
Soluincj
ODEs with MATLAB

L. F.SHAMPINE • I. GLADWELL • S. THOMPSON

This page intentionally left blank

Solving ODEs with M atlab

This book is for people who need to solve ordinary differential equations (ODEs), both ini­
tial value problems (IVPs) and boundary value problems (BVPs) as well as delay differential
equations (DDEs). These topics are usually taught in separate courses of length one semes­
ter each, but Solving ODEs with M a t la b provides a sound treatment of all three in about 250
pages. The chapters on each of these topics begin with a discussion of “the facts of life” for
the problem, mainly by means of examples. Numerical methods for the problem are then de­
veloped - but only the methods most widely used. Although the treatment of each method is
brief and technical issues are minimized, the issues important in practice and for understand­
ing the codes are discussed. Often solving a real problem is much more than just learning how
to call a code. The last part of each chapter is a tutorial that shows how to solve problems by
means of small but realistic examples.

About the Authors
L. F. Shampine is Clements Professor of Applied Mathematics at Southern Methodist Univer­
sity in Dallas, Texas.

I. Gladwell is Professor of Mathematics at Southern Methodist University in Dallas, Texas.

S. Thompson is Professor of Mathematics at Radford University in Radford, Virginia.

This book distills decades of experience helping people solve ODEs. The authors accumulated
this experience in industrial and laboratory settings that include NAG (Numerical Algorithms
Group), Babcock and Wilcox Company, Oak Ridge National Laboratory, Sandia National
Laboratories, and The MathWorks - as well as in academic settings that include the Uni­
versity of Manchester, Radford University, and Southern Methodist University. The authors
have contributed to the subject by publishing hundreds of research papers, writing or editing a
half-dozen books, editing leading journals, and writing mathematical software that is in wide
use. With associates at The MathWorks, Inc., they wrote all the programs for solving ODEs
in M a t l a b , programs that are the foundation of this book.

Solving ODEs
with M atlab

L. F. Sh a m p in e I. G l a d w e l l
Southern M ethodist University Southern M ethodist University

S. Th o m p s o n
Radford University

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2 ru , United Kingdom

Published in the United States o f America by Cambridge University Press, New York
www.cambridge.org

Information on this title: www.cambridge.org/9780521824040

© L. F. Shampine, I. Gladwell, S. Thompson 2003

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction o f any part may take place
without the written permission o f Cambridge University Press.

First published in prin t format 2003

ISBN-13 't'O-O

i /5-O-
00 eBook (EBL)

ISBN-IO

4DO-O

1/5O- eBook (EBL)

ISBN-13 -OO2
°?2I
1/5-O-
00 hardback

ISBN-IO 't'O2
°?2I
1/5O- hardback

ISBN-13 978-0-521-53094-1 paperback
ISBN-IO

404­9O32I
1/5O- paperback

Cambridge University Press has no responsibility for the persistence or accuracy of
u r l s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521824040

Contents

Preface page vii

1 G e t t i n g S t a r t e d 1

1.1 Introduction 1

1.2 Existence, Uniqueness, and W ell-Posedness 6

1.3 Standard Form 19

1.4 Control of the Error 27

1.5 Qualitative Properties 34

2 Initial V a lu e P r o b le m s 39

2.1 Introduction 39

2.2 Numerical M ethods for IVPs 40
2.2.1 One-Step M ethods 41
2.2.2 M ethods with M emory 57

2.3 Solving IVPs in M atlab 81
2.3.1 Event Location 92
2.3.2 ODEs Involving a Mass M atrix 105
2.3.3 Large Systems and the M ethod of Lines 114
2.3.4 Singularities 127

3 B o u n d a r y V a lu e P r o b le m s 133

3.1 Introduction 133

3.2 Boundary Value Problems 135

3.3 Boundary Conditions 138
3.3.1 Boundary Conditions at Singular Points 139
3.3.2 Boundary Conditions at Infinity 146

v

vi Contents

3.4 Numerical M ethods for BVPs 156

3.5 Solving BVPs in M atlab 168

4 D e la y D if fe re n tia l E q u a t io n s 213

4.1 Introduction 213

4.2 Delay Differential Equations 214

4.3 Numerical M ethods for DDEs 217

4.4 Solving DDEs in M atlab 221

4.5 Other Kinds of DDEs and Software 247

Bibliography 251

Index 257

Preface

This book is for people who want to solve ordinary differential equations (ODEs), both
initial value problems (IVPs) and boundary value problem s (BVPs) as well as delay dif­
ferential equations (DDEs). Solving ODEs with Matlab is a text for a one-sem ester course
for upper-level undergraduates and beginning graduate students in engineering, science,
and mathematics. Prerequisites are a first course in the theory of ODEs and a survey course
in numerical analysis. Im plicit in these prerequisites is some programming experience,
preferably in M a t la b , and some elementary matrix theory. Solving ODEs with Matlab is
also a reference for professionals in engineering, science, and mathematics. W ith it they
can quickly obtain an understanding of the issues and see example problems solved in
detail. They can use the programs supplied with the book as templates.

It is usual to teach the three topics of this book at an advanced level in separate courses
of one semester each. Solving ODEs with Matlab provides a sound treatment of all three
topics in about 250 pages. This is possible because of the focus and level o f the treat­
ment. The book opens with a chapter called Getting Started. Next is a chapter on IVPs.
These two chapters must be studied in order, but the remaining two chapters (on BVPs
and DDEs) are independent of one another. It is easy to cover one of these chapters in a
one-sem ester course, but the preparation and sophistication of the students will determine
whether it is possible to do both. The chapter on DDEs can be covered more quickly than
the one on BVPs because only one approach is taken up and it is an extension of m eth­
ods studied in the chapter on IVPs. Each chapter begins with a discussion of the “ facts of
life” for the problem, mainly by means of examples. Numerical methods for the problem
are then developed - but only the methods most widely used. Although the treatment of
each m ethod is brief and technical issues are minimized, the issues im portant in practice
are discussed. Often solving a real problem is much more than just learning how to call a
code. The last part of the chapter is a tutorial that shows how to solve problems by means
of small but realistic examples.

Although quality software in general scientific computing is discussed, all the examples
and exercises are solved in M atlab. This is m ost advantageous because M atlab (2000)

vii

viii Preface

has become an extremely important problem-solving environment (PSE) for both teach­
ing and research. The solvers of M a t la b are unusually capable. Moreover, they have a
com m on design and “feel” that make it easy to learn how to use them. M a t la b is such a
high-level language that programs are short. This makes it possible to provide complete
programs in the text for all the examples. The programs are also provided in electronic
form so that they can be used conveniently as templates for similar problems. In particu­
lar, the student is asked to modify some of these programs in exercises. Graphics are a part
of this PSE, so solutions are typically studied by plotting them. M a t la b has some sym ­
bolic algebra capabilities by virtue of a M aple kernel (M aple 1998). Solving ODEs with
Matlab exploits these capabilities in the analysis and solution of some of the examples
and exercises. There is an Instructor’s M anual with solutions for all the exercises. M ost
of these solutions involve a program, which is available to instructors in electronic form.

The first ODE solver o f M a t la b was based on a FORTRAN program w ritten by Larry
Shampine and H. A . (Buddy) Watts. For M a t la b 5, Cleve M oler initiated a long and pro­
ductive relationship betw een Shampine and The MathWorks. A research and development
effort by Shampine and M ark Reichelt (1997) resulted in the M a t la b ODE Suite. The
ODE Suite has evolved considerably as a result o f further work by Shampine, Reichelt,
and Jacek Kierzenka (1999) and the evolution of M a t la b itself. In particular, some of
the IVP solvers were given the ability to solve differential algebraic equations (DAEs)
of index 1 arising from singular mass matrices. Subsequently, Kierzenka and Shampine
(2001) added a program for solving BVPs. M ost recently, Skip Thompson, Shampine, and
Kierzenka added a program for solving DDEs with constant delays (Shampine & Thom p­
son 2001). We m ention this history in part to express our gratitude to Cleve, M ark, and
Jacek for the opportunity to work with them on software for this prem ier PSE and also
to make clear that we have a unique understanding of the software that underlies Solving
ODEs with Matlab.

Each of us has decades of experience solving ODEs in both academic and nonacademic
settings. In this we have contributed to the subject well over 200 papers and half a dozen
books, but we have long wanted to write a book that makes our experience in advising
people on how to solve ODEs available to a wider audience. Solving ODEs with Matlab
is the fulfillment of that wish. We appreciate the help provided by many experts who have
commented on portions of the manuscript. Wayne Enright and Jacek Kierzenka have been
especially helpful.

Chapter 1

Getting Started

1.1 Introduction
Ordinary differential equations (ODEs) are used throughout engineering, mathematics,
and science to describe how physical quantities change, so an introductory course on ele­
m entary ODEs and their solutions is a standard part of the curriculum in these fields. Such
a course provides insight, but the solution techniques discussed are generally unable to
deal with the large, complicated, and nonlinear systems of equations seen in practice. This
book is about solving ODEs numerically. Each of the authors has decades of experience
in both industry and academia helping people like yourself solve problems. We begin
in this chapter with a discussion of what is meant by a num erical solution with standard
m ethods and, in particular, o f what you can reasonably expect o f standard software. In the
chapters that follow, we discuss briefly the m ost popular methods for im portant classes of
ODE problems. Examples are used throughout to show how to solve realistic problems.
M a t la b (2000) is used to solve nearly all these problems because it is a very convenient
and widely used problem-solving environment (PSE) with quality solvers that are excep­
tionally easy to use. It is also such a high-level programming language that programs are
short, making it practical to list complete programs for all the examples. We also include
some discussion of software available in other computing environments. Indeed, each of
the authors has written ODE solvers widely used in general scientific computing.

An ODE represents a relationship between a function and its derivatives. One such re­
lation taken up early in calculus courses is the linear ordinary differential equation

У '(t) = y(t) (1.1)

which is to hold for, say, 0 < t < 10. As we learn in a first course, we need more than
just an ODE to specify a solution. Often solutions are specified by means of an initial
value. For example, there is a unique solution of the ODE (1.1) for which y(0) = 1,

1

2 Chapter 1: Getting Started

namely y(t) = e . This is an example of an initial value problem (IVP) for an ODE. Like
this example, the IVPs that arise in practice generally have one and only one solution.
Sometimes solutions are specified in a more com plicated way. This is important in prac­
tice, but it is not often discussed in a first course except possibly for the special case of
Sturm -Liouville eigenproblems. Suppose that y (x) satisfies the equation

y "(x) + y (x) = 0 (1.2)

for 0 < x < b. W hen a solution of this ODE is specified by conditions at both ends of the
interval such as

y (0) = 0 , y(b) = 0

we speak of a boundary value problem (BVP). A Sturm -Liouville eigenproblem like this
BVP always has the trivial solution y (x) = 0, but for certain values of b there are non­
trivial solutions, too. For instance, when b = 2n , the BVP has infinitely many solutions
of the form y (x) = a sin(x) for any constant a. In contrast to IVPs, which usually have a
unique solution, the BVPs that arise in practice may have no solution, a unique solution,
or more than one solution. If there is more than one solution, there may be a finite number
or an infinite num ber of them.

Equation (1.1) tells us that the rate of change of the solution at time t is equal to the
value of the solution then. In many physical situations, the effects of changes to the so­
lution are delayed until a later time. M odels of this behavior lead to delay differential
equations (DDEs). Often the delays are taken to be constant. For example, if the situa­
tion modeled by the ODE (1.1) is such that the effect of a change in the solution is delayed
by one time unit, then the DDE is

y (t) = y (t — 1) (1.3)

for, say, 0 < t < 10. This problem resembles an initial value problem for an ODE; when
the delays are constant, both the theory of DDEs and their numerical solution can be based
on corresponding results for ODEs. There are, however, im portant differences. For the
ODE (1.1), the initial value y(0) = 1 is enough to determine the solution, but that cannot
be enough for the DDE (1.3). A fter all, when t = 0 we need y (—1) to define y '(0), but
this is a value of the solution prior to the initial time. Thus, an initial value problem for the
DDE (1.3) involves not just the value of the solution at the starting time but also its his­
tory. For this example it is easy enough to argue that, if we specify y(t) for —1 < t < 0,
then the initial value problem has a unique solution.

This book is about solving initial value problems for ODEs, boundary value problems
for ODEs, and initial value problems for a class of DDEs with constant delays. For brevity
we refer throughout to these three kinds of problems as IVPs, BVPs, and DDEs. In the
rest of this chapter we discuss fundamental issues that are com m on to all three. Indeed,

1.1 Introduction 3

some are so fundamental that - even if all you want is a little help solving a specific
problem - you need to understand them. The IVPs are taken up in Chapter 2, BVPs in
Chapter 3, and DDEs in Chapter 4. The IVP chapter comes first because the ideas and the
software of that chapter are used later in the book, so some understanding of this m ate­
rial is needed to appreciate the chapters that follow. The chapters on BVPs and DDEs are
mutually independent.

It is assum ed that you are acquainted with the elements of program m ing in M a t la b ,
so we discuss only matters connected with solving ODEs. If you need to supplement your
understanding of the language, the PSE itself has good docum entation and there are a
num ber of books available that provide more detail. One that we particularly like is the
Matlab Guide (H igham & H igham 2000). M ost o f the programs supplied with Solving
ODEs with Matlab plot solutions on the screen in color. Because it was not practical to
provide color figures in the book, we modified the output of these programs to show the
solutions in monochrome. Version 6.5 (Release 13) of M a t la b is required for Chapter 4,
but version 6.1 suffices for the other chapters. M uch of the cited software for general sci­
entific computing is available from general-purpose, scientific computing libraries such
as NAG (2002), Visual Numerics (IM SL 2002), and Harwell 2000 (H2KL), or from the
Netlib Repository (Netlib). If the source of the software is not immediately obvious, it can
be located through the classification system GAM S, the Guide to Available M athematical
Software (GAMS).

Numerical methods and the analytical tools of classical applied mathematics are com ­
plem entary techniques for investigating and undertaking the solution of mathematical
problems. You might be able to solve analytically simple equations involving a very few
unknowns, especially with the assistance of a PSE for computer algebra like M aple (1998)
or M athematica (W olfram 1996). All our examples were com puted using the M aple ker­
nel provided with the student version of M atlab or using the Symbolic Toolbox provided
with the professional version.

First we observe that even small changes to the equations can complicate greatly the
analytical solutions. For example, M aple is used via M atlab to solve the ODE

y ' = y 2

at the com m and line by

>> y = d s o l v e ('D y = y n2 '

y = - 1 / (t - C 1)

(Sometimes we edit output slightly to give a more com pact display.) In this general solu­
tion C1 is an arbitrary constant. This family of solutions expressed in terms of a familiar
function gives us a lot of insight about how solutions behave. If the ODE is changed
“slightly” to

4 Chapter 1: Getting Started

y ' = y 2 + 1

then the general solution is found by d s o l v e to be

y = t a n (t+ C 1)

This is more com plicated because it expresses the solution in terms of a special function,
but it is at least a familiar special function and we understand well how it behaves. How­
ever, if the ODE is changed to

Here Ai (t) and Bi(t) are Airy functions. (The M aple kernel denotes these functions by
A iry A i and A ir y B i , cf. m h e lp a i r y ; but M a t la b itself uses different names, cf.
h e l p a i r y .) A gain C1 is an arbitrary constant. The Airy functions are not so familiar.
This solution is useful for studying the behavior of solutions analytically, but w e’d need
to plot some solutions to gain a sense of how they behave. Changing the ODE to

changes the general solution found by d s o l v e to

y = - t * (C 1 * b e s s e l j (- 3 / 4 , 1 / 2 * t ~ 2) + b e s s e l y (- 3 / 4 , 1 / 2 * t ~ 2)) /

then the general solution found by d s o l v e is

y = (C 1 * A i r y A i (1 , - t) + A i r y B i (1 , - t)) /
(C 1 * A i r y A i (- t) + A i r y B i (- t))

which in standard mathematical notation is

/ C1Ai ' (—t) + B i ' (- t)
y(t) = ------------------------------

C1A i (—t) + B i (- t)

y ' = y 2 + t 2

(C 1 * b e s s e l j (1 / 4 , 1 / 2 * t ~ 2) + b e s s e l y (1 / 4 , 1 / 2 * t ~ 2))

which in standard mathematical notation is

y(t) = - t

Again the solution is expressed in terms of special functions, but now they are Bessel func­
tions of fractional order. Again, w e’d need to plot some solutions to gain insight. These
equations are taken up later in Example 2.3.1.

1.1 Introduction 5

Something different happens if we change the power of y :

>> y = d s o l v e (' D y = y " 3 + t ~ 2 ')
W a r n i n g : E x p l i c i t s o l u t i o n c o u l d n o t b e f o u n d .

This example shows that even sim ple-looking equations may not have a solution y(t) that
can be expressed in terms of familiar functions by M aple. Such examples are not rare,
and usually when M aple fails to find an explicit solution it is because none is known. In
fact, for a system of ODEs it is rare that an explicit solution can be found.

For these scalar ODEs it was easy to use a computer algebra package to obtain an­
alytical solutions. Let us now consider some of the differences betw een solving ODEs
analytically and numerically. The analytical solutions of the examples provide valuable
insight, but to understand them better w e’d need to evaluate and plot some particular solu­
tions. For this w e’d need to turn to numerical schemes for evaluating the special functions.
But if we must use numerical methods for this, why bother solving them analytically at
all? A direct num erical solution might be the best way to proceed for a particular IVP, but
Airy and Bessel functions incorporate behavior that can be difficult for num erical m eth­
ods to reproduce - namely, some have singularities and some oscillate very rapidly. If this
is true of the solution that interests us or if we are interested in the solution as t ^ < x ,
then we may not be able to compute the solution num erically in a straightforward way.
In effect, the analytical solution isolates the difficulties and we then rely upon the quality
of the software for evaluating the special functions to compute an accurate solution. As
the examples show, small changes to the ODE can lead to significant changes in the form
of the analytical solution, though this may not imply that the behavior of the solution it­
self changes m uch. In contrast, there is really no difference solving IVPs num erically for
these equations, including the one for which d s o l v e did not produce a solution. This
illustrates the most important virtue of numerical methods: they make it easy to solve a
large class o f problems. Indeed, our considerable experience is that if an IVP arises in a
practical situation, m ost likely you will not be able to solve it analytically yet you will be
able to solve it numerically. O n the other hand, the analytical solutions of the examples
show how they depend on an arbitrary constant C1. Because numerical methods solve
one problem at a time, it is not easy to determine how solutions depend on parameters.
Such insight can be obtained by combining num erical methods with analytical tools such
as variational equations and perturbation methods. A nother difference betw een analytical
and numerical solutions is that the standard numerical methods of this book apply only to
ODEs defined by smooth functions that are to be solved on a finite interval. It is not un­
usual for physical problem s to involve singular points or an infinite interval. Asymptotic
expansions are often com bined with num erical methods to deal with these difficulties.

In our view, analytical and num erical methods are complementary approaches to solv­
ing ODEs. This book is about numerical methods because they are easy to use and broadly
applicable, but some kinds of difficulties can be resolved or understood only by analytical

6 Chapter 1: Getting Started

means. As a consequence, the chapters that follow feature many examples of using ap­
plied mathematics (e.g., asymptotic expansions and perturbation methods) to assist in the
numerical solution of ODEs.

1.2 Existence, Uniqueness, and
Well-Posedness

From the title of this section you m ight imagine that this is just another example of m athe­
maticians being fussy. But it is not: it is about whether you will be able to solve a problem
at all and, if you can, how well. In this book w e’ll see a good many examples of physi­
cal problems that do not have solutions for certain values of parameters. W e’ll also see
physical problems that have more than one solution. Clearly w e’ll have trouble com put­
ing a solution that does not exist, and if there is more than one solution then w e’ll have
trouble computing the “righ t” one. Although there are mathematical results that guaran­
tee a problem has a solution and only one, there is no substitute for an understanding of
the phenom ena being modeled.

Existence and uniqueness are much simpler for IVPs than BVPs, and the class of DDEs
we consider can be understood in terms of IVPs, so we concentrate here on IVPs and de­
fer to later chapters a fuller discussion of BVPs and DDEs. The vast majority of IVPs that
arise in practice can be w ritten as a system of d explicit first-order ODEs:

y 1 (t) = f 1(t, y 1(t), y 2(t) , . . . , yd(t))

y 2 (t) = f 2 (t , y 1(t) , y 2 (t) , . . . , y d (t))

yd (t) = f n (t , y 1(t) , y 2 (t) , . . . , y d (t))

For brevity we generally write this system in terms of the (column) vectors

y(t) =

y 1(t)
y 2 (t)

y d.(t)

f (t , y(t)) =

f 1(t , y (t)) \
f 2 (t , y (t))

\ f d (t , y (t)) /
as

y 1(t) = f (t , y (t)) (1.4)

A n IVP is specified by giving values of all the solution components at an initial point,

y 1(a) = A 1, y 2 (a) = A 2 , . . . , yd (a) = Ad

1.2 Existence, Uniqueness, and Well-Posedness 7

or, in vector notation,
A 1
A2

y(a) = A = .

\ A d /

(1.5)

Using vectors, a system of first-order equations resembles a single equation; in fact, the
theory is much the same. However, writing problems as first-order systems is not only
convenient for the theory, it is critically important in practice. W e’ll explain this later and
show how to do it.

Roughly speaking, if the function f (t , y) is smooth for all values (t, y) in a region R
that contains the initial data (a, A) , then the IVP comprising the ODE (1.4) and the ini­
tial condition (1.5) has a solution and only one. This settles the existence and uniqueness
question for m ost of the IVPs that arise in practice, but we need to expand on the issue of
where the solution exists. The solution extends to the boundary of the region R, but that
is not the same as saying that it exists throughout a given interval a < t < b contained in
the region R. A n example makes the point. The IVP

y ' = y 2, y (0) = 1

has a function f (t , y) = y 2 that is smooth everywhere; in other words, it is smooth in the
region

R = {—to < t < to , —to < y < to}

Yet the unique solution
1

y(t) = 1 - t

“blows up” as t ^ 1 and hence does not exist on a whole interval 0 < t < 2 (say) that is
entirely contained in R. This does not contradict the existence result because as t ^ 1,
the solution approaches the boundary of the region R in the y variable, a boundary that
happens to be at infinity. This kind of behavior is not at all unusual for physical problems.
Correspondingly, it is usually reasonable to ask that a numerical scheme approximate a
solution well until it becomes too large for the arithmetic of the computer used. Exer­
cises 1.2 and 1.3 take up similar cases.

The form of the ODEs (1.4) and the initial condition (1.5) is standard for IVPs, and in
Section 1.3 we look at some examples showing how to write problems in this form. Exis­
tence and uniqueness is relatively simple for this standard explicit form, but the properties
are more difficult to analyze for equations in the im plicit form

F(t , y(t) , y' (t)) = 0

8 Chapter 1: Getting Started

Very simple examples show that both existence and uniqueness are problematic for such
equations. For instance, the equation

(y ' (t)) 2 + 1 = 0

obviously has no (real) solutions. A more substantial example helps make the point. In
scientific and engineering applications there is a great deal of interest in how the solutions
y of a system of algebraic equations

F (y , X) = 0

depend on a (scalar) param eter X. Differentiating with respect to the param eter, we find

thal F d y dF
------ y + — = 0dy dX dX

This is a system of first-order ODEs. If for some X0 we can solve the algebraic equations
F(y , X0) = 0 for y(X0) = y 0, then this provides an initial condition for an IVP for y(X).
If the Jacobian matrix

j = d F = F
dy \ d y j

is nonsingular, we can write the ODEs in the standard form

d L - _ J -1 d F
dX = dX

However, if the Jacobian matrix is singular then the questions of existence and unique­
ness are much more difficult to answer. This is a rather special situation, but in fact it is
often the situation with the m ost interesting science. It is when solutions bifurcate - that
is, the num ber of solutions changes. If we are to apply standard codes for IVPs at such a
singular (bifurcation) point, we m ust resort to the analytical tools o f applied m athem at­
ics to sort out the behavior of solutions near this point. Exercise 1.1 considers a similar
problem.

As a concrete example of bifurcation, suppose that we are interested in steady-state
(constant) solutions of the ODE

y 1 = y 2 - X

The steady states are solutions of the algebraic equation

0 = y 2 - X = F (y , X)

It is obvious that, for X > 0, one steady-state solution is y(X) = ■s/X. However, to study
more generally how the steady state depends on X, we could compute it as the solution of
the IVP

1.2 Existence, Uniqueness, and Well-Posedness 9

0.8

0.6

0.4

0.2

0

- 0.2

- 0.4

- 0.6

- 0.8

-1

0 0.2 0.4 0.6 0.8 1

Figure 1.1: (0, 0) is a singular point for 2yy ’ - 1 = 0.

2y i y - 1 = 0 , y (1) = 1dX

Provided that y = 0, the ODE can be written immediately in standard form and solved for
values of X decreasing from 1. However, the equation is singular when y(X) = 0, which
is true for X = 0. The singular point (0,0) leaves open the possibility that there is more
than one solution of the ODE passing through this point, and so there is: y(X) = - VX is
a second solution. Using standard software, we can start at X = 1 and integrate the equa­
tion easily until close to the origin, where we run into trouble because y '(X) ^ <x as
X ^ 0. See Figure 1.1.

For later use in discussing num erical methods, we need to be a little more precise about
w hat we mean by a smooth function f (t , y). We mean that it is continuous in a region R
and that it has continuous derivatives with respect to the dependent variables there - as
many derivatives as necessary for whatever argument we make. A technical condition is
that f must satisfy a Lipschitz condition in the region R . That is, there is a constant L
such that, for any points (t, u) and (t, v) in the region R ,

\ \ f (t , u) - f (t , v) \ \ < L \ \ u - v||

In the case of a single equation, the m ean value theorem states that

10 Chapter 1: Getting Started

f (t , u) — f (t , v) = — (t, Z)(u — v)
dy

so f (t , y) satisfies a Lipschitz condition if | df(y y) | is bounded in the region R by a con­

stant L. Similarly, if the first partial derivatives | dfi(t’yuy ’. .. ’yd) | are all bounded in the
region R, then the vector function f (t , y) satisfies a Lipschitz condition there.

Roughly speaking, a well-posed problem is one for which small changes to the data
lead to small changes in the solution. Such a problem is also said to be well-conditioned
with respect to changes in the data. This is a fundamental property of a physical prob­
lem and it is also fundamental to the numerical solution of the problem. The methods that
we study can be regarded as producing the exact solution to a problem with the data that
defines the problem changed a little. For a well-posed problem, this means that the nu­
merical solution is close to the solution of the given problem. In practice this is all blurred
because it depends both on how much accuracy you want in a solution and on the arith­
metic you use in computing it. L e t’s now discuss a fam iliar example that illuminates some
of the issues.

Imagine that we have a pendulum: a light, rigid rod hanging vertically from a friction-
less pivot with a heavy weight (the bob) at the free end. W ith a particular choice of units,
the angle d(t) that the pendulum makes with the vertical at time t satisfies the ODE

в " + sin (0) = 0 (1.6)

Suppose that the pendulum is hanging vertically so that the initial angle 0(0) = 0 and that
we thump the bob to give it an initial velocity в '(0). W hen the initial velocity is zero, the
pendulum does not move at all. If the velocity is nonzero and small enough, the pendu­
lum will swing back and forth. Figure 1.2 shows 0(t) for several such solutions, namely
those with initial velocities в '(0) = —1.9, 1.5, and 1.9. There is another kind of solution.
If we thump the bob hard enough, the pendulum will swing over the top and, with no fric­
tion, it will whirl around the pivot forever. This is to say that if the initial velocity в '(0)
is large enough then 0(t) will increase forever. The figure shows two such solutions with
initial velocities в '(0) = 2.1 and 2.5. If you think about it, you’ll realize that there is a
very special solution that occurs as the solutions change from oscillatory to increasing.
This solution is the dotted curve in Figure 1.2. Physically, it corresponds to an initial ve­
locity that causes the pendulum to approach and then come to rest vertically and upside
down. Clearly this solution is unstable - an arbitrarily small change to the initial velocity
gives rise to a solution that is eventually very different. In other words, the IVP for this
initial velocity is ill-posed (ill-conditioned) on long time intervals.

Interestingly, we can deduce the initial velocity that results in the unstable solution of
(1.6). This is a conservative system, meaning that the energy

E(t) = 0 .5(в (t)) 2 — cos (в (t))

1.2 Existence, Uniqueness, and Well-Posedness 11

.3 I___________ 1___________ 1___________ 1___________ 1___________ 1___________ 1___________ I
0 1 2 3 4 5 6 7

Figure 1.2: 0(t), the angle from the vertical of the pendulum.

is constant. To prove this, differentiate the expression for E(t) and use the fact that 9(t)
satisfies the ODE (1.6) to see that the derivative E '(t) is zero for all t. O n physical grounds,
the solution of interest satisfies the condition в(<х) = п and, a fortiori, в '(<x>) = 0. Along
with the initial value в (0) = 0 , conservation of energy tells us that for this solution

0.5 x (в ' (0) f - cos(0) = 0.5 x 0 2 - cos(n)

and hence that в '(0) = 2. With this we have the unstable solution defined as the solution
of the IVP consisting of equation (1.6) and initial values в(0) = 0 and в '(0) = 2. The
other solutions of Figure 1.2 were com puted using the M a t la b IVP solver o d e 4 5 and
default error tolerances, but these tolerances are not sufficiently stringent to compute an
accurate solution of the unstable IVP.

The unstable solution is naturally described as the solution of a boundary value prob­
lem. It is the solution of the ODE (1.6) with boundary conditions

в(0) = 0, в(<х>) = п (1.7)

W hen modeling a physical situation with a BVP, it is not always clear what boundary con­
ditions to use. We have already com m ented that, on physical grounds, в '(<x) = 0 also.
Should we add this boundary condition to (1.7)? No; just as with IVPs, two conditions
are needed to specify the solution of a second-order equation and three are too many. But

12 Chapter 1: Getting Started

should we use this boundary condition at infinity or should we use в(<х) = п ? A clear
difficulty is that, in addition to the solution в (t) that we want, the BVP with boundary
condition в '(<x) = 0 has (at least) two other solutions, nam ely - в () and в (t) = 0. We
com puted the unstable solution of Figure 1.2 by solving the BVP (1.6) and (1.7) with the
M a t la b BVP solver b v p 4 c . The solution of the BVP is well-posed, so we could use the
default error tolerances. O n the other hand, the BVP is posed on an infinite interval, which
presents its own difficulties. A ll the codes we discuss in this book are intended for prob­
lems defined on finite intervals. As we see here, it is not unusual for physical problems
to be defined on infinite intervals. Existence, uniqueness, and well-posedness are not so
clear then. One approach to solving such a problem, which we actually used for the fig­
ure, follows the usual physical argument of imposing the conditions at a finite point so
distant that it is idealized as being at infinity. For the figure, we solved the ODE subject
to the boundary conditions

в (0) = 0 , в (100) = п

It turned out that taking the interval as large as [0 , 100] was unnecessarily cautious be­
cause the steady state of в is almost achieved for t as small as 7. For the BVP (1.6) and
(1.7), we can use the result в '(0) = 2 derived earlier as a check on the num erical solution
and in particular to check whether the interval is long enough. W ith default error toler­
ances, b v p 4 c produces a num erical solution that has an initial slope of в '(0) = 1.999979,
which is certainly good enough for plotting the figure.

A nother physical example shows that some BVPs do not have solutions and others have
more than one. The equations

у f = tan (ф)

, g s i n ^) + vv2

v cos(ф) (1.8)

i f g
Ф = ---- 2v2

describe a projectile problem, the planar motion of a shot fired from a cannon. Here the
solution component у is the height of the shot above the level of the cannon, v is the ve­
locity of the shot, and ф is the angle (in radians) o f the trajectory of the shot with the
horizontal. The independent variable x measures the horizontal distance from the can­
non. The constant v represents air resistance (friction) and g = 0.032 is the appropriately
scaled gravitational constant. These equations neglect three-dim ensional effects such as
cross winds and rotation of the shot. The initial height is у(0) = 0 and there is a given
muzzle velocity v(0) for the cannon. The standard projectile problem is to choose the ini­
tial angle ф(0) of the cannon (and hence of the shot) so that the shot will hit a target at
the same height as the cannon at distance x = x end. That is, we require y (x end) = 0. All
together, the boundary conditions are

1.2 Existence, Uniqueness, and Well-Posedness 13

°-7r

0.6 -

0.5

0.4

0.3

0.2

0.1

O'
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 1.3: Two ways to hitatarget atXend = 5 when v(0) = 0.5 and v = 0.02.

y (0) = y(xend) = 0 , v (0) given

Notice that we specify three boundary conditions. Just as with IVPs, for a system of three
first-order equations we need three boundary conditions to determine a solution. Does this
boundary value problem have a solution? It certainly does not for x end beyond the range
o f the cannon. On the other hand, if x end is small enough then we expect a solution, but is
there only one? No, suppose that the target is close to the cannon. We can hit it by shoot­
ing with an almost flat trajectory or by shooting high and dropping the shot on the target.
That is, there are (at least) two solutions that correspond to initial angles ф(0) = ф low ^ 0
and ф(0) = фhigh ^ п / 2. As it turns out, there are exactly two solutions. Now, let x end in­
crease. There are still two solutions, but the larger the value of x end, the smaller the angle
фhigh and the larger the angle фlow. Figure 1.3 shows such a pair o f trajectories. If we keep
increasing x end, eventually we reach the m axim um distance possible with the given m uz­
zle velocity. A t this distance there is just one solution, фlow = фhigh. In summary, there is
a critical value of x end for which there is exactly one solution. If x end is smaller than this
critical value then there are exactly two solutions; if it is larger, there is no solution at all.

For IVPs we have an existence and uniqueness result that deals with m ost of the prob­
lems that arise physically. There are mathematical results that assert existence and say
something about the num ber of solutions of BVPs, but they are so special that they are sel­
dom im portant in practice. Instead you m ust rely on your understanding of the problem

14 Chapter 1: Getting Started

to have any confidence that it has a solution and is well-posed. Determining the number
of solutions is even more difficult, and in practice about the best we can do is look for a
solution close to a guess. There is a real possibility of computing a “w rong” solution or
a solution with unexpected behavior.

Stability is the key to understanding num erical methods for the solution of IVPs de­
fined by equation (1.4) and initial values (1.5). A ll the methods that we study produce
approximations y n & y (t n) on a mesh

a = 10 < tx < 12 < ••• < t N = b (1.9)

that is chosen by the algorithm. The integration starts with the given initial value y 0 =
y(a) = A and, on reaching tn with y n & y (t n), the solver computes an approxim ation at
tn+1 = tn + h n. The quantity h n is called the step size, and computing yn+1 is described
as taking a step from tn to tn+1.

W hat the solver does in taking a step is not what you might expect. The local solution
u(t) is the solution of the IVP

u = f (t , u) , u(tn) = yn (1.10)

In taking a step, the solver tries to find yn+1 so that the local error

u (tn+1) — y n+1

is no larger than error tolerances specified by the user. This controls the true (global)
error

y (tn+1) — y n+1

only indirectly. The propagation of error can be understood by writing the error at tn+1 as

y (tn+1) — Уп+1 = [u(tn+1) — Уп+1] + [y fe + 0 — u (tn+1)]

The first term on the right is the local error, which is controlled by the solver. The sec­
ond is the difference at tn+1 of two solutions of the ODE that differ by y (t n) — y n at tn.
It is a characteristic of the ODE and hence cannot be controlled directly by the numerical
method. If the IVP is unstable - meaning that some solutions of the ODEs starting near
y(t) spread apart rapidly - then we see from this that the true errors can grow even when
the local errors are small at each step. On the other hand, if the IV P is stable so that solu­
tions come together, then the true errors will be comparable to the local errors. Figure 1.2
shows what can happen. As a solver tries to follow the unstable solution plotted with dots,
it makes small errors that move the numerical solution on to nearby solution curves. As
the figure makes clear, local solutions that start near the unstable solution spread out; the
cumulative effect is a very inaccurate num erical solution, even when the solver is able to

1.2 Existence, Uniqueness, and Well-Posedness 15

follow closely each local solution over the span of a single step. It is very important to
understand this view of numerical error, for it makes clear a fundamental lim itation on all
the numerical methods that we consider. No matter how good a job the num erical method
does in approximating the solution over the span of a step, if the IVP is unstable then you
will eventually compute num erical solutions yj that are far from the desired solution val­
ues y(t j) . How quickly this happens depends on how accurately the method tracks the
local solutions and how unstable the IVP is.

A simple example will help us understand the role of stability. The solution of the ODE

У ' = 5(y — t 2) (1.11)

with initial value y (0) = 0.08 is

y(t) = t 2 + 0 .4 1 + 0.08

The IVP and its solution seem innocuous, but the general solution of the ODE is

(t2 + 0 .4 t + 0.08) + Ce 5t (1.12)

for an arbitrary constant C. The ODE is unstable because a solution with C = C1 and a
solution with C = C 2 differ by (C1 — C 2) e 5t, a quantity that grows exponentially fast in
time. To understand what this means for num erical solution of the IVP, suppose that in
the first step we make a small local error so that y 1 is not exactly equal to y (t 1). In the
next step we try to approximate the local solution u(t) defined by the ODE and the initial
condition u(t1) = y 1. It has the form (1.12) with a small nonzero value of C determined
by the initial condition. Suppose that we make no further local errors, so that we compute
y n = u(tn) for n = 2, 3 ,__ The true error then is y (t n) — u(tn) = C e5tn. No matter how
small the error in the first step, before long the exponential growth of the true error will
result in an unacceptable numerical solution y n.

For the example of Figure 1.2, the solution curves come together when we integrate
from right to left, which is to say that the dotted solution curve is stable in that direction.
Sometimes we have a choice of direction of integration, and it is im portant to appreciate
that the stability of IVPs may depend on this direction. The direction field and solution
curves for the ODE

У' = cos(t)y (1.13)

displayed in Figure 1.4 are illuminating. In portions of the interval, solutions of the ODE
spread apart; hence the equation is modestly unstable there. In other portions of the in ­
terval, solutions of the ODE come together and the equation is modestly stable. For this
equation, the direction of integration is immaterial. This example shows that it is an over­
simplification to say simply that an IV P is unstable or stable. Likewise, the growth or
decay of errors made at each step by a solver can be complex. In particular, you should

16 Chapter 1: Getting Started

0 2 4 6 8 10 12

Figure 1.4: Direction field and solutions of the ODE
y! = cos(t)y.

not assume that errors always accumulate. For systems of ODEs, one com ponent of the
solution can be stable and another unstable at the same time. The coupling of the com po­
nents of a system can make the overall behavior unclear.

A numerical experiment shows what can happen. E u ler’s method is a basic scheme
discussed fully in the next chapter. It advances the num erical solution of y ' = f (t , y) a
distance h using the formula

Уп+1 = Уп + h f (tn, Уп) (1.14)

The solution of the ODE (1.13) with initial value y(0) = 2 is

y(t) = 2 e sm(t)

The local solution u(t) is the solution of (1.13) that goes through the point (tn, y n), namely

u(t) = yne (sin(t)-sin(tn))

Figure 1.5 shows the local and global errors when a constant step size of h = 0.1 is used
to integrate from t = 0 to t = 3. Although we are not trying to control the size of the local
errors, they do not vary greatly. By definition, the local and global errors are the same in

1.2 Existence, Uniqueness, and Well-Posedness 17

0.5 1 1.5 2 2.5

Figure 1.5: Comparison of local and global errors.

the first step. Thereafter, the global errors grow and decay according the stability of the
problem , as seen in Figure 1.4.

Backward error analysis has been an invaluable tool for understanding issues arising
in num erical linear algebra. It provides a complementary view of numerical methods
for ODEs that is especially im portant for the methods of the M a t la b solvers. All these
solvers produce approximate solutions S(t) on the whole interval [a, b] that are piecewise
smooth. For conceptual purposes, we can define a piecewise-sm ooth function S(t) with
S(t n) = y n for each value n that plays the same role for methods that do not naturally
produce such an approximation. The residual of such an approximation is

r(t) = S '(t) - f (t , S(t))

Put differently, S(t) is the exact solution of the perturbed ODE

S (t) = f (t , S(t)) + r(t)

In the view of backward error analysis, S(t) is a good approximate solution if it satisfies
an ODE that is “close” to the one given - that is, if the residual r(t) is “sm all”. This is a
perfectly reasonable definition of a “good” solution, but if the IV P is well-posed then it
also implies that S(t) is “close” to the true solution y (t) , the usual definition of a good ap­
proximation. In this view, a solver tries to produce an approximate solution with a small

18 Chapter 1: Getting Started

residual. The BVP solver of M atlab does exactly this, and the IVP and DDE solvers do
it indirectly.

■ EXERCISE 1.1
Among the examples available through the M atlab com m and h e l p d s o l v e is the IVP

(y 7)2 + y 2 = 1, y (0) = 0

In addition to showing how easy it is to solve simple IVPs analytically, the example has
interesting output:

>> y = d s o l v e (' (D y) " 2 + y " 2 = 1 ' , ' y (0) = 0 ')

y = [s i n (t)]
[- s i n (t)]

According to d s o l v e , this IVP has two solutions. Is this correct? If it is, reconcile this
with the existence and uniqueness result for IVPs of Section 1.2.

■ EXERCISE 1.2
Prove that the function f (t , y) in

y ' = f (t , y) = + + /M

does not satisfy a Lipschitz condition on the rectangle |t | < 1 , |y | < 1 . Show by example
that this ODE has more than one solution that satisfies y(0) = 0. Show that f (t , y) does
satisfy a Lipschitz condition on the rectangle |t | < 1, 0 < a < y < 1. The general result
discussed in the text then says that the ODE has only one solution with its initial value in
this rectangle.

■ EXERCISE 1.3
The interval on which the solution of an IVP exists depends on the initial conditions. To
see this, find the general solution of the following ODEs and consider how the interval of
existence depends on the initial condition:

y ' = 1(t - 1)(t - 2)

y ' = —3y4/3 sin(t)

■ EXERCISE 1.4
The program d f s .m that accompanies this book provides a modest capability for com ­
puting a direction field and solutions of a scalar ODE, y ' = f (t , y). The first argument of

1.3 Standard Form 19

d f s . m is a string defining f (t , y) . In this the independent variable must be called t and the
dependent variable m ust be called y. The second argument is an array [wL wR wB wT]
specifying a plot window. Specifically, solutions are plotted for values y(t) with wL <
t < wR, wB < y < wT . The program first plots a direction field. If you then indicate a
point in the plot window by placing the cursor there and clicking, it computes and plots
the solution of the ODE through this point. Clicking at a point outside the window term i­
nates the run. For example, Figure 1.4 can be reproduced with the command

>> d f s (' c o s (t) * y ' , [0 12 - 6 6]) ;

and clicking at appropriate points in the window. Use d f s . m to study graphically the sta­
bility of the ODE (1.11). A plot window appropriate for the IV P studied analytically in the
text is given by [0 5 -2 2 0] .

■ EXERCISE 1.5
Compare local and global errors as in Figure 1.5 when solving equation (1.11) with y(0) =
0.08. Use E u ler’s m ethod with the constant step size h = 0.1 to integrate from 0 to 2. The
stability of this problem is studied analytically in the text and numerically in Exercise 1.4.
W ith this in mind, discuss the behavior of the global errors.

1.3 Standard Form
Ordinary differential equations arise in the most diverse forms. In order to solve an ODE
problem , you m ust first write it in a form acceptable to your code. By far the m ost com ­
m on form accepted by IVP solvers is the system of first-order equations discussed in
Section 1.2,

y ' = f (t , y) (1.15)

The M atlab IVP solvers accept ODEs of the more general form

M (t , y) y ' = F (t , y) (1.16)

involving a nonsingular mass matrix M(t , y). These equations can be w ritten in the form
(1.15) with f (t , y) = M(t , y) - 1F(t , y) , but for some kinds of problem s the form (1.16) is
more convenient and more efficient. With either form, we m ust formulate the ODEs as a
system of first-order equations. The usual way to do this is to introduce new dependent
variables. You must introduce a new variable for each of the dependent variables in the
original form of the problem. In addition, a new variable is needed for each derivative
of an original variable up to one less than the highest derivative appearing in the original
equations. For each new variable, you need an equation for its first derivative expressed

20 Chapter 1: Getting Started

in terms of the new variables. A little manipulation using the definitions of the new vari­
ables and the original equations is then required to write the new equations in the form
(1.15) (or (1.16)). This is harder to explain in words than it is to do, so le t’s look at some
examples. To put the ODE (1.6) describing the m otion of a pendulum in standard form,
we begin with a new variable y 1(t) = e(t) . The second derivative of e(t) appears in the
equation, so we need to introduce one more new variable, y 2 (t) = в '(t). For these vari­
ables we have

y 1 (t) = в '(t) = y 2 (t)

y 2 (t) = в "(t) = —sin (e (t)) = —sin (y 1(t))

From this we recognize that

y 1 = y 2
y 2 = - s i n (y 0

that is, the two components of the vector function f (t , y) of (1.15) are given by f 1(t, y) =
y 2 and f 2 (t, y) = —sin (y 1). W hen we solved an IVP for this ODE we specified initial
values

y 1(0) = в (0) = 0

y 2(0) = в '(0)

and when we solved a BVP we specified boundary values

y 1(0) = в (0) = 0

y 1(b) = в(Ь) = п

As another example consider K epler’s equations describing the m otion of one body
around another of equal mass located at the origin under the influence of gravity. In ap­
propriate units they have the form

x " = —X , у " = - y (1.17)

where r = ^ x 2 + y 2. Here (x(t) , y(t)) are the coordinates of the moving body relative
to the body fixed at the origin. W ith initial values

1 + e
x (0) = 1 — e, y (0) = 0 , x '(0) = 0 , y '(0) = a T ^ (1.18)

1 e

there is an analytical solution in terms of solutions of K epler’s (algebraic) equation that
shows the orbit is an ellipse of eccentricity e. These equations are easily w ritten as a

1.3 Standard Form 21

first-order system. One choice is to introduce variables y 1 = x and y 2 = y for the un­
knowns and then, because the second derivatives of the unknowns appear in the equations,
to introduce variables y 3 = x ' and y4 = y ' for their first derivatives. You should verify
that the first-order system is

Both of these examples illustrate the fact that m echanical problems described by New­
ton’s laws of m otion lead to systems of second-order equations and, if there is no dissi­
pation, there are no first derivatives. Equations like this are called special second-order
equations. They are sufficiently com m on that some codes accept IVPs in the standard
form

with initial position y(a) and initial velocity y '(a) given. As we have seen, it is easy
enough to write such problems as first-order systems, but since there are num erical m eth­
ods that take advantage of the special form it is both efficient and convenient to work
directly with the system of second-order equations (cf. Brankin et al. 1989).

Sometimes it is useful to introduce additional unknowns in order to compute quanti­
ties related to the solution. A n example arises in formulating the solution of the S turm -
Liouville eigenproblem consisting of the ODE

with boundary conditions y(0) = 0 and y (2 n) = 0. The task is to find an eigenvalue X for
which there is a nontrivial (i.e., not identically zero) solution, known as an eigenfunction.
For some purposes it is appropriate to normalize the solution so that

У1 = У 3

У 2 = У4

where r = V y \ + y 2, and that the initial conditions are

У1(0) = 1 - e, y 2(0) = 0, y з(0) = 0, y4(0)
1 + e
1 - e

У" = f (t , У)

y "(x) + Xy(x) = 0

1 =

A convenient way to impose this normalizing condition is to introduce a variable

22 Chapter 1: Getting Started

Уз(х) = f y 2(t) d t
0

Then, along with variables y-_(x) = y (x) and y 2 (x) = y (x) , we have the first-order
system

y1 = У 2

У 2 = - X y 1

у 3 = у 2

The definition of the new variable implies that y 3 (0) = 0, and we seek a solution of the
system of ODEs for which y 3(2n) = 1. A ll together we have three equations and one
unknown parameter X. The solution of interest is to be determ ined by the four boundary
conditions

У 1(0) = 0, У1(2 п) = 0, У 3(0) = 0, У 3(2 п) = 1

Here we use the device of introducing a new variable for an auxiliary quantity to deter­
mine a solution of interest. Another application is to put the problem in standard form.
The M a t la b BVP solver b v p 4 c accepts problems with unknown parameters, but this
facility is not commonly available. M ost BVP solvers require that the param eter X be re­
placed by a variable y4(t). The param eter is constant, so the new unknown satisfies the
ODE

у4 = 0

In this way we obtain a system of four first-order ODEs that does not explicitly involve
an unknown parameter,

у1 = У 2

y 2 = —У4У1

у 3 = у 2

у4 = 0

and the boundary conditions are unchanged. Exercises 1.8 and 1.9 exploit this technique
of converting integral constraints to differential equations.

Often a proper selection of unknowns is key to solving a problem. The following ex­
ample arose in an investigation by chemical engineer F. Song (pers. commun.) into the
corrosion of natural gas pipelines under a coating with cathodic protection. The equations
are naturally form ulated as

1.3 Standard Form 23

- 2x
— = y (e x + i i ce xmFe + XHexmH + X o 2 e x“ °2)
- z 2

- 2p
—p z°2- = п р °2 e x“ °2 + в р °2 + к

This is a BVP with boundary conditions at the origin and infinity. It is possible to eliminate
the variable p ° 2(z) to obtain a fourth-order equation for the solution variable x (z) alone.
Reducing a set o f ODEs to a single, higher-order equation is often useful for analysis, but
to solve the problem numerically the equation must then be reform ulated as a system of
first-order equations. If you forget about the origin of the fourth-order ODE for x (z) here,
you might reasonably introduce new variables in the usual way,

У1 = x , У2 = x ', y 3 = x ", y 4 = x

This is not a good idea because it does not directly account for the behavior of the cor-
rodant, p ° 2(z). It is much better practice here to start with the original form ulation and
introduce the new variables

W1 = x, W2 = x ', W3 = p ° 2 , W4 = p ° 2

It is easier to select appropriate error tolerances for quantities that can be interpreted phys­
ically. Also, by specifying error tolerances for w 3, we require the solver to compute
accurately the fundamental quantity p ° 2. W hen solving BVPs you must provide a guess
for the solution. It is easier to provide a reasonable guess for quantities that have physical
significance. In Song’s work, a suitable form ulation of this problem and a corresponding
guess was important to the successful solution of this BVP. It is worth noting that here
“solving” the problem was not just a matter of computing the solution of a single BVP. As
is so often the case in practice, the BVP was to be solved for a range of parameter values.

■ EXERCISE 1.6
Consider the two-point BVP consisting of the second-order ODE

(p (x) y ')' + q (x) y = r (x)

with boundary conditions
y (0) = 0 , p (1)y 1(1) = 2

The function p (x) is differentiable and positive for all x e [0,1]. Using p 1(x) , write this
problem in the form of a first-order system using as unknowns y 1 = y and y 2 = y ’. In ap­
plications it is often natural to use the flux p y 1 as an unknown instead of y ’. Indeed, one
of the boundary conditions here states that the flux has a given value. Show that with the
flux as an unknown, you can write the problem in the form of a first-order system without
needing to differentiate p(x) .

24 Chapter 1: Getting Started

■ EXERCISE 1.7
Kamke (1971, p. 598) states that the IVP

У(У")2 = e2x, y(0) = 0, y '(0) = 0

describes space charge current in a cylindrical capacitor.

• Find two equivalent explicit ODEs in special second-order form.
• Formulate the second-order equations as systems of first-order equations.

■ EXERCISE 1.8
M urphy (1965) extends the classical Falkner-Skan similarity solutions for lam inar incom ­
pressible boundary layer flows to flows over curved surfaces. He derives a BVP consisting
of the ODE

Here V is a curvature parameter, в is a pressure-gradient parameter, and b is large enough
that the exponential terms in the boundary conditions describe the correct asymptotic be­
havior. Physically significant quantities are the displacem ent thickness

Formulate the BVP in terms of a system of first-order equations. Add equations and in i­
tial values so that the displacem ent thickness and the m om entum thickness can each be
com puted along with the solution f (n) .

■ EXERCISE 1.9
Caughy (1970) describes the large-am plitude whirling of an elastic string by a BVP con­
sisting of the ODE

f "" + (V + f) f f " - (2 в - 1) [f f " + V (f ')2] = 0

to be solved on 0 < n < b with boundary conditions

f (0) = f '(0) = 0 , f '(b) = e~Qb, f "(b) = - V e ~ Qb

and the m om entum thickness

and boundary conditions

1.3 Standard Form 25

/^'(0) = 0 , ц '(1) = 0

Here a is a physical constant with 0 < а < 1. Because the whirling frequency rn is to be
determ ined as part o f solving the BVP, there must be another boundary condition. Caughy
specifies the amplitude e of the solution at the origin:

A n unusual aspect of this problem is that an important constant H is defined in terms of
the solution jx(x) throughout the interval of integration:

Formulate this BVP in standard form. As in the Sturm -Liouville example, you can in­
troduce a new variable y 3(x), a first-order ODE, and a boundary condition to deal with
the integral term in the definition of H. The trick to dealing with H is to let it be a new
variable y4(x). It is a constant, so this new variable satisfies the first-order differential
equation y4 = 0. It is given the correct constant value by the boundary condition resulting
from the definition of H :

■ EXERCISE 1.10
This exercise is based on material from the textbook Continuous and Discrete Signals and
Systems (Soliman & Srinath 1998). A linear, time-invariant (LTI) system is described by
a single linear, constant-coefficient ODE of the form

Here x(t) is a given signal and y(t) is the response of the system. A simulation diagram is
a representation of the system using only amplifiers, summers, and integrators. This might
be described in many ways, but there are two canonical forms. A state-variable descrip­
tion of a system has some advantages, one being that it is a first-order system of ODEs that
is convenient for numerical solution. The two canonical forms for sim ulation diagrams
lead directly to two state-variable descriptions. Let v(t) = (v 1(t), v 2 (t) , . . . , vN (t))T be a
vector of state variables. The description corresponding to the first canonical form is

/л(0) = e

1 2
У4(1) = — [1 - (1 - a 2)yз (1)]2а

(1.19)

26 Chapter 1: Getting Started

(- a N -1 1 0
- a N - 2 0 1

v'(t) =

- a 1
- a 0

0 0
0 0

0
0

1

0

v(t) +

(bN-1 - aN-1bN \
bN-2 - aN- 2bN

b 1 - a 1bN
\ b 0 - a 0bN f

x(t)

The output y(t) is obtained from the equation

y(t) = (1 , 0 , . . . , 0)Tv(t) + bNx(t)

Show directly that you can solve the ODE (1.19) by solving this system of first-order
ODEs. Keep in mind that all the coefficients are constant. Hint: Using the identity

y(t) = V1(t) + bNX(t)

rewrite the equations so that, for i < N,

v-(t) = (bN- i x (t) - aN- i y (t)) + Vi+1(t)

Differentiate the equation for v1 (t) and use the equation for v 2(t) to obtain an equa­
tion for v'{(t) involving v 3 (t). Repeat until you have an equation for vN) (t), equate it to
(y(t) - bNx (t)) (N), and compare the result to the ODE (1.19).

The description corresponding to the second canonical form is

x(t)

Obtaining the output is more com plicated for this form. The formula is

y(t) = [(b0 - a 0bN), (b1 - a 1b N) , . . . , (bN-1 - a N - 1b N) f v (t) + bNx(t)

Show directly that you can solve the ODE (1.19) by solving this system of first-order
ODEs. Hint: Define the function w(t) as the solution of the ODE

/ 0 1 0 .. . 0 0
0 0 1 .. . 0 0

v (t) = v(t) +

0 0 0 .. . 1 0

V - a 0 - a 1 - a 2 .. . - a N-1 / 1

N-1
w (N) (t) + a j w (j)(t) = x(t)

j =0

and then show by substitution that the function

1.4 Control of the Error 27

N
y(t) = biw (i)(t)

i=0

satisfies the ODE (1.19). Finally, obtain a set of first-order ODEs for the function w(t) in
the usual way.

It is striking that the derivatives x (lXt) do not appear in either of the two canonical sys­
tems. Show that they play a role when you want to find a set of initial conditions vi(0) that
corresponds to a set of initial conditions for y (l)(0) and x (l)(0) in the original variables.

1.4 Control of the Error
ODE solvers ask how much accuracy you want because the more you want, the more the
com putation will cost. The M a t la b solvers have error tolerances in the form of a scalar
relative error tolerance re and a vector of absolute error tolerances ae. The solvers pro­
duce vectors y n = (y nj) that approximate the solution y (t n) = (y i(tn)) on the mesh (1.9).
Stated superficially, at each point in the m esh they aim to produce an approximation that
satisfies

lyi(tn) - Уп,11 < relyi(tn)l + aei (1.20)

for each component of the solution. Variants of this kind of control are seen in all the
popular IV P solvers. For the convenience of users, the M a t la b solvers interpret a scalar
absolute error tolerance as applying to all components of the solution. A lso for conve­
nience, default error tolerances are supplied. They are 10-3 for the relative error tolerance
and a scalar 10- 6 for the absolute error tolerance. The default relative error tolerance has
this value because solutions are usually interpreted graphically in M a t la b . A relative er­
ror tolerance of 10-5 is more typical o f general scientific computing.

For a code with a vector of relative error tolerances RTOL and a vector of absolute
error tolerances ATOL, Brenan, Campbell, & Petzold (1996, p. 131) state:

We cannot emphasize strongly enough the importance o f carefully selecting these tolerances
to accurately reflect the scale o f the problem. In particular, for problems whose solution
components are scaled very differently from each other, it is advisable to provide the code
with vector valued tolerances. For users who are not sure how to set the tolerances RTOL
and AT OL, we recommend starting with the following rule of thumb. Let m be the number
of significant digits required for solution component y i . Set RTOL i = 10- (m+l). SetATOL i
to the value at which |yi | is essentially insignificant.

Because we agree about the importance of selecting appropriate error tolerances, we have
devoted this section to a discussion of the issues. This discussion will help you understand
the rule of thumb.

28 Chapter 1: Getting Started

The inequality (1.20) defines a m ixed error control. If all the values aei = 0, it cor­
responds to a pure relative error control; if the value re = 0 , it corresponds to a pure
absolute error control. The pure error controls expose more clearly the roles of the two
kinds of tolerances and the difficulties associated with them. First suppose that we use a
pure relative error control. It requires that

y i(tn) y n,i
y i (tn)

re

for each solution component. There are two serious difficulties. One is that a pure relative
error control is not appropriate if the solution might vanish. The formal difficulty is that
the denominator y i(tn) m ight vanish. However, we are attempting to control the error in
a function, so the more fundamental question is: W hat should we m ean by relative error if
y i(t) might vanish at some isolated point t = t *? The solvers commonly compare the er­
ror to some measure of the size of y i(t) near tn rather than just the value lyi(tn)l of (1.20).
This is a reasonable and effective approach, but it does not deal with a component yi(t)
that is zero throughout an interval about tn. Solvers m ust therefore recognize the possi­
bility that a relative error control is not well-defined, even in some extended sense, and
terminate the integration with a message should this occur. You can avoid the difficulty by
specifying a nonzero absolute error tolerance in a mixed error test. For robustness some
solvers, including those of M a t la b , require that absolute error tolerances be positive.

Before taking up the other difficulty, we need to make some comments about com ­
puter arithmetic. Programming languages like Fortran 77 and C include both single and
double precision arithmetic. Typically this corresponds to about 7 and 16 decimal dig­
its, respectively. M atlab has only one precision, typically double precision. Experience
says that, when solving IVPs numerically, it is generally best to use double precision. The
floating point representation of a num ber is accurate only to a unit roundoff, which is de­
term ined by the working precision. In M atlab it is called e p s and for a PC it is typically
2.2204 ■ 10-16, corresponding to double precision in the IEEE-754 definition of computer
arithmetic that is used almost universally on today’s computers. Throughout this book we
assume that the unit roundoff is about this size when we speak of computations in M atlab.

A relative error tolerance specifies roughly how many correct digits you want in an
answer. It makes no sense to ask for an answer more accurate than the floating point rep­
resentation of the true solution - that is, it is not meaningful to specify a value re smaller
than a unit roundoff. O f course, a tolerance that is close to a unit roundoff is usually also
too small because finite precision arithmetic affects the com putation and hence the accu­
racy that a numerical m ethod can deliver. For this reason the M a t la b solvers require that
re be larger than a smallish multiple of e p s , with the multiple depending on the particu­
lar solver. You m ight expect that a code would fail in some dramatic way if you ask for
an impossible accuracy. Unfortunately, that is generally not the case. If you experiment
with a code that does not check then you are likely to find that, as you decrease the tol­
erances past the point where you are requesting an impossible accuracy: the cost of the

1.4 Control of the Error 29

integration increases rapidly; the results are increasingly less accurate; and there is no in­
dication from the solver that it is having trouble, other than the increase in cost.

Now we turn to a pure absolute error control. It requires that

lyi(tn) - yn,i I < aei

for each solution component. The main difficulty with an absolute error control is that
you m ust make a judgm ent about the likely sizes of solution components, and you can get
into trouble if you are badly wrong. One possibility is that a solution com ponent is much
larger in magnitude than expected. A little manipulation of the absolute error control in­
equality leads to

yi(tn) - yn,i aei

y i(tn) | yi(tn)|

This makes clear that a pure absolute error tolerance of aei on y i(t) corresponds to a rela­
tive error tolerance of aei/ I y i(tn)I on this component. If Iyi(tn)I is sufficiently large, then
specifying an absolute error tolerance that seems unremarkable can correspond to asking
for an answer that is more accurate in a relative sense than a unit roundoff. As we have
just seen, that is an impossible accuracy request. The situation can be avoided by speci­
fying a nonzero relative error tolerance and thus a mixed error control. A gain for the sake
of robustness, the M a t la b solvers do this by requiring that the relative error tolerance be
greater than a few units o f roundoff.

The other situation that concerns us with pure absolute error control is when a solution
com ponent is m uch smaller than its absolute error tolerance. First we must understand
what the error control means for such a component. If (say) Iyi(tn)I < 0 .5aei , then any
approxim ation y nj for which Iynj | < 0 .5 ae i will pass the error test. Accordingly, an ac­
ceptable approximation may have no correct digits. You might think that you always need
some accuracy, but for many mathematical models of physical processes there are quan­
tities that have negligible effects when they fall below certain thresholds and are then no
longer interesting. The danger is that one of these quantities m ight later grow to the point
that it must again be taken into account. If a solution component is rather smaller in magni­
tude than its absolute error tolerance and if you require some accuracy in this component,
you will need to adjust the tolerance and solve the problem again. It is an interesting and
useful fact that you may very well compute some correct digits in a “small” component
even though you did not require it by means of its error tolerance. One reason is that the
solver may have com puted this com ponent with some accuracy in order to achieve the
accuracy specified for a component that depends on it. A nother reason is that the solver
selects a step size small enough to deal with the solution component that is m ost difficult
to approximate to w ithin the accuracy specified. Generally this step size is smaller than
necessary for other components, so they are com puted more accurately than required.

The first example of Lapidus, Aiken, & Liu (1973) is illustrative. Proton transfer in a
hydrogen-hydrogen bond is described by the system of ODEs

30 Chapter 1: Getting Started

0 1 2 3 4 5 6 7 8

x 105

Figure 1.6: Solution components x\(t) and x 2(t) of the proton transfer
problem.

x j = —k\X\ + k 2 y

x 2 = —k 4 X2 + k3y (1.21)

y ' = k x + k 4 X2 — (k1 + k 3)y

to be solved with initial values

x 1(0) = 0 , x 2(0) = 1, y (0) = 0

on the interval 0 < t < 8 ■ 105. The coefficients here are

k1 = 8.4303270 ■ 10—10, k2 = 2.9002673 ■ 1011,

ks = 2.4603642 ■ 1010, k 4 = 8.7600580 ■ 10—6

This is an example of a stiff problem. We solved it easily with the M a t la b IVP solver
o d e 1 5 s using default error tolerances, but we found that the quickly reacting interm e­
diate com ponent y(t) is very much smaller than the default absolute error tolerance of
10—6. Despite this, it was com puted accurately enough to give a general idea of its size.
Once we recognized how small it is, we reduced the absolute error tolerance to 10—20
and obtained the solutions displayed in Figures 1.6 and 1.7. It is easy and natural in
exploratory computations with the M a t la b ODE solvers to display all the solution com ­
ponents on one plot. If some components are invisible then you m ight want to determine

1.4 Control of the Error 31

Figure 1.7: Solution y(t) of proton transfer problem, semilogx plot.

the m axim um magnitudes of the solution components - both to identify components for
plotting separately on different scales and for choosing tolerances for another, more ac­
curate computation.

O ften in modeling chemical reactions, concentrations that have dropped below a cer­
tain threshold have negligible effects and so are of no physical interest. Then it is natural
to specify absolute error tolerances of about the sizes of these thresholds. The concentra­
tions y i(t) are positive, but when tracking a component y i(t) that decays to zero a solver
m ight generate a “sm all” solution component y n>i < 0. As we have seen, the error control
permits this and it sometimes happens. A small negative approxim ation to a concentra­
tion may just be an annoyance, but some models are not stable in these circumstances and
the com putation blows up. It is ironic that a quantity so small that it is unim portant phys­
ically can destroy the numerical solution. A n IVP popularized by Robertson (1966) as a
test problem for solvers intended for stiff IVPs provides a concrete example. A chemical
reaction is described by the system of ODEs

y 1 = —0.04y1 + 104y 2 y 3

y 2 = 0.04У1 — 104y 2y 3 — 3 ■ 107y 2 (1.22)

y 3 = 3 ■ 107y 2

with initial conditions

32 Chapter 1: Getting Started

10"4 10"2 10 ° 1 0 2 104 106

Figure 1.8: Robertson’s problem; a semilogx plot of the solution.

/ y m \ / i x

y 2(0) = 0
\ У 3 (0) / \ 0 j

It is not difficult to show that, for all times t > 0, the solution components are nonnega­
tive and sum to 1. This is an example of a linear conservation law that we will discuss in
some detail in the next section.

The h b lo d e dem onstration program of M a t la b integrates this problem with o d e 1 5 s
from time t = 0 to near steady state at t = 4 ■ 106. A small modification of its output
resulted in Figure 1.8. Hindmarsh & Byrne (1976) use this problem to illustrate the perfor­
mance of their code e p i s o d e for solving stiff IVPs. W ith a moderately stringent absolute
error tolerance of 10- 6 , they find that if they continue the integration then a small non­
physical negative concentration is com puted that begins growing rapidly in magnitude.
Soon the numerical solution is completely unacceptable. A portion of one of their tables
of results is given in Table 1.1. We emphasize that the unsatisfactory performance is a
consequence of the problem and what is asked of the solver; something similar happens
when other solvers are used, including o d e 1 5 s . For more details about this example see
Hindmarsh & Byrne (1976) and Shampine (1994). Different but related problems are con­
sidered in Exercises 1.12 and 1.13.

