displayed.

Content View Anatomy

In a multiview application, each view controller (Swift code) manages a content view, and these content
views are where the bulk of your application’s user interface resides. Taken together, each of these pairings
is called a scene within a storyboard. Each scene consists of a view controller and a content view, which may
be an instance of UIView or one of its subclasses. Although you can create your interface in code rather than
using Interface Builder, the power, flexibility, and stability of the tools preclude ever needing to do that.

In this project, you'll create a new controller class for each content view. Your root controller manages a
content view consisting of a toolbar that occupies the bottom of the screen. The root controller then loads a
blue view controller, placing the blue content view as a subview to the root controller view. When you press
the root controller’s Switch Views button (the button is in the toolbar), the root controller swaps out the blue
view controller and swaps in a yellow view controller, instantiating that controller if it needs to do so. Let’s
build the project and see this all become much clearer.

Creating the View Switcher Application

To start your project, in Xcode select File » New » Project or press Shift-#6N. When the template selection
sheet opens, select Single View App and then click Next. On the next page of the assistant, enter View
Switcher as the product name, set Language to Swift and the Devices pop-up button to Universal. When
everything is set up correctly, click Next to continue. On the next screen, navigate to wherever you're saving
your projects on disk and click the Create button to create a new project directory.

188

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Renaming the View Controller

Asyou've already seen, the Single View App template supplies an application delegate, a view controller,
and a storyboard. The view controller class is called ViewController. In this application, you are going
to be dealing with three view controllers, but most of the logic will be in the main view controller. Its task
will be to switch the display so that the view from one of the other view controllers is showing at all times.
To make the role of the main view controller clear, you probably want to give it a better name, such as
SwitchingViewController. There are several places in the project where the view controller’s class name
isreferenced. To change its name, you would need to update all of those places. Xcode has a nifty feature
called refactoring that would do that for you, but, at the time of writing, refactoring is not supported for Swift
projects in the Xcode beta I'm using. Instead, you're going to delete the controller that the template created
for you and add a new one.

Start by selecting ViewController.swift in the Project Navigator. Right-click it and select Delete in the
pop-up (see Figure 6-9). When prompted, choose to move the source file to the Trash.

B2 Q A © = o B (BRI« [E View Switcher) [7] View &
v [& View Switcher LA !
2 f/ ViewController.swift
¥ [7] View Switcher 3 // View Switcher
= AppDelegate.swift i

5 f/ Created by Kim Topley on 9/5
(R ViewController.swift L. - S ancs Inc.
Sh

B Main.storyboard ow in Finder

ke eaate Open with External Editor
) LaunchScreen.storyboard Open {8 s
; Show File Inspector liewCont
Info.plist
» [Products New File... :'{?a‘” :

Add Files to “View Switcher"... inal set

Delete .

iveMemo
lemoryWa

New Group { resour
New Group from Selection

Source Control >

Project Navigator Help >

T

Figure 6-9. Deleting the template view controller

Now right-click the View Switcher group and select New File. In the template chooser, select Cocoa
Touch Class from the iOS Source section. Name the class SwitchingViewController and make it a subclass
of ViewController. Make sure that “Also create XIB file” is not select since you are going to add this
controller to the storyboard a little later and that Language is set to Swift, as shown in Figure 6-10, and then
press Next followed by Create.

189

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Choose options for your new file:

Class: SwitchingViewController

of: | UlViewC:

Also create XIB file

Language: Swift B

Cancel Previous m

Figure 6-10. Creating the SwitchingViewController class

Now that you have your new view controller, you need to add it to the storyboard. Select Main.
storyboard in the Document Outline to open the storyboard for editing. You'll see that the template created
a view controller for you—you just need to link it to your SwitchingViewController class. Select the view
controller in the Document Outline and open the Identity Inspector. In the Custom Class section, change the
class from UIViewController to SwitchingViewController, as shown in Figure 6-11.

§ IFhone 58 View Switcher: Ready | Today at 9:40 AM = 9 & 00O
< > B view Switcher View Switcher Main.storyboard) [l Main.storyboard (Base)) B View Controller Scene | (2 Switching View Controlier ODeBE <0 @
1 Switching View Controller Scene Custom Class
Switching View Cantrolier cuass | SwitchingViewContratier © |5
Top Layout Guide Module | BLKViewContraller |
Beltom Layout Guide | GLPnav!
View Idontity Sw el
a0 Firs1 Responder Storyboard i | VICoNectionViewCantroller |
[Exit D * B - UlimagePickerControllar
» Storyboard Entry Point - Restaration ID
Use Storyboard ID

User Dafined Runtime Attributes
Kev Path Tvoe Valug

Figure 6-11. Changing the view controller class in the storyboard

Now if you check the Document Outline, you should see that the view controller’s name has changed to
Switching View Controller, as shown in Figure 6-12.

190

CHAPTER 6

12 View Switcher

v
v Switching View Cont...
— | Top Layout Guide

—. | Bottom Layout G...

Switching View Controll...

Vlc\t'-'
0§ First Responder

[E)] Exit

Storyboard Entry Point

Figure 6-12. The new view controller in the Document Outline

Adding the Content View Controllers

CREATING A MULTIVIEW APPLICATION

You'll need two additional view controllers to display the content views. In the Project Navigator, right-

click the View Switcher group and select New File. In the template dialog, choose Cocoa Touch Class from
the i0OS Source section and click Next. Name the new class BlueViewController, make it a subclass of
UIViewController, and make sure that the “Also create XIB file” check box is not select. Click Next and then
Create to save the files for the new view controller. Repeat this process to create the second content view
controller, giving it the name YellowViewController. To keep things organized, you may want to move the
files under the View Switcher folder in the Project Navigator, as shown in Figure 6-13.

M View Switcher) i§ iPhone 6s

B2 Q A © B o G 88 <

¥ 2 View Switcher

Viev

= YellowViewController.swil

v View Switcher
» YellowViewController.swift
» BlueViewController.swift
» SwitchingViewController.swift
» AppDelegate.swift
Main.storyboard

UIKit

YellowViewController:
Assets.xcassets
viewDidLo
LaunchScreen.storyboard .uiew&;:o;d(}a
Info.plist

> Products

.didReceiveMemon

Figure 6-13. You may want to move the new Swift files under the View Switcher folder in the Xcode Project

Navigator

191

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Modifying SwitchingViewController.swift

The SwitchingViewController class will need an action method that will toggle between the blue and
yellow views. You won'’t create any outlets, but you will need two properties—one for each of the view
controllers that you'll be swapping in and out. These don’t need to be outlets because you're going to
create the view controllers in code rather than in the storyboard. Add the following property declarations to
SwitchingViewController.swift:

private var blueViewController: BlueViewController!
private var yellowViewController: YellowViewController!

Add the following method at the bottom of the class:

@IBAction func switchViews(sender: UIBarButtonItem) {
}

Previously, you added action methods by Control-dragging from a view to the view controller’s source
code, but here you'll see that you can work the other way around just as well, since IB can see what outlets
and actions are already defined in your source code. Now that you've declared the action you need, you can
set up the minimal user interface for this controller in your storyboard.

Building a View with a Toolbar

You now need to set up the view for SwitchingViewController. As a reminder, this view controller
will be your root view controller—the controller that is in play when your application is launched.
SwitchingViewController’s content view will consist of a toolbar that occupies the bottom of the screen
and the view from either the yellow or blue view controller. Its job is to switch between the blue view and the
yellow view, so it will need a way for the user to change the views. For that, you're going to use a toolbar with
a button. Let’s build the toolbar now.

In the Project Navigator, select Main.storyboard. In the IB editor view, you'll see your switching
view controller. As you can see in Figure 6-14, it’s currently empty and quite dull. This is where you'll start
building your GUI.

192

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

88 ¢ > [E view Switcher } | View Switcher [l Mains.yboard) [Main.s..(Base)) [E] Switching View Controlier Scena (£ Switching View Controlier

v [Z] switching View Controller Scene
¥ | Switching View Controller
~ Top Layout Guide | [«]

Bottam Layout Sulde -
View

i First Responder

Exit

—> Storyboard Entry Peint

[0 view as: iPhone 65 (=C nR) = 5% (== S
|]a]afef=An
| —
| @ Finer Device Crientazion

Figure 6-14. Your empty root view controller (Switching View Controller) storyboard

Grab a toolbar from the library, drag it onto your view, and place it at the bottom so that it looks like
Figure 6-15.

0O 06 B8
0 ltem Toolbar - Provides a mechaniam for
displaying a toolbar at the bottom of
the screen.
one s (wC ~R) — 7% + B3 2 tof taf
| Vary for Traits
000 0=
Orientation B8 |® toolb o

Figure 6-15. Add a toolbar to the bottom of your root view controller

193

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

You want to keep this toolbar stretched across the bottom of the content view no matter what size the
view has. To do that, you need to add three layout constraints—one that pins the toolbar to the bottom of
the view and another two that pin it to the view’s left and right sides. To do this, select the toolbar in the
Document Outline, click the Pin button on the toolbar beneath the storyboard, and change the values in the
pop-up, as shown in Figure 6-16.

Document
Add New Constraints
603 ki Li-4M
o™ Inherit
0 i |Ho - I
I = =
0 v
Spacing to nearest neighbor
Constrain to margins
Width 375 v
() Height a4 =
1] {1
O Item @ Aspect Ratio B
lingat

@ " Leading Edges een.

Update Frames | None
Add 3 Constraints

Figure 6-16. Constrain the toolbar to the bottom, left, and right of its containing view

Deselect the “Constrain to margins” check box because you want to position the toolbar relative to the
edges of the content view, not the blue guidelines that appear near its edges. Next, set the distances to the
nearest left, right, and bottom neighbors to zero (if you have correctly positioned the toolbar, they should
already be zero). In this case, the nearest neighbor of the toolbar is the content view. You can see this by
clicking the small arrow in one of the distance boxes. It opens a pop-up that shows the nearest neighbor
and any other neighbors relative to which you could place the toolbar; in this case, there are no neighbors.
To indicate that these distance constraints should be active, click the three dashed red lines that link the
distance boxes to the small square in the center so that they become solid lines. Finally, change Update
Frames to Items of New Constraints (so that the toolbar’s representation in the storyboard moves to its new
constrained location) and click Add 3 Constraints.

Now, to make sure you're on the right track, click the Run button to make this app launch in the iOS
simulator. You should see a plain white app start up, with a pale gray toolbar at the bottom containing a lone
button. If not, go back and retrace your steps to see what you missed. Rotate the simulator. Verify that the
toolbar stays fixed at the bottom of the view and stretched right across the screen. If this doesn’t happen, you
need to fix the constraints that you just applied to the toolbar.

194

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Linking the Toolbar Button to the View Controller

You can see that the toolbar has a single button, and you'll use that button to switch between the different
content views. Double-click the button in the storyboard, as shown in Figure 6-17, and change its title to
Switch Views. Press the Return key to commit your change. Now you can link the toolbar button to your
action method in SwitchingViewController. Before doing that, though, you should be aware that toolbar
buttons aren’t like other iOS controls. They support only a single target action, and they trigger that action
only at one well-defined moment—the equivalent of a Touch Up Inside event on other iOS controls.

‘Switch Views

1] View as: iPhone 6s («C nR) — 75% + = o] tad

Figure 6-17. Change the title of the button in the toolbar to Switch Views

Selecting a toolbar button in Interface Builder can be tricky. The easiest way to do it is to expand the
Switching View Controller icon in the Document Outline until you can see the button, which is now labeled
Switch Views, and then click it. Once you have the Switch Views button selected, Control-drag from it over
to the yellow Switching View Controller icon at the top of the scene, as shown in Figure 6-18. Release the
mouse and select the switchViewsWithSender: action from the pop-up. If the switchViewsWithSender:
action doesn’t appear and instead you see an outlet called delegate, you've most likely Control-dragged
from the toolbar rather than the button. To fix it, just make sure you have the button rather than the toolbar
selected and then redo your Control-drag.

195

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

4 iPhone 65 Finished running View Switcher on iPhone 6s

H < & View Switcher) ' View..itcher)

=1 switching View Controller Scene

v Switching View Controller
Top Layout Guide
Bottom Layout Guide
¥ View
v Toolbar
> Constraints
l;";"; First Responder
Exit
» Storyboard Entry Point

Main....oard

. Main....ase)

= Swit..Scene

Action Segue
Show
Show Detail
Present Modally
Present As Popover
Custom

Sent Actions
switchViewsWithSender:

Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

Figure 6-18. Linking the toolbar button to the switchViewsWithSender: method in the view controller class

Note You may have noticed that when you entered the function manually earlier you called it

switchViews, but because this is an action, you get the sender parameter added for you whether or not you

actually decide to use the parameter.

I have one more thing to point out in this scene, which is SwitchingViewController’s view outlet.

This outlet is already connected to the view in the scene. The view outlet is inherited from the parent class,

UIViewController, and gives the controller access to the view it controls. When you created the project,
Xcode created both the controller and its view and hooked them up for you. That'’s all you need to do here, so
save your work. Next, let’s get started writing your implementation code in SwitchingViewController.swift.

Writing the Root View Controller Implementation

In the Project Navigator, select SwitchingViewController.swift and modify the viewDidLoad() method to
set some things up by adding the lines shown in Listing 6-1.

Listing 6-1. The Code for the viewDidLoad Method of Your Root View Controller

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.

blueViewController =

storyboard?.instantiateViewController(withIdentifier: "Blue")

as! BlueViewController

blueViewController.view.frame = view.frame
switchViewController(from: nil, to: blueViewController) // helper method

196

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

Note When you enter the code into the Swift file, as shown in Listing 6-1, you’ll get an error on the line
containing the call to switchViewController. This is because you have not written that helper method yet,
which you’ll do shortly.

Your implementation of viewDidLoad() overrides a UIViewController method that is called when
the storyboard is loaded. How can you tell? Hold down the ~\ key (the Option key) and single-click the
method named viewDidLoad(). A documentation pop-up window will appear, as shown in Figure 6-19.
Alternatively, you can select View » Utilities » Show Quick Help Inspector to view similar information in
the Quick Help panel. viewDidLoad() is defined in your superclass, UIViewController, and is intended to be
overridden by classes that need to be notified when the view has finished loading.

viewDidLoad() {
wDidLog()

func viewDidLoad()

Called after the controller's view is loaded into memory.

This method is called after the view controller has loaded its view
hierarchy into memory. This method is called regardless of whether the
view hierarchy was loaded from a nib file or created programmatically in
the loadView() method. You usually override this method to perform
additional initialization on views that were loaded from nib files.

i0S (8.0 and later), tvOS (9.0 and later)
UIKit

Method Reference

Figure 6-19. This documentation window appears when you Option-click the viewDidLoad method name

This version of viewDidLoad() creates an instance of BlueViewController. You use the instantiat
eViewController(withIdentifier:) method to load the BlueViewController instance from the same
storyboard that contains your root view controller. To access a particular view controller from a storyboard,
you use a string as an identifier—in this case "Blue" —which you’ll set up when you configure your
storyboard a little more. Once the BlueViewController is created, you assign this new instance to your
blueViewController property.

blueViewController =
storyboard?.instantiateViewController(withIdentifier: "Blue")

as! BlueViewController

Next, you set the frame of the blue view controller’s view to be the same as that of the switch view
controller’s content view and switch to the blue view controller so that its view appears on the screen.

blueViewController.view.frame = view.frame
switchViewController(from: nil, to: blueViewController)

Since you need to perform a view controller switch in several places, the code to do this is in the helper
method switchViewController(from:, to:) that you'll write shortly.

197

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Now, why didn’t you load the yellow view controller here also? You're going to need to load it at some
point, so why not do it now? Good question. The answer is that the user may never tap the Switch Views
button. The user might just use the view that’s visible when the application launches and then quit. In
that case, why use resources to load the yellow view and its controller? Instead, you'll load the yellow view
the first time you actually need it. This is called lazy loading, which is a standard way of keeping memory
overhead down. The actual loading of the yellow view happens in the switchViews () method. Fill in the stub
of this method that you created earlier by adding the code shown in Listing 6-2.

Listing 6-2. Your switchViews Implementation

@IBAction func switchViews(sender: UIBarButtonItem) {
// Create the new view controller, if required
if yellowViewController?.view.superview == nil {
if yellowViewController == nil {
yellowViewController =
storyboard?.instantiateViewController(withIdentifier: "Yellow")
as! YellowViewController
}
} else if blueViewController?.view.superview == nil {
if blueViewController == nil {
blueViewController =
storyboard?.instantiateViewController(withIdentifier: "Blue")
as! BlueViewController

}

// Switch view controllers
if blueViewController != nil
8& blueViewController!.view.superview != nil {
yellowViewController.view.frame = view.frame
switchViewController(from: blueViewController,
to: yellowViewController)
} else {
blueViewController.view.frame = view.frame
switchViewController(from: yellowViewController,
to: blueViewController)

switchViews() first checks which view is being swapped in by seeing whether the superview of
yellowViewController’s view is nil. This will be true if one of two things are true.

e IfyellowViewController exists, but its view is not being shown to the user, that view
will not have a superview because it’s not presently in the view hierarchy, and the
expression will evaluate to true.

e IfyellowViewController doesn’t exist because it hasn’t been created yet or was
flushed from memory, it will also return true.

You then check to see whether yellowViewController exists.

if yellowViewController?.view.superview == nil {

198

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

If the result is nil, that means there is no instance of yellowViewController, so you need to create one.
This could happen because it’s the first time the button has been pressed or because the system ran low on
memory and it was flushed. In this case, you need to create an instance of YellowViewController as you did
for BlueViewController in the viewDidLoad method.

if yellowViewController == nil {
yellowViewController =
storyboard?.instantiateViewController(withIdentifier: "Yellow")
as! YellowViewController

If you're switching in the blue controller, you need to perform the same check to see whether it still
exists (since it could have been flushed from memory) and create it if it does not. This is just the same code
again, referencing the blue controller instead:

} else if blueViewController?.view.superview == nil {
if blueViewController == nil {
blueViewController =
storyboard?.instantiateViewController(withIdentifier: "Blue")
as! BlueViewController

At this point, you know that you have a view controller instance because either you already had one
oryou just created it. You then set the view controller’s frame to match that of the switch view controller’s
content view and then you use your switchViewController(from:, to:) method to actually perform the
switch, as shown in Listing 6-3.

Listing 6-3. Switching View Controllers Depending On Which One You're Currently Presenting

// Switch view controllers
if blueViewController != nil
8& blueViewController!.view.superview != nil {
yellowViewController.view.frame = view.frame
switchViewController(from: blueViewController,
to: yellowViewController)
} else {
blueViewController.view.frame = view.frame
switchViewController(from: yellowViewController,
to: blueViewController)

The first branch of the if statement is taken if you are switching from the blue view controller to the
yellow and vice versa for the else branch.

In addition to not using resources for the yellow view and controller if the Switch Views button is never
tapped, lazy loading gives you the ability to release whichever view is not being shown to free up its memory.
iOS will call the UIViewController method didReceiveMemoryWarning(), which is inherited by every view
controller, when memory drops below a system-determined level.

Since you know that either view will be reloaded the next time it is shown to the user, you can safely
release either controller, provided it is not currently on display. You can do this by adding a few lines to the
existing didReceiveMemoryWarning() method, as shown in Listing 6-4.

199

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Listing 6-4. Safely Releasing Unneeded Controllers During Low Memory Conditions

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

if blueViewController != nil
8& blueViewController!.view.superview == nil {
blueViewController = nil

if yellowViewController != nil
88 yellowViewController!.view.superview == nil {
yellowViewController = nil

This newly added code checks to see which view is currently shown to the user and then releases the
controller for the other view by assigning nil to its property. This will cause the controller, along with the
view it controls, to be deallocated, freeing up its memory.

Tip Lazy loading is a key component of resource management on i0S, which you should implement
anywhere you can. In a complex, multiview application, being responsible and flushing unused objects from
memory can be the difference between an application that works well and one that crashes periodically
because it runs out of memory.

The final piece of the puzzle is the switchViewController(from:, to:) method, which is responsible
for the view controller switch. Switching view controllers is a two-step process. First, you need to remove the
view for the controller that’s currently displayed; then, you need to add the view for the new view controller.
But that’s not quite all—you need to take care of some housekeeping as well. Add the implementation of this
method, as shown in Listing 6-5.

Listing 6-5. The switchViewController Helper Method

private func switchViewController(from fromVC:UIViewController?,
to toVC:UIViewController?) {
if fromvC != nil {
fromVC!.willMove(toParentViewController: nil)
fromVC!.view.removeFromSuperview()
fromVC!.removeFromParentViewController()

}

if toVC != nil {
self.addChildViewController(toVC!)
self.view.insertSubview(toVC!.view, at: 0)
toVC!.didMove(toParentViewController: self)

200

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

The first block of code removes the outgoing view controller, but let’s look at the second block first,
where you add the incoming view controller. Here’s the first line of code in that block:

self.addChildViewController(toVC!)

This code makes the incoming view controller a child of the switching view controller. View controllers
like SwitchingViewController that manage other view controllers are referred to as container view
controllers. The standard classes UITabBarController and UINavigationController are both container
view controllers, and they have code that does something similar to what the switchViewController(from:,
to:) method is doing. Making the new view controller a child of SwitchingViewController ensures that
certain events that are delivered to the root view controller are correctly passed to the child controller when
required—for example, making sure that rotation is handled properly.

Next, the child view controller’s view is added to that of SwitchingViewController.

self.view.insertSubview(toVC!.view, atIndex: 0)

Note that the view is inserted in the subview’s list of SwitchingViewController at index zero, which
tells iOS to put this view behind everything else. Sending the view to the back ensures that the toolbar you
created in Interface Builder a moment ago will always be visible on the screen since you're inserting the
content views behind it.

Finally, you notify the incoming view controller that it has been added as the child of another controller.

toVC!.didMoveToParentViewController(self)

This is necessary in case the child view controller overrides this method to take some action when it
becomes the child of another controller.

Now that you've seen how a view controller is added, the code that removes a view controller from its
parent is much easier to understand—all you do is reverse each of the steps that you performed when adding it.

if fromvC != nil {
fromVC!.willMoveToParentViewController(nil)
fromVC!.view.removeFromSuperview()
fromVC!.removeFromParentViewController()

Implementing the Content Views

At this point, the code is complete, but you can’t run the application yet because you don’t have the blue and
yellow content controllers in the storyboard. These two controllers are extremely simple. They each have one
action method that is triggered by a button, and neither one needs any outlets. The two views are also nearly
identical. In fact, they are so similar that they could have been represented by the same class. You chose to
make them two separate classes because that’s how most multiview applications are constructed.

The two action methods you're going to implement do nothing more than show an alert (as you did in
Chapter 4’s project), so go ahead and add method in Listing 6-6 to BlueViewController.swift.

Listing 6-6. Pressing the Button on Your Blue Controller Presents an Alert

@IBAction func blueButtonPressed(sender: UIButton) {
let alert = UIAlertController(title: "Blue View Button Pressed",
message: "You pressed the button on the blue view",
preferredStyle: .alert)

201

http://dx.doi.org/10.1007/978-1-4842-3072-5_4

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

let action = UIAlertAction(title: "Yes, I did", style: .default,
handler: nil)

alert.addAction(action)

present(alert, animated: true, completion: nil)

Save the file. Next, switch to YellowViewController.swift and add the very similar method shown in
Listing 6-7 to that file; save it as well.

Listing 6-7. Pressing the Button on Your Yellow Controller Also Presents an Alert

@IBAction func yellowButtonPressed(sender: UIButton) {
let alert = UIAlertController(title: "Yellow View Button Pressed”,
message: "You pressed the button on the yellow view",
preferredStyle: .alert)
let action = UIAlertAction(title: "Yes, I did", style: .default,
handler: nil)
alert.addAction(action)
present(alert, animated: true, completion: nil)

Next, select Main. storyboard to open it in Interface Builder so that you can make a few changes. First,
you need to add a new scene for BlueViewController. Up until now, each storyboard you've dealt with
contained just a single controller-view pairing, but the storyboard has more tricks up its sleeve, and holding
multiple scenes is one of them. From the Object Library, drag out another view controller and drop it in
the editing area next to the existing one. Now your storyboard has two scenes, each of which can be loaded
dynamically and independently while your application is running. In the row of icons at the top of the new
scene, single-click the yellow View Controller icon and press ~=¢%3 to bring up the Identity Inspector. In the
Custom Class section, the Class menu defaults to UIViewController; change it to BlueViewController, as
shown in Figure 6-20.

202

Switehing View Contralier

e

Switch Views

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Custom Class

°B

Class BlueViewController

Module
GLKViewController

Identity | QLPreviewContraller
Storyboard ID |SW|tch|ng\ﬁewContmller
| UlCollectionViewController |
Resteration ID

Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value
+
Document

Label | X

x 8
Object ID gMR-wW-Ugy
Lock Inherited - (Nothing)
Notes = = == -- [@& .."

@me

Figure 6-20. Add your new view controller and associate it with the BlueViewController class file

You also need to create an identifier for this new view controller so that your code can find it inside the
storyboard. Just below the Custom Class section in the Identity Inspector, you'll see a Storyboard ID field.
Click there and type Blue to match what you used in your code, as shown in Figure 6-21.

1

) [Z] View Controller Scene ; | Blue View Controller

<

>

<UD S 0D
+ B @

= ©
0 @ =

Custom Class

) -

Module

Class BlueViewController

Identity
Storyboard ID| Blue

Restoration ID
Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value

Figure 6-21. Set the Storyboard ID of your Blue View Controller storyboard to Blue

203

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

So, now you have two scenes. I showed you earlier how to configure your app to load this storyboard at
launch time, but I didn’t mention anything about scenes there. How will the app know which of these two
views to show? The answer lies in the big arrow pointing at the first scene, as shown in Figure 6-22. That
arrow points out the storyboard’s default scene, which is what the app shows when it starts up. If you want to
choose a different default scene, all you have to do is drag the arrow to point at the scene you want.

Switching View Controller

Switch Views
Figure 6-22. You just added a second scene to your storyboard. The big arrow points at the default scene.

Single-click the big square view in the new scene you just added and then press ~-34 to bring up the
Attributes Inspector. In the inspector’s View section, click the color picker that’s labeled Background, and
use the pop-up color picker to change the background color of this view to a nice shade of blue. Once you
are happy with your blue, close the color picker.

Drag a button from the library to the view, using the guidelines to center it in the view, both vertically
and horizontally. You want to make sure that the button stays centered no matter what, so make two
constraints to that effect. With the button selected, click the Align icon below the storyboard. In the
pop-up, select Horizontally in Container and Vertically in Container, change Update Frames to Items of New
Constraints, and then click Add 2 Constraints (see Figure 6-23). It may help to change the background back
to white for the alignment and then back to blue once you're finished. Also, because of the blue background,
you might want to change the button text to white to be more visible.

204

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

Image
O 0O AddNew Alignment Constraints
Press
oo B 5
E] wi
-
@ | | Rey
T [she
W Y Hig
i = Dis
% . | Trume
[£5] + | Cont
EB Horizontally in Container 0 - .
€
Vertically in Container 0 -

Update Frame ¥ None _é_ Bot
Items of New Constraints |

~| All Frames in Container

—

] m r-

Figure 6-23. Aligning the button to the center of the view

Double-click the button and change its title to Press Me. Next, with the button still selected, switch
to the Connections Inspector (by pressing ~\=3£6), drag from the Touch Up Inside event to the yellow View
Controller icon at the top of the scene, and connect to the blueButtonPressedWithSender: action method.

Now it’s time to do pretty much the same set of things for YellowViewController. Grab yet another view
controller from the Object Library and drag it into the editor area. Don’t worry if things are getting crowded;
you can stack those scenes on top of each other if necessary. Click the View Controller icon for the new
scene in the Document Outline and use the Identity Inspector to change its class to YellowViewController
and its storyboard ID to Yellow.

Next, select the YellowViewController’s view and switch to the Attributes Inspector. There, click the
Background color picker, select a yellow, and then close the picker.

Next, drag out a button from the library and use the guidelines to center it in the view. Use the Align
icon pop-up to create constraints aligning its horizontal and vertical center, just like for the last button. Now
change its title to Press Me, Too. With the button still selected, use the Connections Inspector to drag from
the Touch Up Inside event to the View Controller icon, and connect to the yellowButtonPressedWithSender
action method.

When you're finished, save the storyboard and hit the Run button in Xcode to start the app presenting
a full screen of blue. When you tap the Switch Views button, it will change to show the yellow view that you
built. Tap it again, and it goes back to the blue view. If you tap the button centered on the blue or yellow
view, you'll get an alert view with a message indicating which button was pressed. This alert shows that the
correct controller class is being called for the view that is being shown.

The transition between the two views is kind of abrupt, so you're going to animate the transition to give
the user a better visual feedback of the change.

Animating the Transition

UIView has several class methods you can call to indicate that the transition between views should be
animated, to indicate the type of transition that should be used, and to specify how long the transition
should take.

205

CHAPTER 6 * CREATING A MULTIVIEW APPLICATION

Go back to SwitchingViewController.swift and enhance your switchViews () method by changing it
as shown in Listing 6-8.

Listing 6-8. Your Modified switchViews Method with Animation Added

@IBAction func switchViews(sender: UIBarButtonItem) {
// Create the new view controller, if required
if yellowViewController?.view.superview == nil {
if yellowViewController == nil {
yellowViewController =
storyboard?.instantiateViewController(withIdentifier: "Yellow")
as! YellowViewController
}
} else if blueViewController?.view.superview == nil {
if blueViewController == nil {
blueViewController =
storyboard?.instantiateViewController(withIdentifier: "Blue")
as! BlueViewController

}

UIView.beginAnimations("View F1lip", context: nil)
UIView.setAnimationDuration(0.4)
UIView.setAnimationCurve(.easeInOut)
// Switch view controllers
if blueViewController != nil
8& blueViewController!.view.superview != nil {
UIView.setAnimationTransition(.flipFromRight,
for: view, cache: true)
yellowViewController.view.frame = view.frame
switchViewController(from: blueViewController,
to: yellowViewController)
} else {
UIView.setAnimationTransition(.flipFromLeft,
for: view, cache: true)
blueViewController.view.frame = view.frame
switchViewController(from: yellowViewController,
to: blueViewController)
}

UIView.commitAnimations()

Build and run this version. When you tap the Switch Views button, instead of the new view just
snapping into place, the old view will flip over to reveal the new view.

To tell iOS that you want a change animated, you need to declare an animation block and specify how
long the animation should take. Animation blocks are declared by using the UIView class method presentVi
ewController(:animated:completion:), like so:

UIView.beginAnimations("View Flip", context: nil)
UIView.setAnimationDuration(0.4)

206

CHAPTER 6 © CREATING A MULTIVIEW APPLICATION

presentViewController(:animated:completion:) takes two parameters. The first is an animation
block title. This title comes into play only if you take more direct advantage of Core Animation, the
framework behind this animation. For these purposes, you could have used nil. The second parameter
is a pointer that allows you to specify an object (or any other C data type) whose address you would like
associated with this animation block. It is possible to add some code of your own that will be run during the
transition, but you're not doing that here, so you set this parameter to nil. You also set the duration of the
animation, which tells UIView how long (in seconds) the animation should last.

After that, you set the animation curve, which determines the timing of the animation. The default,
which is a linear curve, causes the animation to happen at a constant speed. The option you set here,
UIViewAnimationCurve.EaseInOut, specifies that the animation should start slow but speed up in the middle
and then slow down again at the end. This gives the animation a more natural, less mechanical appearance.

UIView.setAnimationCurve(.easeInOut)

Next, you need to specify the transition to use. At the time of this writing, five iOS view transitions are
available.

e UIViewAnimationTransition.flipFromLeft
e UIViewAnimationTransition.flipFromRight
e UIViewAnimationTransition.curlUp

e UIViewAnimationTransition.curlDown

e UIViewAnimationTransition.none

You will choose to use two different effects, depending on which view was being swapped in. Using a
left flip for one transition and a right flip for the other makes the view seem to flip back and forth. The value
UIViewAnimationTransition.none causes an abrupt transition from one view controller to another. Of
course, if you wanted that effect, you wouldn’t bother creating an animation block at all.

The cache option speeds up drawing by taking a snapshot of the view when the animation begins, and
uses that image rather than redrawing the view at each step of the animation. You should always cache the
animation unless the appearance of the view needs to change during the animation.

UIView.setAnimationTransition(.flipFromRight,
forView: view, cache: true)

When you're finished specifying the changes to be animated, you call commitAnimations() on UIView.
Everything between the start of the animation block and the call to commitAnimations () animates together.

Thanks to Cocoa Touch’s use of Core Animation under the hood, you're able to do fairly sophisticated
animation with only a handful of code.

Summary

You should now have a very good grasp of how multiview applications are put together, now that you've
built one from scratch. Although Xcode contains project templates for the most common types of
multiview applications, you need to understand the overall structure of these types of applications so you
can build them yourself from the ground up. The standard container controllers (UITabBarController,
UINavigationController, and UIPageViewController) are incredible time-savers that you should use when
you can, but at times, they simply won’t meet your needs.

In the next few chapters, you're going to continue building multiview applications to reinforce the
concepts from this chapter and to give you a feel for how more complex applications are put together.

207

CHAPTER 7

Using Tab Bars and Pickers

In the previous chapter, you built your first multiview application. In this chapter, you'll build another
one—this time, creating a full tab bar application with five different tabs and five different content views.
Building this application reinforces a lot of what I covered in Chapter 6. You'll use those five content views
to demonstrate a type of iOS control not yet covered, a picker view, or just a picker. You may not be familiar
with the name, but you've almost certainly used a picker if you've owned an iPhone or iPod touch for more
than ten minutes. Pickers contain controls with dials that spin. You use them to input dates in the Calendar
application or to set a timer in the Clock application, as shown in Figure 7-1. It is not quite as common on an
iPad, since the larger display lets you present other ways of choosing among multiple items, but even there,
it’s used by the Calendar application.

© Molly K. Maskrey 2017 209
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_7

https://doi.org/10.1007/978-1-4842-3072-5_7
http://dx.doi.org/10.1007/978-1-4842-3072-5_6

CHAPTER 7 © USING TAB BARS AND PICKERS

sweee Vorizon LTE 13:68

Cancel Edit Alarm

Repeat

Label

Sound

Snoocze

Delete Alarm

Figure 7-1. The Clock app uses a picker to set the time the alarm should go off

Pickers provide a bit more complexity than the iOS controls you've seen so far; as such, they deserve a
little more attention. Pickers can be configured to display one dial or many. By default, pickers display lists of
text, but they can also be made to display images.

The Pickers Application

This chapter’s application, Pickers, features a tab bar, and when you build Pickers, you'll change the default
tab bar so that it has five tabs, add an icon to each of the tab bar items, and then create a series of content
views and connect each view to a tab. The application’s content views feature five different pickers:

e Date picker: The first content view you'll build uses a date picker, the easiest type of
picker to implement (see Figure 7-2). The view also has a button that, when tapped,
displays an alert showing the date that was picked.

210

CHAPTER 7 * USING TAB BARS AND PICKERS

Carrier F

Today 3 38 PM

Figure 7-2. The first tab displays a date picker

211

CHAPTER 7 © USING TAB BARS AND PICKERS

Single-component picker: The second tab features a picker with a single list of values,
as shown in Figure 7-3, and provides a little more work to implement than the date
picker. You'll learn how to specify the values to be displayed in the picker by using a
delegate and a data source.

Carrier ¥

Figure 7-3. A picker displaying a single list of values

212

CHAPTER 7 = USING TAB BARS AND PICKERS

e Multicomponent picker: In the third tab, you'll create a picker with two separate
wheels. The technical term is picker component. Here, you create a picker with two
components. You'll see how to use the data source and delegate by providing two
independent lists of data to the picker (see Figure 7-4), each changeable without
impacting the other one.

Thank you for your order
our Roast Beef on Rye bread will be

right up.

Great

Figure 7-4. A two-component picker, showing an alert that reflects your selection

213

CHAPTER 7 * USING TAB BARS AND PICKERS

e Picker with dependent components: In the fourth content view, you'll build another
picker with two components. But this time, the values displayed in the component
on the right change based on the value selected in the component on the left. In this
example, you're going to display a list of states in the left component and a list of that
state’s ZIP codes in the right component, as shown in Figure 7-5.

New York 10280

Figure 7-5. In this picker, one component depends on the other. As you select a state in the left component, the
right component changes to a list of ZIP codes in that state.

214

CHAPTER 7 * USING TAB BARS AND PICKERS

e Custom picker with images: In the fifth content view, I'll demonstrate how to add
image data to a picker, and you're going to do it by writing a little game that uses
a picker with five components. Apple’s documentation describes the picker’s
appearance as looking a bit like a slot machine. So, you'll be creating a slot machine,
as shown in Figure 7-6. For this picker, the user won’t be able to manually change the
values of the components but will be able to select the Spin button to make the five
wheels rotate to a new, randomly selected value. If three copies of the same image
appear in a row, the user wins.

ARJPP b ARE 5 ARRBAR

WINNER!

Spin

Figure 7-6. Your fifth component picker uses the picker like a slot machine

215

CHAPTER 7 * USING TAB BARS AND PICKERS

Delegates and Data Sources

Before you start building the application, let’s look at what makes pickers more complex than the other
controls you've used so far. With the exception of the date picker, you can’t use a picker by just grabbing one
in the Object Library, dropping it on your content view, and configuring it. You also need to provide each
picker with both a delegate and a data source.

You've already used application delegates, and the basic idea works the same for pickers. The control
itself defers several jobs to its delegate, the most important of these being the determination of what to
actually draw for each of the rows in each of its components. The picker asks the delegate for either a string
or a view that will be drawn at a given spot on a given component. The picker gets its data from the delegate.

In addition to the delegate, pickers must have a data source. The data source tells the picker how many
components it will be working with and how many rows make up each component. The data source works
like the delegate in that its methods are called at certain, prespecified times. Without a data source and a
delegate, pickers cannot do their job; in fact, they won’t even be drawn.

It’'s common for the data source and the delegate to be the same object and exist in the same actual
Swift file, typically the view controller for the picker’s enclosing view. You will use that approach in this
application: the view controllers for each of your application’s content panes will be the data source and the
delegate for their picker.

Note The question often arises as to whether the picker data source is part of the model, view, or
controller portion of the application. A data source sounds like it must be part of the model, but it’s actually part
of the controller. The data source isn’t usually an object designed to hold data. In simple applications, the data
source might hold data, but its true job is to retrieve data from the model and pass it along to the picker.

Creating the Pickers Application

Although Xcode provides a template for tab bar applications, you're going to build yours from scratch.
It’s not much extra work, and it will be good practice.

Create a new project, select the Single View App template again, and choose Next to go to the next
screen. In the Product Name field, type Pickers. Make sure the Use Core Data check box is deselected, and
set Language to Swift and the Devices pop-up to Universal. Then choose Next again. Xcode will let you select
the folder where you want to save your project.

I'm going to walk you through the process of building the whole application, but at any step of the way,
if you feel like challenging yourself by moving ahead, by all means do so. If you get stumped, you can always
come back.

Creating the View Controllers

In the previous chapter, you created a root view controller (root controller for short) to manage the process
of swapping your application’s other views. You'll be doing that again this time, but you won’t need to create
your own root view controller class. Apple provides a good class for managing tab bar views, so you're just
going to use an instance of UITabBarController as your root controller. First, you need to create five new
classes in Xcode: the five view controllers that the root controller will swap in and out. Expand the Pickers
folder in the Project Navigator. There, you'll see the source code files that Xcode created to start off the
project. Single-click the Pickers folder, and press 3 N.

216

CHAPTER 7 * USING TAB BARS AND PICKERS

Select iOS and then select Source in the left pane of the new file assistant. Then, select the Cocoa
Touch Class icon and click Next to continue. The next screen lets you give your new class a name. Enter
DatePickerViewController in the Class field. Ensure the Subclass of field contains UIViewController.
Make sure that the “Also create XIB file” check box is deselected, set Language to Swift, and then click Next.

You'll be shown a folder selection window, which lets you choose where the class should be saved.
Choose the Pickers directory, which already contains the AppDelegate class and a few other files. Make
sure also that the Group pop-up has the Pickers folder selected and that the target check box for Pickers
is selected. After you click the Create button, the file DatePickerViewcontroller.swift will appear in the
Pickers folder.

Repeat those steps four more times, using the names SingleComponentPickerViewController,
DoubleComponentPickerViewController, DependentComponentPickerViewController, and
CustomPickerViewController. At the end of all this, the Pickers folder should contain all the view
controller class files, as shown in Figure 7-7.

[] | 2 ;i-\-‘ Pickers | {il§ iPhone 7 Finished running Pickers on iPhone 7

®
B [T BE L : Be < |5 Pickers Pickers ; . CustomPickerViewController.swift) No ¢
¥ |5 Pickers
v Pickers
» AppDelegate.swift
» ViewController.swift
.| DatePickerViewController.swift
| SingleComponen...wController.swift
« DoubleCompone...wController.swift

UIKit
»| DependentComp...wController.swift AudieToolbox

A CustomPickerViewController swift

Main.storyboard CustomPickerViewController: UIViewController

55 Assets.xcassets

images:[UIImage]!

LaunchScreen.storyboard

Info.plist picker: UIPickerV
statedictionary.plist winLabel

button
crunch.wav

winSoundID: 5)
win.wav crunchSoundID: Systes
> Products

Figure 7-7. The Project Navigator should contain all these files after creating the five view controller classes

Creating the Tab Bar Controller

Now, let’s create your tab bar controller. The project template already contains a view controller called
ViewController, which is a subclass of UIViewController. To convert it to a tab bar controller, all you need
to do is change its base class. Open ViewController.swift and make the following change shown in bold:

class ViewController: UITabBarController {
Next, to set up the tab bar controller in the storyboard, open Main.storyboard. The template added an
initial view controller, which you're going to replace, so select it in the Document Outline or the Editor Area,

and delete it by pressing the Delete key. In the Object Library, locate a tab bar controller and drag it to the
editing area (see Figure 7-8).

217

CHAPTER 7 * USING TAB BARS AND PICKERS

B ¢ > B piewss) 0 pickers)) Meinssorybeard) [l Maimsteryboard (Base)) [em 2 Scena) () em 2 <a>d D@ @4
* [E] mom 2 Seono
v [iom 2
Tep Layeut Guide
Bottom Layou Guide
ltem 2 L 0= = } f
B First Responder L /
Exit !
/
5] nem 1 Scone /
v iem1 f
Tep Layout Guide
Battom Layout Guide ()
Viw /
*| lem 1 f
@ First Responder /
Bl exit f
[Tab Bar Controfler Scene ! .
¥ | TabBar Cantroller __) /
. Tab Der ab Bar Controlle 4 iwm 2
8 First Respander \ —
[E Exit \
Relationship “view controlers™ to " \
Relaticnakic “view controlers” iz "
\ 0D o0oe
\ L
\ Tab Bar Contra
+ | the: mansses o x
]] \ 1 that repragens tat
Tab Bar - Provid
dizplaying 5 tab b
T ov | the screen.
Tab Bar ltwm -
v a UiTabiBar cls

Figure 7-8. Dragging a tab bar controller from the library onto the canvas

While you're dragging, you'll see that, unlike the other controllers I've been asking you to drag out from
the Object Library, this one actually pulls out three complete view controller pairs at once, all of which are
connected to each other with curved lines. This is actually more than just a tab bar controller; it’s also two
child controllers, already connected and ready to use.

Once you drop the tab bar controller onto the editing area, three new scenes are added to the
storyboard. If you expand the document view on the left, you will see a nice overview of all the scenes
contained in the storyboard (see Figure 7-8). You'll also see the curvy lines still in place connecting the tab
bar controller with each of its children. Those lines will always adjust themselves to stay connected if you
move the scenes around, which you are always free to do. The on-screen position of each scene within a
storyboard has no impact on your app’s appearance when it runs.

This tab bar controller will be your root controller. As a reminder, the root controller controls the very
first view that the user will see when your program runs, and it is responsible for switching the other views
in and out. Since you’ll connect each of your views to one of the tabs in the tab bar, the tab bar controller
makes a logical choice as a root controller. You need to tell iOS that the tab bar controller is the one that it
should load from Main.storyboard when the application starts. To do this, select the Tab Bar Controller icon
in the Document Outline and open the Attributes Inspector; then in the View Controller section, select the Is
Initial View Controller check box. With the view controller still selected, switch to the Identity Inspector and
change the class to ViewController.

Tab bars can use icons to represent each of the tabs, so you should also add the icons you're going to
use before editing the storyboard. You can find some suitable icons in the ImageSets folder of the source
code archive for this book. Each subfolder of ImageSets contains three images (one for devices with a
standard display, two for Retina devices). In the Xcode Project Navigator, select Assets.xcassets and drag
each subfolder from the ImageSets folder and drop it into the left column of the editing area, underneath
Applcon, to copy them all into the project (see Figure 7-9).

218

CHAPTER 7 * USING TAB BARS AND PICKERS

B8 < > [Pickers) | Pickers) [Assets.xcassets) | apple

: Applean

‘« & &

1% 2% 3x

Universal

BARJBAR

% s 3x

Universal

ol b

Universal

cherry

clockicon

Y

1x 2x 3x

Universal
Figure 7-9. Drag the images below Applcon within Assets.xcassets in Xcode

If you want to make your own icons instead, there are some guidelines for how they should be created.
The icons you use should be 24 x 24 pixels and saved in PNG format. The icon file should have a transparent
background. Don’t worry about trying to color the icons so that they match the appearance of the tab bar.
Just as it does with the application icon, iOS will take your image and make it look just right.

Tip Animage size of 24 x 24 pixels is actually for standard displays; for Retina displays on iPhone 4 and
later and for the new iPads, you need a double-sized image, or it will appear pixelated. For the iPhone 7/6s Plus,
you need to provide an image that’s three times the size of the original. This is easy: for any image foo.png,
you should also provide an image named foo@2x. png that is doubled in size and another called foo@3x.png
that is three times the size. Calling UIImage (named: "foo") will return the normal-sized image or the double-
sized image automatically to best suit the device on which your app is currently executing.

Back in the storyboard, you can see that each of the child view controllers shows a name like “Item 1”
at the top and has a single bar item at the bottom of its view, with a label matching what is present in the tab
bar. You might as well set these two up so that they have the right names from the start, so select the Item 1
view controller and then click the tab bar item labeled Item 1 in the Document Outline. Open the Attributes

219

CHAPTER 7 * USING TAB BARS AND PICKERS

Inspector and you'll see a text field for setting the title of the bar item, which currently contains the text Item
1. Replace the text with Date and press the Enter key. This immediately changes the text of the bar item at
the bottom of this view controller, as well as the corresponding tab bar item in the tab bar controller. While
you're still in the inspector, click the Image pop-up and select “clockicon” to set the icon, too. Now repeat the
same steps for the second child view controller, but name this one Single and use the “singleicon” image for
its bar item.

Your next step is to complete your tab bar controller so it reflects the five tabs shown in Figure 7-2.
Each of those five tabs will contain one of your pickers. The way you're going to do this is by simply adding
three more view controllers to the storyboard (in addition to the two that were added along with the tab bar
controller) and then connecting each of them so that the tab bar controller can activate them. Get started
by dragging out a normal view controller from the Object Library and dropping on the storyboard. Next,
Control-drag from the tab bar controller to your new view controller, release the mouse button, and select
view controllers from the Relationship Segue section of the small pop-up window that appears. This tells
the tab bar controller that it has a new child to maintain, so the tab bar immediately acquires a new item.
Your new view controller gets a bar item in the bottom of its view and in the Document Outline, just like the
others already had. Now do the same steps outlined previously to name this latest view controller’s bar item
Double with “doubleicon” as its image.

Drag out two more view controllers and connect each of them to the tab bar controller, as
described previously. One at a time, select each of their bar items, naming one of them Dependent with
“dependenticon” as its image and naming the other Custom with “toolicon” as its image. When finished,
you should have one view controller with your tab bar at the bottom and five connected view controllers, as
shown in Figure 7-10.

B < > & pickers)) Pickers |} [Main.storyboard) [l Main.storyboard (Base)) [5] View Controlier Scere) () Item) % Custom O & T 0 @
View T
*| Single
0 First Responder Badge
B exit Systom ltem | Cusiom

Tab Bar ftem

¥ [5] Custom Scene Selected Image
This Position Default Pasition

2] <] <)

¥) tem
| Tep Layout Guide
Bottom Layout Guide kS
View Titk Custom
| Custom . - - Irage | toolicon [~
0 First Responder = ol:
Exit u B
& Enabled
¥ [5] Dependent Scene

¥ () tem
~ Top Layout Guide
_| Bottom Layout Guide
Wiew
| Dependent
30 First Responder
[Exit =
¥ [2] Double Scene
¥ () tern
Top Layout Guide
Eottom Layout Guide
View
% Double
i First Respender o -
D e — Do0GBo

v [I] Date Scene View Controllar - A contrallar that
¥ Date MRENSYES & View.
Top Layout Guide

Botltom Layout Guide Storyboard Reference - Pravides a

View pacehokler for a view controller in an
*| Date axternal sioryboard,
0 First Responder
B exit - f '\ Table View Controller - 4

COMTTRAT AT MANages 4 1azle view.
¥ 2] View Controller Scene

(&) Filter :D View as: iPhone 65 (wC nR) — 28% + & o taf | BB | @ view o

Figure 7-10. Adding your five view controllers that you'll access using the tab bar from your root view
controller

220

CHAPTER 7 = USING TAB BARS AND PICKERS

Now that all your view controllers are in place, it’s time to set up each of them with the correct controller
class from the set you created earlier. This will let you implement different functionality for each controller.
In the Document Outline, select the Date view controller and bring up the Identity Inspector. In the Custom
Class section of the inspector, change the class to DatePickerViewController, and press Return or Tab to
finish (see Figure 7-11).

) LATOm Custom Class.
-
@ First Responder Class | DatoPlckerViewControbe < [
B exit e L
Module | CUstomPickerviewControlier
v [Dependent Scene Q== =
A4 Item | Identity DependentCompanentPicke...
Top Layout Guide Storyboard K DoubleComponentPickervie.. |
Battom Layout Guide | GLEViewContraller
View Restaration 10
* Dependent Use Storyseard ID
@ First Responder |
B e User Defined Runtime Attributes

¥ [pouble Scene Key Path Type Value
v Item
Top Leyout Guide
Battom Layout Guide =

View | —
* Double =
& First Responder L]
Bl Exit =
¥] pate Scene [Object 10 e48-Rs-hzD
e] Lock Inherited - (Nothing) B
i e
Top Layout Guide Notes 2 2= == == -— [@ -
Battom Layout Guide (i)
View
* Date
T First Responder
Exit |
E P m M & m

Figure 7-11. Connecting your Date view to its view controller

Repeat this same process for the other four view controllers, in the order in which they appear
at the bottom of the tab bar controller. You can select each view controller in turn by clicking it in the
storyboard, making sure to click in the bar at the top of the controller that contains the controller’s
name. In the Identity Inspector for each, use the class names SingleComponentPickerViewController,
DoubleComponentPickerViewController, DependentComponentPickerViewController, and
CustomPickerViewController, respectively. Before moving on to the next bit of GUI editing, save your
storyboard file.

Initial Simulator Test

At this point, the tab bar and the content views should all be hooked up and working. Compile and run, and
your application should launch with a tab bar that functions, as shown in Figure 7-12. Click each of the tabs
in turn. Each tab should be selectable.

221

CHAPTER 7 * USING TAB BARS AND PICKERS

Carrier 227 PM L

Figure 7-12. The application with five empty but selectable tabs

There’s nothing in the content views now, so the changes won’t be very dramatic. In fact, you won'’t
see any difference at all, except for the highlighting tab bar items. But if everything went correctly, the basic
framework for your multiview application is now set up and working. You can start designing the individual
content views.

Tip If your simulator crashes when you click one of the tabs, most likely you've either missed a step or
made a typo. Go back and make sure the connections are right and the class names are all set correctly.

If you want to make doubly sure everything is working, you can add a different label or some other
object to each of the content views and then relaunch the application. In that case, you should see the
content of the different views change as you select different tabs.

Implementing the Date Picker

To implement the date picker, you'll need a single outlet and a single action. The outlet will be used to grab
the value from the date picker. The action will be triggered by a button and will put up an alert to show the
date value pulled from the picker. You'll add both of these from inside Interface Builder while editing the
Main.storyboard file, so select it in the Project Navigator if it’s not already front and center.

The first thing you need to do is find a date picker in the Object Library and drag it to the date scene in
the editing area. Click the Date icon in the Document Outline to bring the correct view controller to the front
and then drag the date picker from the Object Library and place it at the top of the view, right up against
the top of the display. It’s okay if it overlaps the status bar because this control has so much built-in vertical
padding at the top that no one will notice.

222

CHAPTER 7 = USING TAB BARS AND PICKERS

Now you need to apply Auto Layout constraints so that the date picker is correctly sized and placed
when the application runs on any kind of device. You want the picker to be horizontally centered and
anchored to the top of the view. You also want it to be sized based on its content, so you need three
constraints. With the date picker selected, first select Editor » Size to Fit Content from the Xcode menu bar.
If this option is not enabled, move the picker slightly and try again. Next, click the Align button below the
storyboard, select the Horizontally in Container box, and then click Add 1 Constraint. Click the Pin button
(which is next to the Align button). Using the four distance boxes at the top of the pop-up, set the distance
between the picker and the top of edge of the view above it to zero by entering 0 in the top box, and below it
so that it becomes a solid line. At the bottom of the pop-up, set Update Frames to Items of New Constraints
and then click Add 1 Constraint. The date picker will resize and move to its correct position, as shown in

Figure 7-13.

sin.steryboard (Base)) [%] Date Scene) Date ; View ; - - Date Picker

o Today 8 51 AM o

Sefect

' o

|
View as: iPhone 6s («C nR)

]Dmmuﬁ

Device Orientatio:

— I Th% T

Figure 7-13. The date picker is positioned at the top of its view controller’s view

223

CHAPTER 7 * USING TAB BARS AND PICKERS

Single-click the date picker, if it’s not already selected, and go to the Attributes Inspector. As you can
see in Figure 7-14, a number of attributes can be configured for a date picker. You're going to leave most
of the values at their defaults (but feel free to play with the options when you're finished, to see what they
do). The one thing you will do is limit the range of the picker to reasonable dates. Look for the Constraints
heading and select the Minimum Date check box. Leave the value at the default of 1/1/1970. Also select the
Maximum Date box and set that value to 12/31/2200.

