
exts in Computational Science
md Engineering

2

Alfio Quarteroni
Fausto Saleri

Scientific Computing
with MATLAB and
Octave

Second Edition

Iditocul
&0*d:

u e * t h

O t E . K t y n

й Row
ISchlKk________________

Springer

Texts in
Computational Science
and Engineering 2
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Alfio Quarteroni Fausto Saleri

Scientific Computing
with MATLAB and Octave
Second Edition

With 108 Figures and 12 Tables

^Bspringer

A lfio Quarteroni

E c o le P o ly te c h n iq u e F e d e ra le
de L a u sa n n e
C M C S - M o d e lin g and S c ie n tif ic C o m p u tin g
1 0 1 5 L a u s a n n e , S w itz e r la n d
and
M O X -P o lite c n ic o d i M ila n o
P ia z z a L e o n a rd o d a V in c i 32

2 0 13 3 M ila n o , Italy
E -m a il: a lfio .q u a rte ro n i@ e p fl.c h

Fausto Saleri

M O X -P o lite c n ic o d i M ila n o
P ia z z a L e o n a rd o d a V in c i 32
2 0 13 3 M ila n o , Ita ly
E -m a il: fa u s to .s a le r i@ p o lim i.it

Cover figure b y M arzio Sala

Title o f the Italian original edition: Introduzione al C alcolo Scientifico, Springer-Verlag Italia, M ilano, 2006,

ISBN 88-470-0480-2

Library o f Congress Control Number: 2006928277

Mathematics Subject Classification: 65-01, 68U01, 68N15

ISB N -10 3-540-32612-X Springer Berlin Heidelberg New York
ISB N -13 978-3-540-32612-0 Springer Berlin Heidelberg New York

ISBN -10 3-540-44363-0 1 st Edition Springer Berlin Heidelberg New York

T h is w ork is subject to copyright. A l l rights are reserved, w hether the w h ole or part o f the m aterial is
concerned, sp e cifica lly the rights o f translation, reprinting, reuse o f illustrations, recitation, broadcasting,
reproduction on m icrofilm or in any other w ay, and storage in data banks. D u p lica tion o f this publication
or parts th ereo f is perm itted o n ly under the provisions o f the G erm an C o p yrig h t L a w o f Septem ber 9 ,
1 9 6 5 , in its current version, and p erm ission for use m ust a lw ay s be obtained from Springer. V io lation s are
liable for prosecution under the G erm an C o p y rig h t Law .

S pringer is a part o f S pringer S cien ce+ B u sin ess M edia
springer.com
© Springer-V erlag B erlin H eidelberg 2003,2006
Printed in T h e N etherlands

T h e use o f general descriptive nam es, registered nam es, tradem arks, etc. in this pub lication does n ot im ply,
even in the absence o f a specific statem ent, that such nam es are exem pt from the relevant protective law s
and regulations and therefore free for general use.

T ypesettin g: b y the authors and tech b ooks using a Springer LATEX m acro package

C o v er design: design & prod uction G m bH , H eidelberg

Printed on acid-free paper SPIN : 116 78 79 3 46/techbooks 5 4 3 2 1 0

mailto:alfio.quarteroni@epfl.ch
mailto:fausto.saleri@polimi.it

This book is dedicated to
Fulvia, Silvia and Marzia,

Paola, Maria and Caterina,
who make our lives

less scientifically computed.

Preface

Preface to the F irst Edition

This textbook is an introduction to Scientific Computing. We will
illustrate several numerical methods for the computer solution of cer­
tain classes of mathematical problems that cannot be faced by paper
and pencil. We will show how to compute the zeros or the integrals
of continuous functions, solve linear systems, approximate functions by
polynomials and construct accurate approximations for the solution of
differential equations.

With this aim, in Chapter 1 we will illustrate the rules of the game
that computers adopt when storing and operating with real and complex
numbers, vectors and matrices.

In order to make our presentation concrete and appealing we will
adopt the programming environment M A T L A B ® 1 as a faithful com­
panion. We will gradually discover its principal commands, statements
and constructs. We will show how to execute all the algorithms that we
introduce throughout the book. This will enable us to furnish an im­
mediate quantitative assessment of their theoretical properties such as
stability, accuracy and complexity. We will solve several problems that
will be raised through exercises and examples, often stemming from spe­
cific applications.

Several graphical devices will be adopted in order to render the read­
ing more pleasant. We will report in the margin the M A T L A B command
along side the line where that command is being introduced for the first

time. The symbol will be used to indicate the presence of exercises,

the symbol to indicate the presence of a MATLAB program, while

1 MATLAB is a trademark of TheMathWorks Inc., 24 Prime Park Way, Nat­
ick, MA 01760, Tel: 001+508-647-7000, Fax: 001+508-647-7001.

VIII Preface

£
the symbol will be used when we want to attract the attention of
the reader on a critical or surprising behavior of an algorithm or a pro­
cedure. The mathematical formulae of special relevance are put within a

frame. Finally, the symbol indicates the presence of a display panel
summarizing concepts and conclusions which have just been reported
and drawn.

At the end of each chapter a specific section is devoted to mentioning
those subjects which have not been addressed and indicate the biblio­
graphical references for a more comprehensive treatment of the material
that we have carried out.

Quite often we will refer to the textbook [QSS06] where many issues
faced in this book are treated at a deeper level, and where theoretical re­
sults are proven. For a more thorough description of M A T L A B we refer
to [HH05]. All the programs introduced in this text can be downloaded
from the web address

m o x .p o lim i.it /q s
No special prerequisite is demanded of the reader, with the exception

of an elementary course of Calculus.
However, in the course of the first chapter, we recall the principal re­

sults of Calculus and Geometry that will be used extensively throughout
this text. The less elementary subjects, those which are not so neces­
sary for an introductory educational path, are highlighted by the special

symbol .
We express our thanks to Thanh-Ha Le Thi from Springer-Verlag

Heidelberg, and to Francesca Bonadei and Marina Forlizzi from Springer-
Italia for their friendly collaboration throughout this project. We grate­
fully thank Prof. Eastham of Cardiff University for editing the language
of the whole manuscript and stimulating us to clarify many points of our
text.

Milano and Lausanne Alfio Quarteroni
May 2003 Fausto Saleri

Preface to the Second Edition

In this second edition we have enriched all the Chapters by intro­
ducing several new problems. Moreover, we have added new methods
for the numerical solution of linear and nonlinear systems, the eigen­
value computation and the solution of initial-value problems. Another
relevant improvement is that we also use the Octave programming en­
vironment. Octave is a reimplementation of part of M A T L A B which

Preface IX

includes many numerical facilities of M A T L A B and is freely distributed
under the GNU General Public License.

Throughout the book, we shall often make use of the expression
“M A T L A B command” : in this case, M A T L A B should be understood
as the language which is the common subset of both programs M A T -
L A B and Octave. We have striven to ensure a seamless usage of our
codes and programs under both M A T L A B and Octave. In the few cases
where this does not apply, we shall write a short explanation notice at
the end of each corresponding section.

For this second edition we would like to thank Paola Causin for hav­
ing proposed several problems, Christophe Prud'homme, John W . Eaton
and David Bateman for their help with Octave, and Silvia Quarteroni
for the translation of the new sections. Finally, we kindly acknowledge
the support of the Poseidon project of the Ecole Polytechnique Federale
de Lausanne.

Lausanne and Milano
May 2006

Alfio Quarteroni
Fausto Saleri

Contents

1 W h a t can’t be ig n ored .. 1
1.1 Real numbers.. 2

1.1.1 How we represent them .. 2
1.1.2 How we operate with floating-point numbers......... 4

1.2 Complex numbers ... 6
1.3 Matrices ... 8

1.3.1 Vectors .. 14
1.4 Real functions .. 15

1.4.1 The zeros ... 16
1.4.2 Polynomials ... 18
1.4.3 Integration and differentiation 21

1.5 To err is not only hum an... 23
1.5.1 Talking about costs... 26

1.6 The M A T L A B and Octave environments 28
1.7 The M A T L A B language... 29

1.7.1 MATLAB statements .. 31
1.7.2 Programming in MATLAB ... 32
1.7.3 Examples of differences between M A T L A B

and Octave languages.. 36
1.8 What we haven’t told y o u ... 37
1.9 Exercises... 37

2 Nonlinear equations ... 39
2.1 The bisection method .. 41
2.2 The Newton method .. 45

2.2.1 How to terminate Newton’s iterations 47
2.2.2 The Newton method for systems of nonlinear

equations ... 49
2.3 Fixed point iterations .. 51

2.3.1 How to terminate fixed point iterations 55

XII Contents

2.4 Acceleration using Aitken m e th o d56
2.5 Algebraic polynomials..60

2.5.1 Horner’s algorithm61
2.5.2 The Newton-Horner m e th o d63

2.6 What we haven’t told y o u65
2.7 Exercises... ..67

3 A p p rox im a tion o f fun ction s and d a t a 71
3.1 Interpolation.. 74

3.1.1 Lagrangian polynomial interpolation....................... ... 75
3.1.2 Chebyshev interpolation.. 80
3.1.3 Trigonometric interpolation and F F T 81

3.2 Piecewise linear interpolation .. 86
3.3 Approximation by spline functions.. ... 88
3.4 The least-squares m ethod... ... 92
3.5 What we haven’t told y o u 97
3.6 Exercises... ... 98

4 N u m erica l d ifferen tia tion and in t e g r a t io n 101
4.1 Approximation of function derivatives103
4.2 Numerical integration ...105

4.2.1 Midpoint formula... 106
4.2.2 Trapezoidal formula ... 108
4.2.3 Simpson form u la ... 109

4.3 Interpolatory quadratures111
4.4 Simpson adaptive form u la ... 115
4.5 What we haven’t told y o u ... 119
4.6 Exercises...120

5 Linear sy s te m s ...123
5.1 The LU factorization m e th o d ...126
5.2 The pivoting technique... 134
5.3 How accurate is the LU factorization?..................................136
5.4 How to solve a tridiagonal sy s te m .. 140
5.5 Overdetermined systems... 141
5.6 What is hidden behind the command \143

5.7 Iterative methods.. 144
5.7.1 How to construct an iterative method 146

5.8 Richardson and gradient methods .. 150
5.9 The conjugate gradient method .. 153
5.10 When should an iterative method be stopped?156
5.11 To wrap-up: direct or iterative? .. 159
5.12 What we haven’t told y o u ... 164
5.13 Exercises...164

6 E igenvalues and e igen vectors ...167
6.1 The power method ..170

6.1.1 Convergence analysis ...173
6.2 Generalization of the power method174
6.3 How to compute the shift... 176
6.4 Computation of all the eigenvalues.. 179
6.5 What we haven’t told y o u ... 183
6.6 Exercises...183

7 O rdin ary d ifferential equations ...187
7.1 The Cauchy problem ..190
7.2 Euler m eth od s .. 191

7.2.1 Convergence analysis 194
7.3 The Crank-Nicolson m eth od ...197
7.4 Zero-stability.. 199
7.5 Stability on unbounded intervals .. 202

7.5.1 The region of absolute stability 204
7.5.2 Absolute stability controls perturbations...............205

7.6 High order methods..212
7.7 The predictor-corrector methods .. 216

7.8 Systems of differential equations...219
7.9 Some examples.. 225

7.9.1 The spherical pendulum ... 225
7.9.2 The three-body problem ...228
7.9.3 Some stiff problem s...230

7.10 What we haven’t told y o u ... 234
7.11 Exercises...234

8 N um erica l m eth od s for (in itia l-)bou n dary -va lu e
p rob lem s ... 237

8.1 Approximation of boundary-value problem s....................... 240
8.1.1 Approximation by finite differences......................... 241
8.1.2 Approximation by finite elements..............................243

8.1.3 Approximation by finite differences
of two-dimensional problem s...................................... 245

8.1.4 Consistency and convergence......................................251
8.2 Finite difference approximation of the heat equation 253
8.3 The wave equation .. 257

8.3.1 Approximation by finite differences 260
8.4 What we haven’t told you ... 263

8.5 Exercises...264

Contents XIII

XIV Contents

9 Solutions o f the e x e r c ise s ... 267
9.1 Chapter 1 ...267
9.2 Chapter 2 ...270
9.3 Chapter 3 ...276
9.4 Chapter 4 ...280
9 .5 Chapter 5 ...285
9 .6 Chapter 6 ...289
9.7 Chapter 7 ...293
9.8 Chapter 8 ...301

R eferen ces.. 307

Index 311

Listings

2.1 bisection: bisection method ... 43
2.2 newton: Newton method.. 48
2.3 newtonsys: Newton method for nonlinear systems.................. 50
2.4 aitken: Aitken method.. 59
2.5 horner: synthetic division algorithm... 62
2.6 newtonhorner: Newton-Horner method 64
3.1 cubicspline: interpolating cubic spline... 89

4.1 midpointc: composite midpoint quadrature formula 107
4.2 simpsonc: composite Simpson quadrature formula..................110
4.3 simpadpt: adaptive Simpson formula... 118
5.1 lugauss: Gauss factorization ...131
5.2 itermeth: general iterative method..148
6.1 eigpower: power method..171
6.2 invshift: inverse power method with sh ift..................................175
6.3 gershcircles: Gershgorin circles.. 177
6.4 qrbasic: method of QR iterations..180
7.1 feuler: forward Euler method ...192
7.2 beuler: backward Euler method .. 193
7.3 cranknic: Crank-Nicolson method ..198
7.4 predcor: predictor-corrector method... 218

7.5 onestep: one step of forward Euler (eeonestep), one step
of backward Euler (eionestep), one step of Crank-Nicolson
(cnonestep).. 218

7.6 newmark: Newmark method...223
7.7 fvinc: forcing term for the spherical pendulum problem.........227
7.8 threebody: forcing term for the simplified three body system 229
8.1 bvp: approximation of a two-point boundary-value problem

by the finite difference method .. 242
8.2 poissonfd: approximation of the Poisson problem with

Dirichlet data by the five-point finite difference method.........249

XVI Listings

8.3 heattheta: 0-method for the heat equation in a square
domain..255

8.4 newmarkwave: Newmark method for the wave equation . . . 260
9.1 rk2: Heun method ...295
9.2 rk3: explicit Runge-Kutta method of order 3 297
9.3 neumann: approximation of a Neumann boundary-value

problem ... 304

What can’t be ignored

1_______________________

In this book we will systematically use elementary mathematical con­
cepts which the reader should know already, yet he or she might not
recall them immediately.

We will therefore use this chapter to refresh them, as well as to in­
troduce new concepts which pertain to the field of Numerical Analysis.
We will begin to explore their meaning and usefulness with the help of
M A T L A B (MATrix LABoratory), an integrated environment for pro­
gramming and visualization in scientific computing. We shall also use
GNU Octave (in short, Octave) which is mostly compatible with M A T ­
LA B . In Sections 1.6 and 1.7 we will give a quick introduction to M A T ­
L A B and Octave, which is sufficient for the use that we are going to
make in this book. We also make some notes about differences between
M A T L A B and Octave which are relevant for this book. However, we
refer the interested readers to the manual [HH05] for a description of
the M A T L A B language and to the manual [Eat02] for a description of
Octave.

Octave is a reimplementation of part of M A T L A B which includes a
large part of the numerical facilities of M A T L A B and is freely distrib­
uted under the GNU General Public License.

Through the book, we shall often make use of the expression “M A T ­
L A B command” : in this case, M A T L A B should be understood as the
language which is the common subset of both programs M A T L A B and
Octave.

We have striven to ensure a seamless usage of our codes and programs
under both M A T L A B and Octave. In the few cases where this does
not apply, we will write a short explanation notice at the end of each
corresponding section.

In the present Chapter we have condensed notions which are typical
of courses in Calculus, Linear Algebra and Geometry, yet rephrasing
them in a way that is suitable for use in scientific computing.

2 1 What can’t be ignored

1.1 Real numbers

While the set R of real numbers is known to everyone, the way in which
computers treat them is perhaps less well known. On one hand, since
machines have limited resources, only a subset F of finite dimension of
R can be represented. The numbers in this subset are called floating­
point numbers. On the other hand, as we shall see in Section 1.1.2, F
is characterized by properties that are different from those of R. The
reason is that any real number x is in principle truncated by the machine,
giving rise to a new number (called the floating-point num ber), denoted
by f l (x) , which does not necessarily coincide with the original number
x.

1 .1 .1 How we represent them

To become acquainted with the differences between R and F, let us make
a few experiments which illustrate the way that a computer deals with
real numbers. Note that whether we use M A T L A B or Octave rather
than another language is just a matter of convenience. The results of
our calculation, indeed, depend primarily on the manner in which the
computer works, and only to a lesser degree on the programming lan­
guage. Let us consider the rational number x = 1 /7 , whose decimal
representation is 0.142857. This is an infinite representation, since the
number of decimal digits is infinite. To get its computer representation,

>> let us introduce after the prom pt (the symbol >>) the ratio 1 /7 and
obtain
>> 1 /7

ans =
0.1429

which is a number with only four decimal digits, the last being different
from the fourth digit of the original number.

Should we now consider 1/3 we would find 0.3333, so the fourth dec­
imal digit would now be exact. This behavior is due to the fact that real
numbers are rounded on the computer. This means, first of all, that only
an a priori fixed number of decimal digits are returned, and moreover
the last decimal digit which appears is increased by unity whenever the
first disregarded decimal digit is greater than or equal to 5.

The first remark to make is that using only four decimal digits to
represent real numbers is questionable. Indeed, the internal representa­
tion of the number is made of as many as 16 decimal digits, and what we
have seen is simply one of several possible M A T L A B output formats.
The same number can take different expressions depending upon the

1.1 Real numbers 3

specific format declaration that is made. For instance, for the number
1/7, some possible output form ats are:

format long yields 0.14285714285714.
format short e ” 1.4286e — 01,
format long e ” 1.428571428571428e — 01,
format short g ” 0.14286,
format long g ” 0.142857142857143.

Some of them are more coherent than others with the internal com­
puter representation. As a matter of fact, in general a computer stores
a real number in the following way

(—1)s • (0 .a ia2 . . . a t) ■ f3e = (—1)s ■ m ■ f3e - , a 1 = 0 (1.1)

where s is either 0 or 1, в (a positive integer larger than or equal to 2)
is the basis adopted by the specific computer at hand, m is an integer
called the mantissa whose length t is the maximum number of digits ai
(with 0 < ai < в — 1) that are stored, and e is an integral number called
the exponent. The format long e is the one which most resembles this
representation, and e stands for exponent; its digits, preceded by the
sign, are reported to the right of the character e. The numbers whose
form is given in (1.1) are called floating-point numbers, since the position
of the decimal point is not fixed. The digits a 1a2 . . . a p (with p < t) are
often called the p first significant digits of x.

The condition ai = 0 ensures that a number cannot have multiple
representations. For instance, without this restriction the number 1/10
could be represented (in the decimal basis) as 0.1 ■ 100, but also as 0.01 ■
10i , etc..

The set F is therefore fully characterized by the basis в , the number
of significant digits t and the range (L, U) (with L < 0 and U > 0) of
variation of the index e. Thus it is denoted as F (e ,t , L, U). For instance,
in M A T L A B we have F = F(2, 53, —1021,1024) (indeed, 53 significant
digits in basis 2 correspond to the 15 significant digits that are shown
by M A T L A B in basis 10 with the format long).

Fortunately, the roundoff error that is inevitably generated whenever
a real number x = 0 is replaced by its representative f l (x) in F, is small,
since

I™ -£1 { I 1

(1.2)

x

where eM = в 1-t provides the distance between 1 and its closest floating­
point number greater than 1. Note that eM depends on в and t. For
instance, in M A T L A B eM can be obtained through the command eps,
and we obtain eM = 2-52 ~ 2.22■ 10-1 6 . Let us point out that in (1.2) we

format

eps

4 1 What can’t be ignored

realmin
realmax

Inf

estimate the relative error on x, which is undoubtedly more meaningful
than the absolute error \x — //(x)| . As a matter of fact, the latter doesn’t
account for the order of magnitude of x whereas the former does.

Number 0 does not belong to F, as in that case we would have a\ = 0
in (1.1): it is therefore handled separately. Moreover, L and U being
finite, one cannot represent numbers whose absolute value is either arbi­
trarily large or arbitrarily small. Precisely, the smallest and the largest
positive real numbers of F are given respectively by

x min = в , x max = в (1 в) .

In M A T L A B these values can be obtained through the commands
realmin and realmax, yielding

x min = 2.225073858507201 • 10-308,
x max = 1.7976931348623158 • 10+308.

A positive number smaller than x min produces a message of under­
flow and is treated either as 0 or in a special way (see, e.g., [QSS06],
Chapter 2). A positive number greater than x max yields instead a mes­
sage of overflow and is stored in the variable Inf (which is the computer
representation of +ro).

The elements in F are more dense near x min, and less dense while
approaching x max. As a matter of fact, the number in F nearest to x max
(to its left) and the one nearest to x min (to its right) are, respectively

x max = 1.7976931348623157 • 10+308,
xmin = 2.225073858507202 • 10-308.

Thus xmin — xmin — 10-323, while xmax — xmax — 10292 (!). However,
the relative distance is small in both cases, as we can infer from (1.2).

1 .1 .2 How we operate with floating-point numbers

Since F is a proper subset of R, elementary algebraic operations on
floating-point numbers do not enjoy all the properties of analogous op­
erations on R. Precisely, commutativity still holds for addition (that is
//(x + y) = //(y + x)) as well as for multiplication (//(xy) = //(yx)),
but other properties such as associativity and distributivity are violated.
Moreover, 0 is no longer unique. Indeed, let us assign the variable a the
value 1, and execute the following instructions:
>> a = 1; b=1; while a+b ~= a; b = b /2 ; end

The variable b is halved at every step as long as the sum of a and b
remains different (~=) from a. Should we operate on real numbers, this
program would never end, whereas in our case it ends after a finite

1.1 Real numbers 5

number of steps and returns the following value for b: 1 .1 1 0 2 e -1 6 =
eM /2 . There exists therefore at least one number b different from 0 such
that a+b=a. This is possible since F is made up of isolated numbers; when
adding two numbers a and b with b < a and b less than eM , we always
obtain that a+b is equal to a. The M A T L A B number a+eps(a) is the
smallest number in F larger than a. Thus the sum a+b will return a for
all b < e p s(a).

Associativity is violated whenever a situation of overflow or underflow
occurs. Take for instance a=1.0e+308, b=1.1e+308 and c=-1.001e+308,
and carry out the sum in two different ways. We find that

a + (b + c) = 1.0990e + 308, (a + b) + c = Inf.

This is a particular instance of what occurs when one adds two num­
bers with opposite sign but similar absolute value. In this case the result
may be quite inexact and the situation is referred to as loss, or cancel­
lation, o f significant digits. For instance, let us compute ((1 + x) — 1)/x
(the obvious result being 1 for any x = 0):
>> x = 1 . e - 1 5 ; ((1 + x) - 1) / x

ans = 1.1102

This result is rather imprecise, the relative error being larger than 11%!
Another case of numerical cancellation is encountered while evaluat­

ing the function

/ (x) = x7 — 7x6 + 21x5 — 35x4 + 35x3 — 21x2 + 7x — 1 (1.3)

at 401 equispaced points with abscissa in [1 — 2 • 10- 8 , 1 + 2 • 10-8]. We
obtain the chaotic graph reported in Figure 1.1 (the real behavior is that
of (x — 1)7, which is substantially constant and equal to the null function
in such a tiny neighborhood of x = 1). The M A T L A B commands that
have generated this graph will be illustrated in Section 1.4.

Finally, it is interesting to notice that in F there is no place for
indeterminate forms such as 0 /0 or ж /ж . Their presence produces what
is called not a number (NaN in M A T L A B or in Octave), for which the NaN
normal rules of calculus do not apply.

Remark 1.1 Whereas it is true that roundoff errors are usually small, when
repeated within long and complex algorithms, they may give rise to catastrophic
effects. Two outstanding cases concern the explosion of the Arianne missile on
June 4, 1996, engendered by an overflow in the computer on board, and the
failure of the mission of an American Patriot missile, during the Gulf War in
1991, because of a roundoff error in the computation of its trajectory

An example with less catastrophic (but still troublesome) consequences is
provided by the sequence

Z2 = 2, z „+i = 2"-1/2^ 1 - V1 - 41-nz'n, n = 2, 3 , . . . (1.4)

6 1 What can’t be ignored

Fig. 1.1. Oscillatory behavior of the function (1.3) caused by cancellation
errors

which converges to n when n tends to infinity. When MATLAB is used to
compute zn, the relative error found between n and zn decreases for the 16
first iterations, then grows because of roundoff errors (as shown in Figure 1.2).

I k

Fig. 1.2. Logarithm of the relative error \n — zn\/n versus n

See the Exercises 1.1-1.2.

1.2 Complex numbers

Complex numbers, whose set is denoted by C, have the form z = x + iy,
where i = \f—1 is the imaginary unit (that is i2 = - 1) , while x = Re(z)
and y = Im(z) are the real and imaginary part of z, respectively. They
are generally represented on the computer as pairs of real numbers.

Unless redefined otherwise, M A T L A B variables i as well as j denote
the imaginary unit. To introduce a complex number with real part x and

1.2 Complex numbers 7

90

Fig. 1.3. Output of the MATLAB command compass

imaginary part y, one can just write x+i*y; as an alternative, one can
use the command com plex(x,y). Let us also mention the exponential
and the trigonometric representations of a complex number z, that are
equivalent thanks to the Euler formula

z = рвгв = p(cos в + i sin 9); (1.5)

p = \Jx2 + y2 is the absolute value of the complex number (it can be
obtained by setting abs(z)) while в is its argument, that is the angle
between the x axis and the straight line issuing from the origin and
passing from the point of coordinate x, y in the complex plane. в can be
found by typing a n g le (z). The representation (1.5) is therefore:

abs(z) * (cos(angle(z)) + i * sin(angle(z))).

The graphical polar representation of one or more complex numbers
can be obtained through the command compass(z), where z is either
a single complex number or a vector whose components are complex
numbers. For instance, by typing
>> z = 3 + i * 3 ; compass(z) ;

one obtains the graph reported in Figure 1.3.
For any given complex number z, one can extract its real part with

the command r e a l(z) and its imaginary part with im ag(z). Finally, the
complex conjugate z = x — iy of z, can be obtained by simply writing
con j(z) .

In M A T L A B all operations are carried out by implicitly assuming
that the operands as well as the result are complex. We may therefore

complex

abs

angle

compass

real
imag

conj

8 1 What can’t be ignored

find some apparently surprising results. For instance, if we compute the
cube root of —5 with the M A T L A B command (- 5) " (1 / 3) , instead of
— 1.7099 . . . we obtain the complex number 0.8550 + 1.4809i. (We antic­
ipate the use of the symbol " for the power exponent.) As a matter of
fact, all numbers of the form рег(в+ 2кп), with к an integer, are indistin­
guishable from z = peid. By computing 3 z we find A3^pei(e/3+2 kn/3), that
is, the three distinct roots

z1 = 3fp e i9/3, z2 = lypei(0/ 3+2n/ 3), z3 = 3fp e i(e/3+An/3).

M A T L A B will select the one that is encountered by spanning the com­
plex plane counterclockwise beginning from the real axis. Since the polar
representation of z = —5 is peie with p = 5 and в = —n, the three roots
are (see Figure 1.4 for their representation in the Gauss plane)

z1 = %/5(cos(— n /3) + i sin(—n /3)) ~ 0.8550 — 1.4809i,

z2 = %/5(cos(n/3) + i sin(n/3)) ~ 0.8550 + 1.4809i,

z3 = %/5(cos(—n) + i sin— n)) ~ —1.7100.

The second root is the one which is selected.
Finally, by (1.5) we obtain

cos(9) = 1 (e ie + e - i e) , sin(9) = 1 (e ie — e -ie) . (1.6)

Octave 1.1 The command compass is not available in Octave, however
it can be emulated with the following function:
function compass(z)
xx = [0 1 .8 1 . 8] . ’ ;
yy = [0 0 .08 0 - . 0 8] . ’ ;
arrow = xx + y y . * s q r t (- 1) ;
z = arrow * z;
[t h , r] = c a r t 2 p o l (r e a l (z) , i m a g (z)) ;
p o l a r (t h , r) ;
return

1.3 Matrices

Let n and m be positive integers. A matrix with m rows and n columns
is a set of m x n elements a j , with i = 1 , . . . ,m , j = 1 , . . . , n , represented
by the following table:

1.3 Matrices 9

Fig. 1.4. Representation in the complex plane of the three complex cube roots
of the real number —5

A =

an ai2 . .. a in
a2i a22 . . . a2n

am1 am2 . . . amn

(1.7)

In compact form we write A = (aij). Should the elements of A be real
numbers, we write A G Rmxn, and A G Cmxn if they are complex.

Square matrices of dimension n are those with m = n. A matrix
featuring a single column is a column vector, whereas a matrix featuring
a single row is a row vector.

In order to introduce a matrix in M A T L A B one has to write the
elements from the first to the last row, introducing the character ; to
separate the different rows. For instance, the command
>> A = [1 2 3; 4 5 6]

produces

A =

that is, a 2 x 3 matrix whose elements are indicated above. The m x n
matrix zeros(m,n) has all null entries, eye(m,n) has all null entries
unless an, i = 1 , . . . , min(m, n), on the diagonal that are all equal to 1.
The n x n identity matrix is obtained with the command eye(n) : its
elements are Sij = 1 if i = j , 0 otherwise, for i , j = 1 , . . . ,n . Finally, by
the command A=[] we can initialize an empty matrix.

We recall the following matrix operations:

1. if A = (aij) and B = (bij) are m x n matrices, the sum of A and B
is the matrix A + B = (aij + bij);

zeros

eye

2. the product of a matrix A by a real or complex number A is the
matrix AA = (Aaij);

3. the product of two matrices is possible only for compatible sizes,
precisely if A is m x p and B is p x n, for some positive integer p. In
that case C = AB is an m x n matrix whose elements are

p
Cij = ^ 2 aikbkj, for i = 1 , . . . , m , j = 1 , . . . , n .

k=1

Here is an example of the sum and product of two matrices.
>> A=[1 2 3; 4 5 6] ;
>> B=[7 8 9; 10 11 12] ;
>> C=[13 14; 15 16; 17 18] ;
>> A + B

10 1 What can’t be ignored

ans =
8 10 12

14 16 18

>> A*C

ans =
94 100

229 244

Note that M A T L A B returns a diagnostic message when one tries to
carry out operations on matrices with incompatible dimensions. For in­
stance:
>> A=[1 2 3; 4 5 6] ;
>> B=[7 8 9; 10 11 12] ;
>> C=[13 14; 15 16; 17 18] ;
>> A+C

??? Error using ==> +
Matrix dimensions must agree.

>> A*B

??? Error using ==> *
Inner matrix dimensions must agree.

If A is a square matrix of dimension n , its inverse (provided it exists)
is a square matrix of dimension n, denoted by A - 1 , which satisfies the
matrix relation A A -1 = A - 1 A = I. We can obtain A -1 through the

inv command inv(A) . The inverse of A exists iff the determ inant of A, a
number denoted by det(A), is non-zero. The latter condition is satisfied
iff the column vectors of A are linearly independent (see Section 1.3.1).

1.3 Matrices 11

The determinant of a square matrix is defined by the following recursive
formula (Laplace rule):

{
a n if n = 1 ,

n (1.8)

''y^'Ajjaij, for n > 1, y i = 1 , . . . ,n ,
j =1

where A ij = (— 1)i+ jdet(Aij.) and A ij is the matrix obtained by elim­
inating the i-th row and j -th column from matrix A. (The result is
independent of the row index i.) In particular, if A G R 2x2 one has

det(A) = a n a 22 — a12a2 1 ,

while if A G R3x3 we obtain

det(A) = ana22a33 + a31a12a23 + a21a13a32

—an a23a32 — a21a12a33 — a31a13a22.