We have seen that you cannot ask for too much accuracy in a relative sense. We take
this opportunity to advise you not to ask for too little. This is a temptation because the

1.4 Control of the Error 33

Table 1.1: R obertson’s problem; steady-state solution
computed using e p i s o d e .

t y1 y2 y3

4e5 4.9394e-03 1.9854e-08 9.9506e—01
4e7 3.2146e-05 1.2859e-10 9.9997e—01
4e9 -1.8616e+06 — 4.0000e-06 1.8616e+06

more accuracy you want, the more the com putation will cost. It is especially tempting
w hen the data of a problem is known only to a digit or two. (We have solved IVPs for
which even the order of magnitude of m easured data was in doubt.) Nevertheless, ask­
ing for too little accuracy is both dangerous and pointless. The basic algorithms are valid
only when the step sizes are sufficiently small. If you do not ask for enough accuracy, a
solver might choose step sizes that are too large for reliable results. A quality solver may
recognize that it m ust use smaller step sizes for reliability and in effect reduce the error
tolerances that you specify. As explained in Section 1.2, the solvers control local errors
and only indirectly control the error in the solution y(t) . They m aintain these local er­
rors somewhat smaller than the tolerances. How much smaller is “ tuned” for the solver
so that, for typical IVPs, the error in y(t) is smaller than (or comparable to) the toler­
ances specified. If your IVP is somewhat unstable or you expect the solution to oscillate
often in the interval o f interest, then you should be cautious about asking for too little ac­
curacy because you might well be disappointed in the accuracy that you get. That is the
least o f your worries: You m ight compute a solution that is not physically realistic, or one
that is physically realistic but incorrect, or the com putation might fail entirely. In con­
sidering this it is im portant to appreciate that the solver is doing exactly what you tell it
to do - namely, to control the local error so that it is no larger than the specified toler­
ances. Unsatisfactory results are usually a consequence of the instability of the IVP, not
of the solver. Figure 1.9 of Section 1.5 shows what can happen. The dotted curve is an
orbit o f one body about another that was com puted with default error tolerances. These
default error tolerances were intended to be satisfactory for plotting the solutions of typi­
cal problems, but in this instance the orbit is not even qualitatively correct. D isplayed as
a solid curve is the same orbit com puted with more stringent error tolerances. It is quali­
tatively correct. Clearly it is important not to ask for too little accuracy when solving this
problem.

W hen solving a newly form ulated IVP, it may be necessary to experiment with the
choice of error tolerances. To do this, you may need to inspect solutions to verify that you
are using an appropriate error control. You may also want to try reducing the error tol­
erances to verify by consistency that you are asking for sufficient accuracy to reflect the
qualitative behavior of the solution.

34 Chapter 1: Getting Started

■ EXERCISE 1.11
To simplify their user interface, some codes ask for a single error tolerance т. For exam ­
ple, d v e r k (Hull, Enright, & Jackson 1975) requires that, at each step,

lyi(tn) — y n, i I < т m ax(1, lyi(t„)\)

and m ir k d c (Enright & M uir 1996) requires the equivalent of

Iyi(tn) — yn,i I < т (1 + Iyi(tn)I)

Argue that these are roughly equivalent to the error control (1.20) with re = т and aei = т
for each i. People sometimes get into trouble with this kind of error control because they
do not realize that they are specifying an absolute error tolerance that is not appropriate
for the problem they are solving.

■ EXERCISE 1.12
The solution of ______

y ' = f (t , y) = У 1 — y 2, y (0) = 0

is s in (t). W hen computing this solution numerically, why should you expect to get into
trouble as you approach t = 0 .5 n ? There are two kinds of difficulties, one involving the
error control and one involving uniqueness.

■ EXERCISE 1.13
If you solve the IVP

y , = ^ 210^ — 5 y y m = 1

with a code w ritten in M a t la b , you m ight compute approximations to y(t) that are
complex-valued for “ large” t. Codes in other computing environments m ight fail out­
right. W hat is going on? To answer this question it is helpful to know that the solution is

y(t) = e~t 2+5t—4

1.5 Qualitative Properties
We have seen several examples of solutions with certain qualitative properties that are
implied by the ODEs. It is commonly assumed that numerical solutions inherit these
properties, but with one major exception they do not. The best we can say for standard
methods is that the numerical solutions have approximately the same behavior as the an­
alytical solutions. There are ways of making standard methods do better in this regard

1.5 Qualitative Properties 35

and there are methods that preserve certain qualitative properties, but we do not pursue
such specialized aspects of solving ODEs in this book. For further inform ation about
these matters you might turn to Sanz-Serna & Calvo (1994), Shampine (1986), Stuart &
Humphries (1996), and the references therein.

We begin our discussion of qualitative properties with one that is inherited by virtu­
ally all standard methods. If there is a constant (column) vector c such that cTf (t , y) =
0 , then the solution of the ODE system

y ' = f (t , y) , y(a) = A

satisfies the linear conservation law ,

cTy(t) = cTA

This follows on observing that

d (cTy(t)) = cTy '(t) = cTf (t , y(t)) = 0
dt

and hence cTy(t) is constant. Linear conservation laws express physical laws such as con­
servation of mass and charge balance. The hydrogen-hydrogen bond problem (1.21) and
Robertson’s problem (1.22) are examples. W ith the initial values specified, the solutions
of both these problems have components that sum to 1. As it turns out (Shampine 1998),
all the standard numerical methods for IVPs preserve all linear conservation laws. For
example, if the components of the solution sum to 1, then so do the components of the nu­
merical approxim ation (to w ithin roundoff errors). The fact that the numerical solution
satisfies one or more conservation laws does not m ean that it is accurate - even the ter­
rible numerical solution of R obertson’s problem found in Table 1.1 has components that
sum to 1. O n the other hand, if a linear conservation law is not satisfied by the numerical
solution to roundoff level, then there is a bug in the program that produced it or the com ­
putations were overwhelmed by the effects of finite precision arithmetic. We turn now to
properties that are not preserved by standard methods.

In Section 1.2 we found that solutions of the pendulum equation (1.6) have a constant
energy. Generally the numerical solutions com puted with standard software have an en­
ergy that is only approximately constant. To see that it is at least approximately constant,
suppose that the equation is w ritten as a first-order system. Further suppose that, at time
tn, the solver produces approximations

yn,1 = ®(tn) + eb y n,2 = & ,(tn) + e 2

with small errors e1 and e2. By linearization we approximate the energy of the num erical
solution as

36 Chapter 1: Getting Started

0 .5 (yn,2)2 — cos(yn,1) = 0.5(0 '(tn) + e 2)2 — cos (в (tn) + e1)

^ E + в f(tn) e 2 + sin(0 (tn))e 1

This tells us that the error in the energy is comparable to the errors in the solution com ­
ponents; hence the energy is approximately constant. Often this is satisfactory. However,
the long-term qualitative behavior of solutions may depend on the energy and it may be
important to conserve energy. One way to do this is simply to solve the equations very ac­
curately using a standard code. This may be satisfactory for short to m edium time scales.
Alternatively, there are codes based on standard methods that optionally perturb the nu­
merical solution so that it satisfies specified nonlinear conservation laws. There are also
codes based on methods that automatically conserve certain physically important quanti­
ties, usually energy and/or angular momentum. W hether it is more efficient to use one of
these specialized codes or to ask for more accuracy from a standard code is a matter for
experimentation. In many cases conservation of a nonlinear conservation law may only
be achieved at a high cost or at the expense of accuracy in the solution.

Solutions of the two-body problem (1.17) satisfy two nonlinear conservation laws. The
energy

x (t) 2 + y (t) 2 1

2 r(t)

(where the distance r(t) = y / x (t) 2 + y (t) 2) and the angular m om entum

x (t) y ’(t) — y(t)x ' (t)

are constant. Figure 1.9 shows the solution of the ODE system (1.17) with initial condi­
tions (1.18) when the eccentricity e = 0 .9 . The path of the moving body displayed as a
solid curve was com puted with m oderately stringent tolerances. The other path was com ­
puted with default error tolerances. The fixed body at the origin is shown as an asterisk.
For this problem and particular choice of integrator, the energy of the numerical solu­
tion com puted with default error tolerances decreases steadily from —0.5000 to —0.7874
while the angular m om entum decreases from 0.4359 to 0.3992. A steady loss of energy in
the physical problem corresponds to the moving body spiraling in to the fixed body. W hat
happens in a numerical com putation will depend on the m ethod used and the details of the
problem. The point, however, is that the numerical solution satisfies the conservation laws
only approximately. Over a time interval sufficiently long, the num erical solution might
have a behavior that is qualitatively different from the mathematical solution. Because
this particular integrator is losing energy steadily for this particular problem , the effect is
pronounced. O n the other hand, when we tell the integrator to compute a more accurate
answer by specifying smaller error tolerances, we compute a solution on [0 , 20] that has
the expected behavior. There has been a small loss of energy by time t = 20 in this inte­
gration, but it is too small for the effect on the com puted solution to be visible in the plot.

1.5 Qualitative Properties 37

0. 5

- 0 . 5 ----------------------------------1----------------------------------1----------------------------------1----------------------------------1----------------------------------
- 2 - 1. 5 - 1 - 0. 5 0 0. 5

Figure 1.9: Two-body problem for e = 0.9 and 0 < t < 20.

There are methods that preserve (at least approximately) certain qualitative proper­
ties of IVPs over extended integrations. For example, for ODEs that define symplectic or
time-reversible maps, it is possible to construct numerical methods with the corresponding
property. These methods bound the error in the Hamiltonian energy and, in some cases,
conserve angular momentum; see Sanz-Serna & Calvo (1994) or Stuart & Humphries
(1996) for details. O f course, these desirable properties come at a price. The additional
constraints placed on the methods to achieve a special property such as symplecticness
potentially reduce the accuracy that can be achieved in the computation of the solution at
a given cost.

■ EXERCISE 1.14
The differential equations

y[= - У 1

y'k = (k - 1)yk- 1 - kyk for k = 2 , 3 , . . . , 9

У10 = 9y 9

describe the evolution of a chemical reaction. Show that this system of ODEs satisfies
a linear conservation law. Specifically, show that the sum of the solution components is
constant.

38 Chapter 1: Getting Started

■ EXERCISE 1.15
Volterra’s model of predator-prey interaction can be form ulated as

x ' = a (x — xy)

y ' = - c (x - xy)

• Show that solutions of this system of ODEs satisfy the nonlinear conservation law

G(t , x , y) = x ~ cy ~ aecx+ay = constant

• W rite a M a t la b program to integrate the differential equations with E uler’s method
and constant step size h. Using param eter values a = 2 and c = 1 and initial values
x(0) = 1 and y(0) = 3, integrate the IVP for 0 < t < 10. Plot the solution in the
phase plane; that is, plot (x (t) , y (t)) . Also, calculate and plot the conserved quan­
tity G(t , x (t) , y (t)) . The theory says that G is constant and the solution is periodic,
hence the curve plotted in the phase plane is closed. Experim ent with the step size
h to find a value for which G is approximately constant and the curve you compute
appears to be closed. After you have learned to use the M a t la b IVP solvers in the
next chapter, you may want to revisit this problem and solve it with o d e 4 5 instead
of E u ler’s method.

Chapter 2

Initial Value Problems

2.1 Introduction
In this chapter we study the solution of initial value problems for ordinary differential
equations. Because ODEs arise in diverse forms, it is convenient for both theory and prac­
tice to write them in a standard form. It was shown in Chapter 1 how to prepare ODEs as
a system of first-order equations that in (column) vector notation has the form

y ' = f (t , y) (2 .1)

W ith one exception, it is assumed throughout this chapter that the ODEs have this form.
Because the M a t la b IVP solvers accept problem s of the form M(t , y) y ' = f (t , y) , it is
discussed briefly in Section 2.3.2. In either case it is assumed that the ODEs are defined
on a finite interval a < t < b and that the initial values are provided as a vector

y(a) = A (2.2)

The popular num erical methods for IVPs start with y 0 = A = y(a) and then successively
compute approximations y n & y (t n) on a mesh a = 10 < t1 < ••• < tN = b. O n reaching
tn, the basic methods are distinguished by whether or not they use previously computed
quantities such as yn-1, yn- 2 , __ If they do, they are called methods with memory and
otherwise, one-step methods. IVPs are categorized as nonstiff and stiff. It is hard to define
stiffness, but its symptoms are easy to recognize. Unfortunately, the distinction between
stiff and nonstiff IVPs can be very im portant when choosing a method. The M a t la b IVP
solvers im plem ent a variety of methods, but the docum entation recommends that you first
try o d e 4 5 , a code based on a pair of one-step explicit Runge-K utta form ulas. If you sus­
pect that the problem is stiff or if o d e 4 5 should prove unsatisfactory, it is recom m ended
that you try o d e 1 5 s , a code based on the backward differentiation form ulas (BDFs).

39

40 Chapter 2: Initial Value Problems

These two types of methods are among the most widely used in general scientific com ­
puting, so we focus on them in our discussion of num erical methods. We do take up other
methods to provide some perspective; in particular, we discuss the Adams methods that
are im plem ented in o d e 1 1 3 . They are often preferred over explicit R unge-K utta m eth­
ods when solving nonstiff problems in general scientific computing. The last part o f this
chapter is a tutorial that shows how to solve IVPs with the programs of M a t la b . You can
read it and solve interesting problem s in parallel with your reading about the theory of the
various methods implemented in the programs.

2.2 Numerical Methods for IVPs
We focus on two kinds of methods for solving IVPs, the ones used by o d e 4 5 and o d e 1 5 s .
They are explicit R unge-K utta formulas for nonstiff IVPs and backward differentiation
formulas for stiff IVPs, respectively. These methods are unquestionably among the most
effective and widely used. Comments are made about other methods where this helps put
the developments in perspective. Although our discussion of the methods is brief, it does
identify the most im portant issues for solving IVPs in practice.

Numerical solution of the IVP (2.1), (2.2) on the interval a < t < b proceeds in steps.
Starting with the initial value y 0 = A, values y n & y (t n) are com puted successively on a
mesh

a = 10 < t1 < ••• < tN = b

The com putation of yn+1 is often described as taking a step of size h n = tn+1 - tn from
tn. For brevity we generally write h = h n in discussing the step from tn. On reaching
(tn, y n), the local solution u(t) is defined as the solution of

u' = f (t , u) , u(tn) = yn

A standard result from the theory of ODEs states that if v(t) and w(t) are solutions of
(2.1) and if f (t , y) satisfies a Lipschitz condition with constant L, then for a < в we have

\ Ш) - w(0)W < | |v(a) - w(a) \ \ eL(e-a)

In the classical situation that L (b - a) is of m odest size, this result tells us that the IVP
(2.1), (2.2) is m oderately stable. This is only a sufficient condition. Indeed, stiff problems
are (very) stable, yet L (b - a) > 1. W ithout doing some computation, it is not easy to
recognize that a stable IVP is stiff. There are two essential properties that will help you
with this: A stiff problem is very stable in the sense that some solutions of the ODE start­
ing near the solution of interest converge to it very rapidly (“very rapidly” here means that
the solutions converge over a distance that is small com pared to b - a, the length of the

2.2 Numerical Methods for IVPs 41

interval of integration). This property implies that some solutions change very rapidly,
but the second property is that the solution of interest is slowly varying.

The basic numerical methods approximate the solution only on a m esh, but in some
codes - including all o f the M a t la b solvers - they are supplem ented with (inexpensive)
methods for approximating the solution between mesh points. The BDFs are based
on polynom ial interpolation and so give rise immediately to a continuous piecewise-
polynom ial function S(t) that approximates y(t) everywhere in [a, b]. There is no natural
polynom ial interpolant for explicit R unge-K utta methods, which is why such interpolants
are a relatively new development. A m ethod that approximates y(t) on each step [tn, tn+1]
by a polynom ial that interpolates the approximate solution at the end points of the in­
terval is called a continuous extension o f the R unge-K utta form ula. W e’ll use the term
more generally to refer to a piecewise-polynom ial approximate solution S(t) defined in
this way on all of [a ,b] .

2.2.1 One-Step Methods

O ne-step methods use only data gathered in the current step. M atlab includes solvers
based on a num ber of different kinds of one-step methods, but we concentrate on one
kind: explicit R unge-K utta methods. In the course of our study of these explicit methods,
w e’ll also develop some im plicit methods. They are widely used for solving BVPs, so we
return to them in Chapter 3.

It is illuminating first to take up the special case of quadrature:

y ' = f (t) , y (a) = A (2.3)

Certainly we m ust be able to deal with these simpler problems and, because they are sim ­
pler, it is easier to explain the methods. The local solution at tn satisfies

u' = f (t) , u(tn) = Уп

so
p tn + h

u(tn + h) = Уп + I f (x) dx
tn

Computing y n+1 & u(tn + h) amounts to approximating num erically a definite integral.
A basic tactic in numerical analysis is this: If you cannot do what you want with a

function f (x) , approximate it with an interpolating polynomial P(x) and use the polyno­
mial instead. The popular formulas for approximating definite integrals can be derived in
this way. For instance, if we approximate the function f (x) on the interval [tn, tn + h] by
interpolating it with the constant polynomial P(x) = f (t n), we can integrate the polyno­
mial to obtain

42 Chapter 2: Initial Value Problems

p tn + h p tn+h
/ f (x) d x & j P (x) d x = hf (tn)
tn tn

Or, if we interpolate at the other end of the interval,

p tn + h p tn + h
/ f (x) d x & i P (x) d x = hf(tn+i)
tn tn

Similarly, if we use a linear polynomial that interpolates f (x) at both ends of the interval,

P(x) = ^ (tn + ^ - x ^ f (t n) + () f (t n + h)

then by integrating we obtain the approximation

I "tn

tn+h h
f (x) d x & ^ [f (t n) + f (t n + h)]

Geometrically, the first two schemes approximate the integral by the area of a rectangle.
The third is known as the trapezoidal rule because it approximates the integral by the area
of a trapezoid.

We can deduce the accuracy of these approximations for a smooth function f (x) by a
standard result from polynom ial interpolation theory (Shampine, Allen, & Pruess 1997):
If P(x) is the unique polynom ial of degree less than s that interpolates a smooth function
f (x) at s distinct nodes tn,j = tn + a j h in the interval [tn, tn + h],

P(tn, j) = f (t n , j) , j = 1, 2 , . . . , s

then s s
x tn

p (x) = E fn, j n
ln,i

(x) : : : _
■ 1 ■ 1 ' tn, j tn,ij =1 i=1, i =j

and, for each point x in the interval [tn , t n + h], there is a point % in the same interval for
which

f (s+ 4) '
(s + 1)!

f (x) - P(x) = (,)t Y \ (x - t n j)
j =1

For a function f (x) that is sufficiently sm ooth, the derivative appearing in this expression
is bounded in magnitude on the interval. It is then easy to see that there is a constant C
such that

\ f (x) - P (x) \ < C h s

for all x e [tn, t n + h]. A standard notation and term inology is used when we focus our at­
tention on the behavior with respect to the step size h, ignoring the value of the constant.
We write

2.2 Numerical Methods for IVPs 43

f (x) — P (x) - O (h s)

or, equivalently, f (x) — P(x) + O (h s). We say that the difference betw een f (x) and
P(x) is “big oh of h to the s ” or, for short, that the difference is of order s. W ith the
theorem about the accuracy of polynom ial interpolation, it is easy to see that

Applying these results to the rectangle approximations to the integral gives the formula

has local error u(tn + h) — y n+ 1 — O (h 3). M ore generally, polynomial interpolation at s
nodes leads to an interpolatory quadrature form ula o f the form

for which the local error is O (h p+1). Interpolation theory assures us that the order p > s,
but an im portant fact in the practical approxim ation of integrals is that, for some choices
o f nodes, the order p > s. For instance, the m idpoint rule that comes from a constant
polynom ial that interpolates f (x) at tn + 0.5h has order p — 2 instead of the value p — 1
that we m ight expect on general grounds.

We have obtained specific formulas of the form (2.7) by integrating an interpolating
polynomial. Let us now start with a formula of this general form and ask how we might

f (x) d x - P (x) d x + O (h s+1)

yn+1 -- y n + h f (t n) (2.4)

for which the local error

tn + h

and
yn+1 — y n + h f (t n+1) (2.5)

which has the same order of accuracy. The trapezoidal rule

Уп+1 = Уп + J f (t n) + J f (t n + h \ (2 .6)

j -1

and to a numerical method

(2.7)
j -1

44 Chapter 2: Initial Value Problems

choose the coefficients Aj to find an accurate form ula. To determine how accurate the for­
mula is, w e’ll expand both u(tn + h) and yn+1 in Taylor series about tn and see how many
terms agree. Using the IVP satisfied by the local solution, we find that

u(tn + h) - u(tn) + V h + O (h p+1)
k—1 k!

p f (k—1)(t)
- Уп + J 2 h k f , , + O (h p+1)

k—1 k!

Expanding the form ula on the right-hand side of (2.7) is a little more complicated. First,
using Taylor series we expand

p—1 f (r)(tn)
f (t n + ajh) - £ (a j h) r f — !— + O (h p)

r—0 Г '

and then substitute this result into the form ula to obtain

s (p
' (a ,h) k~l -
1 (k —

p / s

^ j aj

Уп+1 - Уп + h Y s (aj h)k 1 + O(hp+1)

t h ‘ (± A j « r) f — n + O (h ' « >
k-1 j -1 (k)

Comparing the two expansions, we see that u(tn + h) - y n+1 + O (h p+1) if and only if

1 s
- V A a k -1, k - 1, 2 , . . . , p (2.8)hr J J

1 s

7 ^ A ia k—1 k j j
k j -1

If we use only one node (i.e., s - 1) then the first equation of (2.8) requires that A1 - 1.
With this value for A 1, the second equation is

1
- - A1«1 - «1

If a 1 - 1, this equation is not satisfied and u(tn + h) - y n+ 1 + O (h 2). If a 1 - 1, the
equation is satisfied and the third equation becomes

1 - 1 (1)2
3 X (2

2.2 Numerical Methods for IVPs 45

This equation is not satisfied, so u(tn + h) - y n+ 1 + O (h 3) for this form ula. The formula
is the m idpoint rule that we just met. Exercise 2.1 asks you to verify the order of two other
formulas that are based on im portant quadrature rules.

We begin a discussion of the convergence of these formulas by working out the stabil­
ity of the ODE. The function f satisfies a Lipschitz condition with L - 0, so the general
result stated earlier tells us that if v(t) and w(t) are solutions of y ' - f (t) and if а < в ,
then

\ Ш) — Ы(в)\ \ < Wv(a) — w(a) | |

However, it is perfectly easy to prove a stronger result directly. A solution v(t) of y ' -
f (t) has the form

v(t) - v(a) + I f (x) dx
а

Evaluating this expression at t - в and subtracting a similar expression for w(t) leads to

v (e) — w (e) - v(a) — w(a)

From this we see that the local error of a step from tn moves us to a solution of the ODE
that is parallel to the solution through y n.

Let the true error at tn be

en - y(tn) — Уп

By choosing y 0 - A, we have e0 - 0. In Chapter 1 we studied the propagation of error
by writing

en+1 - y (tn+1) — y n+1 - [u(tn+1) — yn+1] + [y (tn+1) — u (tn+1)]

The first term on the right is the local error that we assume is bounded in magnitude by
Ch p+1. Using the general bound on stability for ODEs that satisfy Lipschitz conditions,
the second term is bounded by

ly(tn+1) — u(tn+1)l < ly(tn) — ynleLhn

Here we use the definition u(tn) - y n. Putting these bounds together, we obtain

len+1l< C hpn+ + lenleLhn

The error in this step comes from two sources. One is the local error introduced at each
step by the numerical method; the other is amplification of the error from preceding steps
due to the stability of the IVP itself. The net effect is particularly easy to understand for
quadrature problems because there is no amplification and the local errors just add up in

46 Chapter 2: Initial Value Problems

this bound. If we solve a quadrature problem with a constant step size h - (b — a) /N,
we have a uniform bound

ly(tn) — ynl - l e n l < n C h p + 1 < (b — a) C h p

That is, y n - y (t n) + O (h p) for all n. For this reason, when the local error is O (h p+l),
we say that the formula is of order p because that is the order of approximation to y(t) .
When the step size varies, it is easy to modify this proof to see that if H is the maximum
step size then the true (global) error is O (H p).

Local Error Estimation
The local error of the result yn+1 of a formula of order p is

len - u (tn + h) — y n+1

If we also apply a formula of order p + 1 to compute a result y * + 1 on this step, we can
form

est - y *+1 — Уп+1

- [u(tn + h) — y n+1] — [u(tn + h) — y:+1]
- len + O (h p+2) (2.9)

This is a computable estimate of the local error of the lower-order formula because len
is O (h p+1) and so dominates in (2.9) for small enough values of h. Put differently, we
can estimate the error in yn+1 by comparing it to the more accurate approximate solution
уП+1. Generally the most expensive part of taking a step is forming the function values
f (t n + ajh) , so the trick to making local error estimation practical is to find a pair of for­
mulas that share as many of these function evaluations as possible. For the estimate to
be any good, the higher-order result уП+ 1 must be the more accurate. But if that is so,
why would we discard it in favor of using yn+1 to advance the integration? Advancing the
integration with the more accurate result y * + is called local extrapolation. Most of the
popular explicit Runge-Kutta codes use local extrapolation; in particular, the M atlab
solvers ode2 3 and ode45 use it. In this way of proceeding, we do not know precisely
how small the local error is at each step, but we believe that it is rather smaller than the
estimated local error.

Solvers for IVPs control the estimated local error. A local error tolerance т is speci­
fied and, if the estimated error is too large relative to this tolerance, the step is rejected
and another attempt is made with a smaller step size. In our expansion of the local error,
we worked out the order of only the first nonzero term. If we carry another term in the
expansion, we find that

2.2 Numerical Methods for IVPs 47

u(tn + h) — Уп+1 - h p+ ^ (t n) + O (h p+2) (2 .10)

Using this, we can see how to adjust the step size. If we were to try again to take a step
from tn with step size a h , the local error would be

The largest step size that we predict will pass the error test corresponds to choosing a so
that lap+1est | т. This step size is

The solver is required to find a step size for which the magnitude of the estimated local
error is no larger than the tolerance, so it must keep trying until it succeeds or gives up. It
might give up because it has done too much work. It also might give up because it finds
that it needs a step size too small for the precision of the computer. This is much like
asking for an impossible relative accuracy, an issue discussed in Chapter 1. On the other
hand, if the step is a success and the local error is rather smaller than necessary, we might
increase the step size for the next step. This makes the computation more efficient be­
cause larger step sizes mean that we reach the end of the interval of integration in fewer
steps. The same recipe can be used to estimate the step size that might be used on the next
step: We predict that the error of a step of size ah taken from tn+1 would be

In general terms, this is the way that popular codes select the step size, but we have omitted
important practical details. For instance, how much the step size is increased or decreased
must be limited because we cannot neglect the effects of higher-order terms (the “big oh”
terms in equations (2.11) and (2.12)) when the change of step size is large. Also, several
approximations are made in predicting the step size, so the estimate should not be taken
too seriously. Because a failed step is relatively expensive and because the error estimate
used to predict the step size may not be very reliable, the codes use a fraction of the pre­
dicted step size. Fractions like 0.8 and 0.9 are commonly used. The aim is to achieve the
required accuracy without too great a chance of a failed step.

In the early days of numerical computing, when it was not understood how to estimate
and control the local error, a constant step size was used. This approach is still seen today,

(ah)p+ ^ (t n) + O((a h)p+2) - a p+1hp+1<p(tn) + O (h p+2)

- a p+1est + O (h p+2) (2 .11)

u(tn+1 + ah) — Уп+ 2 - (ah)p+ ^ (t n + 1) + O (h p+2)

- a ^ h ^ ^) + O (h p+2)

- a p+1est + O (h p+2) (2 .12)

48 Chapter 2: Initial Value Problems

but estimation and control of the local error is extremely important in practice - so im­
portant that it is used in all the computations of this book except when we wish to make a
specific point about constant-step-size integration. Estimation and control of the local er­
ror is what gives us some confidence that we have computed a meaningful approximation
to the solution of the IVP. Moreover, estimating the local error is not expensive. Gener­
ally it more than pays for itself because the step size is then not restricted to the smallest
necessary to resolve the behavior of the solution over the whole interval of integration
or to ensure stability of the integration. Indeed, it is impractical to solve many IVPs, in­
cluding all stiff problems, with constant step size. Recall the proton transfer problem of
Section 1.4. Its solution has a boundary layer of width about 10-10. Clearly we must use
some steps of this general size to resolve the boundary layer, but the problem is posed on
an interval of length about 106. If we were to use a constant step size for the whole inte­
gration, we would need something like 1016 steps to solve this problem! This would take
an impractically long time even on today’s fastest computers, and even if it were possible
to perform the calculation, the numerical solution would be dominated by the cumulative
effects of roundoff error. In our solution of this problem for Figures 1.6 and 1.7, the inte­
gration required only 102 steps. The step sizes ranged in size from 7 ■ 10-14 in the boundary
layer to 4 ■ 104 where the solution is slowly varying. The IVP was solved in a few seconds
on a 433-MHz Pentium II PC and there were no obvious effects of roundoff error.

Runge-Kutta Methods
We have now a brief yet nearly complete description of solving quadrature problems in
the manner of a modern explicit Runge-Kutta code for IVPs. General IVPs are handled in
much the same way, so mostly we point out differences. Now the local solution satisfies
the IVP

U - f (t , u) , u(tn) - Уп

Again we integrate to obtain

p t-n+h
u(tn + h) - Уп + I f (x , u (x)) dx

v tn

The crucial difference is that now the unknown local solution appears on both sides of the
equation. If we approximate the integral with a quadrature formula, we have

tJ tn

tn+h
f (x , u (x)) d x - h £ Aj f (tn , j , u(tn,j)) + O (h p+1) (2.13)

j -1

where again we abbreviate tn + a jh - tn, j . This doesn’t seem like much help because we
don’t know the intermediate values u(tnj) . Before discussing the two basic approaches to

2.2 Numerical Methods for IVPs 49

dealing with this problem, we consider some important examples of formulas for which
there is no intermediate value.

The first (left) rectangle approximation to the integral is

p tn+h
/ f (x , u (x)) d x - h f (tn, u(tn)) + O (h 2) - h f (t n , y n) + O (h 2)
tn

The corresponding formula
Уп+1 - Уп + h f (t n , y n) (2.14)

is known as the (forward) Euler method. In the context of solving time-dependent partial
differential equations it is known as the ful ly explicit method. The approximation

Уп+1 - u(tn + h) + O (h 2)

so it is a first-order explicit Runge-Kutta formula. The second (right) rectangle approxi­
mation leads to the backward Euler method

УП + 1 -- Уп + h f (tn + 1, УП + 1) (2.15)

which is known for PDEs as the ful ly implicit method. Here we see a major difficulty that
is not present for quadrature problems - the new approximate solution Уп+1 is defined im­
plicitly as the solution of a set of algebraic equations. This formula is no more accurate
than the forward Euler method, so why would we bother with the expense of evaluating an
implicit formula? One answer is to overcome stiffness. As it happens, the backward Euler
method is the lowest-order member of the family of backward differentiation formulas
(BDFs) that we derive from a different point of view in the next section. The member of
this family that is of order k is denoted by BDFk, so the backward Euler method is also
known as BDF1.

The trapezoidal rule

Уп+1 - Уп + h [2 f (t n ^ n) + 1 f (tn + 1, Уп+1̂ (2.16)

is a second-order implicit Runge-Kutta formula implemented in the M atlab IVP solver
ode2 3 t . In the context of PDEs it is called the Crank-Nicolson method. Notice that the
trapezoidal rule treats the solution values уп and Уп+1 in the same way. A formula like this
is said to be symmetric. There is a direction of integration when solving IVPs, but usually
not when solving BVPs. Because symmetric formulas do not have a preferred direction,
they are widely used to solve BVPs.

Returning to the issue of intermediate values, suppose that we already have a formula
that we can use to compute approximations Уп,j - u (tnj) + O (h p). Stating this assump­
tion about the accuracy more formally, we assume there is a constant C such that

50 Chapter 2: Initial Value Problems

\\u(tn,j) - y n,j II < Chp

Along with our assumption that the ODE function f satisfies a Lipschitz condition with
constant L, this implies that

If we replace the function evaluations f (t nj , u (tnj)) with the computable approximations
f (t nj , y n,j), then a little manipulation of (2.13) and (2.17) shows that

We see that if we already know formulas that can be used to compute intermediate values
y nj accurate to O (h p), then we have constructed a formula to compute an approximate
solution yn+1 accurate to O (h p+1).

There are two basic approaches to choosing the formulas for computing intermediate
values. One is to use formulas of the same form as that for computing y n+1. This leads to
an implicit Runge-Kutta formula, a system of algebraic equations that generally involves
computing simultaneously the approximate solution yn+1 and the intermediate values yn, j
for j — 1, 2 , . . . , s. To be useful for the solution of stiff IVPs, a formula must be implicit
to some degree, but it is not necessary that all the yn, j be computed simultaneously. The
M atlab IVP solver ode2 3 tb is based on an implicit formula that computes the interme­
diate values one at a time. If we choose explicit formulas for all the yn, j, we obtain an
explicit formula for y n+1. Explicit formulas are popular for the solution of nonstiff prob­
lems. The M atlab IVP solvers ode2 3 and ode45 are based on formulas of this kind.

Explicit Runge-Kutta Formulas
Using the explicit forward Euler method, we can form the intermediate values needed
for any quadrature formula with p — 2 to obtain a formula for which u(tn + h) —
y n + 1 + O (h 3). For example, if the quadrature formula is the trapezoidal rule, we obtain
a second-order method called Mean’s method:

j =1

In this way we arrive at a formula

j =1

y n,1 -- y n + h f (t n, y n)

yn+1 — y n + h _ 2 f (t n, y n) + 2 f (t n+1, ^ , 0]
(2.18)

2.2 Numerical Methods for IVPs 51

Exercise 2.10 asks you to solve an IVP with this formula. In Exercise 2.2 you are asked to
construct a formula of the same order of accuracy using the midpoint rule instead of the
trapezoidal rule. Using Heun’s method, we can produce the intermediate values needed
for any quadrature formula with order p — 3 to obtain a formula of order 4, and so forth.
Because we can construct interpolatory quadrature formulas of any order, we see now
how to construct an explicit Runge-Kutta formula of any order by this “bootstrapping”
technique.

When we take account of the intermediate values, we find that the formulas resulting
from the construction just outlined have the form of an explicit recipe that starts with

yn,1 -- y n, f n,1 -- f (t n, y n,1) (2.19)

and then, for j - 2, 3 , . . . , s, forms

j -1
y n,j - y n + h n } ' ^ j ,k f n,k, f n,j - f (t n + aj h n , y n,j) (2.20)

k- 1

and finishes with s
yn+1 -- y n + h n ^ \ Yjf n,j (2.21)

j - 1

The values (2.19) are the degenerate case j - 1 in (2.20) with a 1 - 0, but they are written
separately here to remind us that the method starts with the value u(tn) - y n and slope

u (tn) -- f (t n, u (tn)) -- f (t n, y n)

of the local solution at the beginning of the step. A useful measure of the work involved in
evaluating such an explicit formula is the number of evaluations of the function f (x , y) ,
that is, the number of stages f n,j. Here the number of stages is s.

In principle we can work out the order of the formula given by equations (2.19), (2.20),
and (2.21) just as we did with the formula (2.7) for quadrature problems. Indeed, if we
apply the formula to a quadrature problem, then the conditions (2 .8) may be stated in the
present notation as

1 s
T - l l Yjajk-1, k - 1 , 2 , . . . , p (2 .22)

j - 1

The conditions on the coefficients of a Runge-Kutta formula for it to be of order p are
called the equations o f condition. The equations (2.22) are a subset and so they are nec­
essary, but they are certainly not sufficient. Two matters complicate the argument in the
general case. One is the presence of the solution u(t) in the derivative f (t , u(t)) , and the
other is that u(t) is a vector. To understand this better, let’s look at the first nontrivial term
in expanding u(tn + h) about tn. In the Taylor series

52 Chapter 2: Initial Value Problems

u(tn + h) - u(tn) + u (tn)h + u (tn)— + •••

the IVP provides us immediately with u(tn) - y n and u'(tn) - f (t n, u (tn)) - f (t n, y n).
The next term is more complicated. If there are d equations, component i of the local
solution satisfies

K (t) - f i (t , U1(t), U2 (t), . . . ,Ud(t))

It is then straightforward to obtain

"(t\ d f i d f i dUj d f i d f i fu"(t) ---------+ > --------- --------- + > ---- f;
dt duj d t dt duj

j-1 1 j -1 1

In order to deal with formulas of even moderate orders, we clearly need to develop ways
of making the manipulations easier. It would simplify the expressions considerably if the
function f (t , y) did not depend on t. Such a problem is said to be in autonomous form.
Because it is always possible to obtain an equivalent IVP in autonomous form, the theory
often assumes it (though most codes do not). We digress for a moment to show the usual
way this is done for the IVP

dy
d t - f (t , y) , У(а) - A

on the interval a < t < b. If we change to the new independent variable x - t and make
t a dependent variable, then

di - d x (У) - (f (' i y)) - F(Y) , Y(a) - (A

on a < x < b. This approach is convenient because all standard methods integrate the
equation for t exactly. Returning now to the derivation of methods, it is clear that a more
powerful notation is needed as well as recursions for computing derivatives. This is all
rather technical and we have no need for the details, so we take the special case of quadra­
ture as representative. To gain an appreciation of the general case, Exercise 2.3 asks you
to work out the details for a second-order explicit Runge-Kutta formula.

We have seen how to construct explicit Runge-Kutta formulas of any order, but gener­
ally the formulas constructed this way are not very efficient. Much effort has been devoted
to finding formulas that yield a given order p with as few stages as possible. For orders
p - 1, 2, 3, and 4, the minimum number of stages is s - p; for order p - 5, it is s - 6 .
The minimum number of stages is interesting but not as important as it might seem. Ex­
tra stages can be used to find a more accurate formula. With a more accurate formula you
can take larger steps, enough larger that you might be able to solve a problem with fewer

h2

2.2 Numerical Methods for IVPs 53

Table 2.1: Butcher tableau fo r
Runge-Kutta formulas.

а в

Y

Table 2.2: The Euler -Heun
(1 , 2) pair.

0
1 1

1

1 1
2 2

overall evaluations of f (t , y) even though each step is more expensive. Besides this basic
point, the issue is not the cost of evaluating a formula by itself but rather the cost of eval­
uating a pair of formulas for taking a step and estimating the local error. The argument
we made in deriving the estimate (2.9) of the local error was not restricted to quadrature
problems. Deriving pairs of formulas that share many of their stages is a challenging task.
We have remarked that at least s = 6 stages are required for a formula of order p = 5.
Pairs of formulas of orders 4 and 5, denoted a (4,5) pair, are known that require a total of
six stages. For example, a pair denoted F(4,5) due to Fehlberg (1970) using a total of six
stages is in wide use. The popular (4,5) pair due to Dormand and Prince (1980), called
DOPRI5, that is implemented in ode45 has seven stages. The additional stage is used to
improve the formula, and in tests DOPRI5 has proved somewhat superior to F(4,5).

The coefficients defining a Runge-Kutta formula are commonly presented as in Table
2.1, a notation due to Butcher. For an explicit Runge-Kutta method, all entries on and
above the diagonal of the matrix в are zero and it is conventional not to display them.
When presenting pairs of formulas, the vectors of coefficients Y are presented one above
the other in the tableau. We have already seen a simple example of a pair with a mini­
mal number of stages, namely the (1,2) pair consisting of the Euler and Heun formulas.
Table 2.2 displays the tableau for this pair.

The Bogacki-Shampine (1989) BS(2,3) pair implemented in ode23 is displayed in
Table 2.3. The layout is a little different because the BS(2,3) pair exemplifies a technique

54 Chapter 2: Initial Value Problems

Table 2.3: The BS(2,3) pair.

0

2 2
3
4 0 3

4

1 2 4
9 3 9
7 1
24 4 3 8

called First Same As Last (FSAL). For an FSAL formula, the First stage of the next step
is the Same As the Last stage of the current step. The last line of the table displays the
coefficients y for the second-order formula of four stages. The line just above it contains
the coefficients for the last stage, which by construction is a third-order formula of three
stages. The way this works is that you form a third-order result y n + 1 with three stages,
evaluate the fourth stage f (t n+1, y n+\), and then form the second-order result. This pair
was designed to be used with local extrapolation, which is to say that the integration is
to be advanced with the third-order result, y n+\, as the approximate solution. The stage
formed for the evaluation of the second-order formula and the error estimate is the first
stage of the next step. In this way we get a stage for “free” if the step is accepted. In prac­
tice, most steps are accepted so this pair costs little more than a pair involving just three
stages. Clearly, deriving pairs constrained to have the FSAL property is a challenge, but
some popular pairs are of this form. One such is the seven-stage DOPRI5 pair mentioned
earlier as the pair implemented in ode45. In practice it costs little more than the mini­
mum of six stages per step that are required for any fifth-order formula. The widely used
Fortran 77 package rks uite (Brankin, Gladwell, & Shampine 1993) and its close rela­
tive the Fortran 90 package r k s u i te _ 9 0 (Brankin & Gladwell 1994) implement a (4,5)
FSAL pair that has still another stage. The topic of formula pairs is taken up in Exer­
cise 2.4.

Continuous Extensions
We have been discussing the approximation of y(t) at points 10 < t1 < •••, but for some
purposes it is valuable to have an approximation for all t. For example, plot packages
draw straight lines between data points. Runge-Kutta formulas of moderate to high order
take such long steps that it is quite common for straight line segments to be noticeable and
distracting in plots of solution components. Figure 4.28 and 4.29 of Bender and Orszag
(1999) provide good examples of this in the literature, and Exercise 2.21 provides another

2.2 Numerical Methods for IVPs 55

example. To plot a smooth graph, we need an inexpensive way of approximating the solu­
tion between mesh points. This is often called dense output in the context of Runge-Kutta
methods.

Continuous extensions are a relatively recent development in the theory of Runge-Kutta
methods. The idea is that, after taking a step from tn to tn + h, the stages used in comput­
ing the solution and the error estimate (and perhaps a few additional stages) are used to
determine a polynomial approximation to u(t) throughout [tn, tn + h]. The scheme used
in ode2 3 is particularly simple. At the beginning of the step we have approximations y n
and y'n = f (t n, y n) to the value and slope of the solution there. At the end of the step
we compute an approximation y n+^ The BS(2,3) pair also evaluates an approximation
to the slope уП+1 = f (t n+1, y n+1) because it is FSAL. (This information is readily avail­
able for any explicit Runge-Kutta formula because this slope is always the first stage of
the next step.) With approximations to value and slope at both ends of an interval, we can
use cubic Hermite interpolation to the solution and its slope at both ends of the current
step. Using interpolation theory, it can be shown that this cubic interpolating polynomial
approximates the local solution as accurately at all points of [tn, tn+1] as yn+1 approxi­
mates it at tn+1. The cubic Hermite interpolant on [tn-1, tn] has the same value and slope
at tn as the interpolant on [tn, tn+1], so this construction provides a piecewise-cubic poly­
nomial S(t) e C l [a, b]. This approximation underlies the dde23 code for solving delay
differential equations that we study in Chapter 4.

The interpolation approach to continuous extensions of Runge-Kutta formulas is valu­
able but somewhat limited. For each a e [0,1], an interpolant evaluated at tn + ah can
be viewed as a Runge-Kutta formula for taking a step of size ah from tn. Another way
to proceed is to derive such a family of formulas directly. The trick is to find a formula
for taking a step of size ah that shares as many stages as possible with the formula that
we use to step to tn + h. The new formula depends on a but these stages do not, and any
additional stages needed to achieve the desired order should also not depend on a. It is
possible to derive such families of formulas with coefficients that are polynomials in a.
The continuous extension of ode45 was derived in this way. No extra stages are needed
to form its polynomial approximation of fourth order, but the piecewise-polynomial in-
terpolant S(t) is only continuous on the interval [a, b]. The DOPRI5 formula of ode45
allows the solver to take such large steps that by default it evaluates the continuous exten­
sion at four equally spaced points in the span of every step and returns them along with
the approximations computed directly by the formula. Generally these additional solu­
tion values are sufficient to provide a smooth graph. An option is provided for increasing
the number of output points if necessary.

■ EXERCISE 2.1
Using the equations of condition (2.8) for quadrature problems, verify that the following
methods are of order 4.

56 Chapter 2: Initial Value Problems

Simpson’s method is based on Simpson’s quadrature formula, also known as the
three-point Lobatto formula,

J a

b a . a + b .
f (a) + 4 f — - + f (b)f (x) d x —

The two-point Gaussian quadrature method is based on the formula

aa

b — a
f (x) d x — -------

. a + b b — a \ f a + b b — a

n ~ — - 2 7 3) + 4 ~ + 2V5

■ EXERCISE 2.2
Use Euler’s method and the midpoint rule to derive a two-stage, second-order, explicit
Runge-Kutta method.

■ EXERCISE 2.3
To understand better the equations of condition, derive the three equations for a formula
of the form

Уп+1 = Уп + h[Y1f n ,1 + Y2 fn, 2]

where

f n,1 -- f (t n, y n)

f n,2 — f (t n + a 1h , y n + h e 1,0 f n,1)

to be of second order. In the step from (tn, y n), the result yn+1 of the formula is to ap­
proximate the solution of

U — f (t , u) , u(tn) - Уп

at tn+1 — tn + h. Expand u(tn+1) and yn+1 about tn in powers of h and equate terms to
compute the equations of condition. To simplify the expansions, do this for a scalar func­
tion f (t , u).

■ EXERCISE 2 .4
The explicit Runge-Kutta formulas

yn+1 — y n + h f n,2

h
y *n + 1 — y n + 9 [2fn,1 + 3 f n,2 + 4 f n,3]

of three stages

2.2 Numerical Methods for IVPs 57

f n,1 -- f (t n, y n)

(h h
f n,2 — f I tn + ^ , y n + ^ f n,1

(3 3
f n,3 — f I tn + 4 h , y n + 4 h f n,2

are of order 2 and 3, respectively. State this (2,3) pair as a Butcher tableau. The local
error of the lower-order formula is estimated by est — y*+1 — y n+1. Suppose that the in­
tegration is to be advanced with the higher-order result (local extrapolation) and that you
are given a relative error tolerance тг and absolute error tolerance Ta. This means that you
will accept the step if

l e s t | < Tr |y*+1| + t -

What step size hnew — ah should you use if you must repeat the step because the estimated
local error is too large? What step size should you use for the next step if the estimated
local error is acceptable? Some solvers measure the error relative to 0.5(|yn
instead of |y*+1|. Why might this be a good idea?

1УП+11)

2.2 .2 Methods with M em ory

Adams Methods
Once tn has been reached, we generally have available the previously computed solution
values Уп,Уп—1, . . . and slopes fn — f (tn , Уп), f n —1 — f (t n —1, Уп—1), . . . that might be
used in computing y n+1. A natural way to exploit this information is a variation on the
quadrature approach of the previous section. Recall that to approximate the local solution
defined by

u' — f (t , u) , u(tn) — Уп

we integrated to obtain

p tn + h
u(tn + h) — Уп + / f (x , u (x)) d x

tn

Interpolating s values f nj — f (t nj , y nj) with a polynomial P (x) and then integrating,
we derived a formula of the form

yn+1 — y n + h } A j f (t n, j , y n,j)
j —1

We found that if the values y nj & u(tnj) are sufficiently accurate then this formula has
order at least s. For one-step methods we required that the points tnj e [tn, tn + h]. The

58 Chapter 2: Initial Value Problems

question then was how to compute sufficiently accurate y n,j. A natural alternative is to
take tn,j — tn—j because generally we already have sufficiently accurate approximations
y n,j — y n—j and, more usefully, f n—j — f (t nj , y nj) . This choice results in a family of
explicit formulas called the Adams-Bashforth formulas. The lowest-order formula in this
family is the forward Euler formula because it is the result of interpolating f n alone. In the
present context it is called AB1. Interpolating f n and f n—1 results after a little calculation
in the second-order formula, AB2,

where r — h n/ h n —1 (see Exercise 2.5). Note that, because we use previously computed
values, the mesh spacing in the span of the memory appears explicitly in the coefficients.
This is true in general, so it is necessary at each step to work out the coefficients of the for­
mula. Techniques have been devised for doing this efficiently. For theoretical purposes,
such formulas are often studied with the assumption that the step size is a constant h, in
which case r — 1 and the formula for AB2 simplifies to

The Adams-Moul ton formulas arise in the same way except that the polynomial interpo­
lates f n+1. Because f n+1 — f (t n+1, y n+1) involves y n+1, these formulas are implicit. The
backward Euler method is the formula of order 1, and the trapezoidal rule is the formula
of order 2. In this context they are called AM1 and AM2, respectively.

The accuracy of the Adams methods can be analyzed much as we did with Runge-
Kutta methods. It turns out that the (implicit) Adams-Moulton formula of order k, AMk,
is more accurate and more stable than the corresponding (explicit) Adams-Bashforth for­
mula of order k, ABk. Which method is preferred depends on how much it costs to solve
the nonlinear algebraic equation associated with the implicit formula. For nonstiff prob­
lems, implicit formulas are evaluated by what is called simple iteration.

We’ll illustrate the iteration with the concrete example of AM1 because the general case
is exactly the same and there are fewer terms to distract us. We solve iteratively the alge­
braic equations

This operation is described as “correcting” the current iterate with an implicit formula
that is called a corrector formula. Supposing that the algebraic equations (2.23) have a
solution, it follows easily from the Lipschitz condition on f that

yn+1 — y n + h _2 f n 2 f n—1]

(2.23)

2.2 Numerical Methods for IVPs 59

Wyn+i - ylr+l11 II = Whf(tn+1, yn+i) - h f (t n+i, уП+]1)У < hL\\yn+i - y ^ W

From this we see that, if hL < 1, the new iterate is closer to y n + 1 than the previous iter­
ate and eventually we have convergence. This argument can be refined to prove that, for
all sufficiently small step sizes h, the algebraic equations (2.23) have a solution and it is
unique. (This is an example of a fixed-point argument that is common in applied mathe­
matics.) The smaller the value of h, the faster this iteration converges. This is important
because each iteration costs an evaluation of the ODE function f and if many iterates are
necessary then we might just as well use an explicit method with a smaller step size to
achieve the same accuracy. On the other hand, for the sake of efficiency we want to use
the largest step size that we can. An important way to reduce the number of iterations is
to make a good initial guess уП+1 for yn+1. There is an easy and natural way to do this -
predict the new value уП°+1 using an explicit formula, a predictor formula. For the im­
plicit Adams-Moulton formula AM k, a natural predictor is an explicit Adams-Bashforth
formula, either ABk or AB(k - 1). Another important way to reduce the cost is to recog­
nize that in practice it is not necessary to evaluate the implicit formula exactly, just well
enough that the accuracy of the integration is not impaired. With considerable art in the
implementation, a modern code like vo d e (Brown, Byrne, & Hindmarsh 1989) that uses
Adams-Moulton methods for nonstiff problems averages about two evaluations of f per
step. Simple iteration is practical for nonstiff problems because - in the classical situa­
tion, where L(b - a) is not large - the requirement L h < 1 cannot restrict the step size
greatly. Choosing the step size to compute an accurate solution usually restricts the step
size more than enough to ensure the rapid convergence of simple iteration.

There is an important variant of Adams methods that exemplifies a class of methods
called predictor-corrector methods. A prediction is made with an Adams-Bashforth for­
mula and then a f ixed number of corrections is made with a corresponding Adams-Moulton
formula. The most widely used methods of this kind correct only once. As it happens,
Heun’s method (2.18) is an example. The value уП+1 is predicted with Euler’s method,
AB1. As we wrote Heun’s method earlier, this value was called y ntl. The rest of Heun’s
method is recognized as one correction with the trapezoidal rule (AM2) to give yn+l , fol­
lowed by evaluating f (t n+l , y n+l) for use on the next step. Proceeding in this way gives
a PECE method (Predict-Evaluate f -Correct-Evaluate f) . It would be natural to pre­
dict for AM2 with AB2, but this is not necessary and there are some advantages to using
the lower-order predictor. It is not hard to show that predicting with a formula of order
k - l and correcting once with a formula of order k results in a predictor-corrector for­
mula of order k. The argument is much like the one used earlier for quadrature in general
and Heun’s method in particular. Although the predictor-corrector formula has the same
order as the implicit formula used as corrector, the leading term in an expansion of the
error is different. Exercise 2.7 provides an example of this. It is important to understand
that a predictor-corrector method is an explicit method. Accordingly, it has qualitative

60 Chapter 2: Initial Value Problems

properties that are in some respects quite different from the implicit formula that is used
as the corrector; we’ll mention one when we discuss stability. These different kinds of
formulas are commonly confused because, for nonstiff problems, implicit formulas are
evaluated by a prediction and correction process. The practical distinction is whether you
use as many iterations as necessary to evaluate the implicit formula to a specified accuracy
or use a fixed number of iterations. A difficulty with implicit methods is deciding reliably
when the iteration to solve the formula has converged to sufficient accuracy, an issue not
present with the explicit predictor-corrector methods. Although the two kinds of meth­
ods can differ substantially in certain situations, an Adams code that implements Adams
methods as predictor-corrector pairs such as o d e/s t e p,intrp (Shampine & Gordon
1975) or ode113 performs much like an implementation of the Adams-Moulton implicit
formulas such as in difsub (Gear 1971) or v od e (Brown et al. 1989). The practice that
you get implementing such formulas in Exercise 2.10 will help you understand better the
distinction between predictor-corrector methods and implicit methods.

BDF Methods
On reaching tn, the backward differentiation formula of order k (BDFk) approximates
the solution y(t) by the polynomial P(t) that interpolates yn+1 and the previously com­
puted approximations y n, y n—1, . . . , y n+1—k. The polynomial is to satisfy the ODE at tn+1,
or (in a terminology that will be important for BVPs) it is to collocate the ODE at tn+1.
This requirement amounts to an algebraic equation for y n+1,

P (tn+ 1 — f (t n+1, P (tn+1)) — f (t n+1, y n+1)

Now BDF1 results from linear interpolation at tn+1 and tn. The interpolating polynomial
has a constant derivative, so the collocation equation is seen immediately to be

y n + 1 y n p, ■.
j — J (tn+1, y n+1)
h n

or, equivalently,
y n+1 y n -- h n f (t n+1, y n+1)

Interpolating with a quadratic polynomial at the three points tn+1, tn, and tn—1 leads in the
same way to BDF2,

1 + 2 r \ (r 2 \
Уп+1 — (1 + r)yn + —--- Уп —1 — hnf (tn+1, Уп+1)1 I t У n + L V ' У n ' \ 1 I1 + r J \1 + r

where r — h n/ h n —1 (see Exercise 2.5). For a reason that we’ll take up shortly, the BDFs
are generally used with a constant step size h for a number of steps. In this case, BDF2 is

3Уп+1 — 2 yn + 2Уп—1 — hf (tn+1, Уп+1)

2.2 Numerical Methods for IVPs 61

When the step size is a constant h, the Adams formulas and the BDFs are members
of a class of formulas called linear multistep methods (LMMs). These formulas have the
form

k k
^ ' a iy n+l-i — h ^ ' e i f (tn+l—i, y n+l-i) (2.24)
i= 0 i — 0

In proving convergence for one-step methods, the propagation of the error made in a step
could be bounded in terms of the stability of the IVP as the maximum step size tends to
zero. Convergence is harder to prove when there is a memory because the error made in
the current step depends much more strongly on the error made in preceding steps. This
requires a shift of focus from approximating local solutions to approximating the global
solution y(t) and from the stability of the IVP to that of the numerical method. The dis­
cretization error or local truncation error (lten) of a linear multistep method is defined by

k k
l ten ^ ̂a iy i 'tn+l—i) h ^ ̂e if (i n+l—i, y i 'tn+l—i))

i—0 i—0

k k
= ^] a iy (t n+l-i) - h ^ ̂ftiy (tn+l-i)

i—0 i—0

A straightforward expansion of the terms in Taylor series about tn+l shows that

to

lten — J 2 C jh Jy u \tn+l) (2.25)
j —0

where
k

ai,
i—0 i—0

C 0 — 2̂ ai, Cl — -̂ 2 [iai + Pi],
i—

i j - l Pt
Cj — — у Y .

k Г j ■j - l .
j

—l j! + i j - l)!
, j — 2, 3,

If an LMM is convergent, it is of order p when its local truncation error is O (h p+l). The
expansion (2.25) shows that the formula is of order p when Cj — 0 for j — 0, l, . . . , p .
Furthermore,

lten — Cp+l hp+ly ip+l\ tn+l) + ■■■ — Cp+lhp+ly ip+l\ t n) + ■■■ (2.26)

A couple of simple examples will be useful. Rearranging the Taylor series expansion

h2
y (t n) — y i t n+l) - hy (tn+l) + — y (tn+l) + ■■■

62 Chapter 2: Initial Value Problems

provides a direct proof that the local truncation error of the backward Euler method is

h2 h2
l t en = - “2 y "(tn + h) + ••• = - - ^ y " (tn) + ••• (2.27)

We leave for Exercise 2.6 the computation that shows the local truncation error of the
trapezoidal rule, AM2, to be

h3
lten — - - y '"(tn) + ■■■ (2.28)

A few details about proving convergence will prove illuminating. Suppose that we have
an explicit LMM of the form

k
yn+l — y n + h ^ ̂e if ((n+l-i , y n+l-i)

i—l

a form that includes the Adams-Bashforth formulas. The solution of the ODE satisfies
this equation with a small perturbation, the local truncation error,

k
y (t n+l) — y(('n) + h ^ ̂e if ((n+l-i, y ('tn+l-i) ') + l ten

i—l

Subtracting the first equation from the second results in

k
y (t n+l) y n+l — y (t n) y n + h ^ ̂$i [f (tn+l—i , y ('tn+l-i) ') f ((n+l-i , y n+l-i] + l ^en

i—l

If the local truncation error is O (h p+l), we can take norms and use the Lipschitz condition
to obtain

k

Wy(tn+l) - yn+l\| < Wy(tn) - y n\\ + h ^ 2 1 e i\L Wy (t n+l-i) - y n+l-i\\ + ChP+l
i—l

This inequality involves errors at steps prior to tn. The trick in dealing with them is to let

E m — m ax||y(j) - y} \
} <m

Using this quantity in the inequality, we have

\\y(tn+i) - yn+iW < (l + h L)E n + Chp+l

where

2.2 Numerical Methods for IVPs 63

L | AI — L
i—О

It then follows that
En+i < (l + h L) E n + Chp+l

This bound on the growth of the error in one step is just like the one we saw earlier for
one-step methods. It is now easy to go on to prove that the error on the entire interval
[a, b] is O (h P). A small modification of the argument proves convergence for implicit
methods that have the form of Adams-Moulton formulas. A similar argument can be used
to prove convergence of predictor-corrector pairs like AB-AM in PECE form.

The error was bounded directly in the convergence proof just sketched, but often con­
vergence is proven by first showing that the effects of small perturbations to the numerical
solution are not amplified by more than a factor of O (h ~ l). Because it takes (b - a) h -l
steps to integrate from a to b, we can think of this as stating roughly that the errors do no
more than add up. A formula with this property is said to be zero-stable. At mesh points
the solution of the ODE satisfies the formula with a small perturbation, the local trunca­
tion error, that is, O (h P+r). Zero-stability then implies that the difference between the
solution at mesh points and the numerical solution is O (h p) - that is, the method is con­
vergent and of order p.

A convergence proof for general LMMs starts off in the same way, but now errors at
previous steps appear without being multiplied by a factor of h. This makes the analysis
more difficult, but more important is that, for some formulas, the errors at previous steps
are amplified so much that the method does not converge. The classical theory of LMMs
(see e.g. Henrici 1962,1977) provides conditions on the coefficients of a formula that are
necessary and sufficient for zero-stability. It turns out that zero-stable LMMs can achieve
only about half the order of accuracy possible for the data used. One reason for giving our
attention to the Adams formulas and BDFs is that they are zero-stable yet have about the
highest order that is possible. The restriction on the order is necessary for a formula to be
stable, but it is not sufficient. In fact, BDFs of orders 7 and higher are not zero-stable.

An example (Isaacson & Keller 1966, p. 38l) of a linear multistep method that is not
zero-stable is the explicit third-order formula

Уп+1 + I Уп - b n - l + 1 Уп- 2 - 3 h f (t n, yn) — 0 (2.29)

In a numerical experiment we contrast it with AB3,

Уп+1 - Уп - h
23 16 5
12 f (t n, y n) - 12 f (t n 1, y n 1) + 12 f (t n - 2 , y n- 2) — 0 (2.30)

k

These formulas use the same data and have the same order, so it is not immediately obvi­
ous that one is useful and the other is not. Nevertheless, the theory of LMMs tells us that,

64 Chapter 2: Initial Value Problems

Table 2.4: Maximum error when h — 2 \

i AB3 Formula (2.29)

2 l.34e-003 9.68e-004
3 2.3le-004 6.16e-003
4 3.l5e-005 l.27e+000
5 4.08e-006 6.43e+005
6 5.l8e-007 2.27e+0l8
7 6.53e-008 4.23e+044
8 8.19e-009 2.27e+098
9 1.03e-009 1.03e+207

10 1.28e-010 Inf

as h ^ 0, the zero-stable formula AB3 is convergent and formula (2.29) is not. The nu­
merical experiment is to study how the maximum error depends on the step size h when
integrating the IVP y ' — - y , y(0) — l over [0, l]. Starting values are taken from the
analytical solution. Table 2.4 displays the maximum error for step sizes h — 2~г, i —
2, 3 , . . . , l0. It appears that AB3 is converging as h ^ 0. Indeed, when h is halved, the
maximum error is divided by about 8 , as we might expect of a third-order formula. It ap­
pears that formula (2.29) is not converging. The error is not so bad for the larger values of
h because only a few steps are taken after starting with exact values, but not many steps
are needed for the error to be amplified to the extent that the approximate solutions are
unacceptable. Exercise 2.8 asks you first to verify that formula (2.29) is of order 3 and
then to perform this experiment yourself.

When the step size is varied, we must expect some restrictions on how fast it can change
if we are to have stability and convergence as a maximum step size tends to zero. If the
ratio of successive step sizes is uniformly bounded above, then stability and convergence
can be proved for Adams methods much as we did for constant step size (Shampine l994).
In practice this condition is satisfied because the solvers limit the rate of increase of step
size for reasons explained in Section 2.2.l. The BDFs are another matter. The classical
theory for LMMs shows that the BDFs of order less than 7 are stable and convergent as a
constant step size tends to zero. They are often implemented so that the solver uses one
constant step size until it appears advantageous to change to a different constant step size.
There are theoretical results that show stability and convergence of such an implementa­
tion, provided the changes of step size are limited in size and frequency. Unfortunately,
the situation remains murky because the theoretical results do not account for changes as
large and frequent as those seen in practice.

The numerical methods used in practice are all stable as a maximum step size tends to
zero. But in a specific integration, are the step sizes small enough that the integration is

2.2 Numerical Methods for IVPs 65

stable? It is easy enough to write down expressions for the propagation of small perturba­
tions to a numerical solution, but the expressions are so complicated that it is difficult to
gain any insight. For guidance we turn to a standard analysis of the stability of the ODE
itself. The idea is to approximate an equation in autonomous form, y ' — f (y) , near a
point (t*, y *) by a linear equation with constant coefficients,

u' — f (y *) + f (y *)(u - y *) (2.31)
dy

The approximating ODE is unstable if there are solutions starting near (t * ,y*) that spread
apart rapidly. The difference of any two solutions of this linear equation is a solution of
the homogeneous equation

/ d f / * \ v — — (y)v
dy

For simplicity it is usual to assume that the local Jacobian dy(y*) is diagonalizable, mean­
ing that there is a matrix T of eigenvectors such that T -1 j y (y*) T — diag{k1, k2 , . . . , k d}.
If we change variables to w — T - 1v, we find that the equations uncouple: component j of
w satisfies wj — k jWj. Each of these equations is an example of the (scalar) test equation

w ' — k w (2.32)

with k an eigenvalue of the local Jacobian. Solving these equations shows that, if Re (kj) >
0 for some j , then wj(t) grows exponentially fast and so does v(t). Because the differ­
ence between two solutions of (2.31) grows exponentially fast, the ODE is unstable. On
the other hand, if Re (kj) < 0 for all j , then w(t) is bounded and so is v(t). The approxi­
mating equation (2.31) is then stable near (t*,y *). The standard numerical methods can be
analyzed in a similar way to find that the stability of the method depends on the numerical
solution of the test equation. As we shall see, it is not hard to work out the behavior of the
numerical solution of this equation when the step size is a constant h. With it we can an­
swer the fundamental question: If Re (kj) < 0 for all j so that the approximating ODE is
stable near (t* ,y*), how small must h be in order for the numerical solution to be stable?
The theory of absolute stability that we have outlined involves a good many approxima­
tions, but it has proven to be quite helpful in understanding practical computation. We can
also think of it as providing a necessary condition, for if a method does not do a good job
of solving the test equation then it can be of only limited value for general equations.

Euler’s method provides a simple example of the theory of absolute stability. Suppose
Re (k) < 0, so that all solutions of the test equation are bounded and the equation is stable.
If we apply the forward Euler method to this equation, we find that

Уп+1 — Уп + hkyn — (1 + hk)yn

Clearly it is necessary that |1 + hk| < 1 for a bounded numerical solution. The set

66 Chapter 2: Initial Value Problems

S — {|l + z \ < l , Reiz) < 0}

is called the (absolute) stability region of the forward Euler method. If hX e S then the
numerical method is stable, just like the differential equation. If hX is not in S, the inte­
gration blows up. This is applied to more general problems by requiring that hXj e S for
all the eigenvalues Xj of the local Jacobian dy. Again we caution that a good many ap­
proximations are made in the theory of absolute stability. Nevertheless, experience tells
us that it provides valuable insight.

Whatever the value of X, the forward Euler method is stable for the test equation for all
sufficiently small h, as we already knew because the method converges. Notice that L —
|X| is a Lipschitz constant for the test equation. In the classical situation where L(b - a)
is not large, any restriction on the step size necessary to keep the computation stable can­
not be severe. But what if Re(X) < 0 and \X\(b - a) > l? In this case the differential
equation is stable - indeed, extremely so because solutions approach one another expo­
nentially fast - but stability of the forward Euler method requires that h be not much larger
than | X|-1.

The step size that might be used in practice is mainly determined by two criteria, accu­
racy and stability. Generally the step size is determined by the accuracy of a formula, but
for stiff problems, it may be determined by stability. To understand better what stiffness
is, let us consider the solution of the IVP

y ' — - l 00y + l0 , y(0) — l (2.33)

on (say) 0 < t < 10. Exercise 2.11 asks you to determine the largest step size for which
the leading term of the local truncation error of the forward Euler method is smaller in
magnitude than a specified absolute error, but the qualitative behavior of the step size is
clear. The analytical solution

1 9
y(t) — -----\-----e
y i) l 0 + l0

- 100t

shows that there is an initial period of very rapid change, called a boundary layer or initial
transient. In this region the method must use a small step size to approximate the solution
accurately, a step size so small that the integration is automatically stable. The problem
is not stiff for this method in the initial transient. After a short time t, the solution y(t) is
very nearly constant, so an accurate solution can be obtained with a large step size. How­
ever, the step size must satisfy |l + h (—100) | < l if the computation is to be stable. This
is frustrating. The solution is easy to approximate, but if we try a step size larger than h =
0.02, the integration will blow up. Modern codes that select the step size automatically
do not blow up: if the step size is small enough that the integration is stable, the code in­
creases the step size because the solution is easy to approximate. When the step size is
increased to the point that it is too large for stability, errors begin to grow. When the error

2.2 Numerical Methods for IVPs 67

Table 2.5: Solution o f a mildly stiff IVP.

Solver AE ME SS FS

ode45 1.0e- 1 l.le -1 303 26
1.0e- 2 l.le - 2 304 26
1.0e - 3 l.le-3 307 19
1.0e - 4 l.le -4 309 19

ode15s 1.0e- 1 3.4e-2 23 0
1.0e- 2 8.2e - 3 29 0
1.0e - 3 l.le-3 39 0
1.0e - 4 1.6e - 4 65 0

Key: AE, absolute error tolerance; ME, maximum error; SS,
number of successful steps; FS, number of failed steps.

becomes too large, the step is a failure and the step size is reduced. This is repeated until
the step size is small enough that the integration is again stable and the cycle repeats. The
code computes an accurate solution, but the computation is expensive - not only because
a small step size is necessary for stability but also because there are many failed steps.
Exercise 2.15 provides an example.