0D ® ¢ 0 @
Date Picker

Mode Date and Time

Locale Default

Interval 1 minute

Date Current Date
Constraints Minimum Date
1/ 1/1970, 6:00:00 AM
Maximum Date

12/31/2200, 6:00:00 AM O

Timer]
Count Down in Seconds

Figure 7-14. The Attributes Inspector for a date picker. Set the maximum date, but leave the rest of the settings
at their default values.

Now let’s connect this picker to its controller. Press ~~g§Enter to open the Assistant Editor and
make sure the jump bar at the top of the Assistant Editor is set to Automatic. That should make
DatePickerViewController.swift show up there. Next, Control-drag from the picker to the blank line
between the class declaration and the viewDidLoad() method, releasing the mouse button when the Insert
Outlet, Action, or Outlet Collection tooltip appears. In the pop-up window that appears after you let go,
make sure Connection is set to Outlet, enter datePicker as the name, and then press Enter to create the
outlet and connect it to the picker.

Next, grab a button from the library and place it a small distance below the date picker. Double-
click the button and give it a title of Select. You want this button to be horizontally centered and to stay a
fixed distance below the date picker. With the button selected, click the Align button at the bottom of the
storyboard, select the Horizontally in Container box, and then click Add 1 Constraint. To fix the distance
between them, Control-drag from the button to the date picker and release the mouse. In the pop-up that
appears, select Vertical Spacing. Finally, click the Resolve Auto Layout Issues button at the bottom of the
storyboard and then click Update Frames in the top section of the pop-up (if this item is not enabled, it
means that the button is already in its correct location). The button should move to its correct location, and
there should no longer be any Auto Layout warnings.

Make sure that DatePickerViewController.swift is still visible in the Assistant Editor; if it’s not,
use the Manual selection in the jump bar to locate and open it. Now Control-drag from the button to the
line above the closing brace at the end of the class in the Assistant Editor, until you see the Insert Outlet,

224

CHAPTER 7 = USING TAB BARS AND PICKERS

Action, or Outlet Collection tooltip appear. Change the Connection type to Action, name the new action
onButtonPressed, and press Enter to connect it. Doing so creates an empty method called
onButtonPressed (), which you should complete with the code in Listing 7-1.

Listing 7-1. Your Select Button Action Code

@IBAction func onButtonPressed(sender: UIButton) {
let date = datePicker.date
let message = "The date and time you selected is \(date)"
let alert = UIAlertController(
title: "Date and Time Selected",
message: message,
preferredStyle: .alert)
let action = UIAlertAction(
title: "That's so true!",
style: .default,
handler: nil)
alert.addAction(action)
present(alert, animated: true, completion: nil)

In viewDidLoad(), you create a new NSDate object. An NSDate object created this way will hold the
current date and time. You then set datePicker to that date, which ensures that every time this view is
loaded from the storyboard, the picker will reset to the current date and time; see Listing 7-2.

Listing 7-2. Setting Your Date in the viewDidLoad() Method

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
let date = NSDate()
datePicker.setDate(date as Date, animated: false)

And that is all there is. Go ahead and build and run to make sure your date picker checks out. If
everything went okay, your application should look like Figure 7-2 when it executes. If you choose the
Select button, an alert will pop up, telling you the date and time currently selected in the date picker.

Note The date picker does not allow you to specify seconds or a time zone. The alert displays the time
with seconds and in Greenwich mean time (GMT). You could have added some code to simplify the string
displayed in the alert, but isn’t this chapter long enough already? If you're interested in customizing the
formatting of the date, take a look at the NSDateFormatter class.

225

CHAPTER 7 * USING TAB BARS AND PICKERS

Implementing the Single-Component Picker

Your next picker lets the user select from a list of values. In this example, you'll use an array to hold the
values you want to display in the picker. Pickers don’t hold any data themselves. Instead, they call methods
on their data source and delegate to get the data they need to display. The picker doesn’t really care where
the underlying data lives. It asks for the data when it needs it, and the data source and delegate (which are
often, in practice, the same object) work together to supply that data. As a result, the data could be coming
from a static list, as you'll do in this section, or it could be loaded from a file or a URL, or even made up or
calculated on the fly.

For the picker class to ask its controller for data, you must ensure that the controller implements the
right methods. One part of doing that is declaring in the controller’s class definition that it will implement a
couple of protocols. In the Project Navigator, single-click SingleComponentPickerViewController.swift.
This controller class will act as both the data source and the delegate for its picker, so you need to make sure
it conforms to the protocols for those two roles. Add the following code:

class SingleComponentPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {

When you do this, you'll see an error appear in the editor. That’s because you haven’t yet implemented
the required protocol methods. You'll do that soon, so just ignore the error for now.

Building the View

SelectMain.storyboard again since it’s time to edit the content view for the second tab in your tab bar. In the
Document Outline, click the Single icon to bring the view controller into the foreground in the Editor Area.
Next, bring over a picker view from the library (see Figure 7-15) and add it to your view, placing it snugly into
the top of the view, as you did with the date picker view.

Jj D B

o -D
0 Cupertino =
(w] o (w]

Figure 7-15. Adding a picker view from the library to your second view

Now you need to apply Auto Layout constraints so that the picker is correctly sized and placed when
the application runs on any kind of device. You want the picker to be horizontally centered and anchored
to the top of the view. You also want it to be sized based on its content, so you need three constraints. With
the picker selected, first select Editor » Size to Fit Content from the Xcode menu bar. If this option is not
enabled, move the picker slightly and try again. Next, click the Align button below the storyboard, select the

226

CHAPTER 7 = USING TAB BARS AND PICKERS

Horizontally in Container box, and then click Add 1 Constraint. Click the Pin button (which is next to the
Align button). Using the four distance boxes at the top of the pop-up, set the distance between the picker
and the top of edge of the view above it to zero by entering 0 in the top box, and then click the dashed red
line below it so that it becomes a solid line. At the bottom of the pop-up, set Update Frames to Items of New
Constraints and then click Add 1 Constraint. The picker will resize and move to its correct position, as shown
in Figure 7-16.

® E
o 7 '3
o Cupertino o
(m] [u] o

Figure 7-16. The picker, positioned at the top of its view controller’s view

Now let’s connect this picker to its controller. The procedure here is just like for the previous picker
view: open the Assistant Editor, set the jump bar to show the SingleComponentPickerViewController.
swift file, Control-drag from the picker to the top of the SingleComponentPickerViewController class,
and create an outlet named singlePicker.

Next, with the picker selected, press ~3£6 to bring up the Connections Inspector. If you look at the
connections available for the picker view, you'll see that the first two items are dataSource and delegate.
If you don’t see those outlets, make sure you have the picker selected, rather than the UIView. Drag from
the circle next to dataSource to the View Controller icon at the top of the scene in the storyboard or
in the Document Outline (see Figure 7-17) and then drag from the circle next to delegate to the View
Controller icon. Now this picker knows that the instance of the SingleComponentPickerViewController
class in the storyboard is its data source and delegate, and the picker will ask it to supply the data to be
displayed. In other words, when the picker needs information about the data it is going to display, it asks the
SingleComponentPickerViewController instance that controls this view for that information.

227

CHAPTER 7 * USING TAB BARS AND PICKERS

=]
@1

2 Pickers Pickers | [l Ml storyboard |§ Main storyboard (Base) Single Scene Single Single Picker Pcker View
Single Scene
s " @
Picker ¥) single (5]
+ Applelegate saift Top Layout Guide \
4 ViewContioler swift
» DatePcikerviswControlion s S
s SingleCompone Centralked. i 3
+ CumiomPiecaryiswC orareie swift o)
| 15 hasin srcrybosed
e e * [Cuttam Seany Cuperting
LaunenSeraon steeybosd [Copandent Sceme
wdo.plet _
e » [coutile Sceme
v] Cate Scena
v () Dwte
Top Layout Guida
Bottom Layout Gude
View
* [View Controfher Econe
D View ax: iPhone 85 («C «R) R+ 5= e DO0O@a8n
MlnAea |0 . Viww Contreller - & cortroes that
]l | | | r 1 Vasry for Traics mansges a view.
e b | =]
F = Storyboard Rubersnce - Provides 8
ace or 2 viem Cos‘ioer in an

astaral ptorbonrd
Navigation Cantrofler - &

B o e s koson
Tvoudh s oy of views

Figure 7-17. Connecting the dataSource to the view controller

Drag a button to the view and place it just below the picker. Double-click the button and name it
Select. Press Return to commit the change. In the Connections Inspector, drag from the circle next to Touch
Up Inside to code in the Assistant Editor, releasing it just above the closing bracket at the end of the class
definition to make a new action method. Name this action onButtonPressed and you'll see that Xcode
fills in an empty method. You've just seen another way to add an action method to a view controller and
link it to its source view. You want this button to be horizontally centered and to stay a fixed distance below
the date picker. With the button selected, click the Align button at the bottom of the storyboard, select the
Horizontally in Container box, and then click Add 1 Constraint (see Figure 7-18).

228

CHAPTER 7 = USING TAB BARS AND PICKERS

Add New Alignment Constraints

g
EEE B08@

EB Herizontally in Container] -
E Vertically in Container 1] -

Update Frames | None
Add 1 Constraint

Figure 7-18. Center the button horizontally in the view

To fix the distance between them, Control-drag from the button to the picker and then release the
mouse. In the pop-up that appears, select Vertical Spacing (see Figure 7-19). Finally, if you have any layout
issues as shown by the Issue Inspector, click the Resolve Auto Layout Issues button at the bottom of the
storyboard and then click Update Frames in the top section of the pop-up (if this item is not enabled, it
means that the button is already in its correct location). The button should move to its correct location,
and there should no longer be any Auto Layout warnings.

Cupertino

Vertical Spacing

Leading
Center Horizontally
Trailing

Equal Widths
Equal Heights
Aspect Ratio

Figure 7-19. Set a consistent vertical spacing from the button to the picker

229

CHAPTER 7 * USING TAB BARS AND PICKERS

Implementing the Data Source and Delegate

To make your controller work properly as the picker’s data source and delegate, you'll start with some code
you should feel comfortable with and then add a few methods that you've never seen before.

Single-click SingleComponentPickerViewController.swift in the Project Navigator and add the
following property at the top of the class definition. This gives you an array with the names of several
well-known movie characters.

@IBOutlet weak var singlePicker: UIPickerView!
private let characterNames = [
"Luke", "Leia", "Han", "Chewbacca", "Artoo",
"Threepio", "Lando"]

Then change the onButtonPressed() method to what’s shown in Listing 7-3.

Listing 7-3. The onButtonPressed Method for Your Single Picker View

@IBAction func onButtonPressed(sender: UIButton) {
let row = singlePicker.selectedRow(inComponent: 0)
let selected = characterNames[row]
let title = "You selected \(selected)!"

let alert = UIAlertController(
title: title,
message: "Thank you for choosing",
preferredStyle: .alert)
let action = UIAlertAction(
title: "You're welcome",
style: .default,
handler: nil)
alert.addAction(action)
present(alert, animated: true, completion: nil)

As you saw earlier, a date picker contains the data you need to get to, but here, your regular picker hands
off that job to the delegate and data source. The onButtonPressed() method needs to ask the picker which
row is selected and then grabs the corresponding data from your pickerData array. Here is how you ask it for
the selected row:

let row = singlePicker.selectedRow(inComponent: 0)

Notice that you needed to specify which component you want to know about. You have only one
component (i.e., one spinning wheel) in this picker, so you simply pass in 0, which is the index of the first
(and only) component.

In the class declaration, you created an array of character names so that you have data to feed the
picker. Usually, your data will come from other sources, like a property list or a web service query. By
embedding an array of items in your code the way you've done here, you are making it much harder on
yourself if you need to update this list or if you want to have your application translated into other languages.
But this approach is the quickest and easiest way to get data into an array for demonstration purposes. Even
though you won’t usually create your arrays like this, you will almost always configure some form of access
to your application’s model objects here in the viewDidLoad() method so that you're not constantly going to
disk or to the network every time the picker asks you for data.

230

CHAPTER 7 = USING TAB BARS AND PICKERS

Tip If you're not supposed to create arrays from lists of objects in your code, as you just did, how should
you do it? Embed the lists in property list files and add those files to your project. Property list files can be
changed without recompiling your source code, which means there is little risk of introducing new bugs when
you do so.

Finally, insert the code shown in Listing 7-4 at the bottom of the file.

Listing 7-4. Picker Data Source and Delegate Methods

// MARK: -
// MARK: Picker Data Source Methods

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 1
}

func pickerView(pickerView: UIPickerView,
numberOfRowsInComponent component: Int) -> Int {
return characterNames.count

}

// MARK: Picker Delegate Methods
func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {
return characterNames[row]
}

These three methods are required to implement the picker. The first two methods are from the
UIPickerViewDataSource protocol, and they are both required for all pickers (except date pickers). Here’s
the first one:

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 1
}

Pickers can have more than one spinning wheel, or component, and this is how the picker asks how
many components it should display. You want to display only one list this time, so you return a value of 1.
Notice that a UIPickerView is passed in as a parameter. This parameter points to the picker view that is
asking you the question, which makes it possible to have multiple pickers being controlled by the same data
source. In this case, you know that you have only one picker, so you can safely ignore this argument because
you already know which picker is calling you.

The second data source method is used by the picker to ask how many rows of data there are for a given
component.

func pickerView(pickerView: UIPickerView,

numberOfRowsInComponent component: Int) -> Int {
return characterNames.count

231

CHAPTER 7 * USING TAB BARS AND PICKERS

Once again, you are told which picker view is asking and which component that picker is asking about.
Since you know that you have only one picker and one component, you don’t bother with either of the
arguments and simply return the count of objects from your sole data array.

/| MARK:

Did you notice the following lines of code from SingleComponentPickerViewController.swift?

// MARK: -
// MARK: Picker Data Source Methods

Any line of code that begins with // is a comment. Comments that start with // MARK: are treated
specially by Xcode—they tell it to put an entry in the pop-up menu of methods and properties at the
top of the editor pane. The first one (with the dash) puts a break in the menu. The second creates a text
entry containing whatever the rest of the line holds, which you can use as a sort of descriptive header
for groups of methods in your source code.

Some of your classes, especially some of your controller classes, are likely to get rather long, and the
methods and functions pop-up menu makes navigating around your code much easier. Putting in //
MARK: comments and logically organizing your code will make that pop-up more efficient to use.

After the two data source methods, you implement one delegate method. Unlike the data source
methods, all of the delegate methods are optional. The term optional is a bit deceiving because you do
need to implement at least one delegate method. You will usually implement the method that you are
implementing here. However, if you want to display something other than text in the picker, you must
implement a different method instead, as you'll see when you get to the custom picker later in this chapter.

func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {

return characterNames[row]
}

In this method, the picker asks you to provide the data for a specific row in a specific component. You
are provided with a pointer to the picker that is asking, along with the component and row that it is asking
about. Since your view has one picker with one component, you simply ignore everything except the row
argument and use that to return the appropriate item from your data array.

Build and run the application. When the simulator comes up, switch to the second tab—the one labeled
Single—and check out your new custom picker, which should look like Figure 7-3.

In the next section you'll implement a picker with two components. If you feel up to a challenge, this
next content view is actually a good one for you to attempt on your own. You've already seen all the methods
you'll need for this picker, so go ahead if you'd like to give it a try. You might want to start with a good look
at Figure 7-4, just to refresh your memory. When you're finished, read on, and you'll see how I tackled this
problem.

232

CHAPTER 7 = USING TAB BARS AND PICKERS

Implementing a Multicomponent Picker

The next tab will have a picker with two components, or wheels, each independent of the other. The left
wheel will have a list of sandwich fillings, and the right wheel will have a selection of bread types. You'll write
the same data source and delegate methods that you did for the single-component picker. You'll just need to
write a little additional code in some of those methods to make sure you're returning the correct value and
row count for each component. Start by single-clicking DoubleComponentPickerViewController.swift and
adding the following code:

class DoubleComponentPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {

Here, you simply conform your controller class to both the delegate and data source. Save this and click
Main.storyboard to work on the GUI.

Building the View

Select Double Scene in the Document Outline and click the Double icon to bring its view controller to the
front in the Editor Area. Now add a picker view and a button to the view, change the button label to Select,
and then make the necessary connections. I'm not going to walk you through it this time, but you can refer to
the previous section if you need a step-by-step guide, since the two view controllers are identical in terms of
connections in the storyboard. Here’s a summary of what you need to do:

1. Create an outlet called doublePicker in the class extension of the
DoubleComponentPickerViewController class to connect the view controller to
the picker.

2. Connect the dataSource and delegate connections on the picker view to the
view controller (use the Connections Inspector).

3. Connect the Touch Up Inside event of the button to a new action method called
onButtonPressed on the view controller (use the Connections Inspector).

4. Add Auto Layout constraints to the picker and the button to pin them in place.

Make sure that you save your storyboard before you dive back into the code. You may want to bookmark
this page because you may be referring to it in a bit.

Implementing the Controller

Select DoubleComponentPickerViewController.swift and add the code in Listing 7-5 at the top of the class
definition, below your picker outlet.

Listing 7-5. Parameters Needed for Your Two-Component Picker

@IBOutlet weak var doublePicker: UIPickerView!
private let fillingComponent = 0
private let breadComponent = 1
private let fillingTypes = [
"Ham", "Turkey", "Peanut Butter", "Tuna Salad",
"Chicken Salad", "Roast Beef", "Vegemite"]
private let breadTypes = [
"White", "Whole Wheat", "Rye", "Sourdough",
"Seven Grain"]

233

CHAPTER 7 * USING TAB BARS AND PICKERS

Asyou can see, you start by defining two constants that will represent the indices of the two
components, which is just to make your code easier to read. Picker components are referred to by number,
with the leftmost component being assigned zero and increasing by one with each move to the right. Next,
you declare two arrays that hold the data for your two picker components.

Now implement the onButtonPressed() method, as shown in Listing 7-6.

Listing 7-6. What to Do When the Select Button Is Pressed

@IBAction func onButtonPressed(sender: UIButton) {
let fillingRow =
doublePicker.selectedRow(inComponent: fillingComponent)
let breadRow =
doublePicker.selectedRow(inComponent: breadComponent)

let filling = fillingTypes[fillingRow]
let bread = breadTypes[breadRow]
let message = "Your \(filling) on \(bread) bread will be right up."

let alert = UIAlertController(
title: "Thank you for your order",
message: message,
preferredStyle: .alert)
let action = UIAlertAction(
title: "Great",
style: .default,
handler: nil)
alert.addAction(action)
present(alert, animated: true, completion: nil)

Also, add the data source and delegate methods at the bottom of the class, as shown in Listing 7-7.

Listing 7-7. The dataSource and delegate Methods

// MARK:-

// MARK: Picker Data Source Methods

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 2

}

func pickerView(pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {
if component == breadComponent {
return breadTypes.count
} else {
return fillingTypes.count
}

}

// MARK: -
// MARK: Picker Delegate Methods

234

CHAPTER 7 = USING TAB BARS AND PICKERS

func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {
if component == breadComponent {
return breadTypes[row]
} else {
return fillingTypes[row]
}

The onButtonPressed() method is a bit more involved this time, but there’s very little there that’s new
to you. You just need to specify which component you are talking about when you request the selected row
using those constants you defined earlier—breadComponent and fillingComponent.

let fillingRow =doublePicker.selectedRow(inComponent: fillingComponent)
let breadRow = doublePicker.selectedRow(inComponent: breadComponent)

You can see here that using the two constants instead of 0 and 1 makes your code considerably
more readable. From this point on, the onButtonPressed() method is fundamentally the same as the last
one you wrote.

When you get down to the data source methods, that’s where things start to change a bit. In the first
method, you specify that your picker should have two components rather than just one.

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 2
}

This time, when you are asked for the number of rows, you need to check which component the picker
is asking about and return the correct row count for the corresponding array.

func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {
if component == breadComponent {
return breadTypes.count
} else {
return fillingTypes.count
}

Next, in your delegate method, you do the same thing. You check the component and use the correct
array for the requested component to fetch and return the correct value.

func pickerView(pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {
if component == breadComponent {
return breadTypes[row]
} else {
return fillingTypes[row]
}

That wasn’t so hard, was it? Compile and run your application, and make sure the Double content pane
looks like Figure 7-4.

235

CHAPTER 7 * USING TAB BARS AND PICKERS

Notice that the wheels are completely independent of each other. Turning one has no effect on
the other. That’s appropriate in this case, but there will be times when one component is dependent on
another. A good example of this is in the date picker. When you change the month, the dial that shows the
number of days in the month may need to change because not all months have the same number of days.
Implementing this isn’t really hard once you know how, but it’s not the easiest thing to figure out on your
own, so let’s do that next.

Implementing Dependent Components

As you're picking up momentum, I'm not going to hold your hand quite as much when it comes to material
I've already covered. Instead, I'll focus on addressing new features. Your new picker will display a list of U.S.
states in the left component and a list of corresponding ZIP codes in the right component.

You'll need a separate list of ZIP code values for each item in the left component. You'll declare two
arrays, one for each component, as you did last time. You'll also need a dictionary. In the dictionary, you're
going to store an array for each state (see Figure 7-20). Later, you'll implement a delegate method that will
notify you when the picker’s selection changes. If the value in the left picker wheel changes, you will grab the
correct array out of the dictionary and assign it to the array being used for the right-side picker wheel. Don’t
worry if you didn’t catch all that; I'll talk about it more as you get into the code.

99501
99502
99503
99504

Alaska

Arizona

71601 85004
71602 —
71603

71611

Figure 7-20. Your application’s data. For each state, there will be one entry in a dictionary with the name of
the state as the key. Stored under that key will be an Array<String> instance containing all the ZIP codes from
that state.

236

CHAPTER 7 = USING TAB BARS AND PICKERS

Add the following code to your DependentComponentPickerViewController.swift file:

class DependentComponentPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {

private let stateComponent = 0

private let zipComponent = 1

private var stateZips:[String : [String]]!

private var states:[String]!

private var zips:[String]!

Now it’s time to build the content view. That process is identical to the previous two component views
you built. If you get lost, flip back to the “Building the View” section for the single-component picker and
follow those step-by-step instructions. Here’s a hint: start by opening Main.storyboard, find the view
controller for the DependentComponentPickerViewController class, and then repeat the same basic steps
you've done for all the other content views in this chapter. You should end up with an outlet property called
dependentPicker connected to a picker, an empty onButtonPressed: method connected to a button, and
both the delegate and dataSource properties of the picker connected to the view controller. Don't forget to
add the Auto Layout constraints to both views! When you're finished, save the storyboard.

Now you’ll implement this controller class. This implementation may seem a little complicated at first.
To make one component dependent on the other, you need to add a whole new level of complexity to your
controller class. Although the picker displays only two lists at a time, your controller class must know about
and manage 51 lists. The technique you're going to use here actually simplifies that process. The data source
methods look almost identical to the one you implemented for the DoublePickerViewController. All of the
additional complexity is handled elsewhere, between viewDidLoad and a new delegate method called picke
rView(_:didSelectRow:inComponent:).

Before you write the code, you need some data to display. Up until now, you've created arrays in code
by specifying a list of strings. Because you don’t want to type in several thousand values, you're going to load
the data from a property list. Both NSArray and NSDictionary objects can be created from property lists.

The data that you need is included in a property list called statedictionary.plist in the project
archive, under the Picker Data folder. Drag that file into the Pickers folder in your Xcode project. If you
single-click the .plist file in the Project Navigator, you can see and even edit the data that it contains (see
Figure 7-21).

237

CHAPTER 7 * USING TAB BARS AND PICKERS

88 < > | [B Pickers)[7] Pickers statedictionary.plist) No Selection
: Key Type Value
¥ Root Dictionary (50 items)
» Alabama Array (657 items)
» Alaska Array (251 items)
» Arizona Array (376 items)
» Arkansas Array (618 items)
» California Array (1757 items)
» Colorado Array (501 items)
» Connecticut Array (276 items)
» Delaware Array (68 items)
» Florida Array (972 items)
» Georgia Array (736 items)
I » Hawaii Array (92 items)
» ldaho Array (292 items)
» lllinois Array (1375 items)
¥ Indiana Array (780 items)
» lowa Array (972 items)
» Kansas Array (721 items)
» Kentucky Array (799 items)
P Louisiana Array (542 items)
» Maine Array (415 items)
» Maryland Array (466 items)
» Massachusetts Array (519 items)
» Michigan Array (987 items)
» Minnesota Array (892 items)
» Mississippi Array (447 items)
» Missouri Array (1040 items)
» Montana Array (364 items)
» Nebraska Array (590 items)
» Nevada Array (158 items)
» New Hampshire Array (238 items)
» New Jersey Array (604 items)
» New Mexico Array (366 items)
» New York Array (1677 items)
» North Carolina Array (809 items)
» North Dakota Array (392 items)
¥ Ohio Array (1189 items)
Item O String 43001
Item 1 String 43002
Item 2 String 43003
Itam 3 Strinn 43004

Figure 7-21. The statedictionary.plist file, showing your list of states. Within Ohio, you can see the start of a
list of ZIP codles.

In DependentComponentPickerViewController.swift, I'm going to first show you some whole methods
to implement, and then I'll break it down into more digestible chunks. Start with the implementation of
onButtonPressed(),as shown in Listing 7-8.

238

CHAPTER 7 = USING TAB BARS AND PICKERS

Listing 7-8. The onButtonPressed Method for Your ZIP Code View

@IBAction func onButtonPressed(sender: UIButton) {
let stateRow =
dependentPicker.selectedRow(inComponent: stateComponent)
let zipRow =
dependentPicker.selectedRow(inComponent: zipComponent)

let state = states[stateRow]
let zip = zips[zipRow]

let title = "You selected zip code \(zip)"
let message = "\(zip) is in \(state)"

let alert = UIAlertController(
title: title,
message: message,
preferredStyle: .alert)
let action = UIAlertAction(
title: "OK",
style: .default,
handler: nil)
alert.addAction(action)
present(alert, animated: true, completion: nil)

Next, add the code in Listing 7-9 to the existing viewDidLoad () method.

Listing 7-9. Add to the viewDidLoad() Method

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
let bundle = Bundle.main
let plistURL = bundle.urlForResource("statedictionary",
withExtension: "plist")
stateZips = NSDictionary.init(contentsOf: (plistURL)!) as! [String : [String]]
let allStates = stateZips.keys
states = allStates.sorted()
let selectedState = states[0]
zips = stateZips[selectedState]

Finally, add the data source and delegate methods at the bottom of the file, as shown in Listing 7-10.

Listing 7-10. Your dataSource and delegate Methods for Displaying State ZIP Codes

// MARK: -

// MARK: Picker Data Source Methods

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 2

}

239

CHAPTER 7 * USING TAB BARS AND PICKERS

func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {
if component == stateComponent {
return states.count
} else {
return zips.count
}
}

// MARK: -
// MARK: Picker Delegate Methods
func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {
if component == stateComponent {
return states[row]
} else {
return zips[row]
}

}

func pickerView(pickerView: UIPickerView, didSelectRow row: Int, inComponent component: Int) {
if component == stateComponent {
let selectedState = states[row]
zips = stateZips[selectedState]
dependentPicker.reloadComponent(zipComponent)
dependentPicker.selectRow(0, inComponent: zipComponent,
animated: true)

There’s no need to talk about the onButtonPressed() method since it's fundamentally the same as the
previous one. I should talk about the viewDidLoad () method, though. There’s some stuff going on there that
you need to understand, so pull up a chair and let’s chat. The first thing you do in this new viewDidLoad()
method is grab a reference to your application’s main bundle.

let bundle = Bundle.main

A bundle is just a special type of folder, the contents of which follow a specific structure. Applications
and frameworks are both bundles, and this call returns a bundle object that represents your application.

Note In the latest revision of Xcode and the iOS libraries, Apple provided a more user-friendly way of
referring to elements such as NSBundle from Swift. Instead of something like let bundle = NSBundle.
mainBundle(), you use the much easier and more readable preceding versions.

One of the primary uses of a bundle (NSBundle) is to get to resources that you added to your project.
Those files will be copied into your application’s bundle when you build your application. If you want to get
to those resources in your code, you usually need to use a bundle. You use the main bundle to retrieve the
URL of the resource in which you're interested.

let plistURL = bundle.urlForResource("statedictionary",
withExtension: "plist")

240

CHAPTER 7 = USING TAB BARS AND PICKERS

This will return a URL containing the location of the statedictionary.plist file. You can then use that
URL to load your dictionary. Once you do that, the entire contents of that property list will be loaded into the
newly created Dictionary object; thatis, it is assigned to stateZips.

stateZips = NSDictionary.init(contentsOf: (plistURL)!) as! [String : [String]]

The Swift Dictionary type has no convenient way to load data from an external source, but the
Foundation class NSDictionary does. This code takes advantage of that by loading the content of the
statedictionary.plist file into an NSDictionary, which you then cast to the Swift type [String : [String]]
(that s, a dictionary in which each key is a string representing a state and the corresponding value is an array
containing the ZIP codes for that state, as strings). This reflects the structure shown in Figure 7-18.

To populate the array for the left component of the picker, which will display the states, you get the list
of all keys from your dictionary and assign those to the states array. Before you assign it, though, you sort it
alphabetically.

let allStates = stateZips.keys
states = allStates.sorted()

Unless you specifically set the selection to another value, pickers start with the first row (row 0) selected.
To get the zips array that corresponds to the first row in the states array, you grab the object from the
states array that’s at index 0. That will return the name of the state that will be selected at launch time. You
then use that state name to grab the array of ZIP codes for that state, which you assign to the zips array that
will be used to feed data to the right-side component.

let selectedState = states[0]
zips = stateZips[selectedState]

The two data source methods are practically identical to the previous version. You return the number of
rows in the appropriate array. The same is true for the first delegate method you implemented. The second
delegate method is the new one, which is where the magic happens.

func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int, inComponent component:
Int) {
if component == stateComponent {

let selectedState = states[row]

zips = stateZips[selectedState]

dependentPicker.reloadComponent (zipComponent)

dependentPicker.selectRow(0, inComponent: zipComponent,

animated: true)

In this method, which is called any time the picker’s selection changes, you look at the component and
see whether the left component is the one that changed, which would mean that the user selected a new
state. If it is, you grab the array that corresponds to the new selection and assign it to the zips array. Next,
you set the right-side component back to the first row and tell it to reload itself. By swapping the zips array
whenever the state changes, the rest of the code remains pretty much the same as it was in the DoublePicker
example.

241

CHAPTER 7 * USING TAB BARS AND PICKERS

You're not quite finished yet. Build and run the application and then check out the Dependent tab, as
shown in Figure 7-22. The two components are equal in size. Even though the ZIP code will never be more
than five characters long, it has been given equal billing with the state. Since state names like Mississippi and
Massachusetts won't fit in half of the picker on most iPhone screens, this seems less than ideal.

iPhone 65 — i0S 10.0 (14A5261u)
Carrier ¥ 11:34 AM -

Massachus... 01001

Select

T

&8 1 2 I~ »®

Dependent

Figure 7-22. Do you really want the two components to be of equal size? Notice the clipping of a long state name

Fortunately, there’s another delegate method you can implement to indicate how wide each component
should be. Add the method in Listing 7-11 to the delegate section of DependentComponentPickerViewController.
swift. You can see the difference in Figure 7-23.

Listing 7-11. Setting the Width of Your Picker’s Components

func pickerView(_ pickerView: UIPickerView, widthForComponent component: Int) -» CGFloat {
let pickerWidth = pickerView.bounds.size.width
if component == zipComponent {
return pickerWidth/3
} else {
return 2 * pickerWidth/3
}

242

iPhone 6s - i0S 10.0 (14A5261u)

Carrier ¥ 11:41 AM
Massachusetts
Select

(3] 1 2

01001

|+

Dependent

®

CHAPTER 7 = USING TAB BARS AND PICKERS

Figure 7-23. With the adjustment in width of your picker components, your UI has become more visually useful

In this method, you return a number that represents how many pixels wide each component should be,
and the picker will do its best to accommodate this. I've chosen to give the state component two-thirds of the
available width and the rest goes to the ZIP component. Feel free to experiment with other values to see how
the distribution of space between the components changes as you modify them. Save, build, and run; the
picker on the Dependent tab will look more like the one shown in Figure 7-5.

By this point, you should be fairly comfortable with both pickers and tab bar applications. You have one
more thing to do with pickers.

243

CHAPTER 7 * USING TAB BARS AND PICKERS

Creating a Simple Game with a Custom Picker

Next up, you're going to create a simulated slot machine. Take a look back at Figure 7-6 before proceeding so
you know what you're building.

Preparing the View Controller

Begin by adding the following code to CustomPickerViewController.swift:

class CustomPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {
private var images:[UIImage]!

At this point, all you've added to the class is a property for an array that will hold the images to use for
the symbols on the spinners of the slot machine. The rest will come a little later.

Building the View

Even though the picker in Figure 7-6 looks quite a bit fancier than the other ones you've built, there’s actually
very little difference in the way you'll design your storyboard. All the extra work is done in the delegate
methods of your controller.

Make sure that you've saved your new source code and then select Main.storyboard in the Project
Navigator and use the Document Outline to select the Custom icon in the Custom Scene to edit the GUI. Add
a picker view, a label below that, and a button below that. Name the button Spin.

With the label selected, bring up the Attributes Inspector. Set the alignment to centered. Then click Text
Color and set the color to something bright. Next, let’s make the text a little bigger. Look for the Font setting
in the inspector, and click the icon inside it (it looks like the letter T inside a little box) to pop up the font
selector. This control lets you switch from the device’s standard system font to another if you like, or you can
simply change the size. For now, just change the size to 48 and delete the word Label since you don’t want
any text displayed until the first time the user wins. With the label selected, click Editor » Size to Fit Content
to make sure the label is always large enough to display its content.

Now add Auto Layout constraints to center the picker, label, and button horizontally and to fix the
vertical gaps between them, between the label and the picker, and between the picker and the top of the
view. You'll probably find it easiest to drag from the label in the Document Outline when adding its Auto
Layout constraints because the label on the storyboard is empty and difficult to find.

After that, make all the connections to outlets and actions. Create a new outlet called picker to connect
the view controller to the picker view and another called winlLabel to connect the view controller to the
label. Again, you'll find it easiest to use the label in the Document Outline than the one on the storyboard.
Next, connect the button’s Touch Up Inside event to a new action method called spin(). After that, just
make sure to connect the delegate and data source for the picker.

There’s one additional thing you need to do. Select the picker and bring up the Attributes Inspector.
You need to deselect the User Interaction Enabled within the View settings check box so that the user
can’t manually change the dial and cheat. Once you've done all that, save the changes you've made to the
storyboard.

244

CHAPTER 7 = USING TAB BARS AND PICKERS

FONTS SUPPORTED BY I0S DEVICES

Be careful when using the fonts palette in Interface Builder for designing i0S interfaces. The Attribute
Inspector’s font selector will let you assign from a wide range of fonts, but not all iOS devices have the
same set of fonts available. At the time of writing, for instance, there are several fonts that are available
on the iPad but not on the iPhone or iPod touch. You should limit your font selections to one of the font
families found on the i0S device you are targeting. This post on Jeff LaMarche’s excellent iOS blog
shows you how to grab this list programmatically: http://iphonedevelopment.blogspot.com/
2010/08/fonts-and-font-families.html

In a nutshell, create a view-based application and add this code to the method
application(_: didFinishLaunchingWithOptions:) in the application delegate

for family in UIFont.familyNames() as [String] {
println(family)
for font in UIFont.fontNamesForFamilyName(family) {
println("\t\(font)")

}

Run the project in the appropriate simulator or device, and the available font families and fonts will be
displayed in the project’s console log.

Implementing the Controller

There is a bunch of new stuff to cover in the implementation of this controller. Select
CustomPickerViewController.swift and get started by filling in the contents of the spin() method, as
shown in Listing 7-12.

Listing 7-12. The spin() Method

@IBAction func spin(_ sender: UIButton) {

var win = false
var numInRow = -1
var lastVal = -1

for i in 0..<5 {
let newValue = Int(arc4random_uniform(UInt32(images.count)))
if newValue == lastval {
// numInRow++ *** NOTE THAT increment/decrement operators are deprecated in Swift 3
numInRow += 1
} else {
numInRow = 1
}

lastVal = newValue

picker.selectRow(newValue, inComponent: i, animated: true)
picker.reloadComponent(i)

245

http://iphonedevelopment.blogspot.com/2010/08/fonts-and-font-families.html
http://iphonedevelopment.blogspot.com/2010/08/fonts-and-font-families.html

CHAPTER 7 * USING TAB BARS AND PICKERS

if numInRow >= 3 {
win = true
}

}
winlabel.text = win ? "WINNER!" : " " // Note the space between the quotes

Note The common use of unary increment (foo++) and decrement (foo--) was deprecated in Swift 3 to
the use of += and -=, respectively.

Change the viewDidLoad() method to what’s shown in Listing 7-13.

Listing 7-13. The Modifications to viewDidLoad() to Set Up the Images and Label

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
images = [

UIImage(named: "seven")!,

UIImage(named: "bar")!,

UIImage(named: "crown")!,

UIImage(named: "cherry")!,

UIImage(named: "lemon")!,

UIImage(named: "apple")!
]
winLabel.text = " " // Note the space between the quotes
arc4random_stir()

Finally, add the dataSource and delegate code to the end of the class declaration, before the closing
brace, as shown in Listing 7-14.

Listing 7-14. Your dataSource and delegate Methods

// MARK: -

// MARK: Picker Data Source Methods

func numberOfComponents(in pickerView: UIPickerView) -> Int {
return 5

}

func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {
return images.count
}

// MARK:-
// MARK: Picker Delegate Methods
func pickerView(_ pickerView: UIPickerView, viewForRow row: Int, forComponent component:
Int, reusing view: UIView?) -> UIView {
let image = images[row]
let imageView = UIImageView(image: image)
return imageView

246

CHAPTER 7 * USING TAB BARS AND PICKERS

func pickerView(_ pickerView: UIPickerView, rowHeightForComponent component: Int) -> CGFloat

{
}

return 64

The spin() Method

The spin() method executes when the user taps the Spin button. In it, you first declare a few variables that
will help you keep track of whether the user has won. You'll use win to keep track of whether you've found
three in a row by setting it to true if you have. You'll use numInRow to keep track of how many of the same
value you have in a row so far. You will keep track of the previous component’s value in lastVal so that you
have a way to compare the current value to the previous value. You initialize 1astVal to -1 because you know
that value won’t match any of the real values.

var win = false
var numInRow = -1
var lastVal = -1

Next, you loop through all five components and set each one to a new, randomly generated row
selection. You get the count from the images array to do that, which is a shortcut you can use because you
know that all five columns use the same number of images.

for i in 0..<5 {
let newValue = Int(arc4random_uniform(UInt32(images.count)))

You compare the new value to the previous value and increment numInRow if it matches. If the value
didn’t match, you reset numInRow to 1. You then assign the new value to lastVal, so you'll have it to compare
the next time through the loop.

if newValue == lastVal {
numInRow += 1

} else {
numInRow = 1

}

lastVal = newValue

After that, you set the corresponding component to the new value, telling it to animate the change; you
tell the picker to reload that component.

picker.selectRow(newValue, inComponent: i, animated: true)
picker.reloadComponent (i)

The last thing you do each time through the loop is check whether you have three in a row and then set
win to trueif you do.

if numInRow >= 3 {
win = true
}

247

CHAPTER 7 * USING TAB BARS AND PICKERS

Once you're finished with the loop, you set the label to say whether the spin was a win.

winLabel.text = win ? "WINNER!" : " "
// Note the space between the quotes

The viewDidLoad() Method

The first thing was to load six different images, which you added to Images.xcassets back at the beginning
of the chapter. You did this using the imageNamed() convenience method of the UIImage class.

images = [
UIImage(named: "seven")!,
UIImage(named: "bar")!,
UIImage(named: "crown")!,
UIImage(named: "cherry")!,
UIImage(named: "lemon")!,
UIImage(named: "apple")!

The next thing you did in this method was to make sure the label contains exactly one space. You want
the label to be empty, but if you really make it empty, it collapses to zero height. By including a space, you
make sure the label is shown at its correct height.

winLabel.text = // Note the space between the quotes

Finally, you called the arc4random_stir() function to seed the random number generator so that you
don’t get the same sequence of random numbers every time you run the application.

So, what do you do with those six images? If you scroll down through the code you just typed, you'll
see that two data source methods look pretty much the same as before; however, if you look further into
the delegate methods, you'll see that you're using completely different delegate code to provide data to the
picker. The one that you've used up to now returned a string, but this one returns a UIView.

Using this method instead, you can supply the picker with anything that can be drawn into a UIView. Of
course, there are limitations on what will work here and look good at the same time, given the small size of
the picker. But this method gives you a lot more freedom in what you display, although it is a bit more work.

func pickerView(pickerView: UIPickerView, viewForRow row: Int, forComponent component:
Int, reusing view: UIView?) -> UIView {

let image = images[row]

let imageView = UIImageView(image: image)

return imageView

This method returns one UIImageView object initialized with one of the images for the symbols. To
do that, you first get the image for the symbol for the row. Next, create and return an image view with that
symbol. For views more complex than a single image, it can be beneficial to create all needed views first
(e.g., in viewDidLoad()) and then return these precreated views to the picker view when requested. But for
your simple case, creating the needed views dynamically works fine.

248

CHAPTER 7 = USING TAB BARS AND PICKERS

You got through all of it in one piece, and now you get to take it for a test. So, build and run the
application and see how it works (see Figure 7-24).

. B g e 8t et

Carrier ¥ 7:36 PM -—

WINNER!

Spin

5] 1 2 = 9%

Figure 7-24. It’s not the prettiest slot machine app, but it gives you an idea of the versatility of working with
pickers

Additional Details for Your Game

Your game works okay, especially when you think about how little effort it took to build it. Now let’s improve
it with a couple more tweaks. There are two things about this game right now that I should address.

e It’sso quiet. Real slot machines aren’t quiet, so yours shouldn’t be either.

e Tt tells the user that they've won before the dials have finished spinning, which is a
minor thing, but it does tend to eliminate the anticipation. To see this in action, run
your application again. It is subtle, but the label really does appear before the wheels
finish spinning.

The Picker Sounds folder in the project archive that accompanies the book contains two sound files:
crunch.wav and win.wav. Drag both of these files to your project’s Pickers folder. These are the sounds
you'll play when the users tap the Spin button and when they win, respectively.

249

CHAPTER 7 * USING TAB BARS AND PICKERS

To work with sounds, you'll need access to the iOS Audio Toolbox classes. Insert the following
AudioToolbox line at a position after the existing import line at the top of CustomPickerViewController.swift:

import UIKit
import AudioToolbox

Next, you need to add an outlet that will point to the button. While the wheels are spinning, you're going
to hide the button. You don’t want users tapping the button again until the current spin is all done. Add the
following bold line of code to CustomPickerViewController.swift:

class CustomPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {
private var images:[UIImage]!
@IBOutlet weak var picker: UIPickerView!
@IBOutlet weak var winlLabel: UILabel!
@IBOutlet weak var button: UIButton!

After you type that and save the file, click Main. storyboard to edit the GUIL Open the Assistant Editor
and make sure it shows the CustomPickerViewController.swift file. Click and drag from the little ball to
the left of the outlet you just added to the button on the storyboard, as shown in Figure 7-25.

Pt + [Meinaiarrboma’ [Wt Bt | B Cuncom Score + £ Cuaiom (4 Contom | B £

Figure 7-25. Connecting the button outlet to the button on the storyboard canvas

250

CHAPTER 7 = USING TAB BARS AND PICKERS

Now, you need to do a few things in the implementation of your controller class. First, you need some
instance variables to hold references to the loaded sounds. Open CustomPickerViewController.swift
again and add the following new properties (shown in bold):

class CustomPickerViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {
private var images:[UIImage]!
@IBOutlet weak var picker: UIPickerView!
@IBOutlet weak var winlLabel: UILabel!
@IBOutlet weak var button: UIButton!
private var winSoundID: SystemSoundID = 0
private var crunchSoundID: SystemSoundID = 0

You also need a couple of methods added to your controller class. Add the two methods in Listing 7-15
to the CustomPickerViewController.swift file.

Listing 7-15. Hiding the Spin Button and Playing Sounds in Your Slot Machine Game

func showButton() {
button.isHidden = false
}

func playWinSound() {

if winSoundID == 0 {

let soundURL = Bundle.main.urlForResource(
"win", withExtension: "wav")! as CFURL

AudioServicesCreateSystemSoundID(soundURL, &winSoundID)

}

AudioServicesPlaySystemSound(winSoundID)

winLabel.text = "WINNER!"

DispatchQueue.main.after(when: .now() + 1.5) {
self.showButton()

}

You use the first method to show the button. As noted previously, you'll need to hide the button when
the user taps it because if the wheels are already spinning, there’s no point in letting them spin again until
they’ve stopped.

The second method will be called when the user wins. First, you check whether you have already
loaded the winning sound. The winSoundID and crunchSoundID properties are initialized as zero, and valid
identifiers for loaded sounds are not zero, so you can check whether a sound is loaded yet by comparing its
identifier to zero. To load a sound, you first ask the main bundle for the path to the sound, in this case
win.wav, just as you did when you loaded the property list for the Dependent picker view. Once you have the
path to that resource, the next three lines of code load the sound file in and play it. Next, you set the label to
WINNER! and call the showButton() method; however, you call the showButton() method in a special way
using a function called DispatchQueue(when:). This is a handy function that lets you run code sometime in
the future—in this case, one-and-a-half seconds in the future, which will give the dials time to spin to their
final locations before telling the user the result.

251

http://dx.doi.org/10.1007/978-1-4842-3072-5_15

CHAPTER 7 * USING TAB BARS AND PICKERS

Note You may have noticed something a bit odd about the way you called the AudioServicesCreateSystemSoundID()
function. That function takes a URL as its first parameter, but it doesn’t want an instance of NSURL. Instead, it
wants a CFURL (previously CFURLRef), which is a pointer to a structure that belongs to the C-language Core
Foundation framework. NSURL is part of the Foundation framework, which is written in Objective-C. Fortunately,
many of the C components in Core Foundation are “bridged” to their Objective-C counterparts in the Foundation
framework so that a CFURL is functionally equivalent to an NSURL pointer. That means certain kinds of objects
created in Swift or Objective-C can be used with C APIs simply by casting them to the corresponding C type
using the as keyword.

You also need to make some changes to the spin() method. You will write code to play a sound
and to call the playWinSound method if the player wins. Make the changes to the spin() method shown in
Listing 7-16.

Listing 7-16. Your Updated spin() Method to Add Sounds

@IBAction func spin(sender: AnyObject) {
var win = false
var numInRow = -1
var lastVal = -1

for i in 0..<5 {
let newValue = Int(arc4random_uniform(UInt32(images.count)))
if newValue == lastVal {
numInRow += 1
} else {
numInRow = 1
}

lastVal = newValue

picker.selectRow(newValue, inComponent: i, animated: true)
picker.reloadComponent(i)
if numInRow >= 3 {
win = true
}

}

if crunchSoundID == 0 {
let soundURL = Bundle.main.urlForResource(
"crunch", withExtension: "wav")! as CFURL
AudioServicesCreateSystemSoundID(soundURL, &crunchSoundID)

}

AudioServicesPlaySystemSound(crunchSoundID)
if win {
DispatchQueue.main.after(when: .now() + 0.5) {
self.playWinSound()
}

252

CHAPTER 7 * USING TAB BARS AND PICKERS

} else {
DispatchQueue.main.after(when: .now() + 0.5) {
self.showButton()
}

}

button.isHidden = true
winLabel.text = " " // Note the space between the quotes

First, you load the crunch sound if needed, just as you did with the win sound before. Now play
the crunch sound to let the player know the wheels have been spun. Next, instead of setting the label to
WINNER! as soon as you know the user has won, you do something tricky. You call one of the two methods
you just created, but you do it after a delay using DispatchQueue.main.after(when:). If the user won, you
call your playWinSound() method half a second into the future, which will give time for the dials to spin into
place; otherwise, you just wait a half-second and reenable the Spin button. While waiting for the result, you
hide the button and clear the label’s text.

Now you're done, so build and run the app and then click the final tab to see and hear this slot
machine in action. Tapping the Spin button should play a little cranking sound, and a win should produce a
winning sound.

Summary

By now, you should be comfortable with tab bar applications and pickers. In this chapter, you built a
full-fledged tab bar application containing five different content views from scratch. You practiced using
pickers in a number of different configurations and creating pickers with multiple components. You even
know how to make the values in one component dependent on the value selected in another component.
You also saw how to make the picker display images rather than just text.

Along the way, you talked about picker delegates and data sources and saw how to load images, play
sounds, and create dictionaries from property lists. It was a long chapter, so congratulations on making it
through. In the next chapter, you'll start working with one of the most common elements for iPhone devices:
table views.

253

CHAPTER 8

Introducing Table Views

Over the course of the next few chapters, you'll build some hierarchical navigation-based applications
similar to the Mail application that ships on iOS devices. Applications of this type, usually called master-
detail applications, allow the user to drill down into nested lists of data and edit that data. But before you can
build these types of applications, you'll need to master the concept of table views.

Table views provide iOS devices with the most common mechanism used to display lists of data to the
user. They are highly configurable objects able to look practically any way you want them to. Mail uses table
views to show lists of accounts, folders, and messages; however, table views are not limited to just the display
of textual data. The Settings, Music, and Clock apps also use table views, even though those applications
exhibit very different appearances, as shown in Figure 8-1.

W

Settings World Clack

Cupertino
Today, 3 hours behind

LEL
* \l\ I.
MNew York o
Today
Chicago ; ‘

Today, 1 hour behind

: Bruckner: Symphonies [Disc 2]
Airplane Mode

B wiri
B Bluetooth

Cellular Bruckner: Symphonies [Disc 7]

Bruckner: Symphonies [Disc 6]

Personal Hotspot
Bruckner: Symphonies [Disc 8]

San Francisco
Today, 3 hours benind

B wotifications
Bruckner: Symphonies [Dise 9]

@ Control Center

l’ Do Nat Disturd Bruekner: Symphery No. 3 - X
£13 et Bt *) Berliner Philharmoriiker - Barenb.,.. = v

~ Shostakovich: Symohony 07,
B cenen Leingrad:

St. Louis
Today, 1 hour behind

London
Today, 5 hours ahead
S
r

) osolay & Brightness Ne3 i, Fee, Ao

D Wallpaper
—

Figure 8-1. Though they all look different, the Settings, Music, and Clock applications use table views to
display their data

© Molly K. Maskrey 2017 255
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_8

https://doi.org/10.1007/978-1-4842-3072-5_8

CHAPTER 8 * INTRODUCING TABLE VIEWS

Understanding Table View Basics

Tables display lists of data, with each item in a table’s list known as a row. iOS allows tables to have an
unlimited number of rows, constrained only by the amount of available memory, but they can be only one
column wide.

Using Table Views and Table View Cells

A table view object displays a table’s data and functions as instances of the class UITableView; each visible
row in a table is implemented by an instance of the class UITableViewCell, as shown in Figure 8-2.

Table View Table View Cell
(UlTableView) (UlTableViewCell)
esnee Vor LTE O R E sssee Voron LTE 18:57 7O E

18:57
© \EN--) Q ®

Bruckner Symphonres [Dlsc 2]

= o) Q

Bruckner Symphomes [Drsc 2]
D el Bar

o >

O,

Bruckner Symphonles [Dlsc 6]

Daniel B hilhar

Brucknar Symphonles [Dlsc ?]

Daniel Ban *hilharn

Bruckner Symphonles [Dlsc 3]

Daniel B
Bruckner: Symphonies [Disc 9]

Bruckner: Symphony No. 3 -

Shostakovich: Symphony #7,
“Leningrad”

BerllnerPhllharmomker Earenb...

B NS X ECCHWIODTOZETrXZc—IO0NMMOOE>

Bruckner: Sym phomes [Dlsc 6]

niel Barenboim: Berlin Philt c Orch

Bruckner Symphomes IDISC ?]

el Barenboim: Berlin Philt

Bruckner Sym phomes [Dlsc 8]

Daniel Barenboim: Berl: i T ¢ C

Bruckner Symphomes [Dlsc 9]
D el Bar r

Bruckner: Symphony No. 3 -

O

niel Bare im: Ber

Shostakovich: Symphony #7,
“Leningrad”

Berliner Phllharmcnlker - Barenb...

wEN-LYYECCHAWIODTOZErXce—-—TITOMMO

> Nr.3 iv. Finale. Allegro . > Nr.3 iv. Finale. Allegro
Yaniel Barenboim: Berlin Phitharmonic Orchestra — Bruckner Daniel Barenboim: Berdin Philharmonic Orchestra — Bruckner
) A 3 =) =
) ({te)) (} / <7 ({t=)))
ip| w o @ @ ip O A OB C
My Music For You Radio Connect My Music o Y Rad Connect

Figure 8-2. Each table view is an instance of UITableView, and each visible row is an instance of
UlTableViewCell

Though not responsible for storing all of your table’s data, a table view contains only enough data to
draw the rows currently visible. Somewhat like pickers, table views get their configuration data from an
object that conforms to the UITableViewDelegate protocol, and they get their row data from an object that
conforms to the UITableViewDataSource protocol. You'll see how all this works when developing the sample
programs later in the chapter.

256

CHAPTER 8 " INTRODUCING TABLE VIEWS

As mentioned, all tables contain just a single column. The Clock application, shown on the right side of
Figure 8-1, gives the appearance of having two columns, but in reality, that’s not the case—each row in the
table is represented by a single UITableViewCell. By default, a UITableViewCell object can be configured
with an image, some text, and an optional accessory icon, which is a small icon on the right side, which I'll
cover in detail in Chapter 9.

You increase the amount of data in a cell by adding subviews to UITableViewCell, which you can do
by using one of two basic techniques: adding subviews programmatically when creating the cell or loading
them from a storyboard or nib file. You lay out the table view cell however appropriate including any
subviews needed. This makes the single-column limitation far less limiting than it sounds at first. You'll
explore how to use both of these techniques in this chapter.

Understanding Grouped and Plain Tables
Table views come in two basic styles.

e Grouped: A grouped table view contains one or more sections of rows. Within each
section, all rows rest tightly together in a compact grouping; but between sections,
clear visible gaps exist, as shown in the leftmost picture in Figure 8-3. Note that a
grouped table can consist of a single group.