We recall that if A = BC, then det(A) = det(B)det(C).
To invert a 2 x 2 matrix and compute its determinant we can proceed

as follows:
>> A=[1 2; 3 4] ;
>> inv(A)

ans =
-2 .0 0 0 0 1.0000

1.5000 -0 .5000

>> det(A)

ans =
-2

Should a matrix be singular, M A T L A B returns a diagnostic message,
followed by a matrix whose elements are all equal to Inf, as illustrated
by the following example:
>> A=[1 2; 0 0] ;
>> inv(A)

Warning: Matrix is singular to working precision .
ans =

Inf Inf
Inf Inf

12 1 What can’t be ignored

For special classes of square matrices, the computation of inverses and
determinants is rather simple. In particular, if A is a diagonal matrix, i.e.
one for which only the diagonal elements akk, k = 1 , . . . , n , are non-zero,
its determinant is given by det(A) = a n a 22 • • • ann. In particular, A is
non-singular iff akk = 0 for all k. In such a case the inverse of A is still
a diagonal matrix with elements a— .

diag Let v be a vector of dimension n. The command diag(v) produces
a diagonal matrix whose elements are the components of vector v. The
more general command diag(v,m) yields a square matrix of dimension
n+abs(m) whose m-th upper diagonal (i.e. the diagonal made of elements
with indices i , i + m) has elements equal to the components of v, while
the remaining elements are null. Note that this extension is valid also
when m is negative, in which case the only affected elements are those of
lower diagonals.
For instance if v = [1 2 3] then:
>> A = d i a g (v , -1)

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

Other special cases are the upper triangular and lower triangular
matrices. A square matrix of dimension n is lower (respectively, upper)
triangular if all elements above (respectively, below) the main diagonal
are zero. Its determinant is simply the product of the diagonal elements.

t r i l Through the commands t r i l (A) and t r i u (A) , one can extract from
tr iu the matrix A of dimension n its lower and upper triangular part. Their

extensions tr i l (A ,m) or triu(A,m), with m ranging from -n and n, allow
the extraction of the triangular part augmented by, or deprived of, m
extradiagonals.
For instance, given the matrix A =[3 1 2 ; - 1 3 4 ; -2 -1 3], by the
command L1=tri l (A) we obtain

L1 =
3 0 0

- 1 3 0
-2 -1 3

while, by L 2= t r i l (A ,1) , we obtain

L2 =
3 1 0

- 1 3 4
-2 -1 3

1.3 Matrices 13

We recall that if A e Rmxn its transpose A T e Rnxm is the matrix
obtained by interchanging rows and columns of A. When n = m and A =
AT the matrix A is called symmetric. Finally, A’ denotes the transpose A’
of A if A is real, or its conjugate transpose (that is, A H) if A is complex. A
square complex matrix that coincides with its conjugate transpose A H
is called hermitian.

A similar notation, v ’ , is used for the transpose conjugate v H of the v ’
vector v. If vi denote the components of v, the adjoint vector v H is a
row-vector whose components are the complex conjugate Vi of vi .

Octave 1.2 Also Octave returns a diagnostic message when one tries
to carry out operations on matrices having non-compatible dimensions.
If we repeat the previous M A T L A B examples we obtain:
o cta ve :1 > A=[1 2 3; 4 5 6] ;
o c t a v e : 2> B=[7 8 9; 10 11 12] ;
o c t a v e : 3> C=[13 14; 15 16; 17 18] ;
o c t a v e : 4> A+C

error: operator + : nonconformant arguments (op1 is
2x3, op2 is 3x2)
error: evaluating binary operator ' + ’ near lin e 2,
column 2

o c t a v e : 5> A*B

error: operator * : nonconformant arguments (op1 is
2x3, op2 is 2x3)
error: evaluating binary operator near lin e 2,
column 2

If A is singular, Octave returns a diagnostic message followed by the
matrix to be inverted, as illustrated by the following example:
o cta ve :1 > A=[1 2; 0 0] ;
o cta ve :2 > inv(A)

warning: inverse: matrix singular to machine
p recisio n , rcond = 0
ans =

1 2
0 0

14 1 What can’t be ignored

1.3 .1 Vectors

Vectors will be indicated in boldface; precisely, v will denote a column
vector whose i-th component is denoted by vi . When all components are
real numbers we can write v e Rn.

In M A T L A B , vectors are regarded as particular cases of matrices.
To introduce a column vector one has to insert between square brackets
the values of its components separated by semi-colons, whereas for a row
vector it suffices to write the component values separated by blanks or
commas. For instance, through the instructions v = [1 ;2 ;3] and w =
[1 2 3] we initialize the column vector v and the row vector w, both

zeros of dimension 3. The command zeros(n,1) (respectively, z e r o s (1 ,n))
produces a column (respectively, row) vector of dimension n with null

ones elements, which we will denote by 0. Similarly, the command ones(n,1)
generates the column vector, denoted with 1, whose components are all
equal to 1.

A system of vectors { y i , . . . , ym} is linearly independent if the rela­
tion

implies that all coefficients a 1 :. . . , a m are null. A system B = { y i , . . . ,
y n} of n linearly independent vectors in Rn (or Cn) is a basis for Rn (or
Cn), that is, any vector w in Rn can be written as a linear combination
of the elements of B ,

for a unique possible choice of the coefficients {w k }. The latter are called
the components of w with respect to the basis B. For instance, the canon­
ical basis of Rn is the set of vectors { e 1, . . . , en}, where ei has its i-th
component equal to 1, and all other components equal to 0 and is the
one which is normally used.

The scalar product of two vectors v, w e Rn is defined as

{ v k} and {w k} being the components of v and w, respectively. The
dot corresponding command is w’ *v or else dot(v ,w) , where now the apex

denotes transposition of a vector. The length (or modulus) of a vector v
is given by

a 1y 1 + . . . + a my m = 0

n

w = ^ 2 Wk y k ,
k=1

n
(v, w) = w T v = ^ 2 vkWk ,

k=1

n

1.4 Real functions 15

norm and can be computed through the command norm(v).
The vector product between two vectors v, w e Rn, n > 3 , v x w or

v Л w, is the vector u e Rn orthogonal to both v and w whose modulus
is |u| = |v| |w| sin(a), where a is the angle formed by v and w. It can
be obtained by the command cro ss(v ,w) .

The visualization of a vector can be obtained by the M A T L A B com­
mand quiver in R 2 and quiver3 in R3.

The M A T L A B command x .* y or x . " 2 indicates that these opera­
tions should be carried out component by component. For instance if we
define the vectors
>> v = [1 ; 2 ; 3] ; w = [4 ; 5; 6] ;

the instruction
>> w'*v

ans =
32

provides their scalar product, while
>> w.*v

ans =
4

10
18

returns a vector whose i-th component is equal to x iyi .
Finally, we recall that a vector v e Cn, with v = 0, is an eigenvector

of a matrix A e C nxn associated with the complex number A if

Av = Av.

The complex number A is called eigenvalue of A. In general, the com­
putation of eigenvalues is quite difficult. Exceptions are represented by
diagonal and triangular matrices, whose eigenvalues are their diagonal
elements.

See the Exercises 1.3-1.6.

1.4 Real functions

This chapter will deal with manipulation of real functions defined on an
interval (a ,b). The command fp lo t(fun , l im s) plots the graph of the
function fun (which is stored as a string of characters) on the interval
(l i m s(1) , l i m s(2)). For instance, to represent f (x) = 1/(1 + x2) on the
interval (—5, 5), we can write

cross

quiver

quiver3
.*

Ж

fp lo t

16 1 What can’t be ignored

>> fun = ’ 1 / (1 + x . ~ 2) ’ ; l i m s = [- 5 , 5] ; f p l o t (f u n , l i m s) ;

or, more directly,
>> f p l o t (' 1 / (1 + x . " 2) ' , [- 5 5]) ;

In M A T L A B the graph is obtained by sampling the function on a
set of non-equispaced abscissae and reproduces the true graph of f with
a tolerance of 0.2%. To improve the accuracy we could use the command
>> f p l o t (f u n , l i m s , t o l , n , ' L i n e S p e c ' , P 1 , P 2 , . . .)

where t o l indicates the desired tolerance and the parameter n(> 1)
ensures that the function will be plotted with a minimum of n + 1 points.
LineSpec is a string specifying the style or the color of the line used for
plotting the graph. For example, LineSpec=’ — ’ is used for a dashed
line, LineSpec=’ r - . ’ for a red dashed-dotted line, etc. To use default
values for to l , n or LineSpec one can pass empty matrices ([]).

eval To evaluate a function fun at a point x we write y=eval(fu n), after
having initialized x. The corresponding value is stored in y. Note that x,
and correspondingly y, can be a vector. When using this command, the
restriction is that the argument of the function fun must be x. When
the argument of fun has a different name (this is often the case when
this argument is generated at the interior of a program) the command
eval would be replaced by fev a l (see Remark 1.2).

grid Finally, we point out that if we write grid on after the command
fplot , we can obtain the background-grid as that in Figure 1.1.

Octave 1.3 In Octave, using the command fp lo t (f u n , l im s ,n) the
graph is obtained by sampling the function defined in fun (that is the
name of a function or an expression containing x) on a set of non-
equispaced abscissae. The optional parameter n (> 1) ensures that the
function will be plotted with a minimum of n+1 points. For instance, to
represent f (x) = 1/(1 + x2) we use the following commands:
>> fun = ' 1 . / (1 + x . ~ 2) ' ; l i m s = [- 5 , 5] ;
>> f p l o t (f u n , l i m s)

1 .4 .1 T he zeros

We recall that if f (a) = 0 , a is called zero of f or root of the equation
f (x) = 0. A zero is simple if f '(a) = 0, multiple otherwise.

From the graph of a function one can infer (within a certain tolerance)
which are its real zeros. The direct computation of all zeros of a given
function is not always possible. For functions which are polynomials with
real coefficients of degree n , that is, of the form

1.4 Real functions 17

n
pn (x) = ao + aix + a2x 2 + . . . + anx n akxk, ak e R, an = 0,

k=o

we can obtain the only zero a = —a0/a1, when n = 1 (i.e. pi represents
a straight line), or the two zeros, a+ and a _ , when n = 2 (this time p 2
represents a parabola) a ± = (—a 1 ± \Jai — 4a0a2)/(2 a 2).

However, there are no explicit formulae for the zeros of an arbitrary
polynomial pn when n > 5.

In the sequel we will denote with Pn the space of polynomials of
degree less than or equal to n ,

where the ak are given coefficients, real or complex.
Also the number of zeros of a function cannot in general be deter­

mined a priori. An exception is provided by polynomials, for which the
number of zeros (real or complex) coincides with the polynomial degree.
Moreover, should a = x + iy with y = 0 be a zero of a polynomial with
degree n > 2, its complex conjugate a = x — iy is also a zero.

To compute in M A T L A B one zero of a function fun, near a given
value x0, either real or complex, the command fzero(fun,x0) can be fzero
used. The result is an approximate value of the desired zero, and also the
interval in which the search was made. Alternatively, using the command
fz ero (fu n ,[x 0 x1]) , a zero of fun is searched for in the interval whose
extremes are x0,x1, provided f changes sign between x0 and x1.

Let us consider, for instance, the function f (x) = x 2 — 1 + ex . Looking
at its graph we see that there are two zeros in (— 1,1). To compute them
we need to execute the following commands:
f u n = i n l i n e (' x ~ 2 - 1 + e x p (x) ' , ' x ')
fzero (fun , 1)

ans =
5 .4422e-18

fzero (f u n , - 1)

ans =

n
(1.9)

-0 .7 1 4 6

Alternatively, after noticing from the function plot that one zero is
in the interval [—1, —0.2] and another in [—0.2,1], we could have written

18 1 What can’t be ignored

f z e r o (f u n , [- 0 . 2 1])

ans =
-5 .2 6 0 9 e -1 7

f z e r o (f u n , [- 1 - 0 . 2])

ans =
-0 .7146

The result obtained for the first zero is slightly different than the one
obtained previously, due to a different initialization of the algorithm
implemented in fzero.

In Chapter 2 we will introduce and investigate several methods for
the approximate computation of the zeros of an arbitrary function.

Octave 1.4 In Octave, fzero accepts only functions defined using the
keyword function and its corresponding syntax as follows:
function y = fun(x)

y = x .~ 2 - 1 + e xp(x) ;
end

f z e r o (" fun " , 1)

ans = 2 .3762e-17

f z e r o (" fun" , - 1)

ans = -0 .71 4 5 6

1.4 .2 Polynom ials

Polynomials are very special functions and there is a special M A T L A B
polyval toolbox1 polyfun for their treatment. The command polyval is apt to

evaluate a polynomial at one or several points. Its input arguments are
a vector p and a vector x, where the components of p are the polynomial
coefficients stored in decreasing order, from an down to a0, and the
components of x are the abscissae where the polynomial needs to be
evaluated. The result can be stored in a vector y by writing
>> y = p o l y v a l (p , x)

1 A toolbox is a collection of special-purpose MATLAB functions

1.4 Real functions 19

For instance, the values of p(x) = x7+ 3 x 2 — 1, at the equispaced abscissae
x k = —1 + k /4 for k = 0 , . . . , 8, can be obtained by proceeding as follows:
> > p = [1 0 0 0 0 3 0 - 1] ; x = [- 1 : 0 . 2 5 : 1] ;
>> y = p o l y v a l (p , x)

y =
Columns 1 through 5:

1.00000 0 .55402 -0 .25 7 8 1 -0 .81 2 5 6 -1 .00000
Columns 6 through 9:

-0 .81 2 4 4 -0 .24 2 1 9 0.82098 3.00000

Alternatively, one could use the command fev a l. However, in such
case one should provide the entire analytic expression of the polynomial
in the input string, and not simply its coefficients.

The program roots provides an approximation of the zeros of a poly­
nomial and requires only the input of the vector p.

For instance, we can compute the zeros of p(x) = x3 — 6x2 + 11x — 6
by writing
>> p = [1 -6 11 - 6] ; format long;
>> r o o ts (p)

ans =
3.00000000000000
2.00000000000000
1.00000000000000

Unfortunately, the result is not always that accurate. For instance,
for the polynomial p(x) = (x + 1)7, whose unique zero is a = —1 with
multiplicity 7, we find (quite surprisingly)
>> p = [1 7 21 35 35 21 7 1];
>> ro ots (p)

ans =
-1 .0101
-1 .00 6 3 + 0 .0 0 7 9 i
-1 .00 6 3 - 0 .0 0 7 9 i
-0 .99 7 7 + 0 .0099i
-0 .99 7 7 - 0 .0099i
-0 .9909 + 0 .0 0 4 4 i
-0 .9909 - 0 .0 0 4 4 i

roots

€

In fact, numerical methods for the computation of the polynomial
roots with multiplicity larger than one are particularly subject to round­
off errors (see Section 2.5.2).

20 1 What can’t be ignored

conv

deconv

polyint
polyder

The command p=conv(p1,p2) returns the coefficients of the poly­
nomial given by the product of two polynomials whose coefficients are
contained in the vectors pi and p2.
Similarly, the command [q ,r]=deconv(pi ,p2) provides the coefficients
of the polynomials obtained on dividing pi by p2, i.e. pi = conv(p2,q)
+ r . In other words, q and r are the quotient and the remainder of the
division.

Let us consider for instance the product and the ratio between the
two polynomials pi(x) = x4 — 1 and p2(x) = x3 — 1 :
>> pi = [1 0 0 0 - 1] ;
>> p2 = [1 0 0 - 1] ;
>> p=conv(p1,p2)

p =
1 0 0 -1 -1 0 0 1

>> [q ,r] = d e c o n v (p 1 ,p 2)

q =
1 0

r =
0 0 0 1 -1

We therefore find the polynomials p(x) = p 1(x)p 2(x) = xX — x4 — x3 + 1,
q(x) = x and r (x) = x — 1 such that pi(x) = q (x)p 2(x) + r(x).

The commands p oly in t(p) and polyder(p) provide respectively the
coefficients of the primitive (vanishing at x = 0) and those of the deriv­
ative of the polynomial whose coefficients are given by the components
of the vector p.

If x is a vector of abscissae and p (respectively, p1 and p2) is a vector
containing the coefficients of a polynomial p (respectively, p 1 and p2),
the previous commands are summarized in Table 1.1.

command yields
y=polyval(p,x) y = values of p(x)
z=roots(p) z = roots of p such that p(z) = 0
p=conv(pi ,p2) p = coefficients of the polynomial pip2
[q,r]=deconv(pi,p2) q = coefficients of q, r = coefficients of r

such that p 1 = qp2 + r
y=polyder(p) y = coefficients of p'(x)

x
y=polyint(p) y = coefficients of J p(t) dt
___ о_____________________

Table 1.1. MATLAB commands for polynomial operations

1.4 Real functions 21

A further command, p o l y f i t , allows the computation of the n + 1 poly­
nomial coefficients of a polynomial p of degree n once the values attained
by p at n + 1 distinct nodes are available (see Section 3.1.1).

Octave 1.5 The commands polyderiv and polyinteg have the same
functionality of polyder and p olyint, respectively. Notice that the com­
mand polyder is available as well from the Octave repository, see Section
1.6. ■

1 .4 .3 Integration and differentiation

The following two results will often be invoked throughout this book.

1. the fundamental theorem o f integration : if f is a continuous function
in [a, b), then

x

F (x) = j f (t) dt Vx G [a, b),

a

is a differentiable function, called a prim itive of f , which satisfies,

F '(x) = f (x) Vx G [a, b);

2. the first mean-value theorem fo r integrals: if f is a continuous func­
tion in [a, b) and x 1, x 2 G [a, b) with x 1 < x 2, then G (x1, x 2) such
that

x2

f (0 = ----- 1----- f f (t) dt.
x 2 — x 1

x1

Even when it does exist, a primitive might be either impossible to
determine or difficult to compute. For instance, knowing that ln \x\ is a
primitive of 1 /x is irrelevant if one doesn’t know how to efficiently com­
pute the logarithms. In Chapter 4 we will introduce several methods to
compute the integral of an arbitrary continuous function with a desired
accuracy, irrespectively of the knowledge of its primitive.

We recall that a function f defined on an interval [a, b] is differentiable
in a point x G (a, b) if the following limit exists and is finite

f '(x) = lim i (f (x + h) — f (x)) . (1.10)
h^0 h

The value of f '(x) provides the slope of the tangent line to the graph
of f at the point x .

p o ly fit

polyderiv
polyinteg

22 1 What can’t be ignored

We say that a function which is continuous together with its deriva­
tive at any point of [a, b] belongs to the space C 1([a, b]). More generally,
a function with continuous derivatives up to the order p (a positive in­
teger) is said to belong to C p([a, b]). In particular, C 0([a, b]) denotes the
space of continuous functions in [a, b].

A result that will be often used is the mean-value theorem, according
to which, if f G C 1([a, b]), there exists £ G (a, b) such that

f '(£) = (f (b) — f (a))/(b — a).

Finally, it is worth recalling that a function that is continuous with
all its derivatives up to the order n in a neighborhood of x0, can be
approximated in such a neighborhood by the so-called Taylor polynomial
o f degree n at the point xo:

T n(x) = f (xo) + (x — xo)f'(xo) + . . . + — (x — x o)nf (n)(xo)
n!

= £ f m (xo).
k=o

d i f f The M A T L A B toolbox symbolic provides the commands d i f f , int
int and ta y lo r which allow us to obtain the analytical expression of the

ta ylo r derivative, the indefinite integral (i.e. a primitive) and the Taylor poly­
nomial, respectively, of a given function. In particular, having defined in
the string f the function on which we intend to operate, d i f f (f , n)
provides its derivative of order n, i n t (f) its indefinite integral, and
t a y lo r (f , x , n + 1) the associated Taylor polynomial of degree n in a
neighborhood of x o = 0 . The variable x must be declared symbolic by

syms using the command syms x . This will allow its algebraic manipulation
without specifying its value.

In order to do this for the function f (x) = (x2 + 2x + 2) / (x 2 — 1), we
proceed as follows:
>> f = ’ (x ~ 2 + 2 * x + 2) / (x ~ 2 - 1)
>> syms x
>> d i f f (f)

(2 * x+2) / (x~ 2 -1) -2*(x~2+2 *x +2) / (x ~2 -1)~ 2*x

>> i n t (f)

x + 5 /2 * lo g (x -1) -1 /2 * lo g (1 + x)

>> t a y l o r (f , x , 6)

-2 -2 * x -3 * x "2 -2 * x "3 -3 * x "4 -2 * x "5

1.5 To err is not only human 23

Fig. 1.5. Graphical interface of the command funtool

simple We observe that using the command simple it is possible to simplify
the expressions generated by d i f f , in t and ta y lo r in order to make

funtool them as simple as possible. The command fu n tool, by the graphical
interface illustrated in Fig. 1.5, allows a very easy symbolic manipulation
of arbitrary functions.

Octave 1.6 Symbolic calculations are not yet available in Octave, al­
though it is work in progress.2 ■

See the Exercises 1.7-1.8.

1.5 To err is not only human

As a matter of fact, by re-phrasing the Latin motto errare humanum est,
we might say that in numerical computation to err is even inevitable.

As we have seen, the simple fact of using a computer to represent real
numbers introduces errors. What is therefore important is not to strive
to eliminate errors, but rather to be able to control their effect.

Generally speaking, we can identify several levels of errors that oc­
cur during the approximation and resolution of a physical problem (see
Figure 1.6).

At the highest level stands the error em which occurs when forcing
the physical reality (P P stands for physical problem and x ph denotes
its solution) to obey some mathematical model (M P , whose solution is
x). Such errors will limit the applicability of the mathematical model to
certain situations and are beyond the control of Scientific Computing.

2 http://www.octave.org

http://www.octave.org

24 1 What can’t be ignored

M P

Fig. 1.6. Types of errors in a computational process

The mathematical model (whether expressed by an integral as in the
example of Figure 1.6, an algebraic or differential equation, a linear or
nonlinear system) is generally not solvable in explicit form. Its resolu­
tion by computer algorithms will surely involve the introduction and
propagation of roundoff errors at least. Let’s call these errors e a.

On the other hand, it is often necessary to introduce further errors
since any procedure of the mathematical model involving an infinite
sequence of arithmetic operations cannot be performed by the computer
unless approximately. For instance the computation of the sum of a series
will necessarily be accomplished in an approximate way by considering
a suitable truncation.

It will therefore be necessary to introduce a numerical problem, N P ,
whose solution x n differs from x by an error e t which is called trunca­
tion error. Such errors do not only occur in mathematical models that
are already set in finite dimension (for instance, when solving a linear
system). The sum of the errors ea and et constitutes the computational
error ec, the quantity we are interested in.

The absolute computational error is the difference between x, the
exact solution of the mathematical model, and x , the solution obtained
at the end of the numerical process,

= \x — x\,

while (if x = 0) the relative computational error is

erce = \x — x\/\x\,

c

where \ ■ \ denotes the modulus, or other measure of size, depending on
the meaning of x .

1.5 To err is not only human 25

The numerical process is generally an approximation of the math­
ematical model obtained as a function of a discretization parameter,
which we will refer to as h and suppose positive. If, as h tends to 0,
the numerical process returns the solution of the mathematical model,
we will say that the numerical process is convergent. Moreover, if the
(absolute or relative) error can be bounded as a function of h as

ec < C h p (1.11)

where C is independent of h and p is a positive number, we will say
that the method is convergent o f order p. It is sometimes even possible
to replace the symbol < with ~ , in the case where, besides the upper
bound (1.11), a lower bound C 'hp < ec is also available (C ' being another
constant independent from h and p).

Example 1.1 Suppose we approximate the derivative of a function f at a
point X with the incremental ratio that appears in (1.10). Obviously, if f is
differentiable at X, the error committed by replacing f by the incremental
ratio tends to 0 as h ^ 0. However, as we will see in Section 4.1, the error can
be considered as Ch only if f e C 2 in a neighborhood of X. ■

While studying the convergence properties of a numerical procedure
we will often deal with graphs reporting the error as a function of h in a
logarithmic scale, which shows log(h) on the abscissae axis and log(ec)
on the ordinates axis. The purpose of this representation is easy to see:
if e c = C hp then log ec = log C + p log h. In logarithmic scale therefore
p represents the slope of the straight line log ec, so if we must compare
two methods, the one presenting the greater slope will be the one with
a higher order. To obtain graphs in a logarithmic scale one just needs to
type l o g l o g (x , y) , x and y being the vectors containing the abscissae
and the ordinates of the data to be represented.

As an instance, in Figure 1.7 we report the straight lines relative to
the behavior of the errors in two different methods. The continuous line
represents a first-order approximation, while the dashed line represents
a second-order one.

There is an alternative to the graphical way of establishing the order
of a method when one knows the errors ei relative to some given values
hi of the parameter of discretization, with i = 1 , . . . , N : it consists in
supposing that e i is equal to ChP, where C does not depend on i. One
can then approach p with the values:

pi = lo g(e i /e— i)/ log(hi/hi_i) , i = 2 , . . . , N . (1.12)

Actually the error is not a computable quantity since it depends on
the unknown solution. Therefore it is necessary to introduce computable
quantities that can be used to estimate the error itself, the so called error
estimator. We will see some examples in Sections 2.2.1, 2.3 and 4.4.

loglog

26 1 What can’t be ignored

1.5 .1 Talking about costs

In general a problem is solved on the computer by an algorithm, which
is a precise directive in the form of a finite text specifying the execution
of a finite series of elementary operations. We are interested in those
algorithms which involve only a finite number of steps.

The computational cost of an algorithm is the number of floating­
point operations that are required for its execution. Often, the speed
of a computer is measured by the maximum number of floating-point
operations which the computer can execute in one second (flops). In
particular, the following abridged notations are commonly used: Mega­
flops, equal to 106 flo p s , Giga-flops equal to 109 flo p s , Tera-flops equal
to 1012 flo p s . The fastest computers nowadays reach as many as 40 of
Tera-flops.

In general, the exact knowledge of the number of operations required
by a given algorithm is not essential. Rather, it is useful to determine
its order of magnitude as a function of a parameter d which is related to
the problem dimension. We therefore say that an algorithm has constant
complexity if it requires a number of operations independent of d, i.e.
O (1) operations, linear complexity if it requires O (d) operations, or,
more generally, polynomial complexity if it requires O (dm) operations,
for a positive integer m. Other algorithms may have exponential (O (c d)
operations) or even factorial (O (d!) operations) complexity. We recall
that the symbol O (d m) means “it behaves, for large d, like a constant
times dm” .

Example 1.2 (matrix-vector product) Le A be a square matrix of order
n and let v be a vector of Rn. The j — th component of the product Av is
given by

ajivi + aj2V2 + ••• + ajnvn,

1.5 To err is not only human 27

and requires n products and n — 1 additions. One needs therefore n(2n — 1)
operations to compute all the components. Thus this algorithm requires O(n2)
operations, so it has a quadratic complexity with respect to the parameter n.
The same algorithm would require O(n3) operations to compute the product
of two matrices of order n. However, there is an algorithm, due to Strassen,
which requires “only” O(nlog2 7) operations and another, due to Winograd and
Coppersmith, requiring O(n2'376) operations. ■

Example 1.3 (computation of a matrix determinant) As already men­
tioned, the determinant of a square matrix of order n can be computed us­
ing the recursive formula (1.8). The corresponding algorithm has a factorial
complexity with respect to n and would be usable only for matrices of small
dimension. For instance, if n = 24, a computer capable of performing as many
as 1 Peta-flops (i.e. 1015 floating-point operations per second) would require 20
years to carry out this computation. One has therefore to resort to more effi­
cient algorithms. Indeed, there exists an algorithm allowing the computation of
determinants through matrix-matrix products, with henceforth a complexity
of O (nlog2 7) operations by applying the Strassen algorithm previously men­
tioned (see [BB96]). ■

The number of operations is not the sole parameter which matters
in the analysis of an algorithm. Another relevant factor is represented
by the time that is needed to access the computer memory (which de­
pends on the way the algorithm has been coded). An indicator of the
performance of an algorithm is therefore the CPU time (CPU stands
for central processing unit), and can be obtained using the M A T L A B
command cputime. The total elapsed time between the input and output
phases can be obtained by the command etime.

Example 1.4 In order to compute the time needed for a matrix-vector mul­
tiplication we set up the following program:
>> n = 4000; step = 50; A = r a n d (n , n) ; v = rand(n) ; T=[]
>> sizeA = [] ; count = 1;
>> for k = 5 0 : s t e p : n

AA = A (1 : k , 1 : k) ; vv = v (1 : k) ’ ;
t = cputime; b = AA*vv; t t = cputime - t ;
T = [T, t t] ; sizeA = [s i z e A , k] ;

end

The instruction a:step:b appearing in the for cycle generates all numbers
having the form a+step*k where k is an integer ranging from 0 to the largest
value kmax for which a+step*kmax is not greater than b (in the case at hand,
a=50, b=4000 and step=50). The command rand(n,m) defines an nxm matrix
of random entries. Finally, T is the vector whose components contain the CPU
time needed to carry out every single matrix-vector product, whereas cputime
returns the CPU time in seconds that has been used by the MATLAB process
since MATLAB started. The time necessary to execute a single program is
therefore the difference between the actual CPU time and the one computed
before the execution of the current program which is stored in the variable
t. Figure 1.8, which is obtained by the command plot(sizeA,T, ’ o’) , shows
that the CPU time grows like the square of the matrix order n. ■

cputime
etime

rand

28 1 What can’t be ignored

0
0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 1.8. Matrix-vector product: the CPU time (in seconds) versus the di­
mension n of the matrix (on a PC at 2.53 GHz)

1.6 The MATLAB and Octave environments

M A T L A B and Octave, the programs, are integrated environments for
scientific computing and visualization. They are written in C and C + +
languages.

M A T L A B is distributed by The MathWorks (see the website www.
mathworks.com). The name stands for M ATrix LAB oratory since origi­
nally it was developed for matrix computation.

Octave, also known as GNU Octave (see the website www.octave.
org), is a freely redistributable software. You may redistribute it and/or
modify it under the terms of the GNU General Public License (GPL) as
published by the Free Software Foundation.

As mentioned in the introduction of this chapter, there are differences
between M A T L A B and Octave environments, languages and toolboxes.
However, there is a level of compatibility that allows us to write most
programs of this book and run them seamlessly both in M A T L A B and
Octave. When this is not possible, either because some commands are
spelt differently, or because they operate in a different way, or merely
because they are just not implemented, a note has been and will be writ­
ten at the end of each section; it provides an explanation and indicates
what could be done.

Just as M A T L A B has its toolboxes, Octave has a rich set of func­
tions available through a project called Octave-forge (see the website
octave.sourceforge.net). This function repository grows steadily in
many different areas such as linear algebra, sparse matrices support or
optimization, to name but a few. In order to run properly all programs
and examples in this book under Octave, it is mandatory to install
Octave-forge.

Once installed, the execution of M A T L A B and Octave allow ac­
>> cess to a working environment characterized by the prom pt >> and

octave:1> octave:1> , respectively. For instance, when executing M A T L A B on
our personal computer we see

http://www.octave

1.7 The M ATLAB language 29

< M A T L A B >
Copyright 1984-2004 The MathWorks, Inc.

Version 7.0.0.19901 (R14)
May 06, 2004

To get started, select MATLAB Help or Demos from the Help
menu.

>>

When executing Octave on our personal computer we see

GNU Octave, version 2.1.72 (x86_64-pc-linux-gnu).
Copyright (C) 2005 John W. Eaton.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘ warranty’ .

Additional information about Octave is available at
http://www.octave.org.

Please contribute i f you find this software useful.
For more information, v is it http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org> (but f i r st , please read
http://www.octave.org/bugs.html to learn how to write a helpful
report).

octave:1>

1.7 The MATLAB language

After the introductory remarks of the previous section, we are now ready
to work in either the M A T L A B or Octave environments. And from now
on M A T L A B should be understood as the subset of commands which
are common to both M A T L A B and Octave.

After pressing the enter key (or else return), all what is written af­
ter the prom pt will be interpreted.3 Precisely, M A T L A B will first check
whether what is written corresponds either to variables which have al­
ready been defined or to the name of one of the programs or commands
defined in M A T L A B . Should all those checks fail, M A T L A B returns
an error warning. Otherwise, the command is executed and an output
will possibly be displayed. In all cases, the system eventually returns the
prom pt to acknowledge that it is ready for a new command. To close a
M A T L A B session one should write the command quit (or else e x it)

3 Thus a MATLAB program does not necessarily have to be compiled as
other languages do, e.g. Fortran or C.

quit
e x it

http://www.octave.org
http://www.octave.org/help-wanted.html
mailto:bug@octave.org
http://www.octave.org/bugs.html

30 1 What can’t be ignored

ans

clear

save

load

help

sin cos
sqrt exp

+ -
* / & |

and press the enter key. From now it will be understood that to execute
a program or a command one has to press the enter key. Moreover, the
terms program, function or command will be used in an equivalent man­
ner. When our command coincides with one of the elementary structures
characterizing M A T L A B (e.g. a number or a string of characters that
are put between apices) they are immediately returned in output in the
default variable ans (abbreviation of answer). Here is an example:
>> ’ home ’

ans =
home

If we now write a different string (or number), ans will assume this
new value.

We can turn off the automatic display of the output by writing a
semicolon after the string. Thus if we write ’ home’ ; M A T L A B will
simply return the prom pt (yet assigning the value ’ home’ to the variable
ans).

