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Chapter 1

Getting Started

1.1 Introduction

1.2 Existence, Uniqueness, and Well-Posedness
Solution for Exercise 1.1. It is easily verified that both solutions returned by dsolve are solutions 
of the IVP. This fact does not conflict with the basic existence and uniqueness result because that 
result is for IVPs written in the standard (explicit) form

y' =  f  (t,y), y (t0) =  У0 

In fact, when we write the given IVP in this form, we obtain two IVPs,

y' =  f i (t, У) =  V 1  -  У2, У(0) =  0

and

y' =  f 2 ( t ,y) =  - V 1 -  У2, У(0) =  0

It is easily verified that both functions, f 1 and f 2, satisfy a Lipschitz condition on a region containing 
the initial condition, hence both IVPs have a unique solution. For example,

d fi - y 0.5<
dy V i  -  У2 ~  a/0.75

for -0.5 <  y <  0.5 and for all t. In this way we find that the given IVP has exactly two solutions.

Solution for Exercise 1.2. By definition, f  (t, y) satisfies a Lipschitz condition with constant L  in 
a region if

\f ( t,u)  -  f  (t,v)\ <  L\u -  v\

for all (t, u), (t, v) in the region. If this function f  (t, y) satisfies a Lipschitz condition on \t\ <  1, \y\ <  
1, then

\V[U\ -  "/M  \ =  "/M  <  L\u\ =  L\u -  0\

This implies that
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6 CHAPTER 1. GETTING STARTED

However, if we let u ^  0, we see that this is not possible. Accordingly, f  ( t,y)  does not satisfy a
t2

Lipschitz condition on this rectangle. Two solutions to the IVP are y(t) =  0 and y(t) =  — .

On the rectangle \t\ <  1,0 < a < y <  1,

d f 1

dy 2 ^V
<

2 ^/a

This upper bound on the magnitude of the partial derivative serves as a Lipschitz constant for f (t, y) 
on this rectangle.

Solution for Exercise 1.3. For the first ODE we can use partial fractions to obtain

1 1 1

and then integrate to find that

(t -  1)(t -  2) t -  2 t -  1 

y(t) =  C  ln
t 2
t 1

The arbitrary constant C  is determined by the initial condition. Depending on where the initial 
value is specified and on its value, the maximal interval on which the solution is defined is one of 
(- t o ,  1), ( 1, 2) and (2, to).

For the second ODE, separating variables to get y'y- 4 / 3  =  -3  sin(t) and integrating leads to

y (t ) =
1

(C  -  cos(t) )3

If the initial condition is such that the arbitrary constant C  satisfies either C  >  1 or C  <  -1 , the 
maximal interval on which the solution is defined is ( - t o ,  to). However, if -1  <  C  <  1, the interval 
extends from the initial point in each direction only until the first point is reached where cos(t) =  C.

Solution for Exercise 1.4. The command

>> d f s ( ’ 5 * (y  - t " 2 ) ’ ,[0  5 -2 2 0 ]);

produces a direction field for the ODE and clicking at a few points in the window shows the instability 
of the IVP  that is studied in the text by means of its analytical solution (t2 +  0.4t +  0.08) +  Ce5t.

Solution for Exercise 1.5. The text states that the general solution of the ODE is

t2 +  0.4t +  0.08 +  Ce5t

for an arbitrary constant C . From this we see that the solution of the IVP  is

y(t) =  t2 +  0.4t +  0.08 

and the local solution that goes through ( tn, yn) is

u(t) =  y(t) +  (yn -  y(tn))  e5(t-tn)

The program ex05ch1.m does the computations in a straightforward way using these expressions. 
This IVP  is unstable because of the term Ce5t in the general solution. The local errors are small 
in the beginning and so are the global errors because the instability due to the exponential term is 
modest. As t increases, the exponential term and the instability of the problem grow rapidly, so we 
expect the global errors to grow rapidly, and they do.



1.3. STANDARD FORM 7

1.3 Standard Form
Solution for Exercise 1.6. Expanding the derivative in the ODE gives

p(x)y ' ' (x)  +  p' (x )y ' ( x )  +  q(x)y(x)  =  r (x ) 

Letting yi =  y and y2 =  y' , we have y'i =  y' =  y2 and

r  -  p'y' -  qy r  -  p'y2 -  qyi
У2 =  у p p  

The given BVP thus takes the form

yi =  У2 , y i (0 )= 0

' r  -  p'y2 -  qyi m  2
У2 =  ------------------> У2(1) =  ^ГТ

p p (i )

Letting yi =  y and y2 =  py', we have yi =  y' =  У2 and
1 p

У2 =  py'' +  p'y' =  r  -  qy =  r  -  qyi 

With these variables, the given BVP assumes the form

yi =  — , y i (0) =  0 1 p

у2 =  (py ') ' =  r  -  qy =  r  -  qyi, У2(1) =  2

Solution for Exercise 1.7. A  little manipulation and taking a square root provides the two 
equivalent ODEs

ex
y =

which are explicit and in special second order form. If we let yi =  y and y2 =  y' , we obtain the 
equivalent first order system

y1' =  y2
x

у2 =  ± -
'Vrn

Solution for Exercise 1.8. Denote the variables f , f ' ,  f ' ' ,  f ' ' '  by yi , y2, y3, y4, respectively. 
A  first order system of ODEs for these unknowns and the corresponding boundary conditions are 
obtained in the usual way. Further define

r n
У5(п)=  [1 -  f ' ( ^ )eQ(]d£

J 0
and

Г n
Уб(п) =  I  f ' ( O e n i[1 -  f ' (e )e fi«]de

0

With initial values y5(0) =  0 and Уб(0) =  0, we have Д* =  y5 (b) and в =  y6 (b). Applying the Second 
Fundamental Theorem of Calculus to the definitions of y5(n) and y6 (n) then leads to ODEs for these 
unknowns in terms of the other unknowns. Altogether we have the system of first order ODEs

y1' =  y2

у2 =  уз

Уз =  У 4

У4 =  -  (^  +  y i) У4 -  ^У1Уз +  (2в  -  1) У2У3 -  ^У2

у5 =  1 -  У2е^п

Уб =  У2еПп (1 -  У2 еПп)
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and boundary conditions
y i(0) =  0 

У2(0) =  0

У2 (b) =  e-nb 

Уз(Ь) =  - П е -пь 

У5(0) =  0

Уб(0) =  0

Solution for Exercise 1.9. Let yi (x) =  ^ (x), y2(x) =  i^'(x), y3 (x)  =  fX , == and y4(x) =
V 1 +  y2(t)

H . These variables satisfy the first order ODEs

y'i =  У2 

' 2 ( 1  -  a2 1 2
У2 =  - w ----------- л 2 + a I yi

Уз

y4'

The boundary conditions are

=  У2

=  - ^ 2 |
1 -  a2

У4 •

1

л/ 1  + y2

= 0

y (0) = e

У2(0) = 0

У2(1) = 0

У4(1) =  ̂[1 -a 2

yi

a2)

Solution for Exercise 1.10. For convenience, throughout we’ll not show the independent variable 
t. What is striking about this problem is that for each of the two given canonical forms, the direct 
dependence on the derivatives x (i) is suppressed.

Consider the first canonical form. Since vi =  y -  bN x, we see that for i =  1, 2,. ..  , N  -  1,

vi =  ( - aN - i v i  +  v i+ i) +  (bN - i  -  aN - ibN ) x

=  - a N - i  (y -  bNx) +  vi+i +  bN- ix  -  aN-ibNx  

=  bN - i x -  aN - iy  +  vi+i

In particular vi =  bN - i x - a N - i y+ v 2. By differentiating the latter equation repeatedly, substituting 
the former equations for vi , and simplifying, we obtain

v" =  bN - ix '  +  b N- 2x -  aN - iy '  -  aN- 2У +  v3

vi'' =  b N - ix "  +  b N- 2x'  +  bN- 3x -  aN- i y'' -  a N - 2y' -  aN- 3У +  v4

v (N i) =  bN - i x (N-2) +  bN - 2x (N-3) +  ••• +  bi x

- a N - iy (N 2) -  aN - 2y(N 3) -  • • • -  ai У +  vN 

Differentiating the equation for v (N i) and using the fact that

v'N =  -a o v i +  (bo -  aobN) x

gives

v (N) 
1 bN - i x (N i ) +  bN - 2x (N 2) +  ••• +  bi x'

- a N  -  i y(N i ) -  a N - 2y(N 2) -  • • • -  a iy' -  aov i +  (bo -  aobN) x
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Equating this expression to (y -  bNx ) (N) =  y(N) -  bNx (N) and simplifying gives

^  bix(i) =  y(N ) +  ^  aiy(i) +  ao (v i +  bNx)
i=o i=i

or
N N -

^  bix(i) =  y(N) +  ^  aiy(i)
i=o i=o

which is the original ODE.
Now consider the second canonical form. Define w as the solution of