Carriee ¥ eries Corrier ¥
Azaria =
Macey
Az Maci
Macie

Bailee Mackenzie

2 Baile
Bailey e Macy

3 Bailey
Bailey Madalyn

Bailey

Barbara Madalynn

Barbara
Barrelt g Madden

Barrett

Baylee Maddison
Baylee

Beatrice i Maddox

Beatrice
Beau Madeleine

Beau
Beckett Madeline

Beckett
Belen Madelyn

Beden
Belinda Madelynn

Figure 8-3. One table view displayed as a grouped table (left); a plain table without an index (middle); and a
plain table with an index, which is also called an indexed table (right)

257

http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 8 * INTRODUCING TABLE VIEWS

e Plain: A plain table view (see Figure 8-3, middle), which is the default style, contains
sections that are slightly closer together, and each section’s header is optionally
styled in a custom manner. When an index is used, this style is referred to as indexed
(see Figure 8-3, right).

If your data source provides the necessary information, the table view allows the user to navigate your
list by an index that is displayed along the right side.

iOS breaks up your table into divisions called sections. In a grouped table, each section presents itself
visually as a group. In an indexed table, Apple refers to each indexed grouping of data as a section. For
example, in the indexed table shown in Figure 8-3, all the names beginning with A would be one section,
those beginning with B would be another, and so on.

Caution Even though it is technically possible to create a grouped table with an index, you should not do
s0. The i0S Human Interface Guidelines specifically state that grouped tables should not provide indexes.

Implementing a Simple Table

Let’s look at the simplest possible example of a table view to get a feel for how it works. In this first example,
you'll only display a list of text values.

Create a new project in Xcode. For this chapter, you're going back to the Single View App template, so
select that one. Call your project Simple Table, set Swift as the Language, set the Devices field to Universal,
and make sure that Use Core Data is deselected.

Designing the View

In the Project Navigator, expand the top-level Simple Table project and the Simple Table folder. This is
such a simple application that you're not going to need any outlets or actions. Go ahead and select Main.
storyboard to edit the storyboard. If the View window isn’t visible in the layout area, single-click its icon in
the Document Outline to open it. Next, look in the Object Library for a table view (see Figure 8-4) and drag
that to the View window.

258

BR a A €@ 8 F <> Rsesklb)

¥ 0 Simple Table w [view Controlier Scane
¥ [Simple Toble v (L) View Controller
Top Liyout Gulde
Bottom Laycut Guide

w [e

» Brerynessd Entry Paint

OFE|| [® e

Sirnghe Toble)+

CHAPTER 8

Main storyboard) [l Meinstor.rd (Base) | [View Conor Scene) (L) View Gontraliar
@ B
a a a

; Table View
o a

Prototype Content

[] o

L View as: iPhone 85 («C »R) — 100% +

Figure 8-4. Dragging a table view from the library onto your main view

INTRODUCING TABLE VIEWS

wiew 3 [Tale View ODe®mea s
| Tabis now

Comen Dynwmic Protatypes [
Prototyse Cells Lk
Plain
Detat

=1 Defaun

stye
Separster
Soparater Inset Detadt
Saaction
tetng

Baction Inden

| Display Lk
' T

Single Sewcrion
No Ssieetion During Ediing

=

=1 | oetaun
* Betkground 1| Oetaut

Tracking =1 | Defaut
 Scroll View
Biyle De‘ault

Bered incicast.) Shows Horizontal ind cator

1B Shows Vertical Indicator

Serting B Screding Erabled

| Baging Erabled
Direction Leck Enebled
Bounce) Bowncos
Bownce Morizontally
1B Beence Varticaly

s

Hhn N
0O Geo

T [Takle View Controller -
I conretse thar manages s tabi visw,

Tab Har Controller - & controiier
thal smaneges 4 64 of view conrclens
Thal rereseet tab B e

Table View - Cisolars daca in a st
f plya, |, 97 grouped rems.

B B ol | 58 (@ o

Drop the table view onto the view controller and line it up to be more or less centered in its parent view.
Now let’s add Auto Layout constraints to make sure that the table view is positioned and sized correctly no
matter what size the screen is. Select the table in the Document Outline and then click the Pin icon at the
bottom right of the storyboard editor (see Figure 8-5).

259

CHAPTER 8 * INTRODUCING TABLE VIEWS

Add New Constraints \ace
i£ _____ ¥ ho
0 ~IH[JHo S L
i 50
0 v 50
Spacing to nearest neighbor 'I sio
| Constrain to margins =
(&) width 600 | | {
1 [E) Heignt 580 v
tonts

E nage
@

__ 1B Aspect Ratio joare
Isag

EB Leading Edges fer in

Update Frames | None S ation

Add 4 Constraints ler t

1ah

|
B3 I= o] 1ol | BB @&

Figure 8-5. Pinning the table view so that it fits the screen

At the top of the pop-up, clear the “Constrain to margins” check box, click all four dashed lines, and set
the distances in the four input fields to zero. This will have the effect of pinning all four edges of the table
view to those of its parent view. To apply the constraints, change Update Frames to Items of New Constraints,
and click the Add 4 Constraints button. The table should resize to fill the whole view.

Select the table view again in the Document Inspector and press X386 to bring up the Connections
Inspector. You'll notice that the first two available connections for the table view are the same as the first two
for the picker views that you used in the previous chapter: dataSource and delegate. Drag from the circle
next to each of those connections to the View Controller icon in the Document Outline or above the view
controller in the storyboard editor. This makes your controller class both the data source and the delegate for
this table, as shown in Figure 8-6.

260

CHAPTER 8 " INTRODUCING TABLE VIEWS

AR Q& ¢ @3 o @ |BE< B Simels Tatle Simgie Tashe | [Maiestoryboan | [Mainstee_ s (Base) | [Virw Con_ e Seeme)) View Controler Vorw Tabie View OD&@CcOe
v [sieele Table * [Viow Contratler Scane ! ‘! & ® e
2 — 3 - catsoun = View Coraie
¥ 1 imale Tate ¥) View Conrater I — — | seses iz e Geive @
Z oty u
AcoDeigete. Top Layout Guids Outist Colisctieas
« ViewControler swilt Bottom Layout Guide evtrstecsgrise Q
_ Manstorybcard ¥ | View Raferersieg Outiets
. Aasens seassels Tabie View - o
LaunchSeresn slorybeard » @ consvmies Rafartesieg Outlat Caliestions
il plst) First Rospondar Sew Refpsprcing Outet Coliection [s]
T .

Sterybosrd ntry Pont

B O@eo

Table View Controfler - 4

ceatraier 1k managee 8 bl v

Ta Rar Controller - & conroiler
that masagey & 581 of view controilers
Tt rmprasens tab Bar e

Table View - Biiplays data in 4 fist
of plai, sectioned, o6 grouged rews.

+ = @E | = I View as: iPhane Bs - +R) 00% -+ B ol bl B @w o
Figure 8-6. Connecting your table view’s dataSource and delegate outlets

Next, you'll start writing the Swift code for your table view.

Implementing the Controller

If you've gone through the previous chapters, a lot of this will sound familiar and maybe a bit boring.
However, because some readers skip ahead, I'm going to try to maintain a consistent approach at least for
these early, more basic chapters. Single-click ViewController. swift and add the code in Listing 8-1 to the
class declaration.

Listing 8-1. Add to the Top of the Class Declaration to Create Your Element Array

class ViewController: UIViewController,
UITableViewDataSource, UITableViewDelegate {
private let dwarves = [
"Sleepy", "Sneezy", "Bashful", "Happy",
lIDocll s Ilcrumpyll, "Dopey“,
"Thorin", "Dorin", "Nori", "Ori",
"Balin", "Dwalin", "Fili", "Kili",
"0in", "Gloin", "Bifur", "Bofur",
"Bombur"
]

let simpleTableIdentifier = "SimpleTableIdentifier"

261

CHAPTER 8 * INTRODUCING TABLE VIEWS

In Listing 8-1 you're conforming your class to the two protocols that are needed for it to act as the
data source and delegate for the table view, declaring an array that holds the data that will be displayed in
the table and an identifier that you'll use shortly. In a real application, the data would come from another
source, such as a text file, a property list, or a web service.

Next, add the code in Listing 8-2 before the closing brace at the end of the file.

Listing 8-2. Your Table View’s dataSource Methods

// MARK: -
// MARK: Table View Data Source Methods

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return dwarves.count
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
var cell = tableView.dequeueReusableCell(withIdentifier: simpleTableIdentifier)
if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCellStyle.default,
reuseldentifier: simpleTableIdentifier)

}

cell?.textlLabel?.text = dwarves[indexPath.row]
return cell!l

These methods are part of the UITableViewDataSource protocol. The first one, tableView(
tableView: UITableView, numberOfRowsInSection section: Int) -> Int,isused by the table to ask
how many rows are in a particular section. As you might expect, the default number of sections is one, and
this method will be called to get the number of rows in the one section that makes up the list. You just return
the number of items in your array.

The next method probably requires a little explanation, so let’s look at it more closely.

func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {

This method is called by the table view when it needs to draw one of its rows. Notice that the second
argument to this method is an NSIndexPath instance. NSIndexPath is a structure that table views use to
wrap the section and row indexes into a single object. To get the row index or the section index out of an
NSIndexPath, you just access its row property or its section property, both of which return an integer value.

The first parameter, tableView, is a reference to the table that’s being constructed. This allows you to
create classes that act as a data source for multiple tables.

A table view displays only a few rows at a time, but the table itself can conceivably hold considerably
more. Remember that each row in the table is represented by an instance of UITableViewCell, a subclass of
UIView, which means each row can contain subviews. With a large table, this could represent a huge amount
of overhead if the table were to try to keep one table view cell instance for every row in the table, regardless
of whether that row was currently being displayed. Fortunately, tables don’t work that way.

Instead, as table view cells scroll off the screen, they are placed into a queue of cells available to be reused.
If the system runs low on memory, the table view will get rid of the cells in the queue. But as long as the system
has some memory available for those cells, it will hold on to them in case you want to use them again.

262

CHAPTER 8 " INTRODUCING TABLE VIEWS

Every time a table view cell rolls off the screen, there’s a pretty good chance that another one just rolled
onto the screen on the other side. If that new row can just reuse one of the cells that has already rolled off
the screen, the system can avoid the overhead associated with constantly creating and releasing those
views. To take advantage of this mechanism, you'll ask the table view to give you a previously used cell of
the specified type using the identifier you declared earlier. In effect, you're asking for a reusable cell of type
simpleTableIdentifier.

var cell = tableView.dequeueReusableCell(withIdentifier: simpleTableIdentifier)

In this example, the table uses only a single type of cell, but in a more complex table, you might need to
format different types of cells according to their content or position, in which case you would use a separate
table cell identifier for each distinct cell type.

Now, it's completely possible that the table view won't have any spare cells (e.g., when it’s being initially
populated), so you check the cell variable after the call to see whether it’s nil. If it is, you manually create a
new table view cell using the same identifier string. At some point, you'll inevitably reuse one of the cells you
create here, so you need to make sure that you create it using simpleTableIdentifier.

if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCellStyle.default,
reuseldentifier: simpleTableIdentifier)

Curious about UITableViewCellStyle.default? You'll get to it when you look at the table view cell
styles shortly.

You now have a table view cell that you can return for the table view to use. So, all you need to do
is place whatever information you want displayed in this cell. Displaying text in a row of a table is a very
common task, so the table view cell provides a UILabel property called textLabel that you can set to display
strings. That just requires getting the correct string from your dwarves array and using it to set the cell’s
textlabel.

To get the correct value, however, you need to know which row the table view is asking for. You
get that information from the indexPath’s row property. You use the row number of the table to get the
corresponding string from the array, assign it to the cell’s textLabel.text property, and then return the cell.

cell?.textlabel?.text = dwarves[indexPath.row]
return cell!

Compile and run your application, and you should see the array values displayed in a table view, as
shown on the left of Figure 8-7.

263

CHAPTER 8 * INTRODUCING TABLE VIEWS

Carrier ¥ 11:00 AM -

Sleepy
Sneezy
Bashful
Happy
Doc
Grumpy
Dopey
Thorin
Dorin
Nori
Ori
Balin
Dwalin
Fili

Kili

Figure 8-7. The Simple Table application showing your dwarves array

You may be wondering why you need all the ? operators in this line of code:
cell?.textlabel?.text = dwarves[indexPath.row]

Each use of the ? operator is an example of Swift’s optional chaining, which allows you to write
compact code even if you have to invoke the methods or access the properties of an object reference that
could be nil. The first ? operator is required because, as far as the compiler is concerned, cell could be
nil. The reason for that is you obtained it by calling the dequeueReusableCellWithIdentifier() method,
which returns a value of type UITableViewCell?. Of course, the compiler doesn’t take into account the
fact that you explicitly check for a nil return value and create a new UITableViewCell object if you find
one, thus ensuring that cell will, in fact, never be nil when you reach this line of code. If you look at the
documentation for the UITableViewCell class, you'll see that its textLabel property is of type UILabel?, so
it could also be nil. Again, that won't actually be the case because you are using a default UITableViewCell
instance, which always includes a label. Naturally, the compiler doesn’t know that, so you use a ? operator
when dereferencing it. This is something you'll see throughout your Swift experiences.

264

CHAPTER 8 " INTRODUCING TABLE VIEWS

Adding an Image

It would be nice if you could add an image to each row. You might think that you would need to create a
subclass of UITableViewCell or add subviews to do that. Actually, if you can live with the image being on the
left side of each row, you're already set. The default table view cell can handle that situation just fine. Let’s
see how it works.

Drag the files star.png and star2.png from the Star Image folder in the example source code archive
to your project’s Assets.xcassets, as shown in Figure 8-8.

O=sa a @ > = (B < B simgie Tadie | [$imgle Table | [0 Avsete acansets) w stard ODa® o
v [Slaple Tazle #poicon 0 [o [re—r—
¥ [Simple Tatle & o| Nawe Astmlasceasets
5 AZpOwNGaS EREL (& stor2 o

Tyre | Defwut - sseatcatiog
+ Viewtenmober vt ¥* B

Ll gteeybare
s

Locatien Feletive to Group. B
pre— -

=% 3 ot an [Users feenmaskrey]
vty

i 20_Apress_Bood Swi'td)
APRISS SHARTPOINTT
SOUHCE CO0E fenCs)
Simpie Table/Simpis Tack
star2 Asels acavats

Asnet Eataloy
Compression _Defaut =]
Target MemBarship

B o simpbe Tacke
universal

000

Tabile View Controller - &
casteoller thet manages 3 bl vien

+ = [@Fn Shaw Shizing

Tath Bar Canroller - & canirer
E - That resnages & 341 of e contrers

S that raorasant 13 bar deme.

Taile View - Dinplaye cats in & ot
of plaim, scctiencd, or grouped sows.

3 EE| Ao 2 & Fa AN Outps & =) Fitte 00| 8 O -]

Figure 8-8. Adding your images to the Assets.xcassests folder

You're going to arrange for these icons to appear on every row of the table view. All you need to do is
create a UIImage for each of them and assign it to the UITableViewCell when the table view asks its data
source for the cell for each row. To do this, in the file ViewController.swift, modify the tableView(:cellF
orRowAtIndexPath:) method, as shown in Listing 8-3.

Listing 8-3. Your Modifications to Add the Image to Each Cell

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
var cell = tableView.dequeueReusableCell(withIdentifier: simpleTableIdentifier)
if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCellStyle.default,
reuseldentifier: simpleTableIdentifier)

265

CHAPTER 8

let image

INTRODUCING TABLE VIEWS

UIImage(named: "star")

cell?.imageView?.image = image
let highlightedImage = UIImage(named: "star2")
cell?.imageView?.highlightedImage = highlightedImage

cell?.textlLabel?.text = dwarves[indexPath.row]

return cell!

That's it. Each cell has an imageView property of type UIImage, which in turn has properties called
image and highlightedImage. The image given by the image property appears to the left of the cell’s text
and is replaced by the highlightedImage, if one is provided, when the cell is selected. You just set the cell’s
imageView.image and imageView.highlightedImage properties to whatever images you want to display.

If you compile and run your application now, you should get a list with a bunch of nice little blue star
icons to the left of each row, as shown in Figure 8-9. If you select any row, you'll see that its icon switches
from blue to green, which is the color of the image in the star2.png file. Of course, you could have included
a different image for each row in the table, or, with very little effort, you could have used different icons for
the different categories of dwarves.

Carrier &

*

T E EEEEEEE

*

Sleepy
Sneezy
Bashful
Happy
Doc
Grumpy
Dopey
Thorin
Dorin
Nori
Ori
Balin
Dwalin
Fili

Kili

11:23 AM L

Figure 8-9. You used the cell’s imageView property to add an image to each of the table view'’s cells

266

CHAPTER 8 " INTRODUCING TABLE VIEWS

Note UIImage uses a caching mechanism based on the file name, so it won’t load a new image property
each time UIImage(named:) is called. Instead, it will use the already cached version.

Using Table View Cell Styles

The work you've done with the table view so far has used the default cell style shown in Figure 8-9,
represented by the constant UITableViewCellStyle.default. But the UITableViewCell class includes
several other predefined cell styles that let you easily add a bit more variety to your table views. These cell
styles all use three different cell elements.

e Image: If an image is part of the specified style, the image is displayed to the left of
the cell’s text.

e Text label: This is the cell’s primary text. In the case of the UITableViewCellStyle.
Default style that you have been using so far, the text label is the only text shown in
the cell.

e Detail text label: This is the cell’s secondary text, usually used as an explanatory note
or label.

To see what these new style additions look like, add the following code to tableView(:cellForRow
AtIndexPath:) inViewController.swift:

if indexPath.row < 7 {
cell?.detailTextlLabel?.text = "Mr Disney"
} else {

cell?.detailTextLabel?.text = "Mr Tolkien"
}

Place it just before the cell?.textLabel?.text = dwarves[indexPath.row] line in the method.

All you've done here is set the cell’s detail text. You use the string "Mr. Disney" for the first seven rows
and the string "Mr. Tolkien" for the rest. When you run this code, each cell will look just as it did before
(see Figure 8-10). That’s because you are using the style ULTableViewCellStyle.default, which does not
use the detail text.

¥ Sneezy

Figure 8-10. The default cell style shows the image and text label in a straight line

Now change UITableViewCellStyle.default to UITableViewCellStyle.subtitle like this:

if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCellStyle.subtitle,
reuseldentifier: simpleTableIdentifier)

267

CHAPTER 8 * INTRODUCING TABLE VIEWS

Run the app again. With the subtitle style, both text elements are shown, one below the other, as shown
in Figure 8-11.

Carrier ¥ 11:41 AM L
* Sleepy

Mr Disney

Sneezy
Mr Disney

Bashful
Mr Disney

Happy
Mr Disney

Doc
Mr Disney

Grumpy
Mr Disney

Dopey

Mr Disney

B EEEEEEEEE

Thorin
Mr Tolkien

Dorin
Mr Tolkien

Nori
Mr Tolkien

Ori
Mr Tolkien

Balin
Mr Tolkien

Dwalin
Mr Tolkien

Fili
Mr Tolkien

ki

Figure 8-11. The subtitle style shows the detail text in smaller letters below the text label

Next, change UITableViewCellStyle.subtitle to UITableViewCellStyle.valuel and then build and
run again. This style places the text label and detail text label on the same line but on opposite sides of the
cell, as shown in Figure 8-12.

268

Carrier &

*

KoK K K K K K K K K K X

*

11:50 AM

Sleepy
Sheezy
Bashful
Happy
Doc
Grumpy
Dopey
Thorin
Dorin
Nori
Ori
Balin
Dwalin
Fili

Kili

Mr Disney
Mr Disney
Mr Disney
Mr Disney
Mr Disney
Mr Disney
Mr Disney
Mr Tolkien
Mr Tolkien
Mr Tolkien
Mr Tolkien
Mr Tolkien
Mr Tolkien
Mr Tolkien

Mr Tolkien

CHAPTER 8

INTRODUCING TABLE VIEWS

Figure 8-12. The style valuel places the text label on the left side in black letters and the detail text right-
Justified on the right side

Finally, change UITableViewCellStyle.valuel to UITableViewCellStyle.value2. This format is often
used to display information along with a descriptive label. It doesn’t show the cell’s icon but places the detail
text label to the left of the text label, as shown in Figure 8-13. In this layout, the detail text label acts as a label

describing the type of data held in the text label.

269

CHAPTER 8 * INTRODUCING TABLE VIEWS

Carrier & 11:53 AM L3

Sleepy Mr Disney

Sneezy Mr Disney

Bashful Mr Disney

Happy Mr Disney

Doc Mr Disney

Grumpy Mr Disney

Dopey Mr Disney

Thorin Mr Tolkien

Dorin Mr Tolkien

MNaori Mr Tolkien

Ori Mr Tolkien

Balin Mr Tolkien

Dwalin Mr Tolkien

Fili Mr Tolkien

Kili Mr Tolkien

Figure 8-13. The style value 2 does not display the image and places the detail text label in blue letters to the
left of the text label

Now that you've seen the cell styles that are available, go ahead and change back to the
UITableViewCellStyle.default style before continuing. Later in this chapter, you'll see how to create
custom table view cells. But before you do that, make sure you consider the available cell styles to see
whether one of them will suit your needs.

You may have noticed that you made your controller both the data source and the delegate for
this table view; but up until now, you haven’t actually implemented any of the methods from the
UITableViewDelegate protocol. Unlike picker views, simpler table views don’t require the use of a delegate
to do their thing. The data source provides all the data needed to draw the table. The purpose of the delegate
is to configure the appearance of the table view and to handle certain user interactions. Let’s take a look at a
few of the configuration options now. I'll discuss a few more in the next chapter.

270

CHAPTER 8 " INTRODUCING TABLE VIEWS

Setting the Indent Level

The delegate can be used to specify that some rows should be indented. In the file ViewController.swift,
add the following method to your code:

// MARK: -
// MARK: Table View delegate Methods
func tableView(_ tableView: UITableView, indentationLevelForRowAt indexPath: IndexPath) ->
Int {
return indexPath.row % 4
}

This method sets the indent level for each row based on its row number, so row 0 will have an indent
level of 0, row 1 will have an indent level of 1, and so on. Because of the % operator, row 4 will revert to an
indent level of 0 and the cycle begins again. An indent level is simply an integer that tells the table view to
move that row a little to the right. The higher the number, the further to the right the row will be indented.
You might use this technique, for example, to indicate that one row is subordinate to another row, as Mail
does when representing subfolders.

When you run the application again, you'll see that the rows indent in blocks of four, as shown in
Figure 8-14.

Carrier ¥ 11:59 AM -

3 Sleepy
Sneezy
Bashful
Happy
Doc
Grumpy
Dopey
Thorin
Dorin
Nori
Ori
Balin

Dwalin

L I S N N N S N N N

Fili

*

Kili

Figure 8-14. Indented table rows

271

CHAPTER 8 * INTRODUCING TABLE VIEWS

Handling Row Selection

The table’s delegate has two methods that allow you to handle row selection. One method is called before
the row is selected, which can be used to prevent the row from being selected or even to change which row
gets selected. Let’s implement that method and specify that the first row is not selectable. Add the following
method to the end of ViewController.swift:

func tableView(_ tableView: UITableView, willSelectRowAt indexPath: IndexPath) ->
IndexPath? {

return indexPath.row == 0 ? nil : indexPath
}

This method is passed an indexPath that represents the item that’s about to be selected. The code looks
at which row is about to be selected. If it’s the first row, which is always index zero, then it returns nil to
indicate that no row should actually be selected. Otherwise, it returns the unmodified indexPath, which is
how you indicate that it’s okay for the selection to proceed.

Before you compile and run, let’s also implement the delegate method that is called after a row has been
selected, which is typically where you'll actually handle the selection. In the next chapter, you'll use this
method to handle drill-downs in a master-detail application, but in this chapter, you'll just put up an alert to
show that the row was selected. Add the method in Listing 8-4 at the end of ViewController.swift.

Listing 8-4. Pop Up an Alert When the User Taps a Row

func tableView(tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
let rowValue = dwarves[indexPath.row]
let message = "You selected \(rowValue)"

let controller = UIAlertController(title: "Row Selected",
message: message, preferredStyle: .alert)
let action = UIAlertAction(title: "Yes I Did",
style: .default, handler: nil)
controller.addAction(action)
present(controller, animated: true, completion: nil)

Once you've added this method, compile and run the app and then take it for a spin. For example, see
whether you can select the first row (you shouldn’t be able to) and then select one of the other rows. The
selected row should be highlighted. Also, your alert should pop up, telling you which row you selected, while
the selected row fades in the background, as shown in Figure 8-15.

272

CHAPTER 8 " INTRODUCING TABLE VIEWS

Row Selected
You selected Bashful

Yes | Did

Figure 8-15. In this example, the first row is not selectable, and an alert is displayed when any other row is
selected

Note that you can also modify the index path before you pass it back, which would cause a different row
and/or section to be selected. You won't do that very often, as you should have a very good reason for changing
the user’s selection. In the vast majority of cases where you use the tableView(:willSelectRowAtIndexPath:)
method, you will either return indexPath unmodified to allow the selection or return nil to disallow it. If you
really want to change the selected row and/or section, use the NSIndexPath(forRow:, inSection:) initializer
to create a new NSIndexPath object and return it. For example, the code in Listing 8-5 would ensure that if you
tried to select an even-numbered row, you would actually select the row that follows it.

Listing 8-5. Returning the Following Row

func tableView(tableView: UITableView,
willSelectRowAtIndexPath indexPath: NSIndexPath)
-> NSIndexPath? {
if indexPath.row == 0 {
return nil
} else if (indexPath.row % 2 == 0){
return NSIndexPath(row: indexPath.row + 1,
section: indexPath.section)
} else {
return indexPath
}

273

CHAPTER 8 * INTRODUCING TABLE VIEWS

Changing the Font Size and Row Height

Let’s say you want to change the size of the font being used in the table view. In most situations, you
shouldn’t override the default font; it’s what users expect to see. But sometimes there are valid reasons to
change the font. Change the code for your tableView(:cellForRowAtIndexPath:) method.

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
var cell = tableView.dequeueReusableCell(withIdentifier: simpleTableIdentifier)
if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCellStyle.default,
reuseldentifier: simpleTableIdentifier)

}

let image = UIImage(named: "star")
cell?.imageView?.image = image

let highlightedImage = UIImage(named: "star2")
cell?.imageView?.highlightedImage = highlightedImage

if indexPath.row < 7 {
cell?.detailTextLabel?.text
} else {
cell?.detailTextlLabel?.text = "Mr Tolkien"
}

cell?.textlLabel?.text = dwarves[indexPath.row]
cell?.textLabel?.font = UIFont.boldSystemFont(ofSize: 50) // <- add this line
return cell!

"Mr Disney"

When you run the application now, the values in your list are drawn in a really large font size, but they
don’t exactly fit in the row, as shown in Figure 8-16.

274

CHAPTER 8 " INTRODUCING TABLE VIEWS

Carrier & 1:09 PM -—

* Sleepy
Snheezy
Bashful

Happy
Doc
Grumpy
Dopey
Thorin
Dorin
Nori

Ori

Balin
Dwalin
Fili

Kili

Figure 8-16. Changing the font used to draw table view cells

T E EEEEEE

*

There are a couple of ways to fix this. First, you can tell the table that all of its rows should have a given,
fixed height. To do that, you set its rowHeight property, like this:

tableView.rowHeight = 70

If you need different rows to have different heights, you can implement the UITableViewDelegate’s tab
leView(_:heightForRowAtIndexPath:) method. Go ahead and add this method to your controller class:

func tableView(_ tableView: UITableView, heightForRowAt indexPath: IndexPath) -> CGFloat{

return indexPath.row == 0 ? 120 : 70
}

You've just told the table view to set the row height for all rows to 70 points, except for the first row,
which will be a little larger. Compile and run, and your table’s rows should be a better fit for their content
now, as shown in Figure 8-17.

275

CHAPTER 8 * INTRODUCING TABLE VIEWS

Sleepy

Sneezy
Bashful

Happy

Doc

Grumpy
Dopey
Thorin

iPhone 7 - i0OS 11.0 |

Figure 8-17. Changing the row size using the delegate. Notice that the first row is much taller than the rest

There are more tasks that the delegate handles, but most of the remaining ones come into play
when you start working with hierarchical data, which you'll do in the next chapter. To learn more, use the
documentation browser to explore the UITableViewDelegate protocol and see what other methods are
available.

Customizing Table View Cells

You can do a lot with table views right out of the box; but often, you will want to format the data for each
row in ways that simply aren’t supported by UITableViewCell directly. In those cases, there are three basic
approaches: one that involves adding subviews to UITableViewCell programmatically when creating the
cell, a second that involves loading a cell from a nib file, and a third that is similar but loads the cell from

a storyboard. You'll take a look at the first two techniques in this chapter, and you'll see an example that
creates a cell from a storyboard in Chapter 9.

276

http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 8 " INTRODUCING TABLE VIEWS

Adding Subviews to the Table View Cell

To show how to use custom cells, you're going to create a new application with another table view. In each
row, you'll display two lines of information along with two labels, as shown in Figure 8-18. Your application
displays the name and color of a series of potentially familiar computer models. You'll show both of those
pieces of information in the same row by adding subviews to its table view cell.

LAG Pu

: MacBoox Ar

: Sliver

: MacBook Pra

s Silver

: iMac

1 Silver

+ Mac Min

: Silver

: Mac Pro

T Black

iPhone 7 - i0OS 11.0

Figure 8-18. Adding subviews to the table view cell can give you multiline rows

Implementing a Custom Table Views Application

Create a new Xcode project using the Single View App template. Name the project Table Cells and use the
same settings as your last project. Click Main.storyboard to edit the GUI in Interface Builder.

Add a table view to the main view and use the Connections Inspector to set its data source to the view
controller, as you did for the Simple Table application. Then, use the Pin button at the bottom of the window
to create constraints between the table view’s edges and those of its parent view and the status bar. You can

277

CHAPTER 8 * INTRODUCING TABLE VIEWS

actually use the same settings as in Figure 8-5, since the values that you specify in the input boxes at the
top of the pop-up are, by default, the distances between the table view and its nearest neighbor in all four
directions. Finally, save the storyboard.

Creating a UlTableViewCell Subclass

Until this point, the standard table view cells you've been using have taken care of all the details of cell
layout for you. Your controller code has been kept clear of the messy details about where to place labels and
images; you just pass off the display values to the cell. This keeps presentation logic out of the controller,
and that’s a really good design to stick to. For this project, you're going to make a new cell ULTableViewCell
subclass of your own that takes care of the details of the new layout, which will keep your controller as
simple as possible.

Adding New Cells

Select the Table Cells folder in the Project Navigator, and press 3N to create a new file. In the assistant that
pops up, select Cocoa Touch Class from the iOS Source section and click Next. On the following screen, enter
NameAndColorCell as the name of the new class, select UITableViewCell in the “Subclass of” pop-up list,
leave “Also create XIB file” deselected, click Next again, and on the next screen click Create.

Now select NameAndColorCell.swift in the Project Navigator and add the following code:

class NameAndColorCell: UITableViewCell {
var name: String = ""
var color: String =
var namelabel: UILabel!
var colorLabel: UILabel!

Here, you've added two properties (name and color) to your cell’s interface that your controller will
use to pass values to each cell. You also added a couple of properties that you'll use to access some of the
subviews you'll be adding to your cell. Your cell will contain four subviews, two of which are labels that have
fixed content and another two for which the content will be changed for every row.

Those are all the properties you need to add, so let’s move on to the code. You're going to override the
table view cell’s init(style:reuseIdentifier:) initializer to add some code to create the views that you'll
need to display, as shown in Listing 8-6.

Listing 8-6. Your Table View Cell’s init() Method

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
super.init(style: style, reuseldentifier: reuseldentifier)

let namelLabelRect = CGRect(x: 0, y: 5, width: 70, height: 15)
let nameMarker = UILabel(frame: namelLabelRect)
nameMarker.textAlignment = NSTextAlignment.right
nameMarker.text = "Name:"

nameMarker.font = UIFont.boldSystemFont(ofSize: 12)
contentView.addSubview(nameMarker)

let colorLabelRect = CGRect(x: 0, y: 26, width: 70, height: 15)

let colorMarker = UILabel(frame: colorLabelRect)
colorMarker.textAlignment = NSTextAlignment.right

278

CHAPTER 8 " INTRODUCING TABLE VIEWS

colorMarker.text = "Color:"
colorMarker.font = UIFont.boldSystemFont(ofSize: 12)
contentView.addSubview(colorMarker)

let nameValueRect = CGRect(x: 80, y: 5, width: 200, height: 15)
nameLabel = UILabel(frame: nameValueRect)
contentView.addSubview(nameLabel)

let colorValueRect = CGRect(x: 80, y: 25, width: 200, height: 15)
colorLabel = UILabel(frame: colorValueRect)
contentView.addSubview(colorLabel)

That should be pretty straightforward. You create four UILabels and add them to the table view cell.
The table view cell already has a UIView subview called contentView, which it uses to group all of its subviews.
As aresult, you don’t add the labels as subviews directly to the table view cell but rather to its contentView.

Two of these labels contain static text. The label nameMarker contains the text Name:, and the label
colorMarker contains the text Color:. Those are just labels that you won't change. Both of these labels have
right-aligned text using NSTextAlignment.right.

You'll use the other two labels to display your row-specific data. Remember that you need some way of
retrieving these fields later, so you keep references to both of them in the properties that you declared earlier.

Since you've overridden a designated initializer of the table view cell class, Swift requires you to also
provide an implementation of the init(coder:) initializer. This initializer will never be called in your
example application, so just add these three lines of code:

required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}

In Chapter 13, I'll discuss this initializer and why it’s sometimes needed.
Now let’s put the finishing touches on the NameAndColorCell class by adding some setter logic to the
name and color properties. Change the declarations of these properties as follows:

var name: String = "" {
didSet {
if (name != oldvalue) {
namelLabel.text = name

}
}
}
var color: String = "" {
didSet {
if (color != oldvalue) {
colorLabel.text = color
}
}
}

All you're doing here is adding code to ensure that when the name or color property’s value is changed,
the text property of the corresponding label in the same custom table view cell is set to the same value.

279

http://dx.doi.org/10.1007/978-1-4842-3072-5_13

CHAPTER 8 * INTRODUCING TABLE VIEWS

Implementing the Controller’s Code

Now, let’s set up the simple controller to display values in your nice new cells. Start off by selecting
ViewController.swift and add the code in Listing 8-7.

Listing 8-7. Displaying Values in Your Custom Cell

class ViewController: UIViewController, UITableViewDataSource {

let cellTableldentifier = "CellTableIdentifier"
@IBOutlet var tableView:UITableView!
let computers = [

["Name" : "MacBook Air", "Color" : "Silver"],
["Name" : "MacBook Pro", "Color" : "Silver"],
["Name" : "iMac", "Color" : "Silver"],
["Name" : "Mac Mini", "Color" : "Silver"],
["Name" : "Mac Pro", "Color" : "Black"]

]

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
tableView.register(NameAndColorCell.self,
forCellReuseIdentifier: cellTableIdentifier)
}

You conformed the view controller to the UITableViewDataSource protocol and added a cell identifier
name and an array of dictionaries. Each dictionary contains the name and color information for one row in
the table. The name for that row is held in the dictionary under the key Name, and the color is held under the
key Color. You also added an outlet for the table view, so you need to connect it in the storyboard. Select the
Main.storyboard file. In the Document Outline, Control-drag from the View Controller icon to the Table
View icon. Release the mouse and select tableView in the pop-up to link the table view to the outlet.

Now add the code in Listing 8-8 to the end of the ViewController.swift file.

Listing 8-8. Your Table View’s Data Source Methods

// MARK: -
// MARK: Table View Data Source Methods

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -» Int {
return computers.count
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -» UITableViewCell {
let cell = tableView.dequeueReusableCell(
withIdentifier: cellTableIdentifier, for: indexPath)
as! NameAndColorCell

let rowData = computers[indexPath.row]
cell.name = rowData["Name"]!
cell.color = rowData["Color"]!

return cell

280

CHAPTER 8 " INTRODUCING TABLE VIEWS

You have already seen these methods in your previous example—they belong to the
UITableViewDataSource protocol. Let’s focus on tableView(tableView: UITableView, cellForRowAt
indexPath: IndexPath) since that’s where you're really getting into some new stuff. Here you're using an
interesting feature: a table view can use a sort of registry to create a new cell when needed. That means that
as long as you've registered all the reuse identifiers that you're going to use for a table view, you can always
get access to an available cell. In your previous example, the dequeue method you implemented also used
the registry, but it returned nil if the identifier that you give it isn’t registered. The nil return value is used
as a signal that you need to create and populate a new UITableViewCell object. The following method that
you're using never returns nil:

dequeueReusableCell(
withIdentifier: cellTableIdentifier, for: indexPath)

So, how does it get a table cell object? It uses the identifier that you pass to it as the key to its registry.
You added an entry to the registry that’s mapped to your table cell identifier in the viewDidLoad method.

tableView.register(NameAndColorCell.self,
forCellReuseIdentifier: cellTableIdentifier)

What happens if you pass an identifier that’s not registered? In that case, the dequeueReusableCell
method crashes. Crashing sounds bad, but in this case, it would be the result of a bug that you would
discover right away during development. Therefore, you don’t need to include code that checks for a nil
return value since that will never happen.

Once you have your new cell, you use the indexPath argument that was passed in to determine which
row the table is requesting a cell for and then use that row value to grab the correct dictionary for the
requested row. Remember that the dictionary has two key/value pairs: one with name and another with
color.

let rowData = computers[indexPath.row]

Now, all that’s left to do is populate the cell with data from the chosen row, using the properties you
defined in your subclass.

cell.name = rowData["Name"]!
cell.color = rowData["Color"]!

As you saw earlier, setting these properties causes the value to be copied to the name and color labels in
the table view cell.

Build and run your application. You should see a table of rows, each with two lines of data, as shown in
Figure 8-19.

281

CHAPTER 8 * INTRODUCING TABLE VIEWS

Carrier = 9:32 AM -
Name: MacBook Air |
color: Silver
Name: MacBook Pro
Color: Silver
Name: iMac
color: Silver
Name: Mac Mini
color: Silver
Name: Mac Pro
calor: Black

Figure 8-19. The table view of custom cells created in code

Being able to add views to a table view cell provides a lot more flexibility than using the standard
table view cell alone, but it can get a little tedious creating, positioning, and adding all the subviews
programmatically. Gosh, it sure would be nice if you could design the table view cell graphically by using
Xcode’s GUI editing tools. Well, you're in luck. As mentioned earlier, you can use Interface Builder to design
your table view cells and then simply load the views from a storyboard or a XIB file when you create a new cell.

Loading a UlTableViewCell from a XIB File

You're going to re-create that same two-line interface you just built in code using the visual layout
capabilities that Xcode provides in Interface Builder. To do this, you'll create a new XIB file that will contain
the table view cell and lay out its views using Interface Builder. Then, when you need a table view cell

to represent a row, instead of creating a standard table view cell, you'll just load the XIB file and use the
properties you already defined in your cell class to set the name and color. In addition to using Interface
Builder’s visual layout, you'll also simplify your code in a few other places. Before proceeding, you might
want to make a copy of the Table Cells project in which you can make the changes that follow. As you did
previously, exit Xcode and just compress the project file, giving it a suitable name for reference. I called mine
Table Cells Orig.zip asareference to it being the original Table Cells project (see Figure 8-20).

282

CHAPTER 8 " INTRODUCING TABLE VIEWS

cho8
h | a B
» 1 Simple Table Q»

> Table Cells Q>

B Table Cells Orig.zip

Figure 8-20. You can compress a project folder to create a version baseline in case you decide to go back
to it later

First, you'll make a few changes to the NameAndColorCell class, in NameAndColorCell. swift. The first
step is to mark up the nameLabel and colorlLabel properties as outlets so you can use them in Interface
Builder.

@IBOutlet var namelabel: UILabel!
@IBOutlet var colorlLabel: UILabel!

Now, remember that setup you did in init(style: UITableViewCellStyle, reuseldentifier:
String?), where you created your labels? All that can go. In fact, you should just delete the entire method
since all that setup will now be done in Interface Builder. And since you are no longer overriding any of the
base class initializers, you can delete the init(coder:) method too.

After all that, you're left with a cell class that’s even smaller and cleaner than before. Its only real
function now is to shuffle data to the labels. Now you need to re-create the cell and its labels in Interface
Builder.

Designing the Table View Cell in Interface Builder

Right-click the Table Cells folder in Xcode and select New File from the contextual menu. In the left

pane of the new file assistant, click User Interface (making sure to pick it in the iOS section, rather than the
watchOS, tvOS, or macOS section). From the upper pane, select User Interface and Empty and then click
Next (see Figure 8-21). On the following screen, use the file name NameAndColorCell.xib. Make sure that the
main project directory is selected in the file browser and that the Table Cells group is selected in the Group
pop-up. Click Create to create a new XIB file.

283

CHAPTER 8 * INTRODUCING TABLE VIEWS

Choose a template for your new file:

watch0S w05 macOsS

Source
(C] T3 3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h g Cr+ N
Header File C File C++ File Metal File

User Interface

Storyboard View [Empty | Launch Screen

Figure 8-21. Create an empty UI file that will become your custom cell XIB

Next, select NameAndColorCell.xib in the Project Navigator to open the file for editing. Until now,
you've been doing all of your GUI editing inside of storyboards, but now you're using a nib file instead.
Most things are similar and will look very familiar to you, but there are a few differences. One of the main
differences is that, while a storyboard file is centered around scenes that pair up a view controller and a view,
inside a nib file there’s no such forced pairing. In fact, a nib file often doesn’t contain a real controller object
at all, just a proxy that is called File’s Owner. If you open the Document Outline, you'll see it there, right
above First Responder.

Look in the library for a table view cell and drag one to the GUI layout area, as shown in Figure 8-22.

284

> o Table Calis [Prne Oy Tobie Calls | Bedd Tokln Colls: Sucernded | Today ot 39 M (m |
BEQfsCEoD @ =/ < £ Tabde Cels | [Tebie Ceis | [NemeanaCoarCels) || Table View Cell
¥ [Table Cels (T Plcsnciders
17 Takle Cells s Gwnar E
= AopDelegate swift 0 Fres sponder a
= VewControler.swiit = T C
Main.storyboard
Assets ucassot gon G
Laurhicrean. slonyboard sl o
e
Info.plist 3
s < Ratareneng Outls ColMetens
< MameAncCelorCell.ewit Min Bsfareasing Durel Satsetior
> procucte —
Oo0D@Oo
¥ - T e = 1ol b Table View - Displays cat o n 5
@ 0 View as: Phone 65 (-C k) 00% + i) af plain, secsioned, or grouped rows
= =
Take Viow el - Deias e
sttribwies and behavar of cals (rows)
R
Table View Controler - &
+ @ DE || Aroue s =L WIOO| 8 Ot o

Figure 8-22. Drag a table view cell from the library onto the canvas

Next, press 34 to go to the Attributes Inspector (see Figure 8-23). One of the first fields you'll see there
is Identifier. That's the reuse identifier you've been using in your code. If this does not ring a bell, scan back
through the chapter and look for Cel1TableIdentifier. Set the Identifier value to CellTableldentifier.

O ®@ 2 U 3§ 6

| Table View Cell

Style

Custom

©

Identifier CellTableldentifier

Selection Default [
Accessory None [
Editing Acc. None <]
Focus Style Default w

Indentatinn

nlZ 10

Figure 8-23. The Attributes Inspector for your table view cell

285

CHAPTER 8 * INTRODUCING TABLE VIEWS

The idea here is that when you retrieve a cell for reuse, perhaps because of scrolling a new cell into view,
you want to make sure you get the correct cell type. When this particular cell is instantiated from the XIB file,
its reuse identifier instance variable will be prepopulated with the name you entered in the Identifier field of
the Attributes Inspector—CellTableldentifier, in this case.

Imagine a scenario where you created a table with a header and then a series of “middle” cells. If you
scroll a middle cell into view, it’s important that you retrieve a middle cell to reuse and not a header cell. The
Identifier field lets you tag the cells appropriately.

The next step is to edit your table cell’s content view. First, select the table cell in the editing area and
drag down its lower edge to make the cell a little taller. Keep dragging until the height is 65. Go to the library,
drag out four labels, and place them in the content view, using Figure 8-24 as a guide. The labels will be too
close to the top and bottom for those guidelines to be of much help, but the left guideline and the alignment
guidelines should serve their purpose. Note that you can drag out one label and then Option-drag to create
copies, if that approach makes things easier for you.

Label Label
Label Label

Figure 8-24. The table view cell’s content view, with four labels dragged in

Next, double-click the upper-left label and change its title to Name: and then change the lower-left label
to Color:.

Now, select both the Name and Color labels and press the small T button in the Attribute Inspector’s
Font field. This will open a small panel containing a Font pop-up button. Click that and choose Headline
as the typeface. If needed, select the two unchanged label fields on the right and drag them a little more to
the right to give the design a bit of breathing room; then resize the other two labels so that you can see the
text you just set. Next, resize the two right-side labels so that they stretch all the way to the right guideline.
Figure 8-25 should give you a sense of your final cell content view.

%]
Name: aabd
| Color: . abel

ooOooo

Figure 8-25. The table view cell’s content view with the left label names changed and set to Headline style,
which is bold, and with the right labels slightly moved and resized

286

CHAPTER 8 " INTRODUCING TABLE VIEWS

As always when you create a new layout, you need to add Auto Layout constraints. The general idea is
to pin the left-side labels to the left side of the cell and the right-side labels to its right. You'll also make sure
that the vertical separation between the labels and the top and bottom of the cell and between the labels is
preserved. You'll link each left-side label to the one on its right. Here are the steps:

1. Click the Name label, hold down Shift, and then click the Color label. Click the
Pin icon below the nib editor, select the Equal Widths check box, and click Add
1 Constraint. You'll see some Auto Layout warnings appear when you do this—
don’t worry about them because you'll fix them as you add more constraints.

2. With the two labels still selected, open the Size Inspector and find the Content
Hugging Priority section. If you don’t see it, try deselecting and reselecting
both labels. The values in these fields determine how resistant the labels are
to expanding into extra space. You don’t want these labels to expand at all
horizontally, so change the value in the Horizontal field from 251 to 500. Any
value greater than 251 will do—you just need it to be greater than the Content
Hugging Priority value of the two labels on the right so that any extra horizontal
space is allocated to them.

3. Control-drag from the Color label up to the Name label, select Vertical Spacing
from the pop-up, and press Return.

4. Control-drag diagonally up and left from the Name label toward the top-left
corner of the cell until the cell’s background turns completely blue. In the pop-
up, hold down Shift, select Leading Space to Container Margin and Top Space to
Container Margin, and then press Return.

5. Control-drag diagonally down and left from the Color label toward the bottom-
left corner of the cell until its background is blue. In the pop-up, hold down
Shift, select Leading Space to Container Margin and Bottom Space to Container
Margin, and then press Return.

6. Control-drag from the Name label to the label to its right. In the pop-up, hold
down Shift, select Horizontal Spacing and Baseline, and then press Return.
Control-drag from the top label on the right toward the right edge of the cell
until the cell’s background turns blue. In the pop-up, select Trailing Space to
Container Margin.

7. Similarly, Control-drag from the Color label to the label to its right. In the pop-
up, hold down Shift, select Horizontal Spacing and Baseline, and then press
Return. Control-drag from the bottom label on the right toward the right edge
of the cell until the cell’s background turns blue. In the pop-up, select Trailing
Space to Container Margin and press Return.

8. Finally, select the Content View icon in the Document Outline and then choose
Editor » Resolve Auto Layout Issues » Update Frames from the menu, if it's
enabled. The four labels should move to their final locations, as shown in
Figure 8-26. If you see something different, delete all the constraints in the
Document Outline and try again.

287

CHAPTER 8 * INTRODUCING TABLE VIEWS

Name: Label
Color: Label

Figure 8-26. Final label positioning within your custom cell

Now, you need to let Interface Builder know that this table view cell isn’t just a normal cell but an
instance of your special subclass. Otherwise, you wouldn'’t be able to connect your outlets to the relevant
labels. Select the table view cell by clicking Cel1TableIdentifier in the Document Outline, bring up the
Identity Inspector by pressing X33, and choose NameAndColorCell from the Class control (see Figure 8-27).

=@ | <2000 E ([
Dem@Em T OE O

Custom Class

Class NameAndColorCell)

Yeeo e NameAndColorCell

| UlTableViewCell

Identity

Restoration ID

Figure 8-27. Setting to your custom class

Next, switch to the Connections Inspector (\X36), where you'll see the colorLabel and namelLabel
outlets (see Figure 8-28).

De@E T B O

Outlets
accessoryView
backgroundView
colorLabel
editingAccessoryView
nameLabel
selectedBackgroundView

000000

Outlet Collections

Figure 8-28. The colorLabel and nameLabel outlets

Drag from the nameLabel outlet to the top label on the right in the table cell and from the colorLabel
outlet to the bottom label on the right, as shown in Figure 8-29.

288

CHAPTER 8 " INTRODUCING TABLE VIEWS

BRQ € > @ 8 < B Table Cons Table Cels | [HameAndCelorCallxib CelTableidentifier
v & Tabie Cels) Placeboidens
[Table Cells File's Owner
- ApcDelegate swift @ Fres Amepandar B
S ey EEET >
Main.storyboard - =1 ®
|| Cantent View 0
Assats.cessets e
LaunchScroen.staryboard e ;
Infopist T bisa L Seterencing cutts
= NamaAncColorCul.swit Label " rg Cutiet
[NemeAncColaCotxs » @ constrants
> Producis
Name: Label
Color: Label
Labol
D@ o
D View as: iPhane 88 (€ <R} 125% + B o LBl anes, e mot amacor o1
= -
| | A Cutput & 3 i 00) ubsl a

Figure 8-29. Connecting your name and color label outlets

Using the New Table View Cell

To use the cell you designed, you just need to make a few pretty simple changes to the viewDidLoad()
method in ViewController.swift, as shown in Listing 8-9.

Listing 8-9. Modifying viewDidLoad() to Use Your New Cell

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
tableView.register(NameAndColorCell.self,
forCellReuseldentifier: cellTableIdentifier)
let xib = UINib(nibName: "NameAndColorCell", bundle: nil)
tableView.register(xib,
forCellReuseIdentifier: cellTableIdentifier)
tableView.rowHeight = 65

Just as it can associate a class with a reuse identifier (as you saw in the previous example), a table view
can keep track of which nib files are meant to be associated with particular reuse identifiers. This allows
you to register cells for each row type you have using classes or nib files once, and dequeueReusableCell
(_:forIndexPath:) will always provide a cell ready for use.

That’s it. Build and run. Now your two-line table cells are based on your Interface Builder design skills,
as shown in Figure 8-30.

289

CHAPTER 8 * INTRODUCING TABLE VIEWS

183 5u
: MacBoox Ar

: Silver

: MacBook Pre

: Silver

: IMac

1 Silver

: Mac Min

: Silver

: Mac Pro

T Black

| iPhone 7 -i0S11.0

Figure 8-30. The results of using your custom cell

Using Grouped and Indexed Sections

The next project will explore another fundamental aspect of tables. You're still going to use a single table
view—no hierarchies yet—but you'll divide data into sections. Create a new Xcode project using the Single
View App template again, this time calling it Sections. As usual, set Language to Swift and Devices to
Universal.

Building the View

Open the Sections folder and click Main. storyboard to edit the file. Drop a table view onto the View window,
as you did before, and add the same Auto Layout constraints that you used in the Table Cell example. Press
386 and connect the dataSource connection to the View Controller icon.

290

CHAPTER 8 " INTRODUCING TABLE VIEWS

Next, make sure the table view is selected and press X384 to bring up the Attributes Inspector. Change
the table view’s style from Plain to Grouped, as shown in Figure 8-31. Save the storyboard.

lain.storyboard (Base) | [5} View Controller Scene) () View Controller)| View ! Table View OD®eE 9 3 &
® B Table View
[*7 Content Dynamic Prototypes)
y i r Prototype Cell nig
Plain

B ¢ Grouped]
Separator “Detault
=1 Default

Separator Inset Default il
Selection Single Selection B
Editing Mo Selection During Editing B
Section Index
Display Limit
Text [| Default
Background =1 | Default
Tracking — | Default

=]

(o] o] o P

Seroll View
f r Style Default &l
= ; Scroll Indicat... € Shows Horlzontal Indicator
Shows Vertical Indicator
Serolling @ Scrolling Enabled
Paging Enabled
Direction Lock Enabled
Bounca Bounces

Bounce Horizontally
Bounce Vertically

Figure 8-31. The Attributes Inspector for the table view, showing the Style pop-up with Grouped selected

Importing the Data

This project needs a fair amount of data. To save you a few hours of typing, I've provided another property
list for your tabling pleasure. Grab the file named sortednames.plist from the Sections Data subfolder in
this book’s example source code archive and drag it into your project’s Sections folder in Xcode.

Once sortednames.plist is added to your project, single-click it just to get a sense of what it looks like,
as shown in Figure 8-32. It’s a property list that contains a dictionary, with one entry for each letter of the
alphabet. Underneath each letter is a list of names that start with that letter.

201

CHAPTER 8 * INTRODUCING TABLE VIEWS

> oy Secticas | [Phone SE Sectican: Ready | Today st 1207 Als Ee S O0QO0
B8 9 & ¢ = 0 & (B ¢ > [Scton) ! Setins) 1 soiedwames.pist | Ho Selsction o a
¥ [Seeticns ey Type Wenthy wd Free
¥ [Sactions ¥ Root Dictionary %ame | sortedname plist
= AppDelsgate.swift) nerny

Troe | Cetault - Proerty List xou [
= VewGontrolerawit e Aty

Bl Moistoryboard »C Array Rocation | Aelative b oo B
et i i s
; > =1 Pl Pus | n
LaurshScrean.storyboard T - smesrar)
Infe.plst 2016 _Aprass_Book_Swift3)
»G Ay AFRESS_SHAREPOINT]
»H ety SOURCE CODE/Cho8
P Procucts »i aermy Saclions/Sectonal
vi Fios Fortacramespit °
om0 String |
= i s O Gemand Besearce Tags
w2 sing
Isem 3 Sing
Toem 4 swing Localization
—_ L Locatzm..
b swing
Iem 7 Swing Jacoty yT————
Iem B Swing Jacousline B o Socticns
e sting Jacquetyn
mem 10 Srring Jade
i 11 swing ne
Inem 12 swing Jaden
Inem 13 swing Jaden
e 14 sing Jacan
Inem 15 Sring Jadyn
Iwm 16 swing atyn
Inem 17 String Jaedn
o 18 sing Jawcon
Iram 19 Seing Jantyn
1m0 swing Jactmn = -
e 21 swing Jagger » 0@ a
e 22 wing Jida { Tade View Comroller - &
iwm 33 seing uide \ controler tal rans o Lakhe v
Inem 24 swing Juiden
L] Lo i Tak Bar Controller - A contratar
Inem 26 String Jaidim o | e manige o vet of view conlraters
o 2 seing an ! et reprasent teb bar fema.
I 28 Swing Jaime —
M 29 Bing s | Tabte Viaw - rapisys data i a i
1oam 30 swing tain | of son. secsiorad. of raped rows.
Isem 1 Reing Jaanvis
m 32 s s
Gt b Inem 33 st-': Jaz B Ous @

Figure 8-32. The sortednames.plist property list file. The letter] is open to give you a sense of one of the
dictionaries

You'll use the data from this property list to feed the table view, creating a section for each letter.