A numerical experiment with the IVP (2.33) is instructive. Because 0 < y (t) < 1 , a
relative error tolerance of 10-12 and a modest absolute error tolerance is effectively a pure
absolute error control. Table 2.5 shows what happens when we solve this IVP with the
explicit Runge-Kutta code ode45 for a range of absolute error tolerances. This code is
intended for nonstiff problems, but it can solve the IVP because its error control keeps
the integration stable. Further, the cost of solving the IVP is tolerable because it is only
mildly stiff. Notice that there is a relatively large number of failed steps. Also, the number
of successful steps is roughly constant as the tolerance is decreased. This is characteris­
tic of stiff problems because, for much of the integration, the step size is not determined
by accuracy. The BDF code ode15s that is intended for stiff problems behaves quite dif­
ferently. The number of successful steps depends on the tolerance because the step size
is determined by accuracy. For this problem, ode15s does not have the step failures that
ode45 does because of its finite stability region.

Stiff problems are very important in practice, so we must look for methods more stable
than the forward Euler method. We don’t need to look far. If we solve the test equation
with the backward Euler method, the formula is

Уп+1 — Уп + hkyn+1

and hence

68 Chapter 2: Initial Value Problems

yn+l — i---- ГГ Уп (2.34)1 hX

The stability region of the backward Euler method is then the set

l
S =

l - z
< l, Re(z) < 0

which is found to be the whole left half of the complex plane. This is a property called
A-stability. There appears to be no restriction on the step size for a stable integration with
the backward Euler method. Many approximations were made in the stability analysis, so
you shouldn’t take this conclusion too seriously. That said, the backward Euler method
does have excellent stability. This method is BDF1 and, similarly, the BDFs of orders 2
through 6 have stability regions that extend to infinity. Only the formulas of orders l and 2
are А-stable. The others are stable in a sector

{z — r e l9 | r > 0 , n - a < в < n + a}

that contains the entire negative real axis. This restricted version of А-stability is called
A(a)-stability. As the order increases, the angle a becomes smaller and BDF7 is not sta­
ble for any angle a; that is, it is not stable at all.

Like BDFl, the trapezoidal rule is А-stable. The predictor-corrector pair that consists
of the forward Euler predictor and one correction with the trapezoidal rule is an explicit
Runge-Kutta formula, Heun’s method. It is not hard to work out the stability region of
Heun’s method and so learn that it is finite. In fact, all explicit Runge-Kutta methods have
finite stability regions. This shows that an implicit method and a predictor-corrector pair
using the same implicit method as a corrector can have important qualitative differences.

Exercise 2.9 takes up stability regions for some one-step methods and asks you to prove
some of the facts just stated. Exercise 2.16 takes up the computation of stability regions
for LMMs. For stability all we ask is that perturbations of the numerical solution not grow.
However, if Re(X) < 0 then perturbations of the ODE itself decay exponentially fast. It
would be nice if the numerical method had a similar behavior. The expression (2.34) for
BDFl shows that perturbations are damped strongly when h Re(X) < —l. An A (a)-stable
formula with this desirable property is said to be L(a)-stable. An attractive feature is that
the convergent BDFs are L(a)-stable. For the trapezoidal rule, perturbations are barely
damped when h Re(X) < —l; the formula is А-stable, but not L(a)-stable.

Interestingly, the BDFs are stable for all sufficiently large ^ X l If Re(X) > 0 and a
BDF is stable for h X , then the solution of the test equation grows and the numerical so­
lution decays. Of course the numerical solution has the right qualitative behavior for all
sufficiently small hX because the method is convergent, but if Re(X) > 0 and h is too large
then you may not like the heavy damping of this formula. Exercises 2.l2 and 2.l3 take up
implications of this. Exercise 2.l4 considers how the implementation affects stability.

2.2 Numerical Methods for IVPs 69

What’s the catch? Why have we even been talking about methods for nonstiff prob­
lems? Well, all the methods with infinite stability regions are implicit. Earlier, when we
derived the backward Euler method as AM1, we talked about evaluating it by simple it­
eration. Unfortunately, the restriction on the step size for convergence of simple iteration
is every bit as severe as that due to stability for an explicit method. To see why this is
so, let us evaluate the backward Euler method by simple iteration when solving the test
equation. The iteration is

and

y' + 1] _ y , hkv[m] yn+1 — y n + h k y n+1

Уп+1 - уП'+1] I — I hk II Уп+1 - уП+iI

Clearly we must have I hk I < 1 for convergence. This is not important when solving non­
stiff problems, but it is not acceptable when solving stiff problems. For the example (2.33)
of a stiff IVP, h must be less than 0.01 for convergence. This restriction of the step size
due to simple iteration when using the backward Euler method is worse than the one due
to stability when using the forward Euler method! To solve stiff problems we must resort
to a more powerful way of solving the algebraic equations of an implicit method. In the
case of BDFs, these equations have the form

Уп+1 — hYf(tn+i, Уп+i) + f (2.35)

Here y is a constant that is characteristic of the method and f lumps together terms involv­
ing the memory y n, y n-1, __ As with simple iteration for nonstiff problems, it is important
to make a good initial guess уЩ у This can be achieved by interpolating y n, y n-1, . . . with
a polynomial Q(t) and taking уП°+1 — Q(tn+]_). A simplified Newton (chord) method can
then be used to solve the algebraic equations iteratively. The equations are linearized ap­
proximately as

уП'+1] — f + hY[f (tn+i , уП+i) + /(уП '+1] - уП+i)]

Here
d f

J ^ 7 7 “ (tn+1, yn+1)
dy

This way of writing the iteration shows clearly the approximate linearization, but it is very
important to organize the computation properly. The next iterate should be computed as
a correction Д т to the current iterate. A little manipulation shows that

(I - h Y J ^ m — f + hYf(tn+i, y ') - уП']1 (2.36)
y [m+1] = y [m] + Дy n+1 y n+1 + Дт

70 Chapter 2: Initial Value Problems

The iteration matrix I - h y J is very ill-conditioned when the IVP is stiff. Exercise 2.20
explains how to modify ode15s so that you can monitor the condition of the iteration ma­
trix in the course of an integration and then asks you to verify this assertion for one IVP.
When solving a very ill-conditioned linear system, it may be that only a few of the lead­
ing digits of the solution are computed correctly. Accordingly, if we try to compute the
iterates уП++1] directly, we may not be able to compute more than a few digits correctly.
However, if we compute a few correct digits in each increment A m, then more and more
digits will be correct in the iterates уПт++l]. Notice that the right-hand side of the linear
system (2.36) is the residual of the current iterate. It is a measure of how well the cur­
rent iterate satisfies the algebraic equations (2.35). By holding fixed the approximation J
to the local Jacobian, an L U factorization (that is, an L U decomposition) of the iteration
matrix I - h ny J can be computed and then used to solve efficiently all the linear systems
of the iteration at the point tn+l. Forming and factoring I - h ny J is relatively expensive,
so BDF codes typically hold the step size constant and use a single L U factorization for
several steps. Only when the iterates do not converge sufficiently fast or when it is pre­
dicted that a considerably larger step size might be used (perhaps with a change of order,
i.e., with a different formula) is a new iteration matrix formed and factored.

Evaluating an implicit formula by solving the equation with a simplified Newton itera­
tion can be expensive. In the first place, we must form and store an approximation J to the
local Jacobian. We then must solve a linear system with matrix I - h y J for each iterate.
It can be expensive to approximate Jacobians, so the codes try to minimize the number
of times this is done. A new iteration matrix must be formed when the step size changes
significantly. The early codes for stiff IVPs formed a new approximation to the Jacobian
at this time and overwrote it with the new iteration matrix because storage was at a pre­
mium. This is still appropriate when solving extremely large systems, but nowadays some
solvers for stiff IVPs, including those of M atlab , save J and reuse it in the iteration ma­
trix for as long as the iteration converges at an acceptable rate. This implies that if such
a solver is applied to a problem that is not stiff, very few Jacobians are formed. Along
with the fast linear algebra of the M atlab PSE, this makes the stiff solvers of M atlab
reasonably efficient for nonstiff problems of modest size.

Because it is so convenient, all the codes for stiff IVPs have an option for approxi­
mating Jacobians by finite differences. This is the default option for the M atlab solvers.
Suppose that we want to approximate the matrix f (t *, y *). If e ij) is column j of the iden­
tity matrix, then the vector y* + Sjeij) represents a change of Sj in component j of y*.
From the Taylor series

f i t* , y * + Seij)) — f i t* , y *) + f (t *, y *)S je ij) + O(Sf)
dy j j

we obtain an approximation to column j of the Jacobian:

2.2 Numerical Methods for IVPs 71

f t * y *) e j) ъ S~1[f i t*, y * + Sej)) - f i t* , y *)]
dy j

For a system of d equations, we can obtain an approximation to the Jacobian in this way
by making d evaluations of f . This is the standard method of approximating Jacobians,
but the algorithms differ considerably in detail because it is hard to choose a good value
for Sj. It must be small enough that the finite differences provide a good approximation
to the partial derivatives but not so small that the approximation consist only of roundoff
error. When the components of f differ greatly in size, it may not even be possible to find
one value of Sj that is good for all components of the vector of partial derivatives. Fortu­
nately, we do not need an accurate Jacobian, just an approximation that is good enough to
achive acceptable convergence in the simplified Newton iteration. A few algorithms, in­
cluding the num jac function of M atlab , monitor the differences in the function values.
They adjust the sizes of the increments Sj based on experience in approximating a previ­
ous Jacobian and repeat the approximation of a column with a different increment when
this appears to be necessary for an acceptable approximation. Numerical Jacobians are
convenient and generally satisfactory, but the solvers are more robust and perhaps faster
if you provide an analytical Jacobian.

For a large system of ODEs, it is typical that only a few components of y appear in
each equation. If component j of y does not appear in component i of f i t , y) , then the
partial derivative f is zero. If most of the entries of a matrix are zero, the matrix is said
to be sparse. By storing only the nonzero entries of a sparse Jacobian, storage is reduced
from the square of the number of equations d to a modest multiple of d. If the Jacobian
is sparse then so is the iteration matrix. As with storage, the cost of solving linear sys­
tems by elimination can be reduced dramatically by paying attention to zero entries in the
matrix. A clever algorithm of Curtis, Powell, & Reid (l974) provides a similar reduction
in the cost of approximating a sparse Jacobian. By taking into account the known value
of zero for most of the entries in the Jacobian, it is typically possible to approximate all
the nonzero entries of several columns at a time. An important special case of a sparse
Jacobian is one that has all its nonzero entries located in a band of diagonals. For exam­
ple, if for all i the entry Ji,j — 0 for all j except possibly j — i - l, i, and i + l, we
say that the matrix J is tridiagonal and has a band width of 3. If there are m diagonals in
the band, only m additional evaluations of f are needed to approximate the Jacobian no
matter how many equations there are. It is comparatively easy to obtain the advantages
of sparsity when the matrix is banded, so all the popular solvers provide for banded Jaco-
bians. Some, including all the solvers of M atlab , provide for general sparse Jacobians.
These algorithmic developments are crucial to the solution of large systems. Section 2.3.3
provides more information about this as well as some examples.

Each step in an implementation of BDFs that uses a simplified Newton iteration to eval­
uate the formulas is much more expensive - in terms of computing time and storage - than

72 Chapter 2: Initial Value Problems

taking a step with a method intended for nonstiff problems using either simple iteration
or no iteration at all. Accordingly, BDFs evaluated with a simplified Newton iteration are
advantageous only when the step size would otherwise be greatly restricted by stability,
that is, only when the IVP is stiff. For nonstiff problems the BDFs could be evaluated
with simple iteration, but this is rarely done because the Adams-Moulton methods have a
similar structure and are considerably more accurate.

It is unfortunate that stiff problems are not easily recognized. We do have a clear dis­
tinction between methods and implementations for stiff and nonstiff problems. A practical
definition of a stiff problem is that it is a problem such that solving it with a method in­
tended for stiff problems is much more efficient than solving it with a method intended
for nonstiff problems. Exercises 2.15, 2.18, 2.34, and 2.36 will give you some experience
with this. Insight may provide guidance as to whether a problem is stiff. The ODEs of
a stiff problem must allow solutions that change on a scale that is small compared to the
length of the interval of integration. Some physical problems are naturally expressed in
terms of time constants, in which case a stiff problem must have some time constant that
is small compared to the time interval of interest. The solution of interest must itself be
slowly varying; Exercise 2.36 makes this point. Most problems that are described as stiff
have regions where the solution of interest changes rapidly, such as a boundary layer or
an initial transient. In such intervals the problem is not stiff because the solver must use
a small step size to represent the solution accurately. The problem is stiff where the solu­
tion is easy to approximate and the requirement for stability dominates the choice of step
size. Variation of the step size - so as to use step sizes appropriate both for the initial tran­
sient and for the smooth region - is clearly fundamental to the solution of stiff IVPs. The
proton transfer and Robertson examples of Section 1.4 illustrate this.

Error Estimation and Change of Order

Estimation of the local truncation error of linear multistep methods is generally consid­
ered to be easy compared to estimation of the local error for Runge-Kutta methods. It is
easy to derive estimates - what’s hard is to prove that they work. We begin by discussing
how the local truncation error might be estimated. With the Adams methods, it is easy to
take a step with formulas of two different orders. Indeed, we noted earlier that we could
predict with AB(k - 1) and obtain a formula of order k with a single correction using
AMk. Just as with one-step methods, the error in the formula AB(k -1) of order k - 1 can
be estimated by comparing the result of this formula to the result of order k from the pair.
When the size of this error is controlled and the integration is advanced with the more ac­
curate and stable result of the predictor-corrector pair, we are doing local extrapolation.
This approach is used in ode113. Another approach is based on the expansion (2.26) for
the local truncation error when the step size is constant. It shows that the leading terms
of the local truncation errors of the Adams-Bashforth and Adams-Moulton methods of

2.2 Numerical Methods for IVPs 73

the same order differ by a constant multiple. Using this fact, the step is taken with both
ABk and AMk and the local truncation error is estimated by an appropriate multiple of
the difference of the two results. The more accurate and stable result of AMk is used to
advance the integration. The error of this formula is being controlled, so local extrapola­
tion is not done. In this approach the implicit Adams-Moulton methods are evaluated by
simple iteration to a specified accuracy. The explicit Adams-Bashforth formula ABk is
used to start the iteration for computing AM k and to estimate the local truncation error of
AM k. To leading order, the local truncation errors of AMk and the ABk-AMk pair with
one iteration are the same, so the same approach to local truncation error estimation can
also be used for predictor-corrector implementations.

An approach that is particularly natural for BDFs is to approximate directly the leading
term of the local truncation error. Recall that for BDF1 this is

h 2
l t en — — 2 у (tn) + •• •

The formulas are based on numerical differentiation, so it is natural to interpolate yn+1;
y n, and yn-1 with a quadratic polynomial Q(t) and then use

h 2 h2
est — - - 2 Q (tn) ^ — 2 У (tn)

This is how the local truncation error is estimated for the BDFs in ode15s. Similarly, a
cubic interpolant is used in ode2 3 t to approximate the derivative in the local truncation
error (2.28) of the trapezoidal rule. The backward Euler method and the trapezoidal rule
are one-step methods, but previously computed approximate solutions are used for esti­
mating local truncation errors. Previously computed solutions are also used to predict the
solution of the algebraic equations that must be solved to evaluate these implicit methods.
We see from this that, in practice, the distinction between implicit one-step methods and
methods with memory may be blurred.

An interesting and important aspect of these estimates of the local truncation error is
that it is possible to estimate the error that would have been made if a different order had
been used. The examples of AM1 and AM2 show the possibility. Considering how the
local truncation error is estimated, it is clear that - when taking a step with the second-
order formula AM2 - we could estimate the local truncation error of the first-order formula
AM1. At least mechanically, it is also clear that we could use more memorized values to
estimate the error that would have been made with the higher-order formula AM3. This
opens up the possibility of adapting the order (formula) to the solution so as to use larger
step sizes. Modern Adams and BDF codes like ode113 and ode15s, respectively, do
exactly that. Indeed, the names of these functions indicate which members of the family
are used: the Adams code ode113 uses orders ranging from 1 to 13, and the BDF code

74 Chapter 2: Initial Value Problems

ode15s uses orders ranging from l to 5. (The final s of ode15s indicates that it is in­
tended for stiff IVPs.) Both Adams-Moulton formulas and BDFs are implemented in the
single variable-order code difsub (Gear l97l) and also in its descendants such as vod e
(Brown et al. l989). Variation of the order plays another role in Adams and BDF codes.
The lowest-order formulas are one-step, so they can be used to take the first step of the
integration. Each step of the integration provides another approximate solution value for
the memory, so the solver can consider raising the order and increasing the step size for
the next step. There are many practical details, but the codes all increase the order rapidly
until a value appropriate to the solution has been found. Starting the integration in this
way is both convenient and efficient in a variable-step size, variable-order (VSVO) im­
plementation, so all the popular Adams and BDF codes do it this way.

Deriving estimates of the local truncation error is easy for methods with memory, but
justifying them is hard. The snag is this: When we derived the estimators, we assumed
implicitly that the previously computed values and derivatives are exactly equal to the so­
lution values y i t n), y i t n - l) , . . . and their derivatives y ' i tn), y ' i tn - l) , . . . , respectively; in
practice, however, these previously computed values are in error, and these errors may be
just as large or even larger than the error we want to estimate. The difficulty is especially
clear when we contemplate estimating the local truncation error of a formula with order
higher than the one(s) used to compute the memorized values. Justifying an estimator in
realistic circumstances is difficult because it is not even possible without some regularity
in the behavior of the error. So far we have discussed only the order of the error. Classic
results in the theory of linear multistep methods show that, with certain assumptions, the
error behaves in a regular way. This regularity can be used to justify error estimation, as
was done first by Henrici (l962) and then more generally by Stetter (l973). Their results
do not apply directly to modern variable-order Adams and BDF codes because they as­
sume that the same formula is used all the time and that, if the step sizes are varied at all,
they are varied in a regular way that is given a priori. Little is known about the behavior
of the error when the order (formula) is varied in the course of the integration. The the­
ory for constant order provides insight and there are a few results (Shampine 2002) that
apply directly, but our theoretical understanding of modern Adams and BDF codes that
vary their order leaves much to be desired.

Continuous Extensions
Both Adams methods and BDFs are based on polynomial interpolants, so it is natural to
use these interpolants as continuous extensions for the methods. An application of contin­
uous extensions that is special to methods with memory is changing the step size. We have
seen that there are practical reasons for working with a constant step size when solving
stiff IVPs. An easy way to change to a different constant step size H at tn is to approxi­
mate the solution at tn, t n - H, tn - 2 H , . . . by evaluating the interpolant at these points.

2.2 Numerical Methods for IVPs 75

With these solution values at a constant mesh spacing of H, we can use a constant-step
formula with step size H from tn on. This is a standard technique for changing the step
size when integrating with BDFs, and some codes use it also for Adams methods; difsub
is an example for both kinds of methods.

■ EXERCISE 2 .5
To understand better the origin of Adams formulas and BDFs:

• Work out the details for deriving AB2; and
• Work out the details for deriving BDF2.

■ EXERCISE 2.6
Show that the local truncation error of AM2, the trapezoidal rule, is

h3
lten — - — y (3\ t n) +-----

■ EXERCISE 2.7
Show that, when solving y ' — - y , the error made in a step of size h from (tn, y (t n)) with
AM2 (the trapezoidal rule) is

1 3y(tn + h) - Уп+1 — —h y(tn) +-----

(This is the local truncation error of AM2 for this ODE.) Show that the corresponding
error for AB1-AM2 in PECE form (Heun’s method) is

1 3
y (tn + h) - Уп+1 — - Th y (tn) + •••

6

Evidently the accuracy of a predictor-corrector method can be different from that of the
corrector evaluated as an implicit formula.

■ EXERCISE 2.8
Verify that the formula (2.29) is of order 3. Do the numerical experiment described in the
text that resulted in Table 2.4.

■ EXERCISE 2.9
To understand stability regions better:

• show that the stability region of the backward Euler method includes the left half of
the complex plane; and

• show that the stability region of the trapezoidal rule is the left half of the complex
plane.

76 Chapter 2: Initial Value Problems

• Heun’s method can be viewed as a predictor-corrector formula resulting from a pre­
diction with Euler’s method and a single correction with the trapezoidal rule. Show
that the stability region of Heun’s method is finite.

■ EXERCISE 2.10
To appreciate better the mechanics of the various kinds of methods, write simple Matlab
programs to solve

on[0, l]. Use a constant step size of h — 0.l and plot the numerical solution together with
the analytical solution.

• Solve the IVP with Heun’s method. For this write a function of the form [t n p 1 ,
ynp1] = H e u n (t n , y n , h , f) . This function is to accept as input the current so­
lution i tn, y n), the step size h, and the handle f of the function for evaluating the
ODEs. It advances the integration to i tn+l , y n+\). You may not be familiar with the
way M atlab evaluates functions that have been passed to another function as an
input argument. This is done using the built-in function f e v a l as illustrated by a
function for taking a step with Euler’s method:

f u n c t i o n [t np1 , ynp1] = E u l e r (t n , y n , h , f)
yp = f e v a l (f , t n , y n) ;
y n p 1 = yn + h*yp;
t n p 1 = tn + h;

See the Matlab documentation for more details about f ev a l .
• Solve the IVP with the trapezoidal rule evaluated with simple iteration. Heun’s

method can be viewed as a predictor-corrector pair resulting from a prediction
with Euler’s method and a single correction with the trapezoidal rule. Modify the
function Heun to obtain a function AM2si that evaluates the trapezoidal rule by
iterating to completion. It is not easy to decide when to stop iterating. For this ex­
ercise, if p is the current iterate and the new iterate is c, accept the new iterate if
norm(c - p) < 1e-3*norm(c) and otherwise continue iterating. If your iter­
ation does not converge in ten iterations, terminate the run with an error message.

• This IVP is not stiff, but solve it with the trapezoidal rule to see what is involved
in the solution of stiff IVPs. Modify the function AM2si so that it has the form
[t np1 , ynp1] = A M 2 n i (t n , y n , h , f , d f d y) . Here d f d y is the handle of a
function d f dyi t , y) for evaluating the Jacobian dyit, y) . On entry to AM2ni, use
f e v a l to evaluate the (constant) Jacobian J, form the iteration matrix M —
I - 0.5hJ, and compute its L U decomposition. Use this factorization to com­
pute the iterates. As explained in the text, it is important to code the iteration so that

2.2 Numerical Methods for IVPs 77

you compute the correction A m and then the new iterate c as the sum of the current
iterate p and the correction. Much as with simple iteration, accept the new iterate
if | |Am|| is less than 1e-3*norm(c) and otherwise continue iterating. If your it­
eration does not converge in ten iterations, terminate the run with an error message.
(Newton’s method converges immediately for this ODE, but you are to code for
general ODEs so as to see what is involved.)

■ EXERCISE 2.11
The text discusses the solution of the stiff IVP

on 0 < t < 10 with AB1. It is said that a small step size is necessary in the beginning to
resolve the solution in a boundary layer, but after a while the solution is nearly constant
and a large step size can be used. Justify this statement by finding the largest step size h
for which the magnitude of the leading term in the local truncation error at tn is no greater
than an absolute error tolerance of т.

■ EXERCISE 2.12
For simplicity and convenience, applications codes often use a constant step size when
integrating with the backward Euler formula. This formula has very good stability prop­
erties, but if misused these properties can lead to a numerical solution that is qualitatively
wrong. As a simple example, integrate the IVP

with the backward Euler method and a step size h — 1. How does the numerical solution
compare to the analytical solution y(t) — e10t? What’s going on?

■ EXERCISE 2.13
A difficulty related to that of Exercise 2.12 is illustrated by the IVP

If we expect on physical grounds that the solution decays to zero, we might be content to
approximate it using the backward Euler method and a constant step size. The analytical
solution of this problem is y(t) — t -1, so it does decay. The results of solving the IVP
with step size h — 1, displayed in Table 2.6, appear to be satisfactory.

Now solve this IVP with each of the variable-step-size codes ode45 and ode15s.
The numerical solutions are terrible. These are quality solvers, so what is going on? What
do these numerical solutions tell you about this IVP?

У' — —100 y + 10, y(0) — 1

y ' — 10y, y(0) — 1

y(i) — 1

78 Chapter 2: Initial Value Problems

Table 2.6: Backward
Euler solution.

t y

2.0 0.472
3.0 0.330
4.0 0.248
5.0 0.199
6.0 0.166
7.0 0.142
8.0 0.124
9.0 0.110

10.0 0.099

The difficulty illustrated by this exercise may not be so obvious when it arises in prac­
tice. Section 2.3.3 discusses how the solution of a PDE might be approximated by the
solution of a system of ODEs. There is some art in this. When using finite differences to
approximate some kinds of PDEs, it may happen that an “obvious” approximating sys­
tem of ODEs is unstable. It is possible to damp instabilities by using the backward Euler
method and a “large” step size, but whether the numerical solution will then faithfully
model the solution of the PDE is problematical.

■ EXERCISE 2.14
The backward Euler method is misused in another way in some popular applications codes.
It is recognized that the stability of an implicit method is needed, but - in order to keep
down the cost - the formula is evaluated by a predictor-corrector process with only one
correction. You can’t have it both ways: If you want the stability of an implicit method, you
must go to the expense of evaluating it properly. To see an example of this, show that the
stability region of the predictor-corrector pair consisting of a prediction with the forward
Euler method and one correction with the backward Euler method is finite. The qualita­
tive effect of a single correction is made clear by showing that the predictor-corrector pair
is not stable for (say) z — hX — —2, whereas the backward Euler method is stable for all
z in the left half of the complex plane.

■ EXERCISE 2.15
This exercise will help you understand stiffness in both theory and practice. O’Malley
(1991) models the concentration of a reactant y(t) in a combustion process with the ODE

y ' — f (y) — y 2(1 - y)

2.2 Numerical Methods for IVPs 79

that is to be integrated over [0, 2e~l] with initial condition у(0) — e. He uses perturba­
tion methods to analyze the behavior of the solution for small disturbances e > 0 from
the pre-ignition state. The analytical work is illuminating but, for the sake of simplicity,
just solve the IVP numerically for e — l0 -4 with the solver ode15s based on the BDFs
and the program

f u n c t i o n i g n i t i o n
e p s i l o n = 1e -4 ;
o p t i o n s = o d e s e t (' S t a t s ' , ' o n ') ;
ode15s (@ode , [0 , 2 / e p s i l o n] , e p s i l o n , o p t i o n s) ;

Q,_____________________________________%===================================
f u n c t i o n d y d t = o d e (t , y)
d y d t = y~2 * (1 - y) ;

This program displays the solution to the screen as it is computed and displays some sta­
tistics at the end of the run. You will find that the solution increases slowly from its initial
value of e. At a time that is O i e - l), the reactant ignites and increases rapidly to a value
near l. This increase takes place in an interval that is Oil) . For the remainder of the inter­
val of integration, the solution is very near to its limit of l. Modify the program to solve
the IVP with the solver ode45 based on an explicit Runge-Kutta pair: all you must do
is change the name of the solver. You will find that the numerical integration stalls after
ignition, despite the fact that the solution is very nearly constant then. To quantify the
difference, use t i c and to c to measure the run times of the two solvers over the whole
interval and over the first half of the interval. In this you should not display the solution
as it is computed; that is, you should change the invocation of ode15s to

[t , y] = ode15s (@ode , [0 , 2 / e p s i l o n] , e p s i l o n , o p t i o n s) ;

You will find that the nonstiff solver ode45 is rather faster on the first half of the interval
because of the superior accuracy of its formulas - this despite the minimal linear algebra
costs in ode15s due to the ODE having only one unknown. You will find that the stiff
solver ode15s is much faster on the whole interval because the explicit Runge-Kutta for­
mulas of ode45 must use a small step size (to keep the integration stable in the last half of
the interval) and the BDFs of ode15s do not. The statistics show that the Runge-Kutta
code has many failed steps in the second half of the integration. This is typical when solv­
ing a stiff problem with a method that has a finite stability region.

To understand the numerical results, work out the Jacobian f . Because there is a sin-dy
gle equation, the only eigenvalue is the Jacobian itself. Work out a Lipschitz constant for
0 < y < l. You will find that it is not large, so the IVP can be stiff only on long intervals.
In the first part of the integration the solution is positive, slowly varying, and Oie). Use

80 Chapter 2: Initial Value Problems

the sign of the eigenvalue to argue that the IVP is unstable in a linear stability analysis and
hence is not stiff in this part of the integration. Argue that it is only moderately unstable
on this interval of length O (s -1), so we can expect to solve it accurately. The change in
the solution at ignition is quite sharp when plotted on [0 , 2 e-1], but by using zoom you
will find that most of the change occurs in [9650, 9680]. Argue that in an interval of size
O(1) like this, the IVP is not stiff. In the last half of the interval of integration, the solu­
tion is close to 1 and slowly varying. Use the sign of the eigenvalue to argue that the IVP
is stable then, and argue that the IVP is stiff on this interval of length O(e~1).

■ EXERCISE 2.16
The boundary of the stability region for a linear multistep method can be computed by the
root locus method. An LMM applied to the test equation у ' — Xy with constant step size
h has the form

k k k
^ 'j a iy n+1- i h ^ ̂Pi(Xy n+1- i) — ^ ̂(a i hX$ i)y n+1- i — 0
i —0 i—0 i—0

This is a linear difference equation of order k with constant coefficients that can be studied
much like a linear ODE of order к with constant coefficients. Each root r of the charac­
teristic polynomial

k
J 2 (a - hXf i i) rk-i
i—0

provides a solution of the difference equation of the form y m — r m for m — 0 , 1, 2 , __
As with ODEs, there are other kinds of solutions when r is a multiple root; but also as
with ODEs it is found that, for a given z — hX, all solutions of the difference equation are
bounded and thus the linear multistep method is stable if all the roots of the characteristic
polynomial have magnitude less than 1. For a point z on the boundary of the stability re­
gion, a root r has magnitude equal to 1. We can use this observation to trace the boundary
of the stability region by plotting all the z for which r is a root of magnitude 1. For this it
is convenient to write the polynomial as p(r) — za(r) , where

k k
p(r) — J 2 a r k—l , a(r) — J] P irk-i

i—0 i—0

With these definitions, the boundary of the stability region is the curve

_ P(r)
z v(r)

for r — e li) as в ranges from 0 to 2n. Plot the boundary of the stability region for sev­
eral of the linear multistep methods discussed in the text - for example, the forward Euler

2.3 Solving IVPs in M a t la b 81

method (ABl), the backward Euler method (AMl, BDFl), the trapezoidal rule (AM2), and
BDF2. Some other linear multistep formulas that you might try are AM3,

Уп+l — Уп + h

and BDF3,

'_5 , 8_ , _ l_ , '
l 2 Уп+1 + l 2 Уп l 2 Уп-1

l 8 9 2 6
yn+l — l l y n - Ц Уn-l + l l y n- 2 + l l h y n+l

The root locus method gives you only the boundary of the stability region. The BDFs have
stability regions that are unbounded, so they are stable outside the curve you plot. The
trapezoidal rule is a little different because, as Exercise 2.9 asks you to prove directly, it
is stable in the left half of the complex plane. The other formulas mentioned have finite
stability regions and so are stable inside the curve.

2.3 Solving IVPs in M atlab

In the simplest use of the M a tlab solvers, all you must do is tell the solver what IVP
is to be solved. That is, you must provide a function that evaluates f i t , y) , the inter­
val of integration, and the vector of initial conditions. M atlab has a good many solvers
implementing diverse methods, but they can all used in exactly the same way. The docu­
mentation suggests that you try ode45 first unless you suspect that the problem is stiff,
in which case you should try ode15s. In preceding sections we have discussed what
stiffness is, but the practical definition is that if ode15s solves the IVP much faster than
ode45 then the problem is stiff. Many people have the impression that if an IVP is hard
for a code like ode45 then it must be stiff. No, it might be hard for a different reason and
so be hard for ode15s, too. On the other hand, if a problem is hard for ode45 and easy
for ode15s, then you almost certainly have a stiff problem.

There is a programming issue that deserves comment. Matlab programs can be written
as script files or functions. We have preferred to write the examples as functions because
then auxiliary functions can be provided as subfunctions. Certainly it is convenient to
have the function defining the ODEs available in the same file as the main program. This
becomes more important when several functions must be supplied, as when solving IVPs
with complications such as event location. Supplying multiple auxiliary functions is al­
ways necessary when solving BVPs and DDEs.

EXAMPLE 2.3.1

In Chapter l we looked at the analytical solution of a family of simple equations. (Exer­
cise 2.l7 has you solve them numerically.) Among the problems was

82 Chapter 2: Initial Value Problems

We found the general solution to be a rather complicated expression involving fractional
Bessel functions. Still, the equation is simple enough that you can solve analytically for
the solution that has y(0) — 0 and plot it for 0 < t < 1 at the command line with

>> y = d s o l v e (' D y = y"2 + t ~ 2 ' , ' y (0) = 0 ')
>> e z p l o t (y , [0 , 1])

This way of supplying the ODEs is satisfactory for very simple problems, but the nu­
merical solvers are expected to deal with large and complicated systems of equations.
Accordingly, they expect the ODEs to be evaluated with a (sub)function. For this prob­
lem, the ODE might be coded as

f u n c t i o n d y d t = f (t , y)
d y d t = y n2 + t~ 2 ;

and saved in the file f.m. The IVP is solved numerically on [0,1] and the solution is plot­
ted by the commands

[t , y] = o d e 4 5 (@ f , [0 , 1] , 0) ;
p l o t (t , y)

which you can code either as a script file or function. Of course, with only two commands,
you might as well enter them at the command line. The first input argument tells ode45
which function is to be used for evaluating the ODEs. This is done with a function han­
dle, here @f. The second input argument is the interval of integration [a, b] and the third
is the initial value. The solver computes approximations y n & y (t n) on a mesh

a — 10 < t1 < ••• < tN — b

that is chosen by the solver. The mesh points are returned in the array t and the corre­
sponding approximate solutions in the array y. This output is in a form convenient for
plotting. Figure 2.1 shows the result of this computation. When run as a script (or from the
command line) you have available the mesh t and the solution y on this mesh, so you can,
for example, look at individual components of systems or plot with logarithmic scales.

All the input arguments are required even to define the IVP. Indeed, the only argu­
ment that might be questioned is the interval of integration. However, we have seen that
the stability of an IVP is fundamental to its numerical solution and this depends on both
the length of the interval and the direction of integration. The Matlab problem-solving
environment and the design of the solvers make it possible to avoid the long call lists of

y 7 — y2 + t2

2.3 Solving IVPs in M a t la b 83

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.1: Solution of the ODE y ' = y 2 + t2 with initial condition y(0) = 0.

arguments that are typical of solvers written for compiled computation in general scientific
computing. For instance, Matlab makes it possible to avoid the tedious and error-prone
specification of storage and data types that are necessary for compiled computation. This
is accomplished by making heavy use of default values for optional arguments.

The M atlab PSE makes convenient the output of solution arrays of a size that can­
not be determined in advance and provides convenient tools for plotting these arrays of
data. The typical solver for general scientific computing has you supply all the tn where
you want answers. Storage issues are an important reason for this, but of course it may be
that you actually want answers at specific points. One way that the M atlab IVP solvers
provide this capability is by overloading the argument that specifies the interval. If you
supply an array [t 0 t 1 . . . t f] of more than two entries for the interval of integra­
tion, the solver interprets this as an instruction to return approximations to the solution
values y(t0) , y (t 1) , . . . , y (t f) . When called in this way, the output array t is the same as
the input array. That the number and placement of specified output points has little effect
on the computation is of great practical importance. The output points must be in order,
that is, either a = 10 < t1 < ••• < t f = b or a = 10 > t1 > ••• > t f = b. As a con­
crete example, suppose that we had wanted to construct a table of the solution of the last
example at ten equally spaced points in the interval [0,1]. This could be achieved with
the script

84 Chapter 2: Initial Value Problems

t o u t = l i n s p a c e (0 , 1 , 1 0) ;
[t , y] = o d e 4 5 (@ f , t o u t , 0) ;

There is another way to receive output from the IVP solvers that has some advantages.
The output can be in the form of a structure that can be given any name, but let us suppose
that it is called so l . For the present example the syntax is

s o l = o d e 4 5 (@ f , [0 , 1] , 0) ;

In this way of using the solvers, the usual output [t , y] is available as fields of the solu­
tion structure s o l . Specifically, the mesh t is returned as the field s o l . x and the solution
at these points is returned as the field s o l . y . However, that is not the point of this form
of output. The solvers actually produce a continuous solution S(t) on all of [a, b]. They
return in the solution structure s o l the information needed to evaluate S(t) . This is done
with an auxiliary function d e v a l. It has two input arguments, a solution structure and
an array of points where you want approximate solutions. Rather than tell a solver to
compute answers at t o u t = l i n s p a c e (0 , 1 , 1 0) , you can have it return a solution
structure s o l and then compute answers at these points with the command

S t o u t = d e v a l (s o l , t o u t) ;

With this mode of output, you solve an IVP just once. Using the solution structure you
can then compute answers anywhere you want. In effect, you have a function for the so­
lution. Indeed, to make this more like a function, d e v a l also accepts its arguments in the
reverse order:

S t o u t = d e v a l (t o u t , s o l) ;

This mode of output is an option for the IVP solvers, but it is the only mode of output
from the BVP and DDE solvers of Matlab.

Some ODEs cannot be integrated past a critical point. How this difficulty is handled
depends on the solver. It is easy to deal with the difficulty if the code produces output at a
specific point by stepping to that point, because you simply do not ask for output beyond
the critical point. However, this is an inefficient design. Modern solvers integrate with the
largest step sizes they can and then evaluate continuous extensions to approximate the so­
lution at the output points. Accordingly, they must be allowed to step past output points.
So, what do you do when the solver cannot step past some point? Many codes in gen­
eral scientific computing have an option for you to inform them of this relatively unusual
situation. The M atlab solvers handle this in a different way: they accept only problems
set on an interval. They do not integrate past the end of this interval, nor do they evaluate
the ODE at points outside the interval. Accordingly, for this example it does not matter
whether the ODE is even defined for t > 1.

2.3 Solving IVPs in M a t la b 85

Example 2.3.1 is unusual in that the IVP is solved from the command line. The program
c h 2 e x 1 .m is more typical. It solves the ODEs

x1 = —£1X1 + k 2 У

X2 = —k 4 X2 + k 3 y

У' = k 1X1 + k 4 X2 — (k1 + k 3)y

with initial values
X1(0) = 0, X2(0) = 1, y(0) = 0

on the interval 0 < t < 8 ■ 105. The coefficients here are

£1 = 8.4303270 ■ 10—10, £2 = 2.9002673 ■ 1011,

£3 = 2.4603642 ■ 1010, £4 = 8.7600580 ■ 10—6

By writing the main program as a function, we can code the evaluation of the ODEs as
the subfunction odes. The output of this subfunction must be a column vector, which is
achieved here by initializing d y d t as a column vector of zeros. The approximations to
y i (tn) for n = 1, 2 , . . . are returned as y (: , i) . The program uses this output to plot x 1(t)
and x 2 (t) together with a linear scale for t and to plot y(t) separately with a logarithmic
scale for t.

This is the proton transfer problem discussed in Section 1.4, where the two plots are
provided as Figures 1.6 and 1.7. We pointed out that the default absolute error tolerance of
10—6 applied to all solution components is inappropriate for y(t) because Figure 1.7 shows
that it has a magnitude less than 3 ■ 10—17. All optional specifications to the M a tlab IVP
solvers are provided by means of the auxiliary function o d e s e t and keywords. The com­
mand h e l p o d e s e t provides short explanations of the various options and the command
o d e s e t by itself provides reminders. Error tolerances are the most common optional
input. An absolute error tolerance of 10—20 is more appropriate for this IVP. When the
absolute error tolerance is given a scalar value, it is applied to all solution components.
When it is given a vector value, the entries in the vector of absolute error tolerances are
applied to corresponding entries in the solution vector. Any option not specified is given
its default value. Here we use the default value of 10—3 for the relative error tolerance
(which is always a scalar), but if we had wanted to assign it a value of (say) 10—4 then we
would have used the command

o p t i o n s = o d e s e t (' A b s T o l ' , 1 e - 2 0 , ' R e l T o l ' , 1 e - 4)

Options can be assigned in any order and the keywords are not case-sensitive. After form­
ing an options structure with o de s e t , it is provided as the optional fourth input argument

EXAMPLE 2.3.2

86 Chapter 2: Initial Value Problems

of the solver. Here o p t i o n s is a natural name for the options structure, but you can use
whatever name you like.

f u n c t i o n c h 2 e x 1
% x_1 = y (1) , x_2 = y (2) , y = y(3)

o p t i o n s = o d e s e t (' A b s T o l ' , 1 e - 2 0) ;
[t , y] = ode15s (@odes , [0 8 e 5] , [0 ; 1; 0] , o p t i o n s) ;
p l o t (t , y (: , 1 : 2))
f i g u r e
s e m i l o g x (t , y (: , 3))

Q,__%===
f u n c t i o n d y d t = o d e s (t , y)
k = [8 . 4303270e-10 2.9002673e+11 2.4603 642e+10 8 . 7600580e - 06] ;
d y d t = z e r o s (3 , 1) ;
dyd t (1) = - k (1) * y (1) + k (2) * y (3) ;
dyd t (2) = - k (4) * y (2) + k (3) * y (3) ;
dyd t (3) = k (1) * y (1) + k (4) * y (2) - (k(2) + k (3)) * y (3) ;

We solved this problem with the BDF code ode15s because the IVP is stiff. In simplest
use, all the IVP solvers are interchangeable. To use the Runge-Kutta code ode45 in­
stead, all you must do is change the name of the solver in ch2 e x 1 .m. You are asked to
do this in Exercise 2.18 so that you can see for yourself why special methods are needed
for stiff problems.

EXAMPLE 2.3.3

By default, the solvers return the solution at all steps in the course of the integration.
To get more control over the output, you can write an output function that the solver
will call at each step with the solution it has just computed. Several output functions
are supplied with the solvers. As a convenience, if you do not specify any output argu­
ments then the solver understands that you want to use the output function ode p l o t .
This output function displays all of the solution components as they are computed. Exer­
cises 2.15 and 2.18 are examples. Often you do not want to see all of the components. You
can control which components are displayed with the Ou t pu t Se l option. Other output
functions make it convenient to plot in a phase plane. Exercise 2.21 has you experiment
with one.

Along with the example programs of the text is a program d f s . m that provides a
modest capability for computing and plotting solutions of a scalar ODE, y ' — f (t , y).
Exercise 1.4 discusses how to use the program, but we consider it here only to show how
to write an output function. Some solvers allow users to specify a minimum step size,

2.3 Solving IVPs in M a t la b 87

hmin , and terminate the integration if a step size this small appears to be necessary. The
M atlab solvers do not provide for a minimum step size, but d f s . m shows how to obtain
this capability with an output function. Relevant portions of the program are

f u n c t i o n d f s (f u n , w i n d o w , n p t s)

hmin = 1e-4*(wR - wL);

o p t i o n s = o d e s e t (' E v e n t s ' , @ e v e n t s , ' O u t p u t F c n ' , @ o u t f c n , . . .

[t , y] = o d e 4 5 (@ F , [t 0 , w R] , y 0 , o p t i o n s) ;
p l o t (t , y , ' r ')
[t , y] = o d e 4 5 (@ F , [t 0 , w L] , y 0 , o p t i o n s) ;
p l o t (t , y , ' r ')

f u n c t i o n s t a t u s = o u t f c n (t , y , f l a g)
g l o b a l hmin
p e r s i s t e n t p r e v i o u s t
s t a t u s = 0 ;
s w i t c h f l a g
c a s e ' i n i t '

p r e v i o u s t = t (1) ;
c a s e ' '

h = t (e n d) - p r e v i o u s t ;
p r e v i o u s t = t (e n d) ;
s t a t u s = (abs (h) <= hmin) ;

c a s e ' d o n e '
c l e a r p r e v i o u s t

end

The option Out put Fcn communicates to the solver the name of the output function, here
o u t f c n . When there is an output function present, the solver calls it at each step with
arguments t , y , f l a g . The arguments t and y are values of the independent and depen­
dent variables, and the string f l a g indicates the circumstances of the call. The output

88 Chapter 2: Initial Value Problems

function returns a variable s t a t u s . If you want to continue the integration, return a value
of 0 (false); if you want to terminate the run, return a value of 1 (true). The solver calls
first with f l a g equal to ' i n i t ' so that the output function can initialize itself. For ex­
ample, if you wanted to write output to a file, you could open the file at this time. In this
first call the solver provides the output function with the interval of integration [a, b] in
t and y(a) in y. In the present example a variable p r e v i o u s t is initialized to the ini­
tial value of the independent variable, t (1) . It is declared to be p e r s i s t e n t so that it
will be retained between calls. After each step of the integration, the solver calls the out­
put function with f l a g equal to ' ' . Generally t is the value of the independent variable
at the end of the step and y is the approximate solution there, but a complication arises in
this example because the integration is performed using ode45. The solvers have an op­
tion called Re f i n e that can be given an integer value to have the solver return that many
approximate solutions at equally spaced points in the span of the step. The default value
of R e f i n e is 1 for all the solvers except ode45, for which it is 4. You can do whatever
you like with these approximate solutions in the output function. You might, for exam­
ple, write t and selected components of y to a file. When R e f i n e is larger than 1, the
approximate solutions appear in order, so we can use t (e n d) to obtain the value of the
independent variable at the end of the step that we need to compute the current step size
in this example. If the step size is not larger than the minimum step size, s t a t u s is set
to 1 so that the integration will be terminated. Exercise 2.29 asks you to modify the output
function of d f s . m so as to terminate the run in other circumstances as well. At the end of
the run, the solver calls the output function with f l a g equal to ' d o n e ' so that the out­
put function can finish up. For example, it might close an output file. Here p r e v i o u s t
is cleared just to illustrate the case.

■ EXERCISE 2.17
In Chapter 1 it was asserted that there is no essential difference solving numerically IVPs
for the equations

• y ' — y 2 + 1
• y ' — y 2 + t
• y ' — y 2 + t 2

See for yourself by solving the equations with, say, ode45 on the interval [0,1] with ini­
tial value y(0) — 0 and then plotting the solutions.

■ EXERCISE 2.18
Modify ch 2 e x 1 .m so that the approximate solutions are displayed as they are computed.
As explained in Example 2.3.3, this is what happens when you do not specify any out­
put arguments. You will find that ode15s solves the IVP easily. Although it appears that
ode45 is stuck at the initial point, it is solving the problem. This will be clear when you

2.3 Solving IVPs in M a t la b 89

click the “Stop” button after you tire of waiting for the solver to finish up. At that time the
numerical solution will be plotted on a scale that shows how far the integration has pro­
gressed. You will find that ode45 is solving the IVP, but it is advancing the integration
very slowly.

■ EXERCISE 2.19
Before effective codes for stiff IVPs were widely available, some stiff problems were
solved by singular perturbation methods, perhaps in combination with numerical meth­
ods for nonstiff IVPs. In this way Lapidus et al. (1973) solve the following model of the
thermal decomposition of ozone:

dX
— = - x — xy + еку
dt
dy

e — = x — xy — SKy

Here X is the reduced ozone concentration, y is the reduced oxygen concentration, and
the parameters e = 1 / 98 and к = 3. (Notice that y '(t) is multiplied by the small parame­
ter e.) The IVP is to be solved on [0, 240] with initial conditions x(0) = 1 and y(0) = 0.
Lapidus and colleagues observe that singular perturbation methods are not very accurate
for this IVP. Ironically, this is because e is not very small, which is to say that the IVP is
not very stiff. Nowadays numerical solution of this IVP is routine. Solve it with ode15s
and plot y(t) with s e mi l ogx and a x i s ([0 . 0 1 100 0 1]) for comparison with Fig­
ure 3 of Lapidus et al. (1973). Verify that the IVP is not very stiff by showing that you can
solve the IVP easily with ode45. Using od e s e t , set the option S t a t s to on for the two
runs to compute statistics that will help with this verification.

■ EXERCISE 2.20
The text states that, when evaluating an implicit method, the iteration matrix is ill-
conditioned if the IVP is stiff. See for yourself by modifying ch 2 e x 1 .m so as to dis­
play a condition number for each of the iteration matrices formed in the course of the
integration. For this you will need to copy ode15s .m to your working directory and
rename it to, say, mode15s.m. The source code for ode15s is found in the subdirec­
tory / t o o l b o x / m a t l a b / f u n f u n / of your installation directory for M atlab . You will
also need copies of some auxiliary functions that ode15s calls, namely n t r p15s . m,
odeargument s .m, odeeven t s . m, o d e j a c o b i a n . m, and odemass.m. They are
found in / t o o l b o x / m a t l a b / f u n f u n / p r i v a t e / . To estimate a condition number
for the iteration matrix and communicate it to the main program, search mode15s.m for
the command

[L,U] = l u (M i t e r) ;

90 Chapter 2: Initial Value Problems

which uses the M atlab function lu to compute an L U factorization. It occurs twice,
once as the solver initializes and once in the main loop. The first time you might follow
this command with

g l o b a l t co n d cond
t co n d = t ;
cond = c o n d e s t (M i t e r) ;

This initializes a pair of output arrays that keep track of where the iteration matrix is
formed, computes an estimate of its condition in the 1-norm using the Matlab function
c onde s t , and makes this information available outside the solver. You might then follow
the second appearance of the command by

t co n d = [t c ond t] ;
cond = [cond c o n d e s t (M i t e r)] ;

to extend the output arrays each time an iteration matrix is formed and factored. After this
preparation it is easy to monitor a condition number for the iteration matrix as you solve
an IVP with mode15s. To do this with ch 2 e x 1 .m, all you must do is add

g l o b a l t co n d cond

to gain access to the information and follow the computations with a plot such as

f i g u r e
l o g l o g (t c o n d , c o n d , ' * - ')

You will find that, in the first part of the integration, the condition number is comparable
to 1, the smallest possible value. It then grows steadily to values comparable to 1 /eps,
the largest possible value. The condition number is reduced somewhat for the last step.
Using the appearance of the solution components as plotted by ch 2 e x 1 .m and a plot of
the step sizes,

f i g u r e
l o g l o g (t (1 : e n d - 1) , d i f f (t))

explain why you might have expected the condition number to behave as described.

■ EXERCISE 2.21
Two of the output functions that accompany the M atlab IVP solvers, o d ep h as2 and
odephas3 , plot solutions in a phase space as they are computed. Solutions of the ODEs

2.3 Solving IVPs in M a t la b 91

where

, y1y 3
y 1 — - y 2 r

, y 2 y 3
y 2 — y 1

/ y 1
y 3 — 7

r — Уy 1 + y 2

lie on a torus in phase space. Using ode45, solve these equations on the interval 0 < t <
10 with initial values

(y1(0) ,y 2(0) , y 3 (0)) — (3, 0 , 0)

and then plot the solution in 3-dimensional phase space as it is computed by setting
Out pu t Fcn to @odephas3. The plot routines draw straight lines between successive
output points. When the step sizes are “large”, the output points may be so far apart that
the graph is not smooth. This is more likely to happen when plotting in phase space. If
it happens, you can use the option R e f i n e to have the solver compute additional output
points in the span of each step by evaluating a continuous extension. To see this effect
clearly, compute two figures. For one figure set R e f i n e to 1 so that there is one output
point per step. For ode45 the default value of R e f i n e is 4, but this graph would benefit
from more output points, so set R e f i n e to 10 for the second figure. The auxiliary function
o d e s e t allows you to alter options as well as set them: If you compute the first figure with

o p t i o n s = o d e s e t (' O u t p u t F c n ' , @ o d e p h a s 3 , ' R e f i n e ' , 1) ;

then you can reset the value of R e f i n e for the second figure with

o p t i o n s = o d e s e t (o p t i o n s , ' R e f i n e ' , 1 0) ;

■ EXERCISE 2.22
Raghothama & Narayanan (2002) consider the effects of parametric excitation for the
ODE

x "(t) — —2fx '(t) — x — 1.5x2(t) — 0.5x3(t) + f 2 cos(^21) + f 3 cos(^31)

where f 2 — 0.05, ^ 2 — 1, ^ 3 — 2, Z — 0.1, and f 3 is treated as a bifurcation pa­
rameter. The authors demonstrate that, as f 3 is changed, the phase curves (x (t) , x ' (t))
can be qualitatively different. Use ode45 to solve the ODE for the following four cases
corresponding to the cases in Figure 9 of Raghothama & Narayanan (2002). Integrate
with RelTol = 1e-8 and AbsTol = 1e-8 from t — 0 to t — 500. To show the
limiting behavior, just plot the phase curve for 400 < t < 500. If you have the in­
tegration coded as [t , x] = o d e 4 5 . . . , you can do this by first finding the indices

92 Chapter 2: Initial Value Problems

of mesh points in this interval with ndx = f i n d (t >= 400) and then plotting with
p l o t (x (n d x , 1) , x (n d x , 2)) . Your curves should represent periodic motion of pe­
riod 1, 2, 4, and 8 , respectively.

• x(0) = 0, x '(0) = -0 .60, f 3 = 0.50
• x(0) = 0, x '(0) = -0 .80, f 3 = 0.92
• x(0) = 0, x '(0) = -0 .59, f 3 = 0.99
• x(0) = 0, x '(0) = -0 .80, f 3 = 1.005

The authors further demonstrate that chaotic behavior can occur. Solve the IVP in the
same way with x(0) = 0, x '(0) = 0, and f 3 = 1.35. Your phase curve should resemble a
(right-handed) catcher’s mitt.

2.3.1 Event Location

Along with the example programs of the text is a program d f s . m that provides a modest
capability for computing and plotting solutions of a scalar ODE, y ' = f (t , y) . Exercise 1.4
discusses how to use this program, but only a few details are needed here. Solutions are
plotted in a window that you specify by an array [wL, wR, wB, w T]. When you click on
a point (t0, y 0), the program computes the solution y (t) that has the initial value y(t0) =
y 0 and plots it as long as wL < t < wR and wB < y < wT. By calling ode45 with in­
terval [t0, w R], the program computes y (t) from the initial point to the right edge of the
plot window. It then calls the solver with the interval [t0, wL] to compute y (t) from the
initial point to the left edge. But what if the solution goes out the bottom or top of the plot
window along the way? What we need is the capability of terminating the integration if
there is a t * where either y (t *) = wB or y (t *) = wT.

While approximating the solution of an IVP, we sometimes need to locate points t *
where certain event functions

g 1(t, y (t)) , g 2 (t, y (t)) , . . . , gk(t, y(t))

vanish. Determining these points is called event location. Sometimes we just want to
know the solution, y (t *), at the time, t *, of the event. On other occasions we need to ter­
minate the integration at t * and possibly start solving a new IVP with initial values and
ODEs that depend on t * and y (t *). Sometimes it matters whether an event function is de­
creasing or increasing at the time of an event. In the d f s . m program, there are two event
functions (wB — y and w T — y) , both events are terminal, and we don’t care whether the
event function is increasing or decreasing at an event. All the M atlab IVP solvers have
a powerful event location capability. Most continuous simulation languages and a few of
the IVP solvers widely used in general scientific computing have some kind of capabil­
ity of locating events. Event location can be ill-posed and some of the algorithms in use

2.3 Solving IVPs in M a t la b 93

are crude. The difficulties of this task are often not appreciated, so one of the aims of this
section is to instill some caution when using an event location capability. A deeper discus­
sion of the issues can be found in Shampine, Gladwell, & Brankin (1991) and Shampine
& Thompson (2000).

Most codes that locate events monitor the event functions for a change of sign in the
span of a step. If, say, gi(tn, y n) and gi(tn+1, yn+1) have opposite signs, then the solver
uses standard numerical methods to find a root of the algebraic equation gi (t, y(t)) — 0 in
[tn, tn+1]. In finding a root, it is necessary to evaluate the event function gi at a number of
points t. Here is where a continuous extension is all but indispensable. Without a contin­
uous extension, for each value of t in the interval [tn, tn+1] where we must evaluate gi , we
must take a step with the ODE solver from tn to t in order to compute the approximation
to y(t) that we need in evaluating gi (t, y(t)) . It is much more efficient simply to evaluate
a polynomial approximation S(t) to y(t) that is accurate for all of the interval [tn, tn+1].
Locating the event then amounts to computing zeros of the equation gi(t, S(t)) — 0. Often
there are a number of event functions. They must be processed simultaneously because
it is possible that, in the course of locating a root of one event function, we discover that
another event function has a root and it is closer to tn. We must find the event closest to tn
because the definition of the ODE might change there.

This outline of event location gives us good reasons for caution. The approach has no
hope of finding events characterized by an even-order zero because there is no change of
sign. It is entirely possible to miss a change of sign at an odd-order zero. That is because
the step size is chosen to resolve changes in the solution, not changes in the event func­
tions, so the code could step over several events and have no sign change at the end of the
step. A related difficulty is that in applications we want the first root, the one closest to
tn, and in general there is no way to be sure we compute it. Some of the event functions
that arise in practice are not smooth, which makes the computation of roots more difficult.
Indeed, discontinuous event functions are not rare. As when computing roots of any alge­
braic equation, the root of an event function can be ill-conditioned, meaning that the value
t * is poorly determined by the values of the event function. In root solving we generally
assume that the function can be evaluated very accurately, but the situation is different
here because we compute the argument y(t) to only a specified accuracy. A fundamental
issue, then, is how well t * is determined when we compute the function y(t) to a specified
accuracy. That must be considered when formulating the problem but it also has a conse­
quence for the root solver, namely, how accurately should we have it compute t *? Some
codes ask users to supply tolerances for event location in addition to those for the integra­
tion. It is difficult to choose sensible values, so other codes (including those of M atlab)
take a different approach. They simply locate events about as accurately as possible in the
precision of the computer. For this approach to be practical, the algorithm for computing
roots must be fast in the usual case of smooth event functions. It must also be reasonably
fast when an event function is not smooth. An article by Moler (1997) explains how the

94 Chapter 2: Initial Value Problems

algorithm of Matlab combines the robust and reasonably fast method of bisection with
a scheme that is both fast for smooth event functions and vectorizable.

The examples that follow show that it is not hard to do event location with the Matlab
IVP solvers. Indeed, the only complication is that you must specify what kinds of events
you want to locate and what you want the solver to do when it finds one. However, prob­
lems involving event location are often rather complicated because of what is done after
an event occurs. For Example 2.3.4 this is just a matter of processing the events. Exer­
cises 2.25 and 2.26 take up problems of this kind. Example 2.3.5 is complicated because
a new IVP is formulated and solved after each event; Exercises 2.27 and 2.28 take up
variants of this example. An example and a couple of exercises in later sections illustrate
event location when there is something new about solving the ODEs: the ODEs of Exam­
ple 2.3.7 are formulated in terms of a mass matrix. Exercise 2.32 is an extension of this
example. The ODEs of Exercise 2.37 are singular at the initial point.

To see that event location does not need to be complicated, let us look at the relevant
portions of df s .m. There is a function e v e n t s that evaluates the event functions and
tells the solver what it is to do. A handle for this function is provided as the value of
the option Event s . The values of the two event functions for the input values t , y are
returned by e v e n t s in the output argument va l ue . The vector i s t e r m i n a l tells the
solver whether the events are terminal. Here both entries are ones, meaning that both are
terminal events. The vector d i r e c t i o n tells the solver if it matters whether the event
function is increasing or decreasing at an event. Here both entries are zeros, meaning that
the direction does not matter. The solver has some extra output arguments when there are
events, but here we need only terminate the integration and so do not ask for this optional
output.

f u n c t i o n d f s (f u n , w i n d o w , n p t s)

o p t i o n s = o d e s e t (' E v e n t s ' , @ e v e n t s , . . .

[t , y] = o d e 4 5 (@ F , [t 0 , w R] , y 0 , o p t i o n s) ;
p l o t (t , y , ' r ')
[t , y] = o d e 4 5 (@ F , [t 0 , w L] , y 0 , o p t i o n s) ;
p l o t (t , y , ' r ')

2.3 Solving IVPs in M a t la b 95

f u n c t i o n [v a l u e , i s t e r m i n a l , d i r e c t i o n] = e v e n t s (t , y)
g l o b a l wB wT
v a l u e = [wB; wT] - y;
i s t e r m i n a l = [1 ; 1];
d i r e c t i o n = [0 ; 0];

It is nearly as easy to solve the event location problem of Exercise 2.23, but it is conve­
nient then to use the solver’s optional output arguments. This is just a sketch of event
location; details are found in the examples that follow.

EXAMPLE 2.3.4

Poincare maps are important tools for the interpretation of dynamical systems. Very often
they are plots of the values of the solution at a sequence of equally spaced times. These
values are easily obtained by simply specifying an array t s p a n of these times. How­
ever, sometimes values are sought for which a linear combination of the solution values
vanishes, and event location is needed to obtain these values. Kogak does this with the
Phas er program in Lessons 13 and 14 of Kogak (1989). In his example, four ODEs for the
variables x 1(t), x 2 (t), x 3 (t), and x4(t) describing a pair of harmonic oscillators are inte­
grated. The simple equations and initial conditions are found in the function ch 2 ex 2 .m.
Plotting x 1(t), x 2 (t), and x 3 (t) shows what appears to be a finite cylinder. As coded, you
can click on the R o t a t e 3D tool and drag the figure to come to a good understanding
of this projection of the solution. One view is provided here as Figure 2.2. The Phaser
program can find and plot points where

A x 1(t) + B x 2 (t) + Cx3 (t) + D — 0

Kogak computes two such Poincare maps. One is a plot of the coordinates (x1(t *) , x 3(t *))
forvaluesof t * such that x 2(t *) — 0. The other is a plot of the coordinates (x1(t *) , x 2(t *))
for values of t * such that x 3 (t*) — 0. We accomplish this by employing two event func­
tions, g1 — x2 and g2 — x3, that we evaluate in a subfunction here called e v e n t s . As
with other optional input, you tell the solver about this function by setting the option
Eve n t s to the handle of this function. The event function must have as its input the
arguments t , x and return as output a column vector v a l u e of the values of the event
functions g 1(t, x) and g 2 (t, x) . We must write this function so that it also returns some
information about what we want the code to do. For some problems we will want to ter­
minate the integration when a certain event occurs. The second output argument of the
event function is a column vector i s t e r m i n a l of zeros and ones. If we want to termi­
nate the integration when gk (t, x) — 0 , we set i s t e r m i n a l (k) to 1 and otherwise we
set it to 0. The initial point is a special case in this respect because sometimes an event
that we want to regard as terminal occurs at the initial point. This special situation is

96 Chapter 2: Initial Value Problems

Figure 2.2: Lissajous figure for a pair of harmonic oscillators.

illustrated by Example 2.3.5 and Exercise 2.24. Because this situation is not unusual, the
solvers treat any event at the initial point as not terminal. Sometimes it matters whether
the event function is decreasing or increasing at an event. The third output argument of the
event function is a column vector d i r e c t i o n . If we are interested in events determined
by the equation gk (t, x) = 0 only at locations where the event function gk is decreasing,
we set d i r e c t i o n (k) to —1. If we are interested in events only when the function gk
is increasing, we set it to +1. If we are interested in all events for this function, we set
d i r e c t i o n (k) to 0. For the current example, events are not terminal and we want to
compute all events.

When we use the event location capability, the solver returns some additional quan­
tities as exemplified here by [t , x , t e , x e , i e] = o d e 4 5 The array t e contains
the values of the independent variable where events occur and the array xe contains the
solution there. The array i e contains an integer indicating which event function vanished
at the corresponding entry of te . (If you prefer to have the output in the form of a solution
structure s o l , this information about events is returned in the fields s o l . x e , s o l . y e ,
and s o l . i e , respectively.) If there are no events then all these arrays are empty, so a con­
venient way to check this possibility is to test i s e m p t y (i e) . One of the complications
of event location is that, if there is more than one event function, we do not know in what
order the various kinds of events will occur. This complication is resolved easily with the
f i n d function as illustrated by this example. For instance, the command

e v e n t1 = f i n d (i e == 1) ;

2.3 Solving IVPs in M a t la b 97

6

8

0

-2

“6 - ' • . . -

_8 I------------1------------1------------1------------1------------1------------1------------1------------
-8 -6 -4 -2 0 2 4 6 8

Figure 2.3: Poincare map for a pair of harmonic oscillators.

returns in e v e n t l the indices that correspond to the first event function. They are then
used to extract the corresponding solution values from xe for plotting. All the Matlab
IVP solvers have event location and they are all used in exactly the same way. Here we
use ode45, and we use tolerances more stringent than the default values because we re­
quire an accurate solution over a good many periods. Figure 2.3 shows one of the two
Poincare maps computed by this program. The program also reports that

Event 1 o c c u r r e d 43 t i m e s .
Event 2 o c c u r r e d 65 t i m e s .

f u n c t i o n c h 2 e x 2
o p t s = o d e s e t (' E v e n t s ' , @ e v e n t s , ' R e l T o l ' , 1 e - 6 , ' A b s T o l ' , 1 e - 1 0) ;
[t , x , t e , x e , i e] = ode45(@odes , [0 6 5] , [5 ; 5; 5; 5] , o p t s) ;
p l o t 3 (x (: , 1) , x (: , 2) , x (: , 3)) ;
x l a b e l (' x _ 1 (t) ') , y l a b e l (' x _ 2 (t) ') , z l a b e l (' x _ 3 (t) ')
i f i s e m p t y (i e)

f p r i n t f (' T h e r e were no e v e n t s . \ n ') ;
e l s e

e v e n t1 = f i n d (i e == 1) ;
i f i s e m p t y (e v e n t 1)

98 Chapter 2: Initial Value Problems

f p r i n t f (' E v e n t 1 d i d n o t o c c u r . \ n ') ;
e l s e

f p r i n t f (' E v e n t 1 o c c u r r e d %i t i m e s . \ n ' , l e n g t h (e v e n t 1)) ;
f i g u r e
p l o t (x e (e v e n t 1 , 1) , x e (e v e n t 1 , 3) , ' * ') ;

end
e v e n t 2 = f i n d (i e == 2);
i f i s e m p t y (e v e n t 2)

f p r i n t f (' E v e n t 2 d i d n o t o c c u r . \ n ') ;
e l s e

f p r i n t f (' E v e n t 2 o c c u r r e d %i t i m e s . \ n ' , l e n g t h (e v e n t 2)) ;
f i g u r e
p l o t (x e (e v e n t 2 , 1) , x e (e v e n t 2 , 2) , ' * ') ;

end
end

f u n c t i o n d x d t = o d e s (t , x
a = 3.12121212
b = 2 .1 1 1 1 1 1 1 1
d x d t = [a*x(3) b * x (4) ; - a * x (1) ; - b * x (2)] ;

f u n c t i o n [v a l u e , i s t e r m i n a l , d i r e c t i o n] = e v e n t s (t , x)
v a l u e = [x (2) ; x (3)] ;
i s t e r m i n a l = [0 ; 0];
d i r e c t i o n = [0 ; 0];

EXAMPLE 2.3.5

An interesting problem that is representative of many event location problems models a
ball bouncing down a ramp as in Figure 2.4. For simplicity we take the ramp to be the
long side of the triangle with vertices (0, 0), (0,1), and (1, 0). At time t the ball is located
at the point (x (t) , y (t)) . We’ll suppose that it is released from rest at a point above the
end of the ramp; that is, we start from x(0) = 0, y(0) > 1, x (0) = 0, and у '(0) = 0. In
free fall the motion of the ball is described by the equations

x " = 0 , у " = - g

where the second equation represents the acceleration due to gravity and the gravitational
constant is taken to be g = 9.81. We must write these equations as a system of first-order
equations, which we do by introducing variables

2.3 Solving IVPs in M a t la b 99

Figure 2.4: Path of the ball when the coefficient of restitution is k = 0.35.

y i (t) = x (t) , y 2 (t) = x '(t), y з (t) = y (t) , y 4 (t) = y '(t)

These equations hold until the ball hits the ramp at a time t * > 0. At this time the ball has
moved to the right a distance x (t *) where the ramp has height 1 — x (t *). (The first event
has x (t *) = 0.) The height of the ball is y(t) , so the event that the ball hits the ramp is

y (t *) = 1 — x (t *)

From this we see that the event function is

g1 = У 3 — (1 — У1)

This event is terminal because the model changes there. It is essential to locate the event
in order to correctly model the subsequent trajectory of the ball, since there is nothing
in the equations themselves to change the direction of the ball if a bounce time event is
missed by the code.