More generally, the command = allows the assignment of a value (or
a string of characters) to a given variable. For instance, to assign the
string ’ Welcome to M ilan’ to the variable a we can write
>> a = ’ Welcome to Milan’ ;

Thus there is no need to declare the type of a variable, M A T L A B
will do it automatically and dynamically. For instance, should we write
a=5, the variable a will now contain a number and no longer a string
of characters. This flexibility is not cost-free. If we set a variable named
quit equal to the number 5 we are inhibiting the use of the M A T L A B
command quit. We should therefore try to avoid using variables having
the name of M A T L A B commands. However, by the command clear
followed by the name of a variable (e.g. quit), it is possible to cancel
this assignment and restore the original meaning of the command quit.

By the command save all the session variables (that are stored in
the so-called base workspace) are saved in the binary file matlab.mat.
Similarly, the command load restores in the current session all variables
stored in matlab.mat. A file name can be specified after save or load.
One can also save only selected variables, say v1, v2 and v3, in a given
file named, e.g., area.mat, using the command save area v l v2 v3.

By the command help one can see the whole family of commands
and pre-defined variables, including the so-called toolboxes which are sets
of specialized commands. Among them let us recall those which define
the elementary functions such as sine (s i n (a)), cosine (c o s (a)), square
root (s q r t (a)), exponential (exp(a)).

There are special characters that cannot appear in the name of a
variable or in a command, for instance the algebraic operators (+ , - ,
* and /), the logical operators and (&), or (|), not (~), the relational

operators greater than (>), greater than or equal to (>=), less than (<), ~ > >= <
less than or equal to (<=), eqqual to (==). Finally, a name can never begin <= ==
with a digit, a bracket or with any punctuation mark.

1 .7 .1 M A T L A B statem ents

A special programming language, the M A T L A B language, is also avail­
able enabling the users to write new programs. Although its knowledge
is not required for understanding how to use the several programs which
we will introduce throughout this book, it may provide the reader with
the capability of modifying them as well as producing new ones.

The M A T L A B language features standard statements, such as con­
ditionals and loops.

The if-elseif-else conditional has the following general form:
i f condition (1)

st a te m e nt(1)
e l s e i f condi tion(2)

st a te m e nt(2)

1.7 The M ATLAB language 31

else
statement(n)

end

where co n d i t i o n (l) , co n d ition (2), ... represent M A T L A B sets of log­
ical expressions, with values 0 or 1 (false or true) and the entire construc­
tion allows the execution of that statement corresponding to the condi­
tion taking value equal to 1. Should all conditions be false, the execution
of statement(n) will take place. In fact, if the value of condition(k)
is zero, the control moves on.

For instance, to compute the roots of a quadratic polynomial a x 2 +
bx + c one can use the following instructions (the command d is p (.)
simply displays what is written between brackets):

>> i f a ~= 0
sq = sqrt(b*b - 4*a*c);
x(1) = 0 . 5 * (- b + sq) / a ;
x(2) = 0 . 5 * (- b - sq) / a ;

e ls e i f b ~= 0
x(1) = - c / b ; (1.13)

e ls e i f c ~= 0
d i s p (’ Impossible equation’) ;

else
d i s p (’ The given equation is an i d e n t i t y ’) ;

end

Note that M A T L A B does not execute the entire construction until the
statement end is typed.

32 1 What can’t be ignored

M A T L A B allows two types of loops, a for-loop (comparable to a
Fortran do-loop or a C for-loop) and a while-loop. A for-loop repeats the
statements in the loop as the loop index takes on the values in a given
row vector. For instance, to compute the first six terms of the Fibonacci
sequence fi = f i-1 + f i - 2 , for i > 3, with f 1 = 0 and f 2 = 1, one can
use the following instructions:
>> f (1) = 0; f (2) = 1;
>> for i = [3 4 5 6]

f (i) = f (i - 1) + f (i - 2) ;
end

Note that a semicolon can be used to separate several M A T L A B instruc­
tions typed on the same line. Also, note that we can replace the second
instruction by the equivalent >> fo r i = 3 :6 . The while-loop repeats
as long as the given condition is true. For instance, the following set of
instructions can be used as an alternative to the previous set:
> > f (1) = 0 ; f (2) = 1 ; k = 3;
>> while k <= 6

f (k) = f (k -1) + f (k - 2) ; k = k + 1;
end

Other statements of perhaps less frequent use exist, such as switch, case,
otherwise. The interested reader can have access to their meaning by the
help command.

1.7 .2 Program m ing in M A T L A B

Let us now explain briefly how to write M A T L A B programs. A new
program must be put in a file with a given name with extension m, which
is called m-file. They must be located in one of the directories in which
M A T L A B automatically searches for m-files; their list can be obtained

path by the command path (see help path to learn how to add a directory
to this list). The first directory scanned by M A T L A B is the current
working directory.

It is important at this level to distinguish between scripts and func­
tions. A script is simply a collection of M A T L A B commands in an m-file
and can be used interactively. For instance, the set of instructions (1.13)
can give rise to a script (which we could name equation) by copying it
in the file equation.m. To launch it, one can simply write the instruc­
tion equation after the M A T L A B prompt >>. We report two examples
below:
>> a = 1; b = 1; c = 1;
>> equation

ans =
-0 .50 0 0 + 0 .8660i -0 .5 0 0 0 - 0 .8660i

1.7 The M ATLAB language 33

>> a = 0; b = 1; c = 1;
>> equation

ans =
-1

Since we have no input/output interface, all variables used in a script
are also the variables of the working session and are therefore cleared
only upon an explicit command (clear). This is not at all satisfactory
when one intends to write complex programs involving many temporary
variables and comparatively fewer input and output variables, which are
the only ones that can be effectively saved once the execution of the
program is terminated. Much more flexible than scripts are functions.

A function is still defined in a m-file, e.g. name.m, but it has a
well defined input/output interface that is introduced by the command
function
function [o u t 1 , o u t n] = n a m e (i n 1 , inm)

where o u t 1 , . . . , o u t n are the output variables and i n 1 , . . . , i n m are the
input variables.

The following file, called det23.m, defines a new function called det23
which computes, according to the formulae given in Section 1.3, the
determinant of a matrix whose dimension could be either 2 or 3:
function det=det23(A)
%DET23 computes the determinant of a square matrix
% of dimension 2 or 3
[n , m] = s i z e (A) ;
i f n==m

i f n==2
det = A(1 , 1) * A (2 , 2) - A (2 , 1) * A (1 , 2) ;

e l s e i f n == 3
det = A (1 , 1) * d e t 2 3 (A ([2 , 3] , [2 , 3])) - . . .

A(1 , 2) * d e t 2 3 (A ([2 ,3] , [1 , 3])) + . . .
A (1 , 3) * d e t 2 3 (A ([2 , 3] , [1 , 2])) ;

e lse
d i s p (’ Only 2x2 or 3x3 matrices ’) ;

end
else

d i s p (’ Only square matrices ’) ;
end
return

Notice the use of the continuation characters . . . meaning that the in­
struction is continuing on the next line and the character % to begin
comments. The instruction A ([i , j] , [k , l]) allows the construction of
a 2 x 2 matrix whose elements are the elements of the original matrix
A lying at the intersections of the i-th and j-th rows with the k-th and
l-th columns.

When a function is invoked, M A T L A B creates a local workspace (the
function ’s workspace). The commands in the function cannot refer to

function

%

34 1 What can’t be ignored

return

variables from the global (interactive) workspace unless they are passed
as input. In particular, variables used in a function are erased when the
execution terminates, unless they are returned as output parameters.

Functions usually terminate when the end of the function is reached,
however a return statement can be used to force an early return (upon
the fulfillment of a certain condition).

For instance, in order to approximate the golden section number a =
1.6180339887... , which is the limit for к ^ <x of the quotient of two
consecutive Fibonacci numbers f k/fk- i, by iterating until the difference
between two consecutive ratios is less than 10- 4 , we can construct the
following function:
function [g o ld e n ,k] = f ib o n a c c i0
f (1) = 0; f (2) = 1; goldenold = 0;
kmax = 100; t o l = 1 . e - 0 4 ;
for k = 3: kmax

f (k) = f (k - 1) + f (k - 2) ;
golden = f (k) / f (k - 1) ;
i f abs(golden - goldenold) <= to l

return
end
goldenold = golden;

end
return

Its execution is interrupted either after kmax=100 iterations or when
the absolute value of the difference between two consecutive iterates is
smaller than t o l= 1 .e - 0 4 . Then, we can write
[a l p h a , n i t e r] = f i b o n a c c i 0

alpha =
1.61805555555556

n ite r =
14

After 14 iterations the function has returned an approximate value which
shares with a the first 5 significant digits.

The number of input and output parameters of a M A T L A B function
can vary. For instance, we could modify the Fibonacci function as follows:
function [g o l d e n , k] = f i b o n a c c i 1 (t o l , kmax)
i f nargin == 0

kmax = 100; t o l = 1 . e - 0 4 ; % defa ul t values
e l s e i f nargin == 1

kmax = 100; % defa ul t value only for kmax
end
f (1) = 0; f (2) = 1; goldenold = 0;
for k = 3: kmax

f (k) = f (k - 1) + f (k - 2) ;
golden = f (k) / f (k - 1) ;
i f abs(golden - goldenold) <= to l

return
end
goldenold = golden;

end
return

1.7 The M ATLAB language 35

The nargin function counts the number of input parameters. In the
new version of the fibon acci function we can prescribe the maximum
number of inner iterations allowed (kmax) and a specific tolerance tol .
When this information is missing the function must provide default val­
ues (in our case, kmax = 100 and t o l = 1 .e -04) . A possible use of it is
as follows:
[a lp h a , n i t e r] = f i b o n a c c i 1 (1 . e - 6 ,200)

alpha =
1.61803381340013

n ite r =
19

Note that using a stricter tolerance we have obtained a new approximate
value that shares with a as many as 8 significant digits.
The nargin function can be used externally to a given function to obtain
the number of input parameters. Here is an example:
n a r g in (’ f i b o n a c c i 1 ’)

ans =
2

Remark 1.2 (inline functions) The command inline, whose most sim­
ple syntax reads g=inline(expr,arg1,arg2,. . . ,argn), declares a function
g which depends on the strings arg1,arg2, . . . ,argn. The string expr con­
tains the expression of g. For instance, g=inline(’ s in (r) ’ , ’ r ’) declares the
function g(r) = sin(r). The shorthand command g=inline(expr) implicitly
assumes that expr is a function of the default variable x. Once an inline func­
tion has been declared, it can be evaluated at any set of variables through
the command feval. For instance, to evaluate g at the points z=[0 1] we can
write
>> f e v a l (’ g ’ , z) ;

We note that, contrarily to the case of the eval command, with feval
the name of the variable (z) needs not coincide with the symbolic name (r)
assigned by the inline command. •

After this quick introduction, our suggestion is to explore M A T L A B
using the command help, and get acquainted with the implementation of
various algorithms by the programs described throughout this book. For
instance, by typing help fo r we get not only a complete description on
the command for but also an indication on instructions similar to for,
such as i f , while, switch, break and end. By invoking their help we
can progressively improve our knowledge of M A T L A B .

nargin

in lin e

36 1 What can’t be ignored

Octave 1.7 Generally speaking, one area with little commonalities is
that of the plotting facilities of M A T L A B and Octave. We checked that
most plotting commands in the book are reproducible in both programs,
but there are in fact many fundamental differences. By default, Octave’s
plotting framework is gnuplot; however the plotting command set is dif­
ferent and operates differently than M A T L A B does. At the time of
writing this section, there are other plotting libraries in Octave such as
octaviz (see, the website h t t p : / / o c t a v i z . s o u r c e f o r g e .n e t /), epstk
(ht tp : / /www.epstk.de/) and octp lot (h t t p : / / o c t p l o t . s o u r c e f o r g e .
net). The last is an attempt to reproduce M A T L A B plotting commands
in Octave. ■

See Exercises 1.9-1.14.

1 .7 .3 Exam ples o f differences betw een M A T L A B and Octave
languages

As already mentioned, what has been written in the previous section
about the M A T L A B language applies to both M A T L A B and Octave
environments without changes. However, some differences exist for the
language itself. So programs written in Octave may not run in M A T L A B
and viceversa. For example, Octave supports strings with single and
double quotes
o cta ve :1 > a="Welcome to Milan"
a = Welcome to Milan
o cta ve :2 > a = ’ Welcome to Milan’
a = Welcome to Milan

whereas M A T L A B supports only single quotes, double quotes will result
in parsing errors.

Here we provide a list of few other incompatibilities between the two
languages:

- M A T L A B does not allow a blank before the transpose operator. For
instance, [0 1] ’ works in M A T L A B , but [0 1] ’ does not. Octave
properly parses both cases;

- M A T L A B always requires
rand (1 , . . .

2)

while both
rand (1 ,

2)

and
rand (1 , \

2)

work in Octave in addition to . . . ;

http://octaviz.sourceforge.net/
http://www.epstk.de/
http://octplot.sourceforge

1.9 Exercises 37

- for exponentiation, Octave can use * or **; M A T L A B requires *;
- for ends, Octave can use end but also en d if, endfor, . . . ; M A T L A B

requires end.

1.8 What we haven’t told you

A systematic discussion on floating-point numbers can be found in
[Ube97], [Hig02] and in [QSS06].

For matters concerning the issue of complexity, we refer, e.g., to
[Pan92].

For a more systematic introduction to M A T L A B the interested
reader can refer to the M A T L A B manual [HH05] as well as to specific
books such as [HLR01], [Pra02], [EKM05], [Pal04] or [MH03].

For Octave we recommend the manual book mentioned at the begin­
ning of this chapter.

1.9 Exercises

Exercise 1.1 How many numbers belong to the set F(2, 2 ,- 2 , 2)? What is
the value of eM for such set?

Exercise 1.2 Show that the set F(@, t, L, U) contains precisely 2(@— 1)/3t-1 (U—
L + 1) elements.

Exercise 1.3 Prove that i is a real number, then check this result using
MATLAB.

Exercise 1.4 Write the MATLAB instructions to build an upper (respec­
tively, lower) triangular matrix of dimension 10 having 2 on the main diagonal
and —3 on the upper (respectively, lower) diagonal.

Exercise 1.5 Write the MATLAB instructions which allow the interchange
of the third and seventh row of the matrices built up in Exercise 1.3, and
then the instructions allowing the interchange between the fourth and eighth
column.

Exercise 1.6 Verify whether the following vectors in R4 are linearly indepen­
dent:

vi = [010 1], v2 = [1 2 3 4], vs = [101 0], v4 = [001 1].

Exercise 1.7 Write the following functions and compute their first and sec­
ond derivatives, as well as their primitives, using the symbolic toolbox of MAT-
LAB:

f (x) = V x 2 + 1, g(x) = sin(x3) + cosh(x).

38 1 What can’t be ignored

Exercise 1.8 For any given vector v of dimension n, using the command
poly c=poly(v) one can construct the n + 1 coefficients of the polynomial p(x) =

S fc i! c(k)xn+1-k which is equal to ПЩ=1 (x — v(k)). In exact arithmetics,
one should find that v = roots(poly(c)). However, this cannot occur due to
roundoff errors, as one can check by using the command roots(poly([1:n])) ,
where n ranges from 2 to 25.

Exercise 1.9 Write a program to compute the following sequence:

Io = 1(e — 1),

In+1 = 1 — (n + 1)I„, for n = 0, 1 ,-----

Compare the numerical result with the exact limit In ^ 0 for n ^ ж .

Exercise 1.10 Explain the behavior of the sequence (1.4) when computed in
MATLAB.

Exercise 1.11 Consider the following algorithm to compute n. Generate n
couples {(xk,y k)} of random numbers in the interval [0,1], then compute the
number m of those lying inside the first quarter of the unit circle. Obviously,
n turns out to be the limit of the sequence nn = 4m/n. Write a MATLAB
program to compute this sequence and check the error for increasing values of
n .

Exercise 1.12 Since n is the sum of the series

4 2 1 1 N
 1--------------- 1-------------8m + 1 8m + 4 8m + 5 8m + 6 /

we can compute an approximation of n by summing up to the n-th term, for
a sufficiently large n. Write a MATLAB function to compute finite sums of
the above series. How large should n be in order to obtain an approximation
of n at least as accurate as the one stored in the variable n?

Exercise 1.13 Write a program for the computation of the binomial coef­
ficient (k) = n!/(k!(n — k)!), where n and k are two natural numbers with
k < n.

Exercise 1.14 Write a recursive MATLAB function that computes the n-th
element f n of the Fibonacci sequence. Noting that

■ fi " 1 1 " ' f i -1 '
.f i -1 . 1 0 f i-2 .

write another function that computes f n based on this new recursive form.
Finally, compute the related CPU-time.

x > - m

m = 0

Nonlinear equations

2

Computing the zeros of a real function f (equivalently, the roots of the
equation f (x) = 0) is a problem that we encounter quite often in scien­
tific computing. In general, this task cannot be accomplished in a finite
number of operations. For instance, we have already seen in Section 1.4.1
that when f is a generic polynomial of degree greater than four, there
do not exist explicit formulae for the zeros. The situation is even more
difficult when f is not a polynomial.

Iterative methods are therefore adopted. Starting from one or several
initial data, the methods build up a sequence of values xSk that hopefully
will converge to a zero a of the function f at hand.

Problem 2 .1 (Investm ent fund) At the beginning of every year a
bank customer deposits v euros in an investment fund and withdraws,
at the end of the n-th year, a capital of M euros. We want to compute
the average yearly rate of interest r of this investment. Since M is related
to r by the relation

” 1 + r
M = v ^ (1 + r) k = v — — [(1 + r)n - 1] ,

k = 1 r

we deduce that r is the root of the algebraic equation:

1 + r
f (r) = 0, where f (r) = M — v --------[(1 + r)n — 1].

r

This problem will be solved in Example 2.1. ■

Problem 2 .2 (State equation o f a gas) We want to determine the
volume V occupied by a gas at temperature T and pressure p. The state
equation (i.e. the equation that relates p, V and T) is

[p + a (N / V)2] (V — N b) = kN T , (2.1)

40 2 Nonlinear equations

where a and b are two coefficients that depend on the specific gas, N is
the number of molecules which are contained in the volume V and k is
the Boltzmann constant. We need therefore to solve a nonlinear equation
whose root is V (see Exercise 2.2). ■

Problem 2 .3 (R ods system) Let us consider the mechanical system
represented by the four rigid rods ai of Figure 2.1. For any admissible
value of the angle в , let us determine the value of the corresponding
angle a between the rods ai and a2. Starting from the vector identity

ai — a2 — a3 — a4 = 0

and noting that the rod ai is always aligned with the x -axis, we can
deduce the following relationship between в and a:

2 2 2 2
— co s(e)------1 cos(a) — cos(e — a) = -----2-------2-------3------ 2, (2.2)
a2 a4 2a2a4

where ai is the known length of the *-th rod. This is called the Freuden-
stein equation, and we can rewrite it as f (a) = 0, where

2 2 2 2
f (x) = (a 1/a2) cos(e) — (a1/ a 4) cos(x) — cos(e — x) a2 + a2 — a3 + a4

2a2a4

A solution in explicit form is available only for special values of в . We
would also like to mention that a solution does not exist for all values of
в , and may not even be unique. To solve the equation for any given в
lying between 0 and n we should invoke numerical methods (see Exercise
2.9). ■

Fig. 2.1. System of four rods of Problem 2.3

2.1 The bisection method 41

Problem 2 .4 (Population dynam ics) In the study of populations
(e.g. bacteria), the equation x+ = 4>(x) = x R (x) establishes a link be­
tween the number of individuals in a generation x and the number of
individuals in the following generation. Function R (x) models the vari­
ation rate of the considered population and can be chosen in different
ways. Among the most known, we can mention:

1. Malthus’s model (Thomas Malthus, 1766-1834),

R(x) = R m (x) = r, r > 0;

2. the growth with limited resources model (by Pierre Francois Ver-
hulst, 1804-1849),

r
R(x) = R v (x) = ---------— , r > 0 ,K > 0, (2.3)

1 + xK

which improves on Malthus’s model in considering that the growth
of a population is limited by the available resources;

3. the predator/prey model with saturation,

R(x) = R P = T T W , e . 4 >

which represents the evolution of Verhulst’s model in the presence
of an antagonist population.

The dynamics of a population is therefore defined by the iterative process

x (k) = ф(x (k -1)), k > 1, (2.5)

where x (k) represents the number of individuals present k generations
later than the initial generation x (0). Moreover, the stationary (or equi­
librium) states x* of the considered population are the solutions of prob­
lem

x* = ф ^ *),

or, equivalently, x * = x * R (x *) i.e. R (x *) = 1. Equation (2.5) is an
instance of a fixed point method (see Section 2.3). ■

2.1 The bisection method

Let f be a continuous function in [a, b] which satisfies f (a) f (b) < 0. Then
necessarily f has at least one zero in (a, b). Let us assume for simplicity
that it is unique, and let us call it a .

(In the case of several zeros, by the help of the command fp lo t we
can locate an interval which contains only one of them.)

42 2 Nonlinear equations

The strategy of the bisection method is to halve the given inter­
val and select that subinterval where f features a sign change. More
precisely, having named I (0) = (a, b) and, more generally, I (k) the sub­
interval selected at step k, we choose as I (k+ 1) the sub-interval of I (k)
at whose end-points f features a sign change. Following such procedure,
it is guaranteed that every I (k) selected this way will contain a. The se­
quence { x (k)} of the midpoints of these subintervals I (k) will inevitably
tend to a since the length of the subintervals tends to zero as k tends to
infinity.

Precisely, the method is started by setting

a(0) = a, b(0) = b, I (0) = (a(0), b(0)), x (0) = (a(0) + b(0))/2.

At each step k > 1 we select the subinterval I (k) = (a(k),b(k)) of the
interval I (k-1) = (a (k -1),b (k -1)) as follows:

given x (k-1) = (a (k-1) + b(k-1))/2, if f (x(k-1)) = 0 then a = x (k-1)
and the method terminates;

otherwise,

if f (a(k-1)) f (x(k-1)) < 0 set a(k = a(k -1), b(k = x (k -1);

if f (x (k -1)) f (b(k -1)) < 0 set a(k) = x (k -1), b(k) = b(k -1).

Then we define x (k) = (a(k) + b(k)) /2 and increase k by 1.
For instance, in the case represented in Figure 2.2, which corresponds

to the choice f (x) = x2 — 1, by taking a(0) = —0.25 and b(0) = 1.25, we
would obtain

2.1 The bisection method 43

I (0) = (—0.25,1.25), x (0) = 0.5,

I (1) = (0.5,1.25), x (1) = 0.875,
I (2) = (0.875,1.25), x (2) = 1.0625,

I (3) = (0.875,1.0625), x (3) = 0.96875.

N otice that each subinterval I (k) contains the zero a. Moreover, the
sequence { x (k)} necessarily converges to a since at each step the length
\I(k)| = b(k) — a(k) o f I (k) halves. Since \I(k)| = (1/2)k|I(0)|, the error at
step k satisfies

\e(k \̂ = \x(k — a\ < 1 \I(k)\ = Q) + (b — a).

In order to guarantee that \e(k)\ < e, for a given tolerance e it suffices to
carry out kmin iterations, kmin being the smallest integer satisfying the
inequality

(2.6)

Obviously, this inequality makes sense in general, and is not confined to
the specific choice o f f that we have made previously.

The bisection m ethod is implemented in Program 2.1: fun is a func­
tion (or an inline function) specifying the function f , a and b are the
endpoints o f the search interval, t o l is the tolerance e and nmax is the
maximum number o f allotted iterations. Besides the first argument which
represents the independent variable, the function fun can accept other
auxiliary parameters.

Output parameters are z e ro , which contains the approxim ate value
o f a , the residual r e s which is the value o f f in z e r o and n i t e r which
is the tota l number o f iterations that are carried out. The command
f in d (f x = = 0) finds those indices o f the vector f x corresponding to null
components.

P ro g ra m 2.1. bisection: bisection method

f u n c t i o n [z e r o , r e s , n i t e r] = b i s e c t i o n (f u n , a , b , t o l , . . .
nmax, v a r a r g i n)

"/BISECTION F ind f u n c t i o n z e r o s .
% ZERO=BISECTION(F UN , A , B , T OL , NMAX) t r i e s t o f i n d a z e r o
% ZERO o f th e c o n t i nuous f u n c t i o n FUN i n the i n t e r v a l
% [A , B] u s i n g the b i s e c t i o n method. FUN a c c e p t s r e a l
% s c a l a r i nput x and r e t u r n s a r e a l s c a l a r v a l u e . I f
% the s e a r c h f a i l s an e r r o r e message i s d i s p l a y e d . FUN
% can a l s o be an i n l i n e o b j e c t .
% ZERO=BISECTION(F U N , A , B , T O L , N M A X , P 1 , P 2 , . . .) passes
% p a r a me t e r s P 1 , P 2 , . . . t o the f u n c t i o n F U N (X , P 1 , P 2 , . . .) .
% [ZERO,RES, N I TER] =BI SECTI ON(FUN, . . .) r e t u r n s the v a l u e
% o f the r e s i d u a l in ZERO and th e i t e r a t i o n number at

f i n d

44 2 Nonlinear equations

% whi ch ZERO was computed.
x = [a , (a + b) * 0 . 5 , b] ; f x = f e v a l (f u n , x , v a r a r g i n { : }) ;
i f f x (1) * f x (3) > 0

e r r o r ([’ The s i g n o f the f u n c t i o n at the ’ , . . .
’ e n d p o i n t s o f the i n t e r v a l must be d i f f e r e n t ’]) ;

e l s e i f f x (1) == 0
z e r o = a; r e s = 0 ; n i t e r = 0 ; r e t u r n

e l s e i f f x (3) == 0
z e r o = b; r e s = 0 ; n i t e r = 0 ; r e t u r n

end
n i t e r = 0 ;
I = (b - a) * 0 . 5 ;
w h i l e I >= t o l & n i t e r <= nmax

n i t e r = n i t e r + 1 ;
i f f x (1) * f x (2) < 0

x (3) = x (2) ; x (2) = x (1) + (x (3) - x (1)) * 0 . 5 ;
f x = f e v a l (f u n , x , v a r a r g i n { : }) ; I = (x (3) - x (1)) * 0 . 5 ;

e l s e i f f x (2) * f x (3) < 0
x (1) = x (2) ; x (2) = x (1) + (x (3) - x (1)) * 0 . 5 ;
f x = f e v a l (f u n , x , v a r a r g i n { : }) ; I = (x (3) - x (1)) * 0 . 5 ;

e l s e
x (2) = x (f i n d (f x = = 0)) ; I = 0;

end
end
i f n i t e r > nmax

f p r i n t f ([’ b i s e c t i o n s t o p p e d w i t h o u t c o n v e r g i n g ’ , . . .
’ t o the d e s i r e d t o l e r a n c e because the ’ , . . .
’ maximum number o f i t e r a t i o n s was ’ , . . .
’ r e a c h e d \ n ’]) ;

end
z e r o = x (2) ; x = x (2) ; r e s = f e v a l (f u n , x , v a r a r g i n { : }) ;
r e t u r n

E xam p le 2.1 (In vestm en t fund) Let us apply the bisection method to
solve Problem 2.1, assuming that v is equal to 1000 euros and that after 5
years M is equal to 6000 euros. The graph o f the function f can be obtained
by the following instructions

f = i n l i n e (’ M - v * (1 + r) . * ((1 + r) . ~ 5 - 1) . / r ’ , ’ r ’ , ’ M’ , ’ v ’) ;
p l o t ([0 . 0 1 , 0 . 3] , f e v a l (f , [0 . 0 1 , 0 . 3] , 6 0 0 0 , 1 0 0 0)) ;

We see that f has a unique zero in the interval (0.01, 0.1), which is approx­
imately equal to 0.06. I f we execute Program 2.1 with t o l = 10~12, a= 0.01
and b= 0.1 as follows

[z e r o , r e s , n i t e r] = b i s e c t i o n (f , 0 . 0 1 , 0 . 1 , 1 . e - 1 2 , 1000 , . . .
6000 , 1000) ;

after 36 iterations the method converges to the value 0.06140241153618, in
perfect agreement with the estimate (2.6) according to which kmin = 36.
Thus, we conclude that the interest rate r is approximately equal to 6.14%. ■

In spite o f its simplicity, the bisection m ethod does not guarantee a
monotone reduction o f the error, but sim ply that the search interval is
halved from one iteration to the next. Consequently, i f the only stopping
criterion adopted is the control o f the length o f I (k) , one m ight discard
approximations o f a which are quite accurate.

2.2 The Newton method 45

F ig . 2.3. The first iterations generated by the Newton method with initial
guess x (0) for the function f (x) = x + ex + 10/(1+ x 2) — 5

As a m atter o f fact, this m ethod does not take into proper account
the actual behavior o f f . A striking fact is that it does not converge in
a single iteration even if f is a linear function (unless the zero a is the
m idpoint o f the initial search interval).

See Exercises 2.1-2.5.

2.2 T h e N ew to n m eth od
The sign o f the given function f at the endpoints o f the subintervals is
the on ly inform ation exploited by the bisection method. A more efficient
m ethod can be constructed by exploiting the values attained by f and
its derivative (in the case that f is d ifferentiable). In that case,

y (x) = f (x (k)) + f ' (x (k')) (x — x (k))

provides the equation o f the tangent to the curve (x, f (x)) at the point
x (k).

I f we pretend that x (k+1) is such that y (x (k+1)) = 0, we obtain:

(2.7)

provided f ' (x (k)) = 0. Th is formula allows us to compute a sequence of
values x (k) starting from an initial guess x (0). Th is m ethod is known as
N ew ton ’s m ethod and corresponds to com puting the zero o f f by locally
replacing f by its tangent line (see Figure 2.3).

As a m atter o f fact, by developing f in Taylor series in a neighborhood
o f a generic point x (k) we find

f (x (k+1)) = f (x (k)) + 5(k)f \ x (k)) + O ((S (k)) 2), (2.8)

46 2 Nonlinear equations

where S(k) = x (k+1) — x (k) . Forcing f (x (k+1)) to be zero and neglecting
the term O ((S (k')) 2), we can obtain x (k+1) as a function o f x (k) as stated
in (2.7). In this respect (2.7) can be regarded as an approxim ation o f
(2 .8).

Obviously, (2.7) converges in a single step when f is linear, that is
when f (x) = a,1x + ao.

E xam p le 2.2 Let us solve Problem 2.1 by Newton’s method, taking as initial
data x (0) = 0.3. A fter 6 iterations the difference between two subsequent
iterates is less than or equal to 10~ 12. ■

The New ton m ethod in general does not converge for all possible
choices o f x (0), but on ly for those values o f x (0) which are sufficiently
close to a. A t first glance, this requirement looks meaningless: indeed,
in order to compute a (which is unknown), one should start from a value
sufficiently close to a!

In practice, a possible initial value x (0) can be obtained by resorting
to a few iterations o f the bisection m ethod or, alternatively, through
an investigation o f the graph o f f . I f x (0) is properly chosen and a is
a simple zero (that is, f ' (a) = 0) then the New ton m ethod converges.
Furthermore, in the special case where f is continuously differentiable
up to its second derivative one has the follow ing convergence result (see
Exercise 2.8),

x (k+1) — a f ' ' (a)
l im ----------------= ----------

k (x (k) — a) 2 2 f ' (a)
(2.9)

Consequently, i f f ' (a) = 0 N ew ton ’s m ethod is said to converge quadrat-
ically, or w ith order 2, since for sufficiently large values o f к the error at
step (к + 1) behaves like the square o f the error at step к multiplied by
a constant which is independent o f к .

In the case o f zeros w ith m ultip licity m larger than 1, the order o f
convergence o f N ew ton ’s m ethod downgrades to 1 (see Exercise 2.15). In
such case one could recover the order 2 by m odifying the original method
(2.7) as follows:

(2.10)

provided that f ' (x (k)) = 0. Obviously, this requires the a-priori knowl­
edge o f m. I f this is not the case, one could develop an adaptive Newton
method, still o f order 2, as described in [QSS06, Section 6.6.2].

E xam p le 2.3 The function f (x) = (x — 1) log(x) has a single zero a = 1 of
multiplicity m = 2. Let us compute it by both Newton’s method (2.7) and by
its modified version (2.10). In Figure 2.4 we report the error obtained using the

2.2 The Newton method 47

F ig . 2.4. Error versus iteration number for the function o f Example 2.3. The
dashed line corresponds to Newton’s method (2.7), solid line to the modified
Newton’s method (2.10) (with m = 2)

two methods versus the iteration number. Note that for the classical version
of Newton’s method the convergence is only linear. ■

2.2.1 H o w t o t e r m in a te N e w t o n ’ s ite ra t io n s

In theory, a convergent N ew ton ’s m ethod returns the zero a on ly after an
infinite number o f iterations. In practice, one requires an approximation
o f a up to a prescribed tolerance e. Thus the iterations can be term inated
at the smallest value o f kmin for which the follow ing inequality holds:

\e(kmin)\ _ \a _ x (kmin)\ < e.