Implementing the Controller

Single-click the ViewController.swift file. Make the class conform to the UITableViewDataSource protocol,
add a table cell identifier name, and create a couple of properties by adding the following code in bold:

class ViewController: UIViewController, UITableViewDataSource {

let sectionsTableIdentifier = "SectionsTableIndentifier"

var names: [String: [String]]!

var keys: [String]!

Select the Main.storyboard file again and then bring up the Assistant Editor. If it’s not shown, use the
jump bar to select the ViewController.swift file. Control-drag from the table view to the Assistant Editor to
create an outlet for the table just below the definition of the keys property.

@IBOutlet weak var tableView: UITableView!

Now modify the viewDidLoad() method, as shown in Listing 8-10.

292

CHAPTER 8 " INTRODUCING TABLE VIEWS

Listing 8-10. Your New viewDidLoad Method

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
tableView.register(UITableViewCell.self,
forCellReuseldentifier: sectionsTableIdentifier)

let path = Bundle.main.path(forResource:
"sortednames", ofType: "plist")

let namesDict = NSDictionary(contentsOfFile: path!)

names = namesDict as! [String: [String]]

keys = (namesDict!.allKeys as! [String]).sorted()

Most of this isn’t too different from what you've seen before. Earlier, you added property declarations
for both a dictionary and an array. The dictionary will hold all of your data, while the array will hold the
sections sorted in alphabetical order. In the viewDidLoad() method, you first registered the default table
view cell class that should be displayed for each row, using your declared identifier. After that, you created
an NSDictionary instance from the property list you added to your project and assigned it to the names
property, casting it to the appropriate Swift dictionary type as you did so. Next, you grabbed all the keys
from the dictionary and sorted them to give you an ordered array with all the key values in the dictionary
in alphabetical order. Remember that your data uses the letters of the alphabet as its keys, so this array will
have 26 letters sorted from A to Z. You'll use the array to help you keep track of the sections.

Next, add the code in Listing 8-11 to the end of the ViewController.swift file.

Listing 8-11. Your Table View’s Data Source Methods

// MARK: Table View Data Source Methods

func numberOfSections(in tableView: UITableView) -> Int {
return keys.count

}

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
let key = keys[section]
let nameSection = names[key]!
return nameSection.count

}

func tableView(_ tableView: UITableView, titleForHeaderInSection section: Int) -> String? {
return keys[section]
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: sectionsTableIdentifier,

for: indexPath)

as UITableViewCell

let key = keys[indexPath.section]

let nameSection = names[key]!

cell.textlabel?.text = nameSection[indexPath.row]

return cell

293

CHAPTER 8 * INTRODUCING TABLE VIEWS

These are all table data source methods. The first one you added to your class specifies the number of
sections. You didn’t implement this method in the earlier examples because you were happy with the default
setting of 1. This time, you're telling the table view that you have one section for each key in your dictionary.

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return keys.count
}

The next method calculates the number of rows in a specific section. In the previous example, you had
only one section, so you just returned the number of rows in your array. This time, you need to break it down
by section. You can do this by retrieving the array that corresponds to the section in question and returning
the count from that array.

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
let key = keys[section]
let nameSection = names[key]!
return nameSection.count

The method tableView(:titleForHeaderInSection:) allows you to specify an optional header value
for each section. You simply return the letter for this group, which is the group’s key.

func tableView(_ tableView: UITableView, titleForHeaderInSection section: Int) -> String? {
return keys[section]
}

In your tableView(_:cellForRowAtIndexPath:) method, you need to extract both the section key and
the names array using the section and row properties from the index path and then use those to determine
which value to use. The section number will tell you which array to pull out of the names dictionary, and
then you can use the row to figure out which value from that array to use. Everything else in that method is
basically the same as the version in the Table Cells application you built earlier in the chapter.

Build and run the project remembering that you changed the table’s Style to Grouped, so you ended up
with a grouped table with 26 sections, which should look like Figure 8-33.

294

[Carrier
s

Aydin
Ayla
Aylin
Azaria

Azul

o
Bailee
Bailey
Bailey
Barbara
Barrett
Baylee
Beatrice

Beau

12:05 PM

Figure 8-33. A grouped table with multiple sections

CHAPTER 8

INTRODUCING TABLE VIEWS

As a contrast, let’s change your table view back to the plain style and see what a plain table view with
multiple sections looks like. Select Main.storyboard to edit the file in Interface Builder again. Select the
table view and use the Attributes Inspector to switch the view to Plain. Save the project and then build and

run it—same data but a different look, as shown in Figure 8-34.

295

CHAPTER 8 * INTRODUCING TABLE VIEWS

Carrier & 12:08 PM L
A

Ayla
Aylin
Azaria

Azul
B

Bailee
Bailey
Bailey
Barbara
Barrett
Baylee
Beatrice
Beau

Beckett

Cial

Figure 8-34. A plain table with sections

Adding an Index

One problem with your current table is the sheer number of rows. There are 2,000 names in this list. Your
finger will get awfully tired looking for Zachariah or Zayne, not to mention Zoie.

One solution to this problem is to add an index down the right side of the table view. Now that you've
set your table view style back to Plain, that’s relatively easy to do, as shown in Figure 8-35. Add the following
method to the bottom of ViewController. swift and then build and run the app:

func sectionIndexTitles(for tableView: UITableView) -> [String]? {
return keys
}

296

CHAPTER 8 " INTRODUCING TABLE VIEWS

Carrier & 12112 PM -—

L

Lacey
Laci
Laila
Lainey
Lamar
Lamont
Lana
Lance
Landen
Landin

Landon

NS ESCC—ANDODOZTIrXe—-—TOTMMODOD

Landyn
Lane

Laney

Figure 8-35. Adding an index to your table view

Adding a Search Bar

The index is helpful, but even so, you still have a whole lot of names here. If you want to see whether the
name Arabella is in the list, for example, you'll need to scroll for a while even after using the index. It would
be nice if you could let the user pare down the list by specifying a search term, making it more user-friendly.
Well, it’s a bit of extra work, but it’s not that much. You're going to implement a standard iOS search bar
using a search controller, like the one shown on the left in Figure 8-36.

297

CHAPTER 8

Carrier =

A
Aaliyah

Aaron
Abagail
Abbey
Abbie
Abbigail
Abby
Abdullah

Abel

Abigail

Abigale
Abigayle

Abraham

INTRODUCING TABLE VIEWS

Carrier ¥ -

Dia @ | Cancel

“ A il

Claudia

Diamond
Diana
India
Lydia
MNadia

Yuridia

Figure 8-36. The application with a search bar added to the table

As the user types into the search bar, the list of names reduces to only those that contain the entered text
as a substring. As a bonus, the search bar also allows you to define scope buttons that you can use to qualify
the search in some way. You'll add three scope buttons to your search bar—the Short button will limit the
search to names that are less than six characters long, the Long button will consider only those names that
have at least six characters, and the All button will include all names in the search. The scope buttons appear
only when the user is typing into the search bar; you can see them in action on the right of Figure 8-36.

Adding search functionality is quite easy. You need only three things.

298

Some data to be searched. In your case, that’s the list of names.

A view controller to display the search results. This view controller temporarily
replaces the one that’s providing the data. It can choose to display the results in any
way, but usually the source data is presented in a table and the results view controller
will use another table that looks very similar to it, thus creating the impression

that the search is simply filtering the original table. As you'll see, though, that’s not
actually what'’s happening.

A UISearchController that provides the search bar and manages the display of the
search results in the results view controller.

CHAPTER 8 = INTRODUCING TABLE VIEWS

Let’s start by creating the skeleton of the results view controller. You are going to display your search
results in a table, so your results view controller needs to contain a table. You could drag a view controller
onto the storyboard and add a table view to it as you have done in the earlier examples in the chapter,
but let’s do something different this time. You're going to use a UITableViewController, which is a view
controller with an embedded UITableView that is preconfigured as both the data source and the delegate
for its table view. In the Project Navigator, right-click the Sections group and select New File from the pop-
up menu. In the file template chooser, select Cocoa Touch Class from the iOS Source group and click Next.
Name your new class SearchResultsController and make it a subclass of UITableViewController. Click
Next, choose the location for the new file, and let Xcode create it.

Select SearchResultsController.swift in the Project Navigator and make the following change to it:

class SearchResultsController: UITableViewController,
UISearchResultsUpdating {

You're going to implement the search logic in this view controller, so you conformed it to the
UISearchResultsUpdating protocol, which allows you to assign it as a delegate of the UISearchController
class. As you'll see later, the single method defined by this protocol is called to update the search results as
the user types into the search bar.

Since it’s going to implement the search operation for you, SearchResultsController needs access
to the list of names that the main view controller is displaying, so you'll need to give it properties that
you can use to pass to it the names dictionary and the list of keys that you're using for display in the main
view controller. Let’s add these properties to SearchResultsController.swift now. You've probably
noticed that this file already contains some incomplete code that provides a partial implementation of
the UITableViewDataSource protocol and some commented-out code blocks for other methods that
UITableViewController subclasses frequently need to implement. You're not going to use these in this
example, so delete all of the commented-out code and the two UITableViewDataSource methods and then
add the following code at the top of the file:

class SearchResultsController: UITableViewController, UISearchResultsUpdating {
let sectionsTableIdentifier = "SectionsTableIdentifier"
var names:[String: [String]] = [String: [String]]()
var keys: [String] = []
var filteredNames: [String] = []

You added the sectionsTableIdentifier variable to hold the identifier for the table cells in this view
controller. You're using the same identifier as you did in the main view controller, although you could have
used any name at all. You also added the two properties that will hold the names dictionary and the list of
keys that you'll use when searching and another that will keep a reference to an array that will hold the
search results.

Next, add a line of code to the viewDidLoad() method to register your table cell identifier with the
results controller’s embedded table view.

override func viewDidLoad() {
super.viewDidLoad()
tableView.register(UITableViewCell.self,
forCellReuseldentifier: sectionsTableIdentifier)

299

CHAPTER 8 * INTRODUCING TABLE VIEWS

That’s all you need to do in the results view controller for now, so let’s switch back to your main view
controller for a while and add the search bar to it. Select ViewController. swift in the Project Navigator and
add a property to hold a reference to the UISearchController instance that will do most of the hard work for
you in this example at the top of the file.

class ViewController: UIViewController, UITableViewDataSource {
let sectionsTableIdentifier = "SectionsTableIndentifier"
var names: [String: [String]]!
var keys: [String]!
@IBOutlet weak var tableView: UITableView!
var searchController: UISearchControllexr! // € add this line

Next, modify the viewDidLoad() method to add the search controller, as shown in Listing 8-12.

Listing 8-12. Adding the Search Controller to Your Main viewDidLoad method in ViewController.swift

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
tableView.register(UITableViewCell.self,
forCellReuseldentifier: sectionsTableIdentifier)

let path = Bundle.main.pathForResource(
"sortednames", ofType: "plist")

let namesDict = NSDictionary(contentsOfFile: path!)

names = namesDict as! [String: [String]]

keys = (namesDict!.allKeys as! [String]).sorted()

let resultsController = SearchResultsController()
resultsController.names = names
resultsController.keys = keys
searchController =
UISearchController(searchResultsController: resultsController)

let searchBar = searchController.searchBar
searchBar.scopeButtonTitles = ["All", "Short", "Long"]
searchBar.placeholder = "Enter a search term"
searchBar.sizeToFit()

tableView.tableHeaderView = searchBar
searchController.searchResultsUpdater = resultsController

You start by creating the results controller and set its names and keys properties. Then, you create the
UISearchController, passing it a reference to your results controller—UISearchController presents this
view controller when it has search results to display:

let resultsController = SearchResultsController()
resultsController.names = names
resultsController.keys = keys
searchController =
UISearchController(searchResultsController: resultsController)

300

CHAPTER 8 " INTRODUCING TABLE VIEWS

The next three lines of code get and configure the UISearchBar, which is created by the
UISearchController and which you can get from its searchBar property.

let searchBar = searchController.searchBar
searchBar.scopeButtonTitles = ["All", "Short", "Long"]
searchBar.placeholder = "Enter a search term"

The search bar’s scopeButtonTitles property contains the names to be assigned to its scope buttons.
By default, there are no scope buttons, but here you install the names of the three buttons discussed earlier
in this section. You also set some placeholder text to let the user know what the search bar is for. You can see
the placeholder text on the left in Figure 8-36.

So far, you have created the UISearchController but you haven’t connected it to your user interface. To
do that, you get the search bar and install it as the header view of the table in your main view controller.

searchBar.sizeToFit()
tableView.tableHeaderView = searchBar

The table’s header view is managed automatically by the table view. It always appears before the first
row of the first table section. Notice that you use the sizeToFit() method to give the search bar the size
that’s appropriate for its content. You do this so that it is given the correct height—the width that’s set by this
method is not important because the table view will make sure that it stretches the whole width of the table
and will resize it automatically if the table changes size (typically because the device has been rotated).

The final change to viewDidLoad assigns a value to the UISearchController’s searchResultsUpdater
property, which is of type UISearchResultsUpdating.

searchController.searchResultsUpdater = resultsController

Each time the user types something into the search bar, UISearchController uses the object stored
in its searchResultsUpdater property to update the search results. As mentioned, you are going to handle
the search in the SearchResultsController class, which is why you needed to make it conform to the
UISearchResultsUpdating protocol.

That’s all you need to do to in your main view controller to add the search bar and have the search
results displayed. Next, you need to return to SearchResultsController.swift, where you have two
tasks to complete—add the code that implements the search and the UITableDataSource methods for the
embedded table view.

Let’s start with the code for the search. As the user types into the search bar, the UISearchController
calls the updateSearchResultsForSearchController() method of its search results updater, which is
your SearchResultsController. In this method, you need to get the search text from the search bar and
use it to construct a filtered list of names in the filteredNames array. You'll also use the scope buttons
to limit the names that you include in the search. Add the following constant definitions at the top of
SearchResultsController.swift:

class SearchResultsController: UITableViewController, UISearchResultsUpdating {
private static let longNameSize = 6
private static let shortNamesButtonIndex = 1
private static let longNamesButtonIndex = 2

301

CHAPTER 8 * INTRODUCING TABLE VIEWS

Now add code in Listing 8-13 to the end of the file.

Listing 8-13. Your Search Results Code

// MARK: UISearchResultsUpdating Conformance
func updateSearchResults(for searchController: UISearchController) {
if let searchString = searchController.searchBar.text {
let buttonIndex = searchController.searchBar.selectedScopeButtonIndex
filteredNames.removeAll (keepingCapacity: true)

if IsearchString.isEmpty {

let

for

}
}

filter: (String) -> Bool = { name in

// Filter out long or short names depending on which

// scope button is selected.

let namelength = name.characters.count

if (buttonIndex == SearchResultsController.shortNamesButtonIndex
88 namelength >= SearchResultsController.longNameSize)
|| (buttonIndex == SearchResultsController.longNamesButtonIndex

8& namelength < SearchResultsController.longNameSize) {

return false

}

let range = name.range(of: searchString, options: NSString.
CompareOptions.caseInsensitive, range: nil, locale: nil)

// let range = name.rangeOfString(searchString,
// options: NSString.
CompareOptions.

CaselInsensitiveSearch)
return range != nil

key in keys {

let namesForKey = names[key]!

let matches = namesForKey.filter(filter)
filteredNames += matches

tableView.reloadData()

Let’s walk through this code to see what it’s doing. First, you get the search string from the search bar
and the index of the scope button that’s selected, and then you clear the list of filtered names. You search
only if the text control returns a string; theoretically, it is possible for the text to be nil, so you bracket the
rest of the code in an if let construction.

if let searchString
let buttonIndex

= searchController.searchBar.text {
= searchController.searchBar.selectedScopeButtonIndex

filteredNames.removeAll (keepingCapacity: true)

Next, you check that the search string is not empty—you do not display any matching results for an

empty search string.

if !searchString.isEmpty {

302

CHAPTER 8 = INTRODUCING TABLE VIEWS

Now you define a closure for matching names against the search string. The closure will be called for
each name in the names directory and will be given a name (as a string) and return true if the value matches
and false if there’s no match. You first check that the length of the name is consistent with the selected
scope button and return false if it isn’t.

let filter: (String) -> Bool = { name in
// Filter out long or short names depending on which
// scope button is selected.
let namelength = name.characters.count
if (buttonIndex == SearchResultsController.shortNamesButtonIndex
88 namelength >= SearchResultsController.longNameSize)
|| (buttonIndex == SearchResultsController.longNamesButtonIndex
88 namelength < SearchResultsController.longNameSize) {
return false

}

If the name passes this test, you look for the search string as a substring of the name. If you find it, then
you have a match.

let range = name.range(of: searchString, options:
NSString.CompareOptions.caselnsensitive,

range: nil, locale: nil)

return range != nil

That’s all the code that you need in the closure to handle the name search. Next, you iterate over all the
keys in the names dictionary, each of which corresponds to an array of names (key A maps to the names that
start with the letter A, and so on). For each key, you get its array of names and filter it using your closure.
This gets you a (possibly empty) filtered array of the names that match, which you add to the filteredNames
array.

for key in keys {
let namesForKey = names[key]!
let matches = namesForKey.filter(filter)
filteredNames += matches

In this code, namesForKey is of type [String] and contains the names that correspond to whichever
key value you are processing. You use the filter() method of Array to apply your closure to each of the
elements in namesToKey. The result is another array containing only the elements that match the filter—
that is, only the names should match the search text and the selected scope button, which you then add to
filteredNames.

Once all the name arrays have been processed, you have the complete set of matching names in
the filteredNames array. Now all you need to do is arrange for them to be displayed in the table in your
SearchResultsController. You start by telling the table that it needs to redisplay its content.

}

tableView.reloadData()

303

CHAPTER 8 * INTRODUCING TABLE VIEWS

You need the table view to display one name from the filteredNames array in each row. To do that,
you implement the methods of the UITableViewDataSource protocol in your SearchResultsController
class. Recall that SearchResultsController is a subclass of UITableViewController, so it automatically
acts as its table’s data source. Add the code in Listing 8-14 to SearchResultsController.swift, above the
updateSearchResults method.

Listing 8-14. Your Table View Data Source Methods

// MARK: Table View Data Source Methods

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return filteredNames.count

}

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -»>
UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: sectionsTableIdentifier)
cell!.textlLabel?.text = filteredNames[indexPath.row]
return cell!l

You can now run the app and try filtering the list of names, as shown in Figure 8-37.

| Carrier = 1:49 PM -

Q Zo © Cancel

Alonzo

Enzo
Lorenzo
Vincenzo
Zoe
Zoey

Zoie

Figure 8-37. The application with a search bar added to the table

304

CHAPTER 8 " INTRODUCING TABLE VIEWS

Using View Debugging

The UISearchController class does a good job of switching between the two tables in your last example—so
good that you might find it hard to believe that there is a switch going on at all. Apart from the fact that you've
seen all the code, there are also a couple of visual clues—the search table is a plain table, so you don’t see the
names grouped like they are in the main table. It also has no section index. If you want even more proof, you
can get it by using a neat feature of Xcode called View Debugging, which lets you take snapshots of the view
hierarchy of a running application and examine them in the Xcode editor area. This feature works on both the
simulator and real devices. You'll probably find it invaluable at some point or another when you're trying to
find out why one of your views appears to be missing or is not where you expect it to be.

Let’s start by looking at what View Debugging makes of your application when it’s showing the full name
list. Run the application again and in the Xcode menu bar, select Debug » View Debugging » Capture View
Hierarchy. Xcode grabs the view hierarchy from the simulator or device and displays it, as shown in Figure 8-38.

»> B A Sestioes |) Phone 63 Runing Sectons on Phose 63 = @ OQ O
B O E o @ M < Secions | UWindew D& G 0
¥ Gections FID @
W cru o%
[Memory 6.7 M8
2 oise T KB/
.
@ Hetwork Tero KBS
S A
R4 Aaliyah
v | uiaseiee
¥ Urabieviewnwrapperian
o Aaron

A UITSbVienCHl - Abrgs
v UITablwCesComentVien
Lases TRV WL Sb - Abram
_ATa R o SaparaeVien
¥ UitsbViewCell - Abesham Abbey
- UITablavewCelComantian
et LN Taloviowilabad - Abraham Abbie
ANTathe erwCellSeparmionien
¥ UiTabieVienCell - Abigaye Abbigail
v LN TabherwCalContentView
Lt N TadeviewLabed = Abigayie Abby
JUNTatdeViewCelISeparatorVien
v UiMTelve¥ienCall - Abigale
v UiMabileNiewCelConentView
o UiTaleViewLabel - Abiga'e
N TableiewCelSeparatorien Abel
A UiebieVienCell - Abigel
¥ | | UiableViewCeaConteniview Abigail
o= UiTaslaViewLabel - Abigail "0 eao
v i e
¥ UTableNiwEsiontantVian ’
Lo U TalaViowLabal - Abol Abigayle
ArioromcuSapscten ity
¥ uiiabieviewCal - Abdullah Abraham " et epreast teb bar ftema
v UITBEIN wCaIComantView
o Ui Taziaviwiabal - Abcuian Table View - Dispiys a3 n 8
AT anhiewC el Separmnorvien age" o of e, sectored. of greued oW
¥ ilsbaviowCell - Abky E u O — = +
(=] ag = » w o~ ¢ LD > Sections | () Theed 1) [£] 0 mach mag.iree H Ouw o

Abagail

brozE-~EXL-Iommonm

Abdullah

N<ME<Cawm@

Figure 8-38. The view hierarchy of the Sections application

That probably doesn’t look very useful—you can’t really see anything more than you could in the
simulator. To reveal the view hierarchy, you need to rotate the image of the application so that you can look
at it “from the side.” To do so, click the mouse in the editor area, somewhere just to the left of the captured
image, and drag it to the right. As you do so, the layering of views in the application will reveal itself. If you
rotate through about 45 degrees, you'll see something like Figure 8-39.

305

CHAPTER 8 * INTRODUCING TABLE VIEWS

B < > Sections ;| UiWindow

Minh

Figure 8-39. Examining the application’s view hierarchy

If you click the various views in the stack, you'll see that the jump bar at the top changes to show you the
class name of the view that you've clicked and those of all of its ancestor views. Click each of the views from
the back to the front to get familiar with how the table is constructed. You should be able to find the view
controller’s main view, the table view itself, some table view cells, the search bar, the search bar index, and
various other views that are part of the table’s implementation.

Now let’s see what the view hierarchy looks like while you are searching. Xcode pauses your application
to let you examine the view snapshot, so first resume execution by clicking Debug » Continue. Now
start typing into the application’s search bar and capture the view hierarchy again using Debug » View
Debugging » Capture View Hierarchy. When the view hierarchy appears, rotate it a little and you'll see

something like what’s shown in Figure 8-40.

306

CHAPTER 8 = INTRODUCING TABLE VIEWS

e G
-_—
A m
Ay
S Zowy
haeen
Kbagal
Abbay
Abie
Aboigeil
by
st
e
stiged
Azigale
Hugafe
—= EEHE®W H = 4

Figure 8-40. Your view hierarchy when searching for Zoe

Now it’s pretty clear that there are indeed two tables in use. You can see the original table near the
bottom of the view stack, and above (i.e., to the right of) it, you can see the table view that belongs to the
search results view controller. Just behind that, there’s a translucent gray view that covers the original table—
that’s the view that dims the original table when you first start typing in the search bar.

Experiment a little with the buttons at the bottom of the editor area—you can use them to turn on and
off the display of Auto Layout constraints, reset the view to the top-down view shown earlier, and zoom in
and zoom out. You can also use the slider on the left to change the spacing between views, and you can use
the one on the right to remove layers at the top or bottom of the hierarchy so that you can see what’s behind
them. View Debugging is a powerful tool.

Summary

This was a pretty hefty chapter, and you've learned a great deal. You should have a solid understanding of

the way that flat tables work. You should know how to customize tables and table view cells, as well as how to
configure table views. You also saw how to implement a search bar, which is a vital tool in any iOS application
that presents large volumes of data. Finally, you met View Debugging, an extremely useful feature of Xcode.
Make sure you understand everything you did in this chapter because you're going to build on it.

You're going to continue working with table views in the next chapter. For example, you'll learn how to
use them to present hierarchical data. And you'll see how to create content views that allow the user to edit
data selected in a table view, as well as how to present checklists in tables, embed controls in table rows, and
delete rows.

307

CHAPTER 9

Adding Navigation Controllers to
Table Views

In the previous chapter, you worked through the basics of using table views. In this chapter, you'll go further
by adding navigation controllers.

Table views and navigation controllers work together, but strictly speaking, a navigation controller
doesn’t need a table view to function. As a practical matter, however, when using a navigation controller,
you normally include at least one or more tables because the strength of the navigation controller lies in the
ease with which it handles complex hierarchical data. On the iPhone’s small screen, hierarchical data is best
presented using a succession of table views.

In this chapter, you'll build an application step by step, just as you did with the Pickers application in
Chapter 7. When you have the basic navigation controller and the root view controller working, you'll start
adding more controllers and layers to the hierarchy. Each view controller you create reinforces some aspect
of table use or configuration.

e How to drill down from table views into child table views

e How to drill down from table views into content views, where detailed data can be
viewed and even edited

e How to use multiple sections within a table view
e How to use edit mode to allow rows to be deleted from a table view

e How to use edit mode to let the user reorder rows within a table view

Understanding Navigation Controller Basics

The main tool you'll use to build hierarchical applications, the UINavigationController, functions similarly
to the UITabBarController in that it manages, and swaps in and out, multiple content views. The main
difference between the two is that the child view controllers of a UINavigationController are organized in a
stack, which makes it well suited to working with hierarchies.

If you're a software developer and understand stacks, you may want to skip over the next section or just
scan it. But if you're new to stacks, continue reading. Fortunately, stacks are a pretty easy concept to grasp.

© Molly K. Maskrey 2017 309
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_9

https://doi.org/10.1007/978-1-4842-3072-5_9
http://dx.doi.org/10.1007/978-1-4842-3072-5_7

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Using Stacks

The stack, a commonly used data structure, functions using the principle of “last in, first out” A common Pez
dispenser (see Figure 9-1) provides a great example of a stack. Ever try to load one? According to the little
instruction sheet that comes with each and every Pez dispenser, there are a few easy steps. First, unwrap the
pack of Pez candy. Second, open the dispenser by tipping its head straight back. Third, grab the stack of candy,
holding it firmly between your pointer finger and thumb, and insert the column into the open dispenser.

Figure 9-1. A Pez dispenser represents a simple implementation of a stack

Remember that I said a stack was last in, first out? That also means first in, last out. The first piece of
candy you push into the dispenser will be the last piece that pops out. The last piece of candy you push in
becomes the first piece you pop out. A computer stack follows the same rules:

e When you add an object to a stack, it’s called a push. You push an object onto the
stack.

e The first object you push onto the stack is called the base of the stack.

e The object you most recently pushed onto the stack is called the top of the stack
(at least until it is replaced by the next object you push onto the stack).

e When you remove an object from the stack, it’s called a pop. When you pop an object
off the stack, it’s always the last one you pushed onto the stack. Conversely, the first
object you push onto the stack will always be the last one you pop off the stack.

310

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Using a Stack of Controllers

Navigation controllers maintain a stack of view controllers, and when you design your controller, you must
specify the very first view the user sees. As discussed previously, you call that view’s controller the root
view controller, or just root controller, which becomes the base of the navigation controller’s stack. As the
user selects a new view to display, another controller gets pushed onto the stack, and its view appears. You
refer to these new view controllers as subcontrollers. In this chapter’s application, Fonts, you'll include a
navigation controller and several subcontrollers.

In Figure 9-2, notice the title centered in the navigation bar and the back button on the left side of the
navigation bar. The title of the navigation bar gets populated with the title property of the top view controller
in the navigation controller’s stack, and the title of the back button displays the name of the previous view
controller. The back button acts similarly to a web browser’s back button. When the user taps that button,
the current view controller gets popped off the stack, and the previous view becomes the current view.

Back Button

Vibirate an Ring

Vibrate on Slient

ERTS

Ringtone

Text Tone

New Voicemai

Naw Mad

Sent Mail

Figure 9-2. The Settings application uses a navigation controller. The back button at the upper left pops the
current view controller off the stack, returning you to the previous level of the hierarchy. The title of the current
content view controller is also displayed

This design pattern allows you to build complex hierarchical applications iteratively so you don’t need to
know the entire structure to get everything up and running. Each controller only needs to know about its child
controllers, so it can push the appropriate new controller object onto the stack when the user makes a selection.
You can build up a large application from many small pieces this way, which you'll be doing in this chapter.

The navigation controller provides the core to many iPhone apps; however, when it comes to iPad apps,
the navigation controller plays a more marginal role. The Mail app depicts a typical example featuring a
hierarchical navigation controller to let users navigate among all their mail servers, folders, and messages. In
the iPad version of Mail, the navigation controller never fills the screen but appears either as a sidebar or as a
temporary view covering part of the main view. You'll work with that in Chapter 11.

311

http://dx.doi.org/10.1007/978-1-4842-3072-5_11

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Fonts: Creating a Simple Font Browser

The application you're about to build shows how to do most of the common tasks associated with displaying
a hierarchy of data. When the application launches, you're presented with a list of all the font families that
are included with iOS, as shown in Figure 9-3. A font family groups closely related fonts, or fonts that are
stylistic variations of one another, such as Helvetica, Helvetica-Bold, Helvetic-Oblique, and other variations
all included in the Helvetica font family.

All Font Families
Engraved

Beadeomy Frgrmesd | FT

Al Nile

Al Niw

American Typewriter

Amencan Tyrear ta-

Arial Rounded MT Bold

Ayl Mouradend W1 Sbs
Avernir

R

Avenir Next

Apd Nead

Avenir Next Condensed
Averi et Condencid
Bangla Sangam MN
Bargle Sager WN

Baskeriile

Basher vl

iPhone 7 - i0S 11.0

Figure 9-3. In this project, the root view controller displays accessory icons on the right side of each row in the
view. This particular type of accessory icon is called a disclosure indicator, letting you know that touching that
row drills down to another view of some kind.

Selecting any row in this top-level view will push a new view controller onto the navigation controller’s
stack. The small images on the far right of each row are called accessory icons. This particular accessory icon
(the gray arrow) displays a disclosure indicator letting the user know that touching that row drills down to
another view.

312

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS
Seeing the Subcontrollers of the Fonts App

Before you actually start working on this chapter’s project, let’s examine each of the subcontrollers that
you'll be using.

Seeing the Font List Controller

Touching any row of the table shown in Figure 9-3 will bring up the child view shown in Figure 9-4.

Carrier & 4:01FPM

{ Fonts Gill Sans

Gillsans
GillSans

GillSans-Bold
GillSans-Bold

GillSans-Boldltalic
Gillsans-Bolditalic

GillSans-talic

GillSans-Italic

Gillsans-Lightltalic
Gillsans-Lightitalic

GillSans-SemiBold
GillSans-SemiBold

GillSans-SemiBoldltalic
GillSans-SemiBolditakic

GiliSans-VitraBold

GillSans-UltraBold

Figure 9-4. The first of the Fonts application’s subcontrollers implements a table in which each row contains a
detail disclosure button

The accessory icon to the right of each row in Figure 9-4, called a detail disclosure, functions differently
than the arrow you saw previously. Unlike the disclosure indicator, the detail disclosure button provides
not just an icon but acts as a control that the user can tap independently. This means that you can have two
different options available for a given row: one action triggered when the user selects the row and another
that is triggered when the user taps the icon. Tapping the small info button within this accessory should
allow the user to view, and perhaps edit, more detailed information about the current row. Meanwhile,
the presence of the right-pointing arrow should indicate to the user that there is some deeper navigation to
be found by tapping elsewhere in the row.

313

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Seeing the Font Sizes View Controller

Touching any row of the table shown in Figure 9-4 brings up the child view shown in Figure 9-5.

Carrier F 4:18 FM

< Gill Sans GillSans-Bold

GiliSans-Heid
9.0 point

GillSans-Bold
10.0 point

Gillsans-Bold
1.0 paint

GillSans-Bold
12.0 point

GillSans-Bold
13.0 point

Gillsans-Bold
14.0 paint

Gillsans-Bold

18.0 point

GillSans-Bold

24.0 point

GillSans-Bold

36.0 point

GillSans-Bold

48.0 paint

Figure 9-5. Located one layer deeper than the font list view controller, the font sizes view controller shows
multiple sizes of the chosen font, one per row

Using Disclosure Indicators and Detail Disclosure

Here are some guidelines for when to use each of these buttons:

314

To offer a single choice for a row tap, don’t use an accessory icon if a row tap will only
lead to a more detailed view of that row.

Mark the row with a disclosure indicator (right-pointing arrow) if a row tap leads to a
new view listing more items (not a detail view).

To offer two choices for a row, mark the row with either a detail disclosure indicator
or a detail button. This allows the user to tap the row for a new view or the disclosure
button for more details.

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Seeing the Font Info View Controller

Your final application subcontroller—the only one not a table view—appears (see Figure 9-6) when you tap
on the info icon for any row in the font list view controller shown in Figure 9-2.

Carrier = 5:54 PM

£ Gill Sans GillSans-Bold

AaBbCcDd
EeFfGgHhl
iJjKkLIMm

NnOoPpQ
qRrSsTtU
uvVvWw...

Include in favorites:

Figure 9-6. The final view controller in the Fonts application allows you to view the chosen font at any size
you want

This view lets the user drag a slider to adjust the size of the displayed font. It also includes a switch that
allows the user to specify whether this font should be listed among the user’s favorites. If any fonts are set as
favorites, they appear within a separate group in the root view controller.

Seeing the Fonts Application’s Skeleton

Xcode offers a perfectly good template for creating navigation-based applications, and you will likely use it
much of the time when you need to create hierarchical applications. However, you're not going to use that
template today. Instead, you'll construct your navigation-based application from the ground up so you get
a feel for how everything fits together. I'll also walk you through it one piece at a time, so it should be easy to
keep up.

315

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

In Xcode create a new project. Select Single View App from the iOS template list and then click Next to
continue. Set Fonts as the product name, set Swift as the Language, and select Universal for Devices. Make
sure that Use Core Data is not selected, click Next, and choose the location to save your project.

Setting Up the Navigation Controller

You'll now create the basic navigation structure for your application. At the core of this will be a
UINavigationController, managing the stack of view controllers that a user can navigate between, and a
UITableViewController, displaying the top-level list of rows you're going to show. As it turns out, Interface
Builder makes this easy to create.

SelectMain.storyboard. The template has created a basic view controller for you, but you need
to use a UINavigationController instead, so select the view controller in either the Editor Area or the
Document Outline and delete it to leave the storyboard empty. Now use the Object Library to search for
UINavigationController and drag an instance into the editing area. You'll see that you actually get two
scenes instead of one, similar to what you saw when creating a tab view controller in Chapter 7. On the left is
the UINavigationController itself. Select this controller, open the Attributes Inspector, and check Is Initial
View Controller in the View Controller section to make this the controller that appears when the application
is launched.

The UINavigationController has a connection wired to the second scene, which contains a
UITableViewController. You'll see that the table has the title Root View Controller. Click the Root View
Controller icon in the Document Outline (the one below the Table View icon, not the one above it), open the
Attributes Inspector, and then set the title to Fonts. If you don’t see the title change in the storyboard, you
chose the wrong Root View Controller icon.

By setting it up this way, you get the view created by the navigation controller, a composite view that
contains a combination of two things: the navigation bar at the top of the screen (which usually contains
some sort of title and often a back button of some kind on the left) and the content of whatever the
navigation controller’s current view controller wants to display. In this case, the lower part of the display will
be filled with the table view that was created alongside the navigation controller.

You'll see more about how to control what the navigation controller shows in the navigation bar as
you go forward. You'll also gain an understanding of how the navigation controller shifts focus from one
subordinate view controller to another. For now, I've laid enough groundwork so that you can start defining
what your custom view controllers are going to do.

At this point, the application skeleton is essentially complete. You'll see a warning about setting a reuse
identifier for a prototype table cell, but you can ignore that for now. Save all your files and then build and run
the app. If all is well, the application should launch, and a Fonts navigation bar should appear. You haven’t
given the table view any information about what to show yet, so no rows will display at this point, as shown
in Figure 9-7.

316

http://dx.doi.org/10.1007/978-1-4842-3072-5_7

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Carrier ¥ 8:27 AM L

| Fonts

Figure 9-7. Your application skeleton without any data

Keeping Track of Favorite Fonts

At several points in this application, you're going to let the user maintain a list of favorite fonts by letting
them add chosen fonts, view a whole list of already-chosen favorites, and remove fonts from the list. To
manage this list in a consistent way, you're going to make a new class that will hang onto an array of favorites
and store them in the user’s preference for this application. You'll learn a lot more about user preferences in
Chapter 12, but here I'll just touch on some basics.

Start by creating a new class. Select the Fonts folder in the Project Navigator and press 3N to bring up
the new file assistant. Select Swift File from the iOS Source section and then click Next. On the following
screen, name the new file FavoriteslList.swift and click Create. Select the new file in the Project Navigator
and make the additions shown in Listing 9-1.

Listing 9-1. Your FavoritesList Class File
import Foundation
import UIKit

class Favoriteslist {
static let sharedFavoriteslist = FavoriteslList()
private(set) var favorites:[String]

317

http://dx.doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

init() {
let defaults = UserDefaults.standard
let storedFavorites = defaults.object(forKey: "favorites") as? [String]
favorites = storedFavorites != nil ? storedFavorites! : []

}

func addFavorite(fontName: String) {
if !favorites.contains(fontName) {
favorites.append(fontName)
saveFavorites()

}

func removeFavorite(fontName: String) {
if let index = favorites.index(of: fontName) {
favorites.remove(at: index)
saveFavorites()

}

private func saveFavorites() {
let defaults = UserDefaults.standard
defaults.set(favorites, forKey: "favorites")
defaults.synchronize()

In Listing 9-1, you declared the API for your new class. For starters, you declared a class property called
sharedFavoritesList that returns an instance of this class. No matter how many times this method is
called, the same instance will always be returned. The idea is that FavoritesList should work as a singleton.
Instead of using multiple instances, you'll just use one instance throughout the application.

Next, you declared a property to hold the names of your favorite fonts. Pay close attention to the
definition of this array:

private(set) var favorites:[String]

The private(set) qualifier means that the array can be read by code outside the class, but only code in
the class implementation can modify it. That’s exactly what you want because you need users of your class to
be able to read the favorites list.
let favorites = FavoriteslList.sharedFavoriteslList.favorites // Read-access is OK

But you don’t want either of these to be allowed:

FavoriteslList.sharedFavoriteslList.favorites = [] // Not allowed
FavoriteslList.sharedFavoriteslList.favorites.append("Comic Sans MS") // Not allowed

318

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

The class initializer is responsible for setting the initial content of the favorites array.

init() {
let defaults = UserDefaults.standard
let storedFavorites = defaults.object(forKey: "favorites") as? [String]
favorites = storedFavorites != nil ? storedFavorites! : []

Asyou'll see shortly, any time you add something to or remove something from this array, you save its
contents to the application’s user defaults (which is discussed in detail in Chapter 12) so that the content of
the list is preserved over application restarts. In the initializer, you check whether you have a stored favorites
list, and if so, you use it to initialize the favorites property. If not, you simply make it empty.

The remaining three methods deal with adding to and removing from the favorites array. The
implementations should be self-explanatory. Note that the first two methods both call saveFavorites(),
which saves the updated value to the user defaults under the same key (favorites) as the initializer uses
to read it. You'll learn more about how this works in Chapter 12; but for now, it’s enough to know that the
UserDefaults (NSUserDefaults) object thatyou use here acts like a sort of persistent dictionary, and
anything that you put in there will be available the next time you ask for it, even if the application has been
stopped and restarted.

Note Previously, in Xcode 8, Apple made many of the former NS- objects more user-friendly for use in
Swift; for example, NSUserDefaults is now UserDefaults.

Creating the Root View Controller

Let’s get started developing your first view controller. In the previous chapter, you used simple arrays of
strings to populate your table rows. You're going to do something similar here, but this time you'll use the
UIFont class to get a list of font families and then use the names of those font families to populate each row.
You'll also use the fonts themselves to display the font names so that each row will contain a small preview of
what the font family contains.

It’s time to create the first controller class for this application. The template created a view controller
for you, but its name—ViewController—isn’t very useful because there are going to be several view
controllers in this application. So, first select ViewController.swift in the Project Navigator and click
Delete to delete it and move it to the trash. Next, select the Fonts folder in the Project Navigator and press
38N to bring up the new file assistant. Select Cocoa Touch Class from the iOS Source section and then click
Next. On the following screen, name the new class RootViewController and enter UITableViewController
for “Subclass of.” Click Next and then click Create to create the new class. In the Project Navigator, select
RootViewController.swift and add the bold lines in the snippet that follows to add a few properties:

class RootViewController: UITableViewController {
private var familyNames: [String]!
private var cellPointSize: CGFloat!
private var favoritesList: FavoritesList!
private static let familyCell = "FamilyName"
private static let favoritesCell = "Favorites"

319

http://dx.doi.org/10.1007/978-1-4842-3072-5_12
http://dx.doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

You'll assign values to the first three of those properties from the onset and then use them at various
times while this class is in use. The familyNames array will contain a list of all the font families you're going
to display, the cel1PointSize property will contain the font size that you want to use in all of your table view
cells, and favoritesList will contain a pointer to the FavoritesList singleton. The last two are constants
that represent the cell identifiers that you will use for the table view cells in this controller.

Set up all of this class’s properties by adding the bold code shown here to the viewDidLoad() method, as
shown in Listing 9-2.

Listing 9-2. The viewDidLoad() Method for the RootViewController.swift File

override func viewDidlLoad() {
super.viewDidLoad()

familyNames = (UIFont.familyNames() as [String]).sorted()
let preferredTableViewFont =

UIFont.preferredFont(forTextStyle: UIFontTextStyleHeadline)
cellPointSize = preferredTableViewFont.pointSize
favoritesList = FavoriteslList.sharedFavoriteslList
tableView.estimatedRowHeight = cellPointSize

In Listing 9-2, you populated familyNames by asking the UIFont class for all known family names and
then sorting the resulting array. You then used UIFont once again to ask for the preferred font for use in
a headline. You did this using a piece of functionality added in iOS 7, which uses a font size setting that
can be configured by the user in the Settings app. This dynamic font sizing lets the user set an overall font
scaling for systemwide use. Here, you used that font’s pointSize property to establish a baseline font size
that you'll use elsewhere in this view controller. Finally, you grabbed the singleton favorites list object,
and you set the estimatedRowHeight property of the table view to indicate roughly how tall your table’s
rows will be. As it turns out, the table will calculate the correct size for each cell based on the cell’s content,
provided that you set this property, leave the table view’s rowHeight property set to its default value of
UITableViewAutomaticDimension, and use default table view cells (or use Auto Layout to construct custom
table view cells).

Before you go on, let’s delete the didReceiveMemoryWarning() method, as well as all of the table view
delegate or data source methods that the template gave you—you're not going to use any of them in this class.
The idea behind this view controller is to show two sections. The first section is a list of all available

font families, each of which leads to a list of all the fonts in the family. The second section is for favorites
and contains just a single entry that will lead the user to a list of their favorite fonts. However, if the user has
no favorites (for example, when the app is launched for the first time), you'd rather not show that second
section at all since it would just lead the user to an empty list. So, you'll have to do a few things throughout
the rest of this class to compensate for this eventuality. The first of these is to implement this method, which
is called just before the root view controller’s view appears on the screen:

override func viewWillAppear(_ animated: Bool) {
super.viewillAppear(animated)
tableView.reloadData()

The reason for this is that there may be times when the set of things you're going to display might
change from one viewing to the next. For example, the user may start with no favorites but then drill down,
view a font, set it as a favorite, and then come back out to the root view. At that time, you need to reload the
table view so that the second section will appear.

320

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Next, you're going to implement a sort of utility method for use within this class. At a couple of points,
while configuring the table view via its data source methods, you'll need to be able to figure out which font
you want to display in a cell. You put that functionality into a method of its own, as shown in Listing 9-3.

Listing 9-3. Figuring Out Which Font You Want to Display

func fontForDisplay(atIndexPath indexPath: NSIndexPath) -> UIFont? {

if indexPath.section == 0 {
let familyName = familyNames[indexPath.row]
let fontName = UIFont.fontNames(forFamilyName: familyName).first
return fontName != nil ?

UIFont(name: fontName!, size: cellPointSize) : nil

} else {
return nil

}

This method uses the UIFont class to find all the font names for the given family name and then grab
the first font name within that family. You don’t necessarily know that the first named font in a family is the
best one to represent the whole family, but it’s as good a guess as any. If the family has no font names, you
return nil.

Now, let’s move on to the primary code in this view controller: the table view data source methods. First
up, let’s look at the number of sections:

override func numberOfSections(in tableView: UITableView) -> Int {
return favoriteslList.favorites.isEmpty ? 1 : 2

}

You use the favorites list to determine whether you want to show the second section. Next, you tackle
the number of rows in each section.

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
// Return the number of rows in the section.
return section == 0 ? familyNames.count : 1

That one is also pretty simple. You just use the section number to determine whether the section is
showing all family names or a single cell linking to the list of favorites. Now let’s define one other method,
an optional method in the UITableViewDataSource protocol that lets you specify the title for each of your
sections.

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {

return section == 0 ? "All Font Families" : "My Favorite Fonts"
}

This is another straightforward method. It uses the section number to determine which header title to
use. The final core method that every table view data source must implement is the one for configuring each
cell, and yours looks like Listing 9-4.

321

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Listing 9-4. Your cellForRow (atIndexPath:) Function

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
if indexPath.section == 0 {
// The font names list
let cell = tableView.dequeueReusableCell(withIdentifier: RootViewController.
familyCell, for: indexPath)
cell.textlLabel?.font = fontForDisplay(atIndexPath: indexPath)
cell.textlabel?.text = familyNames[indexPath.row]
cell.detailTextLabel?.text = familyNames[indexPath.row]
return cell
} else {
// The favorites list
return tableView.dequeueReusableCell(withIdentifier: RootViewController.
favoritesCell, for: indexPath)

When you created this class, you defined two different cell identifiers that you use to load two different
cell prototypes from the storyboard (much like you loaded a table cell from a nib file in Chapter 8). You
haven’t configured those cell prototypes yet, but you will soon. Next, you use the section number to
determine which of those cells you want to show for the current indexPath. If the cell is meant to contain
a font family name, then you put the family name into both its textLabel and its detailTextLabel. You
also use a font from the family (the one you get from the fontForDisplay(atIndexPath:) method that you
added earlier) within the text label so that you'll see the font family name shown in the font itself, as well as a
smaller version in the standard system font.

Doing the Initial Storyboard Setup

Now that you have a view controller that you think should show something, let’s configure the storyboard to
make things happen. Select Main.storyboard in the Project Navigator. You'll see the navigation controller
and the table view controller that you added earlier. The first thing you need to configure is the table view
controller. By default, the controller’s class is set to UITableViewController. You need to change that to your
root view controller class. In the Fonts Scene in the Document Outline, select the yellow Fonts icon, and then
use the Identity Inspector to change the view controller’s Class to RootViewController.

The other configuration you'll need to do right now is to set up a pair of prototype cells to match the
cell identifiers you used in your code. From the start, the table view has a single prototype cell. Select it and
press 38D to duplicate it, and you'll see that you now have two cells. Select the first one and then use the
Attributes Inspector to set its Style to Subtitle, its Identifier to FamilyName, and its Accessory to Disclosure
Indicator. Next, select the second prototype cell and then set its Style to Basic, its Identifier to Favorites, and
its Accessory to Disclosure Indicator. Also, double-click the title shown in the cell itself and change the text
from Title to Favorites.

Tip The prototype cells that you are using in this example both have standard table view cell styles. If you
set Style to Custom, you can design the layout of the cell right in the cell prototype, just like you did when you
created a cell in a nib file in Chapter 8.

322

http://dx.doi.org/10.1007/978-1-4842-3072-5_8
http://dx.doi.org/10.1007/978-1-4842-3072-5_8

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Now build and run this app, and you should see a nice list of fonts. Scroll around a bit and you'll see that
not all of the fonts produce text of the same height, as shown in Figure 9-8. All of the cells are tall enough to
contain their content. If you've forgotten why this works, refer to the discussion of the code you added to the

viewDidLoad() method earlier in this section.

Carrier ¥ 10:22 AM

Fonts

All Font Families
Academy Engraved LET
Academy Engraved LET

Al Nile

Al Nile

American Typewriter

American Typewriter

Apple Color Emoiji
Apple Color Emoji

Apple 5D Gothic Neo
Apple SD Gothic Neo

Arial
Arial

Arial Hebrew
Arial Hebrew

Arial Rounded MT Bold
Arial Rounded MT Bold

Avenir
Avenir

Avenir Next
Avenir Next

Avenir Next Condensed

Avenir Next Condensed

Bangla Sangam MN
Bangla Sangam MN

Baskerville

Figure 9-8. The root view controller displays the installed font families

First Subcontroller: Creating the Font List View

Your app currently just shows a list of font families, and nothing more. You want to add the ability for a
user to touch a font family and see all the fonts it contains, so let’s make a new view controller that can
manage a list of fonts. Create a new Cocoa Touch class called FontListViewController as a subclass of
UITableViewController. In the Project Navigator, select FontListViewController.swift and add the

following properties:

class FontListViewController: UITableViewController {

var fontNames: [String] = []

var showsFavorites:Bool = false
private var cellPointSize: CGFloat!
private static let cellldentifier

"FontName"

323

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

The fontNames property is what you'll use to tell this view controller what to display. You also created
a showsFavorites property that you'll use to let this view controller know if it's showing the list of favorites
instead of just a list of fonts in a family since this will be useful later. You'll use the cel1PointSize property
to hold the preferred display size for displaying each font, once again using UIFont to find the preferred size.
Finally, cellIdentifier is the identifier used for the table view cells in this controller.

To initialize the cel1PointSize property and set the table view’s estimated row height, add the code in
Listing 9-5 to the viewDidLoad() method.

Listing 9-5. Your viewDidLoad Method for the FontListViewController.swift File

override func viewDidlLoad() {
super.viewDidLoad()

let preferredTableViewFont =

UIFont.preferredFont(forTextStyle: UIFontTextStyleHeadline)
cellPointSize = preferredTableViewFont.pointSize
tableView.estimatedRowHeight = cellPointSize

The next thing you want to do is create a little utility method for choosing the font to be shown in each
row, similar to what you have in RootViewController. Here it’s a bit different, though. Instead of holding
onto a list of font families in this view controller, you're holding onto a list of font names in the fontNames
property. You'll use the UIFont class to get each named font, like this:

func fontForDisplay(atIndexPath indexPath: NSIndexPath) -> UIFont {
let fontName = fontNames[indexPath.row]
return UIFont(name: fontName, size: cellPointSize)!

Now it’s time for a small addition in the form of a viewWillAppear () implementation. In
RootViewController, you implemented this method in case the list of favorites might change, requiring a
refresh. The same applies here. This view controller might be showing the list of favorites, and the user might
switch to another view controller, change a favorite (you'll get there later), and then come back here. You
need to reload the table view then, and this method takes care of that, as shown in Listing 9-6.

Listing 9-6. Refreshing the View in Case Something Changes

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear (animated)
if showsFavorites {
fontNames = FavoritesList.sharedFavoritesList.favorites
tableView.reloadData()

The basic idea is that this view controller, in normal operation, is passed a list of font names before it
displays and that the list stays the same the whole time this view controller is around. In one particular case
(which you'll see later), this view controller needs to reload its font list.

Moving on, you can delete the numberOfSectionsInTableView() method entirely. You'll have only one
section here, and just skipping that method is the equivalent of implementing it and returning 1. Next, you
implement the two other main data source methods, as shown in Listing 9-7.

324

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Listing 9-7. Your dataSource Methods

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
// Return the number of rows in the section.
return fontNames.count

}

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

let cell = tableView.dequeueReusableCell(
withIdentifier: FontlListViewController.cellIldentifier,
for: indexPath)

cell.textlLabel?.font = fontForDisplay(atIndexPath: indexPath)
cell.textlLabel?.text = fontNames[indexPath.row]
cell.detailTextLabel?.text = fontNames[indexPath.row]

return cell

Neither of these methods really needs any explanation because they are similar to what you used in
RootViewController, but they're even simpler.

You'll add some more to this class later, but first let’s see it in action. To make this happen, you'll need to
configure the storyboard some more and then make some modifications to RootViewController. Switch to
Main.storyboard to get started.

Creating the Font List Storyboard

The storyboard currently contains a table view controller that displays the list of font families, embedded
inside a navigation controller. You need to add one new layer of depth to incorporate the view controller that
will display the fonts for a given family. Find a table view controller in the Object Library and drag one into
the editing area, to the right of the existing table view controller. Select the new table view controller and use
the Identity Inspector to set its class to FontListViewController. Select the prototype cell in the table view
and open the Attributes Inspector to make some adjustments. Change its Style to Subtitle, its Identifier to
FontName, and its Accessory to Detail Disclosure. Using the detail disclosure accessory will let rows of this
type respond to two kinds of taps so that users can trigger two different actions, depending on whether they
tap the accessory or any other part of the row.

One way to make a user action in one view controller cause the instantiation and display of another
view controller is to create a seque connecting the two of them. This is probably an unfamiliar word for many
people, so let’s get this out of the way: segue essentially means “transition.” It is sometimes used by writers
and filmmakers to describe making a smooth movement from one paragraph or scene to the next. Apple
could have been a little straightforward and just called it a transition; but since that word appears elsewhere
in the UIKit APIs, maybe Apple decided to use a distinct term to avoid confusion. I should also mention
here that the word segue is pronounced exactly the same as the name of the Segway personal transportation
product (and now you know why the Segway is called what it is).

Often, segues are created entirely within Interface Builder. The idea is that an action in one scene can
trigger a segue to load and display another scene. If you're using a navigation controller, the segue can push
the next controller onto the navigation stack automatically. You'll be using this functionality in your app,
starting right now.