After hitting the ramp, the ball rebounds and its subsequent motion is described by an­
other IVP for the same ODEs. The initial position of the ball in the new integration is
the same as the terminal position in the old. The effect of a bounce appears in the initial
velocity of the new integration, which has a direction related to the velocity at t * by the

100 Chapter 2: Initial Value Problems

geometry of the ramp and a magnitude reduced by a coefficient of restitution k, a con­
stant with value 0 < k < 1. We’ll not go into the details, but the result is that the initial
conditions for the new integration starting at time at t * are

(y1(t*), - k y 4 (t *), у3(t*), k y 2 (t*))

The same terminal event function is used to recognize the next time that the ball hits the
ramp. However, at the initial point of this new IVP the ball is touching the ramp, so the
terminal event function vanishes there. This shows why we want to treat the initial point
as a special case for terminal events. There is another way to deal with this kind of dif­
ficulty that is convenient here. If we set d i r e c t i o n to 0, the solvers report an event at
the initial point in addition to the one that terminates the integration. We can avoid this by
setting d i r e c t i o n to —1. The distance of the ball from the ramp is increasing at the ini­
tial point, so with this setting the solver ignores the zero there and reports only the event
of the ball dropping to the ramp. We repeat this computation of the path of the ball from
bounce to bounce as it goes down the ramp.

The computation is complete when the ball reaches the end of the ramp, which is at
x (t *) = 1. To recognize this, we use the terminal event function g2 = y1 — 1. For some
values of k and some choices of initial height of the ball, the bounces cluster and the
ball never reaches the end of the ramp. Our equations cannot model what actually hap­
pens then - the ball rolls down the ramp after it has finished bouncing. Hence, we must
recognize that the bounces are clustering both to avoid clutter in the plot and to stop the
integration. In the program this is done by quitting when the times at which successive
bounces occur differ by less than 1%. There is a related difficulty when the ball bounces
very nearly at the end of the ramp, so we also quit if it bounces at a point that is less
than 1% of the distance from the end.

Some thought about the problem or some experimentation brings to our attention a dif­
ficulty of some generality - namely, that we do not know how long it will take for the ball
to reach the end of the ramp, if ever. Certainly the terminal time depends on the initial
height and on the coefficient of restitution, k. The solvers require us to specify an inter­
val of integration, so we must guess a final time. If this guess isn’t large enough, we’ll
need to continue integrating. Some IVP codes have a capability for extending the inter­
val, but the M a tlab solvers do not. Instead, we solve a new IVP with initial data taken
from the final data of the previous integration. This is an acceptable way to proceed be­
cause the M atlab solvers start themselves efficiently and it won’t be necessary to restart
many times if our guesses are at all reasonable. Exercises 2.27 and 2.28 have you solve
variants of the bouncing ball problem.

A couple of programming matters deserve comment. The path of the ball consists of
several pieces, either because of bounces or because we had to extend the interval of in­
tegration. It is convenient to accumulate the whole path in a couple of arrays in a manner
illustrated by the program. Because the ODEs are so easy to integrate, the solver does not

2.3 Solving IVPs in M a tla b 101

take enough steps to result in a smooth graph. An array t s p a n is used to deal with this.
In addition to plotting the solution with a smooth curve, we mark the initial point with an
“o” and the points of contact with the ramp with an “*”.

f u n c t io n ch2ex3
% The b a l l i s a t (x (t) , y (t)) .
% H ere y (1) = x (t) , y (2) = x ' (t) , y (3) = y (t) , y(4) = y ' (t) .

% S e t i n i t i a l h e i g h t and c o e f f i c i e n t o f r e s t i t u t i o n :
y0 = [0; 0; 2; 0] ;
k = 0.3 5;

% P l o t t h e i n i t i a l c o n f i g u r a t i o n :
f i l l ([0 0 1] , [0 1 0] , [0 . 8 0 .8 0 . 8]) ;
a x i s ([- 0 . 1 1 . 1 0 y 0 (3)])
h o l d on
p l o t (0 , y 0 (3) , ' r o ') ; % Mark th e i n i t i a l p o i n t .

o p t io n s = o d e s e t (' E v e n t s ' , @ e v e n t s) ;
% A ccum ulate th e p a th o f th e b a l l i n x p l o t , y p l o t .
x p lo t = [] ;
y p lo t = [] ;
t s t a r = 0;
w h i l e 1

ts p a n = l i n s p a c e (t s t a r , t s t a r + 1 , 2 0) ;
[t , y , t e , y e , i e] = o d e 2 3 (@ o d e s , t s p a n , y 0 , o p t i o n s) ;
% A ccum ulate th e p a t h .
x p lo t = [x p l o t ; y (: , 1)] ;
y p lo t = [y p l o t ; y (: , 3)] ;
i f i s e m p t y (i e) % E x tend th e i n t e r v a l .

t s t a r = t (e n d) ;
y0 = y (e n d , :) ;

e l s e i f i e (e n d) == 1 % B a l l bounced .
p l o t (y e (e n d , 1) , y e (e n d , 3) , ' r * ') ; % Mark th e bounce p o i n t .
i f (t e (e n d) - t s t a r) < 0 . 0 1 * t s t a r

f p r i n t f (' B o u n c e s a c c u m u la te d a t x = % g . \ n ' , y e (e n d , 1))
b re a k ;

end
i f a b s (y e (e n d , 1) - 1) < 0 .01

b re a k ;

102 Chapter 2: Initial Value Problems

end
t s t a r = t e (e n d) ;
y0 = [y e (e n d , 1) ; - k * y e (e n d , 4) ; y e (e n d , 3) ; k * y e (e n d , 2)] ;

e l s e i f i e (e n d) = = 2 % Reached end o f ram p.
b re a k ;

end
end
p l o t (x p l o t , y p l o t) ;

Q,___%==
f u n c t i o n d y d t = o d e s (t , y)
d y d t = [y (2) ; 0; y (4) ; - 9 . 8 1] ;

f u n c t i o n [v a l u e , i s t e r m i n a l , d i r e c t i o n] = e v e n t s (t , y)
v a lu e = [y(3) - (1 - y (1))

y(1) - 1];
i s t e r m in a l = [1; 1] ;
d i r e c t i o n = [-1; 0] ;

■ EXERCISE 2.23
Dormand (1996, p. 114) offers an amusing exercise about the ejection of a cork from a bot­
tle containing a fermenting liquid. Let x(t) be the displacement of the cork at time t and
let L be the length of the cork. While x(t) < L (the cork is still in the neck of the bottle),
the displacement satisfies

d 2x
= g(1 + q)

x \ Y Rt qx
1 + ^ ^ ^ 7 7 — 1 +d) 100 L(1 + q)

Here the physical parameters are g = 9.81, q = 20, d = 5, y = 1.4, and R = 4. If
x(0) = 0 and x '(0) = 0 (i.e., the cork starts at rest) and L = 3.75, find when x(t*) = L
(i.e., when the cork leaves the neck of the bottle). Also, what is x '(t*) (the speed of the
cork as it leaves the bottle)? This is a simple event location problem. Integrate the IVP
until the terminal event x(t*) — L = 0 occurs and then print out t* and x '(t*). The only
difficulty is that the M atlab solvers require you to specify an interval of integration. A
simple way to proceed is to guess that the cork will be ejected by, say, t = 100 and ask
the code to integrate over [0,100]. You then need to check that the integration was actu­
ally terminated by the event. You can do this by testing whether the integration reached
the end of the interval or by testing whether the array i e is empty. If there was no event,
you’ll need to try again with a longer interval.

2.3 Solving IVPs in M a tla b 103

■ EXERCISE 2 .24
In Chapter 1 we discussed the planar motion of a shot fired from a cannon. This motion is
governed by the ODEs

y r = tan (ф)

, g sin(ф) + vv2

i r g
ф = ----уv2

v cos(ф)

2

where y is the height of the shot above the level of the cannon, v is the velocity of the
shot, and ф is the angle (in radians) of the trajectory of the shot with the horizontal. The
independent variable x measures the distance from the cannon. The constant v represents
air resistance (friction) and g = 0.032 is the appropriately scaled gravitational constant.
A natural question is to determine the range of a shot for given muzzle velocity v(0) and
initial angle of elevation ф(0). The initial height y(0) = 0, so we want the first x * > 0
for which y(x) vanishes. This is an event location problem for which a terminal event oc­
curs at the initial point. Chapter 1 discusses another natural question that leads to a BVP:
For what initial angle ф(0) does the cannon have a given range? Figure 1.3 shows two tra­
jectories for muzzle velocity v(0) = 0.5 that have range 5 when v = 0.02. In computing
this figure it was found that the two trajectories have ф(0) & 0.3782 and ф(0) & 9.7456,
respectively. For each of these initial angles, solve the IVP with the given values of v(0)
and v and use event location to verify that the range is approximately 5.

■ EXERCISE 2.25
Integrate the pendulum equation

в " + sin (0) = 0

with initial conditions 0(0) = 0 and в '(0) = 1 on the interval [0, 20п]. The solution oscil­
lates a number of times in this interval and so, in order to be more confident of computing
an accurate solution, set RelTol to 10—5 and AbsTol to 10—10. Locate all the points t *
where 0(t*) = 0. Plot 0(t) and the locations of these events. Compute and display the
spacing between successive zeros of 0(t). In M atlab this can be done conveniently by
computing the spacing with d i f f (t e) . The solution is periodic, so if it has been com­
puted accurately then this spacing will be nearly constant. For solutions 0(t) that are
“small”, the ODE is often approximated by the linear ODE x rr + x = 0. The spacing be­
tween successive zeros of x(t) is п. How does this compare to the spacing you found for
the zeros of 0(t)? Reduce the size of 0(t) by reducing the initial slope to в '(0) = 0.1.
Is the spacing between zeros then closer to п ? What if you reduce the initial slope to
в r(0) = 0.01?

104 Chapter 2: Initial Value Problems

■ EXERCISE 2.26
When solving IVPs, typically we make up a table of the solution for given values of the
independent variable. However, sometimes we want a table for given values of one of the
dependent variables. This can be done using event location. An example is provided by
Moler & Solomon (1970), who consider how to compute a table of values of the integral

, x 1
t (x) = I ds

Jx0 f)

for a smooth function f (x) > 0. Computing the integral is equivalent to solving the IVP

dt 1

dx f i x) ' '
t (x 0) = 0

This ODE will be difficult to solve as x approaches a point where f (x) vanishes. To deal
with this, Moler and Solomon first note that x(t) satisfies the IVP

dx /-----
- Г = Vf (x) , x(0) = x0 dt

Because of the square root, this equation also presents difficulties as x(t) approaches a
point where f (x(t)) has a change of sign or (equivalently) where x '(t) vanishes, so they
differentiate it to obtain the IVP

x " = 0.5f (x) , x(0) = x 0 , x '(0) = f x)

There is no difficulty integrating this equation through a point where x'(t) vanishes, so
such a point can be located easily as a terminal event. We want the values ti where x(t)
has given values x i ; that is, we want to locate where the functions x(t) — x i vanish, a col­
lection of nonterminal events. Write a program to make up a table of values of the integral
for given x i . You could hard code the values x i in your event function, but a more flexi­
ble approach is to define an array x v a lu e s of the x i in the main program and pass it as a
g lo b a l variable to your event function. Check out your program by finding values of the
integral for x 0 = 0 and x v a lu e s = 0 . 1 : 0 . 1 : 0 . 9 when f (x) = x. In this use ode45
and integrate over 0 < t < 2. Verify analytically that the integral is t(x) = 2^/x and use
this to compare the values you compute to the true values. The fact that f (x) vanishes at
the initial point does not complicate the numerical integration, but it does mean that there
is a terminal event at the initial point. Recall that this is a special case for event loca­
tion. The solvers report such an event but do not terminate the integration. After checking
out your program in this way, modify it to make up a table of values of the integral when
f (x) = 1 — x and f (x) = 1 — x 2.

2.3 Solving IVPs in M a tla b 105

■ EXERCISE 2.27
The program ch2ex3.m plots the path of a ball bouncing down a ramp when the coef­
ficient of restitution k = 0.35. Experiment with the effects of changing k. In particular,
reduce k sufficiently to see an example of bounces clustering. You might, for example,
try k = 0.6 and k = 0.3.

■ EXERCISE 2.28
Suppose that, in the configuration of Example 2.3.5, there is a vertical wall located at the
end of the ramp (i.e., where x(t) = 1). Modify ch2ex3.m so as to compute the path of
the ball then. An easy way to show the wall is to make it the right side of the plot by
changing the a x i s command to a x i s ([- 0 . 1 1 0 y 0 (3)]) . Without the wall, the
computation of the path is terminated when the ball reaches the end of the ramp as re­
ported by i e (e n d) == 2. With a wall at the end of the ramp, this event corresponds to
hitting the wall. After hitting the wall, continue integrating with initial values

(y1(t*), —k y 2 (t*), y3 (t*), y4(t*))

If the ball is nearly in the corner, say y3 (t*) < 0.01, terminate the computation. Find the
path of the ball for k = 0.35 and k = 0.7.

■ EXERCISE 2 .29
It is natural to use event location in d f s . m to terminate the integration when y(t) reaches
the bottom or the top of the plot window, but that is not the only way to do this. The plot
routine displays only the portion of y(t) that lies within the plot window, so all we need to
do is stop integrating when the solver steps outside the window. This can be done within
the output function. Make yourself a copy of d f s . m and give it a different name. Re­
move the event function from this program and modify the output function so that the run
is terminated if either y (end) < wB or y (end) > wT. This is cheaper than event loca­
tion because it avoids the expense of locating accurately the time t* where y(t) reaches
either the bottom or top of the plot window.

2.3.2 ODEs Involving a Mass Matrix

Some solvers accept systems of ODEs written in forms more general than y ' = f (t , y).
In particular, the M a tlab IVP solvers accept problems of the form

M(t , y) y ' = f (t , y) (2.37)

involving a mass matrix M(t, y). If M(t, y) is singular then this is a system of differen­
tial algebraic equations (DAEs). They are closely related to ODEs but differ in important

106 Chapter 2: Initial Value Problems

ways. We do not pursue the solution of DAEs in this book beyond noting that the Matlab
codes for stiff ODEs can solve DAEs of index 1 arising in this way (Shampine, Reichelt,
& Kierzenka 1999). In Section 2.3.3 we discuss an approach to solving PDEs numerically
that leads to systems of ODEs with a great many unknowns. Some of the schemes result
in equations of the form (2.37). Example 2.3.11 provides more details about solving such
problems.

In simplest use, the only difference when using a M atlab IVP solver for a problem of
the form (2.37) instead of a problem in standard form is that you must inform the solver
about the presence of M(t, y) by means of the option Mass. If the matrix is a constant
then you should provide the matrix itself as the value of this option. The codes exploit
constant mass matrices, so this is efficient as well as convenient. Suppose, for example,
that you choose an explicit Runge-Kutta method. You provide the ODEs in the conve­
nient form (2.37), but the solver actually applies the Runge-Kutta method to the ODEs

y r = F(t, y) = M —f (t , y)

which is in standard form. As the code initializes itself, it computes an L U factorization
of M. Whenever it needs to evaluate F(t, y), it evaluates f (t , y) and solves a linear sys­
tem for F using the stored factorization of M. For the solvers that proceed in this way,
allowing a mass matrix is mainly a convenience for you. However, other solvers mod­
ify the methods themselves to include a mass matrix. Without going into the details, it
should be no surprise that the iteration matrix for the BDFs is changed from I — hyJ to
M — hyJ. The iteration matrix must be factored in any case, so the extra cost of the more
general form is unimportant. When the mass matrix is not constant, the modifications to
the methods are more substantial. In this case, you must provide a (sub)function for eval­
uating the mass matrix and pass the name to the solver as the value of Mass.

To solve problems of the form (2.37), all that you must do is provide the mass ma­
trix necessary to define the ODEs. The solver needs to know whether the mass ma­
trix is singular at the initial point - that is, whether the problem is a DAE. The option
M a s s S i n g u l a r has values y e s , no, and the default of maybe. The default causes the
solver to perform a numerical test for singularity that you can avoid if you know whether
you are solving ODEs or DAEs. For large systems it is essential to take advantage of
sparsity and inform the solver about how strongly the mass matrix M(t, y) depends on y,
matters that are discussed in Example 2.3.11.

EXAMPLE 2.3.6

M atlab 6 comes with a demonstration code, b a to n o d e , illustrating the use of a mass
matrix. It is an interesting problem that is not described in the documentation, so we ex­
plain it here; it is based on Example 4.3A of Wells (1967). A baton is modeled as two
particles of masses m 1 and m2 that are fastened to opposite ends of a light straight rod of

2.3 Solving IVPs in M a tla b 107

2 4 6 8 10 12 14 16 18 20

Figure 2.5: Solution of a thrown baton problem with mass matrix M(t, y).

length L. The motion of the baton is followed in a vertical plane under the action of grav­
ity. If the coordinates of the first particle at time t are (X(t) , Y(t)) and if the angle the
rod makes with the horizontal is e (t) , then Lagrange’s equations for the motion are natu­
rally expressed in terms of a mass matrix that involves the unknown d(t). The ODEs are
written in terms of the vector

y = (X, X' , Y, Y ', в, в ')T

and the functions f (t , y) and M(t, y) are defined by the partial listing of b a to n o d e that
follows. (We do not display the comments nor the coding associated with plotting the mo­
tion of the baton.) Clearly, it is more convenient to solve this small, nonstiff problem using
the natural formulation in terms of a mass matrix than to convert it to the usual standard
form. This program exploits the capability of passing parameter values through the solver
to the functions defining the ODEs and the mass matrix as arguments at the ends of the lists
of input variables. This capability is common among the functions of M atlab , so we con­
tent ourselves with an example of its use. The option M a s s S i n g u l a r could have been
set to no, but the default test for this is inexpensive with only six equations. There is no
advantage to be gained from sparsity when there are only six equations, but to exploit spar­
sity in this program you need only change m = z e r o s (6 , 6) to M = s p a r s e (6 , 6) .
Figure 2.5 is the result of running the code b a to n o d e with the title removed from the
figure. (Exercise 2.31 has you experiment further with ba tonode .)

108 Chapter 2: Initial Value Problems

f u n c t i o n b a to n o d e

m1 = 0 . 1 ;
m2 = 0 . 1 ;
L = 1;
g = 9 . 81 ;

ts p a n = l i n s p a c e (0 , 4 , 2 5) ;
y0 = [0; 4; 2; 20; - p i / 2 ; 2] ;

o p t i o n s = o d e s e t (' M a s s ' , @ m a s s) ;
[t y] = o d e 4 5 (@ f , t s p a n , y 0 , o p t i o n s , m 1 , m 2 , L , g) ;

Q ,% ---

f u n c t i o n d y d t = f (t , y , m 1 , m 2 , L , g)
d y d t = [

y(2)
m2*L*y(6) "2*cos (y (5))
y(4)
m2*L*y(6) ~2*s i n(y(5)) - (m1+m2) *g
y(6)
- g*L*c os (y (5))
];

Q ,% ---

f u n c t i o n M = m a s s (t , y , m1 , m2 , L , g)
M = z e r o s (6 , 6) ;
M(1,1) = 1;
M(2,2) = m1 + m2;
M(2,6) = - m2 * L * s i n (y (5)) ;
M(3,3) = 1;
M(4,4) = m1 + m2;
M(4,6) = m2*L*cos (y (5)) ;
M(5,5) = 1;

2.3 Solving IVPs in M a tla b 109

M(6,2) = - L * s i n (y (5)) ;
M(6,4) = L * c o s (y (5)) ;
M(6,6) = LA2;

EXAMPLE 2.3.7

The incompressible Navier-Stokes equations for time-dependent fluid flow in one space
dimension on an interval of length L can be formulated as the system of PDEs

dU dU
— + A — = C
dt dz

to be solved for t > 0 and 0 < z < L. The vector U = (p G T)T consists of three un­
knowns: the density p, the flow rate G, and the temperature T. In the system of PDEs,
the vector

0

C
-K G - pga sin(0)

and the matrix

A

a 2 ФРн к

CPAf

1 G2 G
---------- 2 2 _рк p 2 p

a 2pT'G a 2p T
\ p 2 Cp pCp

0

в
к

G

p f

Relevant fluid properties and other problem parameters are described in Thompson &
Tuttle (1986). We use constant values that are found in ch2ex4.m with names that are
obvious except possibly s i n t h for sin(0). We also use T = T + 273.15 and boundary
conditions

p(0, t) = p о = 795.5

T(0, t) = T0 = 255.0

G(L, t) = G0 = 270.9

We are interested in computing a steady-state solution of these equations. At steady state
we have p t = 0, which implies that G(z) is the constant G0 on the whole interval 0 <
z < L and that the PDEs reduce to the ODEs

110 Chapter 2: Initial Value Problems

Figure 2.6: Steady-state solution to upper boundary of liquid region.

Go2/I
рк p

a 2p f G 0 G0

P\ p 2 Cp

в \ (d p \

dz
d T

^ dz J

-K G o - pga Sin(0)

V

Go

P
a 2ФРн к

CpAf /

Converting the system of PDEs to a system of ODEs in this way is sometimes referred
to as a continuous space, discrete time (CSDT) solution. Such a solution may result in an
IVP for a system of ODEs or a BVP, depending on the boundary conditions for the PDEs.
These equations are often used to model the subcooled liquid portion of a three-phase
steam generator in power systems. (Similar but more complicated equations apply to the
saturated liquid-steam and pure steam regions.) In such a model the (moving) boundaries
between the regions are determined using properties of the equation of state. For exam­
ple, the ODEs may be integrated from z = 0 in the positive z direction until the density p
is equal to the “liquid-side” saturation density p sat(T). As discussed in Section 2.3.1, we
can find where this happens by using an event function

g(z , p , T) = p(z) - p sat(T(z))

Strictly for the purposes of illustration and convenience, we use a mock-up of the equation
of state:

p sat(T) = -3 .3 (T - 290) + 738

2.3 Solving IVPs in M a tla b 111

Even with the gross simplifications of this model, formulating the IVP is somewhat
complicated. However, once we have the IVP, it is easy enough to solve with one of the
Matlab IVP solvers because they accept problems formulated in terms of a mass matrix
and they locate events. Invoking ch2ex4.m results in output to the screen of

U pper b o u n d a ry a t z = 2 . 09 614.

and a figure shown here as Figure 2.6. Exercise 2.32 modifies this program in a standard
application of the steady-state CSDT model to “pump coast down”.

f u n c t i o n ch2ex4
% De f i ne th e p h y s ic a l c o n s t a n t s :
g l o b a l kappa b e ta a Cp K ga s i n t h Phi Ph Af G0
kappa = 0 . 171446272015689e-8 ;
b e ta = 0 . 213024626664637e-2 ;
a = 0 .108595374561510e+4;
Cp = 0 .496941623289027e+4;
K = 10;
ga = 9 .80665;
s i n t h = 1;
Phi = 1 .1e+5;
Ph = 797 . 318 ;
Af = 3 . 82760;
G0 = 270 . 9 ;

o p t i o n s = o d e s e t (' M a s s ' , @ m a s s , ' M a s s S i n g u l a r ' , ' n o ' , ' E v e n t s ' , @ e v e n t s) ;
[z , y , z e , y e , i e] = ode45(@odes , [0 5] , [7 9 5 . 5 ; 2 5 5 . 0] , o p t i o n s) ;
i f ~ i s e m p t y (i e)

f p r i n t f (' U p p e r b o u n d a ry a t z = % g . \ n ' , z e (e n d)) ;
end
p l o t (z , y) ;

Q,__%==
f u n c t i o n dydz = o d e s (z , y)
g l o b a l kappa b e t a a Cp K ga s i n t h Phi Ph Af G0
r ho = y (1) ;
T = y (2) ;
dydz = [(-K*G0*abs(G0/ rho) - r h o * g a * s i n t h)

(a A2 *Phi *Ph*kappa) / (Cp*Af)];

f u n c t i o n A = m a s s (z , y)
g l o b a l kappa b e t a a Cp K ga s i n t h Phi Ph Af G0

112 Chapter 2: Initial Value Problems

rho = y (1);
T = y (2) ;
A = z e r o s (2) ;
A(1 ,1) = 1 / (r h o * k a p p a)
A(1 ,2) = b e t a / k a p p a ;
A(2 ,1) = - (a A2 * b e t a * (T
A(2,2) = G0/ rho;

l'G0) / (Cp*rho~2]

f u n c t i o n [v a l u e , i s t e r m i n a l , d i r e c t i o n] = e v e n t s (z , y)
i s t e r m i n a l = 1;
d i r e c t i o n = 0;
rho = y (1) ;
T = y (2) ;
r h o s a t = - 3 . 3 * (T - 290.0) + 738 . 0 ;
v a l u e = r ho - r h o s a t ;

■ EXERCISE 2.30
The ODEs of the ozone model presented in Exercise 2.19 appear in a form appropriate for
singular perturbation methods. This form involves a mass matrix M = diag{1, e}. Do the
exercise now with the ODEs formulated in terms of a mass matrix. In the computations,
take advantage of M being constant.

■ EXERCISE 2.31
In the Matlab demonstration program b a to n o d e , the length of the baton is 1 and the
masses are both 0.1. Make yourself a copy of b a to n o d e and modify it to compute the
motion when the length l is increased to 2 and one mass, say m2, is increased to 0.5. In
this you will want to delete, or at least change, the setting of a x i s . What qualitative dif­
ferences do you observe in the motion?

■ EXERCISE 2.32
A standard application of the steady-state CSDT model of Example 2.3.7 is to pump coast
down: the pumps are shut down and the inlet flow rate decreases exponentially fast. Solve
the CSDT problem for tD = l i n s p a c e (0 , 1 , 1 1) when the inlet flow rate at time
t D(i) is

G0 = 270.9(0.8 + 0.2e- tD(i))

You can do this by modifying the program ch2ex4.m so that it solves for the upper bound­
ary zU(i) of the liquid region with this value of G0 in a loop. The flow rate is already a
global variable in ch2ex4.m, so you can define it in the loop just before calling ode45.
Use p l o t (t D , z U) to plot the location of the upper boundary as a function of time.

2.3 Solving IVPs in M a tla b 113

■ EXERCISE 2.33
A double pendulum consists of a pendulum attached to a pendulum. Let в () be the angle
that the top pendulum makes with the vertical and let в2(t) be the angle the lower pendu­
lum makes with the vertical. Correspondingly, let m i be the masses of the bobs and Li
the lengths of the pendulum arms. When the only force acting on the double pendulum is
gravity with constant acceleration g, Borrelli & Coleman (1999) develop the equations of
motion

(m 1 + m 2) L 1e '1 + m 2 L 2 cos(e2 - в0в2'

- m 2 L 2 (в2)2 sin(e2 - в0 + (m1 + m2)g sin(eO = 0

m 2 L 2 в 2 + m 2 L 1 cos(e2 - вОв^ + m 2 L 1(e'1)2 sin(e2 - вО + m2g sin(e2) = 0

In an interesting exercise, Giordano & Weir (1991) model a Chinook helicopter deliver­
ing supplies on two pallets slung beneath the helicopter as a double pendulum. They take
the mass of the upper pallet to be m1 = 937.5 slugs and the mass of the lower to be m2 =
312.5 slugs. The lengths of the cables are L1 = L 2 = 16 feet and g = 32 feet/second2.
The hook holding the lower pallet cable is bent open and, if the lower pallet oscillates
through an arc of п / 3 radians or more to the open end of the hook, the cable will come off
the hook and the pallet will be lost. As a result of a sudden maneuver, the pallets begin
moving subject to the initial conditions

в1(0) = -0 .5 , в 1 (0) = -1 , в 2(0) = 1, в 2 (0) = 2

The differential equations are naturally formulated in terms of a mass matrix, so solve
them in this form with ode45 and default tolerances. Integrate from t = 0 to t = 2п,
but terminate the run if the event function в 2(t) - п / 3 vanishes (i.e., if the lower pallet is
lost) and report when this happens.

Giordano and Weir linearize the differential equations as

(m1 + m 2) L 1 в'1 + m 2L 2 в 2 + (m1 + m 2)gв1 = 0

m2L2 в 21 + m2Llв'{ + m 2 gв2 = 0

because it is not hard to solve this linear model analytically. The given values of the pa­
rameters satisfy g = 2L1 = 2L2 and m1 = 3m2. Because of this, the solution has the
simple form

в 1(t) = - 1 cos(21) - 2 sin(21)

в 2 (t) = cos(2t) + sin(21)

An analytical solution provides insight, but it is just as easy to solve the nonlinear model
numerically as the linear model. Solve the linear model numerically and compare your

114 Chapter 2: Initial Value Problems

numerical solution to this analytical solution. Compare your numerical solution - in par­
ticular, the time at which the lower pallet is lost - to the results you obtain with the
nonlinear model. You should find that the results of the linear model are quite close to
those of the nonlinear model.

2.3.3 Large Systems and the M ethod of Lines

Now we take up issues that are important when solving an IVP for a large system of equa­
tions. The M atlab PSE is not appropriate for the very large systems solved routinely in
some areas of general scientific computing, but it is possible to solve conveniently sys­
tems that are quite large. The method o f lines (MOL) is a way of approximating PDEs
by ODEs. It leads naturally to large systems of equations that may be stiff. The MOL is
a popular tool for solving PDEs, but we discuss it here mainly as a source of large sys­
tems of ODEs. M a tlab itself has an MOL code called pdepe that solves small systems
of parabolic and elliptic PDEs in one space variable and time. Also, the M atlab PDE
Toolbox uses the MOL to solve PDEs in two space variables and time.

The idea of the MOL is to discretize all but one of the variables of a PDE so as to ob­
tain a system of ODEs. This approach is called a semidiscretization. Typically the spatial
variables are discretized and time is used as the continuous variable. There are several
popular ways of discretizing the spatial variable. Two will be illustrated with an example
taken from Trefethen (2000).

EXAMPLE 2.3.8

The one-way wave (also known as the advection or convection) PDE

ut + c(x)ux = 0, c(x) = 5 + sin2(x - 1)

is solved for 0 < x < 2n and 0 < t < 8. Trefethen (2000) considers initial values
u(x, 0) = e-100(x-1) and periodic boundary conditions u(0, t) = u(2n, t). As he notes,
the initial profile u(x, 0) is not periodic, but it decays so fast near the ends of the interval
that it can be regarded as periodic. Also, solutions of this PDE are waves that move to the
right. As seen in Figure 2.7, the peak that is initially at x = 1 does not reach the boundary
of the region in this time interval. For later use we note that a boundary condition must
be specified at the left end of the interval, but none is needed at the right. In the MOL, a
grid x1 < x2 < ••• < x N is chosen in the interval [0, 2n] and functions vm(t) are used to
approximate u(x m, t) for m = 1, 2 , . . . , N. These functions are determined by a system
of ODEs

dvm
—— = -c(xm)(Dv)m
dt

2.3 Solving IVPs in M a tla b 115

Figure 2.7: Solution of ut + c(x)ux = 0 with the MOL.

with initial values
Vm(0) = u (xm, 0)

for m = 1, 2 , . . . , N . If (Dv)m ^ ux(xm,t) , then this is an obvious approximation
of the PDE. Trefethen’s delightful little book is about spectral methods. In that ap­
proach, the partial derivative is approximated at (xm, t) by interpolating the function
values vi(t), v2(t) , . . . , vN(t) with a trigonometric polynomial in x, differentiating this
polynomial with respect to x, and evaluating this derivative at x m. It is characteristic of
a spectral method that derivatives are approximated using data from the whole interval.
When the mesh points are equally spaced, this kind of approximation is made practi­
cal using the fast Fourier transform (FFT). Just how this is done is not important here
and the details can be found in the discussion of Trefethen’s program p6. Our program
ch2ex5.m is much like p6 except that Trefethen uses a constant-step method with mem­
ory to integrate the ODEs and we simply use ode2 3. The general-purpose IVP solver is
a little more expensive to use, but it avoids the issue of starting a method with memory,
adapts the time steps to the solution, and controls the error of the time integration. More­
over, someone else has gone to all the trouble of writing a quality program to do the time
integration!

f u n c t i o n ch2ex5
g l o b a l i x i n d i c e s mc

% S p a t i a l g r i d , i n i t i a l v a l u e s :
N = 12 8;

116 Chapter 2: Initial Value Problems

x = (2 * p i / N) * (1 : N) ;
v0 = e x p (- 1 0 0 * (x - 1) . л 2) ;

% Q u a n t i t i e s p a s s e d a s g l o b a l v a r i a b l e s t o f (t , v)
i x i n d i c e s = i * [0 : N/ 2 - 1 0 - N / 2 + 1 : - 1] ' ;
mc = - (0 .2 + s i n (x - 1) . л 2) ' ;

% I n t e g r a t e and p l o t :
t = 0 : 0 . 3 0 : 8 ;
[t , v] = o d e 2 3 (@ f , t , v 0) ;

m e s h (x , t , v) , v i e w (1 0 , 7 0) , a x i s ([0 2*pi 0 8 0 5])
y l a b e l t , z l a b e l u, g r i d o f f

f u n c t i o n d v d t = f (t , v)
g lo b a l i x i n d i c e s mc
d v d t = mc .* r e a l (i f f t (i x i n d i c e s .* f f t (v))) ;

When using a constant step size as Trefethen does, a key issue is selecting a time step
small enough to compute an accurate solution. When using a solver like ode23, the issue
is choosing output points that result in an acceptable plot because the solver selects time
steps that provide an accurate solution and returns answers wherever we like. It would
be natural to use the default output at every step, but storage can be an issue for a large
system. You can reduce the storage required by asking for answers at specific points. Al­
ternatively, you can gain complete control over the amount of output by writing an output
function as illustrated in Example 2.3.3. In ch2ex5.m we specify half as many output
points as Trefethen because this is sufficient to provide an acceptable plot and it signif­
icantly reduces the size of the output file. For just this reason the PDE solver pdepe
requires you to specify not only the fixed mesh in the spatial variable but also the times at
which you want output. In a situation like this, you should not ask for output in the form
of a solution structure because such structures contain the solution at every step as well
as considerably more information that is needed for evaluating the continuous extension.

It is commonly thought that any system of ODEs with a moderate to large number of
unknowns that arises from MOL is stiff, but the matter is not that simple. The system of
128 ODEs arising in the spectral discretization of this wave equation is at most mildly stiff.
This is verified by using the stiff solver ode15s instead of the nonstiff solver ode2 3; the
change increases the run time by more than a factor of 5. When no substantial advantage
is to be gained from the superior stability of its formulas, ode15s is often (much) more
expensive than one of the solvers intended for nonstiff IVPs. By default, ode15s ap­
proximates the Jacobian matrix numerically. This is expensive because, for a system of N

2.3 Solving IVPs in M a tla b 117

equations, it makes N evaluations of the ODE function f (t , v) for this purpose (and a few
more if it has doubts about the quality of the approximation). We remark that ode15s
handles this much more efficiently than most stiff solvers because it saves Jacobians and
forms new ones only when it believes this is necessary for the efficient evaluation of the
implicit formulas. When solving nonstiff problems, the step size is generally small enough
that only a few Jacobians are formed. To explore this, we set the option S t a t s to on and
ran the modified ch2ex5.m to obtain

>> ch2ex5
199 s u c c e s s f u l s t e p s
6 f a i l e d a t t e m p t s
328 f u n c t i o n e v a l u a t i o n s
1 p a r t i a l d e r i v a t i v e s
34 LU d e c o m p o s i t i o n s
324 s o l u t i o n s o f l i n e a r sy stem s

(Note: “L U decompositions” is synonymous with “LU factorizations”.) The implicit for­
mulas are evaluated with a remarkably small number of function evaluations per step. The
solver made only one Jacobian (partial derivative) evaluation and reused it each of the
34 times it formed and factored an iteration matrix. By these measures, ode15s solves
the nonstiff IVP quite efficiently. Indeed, ode2 3 took 315 steps and made 946 function
evaluations. However, ode15s is slower because it had to solve many systems involving
128 linear equations. They are solved very efficiently in M atlab , but the extra overhead
of the BDF code makes it less efficient than the Runge-Kutta code for this problem. On
the other hand, the higher-order explicit Runge-Kutta code ode45 is less efficient than
ode15s. Because its formulas have smaller stability regions, ode45 is less efficient for
this problem than ode2 3.

The spectral approximation of ux in Example 2.3.8 is very accurate when the function
u (x , t) is smooth. Finite difference approximations are a more common alternative. They
are of (much) lower order of accuracy, but they are local in nature and so require (much)
less smoothness of the solution. It is worthy of comment that the one-way wave equa­
tion can have solutions with discontinuities in the spatial variable, a matter that receives a
great deal of attention in the numerical solution of such PDEs. A simple, yet reasonable,
finite difference scheme for this equation is a first-order upwind difference approximation
to the spatial derivative. Again we use a mesh in x of N points with equal spacing of h.
Because c(x) > 0, the wave is moving to the right and the scheme results in

EXAMPLE 2.3.9

118 Chapter 2: Initial Value Problems

Trefethen assumed periodic boundary conditions because doing so simplified the use of
spectral approximations. At the left boundary this assumption leads to

We’ll return to this matter, but right now let us also change the boundary condition to sim­
plify the application of the finite difference scheme. With the given initial data, it is just as
plausible to use the boundary condition ux(0, t) = 0. This boundary condition is approx­
imated by v1 (t) = 0. With a first-order approximation to ux(x, t), we need a fine mesh
to obtain a numerical solution comparable to that of Figure 2.7. The program ch2ex6.m
approximates this figure by taking N = 1000. Notice that with such a fine mesh we do
not plot the solution at all the mesh points.

The finite difference program is straightforward, but new issues arise when we solve
problems involving a large number of equations (here 1000). The problems resulting from
MOL with a fine space discretization can be stiff. Indeed, the parabolic PDEs solved with
pdepe are stiff when the spatial mesh is at all fine. The IVP of this example is not stiff,
but it is simple enough that it shows clearly how to proceed when we treat it as a stiff
problem. If we solve it with a code intended for stiff problems, the code must form Jaco-
bians. With N equations, this matrix is N x N. Thousands of equations are common in
this context, making it important to account for the sparsity of the equations with respect
to both storage and the efficiency of solving linear systems. Sparse matrix technology is
fully integrated into the M a tlab PSE, but it is not so readily available in general scientific
computing. In fact, the only provision for sparsity in a typical stiff solver for general sci­
entific computing is for banded Jacobians. (A banded matrix is one that has all its nonzero
entries confined to a band of diagonals about the principal diagonal.) Somehow we must
inform the solver of the zeros in the Jacobian J = (f) . The simplest way is to provide
the Jacobian matrix analytically as a sparse matrix. This is done much as with mass ma­
trices by means of an option called Ja c o b ia n . If the Jacobian is a constant matrix, you
should provide it as the value of this option. This could have been done in ch2ex6.m with

B = [[- c _ h (2 : N) ; 0] [0; c _h (2 : N)]];
J = s p d i a g s (B , - 1 : 0 , N , N) ;
o p t i o n s = o d e s e t (' J a c o b i a n ' , J) ;

When the Jacobian is not constant, you provide a function that evaluates the Jacobian and
returns a sparse matrix as its value. In either case, the solvers recognize that the Jaco-
bian is sparse and deal with it appropriately. When it is not too much trouble to work
out an analytical expression for the Jacobian, it is best to do so because approximating
Jacobians numerically is a relatively expensive and difficult task. Also, the methods are
generally somewhat more efficient when using analytical Jacobians. Still, the default in

(2.38)

2.3 Solving IVPs in M a tla b 119

the M atlab solvers is to approximate Jacobians numerically because it is so convenient.
For large problems it is then very important that you inform the solver of the structure of
the Jacobian. The entry Jm,k is identically zero when equation m does not depend on com­
ponent к of the solution. You inform the solver of this by creating a sparse matrix S that
has zeros in the places where the Jacobian is identically zero and ones elsewhere. It is pro­
vided as the value of the option J P a t t e r n . This is done in a very straightforward way
in ch2ex6.m. The example shows how you might proceed for more complicated pat­
terns, but for this particular set of ODEs the nonzero entries occur on diagonals, making
it natural to define the pattern with s p d ia g s . This could have been done in ch2ex6.m
with

S = s p d i a g s (o n e s (N , 2) , - 1 : 0 , N , N) ;
S (1 , 1) = 0;

You are asked in Exercise 2.34 to verify that this IVP is not stiff. Nonetheless, we solve
it with ode15s in ch2ex6.m to show how to solve a large stiff problem. The Jacobian
is approximated by finite differences, but the sparsity pattern is supplied to make this ef­
ficient. It would be more efficient to provide an analytical expression for the constant
Jacobian matrix as the value of the J a c o b i a n option.

f u n c t i o n ch2ex6
g l o b a l c_h

% S p a t i a l g r i d , i n i t i a l v a l u e s :
N = 100 0;
h = 2*pi /N;
x = h * (1 : N) ;
v0 = e x p (- 1 0 0 * (x - 1) . л 2) ;
c_h = - (0 .2 + s i n (x - 1) . л 2) ' / h;

% S p a r s i t y p a t t e r n f o r t h e J a c o b i a n :
S = s p a r s e (N , N) ;
f o r m = 2:N

S(m,m-1) = 1;
S(m,m) = 1;

end
o p t i o n s = o d e s e t (' J P a t t e r n ' , S) ;

% I n t e g r a t e and p l o t :
t = 0 : 0 . 3 0 : 8 ;
[t , v] = o d e 1 5 s (@ f , t , v 0 , o p t i o n s) ;

120 Chapter 2: Initial Value Problems

p l t s p a c e = c e i l (N / 1 2 8) ;
x = x (1 : p l t s p a c e : e n d) ;
v = v (: , 1 : p l t s p a c e : e n d) ;
s u r f (x , t , v) , v i e w (1 0 , 7 0) , a x i s ([0 2*pi 0 8 0 5])
y l a b e l t , z l a b e l u, g r i d o f f

Q,___%--
f u n c t i o n d v d t = f (t , v)
g l o b a l c_h
d v d t = c_h .* [0; d i f f (v)] ;

Now we can understand better the role of the boundary conditions. With periodic bound­
ary conditions, this example does not have a banded Jacobian because the first equation
depends on vN. Because of this, typical codes for stiff problems in general scientific com­
puting cannot solve this IVP directly. In contrast, with the stiff solvers of M atlab , all we
must do is follow the definition of S in ch2ex6.m with the two statements

S(1 , 1) = 1;
S(1,N) = 1;

Exercise 2.35 asks you to solve this IVP with periodic boundary conditions.

If no attention is paid to sparsity, forming an approximate Jacobian by finite differences
costs (at least) one evaluation of the ODE function f (t , v) for each of the N columns of
the matrix. The M atlab solvers use a development of an algorithm due to Curtis et al.
(1974) that can reduce this cost greatly by taking into account entries of the Jacobian that
are known to be zero. For instance, if the Jacobian is banded and has D diagonals, this
algorithm evaluates the Jacobian with only D evaluations of the ODE function f (t , v),
no matter what the value of N. Informing the solver of the structure of the Jacobian in
ch2ex6.m allows it to approximate the Jacobian in only two evaluations of the ODE
function f (t , v) instead of the D = N = 1000 evaluations required if the structure is
ignored. Clearly this is a matter of great importance for efficiency, quite aside from its
importance for reducing the storage and cost of solving the linear systems involving the
iteration matrix.

EXAMPLE 2 .3 .10

As we have just seen, one way to speed up the numerical approximation of Jacobians is to
use sparsity to reduce the number of function evaluations. Another is to evaluate the func­
tions faster. Vectorization is a valuable tool for speeding up Matlab programs, and often
it is not much work to vectorize a program. When the solvers approximate a Jacobian,

2.3 Solving IVPs in M a tla b 121

they evaluate f (t , y) for several vectors y at the same value of t. This can be exploited
by coding the function so that, if it is called with arguments (t , [y 1 y2 . . .]) , it
will compute and return [f (t , y 1) f (t , y 2) . . .]. You tell the solver that you have
done this by setting the option V e c t o r i z e d to on. Because all the built-in functions
of M atlab are vectorized, vectorizing f (t , y) is often a matter of treating y as an array
of column vectors and putting a dot before operators to make them apply to arrays. The
brusselator problem is a pair of coupled PDEs solved in Hairer & Wanner (1991, pp. 6-8)
by the MOL with finite difference discretization of the spatial variable. It is also solved
by one of the demonstration programs that is included in M atlab . When invoked as
b r u s s o d e (N) , this program forms and integrates a system of 2N ODEs. The default
value of the parameter N is 20. Here we consider just one line of the program to make
the point about vectorizing f (t , y). Some of the components of d y d t are evaluated in a
loop on i that might have been coded as

d y d t (i) = 1 + y (i + 1) * y (i) ~ 2 - 4 * y (i) + . . .
c * (y (i - 2) - 2 * y (i) + y (i + 2)) ;

This processes a column vector y (:) . A vector version must perform the same operations
on the columns of an array y (: , :) . It is coded in b r u s s o d e as

d y d t (i , :) = 1 + y (i + 1 , :) . * y (i , :) . ~ 2 - 4 * y (i , :) + . . .
c * (y (i - 2 , :) - 2 * y (i , :) + y (i + 2 , :)) ;

The dot before the multiplication and exponentiation operators makes the operations ap­
ply by components to arrays. Adding the scalar 1 to an array is interpreted as adding it to
each entry of the array. This is easy enough, but vectorization is unimportant for this ex­
ample. The sparsity structure of the Jacobian is such that only a few function evaluations
are needed for each Jacobian and only a few Jacobians are formed. Indeed, by setting the
option S t a t s to on, we found that only two Jacobians were formed for the whole inte­
gration. Whether vectorization is helpful depends on the sparsity pattern of the Jacobian
and how expensive it is to evaluate the function. A similar vectorization is usually quite
helpful when solving BVPs with bvp4c because of its numerical method, so we return to
this matter in Chapter 3.

To illustrate a vectorization that is not so straightforward, suppose that we now replace
ode2 3 in ch2ex5.m by ode15s and so wish to vectorize

d v d t = mc .* r e a l (i f f t (i x i n d i c e s .* f f t (v))) ;

The fast Fourier transform routines are vectorized, so f f t (v) works fine when v has
more than one column. We get into trouble when we form i x i n d i c e s .* f f t (v) be­
cause i x i n d i c e s is a column vector and the array sizes do not match up. We need to do
this array multiplication on each of the columns of f f t (v) . We could do this in a loop.

122 Chapter 2: Initial Value Problems

In such a loop we must take account of the fact that the solver calls the function with an
array v that generally has N columns but sometimes has only one. A more efficient way
to evaluate the derivatives is to make i x i n d i c e s a matrix with N columns, all the same.
This is done easily with repm at:

temp1 = i * [0 : N/ 2 - 1 0 - N / 2 + 1 : - 1] ' ;
i x i n d i c e s = r e p m a t (t e mp 1 , 1 , N) ;

To match up the dimensions properly for the array multiplication of i x i n d i c e s and
f f t (v) , we just use s i z e to find out how many columns there are in v and use the cor­
responding number of columns of i x i n d i c e s in the multiplication. The same change
must be made with the array mc. The evaluation of d v d t then becomes

nc = s i z e (v , 2) ;
d v d t = m c (: , 1 : n c) .* r e a l (i f f t (i x i n d i c e s (: , 1 : n c) .* f f t (v))) ;

Vectorizing f (t , v) has little effect for this particular IVP because it is not stiff and
ode15s forms only one Jacobian. However, the point of this example is to show how
complications can arise in vectorization.

Mass matrices arise naturally when a Galerkin method is used for the spatial discretiza­
tion. To illustrate this and so introduce a discussion of associated issues for large stiff
systems, we consider an example of Fletcher (1984). He solves the heat equation,

EXAMPLE 2.3.11

ut = uxx, 0 < x < 1

with initial value
u(x, 0) = x + sin(^x)

and boundary values
u(0, t) = 0, u(1, t) = 1

An approximate solution is sought in the form

m

For a given value of t, this approximation satisfies the PDE with a residual

R(x, t) = vt(x, t) - Vxx(x, t)

An inner product of two functions continuous on [0,1] is defined by

2.3 Solving IVPs in M a tla b 123

(f , g) = f f (x)g(x) dx
Jo

The Galerkin method projects u (x , t) into the space of functions of the form v (x , t) by
requiring the residual of the approximation to be orthogonal to the basis functions Sk(x);
that is,

(R,Sk) = (vt ,Sk) - (vxx,Sk) = 0

for each k. If each shape function Sm(x) is a piecewise-linear function with Sm(xm) = 1
and Sm(xj) = 0 for j = m, then

v(Xm, t) = Vm(t) ™ u(Xm, t)

Using the form of v(x, t) and performing an integration by parts leads to the equation

With a constant mesh spacing h, working out the inner products leads to the ODEs

1 dvm — 1 4 dvm 1 dvm+1 vm-1 2vm + vm+1
6 dt 6 dt 6 dt h2

for m = 1, 2 , . . . , N. From the boundary conditions we have

v 0 (t) = 0, Vn+1(t) = 1

These quantities appear only in the first and last ODEs. Notice that the last ODE is in-
homogeneous for this reason. From the initial condition, vm(0) = u (xm, 0) for m =
1, 2 , . . . , N .

Many problems are naturally formulated in terms of mass matrices. If M(t, y) does
not depend strongly on y, then it is not difficult to modify the numerical methods to take
it into account and the presence of a mass matrix has little effect on the computation. For
a large system it is essential to account for the structure of the mass matrix as well as the
structure of the Jacobian. Although it is often both convenient and efficient to use the stan­
dard form (2.37), the typical general-purpose BDF code in general scientific computing
does not provide for mass matrices. Storage and the user interface are important reasons
for this. For example, when the mass matrix is constant, the iteration matrix for the BDFs
is changed from I — hyJ to M — hyJ. The change complicates specification of the ma­
trices and management of storage because the structures of M and J must be merged in
forming the iteration matrix. This complication is not present in the M atlab IVP solvers
because the matrices are provided as general sparse matrices and the PSE deals automat­
ically with the storage issues.

The modifications to the algorithms due to the presence of a mass matrix depend on its
form. The weaker the dependence of M(t, y) on y, the better. The most favorable case is

124 Chapter 2: Initial Value Problems

о «

Figure 2.8: Solution of the differential equation ut = uxx.

a constant mass matrix. The solver is told of this by providing the matrix as the value of
the Mass option. If the mass matrix is not constant, the option M StateD ependence is
used to inform the solver about how strongly M(t, y) depends on y. This is an issue only
for moderate to large systems. There are three values possible for this option. The most
favorable is none, indicating a mass matrix that is a function of t only - that is, the ma­
trix has the form M(t) . The default value is weak. The most difficult in both theory and
practice is s t r o n g . If M(t, y) depends strongly on y, then the standard form (2.37) is
much less advantageous and the computation resembles much more closely what must be
done for a general implicit system of the form

F (t , y , y ') = 0 (2.39)

Solving efficiently a large system of ODEs when the mass matrix has a strong state de­
pendence is somewhat complicated and the default of a weak state dependence is usually
satisfactory, so we leave this case to the Matlab documentation.

There are a number of codes in general scientific computing (d a s s l is a popular one;
see Brenan et al. 1996) that accept problems of the form (2.39), and a future version of
M atlab will include a code for such problems. This general form includes differential
algebraic equations (DAEs). They can be much more difficult than ODEs in both the­
ory and practice. An obvious theoretical difficulty is that an initial value y(t 0) may not be
sufficient to specify a solution - we must find an initial slope y '(t0) that is consistent in
the sense that equation (2.39) is satisfied with arguments 10, y (t0), and y '(t0). It is pretty

2.3 Solving IVPs in M a tla b 125

obvious from the form of the equation that the solvers need dy as well as dy, complicat­
ing the user interface and storage management.

For the present example it is convenient to supply both the mass matrix and the Ja-
cobian matrices directly because they are constant. Indeed, it is convenient to use the
Jacobian matrix in evaluating the ODEs. Figure 2.8 shows the output of ch2ex7.m, but a
better understanding of the solution is obtained by using the R o t a t e 3D tool to examine
the surface from different perspectives.

f u n c t i o n ch2ex7
g l o b a l J h

N = 2 0;
h = 1/ (N+1) ;
x = h * (1 : N) ;
v0 = x + s i n (p i * x) ;
e = o n e s (N , 1) ;
M = s p d i a g s ([e 4*e e] , - 1 : 1 , N , N) / 6 ;
J = s p d i a g s ([e -2*e e] , - 1 : 1 , N , N) / h ~ 2 ;
o p t i o n s = o d e s e t (' M a s s ' , M , ' J a c o b i a n ' , J) ;
[t , v] = ode 15s (@f , [0 0 . 5] , v 0 , o p t i o n s) ;
% Add th e b o u n d a ry v a l u e s :
x = [0 x 1] ;
n p t s = l e n g t h (t) ;
v = [z e r o s (n p t s , 1) v o n e s (n p t s , 1)] ;
s u r f (x , t , v)

Q,___%===
f u n c t i o n d v d t = f (t , v)
g l o b a l J h
d v d t = J* v ;
d vd t (e n d) = dvd t (e n d) + 1 / h"2 ;

■ EXERCISE 2 .34
Modify ch2ex6.m to use ode23. Using t i c and toc , measure how much the run time
is affected by this change, hence how stiff the IVP appears to be. It can’t be very stiff if
you can solve it at all with ode2 3.

■ EXERCISE 2.35
Example 2.3.9 points out that it is easy to deal with periodic boundary conditions because
ode15s provides for general sparse matrices. See for yourself by modifying ch2ex6.m
so as to solve the problem with periodic boundary conditions. The example explains how

126 Chapter 2: Initial Value Problems

to form the sparsity pattern S in this case. Only the first component in d v d t must be al­
tered so that it corresponds to the periodic boundary condition (2.38).

■ EXERCISE 2.36
The “quench front” problem of Laquer & Wendroff (1981) models a cooled liquid rising
on a hot metal rod by the PDE

Ut = uxx + g(u)

for 0 < x < 1, 0 < t. Here

g(u) =
- A u if u < uc

0 if uc < u

with A = 2 ■ 105 and uc = 0.5. The boundary conditions are u(0, t) = 0 and ux(1, t) =
0. The initial condition is

u(x, 0) =

0 if 0 < x < 0.1
-0.1 if 0.1 < x < 0.250.15

1 if 0.25 < x < 1

We’ll approximate the solution of this PDE by the MOL with finite differences. The com­
putations will help us understand stiffness.

For an integer N, let h = 1/N and define the grid x m = mh for m = 0 ,1 , . . . , N + 1.
We approximate the PDE by letting vm(t) & u (xm, t) and discretizing in space with cen­
tral differences to obtain

dvm vm+1 2vm + vm-1 (4
I T = -----------h ----------- + g (V’)

As written, the equation for m = 1 requires v0 (t). To satisfy the boundary condition
u(0, t) = 0, we define v0(t) = 0 and eliminate it from this equation. Similarly, the equa­
tion for m = N requires vN+1(t). We approximate the boundary condition at x = 1 by
central differences as

vN+1 — vN-10 = ux(1, t)
2h

Accordingly, we take vN+1 = vN-1 and eliminate it in the equation for m = N. Initial
values for the ODEs are provided by vm(0) = u (xm, 0). Solve this IVP for the equations
m = 1, 2 , . . . , N with N = 50. In solving this problem, take advantage of the fact that
the Jacobian J is a constant, sparse matrix. You can do this as in ch2ex7.m, though here
JN,N-1 = 2h-2 . It is convenient and efficient to use J when evaluating the ODEs. You
might also vectorize the evaluation of the g(vm). For this you might find it helpful to ask
yourself what the result is of any(w <= 0,2) when w is a column vector. Control the
output by taking t s p a n = 0 : 0 . 0 0 1 : 0 . 0 0 6 . If you then plot the computed solution v

x

2.3 Solving IVPs in M a tla b 127

against the mesh x, you will obtain solution profiles that show how the solution evolves
in time. Solve the IVP using each of ode15s and ode23. Use t i c and t o c to measure
the costs of integration. You will find that this IVP is not stiff - ode2 3 is much more ef­
ficient than ode15s. People familiar with the MOL are likely to find this surprising. To
see what they might have expected, drop the inhomogeneous term g(u) from the ODEs
and solve with t s p a n = 0 : 0 . 1 : 0 . 6 . You will find that this new IVP is (moderately)
stiff.

What’s going on? The inhomogeneous term g(u) is not smooth. This results in so­
lution components vm(t) that are not smooth as they pass through the value uc. For this
problem, that happens only once for any m. The solver must locate this point and use a
small step size to pass it, but an isolated point where a solution is not smooth has little
impact on an integration. The snag here is that this happens at different times for the dif­
ferent components, and there are a lot of components. Remember, for an IVP to be stiff,
the solution must be smooth so that the step size of an explicit method is limited by stabil­
ity. Stability does not limit the step size significantly for the quench problem, so ode15s
is much less efficient than ode23 even though we have a constant, analytical Jacobian.

2.3.4 Singularities

Standard codes for IVPs expect some smoothness, and when it is not present at an isolated
point we must supplement the codes with some analytical work. The idea is to approxi­
mate the solution of interest near the singular point with a series or asymptotic expansion
and approximate it elsewhere with a standard IVP solver. The expression “solution of
interest” alludes to the possibility of more than one solution at a singular point. Singu­
larities are much more common for BVPs, in part because problems are often set on an
infinite interval, so we show here how to proceed with a single example and a couple of
exercises and later return to the matter in Chapter 3, where many examples are discussed
at length.

EXAMPLE 2.3.12

A classical analysis (Lighthill 1986, pp. 103ff) of the collapse of a spherical cavity in a
liquid leads to the IVP

(y ')2 = 2 (y—3 — 1), y(0) = 1 (2.40)

The nondimensional variables here are the time x and the radius of the cavity y. The in­
tegration is to terminate when y vanishes, representing total collapse of the cavity. In
standard form the ODE is

128 Chapter 2: Initial Value Problems

where the minus sign is taken because the equation is to model collapse of the cavity.
This IVP presents two kinds of difficulties. The existence and uniqueness result for IVPs
supposes that the ODE function f in y ' = f (x , y) is smooth in a region containing the
initial point (0,1). That is not the case here because the initial point is on the boundary of
the region where f is defined. This leaves open the possibility of more than one solution
and, in fact, there is an obvious solution y(x) = 1 in addition to the decreasing solution
that we expect physically. Certainly we must consider how to compute the “right” solu­
tion. The other difficulty is that, at the time x c of total collapse, we have y (x c) = 0 and
we find from the ODE that y ' (xc) = —to.

We approximate the solution y(x) for 0 < x < d with a Taylor series. We then use
yd & y(d) computed in this way to start a numerical integration for x > d where the ODE
is not singular. The symbolic capabilities of M atlab make it easy to obtain the series.
Taking into account the initial value, we look for an approximation of the form y(x) =
1 + ax + b x 2 + ■■■ . The script

syms y x a b r e s
y = 1 + a*x + b * x n2;
r e s = t a y l o r (d i f f (y) ~ 2 - (2 / 3) * (1 / y ~ 3 - 1) , 3)

substitutes this form into the ODE and computes the first three terms of a Taylor expan­
sion of the residual. The result of this computation is

r e s = a " 2+ (4*a *b+2*a) *x+(4*b" 2+2*b- 4*a " 2) *x" 2

To satisfy the ODE as well as possible, we must choose the coefficients so as to make as
many terms as possible vanish, starting from the lowest order. To remove the constant
term in the residual, we must take a = 0, which also removes the term in x. To remove
the term in x 2, we have two choices for b, namely b = 0 and b = —0.5. Accordingly, this
singular IVP appears to have exactly two solutions that can be expanded in Taylor series.
One choice for b corresponds to the solution y (x) = 1 that we have already recognized.
The other solution,

y(x) = 1 — 2 x 2 + ■■■

is decreasing for small x. It appears then that there is a unique solution with the expected
physical behavior. Continuing in this way, it is found easily that

y(x) = 1 ---- x 2 -----x 4 --------x6 + ■■■
2 6 180

In ch2ex8.m we approximate y(x) by the first three terms of this series and then esti­
mate the error of the approximation by the next term. In this way we estimate that the
relative error of this approximation to y(d) is about 10—7 when d = 0.1.

The difficulty with calculating the vertical slope at the end of the integration is resolved
by interchanging the independent and dependent variables. This is a technique familiar

2.3 Solving IVPs in M a tla b 129

in the theory of ODEs that can be quite useful numerically. We must be careful that in­
terchanging variables is permissible. We can use y as the independent variable if we stay
away from the initial point because the ODE shows that y(x) is strictly decreasing. We
cannot use y as the independent variable there, because y ' (x) vanishes at x = 0 and we’d
have the same problem of a vertical slope after interchanging variables. For this reason
we integrate

with initial value x = d from y = yd to y = 0. The time of total collapse is the value
of x at y = 0 . After this analytical preparation of the problem, it is easily solved as in
ch2ex8.m. To plot the solution over the whole interval, we must augment the numeri­
cal solution with values obtained by evaluating the series on the interval [0, d]. For this
particular problem, a smooth graph is obtained by adding only one value, the initial value
y(0) = 1. You might wish to see what happens if you make the initial point d much larger
or much smaller than d = 0.1.

f u n c t i o n ch2ex8
d = 0 . 1 ;
yd = 1 - (1 /2)*d~2 - (1 / 6) *d~4;
e r r y d = (19 /180)*d~6;
f p r i n t f (' A t d = %g, t h e e r r o r i n y (d) i s a b o u t % 5 . 1 e . \ n ' , d , e r r y d) ;

[y , x] = ode45(@ode, [yd 0] , d) ;
f p r i n t f (' T o t a l c o l l a p s e o c c u r s a t x = % g . \ n ' , x (e n d)) ;

% Augment th e a r r a y s w i t h y = 1 a t x = 0 f o r t h e p l o t
% and p l o t w i t h t h e o r i g i n a l i n d e p e n d e n t v a r i a b l e x.
y = [1; y] ;
x = [0; x] ;
p l o t (x , y)

Q,%
f u n c t i o n dxdy = o d e (y , x)
dxdy = - s q r t (3 * y ~ 3 / (2 * (1 - y ~ 3))) ;

In addition to Figure 2.9, this program results in the output

>> ch2ex8
At d = 0 . 1 , t h e e r r o r i n y (d) i s a b o u t 1 . 1 e - 0 0 7 .
T o t a l c o l l a p s e o c c u r s a t x = 0 .914704

130 Chapter 2: Initial Value Problems

Figure 2.9: Solution of the cavity collapse problem.

■ EXERCISE 2.37
Davis (1962, pp. 371ff) discusses the use of Emden’s equation

d 2y 2 dy
dX~2 + X dx + У = 0

for modeling the thermal behavior of a spherical cloud of gas. Here n is a physical parame­
ter. The singular coefficient arises when a PDE modeling the thermal behavior is reduced
to an ODE by exploiting the spherical symmetry. Symmetry implies that the initial value
y '(0) = 0 and, in these nondimensional variables, y(0) = 1. We expect a solution that
is bounded and smooth at the origin, so we expect that we can expand the solution in a
Taylor series. Derive the series solution reported by Davis,

y(x) = 1 -------- + n -----+ (5n — 8n) ------
) 3! 5! () 3 ■ 7!

+

When the cloud of gas is a star, the first zero of the solution represents the radius of the
star. Davis uses n = 3 in modeling the bright component of Capella and reports the first
zero to be at about x = 6.9. You are to confirm this result. Use the first three terms of the
series to compute an approximation to y(0.1) and then use the derivative of these terms
to approximate y '(0.1). Estimate the error of each of these approximations by the magni­
tude of the first term neglected in the series. Using the analytical approximations to y(0.1)

2 4 6

2.3 Solving IVPs in M a tla b 131

and y '(0.1) as the initial values, integrate the ODE with ode45 until the terminal event
y(x) = 0 occurs. You’ll need to guess how far to go, so be sure to check that the integra­
tion terminates because of an event. The approximate solution at x = 0.1 is so accurate
that it is reasonable to integrate with tolerances more stringent than the default values and
thus be more confident in the location of the first zero of y(x) . You might, for example,
use a relative error tolerance of 10—8 and an absolute error tolerance of 10—10.

■ EXERCISE 2.38
Kamke (1971, p. 598) states that the IVP

y (y ")2 = e2x, y(0) = 0 , y '(0) = 0

describes space charge current in a cylindrical capacitor. He suggests approximating the
solution with a series of the form

y (x) = x p(a + bx + ■ ■■)

Work out p and a. Argue that the IVP has only one solution of this form. Because it is
singular at the origin, we must supplement numerical integration of the ODE with this
analytical approximation for small x. For this you are given that

b 27 —2 b = — a
40

If you have not done Exercise 1.7, which asks you to formulate the ODE as a pair of
explicit first-order systems, you should do it now. In the present exercise you are to solve
numerically the system for which y ' is increasing near x = 0. Evaluate the series and
its derivative to obtain approximations to y(x0) and y ' (x0) for x 0 = 0.001. Integrate the
first-order system over [x0, 0.1] with default error tolerances. Plot the solution that you
compute along with an approximate solution obtained from the series.

Chapter 3

Boundary Value
Problems

3.1 Introduction
By itself, a system of ordinary differential equations has many solutions. Commonly a
solution of interest is determined by specifying the values of all its components at a sin­
gle point x = a. This point and a direction of integration define an initial value problem.
In many applications the solution of interest is determined in a more complicated way.
A boundary value problem specifies values or equations for solution components at more
than one point in the range of the independent variable x. Generally IVPs have a unique
solution, but this is not true of BVPs. Like a system of linear algebraic equations, a BVP
may not have a solution at all, or may have a unique solution, or may have more than one
solution. Because there might be more than one solution, BVP solvers require an estimate
(guess) for the solution of interest. Often there are parameters that must be determined in
order for the BVP to have a solution. Associated with a solution there might be just one
set of parameters, a finite number of possible sets, or an infinite number of possible sets.
As with the solution itself, BVP solvers require an estimate for the set of parameters of
interest. Examples of the possibilities were given in Chapter 1, and in this chapter others
are used to penetrate further into the matter.

The general form of the two-point BVPs that we study in this chapter is a system of
ODEs

y ' = f (x , y , p) (3.1)

and a set of boundary conditions

0 = g (y (a) , y (b) , p) (3.2)

Here p is a vector of unknown parameters. Parameters may arise naturally in the physi­
cal problem that is being modeled or they may be introduced as a part of the process of
solving a BVP. Singularities in coefficients of the BVP and problems posed on infinite

133

134 Chapter 3: Boundary Value Problems

intervals are not unusual. One way to deal with them involves introducing unknown pa­
rameters. The M atlab BVP solver bvp4c accepts problems with unknown parameters,
but many solvers do not, so we explain how to reformulate such BVPs so that there are
no unknown parameters. For brevity, we generally do not show p when writing (3.1)
or (3.2).