This is a test on the error. Unfortunately, since the error is unknown, one
needs to adopt in its place a suitable error estimator, that is, a quantity
that can be easily computed and through which we can estimate the
real error. A t the end o f Section 2.3, we w ill see that a suitable error
estim ator for N ew ton ’s m ethod is provided by the difference between
two successive iterates. Th is means that one term inates the iterations at
step kmin as soon as

\x(kmin) _ x (k^in \ < e (2.11)

This is a test on the increment.
W e w ill see in Section 2.3.1 that the test on the increment is satis­

factory when a is a simple zero o f f . A lternatively, one could use a test
on the residual at step k, r (k) _ f (x (k)) (note that the residual is null
when x (k) is a zero o f the function f).

Precisely, we could stop the iteration at the first kmin for which

(kmin)) < e (2.12)\

48 2 Nonlinear equations

The test on the residual is satisfactory only when \f \ x) \ ~ 1 in a neigh­
borhood I a o f the zero a (see Figure 2.5). Otherwise, it w ill produce
an over estimation o f the error i f \f '(x)\ ^ 1 for x G I a and an under
estimation i f \f'(x)\ ^ 1 (see also Exercise 2.6).

F ig . 2.5. Two situations in which the residual is a poor error estimator:
\f'(x)\ ^ 1 (left), \ f (x)| -C 1 (right), with x belonging to a neighborhood of
а

In Program 2.2 we implement N ew ton ’s m ethod (2.7). Its modified
form can be obtained sim ply by replacing f ' w ith f ' /m. The input pa­
rameters fu n and d fun are the strings which define function f and its
first derivative, while x 0 is the initial guess. The m ethod w ill be term i­
nated when the absolute value o f the difference between two subsequent
iterates is less than the prescribed tolerance t o l , or when the maximum
number o f iterations nmax has been reached.

P ro g ra m 2.2. newton: Newton method

f u n c t i o n [z e r o , r e s , n i t e r] = n e w t o n (f u n , d f u n , x 0 , t o l , . . .
nmax, v a r a r g i n)

/NEWTON F i nd f u n c t i o n z e r o s .
/ ZERO=NEWTON(FUN,DFUN,X0, TOL, NMAX) t r i e s t o f i n d the
/ z e r o ZERO o f th e co n t i nuo us and d i f f e r e n t i a b l e
/ f u n c t i o n FUN n e a r e s t t o X0 us i n g the Newton method.
/ FUN and i t s d e r i v a t i v e DFUN ac c e p t r e a l s c a l a r i nput
/ x and r e t u r n s a r e a l s c a l a r v a l u e . I f t he s e a r c h f a i l s
/ an e r r o r e message i s d i s p l a y e d . FUN and DFUN can a l s o
/ be i n l i n e o b j e c t s .
/ ZERO=NEWTON(FUN,DFUN,X0, TOL, NMAX, P1 , P2 , . . .) pas s e s
/ p a r a me t e r s P 1 , P 2 , . . . t o f u n c t i o n s : FUN(x , P 1 , P 2 , . . .)
/ and DFUN(X,P1 ,P2 , . . .) .
/ [ZERO, RES, NITER]=NEWTON(FUN, . . .) r e t u r n s the v a l u e o f
/ the r e s i d u a l in ZERO and th e i t e r a t i o n number a t which
/ ZERO was computed.
x = x 0 ;
f x = f e v a l (f u n , x , v a r a r g i n { : }) ;
d f x = f e v a l (d f u n , x , v a r a r g i n { : }) ;
n i t e r = 0 ; d i f f = t o l + 1 ;
w h i l e d i f f >= t o l & n i t e r <= nmax

2.2 The Newton method 49

n i t e r = n i t e r + 1 ; d i f f = - f x / d f x ;
x = x + d i f f ; d i f f = a b s (d i f f) ;
f x = f e v a l (f u n , x , v a r a r g i n { : }) ;
d f x = f e v a l (d f u n , x , v a r a r g i n { : }) ;

end
i f n i t e r > nmax

f p r i n t f ([’ newton s t o ppe d w i t h o u t c o n v e r g i n g t o ’ , . . .
’ t he d e s i r e d t o l e r a n c e because the maximum ’ , . . .
’ number o f i t e r a t i o n s was r e a c h e d \ n ’]) ;

end
z e r o = x; r e s = f x ;
r e t u r n

2 .2 .2 T h e N e w to n m e th o d fo r s y s tem s o f n o n lin ea r e q u a tio n s

Let us consider a system o f nonlinear equations o f the form

' f i (x 1, x 2 , . . . , x n) = 0,

f 2(x i , x 2, . .. , x n) = 0,
(2.13)

„ f n (x i , x 2, . . . , x n) = 0,

where f i , . . . , f n are nonlinear functions. Setting f = (f i , . . . , f n)T and
x = (x i , . . . , x n) T , system (2.13) can be w ritten in a compact way as

f (x) = 0. (2.14)

An example is given by the follow ing nonlinear system

(f i (x i , x 2) = x i + x\ = 1,

\ 2 (2.15)
[f i (x i , x i) = s in (^ x i/ 2) + x 2 = 0 .

In order to extend N ew ton ’s m ethod to the case o f a system, we replace
the first derivative o f the scalar function f w ith the Jacobian matrix Jf
o f the vectorial function f whose components are

(J) = а ■ ■ = 1
(J f) i j dx ., * ,■ 1, .. . , П.

The symbol d f i /dxj represents the partial derivative o f f i w ith respect
to x j (see definition 8.3). W ith this notation, N ew ton ’s m ethod for (2.14)
then becomes: given x (0) G R n , for к = 0, 1, . . . , until convergence

solve Jf (x (k))d x (k) = —f (x (k))

set x (k+i) = x (k) + S x (k)
(2.16)

Therefore, N ew ton ’s m ethod applied to a system requires at each step
the solution o f a linear system w ith m atrix Jf (x (k)).

P rogram 2.3 implements this m ethod by using the M A T L A B com­
mand \ (see Section 5.6) to solve the linear system w ith the jacobian ma­
trix. In input we must define a column vector x 0 representing the initial
datum and two functions, F fun and Jfun, which compute (respectively)
the column vector F containing the evaluations o f f for a generic vector
x and the jacobian m atrix J, also evaluated for a generic vector x. The
m ethod stops when the difference between two consecutive iterates has
an euclidean norm smaller than t o l or when nmax, the maximal number
o f allowed iterations, has been reached.

P ro g ra m 2.3. newtonsys: Newton method for nonlinear systems

f u n c t i o n [x , F , i t e r] = n e w t o n s y s (F f u n , J f u n , x 0 , t o l , . . .
nmax, v a r a r g i n)

/NEWTONSYS f i n d a z e r o o f a n o n l i n e a r sys t em
/ [ZERO, F , ITER]=NEWTONSYS(FFUN, JFUN,X0, TOL, NMAX)
/ t r i e s t o f i n d the v e c t o r ZERO, z e r o o f a n o n l i n e a r
/ sys t em d e f i n e d i n FFUN w i t h j a c o b i a n m a t r i x d e f i n e d
/ i n the f u n c t i o n JFUN, n e a r e s t t o the v e c t o r X0.
i t e r = 0 ; e r r = t o l + 1 ; x = x 0 ;
w h i l e e r r > t o l & i t e r <= nmax

J = f e v a l (J f u n , x , v a r a r g i n { : }) ;
F = f e v a l (F f u n , x , v a r a r g i n { : }) ;
d e l t a = - J\F;
x = x + d e l t a ;
e r r = n o r m (d e l t a) ;
i t e r = i t e r + 1 ;

end
F = n o r m (f e v a l (F f u n , x , v a r a r g i n { : })) ;
i f i t e r >= nmax

f p r i n t f (’ F a i l s t o c o n v e r g e w i t h i n maximum ’ , . . .
’ number o f i t e r a t i o n s \ n ’) ;

f p r i n t f (’ The i t e r a t e r e t u r n e d has r e l a t i v e ’ , . . .
’ r e s i d u a l / e \ n ’ , F) ;

e l s e
f p r i n t f (’ The method c o n v e r g e d at i t e r a t i o n ’ , . . .

’ / i w i t h a r e s i d u a l / e \ n ’ , i t e r , F) ;
end
r e t u r n

50 2 Nonlinear equations

E xam p le 2.4 Let us consider the nonlinear system (2.15) which allows the
two (graphically detectable) solutions (0.4761, —0.8794) and (—0.4761, 0.8794)
(where we only report the four first significant digits). In order to use Program
2.3 we define the following functions
f u n c t i o n J = J f u n (x)
p i 2 = 0 . 5 * p i ;
J (1 , 1) = 2*x (1) ;
J (1 , 2) = 2 * x (2) ;
J (2 , 1) = p i 2 * c o s (p i 2 * x (1)) ;
J (2 , 2) = 3 * x (2) * 2 ;
r e t u r n

2.3 Fixed point iterations 51

f u n c t i o n F = F f u n (x)
F (1 , 1) = x (1) ~ 2 + x (2) * 2 - 1;
F (2 , 1) = s i n (p i * x (1) / 2) + x (2) ~ 3 ;
r e t u r n

Starting from an initial datum o f x0= [1; 1] Newton’s method, launched
with the command

x 0 = [1 ; 1] ; t o l = 1 e - 5 ; m a x i t e r = 1 0 ;
[x , F , i t e r] = n e w t o n s y s (@ F f u n , @ J f u n , x 0 , t o l , m a x i t e r) ;

converges in 8 iterations to the values

4 . 760958225338114e -01
-8 . 793934089897496e -01

(The special character @ tells newtonsys that Ffun and Jfun are functions.)
Notice that the method converges to the other root starting from x0= [- 1, - 1] .

In general, exactly as in the case of scalar functions, convergence of Newton’s
method will actually depend on the choice of the initial datum x (0) and in
particular we should guarantee that det(Jf (x (0))) = 0 . ■

Let us sum m arize

&
2.3 F ixed po in t iteration s
Playing w ith a pocket calculator, one m ay verify that by applying repeat­
ed ly the cosine key to the real value 1, one gets the follow ing sequence
o f real numbers:

1. M ethods for the com putation o f the zeros o f a function f are usually
o f iterative type;

2. the bisection m ethod computes a zero o f a function f by generating
a sequence o f intervals whose length is halved at each iteration. This
m ethod is convergent provided that f is continuous in the initial
interval and has opposite signs at the endpoints o f this interval;

3. N ew ton ’s m ethod computes a zero a o f f by taking into account
the values o f f and o f its derivative. A necessary condition for con­
vergence is that the initial datum belongs to a suitable (sufficiently
small) neighborhood o f a ;

4. N ew ton ’s m ethod is quadratically convergent on ly when a is a simple
zero o f f , otherwise convergence is linear;

5. the New ton m ethod can be extended to the case o f a nonlinear system
o f equations.

See Exercises 2.6-2.14.

52 2 Nonlinear equations

x (1) = cos(1) = 0.54030230586814.

x (2) = cos (x (1)) = 0.85755321584639.

x (10) = cos (x (9)) = 0.74423735490056.

x (20) = cos (x (19)) = 0.73918439977149.

which should tend to the value a = 0.73908513.... Since, by construc­
tion, x (k+1) = cos (x (k)) for к = 0, 1, . . . (w ith x (0) = 1), the lim it а
satisfies the equation cos (a) = a. For this reason a is called a fixed
point o f the cosine function. W e m ay wonder how such iterations could
be exploited in order to compute the zeros o f a given function. In the
previous example, а is not on ly a fixed point for the cosine function,
but also a zero o f the function f (x) = x — cos (x), hence the previously
proposed m ethod can be regarded as a m ethod to compute the zeros o f
f . O n the other hand, not every function has fixed points. For instance,
by repeating the previous experiment using the exponential function and
x (0) = 1 one encounters a situation o f overflow after 4 steps only (see
F igure 2.6).

F ig . 2.6. The function ф(х) = cos x admits one and only one fixed point (left),
whereas the function ф(х) = ex does not have any (right)

L e t us clarify the intuitive idea above by considering the following
problem. G iven a function ф : [a, b] ^ R , find a G [a, b] such that

a = ф(а).

I f such an a exists it w ill be called a fixed point o f ф and it could be
computed by the follow ing algorithm:

к > 0 (2.17)

2.3 Fixed point iterations 53

where x (0) is an initial guess. Th is algorithm is called fixed point itera­
tions and ф is said to be the iteration function. The in troductory example
is therefore an instance o f fixed point iterations w ith ф (х) = cos(x).

A geom etrical interpretation o f (2.17) is provided in Figure 2.7 (left).
One can guess that if ф is a continuous function and the lim it o f the
sequence { x (k)} exists, then such lim it is a fixed point o f ф. W e will
make this result more precise in Propositions 2.1 and 2.2.

E xam p le 2.5 The Newton method (2.7) can be regarded as an algorithm of
fixed point iterations whose iteration function is

ф(х) = x - у щ . (2Л 8)

From now on this function will be denoted by фN (where N stands for Newton).
This is not the case for the bisection method since the generic iterate x (fc+1)
depends not only on x (k) but also on x (k-1). ■

F ig . 2.7. Representation of a few fixed point iterations for two different itera­
tion functions. To the left, the iterations converge to the fixed point a, whereas
the iterations on the right produce a divergence sequence

As shown in Figure 2.7 (r ight), fixed point iterations m ay not con­
verge. Indeed, the follow ing result holds.

P r o p o s it io n 2.1 Assume that the iteration function in (2.17) sat­
isfies the following properties:

1. ф(х) € [a, b] fo r all x € [a, b];
2. ф is differentiable in [a,b];
3. 3 K < 1 such that \ф'(x)| < K fo r all x € [a, b].

54 2 Nonlinear equations

F ig . 2.8. Two fixed points for two different population dynamics: Verhulst’s
model (solid line) and predator/prey model (dashed line)

Then ф has a unique fixed point a G [a, b] and the sequence defined in
(2.17) converges to a, whatever choice is made fo r the initial datum
x (0) in [a,b]. Moreover

(2.19)

From (2.19) one deduces that the fixed point iterations converge at least
linearly, that is, for k sufficiently large the error at step k + 1 behaves like
the error at step k multiplied by a constant ф'(а) which is independent
o f k and whose absolute value is strictly less than 1.

E xam p le 2.6 The function ф(х) = cos(x) satisfies all the assumptions of
Proposition 2.1. Indeed, |ф/(а)| = | sin(a)| ~ 0.67 < 1, and thus by continuity
there exists a neighborhood I a of a such that |ф/(ж)| < 1 for all x e I a . The
function ф(х) = x 2 — 1 has two fixed points a± = (1 ± \f5)/2, however it
does not satisfy the assumption for either since ^ (a ±)| = |1 ± \/5| > 1. The
corresponding fixed point iterations will not converge. ■

E xam p le 2.7 (P op u la tion dynam ics) Let us apply the fixed point itera­
tions to the function фу (x) = rx/(1 + x K) of Verhulst’s model (2.3) and to
the function фр(x) = rx 2/(1 + (x/K) 2), for r = 3 and K = 1, o f the preda­
tor/prey model (2.4). Starting from the initial point x (0) = 1, we find the fixed
point a = 2 in the first case and a = 2.6180 in the second case (see Figure
2.8). The fixed point a = 0, common to either фу and фр , can be obtained
using the fixed point iterations on фр but not those on фу. In fact, фр (a) = 0,
while фу (a) = r > 1. The third fixed point of фр , a = 0.3820..., cannot be
obtained by fixed point iterations since фр (a) > 1. ■

2.3 Fixed point iterations 55

The New ton m ethod is not the on ly iterative procedure featuring
quadratic convergence. Indeed, the follow ing general property holds.

P r o p o s it io n 2.2 Assume that all hypotheses of Proposition 2.1 are
satisfied. In addition assume that ф is differentiable twice and that

ф'(а) = 0, ф "(а) = 0.

Then the fixed point iterations (2.17) converge with order 2 and

lim
Jk+l) _

(x (k) — a) 2 2
ф »

1
(2.20)

Exam ple 2.5 shows that the fixed point iterations (2.17) could also be
used to compute the zeros o f the function f . C learly for any given f the
function ф defined in (2.18) is not the on ly possible iteration function.
For instance, for the solution o f the equation lo g (x) = y , after setting
f (x) = lo g (x) — y, the choice (2.18) could lead to the iteration function

фи (x) = x (1 — lo g (x) + y).

Another fixed point iteration algorithm could be obtained by adding
x to both sides o f the equation f (x) = 0. The associated iteration func­
tion is now ф !^) = x + lo g (x) — y . A further m ethod could be obtained by
choosing the iteration function ф2^) = x lo g (x)/Y . N ot all these meth­
ods are convergent. For instance, i f y = —2, the methods corresponding
to the iteration functions фи and ф2 are both convergent, whereas the
one corresponding to ф1 is not since \ф! (x) | > 1 in a neighborhood o f
the fixed point a .

2 .3 .1 H o w t o t e r m in a te f ix e d p o in t ite ra t io n s

In general, fixed point iterations are term inated when the absolute value
o f the difference between two consecutive iterates is less than a prescribed
tolerance e.

Since a = ф(а) and x (k+ 1) = ф(x (k)), using the mean value theorem
(see Section 1.4.3) we find

a — x (k+ !) = ф (а) — ф(x (k)) = ф'(^(к)) (a — x (k)) w ith £(k) € I a x (k),

I a x(k) being the interval w ith endpoints a and x (k) . Using the identity

a — x (k) = (a — x (k+ !)) + (x (k+ !) — x (k)),

it follows that

56 2 Nonlinear equations

a — x (k) =
1 - ф '(£(к))

Дк + 1) _ x (k)
). (2.21)

Consequently, i f ф'(х) ^ 0 in a neighborhood o f a , the difference between
two consecutive iterates provides a satisfactory error estimator. This
is the case for methods o f order 2, including N ew ton ’s method. This
estimate becomes the more unsatisfactory the more ф' approaches 1.

E xam p le 2.8 Let us compute with Newton’s method the zero a = 1 of the
function f (x) = (x — 1)m-1 log(x) for m = 11 and m = 21, whose multiplicity
is equal to m. In this case Newton’s method converges with order 1; moreover,
it is possible to prove (see Exercise 2.15) that $N (a) = 1 — 1/m, фN being the
iteration function o f the method, regarded as a fixed point iteration algorithm.
As m increases, the accuracy of the error estimate provided by the difference
between two consecutive iterates decreases. This is confirmed by the numerical
results in Figure 2.9 where we compare the behavior o f the true error with that
o f our estimator for both m = 11 and m = 21. The difference between these
two quantities is greater for m = 21. ■

4 X.

\
\ ' ' '

\ \ \

\

"(1).... (2)

100 200 300 400

F ig . 2.9. Absolute values o f the errors (solid line) and absolute values of the
difference between two consecutive iterates (dashed line), plotted versus the
number o f iterations for the case of Example 2.8. Graphs (1) refer to m = 11,
graphs (2) to m = 21

1
(

10

10

10

10

10

10

10
0 500

2.4 A ccelera tion using A itk en m eth od
In this paragraph we w ill illustrate a technique which allows to accel­
erate the convergence o f a sequence obtained via fixed point iterations.
Therefore, we suppose that x (k) = ф(х(к -1)), к > 1. I f the sequence
{ x (k)} converges linearly to a fixed point a o f ф, we have from (2.19)
that, for a given к, there must be a value A (to be determ ined) such that

ф(х(к)) — a = A (x (k) — a), (2.22)

2.4 Acceleration using Aitken method 57

where we have deliberately avoided to identify ф(x (k)) w ith x (k+ !) . In­
deed, the idea underlying A itken ’s m ethod consists in defining a new
value for x (k+ !) (and thus a new sequence) which is a better approxima­
tion for a than that given by ф ^ ^) . As a m atter o f fact, from (2.22)
we have that

ф(x (k)) — Ax(k) ф(x (k)) — Ax(k) + x (k) — x (k)
a = ---------------------- = ---

1 - A 1 - A

a = x (k) + ^ (x (k)) — x (k))/(1 — A) (2.23)

W e must now compute A. To do so, we introduce the follow ing sequence

A(k) = ^ (x (k))) — ф(x(k)) (2 24)
A ф(x (k)) — x (k) ()

and verify that the follow ing property holds:

L e m m a 2.1 I f the sequence of elements x (k+ !) = ф(x (k)) converges
to a, then lim A(k = ф '^) .

k

P r o o f 2.1 I f x (fc+1) = ф(х(к)), then x (fc+2) = ф(ф(х(к^)) and from (2.24), we
obtain that А(к) = (x (k+2) - x (k+1))/ (x (k+1) - x (k)) or

x (k+ 2) - a 1
А(к) = x (k+2) - a - (x (k+ 1) - a) = x (k+ 1) - a

x (k+ 1) - a - (x (k) - a) x (k) - a
1 — (k+ 1) - a

from which, computing the limit and recalling (2.19), we find

lim A(k) = ^ (a) - \ = ф 'Н . k^™ 1 - 1/ф'^) Y v ;

Thanks to Lem m a 2.1 we can conclude that, for a given k, A(k) can be
considered as an approxim ation o f the previously introduced unknown
value A. Thus, we use (2.24) in (2.23) and define a new x (k+ !) as follows:

(2.25)

or

This expression is known as Aitken’s extrapolation formula and, by
(2.25), it can be considered as a new fixed point iteration for the new
iteration function

58 2 Nonlinear equations

фл (x) -
x ^ (x)) — ^ (x)]2

ф (ф ^)) — 2ф (x) + x

This m ethod is sometimes called S’teffensen’s method. Clearly, function
фл is undetermined for x = a as the numerator and denom inator vanish.
However, by applying de l ’H op ita l’s formula and assuming that ф is
differentiable w ith ф '(a) = 1 one finds

ф(ф(а)) + а ф' (ф (a))ф ' (a) — 2ф(^ ф' (a)

x——а л ф'(ф (a))ф '(a) — 2ф'(a) + 1

a + a ^ ' (a)]2 — 2a ф '(a)
= ----------------------------------- = a

[ф' (a)]2 — 2ф' (a) + 1

Consequently, фл(x) can be extended by continuity to x = a by setting

ф л (a) = a.
W hen ф ^) = x — f (x), the case ф' (a) = 1 corresponds to a root

w ith m ultiplicity o f at least 2 for f (since ф '(a) = 1 — f ' (a)) . In such
situation however, we can once again prove by evaluating the lim it that
фл(a) = a. Moreover, we can also verify that the fixed points o f фл are
all and exclusively the fixed points o f ф.

A itken ’s m ethod can thus be applied for any fixed point method.
Indeed, the following theorem holds:

T h e o r e m 2.1 Consider the fixed point iterations (2.17) with
ф ^) = x — f (x) fo r computing the roots of f . Then i f f is suffi­
ciently regular we have:

- i f the fixed point iterations converge linearly to a simple root of f ,
then Aitken’s me t̂hod converges quadratically to the same root;

- i f the fixed point iterations converge with order p > 2 to a simple
root of f , then Aitken’s method converges to the same root with
order 2p — 1;

- i f the fixed point iterations converge linearly to a root with multi­
plicity m > 2 of f , then Aitken’s method converges linearly to the
same root with an asymptotic convergence factor of C = 1 —1/m.

In particular, i f p = 1 and the root of f is simple, Aitken’s extrapola­
tion method converges even i f the corresponding fixed point iterations
diverge.

In Program 2.4 we report an implementation o f A itken ’s method.
Here ph i is a function (or an inline function) which defines the expres­
sion o f the iteration function o f the fixed point m ethod to which A itken ’s
extrapolation technique is applied. The initial datum is defined by the
variable x 0, while t o l and nmax are the stopping criterion tolerance (on

2.4 Acceleration using Aitken method 59

the absolute value o f the difference between two consecutive iterates) and
the maximal number o f iterations allowed, respectively. I f undefined, de­
fault values nmax=100 and t o l= 1 .e - 0 4 are assumed.

P rog ra m 2.4. aitken: Aitken method

f u n c t i o n [x , n i t e r] = a i t k e n (p h i , x 0 , t o l , nmax, v a r a r g i n)
%AITKEN A i t k e n ’ s method.
% [ALPHA, N I T E R] = A I T K E N (P H I , X0) computes an
% a p p r o x i m a t i o n o f a f i x e d p o i n t ALPHA o f f u n c t i o n PHI
% s t a r t i n g f rom the i n i t i a l datum X0 us i n g A i t k e n ’ s
% e x t r a p o l a t i o n method. The method s t o p s a f t e r 100
% i t e r a t i o n s or a f t e r the a b s o l u t e v a l u e o f the
% d i f f e r e n c e be t ween two c o n s e c u t i v e i t e r a t e s i s
% s m a l l e r than 1 . e - 0 4 . PHI must be d e f i n e d as a
% f u n c t i o n or an i n l i n e f u n c t i o n .
% [ALPHA, N I T E R] = A I TK E N (PH I , X0 , TOL, NMAX) a l l o w s t o
% d e f i n e the t o l e r a n c e on the s t o p p i n g c r i t e r i o n and
% the maximum number o f i t e r a t i o n s .
i f n a r g i n == 2

t o l = 1 . e - 0 4 ; nmax = 100;
e l s e i f n a r g i n == 3

nmax = 100;
end
x = x 0 ;
d i f f = t o l + 1 ;
n i t e r = 0 ;
w h i l e n i t e r <= nmax & d i f f >= t o l

gx = f e v a l (p h i , x , v a r a r g i n { : }) ;
ggx = f e v a l (p h i , g x , v a r a r g i n { : }) ;
xnew = (x * g g x - g x ~ 2) / (g g x - 2* g x + x) ;
d i f f = a b s (x - x n e w) ;
x = xnew;
n i t e r = n i t e r + 1 ;

end
i f n i t e r >= nmax

f p r i n t f (’ F a i l s t o c o n v e r g e w i t h i n maximum ’ , . . .
’ number o f i t e r a t i o n s \ n ’) ;

end
r e t u r n

E xam p le 2.9 In order to compute the single root a = 1 for function f (x) =
- x(x - 1) we apply Aitken’s method starting from the two following iteration
functions

—x — x
фо(x) = log(xex), ф1 (x) = x , 1 .

- x — 1

We use Program 2.4 with t o l= 1.e - 10, nmax=100, x0=2 and we define the two
iteration functions as follows:

p h i0 = i n l i n e (’ l o g (x * e x p (x)) ’ x ’) ;
p h i l = i n l i n e (’ (e x p (x) + x) / (e x p (x) + 1) ’ , ’ x ’) ;

We now run Program 2.4 as follows:

[a l p h a , n i t e r] = a i t k e n (p h i 0 , x 0 , t o l , nmax)

60 2 Nonlinear equations

#

&

alpha =
1.0000 + 0 . 0000i

n ite r =
10

[a l p h a , n i t e r] = a i t k e n (p h i l , x 0 , t o l , nmax)

alpha =
1

n ite r =
4

As we can see, the convergence is extremely rapid. For comparison the fixed
point method with iteration function ф1 and the same stopping criterion would
have required 18 iterations, while the method corresponding to ф0 would not
have been convergent as |ф0(1)| = 2. ■

Let us sum m arize

1. A number a satisfying ф ^) = a is called a fixed point o f ф. For its
com putation we can use the so-called fixed point iterations: x (k+ 1) =
ф ^ (к));

2 . fixed point iterations converge under suitable assumptions on the
iteration function ф and its first derivative. Typically, convergence is
linear, however, in the special case when ф'(a) = 0, the fixed point
iterations converge quadratically;

3. fixed point iterations can also be used to compute the zeros o f a
function;

4. given a fixed point iteration x (k+1) = ф ^ ^) , it is always possible to
construct a new sequence using A itken ’s method, which in general
converges faster.

See Exercises 2.15-2.18.

2.5 A lgeb raic polyn om ials
In this section we w ill consider the case where f is a polynom ial o f
degree n > 0 o f the form (1.9). As already anticipated, the space o f all
polynom ials (1.9) is denoted by the symbol P n . W hen n > 2 and all the
coefficients ak are real, i f a G C is a com plex root o f pn G P n (i.e. w ith
Im (a) = 0), then a (the com plex conjugate o f a) is a root o f pn too.

A b e l ’s theorem guarantees that there does not exist an explicit form
to compute all the zeros o f a generic polynom ial pn, when n > 5. This

2.5 Algebraic polynomials 61

fact further m otivates the use o f numerical methods for computing the
roots o f pn .

As we have previously seen for such methods it is im portant to choose
an appropriate initial datum x (0) or a suitable search interval [a, b] for
the root. In the case o f polynom ials this is sometimes possible on the
basis o f the follow ing results.

T h e o r e m 2.2 (D e s c a r te s ’ s s ign ru le) Let us denote by v the
number o f sign changes o f the coefficients {a,j} and with к the num­
ber of real positive roots of pn, each counted with its own multiplicity.
Then к v and v к is even.

E xam p le 2.10 The polynomial p6(x) = x6 — 2x5 + 5x4 — 6x 3 + 2x2 + 8x — 8
has zeros {± 1 , ±2 i, 1 ± i } and thus has 1 real positive root (k = 1). Indeed,
the number o f sign changes v o f its coefficients is 5 and thereafter k < v and
v — k = 4 is even. ■

T h e o r e m 2.3 (C a u c h y) All of the zeros of pn are included in the
circle Г in the complex plane

Г = {z G C : \z\< 1 + n}, where n = max \ak/an \. (2.26)
0<k<n- 1

This property is barely useful when n ^ 1 (for polynom ial p6 in Example
2.10 for instance, we have n = 8, while all o f the roots are in circles w ith
clearly smaller radii).

2 .5 .1 H O rn e r ’ s a lg o r ith m

In this paragraph we w ill illustrate a m ethod for the effective evaluation
o f a polynom ial (and its derivative) in a given point z . Such algorithm
allows to generate an automatic procedure, called deflation method, for
the progressive approxim ation o f all the roots o f a polynomial.

From an algebraic point o f view , (1.9) is equivalent to the following
representation

Pn (x) = ao + x (a 1 + x (a 2 + . . . + x (a n -1 + anx) . . .)) . (2.27)

However, while (1.9) requires n sums and 2n — 1 products to evaluate
pn(x) (for a given x), (2.27) on ly requires n sums and n products. The
expression (2.27), also known as the nested product algorithm, is the
basis for H orner’s algorithm. This m ethod allows to effectively evaluate
the polynom ial pn in a point z by using the follow ing synthetic division
algorithm

62 2 Nonlinear equations

bn an,

bk = ak + bk+iz, k = n — 1,n — 2, ..., 0
(2.28)

In (2.28) all o f the coefficients bk w ith k < n — 1 depend on z and we
can verify that b0 = pn (z). The polynom ial

q n - i (x ; z) = bi + b2 x + ... + bnx n 1 = ^ bkxk ! , (2.29)
k=1

o f degree n — 1 in x, depends on the z parameter (v ia the bk coefficients)
and is called the associated polynomial o f pn. A lgorithm (2.28) is im­
plemented in Program 2.5. The aj coefficients o f the polynom ial to be
evaluated are stored in vector a starting from an up to a0.

P ro g ra m 2.5. horner: synthetic division algorithm

f u n c t i o n [y , b] = h o r n e r (a , z)
%HORNER Horner a l g o r i t h m
% Y=HORNER(A,Z) computes
% Y = A (1) * Z * N + A (2) * Z * (N - 1) + . . . + A (N) * Z + A (N+1)
% us i n g H o r n e r ’ s s y n t h e t i c d i v i s i o n a l g o r i t h m .
n = l e n g t h (a) - 1 ;
b = z e r o s (n + 1 , 1) ;
b (1) = a (1) ;
f o r j =2 : n+1

b (j) = a (j) + b (j - 1) * z ;
end
y = b (n + 1) ;
b = b (1 : e n d - 1) ;
r e t u r n

W e now want to introduce an effective algorithm which, knowing the
root o f a polynom ial (or its approxim ation), is able to remove it and
then to allow the com putation o f the follow ing one until all roots are
determ inated.

In order to do this we should recall the follow ing property o f polyno­
mial division:

P r o p o s it io n 2.3 Given two polynomials hn € P n and gm € P m

with m < n, there are a unique polynomial S € P n -m and a unique
polynomial p € P m - 1 such that

hn(x) = gm(x)S (x) + p (x). (2.30)

Thus, by d ivid ing a polynom ial pn € P n by x — z , one deduces by (2.30)
that

Pn (x) = bo + (x — z)q n -1(x ; z),

2.5 Algebraic polynomials 63

having denoted by qn-1 the quotient and by b0 the remainder o f the
division. I f z is a root o f pn, then we have b0 = pn(z) = 0 and therefore
pn(x) = (x — z)q n - 1(x ; z). In this case the algebric equation qn -1 (x; z) =
0 provides the n — 1 remaining roots o f pn (x). Th is remark suggests to
adopt the follow ing deflation criterion to compute all the roots o f pn.