325

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

For the cells in the root view controller to make the font list view controller appear, you need to create a
couple of segues connecting the two scenes. This is done simply by Control-dragging from the first of the two
prototype cells in the Fonts scene to the new scene; you'll see the entire scene highlight when you drag over
it, indicating it’s ready to connect, as shown in Figure 9-9.

B R a4 M 8 = c @ B < > BFoms:rons) B Meiustoryeard) [l Manstoryocerd tBased) [Fonts Scene 3 () Fonts)| | Table view) |1 Famiyhame CaY De@a$01 D
v B Foris Takle Visw Csl
¥ [Fonta St | Sumaitle 8
+ ApcDelogate switt mege -]
Main.storyboard
9 Assets.massets : ekt
LaunchEarean. storytoard Belesties | Datault B
o &8 Fomt List Virw Gorralie:
Infn.pist = = Accewiory | Disclosurs Indicator]
e Protatyge Colls R T B
. . Fonts Tite 0
+ RootviewControlar.swit o L Foous Sake | Dafault B
2 FomaListvewConirolar ewift Pratotype Calls
nasrastion] 102
» | Products Tus Lol Wit
a 1 iesen: Whis Egitng
Favorites Shows Re-order Controls
Saparaty | Dafaut nsets B
e
Content Mo | Scale To Fll B
Semantic | Urepecitied B8
-t T [
Iteraction) User Interaction Enabled
Multipio Toush
Achs 12
+ Bacegroun B
Tont | B | et %]
Srewng B Opesws
B Clears Orahics Context
) ciip To Bowds
O0eao

Tabie View Cantroller - &
‘Gantrosior that ranages 3 lasle viow,

. Collection View Controller - &
contraer thal raages 8 colestion

Tab Bar Controllar - 4 centraler
1ha manages st o visw coamers
) View as: iPhone Bs («C <R e B o had that remariimet s b o

& OE = e 0 = f Z|0D P g Feata BY | & e

Figure 9-9. Creating a show segue from the font list controller to the font names controller

Release the mouse button and select Show from the Selection Segue section of the pop-up menu that
appears. Now do the same for the other prototype cell. Creating these segues means that as soon as the user
taps any of these cells, the view controller at the other end of the connection will be allocated and made

ready.

Making the Root View Controller Prepare for Segues

Save your changes and switch back to RootViewController.swift. Note that I'm not talking about your
latest class, FontListViewController, butinstead its “parent” controller. This is the place where you'll
need to respond to the user’s touches in the root table view by preparing the new FontListViewController
(specified by one of the segues you just created) for display and by passing it the values it needs to display.

The actual preparation of the new view controller is done using the prepareForSegue(_:sender:)
method. Add an implementation of this method, as shown in Listing 9-8.

326

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Listing 9-8. Preparing the New View Controller for Display
// MARK: - Navigation

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
// Get the new view controller using [segue destinationViewController].
// Pass the selected object to the new view controller.
let indexPath = tableView.indexPath(for: sender as! UITableViewCell)!
let 1listVC = segue.destinationViewController as! FontListViewController

if indexPath.section == 0 {
// Font names list
let familyName = familyNames[indexPath.row]
listVC.fontNames = (UIFont.fontNames(forFamilyName: familyName) as [String]).sorted()
listVC.navigationItem.title = familyName
listVC.showsFavorites = false

} else {
// Favorites list
listVC.fontNames = favoriteslList.favorites
listVC.navigationItem.title = "Favorites"
listVC.showsFavorites = true

This method uses the sender (the UITableViewCell that was tapped) to determine which row was
tapped and asks the segue for its destinationViewController, which is the FontListViewController
instance that is about to be displayed. You then pass some values along to the new view controller,
depending on whether the user tapped a font family (section 0) or the favorites cell (section 1). As well as
setting the custom properties for the target view controller, you also access the controller’s navigationItem
property to set its title. The navigationItem property is an instance of UINavigationItem, which is a UIKit
class that contains information about what should be displayed in the navigation bar for any given view
controller.

Now run the app. You'll see that touching the name of any font family shows you a list of all the
individual fonts it contains (see Figure 9-10). Furthermore, you can tap the Fonts label in the header of the
fonts list navigation controller to go back to its parent controller to select another font.

327

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Carrier & 11:54 AM L

¢ Fonts American Typewriter

AmericanTypewriter (D
1| AmericanTypewriter .
AmericanTypewriter-Bold @
AmericanTypewriter-Bold
AmericanTypewriter-Condensed @
AmericanTypewriter-Condensed
AmericanTypewriter-CondensedBold @
AmericanTypewriter-CondensedBold
AmerieanTypewriter-CondensedLight 'D
AmericanTypewriter-CondensedLight =
AmericanTypewriter-Light @

AmericanTypewriter-Light

AmericanTypewriter-Semibold @

AmericanTypewriter-Semibold

Figure 9-10. Showing the individual fonts contained in a font family

Creating the Font Sizes View Controller

What you'll notice, however, is that the app currently doesn’t let you go any further. Figures 9-4 and 9-5
show additional screens that let you view a chosen font in various ways; you're not there yet. But soon,
you will be! Let’s create the view shown in Figure 9-4, which shows multiple font sizes at once. Using the
same steps as you used to create FontListViewController, add a new view controller that subclasses
UITableViewController and name it FontSizesViewController. The only parameter this class will need
from its parent controller is a font. You'll also need a couple of private properties.

For starters, switch to FontSizesViewController.swift and go ahead and delete the
didReceiveMemoryWarning and numberOfSectionsInTableView: methods, along with all of the
commented-out methods at the bottom. Again, you're not going to need any of those. Now add the following
properties at the top of the class definition:

import UIKit
class FontSizesViewController: UITableViewController {
var font: UIFont!
private static let pointSizes: [CGFloat] = [
9, 10, 11, 12, 13, 14, 18, 24, 36, 48, 64, 72, 96, 144
]

private static let cellldentifier = "FontNameAndSize"

328

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

The font property will be set by FontListViewController before it pushes this view controller onto
the navigation controller’s stack. The pointSizes property is an array of point sizes in which the font will be
displayed. You also need the following utility method, which gets a version of a font with a given size, based
on a table row index:

func fontForDisplay(atIndexPath indexPath: NSIndexPath) -> UIFont {
let pointSize = FontSizesViewController.pointSizes[indexPath.row]
return font.withSize(pointSize)

You also need to set the table view’s estimatedRowHeight property so that the table will automatically
calculate the correct row heights for each row based on what it contains. To do that, add the following line to
the viewDidLoad() method:

tableView.estimatedRowHeight = FontSizesViewController.pointSizes[0]

It doesn’t actually matter what value you assign to this property, so let’s arbitrarily choose to use the
smallest font point size that the table will need to display.

For this view controller, you're going to skip the method that lets you specify the number of sections to
display since you're going to just use the default number (1). However, you must implement the methods for
specifying the number of rows and the content of each cell. Listing 9-9 shows these two methods.

Listing 9-9. The dataSource Methods for the FontSizeViewController Table View

// MARK: - Table view data source

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return FontSizesViewController.pointSizes.count
}

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
let cell = tableView.dequeueReusableCell(
withIdentifier: FontSizesViewController.cellldentifier,
for: indexPath)

cell.textlLabel?.font = fontForDisplay(atIndexPath: indexPath)
cell.textlLabel?.text = font.fontName
cell.detailTextLabel?.text =

"\ (FontSizesViewController.pointSizes[indexPath.row]) point"
return cell

There’s really nothing in any of these methods you haven’t seen before, so let’s move on to setting up
the storyboard for your user interface.

329

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Creating the Font Sizes View Controller Storyboard

Go back toMain.storyboard and drag another table view controller into the editing area. Use the Identity
Inspector to set its class to FontSizesViewController. You'll need to make a segue connection from its
parent, the FontListViewController. So, find that controller and Control-drag from its prototype cell to
the newest view controller and then select Show from the Selection Segue section of the pop-up menu
that appears. Next, select the prototype cell in the new scene you just added and then use the Attributes
Inspector to set its Style to Subtitle and its Identifier to FontNameAndSize.

Implementing the Font Sizes View Controller Prepare for Segue

Now, just like the last time you extended your storyboard’s navigation hierarchy, you need to jump up to the
parent controller so that it can configure its child. That means you need to go to FontListViewController.
swift and implement the prepareForSegue(_:sender:) method, as shown in Listing 9-10.

Listing 9-10. The FontListViewsController’s preparedForSeque Method
// MARK: - Navigation

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
// Get the new view controller using [segue destinationViewController].
// Pass the selected object to the new view controller.
let tableViewCell = sender as! UITableViewCell
let indexPath = tableView.indexPath(for: tableViewCell)!
let font = fontForDisplay(atIndexPath: indexPath)

let sizesVC = segue.destinationViewController as! FontSizesViewController
sizesVC.title = font.fontName
sizesVC.font = font

That probably all looks pretty familiar by now, so I won’t dwell on it further.
Run the app, select a font family, and select a font (by tapping a row anywhere except the accessory on
the right); you'll now see the multisize listing shown in Figure 9-11.

330

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Carrier ¥ 12:52 PM L1

(Back AcademyEngravedLetPlain h
Academy Esygraved LetPlain |
9.0 point
AcademyEngravedLetPlain
10.0 point
AcademyEngravedLetPlain
1.0 point
AcademyEngravedLetPlain
12.0 point
AcademyEngraved LetPlain
13.0 point
AcademyEngravedLetPlain
14.0 point
Academ'_-.'Engravcc]Lr:iI‘]ain
18.0 point
AcademyEngravedLetPlain
24.0 point
AcademyEngravedL...
36.0 point

AcademyEngr. ..

48,0 point

i o

Figure 9-11. Your multisize table view list

Creating the Font Info View Controller

The final view controller you're going to create is the one shown in Figure 9-5. This one isn’t based on a table
view. Instead, it features a large text label, a slider for setting text size, and a switch for toggling whether the
font that it uses should be included in the list of favorites. Create a new Cocoa Touch class in your project
using UIViewController as the superclass and then name it FontInfoViewController. Like most of the
other controllers in this app, this one needs to have a couple of parameters passed in by its parent controller.
Enable this by defining these properties and four outlets that you'll use when you construct the user
interface in FontInfoViewController.swift:

class FontInfoViewController: UIViewController {
var font: UIFont!
var favorite: Bool = false
@IBOutlet weak var fontSampleLabel: UILabel!
@IBOutlet weak var fontSizeSlider: UISlider!
@IBOutlet weak var fontSizelLabel: UILabel!
@IBOutlet weak var favoriteSwitch: UISwitch!

Next, implement viewDidLoad() and a pair of action methods that will be triggered by the slider and
switch, respectively, as shown in Listing 9-11.

331

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Listing 9-11. Your viewDidLoad(), slider, and switch Methods

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
fontSamplelLabel.font = font
fontSamplelabel.text =
"AaBbCcDdEeFfGgHhIiJjKkL1IMmNnOoPpQgRrSsTtUUVV"
+ "WwXxYyZz 0123456789"
fontSizeSlider.value = Float(font.pointSize)
fontSizelabel.text = "\(Int(font.pointSize))"
favoriteSwitch.isOn = favorite
}
@IBAction func slideFontSize(slider: UISlider) {
let newSize = roundf(slider.value)
fontSamplelLabel.font = font.withSize(CGFloat(newSize))
fontSizelabel.text = "\(Int(newSize))"

@IBAction func toggleFavorite(sender: UISwitch) {
let favoriteslist = FavoriteslList.sharedFavoriteslList
if sender.isOn {
favoriteslList.addFavorite(fontName: font.fontName)
} else {
favoriteslList.removeFavorite(fontName: font.fontName)
}

}

These methods are all pretty straightforward. The viewDidLoad() method sets up the display based on
the chosen font; slideFontSize() changes the size of the font in the fontSampleLabel label based on the
value of the slider; and toggleFavorite() either adds the current font to the favorites list or removes it from
the favorites list, depending on the value of the switch.

Creating the Font Info View Controller Storyboard

Now head back over to Main.storyboard to build the GUI for this app’s final view controller. Use the Object
Library to find a plain view controller. Drag it into the editing area and use the Identity Inspector to set its class
to FontInfoViewController. Next, use the Object Library to find some more objects and drag them into your
new scene. You need three labels, a switch, and a slider. Lay them out roughly as shown in Figure 9-12. Don’t
worry about adding Auto Layout constraints yet—you’ll do that later.

332

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

opo
[+1]
o
@

u]

ooo

Include in Favorites (,
22

Figure 9-12. Label, switch, and slider layout

Notice that I left some space above the upper label since you're going to end up having a navigation bar
up there. Also, you want the upper label to be able to display long pieces of text across multiple lines, but by
default the label is set to show only one line. To change that, select the label, open the Attributes Inspector,
and set the number in the Lines field to 0.

Figure 9-12 also shows changed text in the lower two labels. Go ahead and make the same changes
yourself. What you can’t see here is that the Attributes Inspector was used to right-align the text in both of
them. You should do the same since they will both have layout constraints that essentially tie them to their
right edges. Also, select the slider at the bottom and then use the Attributes Inspector to set its Minimum to 1
and its Maximum to 200.

Now it’s time to wire up all the connections for this GUI. Start by selecting the view controller and
opening the Connections Inspector. When you have so many connections to make, the overview shown
by that inspector is pretty nice. Make connections for each of the outlets by dragging from the small circles
next to favoriteSwitch, fontSamplelabel, fontSizeLabel, and fontSizeSlider to the appropriate
objects in the scene. In case it's not obvious, fontSampleLabel should be connected to the label at the top,
fontSizelabel to the label at the bottom right, and the favoriteSwitch and fontSizeSlider outlets to the
only places they can go. To connect the actions to the controls, you can continue to use the Connections
Inspector. In the Received Actions section of the Connections Inspector for the view controller, drag from the
little circle next to slideFontSize: over to the slider, release the mouse button, and select Value Changed
from the context menu that appears. Next, drag from the little circle next to toggleFavorite: over to the
switch and again select Value Changed. The connections should look as shown in Figure 9-13.

333

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

| Triggered Segues
S rantal ci
Qutlets

| favoritaSwitch (% Faveorite Switch (@)

Dem (fontSampleLabel —(Font Sample La. @)
- (fentsizeLanel J—(* Font Size Lacel (@)

[tontSizeshider ~{(* Font Size Slider (8}

searchDisplayCantroller
(view % View

@0

Presenting Segues
Relationship
Show
Show Detail
Present Modally
Prosent As Popover
Embed
Push [deprecated]
Maodal (deprecated]

Custom

Label

Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Refarencing Outlet Collection

O O DOOCODODOCOO

Received Actions

((HideFontSizaNithsll__}—{ % Font Size Siider %
= = = Value Changed

(toggleFavariteWiths. . ® Faverite Switch q
Valug Changed

Include in Favorites (/‘
22

Figure 9-13. The completed connections for your Font Info View Controller storyboard

One more thing you need to do here is create a segue so that this view can be shown. Remember that
this view is going to be displayed whenever a user taps the detail accessory (the little blue “i” in a circle)
when the font list view controller is displayed. So, find that controller, Control-drag from its prototype cell to
the new font info view controller you've been working on, and select Show from the Accessory Action section
of the context menu that appears. Note that I just said Accessory Action, not Selection Segue (see Figure 9-14).
The accessory action is the segue that is triggered when the user taps the detail accessory, whereas the
selection segue is the segue that is triggered by a tap anywhere else in the row. You already set this cell’s

selection segue to open a FontSizesViewController.

334

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

R aa o B 5 < & Forts Fonts | [Mainstorybosrd | [Main st..rd (Dese!) [Fent Lis..er Scene) (1) Fomt Lis..ontrofler Tebile View Ferthame € 4 3
v B Fonts
v Forts
+ AgcDelegeie swift
Mein.storyboard
Assaty consets
LaunchScreen. storyboard
Info.ofist
- Favoritesdist.owift
+ RoctViewControlerswit
- FortList¥iewControler,swift
- FortSizesViewControber swift
B FotinfoviewCentroller. swift
* Products

Prwsstyas Cats -

D iaw ss: IPhane 68 (~C -R} 50%

5= [D o < Fonts

1wt Outpat 3 S B0 E @ e

Figure 9-14. Setting the accessory action show segue

Now you have two different segues that can be triggered by touches in different parts of a row. Since
these will present different view controllers, with different properties, you need to have a way to differentiate
them. Fortunately, the UIStoryboardSegue class, which represents a segue, has a way to accomplish this:
you can use an identifier, just as you do with table view cells.

All you have to do is select a segue in the editing area and use the Attributes Inspector to set its
identifier. You may need to shift your scenes around a bit so that you can see both of the segues that are
snaking their way out of the right side of the font list view controller. Select the one that’s pointing at the font
sizes view controller and set its Identifier to ShowFontSizes. Next, select the one that’s pointing at the Font
Info View Controller and set its Identifier to ShowFontInfo, as shown in Figure 9-15.

335

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

| Storyboard Segue
Identifier ShowFontinfo
Class o ﬂ
—
| Module ﬁ
Kind Show (e.g. Push) %]
/ Animates

Peek & Pop Preview & Commit Segues

’ Include in f

Prototype-Calls ‘ Prototype Cells

Title a | Tite
Sublitle

Figure 9-15. Identifying the segues

Setting Up Constraints

Setting up that segue lets Interface Builder know that your new scene will be used within the context of

the navigation controller like everything else, so it automatically receives a blank navigation bar at the top.
Now that the real confines of your view are in place, it’s a good time to set up the constraints. This is a fairly
complex view with several subviews, especially near the bottom, so you can’t quite rely on the system’s
automatic constraints to do the right thing for you. You'll use the Pin button at the bottom of the editing area
and the pop-up window it triggers to build most of the constraints you'll need.

Start with the uppermost label. If you placed it too close to the top, first drag it down until it’s a
comfortable distance below the navigation bar. Click Pin, and then, in the pop-up window, select the little
red bars above, to the left, and to the right of the little square—but not the one below it. Now click the Add 3
Constraints button at the bottom.

Next, select the slider at the bottom and click the Pin button. This time, select the red bars below, to the
left, and to the right of the little square—but not the one above it. Again, click Add 3 Constraints to put them
in place.

For each of the two remaining labels and for the switch, follow this procedure: select the object, click
Pin, select the red bars below and to the right of the little square, turn on the check boxes for Width and
Height, and, finally, click Add 4 Constraints. Setting those constraints for all three of those objects will bind
them to the lower-right corner.

There’s just one more constraint to make. You want the top label to grow to contain its text but to never
grow so large that it overlaps the views at the bottom. You can accomplish this with a single constraint.
Control-drag from the upper label to the “Include in favorites” label, release the mouse button, and select
Vertical Spacing from the context menu that appears. Next, click the new constraint to select it (it’s a blue
vertical bar connecting the two labels) and open the Attributes Inspector, where you'll see some configurable
attributes for the constraint. Change the Relation pop-up to Greater Than or Equal and then set the Constant
value to 10. That ensures that the expanding upper label won’t push past the other views at the bottom.

336

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Adapting the Font List View Controller for Multiple Segues

Now head back over to good old FontListViewController.swift. Since this class will now be able to trigger
segues to two different child view controllers, you need to adapt the prepareForSegue(_:sender:) method,

as shown in Listing 9-12.

Listing 9-12. Handling Multiple Segues
// MARK: - Navigation

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
// Get the new view controller using [segue destinationViewController].
// Pass the selected object to the new view controller.
let tableViewCell = sender as! UITableViewCell
let indexPath = tableView.indexPath(for: tableViewCell)!
let font = fontForDisplay(atIndexPath: indexPath)

if segue.identifier == "ShowFontSizes" {

let sizesVC = segue.destinationViewController as! FontSizesViewController

sizesVC.title = font.fontName
sizesVC.font = font
} else {

let infoVC = segue.destinationViewController as! FontInfoViewController

infoVC.title = font.fontName

infoVC.font = font

infoVC.favorite =
Favoriteslist.sharedFavoriteslList.favorites.contains(font.fontName)

Build and run the app to see how things worked out. Select a font family that contains many fonts

(for example, Gill Sans) and then tap the middle of the row for any font. You'll be taken to the same list you
saw earlier, which shows the font in multiple sizes. Press the navigation button at the upper left (it’s labeled

Gill Sans) to go back and then tap another row; however, this time tap on the right side where the detail

accessory is shown. This should bring up the final view controller, which shows a sample of the font with a

slider at the bottom that lets you pick whatever size you want.

Also, you can now use the “Include in favorites” switch to mark this font as a favorite. Do that and then

hit the navigation button at the top-left corner a couple of times to get back to the root controller view.

Creating My Favorite Fonts

Scroll down to the bottom of the root view controller and you'll see something new: the My Favorite Fonts

section is now there. Selecting it shows you a list of all the favorite fonts that have been selected so far, as

shown in Figure 9-16.

337

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Carrier = 2:21PM -

£ Fonts Favorites
ArialMT |

N
(=)

ArialMT
SinhalaSangamMN-Bold)
SinhalaSangamMN-Bold i

Arial-BolditalicMT
Arial-BolditalicMT

~
el

(_.

Figure 9-16. The list of favorite fonts selected so far

Adding Features

Now the basic functionality of your app is complete. But before you can really call it a day, there are a couple
more features you should implement. If you've been using iOS for a while, you're probably aware that you
can often delete a row from a table view by swiping from right to left. For example, in Mail you can use this
technique to delete a message in a list of messages. Performing this gesture brings up a small GUI, right
inside the table view row. This GUI asks you to confirm the deletion, and then the row disappears and the
remaining rows slide up to fill the gap. That whole interaction—including handling the swipe, showing the
confirmation GUI, and animating any affected rows—is taken care of by the table view itself. All you need to
do is implement two methods in your controller to make it happen.

Also, the table view provides easy-to-use functionality that lets the user reorder rows within a table
view by dragging them up and down. As with swipe-to-delete, the table view takes care of the entire user
interaction for you. All you have to do is one line of setup (to create a button that activates the reordering
GUI) and then implement a single method that is called when the user has finished dragging.

Implementing Swipe-to-Delete

In this app, the FontListViewController class is a typical example of where this feature should be
used. Whenever the app is showing the list of favorites, you should let the user delete a favorite
with a swipe, saving them the step of tapping the detail accessory and then turning off the switch.

338

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Select FontListViewController.swift in Xcode to get started. Start by adding an implementation of the
tableView(_ :canEditRowAt: indexPath:) method.

override func tableView(_ tableView: UITableView, canEditRowAt indexPath: IndexPath) -> Bool {
return showsFavorites
}

That method will return true if it's showing the list of favorites, and false otherwise. This means that
the editing functionality that lets you delete rows is enabled only while displaying favorites. If you were to try
to run the app and delete rows with just this change, you wouldn’t see any difference. The table view won’t
bother to deal with the swipe gesture because it sees that you haven’t implemented the other method that is
required to complete a deletion. So, let’s put that in place, too. Add an implementation for the tableView(:
commitEditingStyle:forRowAtIndexPath:) method, as shown in Listing 9-13.

Listing 9-13. Allowing the Deletion of Rows from Your Favorites List

override func tableView(tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {
if !showsFavorites {
return
}

if editingStyle == UITableViewCellEditingStyle.delete {
// Delete the row from the data source
let favorite = fontNames[indexPath.row]
FavoriteslList.sharedFavoriteslList.removeFavorite(fontName: favorite)
fontNames = Favoriteslist.sharedFavoriteslList.favorites

tableView.deleteRows(at: [indexPath],
with: UITableViewRowAnimation.fade)

This method is called when an editing action in the table is being completed. It’s pretty straightforward, but
there are some subtle things going on. The first thing you do is check to make sure you're showing the favorites
list, and if not, you just bail. Normally, this should never happen since you specified with the previous method
that only the favorites list should be editable. Nevertheless, you're doing a bit of defensive programming here.
After that, you check the editing style to make sure that the particular edit operation you're going to conclude
really was a deletion. It’s possible to do insertion edits in a table view but not without additional setup that you're
not doing here, so you don’t need to worry about that case. Next, you determine which font should be deleted,
remove it from your FavoritesList singleton, and update your local copy of the favorites list.

Finally, you tell the table view to delete the row and make it disappear with a visual fade animation. It’s
important to understand what happens when you tell the table view to delete a row. Intuitively, you might think
that calling that method would delete some data, but that’s not what happens. In fact, you've already deleted
the data! This final method call is really your way of telling the table view, “Hey, I've made a change, and I want
you to animate away this row. Ask me if you need anything more.” When that happens, the table view will start
animating any rows that are below the deleted row by moving them up, which means that it’s possible that one
or more rows that were previously off-screen will now come on-screen, at which time it will indeed ask the
controller for cell data via the usual methods. For that reason, it’s important that your implementation of the
tableView(:commitEditingStyle:forRowAtIndexPath:) method makes necessary changes to the data
model (in this case, the FavoritesList singleton) before telling the table view to delete a row.

339

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

Build and run the app again, make sure you have some favorite fonts set up, and then go into the
Favorites list and delete a row by swiping from right to left. The row slides partly off-screen, and a Delete
button appears on the right (see Figure 9-17). Tap the Delete button so that the row disappears.

Carrier ¥ 2:46 PM -
| £ Fonts Favorites J
| ArialMT ~ . |
! AriaIMT ®
SinhalaSangamMN-Bold O

L SinhalaSangamMN-Bold
dl

ol ©

Figure 9-17. A favorite font row with the Delete button showing

Implementing Drag-to-Reorder

The final feature you're going to add to the font list will let users rearrange their favorites just by dragging
them up and down. To accomplish this, you're going to add one method to the FavoritesList class, which
will let you reorder its items however you want. Open FavoriteslList.swift and add the following method:

func moveItem(fromIndex from: Int, toIndex to: Int) {
let item = favorites[from]
favorites.remove(at: from)
favorites.insert(item, at: to)
saveFavorites()

340

CHAPTER 9 © ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

This new method provides the underpinnings for what you're going to do. Now select
FontListViewController.swift and add the following lines at the end of the viewDidLoad method:

if showsFavorites {
navigationItem.rightBarButtonItem = editButtonItem()
}

I've mentioned the navigation item. It’s an object that holds the information about what should appear
in the navigation bar for a view controller. It has a property called rightBarButtonItemthat can hold an
instance of UIBarButtonItem, a special sort of button meant only for navigation bars and toolbars. Here,
you're pointing that at editButtonItem, a property of UIViewController that gives you a special button item
that'’s preconfigured to activate the table view’s editing/reordering GUI.

With that in place, try running the app again and go into the Favorites list. You'll see that there’s now
an Edit button in the upper-right corner. Pressing that button toggles the table view’s editing GUI, which
right now means that each row acquires a delete button on the left, while its content slides a bit to the right
to make room (see Figure 9-18). This enables yet another way that users can delete rows, using the same
methods you already implemented.

Carrier = 3:15 PM L

< Fonts Favorites Done L
' ArialMT
| 2 ArialMT

SinhalaSangamMN-Bold
SinhalaSangamMN-Bold

Verdana
Verdana

MarkerFelt-Wide
MarkerFelt-Wide

Figure 9-18. You're added the Edit feature in your favorites table

341

CHAPTER 9 * ADDING NAVIGATION CONTROLLERS TO TABLE VIEWS

But your main interest here is in adding reordering functionality. For that, all you need to do is add the
following method in FontListViewController.swift:

override func tableView(_ tableView: UITableView, moveRowAt sourceIndexPath: IndexPath, to
destinationIndexPath: IndexPath) {
Favoriteslist.sharedFavoritesList.moveItem(fromIndex: sourceIndexPath.row,
toIndex: destinationIndexPath.row)
fontNames = FavoriteslList.sharedFavoriteslList.favorites:

This method is called as soon as the user finishes dragging a row. The arguments tell you which row was
moved and where it ended up. All you do here is tell the FavoriteslList singleton to do the same reordering
of its content and then refresh your list of font names, just as you did after deleting an item. To see this in
action, run the app, go into the Favorites list, and tap the Edit button. You'll see that the edit mode now
includes little “dragger” icons on the right side of each row, which you can use to rearrange items.

Summary

Although you worked a lot with table views in this chapter, your focus was really on the use of navigation
controllers and how you drill down into hierarchical content in a limited-width space as you might have on
most iPhone devices, especially in portrait orientation.

You created a font list view application that showed you not only how to drill down into more detailed
views but how to handle multiple segues from a single table view cell as you did with looking at either font
sizes or font information.

Finally, you looked at tweaking your table views a bit to include the capabilities of deleting and moving
rows within the view.

342

CHAPTER 10

Collection Views

For years, i0S developers used the UITableView component to create a huge variety of interfaces. With

its ability to let you define multiple cell types, create them on the fly as needed, and handily scroll them
vertically, UITableView became a key component of thousands of apps. While Apple has increased the
capability of table views with every major new iOS release, it’s still not the ultimate solution for all large
sets of data. If you want to present data in multiple columns, for example, you need to combine all the
columns for each row of data into a single cell. There’s also no way to make a UITableView scroll its content
horizontally. In general, much of the power of UITableView came with a particular trade-off: developers
have no control of the overall layout of a table view. You define the look of each individual cell, but the cells
are just going to be stacked on top of each other in one big scrolling list.

In i0S 6, Apple introduced a new class called UICollectionView addressing these shortcomings.
Similar to a table view, UICollectionView allows you to display a bunch of “cells” of data and handles
functionality such as queuing up unused cells to use later. But unlike a table view, UICollectionView
doesn’t lay these cells out in a vertical stack for you. In fact, UICollectionView doesn’t lay them out at all.
Instead, UICollectionView uses a helper class to do layout.

Creating the DialogViewer Project

Let’s start by talking about UICollectionView. To show some of its capabilities, you're going to use it to lay
out some paragraphs of text. Each word will be placed in a cell of its own, and all the cells for each paragraph
will be clustered together in a section. Each section will also have its own header. This may not seem too
exciting, considering that UIKit already contains other perfectly good ways of laying out text. However, this
process will be instructive anyway, since you'll get a feel for just how flexible this thing is. You certainly
wouldn't get very far doing something like Figure 10-1 with a table view.

© Molly K. Maskrey 2017 343
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_10

https://doi.org/10.1007/978-1-4842-3072-5_10

CHAPTER 10 © COLLECTION VIEWS

Carrier ¥
irst Witch

Hey, when will the three of us meet
up later?

econd Witch

When everything's straightened out.

hird Witch

That'll be just before sunset.

irst Witch

Where?

econd Witch
The dirt patch.

hird Witch

| guess we'll see Mac there.

Figure 10-1. Each word is a separate cell, with the exception of the headers, which are, well, headers. All of
this is laid out using a single UICollectionView and no explicit geometry calculations of your own.

To make this work, you'll define a couple of custom cell classes, you'll use
UICollectionViewFlowLayout (the one and only layout helper class included in UIKit at this time), and, as
usual, you'll use your view controller class to make it all come together.

Use Xcode to create a new application with the Single View App template, as you've done many times
by now. Name your project DialogViewer and use the standard settings you've used throughout the book
(set Language to Swift and choose Universal for Devices). Open ViewController.swift and change its
superclass to UICollectionView.

class ViewController: UICollectionViewController {

Open Main.storyboard. You need to set up the view controller to match what you just specified in
ViewController.swift. Select the one and only view controller in the Document Outline and delete it,
leaving an empty storyboard. Now use the Object Library to locate a collection view controller and drag it
into the editing area. If you examine the Document Outline, you'll see that the collection view controller
comes with a nested collection view. Its relation to the collection view is very much like the relationship
between UITableViewController and its nested UITableView. Select the icon for the collection view

344

CHAPTER 10 COLLECTION VIEWS

controller and use the Identity Inspector to change its class to ViewController, which you just made into

a subclass of UICollectionViewController. In the Attributes Inspector, ensure that the Is Initial View
Controller check box is selected. Next, select the collection view in the Document Outline and use the
Attributes Inspector to change its background color to white. Finally, you'll see that the collection view has a
child called Collection View Cell. This is a prototype cell that you can use to design the layout for your actual
cells in Interface Builder, just like you have been doing with table view cells. You're not going to do that in
this chapter, so select that cell and delete it.

Defining Custom Cells

Now let’s define some cell classes. As you saw in Figure 10-1, you're displaying two basic kinds of cells:
a “normal” one containing a word and another that is used as a sort of header. Any cell you're going to
create for use in a UICollectionView needs to be a subclass of the system-supplied UICollectionViewCell
class, which provides basic functionality similar to UITableViewCell. This functionality includes a
backgroundView, a contentView, and so on. Because your two types of cell will have some shared
functionality, you'll actually make one a subclass of the other and use the subclass to override some of the
functionality of the base class.

Start by creating a new Cocoa Touch class in Xcode. Name the new class ContentCell and make
ita subclass of UICollectionViewCell. Select the new class’s source file and add declarations for three
properties and a stub for a class method, as shown in Listing 10-1.

Listing 10-1. Your ContentCell Class Definition

class ContentCell: UICollectionViewCell {
var label: UILabel!
var text: String!
var maxWidth: CGFloat!

class func sizeForContentString(s: String,
forMaxWidth maxWidth: CGFloat) -» CGSize {
return CGSize.zero

The label property will point at a UILabel. You'll use the text property to tell the cell what to display
and the maxWidth property to control the cell’s maximum width. You'll use the sizeForContentString(_:
forMaxWidth:) method—which you'll implement shortly—to ask how big the cell needs to be to display a
given string. This will come in handy when creating and configuring instances of your cell classes.

Now add overrides of the UIView init(frame:) and init(coder:) methods, as shown in Listing 10-2.

Listing 10-2. Init Override Routines for Your Cell ContentCell Class

override init(frame: CGRect) {
super.init(frame: frame)
label = UILabel(frame: self.contentView.bounds)
label.isOpaque = false
label.backgroundColor =
UIColor(red: 0.8, green: 0.9, blue: 1.0, alpha: 1.0)
label.textColor = UIColor.black()
label.textAlignment = .center
label.font = self.dynamicType.defaultFont()
contentView.addSubview(label)

345

CHAPTER 10 COLLECTION VIEWS

required init?(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)
}

The code in Listing 10-2 is pretty simple. It creates a label, sets its display properties, and adds the label
to the cell’s contentView. The only mysterious thing here is that it uses the defaultFont () method to get a
font, which is used to set the label’s font. The idea is that this class should define which font will be used for
displaying content, while also allowing any subclasses to declare their own display font by overriding the
defaultFont() method. We haven'’t created the defaultFont () method yet, so let’s do so.

class func defaultFont() -» UIFont {
return UIFont.preferredFontForTextStyle(UIFontTextStyleBody)
}

It’s pretty straightforward. It uses the preferredFontForTextStyle() method of the UIFont class to get
the user’s preferred font for body text. The user can use the Settings app to change the size of this font. By
using this method instead of hard-coding a font size, you make your apps a bit more user-friendly. Notice
how this method is called:

label.font = self.dynamicType.defaultFont()

The defaultFont() method is a type method of the ContentCell class. To call it, you would normally
use the name of the class, like this:

ContentCell.defaultFont()

In this case, that won’t work—if this call is made from a subclass of ContentCell (such as the HeaderCell
class that you will create shortly), you want to actually call the subclass’ override of defaultFont(). To do
that, you need a reference to the subclass’s type object. That’s what the expression self.dynamicType gives
you. If this expression is executed from an instance of the ContentCell class, it resolves to the type object
of ContentCell, and you'll call the defaultFont () method of that class; but in the HeaderCell subclass, it
resolves to the type object for HeaderCell, and you'll call HeaderCell’s defaultFont () method instead, which
is exactly what you want. To finish off this class, let’s implement the method that you added a stub for earlier,
the one that computes an appropriate size for the cell, as shown in Listing 10-3.

Listing 10-3. Compute an Approximate Cell Size

class func sizeForContentString(s: String,
forMaxWidth maxWidth: CGFloat) -»> CGSize {
let maxSize = CGSize(width: maxWidth, height: 1000.0)
let opts = NSStringDrawingOptions.usesLineFragmentOrigin

let style = NSMutableParagraphStyle()

style.lineBreakMode = NSLineBreakMode.byCharWrapping

let attributes = [NSFontAttributeName: defaultFont(),
NSParagraphStyleAttributeName: style]

let string = s as NSString
let rect = string.boundingRect(with: maxSize, options: opts,

attributes: attributes, context: nil)

return rect.size

346

CHAPTER 10 COLLECTION VIEWS

The method in Listing 10-3 does a lot of things, so it’s worth walking through it. First, you declare
a maximum size so that no word will be allowed to be wider than the value of the maxWidth argument,
which will be set from the width of the UICollectionView. You also create a paragraph style that allows for
character wrapping, so in case your string is too big to fit in your given maximum width, it will wrap around
to a subsequent line. You also create an attributes dictionary that contains the default font you defined for
this class and the paragraph style you just created. Finally, you use some NSString functionality provided in
UIKit that lets you calculate sizes for a string. We pass in an absolute maximum size and the other options
and attributes that you set up, and you get back a size.

All that's left for this class is some special handling of the text property. Instead of letting this use an
implicit instance variable as you normally do, you're going to define methods that get and set the value
based on the UILabel you created earlier, basically using the UILabel as storage for the displayed value. By
doing so, you can also use the setter to recalculate the cell’s geometry when the text changes. Replace the
definition of the text property in ContentCell. swift with the code in Listing 10-4.

Listing 10-4. The Text Property Definition in the ContentCell.swift File

var label: UILabel!
var text: String! {
get {
return label.text

set(newText) {
label.text = newText
var newlLabelFrame = label.frame
var newContentFrame = contentView.frame
let textSize = type(of: self).sizeForContentString(s: newText,
forMaxWidth: maxWidth)
newLabelFrame.size = textSize
newContentFrame.size = textSize
label.frame = newlLabelFrame
contentView.frame = newContentFrame

The getter is nothing special, but the setter is doing some extra work. Basically, it's modifying the frame
for both the label and the content view, based on the size needed for displaying the current string.

That’s all you need for your base cell class. Now let’s make a cell class to use for a header. Use
Xcode to make another new Cocoa Touch class, naming this one HeaderCell and making it a subclass of
ContentCell. Let’s open HeaderCell. swift and make some changes. All you're going to do in this class is
override some methods from the ContentCell class to change the cell’s appearance, making it look different
from the normal content cell, as shown in Listing 10-5.

Listing 10-5. The HeaderCell Class
class HeaderCell: ContentCell {

override init(frame: CGRect) {
super.init(frame: frame)
label.backgroundColor = UIColor(red: 0.9, green: 0.9,
blue: 0.8, alpha: 1.0)
label.textColor = UIColor.black()

347

CHAPTER 10 COLLECTION VIEWS

required init?(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)
}

override class func defaultFont() -> UIFont {
return UIFont.preferredFont(forTextStyle: UIFontTextStyleHeadline)
}

That’s all you should have to do to give the header cell a distinct look, with its own colors and font.

Configuring the View Controller

Select ViewController.swift and start by declaring an array to contain the content you want to display, as
shown in Listing 10-6.

Listing 10-6. Your Content to Be Displayed— Place This in the ViewController.swift File

private var sections = [
["header": "First Witch",
"content" : "Hey, when will the three of us meet up later?”],
["headexr" : "Second Witch",
"content" : "When everything's straightened out."],
["headexr" : "Third Witch",
"content” : "That'll be just before sunset.”],
["header” : "First Witch",
"content" : "Where?"],
["headexr” : "Second Witch",
"content" : "The dirt patch."],
["headexr” : "Third Witch",
"content” : "I guess we'll see Mac there."]

The sections array contains a list of dictionaries, each of which has two keys: header and content.
You'll use the values associated with those keys to define your display content.

Much like UITableView, UICollectionView lets you register the class of a reusable cell based on an
identifier. Doing this lets you call a dequeuing method later, when you're going to provide a cell. If no cell is
available, the collection view will create one for you—just like UITableView. Add this line to the end of the
viewDidLoad() method to make this happen:

self.collectionView?.register(ContentCell.self, forCellWithReuseIdentifier: "CONTENT")

Since this application has no navigation bar, the content of the main view will be visible beneath the
status bar. To prevent that, add the following lines to the end of viewDidLoad():

var contentInset = collectionView!.contentInset

contentInset.top = 20
collectionView!.contentInset = contentInset

348

CHAPTER 10 COLLECTION VIEWS

That's enough configuration in viewDidLoad() for now. Before you get to the code that populates
the collection view, you need to write one little helper method. All of your content is contained in lengthy
strings, but you're going to need to deal with them one word at a time to be able to put each word into a
cell. So, let’s create an internal method of your own to split those strings apart. This method takes a section
number, pulls the relevant content string from your section data, and splits it into words.

func wordsInSection(section: Int) -> [String] {
let content = sections[section]["content"]
let spaces = NSCharacterSet.whitespacesAndNewlines
let words = content?.components(separatedBy: spaces)
return words!

Providing Content Cells

Now it’s time to create the group of methods that will actually populate the collection view. These next
three methods are all defined by the UICollectionViewDataSource protocol, which is adopted by the
UICollectionViewController class. The UICollectionViewController assigns itself as the data source of
its nested UICollectionView, so these methods will be called automatically by the UICollectionView when
it needs to know about its content.

First, you need a method to let the collection view know how many sections to display:

override func numberOfSections(in collectionView: UICollectionView) -» Int {
return sections.count
}

Next, you have a method to tell the collection how many items each section should contain. This uses
the wordsInSection() method you defined earlier.

override func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection
section: Int) -> Int {

let words = wordsInSection(section: section)

return words.count

Listing 10-7 shows the method that actually returns a single cell, configured to contain a single word.
This method also uses your wordsInSection() method. As you can see, it uses a dequeuing method on
UICollectionView, similar to the one in UITableView. Since you've registered a cell class for the identifier
you're using here, you know that the dequeuing method always returns an instance.

Listing 10-7. Setting Up the Collection View Cell

override func collectionView(collectionView: UICollectionView, cellForItemAt indexPath:
IndexPath) -> UICollectionViewCell {
let words = wordsInSection(section: indexPath.section)

let cell = collectionView.dequeueReusableCell(
withReuseIdentifier: "CONTENT", for: indexPath) as! ContentCell
cell.maxWidth = collectionView.bounds.size.width
cell.text = words[indexPath.row]
return cell

349

CHAPTER 10 COLLECTION VIEWS

Judging by the way that UITableView works, you might think that at this point you'd have something
that works, in at least a minimal way. Build and run the app. You'll see that you're not really at a useful point
yet, as shown in Figure 10-2.

Carrier ¥ 10:47 AM -

Hey, when will the three of
us meet up later?

(When everythiistraighteout.|

That'll be just before sunset.
\Where?

[The dirt patch.

[guess we'll see Mac there.

Figure 10-2. Not quite what you're looking for...yet

You can see some of the words, but there’s no “low” going on here. Each cell is the same size, and
everything is all jammed together. The reason for this is that you have some collection view delegate
responsibilities you have to take care of to make things work.

350

CHAPTER 10 COLLECTION VIEWS

Creating the Layout Flow

Until now, you've been dealing with the UICollectionView, but this class has a sidekick that takes care of
the actual layout. UICollectionViewFlowLayout, which is the default layout helper for UICollectionView,
includes delegate methods of its own that it will use to try to pull out more information from you. You're
going to implement one of these right now. The layout object calls this method for each cell to find out how
large it should be. Here you're once again using your wordsInSection() method to get access to the word in
question and then using a method you defined in the ContentCell class to see how large it needs to be.

When the UICollectionViewController is initialized, it makes itself the delegate of its
UICollectionView. The collection view’s UICollectionViewFlowLayout will treat the view controller as its
own delegate if it declares that it conforms to the UICollectionViewDelegateFlowlLayout protocol. The first
thing you need to do is change the declaration of your view controller in ViewController.swift so that it
declares conformance to that protocol.

class ViewController: UICollectionViewController,
UICollectionViewDelegateFlowLayout {

All of the methods of the UICollectionViewDelegateFlowLayout protocol are optional, and you need
to implement only one of them. Add the method in Listing 10-8 to ViewController.swift.

Listing 10-8. Resizing the Cells Using the UICollectionViewDelegateFlowLayout Protocol

func collectionView(collectionView: UICollectionView,
layout collectionViewlayout: UICollectionViewlayout,
sizeForItemAtIndexPath indexPath: NSIndexPath) -> CGSize {
let words = wordsInSection(indexPath.section)
let size = ContentCell.sizeForContentString(words[indexPath.row],
forMaxWidth: collectionView.bounds.size.width)
return size

Now build and run the app again. You'll see that you've taken a step forward, as shown in Figure 10-3.

351

CHAPTER 10 COLLECTION VIEWS

Carrier & :_?'.29 AM _-
Hey, when will the three of us meet upI

later?

When everything's straightened out.
That'll be just before sunset.
Where?

The dirt patch.

| guess we'll see Mac there.

Figure 10-3. Your paragraph flow begins taking shape

You can see that the cells are now flowing and wrapping around so that the text is readable and that the
beginning of each section drops down a bit. But each section is jammed really tightly against the ones before
and after it. They're also pressing all the way out to the sides, which doesn’t look too nice. Let’s fix that by
adding a bit more configuration. Add these lines to the end of the viewDidLoad() method:

let layout = collectionView!.collectionViewLayout
let flow = layout as! UICollectionViewFlowLayout
flow.sectionInset = UIEdgeInsetsMake(10, 20, 30, 20)

Here you're grabbing the layout object from your collection view. You assign this first to a temporary
variable, which will be inferred to be of type UICollectionViewLayout. You do this primarily to highlight
apoint: UICollectionView knows only about this generic layout class, but it’s really using an instance of
UICollectionFlowLayout, which is a subclass of UICollectionViewlLayout. Knowing the true type of the layout
object, you can use a typecast to assign it to another variable of the correct type, enabling you to access properties
that only that subclass has. In this case, you use the sectionInset property to tell the UICollectionViewLayout to
leave some empty space around each item in the collection view. In this case, that means there will now be a little
space around every word, as you'll see if you run the example again (see Figure 10-4).

352

CHAPTER 10 * COLLECTION VIEWS
Carrier & 7:36 AM -
Hey, when will the three of us meet
up later?
When everything's straightened out.
That'll be just before sunset.
Where?

The dirt patch.

| guess we'll see Mac there.

Figure 10-4. Things are much less cramped

Implementing the Header Views

The only thing missing now is the display of your header objects, so it’s time to fix that. You will recall that
UITableView has a system of header and footer views, and it asks for those specifically for each section.
UICollectionView has made this concept a bit more generic, allowing for more flexibility in the layout. The
way this works is that, along with the system of accessing normal cells from the delegate, there is a parallel
system for accessing additional views that can be used as headers, footers, or anything else. Add this bit of
code to the end of viewDidLoad() to let the collection view know about your header cell class:

self.collectionView?.register(HeaderCell.self,
forSupplementaryView0OfKind: UICollectionElementKindSectionHeader,
withReuseIdentifier: "HEADER")

As you can see, in this case not only are you specifying a cell class and an identifier, but you're also
specifying a “kind.” The idea is that different layouts may define different kinds of supplementary views
and may ask the delegate to supply views for them. UICollectionFlowLayout is going to ask for one section
header for each section in the collection view, which you'll supply, as shown in Listing 10-9.

353

CHAPTER 10 COLLECTION VIEWS

Listing 10-9. Getting Your Header Cell View

override func collectionView(collectionView: UICollectionView,
viewForSupplementaryElementOfKind kind: String, at indexPath: IndexPath) ->
UICollectionReusableView {
if (kind == UICollectionElementKindSectionHeader) {
let cell =
collectionView.dequeueReusableSupplementaryView(
ofKind: kind, withReuseIdentifier: "HEADER",
for: indexPath) as! HeaderCell
cell.maxWidth = collectionView.bounds.size.width
cell.text = sections[indexPath.section]["header"]
return cell

abort()

Note the abort () call at the end of this method. This function causes the application to terminate
immediately. It’s not the sort of thing you should use frequently in production code. Here, you only expect
to be called to create header cells, and there is nothing you can do if you are asked to create a different kind
of cell—you can’t even return nil because the method’s return type does not permit it. If you are called to
create a different kind of header, it’s a programming error on your part or a bug in UIKit.

Build and run. You'll see...wait! Where are those headers? As it turns out, UICollectionFlowlLayout
won't give the headers any space in the layout unless you tell it exactly how large they should be. So, go back
to viewDidLoad() and add the following line at the end:

flow.headerReferenceSize = CGSize(width: 100, height: 25)

Build and run once more. You'll see the headers in place, as Figure 10-1 showed earlier and Figure 10-5
shows again.

354

CHAPTER 10 © COLLECTION VIEWS

First Witch
Hey, whan wil the three of us meet
up later?

Second Witch

When everything's straightened out.
Third Witch

That'll be st before sunset.
First Witch

Whare?
Second Witch

The dirl polch.

Third Wilch

| guess vel see Mac there

iPhone 7 - i0S 11.0

Figure 10-5. The completed DialogViewer app

Summary

In this chapter, I've really just touched on UICollectionView and what can be accomplished with the default
UICollectionFlowLayout class. You can get even fancier with it by defining your own layout classes, but that
is a topic for another book.

Stack views are something else you should look into when considering applications using collection
views. They may offer an alternative approach that could save you time. As this book is tending to get larger
and larger with the new Swift, Xcode, and i0S features, I'm leaving stack views as an exercise for you.

355

CHAPTER 11

Split Views and Popovers for
IPad Apps

Chapter 9 dealt with app navigation based on selections in table views, where each selection causes the
top-level view, which filled the entire screen, to slide left and bring in the next view in the hierarchy. Many
iPhone and iPod touch apps work this way such as Mail, which lets you drill down through mail accounts
and folders until you make your way to the message. Although this approach works on the iPad, it leads to a
user interaction problem.

On a screen the size of the iPhone or iPod touch, having a screen-sized view slide away to reveal another
screen-sized view works well. But with an iPad, that same interaction can seem less smooth, perhaps a little
exaggerated, and even a little overwhelming. Consuming such a large display with a single table view wastes
space. As a result, you'll see that the built-in iPad apps don’t behave this way. Instead, any drill-down navigation
functionality, like that used in Mail, becomes relegated to a narrow column whose contents slide left or right as
the user drills down into or backs out of the hierarchy. With the iPad in landscape mode, the navigation column
stays at a fixed position on the left, with the content of the selected item displayed on the right in what's known as
a split view (see Figure 11-1), and applications built this way are called master-detail applications.

e — | —
= = S \
Mailboxes [i
Al Inbeoes
&5 Yahoo!
* VIF i
B o=
=
I o[L]
Updeind 3 wimeins)
p ——

Figure 11-1. This iPad, in landscape mode, shows a split view with the navigation column on the left. Tap an
item in the navigation column, and that item’s content displays in the area on the right.

© Molly K. Maskrey 2017 357
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_11

https://doi.org/10.1007/978-1-4842-3072-5_11
http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Split view provides a perfect visual for developing master-detail applications like Mail. Prior to iOS 8,
the split view class, UISplitViewController, was available only on the iPad, meaning that if you wanted to
build a universal master-detail application, you had to do it one way on the iPad and another way on the
iPhone. Now, with UISplitViewController available everywhere, you no longer need to write special code
to handle the iPhone.

When used on the iPad, the left side of the split view provides a width of 320 points by default. The split
view itself, with navigation and content side by side, typically appears only in landscape mode. If you turn
the device to portrait orientation, the split view still functions, but it’s no longer visible in the same way.
The navigation view loses its permanent location. It can be activated only by swiping in from the left side
of the view or by pressing a toolbar button, causing it to slide in from the left in a view that floats in front of
everything else on the screen, as shown in Figure 11-2.

/ ﬁ
[
iPag = | 206 PM Bax =D |
Mailboxes Edit &

£ Allinboxes 3

£4 Yahoo! 3

* VIP O]

ACCOUNTS

g Gmail

n ‘Yahoo! 3

essage Selected

Updated Just Mow

-

Figure 11-2. Split view on an iPad in portrait mode appears differently from landscape mode, in that the
information from the left side of the split view in landscape mode appears only when the user swipes in from
the left or taps a toolbar button

358

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Some applications don't strictly follow this rule such as the iPad Settings app, which uses a split view
visible all the time. The left side neither disappears nor covers the content view on the right. But for this
chapter’s project, you'll stick to the standard usage pattern.

You'll create a master-detail application using a split view controller, and then you'll test the application
on the iPad simulator. But when it’s finished, you’ll see that the same code also works on the iPhone,
although it doesn’t quite look the same. You'll learn how to customize the split view’s appearance and
behavior and create and display a popover that’s like the one that you saw in Chapter 4 when I discussed
alert views and action sheets. Unlike the popover in Figure 4-29, which wrapped an action sheet, this one
will contain content that is specific to the example application—specifically, a list of presidents, as shown in
Figure 11-3.

— L —
Carier % 2P 100 - \
Presidents Abraham Lincoln Choose Language
George Washington hitoijenaskpedinonaivi English
John Adams = French

Thomas Jefferson J German
Abraham Lincoln
James Madison Spanish
s i Amoncan prosidont. For o8her Lses, sww susaiems Lurer —
James Monroe
John Quincy Adams Abraham Lincoln

Andrew Jackson
Martin Van Buren

William Henry Harrison

John Tyler

James K. Polk

Zachary Taylor

Millard Fillmore Lincoin in 1885, aged 54
Franklin Pierce 16ith President of the United States

In office
James Buchanan March 4, 1881 - Apel 15, 1885)

Wicn Presidents Hannibal Hamiin {1801 -1885]

;_— ——

Figure 11-3. A popover visually appears to sprout from the button that triggered it

Building Master-Detail Applications with
UISplitViewController

You're going to start off with an easy task: taking advantage of one of Xcode’s predefined templates to create
a split view project. You'll build an app that lists all the U.S. presidents and shows the Wikipedia entry for
whichever one you select.

Open Xcode and select File » New » Project. From the iOS Application section, select Master-Detail
Application and click Next. On the next screen, name the new project Presidents, set Language to Swift, and
set Devices to Universal. Make sure that all of the check boxes are deselected. Click Next, choose the location
for your project, and then click Create. Xcode will do its usual thing, creating a handful of classes and a
storyboard file for you, and then showing the project. If it's not already open, expand the Presidents folder
and take a look at what it contains.

359

http://dx.doi.org/10.1007/978-1-4842-3072-5_4
http://dx.doi.org/10.1007/978-1-4842-3072-5_4#Fig29

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

From the start, the project contains an app delegate (as usual), a class called MasterViewController,
and a class called DetailViewController. Those two view controllers represent, respectively, the views
that will appear on the left and right sides of the split view in landscape orientation. MasterViewController
defines the top level of a navigation structure, and DetailViewController defines what'’s displayed in the
larger area when a navigation element is selected. When the app launches, both of these are contained
inside a split view, which, as you may recall, does a bit of shape-shifting as the device is rotated.