N

w(N ) +^3 ajw(j) =  x
j=o

and let

W  =  ^w, w' ,..  ., w(N^  =  (w i, W2 , . .., wn)T

Note that the given system for v' is the same as that for W ' when the above equation for w(N) is 
reduced to a system of first order equations in the usual way. We need to show that y =  ^ N=o biw(i) 
is the same as the given output form

y =  (bo -  ao bN) wi +  (bi -  aibN) w2 +------ + (bN- i  -  aN - ibN ) w n  +  bN x

This is true however, since

N N 1
biw(i) biw(i) +  bNw(N)

i=o i=o
N -1 N -1

(i )=  biw(i) +  bN x -  ^  aiwi+i
i=o i=o
N -1

=  (bi -  aibN) wi+i +  bNx
i=o

Now we consider initial values for the first canonical form. Since y =  v i +  bN x we have v i (0) 
y (0) -  bNx(0). We also have

v2 =  v i -  bN -  ix  +  aN -  i У
=  y' -  bN x' -  bN -  i x +  aN -  i У

v3 =  v2 -  bN- 2x +  aN- 2У
=  y'' -  bN x' '  -  bN -  i x' +  aN -  i y' -  bN - 2x +  aN- 2У

vi+i =  vi -  b f  i - ix  +  aN+ i - i y

=  y (i) -  E j= o  bN - i - j x(j )  +  Y, j=o aN - i - j y (j)

Substituting t =  0 shows that vi+ ]_ (0) may be expressed in terms of the values

y (0), y '(0) , . . . ,  y (i)(0), x (0), x '(0) , . . . ,  x (i)(0)

Consider the second canonical form. Let ci =  bi -  aibN . Then

У =  C iv i +  C2v2 + ---- + cn vn  +  bN x

Differentiate the previous equation and substitute for v'N to obtain

y' =  c i v'  +  C2v2 +------ + cn v'N +  bN x'

=  c i v2 +  c2v2 +------ + cn -  i vn  +  cn ( -aov  i -  a iv2 -  • • • -  aN -  i vn  ) +  bN x' +  x
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Repeat this to obtain

y '  =  c i v2 +  c2v3 ---- + c n - 2v 'N- i  +  cn -  i (-aov  i -  a iv2 -------- aN -  i vn )

+  bN x' ' +  x' +  cN ( - a ov i -  av  -  • • • -  aN - ivN ) +  x 

=  c i v3 +  c2 v4 +  • • • +  c n - 2vn  +  cn -  i ( -aov  i -  a i v2 -  • • • -  aN -  ivn  )

+  cN ( - aov i -  a]_v2 -  • • • -  aN - ivN ) +  bNx'' +  x'  +  x

Continue this process as far as y (i) and substitute t =  0 to obtain a system of linear algebraic equa­
tions whose coefficients involve y (i) (0) and x (i) (0). The system may be solved to obtain v ]_,v2, .. .  ,vN .

1.4 Control of the Error
Solution for Exercise 1.11. The control of bvp4c is

\yi(tn) -  yn,i\ <  re\yi(tn)\ +  aei ( 1.1)

The control of MIRKDC is

\yi(tn) -  yn,i\ < т\yi(tn)\ +  т

which is identical when re =  т and when aei =  т for each i. The control of DVERK is only roughly 
equivalent to (1.1). I f \yi (tn)\ <  1, the control is

\yi(tn) -  yn,i \ <  т

which is a pure absolute error control with tolerance т. I f \yj,(tn)\ >  1, the control is

\yi (tn) yn,i\ <  т\yi (tn) \

which is a pure relative error control with tolerance т. The two cases correspond in a rough way to 
( 1.1) with re =  т and aei =  т for all i.

—
Solution for Exercise 1.12. At t =  — the solution has the value 1, so is on the edge of the

region where f (t, y) is defined. No matter what kind of error control you use, it will allow a 
numerical approximation yn >  1 when y (t ) is sufficiently close to 1. Accordingly, as the solver

—
approaches t =  7̂ , it is very possible that the code will try to form an approximation yn >  1 and

the computation may fail in the evaluation of the square root. The other difficulty is suggested by 
the observation that

d f  =  - У  
dy y/ 1  -  y2

is unbounded as ( t,y) ^  ^—, 1- j . This tells us that f  ( t ,y)  does not satisfy a Lipschitz condition 

in a region containing this point and it is possible that any solution is not unique. In fact there 
are other solutions of the ODE that pass through this point, y (t) =  1 being one. When uniqueness 
breaks down, we don’t know which solution a code will compute, if any.

Solution for Exercise 1.13. The solution approaches very quickly the boundary of the region 
where the function ln(y) is defined. No matter what kind of error control you use, it will allow 
a numerical approximation yn <  0 when y(t) is sufficiently close to 0. Accordingly, for “large” t, 
it is very possible that the code will produce an approximation yn <  0 and then the computation 
may fail in the evaluation of the natural logarithm. Just what happens depends on the computing 
environment. Often there is an immediate failure, but M a tla b  evaluates the logarithm as a complex 
number or In f. Depending on the solver, the integration might continue on toward the end of the 
interval specified.



1.5. QUALITATIVE PROPERTIES 11

1.5 Qualitative Properties
Solution for Exercise 1.14. Add the differential equations to see that

E  *<«> =  S  ( t  y .<*)) = 0
i= i \i= i J

hence that the sum of the solution components is constant.

Solution for Exercise 1.15. Differentiate G (t, x (t), y (t )) to obtain

G'  =  x -c  (y- a ecx+ay (cx' +  ay') -  ay- a - iy'ecx+ay) -  cx- c - i x'y- a ecx+ay 

and then divide out a common factor to obtain

xy (cx' +  ay') -  axy' -  cx'y =  0

Use the fact that
cx'ay' =  ac(x -  y)

to see that the last expression is identically zero, hence G( t , x ( t ) ,y ( t ) )  is constant.
The program ex15ch1.m uses Euler’s method to solve the given IVP. It plots the solution in the 

phase plane and in another figure, the conserved quantity G. For a step size h =  0.01, the curve 
doesn’t quite close and G ( t ,x ( t ) , y ( t ) )  varies from approximately 120 to 165. For h =  0.001, the 
curve appears to be closed and G (t) varies from approximately 122 to 125. The program ex15bch1.m 
solves the IVP with ode45. With default error tolerances the curve doesn’t quite close and G(t) 
ranges from about 122 to 125. Reducing the relative error tolerance to 1e -6, the curve appears to 
be closed and G(t) is approximately 121.85.
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Chapter 2

Initial Value Problems

2.1 Introduction

2.2 Numerical Methods for IVPs

2.2.1 One-Step Methods 

Loca l E rror Estim ation 

R u n ge -K u tta  M ethods 

Explicit R u n ge -K u tta  Formulas 

Solution for Exercise 2.1.

1 4  1 1
• For Simpson’s method A i =  —, A 2 =  —, A 3 =  —, a i =  0, a2 =  —, and a3 =  1. Direct

6 6 6 2 
substitution shows that the first four order equations are satisfied but that

5 1
A ia  i4 +  A 2a 24 +  Азаз4 =  —  =  -

24 5

• For the Gaussian 2-point method

, _  , _  1 _  V3 -  1 _  V3 +  1
A  1 - A2 =  2 •“  i =  ~ w ,а2 =  i t t

Direct substitution shows that the first four order equations are satisfied but that

7 1
A  i a i4 +  A 2a 24 +  A 3a34 =  —  =  —

36 5

Solution for Exercise 2.2. We use Euler’s method to calculate

yn, i =  yn +  h f  (t^  yn )

h
When we use the midpoint rule, we need to apply yn, i with a step of size —. We then obtain the 

formula
h h

yn+ i yn +  h f f  {^n +  2 , yn + 2  f  (tn, yn )

13



14 CHAPTER 2. IN IT IA L  VALUE PROBLEMS

Solution for Exercise 2.3. For the desired order of accuracy, the coefficients must satisfy

Y i +  Y2 =  1
1

Y2a i =  ^

Y2fh ,0 =  2

To obtain these equations, first expand f n 2 in a Taylor series:

d f  d f
f n,2 =  f  (tn, yn) +  ha i d t  (tn, yn) +  hP i,0f  (tn, yn) dy (tn, yn) +  . . .

Then substitute this expansion into the formula to obtain

Уп+ i =  Уп +  hY i f n, i +

(  d f  d f  \
h Y 2 [ f  (tn, yn) +  ha i djt (tn, yn) +  h@i ,0f  (tn, yn) dy (tn, yn) j  +  ...

Now expand the solution, using the fact that u'(t )  =  f  ( t ,u ( t ) )  to see that

u(tn +  h) -- yn +  hu (tn) + 2  U (tn) +  ...

h2 ( d f  d f  \
=  yn +  h f  ( tn, yn ) + 2  ( ~Qt (tn, yn ) +  f  (tn, yn ) dy (tn, yn ) J +  ...

Equating coefficients of powers of h in the expansions of yn+ i and u(tn+ i ) gives the stated equations 
of condition.

Continuous Extensions

Solution for Exercise 2.4. Table 2.1 displays the Butcher tableau for this pair.

0

1 1

2 2

3 3
0 -

4 4

0 1 0

2 3 4
9 9 9

Table 2.1: The (2,3) pair.