For m = n ,n — 1 , . . . , 1 :

1. find a root r m for pm w ith an appropriate approxim ation method;
2. compute qm -1 (x; rm) using (2.28)-(2.29) (having set z = rm);

3. set pm - 1 = qm-1.

In the follow ing paragraph we propose the most w idely known
m ethod in this group, which uses N ew ton ’s m ethod for the approxi­
mation o f the roots.

2 .5 .2 T h e N e w to n -H o r n e r m e th o d

As its name suggests, the Newton-Horner method implements the defla­
tion procedure using N ew ton ’s m ethod to compute the roots r m . The
advantage lies in the fact that the implem entation o f N ew ton ’s method
conveniently exploits Horner’s algorithm (2.28).

As a m atter o f fact, i f qn-1 is the polynom ial associated to pn defined
in (2.29), since

p'n(x) = q n -1(x ; z) + (x — z) q n -1(x ; z)

one has

p'n(z) = q n - 1(z ; z) .

Thanks to this identity, the Newton-Hoorner m ethod for the approxima­
tion o f a (real or com plex) root r j o f pn (j = 1 , . . . , n) takes the following
form:
given an initial estimation г(0 o f the root, compute for each k > 0 until
convergence

(2.31)

W e now use the deflation technique, exploiting the fact that pn(x) =
(x — r j) p n -1 (x) . W e can then proceed to the approxim ation o f a zero o f
pn-1 and so on until all the roots o f pn are processed.

Consider that when r j G C, it is necessary to perform the computa­

tion in com plex arithmetics, taking r (0) as the non-null im aginary part.

Otherwise, the Newton-Horner m ethod would generate a sequence { r j ^ }
o f real numbers.

64 2 Nonlinear equations

The Newton-Horner m ethod is implemented in Program 2.6. The co­
efficients aj o f the polynom ial for which we intend to compute the roots
are stored in vector a starting from an up to a0. The other input parame­
ters, t o l and nmax, are the stopping criterion tolerance (on the absolute
value o f the difference between two consecutive iterates) and the maximal
number o f iterations allowed, respectively. I f undefined, the default val­
ues nmax=100 and t o l= 1 .e - 0 4 are assumed. As an output, the program
returns in vectors r o o t s and i t e r the computed roots and the number
o f iterations required to compute each o f the values, respectively.

P ro g ra m 2.6. newtonhorner: Newton-HOrner method

f u n c t i o n [r o o t s , i t e r] = n e w t o n h o r n e r (a , x 0 , t o l , n m a x)
NEWTONHORNER Newt on - Ho r ne r method

[r o o t s , ITER]=NEWTONHORNER(A,X0) computes the r o o t s of
p o l y n o m i a l
P (X) = A (1) * X * N + A (2) * X * (N - 1) + . . . + A (N) * X +
A(N+1)
us i ng the Ne wt on - Ho r ne r method s t a r t i n g f rom the
i n i t i a l datum X 0 . The method s t o p s f o r each r o o t
a f t e r 100 i t e r a t i o n s or a f t e r the a b s o l u t e v a l u e o f
the d i f f e r e n c e be t ween two c o n s e c u t i v e i t e r a t e s i s
s m a l l e r than 1 . e - 0 4 .
[r o o t s , ITER]=NEWTONHORNER(A,X0,TOL, NMAX) a l l o w s t o
d e f i n e the t o l e r a n c e on the s t o p p i n g c r i t e r i o n and
the maximal number o f i t e r a t i o n s .

i f n a r g i n == 2
t o l = 1 . e - 0 4 ; nmax = 100;

e l s e i f n a r g i n == 3
nmax = 100;

end
n = l e n g t h (a) - 1 ; r o o t s = z e r o s (n , 1) ; i t e r = z e r o s (n , 1) ;
f o r k = 1 :n

% Newton i t e r a t i o n s
n i t e r = 0 ; x = x 0 ; d i f f = t o l + 1 ;
w h i l e n i t e r <= nmax & d i f f >= t o l

[p z , b] = h o r n e r (a , x) ; [d p z , b] = h o r n e r (b , x) ;
xnew = x - p z /dpz ; d i f f = a b s (x n e w - x) ;
n i t e r = n i t e r + 1 ; x = xnew;

end
i f n i t e r >= nmax

f p r i n t f (’ F a i l s t o c o n v e r g e w i t h i n maximum ’ , . . .
’ number o f i t e r a t i o n s \ n ’) ;

end
% D e f l a t i o n
[p z , a] = h o r n e r (a , x) ; r o o t s (k) = x ; i t e r (k) = n i t e r ;

end
r e t u r n

R em ark 2.1 In order to minimize the propagation of roundoff errors, during
the deflation process it is better to first approximate the root r 1 with minimal
absolute value and then to proceed to the computation of the following roots
r2, r3,. . . , until the one with the maximal absolute value is reached (to learn
more, see for instance [QSS06]). •

2.6 What we haven’t told you 65

E xam p le 2.11 To compute the roots {1, 2, 3 } o f the polynomial p3(x) =
x 3 — 6x 2 + 11x — 6 we use Program 2.6

a= [1 -6 11 - 6] ; [x , n i t e r] = n e w t o n h o r n e r (a , 0 , 1 . e - 1 5 , 1 0 0)

x =
1
2
3

n ite r =
8
8
2

The method computes all three roots accurately and in few iterations. As
pointed out in Remark 2.1 however, the method is not always so effective. For
instance, if we consider the polynomial p4(x) = x4 — 7x3 + 15x2 — 13x + 4
(which has the root 1 of multiplicity 3 and a single root with value 4) we find
the following results

a= [1 -7 15 -13 4] ; f o r ma t l o n g ;
[x , n i t e r] = n e w t o n h o r n e r (a , 0 , 1 . e - 1 5 ,100)

x =
1.00000693533737
0.99998524147571
1.00000782324144
3.99999999994548

n ite r =
61

101
6
2

The loss of accuracy is quite evident for the computation of the multiple
root, and becomes as more relevant as the multiplicity increases (see [QSS06]).

2.6 W h a t w e h aven ’t to ld you
The most sophisticated methods for the com putation o f the zeros o f
a function combine different algorithms. In particular, the M A T L A B
function f z e r o (see Section 1.4.1) adopts the so called Dekker-Brent
m ethod (see [QSS06], Section 6.2.3). In its basic form f z e r o (f u n , x 0)
computes the zero o f the function fun, where fun can be either a string
which is a function o f x, the name o f an inline function, or the name o f
a m-file.

For instance, we could solve the problem in Exam ple 2.1 also by
fz e r o , using the initial value x0=0 .3 (as done by N ew ton ’s m ethod) via
the follow ing instructions:

f z e r o

66 2 Nonlinear equations

f s o l v e

f u n c t i o n y = R f u n c (r)
y=6000 - 1 0 0 0 * (1 + r) / r * ((1 + r) " 5 - 1) ;
end

x0=0 . 3 ;
[a l p h a , r e s , f l a g] = f z e r o (’ R f u n c ’ , x 0) ;

W e obtain alpha=0.06140241153653 w ith residual res=9 .0 9 4 9 e-1 3 in
it e r = 2 9 iterations. W hen f l a g is negative it means that f z e r o cannot
find the zero. The New ton m ethod converges in 6 iterations to the value
0.06140241153652 w ith a residual equal to 2.3646e-11.

In order to compute the zeros o f a polynom ial, in addition to the
Newton-Hoorner method, we can cite the methods based on Sturm se­
quences, M u ller’s method, (see [Atk89] or [QSS06]) and Bairstow ’s
m ethod ([RR85], page 371 and follow ing). A different approach con­
sists in characterizing the zeros o f a function as the eigenvalues o f a
special m atrix (called the companion matrix) and then using appropri­
ate techniques for their computation. Th is approach is adopted by the
M A T L A B function r o o ts which has been introduced in Section 1.4.2.

W e have mentioned in Section 2.2.2 how to set up a New ton method
for a nonlinear system, like (2.13). M ore in general, any fixed point iter­
ation can be easily extended to compute the roots o f nonlinear systems.
O ther methods exist as well, such as the Broyden and quasi-Newton
methods, which can be regarded as generalizations o f N ew ton ’s method
(see [DS83], [Deu04], [SM03] and [QSS06, Chapter 7]).

The M A T L A B instruction

z e r o = f s o l v e (’ f u n ’ , x 0)

allows the com putation o f one zero o f a nonlinear system defined via
the user function fun starting from the vector x 0 as initial guess. The
function fun returns the n values f i (x 1, . . . , x n), i = 1 , . . . ,n , for any
given input vector (x 1, . . . , x n)T .

For instance, in order to solve the nonlinear system (2.15) us­
ing f s o l v e the corresponding M A T L A B user function, which we call
system nl, is defined as follows:

f u n c t i o n f x = s y s t e m n l (x)
f x (1) = x (1)* 2 + x (2) * 2 - 1 ;
f x (2) = s i n (p i * 0 . 5 * x (1)) + x (2) ~ 3 ;

The M A T L A B instructions to solve this system are therefore:

x 0 = [1 1] ;
a l p h a = f s o l v e (’ s y s t e m n l ’ , x 0)

a lph a =
0.4761 -0 .8794

Using this procedure we have found on ly one o f the two roots. The other
can be computed starting from the initial datum - x 0 .

2.7 Exercises 67

O c ta v e 2.1 The commands f z e r o and f s o l v e have exactly the same
purpose in M A T L A B and Octave, however there interface differ slightly
between M A T L A B and Octave in the optional arguments. W e encourage
the reader to study the h e lp documentation o f both commands in each
environment. ■

2.7 E xercises
E xercise 2.1 Given the function f (x) = coshx — cosx - 7 , for 7 = 1, 2, 3 find
an interval that contains the zero of f . Then compute the zero by the bisection
method with a tolerance o f 10~ 10.

E xercise 2.2 (S ta te equation o f a gas) For carbon dioxide (C O 2) the co­
efficients a and b in (2.1) take the following values: a = 0.401Pa m6, b =
42.7 • 10~6m3 (Pa stands for Pascal). Find the volume occupied by 1000 mole­
cules of CO2 at a temperature T = 300K and a pressure p = 3.5 • 107 Pa by
the bisection method, with a tolerance of 10~ 12 (the Boltzmann constant is
k = 1.3806503 • 10~23 Joule K _1).

E xercise 2.3 Consider a plane whose slope varies with constant rate w, and
a dimensionless object which is steady at the initial time t = 0. A t time t > 0
its position is

s(t,w) = 7-^7[sinh(wt) - sin(wt)],
2w2

where g = 9.8 m/s2 denotes the gravity acceleration. Assuming that this object
has moved by 1 meter in 1 second, compute the corresponding value of w with
a tolerance of 10~6.

E xercise 2.4 Prove inequality (2.6).

E xercise 2.5 Motivate why in Program 2.1 the instruction x (2) = x (1) +
(x (3) - x (1)) * 0 . 5 has been used instead of the more natural one x(2) = (x (1) +
x (3)) * 0 . 5 in order to compute the midpoint.

E xercise 2.6 Apply Newton’s method to solve Exercise 2.1. Why is this
method not accurate when 7 = 2?

E xercise 2.7 Apply Newton’s method to compute the square root o f a pos­
itive number a. Proceed in a similar manner to compute the cube root of
a.

E xercise 2.8 Assuming that Newton’s method converges, show that (2.9)
is true when a is a simple root o f f (x) = 0 and f is twice continuously
differentiable in a neighborhood of a .

68 2 Nonlinear equations

E xercise 2.9 (R o d s system) Apply Newton’s method to solve Problem 2.3
for в e [0, 2n/3] with a tolerance o f 10-5 . Assume that the lengths of the rods
are a1 = 10 cm, a2 = 13 cm, a3 = 8 cm and a4 = 10 cm. For each value of в
consider two possible initial data, x (0) = —0.1 and x (0) = 2n/3.

E xercise 2.10 Notice that the function f (x) = ex — 2x2 has 3 zeros, a 1 < 0,
a2 and a3 positive. For which value of x (0) does Newton’s method converge
to a 1?

E xercise 2.11 Use Newton’s method to compute the zero of f (x) = x 3 —
3x22-x + 3x4-x — 8-x in [0,1] and explain why convergence is not quadratic.

E xercise 2.12 A projectile is ejected with velocity v0 and angle a in a tunnel
of height h and reaches its maximum range when a is such that sin(a) =
■\j2gh/v2, where g = 9.8 m/s2 is the gravity acceleration. Compute a using
Newton’s method, assuming that v0 = 10 m/s and h = 1 m.

E xercise 2.13 (In vestm en t fund) Solve Problem 2.1 by Newton’s method
with a tolerance o f 10-12, assuming M = 6000 euros, v = 1000 euros and
n = 5. As an initial guess take the result obtained after 5 iterations o f the
bisection method applied on the interval (0.01, 0.1).

E xercise 2.14 A corridor has the form indicated in Figure 2.10. The maxi­
mum length L of a rod that can pass from one extreme to the other by sliding
on the ground is given by

L = l2/(sin(n — y — a)) + l1/ sin(a),

where a is the solution o f the nonlinear equation

, c°s(n — y — a) , c °s (a) 0 (2 32)
l2 -^T f------------- N — l1 ■ 2f \ = 0. (2.32)sin2 (n — y — a) sin2 (a)

Compute a by Newton’s method when l2 = 10, l1 = 8 and y = 3n/5.

F ig . 2.10. The problem of a rod sliding in a corridor

2.7 Exercises 69

E xercise 2.15 Let фм be the iteration function of Newton’s method when
regarded as a fixed point iteration. Show that ф'м (a) = 1 - 1/m where a
is a zero of f with multiplicity m. Deduce that Newton’s method converges
quadratically if a is a simple root of f (x) = 0, and linearly otherwise.

E xercise 2.16 Deduce from the graph of f (x) = x 3 — 4x2 - 10 that this
function has a unique real zero a . To compute a use the following fixed point
iterations: given x (0), define x (k+ 1) such that

x(fc+1) = 2 (x (k)) 3 — 4 (x (k)) 2 — 10 0
x 3 (x(fc)) 2 — 8x (fc) , k - 0

and analyze its convergence to a .

E xercise 2.17 Analyze the convergence of the fixed point iterations

x (k+1) = x(fe)[(x(fe))2 — 3a] 0
3 (x (k)) 2 — a , — ,

for the computation of the square root of a positive number a.

E xercise 2.18 Repeat the computations carried out in Exercise 2.11 this time
using the stopping criterion based on the residual. Which result is the more
accurate?

A pproxim ation o f functions and data
3___

Approxim ating a function f consists o f replacing it by another function
f o f simpler form that m ay be used as its surrogate. This strategy is
used frequently in numerical integration where, instead o f computing

fa f (x)d x , one carries out the exact com putation o f fa f (x)d x , f being
a function simple to integrate (e.g. a polynom ial), as we w ill see in the
next chapter. In other instances the function f m ay be available only
partia lly through its values at some selected points. In these cases we
aim at constructing a continuous function f that could represent the
empirical law which is behind the finite set o f data. W e provide some
examples which illustrate this kind o f approach.

P r o b le m 3.1 (C l im a t o lo g y) The air tem perature near the ground de­
pends on the concentration K o f the carbon acid (H 2C O 3) therein. In
Table 3.1 (taken from Philosophical Magazine 41, 237 (1896)) we report
for different latitudes on the Earth and for four different values o f K ,

the variation 5K = 6K — @K o f the average tem perature w ith respect
to the average tem perature corresponding to a reference value K o f K .
Here K refers to the value measured in 1896, and is normalized to one.
In this case we can generate a function that, on the basis o f the available
data, provides an approxim ate value o f the average tem perature at any
possible latitude and for other values o f K (see Exam ple 3.1). ■

P r o b le m 3 .2 (F in a n c e) In Figure 3.1 we report the price o f a stock
at the Zurich stock exchange over two years. The curve was obtained by
jo in ing w ith a straight line the prices reported at every day ’s closure. This
simple representation indeed im plic itly assumes that the prices change
linearly in the course o f the day (we anticipate that this approximation
is called composite linear in terpolation). W e ask whether from this graph
one could predict the stock price for a short tim e interval beyond the
tim e o f the last quotation. W e w ill see in Section 3.4 that this kind o f

72 3 Approximation of functions and data

Sk
Latitude K = 0.67 K = 1.5 K = 2.0 K = 3.0

65 -3.1 3.52 6.05 9.3
55 -3.22 3.62 6.02 9.3
45 -3.3 3.65 5.92 9.17
35 -3.32 3.52 5.7 8.82
25 -3.17 3.47 5.3 8.1
15 -3.07 3.25 5.02 7.52
5 -3.02 3.15 4.95 7.3
-5 -3.02 3.15 4.97 7.35

-15 -3.12 3.2 5.07 7.62
-25 -3.2 3.27 5.35 8.22
-35 -3.35 3.52 5.62 8.8
-45 -3.37 3.7 5.95 9.25
-55 -3.25 3.7 6.1 9.5

Tab le 3.1. Variation of the average yearly temperature on the Earth for four
different values of the concentration K of carbon acid at different latitudes

prediction could be guessed by resorting to a special technique known as
least-squares approximation o f data (see Exam ple 3.9). ■

F ig . 3.1. Price variation of a stock over two years

P r o b le m 3 .3 (B io m e c h a n ic s) W e consider a mechanical test to es­
tablish the link between stresses (M P a = 100 N/cm 2) and deformations o f
a sample o f b iological tissue (an intervertebral disc, see F igure 3.2). Start­
ing from the data collected in Table 3.2 (taken from P.Kom arek, Chapt.
2 o f Biomechanics o f Clinical Aspects of Biomedicine, 1993, J.Valenta
ed., E lsevier) in Exam ple 3.10 we w ill estimate the deform ation corre­
sponding to a stress a = 0.9 M Pa. ■

3 Approximation of functions and data 73

F ig . 3.2. A schematic representation o f an intervertebral disc

test stress a stress e test stress a stress e
1 0.00 0.00 5 0.31 0.23
2 0.06 0.08 6 0.47 0.25
3 0.14 0.14 7 0.60 0.28
4 0.25 0.20 8 0.70 0.29

Tab le 3.2. Values o f the deformation for different values of a stress applied
on an intervertebral disc

P r o b le m 3 .4 (R o b o t ic s) W e want to approxim ate the planar tra jec­
to ry followed by a robot (idealized as a material poin t) during a working
cycle in an industry. The robot should satisfy a few constraints: it must
be steady at the point (0, 0) in the plane at the initial tim e (say, t = 0),
transit through the point (1, 2) at t = 1 , get the point (4, 4) at t = 2,
stop and restart im m ediately and reach the point (3 , 1) at t = 3, return
to the initial point at tim e t = 5, stop and restart a new working cycle.
In Exam ple 3.7 we w ill solve this problem using the splines functions. ■

A function f can be replaced in a given interval by its Taylor polyno­
mial, which was introduced in Section 1.4.3. Th is technique is computa­
tionally expensive since it requires the knowledge o f f and its derivatives
up to the order n (the polynom ial degree) at a given point x 0. M ore­
over, the Taylor polynom ial m ay fail to accurately represent f far enough
from the point x 0. For instance, in Figure 3.3 we compare the behav­
ior o f f (x) = 1/x w ith that o f its Taylor polynom ial o f degree 10 built
around the point x 0 = 1. This picture also shows the graphical interface
o f the M A T L A B function t a y l o r t o o l which allows the com putation of t a y l o r t o o l
Tay lor ’s polynom ial o f arb itrary degree for any given function f . The
agreement between the function and its Taylor polynom ial is very good
in a small neighborhood o f x 0 = 1 while it becomes unsatisfactory when
x — x 0 gets large. Fortunately, this is not the case o f other functions such
as the exponential function which is approxim ated quite n icely for all
x e R by its Taylor polynom ial related to x 0 = 0, provided that the
degree n is sufficiently large.

In the course o f this chapter we w ill introduce approxim ation methods
that are based on alternative approaches.

74 3 Approximation of functions and data

T 10{x) = 2 -x+ (x-1)2-(x -1)3+(x-1)4-(x -1)5+(x-1)e-(x -1)7+...+ (x-1)1°

f(x) FT*

F ig . 3.3. Comparison between the function f (x) = 1/x (solid line) and its
Taylor polynomial of degree 10 related to the point xo = 1 (dashed line). The
explicit form of the Taylor polynomial is also reported

3.1 In terp olation
As seen in Problem s 3.1, 3.2 and 3.3, in several applications it may
happen that a function is known only through its values at some given
points. W e are therefore facing a (general) case where n + 1 couples
{ x i ,y i }, i = 0, . . . , n , are given; the points Xi are all distinct and are
called nodes.

For instance in the case o f Table 3.1, n is equal to 12, the nodes x i are
the values o f the latitude reported in the first column, while the yi are
the corresponding values (o f the tem perature) in the remaining columns.

In such a situation it seems natural to require the approxim ate func­
tion f to satisfy the set o f relations

f (x i) = y i , i = 0, 1, (3.1)

Such an f is called interpolant o f the set o f data {yi } and equations (3.1)
are the interpolation conditions.

Several kinds o f interpolants could be envisaged, such as:

- polynomial interpolant:

f (x) = ao + a\x + a2X2 + . . . + anx n ;

- trigonometric interpolant:

f (x) = a- м e- iM x + . . . + ao + . . . + ам eiMx

3.1 Interpolation 75

where M is an integer equal to n/2 i f n is even, (n — 1)/2 if n is odd,
and i is the im aginary unit;

- rational interpolant:

For sim plicity we on ly consider those interpolants which depend lin­
early on the unknown coefficients â . Both polynom ial and trigonom etric
interpolation fall into this category, whereas the rational interpolant does
not.

3.1 .1 L a g ra n g ia n p o ly n o m ia l in te rp o la t io n

Let us focus on the polynom ial interpolation. The follow ing result holds:

P r o p o s it io n 3.1 For any set o f couples { x i , yi }, i = 0 , . . . , n , with
distinct nodes x iy there exists a unique polynomial of degree less
than or equal to n, which we indicate by П п and call interpolating
polynomial of the values yi at the nodes x i , such that

In the case where the {yi , i = 0 , . . . , n } represent the values of a
continuous function f , П п is called interpolating polynomial of f
(in short, interpolant of f) and will be denoted by n nf .

To verify uniqueness we proceed by contradiction and suppose that
there exist two distinct polynom ials o f degree n, П п and П *, both sat­
isfying the nodal relation (3.2). Their difference, П п — П *, would be a
polynom ial o f degree n which vanishes at n + 1 distinct points. O w ing
to a well known theorem o f A lgebra, such a polynom ial should vanish
identically, and then ПП must coincide w ith П п.

In order to obtain an expression for П п, we start from a very special
case where yi vanishes for all i apart from i = к (for a fixed k) for which
yk = 1. Then setting ^ k(x) = П п (х), we must have (see Figure 3.4)

f (x)
ao + a i x + . . . + ak x k

ak+1 + ak+2x + . . . + ak+n+1xn

n n (x i) = y i , i = 0 , . . . , n (3.2)

where 5jk is the Kronecker symbol.
The functions фk have the follow ing expression:

n
к = 0 , . . . , n . (3.3)

76 3 Approximation of functions and data

F ig . 3.4. The polynomial G P4 associated with a set of 5 equispaced nodes

W e move now to the general case where {y i , i = 0 , . . . , n } is a set of
arb itrary values. Using an obvious superposition principle we can obtain
the follow ing expression for П п

n

П п (х) Ук ¥к (x)
к=0

(3.4)

Indeed, this polynom ial satisfies the interpolation conditions (3.2), since

n n

П п (x i) ^ ̂ук ̂ к (x i) ^ ̂ук &ik yi: i 0, . . . , n .
к=0 к=0

Due to their special role, the functions к are called Lagrange char­
acteristic polynomials, and (3.4) is the Lagrange form o f the interpolant.
In M A T L A B we can store the n+1 couples { (x i ,y i) } in the vectors x

p o l y f i t and y, and then the instruction c = p o l y f i t (x , y , n) w ill provide the coef­
ficients o f the interpolating polynom ial. Precisely, c (1) w ill contain the
coefficient o f x n, c (2) that o f x n_1, . . . and c (n + 1) the value o f П п (0).
(M ore on this command can be found in Section 3.4.) As already seen
in Chapter 1, we can then use the instruction p = p o ly v a l (c , z) to com­
pute the value p (j) attained by the interpolating polynom ial at z (j) ,
j = 1 , . . . , m , the latter being a set o f m arbitrary points.

In the case when the explicit form o f the function f is available, we
can use the instruction y = e v a l (f) in order to obtain the vector y of
values o f f at some specific nodes (which should be stored in a vector x).

E xam p le 3.1 (C lim a to lo g y) To obtain the interpolating polynomial for the
data of Problem 3.1 relating to the value K = 0.67 (first column o f Table 3.1),
using only the values of the temperature for the latitudes 65, 35, 5, -25, -55,
we can use the following M A T L A B instructions:

3.1 Interpolation 77

x= [- 55 -25 5 35 65] ; y = [- 3 . 2 5 - 3 . 2 - 3 . 0 2 - 3 . 3 2 - 3 . 1] ;
f o r ma t s h o r t e ; c = p o l y f i t (x , y , 4)

c =
8.2819e-08 -4.5267e-07 -3.4684e-04 3.7757e-04 -3.0132e+00

The graph of the interpolating polynomial can be obtained as follows:

z = l i n s p a c e (x (1) , x (e n d) , 100) ;
p = p o l y v a l (c , z) ;
p l o t (z , p) ; h o l d o n ; p l o t (x , y , ’ o ’) ; g r i d on;

In order to get a smooth curve we have evaluated our polynomial at 101
equispaced points in the interval [—55, 65] (as a matter of fact, M A T L A B plots
are always constructed on piecewise linear interpolation between neighboring
points). Note that the instruction x(end) picks up directly the last component
of the vector x, without specifying the length o f the vector. In Figure 3.5 the
filled circles correspond to those values which have been used to construct the
interpolating polynomial, whereas the empty circles correspond to values that
have not been used. We can appreciate the qualitative agreement between the
curve and the data distribution. ■

F ig . 3.5. The interpolating polynomial of degree 4 introduced in Example 3.1

Using the follow ing result we can evaluate the error obtained by re­
placing f w ith its interpolating polynom ial n nf :

P r o p o s it io n 3.2 Let I be a bounded interval, and consider n + 1
distinct interpolation nodes { x i: i = 0 , . . . , n } in I . Let f be contin­
uously differentiable up to order n + 1 in I .

78 3 Approximation of functions and data

Then Vx G I G I such that

f (n+ 1)(£) n
E n f (x) = f (x) П п f (x) = (+ J J (x Xi)

(n +)! i=0
(3.5)

ё

Obviously, E nf (x i) = 0 , i = 0 , . . . , n .
Result (3.5) can be better specified in the case o f a uniform distrib­

ution o f nodes, that is when x i = x i_ i + h for i = 1 , . . . ,n , for a given
h > 0 and a given x 0. As stated in Exercise 3.1, Vx G (x 0, x n) one can
verify that

~\(x - Xi) < n!
hn+ i

and therefore

m ax|Enf (x)| <
xEl

maxi f (
xei

n+1) (x)

4 (n + 1)
-hn+ 1

(3.6)

(3.7)

Unfortunately, we cannot deduce from (3.7) that the error tends to
0 when n ^ ж , in spite o f the fact that hn+ 1 /[4(n + 1)] tends to 0. In
fact, as shown in Exam ple 3.2, there exist functions f for which the lim it
can even be infinite, that is

lim max|Enf (x)| = ж .
п^ ж xEl

This striking result indicates that by increasing the degree n o f the
interpolating polynom ial we do not necessarily obtain a better recon­
struction o f f . For instance, should we use all data o f the second column
o f Table 3.1, we would obtain the interpolating polynom ial n 12f repre­
sented in Figure 3.6, whose behavior in the v ic in ity o f the left-hand o f
the interval is far less satisfactory than that obtained in F igure 3.5 using
a much smaller number o f nodes. An even worse result m ay arise for a
special class o f functions, as we report in the next example.

E xam p le 3.2 (R u n g e) I f the function f (x) = 1/(1 + x2) is interpolated
at equispaced nodes in the interval I = (—5, 5), the error maxl£ j E n f (x)|
tends to infinity when n ^ to. This is due to the fact that if n ^ <x the
order of magnitude of maxl£ j \ f (n+1) (x)| outweighs the infinitesimal order of
h.n+1/[4(n + 1)]. This conclusion can be verified by computing the maximum of
f and its derivatives up to the order 21 by means of the following M A T L A B
instructions:

syms x; n = 20 ; f = 1/ (1+ x * 2) ; d f = d i f f (f , 1) ;
cd f = c h a r (d f) ;
f o r i = 1 : n + 1 , d f = d i f f (d f , 1) ; cd f n = c h a r (d f) ;

x = f z e r o (c d f n , 0) ; M (i) = a b s (e v a l (c d f)) ; cd f = cd f n ;
end

4

3.1 Interpolation 79

The maximum o f the absolute values of the functions f (n), n = 1, . . . , 21,
are stored in the vector M. Notice that the command char converts the symbolic
expression d f into a string that can be evaluated by the function fzero . In
particular, the absolute values of f (n) for n = 3, 9, 15, 21 are:

> > M ([3 ,9 ,15 ,21]) =
ans =

4.6686e+00 3.2426e+05 1.2160e+12 4.8421e+19
n

while the corresponding values of the maximum of]^[(ж — Xi)/(n + 1)! are
i=0

z = l i n s p a c e (- 5 , 5 , 1 0 0 0 0) ;
f o r n=0 : 20 ; h = 1 0 / (n + 1) ; x = [- 5 : h : 5] ;

c = p o l y (x) ;
r (n + 1) = m a x (p o l y v a l (c , z)) ;
r (n + 1) = r (n + 1) / p r o d ([1 : n + 2]) ;

end
r ([3 , 9 , 1 5 , 2 1])

ans =

2.8935e+00 5.1813e-03 8.5854e-07 2.1461e-11

c=po ly (x) is a vector whose components are the coefficients o f that polynomial
whose roots are the elements of the vector x. It follows that maxl£ j \Enf (x)|
attains the following values:

> > format short e;
1.3509e+01 1.6801e+03 1.0442e+06 1.0399e+09

for n = 3, 9, 15, 21, respectively.
The lack of convergence is also indicated by the presence of severe oscilla­

tions in the graph of the interpolating polynomial with respect to the graph
of f , especially near the endpoints of the interval (see Figure 3.6, right). This
behavior is known as Runge’s phenomenon. ■

Besides (3.7), the follow ing inequality can also be proved:

m ax|f ' (x) - (П пf)'(x)| < C h nmax\f (n+1) (x)|,
xEI xEI

where C is a constant independent o f h. Therefore, i f we approximate
the first derivative o f f by the first derivative o f П п f , we loose an order
o f convergence w ith respect to h .

In M A T L A B , (П nf) ' can be computed using the instruction [d] =
p o l y d e r (c) , where c is the input vector in which we store the coefficients
o f the interpolating polynom ial, while d is the output vector where we
store the coefficients o f its first derivative (see Section 1.4.2).

p o ly

p o ly d e r

O c ta v e 3.1 The analogous command in Octave is [d]= p o ly d e r iv (c) .
■

See the Exercises 3.1-3.4.

80 3 Approximation of functions and data

F ig . 3.6. Two examples o f Runge’s phenomenon: to the left, П 12 computed
for the data of Table 3.1, column K = 0.67; to the right, n 12f (solid line)
computed on 13 equispaced nodes for the function f (x) = 1/(1 + x 2) (dashed
line)

3 .1 .2 C h e b y s h e v in te rp o la t io n

Runge’s phenomenon can be avoided i f a suitable distribution o f nodes
is used. In particular, in an arbitrary interval [a, b], we can consider the
so called Chebyshev nodes (see Figure 3.7, right):

a + b b — a л л .
x i = —------1------— Xi, where Xi = — cos(ni/n), г = 0, . . . , n (3.8)

Obviously, x i = Xi , г = 0 , . . . , n , when [a, b] = [—1,1].
Indeed, for this special distribution o f nodes it is possible to prove that,
if f is a continuous and differentiable function in [a, b], n nf converges
to f as n for all x G [a, b].

The Chebyshev nodes, which are the abscissas o f equispaced nodes
on the unit semi-circumference, lie inside [a, b] and are clustered near the
endpoints o f this interval (see F igure 3.7).