To see what this particular application template gives you in terms of functionality, build the app and
run it in the iPad simulator. If the application launches into portrait mode, you'll see just the detail view
controller, as shown on the left in Figure 11-4. Tap the Master button on the toolbar or swipe from the left
edge of the view to the right to slide in the master view controller over the top of the detail view, as shown on
the right in Figure 11-4.

Carriee ¥ 230 aM oo || Cavir T Xt 100 -

£ Master Detail Ecit Master t Datail

Detai viewr corfent goes here Bvigw content goes here

4

Figure 11-4. The default master-detail application in portrait mode. The layout on the right is similar to
Figure 11-2.

360

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Rotate the simulator left or right, into landscape orientation. In this mode, the split view works by
showing the navigation view on the left and the detail view on the right, as shown in Figure 11-5.

Carrigr ¥

Edit

B840 AM 100%

Master + Detail

Detail view content goes here

Figure 11-5. The default master-detail application in landscape mode. Note the similar layouts shown in this
figure and Figure 11-1

Understanding How the Storyboard Defines the Structure

From the onset, you have a pretty complex set of view controllers in play.

A split view controller that contains all the elements
A navigation controller to handle what’s happening on the left side of the split

A master view controller (displaying a master list of items) inside the navigation
controller

A detail view controller on the right

Another navigation controller as a container for the detail view controller on the right

In the default master-detail application template that you used, these view controllers are set up and
interconnected in the main storyboard file, rather than in code. Apart from doing GUI layout, Interface
Builder functions as a way of letting you connect different components without writing a bunch of code
establishing relationships. Let’s look at the project’s storyboard to see how things are set up.

SelectMain.storyboard to open it in Interface Builder. This storyboard really has a lot of stuff going on.
You'll definitely want to open the Document Outline for the best results, as shown in Figure 11-6. Zooming
out can also help you see the big picture.

361

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

» [§ Ay Presicents | il Ped Air Runsing Presidects on Pad A
B € > (B Presigents | 1) Presidets) . Mainaterybosrd § [0 Manstoryocend mBaseh [Spl view Comtrolier Soems Spit View Controler
w [vaster 5cona
* L) Master - e
@ Fret Awspender
[Exit

) Rustionahip oot view cenreBer, e

¥ [ootal Sone
» () Detsd
) Fres Aospendar
[Exit
« [spiit view Controlier Scene [« IONC] + PR e [
Bl View Comtrolier | 8 B
i Fesa Aesponder e,
[et i [P
Saeryeaied Beary Beist cesen
Realiorahip "raster view comrel > eforonting Outlats
Foationship “cetal view controior... | N Ratwrarcing et
W s s
) Master
I Fest Rospender
Fxit
‘Ghow Dutall sopus *showDatal” to..
w £ Mavigation Controller Scene
¥ (&) Navigation Contreer

1 Fieat Reapender | [
(=10
Aationship "ot Vew controler_.
DO®ao
T | View Controller - & contrabe: that
maeages s view.
Staryboard Refurance - oo s
plscehsider for g view soatslier i on
anearal sy e
., Havigation Controller - &
| coniraber that meeages aasgation
) Fhar) View as: iPhone &s («C #R) — 50% + [= T rcuah a Hearchy of views.
o o i 2@ % F | rreicents B D i

Figure 11-6. Main.storyboard open in Interface Builder. This complex object hierarchy can be best viewed
using the Document Outline on the left.

To get a better sense of how these controllers relate to one another, open the Connections Inspector,
and then spend some time clicking each of the view controllers in turn. Here’s a quick summary of what
you'll find:

e TheUISplitViewController has relationship segues called master view controller
and detail view controller to two UINavigationControllers. These are used to tell
the UISplitViewController what it should use for the narrow strip it displays on
the left (the master view controller) and for the larger display area (the detail view
controller).

e TheUINavigationController linked via the master view controller segue has
aroot view controller relationship to its own root view controller, which is the
MasterViewController class generated by the template. The master view controller
is a subclass of UITableViewController, which you should be familiar with from
Chapter 9.

e Similarly, the other UINavigationController has a root view controller relationship
to the detail view controller, which is the template’s DetailVIewController class.
The detail view controller generated by the template is a plain UIViewController
subclass, but you are at liberty to use any view controller that meets your
application’s requirements.

e There is a storyboard segue from the cells in the master view controller to the detail
view controller, of type showDetail. This segue causes the item in the clicked cell to
be shown in the detail view. You'll learn more about this later when you take a more
detailed look at the master view controller.

362

http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

At this point, the content of Main.storyboard provides a definition of how the app’s various controllers
are interconnected. As in most cases where you're using storyboards, this eliminates a lot of code, which is
usually a good thing.

Understanding How Code Defines the Functionality

One of the main reasons for keeping the view controller interconnections in a storyboard is that they don’t
clutter up your source code with configuration information that doesn’t need to be there. What's left is just
the code that defines the actual functionality. Let’s look at what you have as a starting point. Xcode defined
several classes for you when the project was created. You're going to peek into each of them before you start
making any changes.

Creating the App Delegate

First up is AppDelegate.swift, the application delegate. Its source file starts something like Listing 11-1.

Listing 11-1. AppDelegate.swift
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, UISplitViewControllerDelegate {

var window: UIWindow?

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
// Override point for customization after application launch.
let splitViewController = self.window!.rootViewController as! UISplitViewController
let navigationController = splitViewController.viewControllers[splitViewController.
viewControllers.count-1] as! UINavigationController
navigationController.topViewController!.navigationItem.leftBarButtonItem =
splitViewController.displayModeButtonItem()
splitViewController.delegate = self
return true

}

Let’s look at the last part of this code first:
splitViewController.delegate = self;

This line sets the UISplitViewController’s delegate property, pointing it at the application delegate
itself. But why make this connection here in code, instead of having it hooked up directly in the storyboard?
After all, just a few paragraphs ago, you were told that elimination of boring code—“connect this thing to
that thing” —is one of the main benefits of both XIBs and storyboards. And you've hooked up delegates in
Interface Builder plenty of times, so why can’t you do that here?

To understand why using a storyboard to make the connections can’t really work here, you need to
consider how a storyboard differs from a XIB file. A XIB file is really a frozen object graph. When you load
a XIB into a running application, the objects it contains all “thaw out” and spring into existence, including
all the interconnections specified in the file. The system creates a fresh instance of every single object in

363

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

the file, one after another, and connects all the outlets and connections between objects. A storyboard,
however, is something more than that. You could say that each scene in a storyboard corresponds roughly

to a XIB file. When you add in the metadata describing how the scenes are connected via segues, you end

up with a storyboard. However, unlike a single XIB, a complex storyboard is not normally loaded all at once.
Instead, any activity that causes a new scene to be activated will end up loading that particular scene’s frozen
object graph from the storyboard. This means that the objects you see when looking at a storyboard won’t
necessarily all exist at the same time.

Since Interface Builder has no way of knowing which scenes will coexist, it actually forbids you from
making any outlet or target/action connections from an object in one scene to an object in another scene. In
fact, segues are the only connection that it allows you to make from one scene to another.

You can try this for yourself. First, select the split view controller in the storyboard (you'll find it within
the dock in the split view controller scene). Now bring up the Connections Inspector and try to drag a
connection from the delegate outlet to another view controller or object. You can drag all over the layout
view and the list view, and you won'’t find any spot that highlights (which would indicate it was ready to
accept a drag). The only way to make this connection is in code. All in all, this extra bit of code is a small
price to pay, considering how much other code is eliminated by your use of storyboards.

Now let’s rewind and look at what happens at the start of the application(_:didFinishLaunchingWith
Options:) method:

let splitViewController = self.window!.rootViewController as! UISplitViewController

This grabs the window’s rootViewController, which is the one indicated in the storyboard
by the free-floating arrow. If you look back at Figure 11-6, you'll see that the arrow points at your
UISplitViewController instance. This code comes next:

let navigationController = splitViewController.viewControllers[splitViewController.
viewControllers.count-1] as! UINavigationController

On this line, you dig into the UISplitViewController’s viewControllers array. When the split view is
loaded from the storyboard, this array has references to the navigation controllers, wrapping the master and
detail view controllers. You grab the last item in this array, which points to the UINavigationController for
your detail view. Finally, you see this:

navigationController.topViewController!.navigationItem.leftBarButtonItem =
splitViewController.displayModeButtonItem()

This assigns the displayModeButtonItem of the split view controller to the navigation bar of the detail
view controller. The displayModeButtonItemis a bar button item that is created and managed by the split
view itself. This code is actually adding the Master button that you can see on the navigation bar on the left
in Figure 11-4. On the iPad, the split view shows this button when the device is in portrait mode and the
master view controller is not visible. When the device rotates to landscape orientation or the user presses the
button to make the master view controller visible, the button is hidden.

Creating the Master View Controller

Now, let’s take a look at MasterViewController, which controls the setup of the table view containing the
app’s navigation. Listing 11-2 shows the code from the top of the file MasterViewController.swift.

364

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Listing 11-2. MasterViewController.swift

import UIKit
class MasterViewController: UITableViewController {

var detailViewController: DetailViewController? = nil
var objects = [AnyObject]()

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
self.navigationItem.leftBarButtonItem = self.editButtonItem()

let addButton =
UIBarButtonItem(barButtonSystemItem: .add, target: self, action:
#selector(insertNewObject(:)))
self.navigationItem.rightBarButtonItem = addButton
if let split = self.splitViewController {
let controllers = split.viewControllers
self.detailViewController = (controllers[controllers.count-1] as!
UINavigationController).topViewController as? DetailViewController

}

The main point of interest here is the viewDidLoad() method. In previous chapters, when you
implemented a table view controller that responded to a user row selection, you typically created a new
view controller and pushed it onto the navigation controller’s stack. In this app, however, the view controller
you want to show is already in place, and it will be reused each time the user makes a selection on the left.
It's the instance of DetailViewController contained in the storyboard file. Here, you're grabbing that
DetailViewController instance and saving it in a property, anticipating that you'll want to use it later,
although this property is not used in the rest of the template code.

The viewDidLoad() method also adds a button to the toolbar. This is the + button that you can see on
the right of master view controller’s navigation bar in Figure 11-4 and Figure 11-5. The template application
uses this button to create and add a new entry to the master view controller’s table view. Since you don’t
need this button in your Presidents application, you'll be removing this code shortly.

There are several more methods included in the template for this class, but don’t worry about those
right now. You're going to delete some of those and rewrite the others, but only after taking a look at the
detail view controller.

Creating the Detail View Controller

The final class created for you by Xcode is DetailViewController, which takes care of the actual display of
the item the user chooses from the table in the master view controller. Listing 11-3 shows what you'll find in
DetailViewController.swift.

365

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Listing 11-3. DetailViewController.swift

import UIKit
class DetailViewController: UIViewController {
@IBOutlet weak var detailDescriptionLabel: UILabel!

func configureView() {
// Update the user interface for the detail item.
if let detail = self.detailltem {
if let label = self.detailDescriptionlabel {
label.text = detail.description
}

}

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
self.configureView()

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}
var detailIltem: NSDate? {
didSet {
// Update the view.
self.configureView()
}
}

The detailDescriptionlabel property is an outlet that connects to a label in the storyboard. In the
template application, the label simply displays a description of the object in the detailItem property. The
detailItem property itself is where the view controller stores its reference to the object that the user selected
in the master view controller. Its property observer (the code in the didSet block), which is called after its
value has been changed, calls configureView(), another method that’s generated for you. All it does is call
the description method of the detail object and then uses the result to set the text property of the label in
the storyboard.

func configureView() {
// Update the user interface for the detail item.
if let detail = self.detailltem {
if let label = self.detailDescriptionlabel {
label.text = detail.description
}

366

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

The description method is implemented by every subclass of NSObject. If your class doesn’t override
it, it returns a default value that’s probably not very useful. However, in the template code, the detail objects
are all instances of the NSDate class, and NSDate’s implementation of the description method returns the
date and time, formatted in a generic way.

Understanding How the Master-Detail Template Application Works

Now you've seen all of the pieces of the template application, but you're probably still not very clear on how
it works, so let’s run it and take a look at what it actually does. Run the application on an iPad simulator and
rotate the device to landscape mode so that the master view controller appears. You can see that the label

in the detail view controller currently has the default text that’s assigned to it in the storyboard. What you're
going to see in this section is how the act of selecting an item in the master view controller causes that text to
change. There currently aren’t any items in the master view controller. To fix that, press the + button at the
top right of its navigation bar a few times. Every time you do that, a new item is added to the controller’s table
view, as shown in Figure 11-7.

Carrier ¥ 8:30 AM 100%

Edit Master e Detail
2016-07-13 15:30:23 +0000
2016-07-1315:29:53 +0000
2016-07-13 15:29:51 +0000

Detail view content goes here

Figure 11-7. The template application with an item selected in the master view controller and displayed in
the detail view controller

All of the items in the master view controller table are dates. Select one of them, and the label in the detail
view updates to show the same date. You've already seen the code that does this—it’s the configureView
method in DetailViewController.swift, which is called when a new value is stored in the detail view
controller’s detailItem property. What is it that causes a new value of the detailItem property to be set?

Take a look back at the storyboard in Figure 11-6. There’s a segue that links the prototype table cell in the
master view controller’s table cell to the detail view controller. If you click this segue and open the Attributes
Inspector, you'll see that this is a Show Detail segue with the identifier showDetail, as shown in Figure 11-8.

367

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

' [2] Master Scene) (<) Show Detail segue "showDetail" to "Navigation Controller” O &= ¥ 3 @
. [[T éStoryhoardSegue

Identifier showDetail

Class o

Module

Kind Show Detail (e.g. Replace)
Animates

Peek & Pop | Preview & Commit Segues

\l; ©)

Haigation Cantecller Detal

Detail

Figure 11-8. The Show Detail segue linking the master and detail view controllers

As you saw in Chapter 9, a segue that’s linked to a table view cell is triggered when that cell is selected,
so when you select a row in the master view controller’s table view, iOS performs the Show Detail segue, with
the navigation controller wrapping the detail view controller as the segue destination. This causes two things
to happen.

e A new instance of the detail view controller is created, and its view is added to the
view hierarchy.

e The prepareForSegue(_:sender:) method in the master view controller is called.

The first step takes care of making sure the detail view controller is visible. In the second step, your
master view controller needs to display the object selected in the master view controller in some way.
Here’s how the template code in MasterViewController.swift handles this, as shown in Listing 11-4.

Listing 11-4. The MasterViewcontroller.swift File’s prepare(forSegue:)
// MARK: - Segues

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
if segue.identifier == "showDetail" {
if let indexPath = self.tableView.indexPathForSelectedRow {
let object = objects[indexPath.row] as! NSDate
let controller = (segue.destinationViewController as! UINavigationController).
topViewController as! DetailViewController
controller.detailltem = object
controller.navigationItem.leftBarButtonItem = self.splitViewController?.
displayModeButtonItem()
controller.navigationItem.leftItemsSupplementBackButton = true

}

368

http://dx.doi.org/10.1007/978-1-4842-3072-5_9

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

First, the segue identifier is checked to make sure that it’s the one that is expected and that the NSDate
object from the selected object in the view controller’s table is obtained. Next, the master view controller
finds the DetailViewController instance from the topViewController property of the destination view
controller in the segue that caused this method to be called. Now that you have both the selected object and
the detail view controller, all you have to do is set the detail view controller’s detailItem property to cause
the detail view to be updated. The final two lines of the prepare(forSegue:) method add the display
mode button to the detail view controller’s navigation bar. When the device is in landscape mode, this
doesn’t do anything because the display mode button isn’t visible, but if you rotate to portrait orientation,
you'll see that the button (it's the Master button) appears.

So, now you know how the selected item in the master view controller gets displayed in the detail
view controller. Although it doesn’t look like much is going on here, in fact there is a great deal happening
under the hood to make this work correctly on both the iPad and the iPhone, in portrait and landscape
orientations. The beauty of the split view controller is that it takes care of all the details and leaves you free to
worry about how to implement your custom master and detail view controllers.

That concludes the overview of what the Xcode Master-Detail Application template provides. It might
be a lot to understand at first, but, ideally, presenting it one piece at a time has helped you understand how
all the pieces fit together.

Adding the President Data

Now that you've seen the basic layout of your project, it’s time to fill in the blanks and turn the template
app into something all your own. Start by looking in the book’s source code archive, where the folder
Presidents Data contains a file called PresidentList.plist. Drag that file into your project’s Presidents
folder in Xcode to add it to the project, making sure that the check box telling Xcode to copy the file itself is
selected. This file contains information about all the U.S. presidents so far, consisting of just the name and
the Wikipedia entry URL for each of them.

Now, let’s look at the master view controller and see how you need to modify it to handle the
presidential data properly. It’s going to be a simple matter of loading the list of presidents, presenting them
in the table view, and passing a URL to the detail view for display. In MasterViewController.swift, start off
by adding the bold line shown here at the top of the class and removing the crossed-out line:

class MasterViewController: UITableViewController {
var detailViewController: DetailViewController? = nil

var presidents: [[String: String]]!

Now look at the viewDidLoad() method, where the changes are a little more involved (but still not too
bad). You're going to add a few lines to load the list of presidents and then remove a few other lines that set
up edit and insertion buttons in the toolbar, as shown in Listing 11-5.

Listing 11-5. The MasterViewController.swift viewDidLoad Method

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
let path = Bundle.main.path(forResource: "PresidentList", ofType: "plist")
let presidentInfo = NSDictionary(contentsOfFile: path)!
presidents = presidentInfo["presidents"]! as! [[String: String]]

369

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

if let split = self.splitViewController {
let controllers = split.viewControllers
self.detailViewController = (
controllers[controllers.count-1] as! UINavigationController).topViewController as?
DetailViewController

}
}
This code may be a little confusing at first.

let path = Bundle.main.path(forResource:"PresidentList", ofType: "plist")!
let presidentInfo = NSDictionary(contentsOfFile: path)!
presidents = presidentInfo["presidents"]! as! [[String: String]]

The Bundle.main pathForResource(:ofType:) method gets the path to the PresidentList.plist
file, the content of which is then loaded into an NSDictionary. This dictionary has one entry, with the
key presidents. The value of that entry is an array, which has one NSDictionary for each president; that
dictionary contains key-value pairs, where both the key and the value are strings. You cast the array to the
correct Swift type, [[String: String]], and assign it to the presidents variable.

This template-generated class also includes a method called insertNewObject() for adding items to
the objects array. You don’t even have that array anymore, so delete the entire method.

Also, you have a couple of data source methods that deal with letting users edit rows in the table view.
You're not going to allow any editing of rows in this app, so let’s just remove the canEditRowAt and commit
editingStyle: methods.

Now it’s time to get to the main table view data source methods, adapting them for your purposes. Let’s
start by editing the method that tells the table view how many rows to display.

override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return presidents.count
}

After that, edit the tableView(:cellForRowAtIndexPath:) method to make each cell display a
president’s name.

override func tableView(tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let president = presidents[indexPath.row]
cell.textlLabel!.text = president["name"
return cell

Finally, edit the prepareForSegue(_:sender:) method to pass the data for the selected president
(which, as described earlier, is a dictionary of type [String: String]) to the detail view controller, as in
Listing 11-6.

370

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Listing 11-6. The prepare (forSegue:) Method
// MARK: - Segues

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
if segue.identifier == "showDetail" {
if let indexPath = self.tableView.indexPathForSelectedRow {

let object = presidents[indexPath.row]

let controller = (segue.destinationViewController
as! UINavigationController).topViewController as! DetailViewController

controller.detailltem = object

controller.navigationItem.leftBarButtonItem =
self.splitViewController?.displayModeButtonItem()

controller.navigationItem.leftItemsSupplementBackButton = true

Note If your template for the DetailViewController.swift file’s detailItem method had the value
NSDate or similar, you should change it to AnyObject? to remove potential errors.

That’s all you need to do in the master view controller.

Next, select Main. storyboard, click the Master icon in the master scheme in the Document Outline to
select the master view controller (it’s the one on the right of the top row of the storyboard), double-click its
title bar, replace Master with Presidents, and save the storyboard.

At this point, you can build and run the app. Switch to landscape mode to bring up the master view
controller, showing a list of presidents, as in Figure 11-9. Tap a president’s name to display a not-very-useful
string in the detail view.

371

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Carmier ¥ 10:26 AM 100%

Presidents Detail

John Adams
Thomas Jefferson
James Madison
James Monroe
John Quincy Adams
Andrew Jackson
Martin Van Buren
William Henry Harrison
John Tyler

James K. Polk
Zachary Taylor
Millard Fillmore
Franklin Pierce
James Buchanan

Abraham Lincoln

Figure 11-9. Your first run of the app, showing a list of presidents in the master view controller, but nothing in
the detail view

Let’s finish this example by making the detail view do something a little more useful with the data that
it's given. Add the following line shown in bold to DetailViewContoller.swift to create an outlet for a web
view to display the Wikipedia page for the selected president:

class DetailViewController: UIViewController {
@IBOutlet weak var detailDescriptionLabel: UILabel!
@IBOutlet weak var webView: UIWebView!

Next, scroll down to the configureView() method and replace it with the code in Listing 11-7.

Listing 11-7. The configureView Method

func configureView() {
// Update the user interface for the detail item.
if let detail = self.detailltem {
if let label = self.detailDescriptionlabel {
let dict = detail as! [String: String]
let urlString = dict["url"]!
label.text = urlString

let url = NSURL(string: urlString)!

let request = URLRequest(url: url as URL)
webView.loadRequest(request)

372

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

let name = dict["name"]!
title = name

The detailItem that was set by the master view controller is a dictionary containing two key-value
pairs: one with a key name that stores the president’s name and another with a key url that gives the URL
of the president’s Wikipedia page. You use the URL to set the text of the detail description label and to
construct an URLRequest that the UIWebView will use to load the page. You use the name to set the detail view
controller’s title. When a view controller is a container in a UINavigationController, the value in its title
property is displayed in the navigation controller’s navigation bar. That’s all you need to get your web view to
load the requested page.

The final changes you need to make are in Main.storyboard. Open it for editing and find the detail
view at the lower right. Let’s first take care of the label in the GUI (the text of which reads “Detail view
content goes here”). Start by selecting the label. You might find it easiest to select the label in the Document
Outline, in the section labeled Detail Scene. Once the label is selected, drag it to the top of the window.
The label should run from the left-to-right blue guideline and fit snugly under the navigation bar (resize
it to make sure that is the case). This label is being repurposed to show the current URL. But when the
application launches, before the user has chosen a president, you want this field to give the user a hint
about what to do.

Double-click the label and change its text to Select a President. You should also use the Size
Inspector to make sure that the label’s position is constrained to both the left and right sides of its
superview, as well as the top edge, as shown in Figure 11-10. If you need to adjust these constraints,
use the methods described earlier to set them up. You can probably get almost exactly what you want
by selecting the label and then choosing Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints from the menu.

373

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

E 9 & DO

ird (Base)) [7] Detail Scene) | Detail)| View) L Detail Description Label oD e B ¢ 3 6
. Label
Preferred Wi... - Explicit
View
Show Frame Rectangle B
16 2 72
?ﬁ E X Y
343 |2 17 3
Width Height
Detail Arrange Position View B
. Layout Margins Default
g Select a resident g ~

Preserve Superview Margins
Follow Readable Width

Constraints

Ag

All This Size Class.

@ Trailing Space ta: Edit

@ Leading Space to: Edit

g Top Space to: Top Layout... Edit
Equals:

Showing 3 of 3

Content Huaaina Priority

Figure 11-10. The Size Inspector, showing the constraints settings for the “Select a President” label

Next, find a UIWebView in the Object Library and drag it into the space below the label you just moved.
After dropping the web view there, use the resize handles to make it fill the rest of the view below the label.
Make it go from the left edge to the right edge and from the blue guideline just below the bottom of the label
all the way to the very bottom of the window. Now use the Size Inspector to constrain the web view to the
left, bottom, and right edges of the superview, as well as to the label for the top edge. Once again, you can
probably get exactly what you need by selecting Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints from the menu.

Now select the master view controller in the Document Outline and open the Attributes Inspector.

In the View Controller section, change the title from Master to Presidents. This changes the title of the
navigation button at the top of the detail view controller to something more useful.

You have one last step to complete. To hook up the outlet for the web view that you created, Control-
drag from the Detail icon (the one immediately below the Detail Scene icon in the Document Outline) to
your new web view (same section, just below the label in the Document Outline, or in the storyboard) and
connect the webView outlet. Save your changes.

Now you can build and run the app. It will let you see the Wikipedia entries for each of the presidents,
as shown in Figure 11-11. Rotate the display between the two orientations. You'll see how the split view
controller takes care of everything for you, with a little help from the detail view controller.

374

CHAPTER 11 * SPLIT VIEWS AND POPOVERS FOR IPAD APPS

319 BM 100% - ¢

Presidents James Madison anguage

George Washington kipediaong/wiki/James_Madison

John Adams

Thomas Jefferson

n

James Monroe Jamas Madison {Zisambiguntion),

John Quincy Adams March B], 1751 - June 28, 1838} was an American
served a3 the fourth President of the United States

Andrew Jackson * "Father of the Constitution® for his pivotal role in

Martin Van Buren 1tes Constitution and the Bill of Rights

William Henry Harrison James Madison

John Tyler

James K. Polk

Zachary Taylor

Millard Fillmore

Franklin Pierce

James Buchanan

Abraham Lincoln Jamos Madison by John Vandarhyn, 1816

Andrew Johnson % i
Ath President of the United States

Ulysses 5. Grant In affice

Rutherford B.Hayes March 4, 1809 - March 4, 1817

Vice Prosident George Glintan (1209-1812)
James A. Garfield Nong (1812-1513}
Elbwicige Gerry (1813-1814)
Chester A. Arthur Nong (1814-1817}

Grover Cleveland Praceded by Thomas Jefferson

iPad Air - i0S 11.0

Figure 11-11. The Presidents application, showing the Wikipedia page for James Madison

Creating Your Own Popover

In Chapter 4, you saw that you can display an action sheet in what looks like a cartoon speech bubble
(see Figure 4-29). That speech bubble is the visual representation of a popover controller, or popover for
short. The popover that you get with an action sheet is created for you when the action sheet is presented by
aUIPopoverPresentationController. It turns out that you can use the same controller to create popovers of
your own.

To see how this works, you're going to add a popover that will be activated by a permanent toolbar
item (unlike the one in the UISplitView, which is meant to come and go). This popover will display a table
view containing a list of languages. If the user picks a language from the list, the web view will load whatever
Wikipedia entry that was already showing, in the new language. This is simple enough to do since switching
from one language to another in Wikipedia is just a matter of changing a small piece of the URL that contains
an embedded country code. Figure 11-3 shows what you are aiming for.

375

http://dx.doi.org/10.1007/978-1-4842-3072-5_4
http://dx.doi.org/10.1007/978-1-4842-3072-5_4#Fig29

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Note In this example, you’re using a UIPopoverPresentationController to display a table view
controller, but don’t let that mislead you—it can be used to handle the display of any view controller content
you like. I’'m sticking with table views for this example because it's a common use case, it's easy to show in a
relatively small amount of code, and it's something with which you should already be quite familiar.

Start by right-clicking the Presidents folder in Xcode and selecting New File from the pop-up menu.
When the assistant appears, select Cocoa Touch Class from the iOS Source section and then click Next. On
the next screen, name the new class LanguageListController and select UITableViewController from the
“Subclass of” field. Click Next, double-check the location where you're saving the file, and click Create.

The LanguagelistController will be a pretty standard table view controller class. It will display a list
of items and let the detail view controller know when a choice is made by using a pointer back to the detail
view controller. Edit LanguageListController.swift, adding the three lines shown after the class name:

class LanguagelistController: UITableViewController {
weak var detailViewController: DetailViewController? = nil
private let languageNames: [String] = ["English", "French", "German", "Spanish"]
private let languageCodes: [String] = ["en", "fr", "de", "es"

These additions define a pointer back to the detail view controller (which you'll set from code in
the detail view controller itself when you're about to display the language list), as well as a pair of arrays
containing the values that will be displayed (English, French, etc.) and the underlying values that will be
used to build an URL from the chosen language (en, fr, and so on).

If you copied and pasted this code from the book’s source archive (or e-book) into your own
project or typed it yourself a little sloppily, you may not have noticed an important difference in how the
detailViewController property was declared earlier. Unlike most properties that reference an object
pointer, you declared this one using weak instead of strong. This is something you must do to avoid a retain
cycle.

What's a retain cycle? It’s a situation where a set of two or more objects have references to each
other, in a circular fashion. Each object is keeping the memory of the other object from being freed. Most
potential retain cycles can be avoided by carefully considering the creation of your objects, often by trying
to figure out which object “owns” which. In this sense, an instance of DetailViewController owns an
instance of LanguagelListController because it's the DetailViewController that actually creates the
LanguageListController to get a piece of work done. Whenever you have a pair of objects that need to refer
to one another, you'll usually want the owner object to retain the other object, while the other object should
specifically not retain its owner. Since you're using the ARC feature that Apple introduced way back in Xcode 4.2,
the compiler does most of the work for you. Instead of paying attention to the details about releasing and retaining
objects, all you need to do is declare a property that refers to an object that you do not own with the weak keyword
instead of strong. ARC does the rest.

Next, scroll down a bit to the viewDidLoad() method and add this setup code:

override func viewDidlLoad() {
super.viewDidLoad()

clearsSelectionOnViewllillAppear = false

preferredContentSize = CGSize(width: 320, height: (languageCodes.count * 44))
tableView.register(UITableViewCell.self, forCellReuseldentifier: "Cell")

376

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Here, you define the size that the view controller’s view will use if shown in a popover (which, as you
know, it will be). Without defining the size, you would end up with a popover stretching vertically to fill
nearly the whole screen, even if it can be displayed in full with a much smaller view. And finally, you register
a default table view cell class to use, as explained in Chapter 8.

Further down, you have a few methods generated by Xcode’s template that don’t contain particularly
useful code—just a warning and some placeholder text. Let’s replace those with something real.

override func numberOfSections(in tableView: UITableView) -> Int {
return 1
}

override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return languageCodes.count
}

Now implement the tableView(:cellForRow atIndexPath:) method to get a cell object and put a
language name into a cell, as shown in Listing 11-8.

Listing 11-8. Getting Your Cell for the Table View

override func tableView(tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

// Configure the cell...

cell.textlLabel!.text = languageNames[indexPath.row]

return cell

Next, implement tableView(:didSelectRowAtIndexPath:) so that you can respond to a user’s
touch by passing the language selection back to the detail view controller and dismissing the presented
LanguagelistController by calling its dismissViewControllerAnimated(_ :completion:) method.

override func tableView(tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
detailviewController?.languageString = languageCodes|[indexPath.row]
dismiss(animated: true, completion: nil)

Note DetailviewController doesn’tactually have a languageString property yet, so you will see a
compiler error. You'll take care of that in just a bit.

Now it’s time to make the changes required for DetailViewController to display the popover, as well
as to generate the correct URL whenever the user either changes the display language or picks a different
president. Start by adding the following three lines of code in DetailViewController.swift after the
UIWebView declaration:

private var languagelistController: LanguagelistController?

private var languageButton: UIBarButtonItem?
var languageString = ""

377

http://dx.doi.org/10.1007/978-1-4842-3072-5_8

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

You added some properties to keep track of the GUI components required for the popover and the
user’s selected language. All that you need to do now is fix DetailViewController.swift so thatit can
handle the language popover and the URL construction.

Start by adding a function that takes as arguments a URL pointing to a Wikipedia page and a two-letter
language code and then returns a URL that combines the two. You'll use this at appropriate spots in your
controller code later, as shown in Listing 11-9.

Listing 11-9. Function to Get Your Language-Specific URL

private func modifyUrlForLanguage(url: String, language lang: String?) -> String {
var newlrl = url

// We're relying on a particular Wikipedia URL format here. This
// is a bit fragile!
if let langStr = lang {

// URL is like https://en.wikipedia...

let range = NSMakeRange(8, 2)

if !langStr.isEmpty &% (url as NSString).substring(with: range) != langStr {

newUrl = (url as NSString).replacingCharacters(in: range,
with: langStr)

}

return newUrl

Your next move is to update the configureView() method. This method will use the function you just
defined to combine the URL that’s passed in with the chosen languageString to generate the correct URL,
as shown in Listing 11-10.

Listing 11-10. Update configureView Method for the Language-Specific URL

func configureView() {
// Update the user interface for the detail item.
if let detail = self.detailltem {
if let label = self.detailDescriptionlabel {

let dict = detail as! [String: String]
// let urlString = dict["url"]!
let urlString = modifyUrlForLanguage(url: dict["url"]!, language:
languageString)
label.text = urlString

let url = URL(string: urlString)!
let request = URLRequest(url: url)
webView.loadRequest(request)

let name = dict["name"]!

title = name

378

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Now let’s update the viewDidLoad() method. Here, you're going to create a UIBarButtonItemand put it
into the UINavigationItem at the top of the screen. The button will call the controller’s showLanguagePopover ()
method, which you'll implement shortly, when it is clicked, as shown in Listing 11-11.

Listing 11-11. The Modified viewDidLoad Method

override func viewDidLoad() {

super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
self.configureView()

languageButton = UIBarButtonItem(title: "Choose Language", style: .plain,

target: self, action:
#selector(DetailViewController.showLanguagePopover))

navigationItem.rightBarButtonItem = languageButton

Next, you implement a property observer for the languageString property, which is called when
the value of the property is changed. The property observer calls configureView() so that the URL is
regenerated to include the selected language and the new page loaded.

var languageString = "" {
didSet {
if languageString != oldValue {
configureView()
}
}
}

Now, let’s implement the method that’s called when the user taps the Choose Language button. Simply
put, you display the LanguageListController, creating it the first time you do so. Then, you get its popover
presentation controller and set the properties that control where the popover will appear. Place this method
after the viewDidLoad() method, as shown in Listing 11-12.

Listing 11-12. The showLanguagePopover Method

@objc func showLanguagePopover() {

if languageListController == nil {
// Lazy creation when used for the first time
languagelistController = LanguagelistController()
languagelistController!.detailViewController = self
languagelistController!.modalPresentationStyle = .popover

}

present(languageListController!, animated: true, completion: nil)

if let ppc = languagelistController?.popoverPresentationController {
ppc.barButtonItem = languageButton

In the first part of this method, you check whether you have already created the
LanguageListController. If you haven'’t, you create an instance and then set its detailViewController
property to point to itself. You also set its modalPresentationStyle property to . popover. This property
determines how the controller is displayed when it is modally presented. There are several possible values,
which you can read about on the documentation page for the UIViewController class. Not surprisingly, the
value . popover is the one you need to use if you want the controller to be presented in a popover.

379

CHAPTER 11 = SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Next, you use the presentViewController(:animated:completion:) method to make the
LanguagelListController visible, just as you did when displaying an alert in Chapter 4. Calling this
method does not make the controller visible immediately—UIKit does that when it’s finished processing
the button click event—but it does create the UIPopoverPresentationController that will manage the
controller’s popover. Before the popover appears, you need to tell the UIKit framework where it should
appear. In Chapter 4, you used this technique to place a popover near a specific view by setting its
UIPopoverPresentationController’s sourceRect and sourceView properties. In this example, you want the
popover to appear near the language button, and you can do that by assigning a reference to that button to
the controller’s barButtonItem property.

Now run the example on the iPad simulator and press the Choose Language button. You'll find that the
language list controller is displayed in a popover, as shown in Figure 11-12. You should be able to use the
language pop-up to select any of the four available languages and watch the web view update to show the
version of the president’s page for that language.

326 PM
James Madison
hitps:/fes wikipadia orgfwikills
English
WIKIPEDIA a
French

German

James Madison
Spanish

Politice unidensa, 4° Progidonto to s Estados Unidos.

James Madison (16 de marze de 1751 - 28 de junio de 1836} fue un politico
estadounidanse, tecrico politico, y &l cuarto presidente de los Estados Unidos, Es
considerado uno de los mds influyentes de loa *Padres fundadores de los Estados Unidos®
por su contribucion a la redaccidn de la Constitucion de los Estados Unidos y a la Carta de
Derechos de los Estados Unidos, a tal punto que es apodade “El Padre de la Constilucion™.
Macison heredd su hacienda, Montpalier,
an Virginka, y fue duefio de cientos de

esclavos. Sinvié como miembro de la casa

James Madison

de celagados de Vinginia y como miembeo
del Cengreso Continental antes de |a
intreduccion de la constitucion
esladounidense. Después de la
Comwenclon de Filadelfia, Madison fue una
de las personas que dingid el movimiento
parz aprobar la nueva constituciin
nacionalmenta y en Virginia. Su
colaboracin con Alexander Hamilton y
John Jay pradujo los arficulos ensayos.
conocides coma The Federalst Papers,
articulos que se consideran la causa mas.
imporiante por Iz cual se ratificd la 4." Presidente de los Estados Unidos
constitucidn de los Estados Unidos. 4 de margo de 1809-4 de marze de 1617

Macison cambid de parecer en cuanto a Vicepresidente 000t Clintan (1803-18
Elbridge Gerry (1813-1814)

su politica personal. Al principio creia que
In mejor saria un gobierne central fuerte Prociooegor. - Thamas Jefiarscn
mientras que al final llego a apoyar la idea Sucosor Jamas Monros
de ue los estados deberiar tener mas

poder que el gobierno central, Al final de

iPad Air - i0S 11.0

Figure 11-12. Choosing to load a page in a different language

380

http://dx.doi.org/10.1007/978-1-4842-3072-5_4
http://dx.doi.org/10.1007/978-1-4842-3072-5_4

CHAPTER 11 © SPLIT VIEWS AND POPOVERS FOR IPAD APPS

Switching from one language to another should always leave the chosen president intact. Likewise,
switching from one president to another should leave the language intact—but actually, it doesn’t. Try
this: choose a president, change the language to (say) Spanish, and then choose another president.
Unfortunately, the language is no longer Spanish.

Why did this happen? The Show Detail segue creates a new instance of the detail view controller
every time it’s called. That means that the language setting, which is stored as a property of the detail view
controller, is going to be lost each time a new president is selected. To fix it, you need to add a few lines of
code in the master view controller. Open MasterViewController.swift and make the changes in
Listing 11-13 to the prepareForSegue method.

Listing 11-13. Updated prepareForSegue Method

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
if segue.identifier == "showDetail" {
if let indexPath = self.tableView.indexPathForSelectedRow {

let object = presidents[indexPath.row]

let controller = (segue.destinationViewController as!
UINavigationController).topViewController as! DetailViewController

if let oldController = detailViewController {
controller.languageString = oldController.languageString

}

controller.detailltem = object
controller.navigationItem.leftBarButtonItem =

self.splitViewController?.displayModeButtonItem()
controller.navigationItem.leftItemsSupplementBackButton = true
detailViewController = controller

Summary

In this chapter, you learned about the split view controller and its role in the creation of master-detail
applications. You also saw that a complex application with several interconnected view controllers can be
configured entirely within Interface Builder. Although split views are now available on all devices, they are
probably still most useful in the larger screen space of the iPhone 7/6s Plus and the iPad.

381

CHAPTER 12

App Customization with Settings
and Defaults

Typically, all but the simplest apps you're likely to use include a preferences window where the user sets
application-specific options. On macOS, you'll usually find a Preferences menu item in the application’s
menu. Selecting it brings up a window where the user enters and changes various options. The iPhone and
iPad include a dedicated application called Settings that you've likely used before. In this chapter, I'll show
you how to add settings for your iOS application to the Settings app and how to access those settings from
within your application.

Exploring the Settings Bundle

The Settings application lets the user enter and change preferences for any application that includes a
settings bundle. The settings bundle contains a group of files built in to an application that tells the Settings
application which preferences the application want to collect from the user, as shown in Figure 12-1. The
Settings application acts as a common user interface for the iOS User Defaults mechanism. User Defaults
stores and retrieves preferences for the application.

© Molly K. Maskrey 2017 383
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_12

https://doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

ssses Vorizon LTE 14:06
Settings

Airplane Mode
Wi-Fi
Bluetooth
Cellular

Personal Hotspot

Notifications
Control Center

Do Mot Disturb

General

Display & Brightness

Wallpaper

Sounds

Figure 12-1. The Settings app on a typical iPhone display

In an iOS application, the NSUserDefaults class provides the User Defaults service. If you've
programmed in Cocoa on macOS, you're probably already familiar with NSUserDefaults because it’s the
same class used to store and read preferences on macOS. Your applications use NSUserDefaults to read and
store preference data using pairs of keys and values, just as you would access keyed data from a dictionary.
The difference is that NSUserDefaults data persists to the file system rather than stored in an object instance
in memory. In this chapter, you'll create an application, add and configure a settings bundle, and then
access and edit those preferences from the Settings application and from within your own application.

Because the Settings app provides a standard interface, you don’t need to design your own UI for your
app’s preferences. You create a property list describing your application’s available settings, and the Settings
app creates the interface for you. Immersive applications, such as games, generally should provide their
own preferences view so that the user doesn’t need to quit to make a change. Even utility and productivity
applications might, at times, have preferences that a user should be able to change without leaving the
application. I'll also show you to how to collect preferences from the user directly in your application and
store those in i0S’s User Defaults.

iOS allows the user to switch from one application to the Settings app, change a preference, and then
switch back to your still-running application. You'll see how to do this at the end of the chapter.

384

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Creating the Bridge Control Application

In this chapter, you're going to build a simple application that keeps track of some aspects of managing
the bridge of a simulated starship. First, you'll create a settings bundle so that when the user launches the
Settings application, there will be an entry for your app, Bridge Control, as shown in Figure 12-2.

Carrier ¥ 4:10 PM
Settings
News
| Safari
Photos & Camera

Game Center

Twitter
Facebook

Flickr

1] Vimeo

Developer

* Bridge Control

Figure 12-2. The Settings application shows an entry for your Bridge Control application in the simulator

385

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

If the user selects your application from the display in Figure 12-2, Settings drills down into a view
showing the preferences relevant to your application. The Settings application uses text fields, secure text
fields, switches, and sliders to update values, as shown in Figure 12-3.

4 Back to Bridge Contral 916 PM

{ settings Bridge Control

Commanding Officer Kirk
Autherization Code sseses
Rank

Warp Drive

More Settings

Figure 12-3. Your application’s primary settings view

386

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Notice that two items in the view contain disclosure indicators. The first one, Rank, takes the user to
another table view that displays the options available for that item. From that table view, the user selects a
single value, as shown in Figure 12-4.

4 Back to Bridge Contral ~ 9:17 PM

{ Bridge Control Rank

Ensign

Lieutenant

Lieutenant Commander
Commander

Captain

Commodore

Figure 12-4. Selecting a single preference item from a list

387

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

The More Settings disclosure indicator allows the user to drill down to another set of preferences, as
shown in Figure 12-5. This child view can have the same kinds of controls as the main settings view or even
its own child views. The Settings application uses a navigation controller, which it needs because it supports
the construction of hierarchical preference views.

4 Back to Bridge Contral 918 PM

£ Bridge Control More Settings

AVORITES
Favorite Tea Earl Grey

Favorite Captain Picard
Favorite Gadget Phaser

Favorite Alien

Figure 12-5. The child settings view for your Bridge Control application

388

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

When users launch Bridge Control, it presents a list of the preferences gathered in the Settings

application, as shown in Figure 12-6.

9:20 PM
Officer:
Authorization Code:
Rank:
Warp Drive:
Warp Factor:
Favorite Tea:

Favorite Captain:

Favorite Gadget:
Favorite Alien:

Kirk
scotty
Captain
Engaged
5660142
Earl Grey
Picard
Phaser

Vulcan

Figure 12-6. The app’s main view presents the list of preferences to the user

389

CHAPTER 12 © APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

To show how to update preferences from within your application, Bridge Control provides a second
view where the user can change additional preferences directly in the application, as shown in Figure 12-7.

Carrier ¥
Warp Engines:

Warp Factor:

”~

Open Settings Application

Figure 12-7. Bridge Control allows setting some preferences from within the app itself

Creating the Bridge Control Project

In Xcode, open a new project, and when the assistant comes up, select Application from under the iOS
heading in the left pane, click the Tabbed Application icon, and then click Next. On the next screen, name
your project Bridge Control. Set Devices to Universal and then click the Next button. Finally, choose a
location for your project and click Create.

The Bridge Control application is based on the UITabBarController class that you used in Chapter 7.
The template creates two tabs, which is all you'll need. Each tab requires an icon. You'll find these in the
12 - Images folder in the example source code archive. In Xcode, select Assets.xcassets, and then delete the
first and second images that were added by the Xcode template. Now add the replacement images by dragging
the singleicon.imageset and doubleicon.imageset folders from Images into the editing area.

390

http://dx.doi.org/10.1007/978-1-4842-3072-5_7

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Next, you'll assign the icons to their tab bar items. Select Main.storyboard. You'll see the tab bar
controller and the two child controllers for its tabs: one labeled First View and the other Second View. Select
the first child controller and then click its tab bar item, which currently shows a square and the title First. In
the Bar Item section of the Attributes Inspector, change Title to Main and Image to singleicon, as shown in
Figure 12-8. Now select the tab bar item for the second child controller and change the title from Second to
Settings and the image from second to doubleicon. That’s enough work on the application itself for now—
before doing anything more, let’s create its settings bundle.

-
y | Today at 7:35 AM =E ® & OO
#ain.storyboard) [l Main.storyboard (Base] | [7] First Scene First) % Main D@ o0 @
Tab Bar Item
Badge
System ltem Custem

Selected Image

Title Position Default Position

[Bar Item
Titie Main
Image sinqll_ﬂnun n |
Tag Idaualeicon

First View s

Loaded by FirstViewController | second

Figure 12-8. Setting the icon for the first tab bar item

Working with the Settings Bundle

The Settings application uses the contents of each application’s settings bundle to construct a settings view
for that application. If an application has no settings bundle, then the Settings app doesn’t show anything for
it. Each settings bundle must contain a property list called Root.plist that defines the root-level preferences
view. This property list must follow a very precise format, which I'll talk about when you set up the property
list for your app’s settings bundle.

When the Settings application starts up, it checks each application for a settings bundle and adds a
settings group for each application that includes a settings bundle. If you want your preferences to include
any subviews, you need to add property lists to the bundle and add an entry to Root.plist for each child
view. You'll see exactly how to do that in this chapter.

391

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Adding a Settings Bundle to Your Project

In the Project Navigator, click the Bridge Control folder and then select File » New » File or press $EN.
In the left pane, select Resource under the i0S heading and then select the Settings Bundle icon
(see Figure 12-9). Click the Next button, leave the default name of Settings.bundle, and click Create.

Choose a template for your new file:

i0os N
Source E. b ! \ [
User Interface == —
Core Data GeoJSON File GPX File Asset Catalog
Apple Watch
Resource | N ™
over i u v
WachOD Sticker Catalog Property List Rich Text File SceneKit
Source Particle System
User Interface
Core Data & o o o
=~ " 30 acTon oaTIon scna
Other SceneKit Scene SpriteKit Action SpriteKit SpriteKit Scene
File Particle File
tvOS
Source Settings Bundle
User Interface Bundie for specifying an I0S Application's settings.
Core Data
_Resource

Cance T

Figure 12-9. Adding a settings bundle to your project

You should now see a new item in the project window called Settings.bundle. Expand the Settings.
bundle item. You should see two subitems: a folder named en.lproj, containing a file named Root.strings,
and another named Root.plist. I'll discuss en.lproj later when I talk about localizing an application into
other languages. Here, you'll concentrate on Root.plist.

Select Root.plist and take a look at the editor pane. You're looking at the Xcode property list editor, as
shown in Figure 12-10.

B < & Bridge Control Bridge Control Settings.bundle Root.plist) No Selection
Key Type Value
¥ iPhone Settings Schema Dictionary (2 items)
Strings Filename 4 ©Q@ String Root
» Preference Items 4 Array (4 items)

Figure 12-10. Root.plist in the property list editor pane. If your editing pane looks slightly different, don’t
panic. Simply Control-click in the editing pane and select Show Raw Keys/Values from the contextual menu
that appears.

392

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Notice the organization of the items in the property list. Property lists are essentially dictionaries,
storing item types and values and using a key to retrieve them, just as a Dictionary does. Several different
types of nodes can be put into a property list. The Boolean, Data, Date, Number, and String node types are
meant to hold individual pieces of data, but you also have a couple of ways to deal with whole collections of
nodes, as well. In addition to Dictionary node types, which allow you to store other dictionaries, there are
Array nodes, which store an ordered list of other nodes similar to an array. The Dictionary and Array types
are the only property list node types that can contain other nodes.

Note Although you can use most kinds of objects as keys in a Dictionary node type, keys in property list
dictionary nodes must be strings. However, you are free to use any node type for the values.

When creating a settings property list, you need to follow a very specific format. Fortunately, Root.
plist, the property list that came with the settings bundle you just added to your project, follows this format
exactly. Let’s take a look.

In the Root. plist editor pane, names of keys can be displayed either in their true, “raw” form or in a
slightly more human-readable form. I'm a big fan of seeing things as they truly are whenever possible, so
right-click anywhere in the editor and make sure that the Show Raw Keys/Values option in the contextual
menu is selected, as shown in Figure 12-11. The rest of the discussion here uses the real names for all the
keys I'm going to talk about, so this step is important.

Paste

Value Type B
Add Row
Property List Type 2

Property List Editor Help

Figure 12-11. Right-click or Control-click anywhere in the property list editing pane and make sure the Show
Raw Keys/Values item is selected. This will ensure that real names are used in the property list editor, which
makes your editing experience more precise.

393

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Caution Leaving the property list, either by editing a different file or by quitting Xcode, may reset the Show
Raw Keys/Values item to be deselected. If your text suddenly looks a little different, take another look at that
menu item and make sure it is selected.

One of the items in the dictionary is StringsTable. A strings table is used in translating your
application into another language. You won’t be using it in this chapter, but feel free to leave it in your
project since it won’t do any harm. In addition to StringsTable, the property list contains a node named
PreferenceSpecifiers, which is an array. This array node is designed to hold a set of dictionary nodes, where
each node represents either a single preference item that the user can modify or a single child view that the
user can drill down into.

Click the disclosure triangle to the left of PreferenceSpecifiers to expand that node. You'll notice that
Xcode’s template kindly gave you four child nodes, as shown in Figure 12-12. Those nodes don’t reflect the
preferences that you need in this example, so delete Item 1, Item 2, and Item 3 (select each one and press the
Delete key, one after another), leaving just Item 0 in place.

Key Type Value

v iPhone Settings Schema Dictionary (2 items)
StringsTable 4 String Root

v PreferenceSpecifiers 4 Array (4 items)

» Item O (Group - Group) i (2 items)

> Item 1 (Text Field - Name) (8 items)

» Item 2 (Toggle Switch - Enabled) (4 items)

b Item 3 (Slider) (7 items)

Figure 12-12. Root.plist in the editor pane, this time with PreferenceSpecifiers expanded

Note To select an item in the property list, it is best to click one side or the other of the Key column to
avoid bringing up the Key column’s drop-down menu.

Single-click Item 0, but don’t expand it. The Xcode property list editor lets you add rows simply by
pressing the Return key. The current selection state—including which row is selected and whether it’s
expanded—determines where the new row will be inserted. When an unexpanded array or dictionary is
selected, pressing Return adds a sibling node after the selected row. In other words, it will add another node
at the same level as the current selection. If you were to press Return (but don’t do that now), you would get
anew row called Item 1 immediately after Item 0. Figure 12-13 shows an example of hitting Return to create
a new row. Notice the drop-down menu that allows you to specify the kind of preference specifier this item
represents—more on this in a bit.

394

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Key Type Value
¥ iPhone Settings Schema ictionary (2 items)
StringsTable + String Root
¥ PreferenceSpecifiers 4 Array (2 items)
P Item O (Group - Group) ictionary (2 items)
Item 1 (Text Field -) v Dictionary 2 (3 items)
Group
Multi Value
Slider
v Text Field
Title

Toggle Switch

Figure 12-13. You selected Item 0 and hit Return to create a new sibling row. Note the drop-down menu that
appears, allowing you to specify the kind of preference specifier this item represents.

Now expand Item 0 and see what it contains, as shown in Figure 12-14. The editor is now ready to add
child nodes to the selected item. If you were to press Return at this point (again, don’t actually press it now),
you would get a new first child row inside Item 0.

Key Type Value
v iPhone Settings Schema Dictionary (2 items)
StringsTable 4+ OO String Root
¥ PreferenceSpecifiers 4 Array (1 item)
Item O (Group - Group) v Dictionary 2 (2 items)
Type 4 String PSGroupSpecifier
Title 4 String Group

Figure 12-14. When you expand Item 0, you'll find a row with a key of Type and a second row with a key of
Title. This represents a group with a title of Group.

One of the items inside Item 0 has a key of Type. Every property list node in the PreferenceSpecifiers
array must have an entry with this key. The Type key tells the Settings application what type of data is
associated with this item. In Item 0, the Type item has a value of PSGroupSpecifier. This indicates that the
item represents the start of a new group. Each item that follows will be part of this group—until the next
item with a Type of PSGroupSpecifier. If you look back at Figure 12-3, you'll see that the Settings application
presents the application settings in a grouped table. Item 0 in the PreferenceSpecifiers array in a settings
bundle property list should always be a PSGroupSpecifier so that the settings start in a new group. This is
important because you need at least one group in every Settings table.

The only other entry in Item 0 has a key of Title, and this is used to set an optional header just above
the group that is being started. Now take a closer look at the Item 0 row itself, and you'll see that it’s actually
shown as Item 0 (Group - Group). The values in parentheses represent the value of the Type item (the first
Group) and the Title item (the second Group). This is a nice shortcut that Xcode gives you so that you can
visually scan the contents of a settings bundle.

395

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

As shown in Figure 12-3, you called your first group General Info. Double-click the value next to Title,
and change it from Group to General Info (see Figure 12-15). When you enter the new title, you may notice
a slight change to Item 0. It's now shown as Item 0 (Group - General Info) to reflect the new title. In the
Settings application, the title is shown in uppercase, so the user will actually see GENERAL INFO instead.
You can see this in Figure 12-3.