In our study of IVPs we learned how to reformulate ODEs as a system of first-order
equations (3.1). It was noted that some IVP solvers accept equations of the form y " =
f (x , y) because they are common in some contexts and there are methods that take ad­
vantage of the special form. Similarly, there are popular BVP solvers that work directly
with equations of order higher than 1. This can be advantageous, but it complicates the
user interface. That is one reason why bvp4c requires first-order systems. Another is that
all the IVP solvers of M atlab require first-order systems.

When there are no unknown parameters, the boundary conditions are said to be sep­
arated if each of the equations of (3.2) involves just one of the boundary points. If one
of the boundary conditions involves solution values at both of the boundary points, then
the boundary conditions are said to be nonseparated. The solver bvp4c accepts prob­
lems with nonseparated boundary conditions, but many solvers do not, so we explain how
to reformulate BVPs to separate the boundary conditions. Multipoint BVPs have bound­
ary conditions that are applied at more than two points. Some solvers accept multipoint
BVPs, but many (including bvp4c) do not, so we explain how to reformulate such BVPs
as two-point BVPs.

It is not always clear what kinds of boundary conditions are appropriate and where they
can be applied. We discuss the issues, especially those related to infinite ranges. There is
considerable art to solving a BVP with a singularity at an end point or a BVP specified on
an infinite range. We look at some simple examples to understand better the possibilities
and solve some relatively difficult problems in detail to show how it might be done.

BVPs are much harder to solve than IVPs and any solver might fail, even when provided
with a good estimate for the solution and any unknown parameters. Indeed, a BVP solver
might also “succeed” when there is no solution! In Section 3.4 we discuss briefly the nu­
merical methods used by popular codes for BVPs. Although the Matlab BVP solver,
bvp4c, is effective, no one method is best for all problems. In particular, the moderate
order of its method and the aims of the Matlab PSE make it inappropriate for prob­
lems requiring stringent accuracies or for problems with solutions that have very sharp
changes.

After discussing numerical methods for BVPs, we consider examples of solving BVPs
with bvp4c. These examples are also used to develop the theory. For instance, they show
how to prepare problems for solution with other solvers. They also show how to deal with
singularities at an end point and with problems set on an infinite range. The exercises are
used similarly, so they should be read even if not actually solved.

3.2 Boundary Value Problems 135

3.2 Boundary Value Problems
Some examples given in Chapter 1 show that the “facts of life” for BVPs are quite differ­
ent than for IVPs. In this section we use other examples to learn more about this and to
illustrate an approach to analyzing BVPs by means of IVPs.

If the function f (x , y , y ') is sufficiently smooth, then the IVP consisting of the equation

y " = f (x , y , y ')

and initial conditions

y(a) = A, y '(a) = s

has a unique solution y(x) for x > a. Two-point BVPs are exemplified by the linear
equation

y " + y = 0 (3.3)

with separated boundary conditions

y(a) = A, y(b) = B

A common and useful way to investigate such problems is to let y (x , s) be the solution
of equation (3.3) with initial values y(a, s) = A and y '(a, s) = s. For each value of the
parameter s, the solution y(x , s) satisfies the boundary condition at the end point x = a
and extends from x = a to x = b. We then ask: For what values of s does y (x , s) satisfy
the other boundary condition at x = b? - that is, for what values of s is y(b, s) = B ? If
there is a solution s to this algebraic equation then y(x , s) provides a solution of the ODE
that satisfies both of the boundary conditions, which is to say that it is a solution of the
two-point BVP. By exploiting linearity we can sort out the possibilities easily. Let u(x)
be the solution of equation (3.3) defined by the initial conditions y(a) = A and y '(a) = 0
and let v(x) be the solution defined by the initial conditions y(a) = 0 and y '(a) = 1.
Linearity implies that the general solution of equation (3.3) is

y(x , s) = u(x) + sv(x)

The boundary condition
B = y(b, s) = u(b) + sv(b)

amounts to a linear algebraic equation for the unknown initial slope s. The familiar facts
of existence and uniqueness of solutions of linear algebraic equations tell us that there is
exactly one solution to the BVP when v(b) = 0, namely the solution of the IVP with

136 Chapter 3: Boundary Value Problems

B — u(b)
S — ------------------------------

v(b)

Further, if v(b) = 0 then there are infinitely many solutions when B = u(b) and none
when B = u(b). Existence and uniqueness of solutions of this BVP are clear in principle,
but it is obvious that there is a potential for computational difficulties when v(b) & 0. In
extreme circumstances, there is a danger of computing a solution when none exists and
even of concluding that no solution exists when one does.

Eigenproblems - more specifically, Sturm-Liouville eigenproblems - are exemplified
by the ODE

y " + Ay = 0 (3.4)

with periodic boundary conditions

y(0) = y(n) , y '(0) = y ' (л)

which are nonseparated, or Dirichlet boundary conditions

y(0) = 0, y (n) = 0

which are separated. For all values of the parameter X, the function y (x) = 0 is a so­
lution of the BVP, but for some values of X there are also nontrivial solutions. These
values are eigenvalues and the corresponding nontrivial solutions are eigenfunctions. The
Sturm-Liouville problem is to compute the eigenvalues and eigenfunctions. This is a non­
linear BVP because the unknown parameter X multiplies the unknown solution y(x) . If
y(x) is a solution of the BVP, it is easily seen that ay(x) is also a solution for any constant
a. Accordingly, we need a normalizing condition to specify the solution of interest. For
instance, we might require that y '(0) = 1. This choice is always valid because y '(0) = 0
corresponds to the trivial solution and, if y '(0) = 0, we can scale y(x) so that y '(0) = 1.
We can think of a normalizing condition as another boundary condition that is needed to
determine the unknown parameter X in addition to the two boundary conditions that de­
termine the solution y (x) of the second-order ODE (3.4).

For values X > 0, the solution of the IVP comprising equation (3.4) and initial condi­
tions y(0) = 0 and y '(0) = 1 is

sin(xVX)

y (x) = - V

If we solve the BVP with Dirichlet boundary conditions, the condition y (n) = 0 amounts
to a nonlinear algebraic equation for the unknown value X. Questions of existence and
uniqueness of solutions of nonlinear algebraic equations are usually difficult to answer.
However, the algebraic equation here is solved easily, and we find that the BVP has a non­
trivial solution if and only if the eigenvalue takes one of the values

3.2 Boundary Value Problems 137

к = k 2, k = 1, 2 , . . .

This example shows that, when solving a Sturm-Liouville eigenproblem, we must in­
dicate which of the eigenvalues interests us. There is a large body of theory for the
Sturm-Liouville eigenproblem because these BVPs are important in applications and
have a very special form. The monograph by Pryce (1993) explains how this theory
can be exploited numerically. Some effective codes designed specifically for solving
Sturm-Liouville eigenproblems are D02KDF (NAG 2002), SL02F (Marletta & Pryce
1995), SLEIGN (Bailey, Gordon, & Shampine 1978), and s le d g e (Pruess, Fulton, &
Xie 1992). So much is known about this problem and its solution that, when using one
of the solvers cited, you can specify precisely what you want. For example, you can
say simply that you want the fifth eigenvalue (if they are increasing) and its correspond­
ing eigenfunction. You can also solve Sturm-Liouville eigenproblems with the general-
purpose BVP solvers that we study in this chapter, but then you must supply guesses
for both the eigenvalue and eigenfunction that interest you. A theoretical result - that,
for straightforward problems of this type, the kth eigenfunction oscillates k times be­
tween the boundary points a and b - can help you make a reasonable guess, but you
cannot be certain that the solver will compute the desired eigenvalue and corresponding
eigenfunction.

Nonlinearity introduces other complications that are illustrated by the ODE

y " + | y 1 = 0

with separated boundary conditions

y(0) = 0, y(b) = B

from Bailey, Shampine, & Waltman (1968). If a linear BVP has more than one solution
then it has infinitely many, but a nonlinear BVP can have a finite number of solutions.
Proceeding as with the linear examples, we find that for any point b > n there are exactly
two solutions of this BVP for each value B < 0. One solution has the form y (x , s) =
s sinh (x). It starts off from the origin with a negative slope s and decreases monotonically
to the value B at the boundary point x = b. The other solution starts off with a positive
slope where it has the form y(x , s) = ssin(x). This second solution crosses the axis at
x = n where the form of the solution changes. Thereafter it decreases monotonically to
the value B at x = b. Figure 3.1 shows an example of this behavior with b = 4 and B =
—2. Much as when solving eigenvalue problems, when solving nonlinear BVPs we must
indicate which solution interests us. The M atlab demonstration program twobvp that
produced Figure 3.1 solves the BVP twice, using different guesses for the solution of in­
terest. Specifically, it uses the guess y(x) = —1 to compute the solution that is negative
on (0, 4n] and y(x) = 1 to compute the other solution.

138 Chapter 3: Boundary Value Problems

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 3.1: A nonlinear BVP with exactly two solutions.

These examples were constructed to make them easy to understand, but other examples
in this chapter show that BVPs modeling physical situations may not have unique solu­
tions. There are also examples which show that problems involving physical parameters
may have solutions only for parameter values in certain ranges. These examples make it
clear that, in practice, solving BVPs may well involve an exploration of the existence and
uniqueness of solutions of a model. This is quite different from solving IVPs, for which
local existence and uniqueness of solutions is assured under mild conditions that are al­
most always satisfied in practice.

3.3 Boundary Conditions
When modeling a physical problem with a BVP, it may not be clear what kinds of bound­
ary conditions to use and where to apply them. In this section we discuss the matter briefly
and then turn to the related issue of singularities. It is not at all unusual for BVPs to be
singular in the sense that either the ODEs are singular at an end point, or the interval is in­
finite, or both. The standard theory does not apply to such problems, so if we are to solve
them, we must bring to bear all the insight that we can gain from the underlying physi­
cal problem and analysis of the mathematical problem. In Sections 3.3.1 and 3.3.2 we use

3.3 Boundary Conditions 139

examples to expose some of the important issues. Several examples in Section 3.5 show
the details of preparing some realistic singular problems for solution with standard codes,
and several exercises outline how to proceed for others.

Generally, the total number of boundary conditions must be equal to the sum of the
orders of the ODEs plus the number of unknown parameters. This is entirely analogous
to the situation with IVPs. For the first-order systems that most concern us, the number
of boundary conditions must be equal to the number of ODEs in the system plus the num­
ber of unknown parameters. BVP solvers will fail if you do not supply enough boundary
conditions or if you supply too many. Usually the boundary conditions arise from the na­
ture of the problem and usually it is straightforward to determine their type and where to
apply them. However, there are occasions when

• It may be difficult to determine one or more of the boundary conditions because
all the direct physical constraints on the solution have been imposed and there are
still not enough boundary conditions. In such a case you should look for additional
boundary conditions arising from the requirement that certain integrals of the sys­
tem of ODEs should be conserved.

• Some of the boundary conditions may be of a special form. For example, the so­
lution must remain bounded at a singularity or the solution must decay, or decay
in a particular way, as the independent variable tends to infinity. In such cases it is
usually possible to convert this information into standard boundary conditions, pos­
sibly by introducing unknown parameters. A number of examples of both types are
discussed in the rest of this section and in Section 3.5.

• There may be too many boundary conditions. Sometimes your knowledge of the
underlying problem leads to “knowing” more about the solution than is necessary
to specify the BVP. In such cases you should drop those boundary conditions that
are consequences of the other boundary conditions and the ODEs. Usually (but not
always), such boundary conditions involve higher derivatives of the solution.

3.3.1 Boundary Conditions a t Singular Points

In this section we discuss singularities at finite points. They often occur in the reduction
of a PDE to an ODE by cylindrical or spherical symmetry. For instance, Bratu’s equation,

Ay + e y = 0

is used to model spontaneous combustion. Example 3.5.1 treats the nonsingular case of
slab symmetry, but cylindrical and spherical symmetry are even more interesting physi­
cally. In these cases the interval is [0,1] and the ODE is

140 Chapter 3: Boundary Value Problems

y " + k — + e y = 0 (3.5)
X

with k = 1 for cylindrical symmetry and k = 2 for spherical symmetry.
The obvious difficulty of (3.5) is the behavior of the term y / x near x = 0. We might

reasonably expect that there is no real difficulty in solving this BVP because the term
is an artifact of the coordinate system and we expect the solution to be smooth there on
physical grounds. Indeed, because of symmetry, we must have y '(0) = 0, so the term is
indeterminate rather than infinite. The standard theory of convergence has been extended
to BVPs like this for all the popular numerical methods (de Hoog & Weiss 1976,1978).
For methods that do not evaluate the ODE at x = 0, solving a BVP like (3.5) is straight­
forward. Obviously it is not straightforward for methods that do evaluate at x = 0, such
as the method of bvp4c. (The bvp4c in version 6.1 of M atlab cannot solve such BVPs
directly, but the one in version 6.5 can.) However, whether a particular solver can deal
with this BVP directly is not the point of the example; rather, it is to illustrate how to deal
with singularities at finite points.

The idea is first to approximate the solution near the singular point by analytical means.
The means employed depend very much on the problem and what you expect of the solu­
tion on physical grounds. Often some kind of series or asymptotic approximation is used.
We recommend highly the text of Bender & Orszag (1999) because it has many interest­
ing examples showing how to do this. Singularities are much less common when solving
IVPs, but they are handled in the same way, so the example and exercises of Section 2.3.4
provide additional examples of dealing with singular points.

For the present example we expect a smooth solution that we can expand in a Taylor
series. Taking into account symmetry, this series has the form

^ , у "(0) 2 , y (4)(0) 4 ,y(x) = y(0) +-----— x +-----4^ x +-----

Whatever the assumed form of the solution, we substitute it into the ODE. Using the
boundary conditions at x = 0 , we then determine the coefficients so as to satisfy the equa­
tions to as high an order as possible as x ^ 0. For the example,

k
(У "(0) + ■■■) + ~ (y "(0) x + ■■■) + e y(0)+- = 0

x

Equating to zero the leading (constant) terms, we find that we must take

У "(0) = - -
e y(0)

k + 1

If we drop the higher-order terms of the Taylor series, this is already enough to provide a
good approximation to the solution y(x) on an interval [0, 5] for a small S > 0. The deriv­
ative of this approximation provides an approximation to y '(x). We now solve the ODEs

3.3 Boundary Conditions 141

numerically on the interval [5, b] where the equations are not singular. What do we use
for boundary conditions at x = 5? Clearly we want the (analytical) approximate solution
on [0, 5] to agree at x = 5 with the numerical solution on [5, b]. For our example this is

ep 2
y (5) = p — 2(k i 1) 5 2(k + 1)

ep
y '(5) = ---------5
y () k + 1

Here we have written p = y(0) to emphasize that it is an unknown parameter that must be
determined as a part of solving the BVP. This example is typical of the way that unknown
parameters are introduced to deal with singularities.

A boundary condition tells us how the solution of interest behaves as it approaches an
end point. This is not always as simple as approaching a given value. To describe more
complex behavior, we use the standard notation

f (x) — F(x)

as x ^ x0 to mean

x ^ x 0 F(x)
f (x)

lim ------ = 1

This is read as “f (x) is asymptotic to F(x) as x approaches x0”. The boundary condition
y '(0) = 0 implies that the solution of Bratu’s problem tends to a constant as x ^ 0, but
other boundary conditions are also possible for this ODE. To explore this, we’ll investi­
gate solutions that are not bounded at the origin. We begin with k = 1. Supposing that
derivatives of a solution grow more rapidly than the solution itself as x ^ 0, we might
try approximating the ODE with

y 1 y 10 = y" + — + ey - y " + —
x x

Solving the approximating equation, we find that

y (x) — b + a log(x) = b + log(xa)

for constants a and b. We now substitute this analytical approximation into the ODE to
see when it might be valid:

y " + ^ + ey - —4 + ^ + x aeb x x 2 x 2

To satisfy the ODE asymptotically, we must have a > 0. Boundary conditions like y(x) —
log(x) as x ^ 0 arise, for example, when solving potential problems with a line charge

142 Chapter 3: Boundary Value Problems

at the origin. We see now that the ODE has solutions that behave in this way, so this is a
legitimate boundary condition. Similarly, when k = 2 ,

y (x) ~ b + ax-1

and it is necessary that a < 0. Boundary conditions like y(x) ~ —x -1 arise, for example,
when solving potential problems with a point charge at the origin. It is no harder to solve
Bratu’s equation with the boundary condition y(x) ~ log(x) than with the symmetry con­
dition: we use the analytical approximations y(x) & log(x) and y '(x) & x —1 on (0, S]
for some small S and solve numerically the ODEs on [S, 1] with boundary value y(S) =
log (S). Note that with this particular boundary condition there is no unknown parameter
y(0) as there was with the symmetry condition.

It can be more difficult to determine the behavior of solutions at a singular point. Ben­
der & Orszag (1999, pp. 170-2) discuss the solution of the ODE

УУ" = -1 (3.6)

with boundary conditions y(0) = 0 and y(1) = 0. If we are to have y (x) ^ 0 as x tends
to 0 and 1, then the ODE requires that y "(x) be unbounded there. Clearly we must supply
a solver with more than just limit values for y(x) . We follow Bender and Orszag in de­
veloping asymptotic approximations to y(x) . The solution is symmetric about x = 0.5,
so we need only investigate the behavior of the solution near the origin. We must expect
(at least) two solutions of the BVP because, if y(x) is a solution, then so is - y (x) . The
solution vanishes at the origin and has derivatives that are infinite, so let’s try something
simple like

y(x) ~ a x b

for constants a and b. Substituting into the ODE, we find that

-1 = y (x)y"(x) ~ (axb)(b(b - 1)xb-2) = ab(b - 1)x2b-2

If the power 2b - 2 < 0, then the right-hand side does not have a limit as x ^ 0. If
2b - 2 > 0, there is a limit but it is zero. If 2b - 2 = 0, the right-hand side is identically
zero. Thus we see that there is no choice that allows us to satisfy the ODE, even asymptot­
ically. This tells us that the form we have assumed for the solution is wrong. After some
experimentation, we might be led to try the form

y(x) ~ a x (- l o g (x)) b

Substituting this form into the ODE, we find after some manipulation that

-1 = y(x)y"(x) - - a 2b (-log (x))2b-1[1 - (b - 1)(-log(x))-1]

3.3 Boundary Conditions 143

If the right-hand side is to have a limit as x ^ 0 then we must have the power 2 b — 1 = 0,
hence b = 0.5. With this we pass to the limit and find that a = ± \[2 . It appears that there
are exactly two solutions. The one that is positive for positive x is y(x) — x ^ j —2log(x).
In writing this second-order equation as a first-order system for its numerical solution, we
introduce y ' (x) as an unknown. Because it is infinite at the origin, we need to know how
it behaves there if we are to solve the BVP. On the other hand, all positive solutions of the
ODE that vanish at the origin behave in the same way to leading order, so it is not nec­
essary to introduce an unknown parameter if we are interested only in modest accuracy.
Exercise 3.4 asks you to see for yourself that, once you prepare the BVP with this infor­
mation about how the solution behaves near the singular point, you can solve it easily.

For further examples with a physical origin, you should read now the portions of the
following exercises that are devoted to the behavior of the solutions. See particularly Ex­
ercise 3.2. Example 3.5.4 and Exercise 3.9 take up singular boundary conditions at the
origin, but they have the further complication of an infinite range. After you have learned
how to use the Matlab BVP solver, you can return to the exercises and solve the BVPs
numerically.

■ EXERCISE 3.1
If the solution of a BVP behaves well at a singular point, it may not be necessary to use an
analytical approximation in the neighborhood of the point. To illustrate this we consider
a Sturm-Liouville eigenproblem called Latzko’s equation,

d- ((1 — x]) d - \ + Xx7y = 0
dt \ dx J

with boundary conditions y(0) = 0 and y(1) finite. A number of authors have solved this
problem numerically because of its physical significance and interesting singularity. Scott
(1973, p. 153) collects approximations to the first three eigenvalues and compares them
to his approximations: 8.728, 152.45, and 435.2. To write this equation as a first-order
system, it is convenient to use the unknowns y(x) and v(x) = (1 — x7)y ' (x) and so obtain

y ' = v1 — x7
v ' = —Xx1y

This is an eigenvalue problem, so we must specify a normalizing condition (e.g., y(1) = 1)
for the solution. The differential equation is singular at x = 1. If we are looking for a so­
lution with y '(1) finite, the first equation of the system states that we must have v(1) = 0.
Using the second equation, L’Hopital’s rule then says that

, v(x) v '(x) —Xx1y(x) X
y (1) = lim -------- = lim ----- - = lim -------- -— = -

x 1̂ 1 — x7 x 1̂ —7x6 x 1̂ —7x6 7

144 Chapter 3: Boundary Value Problems

We can solve the ODEs for y(x) and v(x) subject to the boundary conditions

y(0) = 0, y(1) = 1, v(1) = 0

provided that we evaluate them properly at x = 1. When solving a BVP with an unknown
parameter, bvp4c calls the function for evaluating the ODEs with a mesh point x and the
current approximations to y(x) and X. If x = 1, this function must return the limit value
for y '(1). You must code for this because this solver always evaluates the ODEs at the
end points of the interval. With a smooth solution, the solver will not need to evaluate the
ODEs at points x so close to the singular point that there are difficulties evaluating y '(x) ,
difficulties that we avoid for other kinds of problems by using analytical approximations
near the singularity. Of course, the guess for v(x) should have the proper behavior near
x = 1. This is easily accomplished by using the guess for y(x) to form (1 - x7)y ' (x) as a
guess for v(x).

A different way to perform this analysis is to look for a solution y (x) — 1 + c(x - 1) as
x ^ 1. If there is a solution of this form, then y '(x) — c. Because y '(1) is finite for a so­
lution of this form, it follows that v(1) = 0. Determine the constant c by substituting this
assumed form into the ODE for y(x) . In this it will be helpful to show that (1 - x7) —
7(1 - x) near x = 1. If the function for evaluating the ODEs is coded properly, then it is
easy enough to solve this eigenproblem with bvp4c. What is not easy is to compute spe­
cific eigenvalues and eigenfunctions. This is because it is not clear which solution you
will compute with given guesses for y(x) and X, or even whether you will compute a so­
lution. As mentioned in the text, there are codes for the Sturm-Liouville eigenproblem
that deal with this by bringing to bear a deep understanding of the theory of such prob­
lems. Using bvp4c, try to confirm one or more of Scott’s approximate eigenvalues. We
found that the guess y(x) & x sin(2.5^x) and an initial mesh of l i n s p a c e (0 , 1 , 1 0)
yielded convergence to different eigenvalues for guesses X = 10, 100, 500, 1000, 5000,
and 10,000; these computed eigenvalues include the first three. This behavior is some­
what surprising since - with different guesses for y (x) or even a different initial mesh -
these guesses for X often do not result in different eigenvalues.

■ EXERCISE 3.2
The first example of the documentation for the BVP code d 0 2 h b f in the NAG library
(NAG 2002) is the singular problem

2xy" + y ' = y3, y(0) = 1 , У(16)
1
6

Look for a solution that behaves like

y(x) — a + p x e + yx

3.3 Boundary Conditions 145

as x ^ 0. In this assume that 0 < в < 1. Determine а, в, and у from the ODE and the
boundary condition at x = 0 . The coefficient p is an unknown parameter. A solution that
behaves in this way has a first derivative that is not bounded as x ^ 0. You are not asked
to solve this BVP numerically, but to do so you would use these asymptotic approxima­
tions to y(x) and y '(x) on an interval (0, d] for a small d and solve numerically a BVP
on [d, 16]. Requiring that the numerical solution agree at d with the asymptotic solution
provides boundary conditions for the BVP. It is necessary to require continuity in both
y (x) and y ' (x) so as to have enough conditions to determine the unknown parameter p.
It would be reasonable to use the asymptotic approximations along with a guess for p as
guesses for the solution on [d, 16].

■ EXERCISE 3.3
Section 6.2 of Keller (1992) discusses the numerical solution of a model of the steady
concentration of a substrate in an enzyme-catalyzed reaction with Michaelis-Menten ki­
netics. A spherical region is considered and the PDE is reduced to an ODE by symmetry.
The equation

.// , „ y 7 y
x e(y + k)

involves two physical parameters, e and k. The boundary conditions are y(1) = 1 and
the symmetry condition y '(0) = 0. Once you have learned how to use bvp4c, solve this
problem for the parameter values e = 0.1 and k = 0.1. Approximate y(x) on the inter­
val [0, d] with a few terms of a Taylor series expansion and solve the BVP numerically
on [d, 1]. To plot the solution on all of [0,1], augment the numerical solution on the in­
terval [d, 1] with the values at x = 0 provided by the unknown parameter p = y(0) and
the initial derivative y '(0) = 0. Two terms of a Taylor series for y(x) and one for y' (x)
are satisfactory when d = 0.001. You will need to communicate d and the parameters e
and k to your functions for evaluating the ODEs and boundary conditions. You could hard
code them, pass them as g l o b a l variables, or pass them as optional input to bvp4c. If
you choose the last possibility, keep in mind that these optional arguments must follow
the unknown parameter p in the various call lists. Also, if you do not set any options, you
will need to use [] as a placeholder in this argument that precedes unknown parameters
in the call list of bvp4c.

■ EXERCISE 3.4
Once you have learned how to use bvp4c, solve the BVP

yy// = -1 , y(0) = 0, y '(0.5) = 0

The text shows that y(x) — x ^ j —2log(x) as x ^ 0. It will be convenient to code a sub­
function to evaluate the approximation v(x) = x^J—2log(x). Move the boundary condi­
tion from the singular point at the origin to, say, d = 0.001 by requiring that y(d) = v(d).

146 Chapter 3: Boundary Value Problems

Compute y(x) on [d, 0.5] using bvp4c with default tolerances and guesses of y (x) &
x(1 - x) and y '(x) & 1 - 2x . Corresponding to Figure 4.11 of Bender & Orszag (1999),
plot both y(x) and v(x) with a x i s ([0 0 . 5 0 0 . 5]) . In this you should augment the
array for y(x) with y(0) = 0 and the array for v(x) with v(0) = 0.

3.3.2 Boundary Conditions a t Infinity

Whether a BVP is well-posed depends on the nature of solutions of the ODEs and on
the boundary conditions. Appropriate boundary conditions may be obvious from physi­
cal reasoning but, when they are not, you need to be aware of the issues. This matter is
always important for problems set on infinite ranges, but it is also important when the in­
terval is “large”. After we understand better what kinds of boundary conditions might be
imposed at infinity, we consider some examples that show how to prepare problems for
solution with codes that require a finite interval. This is very much like the way we deal
with a singularity at a finite end point.

The equation
y '" + 2y" - y ' - 2y = 0 (3.7)

is illuminating. Its general solution is

y(x) = A e x + Be-X + Ce-2x

Notice that there are three components of the solution, two that decay as x increases and
one that grows. Suppose that we solve this equation on the interval [0, + ro) with bound­
ary conditions

y(0) = 1, y '(0) = 1, у(+то) = 0

The last boundary condition,

y(<x>) = 0 = A х ж + B x 0 + C x 0

implies that A = 0 . The other two conditions,

y(0) = 1 = A x 1 + B x 1 + C x 1

y '(0) = 1 = A x 1 - B x 1 - 2C x 1

imply that B = 3 and C = —2. From this we see that there is a solution of this BVP and
only one solution. On the other hand, if the boundary conditions are

y(0) = 1, y(+cx>) = 0, y '(+cx>) = 0 (3.8)

then the boundary condition y(<x) = 0 again implies that A = 0, but now the last
condition,

3.3 Boundary Conditions 147

y '(to) = 0 = A х ж — B x 0 — 2C x 0

places no constraint on the coefficients. The remaining boundary condition,

y(0) = 1 = A x 1 + B x 1 + C x 1

tells us only that C = 1 — B, so any value of B results in a solution; that is, this BVP has
infinitely many solutions.

If a BVP is not well-posed with boundary conditions at b = +сю, it is natural to ex­
pect numerical difficulties when they are imposed at a finite point b > +1. Suppose then
that we solve equation (3.7) with boundary conditions

replacing (3.8). For large values of b, the system of linear equations for the coefficients
A, B, and C in the general solution is extremely ill-conditioned. Indeed, even for b as
small as 20, an attempt to invert the matrix results in (a) a warning from M atlab that the
matrix is close to singular and (b) an estimate of 5 ■ 1017 = 1 / r c o n d for its condition
number. The essence of the matter is that the two solutions of the ODE that decay expo­
nentially fast as x increases cannot be distinguished numerically by their values at x = b;
hence the linear system for their coefficients in the linear combination that forms the so­
lution of the BVP is numerically singular. The third solution, ex , decays exponentially
fast as x decreases, leading to an ill-conditioned linear system if b is large and the bound­
ary condition involves the value of this solution at x = 0. Exercise 3.5 considers a related
problem.

Generalizing this last example to a system of linear ODEs with constant coefficients,

gives more insight. For the sake of simplicity, let us suppose that the Jacobian matrix J
is nonsingular. This implies that p(x) = — J —1q is a constant particular solution of the
ODE. Further assume that J has a complete set of eigenvectors {vj } with corresponding
eigenvalues {Xj}. This implies that there are constants aj such that

y(0) = 1, y(b) = 0, y '(b) = 0

y / = Jy + q (3.9)

It is then verified easily that the general solution of the system of ODEs is

y(x) = p (x) + ^ 2 aj eXj(x—a)v j

We see from this that y(x) is finite on [a, + to) only when the boundary conditions at
x = a imply that a m = 0 for all m with Re(Xm) > 0. Correspondingly, the BVP is

148 Chapter 3: Boundary Value Problems

well-conditioned for b > a only when the boundary conditions at x = a exclude the
terms that grow exponentially fast as x increases. Similarly, using the expansion

y(b) - p(b) = ^ PjV1

we see that if b > a then we must have boundary conditions at x = b that imply fim =
0 for any value m such that Re(Xm) < 0 if the BVP is to be well-conditioned. Roughly
speaking, components that decay rapidly from left to right must be determined by the
boundary conditions at the left end of the interval, and components that grow rapidly in
this direction must be determined by the boundary conditions at the right end.

These linear, constant-coefficient problems are rather special, but they provide valu­
able insight. More generally we recognize that the boundary conditions restrict the various
kinds of behavior that solutions can have. If there are solutions of the ODE that approach
one another very quickly as x increases from a to b, then for b > a a code will not be able
to distinguish the solutions numerically when applying the boundary conditions at x = b.
Because of this, these solutions must be distinguished by boundary conditions at the point
x = a rather than at x = b. There is a dichotomy of the solution space of the ODE that
must be reflected in the placement of the boundary conditions. This is easy enough to sort
out for linear, constant-coefficient ODEs, but for more general ODEs some careful phys­
ical reasoning is normally needed to decide where and what kind of boundary conditions
are appropriate. Ascher, Mattheij, & Russell (1995) provide more details and examples
that illuminate this issue.

An interesting and informative example is provided by traveling wave solutions of
Fisher’s equation. The significance of these solutions and a thorough analysis of the prob­
lem is found in Section 11.2 of Murray (1993). A wave traveling at speed c has the form
u (x , t) = U(z). Here z = x - ct and U(z) satisfies the ODE

U" + cU' + U(1 - U) = 0 (3.10)

Obviously this equation has two trivial steady states, U(z) = 1 and U(z) = 0. A typical
wavefront solution has

U (- to) = 1, U(+to) = 0

(Together these boundary conditions preclude the steady-state solutions.) For a given
value of the wave speed c, it appears that we have the ODE and boundary conditions that
we need to define properly a BVP, but it is easy to see that we do not: there are an infi­
nite number of solutions, because if U(z) is a solution of this BVP then so is U(z + y) for
any constant y . It is tempting to choose some large number Z, specify the boundary con­
ditions U (- Z) = 1 and U(Z) = 0 to replace the corresponding boundary conditions at
- t o and (respectively), and then call upon our favorite BVP solver. This approach
is not likely to succeed because the BVP has an infinite number of solutions and we have

3.3 Boundary Conditions 149

provided no information that distinguishes a specific one. Murray studies this BVP in the
phase plane (U, U /). There are two singular points (0, 0) and (1, 0) that correspond to the
steady states. A linear stability analysis shows that, if с > 2, then the critical point (0,0)
is a stable node and the critical point (1, 0) is a saddle point. By examining trajectories in
the phase plane, Murray argues that if с > 2 then there exists a solution of the BVP such
that, on approach to the point (0,0),

U/(z) — eU(z)

with в = {—с + s / c2 — 4) / 2 and, on approach to the point (1, 0),

(U(z) — 1)' — a(U(z) — 1)

with a = (—с + s j c2 + 4) /2.
Linear stability analysis in a phase plane amounts to approximating the equations by

an ODE with constant coefficients - that is, an ODE of the form (3.9). We can proceed in
a more direct way. We learned that with assumptions that exclude degenerate cases, the
solution of (3.9) consists of a constant particular solution plus a linear combination of so­
lutions of the homogeneous problem that are exponentials. So let’s look for a solution of
this form that approaches the steady state (1, 0) as z ^ —to. Specifically, we look for a
solution of the form

U(z) — 1 + p e az

and, correspondingly,

U'(z) — a p e az

If the point (U(z), U '(z)) is to approach this steady state, we must have Re (a) > 0.
Substituting into the ODE, we find that we want

U" + M / = (U — 1)U

a 2p e az + c a p eaz — p e az + p 2e2az

Dividing out nonzero common factors, we need a value a for which

a 2 + ca — 1 + p e az — 1

as z ^ —to. From this we find that a = (—с ± ^ / с 2 + 4) /2. The two values reflect the
fact that this steady state is a saddle point in the phase plane. Only the positive value a =
(—с + У с2 + 4) / 2 provides the behavior that we require. Now we must select a bound­
ary condition that imposes the correct kind of behavior as z ^ —to. We have worked
out the decay rate, but we do not know the factor p because it is specific to the solution

150 Chapter 3: Boundary Value Problems

we seek. Either we must introduce p as an unknown parameter or we must formulate the
condition in a way such that p does not appear. A simple way to do this is to require that

U (z)
^ a

U(z) - 1

That is, we choose a number Z > 1 and require that

U (- Z)
U (- Z) - 1 a

as our left boundary condition.
For illustrative purposes, we proceed a little differently in working out the behavior of

U(z) as z ^ +сю. Because U(z) tends to zero, we can approximate U(z)(1 - U(z)) by
U(z) for large z. Accordingly, we can approximate (3.10) by the ODE

U" + cU' + U = 0

Solving this ODE yields
U(z) — qeez

with в a root of в 2 + cfi + 1 = 0. Both roots of this quadratic are negative, and it is not
immediately obvious which should be chosen. A more detailed analysis by Murray in­
dicates that we must use в = {-•c + s /c 2 - 4) / 2. Essentially, we work with the more
slowly decaying component of the solution, since this guarantees that the faster decaying
component has effectively vanished at the boundary point. Again there is an issue of the
factor q and the form of the boundary condition. Recall that if U(z) is a solution of the
ODE then so is U(z + y). To deal with this, it is convenient here to choose a value for q
so as to compute a specific solution. Like Murray, we choose q = 1 and impose the right
boundary condition

U(Z)
,pz - 1 = 0

This problem is considered further in Example 3.5.5; see also Exercises 3.25 and 3.26.
This discussion may have left the impression that, when the BVP is posed on an infi­

nite range, solutions always decay at an exponential rate. However, there are other kinds
of behavior that are common in practice. As a simple example, consider the equation

y ' = Xxy
2with boundary conditions y(0) = 1 and y(x) — e x as x ^ x > . Here X is an unknown

parameter that is found analytically by solving the ODE with initial value y(0) = 1 and
then imposing the boundary condition at infinity. In this way we find easily that the solu­
tion is

3.3 Boundary Conditions 151

X = - 2 , y(x) = e x

When solving problems set on an infinite range, we often replace boundary conditions at
infinity by boundary conditions at some large b. Because many problems set on an in­
finite range have solutions that decay exponentially fast, our experience may lead us to
choose a value that is too large when solutions actually decay much faster, as in this ex­
ample. Choosing a b that is much too large can cause a BVP code to fail because it cannot
distinguish numerically the various kinds of solution at x = b.

At the other extreme are BVPs with solutions that decay algebraically rather than expo­
nentially. As a simple example that we use to make another point, consider the equation

y ' = - Xy 2

with boundary conditions y(0) = 1 and y (+ ro) = 0. Again X is an unknown parameter.
The analytical solution of the ODE that satisfies y(0) = 1 is

1
y(x) =

This solution satisfies the boundary condition at infinity for any X > 0, which is to say that
the BVP has infinitely many solutions. Though artificial, this example makes the point
that we may need to provide more information about how the solution of a singular prob­
lem behaves if we are to have a well-posed problem. Here we might specify the boundary
condition y(x) — x - 1 as x ^ and then find that there is a unique solution with X =
1. With an algebraic rate of decay like this, it is generally necessary to use what seems like
quite a large value of b to represent infinity. To appreciate this, suppose that we replace
the boundary condition at infinity with y(b) = 1/b for some large b. It is easily found that
the solution on this finite interval is

1 1
Xb = 1 - т , yb(x) =b x + 1 - x/ b

Clearly we would need to use quite a large b for the solution on the interval [0, b] to agree
(to even modest accuracy) with the solution of the problem set on the interval [0, <x).

For further examples with a physical origin, you should read now the portions of the fol­
lowing exercises that are devoted to the behavior of the solutions. After you have learned
how to use the Matlab BVP solver, you can return to the exercises and solve the BVPs
numerically.

■ EXERCISE 3.5
Show that the general solution of the ODE

y - 2y" - y ' + 2y = 0

152 Chapter 3: Boundary Value Problems

is
y(x) = A e x + Be2x + Ce~x

Show that, with boundary conditions

y(0) = 1, y (+ to) = 0, y ;(+ to) = 0

there is a unique solution to the BVP. Show that with boundary conditions

y(0) = 1, y '(0) = 1, y(+TO) = 0

the BVP does not have a solution. Investigate numerically the condition of the linear sys­
tem that determines the constants A, B, and C when the boundary conditions are

y(0) = 1, y '(0) = 1, y(20) = 0

■ EXERCISE 3.6
Murphy (1965) extends the classical Falkner-Skan similarity solutions for laminar incom­
pressible boundary layer flows to flows over curved surfaces. He derives a BVP consisting
of the ODE

f "" + (П + f) f f " = y [f f " + Q (f /)2]

and boundary conditions

f(0) = 0, f /(0) = 0

and, as x ^ to,

f /(x) — e~ax, f "(x) — -Q .e~ax

Here ^ is a positive curvature parameter and y is a constant related to the pressure gradi­
ent. Look for solutions of the ODE that behave like

f (x) — S + pe~Xx

as x ^ to. That is, look for values of the constants S, p, and X > 0 such that S + p e -Xx
satisfies the ODE as x ^ to. You should find that X = ^ is one possibility. By choosing
the constants properly, show that there are solutions that satisfy the boundary conditions
at infinity. With this we see that the boundary conditions specified by Murphy are consis­
tent with the behavior of solutions of the ODE. As a by-product of your analysis, find an
exact solution of the ODE that satisfies the two boundary conditions at infinity and one
of the boundary conditions at the origin. This solution would be useful as a guess when
solving the BVP numerically.

3.3 Boundary Conditions 153

■ EXERCISE 3.7
Ames & Lohner (1981) study models for the transport, reaction, and dissipation of pollu­
tants in rivers. One model gives rise to a system of three first-order PDEs in one space
variable x and time t. By looking for traveling wave solutions that depend only on the
variable z = x - t, they reduce the PDEs to the ODEs

f " = e g f , g " = ~ e g h , h" = Xegh

Here f represents a pollutant, g bacteria, and h carbon; the physical parameters в and X
are constants. After showing that the equations for g and h imply that

(\ p h (z)g(z) = E -----—

where E is a given value for g(<ro), they reduce the system of ODEs to

"" = Xf)(E - -X) - f " = в (Е - -) f

These equations are to be solved subject to boundary conditions

h(0) = 1, f (0) = 1, - (to) = 0, f(<ro) = 0

Ames and Lohner consider a number of choices of parameters. For в = 10, X = 10, and
E = 1, they derive an upper bound for f(0.1) of 0.730 and a lower bound of 0.729. For
these values of the parameters, argue that h(z) is asymptotically a multiple of e-10z and
that f (z) is a multiple of e- ' /10z. In view of this behavior, solve the BVP by replacing the
boundary conditions at infinity with the boundary conditions h(Z) = 0 and f (Z) = 0 for
some finite value Z of modest size. Several values should be tried (e.g., Z = 2, 3, and 4)
in order to gain confidence in your solution. A common way to proceed when solving
BVPs on infinite intervals is to guess a value for Z. If you cannot solve the BVP, reduce
Z and try again. If you can solve the BVP, inspect the solution to see whether it exhibits
the desired behavior well before the end of the interval. If not, increase Z and try again.
For this problem you could use the asymptotic expressions for h(z) and f (z) as guesses
for the first interval, but you will find that simple constant guesses are satisfactory. Check
your numerical solution for f (z) against the bounds derived by Ames and Lohner.

■ EXERCISE 3.8
Example 7.3 of Bailey et al. (1968) considers a similarity solution for the unsteady flow of
a gas through a semi-infinite porous medium initially filled with gas at a uniform pressure.
The BVP is

154 Chapter 3: Boundary Value Problems

w "(z) + , 2 z ----- w '(z) = 0
y/1 - aw(z)

with boundary conditions

w(0) = 1, w (+to) = 0

A range of values of the parameter 0 < a < 1 is considered when this problem is solved
numerically in Example 8.4 of Bailey et al. (1968). Solve this problem for a = 0.8.
Although the examples of this chapter emphasize analyzing the behavior of solutions near
a singular point, it is often the case that problems on infinite intervals can be solved in a
straightforward way. Solve this problem by replacing the boundary condition at infinity
with the boundary condition w(Z) = 0 for some finite value Z. Several values should be
tried (e.g., Z = 2, 3, and 4) in order to gain confidence in your solution. Your guess for
w(z) should respect the physical requirements that 0 < w(z) < 1. There should then be
no difficulty in forming the square root in the ODE.

To understand better what is going on, we first observe that because w (to) = 0, the
ODE is approximately w"(z) + 2 z w (z) = 0 for large z. Solving this approximating equa­
tion, we find that 2

w '(z) — в е -

Integrating and imposing the boundary condition at infinity, we then find that

вл/П"'

The standard asymptotic representation of the complementary error function,

Гто 2 . .

w(z) — - в J e t dt = ^ - ^ ^) erfc(z)

e
erfc (z) — —

z*Jn

shows that w(z) approaches its boundary value w (to) = 0 very quickly. That is why we
can impose the numerical boundary condition w(Z) = 0 at what seems like a very small
value of Z. In fact, we must use a small value of Z because the solver cannot distinguish
w(z) from the identically zero solution of the ODE when z is large. Sometimes we must
supply more information about how a solution behaves near a singular point if we are to
compute a numerical solution at all. For this BVP, we could do that by treating the con­
stant в as an unknown parameter and imposing the two numerical boundary conditions

w (Z) = в е ~ Z , w(Z) = (- erfc (Z)

-z

instead of w(Z) = 0. The analytical approximations to w(z) and w (z) are accurate only
for large z, but they provide reasonable guesses for the solver for all z.

3.3 Boundary Conditions 155

■ EXERCISE 3.9
The Thomas-Fermi equation,

y " = x - 1/2 y 3/2

is to be solved with boundary conditions

y(0) = 1, y (+ to) = 0

This BVP arises in a semiclassical description of the charge density in atoms of high
atomic number. There are difficulties at both end points; these difficulties are discussed
at length in Davis (1962) and in Bender & Orszag (1999). Davis discusses series solutions
for y(x) as x ^ 0. It is clear that there are fractional powers in the series. That is be­
cause, with y(0) = 1, the ODE requires that y " — x - 1/2 as x ^ 0 and hence that there
be a term 4x 3/2 in the series for y(x) . Of course, there must also be lower-order terms so
as to satisfy the boundary condition at x = 0 . It is natural then to try for a solution of the
form

y(x) = 1 + p x + 3x 3/2 + bx 2 + cx 5/2 +-----

The manipulations will be easier if you write the equation as

x (y ")2 = y3

For this expansion, verify that p is a free parameter, b = 0 , and c = 2p / 5. Bender and
Orszag discuss the asymptotic behavior of y(x) as x ^ to. Verify that trying a solution
of the form y(x) — a x a yields y0(x) = 144x - 3 as an exact solution of the ODE that sat­
isfies the boundary condition at infinity. To study the behavior of the general solution near
this particular solution, first write y(x) = y 0(x) + e(x). Show that, for functions e(x)
that are small compared to y0(x),

y 3/2(x) ^ y3/2(x) + 3y0/2(x)e(x)

and then that the correction e(x) is obtained approximately as a solution of e"(x) =
18x- 2e(x) . Look for solutions e(x) of the form cxY. Discarding solutions that do not
tend to zero as x ^ to, conclude that solutions of the ODE that are near y 0(x) and
satisfy the boundary condition at infinity have the form y(x) — 144x - 3 + cxY for
Y = (1 - У Тэ)/2 ^ —3.772 and an arbitrary constant c.

Move the boundary condition from the origin to a small value of d > 0 by matching
y(d) and y '(d) with values computed using the series approximation and treating p as
an unknown parameter. Move the boundary condition at infinity to a large value of D by
matching y(D) to y0(D). Because solutions decay at only an algebraic rate, a relatively
large value of D is needed. Solve the BVP with default tolerances and several choices

156 Chapter 3: Boundary Value Problems

of d and D. You might, for example, use intervals [1, 20], [0.1, 40], and [0.01, 60]. As a
guess for the solution on [d, D] , you might use

y (x) ъ 1, y ' (x) ъ 0

for x e [d, 1] and

y (x) Ъ 144x -3, y ' (x) Ъ -432x —4

for x e (1, D]. After solving the problem for one choice of [d, D], you could use the
capability of b v p in i t o f extrapolating the solution on one interval to form a guess for a
longer interval. You should code x —1/2y 3/2 as

m a x (y (1) , 0) ~ (3 / 2) / s q r t (x)

because intermediate approximations to y (x) might be negative, resulting in complex
values of the fractional power. Plot together the solutions computed for different intervals
to gain some confidence that your last interval provides an acceptable solution. Figure 4.10
of Bender & Orszag (1999) shows some results o f solving the BVP with a shooting method.
Augment your last solution with y(0) = 1 and plot it using a x i s [0 15 0 1] so as to
confirm this figure. The parameter p = y '(0), so compare the value for p that you com­
pute to the value p = —1.588 obtained in Bender & Orszag (1999) and Davis (1962).

3.4 Numerical Methods for BVPs
The theoretical approach to BVPs o f Section 3.2 is based on the solution of IVPs and the
solution of nonlinear algebraic equations. Because there are effective programs for both
tasks, it is natural to combine them to obtain a program for solving BVPs. A method of
this kind is called a shooting method. Because it appears so straightforward to use qual­
ity numerical tools for the solution of BVPs by shooting, it is perhaps surprising that the
most popular solvers are not shooting codes. The basic difficulty with shooting is that a
well-posed BVP can require the integration of IVPs that are unstable. That is, the solu­
tion of a BVP can be insensitive to changes in its boundary values, yet the solutions of the
IVPs arising in the shooting method for solving the BVP are sensitive to changes in the
initial values. The simple example

y " — 100y = 0

with boundary conditions y (0) = 1 and y(10) = B makes the point. Shooting (from left
to right) involves solving the IVP with initial values y (0) = 1 and y '(0) = s. The analyt­
ical solution of this IVP is

3.4 Numerical Methods for BVPs 157

dy sinh(10 x)

dB sinh(100)

y (x , s) = cosh(10x) + 0.1s sinh(10x)

The partial derivative dyS = 0.1 sinh(10x) can be as large as 0.1 sinh(100) ^ 1.3 ■ 1042 on
the interval [0,10]. The slope for which the boundary condition at x = 10 is satisfied is

10(B - cosh(100))
s = ------------------------

sinh(100)

Substituting this value o f s into the general solution of the IVP to find the solution y (x)
o f the BVP, we then find that

dy sinh(10 x)

Evidently the solution o f the IVP is considerably more sensitive to changes in the initial
slope y '(0) = s than the solution of the BVP is to changes in the boundary value y(10) =
B. I f the IVPs are not too unstable, shooting can be quite effective. Unstable IVPs can
cause a shooting code to fail because the integration “ blows up” before reaching the end
o f the interval. More often, though, the IVP solver reaches the end o f the interval but
is unable to compute an accurate result there. Because the nonlinear algebraic equations
cannot be evaluated accurately, the nonlinear equation solver cannot find accurately the
initial values needed to determine the solution o f the BVP. By proper preparation of sin­
gular points and infinite ranges as illustrated in this chapter, simple shooting codes can
be applied to many more problems than is generally appreciated. Nevertheless, they are
limited to problems for which the IVPs are moderately stable, and as a consequence there
are very few in wide use. The NAG library code D02SAF (Gladwell 1987) and its driv­
ers are simple shooting codes that can be useful because they deal so conveniently with
an exceptionally large class o f BVPs. Example 3.5.3 illustrates this.

One way to overcome difficulties due to instability of the IVPs that arise when shoot­
ing is to break the range of integration into several parts. To appreciate the potential of
this technique, recall that the bound we considered in Chapter 2 for the stability o f an IVP
with a function f (t , y) that satisfies a Lipschitz condition with constant L involves a fac­
tor eL(b-a). As least as far as this bound is concerned, reducing the length of the interval
o f integration gives an exponential improvement in the stability o f the IVP. After break­
ing up the interval of integration, the ODEs are integrated independently over the various
pieces. The solutions on adjacent subintervals are then required to have the same value at
the break point they have in common. With this, the approximate solutions on the various
pieces together form a continuous approximation on the whole interval. The boundary
conditions and the continuity conditions form a set of nonlinear algebraic equations with
(N + 1)d unknowns. Here d is the number of first-order ODEs and N is the number of
break points. This approach is called multiple shooting. Much as when evaluating implicit
methods for IVPs, the algebraic equations are solved with a variant o f Newton’s method.

158 Chapter 3: Boundary Value Problems

At each iteration, a highly structured system of linear equations is solved. It is impor­
tant to recognize and exploit the structure because the system can be large. If the IVPs
are unstable enough to warrant multiple shooting, then some form of pivoting is needed
to solve the linear equations stably. A considerable amount o f research has been devoted
to the stable solution o f large linear systems with the structure corresponding to multiple
shooting. If the break points are chosen carefully and the linear systems are handled prop­
erly, multiple shooting can be quite effective. A major challenge in developing a multiple
shooting code is to develop algorithms for choosing an initial set o f break points, mov­
ing them, and adding or deleting them. Examples o f software for nonlinear BVPs based
on multiple shooting are m u sn by Mattheij & Staarink (1984a,b) and DD04 by England
& Reid (H2KL) .

In this view of multiple shooting, the IVPs on each subinterval are solved with a qual­
ity IVP code. Because the IVP solver varies the step size, it is not known in advance how
many mesh points the solver will use in each subinterval nor where it will place them.
Finite difference methods have a number o f different forms. A very popular one can be
viewed as multiple shooting with a one-step method taken to the extreme of just one
step between break points. More specifically, these finite difference methods approximate
the ODEs (3.1) with a solution y 0, y 1, . . . , y N computed with a one-step method on each
subinterval [x i , x i+1] o f a mesh a = x 0 < x1 < ■ < x N = b. The boundary conditions
(3.2) become g (y 0, yN) = 0. The trapezoidal rule is a simple and important example that
approximates the ODEs by

hi
yi+1 — yi = ~ [f (x i , yi) + f (x i+1, yi+1)]

for i = 0 ,1, . . . , N — 1. These N equations, together with the one for the boundary con­
ditions, constitute a system of nonlinear algebraic equations for the values yi ъ y (x i).
In this approach, the solution is defined implicitly even when an explicit one-step IVP
method like the (forward) Euler method

yi+1 — yi = h i f (x i , y i)

is used. This is the result of a fundamental difference between IVPs and BVPs. A ll the in­
formation that specifies the solution of an IVP is given at a single point, and the solution
evolves from that point in a direction of interest. The information is given at two or more
points for BVPs, so there is no “direction” and it is necessary to account for the informa­
tion at all points when computing the solution. Because explicit one-step IVP formulas
are not explicit when used to solve BVPs, they are not nearly as attractive as they are for
solving IVPs. When solving BVPs we are not so concerned about the practical difficulties
o f evaluating implicit one-step methods, so we can take advantage o f their good accu­
racy and stability. In particular, the trapezoidal rule is a second-order formula with good
stability that treats both directions alike.

3.4 Numerical Methods for BVPs 159

As with multiple shooting, when using the trapezoidal rule there are (N + 1)d non­
linear equations, but N is now (very) much larger and we must pay close attention to the
form of the equations if the method is to be practical. In practice, the nonlinear equations
are solved by a variant o f Newton’s method. The structure of the linear systems that must
be solved at each iteration of Newton’s method is more obvious if we assume that both
the equations and the boundary conditions are linear, namely,

У' = J (x) y + q (x)

Bay(a) + Bby(b) = в

The trapezoidal rule on [x i , x i+1] is then

h [q (x i) +

After scaling the equations, they can be written in matrix form as

h hi
- I --- 2 J (X i) iy + 1 --- 2" J (x i+1) yi+1

(3.11)

(3.12)

(3.13)

/ S0 R0
S1 R 1

Ba

Sn -1 Rn -1

y0

y 1

yN-1

Bb) \ yN)

(v 0 \
V1

vN-1

в /

(3.14)

Here

2 2
Si = - — I - J (x i) , Ri = — I - J (x i + 1) , Vi = q (x i) + q (x i + 1)

hi hi

for i = 0 ,1, . . . , N - 1. One way to exploit the structure o f this matrix is to treat it as a
general sparse matrix. This is easy in M atlab , and that is what its solver bvp4c does.
Most solvers proceed differently. They solve only problems with separated boundary
conditions,

Bay(a) = ва, Bby(b) = вь

because it is easier to deal with the structure o f the resulting linear systems.
When the boundary conditions are separated, the equations can be written as

Ba
S0 R 0

S1 R 1

SN-1 R N-1
Bb

y 0

y 1

y 2

yN-1

yN

(в а \
V 0

VI

VN-1

V вь)

160 Chapter 3: Boundary Value Problems

It is easy and reasonably efficient to store this matrix as a banded matrix. Gaussian elimi­
nation with row pivoting is an effective way to solve banded linear systems. More elaborate
and efficient schemes for handling such matrices take account o f their almost-block diag­
onal structure and use both column and row pivoting to minimize the storage and preserve
the stability o f the computation. A survey o f these schemes is found in Amodio et al.
(2000). The structure is less regular than it might appear because the submatrices Ba and
Bb do not have d rows (they are rectangular). That is because, when the boundary con­
ditions are separated, the number o f rows in the submatrix Ba corresponds to the number
o f boundary conditions specified at the end point a and similarly for Bb; the two sub­
matrices have a total of d nonzero rows corresponding to the boundary conditions. One
reason these more restricted structures are preferred in popular solvers is that the neces­
sary storage for the stable solution of the corresponding linear systems can be determined
in advance, which is not the case for the stable solution of general sparse systems.

As a one-step method, the trapezoidal rule is of order 2, meaning that the solution y (x)
satisfies the formula (3.13) with a local truncation error Ti at x i that is O (h f) . I f we de­
fine the error ei = y (x i) — y i and subtract the equations (3.14) satisfied by the yi from the
equations satisfied by the y (x i), we find that

/ S 0 R0

S1 R 1

N—1 R

Ba

e0

e1

eN—1

Bb) \ eN)
N—1

(°0 \

®1

&N—1

0

(3.15)

Here the vectors ai are the scaled truncation errors (2/hi) r i and there is no truncation
error in the boundary conditions. From this we see that the vector of errors at the mesh
points is equal to the inverse of the matrix times the vector o f scaled truncation errors.
The finite difference method is said to be stable when there is a uniform bound on a norm
of this inverse matrix. For h = max; hi , the scaled truncation errors are O (h 2) and we
conclude that the finite difference method based on the trapezoidal rule is convergent of
second order if it is stable. The hard part o f showing convergence is proving that the fi­
nite difference method is stable. It can be shown that if the BVP consisting o f the ODE
(3.11) and boundary conditions (3.12) has a unique solution and if the ODEs are suffi­
ciently smooth, then the stability o f the finite difference scheme follows from the stability
o f the one-step method for IVPs. Further, the finite difference scheme converges for BVPs
at the same rate that the one-step method does for IVPs. The proof o f this general result
is rather technical and it is the result that concerns us here rather than the proof, so we
refer you to more advanced texts like Ascher et al. (1995) and Keller (1992) for the de­
tails. Similarly, we have discussed only BVPs with linear equations and linear boundary
conditions. They show what is going on and again we refer to more advanced texts to see
how the proofs are modified to deal with nonlinear problems.

3.4 Numerical Methods for BVPs 161

Most problems are solved more efficiently with methods o f order higher than the second-
order trapezoidal rule. In a step from xi of size hi, a Runge-Kutta method o f s stages
forms s intermediate values yitj & y (x ij) at the points x itj = x i + ajh i . In Chapter 2
we were most interested in explicit RK methods for which these stages can be computed
successively, but in general they are determined simultaneously by solving a system of s
nonlinear algebraic equations

yi,j = yi + h iY 2 fy ,k f (x i ,k , yi,k) (3.16)
k=1

The new approximate solution is then

s

yi+1 = yi + h i ^ 2 Yk f (x i , j , yi , j)
j =1

Implicit Runge-Kutta (IR K) formulas that reduce to Gaussian quadrature rules when
solving the quadrature problem y ' = f (x) are popular in this context because they have
excellent stability and achieve the highest possible order for a method with s stages, namely
2s. In discussing some of the simpler formulas, it is convenient to denote the midpoint of
[x i , x i+1] by x i+ 1/2 and an intermediate approximation there by yi+1/2. With this notation,
the lowest-order example o f the formulas of Gaussian type is the midpoint rule,

yi+1 - yi = h i f (X i + 1/2 , yi+1/2)

which has order 2. The Gaussian formulas do not evaluate at the ends o f the subinterval.
It was pointed out in Section 3.3.1 that this can be helpful when solving a problem with a
singularity at an end point.

Another attractive family o f IR K formulas reduce to Lobatto quadrature rules when
applied to y ' = f (x) . The lowest-order example is the trapezoidal rule. The next higher-
order Lobatto formula is called the Simpson formula because it reduces to the Simpson
quadrature rule. The general form displayed in Table 3.1 can be stated in a way that shows
more clearly what must be computed by noting that the first stage is equal to yi and the
last to y i+1. Then, with the notation introduced for the midpoint, the formula is

yi+1/2 = yi + hi

yi+1 = yi + hi

5 1 1
24 f (x i , yi) + 3 f(xi+1/2, yi+1/2) - 24 f (x i+1, yi+1)

1 2 1
6 f (X i , yi) + 3 f (X i + 1/2 , yi+1/2) + 6 f(Xi+1, yi+1)

Broadly speaking, all that we have done for the trapezoidal rule applies also to finite dif­
ference methods based on a Runge-Kutta formula. There are, however, important issues

162 Chapter 3: Boundary Value Problems

Table 3.1: The Simpson
formula o f order 4.

0 0 0 0
1 5 1
2 24 3 24
1 1 2 1

6 3 6

1 2 1
6 3 6

that arise in implementing such formulas. An approach to the efficient implementation
of formulas o f high order called deferred correction evaluates them as corrections to a
formula that is more easily evaluated. The first robust software for BVPs based on de­
ferred correction was the p a s v a 3 code of Lentini & Pereyra (1974). The basic formula
of this code is the trapezoidal rule. The higher-order formulas are evaluated by suc­
cessively approximating terms in an expansion of the truncation error o f the trapezoidal
rule. Cash and his colleagues have developed a number o f effective solvers - for exam­
ple, t w p b v p (Cash & Wright 1991) - based on deferred correction that match carefully
a basic (implicit) Runge-Kutta formula and formulas o f higher order. The basic formula
of t w p b v p is Simpson’s rule.

Other popular solvers work directly with IR K methods o f order higher than 2. A key
issue is the computation of the intermediate approximations yi,j. From their very defini­
tion, it is clear that we must be able to solve for them in terms o f yi and yi+1. Eliminating
the intermediate approximations is called condensation. This is important in practice be­
cause it reduces significantly the size o f the global system. In the case of Simpson’s
formula, condensation can be performed analytically:

yi+1 = yi + —
6

f (x i , y i) + f (X i + 1, y i+ 1)

+ 4 f (x i + 1/2 , + h i [f (x i , yi) - f (x i + 1, y ^)]) (3.17)

Simpson’s formula is implemented with analytical condensation in bvp4c. In gen­
eral, condensation is performed numerically. Substitution o f the linear ODE function
J (x) y + g (x) for f (x , y) in (3.16) shows what happens. There is a system of linear equa­
tions for the intermediate stages yi:j that is coupled only to yi and yi+1. This subsystem
can be solved to eliminate these unknowns in the full system. When applied to first-order
systems, the solvers c o l s y s (Ascher, Christiansen, & Russell 1979,1981) and co lnew
(Ascher et al. 1995; Bader & Ascher 1987) can be viewed as implementing the family of

3.4 Numerical Methods for BVPs 163

IR K methods of Gaussian type. They eliminate the intermediate values numerically when
solving for values at the mesh points.

Finite difference methods provide solutions only at mesh points. The issue of obtain­
ing approximate solutions at other points arose earlier when we were solving IVPs with
explicit Runge-Kutta methods. There we learned that, for some Runge-Kutta formulas,
continuous extensions have been developed that provide an accurate solution throughout
a step. A natural continuous extension for an IR K method of s stages defines a polyno­
mial S (x) by the interpolation conditions S (x i) = y i and S ' (x ij) = f (x ij , yij) for j =

1, 2, . . . , s . For a class o f IR K methods that includes those based on quadrature formulas
o f Gaussian type, it is not difficult to show that this polynomial satisfies S ^ + O = yi+1.
This implies that the natural continuous extension is continuous; that is, S (x) e C[a, b].
It can also be shown that S (x ij) = yitj . Along with the interpolation condition, this tells
us that S (x) satisfies the ODEs at each intermediate point: S ' (x ij) = f (x ij , S (x ij)) .
This property is called collocation. We did not pursue these natural continuous extensions
in Chapter 2 because generally they do not have the same order o f accuracy as the for­
mula. Indeed, for the formulas o f Gaussian type, they have only half the order of the basic
formula. The midpoint rule provides a simple example. On the subinterval [x i , x i+1],
the continuous extension S (x) is a linear polynomial with S (x i) = y i and S ' (x i+1/2) =

f (x i+1/2, y i+1/2). The definition o f the midpoint rule tells us that

yi+1 - yi
J (x i+1/2 , yi+1/2) = -----:------

hi

The linear polynomial S (x) has a constant slope, so it is clear from this expression for the
slope at the midpoint that S (x) is the straight line that interpolates the numerical solution
at both ends of the interval. This continuous extension S (x) is C [a ,b] , but it is clearly
not C 1[a, b]. It is only first-order accurate between mesh points.

Generally the natural continuous extension is only C[a, b], but the formulas o f Lobatto
type collocate at both ends o f each subinterval; that is,

S ' (x i) = f (x i , S (x i)) = f (x i , yi) , S ' (x i+ 1) = f (x i + 1, S (xi+1)) = f (x i + 1, yi+1)

It follows from this that S (x) e C 1[a, b] for these formulas. As it turns out, the natural
continuous extension of the Simpson formula preserves the order o f the formula itself.
The Simpson formula is an attractive method for solving BVPs in M atlab because a nu­
merical solution that is C 1[a, b] and uniformly fourth-order accurate is well suited to the
graphical study o f solutions. The scheme has other attractions. One is that analytical con­
densation is an efficient way to evaluate the formula in M atlab .

A classic approach to solving BVPs is to choose a form for the approximate solution
S (x) that involves parameters determined by requiring that S (x) satisfy the boundary con­
ditions and then to collocate the ODEs at sufficiently many points. We have seen that some

164 Chapter 3: Boundary Value Problems

important classes of finite difference formulas can be viewed as resulting from colloca­
tion with a continuous piecewise-polynomial function S (x) (a spline). That is the view
taken in popular solvers; in particular, that is why bvp4c is described as a collocation
code. In this view, bvp4c solves BVPs o f the form (3.1) and (3.2) by computing a con­
tinuous function S (x) that is a cubic polynomial on each subinterval [x i , x i+1] o f a mesh
a = x 0 < x1 < ••• < x N = b. The coefficients o f the cubic polynomials that make up
this function are determined by requiring that S (x) be continuous on [a, b], satisfy the
boundary conditions

g (S (a) , S (b)) = 0

and satisfy the ODEs at both end points and the midpoint o f each subinterval,

S' (x t) = f (x i , S (x i))

S ' (x i+1/2) = f (x i + 1/2, S (x i+1/2))

S’(x i+ 1) = f (x i + 1, S (xi+1))

As pointed out earlier, the collocation conditions at the ends o f the subinterval imply that
S (x) e C 1[a, b]. A ll together these conditions result in a system of nonlinear algebraic
equations for the coefficients o f the cubic polynomials that make up S(x) . When the de­
tails are worked out, it is found that this function S (x) is the natural continuous extension
of the Simpson formula. Accordingly, we can regard this method either as a collocation
method or as a finite difference method with a continuous extension. Enright & Muir
(1996) implement a family of IR K formulas with continuous extensions in the Fortran
code m ir k d c . One member o f the family corresponds to the Simpson formula, but its
continuous extension is a polynomial o f higher degree and higher accuracy than the nat­
ural one used in bvp4c. Clearly the collocation approach is not restricted to systems of
first-order ODEs, and there are some advantages to treating higher-order ODEs directly.
The codes c o l s y s and co lnew cited earlier in connection with finite difference meth­
ods are distinctive because they treat higher-order ODEs directly. It is only when they are
applied to first-order systems of ODEs that their methods can be viewed as equivalent to
a finite difference scheme based on IR K methods o f Gaussian type.

Because a BVP can have more than one solution, it is necessary to supply codes with a
guess that identifies the solution of interest. In all the popular codes, the numerical solu­
tion of a nonlinear BVP is accomplished directly or indirectly by linearization. The codes
use devices to enhance the rate o f convergence, but a good guess may be necessary to ob­
tain convergence. The guess involves supplying both a mesh that reveals the behavior of
the solution and either values o f the guessed solution on the mesh or a function for com­
puting them. After obtaining convergence for this mesh, the codes adapt the mesh so as
to obtain an accurate numerical solution with a modest number o f mesh points. In some
respects this is much more difficult than solving IVPs. For IVPs the most difficult part of

3.4 Numerical Methods for BVPs 165

step-size adjustment is getting on scale at the first step, because the steps that follow are
adjusted one at a time and only slow variation is permitted. For BVPs the most difficult
part is providing an initial approximation to a solution. In large measure this burden is
placed on the user, who must provide guesses for the mesh and solution that will lead to
convergence. Let us now discuss briefly how the solvers estimate and control the error.

A natural approach to error control is to estimate the truncation error and adjust the mesh
accordingly. When the truncation error for the subinterval [x i , x i+1] can be expressed in
terms of a derivative o f the solution, this derivative can be approximated by interpolat­
ing the values yi and yi+1 (as well as some approximations from neighboring intervals)
and differentiating the interpolant. Recall that we did something like this to approximate
the truncation error of the first-order BDF formula in Chapter 2. An important distinction
when solving BVPs is that we can use values on both sides o f the subinterval. The trunca­
tion error o f the trapezoidal rule has this form, and Lentini and Pereyra estimate it in this
way in pasva3. Indeed, the same is done for the higher-order formulas o f this deferred
correction code. The truncation errors of the Gaussian IR K formulas also have this form,
and this way of estimating the errors is used in the codes c o ls y s and colnew . Another
way o f estimating truncation error that we studied in Chapter 2 is to compare the result
o f one formula to the result o f a higher-order formula. This is quite natural in the way
that Cash and Wright use deferred correction in the code twpbvp, because each formula
is evaluated as a correction to a lower-order result.