The local error estimate is

E =  * = h i 2 f  6 f  + 4 fE n+ i =  yn+ i -  yn+ i =  h [ 9 Jn,i -  9 Jn,2 +  9 Jn,3

We would accept a step if
\En+ i | <  £a +  £r |yn+11

2
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where ea and er are the absolute and relative error tolerances, respectively. Otherwise, we would take 
the step again with a smaller step size. To determine the step size for the next step in the case this 
step was successful or to determine the step size with which to redo a failed step, we would calculate 

hnew =  ah so as to make the quantity hnew------ nr ^ — г =  a3h3 ------ n+ ^ — - approximately equal
ea +  er\yn+ 1  \ ea +  er\yn+1 \

to 1. Solving gives

ea +  er\yn+1 \ A 1/3
\yn+1 -  yn+1 \ )

Since we're dealing with asymptotic estimates, in practice we would aim conservatively for a value 
of a that is rather less than 1, say 0.5. Our estimate of a would be reduced in this case by a factor 
of (0.5) 1/3 or approximately 0.8. In an actual RK code we would limit the amount by which the 
step size is allowed to change on any step (e.g., some RK codes would require that a be no less than 
0.5 and no larger than 2.0 for any given step).

2.2.2 Methods with Memory 

Adam s M ethods 

B D F  m ethods

Error Estim ation and Change o f Order 

Continuous Extensions 

Solution for Exercise 2.5.

• The polynomial P (t) that interpolates (tn-1 , f n-1) and (tn, f n) for AB2 is given by

t tn

Thus

P (t ) =  f n +  t—37----  ( f n -  f n - 1 )tn -  tn 1

Гt:  + h / t — t \
yn+ 1  =  yn +  I f n +  T----- -----  ( f n -  f n - 1 ) ) dt

J tn V 7п -  7п—1 J

=  yn +  fn (t -  tn) \‘,: +h +  ( fr - r - ^ )  !t:+h
2 tn -  tn-1

_  „ I 7 /* , hn (  f n -  f n- 1  
-- yn +  hnf n +  0

2 tn -  tn -  1

=  yn +  hn ( ( 1 +  2hn- 1 ) f n -  ( 2̂ )  f n - 1

=  yn +  hn ( (1  +  2 )  fn -  ( 2 )  fn - 1)

The polynomial that interpolates (tn-1, yn-1), (tn, yn), and (tn+1, yn+ 1), for BDF2 is given by

П/-Л _  (t -  7п)(7 -  tn+1) , _
P  (t) — yn- 1  (t + \f+ J- \ +  yn,

+  yn+1 ■

(t 7п)(7 tn+1) +  (t 7п —1)(t tn+1)
(tn- 1 7п)(7п- 1 tn+1) (tn 7п—1)(tn tn+1)

(t -  tn- 1  )(t -  tn)

(tn+1 7п—1)(tn+1 tn)
(t 7п)(7 tn+1) , (t 7п—1)(t  tn+1)

y n - 1 -,----- r,-------: ; г +  yn-

+  yn+1

hn - 1 (hn- 1  +  hn) hn- 1  hn
(t -  t n - 1 ) (t  -  tn)

hn(hn- 1  +  hn)
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Differentiating this expression gives

2t tn tn+ iln ln+ i , 2t ^n—i tn+ i
P  (t) =  yn-i 1 -----TZ------ П Т Т  +  y n

+  yn+i

hn—i (hn—i +  hn)
2t -  tn -  tn

hn hn

hn(hn— i +  hn)

Substituting t =  tn+ i gives

P  (tn+ i ) — yn—i
hn

-  yn
hn +  hn

+  yn+i

hn — i (hn—i +  hn) hn—i hn
hn +  2hn

hn(hn— i +  hn)

When the last expression is multiplied by hn, the coefficient of yn—i becomes

hn
n

hn— i ( hn— i +  hn ) 1 +  hn 1 +  r
n

The coefficient of yn becomes

1 I hn— i +  hn \ hn .
hn I —----- ;---- ) =  1 +  ------  =  1 +  r

hn hn n

The coefficient of yn+1 becomes

1 +  2__—
hn—i +  2hn hn—i 1 +  2r
hn 1 +  hn 1 +

1 +  r
n 1

Thus
1 +  2r  r 2

yn+i -  (1 +  r)yn +  ( : ) yn—i =  hnf  (tn+1, yn+i)1 + r 1 + r

Solution for Exercise 2.6. Using the result cited at the beginning of the chapter regarding the 
error in the interpolating polynomial we see that, in this case, the error has the form

y ( t )  -  p  (t) =  y-2 - ) (t -  tn)(t  -  tn+ i)

so that the error in yn+1 is equal to

f tn+1 f  h
(y(t) -  P (t)) dt =  y (tn+1 ) -  f y (tn) +  2 (y'n +1 +  y'n)

J tn \
1 ptn+1

2

ftn+ 1
/ y///(c ( t ) ) ( t  -  tn) (t  -  tn+i)dt

Jtn

Since (t -  tn)(t  -  tn+ i) doesn’t change sign on the interval (tn,tn+ 1), we may use an Integral Mean 
Value Theorem to express the error as

1 />tn+1
2 у///(Ф) (t -  tn) (t  -  tn+i)dt

J

for some point ф in (tn,tn+ 1). The value of the last integral is -  

-  № ̂ У ^ Ф )  or approximately -  —  h3y///(tn).

(tn+i -  tn)3 . Hence the error is

2

2 2h rn

h
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Solution for Exercise 2.7. The local truncation error of AM2 is

-  12 h3y(3)(tn) +  ...

For this differential equation, y(3) (tn) =  - y ( t n), hence

y(tn +  h) -  yn+1 =  12 h3y(tn) +  ...

for AM2. Alternatively, this expression can be derived by direct expansion. 
The predictor-corrector scheme applied to this ODE predicts

P =  y(tn) +  h ( -y ( tn ) )  =  (1 -  h)y(tn) 

with AB1 and then evaluates and corrects with AM2 to get

h
yn+ 1  =  y(tn) +  2 [ ( - y ( t n) )  +  (-p )] =

h
1 -  h +-----

2
y( tn )

The true solution is

y(tn +  h) =  e hy(tn)
h h3

1 -  h +  ¥  -  3! + . . . y(tn)

The two expansions show that the error of AB1-AM2 in PECE form is

h3
y(tn +  h) -  yn+1 =  -  -37y(tn) +  ...

Solution for Exercise 2.8. For this formula

3 1
ao =  1, a 1 =  ^ , a2 =  -3 , a3 =  2 , f 0 =  0, @  =  3, fh =  0, @3 =  0

With these values it is straightforward to evaluate the expressions given for the coefficients in the 
expansion

lten — E  Cj hj y ( j ) (tn+1) 
j=o

of the local truncation error. We find that 0 =  C 0 =  C 1 =  C 2 =  C3, which shows that the formula 
is of order 3.

The program ex08ch2.m performs the numerical experiment in a straightforward way and con­
firms the results displayed in Table 2.2.

Solution for Exercise 2.9.

• The stability region for the backward Euler method is the set of values z for which -------- - <  1
\1 -  z \

or equivalently for which \1 -  z\ >  1. It thus consists of those points whose distance from the 
point ( 1, 0) exceeds 1, that is, the exterior of the disk with radius 1 centered at ( 1,0).

The stability region for the trapezoidal rule is determined by the condition

z -  ( - 2)

2 + z
< 1. This

may be written

2 -  z

<  1. The stability region thus consists of the points that are closer
z -  2

to ( - 2,0) than to (2, 0); these points constitute the left half of the complex plane.
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i AB3 Unstable Formula
2 3 0 0 -

 
e4 .31 9.68e-004

3 400-e1.32. 300-e616.

4 500-e513. 1.27e+000
5 4.08e-006 6.43e+005
6 7 0 0 -

 
e8 1 5. 2.27e+018

7 6.53e-008 4.23e+044
8 900-e918. 2.27e+098
9 900-e3.01 1.03e+207

10 010-e8.21 Inf

Table 2.2: Maximum error when h =  1/2*.

If we apply Heun’s method to the test equation y' =  Ay, we obtain

Уи,1 =  yn +  hAyn =  y„(1 +  hA)

Уп+ 1  =  Уп +  h ^2 Ayn +  2 hA(1 +  hA)yr

=  Уп f 1 +  hA +  2 (hA)

The stability condition then becomes
z2

1 +  * +  у <  1. However, for large values * the mag­

nitude of this quadratic exceeds 1; hence the stability region is finite. For example, the real 
portion of the region works out to be the interval ( - 2, 0).

Solution for Exercise 2.10. The program ex10ch2 .m is a straightforward implementation of 
all three methods. It asks the user to designate which method is to be used and then does the 
computations and plots the results as specified by the exercise.

Solution for Exercise 2.11. The leading term in the local truncation error of AB1 is

h2
у  y' ' ( tn)

As stated in the text, the solution of the IVP is

y(t) =  —  +  —  e - 10M 
10 10

whence

y' ' ( tn) =  9 x 103 e~10M"

The largest h for which \lten\ <  т is

h =  e50t" ' 2T
9 x 103

Although a small step size h is needed to satisfy the specified absolute accuracy requirement near 
t =  0, as the integration progresses, the exponential term grows very rapidly and so does the step 
size.