Key Type Value
v iPhone Settings Schema Dictionary (2 items)
StringsTable 4 String Root
v PreferenceSpecifiers 4 Array (1 item)
¥ Item O (Group - General Info) Dictionary (2 items)
Type 4 String PSGroupSpecifier
Title 4 Q@ String £ General Info

Figure 12-15. You changed the title of the Item 0 group from Group to General Info

Adding a Text Field Setting

You now need to add a second item in this array, which will represent the first actual preference field. You're
going to start with a simple text field. If you were to single-click the PreferenceSpecifiers row in the editor
pane (don’t do this, just keep reading) and press Return to add a child, the new row would be inserted at the
beginning of the list, which is not what you want. You want to add a row at the end of the array.

To add the row, click the disclosure triangle to the left of Item 0 to close it and then select Item 0 and
press Return. This gives you a new sibling row after the current row, as shown in Figure 12-16. As usual,
when the item is added, a drop-down menu appears, showing the default value of Text Field.

29 < > [eridge Control) | Bridge Control) = Settings.bundle) [Root.plist) No Sele
Key Type Value
v iPhene Settings Schema © Dictionary (2 items)
StringsTable 4 String Root
v PreferenceSpecifiers A Array (2 items)
P Item O (Group - General Info) Dictionary (2 items)
Item 1 (Text Field -) + Dictionary ~ (3 items)
Group
Multi Value
Slider
¥ Text Field
Title

Toggle Switch

Figure 12-16. Adding a new sibling row to Item 0

396

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Click somewhere outside the drop-down menu to make it go away and then click the disclosure triangle
next to Item 1 to expand it. You'll see that it contains a Type row set to PSTextFieldSpecifier. This is the
Type value used to tell the Settings application that you want the user to edit this setting in a text field. It also
contains two empty rows for Title and Key, as shown in Figure 12-17.

Key Type Value
v iPhone Settings Schema D (2 items)
StringsTable - Root
¥ PreferenceSpecifiers - (2 items)
» Item 0 (Group - General Info) Dic 2 items)
¥ Item 1 (Text Field - Commanding Dictionary (3 items)
Type — ... PSTextFieldSpecifier
| Titie “00© sSiuing - Commanding Officer

Key

Figure 12-17. The text field item, expanded to show the type, title, and key

Select the Title row and then double-click in the whitespace of the Value column. Type in Commanding
Officer to set the Title value. This is the text that will appear in the Settings app.

Now do the same for the Key row (no, that’s not a misprint; you're really looking at a key called Key). In
the value field, type officer (note the lowercase first letter), which is the key to use when it stores the value
entered in this text field.

Recall what I said about NSUsexrDefaults? It lets you store values using a key, similar to a Dictionary.
Well, the Settings application does the same thing for each of the preferences it saves on your behalf. If you
give it a key value of foo, then later in your application, you can request the value for foo, and it will give you
the value the user entered for that preference. You will use key value officer later to retrieve this setting
from the user defaults in your application.

Note Title has a value of Commanding Officer, and Key has a value of officer. This uppercase/
lowercase difference will happen frequently, and here you're even compounding the difference by using two
words for the displayed title and a single word for the key. The Title value is what appears on the screen, so
using the capital Cand 0 and putting a space between the words all makes sense. The Key value is a text string
you’ll use to retrieve preferences from the user defaults, so all lowercase makes sense there. Could you use all
lowercase for Title? Of course. And you could use all capitals for Key. As long as you capitalize it the same way
when you save and when you retrieve, it doesn’t matter which convention you use for your preference keys.

Now select the last of the three Item 1 rows (the one with a key of Key) and press Return to add another
entry to the Item 1 dictionary, giving this one a key of AutocapitalizationType. Note that, as soon as you start
typing AutocapitalizationType, Xcode presents you with a list of matching choices, so you can simply pick
one from the list instead of typing the whole name. After you've entered AutocapitalizationType, press the
Tab key or click the small up/down arrow icon on the right of the Value column to open a list where you
can select from the available options. Choose Words. This specifies that the text field should automatically
capitalize each word that the user types in this field.

Create one last new row and give it a key of AutocorrectionType and a value of No. This will tell the
Settings application not to autocorrect values entered into this text field. In any situation where you do want the
text field to use autocorrection, you would set the value in this row to Yes. Again, Xcode presents you with a list
of matching choices as you begin entering AutocorrectionType. It shows you a list of valid options in a pop-up.

397

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

When you're finished, your property list should look like the one shown in Figure 12-18.

Key Type Value
¥ iPhone Settings Schema Dictionary (2 items)
StringsTable 5 String Root
¥ PreferenceSpecifiers 5 Array (9 items)
» Item O (Group - General Info) Dicti (2 items)
¥ Item 1 (Text Field - Commanding Di (5 items)
Type 4 String PSTextFieldSpecifier
Title 4 String Commanding Officer
Key 4 String officer
AutocapitalizationType +©0Q String 2 Words
AutocorrectionType 4 String No

Figure 12-18. The finished text field specified in Root.plist

That’s it. Build and run the application by selecting Product » Run. You haven'’t built any sort of GUI for
the app yet, so you'll just see the first tab of the tab bar controller. Press the Home button (or press ~38H on
the simulator) and then tap the icon for the Settings application. Scroll down and you will find an entry for
your application, which uses the icon added earlier (see Figure 12-2). Click the Bridge Control row. You will
be presented with a simple settings view with a single text field, as shown in Figure 12-19.

iPhone Bs —i0S 10.0 (14A5297c)
Carrier ¥ 9:03 AM -

(Settings Bridge Control

GENERAL INFO

Commanding Officer

Figure 12-19. Your root view in the Settings application after adding a group and a text field
398

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

You're not finished yet, but you should now have a sense of how easy it is to add preferences to your
application. Let’s add the rest of the fields for your root settings view. The first one you'll add is a secure text
field for the user’s authorization code.

Adding a Secure Text Field Setting

Go back to Xcode and click Root.plist to return to your setting specifiers (don’t forget to turn on Show Raw
Keys/Values, assuming Xcode’s editing area has reset this). Collapse Item 0 and Item 1 and then select

Item 1. Press 38C to copy it to the clipboard and then press 38V to paste it back. This will create a new

Item 2 that is identical to Item 1. Expand the new item and change the Title value to Authorization Code and
the Key value to authorizationCode. Remember that the Title value is what’s shown in an on-screen label,
and the Key value is what’s used for saving the value.

Next, add one more child to the new item. Remember that the order of items does not matter, so feel
free to place it directly below the Key item you just edited. To do this, select the Key/authorizationCode row
and then hit Return.

Give the new item a Key value of IsSecure (note the leading uppercase I) and press Tab. You'll see that
Xcode automatically changes the Type to Boolean. Now change its Value from NO to YES, which tells the
Settings application that this field needs to hide the user’s input like a password field, rather than behaving
like an ordinary text field. Finally, change AutocapitalizationType to None. Figure 12-20 shows the finished
Item 2.

88 < & Bridge Control | Bridge Control | Settings.bundle Root.plist) No Selection
Key Type Value
¥ iPhone Settings Schema Dictionary (2 items)
StringsTable . i Root
¥ PreferenceSpecifiers = 8 (3 items)
» Item O (Group - General Info) Dictionary (2 items)
Item 1 (Text Field - Commanding Dictionary (5 items)
¥ Item 2 (Text Field - Authorization Dictionary (6 items)
Type s String PSTextFieldSpecifier
Title 4 String Authorization Code
Key 4 String authorizationCode
IsSecure s YES
AutocapitalizationType : Nane
AutocorrectionType 4 String Mo

Figure 12-20. Your finished Item 2, a text field designed to accept an authorizationCode

Adding a Multivalue Field

The next item you're going to add is a multivalue field. This type of field will automatically generate a row
with a disclosure indicator. Clicking it will let users drill down to another table, where they can select one of
several rows. Collapse Item 2, select the row, and then press Return to add Item 3. Use the pop-up attached
to the Key field to select Multi Value and then expand Item 3 by clicking the disclosure triangle.

399

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

The expanded Item 3 already contains a few rows. One of them, the Type row, is set to
PSMultiValueSpecifier. Look for the Title row and set its value to Rank. Then find the Key row and give it a
value of rank. The next part is a little tricky, so let’s talk about it before you do it.

You're going to add two more children to Item 3, but they will be Array type nodes, not String type
nodes, as follows:

e One array, called Titles, will hold a list of the values from which the user can select.

e The other array, called Values, will hold a corresponding list of the values that are
stored in the user defaults.

So, if the user selects the first item in the list, which corresponds to the first item in the Titles array, the
Settings application will actually store the first value from the Values array. This pairing of Titles and Values
lets you present user-friendly text to the user but actually stores something else, like a number, date, or
different string. Both of these arrays are required. If you want them to be the same, you can create one array,
copy it, paste it back in, and then change the key so that you have two arrays with the same content but
stored under different keys. You'll actually do just that.

Select Item 3 (leave it open) and press Return to add a new child. You'll see that, once again, Xcode is
aware of the type of file you're editing and even seems to anticipate what you want to do: the new child row
already has Key set to Titles and is configured to be an Array, which is just what you wanted! Press Return to
stop editing the Key field and then expand the Titles row and hit Return to add a child node. Repeat this five
more times so you have a total of six child nodes. All six nodes should be the String type and should be given
the following values: Ensign, Lieutenant, Lieutenant Commander, Commander, Captain, and Commodore.

Once you've created all six nodes and entered their values, collapse Titles and select it. Next, press g6C
to copy it and press 38V to paste it back. This will create a new item with a key of Titles - 2. Double-click the
key Titles - 2 and change it to Values.

You're almost finished with your multivalue field. There’s just one more required value in the
dictionary, which is the default value. Multivalue fields must have one—and only one—row selected. So, you
need to specify the default value to be used if none has yet been selected; it needs to correspond to one of
the items in the Values array (not the Titles array, if they are different). Xcode already added a DefaultValue
row when you created this item, so all you need to do now is give it a value of Ensign. Go ahead and do that
now. Figure 12-21 shows the finalized version of Item 3.

400

Key
¥ iPhone Settings Schema
Strings Filename
¥ Preference Items
» Item O (Group - General Info)
b Item 1 (Text Field - Commanding
P Item 2 (Text Field - Authorization
¥ Item 3 (Multi Value - Rank)
¥ Titles
Item O
Itemn 1
Itemm 2
Item 3
Item 4
Item 5
¥ Values
Item O
Item 1
Item 2
Item 3
Item 4
Item 5
Type
Title
Identifier
Default Value

arar

oQ

AF AF AF A

Type

Dictionary

String

Array

Dictionary

Array

String
String
String
String
String
String
Array

String
String
String
String
String
String

String

<>

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Value

(2 items)
Root

(4 items)

(2 items)

(5 items)

(6 items)

(G items)

(6 items)
Ensign
Lieutenant
Lieutenant Commander
Commander
Captain
Commodore
(6 items)
Ensign
Lieutenant
Lieutenant Commander
Commander
Captain
Commodore
Multi Value
Rank

rank

Ensign

Figure 12-21. Your finished Item 3, a multivalue field designed to let the user select from one of six possible

values

Let’s check your work. Save the property list and build and run the application again. When your
application starts, press the Home button and launch the Settings application. When you select Bridge
Control, you should see three fields on your root-level view, as shown in Figure 12-22. Go ahead and play

with it a bit and then let’s move on.

401

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Carrier ¥ 9:56 AM - .

< Settings Bridge Control

GEMERAL INFO

Commanding Officer Kirk
Authorization Code

Rank Captain

Figure 12-22. Three of your fields have been implemented.

Adding a Toggle Switch Setting

The next item you need to get from the user is a Boolean value that indicates whether your warp engines
should be turned on. To capture a Boolean value in your preferences, you are going to tell the Settings
application to use a UISwitch by adding another item to your PreferenceSpecifiers array with a type of
PSToggleSwitchSpecifier.

Collapse Item 3 if it’s currently expanded and then single-click it to select it. Press Return to create Item 4.
Use the drop-down menu to select Toggle Switch and then click the disclosure triangle to expand Item 4. You'll
see there’s already a child row with a Key of Type and a Value of PSToggleSwitchSpecifier. Give the empty Title
row a value of Warp Drive and set the value of the Key row to warp.

You have one more required item in this dictionary, which is the default value. Just as with the Multi
Value setup, here Xcode has already created a DefaultValue row for you. Let’s turn on your warp engines by
default by giving the DefaultValue row a value of YES. Figure 12-23 shows your completed Item 4.

402

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Key Type Value
¥ iPhone Settings Schema Dictionary (2 items)
Strings Filename 4 String Root
¥ Preference Items s Array (5 items)
» Item O (Group - General Info) Dictionary (2 items)
> Item 1 (Text Field - Commanding Dictionary (5 items)
> Item 2 (Text Field - Authorization Dictionary (6 items)
> Item 3 (Multi Value - Rank) Dictionary (6 items)
Item 4 (Toggle Switch - Warp v Dictionary £ (4 items)
Type 4 String Toggle Switch
Title : String Warp Drive
Identifier 4 String warp
Default Value 4 Boolean YES

Figure 12-23. Your finished Item 4, a toggle switch to turn the warp engines on and off

Adding the Slider Setting

The next item you need to implement is a slider. In the Settings application, a slider can have a small image
at each end, but it can’t have a label. Let’s put the slider in its own group with a header so that the user will
know what the slider does. Start by collapsing Item 4. Now single-click Item 4 and press Return to create a
new row. Use the pop-up to turn the new item into a Group and then click the item’s disclosure triangle to
expand it. You'll see that Type is already set to PSGroupSpecifier. This will tell the Settings application

to start a new group at this location. Double-click the value in the row labeled Title and change the value to
Warp Factor.

Collapse Item 5 and select it and then press Return to add a new sibling row. Use the pop-up to change
the new item into a Slider, which indicates to the Settings application that it should use a UIS1lider to get this
information from the user. Expand Item 6 and set the value of the Key row to warpFactor so that the Settings
application knows which key to use when storing this value.

You're going to allow the user to enter a value from 1 to 10. You'll set the default to warp 5. Sliders need
to have a minimum value, a maximum value, and a starting (or default) value; and all of these need to be
stored as numbers, not strings, in your property list. Fortunately, Xcode has already created rows for all these
values. Give the DefaultValue row a value of 5, the MinimumValue row a value of 1, and the MaximumValue
row a value of 10.

If you want to test the slider, go ahead. You're going to do just a bit more customization. As noted, you
can place an image at each end of the slider. Let’s provide little icons to indicate that moving the slider to the
left slows you down and moving it to the right speeds you up.

403

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Adding Icons to the Settings Bundle

In the Images folder in the project archive that accompanies this book, you'll find two icons called rabbit.
png and turtle.png. You need to add both of these to your settings bundle. Because these images need to be
used by the Settings application, you can’t just put them in your Bridge Control folder; you need to put them
in the settings bundle so the Settings application can access them. To do that, you'll need to open the settings
bundle in the Finder. Control-click the Settings.bundle icon in the Project Navigator, and when the contextual
menu appears, select Show in Finder (see Figure 12-24) to show the bundle in the Finder.

LTI R TR P

P Item 2 (Text F

e S P Item 3 (Multi
unchScreen.storyboar > item 4 (Togg|

Info.plist b Item 5 (Groug

v @ Settings. Show in Finder Slider

b enlprt Open with External Editor

i Assets.xcassets

|
0 Rootf QOpen As »>
P Products Show File Inspector litval
wumvi
New File numv

Add Files to “Settings.bundle”..
Delete

New Folder
New Group from Selection

Figure 12-24. The Settings.bundle contextual menu

Remember that bundles look like files in the Finder, but they are really folders. When the Finder window
opens to show the Settings.bundle file, Control-click the file and select Show Package Contents from the
contextual menu that appears. This will open the settings bundle in a new Finder window. You should
see the same two items that you see in Settings.bundle in Xcode. Copy the two icon files, rabbit.png and
turtle.png, from the Images folder into the Settings.bundle package contents in the Finder window, next to
en.proj and Root.plist. You can leave this window open in the Finder, as you'll need to copy another file
here soon. Now you'll return to Xcode and tell the slider to use these two images.

404

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Back in Xcode, return to Root.plist and add two more child rows under Item 6. Give one a key of
MinimumValueImage and a value of turtle. Give the other a key of MaximumValueImage and a value of
rabbit. Figure 12-25 shows your finished Item 6.

Key

¥ iPhone Settings Schema
StringsTable
¥ PreferenceSpecifiers

»

4 Y vVVYyVvVYy

Item O (Group - General Info)
Item 1 (Text Field - Commanding
Item 2 (Text Field - Authorization
Itern 3 (Multi Value - Rank)
Item 4 (Toggle Switch - Warp
ltem 5 (Group - Warp Factor)
Item 6 (Slider)
Type
Key
DefaultValue
MinimumValue
MaximumValue
MinimumValuelmage
MaximumValuelmage

Ak 4k

AF A dAb AF AF AF 4>

Type

Dictionary

String

Array

Dictionary
Dictionan
Dictionary
Dictionary
Dictionary
Dictionary

Dictionary

String
String
Number
Number
Number
String

String

¥

Y

e

Value

(2 items)
Root

(7 items)

(2 items)
(5 items)
(6 items)
(6 items)
(4 items)
(2 items)
(7 items)
PSSliderSpecifier
warpFactor
5

1

10

turtle
rabbit

Figure 12-25. Your finished Item 6: a slider with turtle and rabbit icons to represent slow and fast

Save your property list and then build and run the app to make sure everything functions as expected.
You should be able to navigate to the Settings application and find the slider waiting for you, with the sleepy
turtle and the happy rabbit at their respective ends, as shown in Figure 12-26.

405

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Carrier ¥ 10:58 AM L

< Settings Bridge Control

GENERAL INFO
Commanding Officer Kirk
Authorization Code

Rank

Warp Drive

'WARP FACTOR

~ . <

Figure 12-26. You have text fields, multivalue fields, a toggle switch, and a slider

Adding a Child Settings View

You're going to add another preference specifier to tell the Settings application that you want it to display a
child settings view. This specifier will present a row with a disclosure indicator that, when tapped, will take
the user down to a whole new view full of preferences.

Since you don’t want this new preference to be grouped with the slider, first you'll copy the group
specifier in Item 0 and paste it at the end of the PreferenceSpecifiers array to create a new group for your
child settings view. In Root . plist, collapse all open items; then single-click Item 0 to select it and press §8C
to copy it to the clipboard. Next, select Item 6 and then press 38V to paste in a new Item 7. Expand Item 7
and double-click the Value column next to the key Title, changing it from General Info to Additional Info.

Now collapse Item 7 again. Select it and press Return to add Item 8, which will be your actual child view.
Expand it by clicking the disclosure triangle. Find the Type row, give it a value of PSChildPaneSpecifier, and
then set the value of the Title row to More Settings. You need to add one final row to Item 8, which will tell
the Settings application which property list to load for the More Settings view. Add another child row and
give it a key of File (you can do this by changing the key of the last row in the group from Key to File) and a
value of More (see Figure 12-27). The file extension .plist is assumed and must not be included (if it is, the
Settings application won't find the .plist file).

406

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Key Type Value
v iPhone Settings Schema (2 items)
StringsTable 4 String Root
¥ PreferenceSpecifiers 4 Array (9 items)
P Item O (Group - General Info) Dictionary (2 items)
b Item 1 (Text Field - Commanding Dictionary (5 items)
> Item 2 (Text Field - Authorization Dictionary (6 items)
P ltem 3 (Multi Value - Rank) Dictionary (6 items)
P Item 4 (Toggle Switch - Warp Dictionary (4 items)
P ltem 5 (Group - Warp Factor) Dictionary (2 items)
P Item 6 (Slider) Dictionary (7 items)
P Item 7 (Group - Additional Info) Dictionary (2 items)
¥ Item 8 (Child Pane - Mare Dictionary (4 items)
Type 4 String PSChildPaneSpecifier
Title 5 String More Settings
Key 4+ String
File 4 String Maore

Figure 12-27. Your finished Items 7 and 8, setting up the new Additional Info settings group and providing the
child pane link to the file, More.plist

You are adding a child view to your main preference view. You've configured the settings bundle to
indicate that the settings in that child view are specified in the More.plist file so you need to add a file
called More.plist into the settings bundle. You can’t add new files to the bundle in Xcode, and the Property
List Editor’s Save dialog will not let you save into a bundle, so you need to create a new property list, save it
somewhere else, and then drag it into the Settings.bundle window using the Finder. When you create your
own child settings views, the easiest approach is to make a copy of Root.plist, give it a new name, and then
delete all of the existing preference specifiers except the first one and add whatever preference specifiers you
need for that new file. To save yourself the trouble of doing all this, you can grab the More.plist file in the
Images folder in the project archive that accompanies this book and then drag it into that Settings.bundle
window you left open earlier, alongside Root.plist.

You're now finished with your settings bundle. Feel free to build, run, and test the Settings application.
You should be able to reach the child view and set values for all the other fields. Go ahead and play with it,
and make changes to the property list if you want.

Tip I've covered almost every configuration option available (at least at the time of this writing). You can
find the full documentation of the settings property list format in the document called Settings Application
Schema Reference in the i0S Dev Center. You can get that document, along with a ton of other useful reference
documents, from this page: http://developer.apple.com/library/ios/navigation/.

Before continuing, select the Assets.xcassets item in Xcode’s Project Navigator and then copy the
rabbit.pngand turtle.pngicons from the Images folder in the project archive into the left side of the editor
area. This will add these icons to the project as new images resources, ready for use. You'll be using them in
your application to show the value of the current settings.

407

http://developer.apple.com/library/ios/navigation/

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

You might have noticed that the two icons you just added are exactly the same ones you added to
your settings bundle earlier. You might be wondering why you've added them to your Xcode project twice.
Remember that iOS applications can’t read files out of other applications’ sandboxes. The settings bundle
doesn’t become part of your application’s sandbox—it becomes part of the Settings application’s sandbox.
Since you also want to use those icons in your application, you need to add them separately to Assets.
xcassets so they are copied into your application’s sandbox too.

Reading Settings in Your Application

You've now solved half of your problem. The user can use the Setting app to declare their preferences, but how
do you get to them from within your application? As it turns out, that’s the easy part. Before you write the code
to retrieve your settings, open the Settings application, locate your application’s settings, and set a value for
every setting so that the application has something to display in the user interface that you're about to create.

Retrieving User Settings

You'll use a class called UserDefaults (NSUserDefaults) to access the user’s settings. UserDefaults is
implemented as a singleton, which means there is only one instance of UserDefaults that holds the settings
for your application. To get access to that one instance, you call the class method standard, like so:

let defaults = UserDefaults.standard

Once you have a pointer to the standard user defaults, you use it much like a Dictionary. To get a value
from it, you can call object(forKey:), which will return an object, a String, or a Foundation object such
as a date (NSDate) or NSNumber. If you want to retrieve the value as a scalar—like an int, float, or Boolean—
you can use another method, such as int(forKey:), float(forKey:), orbool(forKey:).

While you were creating the property list for this application, you were actually creating an array of
PreferenceSpecifiers inside a . plist file. Within the Settings application, some of those specifiers were
used to create groups, while others were used to create interface objects for user interaction. Those are the
specifiers you are really interested in because they hold the keys for the real settings data. Every specifier that
was tied to a user setting has a Key named Key. Take a minute to go back and check. For example, the Key for
your slider has a value of warpFactor and the Key for your Authorization Code field is authorizationCode.
You'll use those keys to retrieve the user settings.

Instead of using strings for each key directly in your methods, you'll define some constants for those
values. That way, you can use these constants in your code instead of inline strings, where you would run
the risk of mistyping something. You'll set these up in a separate Swift file since you're going to use some
of them in more than one class later. So, in Xcode, press 3N and, from the iOS section of the file creation
window, choose Source and then Swift File. Click Next, call the file Constants.swift, and click Create. Open
the newly created file and add code in Listing 12-1.

Listing 12-1. Your Constants

let officerKey = "officer"

let authorizationCodeKey = "authorizationCode"
let rankKey = "rank"

let warpDriveKey = "warp"

let warpFactorKey = "warpFactor"

let favoriteTeaKey = "favoriteTea"

let favoriteCaptainKey = "favoriteCaptain"

let favoriteGadgetKey = "favoriteGadget"

let favoriteAlienKey = "favoriteAlien"

408

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

These constants are the keys that you used in your . plist file for the different preference fields.
Now that you have a place to display the settings, let’s quickly set up your main view with a bunch of
labels. Before going over to Interface Builder, let’s create outlets for all the labels you'll need. Single-click
FirstViewController.swift, and make the changes in Listing 12-2.

Listing 12-2. Adding Outlets to the FirstViewController.swift File

class FirstViewController: UIViewController {
@IBOutlet var officerLabel:UILabel!
@IBOutlet var authorizationCodelLabel:UILabel!
@IBOutlet var rankLabel:UILabel!
@IBOutlet var warpDrivelabel:UILabel!
@IBOutlet var warpFactorLabel:UILabel!
@IBOutlet var favoriteTealabel:UILabel!
@IBOutlet var favoriteCaptainLabel:UILabel!
@IBOutlet var favoriteGadgetLabel:UILabel!
@IBOutlet var favoriteAlienLabel:UILabel!

There’s nothing new here—we declared nine properties, all of them labels with the @IBOutlet keyword
to make them connectable in Interface Builder. Save your changes. Now that you have your outlets declared,
let’s head over to the storyboard file to create the user interface.

Creating the Main View

SelectMain.storyboard to edit it in Interface Builder. When it comes up, you'll see the tab bar view
controller on the left and the view controllers for the two tabs on the right, one above the other. The upper
one is for the first tab, corresponding to the FirstViewController class, and the lower one is for the second
tab, which will be implemented in the SecondViewController class.

You're going to start by adding a bunch of labels to the view of FirstViewController so it looks like
the one shown in Figure 12-28. You'll need a grand total of 18 labels. Half of them, on the left side of the
screen, will be right-aligned and bold; the other half, on the right side of the screen, will be used to display
the actual values retrieved from the user defaults and will have outlets pointing to them. All of the changes
that you make here will be to the view controller for the first tab, which is the upper one on the right of the
storyboard.

409

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Main

Officer: Label
Authorization Code: Label
Rank: Label

Warp Drive: Label
Warp Factor: Label
Favorite Tea: Label

Favorite Captain: Label
Favorite Gadget: Label
Favorite Alien: Label

Figure 12-28. The view controller for the first tab in Interface Builder, showing the 18 labels you added

Start by expanding the node for Main Scene in the Document Outline and then expand the View item.
You'll find two child views already in place—delete them both. Now drag a label from the Object Library and
drop it near the top left of the view in the storyboard. Drag it all the way to the left of the window (or at least
to the left blue guideline) and then widen it by dragging its right edge toward the center of the view, like the
Officer label in Figure 12-28. In the Attributes Inspector, make the text right aligned and change the font to
System Bold 17. Now Option-drag the label downward to create eight more copies, lining them up neatly to
form the left column. Change the label texts so that they match the ones in Figure 12-28.

Building the right column is slightly easier. Drag another label onto the view and place it to the right
of the Officer label, leaving a small gap between them. In the Attributes Inspector, set the font to System 17.
Option-drag this label downward to create eight more copies, each of them lined up with the corresponding
label in the left column.

Now you need to set the Auto Layout constraints. Let’s start by linking the top two labels together.
Control-drag from the Officer label to the label to its right. Release the mouse and hold down the Shift key.
In the pop-up menu, select Horizontal Spacing and Baseline and then click outside the pop-up. Do the same
for the other eight rows to link each pair of labels together.

Next, you'll fix the positions of the labels in the left column relative to the left and top of the view. In the
Document Outline, Control-drag from the Officer label to its parent view. Release the mouse, hold down
the Shift key, select Leading Space to Container Margin and Vertical Spacing to Top Layout Guide, and then
press Return to apply the constraints. Do the same with the other eight labels in the left column.

410

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Finally, you need to fix the widths of the labels in the left column. Select the Officer label and click
the Pin button below the storyboard editor. In the pop-up, select the Width check box followed by Add 1
Constraint. Repeat this process for all of the labels in the left column.

All of the labels should now be properly constrained, so select the view controller Main in the
Document Outline and then click Editor » Resolve Auto Layout Issues » Update Frames in the Xcode
menu. (If this option is not enabled, all of the labels are already in their correct positions in the storyboard.)
If all is well, the labels will move to their final positions.

The next thing you need to do is link the labels in the right column to their outlets. Open FirstView
Controller.swift in the Assistant Editor and Control-drag from the top label in the right column to the
officerLabel outlet to connect them. Control-drag from the second label in the right column to
authorizationlabel and repeat this process until all nine labels in the right column are connected to their
outlets. Save the Main.storyboard file.

Updating the First View Controller

In Xcode, select FirstViewController.swift and add the code in Listing 12-3 at the bottom of the class.

Listing 12-3. Displaying Data in Your Label Fields

func refreshFields() {
let defaults = UserDefaults.standard
officerLabel.text = defaults.string(forKey: officerKey)
authorizationCodelabel.text = defaults.string(forKey: authorizationCodeKey)
rankLabel.text = defaults.string(forKey: rankKey)
warpDrivelabel.text = defaults.bool(forKey: warpDriveKey)

? "Engaged" : "Disabled"

warpFactorLabel.text = defaults.object(forKey: warpFactorKey)?.stringValue
favoriteTealabel.text = defaults.string(forKey: favoriteTeaKey)
favoriteCaptainLabel.text = defaults.string(forKey: favoriteCaptainKey)
favoriteGadgetLabel.text = defaults.string(forKey: favoriteGadgetKey)
favoriteAlienLabel.text = defaults.string(forKey: favoriteAlienKey)

}

override func viewWillAppear(animated: Bool) {
super.viewWillAppear (animated)
refreshFields()

There’s not really much here that should throw you. The refreshFields () method does two things.
First, it grabs the standard user defaults. Second, it sets the text properties of all the labels to the appropriate
object from the user defaults using the same key values that you put in your .plist file. Notice that for
warpFactorlLabel, you're calling string on the object returned. Most of your other preferences are strings,
which come back from the user defaults as String objects. The preference stored by the slider, however,
comes back as an NSNumber, but you need a string for display purposes, so you call string on it to get a string
representation of the value it holds.

After that, you overrode your superclass’s viewWillAppear () method, and there you called your
refreshFields() method. This causes the displayed values to be updated whenever the view appears—
which includes when the application starts and when the user switches from the second tab to the first tab.

Now run the application. You should see the user interface that you built for the first tab, with most of
the fields filled with the values that you entered into the Settings application earlier. However, some of the
fields will be empty. Don’t worry, this is not a bug. It is correct behavior, believe it or not. You'll see why, and
how to fix it, in the upcoming “Registering Default Values” section.

411

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Changing Defaults from Your Application

Now that you have the main view up and running, let’s build the second tab. As you can see in Figure 12-29,
the second tab features your warp drive switch, as well as the warp factor slider. You'll use the same controls
that the Settings application uses for these two items: a switch and a slider. In addition to declaring your
outlets, you'll also declare a method called refreshFields(), just as you did in FirstViewController, and
two action methods that will be triggered by the user touching the controls.

Settings

Figure 12-29. Designing the second view controller in Interface Builder

Select SecondViewController.swift and make the following changes:

class SecondViewController: UIViewController {
@IBOutlet var engineSwitch:UISwitch!
@IBOutlet var warpFactorSlider:UISlider!

Now, save your changes and select Main. storyboard to edit the GUI in Interface Builder, this time
focusing on Settings Scene in the Document Outline. Hold down the Option key and click the disclosure
triangle to expand Settings Scene and everything below it. Locate the View node and delete both of its child
nodes. Next, select the View node and then bring up the Attributes Inspector. Change the background color
by using the Background pop-up to select Light Gray Color.

412

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Next, drag two labels from the library and place them on the view in the storyboard. Make sure you drag
them onto the Settings Scene controller, which is the one at the bottom right of the storyboard. Double-click
one of them and change it to read Warp Engines:. Double-click the other and call it Warp Factor:. Place
both labels against the left guideline, one above the other. You can use Figure 12-29 as a placement guide.

Next, drag over a switch from the library and place it against the right side of the view, across from the
Warp Engines label. Control-drag from the View Controller icon (it’s the yellow one) at the top of the settings
scene to the new switch and connect it to the engineSwitch outlet. Next, open SecondViewController in the
Assistant Editor and Control-drag from the switch to a point just above the closing brace at the bottom of the
file. Release the mouse and create an action called onEngineSwitchTapped, leaving all the other selections in
the pop-up at their default values.

Drag over a slider from the library and place it below the Warp Factor label. Resize the slider so that
it stretches from the blue guideline on the left margin to the one on the right. Now Control-drag from the
View Controller icon at the top of the settings scene to the slider and then connect it to the warpFactorSlider
outlet. Next, Control-drag from the slider to the end of the SecondViewController class and create an action
called onWarpSliderDragged, leaving all the other selections in the pop-up at their default values.

Single-click the slider, if it’s not still selected, and then bring up the Attributes Inspector.

Set Minimum to 1.00, Maximum to 10.00, and Current to 5.00. Next, select turtle for Min Image and rabbit
for Max Image. If those don't show up in the pop-up buttons, make sure you dragged the images into the
Assets.xcassets assets catalog.

To complete the user interface, drag a button from the Object Library, drop it at the bottom of
the view, and change its name to Open Settings Application. Control-drag from the button to just
below the onWarpSliderDragged method in SecondViewController and create an action called
onSettingsButtonTapped. You'll use this button at the end of the chapter.

It's time to add the Auto Layout constraints. Start by selecting Main.storyboard. In the Document
Outline, Control-drag from the Warp Engines label to its parent view and release the mouse. Hold down
the Shift key, select Leading Space to Container Margin and Vertical Spacing to Top Layout Guide, and then
press the Return key to apply the constraints. Repeat this for the Warp Factor label.

Next, Control-drag from the switch to Main View and release the mouse. Hold down the Shift key,
select Trailing Space to Container Margin and Vertical Spacing to Top Layout Guide, and then press Return.
Control-drag from the slider to Main View and release the mouse. Hold down the Shift key and this time
select Leading Space to Container Margin, Trailing Space to Container Margin, and Vertical Spacing to Top
Layout Guide; then press Return.

Finally, you need to fix the position of the button at the bottom of the view. Control-drag from the
button to Main View, release the mouse, select Vertical Spacing to Bottom Layout Guide and Center
Horizontally in Container while holding down the Shift key, and then press Return. That completes the Auto
Layout constraints, so go ahead and select the view controller Main in the Document Outline, and then click
Editor » Resolve Auto Layout Issues » Update Frames in the Xcode menu. Make sure that everything is
where it should be in the view.

Now, let’s finish the settings view controller. Select SecondViewController.swift and add the code in
Listing 12-4 at the bottom of the class.

Listing 12-4. Your refreshFields and viewWillAppear Methods for the SecondViewController

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)
refreshFields()

}

func refreshFields() {
let defaults = UserDefaults.standard
engineSwitch.isOn = defaults.bool(forKey: warpDriveKey)
warpFactorSlider.value = defaults.float(forKey: warpFactorKey)

413

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Next, add the following code in the onEngineSwitchTapped() and onWarpSliderDragged() methods:

@IBAction func onEngineSwitchTapped(_ sender: AnyObject) {
let defaults = UserDefaults.standard
defaults.set(engineSwitch.isOn, forKey: warpDriveKey)

}

@IBAction func onWarpSliderDragged(sender: AnyObject) {
let defaults = UserDefaults.standard
defaults.set(warpFactorSlider.value, forKey: warpFactorKey)

When the view controller’s view appears (e.g., when the tab is selected), you call your refreshFields()
method. This method’s three lines of code get a reference to the standard user defaults and then use the
outlets for the switch and slider to make them display the values stored in the user defaults. You also
implemented the onEngineSwitchTapped() and onWarpSliderDragged() action methods so that you could
stuff the values from your controls back into the user defaults when the user changes them.

Now you should be able to run the app, switch to the second tab, edit the values presented there, and
see them reflected in the first tab when you switch back.

Registering Default Values

You've created a settings bundle, including some default settings for a few values, to give the Settings app
access to your app’s preferences. You've also set up your own app to access the same information, with a GUI
to let the user see and edit it. However, one piece is missing: your app is completely unaware of the default
values that you specified in the settings bundle. You can see this for yourself by deleting the Bridge Control
app from the iOS simulator or the device you're running on (thereby deleting the preferences stored for the
app) and then running it from Xcode again. At the start of a fresh launch, the app will show you blank values
for most of the settings. Even the default values for the warp drive settings, which you defined in the settings
bundle, are nowhere to be seen. If you then switch over to the Settings app, you'll see the default values;
however, unless you actually change the values there, you'll never see them back in the Bridge Control app.
The reason your default settings disappeared is that your app knows nothing about the settings bundle
it contains. So, when it tries to read the value from UserDefaults for warpFactor and finds nothing saved
under that key, it has nothing to show you. Fortunately, UserDefaults includes a method called register()
that lets you specify the default values that you should find if you try to look up a key/value that hasn’t
been set. To make this work throughout the app, it’s best if this is called early during app startup. Select
AppDelegate.swift and modify the application(_:didFinishLaunchingWithOptions:) method.

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?) -> Bool {
// Override point for customization after application launch.

let defaults = [warpDriveKey: true, warpFactorKey: 5, favoriteAlienKey: "Vulcan"]
UserDefaults.standard.register(defaults)
return true

The first thing you do here is create a dictionary that contains three key/value pairs, one for each of the
keys available in Settings that requires a default value. You're using the same key names you defined earlier
to reduce the risk of mistyping a key name. You pass the entire dictionary to the standard NSUserDefaults
instance’s registerDefaults() method. From that point on, NSUserDefaults will give you the values you
specify here, as long as you haven'’t set different values either in your app or in the Settings app.

414

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

This class is complete. Delete the Bridge Control application and run it again. It will look something like
Figure 12-6, except yours will be showing whatever values you entered in your Settings application, of course.

Note To remove an app, click an app icon from the main device screen and hold until the icons start
wiggling. Then, release the mouse and click the X on the app that you want to delete.

Keeping It Real

Now you should be able to run your app, view the settings, and then press the Home button and open the
Settings app to tweak some values. Hit the Home button again to launch your app again from the home
screen. You may be in for a surprise. When you go back to your app, you won't see the settings change.
They’ll remain as they are, showing the old values.

In i0O§, hitting the Home button while an app is running doesn’t actually quit the app. Instead, the
operating system suspends the app in the background, leaving it ready to be quickly fired up again. This
is great for switching back and forth between applications since the amount of time it takes to reawaken a
suspended app is much shorter than what it takes to launch it from scratch. However, in this case, you need
to do a little more work, so that when your app wakes up, it effectively gets a slap in the face, reloads the user
preferences, and redisplays the values they contain.

I'll give you a sneak peek at the basics of how to make your app notice that it has been brought back to
life. To do this, you're going to sign up each of your controller classes to receive a notification that is sent by
the application when it wakes up from its state of suspended execution.

A notification is a lightweight mechanism that objects can use to communicate with each other. Any
object can define one or more notifications that it will publish to the application’s notification center, which
is a singleton object that exists only to pass these notifications between objects. Notifications are usually
indications that some event occurred, and objects that publish notifications include a list of notifications
in their documentation. The UIApplication class publishes a number of notifications (you can find them
in the Xcode documentation viewer, toward the bottom of the UIApplication page). The purpose of most
notifications is usually pretty obvious from their names, but the documentation contains further information
if you're unclear about a given notification’s purpose.

Your application needs to refresh its display when the application is about to come to the foreground,
so you are interested in the notification called UIApplicationWillEnterForeground. You'll modify
the viewWillAppear () method of your view controllers to subscribe to that notification and tell the
notification center to call another method when that notification happens. Add the following code to both
FirstViewController.swift and SecondViewController.swift:

@objc func applicationWillEnterForeground(notification:NSNotification) {
let defaults = UserDefaults.standard
defaults.synchronize()
refreshFields()

The method itself is quite simple. First, it gets a reference to the standard user defaults object and
calls its synchronize() method, which forces the User Defaults system to save any unsaved changes
and also reload any unmodified preferences from storage. In effect, you're forcing it to reread the
stored preferences so that you can pick up the changes that were made in the Settings app. Next, the
applicationWillEnterForeground() method calls the refreshFields() method, which each class uses to
update its display.

415

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

Now you need to make each of your controllers subscribe to the notification. Add the following two lines of
code to the viewWillAppear: method in both FirstViewController.swift and SecondViewController.swift:

let app = UIApplication.shared()
NotificationCenter.default.addObserver(self, selector: #selector(self.applicationWillEnterFore
ground(notification:)), name: Notification.Name.UIApplicationWillEnterForeground, object: app)

You start by getting a reference to your application instance and then use that to subscribe to the
applicationWillEnterForeground notification, using the default NotificationCenter instance and a
method called addObserver(_:selector:name:object:). You then pass the following to this method:

e For the observer, you pass self, which means that your controller class (each of
them individually, since this code is going into both of them) is the object that needs
to be notified.

e For selector, you pass a selector to the applicationWillEnterForeground()
method you just wrote, telling the notification center to call that method when the
notification is posted.

e The third parameter, applicationWillEnterForeground, is the name of the
notification that you're interested in receiving.

e The final parameter, app, is the object from which you're interested in getting the
notification. You use a reference to your own application for this. If you passed nil
for the final parameter instead, you would get notified any time any application
posted the UTApplicationWillEnterForeground.

That takes care of updating the display, but you also need to consider what happens to the values
that are put into the user defaults when the user manipulates the controls in your app. You need to make
sure that they are saved to storage before control passes to another app. The easiest way to do that is to call
synchronize as soon as the settings are changed by adding one line to the first two of your action methods in
SecondViewController.swift.

@IBAction func onEngineSwitchTapped(_ sender: AnyObject) {
let defaults = UserDefaults.standard
defaults.set(engineSwitch.isOn, forKey: warpDriveKey)
defaults.synchronize()

}

@IBAction func onWarpSliderDragged(sender: AnyObject) {
let defaults = UserDefaults.standard
defaults.set(warpFactorSlider.value, forKey: warpFactorKey)
defaults.synchronize()

Note Calling the synchronize() method is a potentially expensive operation because the entire contents
of the user defaults in memory must be compared with what'’s in storage. When you’re dealing with a whole
lot of user defaults at once and want to make sure everything is in sync, it’s best to try to minimize calls to
synchronize() so that this whole comparison isn’t performed over and over again. However, calling it once in
response to each user action, as you're doing here, won’t cause any noticeable performance problems.

416

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

There’s one more thing to take care of to make this work as cleanly as possible. You already know
that you must clean up your memory by setting properties to nil when they’re no longer in use, as well
as performing other cleanup tasks. The notification system is another place where you need to clean
up after yourself by telling the default NotificationCenter that you don’t want to listen to any more
notifications. In this case, where you've registered each view controller to observe this notification in its
viewWillAppear() method, you should unregister in the matching viewDidDisappear () method. So, in both
FirstViewController.swift and SecondViewController.swift, add the following method:

override func viewDidDisappear(_ animated: Bool) {
super.viewDidDisappear(animated)
NotificationCenter.default.removeObserver(self)

Note that it’s possible to unregister for specific notifications using the removeObserver(_:name:object:)
method by passing in the same values that were used to register your observer in the first place. In any
case, the preceding line is a handy way to make sure that the notification center forgets about your observer
completely, no matter how many notifications it was registered for.

With that in place, it’s time to build and run the app and see what happens when you switch between
your app and the Settings app. Changes you make in the Settings app should now be immediately reflected
in your app when you switch back to it.

Switching to the Settings Application

To switch from the Bridge Control application to its settings, you need to go to the home screen, launch

the Settings application, find the Bridge Control entry, and select it. That’s a lot of steps. It’s so tiresome

that many applications have opted to include their own settings screen rather than make the user go
through all of that. Wouldn't it be much nicer if you could just take the user directly to screen for your
settings in the Settings application? Well, it turns out that you can do just that. Remember the Open

Settings Application button you added to SecondViewController in Figure 12-30? You wired it up to the
onSettingsButtonTapped() method in the view controller, but you didn’t put any code in that method. Let’s
fix that now. Add the following code shown to the onSettingsButtonTapped() method:

@IBAction func onSettingsButtonTapped(_ sender: AnyObject) {
let application = UIApplication.shared()
let url = URL(string: UIApplicationOpenSettingsURLString)! as URL
if application.canOpenURL(url) {
application.open(url, options:["":""] , completionHandler: nil)

This code uses a system-defined URL stored in the external constant UIApplicationOpenSettings
URLString (the value is actually app-settings:) to launch the Settings application right from your
view controller. Run the application, switch to the second tab, and click the Open Settings Application
button—you'll be taken directly to your settings screen, the one shown in Figure 12-3. That’s a great
improvement. Even better, as of iOS 9, at the top of the Settings screen, you'll see a small button that lets
you return directly to your application (see Figure 12-30). Now you can easily navigate back and forth
between the Bridge Control and Settings applications, changing values and seeing the effect on your
application’s user interface.

417

CHAPTER 12 APP CUSTOMIZATION WITH SETTINGS AND DEFAULTS

B Bridge Control = 9:31 AM -

£ Settings Bridge Control

GENERAL INFO

Commanding Officer Jenny

Authorization Code seeee

Rank Commander
Warp Drive t
WARP FACTOR

”n -
ADDITIONAL INFO

More Settings

Figure 12-30. When the Settings application is opened from Bridge Control, there’s a button in the status bar
that lets you go right back to your application

Summary

At this point, you should have a solid grasp on both the Settings application and the User Defaults
mechanism. You know how to add a settings bundle to your application and how to build a hierarchy

of views for your application’s preferences. You also learned how to read and write preferences using
UserDefaults, as well as how to let the user change preferences from within your application. You even got
a chance to use a new project template in Xcode. There really shouldn’t be much in the way of application
preferences that you are not equipped to handle now.

418

CHAPTER 13

Persistence: Saving Data Between
App Launches

So far, you've focused on the controller and view aspects of the MVC paradigm. Although several of your
applications read data from their own application bundle, only the Bridge Control example in Chapter 12
places any data in persistent storage. When any of your other apps launched, they appeared with exactly the
same data they had when first launched. That approach worked up to this point, but in the real world, your
apps need to persist data. When users make changes, they want to see those changes when they launch the
program again.

A number of different mechanisms exist for persisting data on an iOS device. If you've programmed
in Cocoa for macOS, you've likely used some or all of these techniques. In this chapter, you'll look at four
mechanisms for persisting data to the iOS file system.

e Property lists

Object archives (or archiving)

SQLite3 (i0S’s embedded relational database)

Core Data (Apple’s provided persistence tool)

Note Property lists, object archives, SQLite3, and Core Data are not the only ways you can persist data on
i0S; they are just the most common and easiest. You always have the option of using traditional C 1/0 calls like
fopen() to read and write data. You can also use Cocoa’s low-level file-management tools. In almost every case,
doing so will result in a lot more coding effort and is rarely necessary, but those tools are there if you want them.

Your Application’s Sandbox

All four of this chapter’s data-persistence mechanisms share an important common element: your
application’s Documents folder. Every application gets its own Documents folder, and applications are
allowed to read and write from their own Documents directory.

First, let’s look at how applications are organized in iOS by examining the folder layout used by the
iPhone simulator. To see this, you'll need to look inside the Library directory contained in your home
directory. On OS X 10.6 and earlier, this was no problem; however, starting with OS X 10.7, Apple decided
to make the Library folder hidden by default, so there’s a small extra hoop to jump through. Open a Finder

© Molly K. Maskrey 2017 419
M. K. Maskrey, Beginning iPhone Development with Swift 4, https://doi.org/10.1007/978-1-4842-3072-5_13

https://doi.org/10.1007/978-1-4842-3072-5_13
http://dx.doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

window and navigate to your home directory. If you can see your Library folder, that'’s great. If not, hold
down the Option key (~=) and select Go » Library. The Library option is hidden unless you hold down the
Option key.

Within the Library folder, drill down into Developer/CoreSimulator/Devices/. Within that directory,
you'll see one subdirectory for each simulator in your current Xcode installation. The subdirectory names
are globally unique identifiers (GUIDs) that are generated automatically by Xcode, so it’s impossible to know
just by looking at them which directory corresponds to which simulator. To find out, look for a file called
device.plist in any of the simulator directories and open it. You'll find a key that maps to the simulated
device’s name. Figure 13-1 shows the device.plist file for the iPad Pro simulator.

. ﬂal - <?xal version="1.8" encoding="UTF-2"7a

<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.8//BN" "http://
e, Bpple. con/DTDs/Propertylist-1.8.dtd">
=plist version="1.8">
=diets

) Devices * [OATDOFDF-..30BOASED
1] 0AS09304-..DAS17692
[0BS350A0-..E9TE4ESS
I 10770832..59FDFB56A
(7] 1E4BACAS..FGB33EETR
I 1ED8018C..BB5E0ECED
[0 1FOF91AT-. AABBOCEC
9 02A79E1B-..CD119FAF
- <key=nar >

»
>
»
»
* wkey>UDID=/key>
»
»
»
(] 3A3CCE4F._4DDSCB3S » <key=runt ime</key>
>
>
»
»
»
»
>
>
»

=string>501A41EF-(921-4662-B010-296BABBARDAC </ 5t ring>

<key>deviceTypes/key>

<string=com.apple.CoreSinulator, SinDeviceType, iPad-Pro</
string>

[3EFBCO65-. . ADGIEFCS «string>com. apple.CoreSinulator. Simflunt ine, 105=-0=1</
I 4AAD9F22..E26C2C177 string> <keysstate</key>

] AACE0Z264..3A8F7D439 =integer>lefinteger>

7] 4BAB3342.F26CEFE4A <fdict>

[4C251ED3._B2D676CE1 </ptists

I 4EC2F388-..99F 18430

7] 5D1A41EF-..ABBAODAC

0 SED94080..D2B3380A0

(1) 6ACCO918..ACT7739FDB

Figure 13-1. Using the device.plist file to map a directory to a simulator

Choose a device and drill down into its data directory until you reach the subdirectory data/
Containers/Data/Application. Here again you'll see subdirectories with names that are GUIDs. In this
case, each one of them represents either a preinstalled application or an application that you have run on
that simulator. Select one of the directories and open it. You'll see something like Figure 13-2.

» [Application E [Documents .
| » [PluginKitPlugin » [3AC2C3FA..AC3B22978 [Library .
[shared » [VPNPlugin » [4F917170-..124D9ABF M tmp .
[AFESF943-.83E592725
[0BABSAE9-..BOOCODI2
[68829974~ ABFCSABG

[7C6DEBFE...D3039C3EF
[7E870A09-..3F77EEBE0
[BBE45AGB-..926A683A
[9CDB7400...C9F12A3C

[9F3361B7-..00A0BFO2Z

[16ES2BAS-..OF794E038
|7 21A56913.B72ESBTOA
M) S8E4D27E-..E1E9CF7C

|7 S9CDF2BF-. FEOBFFFAZ
[0678B229-. CZEAQ1BD
[74EEADDF..9BBOSSTBC
[86CBAES6..2D6BF5817
[135D09E26..52B4EB74D
[372A4CF8..6F1045058

1] Containers
[Documents
Library
Media

9 Root

B tmp
B var

TYTYTvTvwrw

YT YT YT YT Y Y YN YN N NNV

Figure 13-2. The sandbox for an application on the simulator

420

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Note It may take a little searching when starting from the Devices in Figure 13-1 to find a Containers
subdirectory. If you don’t see it at first, keep going down the list of device GUIDs, and you should eventually find
your way to the Containers subdirectory.

Although the previous listing represents the simulator, the file structure functions similarly to what’s on
an actual device. To see the sandbox for an application on a device, plug it onto your Mac and open the Xcode
Devices window (Window » Devices). You should see your device in the window sidebar. Select it and then
choose an application from the Installed Apps table. Near the bottom of the window on the right side, you'll see
a section called Installed Apps (you may have to click a down arrow near the bottom of the window to see this
section) that contains a table with a row for each of the apps you have installed from Xcode. Below the table,
there’s an icon that looks like a gear. Click it and select Show Container from the pop-up to see the contents
of the sandbox for whichever application you select in the table (see Figure 13-3). You can also download
everything in the sandbox to your Mac. Figure 13-4 shows the application sandbox for an application called
townslot2 from my book App Development Recipes for iOS and watchOS (Apress, 2016).

e @ Devices
DEVICES
Device Information
g i -
10.11.5 (16F34) Name MollysiPhone 65 =
|
| MollysiPhone 65 i
! 10.0 (14A5261V) Mozl Ihone o8 I
Capacity 11.18 GB (233.4 MB available)
SIMULATORS Battery ga%
Apple TV 1080| :
1:?% ?"4-‘5253.?: S 0.0 AS261)
8 iFad Ar |dentifier
10,0 {18A5261u)
o iPad Air 2 View Device Logs Take Screenshot -
10.0 {(14A5267u)
a iPad Pro (9.7 inch)
10.0 {14A5267u} Paired Watches
iPad Pro (12.9 inch) Nam. Madal < Jantifier
10.0 (14A5261u) RS Madel watchOS dentifie
r iPad Retina
ﬁ 10.0 (14A5261u)
o iPhone &
10.0 {14A5261u}
g iPhone §s Installed Apps
10.0 (14A5261u)
Name Version Identifier
iPhone 6
10.0 (144 ATS Utility 730 com.ATS.ATSCompanion.ATS...

» I(Phone 6 Plus
10.0 {14A526Tu)

i 2. 5 St 1.0.303 T

iPhone 65

10.0 (14A5261u) £ LiveRowing 223 [TR AR
ﬁ IPhone &s Plus L

10.0 {14A5261u] :

(PC1aAb201L) Show Container

iPhone SE Download Container...

10.0 (14A5261u) 2

Replace Container...

1 ey FA e m~m

com. il (0w S0t

Figure 13-3. Configuration and contents of an actual device showing the townslot2 app

421

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

townslot2 1 container:

Name Kind
Documents Folder
v Library Folder
Caches Folder
v Preferences Folder
com.globalteklabs.townslot2.plist File
tmp Folder

Done

Figure 13-4. The sandbox for the townslot2 application on an iPhone 6s

Every application sandbox contains these three directories.

e Documents: Your application stores data in the Documents directory. If you enable
iTunes file sharing for your application, the user can see the contents of this
directory (and any subdirectories that your application creates) in iTunes and may
upload files to it.

Tip To enable file sharing for your application, open its Info.plist file and add the key “Application
supports iTunes file sharing” with the value YES.

e Library: This provides another place that your application stores data. Use it for files
that you do not want to share with the user. You can create your own subdirectories
if required. As you can see in Figure 13-4, the system creates subdirectories
called Cache and Preferences; Preferences contains the .plist file storing the
application’s preferences and sets using the UserDefaults class, which I discussed in
Chapter 12.

e tmp: The tmp directory offers a place where your application can store temporary
files. Files written into tmp will not be backed up by iTunes when your iOS device
syncs; but to avoid filling up the file system, your application does need to take
responsibility for deleting the files in tmp once they are no longer needed.