With estimates for the truncation errors, the step sizes can be adjusted much as when
solving IVPs. An obvious difference is that when solving BVPs the entire mesh is changed
whereas only one step at a time is changed when solving IVPs. Because BVPs are global
in nature, refining the mesh in a region where the truncation errors are large affects the
numerical solution throughout the interval. It is possible that the numerical solution is
improved in one region but worsened elsewhere. For methods with a truncation error on
[x ;, x i+1] that depends on a derivative o f the solution in this subinterval, the effects o f a
local change in a mesh are local (at least to leading order), and thus changing the mesh to
reduce the truncation errors in a region actually improves the overall solution.

A serious difficulty with BVP solvers is that the schemes for approximating truncation
errors and adjusting the mesh depend on the mesh being sufficiently fine. It is important,
then, that the solver refine the mesh in a way that is plausible even when the estimates of
the truncation errors are very poor, as they often will be when the mesh is too crude or not
well adapted to the behavior o f the solution. To improve reliability, the codes c o ls y s
and co ln ew supplement control o f truncation error with another assessment o f the error.
After it appears that a solution has been found to an appropriate accuracy o f the truncation
error, the mesh is halved and another solution computed. The error o f this second solution
is estimated by a process called extrapolation, which proceeds as follows. Suppose we can
compute a function F (x ; h) involving a parameter h and that we want F (x ; 0), the limit
as h ^ 0. I f we know that the error e (x ; h) = F (x ; h) — F (x ; 0) behaves like ф (x) h p as

166 Chapter 3: Boundary Value Problems

h ^ 0, then we can use approximations F (x ; h) and F (x ; h/2) computed for specific h
and h/2 in order to estimate the error of the more accurate result. Our assumption about
how the error depends on h tells us that

e (x ; — j ~ ф(x) h p2-p
2

and hence

F (x ; h) — F ^ x ; = e (x ; h) — e^x; ^ ~ ф(x) h p[1 — 2 p]

Solving this relation for ф (x) h p provides a computable estimate o f the error o f the more
accurate result,

h 1
el x; —

2 2p 1

h
F (x ; h) - F [x ; ^ (3.18)

In applying this principle to BVPs, h is the maximum step size and p is the order of the
method. If the function f (x , y) defining the ODE is sufficiently smooth and if the mesh
is fine enough that the leading term dominates in an expansion of the error, then extrapo­
lation furnishes a way to estimate the error and so to confirm that the numerical solution
has the desired accuracy.

The m irkdc solver of Enright and Muir and the bvp4c solver o f M atlab take an un­
usual approach to the control o f error that is intended to deal more robustly with poor
guesses for the mesh and solution. They produce approximate solutions S (x) e C 1[a, b].
For such an approximation, the residual in the ODEs is defined by

r (x) = S ' (x) - f (x , S (x))

Similarly, the residual in the boundary conditions is S = g (S (a) , S (b)) . Put differently,
the approximation S (x) is an exact solution o f the BVP

Y ' = f (x , Y) + r (x) , g (Y (a) , Y (b)) - S = 0

From the point o f view of backward error analysis, S (x) is an accurate solution if it is an
exact solution o f a BVP that is “close” to the one given, meaning that the perturbations
r (x) and S are “small” . I f the BVP is reasonably well-conditioned then small changes to
the problem must result in small changes to the solution, so a solution that is accurate in
the sense of backward error analysis is also accurate in the usual sense of the approxi­
mate solution being close to the true solution. Both m irkdc and bvp4c control the sizes
o f these residuals. The approach is attractive because the residuals for these methods are
well-defined no matter how crude the mesh. Further, the residual r (x) can be evaluated
at any point x that we wish, so we can approximate its size as accurately as we wish (and

3.4 Numerical Methods for BVPs 167

are willing to pay for). For robustness, bvp4c measures the size of the residual on each
subinterval [x i , x i+1] by an integral

This integral is approximated with a five-point Lobatto quadrature formula. Using the fact
that the residual vanishes at both end points and the midpoint of the interval, this quadra­
ture formula requires only two additional evaluations o f r (x) and hence of f (x , S (x)) . It
gives a plausible estimate of the size o f the residual for any mesh, and it is asymptotically
correct as hi ^ 0. One of the useful properties o f the Simpson formula with its natural
continuous extension is that the effects on the residual of local changes to the mesh are
local, at least to leading order. Proofs of these technical matters can be found in Kierzenka
(1998) and Kierzenka & Shampine (2001).

In passing, we remark that a simple shooting code can also be described as controlling
residuals. At each step the IVP solver controls the local error, which is equivalent to con­
trolling the size of the residual o f an appropriate continuous extension o f its numerical
method. The nonlinear algebraic equations of shooting state that initial values are to be
found for which the boundary conditions are satisfied. Thus, the nonlinear equation solver
finds initial values for which the numerical solution has a small residual in the boundary
conditions. The IVP solver and the nonlinear equation solver o f a shooting code produce,
then, a numerical solution that satisfies the boundary conditions and the ODEs with small
residuals. Something similar can be said of multiple shooting.

■ EXERCISE 3.10
Show that the BVP

with boundary conditions y (0) = 1 and y(10) = B is insensitive to small changes in the
value o f B.

■ EXERCISE 3.11
By expanding in Taylor series, find an expression of the form = K h py (p+1)(ni) for the
scaled truncation errors in equation (3.15). That is, find the integer p and the constant K.

■ EXERCISE 3.12
Verify the expression for the condensed version of Simpson’s formula given in equation
(3.17).

■ EXERCISE 3.13
Write out the system of linear algebraic equations that arise when using the condensed
Simpson’s formula (3.17) for solving the BVP consisting o f the linear ODE (3.11) with
boundary conditions (3.12).

y " + 100 y = 0

168 Chapter 3: Boundary Value Problems

■ EXERCISE 3.14
Show that the function S (x) associated with the BVP solver bvp4c (as defined on
page 164) is continuously differentiable on the interval [a, b]. That is, show that S (x) e
C 1[a ,b] .

3.5 Solving BVPs in M atlab

In this section we use a variety o f examples from the literature to illustrate the numerical
solution of BVPs with the M atlab solver bvp4c. BVPs arise in such diverse forms that
many require some preparation for their solution by standard software - and some require
extensive preparation. Several examples illustrate how to do this for the most common
forms and the most widely used BVP solvers. Other examples show how you might be
able to speed up significantly the solution of a BVP with bvp4c. Exercises are provided
both for instruction and practice.

EXAMPLE 3.5.1

Bratu’s equation arises in a model of spontaneous combustion and is mathematically in­
teresting as an example o f bifurcation simple enough to solve in a semianalytical way
(Davis 1962). The differential equation is

y " + Xey = 0

with boundary conditions y(0) = 0 = y(1). Bratu showed that, for values of X such that
0 < X < X* = 3.51383..., there are two solutions. Both solutions have a parabolic form
and are concave down. These solutions grow closer as X ^ X* and coalesce to give a
unique solution when X = X*. There is no solution when X > X*. To show how to use
bvp4c, we solve this BVP when X = 1. This is much like solving an IVP, so we state a
program and then discuss those matters that are different.

f u n c t i o n s o l = ch3ex1

s o l i n i t = b v p i n i t (l i n s p a c e (0 , 1 , 5) , @ g u e s s) ;
s o l = b v p 4 c (@ o d e s , @ b c s , s o l i n i t) ;
p l o t (s o l . x , s o l . y (1 , :)) ;
f i g u r e
x i n t = l i n s p a c e (0 , 1 , 1 0 0) ;
Sx i n t = d e v a l (s o l , x i n t) ;
p l o t (x i n t , S x i n t (1 , :)) ;

Q ,%

3.5 Solving BVPs in M a tla b 169

f u n c t i o n v = g ue ss (x)
v = [x * (1 - x) ; 1- 2 *x] ;

f u n c t i o n dydx = o d e s (x , y)
dydx = [y (2) ; - e x p (y (1))] ;

f u n c t i o n r e s = b c s (y a , y b)
r e s = [y a (1) ; y b (1)] ;

In simplest use bvp4c has only three arguments: a function odes for evaluating the
ODEs, a function bcs for evaluating the residual in the boundary conditions, and a struc­
ture s o l i n i t that provides a guess for a mesh and the solution on this mesh. The ODEs
are handled exactly as in the M atlab IVP solvers and so require no further discussion
here. Boundary conditions g (y (a) , y (b)) = 0 are coded so that, when the function bcs
is given the current approximations ya & y (a) and yb & y(b) , it evaluates and returns
the residual g(ya , yb) as a column vector.

When solving BVPs you must provide a guess for the solution, both to identify the so­
lution that interests you and to assist the solver in computing that solution. The guess is
supplied to bvp4c as a structure formed by the auxiliary function b v p i n i t . The first ar­
gument of b v p i n i t is a guess for a mesh that reveals the behavior of the solution. Here
we try five equally spaced points in [0,1]. The second argument is a guess for the solu­
tion on the specified mesh. Here the solution has two components, y (x) and y ' (x) . This
guess can be provided in two ways. Here we see them provided by means o f a function
guess. The guess x(1 — x) for y (x) has the correct shape and satisfies the boundary con­
ditions. The derivative o f this guess for y (x) is used as the guess for y ' (x) . Alternatively,
if we take all the estimated solution components to be constant then we can provide the
vector o f these constants directly. This is convenient and often works. Here, for exam­
ple, you can solve the BVP by providing the vector [0 . 5 ; 0] to b v p i n i t instead o f the
function guess.

The code bvp4c returns a solution structure, here called so l . This is an option with
the IVP solvers, but it is the only form of output from bvp4c. As with the IVP solvers, the
field s o l . x contains the mesh found by the solver and the field s o l . y contains the solu­
tion on this mesh. Figure 3.2 shows the result o f plotting the data returned in these fields.
The cost o f solving a BVP depends strongly on the number o f mesh points, so bvp4c uses
no more than necessary. This BVP for Bratu’s equation is so easy that the solver com­
putes an accurate solution using only the five mesh points of the guess. The values plotted
are accurate, so we need only approximate the solution at more points in order to plot a
smooth graph. The solver bvp4c produces a solution S (x) e C 1[0 ,1] and returns in s o l
all the information needed to evaluate this smooth approximate solution. Just as with the
IVP solvers, this is done with the auxiliary function d eva l. Recall that the first argument
o f d e v a l is the solution structure and the second is an array o f points where the solution

170 Chapter 3: Boundary Value Problems

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2: Solution of Bratu’s problem plotted at mesh points only.

is desired. Here we evaluate the approximate solution S (x) at 100 equally spaced points
and obtain the smooth graph in Figure 3.3. The function d e v a l is evaluating a piece-
wise-cubic function and it is vectorized, so obtaining even a great many solution values
for plotting is inexpensive.

This BVP for Bratu’s equation has two solutions. I f you multiply the guess for the so­
lution and its derivative coded in ch3ex1.m by a factor o f 5, you will again compute the
solution displayed. I f you multiply them both by 20, you will compute the other solution.
It is rather larger than the solution plotted, having a maximum of about 4.1. I f you mul­
tiply the guess for the solution and its derivative by a factor of 100, the solver will fail to
converge. This illustrates the fact that which solution you compute - or even whether you
compute a solution at all - depends strongly on the initial guess. In Exercise 3.15 you are
asked to explore a conservation law satisfied by the solution o f this problem. The cannon
problem of Exercise 3.16 is much like this BVP.

EXAMPLE 3.5.2

A nonlinear eigenproblem of lubrication theory that is solved in Keller (1992, sec. 6.1)
involves only a single first-order ODE,

0 sin4(x)
sy = sin2(x) — к --------- (3.19)

У

3.5 Solving BVPs in M a tla b 171

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0(

Figure 3.3: Solution of Bratu’s problem plotted at 100 equally spaced points.

Here e is a known parameter, and we compute a value o f the unknown parameter к for
which there is a solution of the ODE that satisfies the two boundary conditions

* (- 1 1 * (2) = 1 (320)

These boundary conditions may be viewed as two equations, one for the first-order ODE
and one for the unknown parameter. Unknown parameters are not at all unusual. Some­
times they arise in the physical model; often they are introduced to facilitate computing a
solution in difficult circumstances. Although bvp4c makes it easy to solve BVPs involv­
ing unknown parameters, most solvers do not, so after illustrating the use of bvp4c we’ll
explain how to use solvers that do not provide for unknown parameters.

Just as with the solution, when there are unknown parameters you must supply esti­
mates for them - both to identify the particular set o f parameters that interests you and
to assist the solver in computing them. The estimates are supplied in a vector as the third
argument o f b v p i n i t . Correspondingly, you must include the vector o f unknown pa­
rameters as the third argument to the functions for evaluating the ODEs and the residual
in the boundary conditions. You must do this for each function even if it makes no use
o f the unknown parameters. When there are unknown parameters, the solution structure
has a field named paramete rs that contains the vector o f parameters computed by the
solver. The program ch3ex2.m solves the BVP with ODE defined by (3.19) and bound­
ary conditions defined by (3.20) for the value e = 0.1. We guess that к is about 1 and use

172 Chapter 3: Boundary Value Problems

0.8

0.6

0.4

0.2

0 ---1------------------------'------------------------'------------------------'------------------------'------------------------'------------------------L -1
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3.4: Solution of the lubrication problem with e = 0.1.

a convenient constant estimate o f y (x) & 0.5. Notice that lambda is an input argument
o f bcs even though it is not used by this function. The program reports to the screen that
к & 1.01864 and produces the graph of Figure 3.4.

f u n c t i o n s o l = ch3ex2

s o l i n i t = b v p i n i t (l i n s p a c e (- p i / 2 , p i / 2 , 2 0) , 0 . 5 , 1) ;
s o l = b v p 4 c (@ o d e , @ b c s , s o l i n i t) ;
f p r i n t f (' l a m b d a = % g . \ n ' , s o l . p a r a m e t e r s)
p l o t (s o l . x , s o l . y (1 , :)) ;
a x i s ([- p i /2 p i /2 0 1 . 1]) ;

Q,__%===
f u n c t i o n dydx = o d e (x , y , l a mb da)
e p s i l o n = 0 . 1 ;
dydx = (s i n (x) " 2 - l a m b d a * s i n (x) " 4 / y) / e p s i l o n ;

f u n c t i o n r e s = b c s (ya , y b , l a m b d a)
r es = [y a - 1 ; y b - 1] ;

Most solvers do not provide for unknown parameters, but it is easy to prepare a prob­
lem that has parameters so that these solvers can be used. For the problem at hand, we

3.5 Solving BVPs in M a tla b 173

have an unknown function y1(x) = y (x) and an unknown parameter к. The trick is to in­
troduce a second unknown function, y 2(x) = к, and then add a trivial ODE stating that
this new function is constant. This trick results in the ODE system

which, along with the two boundary conditions (3.20), is now a BVP without unknown pa­
rameters. Many solvers require you to provide analytical partial derivatives for the ODEs
and boundary conditions with respect to the solution. For such solvers, introducing new
variables for unknown parameters is not the end o f the preparation; you must also pro­
vide the analytical partial derivatives o f both the ODEs and the boundary conditions with
respect to the new variables (i.e., with respect to the parameters).

In Seydel (1988) the propagation of nerve impulses is described by the system of ODEs

These two nonseparated boundary conditions suffice if we want solutions with a specific
period T. Exercise 3.30 is an example o f this. However, if we do not specify the period
then we must find an unknown parameter T along with solutions o f period T, and for that
we need another boundary condition. To better understand this, notice that if (y^O, У 2 (t))
is a periodic solution of these autonomous differential equations then so is (u1(t) , u2 (t)) =
(y 1(t + y), y2(t + y)) for any constant y . One possible boundary condition is to specify
a value for one o f the solution components, for example, y 1(0) = 0. With this boundary
condition we might as well replace the periodicity condition y 1(0) = y 1(T) with y1(T) =
0 because it is equivalent and separated. Thus we solve the ODEs subject to the boundary
conditions

y 2 = 0

EXAMPLE 3.5.3

y 2 = - 3 (y 1 - 0.7 + 0 .8y 2)

subject to the periodic boundary conditions

y 1(0) = y 1(T) , y 2 (0) = y 2 (T)

y 1(0) = 0 , y 1(T) = 0 , y 2(0) = y 2 (T)

one o f which is nonseparated.
The code bvp4c accepts problems with nonseparated boundary conditions, but most

solvers require that the boundary conditions be separated. After solving this BVP with

174 Chapter 3: Boundary Value Problems

bvp4c, we discuss how problems with nonseparated boundary conditions can be prepared
for solution with other codes. A complication of this example is that the length of the in­
terval [0, Г] is unknown. The shooting code D02SAF (NAG 2002) treats all unknowns -
including the end points o f the interval, the boundary values, and any parameters - as un­
known parameters, so it can solve this problem directly. Since D02SAF is the only solver
in wide use with this capability, we must prepare the problem for most solvers (including
bvp4c) by transforming it to one formulated on a fixed interval.

If we change the independent variable from t to x = t/T, the ODEs become

The new problem is posed on the interval [0,1], and the new boundary conditions are

After this preparation, the BVP is solved easily with the program ch3ex3.m.

f u n c t i o n s o l = ch3ex3

s o l i n i t = b v p i n i t (l i n s p a c e (0 , 1 , 5) , @ g u e s s , 2 * p i) ;
s o l = b v p 4 c (@ o d e , @ b c , s o l i n i t) ;
T = s o l . p a r a m e t e r s ;
f p r i n t f (' T h e computed p e r i o d T = % g . \ n ' , T) ;
p l o t (T * s o l . x , s o l . y (1 , :) , T * s o l i n i t . x , s o l i n i t . y (1 , :) , ' r o ')
l e gend (' Computed S o l u t i o n ' , ' G u e s s e d S o l u t i o n ') ;
a x i s ([0 T -2 . 2 2]) ;

dy 2 T
- p = - Т (У1 - 0.7 + 0.8y2)
dx 3

У1(0) = 0, У1(1) = 0, y 2 (0) = y 2(1)

О ,%
f u n c t i o n v = g ue ss (x)
v = [s i n (2 * p i * x) ; c o s (2 * p i * x)] ;

f u n c t i o n dyd t = o d e (x , y , T) ;
dyd t = [3 * T * (y (1) + y (2) - (y (1) ~ 3) / 3 - 1.3)

- (T / 3) * (y (1) - 0.7 + 0 . 8 * y (2))

f u n c t i o n r e s = b c (y a , y b , T)
r es = [y a (1) ; y b (1) ; (y a (2) - y b (2))] ;

We guess that T = 2n, y1(x) & sin(2nx) , and y 2(x) & cos(2nx). After computing
the solution, the independent variable x is rescaled to the original independent variable

3.5 Solving BVPs in M a tla b 175

1 2 3 4 5 6 7 8 9

Figure 3.5: Periodic solution of a nerve impulse model.

t = Tx for the plot of Figure 3.5. Plotting o f the initial guess shows that it is not very ac­
curate. The program reports to the screen that T & 10.7106, so 2n was also not a very
good guess for the period T. This problem is sufficiently easy that accurate estimates of
the solution and the period are not needed for convergence.

The boundary condition у 2(0) = у 2 (T) will be used to show how to deal with nonsep­
arated boundary conditions when the BVP solver does not provide for them. The idea is
to introduce a new unknown, у 3(t) = у2(T) . This function is constant, so we add у 3 = 0
to the system of ODEs. Because у 3(t) is constant, the boundary condition у 2(0) = у 2(T)
is equivalent to the boundary condition у 2(0) = у 3(0) and, by definition, we have another
boundary condition у 2(T) = у 3(T) . In this way a nonseparated boundary condition is
replaced by two separated boundary conditions that involve a new solution component,
and there is an additional ODE. The final set o f ODEs and (separated) boundary condi­
tions are

£ = 3 (y + у 2 - ^ - 1 . 3

- у 2 1
- p = — (у1 - 0.7 + 0.8у2)
dx 3

- у 3
dx

= 0

and

176 Chapter 3: Boundary Value Problems

y1(0) = 0, y 1(T) = 0, y 2(0) = y з(0), y 2 (T) = y з (Т)

In general, each nonseparated boundary condition leads to a new solution component, an
additional boundary condition, and a trivial ODE. Exercise 3.30 provides another example.

EXAMPLE 3 .5 .4

We use an example o f Gladwell (1979a) (with a minor error corrected) to show how un­
known parameters can arise when solving BVPs with singularities and how to handle some
problems posed on an infinite interval. This example arose in a similarity solution of some
partial differential equations describing fluid flow. The analysis is somewhat lengthy, but
if you should need to do something similar yourself then you might find the details o f this
example to be helpful. The system of ODEs is

3yy" = 2(y ' - z), z " = - y z ' (3.21)

The boundary conditions are

y(0) = 0, z(0) = 1 (3.22)

and

y '(+ r o) = 0, z (+ to) = 0 (3.23)

The first equation is singular at the origin because y(0) = 0. To deal with this, we first
work out analytical approximations to the solution components y (x) and z (x) that are ac­
curate on an interval [0, S] for some small S > 0. With two second-order equations and
only two boundary conditions at the origin, these approximations will necessarily involve
two free parameters, effectively replacing the unknown boundary values y '(0) and z '(0).
We then solve a BVP on [S, to) with the same ODEs (3.21) and same boundary conditions
at infinity (3.23). The equations are not singular on this interval. The boundary conditions
at the origin (3.22) are replaced in this new problem by the requirement that the numerical
solutions at S agree with the analytical approximations there. The free parameters in the
analytical approximations show up as unknown parameters in the BVP, which we solve
numerically. After determining these parameters as part o f solving the BVP, we are able
to approximate y (x) and z (x) on all o f the range [0, <x).

With a nonlinear differential equation it is not at all obvious how the solutions behave
near the singular point. Generally an understanding of the physical problem provides valu­
able guidance. Without this kind o f guidance, we might as well be optimistic and look for
analytical approximations in the form of Taylor series. With some computer assistance
this is easy enough and provides some insight. Exploiting the M atlab Symbolic Tool­
box functionality, we use the following script to substitute a few terms o f Taylor series
expansions into the equations (3.21).

3.5 Solving BVPs in M a tla b 177

syms x y z A B C D E F eqn1 eqn2
y = 0 + A*x + B * xA2 + C*x~3;
z = 1 + D*x + E*xA2 + F*x~3;
eqn1 = c o l l e c t (3 * y * d i f f (y , 2 , ' x ') - 2 * (d i f f (y , ' x ') - z))
eqn2 = c o l l e c t (d i f f (z , 2 , ' x ') + y * d i f f (z , ' x '))

Note that we have already taken into account the boundary conditions (3.22). This script
produces the (slightly edited) output

eqn1 = 18*C"2*x~4+(24*B*C+2*F) *x~3
+ (-6*C+18*A*C+6*B~2+2*E) *x~2+ (-4*B+6*A*B+2*D) *x-2*A+2

eqn2 = 3*C*F*x~5+(3*B*F+2*C*E) *x~4+ (3*A*F+2*B*E+C*D) *x~3
+ (2*A*E+B*D) *x "2+ (6*F+A*D) * x+2*E

We are interested in the behavior as x ^ 0 and so, the higher the power o f x, the less
effect it has in these expansions. Our goal is to satisfy the equations as well as possible,
so we want to choose coefficients that make as many successive terms zero as possible,
starting with the lowest power. To eliminate the constant terms, we see from the expan­
sions that we must take A = 1 and E = 0. Next, to eliminate the terms in x, we must take
D = —B and F = —D/6. We cannot eliminate the terms in x 2 without including more
terms in the Taylor series. We thus conclude that, for small values of x, we have y (x) =
x + B x 2 + ■■■ and z (x) = 1 — Bx + (B/6)x3 + ■■■ . In these expansions the coefficient
B is a free parameter.

This seems to have gone very well, but these series can’t be the approximations that we
need! After all, the approximations must have two free parameters and these series have
only one. It is possible that another free parameter will appear at a higher power, but it is
more likely that we were mistaken when we assumed that the solutions can be expanded
in Taylor series. Let’s try expanding the solutions in powers o f x with powers that are not
necessarily integers. This is harder, so we begin with just a few terms that we hope will
reveal a power that is not an integer:

y (x) = a x a + b x e + ■■■

z (x) = 1 + cxY + d x S + ■■■

With the necessary assumptions that 0 < a < в and 0 < y < S, these series satisfy the
boundary conditions (3.22). Substituting them into the first differential equation of (3.21)
results in the equation

0 = 3[axa + bxe + ■ ■ ■][a (a — 1)axa—2 + в (в — 1)bxe—2 + ■■■]

— 2 [(a ax a—1 + e b x e—1 + ■■■) — (1 + cxY + d x S + ■■■)]

178 Chapter 3: Boundary Value Problems

I f a < 1, the lowest-order term is 3a(a — 1)a2x 2a—2. It cannot be removed because we
exclude the possibilities a = 0 and a = 0. On the other hand, if we suppose that a = 1
then there are two terms o f lowest order, namely — 2 [(ax0) — (1)], that can be removed
by taking a = 1. Turning now to the second equation, we have

0 = y (y — 1)cxY—2 + 5(5 — 1)dxs—2 + ■■■

+ (x + bxe + ■ ■ ■) (y c x Y—1 + Sdxs—1 + ■■■)

We see that the lowest-order term is y (y — 1)cxY—2. To remove it, we must take y = 1.
With this the equation becomes

0 = 8(8 — 1)dx8—2 + ■■■ + cx + ■■■

To remove the term in x 8—2, we must choose 8 so that the power is the same as that of the
“ next” term; that is, we must “ balance” this term with another. I f we take 8 = 3, the term
is balanced with the term in x. We can then let c be a free parameter and take d = —c/6
to remove these two terms of lowest order. Let us return now to the expansion of the first
equation and substitute all the information gleaned so far:

3[x + bxe + ■■■] [в (в — 1)bxe—2 + ■■■] = 2 [(p b x e—1 + ■■■) — (cx — § x 8 + ■■■)]

If в < 2, the lowest power is в — 1. Equating the coefficients o f x e—1 to remove these
terms, we find that

3 Ь в (в — 1) = 2 Ьв

hence в = f and b is a free parameter.
The hard part o f deriving the expansions is now over. What we missed in the Taylor

series approach is the b x 5/3 term in the expansion for у (x) . Here b is the free parameter
that we needed in addition to the free parameter B that we discovered in the Taylor series
approach. The crucial matter is to recognize that we must look for series in powers of
x 1/3. With this knowledge it is straightforward to compute more terms. For instance, to
compute the next two terms we can use the script

syms x y z b c d e eqn l eqn2

y = x + b*x~ (5/3) + d*x~2;
z = 1 + c * x - (c / 6) * x " 3 + e * x " (1 0 / 3) ;
eqn l = c o l l e c t (3 * y * d i f f (y , 2 , ' x ') - 2 * (d i f f (y , ' x ') - z))
eqn2 = c o l l e c t (d i f f (z , 2 , ' x ') + y * d i f f (z , ' x '))

The output, edited to show only the lowest-order terms, is

eqnl = . . . + 1 0 / 3 * b " 2 * x " (4 / 3) + (2 * d + 2 * c) * x
eqn2 = . . . + b * c *x ~ (5/3) +70/9* e * x~ (4/3)

3.5 Solving BVPs in M a tla b 179

To remove the lowest-order terms, we must take d = —c and e = 0. Repetition leads to

,2
y (x) = x + b x 5/3 — cx2 — ^ x 7/3 + Zbf> 3 + (^ x 3 + ...

z (x) = 1 + cx — - x 3 — — x 11/3 + — x 4 + 9b2c x >3/3 — ^ x W 3 + ■■
() 6 88 12 182 44

It is natural to approximate the boundary conditions at infinity by y ' (A) = 0 and
z '(A) = 0 for some large A . This kind o f approach often works, but if you try it in the
program ch3ex4.m you will find that the computation fails. Evidently we need to pro­
vide the solver with more information about how solutions behave at infinity. For this we
first observe that there is a constant solution o f the ODEs that satisfies the boundary con­
ditions at infinity, namely y (x) = a and z (x) = 0 for arbitrary a. (A solution of this kind
with a = S & y(S) is used as the guess in ch3ex4.m.) To study the behavior of solutions
o f the ODEs that are close to such a solution, we linearize the equations about (a, 0) or,
equivalently, look for solutions of the form

y (x) — a + P e Yx, z (x) ~ 0 + Sesx

as x ^ t o . For y (x) o f this form,

y ' (x) ~ Y eeYx

In order to have a nontrivial solution that satisfies the boundary condition y ' (to) = 0,
we must have y < 0. Similarly, the other boundary condition (at infinity) requires that
e < 0. Let us now substitute the assumed forms of the solutions into the second differen­
tial equation:

e2Seex - - (a + p e Yx)eSeex

After dividing by common factors, this gives

e — —(a + P e Yx) — —a

Because e < 0, we must have a > 0. Now let’s substitute the assumed forms into the
first differential equation:

3(a + e e Yx)Y 2p e Yx — 2 (y p e Yx — Se—ax)

Dividing this equation by eyx yields

3(a + e e Yx) y 2в — 2 (у в — Se—(a+Y)x) (3.24)

and, considering the behavior as x ^ t o , we find that we must have (a + y) > 0. I f
(a + y) > 0, then passing to the limit in (3.24) shows that

180 Chapter 3: Boundary Value Problems

and hence that 3aY = 2. However, this is not possible because a > 0 and y < 0. We
conclude then that (a + y) = 0, which is to say that y = —a. With this assumption we
again pass to the limit in (3.24) to find that

3 aY 2в = 2 (у в — 8)

This is satisfied by the choice
8 = —a в — § a 3в

Therefore, we have finally found an asymptotic solution o f the ODEs with two free pa­
rameters a and в that satisfies the boundary conditions at infinity:

у (x) — a + в е ~ax, z (x) ----- (aв + 2a 3в) e —ax

In the program ch3ex4.m, we use terms in the power series through O (x &/3) to ap­
proximate the solution component у (x) for small x and through O (x u/3) to approximate
z (x) . The leading terms in the expansions o f the differential equations (effectively the
residuals) are then both O (x 2). The boundary conditions at the origin are replaced by the
requirement that the numerical solutions agree with these series approximations at x = 8.
In this the coefficients b and c in the series are unknown parameters that are passed as
components o f a vector p. When written as a first-order system, there are four unknowns.
The other unknowns, the derivatives у ' (x) and z ' (x) , are approximated by the derivatives
o f the series for у (x) and z (x) . The series approximation to the vector of unknowns is
coded in a subfunction s e r i e s . Besides its use in evaluating the residual in the bound­
ary conditions, this function could be used to evaluate the solution anywhere in [0, 8]. We
could use the asymptotic solution with its unknown parameters at some large A just as we
use the series at a small 8 for the singularity at the origin. However, to illustrate a tech­
nique commonly used with codes that do not provide for unknown parameters, we first
note that our asymptotic solutions satisfy

у (x) — a, z ' (x) — —a z (x)

From this we obtain a boundary condition

z ' (x) -----у (x) z (x)

that does not involve an unknown parameter. The leading-term behavior o f у (x) at infinity
is captured by the boundary condition у ' (ж) = 0 that also does not involve an unknown
parameter. Although we must keep in mind the possibility that we might need to supply
more information about the behavior o f the solution at infinity if we are to solve this BVP,
in the program ch3ex4.m we impose the boundary conditions

3aY 2в = 2Yв

3.5 Solving BVPs in M a tla b 181

у ' (Д) = 0, z ' (Д) = - y (A) z (A)

which prove satisfactory for moderate values of Д. Exercise 3.9 considers a similar prob­
lem with singularities at both the origin and infinity.

It is straightforward to solve the BVP posed on [5, Д]. However, it is always prudent
to vary the position o f the end points to gain some confidence that they have been chosen
appropriately. It is natural to choose the end points close to the singular points and large
for infinity, but this can get us into just the kind of the trouble that our analysis is attempt­
ing to avoid - the solver may not be able to distinguish the various kinds o f solutions of
the ODEs. The program ch3ex4.m solves the BVP on three intervals and displays the
solutions so that we can examine them for consistency. It makes use of a capability o f the
function b v p i n i t that is very convenient in these circumstances. After solving a problem
on one interval, we can expect the solution to be a good guess for an interval that is only
a little longer. As seen here, you can supply the solution structure and the longer inter­
val to b v p i n i t in order to form a guess structure for the new interval. In this approach,
the solution is extended automatically to the longer interval by extrapolation. How far
you can extend a solution in this way depends on how rapidly it is changing, but it is also
limited by the well-known hazards of polynomial extrapolation. The consistency of the
solutions displayed in Figure 3.6 suggests that the final boundary points are close enough
to the singular points that our approximate boundary conditions are acceptable.

182 Chapter 3: Boundary Value Problems

f u n c t i o n ch3ex4
% y (1) = y (x) , y (2) = z (x) , y (3) = y ' (x) , y (4) = z ' (x)
g l o b a l d
ho l d on
f o r i = 1:3

D = 4 * i ; d = 1/D;
i f i == 1

P = [-1 ; 0 . 5] ; % Guess paramete rs P = [b; c] :
s o l i n i t = b v p i n i t (l i n s p a c e (d , D , 5) , [d ; 0; 0; 0] , P) ;

e l s e
s o l i n i t = b v p i n i t (s o l , [d , D]) ;

end
s o l = b v p 4 c (@ o d e s , @ b c s , s o l i n i t) ;
p l o t (s o l . x , s o l . y (1 : 2 , :) , s o l . x (e n d) , s o l . y (1 : 2 , e n d) , ' r o ' , . . .

s o l . x (1) , s o l . y (1 : 2 , 1) , ' k o ') ;
l e g e n d (' y (x) ' , ' z (x) ' , 0) ;
a x i s ([0 12 0 1]) ;
drawnow

end
ho l d o f f

Q,___%===
f u n c t i o n dydx = o d e s (x , y , P)
dydx = [y (3) ; y (4) ; 2 * (y (3) - y (2)) / (3 * y (1)) ; - y (1) * y (4)] ;

f u n c t i o n r e s = b c s (y a , y b , P)
g l o b a l d
r es = z e r o s (6 , 1) ;
r e s (1 : 4) = ya - s e r i e s (d , P) ;
r e s (5 : 6) = [y b (3) ; (yb (4) - (- y b (1) * y b (2)))] ;

f u n c t i o n y = s e r i e s (x , P)
b = P (1) ; c = P (2) ;
y x = x + b*x~ (5/3) - c*x~2 - (5/7) *b~2*x~ (7/3) . . .

+ (7 / 6) * b * c * x ~ (8 / 3) ;
ypx = 1 + (5/3) *b * x~ (2/3) - 2 * c * x - (5 / 3) * b ~ 2 * x ~ (4 / 3) . . .

+ (2 8 / 9) * b * c * x ~ (5 / 3) ;
zx = 1 + c * x - (1 / 6) * c * x " 3 - (9 / 8 8) * b * c * x " (1 1 / 3) ;
zpx = c - (1 / 2) * c * x " 2 - (3 / 8) * b * c * x " (8 / 3) ;
y = [yx ; zx; yp x ; z p x] ;

3.5 Solving BVPs in M a tla b 183

Often the hardest part of solving a BVP is finding an initial estimate o f the solution
that is good enough to yield convergence. Here we have described solving the BVP on
several intervals as a way of gaining confidence in the solution. It also serves as an ex­
ample o f continuation. The method o f continuation exploits the fact that generally the
solution o f one BVP is a good guess for the solution of another with slightly different
parameters. The program ch3ex4.m is an example of continuation in the length of the
interval. I f you have difficulty in finding a guess for the solution that is good enough to
achieve convergence for the interval o f interest, it is frequently the case that the prob­
lem is easier to solve on a shorter interval. The idea is then to solve a sequence of
BVPs with the solution on one interval being used as a guess for the problem posed on
a longer interval. I f all goes well, you will reach the interval o f interest with a guess
that is good enough to yield convergence. O f course, you cannot use this technique to
extend the interval ad infinitum; no matter how good your guess, eventually the solver
will not be able to distinguish the different kinds of solutions. Further, continuation de­
pends on the solution for one interval being much like that of an interval with nearly
the same length, but for some BVPs this is not true. Particularly, continuation using the
length of the interval as the continuation parameter can fail because sometimes a small
difference in the interval length can change the situation from solving a BVP with a well-
defined solution to attempting to solve a BVP that does not have a solution or has more
than one.

EXAMPLE 3.5.5

The Fisher BVP was used in Section 3.3.2 to illustrate the analysis o f boundary conditions
at infinity. The ODE is

U " + c U ' + U(1 - U) = 0

and the solution is to satisfy the boundary conditions

U (- < x) = 1, U (t o) = 0

We found that the solution is not unique with these boundary conditions. After some
analysis we specified boundary conditions that identify a unique solution by choosing a
“ large” number Z and requiring that

U ’(- Z) - c + У c 2 + 4

U (- Z) - 1
- a = 0 for a =

U (Z) - c W c 2 - 4
() - 1 = 0 for в = ---- ^ ---------,PZ

184 Chapter 3: Boundary Value Problems

In the program ch3ex5.m we use the variables i n f t y for Z , and a lph a and be t a for
a and в , respectively. The boundary conditions are coded in a straightforward way for
the first-order system with two unknowns у 1(z) = U (z) and у 2(z) = U (z) . It is not dif­
ficult to solve this BVP once the boundary conditions are properly formulated. We use
this problem to suggest some experiments that show what happens when the solver fails.
We also solve the BVP for a range o f wave speeds c. A study o f this kind motivates our
discussion of how to speed up the computations.

Measuring run times is a little tricky in M atlab and quite naturally depends on the
hardware and its configuration. A ll we want to do here is get a general idea of the relative
effects o f various options. The times we state were all obtained on a single-user computer
as the elapsed time reported on the second invocation of

>> t i c , ch3ex5; t o c

With the default options specified by o p t i o n s = [] , the program ch3ex5.m given at
the end o f this example ran in 5.76 seconds.

Like the M atlab programs for solving stiff IVPs, by default bvp4c forms Jacobians
using finite differences. Often it is easy to vectorize the evaluation o f the ODE function
f (x , у) for a given value o f x and an array of vectors у. This can reduce the run time sub­
stantially, so the stiff IVP solvers have an option for this. It is a natural option for BVPs,
too, but important additional gains are possible if the function is also vectorized with re­
spect to the values o f x. That is because, in discretizing the ODEs in the BVP context, all
the values o f the arguments are known in advance. Generalizing what is done for IVPs,
there is an option for you to code the function f (x , у) so that, when given a vector x =

[x1, x 2, .. .] and a corresponding array o f column vectors у = [у 1, у 2, . . .] , it returns an
array of column vectors [f (x 1, у 1), f (x 2, у2) , . . .] . Vectorizing the ODE function in this
way will often greatly reduce the run time. If the comment symbol is removed from the
line in the program ch3ex5.m so that V e c t o r i z e d is set to on, the run time is reduced
to 3.40 seconds. This is a considerable reduction in a relative sense, showing that vector-
ization can be very advantageous. Yet the absolute run time is so short that it is scarcely
worth the trouble. Still, vectorization is very little trouble for these ODEs. We might code
the ODEs for scalar evaluation as

dydz = [y (2) ; - (c * y (2) + y (1) * (1 - y (1)))] ;

This is vectorized by changing the vectors to arrays and changing the multiplication to an
array multiplication as shown in ch3ex5.m.

Most BVP solvers require you to provide analytical partial derivatives. Generally this is
both inconvenient and unnecessary for the typical problem solved in M atlab , so bvp4c

3.5 Solving BVPs in M a tla b 185

does not. There may be good reasons for going to the trouble o f providing analytical par­
tial derivatives. One is that it may not be much trouble after all. For instance, linear ODEs
can be written in the form

and it is generally convenient to supply a function for evaluating the Jacobian J (x) .
Another reason is that BVPs are generally solved much faster with analytical partial deriva­
tives. Although the numjac function that bvp4c uses to approximate partial derivatives
numerically is very effective, the task is a difficult one and so analytical partial deriva­
tives improve the robustness o f the solver. For some difficult BVPs, supplying analytical
partial derivatives is the difference between success and failure.

The code bvp4c permits you to supply analytical partial derivatives for either the ODEs
or the boundary conditions or both. It is far more important to provide partial derivatives
for the ODEs than the boundary conditions. You inform the solver that you have written a
function for evaluating f by providing its handle as the value o f the FJacobian option.
Similarly, you inform the solver of a function for evaluating analytical partial derivatives
o f the boundary conditions with the option BCJacobian. The function for evaluating the
residual g(ya, yb) in the boundary conditions involves two vectors, the approximate solu­
tion values ya and yb at the two ends o f the interval. Accordingly, the function you write
for evaluating partial derivatives o f the boundary conditions must evaluate and return two

and coding it as a function may be helpful. Suppose there are d equations. I f J is sparse,
you should initialize it to a sparse matrix o f zeros with j = s p a r s e (d , d) . For each
value of i = 1, 2, . . . , d , you might then examine f for the presence of components yj.
For each component that is present, you must work out the partial derivative o f f i with
respect to yj and then code the function to evaluate it as J (i , j) . O f course, you can
evaluate the components o f J in any order that is convenient. This is a reasonable way to
proceed even when you are treating J as a dense matrix. The only difference is that you
would initialize the matrix with j = z e r o s (d , d) (or just J = z e r os (d)) . The func­
tion you write for f (x , y) must return a column vector f . A systematic way of working
out partial derivatives when the matrix is not sparse is to proceed one column at a time.
That is, for j = 1, 2, . . . , d , work out the partial derivatives

y ' (x) = J (x) y (x) + q (x)

matrices, ^ and ^ .dya dyb
A few comments about working out the Jacobian

186 Chapter 3: Boundary Value Problems

Once you have worked out expressions for all the partial derivatives, you can evaluate
them in any convenient order. The M atlab Symbolic Toolbox has a function j a co b i a n
that can be very helpful when working out partial derivatives for complicated functions.
We illustrate its use with a script for the partial derivatives of the boundary conditions
function of this example. We find it convenient to use names like dBCdya when provid­
ing analytical partial derivatives to remind ourselves which partial derivatives are being
computed. With the help entry for j a c ob i an and the variable names we have chosen,
the program should be easy to follow.

syms re s y a 1 y a 2 y b 1 y b 2 a l pha b e t a i n f t y
r e s = [y a 2 / (y a 1 - 1) - a lpha

y b 1 / e x p (b e t a * i n f t y) - 1] ;
dBCdya = j a c o b i a n (r e s , [y a 1 ; y a2])
dBCdyb = j a c o b i a n (r e s , [y b 1 ; y b2])

This program generates the (slightly edited) output

dBCdya = [- y a 2 / (y a 1 - 1) ~2 , 1 / (y a 1 - 1)]
[0 , 0]

dBCdyb = [0, 0]
[1 / e x p (b e t a * i n f t y) , 0]

A little work with a text editor turns this output into the subfunction bcJac of the pro­
gram ch3ex5.m.

When the program ch3ex5.m was run with default values for all options except for
FJacobian, the BVP was solved in 4.72 seconds, a fair improvement over the 5.76 sec­
onds without this option. When BCJacobian was also supplied, the BVP was solved
in 4.56 seconds. Sometimes vectorization reduces the run time more than supplying an­
alytical Jacobians; other times, less. The options are independent, so you can do one or
the other depending on what is convenient. Moreover, you can do both. In this instance,
vectorizing the ODE function and supplying analytical partial derivatives for the ODE
function and for the boundary conditions reduced the run time to 2.31 seconds. Clearly
it is possible to reduce run times significantly if it is worth the trouble o f supplying the
solver with more information. And, it is worth the trouble more often than might seem
likely at first. As with this example, if you expect to solve a problem repeatedly with dif­
ferent choices o f parameters, then it might be worth making the effort even if an individual
solution costs only a few seconds.

Now that we are solving the BVP efficiently, let’s experiment with the solution process.
Notice that in ch3ex5.m we specify a value of i n f t y that depends on the wave speed
c. It would seem natural simply to use a value large enough to solve the BVP for all the

3.5 Solving BVPs in M a tla b 187

values o f c to be considered. However, if (say) you set i n f t y = 2 50 then the compu­
tation will fail with the message

?? E r r o r us i ng ==> bvp4c
U nable to r e f i n e the mesh any f u r t h e r - ­
the Jacob i an o f the c o l l o c a t i o n equa t i ons i s s i n g u l a r

For the smaller values o f c, the solution approaches its limit values rapidly - so rapidly
that, with default tolerances, the solver cannot recognize the proper behavior at Z = 250.
For instance, when c = 5,

U(250) ъ e250в ъ 2.1846 ■ 10-23

This is too small for default tolerances, but by choosing i n f t y = 1 0 * c instead we
obtain

U(50) ъ 2.9368 ■ 10-5

a value more comparable in size to the tolerances. When the various kinds of solution be­
havior cannot be distinguished in the discretized problem, the linear system is singular.
When you receive this kind of error message, you need to consider whether you have the
boundary conditions properly specified, especially when there is a singularity in the BVP.
One reason for our analysis of asymptotic boundary conditions is to deal analytically with
the solution where it is difficult to approximate numerically. Here we must take i n f t y
large enough that the asymptotic boundary condition properly describes the solution and
yet not so large that we defeat the purpose o f the asymptotic approximation.

In light o f Example 3.5.4, it would seem natural to use the solution for one wave speed
as a guess for the next. However, if we do this with

i f i == 1

s o l i n i t = b v p i n i t (l i n s p a c e (- i n f t y , i n f t y , 2 0) , @ g u e s s) ;
e l s e

s o l i n i t = b v p i n i t (s o l , [- i n f t y , i n f t y]) ;
end

we find that the run time increases to 10.60 seconds. It is not that continuation in the
wave speed is a bad idea; often the only “ simple” way to compute a solution on an in­
finite interval is to solve the problem repeatedly with modest increases in the length of
the interval. What is happening here is that we have a guess that has the right asymp­
totic behavior at one end of the interval and the right qualitative behavior at the other.
When we use the solution with a different wave number and a different interval as an
estimate, we extrapolate the solution to a longer interval. The specified increases in
length are acceptable in this instance, but we would be better off to use our asymptotic

188 Chapter 3: Boundary Value Problems

Figure 3.7: Solutions of the Fisher BVP for various wave speeds c.

expressions at the current wave speed because they provide a better solution estimate
than does automatic polynomial extrapolation of the numerical solution for a different
wave speed.

Estimates are provided for both the solution and the mesh. It is important to appreciate
that, even when a function is supplied that approximates the solution everywhere in the
interval, the solver uses its values only on the initial mesh. Figure 3.7 makes the point.
The estimate coded in the program ch3ex5.m reflects the behavior o f the desired solu­
tion at both end points o f the interval, but it is a terrible approximation in the middle: it
is 0 just to the left o f the origin and 1 just to the right! It is interesting to experiment with
the number o f mesh points. When we specified an initial mesh o f only five points, the
solver failed because the asymptotic behavior is not revealed on a mesh of so few points.
When we specified 200 equally spaced points, the solver was successful but the run time
increased from 2.31 seconds to 5.77 seconds. Because the cost depends strongly on the
number o f mesh points, bvp4c tries to use as few as possible. Nevertheless, the goal is
to solve the problem and not just to solve it with the fewest points possible, so for the
sake o f robustness bvp4c is cautious about discarding mesh points. Indeed, if the ini­
tial mesh and the guess for the solution on this mesh are satisfactory, it will not discard
any. You might experiment with the effect on the run time of the choice o f the number
o f equally spaced mesh points in the initial guess. In this experiment it would be illumi­
nating to look at the number o f mesh points (l e n g t h (s o l . x)) for the various values

3.5 Solving BVPs in M a tla b 189

of the wave speed c. You will find that the solver does not need anything like 200 mesh
points for most values o f c. Another issue for this particular guess for the solution is that,
as we increase the number o f equally spaced points in the initial mesh, we place more
points near the origin and hence the terrible approximation to the solution in this region
has more influence on the computation. In Exercise 3.26 you are asked to explore the use
o f an asymptotic approximation (due to Murray) that provides a good estimate through­
out the interval. Exercises 3.25, 3.27, and 3.28 ask that you experiment with vectorization
and analytical partial derivatives.

f u n c t i o n ch3ex5
g l o b a l c a l pha be t a i n f t y

o p t i o n s = [] ;
%opt ions = b v p s e t (o p t i o n s , ' V e c t o r i z e d ' , ' o n ') ;
%opt ions = b v p s e t (o p t i o n s , ' F J a c o b i a n ' , @ o d e J a c) ;
%opt ions = b v p s e t (o p t i o n s , ' B C J a c o b i a n ' , @ b c J a c) ;

c o l o r = [' r ' , ' b ' , ' g ' , 'm' , ' k '] ;
w ave_speed = [5 , 10, 15, 20, 25] ;
ho l d on
f o r i = 1:5

c = w a v e _ s p e e d (i) ;
a lph a = (- c + s q r t (c " 2 + 4)) / 2 ;
b e t a = (- c + s q r t (c " 2 - 4)) / 2 ;
i n f t y = 1 0 * c ;
s o l i n i t = b v p i n i t (l i n s p a c e (- i n f t y , i n f t y , 2 0) , @ g ue s s) ;
s o l = b v p 4 c (@ o d e , @ b c , s o l i n i t , o p t i o n s) ;
p l o t (s o l . x , s o l . y (1 , :) , c o l o r (i)) ;
a x i s ([- 2 5 0 250 0 1]) ;
drawnow

end
l e g e n d (' c = 5 ' , ' c = 10 ' , ' c = 15 ' , ' c = 2 0 ' , ' c = 2 5 ' , 3) ;
ho l d o f f

Q,___%==
f u n c t i o n v = g u e s s (z)
g l o b a l c a l pha be t a i n f t y
i f z > 0

v = [e x p (b e t a * z) ; b e t a * e x p (b e t a * z)] ;
e l s e

190 Chapter 3: Boundary Value Problems

v = [(1 - e x p (a l p h a * z)) ; - a l p h a * e x p (a l p h a * z)] ;
end

f u n c t i o n dydz = o d e (z , y)
g l o b a l c a lph a b e t a i n f t y
dydz = [y (2 , :) ; - (c * y (2 , :) + y (1 , :) . * (1 - y (1 , :)))] ;

f u n c t i o n dFdy = o d e J a c (z , y)
g l o b a l c a lph a b e t a i n f t y
dFdy = [0, 1

(- 1 + 2 * y (1)) , - c] ;

f u n c t i o n r e s = b c (y a , y b)
g l o b a l c a lph a b e t a i n f t y
r es = [y a (2) / (y a (1) - 1) - a lpha

y b (1) / e x p (b e t a * i n f t y) - 1] ;

f u n c t i o n [dBCdya, dBCdyb] = b c J a c (y a , y b)
g l o b a l c a lph a b e t a i n f t y
dBCdya = [- y a (2) / (y a (1) - 1) л2, 1 / (y a (1) - 1)

0 0] ;

dBCdyb = [0 0
1 / e x p (b e t a * i n f t y) , 0] ;

EXAMPLE 3 .5 .6

Example 1.4 o f Ascher et al. (1995) describes flow in a long vertical channel with fluid
injection through one side. The ODEs are

f " ' - R [(f ') 2 - f f "] + R A = 0

h" + R f h ' + 1 = 0

в " + Pef 9 ' = 0

Here R is the Reynolds number and the Peclet number Pe = 0.7R. Because o f the un­
known parameter A, this system of total order 7 is subject to eight boundary conditions:

f (0) = f (0) = 0 , f (1) = 1, f '(1) = 1

h(0) = h(1) = 0 , в (0) = 0 , в (1) = 1

3.5 Solving BVPs in M a tla b 191

It is quite common to study how a solution behaves as parameters change. For small
changes in the parameters, we expect that the mesh and the numerical solution (and the un­
known parameters, if present) for one set of parameters will be good guesses for the next
set. The code bvp4c takes advantage o f this by accepting a solution structure as a guess
structure. This is not merely an efficient way to obtain solutions o f BVPs for a range of
parameter values, it is also an example o f the approach to solving difficult BVPs by con­
tinuation. By a “hard” problem we mean here a BVP for which it is hard to find a guess
that is good enough to result in convergence to an approximate solution. This particular
BVP is also hard in the sense that, when R is large, there is a boundary layer that requires
many mesh points to resolve. Thus, it is easy to achieve convergence from a constant
guess for a Reynolds number R = 100 but not for R = 10,000. Continuation shows us
how the solution behaves as R is changed and allows us to solve the BVP for relatively
large values of R. When solving hard BVPs, often we require a large number o f runs that
often involve many iterations, so it may be worth going to some trouble to reduce the run
time. We complement the discussion o f this issue in Example 3.5.5 by showing what is
different when there are unknown parameters.

Once you understand that the solution structure computed for one set o f parameters can
be used as the guess structure for another, it is easy to solve this BVP for several values of
the Reynolds number R. For R = 100 we guess that all the components o f the solution are
constant with value 1 and that the unknown parameter A = 1 in the guess structure defined

192 Chapter 3: Boundary Value Problems

by the function b v p i n i t . Thereafter, the solution for one value of R is used as guess for
the next. The program ch3ex6.m plots the solutions as they are computed, resulting in
Figure 3.8 (page 191), and the values for A are displayed to the screen as

>> ch3ex6
For R = 100, A = 2.76.
For R = 1000, A = 2 . 5 5 .
For R = 10000, A = 2.49.

This version o f the program includes both vectorization and analytical partial derivatives.

f u n c t i o n ch3ex6
g l o b a l R

c o l o r = [' k ' , ' r ' , ' b '] ;
op t i on s = b v p s e t (' F J a c o b i a n ' , @ J a c , ' B C J a c o b i a n ' , @ B C J a c , . . .

' V e c t o r i z e d ' , ' o n ') ;
R = 100;
s o l = b v p i n i t (l i n s p a c e (0 , 1 , 1 0) , o n e s (7 , 1) , 1) ;
ho l d on
f o r i = 1:3

s o l = b v p 4 c (@ o d e , @ b c , s o l , o p t i o n s) ;
f p r i n t f (' F o r R = %5i, A = % 4 . 2 f . \ n ' , R , s o l . p a r a m e t e r s) ;
p l o t (s o l . x , s o l . y (2 , :) , c o l o r (i)) ;
a x i s ([- 0 . 1 1.1 0 1 . 7]) ;
drawnow
R = 10*R;

end
l e g e n d (' R = 1 0 0 ' , ' R = 1 0 0 0 ' , ' R = 1 0 00 0 ' , 1) ;
ho l d o f f

Q,__%==
f u n c t i o n dydx = o d e (x , y , A) ;
g l o b a l R
P = 0.7*R;
dydx = [y (2 , :) ; y (3 , :) ; R * (y (2 , :) . ~ 2 - y (1 , :) . * y (3 , :) - A) ; . . .

y (5 , :) ; - R * y (1 , :) . * y (5 , :) - 1 ; y (7 , :) ; - P * y (1 , :) . * y (7 , :)] ;

f u n c t i o n [dFdy,dFdA] = J a c (x , y , A)
g l o b a l R

3.5 Solving BVPs in M a tla b 193

dFdy = [0, 1, 0, 0, 0, 0, 0
0 , 0 , 1 , 0 , 0 , 0 , 0

- R * y (3) , 2 * R * y (2) , - R * y (1) , 0, 0, 0, 0
0 , 0 , 0 , 0 , 1 , 0 , 0

- R * y (5) , 0, 0, 0, - R * y (1) , 0, 0
0 , 0 , 0 , 0 , 0 , 0 , 1

- 7/ 1 0 * R * y (7) , 0, 0, 0, 0, 0, - 7/10*R*y (1)] ;

dFdA = [0; 0; -R ; 0; 0; 0; 0] ;

f u n c t i o n r e s = b c (y a , y b , A)
r e s = [y a (1) ; y a (2) ; y b (1) - 1 ; y b (2) ; . . .

y a (4) ; y b (4) ; y a (6) ; y b (6) - 1] ;

f u n c t i o n [dBCdya,dBCdyb,dBCdA] = BCJac (ya , yb ,A)
dBCdya =

dBCdyb =

1 , 0 , 0 , 0 , 0 , 0 , 0

0 , 1 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 1 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 1 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

1 , 0 , 0 , 0 , 0 , 0 , 0

0 , 1 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 1 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0 , 1 , 0

dBCdA = z e r o s (8 , 1) ;

Providing analytical partial derivatives is more complicated for this BVP than that of
Example 3.5.5 because, when there are unknown parameters, we must also provide par­
tial derivatives with respect to these parameters. We chose names for the variables in the
program ch3ex6.m that indicate what must be returned by the subfunction Jac. The
array dFdy is the usual Jacobian matrix of the ODEs, here a 7 x 7 matrix. When there

194 Chapter 3: Boundary Value Problems

are unknown parameters, there is a second output argument that is the matrix o f partial
derivatives o f the ODEs with respect to the unknown parameters. Here there are seven
ODEs and one unknown parameter A, so the array dFdA is a 7 x 1 vector. In general,
if there are d equations and m unknown parameters pj, then the matrix o f partial deriva­
tives with respect to the parameters is d x m. A systematic way to work them out by hand
is to form column j o f the matrix as the partial derivative o f f with respect to the para­
meter pj . As we saw in Example 3.5.5, the M atlab Symbolic Toolbox has a function
j a co b i a n that can help generate the matrices o f partial derivatives. We might, for ex­
ample, use

syms y y1 y2 y3 y4 y5 y 6 y7 R A P F
y = [y1 ; y2 ; y3 ; y4 ; y5 ; y 6 ; y 7] ;
P = 0.7*R;
F = [y2; y3; R * (y 2 " 2 - y 1 * y 3 - A) ; y5;

-R* y1* y5 -1 ; y7; - P* y1*y7] ;
dFdy = j a c o b i a n (F , y)
dFdA = j a c o b i a n (F , A)

and edit the output a little to obtain the subfunction Jac. The boundary conditions are
handled similarly. The array dBCdya contains the partial derivatives o f the residual vec­
tor g(ya , yb) with respect to the argument ya. Here there are eight residuals and ya has
seven components, so the array dBCdya is an 8 x 7 matrix and the same is true of the array
dBCdyb corresponding to yb. In general, if there are d equations and m parameters, these
matrices are (d + m) x d. There is a third output argument, which is the matrix o f partial
derivatives of the residual with respect to the unknown parameters. Here there is only one
unknown parameter, so the array dBCdA is 8 x 1. In general this matrix is (d + m) x m.
In solving BVPs with analytical partial derivatives, you might sometimes receive an error
message stating that the dimensions of some arrays internal to bvp4c are not properly
matched. Generally this means that the size of one of your partial derivative matrices is
wrong. Compare the sizes o f the arrays you are computing to the general expressions just
stated. For this example, most of the entries o f the various matrices o f partial derivatives
are zero and so, if we had coded them by hand, we would have initialized the matrices to
zero and then evaluated only the nonzero entries. However, we generated the matrices for
this example using the Symbolic Toolbox and just edited the output with its many zeros
to obtain the subfunctions of ch3ex6.m.

By measuring run times as in Example 3.5.5, we found that with default options the
program ch3ex6.m ran in 13.35 seconds. It is quite easy to vectorize the evaluation of the
ODEs. Just as for Example 3.5.5, this is a matter o f changing scalar quantities like y (1)
into arrays like y (1 , :) and changing from scalar operations to array operations by re­
placing * and л with .* and . л , respectively. Vectorizing the ODE function reduced the
run time to 8.02 seconds. When using analytical partial derivatives with V e c t o r i z e d

3.5 Solving BVPs in M a tla b 195

set to o f f , the BVP was solved in 6.64 seconds. With analytical partial derivatives and
V e c t o r i z e d set to on, the run time was reduced to 4.01 seconds.

Continuing on to Reynolds number R = 1,000,000, the solver bvp4c reports

Warning: U nable to meet the t o l e r a n c e w i tho u t us ing more
than 142 mesh p o i n t s .

Generally you do not need to concern yourself with storage issues, but the solver does have
a limit on the number o f mesh points. This is set by default to f l o o r (1 0 0 0 / d) , where
d is the number o f ODEs. The value is somewhat arbitrary and, if you should receive this
warning, you can use the option Nmax to increase it. You can receive this warning because
the guesses for the mesh and solution are not good enough and the solver has tried unsuc­
cessfully to achieve convergence by increasing the number of mesh points. Or, the solution
may be hard to approximate and the solver just needs more mesh points to represent it to
the specified accuracy. Or, there may be no solution at all! Here, when we increase Nmax
to 500, the code is able to solve the BVP. This is a hard problem for bvp4c. It needed
437 mesh points to approximate the solution even with default tolerances. And even with
vectorization and with analytical partial derivatives, the computation took 22.69 seconds.

EXAMPLE 3.5.7

Continuation is an extremely important tool for the practical solution of BVPs. We have
seen examples o f continuation in the length of the interval. This is certainly natural when
solving problems on infinite intervals, but it can be valuable when the interval is finite, too.
We have seen an example o f continuation in physical parameters. Often this is natural be­
cause you are interested in solutions for more than one set o f parameters, but sometimes
it is useful to vary a quantity because you can solve the BVP easily for one value of the
quantity. This is closely related to a general form of continuation in an artificial parameter
that we take up in this example. Suppose that you are having trouble solving the BVP

У ' = f (x , y) , 0 = g (y (a) , y (b))

because you cannot find a guess that is good enough for the solver to converge. It is not
unusual that a simplified model BVP

y ' = F (x , y) , 0 = G (y (a) , y (b))

can be solved without difficulty, perhaps even analytically. Often it is useful to approxi­
mate the given problem by a linear one because for such problems there is no iteration in
solvers like bvp4c. The idea is to continue from the solution of the easy problem to the
solution of the problem you want to solve. One way to do this is to introduce an artificial
parameter x and solve the family o f BVPs

196 Chapter 3: Boundary Value Problems

У' = f (x , y) + (1 — *) F (x , y)

0 = * g (y (a), y (b)) + (1 — *) G (y (a) , y (b))

for * ranging from 0 to 1. This plausible approach to solving difficult BVPs is very use­
ful in practice, but it is not always successful. Finding an easy problem that captures the
behavior o f the original problem may be crucial to success. Related to this is the possibil­
ity that continuation might fail because there is a value o f * for which the corresponding
BVP simply does not have a solution. Exercise 3.30 provides an example. How much
you change * at each step in the continuation process can mean the difference between
success and failure.

Chapter 7 o f Roberts & Shipman (1972) is devoted to continuation. To illustrate the
technique, we follow their discussion of a BVP in Examples 1 and 5 of that chapter. The
ODEs are

y1 = y2

y 2 = y 3

y 3 =

y4 = y5

у 5 =

3 — n

3 — n

У1У 3 — ny2 + 1 — y4 + sy 2

У1У 3 — (n — 1)y 2 У 4 + s (y 4 — 1)

Here the parameters n = —0.1 and s = 0.2. The ODEs are to be solved on [0, b] with
boundary conditions

У1(0) = 0, y 2(0) = 0, y4(0) = 0, y 2 (b) = 0, У4 (b) = 1

for b = 11.3. Let’s write the ODEs as the sum of their linear terms and a multiple S = 1
o f their nonlinear terms:

0

0
/

y =

y 2

y3
\

1 + sy 2

У5
\s (y 4 — 1) /

/

+ S

\

— V) y 1 y 3 — ny2 — y i

\ —(V b y 3 — (n — 1)y2У4 '

With the given boundary conditions and S = 0 in these ODEs, we have an approximat­
ing linear BVP that can be solved with a nominal guess. We then use the solution for one
value o f S as the guess when solving the BVP with a larger value of S. We continue in this
way until we arrive at S = 1 and the solution o f the BVP that interests us. The program
ch3ex7.m provides the details.

0

3.5 Solving BVPs in M a tla b 197

f u n c t i o n s o l = ch3ex7
g l o b a l d e l t a

s o l = b v p i n i t (l i n s p a c e (0 , 1 1 . 3 , 5) , o n e s (5 , 1)) ;
f o r d e l t a = [0 0.1 0.5 1]

s o l = b v p 4 c (@ o de s , @ b cs , s o l) ;
% p l o t (s o l . x , s o l . y)
% drawnow
% pause
end
p l o t (s o l . x , s o l . y)
a x i s ([0 11.3 -2 1 . 5])
f p r i n t f (' R e f e r e n c e v a l u e s : y _ 3 (0) = -0.96631, y _ 5 (0) = 0 .65291\n')
f p r i n t f (' C o m p u t e d v a l u e s : y _ 3 (0) = %8.5f , y _ 5 (0) = % 8 . 5 f \ n ' , . . .

s o l . y (3 , 1) , s o l . y (5 , 1))

Q,__%===
f u n c t i o n dyd t = o d e s (t , y)
g l o b a l d e l t a
n = - 0 . 1 ;
s = 0 . 2 ;
c = - (3 - n)/2 ;
l i n e a r = [y (2) ; y (3) ; 1 + s * y (2) ; y (5) ; s * (y (4) - 1)] ;
n o n l i n ea r = [0; 0; (c * y (1) * y (3) - n * y (2) " 2 - y (4) ~ 2) ; . . .

0; (c * y (1) * y (5) - (n - 1) * y (2) * y (4))] ;
dyd t = l i n e a r + d e l t a * n o n l i n e a r ;

f u n c t i o n r e s = b c s (y a , y b)
r e s = [y a (1) ; y a (2) ; y a (4) ; y b (2) ; y b (4) - 1] ;

The program displays a comparison o f two values o f the computed solution and refer­
ence values reported by Roberts & Shipman (1972):

>> s o l = ch3ex7;
Re f e r e nc e v a l u e s : y _ 3 (0) = -0.96631, y _ 5 (0) = 0.65291
Computed v a l u e s : y _ 3 (0) = -0.96629, y _ 5 (0) = 0.65293

The agreement is quite satisfactory for the default tolerances used in the computation. The
program also displays all the solution components, as shown here in Figure 3.9. The lines
that have been commented out in ch3ex7.m let you see how the solution of the BVP
changes with S. As it turns out, the linear approximating BVP of S = 0 does not provide

198 Chapter 3: Boundary Value Problems

Figure 3.9: BVP solved by continuation.

a very good approximation to the solution when S = 1, but it is good enough that con­
vergence is obtained with relatively large changes in S at each step o f the continuation
process.

EXAMPLE 3.5.8

Some solvers provide for separated boundary conditions specified at more than two points -
that is, separated multipoint boundary conditions. Among them are co ln ew (Bader &
Ascher 1987) and others that adopted the c o l s y s (Ascher et al. 1995) user interface.
Many solvers (including bvp4c) do not, so we illustrate here one way to prepare mul­
tipoint BVPs for solution with such codes. Other ways of doing this and examples of
multipoint BVPs are found in Ascher & Russell (1981) and Ascher et al. (1995, chap. 11).