Another non-uniform distribution o f nodes in the interval (a, b), shar­
ing the same convergence properties o f Chebyshev nodes, is provided by:

a + b b — a (2i + 1 n \
, г = 0,.------ 7" 7Г ., n

i 2 2 ̂n + 1 2 J
(3.9)

E xam p le 3.3 We consider anew the function f o f Runge’s example and com­
pute its interpolating polynomial 1at Chebyshev nodes. The latter can be ob­
tained through the following M A T L A B instructions:

xc = - c o s (p i * [0 : n] / n) ; x = (a + b) * 0 . 5 + (b - a) * x c * 0 . 5 ;

3.1 Interpolation 81

F ig . 3.7. The left side picture shows the comparison between the function
f (x) = 1/(1 + x2) (thin solid line) and its Chebyshev interpolating polynomi­
als of degree 8 (dashed line) and 12 (solid line). Note that the amplitude of
spurious oscillations decreases as the degree increases. The right side picture
shows the distribution of Chebyshev nodes in the interval [—1,1]

where n+1 is the number of nodes, while a and b are the endpoints of the
interpolation interval (in the sequel we choose a=-5 and b=5). Then we compute
the interpolating polynomial by the following instructions:

f= ’ 1 . / (1+ x . ~ 2) ’ ; y = e v a l (f) ; c = p o l y f i t (x , y , n) ;

Now let us compute the absolute values o f the differences between f and
its Chebyshev interpolant at as many as 1001 equispaced points in the interval
[—5, 5] and take the maximum error values:

x = l i n s p a c e (- 5 , 5 , 1 0 0 0) ; p = p o l y v a l (c , x) ;
f x = e v a l (f) ; e r r = m a x (a b s (p - f x)) ;

As we see in Table 3.3, the maximum of the error decreases when n in­
creases. ■

n 5 10 20 40
En 0.6386 0.1322 0.0177 0.0003~

Tab le 3.3. The Chebyshev interpolation error for Runge’s function f (x) =

1/ (1 + x 2)

3 .1 .3 T r ig o n o m e tr ic in te rp o la t io n a n d F F T

W e want to approximate a periodic function f : [0, 2n] ^ C, i.e. one sat­
isfying f (0) = f (2n), by a trigonom etric polynom ial f which interpolates
f at the n + 1 nodes Xj = 2n j/ (n + 1), j = 0 , . . . , n , i.e.

f (X j) = f (X j), for j = 0 , . . . , n . (3.10)

The trigonometric interpolant f is obtained by a linear combination o f
sines and cosines.

In particular, i f n is even, f w ill have the form

M
f (x) = у + ^ 2 [ak cos(kx) + bk s in (k x)] , (3.11)

k=1

where M = n/2 while, i f n is odd,

I (x) =
a M (3.12)
"2" + y ~ l [ak cos (kx) + bk s in (kx)] + " m +1 c o s ((M + 1)x),

k=1

where M = (n — 1)/2. W e can rewrite (3.11) as

M

f (x) =] T ckeikx, (3.13)
k= -M

i being the im aginary unit. The com plex coefficients ck are related to
the coefficients ak and bk (com plex too) as follows:

ak = Ck + c -k , bk = i(ck — c - k), k = 0 , . . . , M . (3.14)

Indeed, from (1.5) it follows that eikx = cos(kx) + i s in (kx) and

M M
ckeikx = ck (c o s (k x)+ i s in (kx))

k = -M k= -M
M

[ck(cos (kx) + i s in (k x)) + c-k (cos (kx) — i s in (k x))] + co.
k=1

Therefore we derive (3.11), thanks to the relations (3.14).
Analogously, when n is odd, (3.12) becomes

M +1

f (x) =] T ck eikx, (3.15)

k = - (M +1)

where the coefficients ck for k = 0 , . . . , M are the same as before, while
cM +1 = c- (M + 1) = aM + 1/2. In both cases, we could write

m + M

I (x) =] T ckeikx, (3.16)
k = - (M + M)

w ith /л = 0 if n is even and /л = 1 i f n is odd. Should f be real valued, its
coefficients ck satisfy c-k = ck; from (3.14) it follows that the coefficients
ak and bk are all real.

82 3 Approximation of functions and data

Because o f its analogy w ith Fourier series, f is called a discrete
Fourier series. Im posing the interpolation condition at the nodes Xj =
jh , w ith h = 2n/(n + 1), we find that

m

ckeikjh = f (x j), j = 0 , . . . , n . (3.17)

k = - (M + M)

For the com putation o f the coefficients { c k} let us m ultip ly equations
(3.17) by e-im xj = e- im jh , where m is an integer between 0 and n, and
then sum w ith respect to j :

n M +ц n

Y , Y , ck eikjhe-im jh = Y f (x j)e - im jh . (3.18)
j =0 k = - (M +m) j =0

W e now require the follow ing identity:

n

J 2 e ijh(k-m) = (n + 1)Skm.
j =0

This identity is obviously true i f к = m. W hen к = m, we have

n 1 /„i(k—m)h\n+1

Eeijh(k-m) = 1 - (e M
1 ei(k-m)h

j =0 e

The numerator on the right hand side is null, since

1 ei(k-m)h(n+1) _ 1 _ ei(k-m)2n

= 1 — cos((k — m)2n) — i s in ((k — m)2n).

Therefore, from (3.18) we get the follow ing explicit expression for the
coefficients o f f :

3.1 Interpolation 83

(3.19)

The com putation o f all the coefficients { c k } can be accomplished w ith
an order n log2 n operations by using the fast Fourier transform (F F T),
which is implemented in the M A T L A B program f f t (see Exam ple 3.4).
Sim ilar conclusions hold for the inverse transform through which we
obtain the values { f (x j) } from the coefficients { c k} . The inverse fast
Fourier transform is implemented in the M A T L A B program i f f t .

E xam p le 3.4 Consider the function f (x) = x(x — 2n)e-x for x £ [0, 2п]. To
use the M A T L A B program f f t we first compute the values of f at the nodes
xj = jn/5 for j = 0, . . . , 9 by the following instructions (recall that .* is the
component-by-component vector product):

f f t
i f f t

i n t e r p f t

84 3 Approximation of functions and data

F ig . 3.8. The function f (x) = x(x — 2n)e x (dashed line) and the corre­
sponding trigonometric interpolant (continuous line) relative to 10 equispaced
nodes

x = p i / 5 * [0 : 9] ; y = x . * (x - 2 * p i) . * e x p (- x) ;

Now by the F F T we compute the vector of the Fourier coefficients, Y=
(n + 1)[c0, . . . , cM+fj,, c- м , ■ ■., c - i], by the following instructions:

Y = f f t (y) ;

Columns 1 and 2:
- 6 . 52032 + 0 . 00000 i

Columns 3 and 4:
1.26805 + 1 . 62110 i

Columns 5 and 6 :
0 .92585 + 0. 21398 i

Columns 7 and 8 :
0 .92585 - 0 . 21398 i

Columns 9 and 10:
1.26805 - 1 . 62110 i

-0 .46728 + 4 . 2 0 0 1 2 i

1. 09849 + 0 . 60080 i

0 . 87010 + 0 . 00000 i

1. 09849 - 0 . 60080 i

- 0 .46728 - 4 . 2 0 0 1 2 i

Note that the program i f f t achieves the maximum efficiency when n is a
power of 2, even though it works for any value of n. ■

The command in t e r p f t provides the trigonom etric interpolant o f a
set o f data. It requires in input an integer m and a vector o f values which
represent the values taken by a function (periodic w ith period p) at the
set o f points x j = jp / (n + 1), j = 0 , . . . , n . i n t e r p f t returns the m val­
ues o f the trigonom etric interpolant, obtained by the Fourier transform,
at the nodes ti = ip/m, i = 0 , . . . , m — 1. For instance, let us reconsider
the function o f Exam ple 3.4 in [0, 2n] and take its values at 10 equi­
spaced nodes Xj = jn/5, j = 0 , . . . , 9. The values o f the trigonom etric
interpolant at, say, the 100 equispaced nodes t i = in/100, i = 0 , . . . , 99
can be obtained as follows (see Figure 3.8)

x = p i / 5 * [0 : 9] ; y = x . * (x - 2 * p i) . * e x p (- x) ; z = i n t e r p f t (y , 1 0 0) ;

In some cases the accuracy o f trigonom etric interpolation can dra­
m atically downgrade, as shown in the follow ing example.

3.1 Interpolation 85

F ig . 3.9. The effects of aliasing: comparison between the function f (x) =
sin (x)+sin (5x) (solid line) and its trigonometric interpolant (3.11) with M = 3
(dashed line)

E xam p le 3.5 Let us approximate the function f (x) = f i (x) + f 2(x), with
f i (x) = sin(x) and f 2(x) = sin(5x), using nine equispaced nodes in the interval
[0, 2п]. The result is shown in Figure 3.9. Note that in some intervals the
trigonometric approximant shows even a phase inversion with respect to the
function f . ■

This lack o f accuracy can be explained as follows. A t the nodes consid­
ered, the function f 2 is indistinguishable from f 3(x) = — sin (3x) which
has a lower frequency (see Figure 3.10). The function that is actually
approxim ated is therefore F (x) = f i (x) + f 3(x) and not f (x) (in fact,
the dashed line o f F igure 3.9 does coincide w ith F).

Th is phenomenon is known as aliasing and m ay occur when the func­
tion to be approxim ated is the sum o f several components having differ­
ent frequencies. As soon as the number o f nodes is not enough to resolve
the highest frequencies, the latter m ay interfere w ith the low frequen­
cies, g iving rise to inaccurate interpolants. To get a better approximation
for functions w ith higher frequencies, one has to increase the number o f
interpolation nodes.

A real life example o f aliasing is provided by the apparent inversion
o f the sense o f rotation o f spoked wheels. Once a certain critical velocity
is reached the human brain is no longer able to accurately sample the
m oving image and, consequently, produces distorted images.

ё

Let us sum m arize

1. Approxim ating a set o f data or a function f in [a, b] consists o f finding
a suitable function f that represents them w ith enough accuracy;

2 . the interpolation process consists o f determ ining a function f such
that f (x i) = yi, where the { x i } are given nodes and {y i} are either
the values { f (x i) } or a set o f prescribed values;

86 3 Approximation of functions and data

F ig . 3.10. The phenomenon of aliasing: the functions sin(5x) (dashed line)
and — sin(3x) (dotted line) take the same values at the interpolation nodes.
This circumstance explains the severe loss of accuracy shown in Figure 3.9

3. i f the n + 1 nodes { x i } are distinct, there exists a unique polynom ial
o f degree less than or equal to n interpolating a set o f prescribed
values {yi } at the nodes {x i } :

4. for an equispaced distribution o f nodes in [a, b] the interpolation
error at any point o f [a, b] does not necessarily tend to 0 as n tends
to infinity. However, there exist special distributions o f nodes, for
instance the Chebyshev nodes, for which this convergence property
holds true for all continuous functions:

5. trigonom etric interpolation is well suited to approxim ate periodic
functions, and is based on choosing f as a linear combination o f sine
and cosine functions. The F F T is a very efficient algorithm which
allows the com putation o f the Fourier coefficients o f a trigonom etric
interpolant from its node values and admits an equally fast inverse,
the IF F T .

3.2 P iecew ise linear in terp olation
The Chebyshev interpolant provides an accurate approxim ation o f
smooth functions f whose expression is known. In the case when f is
nonsmooth or when f is on ly known by its values at a set o f given points
(which do not coincide w ith the Chebyshev nodes), one can resort to a
different interpolation m ethod which is called linear composite interpo­
lation.

M ore precisely, given a distribution (not necessarily uniform) o f nodes
x 0 < x 1 < . . . < x n , we denote by I i the interval [xi , x i+ i]. W e approx­
im ate f by a continuous function which, on each interval, is given by
the segment jo in ing the two points (x i , f (x i)) and (x i+1 , f (x i+1)) (see
F igure 3.11). Th is function, denoted by П н f , is called piecewise linear
interpolation polynomial o f f and its expression is:

ttH £/ \ £/ \ i f (x i+1) — f (x i) / \ г тП f (x) = f (x i) + ------------------------- (x — x i) for x e Ii .
x i+1 x i

3.2 Piecewise linear interpolation 87

0 \ j
01..................... •....................

/ V : J

0 ! ! I X \ //
0: :

............... !......... 1...............
................I......... |...............

0i..................... :

......................9 :

....... j.......

........... i............
0 ; ; :

........... j,............

i i
:
i

F ig . 3.11. The function f (x) = x 2 + 10/(sin(x) + 1.2) (solid line) and its
piecewise linear interpolation polynomial П н f (dashed line)

0 4 6

The upper-index H denotes the maximum length o f the intervals I i .
The follow ing result can be inferred from (3.7) setting n = 1 and

h = H :

Consequently, for all x in the interpolation interval, n f f (x) tends to
f (x) when H ^ 0, provided that f is sufficiently smooth.

Through the instruction s 1= in t e r p 1 (x , y , z) one can compute the
values at arb itrary points, which are stored in the vector z, o f the piece­
wise linear polynom ial that interpolates the values y (i) at the nodes
x (i) , for i = 1 , . . . , n + 1 . N ote that z can have arbitrary dimension. I f
the nodes are in increasing order (i.e. x (i + 1) > x (i) , for i = 1 , . . . , n)
then we can use the quicker version in t e r p 1q (q stands for quickly).
Notice that in t e r p 1q is quicker than in t e r p 1 on non-uniform ly spaced
data because it does not make any input checking.

It is worth mentioning that the command f p l o t , which is used to
display the graph o f a function f on a given interval [a, b], does in­
deed replace the function by its piecewise linear interpolant. The set o f
interpolating nodes is generated autom atically from the function, follow­
ing the criterion o f clustering these nodes around points where f shows
strong variations. A procedure o f this type is called adaptive.

in t e r p 1

in t e r p 1q

O c ta v e 3.2 in t e r p 1q is not available in Octave. ■

88 3 Approximation of functions and data

3.3 A p p roxim ation by sp line functions
As done for piecewise linear interpolation, piecewise polynom ial interpo­
lation o f degree n > 2 can be defined as well. For instance, the piece­
wise quadratic interpolation П H f is a continuous function that on each
interval I i replaces f by its quadratic interpolation polynom ial at the
endpoints o f I i and at its m idpoint. I f f G C 3(I), the error f — П н f in
the maximum norm decays as H 3 if H tends to zero.

The main drawback o f this piecewise interpolation is that П H f w ith
к > 1, is nothing more than a global continuous function. As a m atter o f
fact, in several applications, e.g. in computer graphics, it is desirable to
get approxim ation by smooth functions which have at least a continuous
derivative.

W ith this aim, we can construct a function s3 w ith the following
properties:

1. on each interval I i = [xi , x i+1], for i = 0 , . . . , n — 1, s3 is a polynom ial
o f degree 3 which interpolates the pairs o f values (x j , f (x j)) for j =
i , i + 1;

2. s3 has continuous first and second derivatives in the nodes x i , i =
1 ,. . . ,n — L

For its com plete determ ination, we need four conditions on each in­
terval, therefore a tota l o f 4n equations, which we can provide as follows:

- n + 1 conditions arise from the interpolation requirement at the nodes
x i , i = 0, . . . , n ;

- n — 1 further equations follow from the requirement o f continuity o f
the polynom ial at the internal nodes x 1, . . . , x n -1 ;

- 2(n — 1) new equations are obtained by requiring that both first and
second derivatives be continuous at the internal nodes.

W e still lack two further equations, which we can e.g. choose as

4 ' (xo) = 0, s3'(xn) = 0 . (3.20)

The function s3 which we obtain in this way, is called a natural interpo­
lating cubic spline.

B y choosing suitably the unknowns (see [QSS06, Section 8.6.1]) to
represent s3 we arrive at a (n + 1) x (n + 1) system w ith a tridiagonal
m atrix whose solution can be accomplished by a number o f operations
proportional to n (see Section 5.4) whose solutions are the values s " (x i)
for i = 0, . . . , n .

3.3 Approximation by spline functions 89

Using Program 3.1, this solution can be obtained w ith a number o f
operations equal to the dimension o f the system itself (see Section 5.4).
The input parameters are the vectors x and y o f the nodes and the data
to interpolate, plus the vector z i o f the abscissae where we want the
spline s3 to be evaluated.

O ther conditions can be chosen in place o f (3.20) in order to close
the system o f equations; for instance we could prescribe the value o f the
first derivative o f s3 at both endpoints x 0 and x n.

Unless otherwise specified, Program 3.1 computes the natural inter­
polation cubic spline. The optim al parameters ty p e and d e r (a vec­
tor w ith two components) serve the purpose o f selecting other types
o f splines. W ith ty p e =0 Program 3.1 computes the interpolating cubic
spline whose first derivative is given by d e r (1) at x 0 and d e r (2) at
x n. W ith ty p e =1 we obtain the interpolating cubic spline whose values
o f the second derivative at the endpoints is given by d e r (1) at x 0 and
d e r (2) at x n .

P rog ra m 3.1. cubicspline: interpolating cubic spline

f u n c t i o n s = c u b i c s p l i n e (x , y , z i , t y p e , d e r)
%CUBICSPLINE compute a cub i c s p l i n e
% S = C UB I C S P L I N E (X , Y , Z I) computes the v a l u e at the
% a b s c i s s a e ZI o f the n a t u r a l i n t e r p o l a t i n g cubi c
% s p l i n e t h a t i n t e r p o l a t e s the v a l u e s Y at the nodes X.
% S = C U B I C S P L I N E (X , Y , Z I , TYPE,DER) i f TYPE=0 computes the
% v a l u e s at the a b s c i s s a e ZI o f the cub i c s p l i n e
% i n t e r p o l a t i n g t he v a l u e s Y w i t h f i r s t d e r i v a t i v e at
% the e n d p o i n t s e qua l t o the v a l u e s DER(1) and DER(2) .
% I f TYPE=1 the v a l u e s DER(1) and DER(2) ar e t ho s e o f
% the se cond d e r i v a t i v e a t the e n d p o i n t s .
[n , m] = s i z e (x) ;
i f n == 1

x = x ’ ; y =
end
i f n a r g i n == 3

d e r 0 = 0 ; dern
e l s e

d e r 0 = de r (1) ;

m;

0 ; t y pe = 1 ;

de rn = de r (2) ;
end
h =
e =
A =
d =

x (2 : e n d) - x (1 : e n d - 1) ;
2* [h (1) ; h (1 : e n d - 1) + h (2 : e n d) ; h (e n d)] ;
s p d i a g s ([[h ; 0] e [0 ; h]] , - 1 : 1 , n , n) ;
(y (2 : e n d) - y (1 : e n d - 1)) . / h ;

rhs = 3 * (d (2 : e n d) - d (1 : e n d - 1)) ;
i f t y p e == 0

A (1 , 1) = 2 * h (1) ; A (1 , 2) = h (1) ;
A (n , n) = 2 * h (e n d) ; A (e n d , e n d - 1) = h (e n d) ;
rhs = [3 * (d (1) - d e r 0) ; r hs ; 3 * (d e r n - d (e n d))] ;

e l s e
A (1 ,
A (n ,

:)
:)

0 ;
0 ;

end
S =
S (: ,

rhs = [d e r 0

z e r o s (n , 4) ;
, 3) = A \ r h s ;

A (1 , 1) = 1;
A (n , n) = 1;

; r h s ; d e r n] ;

90 3 Approximation of functions and data

F ig . 3.12. Comparison between the interpolating cubic spline and the La­
grange interpolant for the case considered in Example 3.6

f o r m = 1 : n - 1
S (m, 4) = (S (m + 1 , 3) - S (m , 3)) / 3 / h (m) ;
S(m , 2) = d(m) - h (m) / 3 * (S (m + 1 , 3) + 2 * S (m , 3)) ;
s (m , 1) = y (m) ;

end
S = S (1 : n - 1 , 4 : - 1 : 1) ; pp = m k p p (x , S) ; s = p p v a l (p p , z i) ;
r e t u r n

s p l in e The M A T L A B command s p l in e (see also the too lbox s p l in e s) en­
forces the third derivative o f s3 to be continuous at x i and xn -1 . To this
condition is given the curious name o f not-a-knot condition. The input
parameters are the vectors x and y and the vector z i (same meaning as

mkpp before). The commands mkpp and p p va l that are used in Program 3.1
p p va l are useful to build up and evaluate a composite polynom ial.

E xam p le 3.6 Let us reconsider the data of Table 3.1 corresponding to the
column K = 0.67 and compute the associated interpolating cubic spline s3.
The different values o f the latitude provide the nodes xi , i = 0 , . . . , 12. I f we are
interested in computing the values s3(zi), where zi = —55 + i, i = 0 , . . . , 120,
we can proceed as follows:

x = [- 5 5 : 1 0 : 6 5] ;
y = [- 3 . 2 5 - 3 . 3 7 - 3 . 3 5 - 3 . 2 - 3 . 1 2 - 3 . 0 2 - 3 . 0 2 . . .

- 3 . 0 7 - 3 . 1 7 - 3 . 32 - 3 . 3 - 3 . 2 2 - 3 . 1] ;
z = [- 5 5 : 1 : 6 5] ;
s = s p l i n e (x , y , z) ;

The graph of s3, which is reported in Figure 3.12, looks more plausible than
that of the Lagrange interpolant at the same nodes. ■

E xam p le 3.7 (R o b o t ic s) To find the trajectory of the robot satisfying the
given constraints, we split the time interval [0, 5] in the two subintervals [0, 2]
and [2, 5]. Then in each subinterval we look for two splines, x = x(t) and
y = y(t), that interpolate the given values and have null derivative at the
endpoints. Using Program 3.1 we obtain the desired result by the following
instructions:

3.3 Approximation by spline functions 91

F ig . 3.13. The trajectory in the xy plane o f the robot described in Problem
3.4. Circles represent the position of the control points through which the
robot should pass during its motion

x l = [0 1 4] ; y l = [0 2 4] ;
t l = [0 1 2] ; t i l = [0 : 0 . 0 1 : 2] ;
x2 = [0 3 4] ; y2 = [0 1 4] ;
t 2 = [0 2 3] ; t i 2 = [0 : 0 . 0 1 : 3] ; d = [0 , 0] ;
s i x 1 = c u b i c s p l i n e (t 1 , x 1 , t i 1 , 0 , d) ;
s i y 1 = c u b i c s p l i n e (t 1 , y 1 , t i 1 , 0 , d) ;
s i x 2 = c u b i c s p l i n e (t 2 , x 2 , t i 2 , 0 , d) ;
s i y 2 = c u b i c s p l i n e (t 2 , y 2 , t i 2 , 0 , d) ;

The trajectory obtained is drawn in Figure 3.13. ■

The error that we obtain in approxim ating a function f (continuously
differentiable up to its fourth derivative) by the natural interpolating
cubic spline satisfies the follow ing inequalities:

m ax|f(r) (x) — s3.r) (x)| < C r H 4 - r m ax|f (4) (x)|, r = 0,1, 2, 3,
xEl x£l

where I = [x0, x n] and H = m axj= 0i...i„ - i (x j + i — xj) , while C r is a
suitable constant depending on r, but independent o f H . It is then clear
that not only f , but also its first, second and third derivatives are well
approxim ated by s3 when H tends to 0.

R em ark 3.1 In general cubic splines do not preserve monotonicity between
neighbouring nodes. For instance, by approximating the unitary circumference
in the first quarter using the points (xk = sin(kn/6) , yk = cos(kn/6)), for
k = 0, . . . , 3, we would obtain an oscillatory spline (see Figure 3.14). In these
cases, other approximation techniques can be better suited. For instance, the
M A T L A B command pchip provides the Hermite piecewise cubic interpolant
which is locally monotone and interpolates the function as well as its first
derivative at the nodes { x i , i = 1 , . . . ,n — 1 } (see Figure 3.14). The Hermite
interpolant can be obtained by using the following instructions:

t = l i n s p a c e (0 , p i / 2 , 4)
x = c o s (t) ; y = s i n (t) ;

p ch ip

92 3 Approximation of functions and data

xx = l i n s p a c e (0 , 1 , 4 0) ;
p l o t (x , y , ’ o ’ , x x , [p c h i p (x , y , x x) ; s p l i n e (x , y , x x)])

F ig . 3.14. Approximation of the first quarter of the circumference of the
unitary circle using only 4 nodes. The dashed line is the cubic spline, while
the continuous line is the piecewise cubic Hermite interpolant

& See the Exercises 3.5-3.8.

3.4 T h e least-squares m eth od
As already noticed, a Lagrange interpolation does not guarantee a bet­

ter approximation o f a given function when the polynom ial degree gets
large. Th is problem can be overcome by composite interpolation (such
as piecewise linear polynom ials or splines). However, neither are suitable
to extrapolate inform ation from the available data, that is, to generate
new values at points ly ing outside the interval where interpolation nodes
are given.

E xam p le 3.8 (F in an ce) On the basis of the data reported in Figure 3.1,
we would like to predict whether the stock price will increase or diminish in
the coming days. The Lagrange polynomial interpolation is impractical, as it
would require a (tremendously oscillatory) polynomial o f degree 719 which
will provide a completely erroneous prediction. On the other hand, piecewise
linear interpolation, whose graph is reported in Figure 3.1, provides extrapo­
lated results by exploiting only the values of the last two days, thus completely
neglecting the previous history. To get a better result we should avoid the in­
terpolation requirement, by invoking least-squares approximation as indicated
below. ■

3.4 The least-squares method 93

Assume that the data { (x i , yi), i = 0 , . . . , n } are available, where now
yi could represent the values f (x i) attained by a given function f at the
nodes x i . For a given integer m > 1 (usually, m ^ n) we look for a
polynom ial f G P m which satisfies the inequality

J 2 [y i — f (x i)]2 < J 2 [yi — P m (x i)]2

n n
(3.21)

for every polynom ial pm G P m. Should it exist, f w ill be called the least-
squares approximation in P m o f the set o f data { (xxi , yi), i = 0 , . . . , n} .
Unless m > n, in general it w ill not be possible to guarantee that f (x i) =
yi for all i = 0 , . . . , n .

Setting

f (x) = ao + a ix + . . . + amx m, (3.22)

where the coefficients a0, . . . ,am are unknown, the problem (3.21) can
be restated as follows: find a0, a1, . . . , a m such that

Ф (a o ,a l , . . . ,a m) = m in Ф(Ьо,Ъ1 , . . . , Ь т)
{bi, i= 0,...,m}

where

Ф(Ь0, Ь1-,. ..-I bm) = [yi — (Ь0 + b1x i + . . . + bmx T)] .
= 0

W e solve this problem in the special case when m = 1 . Since

n

Ф(Ь0, Ь1) = ^ 2 [y2 + Ь0 + Ь ^ 2 + 2Ь0Ь1 xi — 2^ y i — 2ЬlXiУi2] ,
i=0

the graph o f Ф is a convex paraboloid. The point (a 0,ai_) at which Ф
attains its m inimum satisfies the conditions

дФ . . л дФ . . n
—— (a 0,a 1) = 0, ——(a0, a 1) = 0,
дЬ0 дЬ1

where the symbol дФ/дЬj denotes the partial derivative (that is, the rate
o f variation) o f Ф w ith respect to Ьj, after having frozen the remaining
variable (see the definition 8.3).
B y exp lic itly com puting the two partial derivatives we obtain

n n
y^ [a p + a 1x i — yi] = 0, ^ 2 [a0xi + a ^ 2 — x iy i] = 0,
i=0 i=0

which is a system o f two equations for the two unknowns a0 and a 1:

n

94 3 Approximation of functions and data

n n

ao(n + 1) + a ^ Y x i = Y yi,
i=0 i=0 n n n

a ^ 2 Xi + a x 2 = Y yiXi■
i=0 i=0 i=0

Setting D = (n + 1) Y.n=0 x i — (^ n = 0 x i) 2, the solution reads:

1 n n n n

a0 = D ̂ " £ x2 — x̂ 2x iy i) 7
i=0 j=0 j=0 i=0

1 n n n

a1 = D ((n + 1) Y x iyi — ^ 2 x i^ 2 ,y i).
i=0 j =0 i=0

(3.23)

(3.24)

The corresponding polynom ial f (x) = a0 + a ix is known as the least-
squares straight line, or regression line.

The previous approach can be generalized in several ways. The first
generalization is to the case o f an arbitrary m. The associated (m + 1) x
(m + 1) linear system, which is symmetric, w ill have the form:

a0(n + 1)

n

+ a ^ 2 x i + ■■■+

n
am^ 2 x m yi

S
\

\

n i=0n i=0n i=0n

© 0 x 1 + a i ^ x2 + ■■■+ \ л^ т +1
am / vx i = ^ 2 x iy i ,

i=0 i=0 i=0 i=0

n

a ^ 2 xm
i=0

n

+ a i £ xm+1
i=0

+ ■■■+

n

am^ 2 x 2m
i=0

n

= E xTy i
i=0

W hen m = n, the least-squares polynom ial must coincide w ith the
Lagrange interpolating polynom ial n n (see Exercise 3.9).

The M A T L A B command c = p o l y f i t (x , y , m) computes by default
the coefficients o f the polynom ial o f degree m which approximates n+1
pairs o f data (x (i) , y (i)) in the least-squares sense. As already no­
ticed in Section 3.1.1, when m is equal to n it returns the interpolating
polynomial.

E xam p le 3.9 (F in an ce) In Figure 3.15 we draw the graphs of the least-
squares polynomials of degree 1, 2 and 4 that approximate in the least-squares
sense the data of Figure 3.1. The polynomial of degree 4 reproduces quite
reasonably the behavior of the stock price in the considered time interval and
suggests that in the near future the quotation will increase. ■

E xam p le 3.10 (B iom echan ics) Using the least-squares method we can an­
swer the question in Problem 3.3 and discover that the line which better ap­
proximates the given data has equation e(a) = 0.3471a + 0.0654 (see Figure

3.4 The least-squares method 95

F ig . 3.15. Least-squares approximation o f the data of Problem 3.2 of degree
1 (dashed-dotted line), degree 2 (dashed line) and degree 4 (thick solid line).
The exact data are represented by the thin solid line

3.16); when a = 0.9 it provides the estimate e = 0.2915 for the deformation.

F ig . 3.16. Linear least-squares approximation of the data of Problem 3.3

A further generalization o f the least-squares approxim ation consists
o f using in (3.21) f and pm that are no-longer polynom ials but func­
tions o f a space Vm obtained by linearly combining m + 1 independent
functions {фj , j = 0 , . . . , m } . Special instances are provided, e.g., by the
trigonom etric functions фj (x) = cos (^ jx) (for a given parameter y = 0),
by the exponential functions фj (x) = eSjx (for some S > 0), or by a
suitable set o f spline functions.

The choice o f the functions {фj } is actually dictated by the conjec­
tured behavior o f the law underlying the given data distribution. For
instance, in Figure 3.17 we draw the graph o f the least-squares approxi­
m ation o f the data o f the Exam ple 3.1 computed using the trigonom etric
functions ф j (x) = c o s (jt (x)) , j = 0 , . . . , 4 , w ith t (x) = 120(^/2)(x + 55).
W e assume that the data are periodic w ith period 120(^/2).

96 3 Approximation of functions and data

F ig . 3.17. The least-squares approximation of the data of the Problem 3.1
using a cosine basis. The exact data are represented by the small circles

The reader can verify that the unknown coefficients o f

m

f (x) = Y I aj (x)
j =0

can be obtained by solving the follow ing system (o f normal equations)

(3.25)B T B a = B T y

where B is the rectangular m atrix (n + 1) x (m + 1) o f entries bij = ^ j (x i),
a is the vector o f the unknown coefficients, while y is the vector o f the
data.

Let us sum m arize
1. The composite piecewise linear interpolant o f a function f is a piece­

wise continuous linear function f , which interpolates f at a given
set o f nodes {x i } . W ith this approxim ation we avoid Runge’s type
phenomena when the number o f nodes increases;

2. interpolation by cubic splines allows the approxim ation o f f by a
piecewise cubic function f which is continuous together w ith its first
and second derivatives;

3. in least-squares approxim ation we look for an approximant f which
is a polynom ial o f degree m (typically, m ^ n) that m inimizes the

mean-square error ^ " = 0[yi — f (x i)]2. The same m inim ization cri-
terium can be applied for a class o f functions that are not polyno­
mials.

See the Exercises 3.9-3.14.

3.5 What we haven’t told you 97

3.5 W h a t w e h aven ’t to ld you
For a more general introduction to the theory o f interpolation and ap­
proxim ation the reader is referred to, e.g., [Dav63], [Mei67] and [Gau97].

Polynom ial interpolation can also be used to approximate data and
functions in several dimensions. In particular, composite interpolation,
based on piecewise linear or spline functions, is well suited when the
region П at hand is partitioned into polygons in 2D (triangles or quadri­
laterals) and polyhedra in 3D (tetrahedra or prisms).