Solution for Exercise 2.12. For this IVP, based on the ODE y' =  Ay, the backward Euler solution 
at t =  n is given by

yn+1 = ( Y = ( - 1 '
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t У
2.0 0.472
3.0 0.330
4.0 0.248
5.0 0.199
6.0 0.166
7.0 0.142
8.0 0.124
9.0 0.110
10.0 0.099

Table 2.3: Backward Euler solution

since h =  1 and Л =  10. This solution decays to 0 even though Л >  0. This happens because the value 
hX lies within the stability region for the backward Euler method. Hence, the numerical solution 
is damped and does not track the exponentially growing exact solution. This doesn’t happen when 
using an adaptive implementation of backward Euler such as that in odel5s which varies the step 
size in order to maintain a locally accurate solution. When fixed step size solutions are used, there is 
a very real danger of using a step size that is too large. Some applications codes in fact intentionally 
use the smallest step size that will generate a numerically stable solution -  hoping that acceptable 
accuracy will be achieved. Others intentionally use very large step sizes in order to damp solution 
components as quickly as possible. For example, one widely used applications code is well-known 
for its ability to remove completely a square wave from a hyperbolic system of PDEs with just one 
integration step.

Solution for Exercise 2.13. On the surface, the fixed step size backward Euler solution given in 
Table 2.3 appears to be adequate; and it is in fact fairly accurate for this problem. This accuracy is 
coincidental since no attempt was made to maintain local accuracy. The program exl3ch2.m solves 
the problem using each of ode45 and odel5s. With default error tolerances, ode45 requires 75 
integration steps and yields an approximate solution of —1.8 • 1034 at t =  10. Using error tolerances 
of 10~8, it requires 909 steps and yields an approximate solution of 1.4 • Ю30! With default error 
tolerances, ode 15s requires 234 steps and yields a solution 1.0 • 1036; and with error tolerances of 
10~8, requires 1266 steps and yields a solution of 1.0 • 1031. What’s going on? A  careless answer 
is that the solvers behaved badly— when in fact they have performed well. Each yields a solution 
for which the weighted local error at each step is smaller than the desired error tolerance. Since 
neighboring solution curves diverge exponentially fast from the solution of interest, each solver is 
forced to track these unstable solution curves. What the solvers are telling us is there is an inherent 
instability in the ODE and that any physical model based on the ODE should be examined critically. 
While this may be a trivial observation for this particular problem, is may not at all be obvious that 
a more complicated model contains inherent instabilities, particularly if the instabilities have been 
hidden previously by ad hoc fixed step size solutions.

Solution for Exercise 2.14. The stability of a predictor-corrector pair with only one correction 
isn’t the same as that for the corrector alone; the predictor has an effect on the stability. To see this 
substitute у' =  Xу into the predictor formula AB1

Уп+1,р =  Уп + hyn

to obtain yn+i,p =  (1 +  hX)yn. Next, evaluate y'n+1 p =  A(1 +  hX)yn. Substitute these values into 
the corrector formula BDF1 to obtain

Уп+1 =  Уп +  1,с ( I I -  I ' ~ ) Уп

where z =  hX. Thus, the pair is stable if 11 +  z +  z2 \ <  1. The stability region is then certainly finite 
due to the quadratic term. This situation is somewhat similar to that for Heun’s method (which we

have seen in Solution 2.9 yields the stability condition |1 +  z +  -,s2| <  1).
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Solution for Exercise 2.15. The numerical results are obtained easily by modifying the complete 
program supplied with the exercise. The Jacobian is

fy =  2y -  3y2

For 0 <  y <  1, the magnitude of the eigenvalue (Jacobian) is bounded by 5, hence a Lipschitz
2

constant for f  (y) in this range of y is 5, which is not large. For 0 <  y <  —, the eigenvalue is positive 
2 3

and for — < y <  1, it is negative. In the first part of the integration y(t) is small and positive, so

the eigenvalue is positive and the IVP is unstable in a linear stability analysis. In the last part of 
the integration y(t ) is close to 1, so the eigenvalue is negative and the IVP  is stable.

The first part of the integration is not stiff because the IV P  is not stable there. In this interval 
y (t) is O(e), so the eigenvalue has magnitude O(e). On this interval of length O(e-1 ), the product of 
the length and the dominant eigenvalue is O(1), hence the IVP  is only moderately unstable. In the 
interval where ignition takes place, the solution changes rapidly and we expect that a relatively small 
step size will be needed to resolve the change. That alone suggests that stability does not constrain 
the step size severely and the IVP  is not stiff. However, we also observe that in this interval of 
length O(1), the product of the length and the Lipschitz constant is O(1), hence the IVP  is not stiff. 
In the last part of the integration y(t) is close to 1 and the eigenvalue is about -1 . The interval is 
of length O(e-1 ), so the product is also O(e-1 ). In this interval the solution is slowly varying, the 
IVP is stable, and the product is large, so the IVP  is stiff. The numerical results comparing a stiff 
solver ode15s to a non-stiff solver ode45 confirm these theoretical arguments about the intervals on 
which this IVP is non-stiff and and those on which it is stiff.

Solution for Exercise 2.16. The program ex14ch2.m may be used for this exercise. The program 
uses values of в from 0 to n in increments of one degree. It also makes use of the fact that the 
stability region is symmetric with respect to the real axis. In the program the values method = 1 ,2  
and 3 correspond to AB1, BDF1 and BDF2 respectively. For AB1 the stability region is the interior 
of the region whose circular boundary is generated when method =  1. For BDF1 and BDF2 the 
stability regions are the exteriors of the curves generated.

2.3 Solving IVPs in Matlab
Solution for Exercise 2.17. The program ex17ch2.m may be used to study this problem. When 
this program is executed, the fourth plot displays the three solutions obtained.

Solution for Exercise 2.18. The program ex18ch2.m is an easy modification of ch2ex1.m that 
plots the solution as it is computed. To solve the IVP  with ode45, all you have to do is replace the 
name ode15s with ode45.

Solution for Exercise 2.19. The IVP is solved in a straightforward way with ode15s by the 
program ex19ch2.m. Changing the name of the solver to ode45 and running the program again 
shows that it is not expensive to solve the IVP  with a code based on explicit Runge-Kutta formulas; 
hence the IVP  is at most modestly stiff.

Solution for Exercise 2.20. It is straightforward to make copies of the specified functions and 
modify the copy of ode15s as suggested. Once that is done, it is easy to modify ch2ex1.m to 
make the program ex20ch2.m. In the first part of the integration the solver must use a small step 
size to resolve the rapid changes in the solution. Because accuracy determines the step size, the 
problem is not stiff there and the iteration matrix is well-conditioned. As the integration progresses, 
the solution tends to a constant (vector). Correspondingly the step sizes increase steadily and the 
problem becomes increasingly stiff. The solver will not step past the end of the interval of integration. 
This causes the last step to be shortened and the condition of the iteration matrix to be improved 
correspondingly.
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Solution for Exercise 2.21. The IVP  is solved and the solution is plotted in a straightforward 
way by the program ex21ch2 .m.

Solution for Exercise 2.22. The program ex22ch2 .m contains the commands necessary to solve 
the five problems and to generate the corresponding phase plots.

2.3.1 Event Location

Solution for Exercise 2.23. Using ode45, the program ex23ch2.m solves this problem in a 
straightforward way. It tests whether the integration terminated on an event by testing whether ie  
is empty. The program reports that

Cork l e f t  b o tt le  at t  = 1.24577 with speed v ( t )  = 16.8994.

Solution for Exercise 2.24. Using ode45, the program ex24ch2.m solves this problem in a 
straightforward way. With the value of ^>(0) coded, the program plots the trajectory and reports 
that

With ph i(0 ) = 0.3782, the range is  4.99957.

Editing the program to use the other value of ^>(0), it then reports that 

With ph i(0 ) = 9.7456, the range is  4.99959.

The program uses the fact that a terminal event at the initial point is ignored.

Solution for Exercise 2.25. The program ex25ch2.m may be used to solve this problem. The 
event occurs when t =  5.1755.

Solution for Exercise 2.26. The IVP to be solved is

dx
—  =  y, x(xo) =  xo 
dt

d t  =  2 f ' (x), y (xo) =  V T i^ o )

In addition, we wish to use event location to determine the times t * for which x ( t *) =  x* for given 
values x*.

Consider the integral [X — = ds. We solve the IVP
0 s

x ' =  y, x (0) =  0

y' =  11, y (0) =  0

for 0 <  t <  2. We locate the times t * for which x ( t *) =  x* =  i/10 for i =  1, 2, . . . ,  9. Note that for 
purposes of checking the solution, elementary calculus may be used to obtain the exact relationship 
t =  2̂ J~x. The program ex26ch2.m solves this problem.

The values of t calculated by the solver ode45 and the corresponding exact values of t produced 
by the program agree to four significant figures. The program ex26ch2.m may be easily modified to 
solve each of the other two problems.