Chapter 8 o f Lin & Segel (1988) is devoted to the study of a physiological flow prob­
lem. After considerable preparation, Lin and Segel arrive at equations that can be written
for 0 < x < к as

, С - 1 v = -------
n

vC — min(x, 1)

п

3.5 Solving BVPs in M a tla b 199

Here n and n are dimensionless (known) parameters and к > 1. The boundary conditions
are

v(0) = 0, C(k) = 1

The quantity o f most interest is the dimensionless emergent osmolarity defined by

1
Os =

v(k)

Using perturbation methods, Lin and Segel approximate it for small n by

1
Os

1 — K

where

к sinh(к/к)

к cosh(к)

and the parameter к is such that
к2

П = --- 2
пк 2

Thetermmin(x, 1) in the equation for the derivative C (x) is not smooth at x = 1. Indeed,
Lin and Segel describe this BVP as two problems, one set on the interval [0 , 1] and the
other on the interval [1, k], connected by the requirement that the solution components
v (x) and C (x) be continuous at x = 1. Numerical methods have less than their usual
order o f convergence when the ODEs, and hence their solutions, are not smooth. De­
spite this, bvp4c is sufficiently robust that it can solve the problem formulated in the way
that Lin and Segel suggest without difficulty. This is certainly the easier way to solve this
particular problem, but it is better practice to recognize that this is a multipoint BVP. In
particular, this problem is a three-point BVP because it involves boundary conditions at
three points rather than at the two that we have seen in all earlier examples. A standard
way to reformulate this multipoint BVP as a two-point BVP is first to introduce unknowns
y 1(x) = v (x) and y 2(x) = C (x) for the interval 0 < x < 1, so that the differential equa­
tions there are

dy 1 _ y 2 — 1

f " n (3.25)
dy 2 _ У1У 2 — x
dx n

One o f the boundary conditions becomes y 1(0) = 0. Next, unknowns y 3(x) = v (x) and
y4(x) = C (x) are introduced for the interval 1 < x < k, resulting in the equations

200 Chapter 3: Boundary Value Problems

dy 3 _ У4 — 1
dx n

dy4 _ У3У4 — 1
dx п

The other boundary condition becomes y4(k) = 1. With these new variables, the conti­
nuity conditions on the solution components v and С become y 1(1) = y 3(1) and y 2(1) =
y4(1). This is all easy enough, but the trick is to solve the four differential equations si­
multaneously. This is accomplished by defining a new independent variable

x — 1
T = ------

к — 1

for the interval 1 < x < к. Like the independent variable x in the first interval, this inde­
pendent variable ranges from 0 to1in the second interval. In terms of this new independent
variable, the differential equations on the second interval become

dy3 _ (к — 1)(У4 — 1)

dT n

dy4 _ (к — 1)(y3y4 — 1)

dT п

(3.26)

The boundary condition y4(x = к) = 1 becomes y4 (t = 1) = 1. The continuity con­
dition y 1(x = 1) = y 3(x = 1) becomes y 1(x = 1) = y 3(t = 0). Similarly, the other
continuity condition becomes y 2(x = 1) = y4(T = 0). Since the differential equations
for the four unknowns are connected only through the boundary conditions and since both
sets are to be solved for an independent variable that is ranging from 0 to 1, we can com­
bine the ODEs in (3.25) and (3.26) as one system to be solved for the interval 0 < t < 1.
In the common independent variable t, the boundary conditions are

y1(0) = 0, y4(1) = 1, y 1(1) = y 3(0), y 2 (1) = y4(0)

That the boundary conditions arising from requiring continuity are nonseparated does not
matter when using bvp4c, but solvers that do not accept either the problem in its original
multipoint form or nonseparated boundary conditions will require additional preparation
of the problem to separate the boundary conditions (cf. Example 3.5.3).

The program ch3ex8.m solves the three-point BVP for к = 2, 3, 4, and 5 when the
parameters n = 5 ■ 10—2 and к = 2. The solution for one value of к is used as guess for the
next - another example of continuation in a physical parameter. For each value of к, the
computed osmolarity Os is compared to the approximation given by Lin and Segel. The
known parameters are passed through bvp4c as additional arguments. Because the BVP
is solved with default options, [] is used as a placeholder. The only remaining complica­
tion is that, in order to plot a solution, we must undo the change o f variables in the second

3.5 Solving BVPs in M a tla b 201

Figure 3.10: Solution of a three-point BVP.

interval and assemble a solution for the whole interval [0, к]. The program ch3ex8.m
displays

kappa computed Os approx im ate Os
2 1.462 1.454
3 1.172 1.164
4 1.078 1.071
5 1.039 1.034

and plots the solution components v (x) and C (x) for к = 5, as seen in Figure 3.10.

f u n c t i o n ch3ex8

s o l = b v p i n i t (l i n s p a c e (0 , 1 , 5) , [1 1 1 1]) ;
n = 5e-2;
lambda = 2 ;
f p r i n t f (' kappa computed Os approx im ate Os\n')
f o r kappa = 2 :5

e ta = lambda~2 /(n*kappa~2) ;
s o l = b v p 4 c (@ o d e s , @ b c s , s o l , [] , n , l a m b d a , e t a) ;
K2 = l ambda* s inh (kappa/ l ambda) / (kappa* cosh (kappa)) ;

202 Chapter 3: Boundary Value Problems

approx = 1/(1 - K2) ;
computed = 1 / s o l . y (3 , e n d) ;
f p r i n t f (' %2i %10.3f %10 . 3 f \n ' , kappa , comput ed , app rox) ;

end

% v and C a r e computed s e p a r a t e l y on 0 <= x <= 1 and 1 <= x <= lambda.
% A change o f independen t v a r i a b l e i s used f o r the second i n t e r v a l .
% F i r s t i t must be undone to ob t a i n the co r r e spo nd i ng mesh in x and
% then a s o l u t i o n assembled f o r a l l o f 0 <= x <= lambda.
x = [s o l . x s o l . x * (l a m b d a - 1) + 1] ;
У = [s o l . y (1 : 2 , :) s o l . y (3 : 4 , :)] ;
p l o t (x , y (1 , :) , x , y (2 , :))
l e g e n d (' v (x) ' , ' C (x) ')

Q,__%===
f u n c t i o n dydx = o d e s (x , y , n , l a m b d a , e t a)
dydx = [(y (2) - 1)/n

(y (1) * y (2) - x) / e t a
(lambda - 1) * (y (4) - 1)/n
(lambda - 1) * (y (3) * y (4) - 1) / e t a] ;

f u n c t i o n r e s = b c s (y a , y b , n , l a m b d a , e t a)
r es = [y a (1) ; y b (4) - 1 ; y b (1) - y a (3) ; y b (2) - y a (4)] ;

■ EXERCISE 3.15
Verify that the BVP consisting of the ODE

У" + k e y = 0

with boundary conditions y (0) = 0 = y (1) has the first integral (conservation law)

(y '(x)) 2 + 2 k (e y(x — 1) = (y '(0)) 2

Hint: Multiply the ODE by 2y ' (x) and integrate. A first integral can be used to verify a
numerical solution. As discussed in Section 1.5, this must be interpreted carefully: I f the
numerical solution does not satisfy a conservation law very well, you can be sure that it
is not a very accurate solution to the BVP. On the other hand, even if the numerical solu­
tion satisfies the conservation law well, you cannot thereby conclude that it is an accurate
solution - it may be, but it may have large errors that are correlated in such a way that the
law is satisfied well. For the choice k = 1, the program ch3ex1.m computes approxi­
mations S x i n t (1 , :) to the solution y (x) and S x i n t (2 , :) to its derivative y ' (x) at

3.5 Solving BVPs in M a tla b 203

the values x o f x i n t . Using vector operations, evaluate and plot the residual obtained by
substituting the numerical solution into the conservation law. Is the size o f the residual
about what you might expect for the default tolerances used?

■ EXERCISE 3.16
A BVP is discussed in Chapter 1 that has two solutions displayed in Figure 1.3. Reproduce
this figure by solving the equations for the motion of the cannon shot,

y ' = tan (ф)

. g sin(ф) + vv2
v = ---------------------

v co s^)

ф ' = —~ г v2

For the figure, the parameters g = 0.032 and v = 0.02, the interval is [0, 5], and the muz­
zle velocity v(0) = 0.5. The other two boundary conditions are that the shot starts and
ends at ground level, that is, y (0) = 0 = y(5) . Use constant guesses for the two solu­
tions. Use the function de va l to evaluate the solutions at the points l i n s p a c e (0 , 5)
so that you plot smooth graphs.

■ EXERCISE 3.17
This problem, which models a tubular reactor with axial dispersion, was studied by Fin-
layson (1972, sec. 5.4). An isothermal situation with an irreversible reaction o f order n

leads to the ODE
y " = Pe(y y + R y ")

Here Pe is the axial Peclet number and R is the reaction rate group. The boundary condi­
tions are

y '(0) = Pe(y(0) — 1), y '(1) = 0

Using an orthogonal collocation method, Finlayson finds that y(0) = 0.63678 and y(1) =
0.45759 when Pe = 1, R = 2, and n = 2. These values are consistent with those ob­
tained by other workers using a finite difference method. Solve this problem with an initial
choice o f ten equally spaced points in the interval and constant guesses o f 0.5 for y (x)
and 0 for y ' (x) . Plot the numerical solution and compare its values at x = 0 and x = 1to
those obtained by Finlayson.

■ EXERCISE 3.18
Example 5.3 o f Bailey et al. (1968) considers a long, thin cantilever beam of length L and
flexural rigidity B subjected to a concentrated vertical load P at the free end. The dis­
placement o f the beam can be described in terms of arc length s and the angle ф(^) that
the beam makes with the horizontal. This angle is determined by the differential equation

204 Chapter 3: Boundary Value Problems

and the boundary conditions

d2 ф P
— + — co sW = 0
as B

ф(0) = 0, ф ' (L) = 0

In Bailey et al. (1968) the solution of this BVP is used to obtain a quantity o f physical
interest, but here you are to plot the deflected beam. For that you will need to add the
equations

dx
— = cos (ф),
ds

ds = — sin (ф)
ds

and initial conditions
x (0) = 0 , y (0) = 1

Solve this BVP with the nominal values L = 10 and P/B = 0.001, and plot (x(s) , y (s)).
This is an easy problem that can be solved with constant guesses for the unknowns.

■ EXERCISE 3.19
Exercise 1.9 considers how to write in standard form a BVP used by Caughy (1970) to de­
scribe the large amplitude whirling of an elastic string. Here we consider how to solve the
BVP numerically. Holmes (1995, pp. 32-3) writes the solution j i (x) as ey (x) and then
approximates y (x) for “small” e using perturbation theory. The function y (x) satisfies
the ODE

У " + ш H 1 — ̂ i 1 . „ + a ̂ У = 0H 1 + e 2y 2

and boundary conditions
y (0) = 0 , y '(1) = 0

Here a is a physical constant with 0 < a < 1. Because the whirling frequency ш is to be
determined as part o f solving the BVP, there is another boundary condition

y (0) = 1

An unusual aspect o f this problem is that the constant H is defined in terms of the solution
y (x) throughout the interval:

1
H = —a 2

1 — (1 — a 2)I dx

0 y/1 + e2y 2(x) _

Following the suggestions o f Exercise 1.9, formulate this BVP in standard form. Solve it
numerically for a = 0.5 and e = 1. Show analytically that, when e = 0, there is a solu­
tion y (x) = cos (nx) with ш = n. Use this solution and derived quantities as guesses for

3.5 Solving BVPs in M a tla b 205

the numerical solution when e > 0. I f this were a more difficult BVP, you might need to
use continuation in the parameter e to solve the problem with e = 1, but you will find that
the guesses provided by the solution for e = 0 are good enough to yield convergence for
e = 1. Plot y (x) and report rn. Caughy shows analytically that y(0.5) = 0 and y(1) =
—1. What is the value o f your numerical solution at these points?

■ EXERCISE 3.20
Example 6 o f Kubicek, Hlavacek, & Holodnick (1979) describes the concentration and
temperature fields in a tubular reactor with recirculation by the ODEs

Kubicek et al. report that the initial values (y (0) , 0 (0)) ^ (0.1, 0.6). Confirm this and
plot the solution. (You might try a guess o f [1 ; 1] for (y , 0) .) They also report that if
the parameter D a is changed to 0.053 and the other parameters retain their values, then
there are three solutions with initial values (y (0), 0 (0)) that are approximately equal to
(0.1, 0.7), (0.3,1.8), and (0.44, 2.6). To gain experience with computing multiple solu­
tions, try solving for all three. (You can solve all these problems using constant guesses
for the solution components.)

■ EXERCISE 3.21
Edwards (1997) uses Mathematica to discuss a problem in Newton’s Principia Mathe-
matica “concerning the shape o f a solid o f revolution that experiences minimal resistance
to rapid motion through a ‘ rare medium’ consisting o f elastic particles” . A BVP for the
shape is obtained using the calculus o f variations and solved by a shooting method using
NDSolve, the numerical IVP solver o f the Mathematica PSE. The ODE is

with nonseparated boundary conditions

y (0) = (1 — к Ж 1), 0 (0) = (1 — к)0 (1)

When the parameters have the values

в = 0, у = 20, к = 0.5, 0С = 1, B = 6, Da = 0.05

y Щ 1 + (y ' (t))2]

t [3(y (t)) 2 — 1]

and the boundary conditions are

206 Chapter 3: Boundary Value Problems

y (t 0) = 0 , y '(*0) = 1, y (1) = 1

There are three boundary conditions because 10 e [0,1] is an unknown parameter. Ed­
wards finds that 10 & 0.3509. The nose cone is a cylinder o f revolution about the vertical
axis and so, with 10 > 0, the tip of the cone is flat: a disk o f radius 10. Edwards also finds
that the reduced drag coefficient

is about 0.3748. You are to confirm these two numerical results by solving the BVP with
bvp4c. Begin by using the variables y 1(t) = y (t) and y 2 (t) = y ' (t) to write the BVP as
a first-order system. As in Section 1.3, introduce a variable y 3(t) for the computation of
k. A natural choice has y 3(1) = 1 and a simple ODE for y3(t) that involves only t and
y 2(t) . With this choice you have k = y 3(t0) after solving the BVP. As in Example 3.5.3,
you now need to change the independent variable so as to have a fixed interval. Let x be
an independent variable that ranges from 0 to 1 as t ranges from 10 to 1. With this new
independent variable you formulate a BVP defined on [0,1] that involves an unknown pa­
rameter 10. Solve this BVP with default tolerances. Edwards guessed that t0 & 0.5. It
would be plausible to guess that y (x) & x. After solving the BVP, plot y (t) on [0,1] to
see the shape of the nose cone. You might enjoy plotting the cone as a surface.

■ EXERCISE 3.22
In Chapter 1, the BVP consisting o f the equation в " + sin(0) = 0 (i.e., equation (1.6))
and boundary conditions в (0) = 0 and в (+ го) = n arose when discussing the motion of
a pendulum. The solution of this BVP is the dotted curve o f Figure 1.2. Solve this BVP
yourself by replacing the boundary condition at infinity with в (Т) = n. Solve the BVP
for several choices o f T (e.g., T = 5, 10, and 15) to gain confidence in your solution. By
analytical means it was determined in Chapter 1 that the initial slope в ' (0) = 2. Confirm
the accuracy o f your numerical solution by comparing this value to the one you compute
for the initial slope.

■ EXERCISE 3.23
Cebeci & Keller (1971) use shooting methods to solve the Falkner-Skan problem that
arises from a similarity solution o f viscous, incompressible, laminar flow over a flat plate.
The ODE

f + f f " + в(1 — (f ')2) = 0

is solved subject to the boundary conditions

f (0) = 0 , f (0) = 0 , f ' (+TO) = 1

3.5 Solving BVPs in M a tla b 207

It appears that physically relevant solutions exist only for —0.19884 < в < 2. Cebeciand
Keller deal with the boundary condition at infinity by imposing it at a finite point. For a
range of в > 0, the BVP can be solved in a straightforward way with a shooting method,
though continuation in в is needed to compute solutions for some values of the parame­
ter. The value в = 0.5 was relatively difficult for their shooting code, but you will find
that the BVP with this value o f в and the boundary condition f ' (6) = 1 is not difficult
for bvp4c. Considering that f ' (x) & 1 on the last part o f the interval, it would be rea­
sonable to guess that f (x) & x and f " (x) & 0. Verify from a plot o f your solution that
f ' (x) ^ 1 quickly as x increases, making it plausible that x = 6 is large enough to serve
as infinity in the boundary condition. Compare the value that you compute for f " (0) to
the value 0.92768 reported by Cebeci and Keller.

■ EXERCISE 3.24
In a discussion of viscous incompressible flow past a semi-infinite body, Cole (1968, p. 159)
considers the BVP

GG — x F ' = 0, G (0) = F (0) = 0

F " + 2 (x F — G) F ' + 2(1 — F 2) = 0, F (+ to) = 1

Solve this problem by replacing the boundary condition at infinity with the boundary con­
dition F (X) = 0 for some finite value X. Several values should be tried to gain confidence
in your solution, for example, X = 2, 3, and 4. The quantity o f most physical interest
(the skin friction) is a multiple o f F '(0), so report the values that you compute for F '(0).

This BVP can be studied much like that of Exercise 3.8. I f we suppose that G (x) has
a limit as x ^ то, or at least that it is bounded, then we can use the boundary condi­
tion F (to) = 1 to conclude that x F — G ~ x. Using this approximation and neglecting
the term (1 — F 2) that is small for large x, we are led to approximate the second ODE by
F " + 2x F ' = 0. Solving this ODE, we find that

2
F ' (x) - в e —x

for a constant в. Integrating and imposing the boundary condition at infinity, we then find
that

' то
2Г 2 . . .

F (x) — 1 — в I e t dt = 1 — — — erfc(x)
x 2~ {

Using the standard asymptotic representation of the complementary error function,

erfc (x)
x2e-x

x*/n

208 Chapter 3: Boundary Value Problems

we find that F (x) ^ 1 very quickly as x increases. Turning now to the first ODE, we
have

в 2
G ' (x) = x F ' (x) - e (2xe—x)

which we integrate to obtain

в 2
G (x) - G (t o) — в e—x

Not only does G (x) have a limit as x ^ t o , it approaches the limit very quickly. Be­
cause both the unknown functions approach limits very quickly as x increases, we can -
indeed, must - impose the numerical boundary condition F (X) = 1 at what seems like a
very small value o f X. This BVP is easily solved numerically, but if we were to encounter
difficulty then we could use this analysis to provide a more informative boundary con­
dition. These analytical approximations are accurate only for large x, but we could use
them as guesses for the solver for all x. For this purpose it would be natural to impose the
boundary conditions G(0) = 0 and F (0) = 0 to determine в and G (t o).

■ EXERCISE 3.25
Experiment with the program ch3ex5.m as suggested in Example 3.5.5. In particular,
see for yourself how much the various choices for the options affect the run time on your
computer. Certainly it is not difficult to generate error messages, but if you have not al­
ready done this accidentally then you should try some experiments designed to show how
the solver reports failure.

■ EXERCISE 3.26
To approximate the solution U (z) o f Fisher’s BVP, Murray (1993) introduces variables
J = z/c and q(£) = U(z) . The ODE becomes

c 2q " + q ' + q (1 — q) = 0

and the boundary conditions become

q (—TO) = 1, q(TO) = 0

For “ large” c, the solution q(%) is approximated by the outer solution qo(%), that is, the
solution of the ODE

q0 + qo(1 — qo) = 0

Generally such a solution cannot satisfy both boundary conditions, but in this instance the
solution

qo(%) = t — j1 + eJ

3.5 Solving BVPs in M a tla b 209

does. Returning to the original independent variable, we have the outer solution

1

U (z) & r + e *

As Murray found by comparing this approximation to numerical solutions, it is a remark­
ably good approximation. To better understand this, show that the approximation has the
correct qualitative behavior near both end points. We found in Section 3.3.2 that (a) as

z ^ +то, the solution U (z) — e в for в = { —•c + ■%/c 2 — 4)/2 and (b) as z ^ —то, it

satisfies U (z) — a (U (z) — 1) for a = (—c + y/c2 + 4)/2. To get started, note that qo —
e~z/c as z ^ +то. Then show that в & —1/c for “ large” c. In this, the approximation

V c 2 — 4 = cyj 1 — 4/c2 & c(1 — 2/c2)

from the binomial series will be needed. Modify the program ch3ex5.m to use this ap­
proximate solution (and its derivative) as the guess. Does its use speed up the computation
significantly? Plot both the approximation and the numerical solution for some values of
c to see how good a guess the approximation is.

■ EXERCISE 3.27
Vectorize the evaluation of the ODEs in ch3ex4.m and name the modified program
mch3ex4.m. Measure the effect o f vectorization on the run time by comparing the result
o f the second invocation

>> t i c , mch3ex4, t oc

with the option V e c t o r i z e d set to on and then set to o f f . (The second and later invo­
cations have similar run times that may differ significantly from the first invocation.)

■ EXERCISE 3.28
Experiment with the BVP of Example 3.5.6. See for yourself how using vectorization and
analytical partial derivatives affects the run time on your computer. Modify ch3ex6.m
so as to solve the BVP for Reynolds number R = 1,000,000. Explore what happens when
the solver is not allowed a sufficiently large number o f mesh points. Monitor the number
o f mesh points (using l e n g t h (s o l . x)) that the solver uses to solve the problem for the
various values of R on the continuation path.

■ EXERCISE 3.29
We solved the BVP of Example 3.5.2 for e = 0.1, but Keller (1992) is interested in the
solution for a range of e. It is efficient to do this computation by using the solution for
one value o f e as the guess for the next in a continuation process. The ODE is singular

210 Chapter 3: Boundary Value Problems

as the parameter e ^ 0 because the order o f the equation is reduced, here resulting in
an algebraic equation. Typically, singular perturbation problems like this are difficult to
solve when e is small because there are sharp changes in the solution near one or both
end points. This happens because the solution of the ODE for e = 0 is a solution of a
lower-order ODE and thus is not able to satisfy all the boundary conditions simultane­
ously. The lubrication problem is unusual in that the solution for e = 0 is

y (x) = sin2(x), k = 1

and it actually satisfies both boundary conditions. Accordingly, there are no boundary
layers. I f this (outer) solution is used as the guess, then bvp4c has no difficulty solving
the lubrication problem for small values o f e. However, for insight on how to compute
efficiently solutions for several values o f a parameter and for practice with continuation,
solve the BVP for e = 0.01 by continuation. Plot the solution and return the value com­
puted for the unknown parameter k. Do this by modifying the program ch3ex2.m so that
you solve the BVP successively for e = -0, , . . . , -0o . The ODE and boundary condi­
tions are simple, so it is easy to provide analytical partial derivatives. Do so and see how
much it reduces the run time. The scalar form of the ODE in program ch3ex2.m is

dydx = (s i n (x) " 2 - l a m b d a * s i n (x) " 4 / y) / e p s i l o n ;

Remember that, for the BVP solver, you must vectorize with respect to x as well as y.
This can be achieved by using

dydx = (s i n (x) . " 2 - l ambda* s in (x) . " 4 ./ y (1 , :)) / e p s i l o n ;

■ EXERCISE 3.30
Example 1.10 of Ascher et al. (1995) is a model o f the spread of measles that is used to
show how to deal with nonseparated boundary conditions. The ODEs

У- = ^ — e (t) y - y 3

У 2 = e (t) y - y 3 — k

, У 2 У 3
y 3 = т:---------

k n

are to be solved on [0,1] for a periodic solution. That is, the solution vector is to satisfy

y (-) = y (0)

You are to solve this BVP with bvp4c, but if the solver did not provide for nonsepa­
rated boundary conditions then you could separate them as suggested by Ascher et al.

3.5 Solving BVPs in M a tla b 211

(1995): Let c (t) be a vector of three components, and add to the ODEs for y (t) the trivial
equations c ' = 0 that make these components constant. Because they are constant, the
periodicity condition can be replaced by the separated boundary conditions y (0) = c(0)
and y(1) = c(1).

Solve this BVP for л = 0.02, X = 0.0279, n = 0.01, and в (t) = в 0(1 + cos 2nt)
where в 0 = 1575. This BVP can be solved easily with a constant guess, but you might
have trouble finding a guess that works. If you are solving this problem in order to gain ex­
perience with nonseparated boundary conditions, try something like 1 e -3 * o n e s (3 , 1) .
I f you are interested in how you might use continuation to compute a solution of the BVP,
read on. In light o f Example 3.5.7, it would be natural to approximate the ODEs by their
linear part. The trouble with this is that the resulting ODEs do not have a periodic solu­
tion! This is easily seen from the linear approximation to the first equation, y1 = л. The
solution is a straight line with positive slope, so it cannot be periodic. It seems that the
nonlinear terms cannot be neglected. On the other hand, we might weaken the nonlinear­
ity so as to obtain a BVP that is easier to solve. A natural way to do this is to regard в 0

as a parameter. With в 0 = 10, the nonlinearity is not strong and the BVP is solved eas­
ily with a guess of o n e s (3 , 1) . Using the solution of this BVP as a guess, the BVP with
(say) в 0 = 100 can be solved, and so forth. With the sequence в 0 = 10, 100, 500,1000,
and 1575, we computed a solution of the given problem without difficulty. Try something
along these lines yourself. As in Example 3.5.7, it is interesting to see how the solution
changes at each step o f continuation, so plot the solution for each в 0. In plotting the so­
lution, it is convenient to multiply y 2(t) and y 3(t) by 100.

Chapter 4

Delay Differential
Equations

4.1 Introduction
In a system of ordinary differential equations

y ' (t) = f (t , y (t)) (4.1)

the derivative o f the solution depends on the solution at the present time t. In a system of
delay differential equations, the derivative also depends on the solution at earlier times.
In this chapter we study DDEs o f the form

У ' (t) = f (t , y (t) , y (t — T i) , y (t — T 2) , . . . , y (t — Tk)) (4.2)

where the delays (lags) j are positive constants,

0 < T- < T2 < ••• < Tk

It will be convenient to denote the shortest delay by t and the longest by T. As illus­
trated by the survey o f Baker, Paul, & Wille (1995a), DDEs arise in models throughout
the sciences, but our examples will make clear that they have been especially popular for
biological models. DDEs with constant delays are a large and important class. Indeed,
Baker and colleagues (1995a) have compiled an extensive bibliography of applications in­
volving DDEs and have pointed out that “ [t]he lag functions that arise most frequently in
the modelling literature are constants” (Baker, Paul, & Wille 1995b). Furthermore, by re­
stricting attention to problems with constant delays, it is possible to develop software that
is more efficient and at the same time more provably reliable than software available for
more general problems. Methods used to solve ODEs can generally be extended to solve
DDEs. In particular, the M atlab DDE solver dde2 3 that we study here is based on the
methods used in the M atlab IVP solver ode2 3. The user interface o f dde2 3 is much

213

214 Chapter 4: Delay Differential Equations

like that of ode2 3, yet owing to differences between DDEs and ODEs, it also resembles
the M atlab BVP solver bvp4c.

DDEs and ODEs differ in important ways that are discussed in Section 4.2. In Sec­
tion 4.3 we explain how the numerical methods developed in Chapter 2 for IVPs can be
used to solve DDEs with constant delays. The examples of Section 4.4 show how to solve
DDEs with dde2 3; they also highlight differences between DDEs and ODEs. In a final
section we describe briefly other kinds o f DDEs. They present additional difficulties and
so methods and software for solving them are much less developed. Still, there are some
useful (Fortran 77) codes for such problems that we discuss briefly.

4.2 Delay Differential Equations
We begin with some o f the important differences between IVPs for DDEs and ODEs. The
most obvious difference is the initial data. The solution of a system of ODEs (4.1) is de­
termined by its value at the initial point t = a. In evaluating the DDEs of (4.2), terms like
y(t — Tj) may represent values o f the solution at points prior to the initial point. In par­
ticular, when we evaluate the DDEs at the point t = a we must have the value y(a — T).
From this we see that, for DDEs, the given initial data must include not only y(a) but also
a “history” : the values y (t) for all t in the interval [a — T , a]. The numerical solution will
be denoted by S(t) , so for t < a we’ll use it to denote the given history.

Because numerical methods for IVPs for both ODEs and DDEs are intended for prob­
lems with solutions that have several continuous derivatives, discontinuities in low-order
derivatives require special attention. Such discontinuities are not rare for ODEs, but they
are almost always present for DDEs because the first derivative o f the history function is
almost always different from the first derivative o f the solution at the initial point. That
is, almost always

У ' (a —) = S ' (a —) = y ' (a +) = f (a , S(a — T1), S(a — t 2), . . . , S (a — Tk))

There are other ways in which discontinuities in low-order derivatives commonly arise.
Some problems have histories with discontinuities in low-order derivatives. For instance,
in Exercise 4.8 we consider the solution of an immunology model due to Marchuk. One
component o f its history for t < 0 is max(0, t + 10—6), so there is a discontinuity in the
first derivative of this component at t = —10—6. As with ODEs, a change in the model
amounts to a restart and so introduces a discontinuity in the first derivative even when the
solution is continuous through the change. This can happen at times known in advance
or at times that must be determined by event location. In Exercise 4.7 we consider the
solution o f a model (due to Hoppensteadt and Waltman) for the spread o f an infection.
The problem is posed on the interval [0,10]. Because different equations are used to de­
scribe different phases o f the spread o f infection, discontinuities in the first derivative of

4.2 Delay Differential Equations 215

the solution are introduced at times that are known in advance. Example 4.4.5 features
differential equations that change when an event occurs, hence at times that are not known
in advance.

Because they propagate, discontinuities are a much more serious matter for DDEs than
they are for ODEs. A formal proof o f this is clumsy, but it is easy to understand what
happens. For a smooth function f , the equations (4.2) show that the smoothness o f the
derivative y ' at the current time t depends on the smoothness of the solution y at the past
times t — Tj. Differentiating the equations shows that the same is true for higher deriva­
tives. It will be helpful to have in mind an example that we’ll solve analytically in a
moment,

y ' (t) = y (t — 1) (4.3)

Obviously y (k+1') (t) = y (k)(t — 1) for this equation. In general, if there is a discontinuity at
the time t * o f order k, meaning that y (k has a jump at t = t *, then as the variable t moves
through t* + Tj there is a discontinuity in y (k+V) because o f the term y(t — Tj) in equation
(4.2). With multiple delays, a discontinuity at the time t * is propagated to the times

t* + Ti, t* + T2, . . . , t* + Tk

and each of these discontinuities is in turn propagated. If there is a discontinuity at the
time t * o f order k, then the discontinuity at each of the times t * + Tj is o f order at least
k + 1 , and so on. Because the effect of a delay appears in a derivative o f higher order, the
solution becomes smoother as the integration proceeds. This “ smoothing” proves to be
quite important to the numerical solution of DDEs. The propagation of discontinuities is
taken up in Exercise 4.1. Problems involving discontinuities are solved in Exercises 4.7,
4.8,4.10, and 4.14.

The method o f steps is a technique for solving DDEs by reducing them to a sequence of
ODEs. To show how it goes and to illustrate the propagation of discontinuities, we solve
equation (4.3) with history S(t) = 1 for t < 0. On the interval 0 < t < 1, the function
y(t — 1) in (4.3) has the known value S(t — 1) = 1 because t — 1 < 0. The DDE on this
interval reduces to the ODE y ' (t) = 1 with initial value y (0) = S(0) = 1. We solve this
IVP to obtain y (t) = t + 1for0 < t < 1. Notice that the solution of the DDE exhibits a
typical discontinuity in its first derivative at t = 0 because it is 0 to the left o f the origin
and 1 to the right. Now that we know the solution for t < 1, we can reduce the DDE on
the interval 1 < t < 2 to an ODE y ' = (t — 1) + 1 = t with initial value y(1) = 2 and
solve this IVP to find that y (t) = 0.5t2 + 1.5 on this interval. The first derivative is con­
tinuous at t = 1, but there is a discontinuity in the second derivative. It is not difficult to
see that the DDE’s solution on the interval [k, k + 1] is a polynomial of degree k + 1 and
that the solution has a discontinuity o f order k + 1 at time t = k. We can proceed in ex­
actly the same way with the general equation (4.2). With the history function S(t) defined

216 Chapter 4: Delay Differential Equations

for t < a, the DDEs reduce to ODEs on the interval [a, a + t] because, for each j , the ar­
gument t - Tj < t - T < a and the y (t — Tj) have the known values S(t — Tj). Thus, we
have an IVP for a system of ODEs with initial value y(a) = S(a) . We solve this problem
on [a, a + t] and extend the definition of S(t) to this interval by taking it to be the solution
of this IVP. Now that we know the solution for t < a + t , we can move on to the interval
[a + t , a + 2t], and so forth. In this way we can solve the DDEs on the whole interval
o f interest by solving a sequence of IVPs for ODEs. Although we are mainly interested
in problems with constant delays, the method of steps is clearly applicable to DDEs with
delays that depend on both t and y(t) . The main requirement is simply that the delays all
be bounded below by a constant t > 0.

■ EXERCISE 4.1
The following problems test your understanding o f the propagation of derivative discon­
tinuities and the method o f steps. A computer algebra package such as the Maple kernel
o f M atlab or Maple itself would be most helpful in these calculations.

• Solve the DDE
y (t) = [1 + y (t)] y (t — 1)

for 1 < t < 3 with history y (t) = 1 for 0 < t < 1. Verify the derivative discontinu­
ities at t = 1 and t = 2.

• Solve the DDE
y ' (t) = [1 + y (t)]y (t/2)

for 1 < t < 4 with history y (t) = 1 for 1 < t < 1. Verify the derivative disconti­
nuities at t = 1 and t = 2. I f the solution is continued, at which later times will
derivative discontinuities occur?

• Solve the DDE
y ' (t) = [1 + y 2(t)] y (t — 1)

for 1 < t < 2 with history y (t) = 1 for 0 < t < 1. Does the solution extend all the
way to t = 2?

• Adding a small delay to the effect o f a term in an ODE can change the qualitative
behavior of solutions. For an example o f this, first show that there is a finite point
t * > 0 such that the solution of the ODE

y (t) = y 2(t)

with initial value y (0) = 1 is not defined for t > t*. Then argue that the solution of
the DDE

y ' (t) = y (t) y (t — t)

4.3 Numerical Methods for DDEs 217

with history y (t) = 1 for t < 0 is defined for all t > 0, no matter how small the
delay t > 0. To do this, let yk(t) be the solution of the DDE on [kT, (k + 1) t]. First
show that y 0(t) exists and is continuous on all o f [0, t]. Next show that, if yk(t)
exists and is continuous on all o f [kT, (k + 1) t], then yk+1(t) exists and is continu­
ous on all o f [(k + 1)t, (k + 2) t]. By induction, it then follows that the solution of
the DDE exists for all t > 0 .

• A ll solutions of the ODE

are decaying exponentials. Show that a delayed effect can lead to a different kind
o f solution by proving that the DDE

The method of steps shows that we can solve DDEs with constant delays by solving a se­
quence of IVPs for ODEs. Because a lot is known about how to solve IVPs, this has been
a popular approach to solving DDEs, both analytically and computationally. Solutions
smooth out as the integration progresses, so if the shortest delay T is small compared to
the length o f the interval o f integration then there can be a good many IVPs, each of which
may often be solved in just a few steps. In these circumstances, explicit Runge-Kutta
methods are both effective and convenient. Because o f this, most solvers are based on
explicit Runge-Kutta methods; in particular, the M atlab DDE solver dde2 3 is based
on the BS(2,3) pair used by the ODE solver ode2 3. In what follows we consider how
to make the approach practical and use dde2 3 to illustrate points. More theoretical and
practical details for dde2 3 can be found in Shampine & Thompson (2001).

The example used to explain the method of steps in Section 4.2 will be used here to
expose some o f the issues. In solving equation (4.3) for the interval 0 < t < 1, the DDE
reduces to an ODE with y(t — 1) equal to the given history S(t — 1) and y(0) = 1. Solving
this IVP with an explicit Runge-Kutta method is perfectly straightforward. A serious
complication is revealed when we move to the next interval. The ODE on this interval de­
pends on the solution in the previous interval. However, if we use a Runge-Kutta method
in its classical form to compute this solution, we approximate the solution only on a mesh
in the interval [0,1]. The first widely available DDE solver, dmr ode (Neves 1975), used
cubic Hermite interpolation to obtain the approximate solutions needed at other points in
the interval. This approach is not entirely satisfactory because step sizes chosen for an

У ' (t) = —y(t)

has solutions of the form y (t) = A sin(t) + B cos(t) .

4.3 Numerical Methods for DDEs

218 Chapter 4: Delay Differential Equations

accurate integration may be too large for accurate interpolation. What we need here is
a continuous extension o f the Runge-Kutta method. The BS(2,3) Runge-Kutta method
used by the code ode2 3 was derived along with an accurate continuous extension that
happens to be based on cubic Hermite interpolation.

On reaching the current time t, we must be able to evaluate the approximate solution
S(t) as far back as the point t - T. This means that we must save the information neces­
sary to evaluate the piecewise-polynomial function S(t). The continuous extension of the
BS(2, 3) pair is equivalent to cubic Hermite interpolation between mesh points, so it suf­
fices to retain the mesh as well as the value and slope of the approximate solution at each
mesh point. The code dde2 3 returns the solution as a structure that can have any name,
but let us call it so l . The mesh is returned in the field s o l . x . The solution and its slope
at the mesh points are returned as s o l . y and s o l . y p , respectively. This form of out­
put is an option for ode2 3, but it is the only form of output from dde2 3. Just as with
the IVP solvers, the continuous extension is evaluated using the solution structure and the
auxiliary function deva l . It is often useful to be able to evaluate a solution anywhere in
the interval of integration, but unlike the situation with the IVP solvers, here we need the
capability in order to solve the problem.

Representing the solution as a structure simplifies the user interface. We shall see that,
in addition to the information needed for interpolation, we must have other information
when solving DDEs - just what depends on the particular problem. Holding this infor­
mation as fields in a solution structure is both convenient and unobtrusive. A ll the early
DDE solvers were written in versions of Fortran without dynamic storage allocation. This
complicates the user interface greatly and there is a real possibility o f allocating insuffi­
cient storage. The dynamic storage allocation o f M atlab and the use o f structures allow
a much simpler and more powerful user interface for dde2 3.

The example DDE (4.3) leads to ODEs that are easy to integrate, so a code will try to
use large step sizes for the sake of efficiency. Indeed, Runge-Kutta formulas are exact on
the first interval, but a solver cannot be permitted to step past the point t = 1 because the
solution is not smooth there. I f the discontinuity is ignored, the order o f a Runge-Kutta
method can be lowered. The numerical solution is then not as accurate as expected, but
what is worse is that the error estimator is not valid. This is because the error is estimated
by comparing the results o f two formulas and neither has its usual order when the func­
tion f is not sufficiently smooth. We can deal with this difficulty by adjusting the step
size so that all points where the solution y (t) has a potential low-order discontinuity are
mesh points. This implies that none o f the functions y (t) , y (t — t1), . . . , y (t — Tk) can
have a low-order discontinuity in the span o f a step from tn to tn + h. Because we step to
discontinuities o f the solution y (t) , this is clear for y (t) itself. There cannot be a point %
in (tn, t n + h) where some function y(% — Tj) is not smooth, because the discontinuity in
y (t) at the point % — Tj would have propagated to the point % and we would have limited
the step size h so that we did not step past this point. Runge-Kutta formulas are one-step

4.3 Numerical Methods for DDEs 219

formulas and so, if we proceed in this way, they are applied to functions that are smooth
in the span of a step and the formulas have the orders expected.

As pointed out earlier, low-order discontinuities are a serious difficulty when solving
DDEs because there is almost always one at the initial point and they propagate throughout
the interval o f integration. On the other hand, the order o f a discontinuity increases each
time it propagates forward, so we need to track discontinuities only as long as they affect
the formulas implemented. Before dde2 3 begins integrating, it locates all discontinuities
o f order low enough to affect the integration. It assumes that there will be a discontinuity
in the first derivative at the initial point. Some problems have discontinuities at additional
points known in advance. To inform dde2 3 o f such derivative discontinuities, the points
are provided as the value o f the option Jumps. Options are set with the auxiliary func­
tion ddese t just as they are set with od ese t for the IVP solvers. For instance, the three
discontinuities o f the Hoppensteadt-Waltman model o f Exercise 4.7 can be provided as

c = 1 / s q r t (2) ;
o p t i o n s = d d e s e t (' J u m p s ' , [(1 - c) , 1, (2 - c)]) ;

No distinction is made between discontinuities in the history and in the rest o f the inte­
gration, so the discontinuity of the Marchuk model of Exercise 4.8 is handled in the same
way. Exercise 4.10 provides some practice with Jumps. Sometimes the initial value y(a)
has a value that is different from the value S(a) o f the history. This is handled by sup­
plying y(a) as the value o f the option i n i t i a l Y . When there is a discontinuity in the
solution itself at the initial point, we must track it to one level higher than usual. The
I n i t i a l Y option is used in solving the DDE of Exercise 4.6.

Each of the initial discontinuities J propagates to the points

J + T1, J + T2, . . . , J + Tk

where the order o f the discontinuity is increased by 1. Each of the resulting discontinu­
ities is, in turn, propagated in the same way. The locations of discontinuities form a tree
that we can truncate when the order of the discontinuities is sufficiently high that they do
not affect the performance o f the formulas implemented. There is a practical difficulty in
propagating discontinuities that is revealed by supposing that the DDE has the two lags
3 and 1 and that the integration starts at t = 0. The first lag causes discontinuities to ap­
pear at the points 0, |, 2 x |, 3 x |, . .. and the second causes discontinuities to appear at
the points 0,1, 2, 3 ,___The difficulty is that the finite precision representation of 3 x |
is not quite equal to 1. It appears to the solver that there are two discontinuities that are
extremely close together. This is catastrophic because the step size is limited by the dis­
tance between discontinuities. The solver dde2 3 deals with this by regarding points that
differ by no more than ten units o f roundoff as being the same and purging one of them.

220 Chapter 4: Delay Differential Equations

This purging is done at each level of propagation in order to remove duplicates as early as
possible.

The solution of a system of DDEs (4.2) becomes smoother as the integration progresses,
which might lead us to expect a corresponding increase in step size. Certainly we must
limit the step size so as not to step over a low-order discontinuity, but what happens after
they are no longer present? The step size appears to be limited to the shortest delay, for
if we were to step from tn to tn + h with step size h > t then at least one of the argu­
ments t — Tj would fall in the interval (tn , t n + h]. This means that we would need values
o f the solution at points in the span o f the step, but we are trying to compute the solution
there and don’t yet know these values! Some solvers accept this restriction on the step
size. Others, including dde2 3, use whatever step size appears appropriate to the smooth­
ness o f the solution and iterate to evaluate the implicit formulas that arise in this way. On
reaching tn we have a piecewise-cubic polynomial approximation S(t) to the solution for
t < tn. When the BS(2,3) formulas need values y(t — Tj) for arguments t — Tj > tn, these
values are predicted by extrapolating the polynomial approximation o f the preceding in­
terval. After evaluating the formulas we have a new cubic polynomial approximation for
the solution on the interval (tn, tn + h], and we use it when correcting the solution by
reevaluating the formulas. Evaluating the BS(2,3) formula when the step size is larger
than the shortest delay is quite like evaluating an implicit multistep method.

Earlier we mentioned the need for event location. This capability is available in dde2 3
exactly as in ode2 3 except that information about events is always returned as fields of
the solution structure. When a terminal event is located, it is not unusual to continue the
integration after modifying the equations and possibly modifying the final value o f the so­
lution for use as the initial value o f the new integration. This is easy enough when solving
ODEs with the IVP solvers o f M a tlab because the solutions of the various IVPs can be
aggregated easily to obtain a solution over the whole range of interest. The situation is
quite different when solving DDEs. The most important difference is that a history must
be supplied for the subsequent integration. This history is mainly the solution as com­
puted up to the event, which is to be evaluated by interpolation, but it may also include
the given history, which may be supplied in three different forms in dde2 3 and so be
evaluated in different ways. The solver dde2 3 accepts a solution structure as history and
uses information stored in this structure to evaluate properly the terms in the DDE that in­
volve delays. Another issue is the propagation of discontinuities. It may be that the event
occurs whilst some of the propagated discontinuities are still active. For the current inte­
gration we must reconstruct the tree o f discontinuities and propagate them into the current
interval of integration. This requires some information to be retained from the previous
integration. There is, o f course, a new discontinuity introduced at the new initial point.
It is not unusual for the initial value of the solution to be different from the last solution
value of the previous integration. This is handled with the InitialY option. When a

4.4 Solving DDEs in M a tla b 221

solution structure is provided as history, dde2 3 incorporates it into the solution structure
that is returned. In this way, the solution structure returned by the solver always provides
the solution on the whole interval o f integration.

4.4 Solving DDEs in M atlab

Because of the more general nature of DDEs, it is necessary to provide more information
to DDE solvers than to ODE solvers. Although the manner in which this information is
provided varies between solvers, the same basic information is required for all. Here we
see how to solve DDEs with dde2 3. It is limited to problems with constant delays, but
the examples and exercises o f this section show that, for this class of problems, it is both
easy to use and powerful. Solving a DDE with dde2 3 is much like solving an ODE with
ode2 3, but there are some notable differences. Some of our examples have been viewed
as a considerable challenge for DDE solvers in general scientific computing.

EXAMPLE 4.4.1

In their paper “An Epidemic Model with Recruitment-Death Demographics and Discrete
Delays” , Genik & van den Driessche (1999) consider the total population N (t) to be di­
vided into four states: S(t) , susceptible; E (t) , exposed but not infective; I (t) , infective;
and R (t) , recovered. So, the total population is

N (t) = S (t) + E (t) + I (t) + R (t)

The five parameters o f the model and values for the Pasteurella muris virus in laboratory
mice are: the birth rate, A = 0.330; the natural death rate, d = 0.006; the contact rate of
infective individuals, k = 0.308; the rate of recovery, у = 0.040; and the excess death
rate for infective individuals, e = 0.060. There are two time delays in the model: a tempo­
rary immunity delay, t = 42.0, and a latency delay (the time before becoming infective
after exposure), m = 0.15. The DDEs of the model are

dS(t) S (t) I (t) ,
------- = A — dS(t) — k ------------ + y I (t — т)е

dt () N (t) Y ()

d E (t) S (t) I (t) S(t — m) I (t — m) —dm
-------— k ----------- — k ----------------------- e — dE (t)

dt N (t) N (t — m)

d I (t) , S(t — m) I (t — m) —d m , , , JU/,,
= k ----- W f ------ -̂----e dm — (Y + e + d) I (t)dt N (t — m)

dR (t)

dt
= y I (t) — y I (t — т)е dT — dR(t)

222 Chapter 4: Delay Differential Equations

50 100 150 200 250 300 350

Figure 4.1: The SEIRS epidemic model of Genik & van den Driessche (1999).

The equations are to be solved on [0, 350] with history defined by S(t) = 15, E (t) = 0,
I (t) = 2, and R (t) = 3 for all times t < 0. Some analytical work reveals the existence of
a stability threshold R0 = ke—d<°/(y + e + d) . The disease dies out if R 0 < 1 but does
not die out if R 0 > 1. For the preceding choice o f parameters, R 0 ^ 2.9.

The straightforward solution of a DDE with dde2 3 resembles so closely solving an
IVP with ode2 3 that we’ll just give a program and explain the differences. The output is
displayed as Figure 4.1.

function sol = ch4ex1
global tau omega
tau = 42.0; omega = 0.15;

sol = dde23(@ddes, [tau, omega], [15; 0; 2; 3], [0, 350]);
plot(sol.x,sol.y)
legend('S(t)', 'E(t)', 'I(t)', 'R(t)')

Q,__%==
function dydt = ddes(t,y,Z)
global tau omega

4.4 Solving DDEs in M a tla b 223

% Paramete rs :
A = 0.330; d = 0.006; lambda = 0.3 08;
gamma = 0.04 0; e p s i l o n = 0.0 60;

% V a r i a b l e names used in s t a t i n g th e DDEs:
S = y (1) ; E = y (2) ; I = y (3) ; R = y (4) ;
% Z (: , 1) co r responds t o the l a g tau.
I t a u = Z (3 , 1) ;
% Z (: , 2) co r responds t o the l a g omega.
Somega = Z (1 , 2) ; Eomega = Z (2 , 2) ;
Iom ega = Z (3 , 2) ; Romega = Z (4 , 2) ;

N o f t = S + E + I + R;
Nomega = Somega + Eomega + Iom ega + Romega;
dSdt = A - d*S - l a m b d a * ((S * I) / N o f t) + gam m a * I t a u *ex p (-d * t a u) ;
dEdt = l a m b d a * ((S * I) / N o f t) - . . .

lambda* ((Somega* Iomega)/Nomega)* exp (-d *omega) - d*E;
d I d t = lambda* ((Somega* Iomega)/Nomega) *exp (-d *omega) . . .

- (g am m a+eps i lon+d) * I ;
dRdt = gamma*I - gam m a*I tau *exp (-d * tau) - d*R;

dyd t = [dSdt ; dEdt; d I d t ; d R d t] ;

A call to dde23 has the form s o l = d d e 2 3 (@ d d e s , l a g s , h i s t o r y , t s p a n) .
Just as when calling one of the M atlab IVP solvers, tspan is the interval o f integration,
but there are some small differences in the way this array is used. I f you specify more
than two entries in tspan, the IVP solvers return values o f the solutions at these points;
dde2 3 determines output at specific points in a different manner, so only the first and
last entries o f tspan are meaningful to this solver. Further, for tspan equal to [t0, tf],
dde23 requires that t0 < tf. The h i s t o r y argument can have three forms. Oneisahan-
dle for a function that evaluates the solution at given t < t0 and returns it as a column
vector. Here this function might have been coded as

fu n c t i o n v = h i s t o r y (t)
v = [15; 0; 2; 3] ;

The history is constant for this example. This is so common that the solver also allows
the history to be supplied in the form of a constant vector, and that is what is done in
ch4ex1.m. (The third form of the history function is a solution structure; it is used only
when restarting an integration, which is not done in this example.) The delays are provided

224 Chapter 4: Delay Differential Equations

as a vector la gs , here [t au , omega] . Just as when using a function odes to evalu­
ate ODEs, ddes is a function that evaluates the DDEs. Also as with ODEs, the input
argument t is the current value of t and the input argument y is an approximation to the
solution y(t) . What is different when solving DDEs is an input array Z. It contains approx­
imations to the solution at all the delayed arguments. Specifically, Z (: , j) approximates
the function y(t — Tj) for the lag Tj given as l a g s (j) . As with ODEs, the function ddes
must return a column vector.

The output o f dde2 3 is a solution structure, here called so l . The mesh is returned in the
field s o l . x and the solution and its slope at these mesh points are returned as s o l . y and
s o l . y p , respectively. As mentioned earlier, this form of output is an option for ode2 3,
but it is the only form of output from dde2 3. You can invoke ch4ex1.m with no output
arguments, but if you wish to retain and study the solution then you should invoke it as

>> s o l = ch4ex1;

You might, for example, wish to compute and plot the total population N (t) on return from
the program. This can be done at the command line with

>> N o f t = s u m (s o l . y) ;
>> p l o t (s o l . x , N o f t)

EXAMPLE 4.4.2

We show how to obtain output at specific points with Example 5 o f Wille & Baker (1992),
a scalar equation that exhibits chaotic behavior. We solve the DDE

y ' (t) = 2y(t — 2)965 — y (t) (4.4)
y () 1 + y(t — 2)9.65 y ()

on the interval o f integration [0,100] with history y (t) = 0.5 for t < 0.
Here dde2 3 computes an approximate solution S(t) valid throughout the range tspan

and places in the structure s o l the information necessary to evaluate it with d eva l . A ll
you must do is supply the solution structure and an array t o f points where you want to
evaluate the solution,

S = d e v a l (s o l , t) ;

With this form of output, you can solve a DDE just once and then obtain inexpensively
as many solution values as you like, anywhere you like. The numerical solution is itself
continuous, so you can always plot a smooth graph by evaluating it at sufficiently many
points using deva l .

Wille & Baker (1992) plot the function y(t — 2) against the function y(t) . This is quite
a common task in nonlinear dynamics, but we cannot proceed as in Example 4.4.1. This is

4.4 Solving DDEs in M a tla b 225

1.4 -

1,6r

1.2

1
cnT

0.8

0.6

0.4

0 .2 --------------'--------------'--------------'--------------'--------------'--------------'--------------0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
y(t)

Figure 4.2: Example 5 of Wille & Baker (1992).

because the entries of s o l . x are not equally spaced: I f the point t appears in s o l . x then
we have an approximation to y (t) in s o l . y , but generally the point t — 2 does not ap­
pear in s o l . x and so we do not have an approximation to y(t — 2). The function de va l
makes such plots easy. In ch4ex2.m we first define an array t o f 1000 equally spaced
points in the interval [2,100] and obtain solution values at these points using deva l . We
then use the function d e v a l a second time to evaluate the solution at the entries o f an
array o f values t — 2. In this way we obtain values approximating both the function y (t)
and the function y (t — 2) for the same values o f t. This might seem like a lot o f plot points,
but d e v a l is just evaluating a piecewise-cubic polynomial function and is coded to take
advantage o f fast built-in functions and vectorization, so this is not expensive and results
in the smooth graph of Figure 4.2.

The complete program to compute and plot the function y(t — 2) against the function
y (t) is

function sol = ch4ex2

sol = dde23(@ddes,2,0.5,[0, 100]);

t = linspace(2,100,1000);
y = deval(sol,t);

226 Chapter 4: Delay Differential Equations

y l a g = d e v a l (s o l , t - 2) ;
p l o t (y , y l a g)
x l a b e l (' y (t) ') ;
y l a b e l (' y (t - 2) ') ;

f u n c t i o n dyd t = d d e s (t , y , Z)
dyd t = 2 *Z/ (1 + Z "9 .65) - y ;

EXAMPLE 4.4.3

We consider a model (Corwin, Sarafyan, & Thompson 1997) o f multiple long-term part­
nerships and H IV transmission in a homogeneous population. Formulating this model as
a set o f ODEs and DDEs is somewhat complicated, but once we have the equations it is
easy enough to solve them with dde2 3. I f you wish, you can proceed directly to the equa­
tions and the discussion of how to solve them. In the model, x is the number o f susceptible
individuals, у is the number o f infected individuals, k is the rate at which susceptible indi­
viduals become infected per unit time, D is the duration o f a long-term partnership, G is
the rate o f recovery from an infective stage back to the susceptible stage, c is the number
o f sexual contacts with long-term partners leading to infection per person per unit time,
and n is the size o f the initial population. For times t < D the equations are

x ' (t) = —x (t) k (t) + G y (t)

n = x (t) + y (t)

k (t) = — { [[e~G(t—W)x (w) k (w) d w d s + [e~G(t—s)y (s)ds
M J0 Js J0

and for times D < t they are

x ' (t) = —x (t) k (t) + G y (t)

n = x (t) + y (t)

k (t) = —{ f f e~G(t—w")x (w) k (w) d w d s + f e~G(t—s")y (s)d s
n t—D s t—D

This is a set of Volterra integro-differential equations. Sometimes such equations can
be solved using techniques for DDEs, and that is the case here. Indeed, for t < D we can
proceed by solving the ODEs

4.4 Solving DDEs in M a tla b 227

x ' (t) = —x (t) k (t) + Gy (t)

y (t) = —x (t)

k (t) = (c/n)e—Gt { (I { (t) + I2 (t)) — G (h (t) + I 2 (t)) }

I { (t) = eGty (t)

12 (t) = teGtx (t) k (t)

13 (t) = eGtx (t) k (t)

and for D < t, by solving the DDEs

x ' (t) = —x (t) k (t) + Gy (t)

y (t) = —x (t)

k (t) = (c/n)e—Gt { (I { (t) + I2 (t)) — G (h (t) + I 2 (t)) }

I (t) = eGty (t) — eG(t—D)y (t — D)

12 (t) = D e Gtx (t) k (t) — I 3(t)

13 (t) = eGtx (t) k (t) — eG(t —D)x (t — D) k (t — D)

We don’t need an ODE for the component y (t) = n — x (t) , but it is convenient to intro­
duce one so that we obtain values for this important quantity along with x (t) and k(t) . To
see how we have dealt with the integrals in k (t) , let’s work through the more complicated
case o f D < t. First we write the function k (t) as

k (t) = - e ~ Gt(I i (t) + I 2 (t)) (4.5)
n

where

I i (t) = I eGsy (s)ds
—t

t—D

/ t fJt — DJs

t—D
nt r t

I 2(t) = I I eGwx (w) k (w) dw ds
Jt — DJs

Differentiating the expression (4.5) gives the stated ODE for the function k(t) , so we just
need to compute the derivatives of the integrals. Using Leibnitz’s rule, the first is easy:

I [(t) = eGty (t) — eG(t—D)y (t — D)

The second is a more complicated differentiation that leads to

I'2(t) = f eGtx (t) k (t) ds — f eGsx (s) k (s) ds
2 t—D t—D

228 Chapter 4: Delay Differential Equations

The first integral on the right is trivial, and if we define

/3(t) = (eGsx (s) k (s) ds
t—D

then by differentiating we can compute the second by solving the DDE

/3 (t) = eGtx (t) k (t) — eG(t—D)x (t — D) k (t — D)

Finally,

/2 (t) = D e Gtx (t) k (t) — /3(t)

and we have verified all the DDEs for this case.
The derivation of the equations for t < D is similar, but there appears to be no need for

the integral /1(t) in this case. We do need it to deal with values for the integrals when we
switch to solving DDEs at the time t = D. By definition, the integrals all vanish at t = 0,
providing initial values for their ODEs. Comparing the definitions in the two cases shows
that the integrals are continuous at t = D, providing the initial values we need for inte­
gration of the DDEs. A convenient way to deal with /1(t) then is to introduce the equation
stated for t < D. It is defined so that we integrate it to obtain the value we need at t = D
for the second integration.

For a concrete example, we solve this problem when the constants have values

— = 0.5, n = 100, G = 1, D = 5

and the initial values are

x(0) = 0.8 n, y (0) = 0.2n, k(0) = 0

In coding the equations we can, o f course, rewrite the equation for y ' (t) by using the equa­
tion for x ' (t) , so that there is no derivative on the right-hand side. In principle this must
be done, but the equations stated show the model and derivation more clearly and serve to
illustrate a useful technique for coding the evaluation o f the equations: instead of elimi­
nating x ' (t) in the equation for y ' (t) , just evaluate x ' (t) first and use it in evaluating y ' (t) .
Similarly, /[(t) and /'2(t) would be evaluated and then used to evaluate k'(t) .

The solver dde2 3 makes no assumption that the functions y (t — Tj) actually appear
in the equations. Because of this, you can use it to solve ODEs. It is expecting to solve
a DDE, so you must include Z as an input argument to the function defining the equa­
tions. If you solve an ODE, it is best to input an empty array for lags because otherwise
the solver will track potential discontinuities and restrict the step size accordingly even
though there are no discontinuities due to delays. The program ch4ex3.m does this, first
solving the ODEs for t < D and then solving the DDEs for D < t. The most important
point illustrated by this example is that the solution structure returned in one integration

4.4 Solving DDEs in M a tla b 229

can be used directly as history for another, a matter discussed at length in Section 4.3.
Furthermore, after each integration, the solution structure is extended so as to provide the
solution for the whole integration. This makes it easy to plot x, y, and 100A as Figure 4.3.

function sol = ch4ex3
global c D G n
c = 0.5; D = 5; G = 1; n = 10 0;

% x = y(1), y = y(2), lambda = y(3),
% I_1 = y(4), I_2 = y(5), I_3 = y(6).
y0 = [0.8*n; 0.2*n; 0; 0; 0; 0];

sol = dde23(@odes,[],y0,[0, D]);
sol = dde23(@ddes,D,sol,[D,4*D]);

plot(sol.x,[sol.y(1:2,:); 100*sol.y(3,:)]);
legend('x(t)','y(t)','100\lambda(t)',0)

Q,___%===
function dydt = odes(t,y,Z)
global c D G n

230 Chapter 4: Delay Differential Equations

dydt = zeros(6,1);
dydt(1) = - y(1)*y(3) + G*y(2);
dydt(2) = - dydt(1);
dydt(4) = exp(G*t)*y(2);
dydt(5) = t*exp(G*t)*y(1)*y(3);
dydt(6) = exp(G*t)*y(1)*y(3);
dydt(3) = (c/n)*exp(-G*t)*((dydt(4 5tdyd+ 1 О * y(4 5y(+

function dydt = ddes(t,y,Z)
global c D G n
dydt = zeros(6,1);
dydt(1) = - y(1)*y(3) + G*y(2);
dydt(2) = - dydt(1);
dydt(4) = exp(G*t)*y(2) - exp(G*(t - D))*Z(2);
dydt(5) = D*exp(G*t)*y(1)*y(3) - y(6);
dydt(6) = exp(G*t)*y(1)*y(3) - exp(G*(t - D))*Z(1)* Z(3);
dydt(3) = (c/n)*exp(-G*t)*((dydt(4 5tdyd+ 1 о * y(4 5y(+

Early attempts to solve this problem treated it as an IVP for x (t) and y (t) with a compli­
cated coefficient X(t) . Quadrature routines were used to approximate the integrals defining
this coefficient, but the matter is difficult because the integrands involve x, y, and X itself.
As a consequence, the first program for this problem that we encountered ran for hours on
a mainframe computer and often crashed. Improvements in the analytical and numerical
treatment of the task have reduced the computation time to less than a second on a PC.
The problem is considered further in Exercise 4.5.

EXAMPLE 4 .4 .4

A model o f the infamous four-year life cycle of a population of lemmings is found in Tav-
ernini (1996). The equation

y ' ») = ry<0 (1 -) (4.6)

is solved on [0,40]. The parameters have values r = 3.5 and m = 19. Notice that,
with these values, the equation has a constant (steady-state) solution of y (t) = m = 19.
Tavernini uses this solution as history and perturbs the initial value so that the solution
y (t) will move away from the steady state. Here we use the initial value y (0) = 19.001 for
this purpose. When the initial value is different from the history, all you must do is provide
it as the value of the initialY option. The jump at the initial point is so small that we

4.4 Solving DDEs in M a tla b 231

150

100

50

0

-50

-100

-150

-200

-250

-300 0 10 20 30 40 50 60 70 80 90 100
y(t)

Figure 4.4: Population of lemmings; phase plane.

must specify tolerances more stringent than the defaults so that the solver will “notice” it.
These tolerances are specified exactly as for IVPs but using dd es e t instead of odese t .

Because the solution settles into a periodic behavior, it is instructive to plot the derivative
у ' (t) against the solution y(t) . This is easily done because, in addition to s o l . y approx­
imating y (t) at the mesh points, there is a field s o l . y p approximating у ' (t) . Figure 4.4
shows the phase-plane plot produced by ch4ex4.m.

The minima and maxima o f the population are o f some interest, so we use their com­
putation to illustrate event location. Not much need be said because this is done exactly
as with the IVP solvers, but the task has points of interest. Local minima are found as
points where у ’(t) = 0, but o f course this equation is satisfied for maxima as well. The
two kinds of events are distinguished by a local minimum occurring where the derivative
у ’(t) increases through zero and a local maximum where it decreases. The d i r e c t i o n
argument of the events function makes this distinction. The solver dde2 3 returns the
same information about events as ode2 3, but as fields in the solution structure instead of
optional output arguments. In ch4ex4.m we use the f i n d command to determine the
indices in the output array that correspond to the two different kinds of events. With these
indices, we can extract the information for the kind o f event that interests us. In particu­
lar, the plot o f the solution у against time in Figure 4.5 shows the local minima as filled
squares and the local maxima as open circles.

232 Chapter 4: Delay Differential Equations

Figure 4.5: Population of lemmings; time series.

The problem is solved and the output plotted in a straightforward way by ch4ex4.m.
We have left the constants r and m as parameters and, for variety, we have passed them
through the call list o f dde2 3 as optional arguments. As with the IVP solvers, they must
then appear as arguments to the functions for evaluating the DDEs and events, even if they
are not used by the function.

fu n c t i o n s o l = ch4ex4
r = 3 .5 ; m = 19;
o p t i o n s = d d e s e t (' E v e n t s ' , @ e v e n t s , ' I n i t i a l Y ' , 1 9 . 0 0 1 , . . .

' R e l T o l ' , 1 e - 4 , ' A b s T o l ' , 1 e - 7) ;
s o l = d d e 2 3 (@ d d e s ,0 .7 4 ,1 9 , [0 , 4 0] , o p t i o n s , r , m) ;
p l o t (s o l . y , s o l . y p) ;
x l a b e l (' y (t) ') ;
y l a b e l (' y ' ' (t) ') ;

n1 = f i n d (s o l . i e == 1) ;
x1 = s o l . x e (n 1) ;
y1 = s o l . y e (1 , n 1) ;
n2 = f i n d (s o l . i e == 2) ;
x2 = s o l . x e (n 2) ;
y2 = s o l . y e (1 , n 2) ;

4.4 Solving DDEs in M a tla b 233

figure
plot(sol.x,sol.y,'k',x1,y1,'rs',x2,y2,'bo')
xlabel('Time t');
ylabel('y(t)');

Q,__%---
function dydt = ddes(t,y,Z,r,m)
dydt = r*y*(1 - Z/m);

function [value,isterminal,direction] = events(t,y,Z,r,m)
dydt = ddes(t,y,Z,r,m);
value = [dydt; dydt];
direction = [+1; -1];
isterminal = [0; 0];

EXAMPLE 4 .4 .5

We have seen examples and exercises with discontinuities at times known in advance that
have been handled with the Jumps and initialY options. Other discontinuities de­
pend on the solution and so must be located using the Events option. Events that lead to
changes in the equations must be followed by a restart. We have already seen an example
o f restarting at a time known in advance. However, when events depend on the solution,
we do not know where and how many events will occur, so we do not know in advance
where and how many restarts there will be. The example we take up now has this compli­
cation. Setting it up and solving it is a challenge to the user interface o f any DDE solver.
Another example of the use o f the Events option is found in Exercise 4.14.

A two-wheeled suitcase may begin to rock from side to side as it is pulled. When this
happens, the person pulling it attempts to return it to the vertical by applying a restoring
moment to the handle. There is a delay in this response that can significantly affect the
stability of the motion. This is modeled by Suherman et al. (1997) with the DDE

в ” (t) + s ign (e (t))y cos(e(t)) — sin (e(t)) + pd (t — t) = A sin(^t + n)

where e (t) is the angle of the suitcase to the vertical. This equation is solved on the interval
o f integration [0,12] as a pair o f first-order equations with y1(t) = e (t) and y 2 (t) = в ' (t) .
Figure 3 o f Suherman et al. (1997) shows the solution component y 1(t) plotted against
time t and the phase-plane plot o f y 2 (t) plotted against y 1(t) when

У = 2.48, в = 1, t = 0.1, A = 0.75, ^ = 1.37, n = arcsin(y/A)

and the initial history is the constant vector zero. A wheel hits the ground (the suitcase
is vertical) when y 1(t) = 0. The integration is then to be restarted with y 1(t) = 0 and

234 Chapter 4: Delay Differential Equations

у 2 (t) multiplied by the coefficient of restitution, here chosen to be 0.913. The suitcase is
considered to have fallen over when |ух(01 = п /2 and the run is then terminated.

This problem is solved with

function sol = ch4ex5a
state = +1;
opts = ddeset('RelTol',1e-5,'Events',@events);
sol = dde23(@ddes,0.1,[0; 0],[0 12],opts,state);

ref = [4.516757065, 9.751053145, 11.670393497];
fprintf('Kind of Event: dde23 reference\n');
event = 0;
while sol.x(end) < 12

event = event + 1;
if sol.ie(end) == 1

fprintf('A wheel hit the ground. %10.4f %10.6f\n',...
sol.x(end),ref(event));

state = - state;
opts = ddeset(opts,'InitialY',[0; 0.913*sol.y(2,end)]);
sol = dde23(@ddes,0.1,sol,[sol.x(end) 12],opts,state);

else
fprintf('The suitcase fell over. %10.4f %10.6f\n',...

sol.x(end),ref(event));
break;

end
end
plot(sol.y(1,:),sol.y(2,:))
xlabel('\theta(t)')
ylabel('\theta''(t)')

Q,___%===
function dydt = ddes(t,y,Z,state)
gamma = 0.2 48; beta = 1; A = 0.7 5; omega = 1.37;
ylag = Z(1,1); dydt = [y(2); 0];
dydt(2) = sin(y(1)) - state*gamma*cos(y(1)) - beta*ylag ...