A special situation occurs when П is a rectangle or a parallelepiped
in which case the M A T L A B commands in t e r p 2, and in te r p 3 , respec­
tively, can be used. In both cases it is assumed that we want to represent
on a regular, fine lattice (or grid) a function whose values are available
on a regular, coarser lattice.

Consider for instance the values o f f (x ,y) = s in (2^x) cos(2^y) on
a (coarse) 6 x 6 lattice o f equispaced nodes on the square [0, 1]2; these
values can be obtained using the commands:

[x , y] = m e s h g r i d (0 : 0 . 2 : 1 , 0 : 0 . 2 : 1) ;
z = s i n (2* p i * x) . * c o s (2* p i * y) ;

B y the command in t e r p 2 a cubic spline is first computed on this coarse
grid, then evaluated at the nodal points o f a finer grid o f 21 x 21 equi-
spaced nodes:

x i = [0 : 0 . 0 5 : 1] ; y i = [0 : 0 . 0 5 : 1] ;
[x f , y f] = m e s h g r i d (x i , y i) ;
p i 3 = i n t e r p 2 (x , y , z , x f , y f) ;

The command m eshgrid transforms the set o f the couples (x i (k) , y i (j))
into two matrices x f and y f that can be used to evaluate functions o f
two variables and to plot three dimensional surfaces. The rows o f x f are
copies o f the vector x i , the columns o f y f are copies o f y i . A lternatively
to the above procedure we can use the command g r id d a ta , available
also for three-dimensional data (g r id d a ta 3) and for the approximation
o f n-dimensional surfaces (g r id d a ta n).

The commands described below are for M A T L A B only.
W hen П is a two-dimensional domain o f arb itrary shape, it can be

partitioned into triangles using the graphical interface p d e to o l .
For a general presentation o f spline functions see, e.g., [Die93] and

[PBP02]. The M A T L A B too lbox s p l in e s allows one to explore several
applications o f spline functions. In particular, the spdemos command
gives the user the possibility to investigate the properties o f the most
im portant type o f spline functions. Rational splines, i.e. functions which
are the ratio o f two splines functions, are accessible through the com­
mands rpmak and rsmak. Special instances are the so-called N U R B S
splines, which are com m only used in C A G D (Computer Assisted Geo­
metric Design).

in t e r p 2

in te rp 3

m eshgrid

g r id d a ta

p d e to o l

spdemos

rpmak

rsmak

98 3 Approximation of functions and data

In the same context o f Fourier approximation, we mention the ap­
proxim ation based on wavelets. Th is type o f approxim ation is largely
used for image reconstruction and compression and in signal analysis
(for an introduction, see [DL92], [Urb02]). A rich fam ily o f wavelets (and

w a v e le t their applications) can be found in the M A T L A B too lbox w a v e le t .

3.6 E xercises
E xercise 3.1 Prove inequality (3.6).

E xercise 3.2 Provide an upper bound of the Lagrange interpolation error for
the following functions:

f i (x) = cosh(x), f 2 (x) = sinh(x), xk = — 1 + 0.5к, к = 0, . . . ,4,
f 3(x) = cos(x) + sin(x), xk = —п/2 + пк/4, к = 0 , . . . , 4.

E xercise 3.3 The following data are related to the life expectation of citizens
of two European regions:

1975 1980 1985 1990
Western Europe
Eastern Europe

72.8
70.2

74.2
70.2

75.2
70.3

76.4
71.2

Use the interpolating polynomial of degree 3 to estimate the life expectation in
1970, 1983 and 1988. Then extrapolate a value for the year 1995. It is known
that the life expectation in 1970 was 71.8 years for the citizens o f the West
Europe, and 69.6 for those of the East Europe. Recalling these data, is it
possible to estimate the accuracy of life expectation predicted in the 1995?

E xercise 3.4 The price (in euros) o f a magazine has changed as follows:

Nov.87 Dec.88 Nov.90 Jan.93 Jan.95 Jan.96 Nov.96 Nov.00
4.5 5.0 6.0 6.5 7.0 7.5 8.0 8.0

Estimate the price in November 2002 by extrapolating these data.

E xercise 3.5 Repeat the computations carried out in Exercise 3.3, using now
the cubic interpolating spline computed by the function sp line. Then compare
the results obtained with the two approaches.

E xercise 3.6 In the table below we report the values of the sea water density
p (in Kg/m3) corresponding to different values of the temperature T (in degrees
Celsius):

T 4° 8° 12° 16° 2 О 0

P 1000.7794 1000.6427 1000.2805 999.7165 998.9700

3.6 Exercises 99

Compute the associated cubic interpolating spline on 4 subintervals of the
temperature interval [4, 20]. Then compare the results provided by the spline
interpolant with the following ones (which correspond to further values o f T):

T 6° 10° 14° 18°

р 1000.74088 1000.4882 1000.0224 999.3650

E xercise 3.7 The Italian production of citrus fruit has changed as follows:

year 1965 1970 1980 1985 1990 1991
production (x10b K g) 17769 24001 25961 34336 29036 33417

Use interpolating cubic splines of different kinds to estimate the production
in 1962, 1977 and 1992. Compare these results with the real values: 12380,
27403 and 32059, respectively. Compare the results with those that would be
obtained using the Lagrange interpolating polynomial.

E xercise 3.8 Evaluate the function f (x) = sin(2nx) at 21 equispaced nodes
in the interval [—1,1]. Compute the Lagrange interpolating polynomial and
the cubic interpolating spline. Compare the graphs of these two functions with
that o f f on the given interval. Repeat the same calculation using the following
perturbed set of data: f (xi) = sin(2*n*xi) + (—1) i+ 110~4, and observe that
the Lagrange interpolating polynomial is more sensitive to small perturbations
than the cubic spline.

E xercise 3.9 Verify that if m = n the least-squares polynomial of a function
f at the nodes x 0, . . . , x n coincides with the interpolating polynomial n nf at
the same nodes.

E xercise 3.10 Compute the least-squares polynomial of degree 4 that ap­
proximates the values of K reported in the different columns of Table 3.1.

E xercise 3.11 Repeat the computations carried out in Exercise 3.7 using
now a least-squares approximation of degree 3.

E xercise 3.12 Express the coefficients of system (3.23) in terms of the aver­
age M = (n+ 1) Y n=o xi and the variance v = (n1 1) Y n=o(xi — M) 2 of the set
o f data {x i , i = 0, . . . , n } .

E xercise 3.13 Verify that the regression line passes through the point whose
abscissa is the average of {x i } and ordinate is the average of { f (x i) } .

E xercise 3.14 The following values

flow rate 0 35 0.125 5 0 5 1 0.5 0.125 0

represent the measured values o f the blood flow-rate in a cross-section of the
carotid artery during a heart beat. The frequency o f acquisition of the data is
constant and is equal to 10/T, where T = 1 s is the beat period. Represent
these data by a continuous function of period equal to T .

Numerical differentiation and integration

4__

In this chapter we propose methods for the numerical approxim ation of
derivatives and integrals of functions. Concerning integration, quite often
for a generic function it is not possible to find a prim itive in an explicit
form. Even when a prim itive is known, its use m ight not be easy. This
is, e.g., the case of the function f (x) = cos(4x) cos(3 sin (x)), for which
we have

the task of computing an integral is transformed into the equally trou­
blesome one of summing a series. In other circum stances the function
th at we want to integrate or differentiate could only be known on a
set of nodes (for instance, when the la tte r represent the results of an
experim ental m easurement), exactly as happens in the case of function
approximation, which was discussed in Chapter 3.

In all these situations it is necessary to consider numerical methods
in order to obtain an approxim ate value of the quan tity of interest, in­
dependently of how difficult is the function to integrate or differentiate.

P ro b le m 4 .1 (H y d ra u lic s) The height q(t) reached at tim e t by a
fluid in a straigh t cylinder of rad ius R = 1 m w ith a circular hole of
rad ius r = 0.1 m on the bottom, has been measured every 5 seconds
yield ing the following values

t 0 5 10 15 20
q(t) 0.6350 0.5336 0.4410 0.3572 0.2822

We want to compute an approxim ation of the em ptying velocity q'(t)
of the cylinder, then compare it w ith the one predicted by Torricelli’s

102 4 Numerical differentiation and integration

law: q'(t) = —y (r/ R)2 \J2gq(t) , where g is the grav ity acceleration and
Y = 0.6 is a correction factor. For the solution of this problem, see
Example 4.1. ■

P ro b le m 4 .2 (O p tic s) In order to plan a room for infrared beams we
are interested in calcu lating the energy em itted by a black body (that
is, an object capable of irrad iating in all the spectrum to the ambient
tem perature) in the (infrared) spectrum comprised between 3^m and
14yU,m wavelength. The solution of th is problem is obtained by computing
the integral

14* 10~4

/ dx
x 5(e1.432/(Tx) — 1) , (4 .1)

31Q-4

which is the Planck equation for the energy E (T), where x is the wave­
length (in cm) and T the tem perature (in Kelvin) of the black body. For
its com putation see Exercise 4.17. ■

P ro b le m 4 .3 (E le c tro m a g n e t is m) Consider an electric wire sphere
of a rb itra ry rad ius r and conductivity a . We want to compute the density
d istribution of the current j as a function of r and t (the tim e), knowing
the in itia l distribution of the current density p (r). The problem can be
solved using the relations between the current density, the electric field
and the charge density and observing th at, for the sym m etry of the
problem, j (r , t) = j (r, t)r/|r|, where j = |j|. We obtain

r

j (r , t) = Y(r) e -a t/e°, Y(r) = P(0£2 d£, (4.2)
&Qr J

Q

where eQ = 8.859 • 10-12 farad/m is the dielectric constant of the void.
For the com putation of th is integral, see Exercise 4.16. ■

P ro b le m 4 .4 (D e m o g ra p h y) We consider a population of a very large
number M of individuals. The distribution N (h) of their height can be
represented by a ”bell” function characterized by the mean value h of
the height and the standard deviation a

N (h) = M e -(h-h)2/(2a2).
a y 2n

Then

4.1 Approximation of function derivatives 103

h
F ig. 4.1. Height distribution of a population of M = 200 individuals

h+Ah
N = J N (h) dh (4.3)

h

represents the number of individuals whose height is between h and
h + Ah (for a positive Ah). An instance is provided in Figure 4.1, which
corresponds to the case M = 200, h = 1.7 m, a = 0.1 m, and the area of
the shadowed region gives the number of individuals whose height is in
the range 1 .8^1.9 m. For the solution of th is problem see Example 4.2.

4.1 Approximation of function derivatives

Consider a function f : [a, b] ^ R continuously differentiable in [a, b].
We seek an approxim ation of the first derivative of f a t a generic point
x in (a, b).

In view of the definition (1.10), for h sufficiently sm all and positive,
we can assume th at the quantity

(h f)(x) =
f (x + h) - f (x)

h
(4.4)

is an approxim ation of f '(x) which is called the f o rw a r d f i n i t e d i f f e r enc e .
To estim ate the error, it suffices to expand f in a Taylor series; if f e
C 2 (a, b), we have

f (x + h) = f (x) + h f '(x) + 2 f ''(£), (4.5)

where £ is a su itab le point in the interval (x, x + h). Therefore

104 4 Numerical differentiation and integration

h
(S+f)(x) = f '(x) + - f ''(£), (4.6)

and thus (S+f)(x) provides a first-order approxim ation to f '(x) w ith
respect to h. S till assum ing f e C 2 (a, b), w ith a sim ilar procedure we
can derive from the Taylor expansion

f (x - h) = f (x) - h f ' (x) + у f ''(n)

w ith n e (x — h ,x) , the backward f in i t e d i f f e r e n c e

(S - f)(x)
f (x) — f (x — h)

h

(4.7)

(4.8)

which is also first-order accurate. Note that formulae (4.4) and (4.8) can
also be obtained by differentiating the linear polynom ial interpolating f
at the points {x, x+ h} and {x — h, x}, respectively. In fact, these schemes
amount to approxim ating f ' (x) by the slope of the straight line passing
through the two points (x, f (x)) and (x + h, f (x + h)), or (x — h, f (x — h))
and (x , f (x)), respectively (see F igure 4.2).

x — h x x + h

F ig. 4.2. Finite difference approximation of f ' (x): backward (solid line), for­
ward (dotted l ine) and centered (dashed l ine). m 1 = (S- f)(x), m 2 = (S+f)(x)
and m 3 = (Sf)(x) denote the slopes of the three straight lines

Finally, we introduce the c e n t e r ed f i n i t e d i f f e r e n c e formula

(S f) (x)
f (x + h) — f (x — h)

2h (4.9)

If f e C 3 (a , b), this formula provides a second-order approxim ation to
f '(x) w ith respect to h. Indeed, by expanding f (x + h) and f (x — h)
at the th ird order around x and summing up the two expressions, we
obtain

4.2 Numerical integration 105

f ' (x) - (S f)(x) = ^ [f ' ' ' (£) + f '"(n)}, (4.10)

where n and £ are su itab le points in the intervals (x - h, x) and (x, x + h),
respectively (see Exercise 4.2).

B y (4.9) f '(x) is approxim ated by the slope of the straigh t line pass­
ing through the points (x - h, f (x - h)) and (x + h, f (x + h)).

E xam ple 4.1 (H yd rau lics) Let us solve Problem 4.1, using formulae (4.4),
(4.8) and (4.9), with h = 5, to approximate q'(t) at five different points. We
obtain:

t 0 5 10 15 20
q'(t) - 0.0212 -0.0194 -0.0176 - 0.0159 - 0.0141
S+q -0.0203 - 0.0185 -0.0168 - 0.0150 - -

S ---- - 0.0203 - 0.0185 - 0.0168 - 0.0150
Sq ---- -0.0194 - 0.0176 - 0.0159 - -

The agreement between the exact derivative and the one computed from the
finite difference formulae is more satisfactory when using formula (4.9) rather
than (4.8) or (4.4). ■

In general, we can assume th at the values of f are available at n + 1
equispaced points xi = xQ + ih, i = 0 , . . . , n , w ith h > 0. In th is case in
the numerical derivation f ' (x i) can be approxim ated by tak ing one of
the previous formulae (4.4), (4.8) or (4.9) w ith x = xi .

Note th at the centered formula (4.9) cannot be used at the extrem a
xQ and xn . For these nodes we could use the values

which are also second-order accurate w ith respect to h . They are ob­
tained by computing at the point xQ (respectively, xn) the first deriva­
tive of the polynom ial of degree 2 interpolating f a t the nodes xQ, x 1, x 2
(respectively, x n - 2,x n - i ,x n) .

See Exercises 4.1-4.4.

4.2 Numerical integration

In th is section we introduce numerical methods suitab le for approxim at­
ing the integral

Ж

[- 3 f (xq) + 4 f (x i) - f (x 2)} at xq,

77T [3 f (xn) 4 f (xn - 1) + f (xn - 2)} at xn̂ 2h

(4.11)

b

a

106 4 Numerical differentiation and integration

where f is an a rb itra ry continuous function in [a, b]. We start by intro­
ducing some simple formulae, which are indeed special instances of the
fam ily of Newton-Cotes formulae. Then we will introduce the so-called
Gaussian formulae, th at feature the highest possible degree of exactness
for a given number of evaluations of the function f .

4 .2 .1 M id p o in t fo rm u la

A simple procedure to approxim ate I (f) can be devised by partitioning
the interval [a, b] into subintervals I k = [xk-1 , x k], к = 1 , . . . , M , w ith
xk = a + кН, к = 0 , . . . , M and H = (b — a)/M . Since

on each sub-interval I k we can approxim ate the exact integral of f by
th a t of a polynom ial f approxim ating f on I k. The simplest solution
consists in choosing f as the constant polynom ial interpolating f a t the
m iddle point of I k:

In such a w ay we obtain the c ompo s i t e mi dpo in t quadrature f o rmu l a

The symbol m p stands for midpoint, while c stands for composite. This
formula is second-order accurate w ith respect to H . More precisely, if f
is continuously differentiable up to its second derivative in [a, b], we have

where £ is a su itab le point in [a, b] (see Exercise 4.6). Formula (4.13) is
also called the c ompo s i t e r e c tang l e quadrature f o rm u l a because of its geo­
m etrical interpretation, which is evident from Figure 4.3. The classical
midpo i n t f o rm u l a (or recta,ngle f o r m u l a) is obtained by tak ing M = 1 in
(4.13), i.e. using the midpoint rule d irectly on the interval (a, b):

(4.12)

x k- 1 + xk
2

M
(4.13)

k=i

I (f) — I rmp (f) = ^ H 2f ''(£), (4.14)

I m p (f) = (b — a) f [(a + b)/2] (4.15)

The error is now given by

4.2 Numerical integration 107

f

xo xk xm a (a + b)/2 b
F ig. 4.3. The composite midpoint formula (l e f t); the midpoint formula (r ight)

I (f) - Imp (f) =
(b — a)

24”

3
■f "(£), (4.16)

where £ is a suitab le point in [a, b]. Relation (4.16) follows as a special
case of (4.14), but it can also be proved directly. Indeed, setting x =
(a + b)/2 , we have

I (f) — I m p (f) = J [f (x) — f (x)]dx
a
b b

= j f ' (x)(x — x)dx + — j f " (n(x)) (x — x)2dx,

where n (x) is a su itab le point in the interval whose endpoints are x and
x. Then (4.16) follows because f a (x — x)dx = 0 and, by the mean value
theorem for integrals, there exists £ G [a, b] such that

b b

2 y f " (n (x)) (x —x)2 d x = 2 f ,,(£)j (x —x f d x = (b 24a) f (£)-
a a

The de g r e e o f exa c tn e s s of a quadrature formula is the maxim um in­
teger r > 0 for which the approxim ate integral (produced by the quadra­
ture formula) of any polynom ial of degree r is equal to the exact integral.
We can deduce from (4.14) and (4.16) th a t the midpoint formula has de­
gree of exactness 1, since it integrates exactly a ll polynomials of degree
less than or equal to 1 (but not all those of degree 2).

The midpoint composite quadrature formula is implemented in Pro­
gram 4.1. Input param eters are the endpoints of the integration interval
a and b, the number of subintervals M and the M A T L A B function f to
define the function f .

P ro gram 4.1. midpointc: composite midpoint quadrature formula

f u n c t i o n I m p = m i d p o i n t c (a , b , M , f , v a r a r g i n)
%MIDPOINTC Compos i t e mi dpo i n t n u m e r i c a l i n t e g r a t i o n .
% IMP = MIDPOINTC(A,B,M,FUN) computes an a p p r o x i m a t i o n

f

b

a a

108 4 Numerical differentiation and integration

% of the i n t e g r a l of t he f u n c t i o n FUN v i a t he mi dpo i n t
% method (w i t h M e q u i s p a c e d i n t e r v a l s) . FUN a c c e p t s a
% r e a l v e c t o r i np u t x and r e t u r n s a r e a l v e c t o r v a l u e .
% FUN can a l s o be an i n l i n e o b j e c t .
% IMP=MIDPOINT(A,B,M,FUN,P1,P2, . . .) c a l l s the f u n c t i o n
% FUN p a s s i n g t he o p t i o n a l p a r a m e t e r s P 1 , P 2 , . . . as
% F U N (X , P 1 , P 2 , . . .) .
H=(b-a)/M;
x = l i n s p a c e (a + H / 2 , b - H / 2 , M) ;
f m p = f e v a l (f , x , v a r a r g i n { : }) . * o n e s (1 , M) ;
Imp=H*sum(fmp) ;
r e t u r n

See the Exercises 4.Б-4.8.

4 .2 .2 T ra p e z o id a l fo rm u la

Another formula can be obtained by replacing f on I k by the linear poly­
nomial interpolating f at the nodes xk-1 and xk (equivalently, replacing
f by Пн f , see Section 3.2, on the whole interval (a , b)). This yields

H M
I c (f) = ~ 2 Y [f (xk) + f (xk - 1)]

k=1
H M 1

= (a) + f (b)]+ H j ^ f (xk)
k=1

(4.17)

This formula is called the c ompo s i t e t rapezoidal f o rmu la , and is second-
order accurate w ith respect to H . In fact, one can obtain the expression

I (f) - IC (f) = - ^ H 2f " (0 (4.18)

for the quadrature error for a su itab le point £ G [a, b], provided that
f G C 2([a, b]). W hen (4.17) is used w ith M = 1, we obtain

which is called the t rapezoidal f o rm u l a because of its geom etrical inter­
pretation. The error induced is given by

I (f) — I t (f) = — f »(£), (4.20)

where £ is a su itab le point in [a, b]. We can deduce th at (4.19) has degree
of exactness equal to 1, as is the case of the midpoint rule.

The composite trapezoidal formula (4.17) is implemented in the
M A T L A B programs t r a p z and cum trapz. If x is a vector whose com­
ponents are the abscissae xk, к = 0 , . . . , M (w ith x0 = a and xM = b),
and y that of the values f (xk), к = 0 , . . . , M, z= cu m trap z (x ,y) returns
the vector z whose components are zk ^ f ^ k f (x)dx, the integral be­
ing approxim ated by the composite trapezoidal rule. Thus z(M+1) is an
approxim ation of the integral of f on (a, b).

See the Exercises 4.9-4.11.

4.2 Numerical integration 109

4 .2 .3 S im p so n fo rm u la

The Simpson formula can be obtained by replacing the integral of f over
each Ik by th at of its interpolating polynom ial of degree 2 at the nodes
xk- ^ xk (xk - 1 + xk)/2 and xk,

TT t (̂ 2(x — xk)(x — xk) t l ^n 2J (x) = -----------H ----------- f (xk-1)

, 4 (xk-1 — x) (x — xk) f/_ , , 2 (x — xk) (x — x k - 1) , , ,
+ ------------ h ~2------------ f (xk) + -------------h -------------f (xk) '

The resulting formula is called the c ompo s i t e S im p s o n quadrature
f o rm u l a , and reads

h M -
I S(f) = -q Y [f (xk-1) + 4 f (xk) + f (xk)]

k=1
(4.21)

One can prove th at it induces the error

b _ n — 4
I (f) — I C (f) = — f (4)(£), (4.22)

where £ is a su itab le point in [a, b], provided th at f G C 4([a, b]). It
is therefore fourth-order accurate w ith respect to H . W hen (4.21) is
applied to only one interval, say (a, b), we obtain the so-called S imp so n
quadrature f o rm u l a

t r a p z
cum trapz

110 4 Numerical differentiation and integration

The error is now given by

I (f) - I s (f) = - ^ (b- f (4)(£),

(4.23)

(4.24)

for a su itab le £ G [a, b]. Its degree of exactness is therefore equal to 3.
The composite Simpson rule is implemented in Program 4.2.

P ro gram 4.2. simpsonc: composite Simpson quadrature formula

f u n c t i o n [I s i c] = s i m p s o n c (a , b , M , f , v a r a r g i n)
%SIMPSONC Compos i t e Simpson n u m e r i c a l i n t e g r a t i o n .
% ISIC = SIMPSONC(A,B,M,FUN) computes an a p p r o x i m a t i o n
% of the i n t e g r a l of t he f u n c t i o n FUN v i a the Simpson
% method (u s i n g M e q u i s p a c e d i n t e r v a l s) . FUN a c c e p t s
% r e a l v e c t o r in p u t x and r e t u r n s a r e a l v e c t o r v a l u e .
% FUN can a l s o be an i n l i n e o b j e c t .
% ISIC = SIMPSONC(A,B,M,FUN,P1,P2, . . .) c a l l s the
% f u n c t i o n FUN p a s s i n g the o p t i o n a l p a r a m e t e r s
% P 1 , P 2 , . . . a s F U N (X , P 1 , P 2 , . . .) .
H=(b-a)/M;
x = l i n s p a c e (a , b , M + 1) ;
f p m = f e v a l (f , x , v a r a r g i n { : }) . * o n e s (1 , M + 1) ;
f pm(2 : e n d - 1) = 2* f p m(2 : e n d - 1) ;
I s i c = H* sum(fpm)/6 ;
x = l i n s p a c e (a + H / 2 , b - H / 2 , M) ;
f p m = f e v a l (f , x , v a r a r g i n { : }) . * o n e s (1 , M) ;
I s i c = I s i c+2*H*sum(fpm) /3 ;
r e t u r n

E xam ple 4.2 (D em ography) Let us consider Problem 4.4. To compute the
number of individuals whose height is between 1.8 and 1.9 m, we need to solve
the integral (4.3) for h = 1.8 and Ah = 0.1. For that we use the composite
Simpson formula with 100 sub-intervals
N = i n l i n e ([’ M / (s i g m a * s q r t (2 * p i)) * e x p (- (h - h b a r) . ~ 2 ’ . . .

’ . / (2 * s i g m a ~ 2)) ’] , ’ h ’ , ’ M’ , ’ h b a r ’ s i g m a ’)

N =
In lin e function :
N(h,M,hbar,sigma) = M/(sigma * sq r t(2 * p i)) * exp (-(h -
hbar).~ 2 ./ (2*sigma~2))

M = 200; h b ar = 1 . 7 ; s i gma = 0 . 1 ;
i n t = s impsonc (1 . 8 , 1 . 9 , 100, N, M, h b a r , s i gma)

in t =
27.1810

We therefore estimate that the number of individuals in this range of height
is 27.1810, corresponding to the 15.39 % of all individuals. ■

4.3 Interpolatory quadratures 111

F ig. 4.5. Logarithmic representation of the errors versus H for Simpson (solid
l ine with c i r c l e s), midpoint (solid line) and trapezoidal (dashed line) composite
quadrature formulae

E xam ple 4.3 We want to compare the approximations of the integral I (f) =
/02п xe -x cos(2x)dx = -1/25(10^ - 3 + 3e2n)/e2n ~ -0.122122604618968 ob­
tained by using the composite midpoint, trapezoidal and Simpson formulae. In
Figure 4.5 we plot on the logarithmic scale the errors versus H . As pointed out
in Section 1.5, in this type of plot the greater the slope of the curve, the higher
the order of convergence of the corresponding formula. As expected from the
theoretical results, the midpoint and trapezoidal formulae are second-order
accurate, whereas the Simpson formula is fourth-order accurate. ■

4.3 Interpolatory quadratures

All (non-composite) quadrature formulae introduced in the previous sec­
tions are remarkable instances of a more general quadrature formula of
the form:

n
lappr (f) a j f (y j)

j =0
(4.25)

The real numbers {a j } are the quadrature w e i g h t s , while the points { y j }
are the quadrature nodes . In general, one requires th a t (4.25) integrates
exactly at least a constant function: th is property is ensured if ̂ ГП=0 a j =
b — a. We can get a degree of exactness equal to (at least) n taking

b
!appr (f) = J ' n n f (x)dx ,

a

where n n f G Pn is the Lagrange interpolating polynom ial of the function
f at the nodes y i , i = 0 , . . . , n , given by (3.4). This yields the following
expression for the weights

112 4 Numerical differentiation and integration

0
= J <Pi(x)dx i = 0 , . . . , n ,a

a

where ^ i е Pn is the i-th characteristic Lagrange polynom ial such that
Pi(Vj) = Sij , for i , j = 0 , . . . , n , th a t was introduced in (3.3).

E xam ple 4 .4 For the trapezoidal formula (4.19) we have n = 1, y 0 = a,
y i = b and

b
ao = J ipo(x)dx

ab
a i = J ̂ i (x)dx

a

x — b b — a----- - dx = ------ .a b 2

x — a b — a-------dx = -------.b a 2

b

ab

a

The question th at arises is whether suitab le choices of the nodes
exist such th at the degree of exactness is greater than n, more precisely,
equal to r = n + m for some m > 0. We can sim plify our discussion by
restricting ourselves to a reference interval, say (— 1,1). Indeed, once a
set of quadrature nodes {г/j} and weights {a.j} are available on [—1, 1],
then owing to the change of variable (3.8) we can im m ediately obtain
the corresponding nodes and weights,

a + b b — a _ b — a _
y j = 2 + 2 y j , a j = 2 a j

on an arb itrary integration interval [a, b].
The answer to the previous question is furnished by the following

result (see, [QSS06, C hapter 10]):

P ro p o s it io n 4 .1 For a g i v e n m > 0; the quadrature f o rm u l a
y j _ 0 a j f (y j) has d e g r e e o f exa c tn e s s n + m i f f it is o f int e rpo la-
t o r y t ype and the nodal p o l y n om ia l w„+i = n = (x — y i) a s s o c ia t ed
wi th the nod e s {yi } is s u c h that

1

J <^n+i(x)p(x)dx = 0 , Wp е P m -1. (4.26)
-1

The maxim um value th at m can take is n + 1 and is achieved pro­
vided wn+1 is proportional to the so-called Legendre polynom ial of degree
n + 1 , Ln+1(x). The Legendre polynomials can be computed recursively,
through the following three-term relation

4.3 Interpolatory quadratures 113

n {Vj } {aj }
1 {1}
2 ! ± 15/5, {5/9, 8/9}
3 |± (1/35^525 - 7^730, {(1/36)(18 + ^ 30)^̂

±(1/35) V525 + 7^ 7 3^ 1 (1/36)(18 - ^30)}

4 {0, ± (1/21^245 - 1^V70t 31
+22(30)09(15,228/21

± (1/21^245 + (1/900)(322 - 13^70)}

T able 4.1. Nodes and weights for some quadrature formulae of Gauss-
Legendre on the interval (-1 ,1) . Weights corresponding to symmetric couples
of nodes are reported only once

Lo(x) = 1, Li(x) = x,
2k + 1 k

Lfc+i(x) = k + i xLk(x) - k + y L fc _ i(x) , k = 1 , 2 ,

For every n = 0 , 1 , . . . , every polynom ial in Pn can be obtained by a
linear combination of the polynomials L0, L i , . . . , L n . Moreover, Ln+1 is
orthogonal to all the polynom ials of degree less than or equal to n, i.e.,
f _ i Ln+1(x)Lj (x)dx = 0 for all j = 0 , . . . , n. This explains why (4.26) is
true w ith m less than or equal to n + 1.

The maxim um degree of exactness is therefore equal to 2n + 1, and is
obtained for the so-called Gauss -Leg endr e f o rm u l a (I gl in short), whose
nodes and weights are given by:

{Vj = zeros of Ln+ i(x),

, 2 .. 0 .. I4 '27»

a j 1л - 2\ГГ/ /'~M2 , j 0, . . . , n .j (1 - V j W n + i b j)]2

The weights a.j are a ll positive and the nodes are internal to the interval
(—1,1). In Table 4.1 we report nodes and weights for the Gauss-Legendre
quadrature formulae w ith n = 1, 2, 3,4. If f e C (2n+2) ([—1,1]), the cor­
responding error is

I (f) — i GL(f) = 2 + ((n + 1)!)— f (2n+2)(£)
f GLU) (2n + 3)((2n + 2) !)3 J ^ ,

where £ is a su itab le point in (— 1, 1).
It is often useful to include also the endpoints of the interval among

the quadrature nodes. B y doing so, the Gauss formula w ith the highest
degree of exactness (2n — 1) is the one th at employs the so-called Gauss-
Legendre -Lobat to nodes (briefly, GLL): for n > 1

Vo = —1,Vn = 1,Vj = zeros of L'n(x), j = 1 , . . . , n — 1, (4.28)

114 4 Numerical differentiation and integration

n {yj } {aj }
1 {±1} {1}
2 {±1. 0} {1/3.4/3}
3 {±1. ±л/5/5} {1/6 .5/6}
4 {±1. ±v/2'T/7. 0} {1/10.49/90. 32/45}

T able 4.2. Nodes and weights for some quadrature formulae of Gauss-
Legendre-Lobatto on the interval (—1.1). Weights corresponding to symmetric
couples of nodes are reported only once

a j l i 1 ̂ Г Г , j 0 , . . . , n .n (n + 1) [Ln (y j)]2

If f е C (2n)([—1, 1]), the corresponding error is given by

т(f) _ r (f) (n + 1)n322n+1 ((n — J-) !)4 (2n) (£)
(f) gll (f) (2n + 1) ((2n) !) 3 f (£)

for a suitab le £ е (—1,1). In Table 4.2 we give a tab le of nodes and
weights on the reference interval (— 1,1) for n = 1 , 2, 3,4. (For n = 1 we
recover the trapezoidal rule.)

quad l Using the M A T L A B instruction q u a d l (f u n , a , b) it is possible to
compute an integral w ith a composite Gauss-Legendre-Lobatto quadra­
ture formula. The function fun can be an inline object. For instance, to
integrate f (x) = 1/x over [1, 2], we must first define the function

f u n = i n l i n e (’ 1 . / x ’ , ’ x ’) ;

then call q u a d l (f u n ,1 , 2) . Note th at in the definition of function f we
have used an element by element operation (indeed M A T L A B will evalu­
ate this expression component by component on the vector of quadrature
nodes).