Solution for Exercise 2.27. To see the effect of clustering, experiment with values between 
к =  0.30 and к =  0.35. For к =  0.32 the ball makes it off the ramp while for к =  0.31 the bounce 
times cluster before the ball makes it off the ramp. Use the zoom feature from the tools menu to to 
see the bounces more clearly.

Solution for Exercise 2.28. The program ex28ch2.m includes the wall at the end of the ramp. 
The program generates figures which show the path of the ball for к =  0.70 and the path for к =  0.35.
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Solution for Exercise 2.29. The program ex29ch2.m is a straightforward modification of dfs.m. 
When invoked with

>> ex29ch2(’ c o s ( t ) * y ’ ,[0  12 -6 6] )

the program behaves just like dfs when it is invoked with 

>> d f s ( ’ c o s ( t ) * y ’ , [0  12 -6 6] )

2.3.2 ODEs Involving a Mass M atrix

Solution for Exercise 2.30. The IVP is solved in a straightforward way with ode15s by the 
program ex30ch2.m. Changing the name of the solver to ode45 and running the program again 
shows that it is not expensive to solve the IVP  with a code based on explicit Runge-Kutta formulas; 
hence the IVP  is at most modestly stiff.

Solution for Exercise 2.31. The following edited M-file shows only the necessary modifications 
for this problem. Tracing the displacement of the heavier end of the baton as displayed in the figure 
generated by the program shows that the baton behaves as one would expect.

function ex31ch2 
%m1 = 0 . 1;
%m2 = 0 . 1;
%L = 1; 
m1 = 0 . 1; 
m2 = 0.5;
L = 2;
% t i t l e ( ’ O rig ina l baton problem’ ) ;  
t i t l e ( ’ M odified baton problem’ ) ;
% axis([0 22 0 25]) 
a x is ([0  30 0 25 ])

Solution for Exercise 2.32. The program ex32ch2.m is a straightforward modification of the 
program ch2ex4.m that solves this problem.

Solution for Exercise 2.33. The program ex33ch2.m does the computations for this exercise in a 
straightforward way. The numerical solution of the linear model agrees to graphical accuracy with 
the analytical solution. The numerical solutions of the linear and nonlinear models are quite close. 
In particular, the times at which the terminal events occur are quite close:

>> ex33ch2
Linear model: lower p a lle t  lo s t  at t  = 0.0242.
Nonlinear model: lower p a lle t  lo s t  at t  = 0.0240.

2.3.3 Large Systems and the Method of Lines

Solution for Exercise 2.34. When this was done in the most straightforward way by measuring 
the time with

>> t i c ,  ch2ex6 , toc

and changing only ode15s in the program to ode23, the run time on one computer was actually 
reduced from 5.72s to 4.67s, showing this evidently is not a stiff IVP.

Solution for Exercise 2.35. All that is necessary is to follow the definition of S  in ch2ex6 .m with

S (1 ,1 ) = 1; 
S(1,N ) = 1;
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The periodic boundary condition is taken into account by following the definition of dvdt with

d vd t(1) = c_h (1) * ( v ( 1) -  v (e n d ));

Solution for Exercise 2.36. The program ex36ch2.m implements the requested algorithm. The 
execution time with the stiff solver is longer by a factor of about 5; and that the number of failed 
steps for the stiff solver is greater by a factor of about 4.

2.3.4 Singularities

Solution for Exercise 2.37. The program ex37ach2.m may be used to verify the coefficients in 
the expansion.

To see how the coefficients arise, we can proceed as follows. We have

y =  1 +  ax2 +  O (x4) 

yn =  1 +  nax2 +  O (x4) 

y' =  2ax +  O (x3) 

y'' =  2a +  O (x2)

2
where we have used a binomial expansion for yn. Substituting these into the ODE y'' +—  y' +  yn =  0

( ) x 
and simplifying yields the equation 0 =  (6a +  1) +  O (x2) so that a =  - - .  Note that this shows also

6

that y''(0) =  -  —. Moving on to the next higher order term and again using a binomial expansion 

for yn, we see that

y = 1  -  — x2 +  fixA +  O (x6)

n I —— x2 +  f3x4 \ +  O (x 4 ̂yn =  1 +  n ^ - 1 x2 +  px^j  +  O (x4)
6

y' =  -  — x +  4^x3 +  O (x5)

y'' =  -  3 +  12^x2 +  O  (x4)

Substituting these into the ODE and simplifying as before yields the equation

^20^ -  П j  x2 +  O (x4)

n
so that в  = ---- . To compute the next term we have

и 120 F

y = 1  -  — x2 +  n xA +  0x 6 +  O (x8)
6 120

yn =  1 +  n ( - 1 x2 +  —  x4 +  0x6^ +  n(n -  —) ( - —x2 +  — x4 +  0x6^ 2 +  O (
У V 6 12  ̂ J 2 V 6 120 J

y' =  —  x +-----x3 +  69x5 +  O (x7) ,
у 3 30 v ; ’

y'' =  - — +  —0x2 +  300x4 +  O (x6)

Substituting these into the ODE and simplifying leads to the equation

0 =  (420 +  —  +  n— ^ n )  x 4 +  O (x6)
V 1 2 ^  72 J

0
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which shows that

Hence as claimed,

and

120 72
42

1 2 n 4 5n — 8n2

5n — 8n2 
3 • 7!

V = 1  — 7T\ x 2 +--- T x +3! 5! 3 • 7!
-x" +  O (x8)

, 1 4n 3 6 (5n — 8n2)
y' = --- x +---- - x3 +---- -------- ;-----
y 3 5! 3 • 7!

In system form our ODE becomes

x” +  O (x7)

y1, =  y2

2
y2 = y2- y 1

If we use the first three terms of the series expansion for y to approximate yi(0.1) =  y(0.1) and use 
the first two terms of the series expansion for y' to approximate y2(0.1) =  y '(0.1), and then estimate 
the errors using the first neglected terms of each expansion, we see that the magnitude of the errors 
in y1 and y2 are approximately 3.8 • 10-9 and 2.3 • 10-7 , respectively. I f we start the integration in 
a similar fashion at x =  0.05, the approximate errors are 5.98 • 10-11 and 7.1 • 10-9 , respectively. 
The program ex37ach2.m starts the integration in this fashion and continues the integration until 
y =  0. The program uses small error tolerances to demonstrate that the error in the computed 
solution is due to the errors in the initial approximations. It solves the problem twice, beginning 
with x =  0.1 in the first case and with x =  0.05 in the second case. In both cases, the first value 
of x for which y(x ) =  0 is found to be x =  6.89685. The program generates a figure which shows 
the computed solution and its derivative for the choice x =  0.5; for the choice x =  0.1 the graph is 
virtually identical.

Sometimes it ’s possible to get lucky for a problem with a singularity especially one that is 
removable as in this case. We can try to start the problem at x =  0, being careful to define

0. The program ex37bch2.m gives the correct
1

y' ' (0) =  — -  to avoid the indeterminate form at x 

solution for the problem using this strategy.

Solution for Exercise 2.38. If we assume that y (x ) ~  axp as x ^  0, then y' 
y" ~  p(p — 1)axp-2. Substituting these expressions into the ODE along with e2x ~ 
says that to leading order,

~ paxp 1 and 
1 +  2x ~  1x0

axp (p(p — 1)axp 2) 2 ~  1x'0

Equating the exponents we find that p 
we find that

4/3. Equating the coefficients and using this value for p,

1/3

To leading order we see that there is a unique solution y (x ) that has the behavior that we assume. 
The second derivative of this solution is not bounded, which should not be a surprise because y(0) =  0 
and according to the ODE, y(x ) (y ' ' (x ) ) 2 ^  1 as x ^  0.

With the usual unknowns (y1(x ),y2(x )) =  (y (x ) ,y ' (x ) ) ,  the ODE is written as the system

'
Vi y2

y2
V v l

After moving away from the singular point with the series, the IVP  is solved in a straightforward 
way by the program ex38ch2.m. It is easy to vectorize the evaluation of the series for y (x ) and 
y' (x ), so this is done to facilitate computing values for comparison with the numerical solution.

2 2  n2 n2 n

е

a =

x



Chapter 3

Boundary Value Problems

3.1 Introduction

3.2 Boundary Value Problems

3.3 Boundary Conditions

3.3.1 Boundary Conditions at Singular Points

Solution for Exercise 3.1. If y (x ) ~  1 +  c(x -  1) as x ^  1, then y' (x)  ~  c. The result (1 -  x7) ~  
7(1 -  x) follows easily from l’Hospital’s rule applied to

1 -  x 7
lim --------
x^ 1  1 -  x

or by passing to the limit in the identity

1 x7 2 3 4 5 6-------  =  1 +  x +  x +  x +  x4 +  x +  x
1 -  x

With this,

(1 -  x7)y ' ~  7(1 -  x)c

and

((1 -  x7)y ') ' ~  -7 c  ~  - X x ry ~  - X

hence there is a solution of this form with c =  X/7.
Coding the evaluation of the ODEs as explained in the statement of the problem, the BVP is 

solved numerically in a straightforward way with the program ex01ch3.m. This program accepts 
guesses for X from the command line. Some results are

>> ex01ch3
Guess fo r  eigenvalue: 10 
Computed the eigenvalue 8.72727.
>> ex52ch3
Guess fo r  eigenvalue: 100 
Computed the eigenvalue 152.39.
>> ex52ch3
Guess fo r  eigenvalue: 500 
Computed the eigenvalue 435.022.