+ A*sin(omega*t + asin(gamma/A));

function [value,isterminal,direction] = events(t,y,Z,state)
value = [y(1); abs(y(1))-pi/2];
isterminal = [1; 1]; direction = [-state; 0];

4.4 Solving DDEs in M a tla b 235

The program produces the phase-plane plot of Figure 4.6, which agrees with that of
Suherman et al. (1997). It also reports what kind of event occurred and the location o f the
event:

>> ch4ex5a;
Kind o f Event : dde23 r e f e r e n c e
A whee l h i t the ground. 4.5168 4.516757
A whee l h i t the ground. 9.7511 9.751053
The s u i t c a s e f e l l o v e r . 11.6704 11.670393

The reference values were computed with the d k la g 5 code used in Suherman et al. (1997)
and verified with its successor d k la g 6, which is described briefly in Section 4.5.

This is a relatively complicated model, so we will elaborate on some aspects o f the
program. Coding o f the DDE is straightforward except for evaluating properly the discon­
tinuous coefficient sign(y^t)). This is accomplished by initializing a parameter s t a t e
to +1 and changing its sign whenever dde2 3 returns because y1(t) vanished. Handling
s t a t e in this manner ensures that dde23 does not need to deal with the discontinuities
it would otherwise see if the derivative were coded in a manner that allowed s t a t e to
change before the integration is restarted; see Shampine & Thompson (2000) for a dis­
cussion of this issue. After a call to dde2 3, we must consider why it has returned. One

236 Chapter 4: Delay Differential Equations

possibility is that it has reached the end of the interval o f integration - as indicated by the
last point reached, s o l . x (e n d) , being equal to 12. Another is that the suitcase has fallen
over, as indicated by s o l . i e (e n d) being equal to 2. Both cases cause termination of
the run. More interesting is a return because a wheel hit the ground, y 1(t) = 0, which is
indicated by s o l . i e (e n d) being equal to 1. The sign of s t a t e is then changed and the
integration restarted. Because the wheel bounces, the solution at the end o f the current
integration, s o l . y (: , e n d) , must be modified for use as initial value o f the next inte­
gration. The i n i t i a l Y option is used to deal with an initial value that is different from
the history. The event y 1(t) = 0 that terminates one integration occurs at the initial point
o f the next integration. As with the IVP solvers, the solver dde2 3 does not terminate the
run in this special situation o f an event at the initial point. No special action is necessary,
but the solver does locate and report an event at the initial point, so it is better practice
to avoid this by defining more carefully the event function. When the indicator s t a t e is
+1 (resp., —1), we are interested in locating where the solution component y1(t) vanishes
only if it decreases (resp., increases) through zero. We inform the solver o f this by set­
ting the first component of the argument d i r e c t i o n to - s t a t e . Notice that d d ese t is
used to alter an existing options structure in the w h i l e loop. This is a convenient capabil­
ity also present in odese t , the corresponding function for IVPs. The rest o f the program
is just a matter o f reporting the results of the computations. Default tolerances give an
acceptable solution, though the phase-plane plot would benefit from plotting more solu­
tion values. Reducing the relative error tolerance to 1e-5 gives better agreement with the
reference values.

This computation is fast enough that we can go on to discuss other computations of
interest that require it as an auxiliary computation. For a fixed set o f parameters, the
critical excitation amplitude A cr is the smallest value o f A for which the suitcase over­
turns. Suherman et al. (1997) give graphs o f A cr as a function o f the excitation fre­
quency ^ for several sets o f problem parameters. For the set в = 1, t = 0.1, and
^ = 2, the critical amplitude is between 0.4 and 1.4. We can compute A cr by defin­
ing a function f (A) to have value +1 if the suitcase does not fall over in the course of
the integration and value —1 if it does. We then use bisection to find where the func­
tion f (A) changes sign. In this approach we assume that the suitcase does not fall
over for A < A cr and does fall over for larger values o f A. (An interesting aspect of
this problem is that, for some choices o f the parameters, the second assumption is not
always valid.) For the interval of integration we use [0, 4 Л], corresponding to twenty
cycles o f the excitation moment. The function is evaluated by a version of the program
ch4ex5a.m with its output removed and the excitation amplitude A passed as a pa­
rameter. The change of sign is located with the M atlab function f z e r o . To keep down
the run time, we use modest tolerances both in the root-finder f z e r o and in the solver
dde23. After all, each evaluation of the function f (A) in f z e r o requires the solution

4.4 Solving DDEs in M a tla b 237

of a DDE. To give us something to look at whilst the program is running, we trace the
progress o f f z e r o . The critical amplitude is found to be about A cr = 0.93. The pro­
gram is

function ch4ex5b
options = optimset('Display','iter','TolX',0.01);
Acr = fzero(@f,[0.4, 1.4],options);
fprintf('\nThe critical excitation amplitude is %4.2f.\n',Acr);

Q,___%==
function fval = f(A)
fval = +1;
omega = 2;
tfinal = 40*pi/omega;
state = +1;
opts = ddeset('Events',@events);
sol = dde23(@ddes,0.1,[0; 0],[0 tfinal],opts,state,A);
while sol.x(end) < tfinal

if sol.ie(end) == 1
state = - state;
opts = ddeset(opts,'InitialY',[0; 0.913*sol.y(2,end)]);
sol = dde23(@ddes,0.1,sol,[sol.x(end) tfinal],opts,state,A);

else
fval = -1;
break;

end
end

function dydt = ddes(t,y,Z,state,A)
omega = 2; gamma = 0.248; beta = 1;
ylag = Z(1,1);
dydt = [y(2); 0];
dydt(2) = sin(y(1)) - state*gamma*cos(y(1)) - beta*ylag ...

+ A*sin(omega*t + asin(gamma/A));

function [value,isterminal,direction] = events(t,y,Z,state,A)
value = [y(1); abs(y(1))-pi/2];
isterminal = [1; 1];
direction = [-state; 0];

238 Chapter 4: Delay Differential Equations

■ EXERCISE 4.2
An epidemic model due to Cooke (see MacDonald 1978) uses the following equation to
describe the fraction y (t) at time t o f a population that is infected:

У ' (t) = by(t - 7)[1 - y (t)] - cy (t)

Here b and c are positive constants. The equation is solved on the interval [0, 60] with
history y (t) = a for t < 0. The constant a satisfies 0 < a < 1.

Write a function with input arguments a, b, and c to solve this DDE with dde2 3 and
plot the solution. The title of the plot should give the values of a, b, and c that were used.
For all values of b and c, y (t) = 0 is obviously an equilibrium point (steady-state so­
lution). For b > c, the solution y (t) = 1 — c/b is a second equilibrium point. I f you
experiment with values for a, b, and c, you will find that when b > c, the solution ap­
proaches the second equilibrium point and otherwise it approaches the first. As a specific
example, compute and plot the approach of the solution to the nontrivial equilibrium so­
lution when a = 0.8, b = 2, and c = 1.

■ EXERCISE 4.3
A problem with a history that is not constant is solved by Neves (1975). In this problem
the DDEs

y1 (t) = ys(t - 1) + y 3(t - 1)

y2(t) = y1(t - 1) + y2(t - 0.5)

y3(t) = y3 (t - 1) + y 1(t - 0.5)

y4(t) = ye(t - 1)y4(t - 1)

y5(t) = y1(t - 1)

are to be integrated for 0 < t < 1 with history

y 1(t) = et+1

y 2 (t) = et+0'5

y 3 (t) = sin (t + 1)

y4(t) = y 1(t)

y5(t) = y 1(t)

for t < 0. Solve this problem and plot all components o f the solution. Your program will
be much like ch4ex1.m, but you must evaluate the history in a (sub)function and supply
its handle as the history argument o f dde2 3. Remember that the functions for evaluating
the DDEs and the history must return column vectors.

4.4 Solving DDEs in M a tla b 239

■ EXERCISE 4.4
Farmer (1982) gives plots o f various Poincare sections for the Mackey-Glass equation,
a scalar DDE that exhibits chaotic behavior. Reproduce Figure 2a of Farmer (1982) by
solving the DDE

0.2y(t —14)
y (t) =

1 + y(t — 14) 10 — 0.1y(t)

on [0, 300] with history y (t) = 0.5 for t < 0 and plotting the function y (t — 14) against
the function y(t) . The figure begins at t = 50 in order to allow an initial transient suffi­
cient time to settle down. To reproduce the figure, form an array of 1000 equally spaced
points in the interval [50, 300], evaluate the function y (t) at these points, and then evalu­
ate the function y(t — 14). Your program will be much like ch4ex2.m.

■ EXERCISE 4.5
The solution o f the HIV multiple partnership problem computed in Example 4.4.3 with
ch4ex3.m appears to approach a steady state: a constant solution x s,ys, X s. Show that
there are two steady-state solutions - namely,

Xs = 0, x s = n, ys = 0

and the interesting one,

Gn
Xs = c D — G, x s = --------- , ys = n — x s

Xs + G

To do this, go back to the integral form o f the problem for D < t and assume that the so­
lution is constant for large t. Modify ch4ex3.m to solve the model for values G = 0.1,1,
and 2 in turn and verify that the limit values s o l . y (1 : 3 , e n d) are in reasonable agree­
ment with the analytical steady-state solution. In this model, the constant G is the rate of
recovery from an infective stage back to the susceptible stage.

■ EXERCISE 4.6
The manual (Paul 1995) for the Fortran 77 code archi discussed in Section 4.5 provides
a sample program for solving the DDEs

y1 (t) = y 1(t — 1)y 2 (t — 2)

y 2 (t) = - y 1(t)y 2 (t — 2)

on the interval [0, 4] with history y1(t) = cos(t) and y 2(t) = sin(t) for t < 0 and initial
values y 1(0) = 0 and y 2(0) = 0. Notice that y 1(t) is discontinuous at the initial point,
so the option i n i t i a l Y must be used to supply the solution there. For practice, com­
pute and plot the solution. The sample program specifies a pure absolute error tolerance

240 Chapter 4: Delay Differential Equations

of 10 9. The code dde2 3 does not permit a pure absolute error, but for practice with op­
tions, use the default relative error tolerance and set AbsTo l to 1e-9.

■ EXERCISE 4.7
Example 4.4 of Oberle & Pesch (1981) is an infection model due to Hoppensteadt and
Waltman. The equation

- ry(t)0.4(1 - t) , 0 < t < 1 - c

- ry(t)(0.4(1 - t) + 10 - exy (t)) , 1 - c < t < 1

- ry (t) (10 - exy (t)) , 1 < t < 2 - c

- r e xy (t) (y (t - 1) - y (t)) , 2 - c < t

y ' (t) =

is solved on the interval o f integration [0,10] with history y (t) = 10 for t < 0. Here c =

1/V2 and x = r/10. Oberle & Pesch (1981) solve this problem for several values o f the
parameter r, so in your code make r a parameter but solve the problem just for r = 0.5,
a case for which Oberle and Pesch provide the reference value y(10) = 0.06302089869.
The different phases of the spread of the disease are described by different equations. The
model requires the solution to be continuous, but the changes in the equation defining
y ' (t) lead to jumps in the low-order derivatives. Because this happens at times that are
known in advance, all you must do is provide the solver with these times as the value o f the
Jumps option. You can code the DDE in a straightforward way by using an i f construct.
Because the reference solution was computed with much more stringent tolerances, use
a relative error tolerance of 1e-5 and an absolute error tolerance of 1e-8. An interest­
ing aspect of this problem is that, in addition to the solution y(t) , an approximation to the
function

i t) = - y y ()
() r y (t)

is required. Using s o l . y p and s o l . y , plot this function.

■ EXERCISE 4.8
The equations of the Marchuk immunology model discussed in Hairer, Norsett, &Wanner
(1987) are

y1 (t) = (h - h2 y3(t))y1(t)

y2(t) = f (y4 (t))h3y3(t - 0.5)y1(t - 0.5) - h5(y 2 (t) - 1)

y 3(t) = h4(y2(t) - y3(t)) - h&y3(t) y 1(t)

у4(t) = h6y1(t) - h7y4(t)

Here the coefficient

4.4 Solving DDEs in M a tla b 241

$(y4(t)) = (10
if y4(t) < 0.1

(1 — y4(t)) if 0.1 < y4(t) < 19

is continuous, but it has a jump in its first derivative where the solution component y4(t) =
0.1, which leads to a jump in a low-order derivative of the solution component y 2(t) . The
problem is solved on [0, 60] with history

y 1(t) = max(0, t + 10—6), y 2(t) = 1, y 3 (t) = 1, y4(t) = 0

for t < 0. As noted previously, the solution component y 1(t) has a jump in its first deriv­
ative at the point t = —10—6 that propagates into the interval o f integration. Figure 15.8
o f Hairer et al. (1987) presents plots for parameter values

h1 = 2, h2 = 0.8, h3 = 104, h4 = 0.17, h5 = 0.5, h7 = 0.12, h8 = 8

and for two values o f h6, namely h6 = 10 and h6 = 300. Use dde2 3 to solve the prob­
lem for h6 = 300. To reproduce the plot of Hairer et al. (1987), you will need to scale the
components as

104y1, 0.5y2, y 3, 10y4

anduse axis([0 60 -1 15.5]). An array yplot of scaled values for plotting can
be formed easily with

y p l o t = s o l . y ;
y p l o t (1 , :) = 1 e 4 * y p l o t (1 , :) ;

and similar commands for the other components. To solve this problem accurately over
the whole interval o f integration, you will need to reduce the tolerances to (say) a relative
tolerance of 1e-5 and an absolute tolerance of 1e-8. Use the Jumps option to tell the
solver about the discontinuity at the point t = —10—6. Terminate the integration when the
event function y4(t) — 0.1 vanishes. Use a parameter s t a t e with value +1 if y4(t) < 0.1
and —1 otherwise. The problem is to be solved with y4(0) = 0, so initialize s t a t e to +1.
Thereafter, each time that the solver returns, check whether you have reached the end of
the interval o f integration. If s o l . x (e n d) < 60, change the sign of s t a t e and call the
solver dde2 3 again with the previous solution as history. In the function for evaluating
the DDEs, set ̂ (y4(t)) = 1 if s t a t e is +1 and^(y4(t)) = 10 [1 — y4(t)] otherwise. You’ll
need a history function, so remember that if you pass s t a t e as an optional argument to
dde2 3 then you must also make it an input argument o f the history function.

■ EXERCISE 4.9
Hale (1971) cites predator-prey models obtained by (a) introducing a resource limita­
tion on the prey and (b) assuming the birth rate o f predators responds to changes in the

242 Chapter 4: Delay Differential Equations

magnitude o f the population y1 of prey and the population y 2 o f predators only after a
time delay т. Starting with the system of ODEs

У1 (t) = ay 1(t) + by 1(t)y 2 (t)

У 2 (t) = cy 2 (t) + dy 1(t)y 2 (t)

(see Ortega & Poole 1981), we arrive in this way at a system of DDEs

It is interesting to explore the effect o f the delay, so solve both systems on the interval
[0,100] with initial values y 1(0) = 80 and y 2(0) = 30 for the ODEs and the same values
as constant history for the DDEs. Suppose that the parameters are

Recall that you solve ODEs with dde2 3 by setting l a g s to [] . You must write the
function for evaluating the differential equations to accept an input argument Z . When the
array o f lags is empty, dde2 3 calls this function with an empty array for Z. You can use
this fact to code the evaluation o f both sets o f equations in the same function by testing
i s e m p ty (Z) to find out which set to evaluate. A more straightforward approach is to
use different functions for the ODEs and the DDEs. Solve the DDEs with т = 1. Plot
in one figure the component y 2(t) against the component y1(t) for both the ODEs and
DDEs. This phase-plane plot o f the solution of the ODEs should be a closed curve cor­
responding to a limit cycle. To achieve this you will need to tighten the error tolerances.
For example, with a command like

o p t i o n s = d d e s e t (' R e l T o l ' , 1 e - 5 , ' A b s T o l ' , 1 e - 8) ;

you should obtain a plot like Figure 4.7. You might experiment with the tolerances to see
how small you need to set them in order to compute a closed curve in the phase plane.

The figure makes clear that introducing a delay into an ODE model can have a pro­
found effect on the behavior o f the solution. By experimenting with т you will find this to
be true even for small delays. It is also interesting to remove the resource term 1 - y 1(t)/m
and then see how the orbits change as т is changed.

■ EXERCISE 4.10
A cardiovascular model due to Ottesen (1997) involves the arterial pressure, Pa(t) = y1(t) ,
the venous pressure, P v(t) = y2(t) , and the heart rate, H (t) = y 3(t) . Ottesen studies

У2(t) = cy2(t) + dy 1(t - T)y 2 (t - т)

a = 0.25, b = -0.01, c = -1.00, d = 0.01, m = 200

4.4 Solving DDEs in M a tla b 243

Figure 4.7: Predator-prey model with and without delay.

conditions under which the delay causes qualitative differences in the solution and, in par­
ticular, oscillations in P a(t) . Delays t — 1.0, 1.4, 3.9, 5.0, 7.5, and 10 are considered in
Ottesen (1997). Compute and plot the arterial pressure for t equal to 1.0 and 7.5, values
leading to solutions that differ dramatically. Solve on the interval [0 , 350] the equations

yi (t) = ----y 1(t) + y 2 (t) + — Vstry 3 (t)
ca

where

CaR' CaR'

y 2(t) = - ^ y 1(t) — (+ —) y 2 (t)
CvR \ CvR cvr J

y 3(t) = f (Ts , Tp)

TTs --

TTp -

1 +

1 +

y1(t — t)

вр■

y 1(t)

®h Ts
f (T s ,Tp) - “ s — внТр

1 + Ун Tp

—1

—1

в

a

ap

244 Chapter 4: Delay Differential Equations

For t < 0, the solution has the constant value

y1(t)

y 2(t)

У 3 (t)

As in Ottesen (1997), use

ca = 1.55, cv = 519, R = 1.05, r = 0.068, a 0 = a s = ap = 93, a H = 0.84

and

в 0 = = вр = 7, в н = 1.17, Yh = 0, Vstr = 67.9, P0 = 93

One o f the figures of Ottesen (1997) shows the solution components when, beginning
at t = 600, the peripheral pressure R is reduced exponentially from its constant value of
R = 1.05 to a constant value o f R = 0.84. The change in R leads to a sharp change in the
heart rate. For this computation, the delay was т = 4 and the interval [0,1000]. Modify
your program so that it solves this problem and plots the heart rate. A ll you must do is
(a) inform the solver o f the low-order discontinuity at a known time by setting the value of
the option Jumps to 600 and (b) modify the function for evaluating the DDEs to include

if t <= 600
R = 1.05;

else
R = 0.21 * exp(60 0-t) + 0.84;

end

■ EXERCISE 4.11
Plant’s neuron interaction model (see MacDonald 1989) is given by the equations

y 3(t)
y1 (t) = y 1 (t) ------------ У2 (t) + m (y (- т) - У1,0)

У2(t) = r (y 1(t) + a - by2(t))

Here y 10 is the first component o f a steady-state solution (y 1j0, y 2,0). With the parame­
ters set to

a = 0.8, b = 0.7, r = 0.08

solve the equations on [0, 60] with history

4.4 Solving DDEs in M a tla b 245

y 1(t) — 0.4y1_0, y 2 (t) — 1.8y 2,0

Plant chose the unique real steady state y 1j0 for which yj2 0 > 1—rb. After a little analytical
work, you can use the M atlab function r o o t s to find that y 1j0 — —1.22764016121492.
Use this value of y 1j0 to compute the value y 2,0. Solve the DDEs for t — 20 and sepa­
rately m — +10 and m — —10. Plot the solutions. You will find that they can exhibit very
sharp changes.

■ EXERCISE 4.12
A population growth model due to Cooke, van den Driessche, & Zou (1999) considers the
effects o f a delay in maturation and a nonlinear birth rate. It describes the population y (t)
by the DDE

y (t) — be~ay(t—T)y (t — T) e ~ dlT — dy(t)

The DDE is to be solved on the interval [0, 25] with history y (t) — 3.5for t < 0. Generally
problems are solved for a number o f choices of parameters. For practice, solve this prob­
lem for each o f the data sets

1. a — 1, d — 1, d1 — 1, b — 20
2. a — 1, d — 1, d1 — 1, b — 80
3. a — 1, d — 1, d1 — 0, b — 20
4. a — 1, d — 1, d1 — 0, b — 80

You can do this in four runs if you like, but you could do it in a single run by defining
an array such as B = [20 80 2 0 80] and solving the DDE in a f o r loop with index
d a t a s e t and data such as b = B (d a t a s e t) . For each data set, solve the DDE using
three values o f the delay, T — 0.2, 1.0, and 2.4, and then plot the solutions in the same
figure. You will find that the size o f the delay profoundly affects the behavior o f the solu­
tion. To make the point that solution structures can be indexed, we note that if you define
an array De lays = [0 .2 1.0 2 .4] then you could code the three computations as

fo r i = 1:3
T = D e l a y s (i) ;
s o l (i) = d d e 2 3 (@ d d e s ,T , 3 . 5 , [0 , 2 5] , o p t s) ;

end

On exit from this loop, the mesh and solution for the first delay is s o l (1) . x and
s o l (1) . y , and similarly for the other delays. The value of T must be communicated to
the subfunction ddes as a parameter or a global variable because it appears in the DDE.
In this code fragment it was communicated as a global variable along with the parameters
o f the data set. In your computations use ddese t to specify tolerances more stringent
than the default values, namely R e l T o l = 1e-5 and AbsTo l = 1e-8.

246 Chapter 4: Delay Differential Equations

■ EXERCISE 4.13
Martin & Ruan (2001) consider the effects o f delay and constant prey harvesting on the
solution of several common predator-prey models. In this exercise you are to study nu­
merically one or more o f the models they investigate. In all cases, x (t) is the number of
predators at time t and y (t) is the number of prey.

• Martin and Ruan first consider models in which a delay appears in the term govern­
ing the growth of prey. In this they present analytical and numerical results for the
system

x ' (t) = x (t)

У (t) = y (t)

2 1 -
x (t - т)

40

y (t)

x (t) +10
- 10

x (t)

x (t) +10

Show that (20,15) is an equilibrium point for this system. For т = 0, solve the
ODEs on [0,100] with initial values x(0) = 40 and y(0) = 16. (Use dde2 3 with an
empty array for lags .) Plot (x (t) , y (t)) to verify numerically that the equilibrium
point is asymptotically stable for this value o f т. For т = 0.826, solve the DDEs
on [0,100] with constant history x = 40 and y = 2. Plot (x (t) , y (t)) to verify nu­
merically that there is a limit cycle about the equilibrium point for this value o f т.
Reduce the default R e lT o l to 10-5 in both integrations.
The second kind of model considered by Martin and Ruan contains delays in the
predator response function. Results are given for the system

x ' (t) = x (t)

У (t) = y (t)

2 1 -
x (t)

50

y (t)

x (t) + 40 _
-1 0

- 3 +
6x (t - т)

x (t — т) + 40

Show that (40,12) is an equilibrium point for this system. For each o f т = 7 and
т = 9, solve the DDEs on [0, 250] with constant history x = 44 and y = 2. Plot
(x (t) , y (t)) to verify numerically that the equilibrium point is asymptotically stable
for т = 7 and that there is a limit cycle about the equilibrium point for т = 9.
Reduce the default RelTol to 10-5 in both integrations.
Finally, Martin and Ruan study the effects o f adding constant prey harvesting to a
well-known model. They present results for the system

x ' (t) = x(t)[20 - x (t) - y (t)] - 7

У ' (t) = —15y(t) + 3x(t - т) у (- т)

4.5 Other Kinds of DDEs and Software 247

Show that (5, 68) is an equilibrium point for this system. For t — 0.05, solve the
DDEs on [0,10] with constant history x — 2 and y — 10. Plot (x (t) , y (t)) to ver­
ify numerically that there is a limit cycle about the equilibrium point. Reduce the
default RelTol to 10—5.

■ EXERCISE 4.14
The controller problem of Marriott & DeLisle (1989) is a DDE that involves a step func­
tion of the delayed solution. With A — y(t — 12) — x b, the equation is

y ' (t) — t —L(—y(t) + n (a + e sign(A) — u sin2(A)))

It is solved on the interval [0,120] with history y (t) — 0.6 for t < 0 and parameter values

x b — —0.427, a — 0.16, e — 0.02, u — 0.5, t — 1

The code dde2 3 is sufficiently robust that it can solve this problem without any special
provision for sign(A). However, ignoring discontinuities can get you into trouble even
when solving an ODE (Shampine & Thompson 2000), much less a DDE. You can be
more confident o f your numerical results if you arrange for the solver always to be in­
tegrating an equation with smooth coefficients. This can be done much as in program
ch4ex5a.mby letting the parameter s t a t e be the value the solver is to use for sign(A).
With the given history, this parameter is initialized to +1. Use the Events option to ter­
minate the integration if y(t —12) — x b — 0. I f this terminal event occurs before you reach
the end of the interval, change the sign of s t a t e and start a new integration on the inter­
val [s o l . x (e n d) , 12 0]. The current solution structure is the history structure for the
new integration. Print out a message and the starting point o f each new integration.

4.5 Other Kinds of DDEs and Software
So far we’ve considered equations o f the form

y ' (t) — f (t , y (t) , y (t — T1) , y (t — t 2) , . . . , y (t — Tk)) (4.7)

with constant delays Tj. The simplest extension is to allow the delays to depend on the
independent variable t. Provided that the delays are bounded away from zero, such prob­
lems can be solved much like problems with constant delays. It is more difficult and much
more expensive to work out how discontinuities propagate. I f there is a low-order discon­
tinuity at t* then it is “ felt” in equation (4.7) when some t — Tj(t) — t*. That is, for each
delay the discontinuity propagates to the first zero of the function

248 Chapter 4: Delay Differential Equations

t - j (t) - t* = 0 (4.8)

When the delay is constant, the solution of this equation is trivial and we find again that
the discontinuity propagates to the point t * + тj . When the delay is not constant, the zero
must be found numerically. Sometimes this is difficult, even in principle. For instance, it
is difficult to recognize the presence o f a zero o f even multiplicity, and the location of any
zero of multiplicity greater than 1 is ill-conditioned. I f a delay can vanish, new conceptual
and computational problems arise. For example, the DDE

for t > 0 makes no use of values prior to the initial point t = 0; in other words, this DDE
does not require a history function. For the sake o f efficiency, dde2 3 resorts to implicit
formulas and to iteration when dealing with delays that are smaller than the natural step
size. This is indispensable for delays that vanish or tend to zero. Robust codes for finding
zeros can deal with functions that are not smooth, but they are much more efficient when
the functions are smooth. An equation used to illustrate both kinds o f difficulties is

Here, the greatest integer function [t] = n for n < t < n + 1, so the delay т({) = t - [t]
is discontinuous and vanishes at the integers.

Delays that depend on the solution itself are said to be state-dependent. They change
everything. When the delays depend only on time, the propagation equation (4.8) can be
solved before beginning the integration, just as with constant delays. Now the equation is

and we need y (t) to find out how delays propagate so that we can compute y(t) . Obviously
this implicit relationship requires some kind of iteration. As a practical matter, it must be
resolved at each step. Some codes predict a solution over the span o f a tentative step by
extrapolating the current solution. Using this predicted solution, they check for discon­
tinuities in the span o f the tentative step, reduce the step size as necessary, and iterate.
This procedure is expensive, and some aspects o f current implementations are less than
completely satisfactory. An example with a known solution is

to be solved on [0.1, 5] with history taken from the analytical solution y 1(t) = ln(t) and
У2(t) = t -1. Notice that, in addition to the complications of a state-dependent delay
t - e (1-y2(t)), the delay vanishes at t = 1.

y ' (t) = y (t) (1 - y ([t]))

t - j (t , y (t)) - t * = 0

yi (t) = У 2(t)

У 2 (t) = У 2(e1-y 2 (t))y 2 (t) e 1-y2 (t)

4.5 Other Kinds of DDEs and Software 249

Table 4.1: Statistics f o r dk lag6 solving a neutral D D E
with vanishing delay.

Tol Steps Evals ERO1 ERO2 Ratio

10 —2 2 50 0.191e—02 0.191e—02 1.00
10 —4 3 77 0.298e—01 0.464e—01 1.55
10 —6 6 212 0.283e+00 0.308e+00 1.09
10 —8 11 347 0.524e—01 0.187e+00 3.57
10 —10 21 554 0.242e+00 0.157e+01 6.48

So far, we’ve considered equations for which the derivative of the solution at the cur­
rent time t depends on the solution then and the solution at one or more previous times.
It may also depend on the derivative of the solution at previous times. Such equations are
said to be o f neutral type. An example with a known solution is

y ' (t) — cos(t)[1 + y (ty2(t))] + 0.3y(t)y ' (ty 2(t))

+ 0.7 sin(t) cos(t sin2(t)) — sin(t + t sin2(t)) (4.9)

to be solved on the interval [0, |] with the history taken from the analytical solution
y (t) — sin(t). Solving DDEs o f neutral type is a real challenge and the subject o f current
research. One difficulty is that the existence, uniqueness, and continuous dependence of
a solution on the data o f the problem are not clear. Unlike the other DDEs we have dis­
cussed, discontinuities in derivatives are not smoothed as the integration proceeds. This
presents obvious difficulties for efficient numerical integration of the equations. Clearly
we must retain an approximation to the derivative o f the solution. Unfortunately, when
a continuous extension produces an approximation S(t) to the solution y (t) o f a certain
order o f accuracy, usually the approximation S' (t) to y ' (t) has one lower order o f accuracy.

Despite the difficulties we have pointed out and others, the DDE solvers discussed next
contain provisions for solving neutral problems and have good track records. To make
the point, we solved equation (4.9) using dk lag6 . In addition to the fundamental diffi­
culty o f the derivative at the current time depending on the derivative at a previous time,
this equation is difficult because the delay depends on both t and y and vanishes at both
the initial and final times. In Table 4.1 we present some statistics from this computation.
Similar results are obtained when using any of the cited solvers. In the table:

• Tol is the error tolerance;
• Steps is the number of integration steps;
• Evals is the number o f derivative evaluations;

250 Chapter 4: Delay Differential Equations

• ERO1 is the ratio o f the maximum error to the error tolerance at any integration
mesh point;

• ERO2 is the ratio of the maximum error to the error tolerance at any point in the
interval of integration; and

• Ratio is the ratio o f the maximum global interpolation error and the maximum global
integration error.

Although solving the kinds o f problems described in this section is still the subject of
research, some effective solvers are widely available. We have already mentioned ARCHI
(Paul 1995) and d k l a g6 (Corwin et al. 1997; Corwin & Thompson 1996); another solver
familiar to us is ddv erk (Enright & Hayashi 1997,1998). A ll three solvers accept neutral
problems and problems with state-dependent delays. A ll three allow small and vanishing
delays. Each is based on an explicit Runge-Kutta pair with continuous extension and is
coded in Fortran 77.

archi is based on a (4,5) pair. A matter worth some discussion is that discontinuity
tracking is optional in this solver. The local error control o f explicit Runge-Kutta meth­
ods is sufficiently robust that generally it can recognize, locate, and step to discontinuities
on its own. Relying on local error control is attractive because it asks much less o f a
user, but the approach is less reliable and possibly less accurate than tracking the discon­
tinuities. archi allows the user to specify either extrapolation or iterative evaluation of
implicit formulas.

DDVERK is based on a (5, 6) pair. Small and vanishing delays are handled iteratively.
Discontinuities are detected by means of a defect error control. Suspected discontinuities
are located and special interpolants are used when stepping over a discontinuity.

d k l a g6 is also based on a (5,6) pair. As with a r c h i, discontinuity tracking is op­
tional. DKLAG6 is the only one of the solvers that provides for event location. The user
interface is radically different from the other solvers - virtually all communication is
through user-provided subroutines. A tool (see Corwin & Thompson 1993) is available
for generating these subroutines and for plotting solutions computed by d k l a g6.

Bibliography

W. Ames & E. Lohner (1981). Nonlinear models of reaction-diffusion in rivers. In R. Vichnevetsky &
R. Stepleman (Eds)., Advances in Computer Methods fo r Partial Differential Equations, vol. IV,
pp. 217-19. New Brunswick, NJ: IMACS.

P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L. Kraut, & M. Pa-
przycki (2000). Almost block diagonal linear systems: Sequential and parallel solution techniques,
and applications. Numer. Lin. Alg. Appl. 7: 275-317.

D. Arnold & J. C. Polking (1999). Ordinary Differential Equations Using MATLAB, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall.

U. M. Ascher, J. Christiansen, & R. D. Russell (1979). COLSYS -A collocation code for boundary value
problems. In B. Childs et al. (Eds.), Codes f o r Boundary Value Problems (Lecture Notes in Com-
put. Sci., 76), pp. 164-85. New York: Springer-Verlag.

U. M. Ascher, J. Christiansen, & R. D. Russell (1981). Collocation software for boundary value ODE’s.
A C M Trans. Math. Software 7: 209-29.

U. M. Ascher, R. M. M. Mattheij, & R. D. Russell (1995). Numerical Solution o f Boundary Value Prob­
lems fo r Ordinary Differential Equations. Philadelphia: SIAM.

U. M. Ascher & R. D. Russell (1981). Reformulation of boundary value problems into “standard” form.
SIAM Review 23: 238-54.

G. Bader & U. Ascher (1987). A new basis implementation for a mixed order boundary value solver.
SIAM J. Sci. Stat. Comput. 9: 483-500.

P. B. Bailey, B. S. Garbow, H. G. Kaper, & A. Zettl (1991). Eigenvalue and eigenfunction computations
for Sturm-Liouville problems. A C M Trans. Math. Software 17: 491-9.

P. B. Bailey, M. K. Gordon, & L. F. Shampine (1978). Automatic solution of the Sturm-Liouville prob­
lem. A C M Trans. Math. Software 4: 193-208.

P. B. Bailey, L. F. Shampine, & P. E. Waltman (1968). Nonlinear Two Point Boundary Value Problems.
New York: Academic Press.

C. T. H. Baker, C. A. H. Paul, & D. R. Wille (1995a). A bibliography on the numerical solution of delay
differential equations. Numerical Analysis Report no. 269, Mathematics Department, University of
Manchester, U.K.

C. T. H. Baker, C. A. H. Paul, & D. R. Wille (1995b). Issues in the numerical solution of evolutionary
delay differential equations. Adv. Comput. Math. 3: 171-96.

C. M. Bender & S. A. Orszag (1999). Advanced Mathematical Methods f o r Scientists and Engineers I,
Asymptotic Methods and Perturbation Theory. New York: Springer-Verlag.

251

252 Bibliography

P. Bogacki & L. F. Shampine (1989). A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2: 1-9.
R. L. Borrelli & C. S. Coleman (1999). ODE Architect. New York: Wiley.
R. W. Brankin, J. R. Dormand, I. Gladwell, P. Prince, & W. L. Seward (1989). ALGORITHM 670: A

Runge-Kutta-Nystrom code. A C M Trans. Math. Software 15: 31-40.
R. W. Brankin & I. Gladwell (1994). A Fortran 90 version of RKSUITE: An ODE initial value solver.

Ann. Numer. Math. 1: 363-75.
R.W. Brankin, I. Gladwell, & L. F. Shampine (1993). RKSUITE: A suite of explicit Runge-Kutta codes.

In R. P. Agarwal (Ed.), Contributions to Numerical Mathematics (WSSIAA, 2), pp. 41-53. Singa­
pore: World Scientific.

K. E. Brenan, S. L. Campbell, & L. R. Petzold (1996). Numerical Solution o f Initial-Value Problems
in Differential-Algebraic Equations (SIAM Classics in Applied Mathematics, 14). Philadelphia:
SIAM.

P. N. Brown, G. D. Byrne, & A. C. Hindmarsh (1989). VODE: A variable coefficient ODE solver. SIAM
J. Sci. Stat. Comput. 10: 1038-51.

J. R. Cash & M. H. Wright (1991). A deferred correction method for nonlinear two-point boundary value
problems: Implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12: 971-89.

T. K. Caughy (1970). Large amplitude whirling of an elastic string - A nonlinear eigenvalue problem.
SIAMJ. Appl. Math. 18: 210-37.

T. Cebeci & H. B. Keller (1971). Shooting and parallel shooting methods for solving the Falkner-Skan
boundary-layer equations. J. Comp. Phys. 7: 289-300.

J. D. Cole (1968). Perturbation Methods in Applied Mathematics. Waltham, MA: Blaisdell.
K. Cooke, P. van den Driessche, & X. Zou (1999). Interaction of maturation delay and nonlinear birth in

population and epidemic models. J. Math. Biol. 39: 332-52.
S. P. Corwin, D. Sarafyan, & S. Thompson (1997). DKLAG6: A code based on continuously imbedded

sixth order Runge-Kutta methods for the solution of state dependent functional differential equa­
tions. Appl. Numer. Math. 24: 319-33.

S. P. Corwin & S. Thompson (1993). DRAKE: Continuous simulation software for the solution of de­
lay differential equations on personal computers. Computer Science Department Technical Report
Series, no. TR-93-001, Radford University, Radford, VA.

S. P. Corwin & S. Thompson (1996). DKLAG6: Solution of systems of functional differential equations
with state dependent delays. Computer Science Department Technical Report Series, no. TR-96-
002, Radford University, Radford, VA.

A. R. Curtis, M. J. D. Powell, & J. K. Reid (1974). On the estimation of sparse Jacobian matrices. J. Inst.
Math. Appl. 13: 117-19.

H. T. Davis (1962). Introduction to Nonlinear Differential and Integral Equations. New York: Dover.
F. R. de Hoog & R. Weiss (1976). Difference methods for boundary value problems with a singularity of

the first kind. SIAM J. Numer. Anal. 13: 775-813.
F. R. de Hoog & R. Weiss (1978). Collocation methods for singular boundary value problems. SIAM J.

Numer. Anal. 15: 198-217.
J. R. Dormand (1996). Numerical Methods fo r Differential Equations. Boca Raton, FL: CRC Press.
J. R. Dormand & P. J. Prince (1980). A family of embedded Runge-Kutta formulae. J. Comput. Appl.

Math. 27: 19-26.
C. H. Edwards (1997). Newton’s nose-cone problem. Mathematica J. 7: 64-71.
W. H. Enright & H. Hayashi (1997). A delay differential equation solver based on a continuous Runge-

Kutta method with defect control. Numer. Algorithms 16: 349-64.
W. H. Enright & H. Hayashi (1998). Convergence analysis of the solution of retarded and neutral differ­

ential equations by continuous methods. SIAM J. Numer. Anal. 35: 572-85.

Bibliography 253

W. H. Enright & P. H. Muir (1996). Runge-Kutta software with defect control for boundary value ODEs.
SIAMJ. Sci. Comput. 17: 479-97.

J. D. Farmer (1982). Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4: 366­
93.

E. Fehlberg (1970). Klassiche Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schritten-
weiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme. Computing 6: 61-71.

B. A . Finlayson (1972). The Method o f Weighted Residuals and Variational Principles. New York: Aca­
demic Press.

C. A. J. Fletcher (1983). Computational Galerkin Methods. New York: Springer-Verlag.
GAMS. The Guide to Available Mathematical Software is available at (http://gams.nist.gov/).
C. W. Gear (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Englewood

Cliffs, NJ: Prentice-Hall.
L. Genik & P. van den Driessche (1999). An epidemic model with recruitment-death demographics and

discrete delays. In S. Ruan, G. S. K. Wolkowicz, & J.Wu (Eds.), Differential Equations with Appli­
cations to Biology, pp. 237-49. Providence, RI: American Mathematical Society.

F. R. Giordano & M. D. Weir (1991). Differential Equations: A Modeling Approach. Reading, MA:
Addison-Wesley.

I. Gladwell (1979a). The development of the boundary-value codes in the ordinary differential equations
chapter of the NAG library. In B. Childs et al. (Eds.), Codes fo r Boundary Value Problems (Lecture
Notes in Computer Science, 76), pp. 122-43. New York: Springer-Verlag.

I. Gladwell (1979b). Initial value routines in the NAG library. A C M Trans. Math. Software 5: 386-400.
I. Gladwell (1987). The NAG library boundary value codes. Numerical Analysis Report no. 134, Depart­

ment of Mathematics, University of Manchester, U.K.
H2KL. The Harwell 2000 Library, at (hsl.rl.ac.uk).
E. Hairer, S. P. Norsett, &G. Wanner (1987). Solving Ordinary Differential Equations I. Berlin: Springer -

Verlag.
E. Hairer &G. Wanner (1991). Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic

Problems. Berlin: Springer-Verlag.
J. Hale (1971). Functional Differential Equations. Berlin: Springer-Verlag.
P. Henrici (1962). Discrete Variable Methods in Ordinary Differential Equations. New York: Wiley.
P. Henrici (1977). E rror Propagation f o r Difference Methods. New York: Krieger.
D. J. Higham & N. J. Higham, M atlab Guide. Philadelphia: SIAM.
A. C. Hindmarsh & G. D. Byrne (1976). Applications of EPISODE: An experimental package for the

integration of systems of ordinary differential equations. In L. Lapidus & W. E. Schiesser (Eds.),
Numerical Methods fo r Differential Systems, pp. 147-66. New York: Academic Press.

M. H. Holmes. Introduction to Perturbation Methods. New York: Springer-Verlag.
T. E. Hull, W. H. Enright, B. M. Fellen, & A. E. Sedgwick (1972). Comparing numerical methods for

ordinary differential equations. SIAM J. Numer. Anal. 9: 603-37.
T. E. Hull, W. H. Enright, & K. R. Jackson (1975). User’s guide for DVERK - A subroutine for solving

non-stiff ODEs. Report no. 100, Computer Science Department, University of Toronto, Ontario.
IMSL (2002). The IM SL FORTRAN 77Mathematics and Statistics Libraries (FN L), ver. 3.0. Visual Nu­

merics Inc., Houston, TX.
E. Isaacson & H. B. Keller (1966). Analysis o f Numerical Methods. New York: Wiley.
E. Kamke (1971). Differentialgleichungen Losungsmethoden und Losungen, vol. I. New York: Chelsea.
H. B. Keller (1992). Numerical Methods fo r Two-Point Boundary-Value Problems. New York: Dover.
J. Kierzenka (1998). Studies in the numerical solution of ordinary differential equations. Doctoral dis­

sertation, Department of Mathematics, Southern Methodist University, Dallas, TX.

http://gams.nist.gov/

254 Bibliography

J. Kierzenka & L. F. Shampine (2001). A BVP solver based on residual control and the M a tla b PSE.
A C M Trans. Math. Software 27: 299-316.

H. Ko§ak (1989). Differential and Difference Equations through Computer Experiments. New York:
Springer-Verlag.

M. Kubicek, V. Hlavacek, & M. Holodnick (1979). Test examples for comparison of codes for nonlin­
ear boundary value problems in ordinary differential equations. In B. Childs et al. (Eds.), Codes fo r
Boundary-Value Problems in Ordinary Differential Equations (Lecture Notes in Computer Science,
76), pp. 325-46. New York: Springer-Verlag.

J. D. Lambert (1991). Numerical Methods fo r Ordinary Differential Systems. New York: Wiley.
L. Lapidus, R. C. Aiken, & Y. A. Liu (1973). The occurrence and numerical solution of physical and

chemical systems having widely varying time constants. In R. A. Willoughby (Ed.), Stiff Differen­
tial Systems, pp. 187-200. New York: Plenum.

H. T. Laquer & B.Wendroff (1981). Bounds for the model quench front. SIAMJ. Numer. Anal. 18: 225-41.
M. Lentini & V. Pereyra (1974). A variable order finite difference method for nonlinear multipoint bound­

ary value problems. Math. Comp. 23: 981-1003.
J. Lighthill (1986). An Informal Introduction to Theoretical Fluid Mechanics. Oxford: Clarendon.
C. C. Lin & L. A. Segel (1998). Mathematics Applied to Deterministic Problems in the Natural Sciences.

Philadelphia: SIAM.
N. MacDonald (1978). Time Lags in Biological Models. Berlin: Springer-Verlag.
N. MacDonald (1989). Biological Delay Systems: Linear Stability Theory. Cambridge University Press.
Maple (1998). Maple VRelease 6. Waterloo Maple Inc., Waterloo, Ontario.
M. Marletta & J. D. Pryce (1995). LCNO Sturm-Liouville problems - Computational difficulties and

examples. Numer. Math. 69: 303-20.
C. Marriott & C. DeLisle (1989). Effects of discontinuities in the behavior of a delay differential equa­

tion. Physica D 36: 198-206.
A. Martin & S. Ruan (2001). Predator-prey models with delay and prey harvesting. J. Math. Biol. 43:

247-67.
M a tla b (2000). M atlab 6. The MathWorks, Inc., Natick, MA.
R. M. M. Mattheij & G. W. M. Staarink (1984a). An efficient algorithm for solving general linear two-

pointBVP. SIAM J. Sci. Stat. Comput. 5: 745-63.
R. M. M. Mattheij & G. W. M. Staarink (1984b). On optimal shooting intervals. Math. Comp. 42: 25-40.
C. B. Moler (1997). Are we there yet? M atlab Newsletter (Simulink 2 Special Edition), pp. 16-17; see

(http://www.mathworks.com/company/newsletter/pdf/97slCleve.pdf).
C. B. Moler & L. P. Solomon (1970). Integrating square roots. Comm. A C M 13: 556-7.
J. S. Murphy (1965). Extensions of the Falkner-Skan similar solutions to flows with surface curvature.

AIAA J. 3: 2043-9.
J. D. Murray (1993). Mathematical Biology, 2nd ed. Berlin: Springer-Verlag.
NAG (2002). NAG FORTRAN 77 Library, mark 21. Numerical Algorithms Group Inc., Oxford, U.K.
Netlib. The Netlib software repository is available at (http://www.netlib.org/).
K.W. Neves (1975). Automatic integration of functional differential equations: An approach. A C M Trans.

Math. Software 1: 357-68.
K.W. Neves & S. Thompson (1992). Software for the numerical solution of systems of functional differ­

ential equations with state dependent delays. Appl. Numer. Math. 9: 385-401.
H. J. Oberle & H. J. Pesch (1981). Numerical treatment of delay differential equations by Hermite inter­

polation. Numer. Math. 37: 235-55.
R. E. O’Malley (1991). Singular Perturbation Methods f o r Ordinary Differential Equations. New York:

Springer-Verlag.

http://www.mathworks.com/company/newsletter/pdf/97slCleve.pdf
http://www.netlib.org/

Bibliography 255

J. M. Ortega & W. G. Poole (1981). An Introduction to Numerical Methods f o r Differential Equations.
Marshfield, MA: Pitman.

J. T. Ottesen (1997). Modelling of the baroflex-feedback mechanism with time-delay. J. Math. Biol. 36:
41-63.

C. A. H. Paul (1995). A user-guide to ARCHI. Numerical Analysis Report no. 283, Mathematics Depart­
ment, University of Manchester, U.K.

S. Pruess, C. T. Fulton, & Y. Xie (1992). Performance of the Sturm-Liouville software SLEDGE. Tech­
nical Report no. MCS-91-19, Department of Mathematical Sciences, Colorado School of Mines,
Golden.

J. D. Pryce (1993). Numerical Solution o f Sturm-Liouville Problems. Oxford: Clarendon.
J. D. Pryce (1999). A test package for Sturm-Liouville solvers. A C M Trans. Math. Software 25: 21-57.
A. Raghothama & S. Narayanan (2002). Periodic response and chaos in nonlinear systems with para­

metric excitation and time delay. Nonlinear Dynam. 27: 341-65.
S. M. Roberts & J. S. Shipman (1972). Two-Point Boundary Value Problems: Shooting Methods. New

York: Elsevier.
H. H. Robertson (1996). The solution of a set of reaction rate equations. In J. Walsh (Ed.), Numerical

Analysis: An Introduction, pp. 178-82. London: Academic Press.
J. M. Sanz-Serna & M. P. Calvo (1994). Numerical Hamiltonian Problems. London: Chapman & Hall.
M. R. Scott (1973). Invariant Imbedding and Its Applications to Ordinary Differential Equations, An

Introduction. Reading, MA: Addison-Wesley.
R. Seydel (1988). From Equilibrium to Chaos. New York: Elsevier.
L. F. Shampine (1986). Conservation laws and the numerical solution of ODEs. Comput Math. Appl.

12B: 1287-96.
L. F. Shampine (1994). Numerical Solution o f Ordinary Differential Equations. New York: Chapman &

Hall.
L. F. Shampine (1998). Linear conservation laws for ODEs. Comput Math. Appl. 35: 45-53.
L. F. Shampine (2002). Variable order Adams codes. Comput Math. Appl. 44: 749-61.
L. F. Shampine, R. C. Allen, Jr., & S. Pruess (1997). Fundamentals o f Numerical Computing. New York:

Wiley.
L. F. Shampine, I. Gladwell, & R. W. Brankin (1991). Reliable solution of special root finding problems

for ODEs. A C M Trans. Math. Software 17: 11-25.
L. F. Shampine & M. K. Gordon (1975). Computer Solution o f Ordinary Differential Equations. San

Francisco: Freeman.
L. F. Shampine & M. W. Reichelt (1997). The M a tla b ODE suite. SIAM J. Sci. Comput. 18: 1-22.
L. F. Shampine, M. W. Reichelt, & J. A. Kierzenka (1999). Solving index-1 DAEs in M a tla b and

Simulink. SIAM Review 41: 538-52.
L. F. Shampine & S. Thompson (2000). Event location for ordinary differential equations. Comput. Math.

Appl. 39: 43-54.
L. F. Shampine & S. Thompson (2001). Solving DDEs in M atlab . Appl. Numer. Math. 37: 441-58.
R. D. Skeel & M. Berzins (1990). A method for the spatial discretization of parabolic equations in one

space variable. SIAM J. Sci. Stat. Comput. 11: 1-32.
S. S. Soliman & M. D. Srinath (1998). Continuous and Discrete Signals and Systems, 2nd ed. Englewood

Cliffs, NJ: Prentice-Hall.
H. J. Stetter (1973). Analysis o f Discretization Methods f o r Ordinary Differential Equations. New York:

Springer-Verlag.
A. M. Stuart & A. R. Humphries (1996). Dynamical Systems and Numerical Analysis. Cambridge Uni­

versity Press.

256 Bibliography

S. Suherman, R. H. Plaut, L. T. Watson, & S. Thompson (1997). Effect of human response time on rock­
ing instability of a two-wheeled suitcase. J. Sound Vibration 207: 617-25.

L. Tavernini (1996). Continuous-Time Modeling and Simulation. Amsterdam: Gordon & Breach.
S. Thompson & P. G. Tuttle (1986). Benchmark fluid flow problems for continuous simulation languages.

Comput. Math. Appl. 12A: 345-52.
L. N. Trefethen (2000). Spectral Methods in M atlab. Philadelphia: SIAM.
D. A. Wells (1967). Theory and Problems o f Lagrangian Dynamics (Schaum’s Outline Series). New York:

McGraw-Hill.
D. R. Wille & C. T. H. Baker (1992). DELSOL - A numerical code for the solution of systems of delay-

differential equations. Appl. Numer. Math. 9: 223-34.
S. J. Wolfram (1996). The Mathematica Book, 3rd ed. Wolfram Media & Cambridge University Press.

Index

algebraic equations, 8, 93, 135, 136,157, 158, 161,
164

system, 8
asymptotic equality, 141

BDF, see initial value solver, methods with
memory, backward differentiation
formulas

boundary value solver, 121
almost block diagonal system, 160
backward error analysis, 166
banded system, 160
collocation, 163, 164, 203
condensation, 162, 163
continuation, 183, 187, 191,195, 200, 209
continuous extension, 163
deferred correction, 162
error control, 165
error tolerances, 23
Euler’s method, 158
extrapolation, 165, 166
finite differences, 158, 161

stability, 160
Gaussian method, 163
implicit one-step method, stability, 158
implicit Runge-Kutta method, 161-5

continuous extension, 163
Lobatto method, 163
local truncation error, 160
midpoint rule, 161, 163
multiple shooting, 157-9, 167
Newton’s iteration, 157, 159

parameter estimates, 133
residual, 166, 167
shooting, 156,157, 167,174
Simpson’s formula, 161, 162,167

continuous extension, 163, 164
solution estimate, 133
stability, 158, 161
symmetric formula, 49
trapezoidal rule, 158-62,165

convergence, 160
local truncation error, 162
stability, 158

truncation error estimate, 165
unknown parameters, 171, 172

BVP, see ordinary differential equations,
boundary value problem

computer algebra, 3
M atlab Symbolic Toolbox, 3
Maple, 3, 5

kernel, 3
Mathematica, 3, 205

N D Solve, 205
computer arithmetic

IEEE-754 standard, 28
unit roundoff, 28, 29

conservative system, 10
angular momentum, 36
conservation o f energy, 11
energy, 10, 35, 36
linear conservation laws, 32, 35
nonlinear conservation laws, 35, 36

257

258 Index

CSDT, see partial differential equations,
continuous space discrete time problem

cubic Hermite interpolation, 55, 217, 218

DAE, see ordinary differential equations, initial
value problem, differential algebraic
equation

delay differential equations (DDEs), 2, 213
cardiovascular problem, 242
chaotic problem, 224
constant delays, 213
controller problem, 247
discontinuities, 214, 219
discontinuity propagation, 215, 219
epidemic problem, 221, 238
history, 2
H IV multiple partnership problem, 226, 239
immunology problem, 214, 219, 240
infection spread problem, 214, 219, 240
initial value problem

event location, 214, 215, 220, 231, 235
history, 214, 217, 219, 220, 238

lags, 213
lemmings life cycle problem, 230
Mackey-Glass equation, 239
method o f steps, 215, 217
neuron interaction problem, 244
neutral type, 249
Poincare section problem, 239
population growth problem, 245
predator-prey problem, 241
state-dependent delays, 248
two-wheeled suitcase problem, 233
vanishing delays, 248

delay differential solvers
Runge-Kutta method, 218

(4.5) pair, 250
(5.6) pair, 250
BS(2,3) pair, 217, 218, 220
continuous extension, 218
discontinuity propagation, 219
error estimate, 218

error in polynomial interpolation, 42

fast Fourier transform (F FT), 115,121

general scientific computing
boundary value code

COLNEW, 162, 164,165, 198
COLSYS, 162, 164,165, 198
DD04, 158
MIRKDC, 34, 164, 166
MUSN, 158
PASVA3, 162, 165
t w p b v p , 162,165

delay differential code
ARCHI, 239, 250
DDVERK, 250
DKLAG5, 235
DKLAG6, 235, 249, 250
DMRODE, 217

eigenproblem code
SL02F, 137
SLEDGE, 137
SLEIGN, 137

Fortran 77
arithmetic, 28

initial value code
DASSL, 124
DIFSUB, 74, 75
DVERK, 34
EPISODE, 32
ODE/STEP,INTRP, 60
RKSUITE, 54
r k s u ite _ 9 0 , 54
VODE, 59, 74

NAG BVP code
D02HBF, 144
D02SAF, 157, 174

NAG eigenproblem code
D02KDF, 137

relative error tolerance, 27

ill- conditioned problem, 10
ill-posed problem, 10
initial value solver

A-stability, 68
A(a)-stability, 68
absolute error tolerances, 31
absolute stability, 65
absolute stability region, 66, 68, 69
accumulated roundoff error, 48
approximating Jacobians, 70

Index 259

initial value solver (cont.)
backward Euler method, 49, 58, 62, 67, 69, 73
banded Jacobians, 71
collocation, 60
computable local error estimate, 46
continuous extension, 41, 91, 93, 167
default error tolerances, 33
error tolerances, 36
Euler’s method, 49, 50, 53, 58, 59, 65-8
fixed-point iteration, 58
global error, 14,16, 46
instability, 14, 48
iteration matrix, 70, 106,117, 123

analytic Jacobians, 118
banded Jacobians, 118

Kodak’s PHASER program, 95
L(a)-stability, 68
local error, 14, 16, 43, 45-7, 53
local error control, 46
local error estimation, 46, 48
local error tolerance, 46
local extrapolation, 46, 54
local solution, 14,16, 40, 41, 44, 48, 51, 57
mass matrix, 123
methods with memory, 39, 57

ABk, 58
Adams methods, 40, 57-61, 63, 64, 72-5
Adams-Bashforth methods, 58, 59, 62, 72
Adams-Moulton methods, 58-60, 63, 72,

73
AM k, 58
backward differentiation formulas, 39, 40,

49, 60, 61, 63, 64, 68-71, 73-5, 165
BDFk, 49
convergence o f LM M , 62-4
corrector formula, 58, 60
discretization error o f LM M , 61
Euler’s method, 69
linear multistep method (L M M), 61
local extrapolation, 72
local truncation error, 74
local truncation error o f LM M , 61, 62, 72
PECE, 59
predictor formula, 59
predictor-corrector method, 59, 60, 68
VSVO, 74
zero-stable LM M , 63

midpoint rule, 51
mixed error control, 28, 29
one-step method, 39, 41
order, 43, 50
propagation o f error, 45
pure absolute error control, 28, 29
pure absolute error tolerance, 29
pure relative error control, 28
relative error tolerance, 28
Runge-Kutta method, 48

accuracy, 52
BS(2,3) pair, 53
Butcher tableau, 53
continuous extension, 54, 163
dense output, 55
DOPRI5 pair, 53
equations o f condition, 51
Euler-Heun (1, 2) pair, 53
explicit method, 39-41, 46, 48-53, 68, 163,

217
F(4, 5) pair, 53
first same as last (FSAL), 54, 55
Heun’s method, 50, 51, 53, 59, 68
implicit method, 49, 50
local error, 72
stages, 51, 52

simple iteration, 58, 59, 69, 72
simplified Newton iteration, 69-71
sparse Jacobians, 71
stability, 58, 64, 66, 67, 72,116, 127
step size, 14, 47
thresholds, 31
trapezoidal rule, 49, 51, 58, 59, 62, 68, 73

IVP, see ordinary differential equations, initial
value problem

Leibnitz’s rule, 227
LTI, see ordinary differential equations, initial

value problem, linear time invariant
system

M a t la b , 1
double precision arithmetic, 28
Maple kernel, 3, 4
programming, 3
unit roundoff, 28
working precision, 28

260 Index

M atlab BVP function
bvp4c, 12, 22, 121, 134, 159, 162, 164, 166,

168, 169,171, 174, 185,191, 195, 198-200,
214

default error tolerances, 12
first-order systems, 134
unknown parameters, 134

b v p in i t , 156, 169, 171,181, 192
M atlab BVP option

BCJacobian, 185, 186
FJacob ian , 185, 186
Nmax, 195

M atlab BVP solvers, 18
default error tolerances, 12
unknown parameters, 22

M atlab DDE function
dde23, 55, 213, 214, 217-21, 223, 224, 226,

228, 231, 232, 235, 236, 240, 241, 248
d d ese t, 219, 231, 236

M atlab DDE option
A b sT o l, 240
E ven ts , 233, 247
I n i t i a l Y , 219, 220, 230, 233, 236, 239
Jumps, 219, 233, 240, 241, 244

M atlab DDE solvers, 18
initial value problem, event location, 220

M atlab DE function
d e v a l, 84, 169, 218, 224, 225

M atlab IVP function
ode113, 40, 60, 73
ode15s, 32, 39, 40, 73, 81, 86, 116, 117, 121,

122,127
default absolute error tolerance, 30
default error tolerances, 30

ode23 tb , 50
ode23 t, 49
ode23, 46, 50, 53, 55, 115-17, 121, 125, 127,

213, 217, 218, 220, 222
ode45, 11, 39, 40, 46, 50, 53-5, 81, 82, 86, 91,

112,117
event location, 97

o d e p lo t , 86
o d e s e t , 85, 219, 236

M atlab IVP option
E ven ts , 94, 95

d i r e c t io n , 94
is t e r m in a l , 94

J P a t te rn , 119
Ja cob ia n , 118, 119
M StateD ependence, 124
M a ssS in gu la r , 106, 107
Mass, 106, 124
OutputFcn, 87, 91
O u tp u tS e l, 86
R e fin e , 88
S ta ts , 117, 121
d i r e c t io n , 96
is t e r m in a l , 95

M atlab IVP solvers, 18,19, 27-9, 39,123
default error tolerances, 11, 27
error tolerances, 27
event location, 97, 104
graphical representation, 27
mixed error control, 28
pure absolute error control, 28
pure relative error control, 28
scalar absolute error tolerance, 27
smooth graph, 91

M atlab ODE function
odephas3, 91

M atlab ODE solvers
backward error analysis, 17
passing parameter values, 107, 145, 200, 231,

236
M atlab PDE Toolbox, 114
M atlab PDE function

pdepe, 114, 116, 118
M atlab Symbolic Toolbox, 3,176

ja c o b ia n , 186, 194
M atlab demonstration program

ba ton od e , 106, 107, 112
b ru ssode , 121
hb1ode, 32
twobvp, 137

M atlab function
A ir y A i , 4
A ir y B i , 4
R o ta te 3D, 95
a x is , 105, 112
b e s s e l j , 4
b e s s e ly , 4
con d es t, 90
d i f f , 103
d s o lv e , 3, 4, 18

Index 261

M a tla b function (cont.)
f f t , 121
f in d , 96, 231
fz e r o , 236, 237
isem p ty , 96
le n g th , 188
lu , 90
numjac, 185
repm at, 122
r o o ts , 245
s iz e , 122
sp a rse , 107, 185
s p d ia g s , 119
t i c , 79, 125,127
to c , 79, 125,127
z e ro s , 107, 185

M atlab number
eps, 28

M atlab option
default option, 184, 200
V e c to r iz e d , 121,184, 194, 209

M atlab program
ch2ex1, 86
ch2ex2, 95, 97
ch2ex3, 101, 105
ch2ex4, 109, 111, 112
ch2ex5, 115-17, 121
ch2ex6, 118-20, 125
ch2ex7, 125, 126
ch2ex8, 128, 129
ch3ex1, 168, 170, 202
ch3ex2, 171, 210
ch3ex3, 174
ch 3 ex 4 ,179-81, 182,183, 209
ch 3 ex 5 ,184, 186,188, 189, 208, 209
ch 3 ex 6 ,192, 193,194, 209
ch3ex7, 197
ch3ex8, 200, 201
ch4ex1, 222, 223, 224, 238
ch4ex2, 225, 239
ch4ex3, 229, 239
ch4ex4, 231, 232
ch4ex5a, 234, 236, 247
ch4ex5b, 237

mean value theorem, 9
M OL, see partial differential equations, method

o f lines

ordinary differential equations (ODEs), 1
asymptotic expansion, 5, 127
autonomous system, 52
backward error analysis, 17
baton problem, 106
bifurcation, 8
boundary value problem, 2, 133

asymptotic approximations, 142
bifurcation, 168
boundary conditions, 11, 133, 138
boundary conditions at infinity, 146
Bratu’s equation, 139, 140, 168-70
cantilever beam problem, 203
charge density problem, 155
corrosion problem, 22
decay of solution on infinite interval, 150,151
dichotomy, 148
Dirichlet boundary conditions, 136
elastic string problem, 24
enzyme-catalyzed reaction, 145
existence, 13, 133
existence of solution of linear BVP, 136
Falkner-Skan equations, 24, 206
Falkner-Skan similarity solutions, 152
first-order systems, 164
Fisher’s equation, 148, 183, 208
fluid flow problem, 176
fluid injection problem, 190
higher-order equations, 164
incompressible boundary layer flows, 152
incompressible flow problem, 206, 207
infinite interval, 12, 133,146, 176
integral constraint, 22
irreversible reaction problem, 203
Latzko’s equation, 143
linear BVP, 135
lubrication theory problem, 170
measles spread problem, 210
Michaelis-Menten kinetics, 145
minimal resistance problem, 205
multiple solutions, 133
multipoint conditions, 134, 198-200
nerve impulse problem, 173
nonlinear BVP, 137
nonlinear eigenproblem, 170
nonseparated boundary conditions, 134, 136,

173, 175, 200

262 Index

ODEs, boundary value problem (cont.)
normalizing condition, 21
pendulum problem, 11, 206
periodic boundary conditions, 136, 173
physiological flow problem, 198
pollution problem, 153
projectile problem, 12, 203
separated boundary conditions, 134-7, 159,

160
singular point, 133,138-40, 142, 176
spontaneous combustion problem, 139, 168
stability, 160
Sturm-Liouville eigenproblem, 2, 21, 136,

137,143
Thomas-Fermi equation, 155
traveling wave solutions, 148, 153
trivial solution, 136
tubular reactor problem, 205
two-point BVP, 133
uniqueness, 13, 133
uniqueness o f solution o f linear BVP, 136
unknown parameters, 133,136, 141, 171, 190,

193
unsteady flow problem, 153
whirling string problem, 204

change o f variables, 52,128
classical situation, 59
conservative system, 202
direction field, 15
dissipation, 21
exact solution, 17
first-order system, 6, 7, 19, 22
general solution, 15
initial value problem, 2, 39, 133,135, 136, 214

bouncing ball problem, 98, 100
classical situation, 40
collapse o f a spherical cavity, 127
cork ejection problem, 102
differential algebraic equation, 105, 124
dynamical system, 95
Emden’s equation, 130
event function, 92-6, 99, 100, 110
event location, 92-6, 98
existence, 6, 128
harmonic oscillators, 95
hydrogen-hydrogen bond problem, 29, 35
ill-conditioning, 31
implicit system, 7, 124

initial conditions, 7, 135
initial data, 7, 100
instability, 10, 11, 14, 15, 17, 31, 33, 40
Kepler’s problem, 20
large system, 114
linear time-invariant system, 25
local error, 48
mass matrix, 19, 39, 105-7
Navier-Stokes steady state, 109
Newton’s laws o f motion, 21
oscillatory solution, 33
pendulum problem, 10, 20, 35
Poincare map, 95, 97
projectile problem, 12
proton transfer problem, 48, 72, 85
qualitative properties, 33, 34
Robertson’s chemical reaction problem, 31,

35, 72
singularity, 127
space charge current problem, 24, 131
stability, 45, 61, 82, 156, 157, 160
state variables, 25
stiff system, 30, 39, 40, 66, 67, 70, 72, 114,

118,126
two-body problem, 36
uniqueness, 6, 128
well-posed, 17

Jacobian matrix, 8
singular matrix, 8

linear equation, 1
linear stability analysis, 149
nonnegative solution, 32
perturbation methods, 5, 6
residual, 17
scalar equation, 5
singular point, 9
special second-order equations, 21
standard form, 19, 39
steady-state solution, 8, 32
system o f equations, 5
unique solution, 1
variational equation, 5

partial differential equations (PDEs)
continuous space discrete time problem, 110,112
Crank-Nicolson method, 49
fully explicit method, 49
fully implicit method, 49

Index 263

partial differential equations (PDEs) (cont.)
method o f lines, 114

brusselator problem, 121
finite differences, 117, 118, 121, 126
Galerkin method, 122
heat equation, 122
spectral method, 115-17
upwind differences, 117

Navier-Stokes equations, 109
one-way wave equation, 114,117
quench front problem, 126
semidiscretization, 114
time-dependent, 49

polynomial interpolation, 41
problem-solving environment (PSE), 1, 3

M a t la b , 1

quadrature, 41, 48
Gaussian rule, 161, 163
interpolatory quadrature formulas, 43

Lobatto rule, 161,163, 167
midpoint rule, 43, 45
rectangle approximation, 41, 43
Simpson’s rule, 161
trapezoidal rule, 42, 43, 50

smooth function, 7, 9, 42
Lipschitz condition, 9, 10, 40, 50, 58, 66,157

special functions
A iry functions, 4, 5
Bessel functions, 4, 5
complementary error function, 154, 207

Taylor series, 44, 61, 70,128, 130,140, 176

Volterra integro-differential equations, 226

well-conditioned problem, 10
well-posed problem, 10