422

http://dx.doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Getting the Documents and Library Directories

Although your application exists in a folder with a seemingly random name, it’s quite easy to retrieve the full
path to the Documents directory so that you can read and write your files using the method urls(for:in:)
of the FileManager class locates the various directories for you. FileManager is a Foundation class, so it is
shared with Cocoa for OS X. Many of its available options are designed for macOS and some of the return
values on iOS that aren’t very useful because your application doesn’t have rights to access the directory due
to i0S’s sandboxing mechanism. Listing 13-1 shows an example code snippet in Swift 4 to access the i0S
Documents directory.

Listing 13-1. Code to Get an NSURL that Points to the Documents Directory

let urls = FileManager.default.urls(for:
.documentDirectory, ins: .userDomainMask)

if let documentUrl = urls.first {
print(documentUrl)

The first argument to the urlsForDirectory(:in:) method specifies which directory you are
looking for. The searchPathDirectory enumeration defines the possible values; here, you use the value
SearchPathDirectory.documentDirectory (shortened to .documentDirectory) indicating that you
are looking for the Documents directory. The second argument gives the domain or domains (called the
domainMask in the Apple documentation) to be used for the search. The possible domains are all values
of the SearchPathDomainMask enumeration, and here you specify .userDomainMask. On iOS, this domain
maps to the running application’s sandbox. The urls(for: in:) method returns an array containing one
or more URLs that map to the requested directory in the specified domain. On iOS, there is always only one
Documents directory for each application, so you can safely assume that exactly one NSURL object will be
returned, but just be on the safe side, you use an if let construction to safely access the first element of the
NSURL array, just in case it happens to be empty. On a real iOS device, the URL for the Documents directory
would be something like file:///var/mobile/Containers/Data/Application/69BFDDBO-E4A8-4359-
8382-F6DDDF031481/Documents/.

You can create a URL for a file in the Documents directory by appending another component onto the
end of the URL you just retrieved. You'll use an NSURL method called appendingPathComponent (), which was
designed for just that purpose.

let fileUrl = try documentUrl.appendingPathComponent("theFile.txt")

Note Error handling in Swift 4 operates similar to other languages that use the try, catch, and throw
keywords.

After this call, fileUrl should contain the full URL (see Listing 13-2) for a file called theFile.txt in
your application’s Documents directory, and you can use this URL to create, read, and write from that file. It’s
important to note that the file doesn’t need to exist for you to be able to get an NSURL object for it.

Listing 13-2. You can use the same method with first argument .libraryDirectory to locate the app’s library
directory

let urls = FileManager.default.urls(for:
.libraryDirectory, in: .userDomainMask)

if let libraryUrl = urls.first {
print(libraryUrl)

}

423

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

This code would return a URL like this:
file:///var/mobile/Containers/Data/Application/69BFDDBO-E4A8-4359-8382-F6DDDF031481/Library/.

It’s possible to specify more than one search domain. When you do so, FileManager looks for the
directory in all of the domains and may return more than one NSURL. For reasons already explained, this is
not really very useful on iOS, but for the sake of completeness, consider the example in Listing 13-3.

Listing 13-3. Getting Multiple URLs

let urls = FileManager.default.urls(for:
.libraryDirectory,in: [.userDomainMask, .systemDomainMask])
print(urls)

Here, you ask FileManager to look for the Library directory in both the user and system domains, and
the result is that you get back an array containing two NSURLs:

e file:///var/mobile/Containers/Data/Application/69BFDDBO-E4A8-4359-8382-
F6DDDF031481/Library/

o file:///System/Library/

The second URL refers to the system’s Library directory, which, of course, you can’t access. When more
than one URL is returned, the order in which they appear in the returned array is undefined.
Notice how you wrote the value of the inDomains argument in Listing 13-3.

[.userDomainMask, .systemDomainMask]

This might look like an initializer for an array, but it’s actually creating a set—the syntax for initializing
an array and a set in Swift are the same.

Getting the tmp Directory

Getting a reference to your application’s temporary directory is even easier than getting a reference to the
Documents directory. The Foundation function called NSTemporaryDirectory() returns a string containing
the full path to your application’s temporary directory. To create an NSURL for a file that will be stored in the
temporary directory, first find the temporary directory.

let tempDirPath = NSTemporaryDirectory()

Next, convert the path to a URL and create a path to a file in the temporary directory by appending a
path component to it as you did before, as shown in Listing 13-4.

Listing 13-4. Appending a Path Component to a URL

let tempDirUrl = NSURL(fileURLWithPath: tempDirPath)
let tempFileUrl = tempDirUrl.appendingPathComponent("tempFile.txt")

The resulting URL will be something like this:

file:///private/var/mobile/Containers/Data/Application/29233884-23EB-4267-8CC9-86DCD507D84C/
tmp/tempFile.txt

424

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

File-Saving Strategies

All the persistence approaches you're going to look at in this chapter use the iOS file system. In the case of
SQLite3, you'll create a single SQLite3 database file and let SQLite3 worry about storing and retrieving your
data. In its simplest form, Core Data takes care of all the file system management for you. With the other two
persistence mechanisms—property lists and archiving—you need to put some thought into whether you are
going to store your data in a single file or in multiple files.

Single-File Persistence

Using a single file for data storage provides the easiest approach and, with many applications, a perfectly
acceptable one. You start by creating a root object, usually an Array or Dictionary (your root object can

also be based on a custom class when using archiving). Next, you populate your root object with all the
program data that needs to be persisted. Whenever you need to save, your code rewrites the entire contents
of that root object to a single file. When your application launches, it reads the entire contents of that file into
memory. When it quits, it writes out the entire contents. This is the approach you'll use.

The downside of using a single file is that you need to load all of your application’s data into memory
and that you must write all of it to the file system for even the smallest changes. But if your application isn’t
likely to manage more than a few megabytes of data, this approach works fine, and its simplicity certainly
makes things easier.

Multiple-File Persistence

Using multiple files for persistence provides another approach. For example, an e-mail application might
store each e-mail message in its own file.

There are obvious advantages to this method. It allows the application to load only data that the user
has requested (another form of lazy loading); and when the user makes a change, only the files that changed
need to be saved. This method also gives you the opportunity to free up memory when you receive a low-
memory notification. Any memory that is being used to store data that the user is not currently viewing
can be flushed and then simply reloaded from the file system the next time it's needed. The downside of
multiple-file persistence is that it adds a fair amount of complexity to your application. For now, you'll work
with single-file persistence.

Next, you'll get into the specifics of each of your persistence methods: property lists, object archives,
SQLite3, and Core Data. You'll explore each of these in turn and build an application that uses each
mechanism to save some data to the device’s file system. You'll start with property lists.

Using Property Lists

Several of your sample applications have used property lists, most recently when you created a property list
to specify your application settings and preferences in Chapter 12. Property lists provide convenience in
that they can be edited manually using Xcode or the Property List Editor application. Also, both Dictionary
and Array instances can be written to and created from property lists, as long as they contain only specific
serializable objects.

425

http://dx.doi.org/10.1007/978-1-4842-3072-5_12

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Property List Serialization

A serialized object is one that has been converted into a stream of bytes so that it can be stored in a file or
transferred over a network. Although any object can be made serializable, only certain objects can be placed
into a collection class, such as an NSDictionary or NSArray, and then stored to a property list using the
collection class’s writeToURL(:atomically:) orwriteToFile(:atomically:) methods. The following
classes can be serialized this way:

e Array or NSArray

e NSMutableArray

e Dictionary orNSDictionary
e NSMutableDictionary

e NSData

e NSMutableData

e StringorNSString

e NSMutableString

e NSNumber

e DateorNSDate

If you can build your data model from just these objects, you can use property lists to save and load
your data.

Note The writeToURL(:atomically:) and writeToFile(:atomically:) methods do the same thing,
but the first requires you to give the file location as an NSURL, the second as a String. Previously, file locations
were always given as string paths, but more recently Apple started preferring to use NSURLS instead, so the
examples in this book do the same, except where there is only an API that requires a path. You can easily get
the path for a file-based NSURL from its path property, as you'll see in the first example in this chapter.

If you're going to use property lists for persisting application data, use either an Array or a Dictionary
to hold the data that needs to be persisted. Assuming that all the objects that you put into the Array or
Dictionary are serializable objects from the preceding list, you can write out a property list by calling the
write(to url: URL, atomically: Bool) -> Bool method on the dictionary or array instance, as shown in
Listing 13-5.

Listing 13-5. Writing to a Property List

let array: NSArray = [1,2,3]

let tempDirPath = NSTemporaryDirectory()

let tempDirUrl = NSURL(fileURLWithPath: tempDirPath)

let tempFileUrl = tempDirUrl.appendingPathComponent("tempFile.txt")
array.write(to: tempFileUrl!, atomically:true)

426

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Note The atomically parameter causes the method to first write the data to an auxiliary file, not to the
specified location, and after successfully being written to that file, it gets a copy to the location specified by the
first parameter. This provides a safer way to write a file because if the application crashes during the save, the
existing file (if there was one) will not be corrupted. It adds a bit of overhead, but in most situations, it’s worth
the cost.

One problem with the property list approach is that custom objects cannot be serialized into property
lists. You also can’t use other classes from Cocoa Touch, which means that classes like NSURL, UIImage, and
UIColor cannot be used directly.

Apart from the serialization issue, keeping all your model data in the form of property lists means
you can't easily create derived or calculated properties (such as a property that is the sum of two other
properties), and some of your code that really should be contained in model classes must be moved to your
controller classes. Again, these restrictions work for simple data models and apps. But most of the time your
app will be much easier to maintain by creating dedicated model classes.

Simple property lists still provide usefulness in complex applications as they are a great way to include
static data in your application. For example, when your application includes a picker, often the best way to
include the list of items for it is to create a . plist file, placing that file into your project’s Resources folder
and causing it to be compiled into your application.

You'll now build a simple application that uses property lists to store its data.

Creating the First Version of a Persistence Application

You're going to build a program that lets you enter data into four text fields, saves those fieldsto a .plist
file when the application quits, and then reloads the data back from that . plist file the next time the
application launches (see Figure 13-5).

427

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

ssses Verizon LTE 14:09

Line 1: Here's to the crazy ones.
Line 2: The misfits. The rebels.
Line 3: The troublemakers.

Line 4: The round pegs in the square holes.

112)]3|4)5|6]7]18]9]0
iltpisj&je)”

e ,

asc. e 0

Figure 13-5. Your Persistence application

Note In this chapter’s applications, you won’t be taking the time to set up all the user interface niceties
that you have added in previous examples. Tapping the Return key, for example, will neither dismiss the
keyboard nor take you to the next field. If you want to add such polish to the application, doing so would be
good practice, so | encourage you to do that on your own.

In Xcode, create a new project using the Single View App template and name it Persistence. Before you
build the view with the four text fields, let’s create the single outlet you need. In the Project Navigator, single-
click the ViewController. swift file and add the following outlet:

class ViewController: UIViewController {
@IBOutlet var lineFields:[UITextField]!

428

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Designing the Persistence Application View

Now select Main.storyboard to edit the GUI Once Xcode switches over to Interface Builder mode, you'll see
the view controller scene in the editing pane. Drag a text field from the library and place it against the top
and right blue guidelines. Bring up the Attributes Inspector. Make sure the Clear When Editing Begins box is
deselected.

Now drag a label to the window and place it to the left of the text field using the left blue guideline; then
use the horizontal blue guideline to line up the label’s vertical center with that of the text field. Double-click
the label and change it to say Line 1:. Finally, resize the text field using the left resize handle to bring it close
to the label. Use Figure 13-6 as a guide. Next, select the label and text field, hold down the Option key, and
drag down to make a copy below the first set. Use the blue guidelines to guide your placement. Now select
both labels and both text fields, hold down the Option key, and drag down again. You should now have four
labels next to four text fields. Double-click each of the remaining labels and change their names to Line 2:,
Line 3:, and Line 4:. Again, compare your results with Figure 13-6.

W =
-
Line 1:
Line 2:
Line 3:
Lined: o a

Figure 13-6. Designing the Persistence application’s view

429

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Once you have all four text fields and labels placed, Control-drag from the View Controller icon in
the Document Outline to each of the four text fields. Connect them all to the 1ineFields outlet collection,
making sure to connect them in order from top to bottom. Save the changes you made to Main.storyboard.

Now let’s add the Auto Layout constraints to make sure that the design works the same way on all
devices. Starting by Control-dragging from the Line 1 label to the text field to its right and then release the
mouse. Hold down the Shift key and select Horizontal Spacing and Baseline and then click the Return key.
Do the same for the other three labels and text fields.

Next, you'll fix the positions of the text fields. In the Document Outline, Control-drag from the top
text field to its parent View icon, release the mouse, hold down the Shift key, and select Trailing Space to
Container Margin and Vertical Spacing to Top Layout Guide. Do the same for the other three text fields.

We need to fix the widths of the labels so that they don’t resize if the user types more text than will fit in
any of the text fields. Select the top label and click the Pin button below the storyboard editor. In the pop-up,
select the Width check box and click Add 1 Constraint. Do the same for all of the labels.

Finally, back in the Document Outline, Control-drag from the Line 1 label to the View icon, release the
mouse, and select Leading Space to Container Margin. Do the same for all of the labels and that’s it—all the
required Auto Layout constraints have been set. Select the view controller icon in the Document Outline
followed by Editor » Resolve Auto Layout Issues » Update Frames in the menu to remove the warnings in
the Xcode Activity View. Now build and run the application and compare the result with Figure 13-6.

Editing the Persistence Classes

In the Project Navigator, select ViewController. swift and add the code in Listing 13-6.

Listing 13-6. Getting the URL for Your data.plist File

func dataFileURL() -> NSURL {
let urls = FileManager.default.urls(for:
.documentDirectory, in: .userDomainMask)
var url:NSURL?

url = URL(fileURLWithPath: "") // create a blank path
do {
try url = urls.first!.appendingPathComponent("data.plist")
} catch {
print("Error is \(error)")
}
return url!

The dataFileURL() method returns the URL of the data file that you'll be creating in this example by
finding the Documents directory and appending the file name to it. This method will be called from any
code that needs to load or save data. You are playing it a little loose here with the URL. Note that you've
encapsulated the appendingPathComponent method within a Swift do-catch block. You have to do this
because the append method throws an error that needs to be caught. But since you know that your app
bundle must have a document directory and you're creating the data.plist file yourself, you're not going
to see this error as long as you write the code correctly. Normally, you want to handle things a little more
securely so your customers don’t see crashes, but for the sake of brevity you're not going to deal with that
here since it’s not the subject of your discussion.

430

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Note In Swift you use a do-catch block (which can be found in the Xcode code snippet library) to try a
method call that throws an exception (an error) and then “catch” that exception and handle it in some way that
prevents the app from crashing.

Find the viewDidLoad() method and add the following code to it, as well as a new method for receiving
notifications named applicationWillResignActive() just below it, as shown in Listing 13-7.

Listing 13-7. The viewDidLoad Method in the ViewController.swift File and the applicationWillResignActive
Method

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
let fileURL = self.dataFileURL()
if (FileManager.default.fileExists(atPath: fileURL.path!)) {
if let array = NSArray(contentsOf: fileURL as URL) as? [String] {
for i in 0..<array.count {
lineFields[i].text = array[i]
}

}

let app = UIApplication.shared()

NotificationCenter.default.addObserver(self, selector: #selector(self.applicationWill
ResignActive(notification:)), name: Notification.Name.UIApplicationWillResignActive,
object: app)

}

@objc func applicationWillResignActive(notification:NSNotification) {
let fileURL = self.dataFileURL()
let array = (self.lineFields as NSArray).value(forKey: "text") as! NSArray
array.write(to: fileURL as URL, atomically: true)

In the viewDidLoad() method, you do a few more things. First, you use the fileExists(atPath:)
method of the FileManager class to check whether your data file already exists, which would be the case
if you have already run the application at least once. This method requires the file’s path name, which you
get from the path property of its URL (unfortunately, there isn’t a variant of this method that accepts a URL
argument). If there isn’t one, you don’t want to bother trying to load it. If the file does exist, you instantiate
an array with the contents of that file and then copy the objects from that array to your four text fields.
Because arrays are ordered lists, you copy them in the same order as you saved them.

To read the file, you use an Array initializer that creates an NSArray object from the contents of a file at
a given URL. The Array initializer expects the file content to be in property list format, which is fine because
that’s the form in which it is saved, in the code you’ll write shortly.

The application needs to save its data before it is terminated or sent to the background, so you are
interested in the notification called applicationWillResignActive. This notification is posted whenever
an app is no longer the one with which the user is interacting. This happens when the user taps the Home
button, as well as when the application is pushed to the background by some other event, such as an
incoming phone call. You can find out that this has happened by registering for a notification from iOS’s
notification center. The notification center delivers a notification by calling a method that you register with

431

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

it, passing an argument of type Notification that includes the details of the event that’s being notified. To
register for this notification, you get a reference to your application instance and use that to subscribe to
UIApplicationWillResignActive, using the default NotificationCenter instance and a method called
addObserver(_:selector:name:object:). You pass self as the first parameter, specifying that your
ViewController instance is the observer that should be notified. For the second parameter, you pass a
selector to the applicationWillResignActive() method, telling the notification center to call that method
when the notification is posted. The third parameter, UIApplicationWillResignActive, is the name of the
notification that you're interested in receiving. This is a string constant defined by the UIApplication class.

Finally, you add the implementation of the applicationWillResignActive() method, which the
notification center will call:

@objc func applicationWillResignActive(notification:NSNotification) {
let fileURL = self.dataFileURL()
let array = (self.lineFields as NSArray).value(forKey: "text") as! NSArray
array.write(to: fileURL as URL, atomically: true)

This method is pretty short but really does a lot with just a few method calls. You construct an array of
strings by calling the text method on each of the text fields in your 1ineFields array. To accomplish this,
you use a clever shortcut: instead of explicitly iterating through your array of text fields, asking each for its
text value and adding that value to a new array, you cast the Swift 1ineFields array (of UITextFields) to
an NSArray and call value(forKey:) onit, passing "text" as a parameter. The NSArray implementation of
valueForKey() does the iteration for you, asks each UITextField instance it contains for its text value, and
returns a new NSArray containing all the values. After that, you write the contents of that array out to your
.plist file in property list format using the write(_ to:atomically:) method. That’s all there is to saving
your data using property lists.

Let’s summarize how this works. When your main view is finished loading, you look for a . plist file. If it
exists, you copy data from it into your text fields. Next, you register to be notified when the application becomes
inactive (either by quitting or by being pushed to the background). When that happens, you gather the values
from your four text fields, place them in a mutable array, and write that mutable array to a property list.

Build and run the application. It should build and then launch in the simulator. Once it comes up,
you should be able to type into any of the four text fields. When you've typed something in them, press
Command-Shift-H to return to the home screen. It’s very important that you do this. If you just exit the
simulator, that’s the equivalent of forcibly quitting your application. In that case, the view controller will
never receive the notification that the application is going inactive, and your data will not be saved. After
returning to the home screen, you may then quit the simulator or stop the app from Xcode and run it again.
Your text will be restored and will appear in the text fields the next time the app starts.

Note It’s important to understand that returning to the home screen doesn’t typically quit the app—at
least not at first. The app is put into a background state, ready to be instantly reactivated in case the user
switches back to it.

Property list serialization is pretty cool and easy to use. However, it’s a little limiting since only a small
selection of objects can be stored in property lists. Let’s look at a somewhat more robust approach.

432

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Archiving Model Objects

In the Cocoa world, the term archiving refers to another form of serialization, but it’s a more generic type
that any object can implement. Any model object specifically written to hold data should support archiving.
The technique of archiving model objects lets you easily write complex objects to a file and then read them
back in. As long as every property you implement in your class is either a scalar (e.g., Int or Float) or an
instance of a class that conforms to the NSCoding protocol, you can archive your objects completely. Since
most Foundation and Cocoa Touch classes capable of storing data do conform to NSCoding (though there
are a few noteworthy exceptions, such as UIImage), archiving is relatively easy to implement for most classes.

Although not strictly required to make archiving work, another protocol should be implemented along
with NSCoding: the NSCopying protocol, which allows your object to be copied. Being able to copy an object
gives you a lot more flexibility when using data model objects.

Conforming to NSCoding

The NSCoding protocol declares two methods, which are both required. One encodes your object into an
archive; the other one creates a new object by decoding an archive. Both methods are passed an instance
of NSCoder, which you work with in very much the same way as NSUserDefaults, introduced in the previous
chapter. You can encode and decode both objects and native data types like Int and Float values using
key-value coding.

To support archiving in an object, you need to make it a subclass of NSObject (or any other class that
is derived from NSObject), and you need to encode each of your instance variables into encoder using the
appropriate encoding method. Let’s see how this works. Suppose you create a simple container class, like
this:

class MyObject : NSObject, NSCoding, NSCopying {
var number = 0;
var string = ""
var child: MyObject?

override init() {

}

This class contains an integer property, a string property, and a reference to another instance of
the same class. It is derived from NSObject and conforms to the NSCoding and NSCopying protocols. The
NSCoding protocol method to encode an object of type MyObject might look like this:

func encode(with aCoder: NSCoder) {
aCoder.encode(string, forKey: "stringKey")
aCoder.encode(32, forKey: "intKey")
if let myChild = child {
aCoder.encode(myChild, forKey: "childKey")
}

433

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

If MyObject were a subclass of a class that also conforms to NSCoding, you would need to make sure that
also you called encodeWithCoder () on its superclass to ensure that the superclass encodes its data. In that
case, this method would look like this instead:

func encode(with aCoder: NSCoder) {
super.encode(with aCoder: NSCoder)
aCoder.encode(string, forKey: "stringKey")
aCoder.encode(32, forKey: "intKey")
if let myChild = child {
aCoder.encode(myChild, forKey: "childKey")
}

The NSCoding protocol also requires you to implement an initializer that initializes an object from an
NSCoder, allowing you to restore an object that was previously archived. Implementing this method is similar
to implementing encodelWithCoder (). If your object has no base class or you are subclassing some other
class that doesn’t conform to NSCoding, your initializer would look something like the following:

required init?(coder aDecoder: NSCoder) {
string = aDecoder.decodeObject(forKey: "stringKey") as! String
number = aDecoder.decodeInteger(forKey: "intKey")
child = aDecoder.decodeObject(forKey: "childKey") as? MyObject

The initializer sets the properties of the object being initialized by decoding values from the passed-in
instance of NSCoder. Since you are allowing the child property of the original object to be nil, you need to
use conditional casting when assigning to the decoded object’s child property because the archived object
may not have a stored child object.

When implementing NSCoding for a class with a superclass that also conforms to NSCoding, you need to
add an extra line to allow the superclass to initialize its own state.

required init?(coder aDecoder: NSCoder) {
string = aDecoder.decodeObject(forKey: "stringKey") as! String
number = aDecoder.decodeInteger(forKey: "intKey")
child = aDecoder.decodeObject(forKey: "childKey") as? MyObject
super.init(code: aDecoder)

That’s basically it. As long as you implement these two methods to encode and decode all your object’s
properties, your object is archivable and can be written to and read from archives.

Implementing NSCopying

As mentioned earlier, conforming to NSCopying is a good idea for any data model objects. NSCopying has
one method, called copyWithZone(), which allows objects to be copied. Implementing NSCopying is similar
to implementing init(coder:). You just need to create a new instance of the same class and then set all of
that new instance’s properties to the same values as this object’s properties. Even though you implement the
copy(with zone:) method, the application code actually calls a method called copy(), which forwards the
operation to copy(with zone:).

434

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

let anObject = MyObject()
let objectCopy = anObject.copy() as! MyObject

Here’s what the copy(withZone:) method for the MyObject class would look like:

func copy(with zone: NSZone? = nil) -> AnyObject {
let copy = MyObject()
copy.number = number
copy.string = string
copy.child = child?.copy() as? MyObject
return copy

Notice that with this implementation, if there is a property that references a child object (such as the
child property in this example), the new object will have a copy of that child, not the original one. If the
child object is of a type that is immutable or if you only need to provide a shallow copy of the object, then
you would simply assign the original child object reference to the new object.

Note Don’t worry too much about the NSZone parameter. This pointer is to a struct that is used by the
system to manage memory. Only in rare circumstances did developers ever need to worry about zones or create
their own, and nowadays, it's almost unheard of to have multiple zones. Calling copy on an object is the same
as calling copy(with zone:) using the default zone, which is always what you want. In fact, on the modern
i0S, zones are completely ignored. The fact that NSCopying uses zones at all is a historical oddity for the sake
of backward compatibility.

Archiving and Unarchiving Data Objects

Creating an archive from an object (or objects) that conforms to NSCoding is relatively easy. First, you create
an instance of the Foundation class NSMutableData to hold the encoded data, and then you create an
NSKeyedArchiver instance to archive objects into that NSMutableData instance.

let data = NSMutableData()
let archiver = NSKeyedArchiver(forWritingWith: data)

After creating both of those, you then use key-value coding to archive any objects you want to include in
the archive, like this:

archiver.encode(anObject, forKey: "keyValueString")

Once you've encoded all the objects you want to include, you just tell the archiver you're finished, and
then you write the NSMutableData instance to the file system.

archiver.finishEncoding()
let success = data.write(to: archiveUrl as URL, atomically: true)

435

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

If you're feeling a little overwhelmed by archiving, don’t worry. It’s actually fairly straightforward. You're
going to retrofit your Persistence application to use archiving, so you'll get to see it in action. Once you've
done it a few times, archiving will become second nature, as all you're really doing is storing and retrieving
your object’s properties using key-value coding.

The Archiving Application

Let’s redo the Persistence application so that it uses archiving instead of property lists. You're going to be
making some fairly significant changes to the Persistence source code, so you should make a copy of your
entire project folder before continuing. I've compressed it before making any changes—using the property
list technique—to PersistencePL.zip.

Implementing the FourLines Class

Once you're ready to proceed and have a copy of your Persistence project open in Xcode, press 38N or select
File » New » File. When the new file assistant comes up, from the iOS section, select Swift File and click
Next. On the next screen, name the file FourLines.swift, choose the Persistence folder to save it, and then
click Create. This class is going to be your data model. It will hold the data that you're currently storing in a
dictionary in the property list application.

Single-click FourLines.swift and add the code in Listing 13-8.

Listing 13-8. Your FourLines Class

class FourLines : NSObject, NSCoding, NSCopying {
private static let linesKey = "linesKey"
var lines:[String]?

override init() {

required init?(coder aDecoder: NSCoder) {
lines = aDecoder.decodeObject(forKey: FourLines.linesKey) as? [String]
}

func encode(with aCoder: NSCoder) {
if let savelines = lines {
aCoder.encode(savelines, forKey: FourLines.linesKey)
}

}
func copy(with zone: NSZone? = nil) -> AnyObject {
let copy = Fourlines()
if let linesToCopy = lines {
var newlLines = Array<String>()
for line in linesToCopy {
newLines.append(line)
}

copy.lines = newlLines

return copy

436

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

We just implemented all the methods necessary to conform to the NSCoding and NSCopying protocols.
You encoded the 1ines property in encode(with aCoder:) and decoded it using the same key value in
init(with aCoder:).Incopy(with zone:), you created a new FourLines object and copied the string
array to it, carefully making a deep copy so that changes to the original will not affect the new object. See? It’s
not hard at all; just make sure you did not forget to change anything if you did a lot of copying and pasting.

Implementing the ViewController Class

Now that you have an archivable data object, let’s use it to persist your application data. Select
ViewController.swift and make the changes in Listing 13-9.

Listing 13-9. Your Save and Retrieve Code for Archiving Object in ViewController.swift

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
let fileURL = self.dataFileURL()
if (FileManager.default.fileExists(atPath: fileURL.path!)) {
if let array = NSArray(contentsOf: fileURL as URL) as? [String] {
for i in 0..<array.count {
lineFields[i].text = array[i]
}
}

let data = NSMutableData(contentsOf: fileURL as URL)
let unarchiver = NSKeyedUnarchiver(forReadingWith: data as! Data)
let fourlLines = unarchiver.decodeObject(forKey: ViewController.rootKey)
as! FourlLines

unarchiver.finishDecoding()
if let newlLines = fourlLines.lines {

for i in 0..<newlLines.count {

lineFields[i].text = newlLines[i]
}

}
}
let app = UIApplication.shared()
NotificationCenter.default.addObserver(self, selector: #selector(self.applicationWill
ResignActive(notification:)), name: Notification.Name.UIApplicationWillResignActive,
object: app)
}

@objc func applicationWillResignActive(notification:NSNotification) {
let fileURL = self.dataFileURL()
let fourlLines = Fourlines()
let array = (self.lineFields as NSArray).value(forKey: "text")
as! [String]
fourlines.lines = array

437

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

let data = NSMutableData()

let archiver = NSKeyedArchiver(forWritingWith: data)
archiver.encode(fourlines, forKey: ViewController.rootKey)
archiver.finishEncoding()

data.write(to: fileURL as URL, atomically: true)

}

func dataFileURL() -> NSURL {
let urls = FileManager.default.urls(for:
.documentDirectory, in: .userDomainMask)
var url:NSURL?

url = URL(fileURLWithPath: "") // create a blank path
do {
try url = urls.first!.appendingPathComponent("data.archive")
} catch {
print("Error is \(error)")
}
return url!

Save your changes and then build and run this version of the app. Not very much has changed really.
You started off by specifying a new file name in the dataFileURL() method so that your program doesn’t try
to load the old property list as an archive. You also defined a new constant that will be the key value you use
to encode and decode your object. Next, you redefined the loading and saving by using FourLines to hold
the data and using its NSCoding methods to do the actual loading and saving. The GUI is identical to the
previous version.

This new version takes several more lines of code to implement than property list serialization, so you
might be wondering if there really is an advantage to using archiving over just serializing property lists. For
this application, the answer is simple: no, there really isn’t any advantage. But imagine you had an array
of archivable objects, such as the FourLines class that you just built. You could archive the entire array by
archiving the array instance itself. Collection classes like Array, when archived, archive all of the objects they
contain. As long as every object you put into an array or dictionary conforms to NSCoding, you can archive
the array or dictionary and restore it so that all the objects that were in it when you archived it will be in the
restored array or dictionary. The same is not true of property link persistence, which works only for a small
set of Foundation object types—you cannot use it to persist custom classes without writing additional code
to convert instances of those classes to and from a Dictionary, with one key for each object property.

In other words, the NSCoding approach scales beautifully (in terms of code size, at least). No matter how
many objects you add, the work to write those objects to disk (assuming you're using single-file persistence)
is exactly the same. With property lists, the amount of work increases with every object you add.

Using iOS’s Embedded SQLite3

The third persistence option I'm going to discuss is using iOS’s embedded SQL database, called SQLite3.
SQLite3 is very efficient at storing and retrieving large amounts of data. It’s also capable of doing complex
aggregations on your data, with much faster results than you would get doing the same thing using objects.
Consider a couple scenarios. What if you need to calculate the sum of a particular field across all the
objects in your application? Or, what if you need the sum from just the objects that meet certain criteria?
SQLite3 allows you to get this information without loading every object into memory. Getting aggregations
from SQLite3 is several orders of magnitude faster than loading all the objects into memory and summing
their values. Being a full-fledged embedded database, SQLite3 contains tools to make it even faster by, for
example, creating table indexes that can speed up your queries.

438

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

SQLite3 uses the Structured Query Language (SQL), the standard language used to interact with
relational databases. Whole books have been written on the syntax of SQL (hundreds of them, in fact), as
well as on SQLite itself. So if you don’t already know SQL and you want to use SQLite3 in your application,
you have a little work ahead of you. I'll show you how to set up and interact with the SQLite database from
your iOS applications. I'll also show you some of the basics of the syntax in this chapter. But to really make
the most of SQLite3, you'll need to do some additional research and exploration. A couple of good starting
points are “An Introduction to the SQLite3 C/C++ Interface” (waw.sqlite.org/cintro.html) and “SQL As
Understood by SQLite” (www.sqlite.org/lang.html).

Relational databases (including SQLite3) and object-oriented programming languages use
fundamentally different approaches to storing and organizing data. The approaches are different enough
that numerous techniques and many libraries and tools for converting between the two have been
developed. These different techniques are collectively called object-relational mapping (ORM). There are
currently several ORM tools available for Cocoa Touch. In fact, you'll look at one ORM solution provided by
Apple, called Core Data, later in the chapter.

But before you do that, you're going to focus on the SQLite3 basics, including setting it up, creating a
table to hold your data, and using the database in an application. Obviously, in the real world, an application
as simple as the one you're working on wouldn’t warrant the investment in SQLite3. But this application’s
simplicity is exactly what makes it a good learning example.

Creating or Opening the Database

Before you can use SQLite3, you must open the database. The function that’s used to do that, sqlite3_open(),
will open an existing database; or, if none exists at the specified location, the function will create a new one.
Here'’s what the code to open a database might look like:

var database:OpaquePointer? = nil
let result = sqlite3 open("/path/to/database/file", &database)

If result is equal to the constant SQLITE_OK, then the database was successfully opened. Notice the
type of the database variable. In the SQLite3 AP], this variable is a C language structure of type sqlite3.
When this C API is imported into Swift, this variable is mapped to UnsafeMutablePointer<COpaquePoint
er>, which is how Swift expresses the C pointer type void *. This means you have to treat it as an opaque
pointer. That’s OK because you won’t need to access the internals of this structure from your Swift code—
you just need to pass the pointer to other SQLite3 functions, like sqlite3 close().

sqlite3_close(database)

Databases store all their data in tables. You can create a new table by crafting an SQL CREATE statement
and passing it in to an open database using the function sqlite3_exec, like so:

let createSQL = "CREATE TABLE IF NOT EXISTS PEOPLE" +

"(ID INTEGER PRIMARY KEY AUTOINCREMENT, FIELD DATA TEXT)"
var errMsg:UnsafeMutablePointer<Int8> = nil
result = sqlite3 exec(database, createSQL, nil, nil, &errMsg)

The function sqlite3_exec is used to run any command against SQLite3 that doesn’t return data,
including updates, inserts, and deletes. Retrieving data from the database is a little more involved. You first
need to prepare the statement by feeding it your SQL SELECT command.

let createSQL = "SELECT ID, FIELD DATA FROM FIELDS ORDER BY ROW"
var statement: OpaquePointer? = nil
result = sqlite3 prepare v2(database, createSQL, -1, &statement, nil)

439

http://www.sqlite.org/cintro.html
http://www.sqlite.org/lang.html

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

If result equals SQLITE_OK, your statement was successfully prepared, and you can start stepping
through the result set. This code shows another instance where you have to treat a SQLite3 structure as an
opaque pointer—in the SQLite3 API, the statement variable would be of type sqlite3_stmt.

Here is an example of stepping through a result set and retrieving an Int and a String from the database:

while sqlite3 step(statement) == SQLITE ROW {
let row = Int(sqlite3 column_int(statement, 0))
let rowData = sqlite3 column_text(statement, 1)
let fieldValue = String(cString:rowData!)
lineFields[row].text = fieldValue!

}

sqlite3 finalize(statement)

Using Bind Variables

Although it’s possible to construct SQL strings to insert values, it is common practice to use something called
bind variables for this purpose. Handling strings correctly—making sure they don’t have invalid characters
and that quotes are inserted properly—can be quite a chore. With bind variables, those issues are taken care
of for you.

To insert a value using a bind variable, you create your SQL statement as normal but put a question
mark (?) into the SQL string. Each question mark represents one variable that must be bound before the
statement can be executed. Next, you prepare the SQL statement, bind a value to each of the variables, and
execute the command.

Here’s an example that prepares a SQL statement with two bind variables, binds an Int to the first
variable and a string to the second variable, and then executes and finalizes the statement:

var statement:OpaquePointer? = nil
let sql = "INSERT INTO FOO VALUES (?, ?);"
if sqlite3 prepare v2(database, sql, -1, &statement, nil)
== SQLITE_OK {
sqlite3 bind int(statement, 1, 235)
sqlite3 bind text(statement, 2, "Bar", -1, nil)
}
if sqlite3_step(statement) != SQLITE_DONE {
print("This should be real error checking!")
}

sqlite3 finalize(statement);
There are multiple bind statements available, depending on the data type that you want to use. Most
bind functions take only three parameters:

e The first parameter to any bind function, regardless of the data type, is a pointer to
the sqlite3_stmt used previously in the sqlite3 prepare v2() call.

e The second parameter is the index of the variable to which you're binding. This is a
one-indexed value, meaning that the first question mark in the SQL statement has
index 1, and each one after it is one higher than the one to its left.

e The third parameter is always the value that should be substituted for the question
mark.

440

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

A few bind functions, such as those for binding text and binary data, have two additional parameters.

e The first additional parameter is the length of the data being passed in the third
parameter. In the case of C strings, you can pass -1 instead of the string’s length, and
the function will use the entire string. In all other cases, you need to tell it the length
of the data being passed in.

e The final parameter is an optional function callback in case you need to do any
memory cleanup after the statement is executed. Typically, such a function would be
used to free memory allocated using malloc().

The syntax that follows the bind statements may seem a little odd since you're doing an insert. When
using bind variables, the same syntax is used for both queries and updates. If the SQL string had a SQL
query, rather than an update, you would need to call sqlite3_step() multiple times until it returned
SQLITE_DONE. Since this is an update, you call it only once.

Creating the SQLite3 Application

In Xcode, create a new project using the Single View App template and name it SQLite Persistence. This
project will start off identical to the previous project, so begin by opening the ViewController.swift file and
add an outlet:

class ViewController: UIViewController {
@IBOutlet var lineFields:[UITextField]!

Next, select Main. storyboard. Design the view and connect the outlet collection by following the
instructions in the “Designing the Persistence Application View” section earlier in this chapter. Once your
design is complete, save the storyboard file.

You've covered the basics, so let’s see how this would work in practice. You're going to modify your
Persistence application again, this time storing its data using SQLite3. You'll use a single table and store the
field values in four different rows of that table. You'll also give each row a row number that corresponds to
its field. For example, the value from the first line will get stored in the table with a row number of 0, the next
line will be row number 1, and so on. Let’s get started.

Linking to the SQLite3 Library

SQLite 3 is accessed through a procedural API that provides interfaces to a number of C function calls. To
use this API, you'll need to link your application to a dynamic library called 1ibsqlite3.dylib. Select the
SQLite Persistence item at the very top of the Project Navigator list (leftmost pane) and then select SQLite
Persistence from the TARGETS section in the main area (see Figure 13-7, middle pane). (Be careful that you
have selected SQLite Persistence from the TARGETS section, not from the PROJECT section.)

441

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

[] ® | 4 SOLite Persistence | i iPhone SE SOLite Persistence: Ready | Today at 12:28 PM
0% a A © @B o @ |8 ¢ & salie Persistence
¥ [SQLhe Persistence] Genaral Capabiiities Resource Tags Info Bulld Settings Bulld Phases Bulld Rules

¥ || 8QLite Persistence
= AppDelogate.swift
= ViawControllor.switt

PROJECT I ®
& s0Lie Persistence

TARGETS ¥ Target Dependencies (0 items)

Main.storyboard
B i A\ 50Lite Persistence O ——— .
LaunchScreen.storyboard
Info.plist * Link Binary With Libraries (1 item) x
(3 Products
> Frameworks
ibsgiited thd Required
+
» Copy Bundle Resources (3 items) x

Figure 13-7. Selecting the SQLite Persistence project in the Project Navigator; selecting the SQLite Persistence
target; and finally, selecting the Build Phases tab

With the SQLite Persistence target selected, click the Build Phases tab in the rightmost pane. You'll
see a list of items, initially all collapsed, which represent the various steps Xcode goes through to build the
application. Expand the item labeled Link Binary With Libraries. This section contains the libraries and
frameworks that Xcode links with your application. By default, it’s empty because the compiler automatically
links with any iOS frameworks that your application uses, but the compiler doesn’t know anything about the
SQLite3 library, so you need to add it here.

Click the + button at the bottom of the linked frameworks list, and you'll be presented with a sheet
that lists all available frameworks and libraries. Find 1ibsqlite3.tbd in the list (or use the handy search
field) and click the Add button. Note that there may be several other entries in that directory that start with
libsqlite3. Be sure you select 1ibsqlite3.tbd. It is an alias that always points to the latest version of the
SQLite3 library.

Modifying the Persistence View Controller

Next, you need to import the header files for SQLite3 into the view controller so that the compiler can see the
function and other definitions that make up the API. There is no way to directly import the header file into Swift
code because the SQLite3 library is not packaged as a framework. The easiest way to deal with thisis to add a
bridging header to the project. Once you have a bridging header, you can add other header files to it, and those
header files will be read by the Swift compiler. There are a couple of ways to add a bridging file. You'll use the
simpler of the two, which is to temporarily add an Objective-C class to the project. Let’s do that now.

Press 38N or select File » New » File. In the i0S Source section of the dialog, choose Cocoa Touch
Class and click Next. Name the class Temporary, make it a subclass of NSObject, change the language to
Objective-C, and click Next. In the next screen, click the Create button. When you do this, Xcode will pop
up a window asking whether you want to create a bridging header. Click Create Bridging Header. Now, in
the Project Navigator, you'll see the files for the new class (Temporary.m and Temporary.h) and the bridging
header, which is called SQLite Persistence-Bridging-Header.h. Delete the Temporary.mand Temporary.h
files—you don’t need them anymore. Select the bridging header to open it in the editor and then add the
following line to it:

#import <sqlite3.h>

442

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Now that the compiler can see the SQLite3 library and header files, you can write some more code.
Select ViewController.swift and make the changes shown in Listing 13-10.

Listing 13-10. Using SQLite3 to Save and Retrieve Your Information

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
var database:OpaquePointer? = nil
var result = sqlite3 open(dataFilePath(), &database)
if result != SQLITE OK {
sqlite3_close(database)
print("Failed to open database")
return
}
let createSQL = "CREATE TABLE IF NOT EXISTS FIELDS " +
"(ROW INTEGER PRIMARY KEY, FIELD DATA TEXT);"
var errMsg:UnsafeMutablePointer<Int8>? = nil
result = sqlite3 exec(database, createSQL, nil, nil, 8errMsg)
if (result != SQLITE_OK) {
sqlite3_close(database)
print("Failed to create table")
return

}

let query = "SELECT ROW, FIELD DATA FROM FIELDS ORDER BY ROW"
var statement:OpaquePointer? = nil
if sqlite3_prepare v2(database, query, -1, &statement, nil) == SQLITE_OK {
while sqlite3 step(statement) == SQLITE ROW {
let row = Int(sqlite3 column_int(statement, 0))
let rowData = sqlite3 column_text(statement, 1)
let rowData = sqlite3 column_text(statement, 1)
let fieldValue = String(cString:rowData!)
lineFields[row].text = fieldValue

sqlite3 finalize(statement)

}
sqlite3_close(database)

let app = UIApplication.shared()
NotificationCenter.default.addObserver(self, selector: #selector(self.applicationWill
ResignActive(notification:)), name: Notification.Name.UIApplicationWillResignActive,
object: app)

}

func dataFilePath() -> String {
let urls = FileManager.default.urls(for:
.documentDirectory, in: .userDomainMask)
var url:String?
url = "" // create a blank path

443

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

do {
try url = urls.first?.appendingPathComponent("data.plist").path!
} catch {
print("Error is \(error)")
}
return url!
}
func applicationWillResignActive(notification:NSNotification) {
var database:OpaquePointer? = nil
let result = sqlite3 open(dataFilePath(), &database)

if result != SQLITE OK {

for

}

sqlite3_close(database)
print("Failed to open database")
return

i in 0..<lineFields.count {
let field = lineFields[i]
let update = "INSERT OR REPLACE INTO FIELDS (ROW, FIELD DATA) " +
"VALUES (2, ?);"
var statement:OpaquePointer? = nil
if sqlite3 prepare v2(database, update, -1, &statement, nil) == SQLITE OK {
let text = field.text
sqlite3 bind int(statement, 1, Int32(i))
sqlite3 bind text(statement, 2, text!, -1, nil)
}
if sqlite3_step(statement) != SQLITE_DONE {
print("Error updating table")
sqlite3_close(database)
return

sqlite3 finalize(statement)

sqlite3_close(database)

The first piece of new code is in the viewDidLoad () method. You begin by getting the path to the
database file using the dataFilePath() method that you added. This is just like the dataFileURL() method
that you added to your earlier examples, except that it returns the file’s path, not its URL. That’s because
the SQLite3 APIs that work with files require paths, not URLs. Next, you use the path to open the database,
creating it if it does not exist. If you hit a problem with opening the database, you close it, print an error
message, and return.

var database:OpaquePointer? = nil
var result = sqlite3 open(dataFilePath(), &database)
if result != SQLITE OK {

sqlite3_close(database)

print("Failed to open database")

return

444

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Next, you need to make sure that you have a table to hold your data. You use an SQL CREATE TABLE
statement to do that. By specifying IF NOT EXISTS, you prevent the database from overwriting existing
data—if there is already a table with the same name, this command quietly completes without doing
anything. That means it’s safe to use it every time your application launches without explicitly checking to
see if a table exists.

let createSQL = "CREATE TABLE IF NOT EXISTS FIELDS " +
"(ROW INTEGER PRIMARY KEY, FIELD DATA TEXT);"

var errMsg:UnsafeMutablePointer<Int8>? = nil
result = sqlite3 exec(database, createSQL, nil, nil, 8&errMsg)
if (result != SQLITE OK) {

sqlite3_close(database)

print("Failed to create table")

return

Each row in the database table contains an integer and a string. The integer is the number of the row in
the GUI from which the data was obtained (starting from zero), and the string is the content of the text field
on that row. Finally, you need to load your data. You do this using a SQL SELECT statement. In this simple
example, you create a SQL SELECT statement that requests all the rows from the database and then you
ask SQLite3 to prepare your SELECT. You also tell SQLite3 to order the rows by the row number so that you
always get them back in the same order. Absent this, SQLite3 will return the rows in the order in which they
are stored internally.

let query = "SELECT ROW, FIELD DATA FROM FIELDS ORDER BY ROW"
var statement:OpaquePointer? = nil
if sqlite3 prepare v2(database, query, -1, &statement, nil) == SQLITE OK {

Next, you use the sqlite3_step() function to execute the SELECT statement and step through each of
the returned rows.

while sqlite3 step(statement) == SQLITE ROW {

Now you grab the row number, store it in an int, and then grab the field data as a C string, which you
then convert to a Swift String, as described earlier in the chapter.

let row = Int(sqlite3 column_int(statement, 0))
let rowData = sqlite3 column_text(statement, 1)
let fieldValue = String(cString:rowData!)
Next, you set the appropriate field with the value retrieved from the database.

lineFields[row].text = fieldValue

Finally, you close the database connection, and you're finished.

}

sqlite3 finalize(statement)

}
sqlite3_close(database)

445

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Note that you close the database connection as soon as you're finished creating the table and loading
any data it contains, rather than keeping it open the entire time the application is running. It’s the simplest
way of managing the connection; and in this little app, you can just open the connection those few times you
need it. In a more database-intensive app, you might want to keep the connection open all the time.

The other changes you made are in the applicationWillResignActive() method, where you need to
save your application data.

The applicationWillResignActive() method starts by once again opening the database. To save the
data, you loop through all four fields and issue a separate command to update each row of the database.

for i in 0..<lineFields.count {
let field = lineFields[i]

You craft an INSERT OR REPLACE SQL statement with two bind variables. The first represents the row
that’s being stored; the second is for the actual string value to be stored. By using INSERT OR REPLACE
instead of the more standard INSERT, you don’t need to worry about whether a row already exists.

let update = "INSERT OR REPLACE INTO FIELDS (ROW, FIELD DATA) " +
"VALUES (2, ?);"

Next, you declare a pointer to a statement, prepare your statement with the bind variables, and bind
values to both of the bind variables.

var statement:OpaquePointer? = nil

if sqlite3 prepare v2(database, update, -1, &statement, nil) == SQLITE OK {
let text = field.text
sqlite3 bind int(statement, 1, Int32(i))
sqlite3 bind text(statement, 2, text!, -1, nil)

Now you call sqlite3_step to execute the update, check to make sure it worked, and finalize the
statement, ending the loop.

if sqlite3 step(statement) != SQLITE DONE {
print("Error updating table")
sqlite3_close(database)
return

}
sqlite3 finalize(statement)

Notice that you simply print an error message here if anything goes wrong. In a real application, if an
error condition is one that a user might reasonably experience, you should use some other form of error

reporting, such as popping up an alert box.

sqlite3_close(database)

Note There is one condition that could cause an error to occur in the preceding SQLite code that is not a
programmer error. If the device’s storage is completely full—to the extent that SQLite can’t save its changes
to the database—then an error will occur here, as well. However, this condition is fairly rare and will probably
result in deeper problems for the user, outside the scope of your app’s data. Your app probably wouldn’t even
launch successfully if the system were in that state. So, you’re going to just sidestep the issue entirely.

446

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Build and run the app. Enter some data and then press the iPhone simulator’s Home button. Quit the
simulator (to force the app to actually quit) and then relaunch the SQLite Persistence application. That data
should be right where you left it. As far as the user is concerned, there’s absolutely no difference between the
various versions of this application; however, each version uses a different persistence mechanism.

Using Core Data

The final technique demonstrated in this chapter shows how to implement persistence using Apple’s Core
Data framework. Core Data is a robust, full-featured persistence tool. Here, I will show you how to use Core
Data to re-create the same persistence you've seen in your Persistence application so far.

Note For more comprehensive coverage of Core Data, check out Pro iOS Persistence: Using Core Data by
Michael Privet and Robert Warner (Apress, 2014).

In Xcode, create a new project. Select the Single View App template from the iOS section and click Next.
Name the product Core Data Persistence, make sure that Swift is selected as the language, choose Universal
in the Devices control, but don’t click the Next button just yet. If you look just below the Devices control,
you'll see a Use Core Data check box. There’s a certain amount of complexity involved in adding Core
Data to an existing project, so Apple has kindly provided an application project template to do much of the
work for you. Deselect the Use Core Data check box (see Figure 13-8) and then click the Next button. When
prompted, choose a directory to store your project and then click Create.

Choose options for your new project:

Product Name: Core Data Persistence

Team: Molly Maskrey E

0 ization Name: MollyMaskrey
Organization Identifier: com.mollymaskrey

Bundle Identifier: com.maollymaskrey.Core-Data-Persistence

Language: Swift B
Devices: Universal il
Use Core Data
Include Unit Tests
Include Ul Tests
Cancel Previous m

Figure 13-8. Select Single View App and the option to use Core Data for persistence

447

CHAPTER 13 © PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

Before you move on to your code, let’s take a look at the project window, which contains some new
items. Expand the Core Data Persistence folder ifit’s closed (see Figure 13-9).

e) B #\ Core Data Persistence) @@ iPhone SE Core Data Persistence: Ready | Today at 2:08 PM
B 2 Q4 & & = = B B ¢ » [CoreDataPersistence || Core Data Persistence) 3% Core_Data_Persi..nce.xcdatamodeld } g Core_Data_Persistence.xcdatar
¥ [&3 Care Data Persistence ENTITIES [i
¥ | Core Data Persistence . -
FETCH REQUESTS
= AppDelegate switt Entity ~ Abstract Class

CONFIGURATIONS
(@ Default

= ViewController.swift
Main.storyboard
) Assets.xcassets
LaunchScreen storyboard
 Info.plist

I8 Core_Data_Persi_e xedatamodeld
> Products

Figure 13-9. Your project template with the files needed for Core Data. The Core Data model is selected, and
the data model editor is shown in the editing pane.

Entities and Managed Obijects

Most of what you see in the Project Navigator should be familiar: the application delegate, the view
controller, two storyboards, and the assets catalog. In addition, you'll find a file called Core_Data_
Persistence.xcdatamodeld, which contains your data model. Within Xcode, Core Data lets you design
your data models visually, without writing code, and stores that data model in the .xcdatamodeld file.

Single-click the .xcdatamodeld file now, and you will be presented with the data model editor
(see the right side of Figure 13-9). The data model editor gives you two distinct views into your data model,
depending on the setting of the Editor Style control in the lower-right corner of the project window. In Table
mode, the mode shown in Figure 13-9, the elements that make up your data model will be shown in a series
of editable tables. In Graph mode, you'll see a graphical depiction of the same elements. At the moment,
both views reflect the same empty data model.

Before Core Data, the traditional way to create data models was to create subclasses of NSObject and
conform them to NSCoding and NSCopying so that they could be archived, as you did earlier in this chapter.
Core Data uses a fundamentally different approach. Instead of classes, you begin by creating entities here in
the data model editor and then, in your code, you create managed objects from those entities.

Note The terms entity and managed object can be a little confusing since both refer to data model objects.
Entity refers to the description of an object. Managed object refers to actual concrete instances of that entity
created at runtime. So, in the data model editor, you create entities; but in your code, you create and retrieve
managed objects. The distinction between entities and managed objects is similar to the distinction between a
class and instances of that class.

448

CHAPTER 13 PERSISTENCE: SAVING DATA BETWEEN APP LAUNCHES

An entity is made up of properties. There are three types of properties:

e Attributes: An attribute serves the same function in a Core Data entity as a property
does in a Swift class. They both hold the data.

e Relationships: As the name implies, a relationship defines the relationship between
entities. For example, to create a Person entity, you might start by defining a few
attributes such as hairColor, eyeColor, height, and weight. You might also define
address attributes, such as state and zipCode, or you might embed them in a separate
HomeAddress entity. Using the latter approach, you would then create a relationship
between a Person and a HomeAddress. Relationships can be to-one and to-many.

The relationship from Person to HomeAddress is probably to-one since most people
have only a single home address. The relationship from HomeAddress to Person might
be to-many since there may be more than one Person living at that HomeAddress.

e Fetched properties: A fetched property is an alternative to a relationship. Fetched
properties allow you to create a query that is evaluated at fetch time to see which
objects belong to the relationship. To extend the earlier example, a Person object
could have a fetched property called Neighbors that finds all HomeAddress objects
in the data store that have the same ZIP code as the Person’s own HomeAddress.
Because of the nature of how fetched properties are constructed and used, they
are always one-way relationships. Fetched properties are also the only kind of
relationship that lets you traverse multiple data stores.

Typically, attributes, relationships, and fetched properties are defined using Xcode’s data model editor.
In your Core Data Persistence application, you'll build a simple entity so you can get a sense of how this all
works together.

Key-Value Coding

In your code, instead of using accessors and mutators, you will use key-value co