25
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>> ex52ch3
Guess fo r  eigenvalue: 1000 
Computed the eigenvalue 855.492.
>> ex52ch3
Guess fo r  eigenvalue: 5000 
Computed the eigenvalue 2110.51.
>> ex52ch3
Guess fo r  eigenvalue: 10000 
Computed the eigenvalue 5025.87.

The first three values are in good agreement with the results reported by Scott.

Solution for Exercise 3.2. The boundary condition at x =  0 tells us that y(0) =  a =  10-1 . As
x ^  0, y3(x) — a3 =  10- 3,y '(x ) — (3px/ - 1  +  7 ,y' '  — в ( в  — 1)pxe -2 . Substituting into the ODE, 
we want

2в (в  — 1)pxe-1 +  f ipx 1 3 - 1  +  7  -  10-3

With our assumption that в  <  1, we need a value of в  for which the coefficient of x e - 1  vanishes. 
This determines в  to be 0.5. Equating the constant terms, we then find that 7  =  10-3 .

Solution for Exercise 3.3. This problem is solved in a straightforward way with the program 
ex03ch3.m. It passes the parameters through the call list of bvp4c.

Solution for Exercise 3.4. This problem may be solved using the program ex04ch3.m.

3.3.2 Boundary Conditions at Infinity

Solution for Exercise 3.5. It is easily shown that the general solution has the form stated and 
that for the boundary conditions

y (0) =  1, y (+ ro ) =  0, y'(+>x>) =  0

there is a unique solution given by A  =  0, B  =  0 and C  = 1 .
The last of the boundary conditions

y (0) =  1, y '(0) =  1, y (+ ro ) =  0

requires that A  =  B  =  0. The other two boundary conditions then require that C  = 1  and —C  =  1, 
which is impossible.

The third set of boundary conditions approximate the set

y (0) =  1, y '(0) =  1, y (+ ro ) =  0

for which there is no solution. So, the problem being solved numerically is close to being not 
well-posed. Specifically, the system of linear equations that is to be solved for A, B  and C  is

A  +  B  +  C  =  1 

A  +  2B — C  = 1

Ae20 +  2Be40 — Ce - 2 0  =  0

Attempting to solve this linear system in M a tla b  results in a warning that the matrix is close to 
singular and provides an estimate of 5 • 1017 =  1/RCOND for its condition number.

Solution for Exercise 3.6. Substituting the assumed form of the solution into the ODE and 
dividing out the common factor e-Xx results in

p\ 2 (X2 — ХП — XS — pXe-Xx +  Ш  +  Qpe-Xx) -  7 p2 X2 (П — X)e-Xx
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If we now let x ^  ж,  this reduces to

pX2(X2 -  X0 -  X6 +  06) =  pX2(X -  0 )(X  -  6 ) =  0

Evidently the ODE is satisfied to terms of leading order if X =  0. When X =  0, the assumed form 
has

f  ' (x )  ~  - Q p e -nx

With p =  - 0 -1 , we have solutions that satisfy one of the boundary conditions at infinity. The 
derivative of such a solution also satisfies the other boundary condition at infinity. We see from this 
that the boundary conditions specified by Murphy are consistent with the behavior of solutions of 
the ODE.

It is remarkable that substitution into the ODE of the assumed form for f  (x ) with X =  0 shows 
that it is an exact solution for any 6 and p . We have already seen how to choose p so as to satisfy 
the boundary conditions at infinity. I f we now choose 6 =  0 -1 so that

f  (x) =  0 -1 (1 -  e-Qx)

we satisfy f  (0) =  0, too.

Solution for Exercise 3.7. Because h(<x) =  0, the equation

f ' ' =  в  ( e  -  h ) f

can be approximated for large z by f '' =  e E f . Solving this approximating ODE for в  =  10,E = 1 , 
we find that

f  (z ) =  AeVI0z +  Be-VI0z

for constants A, B. The solution is to have f  (ж ) =  0, so A  =  0. From this we see that the solution 
of the given equation is approximately a multiple of e-v10z for large z. The solution component 
h(z) is analyzed similarly.

The BVP is solved numerically in a straightforward way with the program ex07ch3.m using the 
suggested values of Z  . A  constant guess is used for the initial interval and thereafter the solution for 
one interval is extended to form the guess for the next. From the consistency of the various solutions 
f  (z) that are plotted, it appears that these values of Z  are large enough to give graphical accuracy. 
The computed solutions f  (z) are consistent at z =  0.1 with the bounds of Ames and Lohner.

Solution for Exercise 3.8. This problem is solved in a straightforward way using the program 
ex08ch3.m. A  constant guess of [0.5; -0 .5 ] is used for (w(z) ,w' (z) ) .  The simple boundary 
condition w (Z ) =  0 is used for Z  =  2, 3,4 and the three solutions are plotted as they are computed. 
It appears that these values of Z  are big enough for graphical accuracy.

Solution for Exercise 3.9. Using the M atla b  Symbolic Toolbox, we can substitute the assumed 
form of the solution at the origin into the differential equation and collect terms with

syms x y p b c eqn
y = 1 + p*x + (4/3 )*x"(3/2 ) + b*x"2 + c*x "(5/2 ); 
eqn = c o l l e c t (x * d i f f ( y ,2 , ’ x ’ )"2  - y"3 )

The output, edited to show only the lowest order terms, is

eqn = . . .  + (15*b*c-4 )*x"(3/2)+ (15/2*c+4*b"2-3*p )*x+4*b*x"(1/2 )

2p
From this we see that we must take b =  0 to eliminate the lowest order term and then c =  —  to

5
eliminate the next. In this the parameter p remains free. The other analytical calculations of this 
exercise are straightforward and simple enough to do by hand.

The BVP is solved in a straightforward way using the program ex09ch3.m. The solutions on the 
various intervals are in sufficiently close agreement that we can be confident that the last interval 
used is long enough to yield a solution to graphical accuracy. The program confirms the value for p 
reported in the literature.
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Applying; the boundary conditions we find that c2 =  1 and c 1 =  g siC(i01))0). Hence dB =  sin(100) 

and dy sin(10x) ;
dB sin(100)

3.4 Numerical Methods for BVPs
Solution for Exercise 3.10. The general solution of the ODE is

y(x) =  c 1 sin(10x) +  c2 cos(10x)

dy _ sin(10x)
dB =  sin(100)

<  2. So small changes in B  are reflected in changes of no more than about 

twice the size in the values of the solution y(x).

Solution for Exercise 3.11. By definition

Oi Si ei +  Riei+ 1
=  Si[y(xi) — yi] +  Ri [y(xi+ 1 ) — y i + 1 ]

=  — hi I  — J  (xi )  y ( x i ) +  h2-1 — J  (x i+1) y (x i+1) — [ q ( x i ) +  q (xi+1)]

=  hi [y(xi+1) — y(xi)] — [J (x i)y (x i) +  J  (xi+1 )y (x i+1)] — [q(xi) +  q(xi+1)]

Now, using Taylor series we have

y (x i+1) — y(xi) 2 ы y' (xi+b.) , ( ы )3 y,,' (xi+1) ,
2 1! +  V 2 ) 3! +  '

J  (x i)y (x i) +  J  (xi+1 )y (x i+1) =  2
, . . ( h.) 2 [Jy]"(xi+1 )

J (x i+ 1 )y (x i+ 2 ) +  i~2~) 2! +

2J (x i+ 1 )y (x i+1) +  T  [Jy]' ' (xi+ 2) +

2 q" (x;+1)
and

q(xi+1) +  q(xi)  =  2 q(xi+ 2) +  ( h2L) +

=  2q(xi + i ) +  ~4r q' ' (x i+ 1) +

So, neglecting higher order terms,

Oi =  2[y '(x i+ 1) — J  (xi+ 1  )y (x i+1) — q(x i+ 1)]

+h ,2 112 y '''(x i+1) — 1 [Jy]''(x i+1) +  q ''(x i+1)

Note that the first term is zero from the ODE. Now differentiating the ODE we have

y '''(x ) =  [Jy]'' (x) +  q'' (x)

hf

Solution for Exercise 3.12. Consider the given formula

yi+ 1  =  yi +  hi
5 1

777f  (xi , yi) + o  f  (x i+ 1 , yi+ 1) — 777 f  (x i+1 ,yi+1)24 24

and its counterpart for the negative direction 

yi+ 2 =  yi+1 — h 

Averaging these formulas we obtain

5 1 1
24 f  (xi+ 1 , yi+1 ) +  3 f  (x i+ 1 , yi+ 2) — 24 f  (xi , yi)

yi +  yi+1 hi гг/ \ ft
yi+ 1 =  -----2----- +  "8 [ f (x i , yi) — f (x i+1 ,yi+1)]

so

O
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Substituting for yi+1 in the formula

yi+1 =  yi +  hi

gives the desired “condensed” formula

hi
yi+1 =  yi + 6 f  (x i , yi) +  f  (x i+1, yi+1) +  4 f xi+ 1

yi +  yi+1 hi r,,  \ r, 41
2 + 8  [ f  (x i , yi ) f  (x i+1,yi+ 1)]

Solution for Exercise 3.13. We are to write out the linear system of equations that result when 
we use the formula

hi
yi+1 =  yi +  ~7T 6 f  (x i , yi) +  f  (x i+1, yi+1) +  4 f ( xi+ 1, y  +2yi+1 +  18Г [f  (x i , yi) -  f  (x i+1,yi+1)]

for the linear ODE
y' (x)  =  J  (x)y(x)  +  q(x)

with linear boundary conditions. The latter are no different than previously considered so we 
concentrate on the former. Substituting f  (x ,y (x ) )  =  J(x )y (x )  +  q(x)  throughout the formula we 
obtain

yi+1 =  yi +  ^  [Jiyi +  qi +  Ji+ 1 yi+ 1  +  qi+1

+ 4 ( Ji+ 1 Уг+2 г+1 +  (Jiyi -  Ji+ 1 yi+ 1  +  qi -  qi+1) +  qi+ i )  ]

where qi =  q(xi ) etc. Reorganizing this equation we get

hi
yi+1 — yi + 6* Jiyi +  4Ji+ 1 f  y*+yi+0  +  Ji+1yi+1 +  qi +  4qi+ 1 +  qi+1

+  12 Ji+ 2 [Jiyi Ji+ 1 yi+ 1  +  qi qi+1] 

which be written in the form Siyi +  Riyi+ 1 =  wi if we set

Si =  / +  -  
i 6 Ji +  2Ji+ 1 +  2 Ji+ 2 Ji

R i =  - I  +  — i 6 Ji+1 +  2Ji+ 1 -  "2" Ji+ 1 Ji+

and
hi hi

qi +  4qi+ 1 +  qi+1 +  у  Ji+ 2 (qi -  qi+1)

Solution for Exercise 3.14. Since S (x) G C[a, b] and S (x ) is a piecewise cubic polynomial, all we 
need to show is that S ' (x )  is continuous at the interior nodes { x"}. But the collocation conditions
S'(x" )  =  f  (xi , S (x i )) =  f  (xi ,yi ) at each interior node guarantee that S ' (x )  is continuous at the 
nodes. So, S (x) G C  1 [a, b].

Vi =  —
6

3.5 Solving BVPs in Matlab
Solution for Exercise 3.15. After multiplying the ODE by 2y'(x), we obtain an expression that 
can be integrated immediately:

0 =  2y '(x )[y ''(x ) +  Xey(x)] =  d  [(y '(x ) )2 +  2X(ey(x) -  1)]
dx

Evaluating the constant of integration by setting x =  0 results in the conservation law.
Adding the following lines to the program ch3ex1.m
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у = S x in t(1 , : ) ;  
yp = S x in t(2 , : ) ;
res idual = yp . "2 + 2* (e x p (y ) -  1) -  y p ( l ) " 2; 
p lo t (x in t ,res idu a l)

evaluates the residual of the solution in the conservation law at the 100 equally spaced points of 
x in t and plots it. The residual ranges from 0 to —4 • 10~5, which is about what we would expect 
for the given tolerances.

Solution for Exercise 3.16. The problem is solved in a straightforward way using the program 
exl6ch3.m.

Solution for Exercise 3.17. This BVP is solved in a straightforward way using the program 
exl7ch3.m. It plots the solution and displays on the screen

>> so l = exl7ch3;
Other authors report y (0 ) = 0.63678, y ( l )  = 0.45759.
Values computed are y (0 ) = 0.63679, y ( l )  = 0.45759.

Solution for Exercise 3.18. This BVP is solved in a straightforward way with the program 
exl8ch3 .m. It uses the constant guess (1,1,1,1) for the four solution components (ф(в), x(s), y(s)).

Solution for Exercise 3.19. Let yi (x )  =  y{x), yo{x) =  y'{x), уз{х) =  f *  . and
- V i  +  ^ y i M

Уа(х ) =  H.  These variables satisfy the first order system of ODEs

Vi =

y'i =

Уз =

У4 =

The corresponding boundary conditions are

S/i ( 0 )  =  1 

3/2(0) =  0

Ы 1 ) =  о

2/4 ( 1) =  ^  [1 -  (1 -  a 2)y3(l)]

When e =  0, it is easily seen first that H  =  1 and then that the ODE reduces to

y" + ^2y = 0
It is straightforward to verify that y(x) =  cos(nx) satisfies this ODE when u> =  n and that it satisfies 
the three boundary conditions.

This BVP is solved in a straightforward way using the program exl9ch3.m. It plots the solution 
and displays on the screen

>> so l = exl9ch3;
Computed omega = 3.95645.
Computed у (0 .5 ) is  5 .65373e-012.
Computed у (1 .0 ) is  -1.

Solution for Exercise 3.20. The program ex20ch3.m solves the problem with a single solution 
and confirms the initial values reported by Kubicek et alia. It may be modified in a straightforward 
way to obtain the three solutions for the other choice of parameters.

У i

У4 V 1 +  е2У\
+  or yi

V i  +  ^y'i
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Solution for Exercise 3.21. With the variables specified, the BVP is immediately written as the 
first order system of ODEs

for the computation of k. With it, we obviously have y3(1) =  1 and y3(t0) =  к. Differentiating this 
expression, we obtain the ODE

and so arrive at a BVP on the interval [0,1] involving the unknown parameter t0.
The BVP is solved in a straightforward way by the program ex21ch3.m using the suggested 

guesses. It reports that

t0 is  about 0.3510.
The reduced drag c o e ff ic ie n t  is  about 0.3748.

in good agreement with the values reported by Edwards. After solving in terms of the independent 
variable x , the corresponding values in t are obtained with

t  = t 0 + (1 -  t 0)* s o l .x

In addition to plotting y (t ), the program forms and plots the nose cone as a surface.

Solution for Exercise 3.22. This problem is solved in a straightforward way using the program 
ex22ch3.m which reports that

In i t i a l  slope o f 2 is  approximated by 1.99998.

Solution for Exercise 3.23. For в  =  0.5, the BVP is solved in a straightforward way by the 
program ex23ch3.m. The program reports to the screen that

Reference value: f ’ ’ (0 ) = 0.92768 
Computed value: f ’ ’ (0 ) = 0.92768

Solution for Exercise 3.24. This problem is solved in a straightforward way using the program 
ex24ch3.m. A  constant guess of [0 ; 1; 0] is used for ( G ( x ) , F ( x ) , F ' ( x ) ) .  The simple boundary 
condition F ( X ) =  0 is applied at each of X  =  2, X  =  3 and X  = 4  and the three solutions are 
plotted as they are computed. It appears that these values of X  are large enough to deliver graphical 
accuracy. The program also reports that

dm
dt

dy2

dt

y2

y2(1 +  у !) 

t(3y2 — 1)

with boundary conditions

V1(t0) = 0, Vf(t0) =  1, y1( 1) =  1

It is natural to introduce

dy3 2t
=  2t -  -----

dt yf +  1

The new independent variable

x
t — 10

1 —10

obviously ranges from 0 to 1 as t ranges from t0 to 1. It is then easy to change variables with

d d dx 1 d
dt dx dt 1 — t0 dx
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F ’(0) infinity 
1.74376 2
1.74313 3
1.74313 4

Apparently these values of A" are large enough to determine F ' ( 0) to at least the accuracy we expect 
of the default tolerances that we used in solving the В VPs.

Solution for Exercise 3.25. This is just a matter of removing comments from the program 
ch3ex5. m as discussed in the text and running the various versions with

>> tic, ch3ex5, toe
Solution for Exercise 3.26. With the hints, the analytical part of this exercise is straightforward. 
Replacing the guess function of program ch3ex5. m with

function v = guess(z) 
global с alpha beta infty 
v = [ 1 ./ (1 + exp(z/c))

- exp(z/c) ./ (c*(l + exp(z/c)) ."2) ];
reduced the run time of the second invocation of

>> tic, ch3ex5, toe
from 2.31s to 2.04s.

Vectorizing the guess function has no effect in this computation, but it is useful when comparing 
the approximation to the computed solution. To see this, for с =  5 follow the computations of 
ch3ex5. m with

с = 5;
alpha = (-c + sqrt(c"2 + 4))/2; 
beta = (-c + sqrt(c"2 - 4))/2; 
infty = 10*c;
solinit = bvpinit(linspace(-infty,infty,20),@guess) ;
sol = bvp4c(@ode,@bc,solinit,options);
figure
g = guess(sol.x);
plot(sol.x,sol.y(l,:),sol.x,g(l,:)) 
legend(’Computed’,’Approximate’) 
title(’Comparison for с = 5.’)

Even for с this small, the approximation is quite close to the computed solution over the whole 
interval.

Solution for Exercise 3.27. The program ex27ch3.m that is provided runs on one computer in 
5.60s when vectorization is not used and 4.39s when it is.

Solution for Exercise 3.28. This is just a matter of seeing for yourself what happens when the 
experiments of the example are done.

Solution for Exercise 3.29. This problem is solved in a straightforward way using the program 
ex29ch3.m. Providing analytical partial derivatives and vectorizing the evaluation of the ODE 
reduces the run time on one computer from 10.66s to 2.41s, a considerable improvement. The 
program also reports that

Lambda = 1.000199e+000.
Solution for Exercise 3.30. The program ex30ch3.m solves this BVP by continuation in the 
manner outlined. It displays the solution at each step of the continuation. The solution for /3q =  10 
is a poor approximation to the solution for /3q =  1575, but it is good enough to start off a successful 
continuation.



Chapter 4

Delay Differential Equations

4.1 Introduction

4.2 Delay Differential Equations
Solution for Exercise 4.1.

• Denote the solution for 1 <  t <  2 by y\{t) and the solution for 2 <  t <  3 by y2(t). Since 
y(t) =  1 for t <  1, we have

y'i (t) =  1 +  y i(t)

the solution of which is
y i (t) =  —1 +  Cet

Continuity of the solution at t = 1  requires y1(1) =  1 so that C  =  2e-1 . Thus

yi (t) =  —1 +  2e  1

The first derivative is discontinuous since y'i (1) =  2 =  0 =  y' (1). For 2 <  t <  3 we have

y2 (t) =  I1 +  y2(t)] y1(t — 1) =  I1 +  y2(t )] [—1 +  2e  2]

Upon dividing by 1 +  y2(t) and integrating both sides of this equation, we obtain

y2 (t) =  — 1 +  Ce - t+2et-2  

Continuity of the solution requires y2(2) =  y1(2) so that C  =  2e. Thus

y2 (t) =  — 1 +  2e1-t+2et-2

The first derivative is continuous since y1 (2) =  y2 (2) =  2e. The second derivative is not 
continuous since y ''(2) =  2e =  6e =  y2' ( 2).

• Denote the solution for 1 <  t <  2 by y1(t). Since y(t) =  1 for t <  1, we have

y1 (t) =  1 +  y1(t)

the solution of which is y1 (t) =  — 1 +  Cet . Continuity of the solution requires y1(1) =  1 so 
that C  =  2e-1 . Thus

y1 (t) =  —1 +  2et-1

The first derivative is discontinuous since y '1 (1) =  2 =  0 =  y'(1). Denote the solution for
2 <  t <  4 by y2(t). We have

y2 (t) =  y(t/2) =  —1 +  2et/2-1
1 +  y2 ( t )

33
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the solution of which is
V2(t) =  —1 +  Ce - t + 4et/2-1  

Continuity of the solution requires y2(2) =  y1(2) so that C  =  2e-1 . Thus

V2(t) =  —1 +  2e-1 -t+4et/2-1

The first derivative is continuous since y1 (2) =  yf (2) =  2e. The second derivative is discontin­
uous since y2'(2) =  4e =  2e =  y1'(2). In general, y (k) will be discontinuous at t =  2k-1.

For 1 <  t <  2 we have

y'( t)  =  1 +  y2(t)

hence
y (t ) =  tan (t +  C )

П
Continuity of the solution requires y(1) =  1 so that C  =  — — 1. The solution is infinite when

П П П
t +-------1 =  —, that is, when t =  1 +—  <  2.

4 2 ’ ’ 4

The solution of the IVP for the ODE is found to be

y (t) =  11 — t

which extends only as far as t =  1. Let yk (t) be the solution of the DDE on [kr, (k +  1)r]. For 
k =  0,

v0 (t) =  У0(t)

with initial value y0 (0) =  1, so y0(t) =  el , which exists and is continuous on all of [0, r ]. 
Suppose now that yk(t) exists and is continuous on all of [kr, (k +  1)r]. Then yk+ 1(t) is the 
solution of the ODE

Vk+1(t) =  Vk+1(t )Vk(t — r ) 

with initial value yk+ 1((k +  1 )r) =  yk((k +  1 )r). It is easy to see that

Vk+1(t) =  Vk((k +  1) r ) J (k+1)T yk(s-T)ds

With our assumptions about yk(t), this solution exists and is continuous on all of [(k +1 )r, (k +  
2)r]. By induction, the solution of the DDE exists for all t >  0, no matter what the value of 
r  >  0.

It is easy to verify that y =  A  sin(t) +  B  cos(t) is a solution of y' (t) =  —y ( t  — —  ̂ for all values 

of A  and B  using the facts that sin ( t  — —  ̂ =  — cos(t) and cos ( t  — —  ̂ =  sin(t).

4.3 Numerical Methods for DDEs

4.4 Solving DDEs in Matlab
Solution for Exercise 4.2. The program ex02ch4.m solves the DDE in a straightforward way 
as a function with a, b, c as input arguments. It plots the solution and the non-trivial equilibrium 
solution. From a command line prompt, the following command will execute the program for the 
given parameters.

>> ex02ch4(0.8,2,1)
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Solution for Exercise 4.3. The programs ex03ach4.m, ex03bch4.m, and ex03cch4.m solve this 
problem for the three types of models.

Solution for Exercise 4.4. The program ex04ch4.m solves the DDE in a straightforward way and 
plots all of the solution components.

Solution for Exercise 4.5. The program ex05ch4.m solves the DDE in a straightforward way and 
plots the solution in the phase plane.

Solution for Exercise 4.6. Setting the derivatives to zero in the two differential equations leads 
to

0 xsAs +  Gys

n =  Xs +  Vs

from which the stated expressions for x s and ys are immediate. For “large” t, the functions 
x ( t ) ,y ( t ) ,A ( t )  have their steady state values in the integrals defining A(t). Using this and the 
fact that x sAs =  Gys, we have

( ,■ t ,■ t ,■ tc
As =  -  i x sAs (  f  e-G(t-w) dwds +  ys f  e-G (t-s )ds l

t -D  s t -DD s t -D
c Г „  f 1 1  ̂ ” r t

=  n  \ Gys J  q 1  -  e-G(t -s)  ds +  ys j  e-G ( t -s d̂.s e ds
t -D

=  - V sD  
n

Clearly we can obtain a steady state solution with ys = 0 ,  As = 0  and x s =  n. Expressing ys 
here in terms of n and x s and employing a little manipulation results in the stated expression for 
the non-zero value of As. The program ex06ch4.m solves this DDE in a straightforward way and 
displays to the screen

>> ex06ch4;

For G = 0.1,
A n a ly tica l x_s = 4 .0, y_s = 96.0, lambda_s = 2.4.
Computed x_s = 4 .0, y_s = 96.0, lambda_s = 2.4.

For G = 1.0,
A n a ly tica l x_s = 40.0, y_s = 60.0, lambda_s = 1.5.
Computed x_s = 39.9, y_s = 60.1, lambda_s = 1.5.

For G = 2.0,
A n a ly tica l x_s = 80.0, y_s = 20.0, lambda_s = 0.5.
Computed x_s = 80.1, y_s = 19.9, lambda_s = 0.5.

Solution for Exercise 4.7. The program ex07ch4.m solves the DDE in a straightforward way and 
plots both components of the solution.

Solution for Exercise 4.8. The program ex08ch4.m solves this DDE in a straightforward way, 
plots y(t) and I (t), and displays to the screen

>> ex08ch4
DDE23 computed y(10 ) = 0.06301983001.
Reference so lu tion  y(10 ) = 0.06302089869.

Solution for Exercise 4.9. The program ex09ch4.m solves this DDE in a straightforward way 
and plots the four scaled solution components.



36 CHAPTER 4. DELAY DIFFERENTIAL EQUATIONS

Solution for Exercise 4.10. The program ex10ach4.m solves both DDEs in a straightforward 
way and plots the solutions in different figures. The program ex10bch4.m is a straightforward 
modification of this program along the lines indicated that solves the DDE and plots its solution.

Solution for Exercise 4.11. In steady state, yf (t) =  0, which leads immediately to y2 0 =  V1’° + — .

Using this in the other equation for the steady state, y'1 (t) =  0, we find that y10 must satisfy the 
algebraic equation

—£ + 0 — 1 )  y — a = 0

After computing all the roots with the M a tla b  function roots, we find that the only real root is 
the stated value of y10 and that it satisfies y2 0 >  1 — rb. The program ex11ch4.m solves the DDEs 
in both cases and plots the solutions in separate figures.

Solution for Exercise 4.12. The program ex12ch4.m solves this problem for all four data sets in 
the manner suggested in the exercise. Also as suggested there, it uses indexed solution structures 
for the three delays.

Solution for Exercise 4.13. The programs ex13ach4.m, ex13bch4.m, and ex13cch4.m solve this 
problem for the three types of models suggested in the exercise.

Solution for Exercise 4.14. The program ex14ch4.m solves the DDE in a straightforward way. 
It plots the solution and displays to the screen

>> ex14ch4;
Restart at 14.0.
Restart at 24.9.
Restart at 68.1.
Restart at 75.7.
Restart at 118.9.

4.5 Other Kinds of DDEs and Software