The specification of the number of subintervals is not requested as it
is au tom atically computed in order to ensure th a t the quadrature error is
below the default tolerance of 10- 3 . A different tolerance can be provided
by the user through the extended command q u a d l (f u n , a , b , t o l) . In
Section 4.4 we w ill introduce a method to estim ate the quadrature error
and, consequently, to change H adaptively.

Let us summarize

1. A quadrature formula is a formula to approxim ate the integral of
continuous functions on an interval [a, b];

2 . it is generally expressed as a linear combination of the values of the
function at specific points (called n o d e s) w ith coefficients which are
called w e i g h t s ;

4.4 Simpson adaptive formula 115

3. the d eg r e e o f exa c tn e s s of a quadrature formula is the highest degree
of the polynomials which are integrated exactly by the formula. It
is one for the midpoint and trapezoidal rules, three for the Simpson
rule, 2n + 1 for the Gauss-Legendre formula using n + 1 quadrature
nodes, and 2n - 1 for the Gauss-Legendre-Lobatto formula using
n + 1 nodes;

4. the o r d e r o f a c c u r a c y of a composite quadrature formula is its order
w ith respect to the size H of the subintervals. The order of accuracy
is two for composite midpoint and trapezoidal formulae, four for
composite Simpson formula.

See the Exercises 4.12-4.18. Ж
4.4 Simpson adaptive formula

The integration step-length H of a quadrature composite formula can
be chosen in order to ensure th at the quadrature error is less than a pre­
scribed tolerance e > 0. For instance, when using the Simpson composite
formula, thanks to (4.22) this goal can be achieved if

b a H 4
"m T 7 6 m a x l f (4)(x) l < e , (4 .29)180 16 xE[a,0]

where f (4) denotes the fourth-order derivative of f . Unfortunately, when
the absolute value of f (4) is large only in a sm all part of the integra­
tion interval, the maxim um T for which (4.29) holds true can be too
sm all. The goal of the adaptive Simpson quadrature formula is to yield
an approxim ation of I (f) w ithin a fixed tolerance e by a n onun i f o rm
distribution of the integration step-sizes in the interval [a, b]. In such a
way we retain the same accuracy of the composite Simpson rule, but
w ith a lower number of quadrature nodes and, consequently, a reduced
number of evaluations of f .

To this end, we must find an error estim ator and an autom atic proce­
dure to modify the integration step-length T , according to the achieve­
ment of the prescribed tolerance. We start by analyzing this procedure,
which is independent of the specific quadrature formula th at one wants
to apply.

In the first step of the adaptive procedure, we compute an approx­
im ation I s (f) of I (f) = J° f (x)dx. We set T = b — a and we try to
estim ate the quadrature error. If the error is less than the prescribed
tolerance, the adaptive procedure is stopped; otherwise the step-size T
is halved until the integral f a+H f (x)dx is computed w ith the prescribed
accuracy. W hen the test is passed, we consider the interval (a + T , b)

116 4 Numerical differentiation and integration

and we repeat the previous procedure, choosing as the first step-size the
length b — (a + H) of th a t interval.

We use the following notations:

1. A: the ac t i v e integration interval, i.e. the interval where the integral
is being computed;

2. S : the integration interval a lready exam ined, for which the error is
less than the prescribed tolerance;

3. N : the integration interval yet to be examined.

At the beginning of the integration process we have N = [a, b], A = N
and S = 0, while the situation at the generic step of the algorithm is
depicted in Figure 4.6. Let J S (f) indicate the computed approximation
of f a f (x)dx, w ith J S (f) = 0 at the beginning of the process; if the algo­
rithm successfully term inates, J S (f) yields the desired approxim ation of
I (f). We also denote by J (a , e) (f) the approxim ate integral of f over the
active interval [a , в]. This interval is drawn in g ray in F igure 4.6. The
generic step of the adaptive integration method is organized as follows:

1 . if the estim ation of the error ensures th a t the prescribed tolerance is
satisfied, then:
(i) J s (f) is increased by J (a , e) (f), th a t is J s (f) ^ J s (f) +

J (a , e) (f) ;
(ii) we let S ^ S U A, A = N (corresponding to the path (I) in

F igure 4.6) and a ^ в and в ^ b;
2 . if the estim ation of the error fails the prescribed tolerance, then:

(j) A is halved, and the new active interval is set to A = [a, a '] w ith
a ' = (a + в) /2 (corresponding to the path (I I) in Figure 4.6);

(jj) we let N ^ N U [a ', в], в ^ a';
(jjj) a new error estim ate is provided.

F ig . 4.6. Distribution of the integration intervals at the generic step of the
adaptive algorithm and updating of the integration grid

4.4 Simpson adaptive formula 117

Of course, in order to prevent the algorithm from generating too small
step-sizes, it is convenient to monitor the w idth of A and warn the user,
in case of an excessive reduction of the step-length, about the presence
of a possible s ingu larity in the integrand function.

The problem now is to find a su itab le estim ator of the error. To this
end, it is convenient to restrict our attention to a generic subinterval
[а, в] in which we compute I s (f): of course, if on th is interval the error
is less than е (в — a)/(b — a), then the error on the interval [a, b] w ill be
less than the prescribed tolerance e. Since from (4.24) we get

в s
E s (f ; а , в) = | f (x)dx — I s (f) = — в —8а - f (4)(£),

to ensure the achievement of the tolerance, it w ill be sufficient to ver­
ify th a t Es (f ; а , в) < е (в — a)/(b — a). In practical computation, this
procedure is not feasible since the point £ e [а , в] is unknown.

To estim ate the error Es (f ; а, в) w ithout using exp lic itly the value
f (4)(£), we employ again the composite Simpson formula to compute
l a f (x)dx, but w ith a step-length (в — а)/2. From (4.22) w ith a = а
and b = в , we deduce that

J f (x) d x — I sc (f) = — (в4608а0) f (4) (n), (4 .30)
а

where n is a suitab le point different from £. Subtracting the last two
equations, we get

A i = I c (f) — I s (f) = — (в — а)5 f (4)(£) + (в — а)5 f (4)(n). (4.31)
sKJ J 2880 K J 46080 KU K 1

Let us now make the assumption th at f (4) (x) is approxim ately a con­
stant on the interval [а, в]. In th is case f (4)(£) — f (4) (n). We can com­
pute f (4) (n) from (4.31) and, putting this value in the equation (4.30),
we obtain the following estim ation of the error:

в
J f (x)dx — iCs (f) — 1 : A i .

The step-length (в — а) /2 (that is the step-length employed to com­
pute I C (f)) w ill be accepted if \ A I |/15 < е (в — а)/[2(Ь — a)]. The quadra­
ture formula th at uses this criterion in the adaptive procedure described
previously, is called adapt i ve S imp s on f o rmu la . It is implemented in Pro­
gram 4.3. Among the input param eters, f is the string in which the func­
tion f is defined, a and b are the endpoints of the integration interval,

а

а

118 4 Numerical differentiation and integration

t o l is the prescribed tolerance on the error and hmin is the minimum
adm issible value for the integration step-length (in order to ensure that
the adaptation procedure always term inates).

P ro gram 4.3. simpadpt: adaptive Simpson formula

f u n c t i o n [J S f , n o d e s] = s i m p a d p t (f , a , b , t o l , h m i n , v a r a r g i n)
%SIMPADPT N u m e r i c a l l y e v a l u a t e i n t e g r a l , a d a p t i v e
% Simpson q u a d r a t u r e .
%
% JSF = SIMPADPT(FUN,A,B,TOL,HMIN) t r i e s t o a ppr ox i ma t e
% the i n t e g r a l of f u n c t i o n FUN from A to B to w i t h i n an
% e r r o r of TOL u s i n g r e c u r s i v e a d a p t i v e Simpson
% q u a d r a t u r e . The i n l i n e f u n c t i o n Y = FUN(V) shou l d
% a c c e p t a v e c t o r a rgument V and r e t u r n a v e c t o r r e s u l t
% Y, t he i n t e g r a n d e v a l u a t e d a t e ach e l emen t of X.
% JSF = SIMPADPT(FUN, A, B , TOL, HMIN, P1 , P2 , . . .) c a l l s the
% f u n c t i o n FUN p a s s i n g the o p t i o n a l p a r a m e t e r s
% P 1 , P 2 , . . . a s F U N (X , P 1 , P 2 , . . .) .
% [JSF,NODES] = SIMPADPT(. . .) r e t u r n s t he d i s t r i b u t i o n
% of nodes used i n the q u a d r a t u r e p r o c e s s .
A= [a , b] ; N=[] ; S = [] ; J S f = 0; ba = b - a ; n o d e s = [] ;
w h i l e ~ i s e mp t y (A) ,

[d e l t a I , I S c] = c a l d e l t a i (A , f , v a r a r g i n { : }) ;
i f a b s (d e l t a I) <= 1 5 * t o l * (A (2) - A (1)) / b a ;

J S f = J S f + I S c ; S = u n i o n (S , A) ;
nodes = [n o d e s , A(1) (A (1) + A (2)) * 0 . 5 A (2)] ;
S = [S (1) , S (e n d)] ; A = N; N = [] ;

e l s e i f A (2) - A (1) < hmin
J S f = J S f + I S c ; S = u n i o n (S , A) ;
S = [S (1) , S (e n d)] ; A=N; N=[] ;
w a r n i n g (’ Too s m a l l i n t e g r a t i o n - s t e p ’) ;

e l s e
Am = (A(1)+A (2)) * 0 . 5 ;
A = [A(1) Am];
N = [Am, b] ;

end
end
n o d e s = u n i q u e (n o d e s) ;
r e t u r n

f u n c t i o n [d e l t a I , I S c] = c a l d e l t a i (A , f , v a r a r g i n)
L = A (2) - A (1) ;
t = [0 ; 0 . 2 5 ; 0 . 5 ; 0 . 5 ; 0 . 7 5 ; 1] ;
x = L*t + A (1) ;
L=L/6 ;
w=[1; 4; 1] ;
f x = f e v a l (f , x , v a r a r g i n { : }) . * o n e s (6 , 1) ;
I S =L * s u m(f x ([1 3 6]) . * w) ;
I S c = 0 . 5 * L * s u m (f x . * [w ; w]) ;
d e l t a I = I S - I S c ;
r e t u r n

E xam ple 4.5 Let us compute the integral I (f) = f ^ 1 e 10(x 1) dx by usinj
the adaptive Simpson formula. Using Program 4.3 with

>> fun=inl ine (’ exp(-10*(x-1) .~2) ’) ; to l = 1 .e -04 ; hmin = 1 .e-03 ;

4.5 What we haven’t told you 119

we find the approximate value 0.28024765884708, instead of the exact value
0.28024956081990. The error is less than the prescribed tolerance tol=10~6.

To obtain this result it was sufficient to use only 10 nonuniform subinter­
vals. Note that the corresponding composite formula with uniform step-size
would have required 22 subintervals to ensure the same accuracy. ■

4.5 W hat we haven’t told you

The midpoint, trapezoidal and Simpson formulae are particu lar cases of
a larger fam ily of quadrature rules known as Newt on -Co t e s f o rmu l a e . For
an introduction, see [QSS06, C hapter 10]. S im ilarly, the Gauss-Legendre
and the Gauss-Legendre-Lobatto formulae th at we have introduced in
Section 4.3 are special cases of a more general fam ily of Gaussian quadra­
ture formulae. These are op t ima l in the sense th at they maxim ize the
degree of exactness for a prescribed number of quadrature nodes. For an
introduction to Gaussian formulae, see [QSS06, Chapter 10] or [RR85].
Further developments on numerical integration can be found, e.g., in
[DR75] and [PdDKUK83].

Numerical integration can also be used to compute integrals on un­
bounded intervals. For instance, to approxim ate f ° ° f (x)dx, a first pos­
sib ility is to find a point а such th at the value of f (x)dx can be
neglected w ith respect to th a t of f 0 f (x)dx. Then we compute by a
quadrature formula th is la tte r integral on a bounded interval. A second
possib ility is to resort to Gaussian quadrature formulae for unbounded
intervals (see [QSS06, C hapter 10]).

F inally, numerical integration can also be used to compute m ultid i­
mensional integrals. In particu lar, we mention the M A T L A B instruction
d b l q u a d (’ f ’ , xmin,xmax, ymin,ymax) by which it is possible to com­
pute the integral of a function contained in the M A T L A B file f .m over
the rectangular domain [xm in,xm ax] x [ym in ,ym ax]. Note th at the
function f must have at least two input param eters corresponding to the
variables x and y w ith respect to which the integral is computed.

O c tave 4 .1 In Octave, db lquad is not available; however there are some
Octave functions featuring the same functionalities:

1. quad2dg for two-dimensional integration, which uses a Gaussian
quadrature integration scheme;

2. quad2dc for two-dimensional integration, which uses a Gaussian-
Chebyshev quadrature integration scheme.

db lquad

quad2dg

quad2dc

120 4 Numerical differentiation and integration

4.6 Exercises

E xercise 4.1 Verify that, if f e C3 in a neighborhood I0 of x0 (respectively,
In of xn) the error of formula (4.11) is equal to — lf ' ' '(£ 0)h2 (respectively,
— 1 f'"(£,n)h2), where £0 and £n are two suitable points belonging to I0 and In ,
respectively.

E xercise 4.2 Verify that if f e C 3 in a neighborhood of X the error of the
formula (4.9) is equal to (4.10).

E xercise 4.3 Compute the order of accuracy with respect to h of the follow­
ing formulae for the numerical approximation of f ' (xi):

— 11f (xi) + 18f (xi+l) — 9f (xi+2) + 2 f (xi+3)
6h

f (x i - 2) — 6 f (xi -i (xif(
CO+ + 2f (xi+i)

6h 5
— f (xi -2) — 12f (xi:) + 16f (xi+ l) — 3 f (xi + 2)

12h '

E xercise 4 .4 (D em ography) The following values represent the time evo­
lution of the number n(t) of individuals of a given population whose birth rate
is constant (b = 2) and mortality rate is d(t) = 0 0̂1n(t):

t (months) 0 0̂ 5 1 1̂ 5 2 2̂ 5 3
n 100 147 178 192 197 199 о о

Use this data to approximate as accurately as possible the rate of variation
of this population. Then compare the obtained results with the exact rate
n'(t) = 2n(t) — 0 0̂1n 2(t).

E xercise 4.5 Find the minimum number M of subintervals to approximate
with an absolute error less than 10-4 the integrals of the following functions:

f l (x) = 1 + (x: — ^)2 in [0’ 5]>
f 2(x) = e x cos(x) in [0 ,^],

f 3(x) = V x (1 — x) in [0 , 1],

using the composite midpoint formula. Verify the results obtained using the
Program 4.1.

E xercise 4.6 Prove (4.14) starting from (4.16).

E xercise 4 .7 Why does the midpoint formula lose one order of convergence
when used in its composite mode?

4.6 Exercises 121

E xercise 4.8 Verify that, if f is a polynomial of degree less than or equal 1,
then Imp(f) = I (f) i.e. the midpoint formula has degree of exactness equal to
1.

E xercise 4.9 For the function f 1 in Exercise 4.5, compute (numerically) the
values of M which ensure that the quadrature error is less than 10-4 when the
integral is approximated by the composite trapezoidal and Gauss quadrature
formulae.

E xercise 4.10 Let I 1 and I2 be two values obtained by the composite trape­
zoidal formula applied with two different step-lengths, H1 and H2, for the
approximation of I (f) = J b f (x)dx. Verify that, if f (2) has a mild variation
on (a, b), the value

I r = I i + (Ii — I2)/(h 22/h 2 — 1) (4.32)

is a better approximation of I (f) than I 1 and I2. This strategy is called the
Richardson extrapolation method. Derive (4.32) from (4.18).

E xercise 4.11 Verify that, among all formulae of the form I appx(f) =
a f (x) + @f(z) where x,z e [a, b] are two unknown nodes and a and в two
undetermined weights, the Gauss formula with n = 1 of Table 4.1 features the
maximum degree of exactness.

E xercise 4.12 For the first two functions of Exercise 4.5, compute the min­
imum number of intervals such that the quadrature error of the composite
Simpson quadrature formula is less than 10-4 .

E xercise 4.13 Compute J02 e -x /2dx using the Simpson formula (4.23) and
the Gauss-Legendre formula of Table 4.1 for n = 1, then compare the obtained
results.

E xercise 4 .14 To compute the integrals Ik = f0 xk e x-1dx for к = 1, 2 , . . . ,
one can use the following recursive formula: Ik = 1 — kIk-1, with I 1 = 1/e.
Compute I20 using the composite Simpson formula in order to ensure that the
quadrature error is less than 10-3 . Compare the Simpson approximation with
the result obtained using the above recursive formula.

E xercise 4.15 Apply the Richardson extrapolation formula (4.32) for the
approximation of the integral I (f) = J 02 e -x /2dx, with H1 = 1 and H2 = 0.5
using first the Simpson formula (4.23), then the Gauss-Legendre formula for
n = 1 of Table 4.1. Verify that in both cases I R is more accurate than I 1 and
I 2 .

E xercise 4.16 (E lectrom agnetism) Compute using the composite Simp­
son formula the function j(r) defined in (4.2) for r = k/10 m with k =
1, . . . , 10 , with p(£) = e ̂ and a = 0.36 W/(mK). Ensure that the quadra­
ture error is less than 10-10. (Recall that: m=meters, W=watts, K=degrees
Kelvin.)

122 4 Numerical differentiation and integration

E xercise 4 .17 (O ptics) By using the composite Simpson and Gauss-
Legendre with n = 1 formulae compute the function E(T), defined in (4.1),
for T equal to 213 K, up to at least 10 exact significant digits.

E xercise 4.18 Develop a strategy to compute I (f) = J0 \x2 — 0.25\dx by the
composite Simpson formula such that the quadrature error is less than 10~2.

Linear systems

5

In applied sciences, one is quite often led to face a linear system of the
form

A x = b, (5.1)

where A is a square m atrix of dimension n x n whose elements a^ are
either real or complex, while x and b are column vectors of dimen­
sion n w ith x representing the unknown solution and b a given vector.
Component-wise, (5.1) can be w ritten as

ацХ\ + a i 2x 2 + . . . + a\n xn = bi,

a 2iX i + a 22X2 + . . . + a,2n'Xn = &2,

an1X1 + an2X2 + . . . + ann xn — bn.

We present three different problems th at give rise to linear systems.

P ro b le m 5 .1 (H y d ra u lic n e tw o rk) Let us consider the hydraulic net­
work made of the 10 pipelines in Figure 5.1, which is fed by a reservoir of
w ater at constant pressure p r = 10 bar. In th is problem, pressure values
refer to the difference between the real pressure and the atmospheric
one. For the j -th pipeline, the following relationship holds between the
flow-rate Qj (in m3/s) and the pressure gap Apj a t pipe-ends:

Qj = kLApj , (5.2)

where k is the hydraulic resistance (in m 2 /(bar s)) and L is the length
(in m) of the pipeline. We assume th at w ater flows from the outlets
(indicated by a black dot) at atmospheric pressure, which is set to 0 bar
for coherence w ith the previous convention.

124 5 Linear systems

A typical problem consists in determ ining the pressure values a t each
internal node 1, 2, 3, 4. W ith th is aim , for each j = 1, 2, 3 ,4 we can
supplement the relationship (5.2) w ith the statem ent th at the algebraic
sum of the flow-rates of the pipelines which meet at node j must be null
(a negative value would indicate the presence of a seepage).

Denoting by p = (p1,P2 ,P3,P4)T the pressure vector at the internal
nodes, we get a 4 x 4 system of the form Ap = b.

In the following tab le we report the relevant characteristics of the
different pipelines:

pipeline к L pipeline к L pipeline к L
1 0.01 20 2 0.005 10 3 0.005 14
4 0.005 10 5 0.005 10 6 0.002 8
7 0.002 8 8 0.002 8 9 0.005 10
10 0.002 8

Correspondingly, A and b take the following values (only the first 4
significant d igits are provided):

'-0 .3 7 0 0.050 0.050 0.070 - 2

A = 0.050 - 0.116 0 0.050 , b = 0
0.050 0 - 0.116 0.050 0
0.070 0.050 0.050 - 0.202 0

The solution of this system is postponed to Example 5.5. ■

P ro b le m 5 .2 (S p e c t ro m e tr y) Let us consider a gas m ixture of n non­
reactive unknown components. Using a mass spectrom eter the compound
is bombarded by low-energy electrons: the resulting m ixture of ions is
analyzed by a galvanometer which shows peaks corresponding to specific
ratios mass/charge. We only consider the n most relevant peaks. One
m ay conjecture th a t the height h i of the *-th peak is a linear combination

5 Linear systems 125

of {P j , j = 1, . . . , n}, p j being the partia l pressure of the j - th component
(that is the pressure exerted by a single gas when it is part of a m ixture),
yield ing

n
]> > j Pj = hi, * = 1 , . . . , n , (5 .3)
j= i

where the s ij are the so-called sensitiv ity coefficients. The determ ination
of the partia l pressures demands therefore the solution of a linear system .
For its solution, see Example 5.3. ■

P ro b le m 5 .3 (E co n o m y: in p u t -o u tp u t a n a ly s is) We want to de­
term ine the situation of equilibrium between demand and offer of certain
goods. In particu lar, let us consider a production model in which m > n
factories (or production lines) produce n different products. They must
face the internal demand of goods (the input) necessary to the facto­
ries for their own production, as well as the external demand (the out­
put) from the consumers. The m ain assumption of the Leontief model
(1930)1 is th at the production model is linear, th a t is, the amount of
a certain output is proportional to the quan tity of input used. Under
th is assumption the ac tiv ity of the factories is com pletely described by
two m atrices, the input m atrix C= (c ij) G R nxm and the output m atrix
P= (pij) G R nxm. (“C” stands for c on sumab l e s and “P” for produc t s .)
The coefficient c ij (respectively, p j) represent the quan tity of the *-th
good absorbed (respectively, produced) by the j -th factory for a fixed
period of time. The m atrix A = P -C is called i npu t - ou t pu t mat r ix : a ij
positive (respectively, negative) denotes the quan tity of the *-th good
produced (respectively, absorbed) by the j -th factory. F inally, it is rea­
sonable to assume th at the production system satisfies the demand of
goods from the m arket, th a t can be represented by a vector b= (bi) G R n
(the vector of the f i nal d e m a n d). The component bi represents the quan­
t ity of the *-th good absorbed by the m arket. The equilibrium is reached
when the vector x= (xi) G Mm of the to tal production equals the total
demand, th at is,

A x = b , where A = P - C . (5.4)

For the solution of th is linear system see Exercise 5.17. ■

The solution of system (5.1) exists iff A is nonsingular. In principle,
the solution might be computed using the so-called Cramer r u l e :

_ det(A i) . _
Xi = det(A) , * = 1 , . . . , n

1 On 1973 Wassily Leontief was arwarded the Nobel prize in economy for his
studies.

126 5 Linear systems

[______ C33

F ig. 5.2. The interaction scheme between three factories and the market

where Aj is the m atrix obtained from A by replacing the i-th column by
b and det(A) denotes the determ inant of A. If the n +1 determ inants are
computed by the Laplace expansion (see Exercise 5.1), a to tal number
of approxim ately 2(n +1) ! operations is required. As usual, by operation
we mean a sum, a subtraction, a product or a division. For instance,
a computer capable of carrying out 109 f l o p s (i.e. 1 g iga f l o p s), would
require about 12 hours to solve a system of dimension n = 15, 3240 years
if n = 20 and 10143 years if n = 100. The com putational cost can be
d rastica lly reduced to the order of about n3 8 operations if the n + 1
determ inants are computed by the algorithm quoted in Example 1.3.
Yet, this cost is still too high for large values of n, which often arise in
practical applications.

Two alternative approaches w ill be pursued: they are called di re c t
met h od s if they yield the solution of the system in a finite number of
steps, i t e ra t i v e m e t h od s if th ey require (in principle) an infinite number
of steps. Iterative methods w ill be addressed in Section 5.7. We warn
the reader th a t the choice between direct and iterative methods m ay
depend on several factors: prim arily, the predicted theoretical efficiency
of the scheme, but also the particu lar type of m atrix, the memory storage
requirements and, finally, the computer architecture (see, Section 5.11
for more details).

F inally, we note th a t a system w ith full m atrix cannot be solved
by less than n 2 operations. Indeed, if the equations are fu lly coupled,
we should expect th at every one of the n 2 m atrix coefficients would be
involved in an algebraic operation at least once.

5.1 The LU factorization method

Let A be a square m atrix of order n . Assume th at there exist two suitab le
m atrices L and U, lower triangu lar and upper triangu lar, respectively,

5.1 The LU factorization method 127

such that
A = LU (5.5)

We call (5.5) an LU-fac to r iza t i on (or decomposition) of A. If A is non­
singular, so are both L and U, and thus their diagonal elements are
nonnull (as observed in Section 1.3).

In such a case, solving A x = b leads to the solution of the two
triangu lar system s

(5.6)L y = b , U x = y

Both system s are easy to solve. Indeed, L being lower triangu lar, the
first row of the system L y = b takes the form:

l i i y i = bi,

which provides the value of y 1 since l 11 = 0. B y substitu ting this value
of y i in the subsequent n - 1 equations we obtain a new system whose
unknowns are y 2, . . . , y n , on which we can proceed in a sim ilar manner.
Proceeding forward, equation by equation, we can compute all unknowns
w ith the following f o rw a r d subs t i tu t ion s a l g o r i t hm :

(5.7)

Let us count the number of operations required by (5.7). Since i — 1
sums, i - 1 products and 1 division are needed to compute the unknown
y i , the to tal number of operations required is

Y 1 + 2Y (i — 1) = 2Y i — '

The system U x = y can be solved by proceeding in a sim ilar manner.
This time, the first unknown to be computed is xn , then, by proceeding
backward, we can compute the rem aining unknowns x i , for i = n — 1 to
i = 1:

(5.8)

2

128 5 Linear systems

This is called backward subst i tu t ion s a l g o r i t hm and requires n 2 opera­
tions too. At this stage we need an algorithm that allows an effective
com putation of the factors L and U of the m atrix A. We illu strate a
general procedure starting from a couple of examples.

The 6 unknown elements of L and U must satisfy the following (nonlinear)
equations:

System (5.9) is underdet ermined as it features less equations than un­
knowns. We can complete it by assigning arbitrarily the diagonal elements of
L, for instance setting ln = 1 and l22 = 1. Now system (5.9) can be solved by
proceeding as follows: we determine the elements u 11 and u12 of the first row
of U using (e1) and (e2). If u n is nonnull then from (e3) we deduce l21 (that is
the first column of L, since l 11 is already available). Now we can obtain from
(e4) the only nonzero element u 22 of the second row of U. ■

E xam ple 5.2 Let us repeat the same computations in the case of a 3 x 3
matrix. For the 12 unknown coefficients of L and U we have the following 9
equations:

(ei) l i i u i i = a n , (e2) l i iU12 = a i 2, (ез) l i i u i 3 = a i 3.
(e4) l2i u i i = a21, (eg) l21 u i 2 + l2 2u 22 = a 2 2 , (ев) l2i u i 3 + l22u23 = a23,
(er) l3iui i = a 3i , (es) l3 iu i2 + l32u22 = a32, (eg) l3iui3+l32u23+l33u33 = a33.

Let us complete this system by setting la = 1 for i = 1, 2, 3. Now, the
coefficients of the first row of U can be obtained by using (e1), (e2) and (e3).
Next, using (e4) and (e7), we can determine the coefficients l21 and l31 of the
first column of L. Using (eg) and (e6) we can now compute the coefficients u22
and u23 of the second row of U. Then, using (es), we obtain the coefficient l32
of the second column of L. Finally, the last row of U (which consists of the
only element u33) can be determined by solving (eg). ■

On a m atrix of a rb itra ry dimension n we can proceed as follows:

1. the elements of L and U satisfy the system of nonlinear equations

E xam ple 5.1 Let us write the relation (5.5) for a generic matrix A e R2x2

l i i 0 u ii u i2
121 l22 0 u22

a i i a i 2
a 2i a 22

(ei) l i i u i i = a i i , (e2) l i i u i 2 = a i 2,
(e3) l2i u i i = a 2i, (e4) h i u i 2 + l2 2u 22 = a 22. (5.9)

(5.10)

2. system (5.10) is underdetermined; indeed there are n 2 equations and
n 2 + n unknowns, thus the factorization LU cannot be unique;

5.1 The LU factorization method 129

3. B y forcing the n diagonal elements of L to be equal to 1, (5.10) turns
into a determ ined system which can be solved by the following Gauss
a l g o r i t hm : set A (1) = A i.e. a (1) = a ij for i , j = 1 , . . . , n ;

(5.11)

(k)The elements akk must all be different from zero and are called p i v o t
e l emen t s . For every к = 1 , . . . , n — 1 the m atrix A (k+1) = (а ^ +1)) has
n — к rows and columns.

At the end of th is procedure the elements of the upper triangu lar
m atrix U are given by u ij = r a j for i = 1 , . . . , n and j = i, . . . , n ,
whereas those of L are given by the coefficients lij generated by this
algorithm . In (5.11) there is no com putation of the diagonal elements of
L, as we a lready know th at their value is equal to 1.

This factorization is called the Gauss f a c t o r i z a t i o n ; determ ining the
elements of the factors L and U requires about 2n3/3 operations (see
Exercise 5.4).

E xam ple 5.3 (S p ec tro m etry) For the Problem 5.2 we consider a gas mix­
ture that, after a spectroscopic inspection, presents the following seven most
relevant peaks: h 1 = 17.1, h 2 = 65.1, h 3 = 186.0, h4 = 82.7, h 5 = 84.2,
h 6 = 63.7 and h 7 = 119.7. We want to compare the measured total pressure,
equal to 38.78 Mm of Hg (which accounts also for those components that we
might have neglected in our simplified model) with that obtained using rela­
tions (5.3) with n = 7, where the sensitivity coefficients are given in Table 5.1
(taken from [CLW69, p.331]). The partial pressures can be computed solving
the system (5.3) for n = 7 using the LU factorization. We obtain

partpress=
0.6525
2.2038
0.3348
6.4344
2.9975
0.5505

25.6317

Using these values we compute an approximate total pressure (given by
sum (partpress)) of the gas mixture which differs from the measured value
by 0.0252 Mm of Hg. ■

130 5 Linear systems

Components and indices
Peak Hydrogen Methane Etilene Ethane Propylene Propane n -Pentane
index 1 2 3 4 5 6 7

1 16.87 0.1650 0.2019 0.3170 0.2340 0.1820 0.1100
2 0.0 27.70 0.8620 0.0620 0.0730 0.1310 0.1200
3 0.0 0.0 22.35 13.05 4.420 6.001 3.043
4 0.0 0.0 0.0 11.28 0.0 1.110 0.3710
5 0.0 0.0 0.0 0.0 9.850 1.1684 2.108
6 0.0 0.0 0.0 0.0 0.2990 15.98 2.107
7 0.0 0.0 0.0 0.0 0.0 0.0 4.670

T able 5.1. The sensitivity coefficients for a gas mixture

F ig . 5.3. The number of floating-point operations necessary to generate the
Gauss factorization LU of the Vandermonde matrix, as a function of the matrix
dimension n. This function is a cubic polynomial obtained by approximating
in the least-squares sense the values (represented by circles) corresponding to
n = 10, 20, . . . , 100

E xam ple 5 .4 Consider the Vandermonde matrix

A = (aij) with aij = х™- -*, i , j = 1 , . . . , n , (5.12)

where the xi are n distinct abscissae. It can be constructed using the MAT-
vander LAB command vander. In Figure 5.3 we report the number of floating-point

operations required to compute the Gauss factorization of A, versus n . Several
values of n (precisely, n = 10, 20 , . . . , 100) are considered and the correspond­
ing number of operations are indicated with circles. The curve reported in the
picture is a polynomial in n of third degree representing the least-squares ap­
proximation of the above data. The computation of the number of operations

f l o p s was made using a MATLAB command (f lo p s) that was present in MATLAB
version 5.3.1 and earlier.

■

Storing the m atrices A (k) in the algorithm (5.11) is not necessary; ac­
tu a lly we can overlap the (n — k) x (n — k) elements of A (fc+1) on the
corresponding last (n — k) x (n — k) elements of the original m atrix A.

5.1 The LU factorization method 131

Moreover, since at step к, the subdiagonal elements of the к-th column
don’t have any effect on the final U, they can be replaced by the entries
of the к-th column of L, as done in Program 5.1. Then, at step к of the
process the elements stored at location of the original entries of A are

a (1) a (1)
a 11 a 12
7 (2)l21 a 22

lk1 . . . lk,k-1

ln1 . .. ln,k-1

a (1)
r 1n
r(2)a 2n

where the boxed subm atrix is A (k). The Gauss factorization is the basis
of several M A T L A B commands:

- [L,U]=lu(A) whose mode of use w ill be discussed in Section 5.2;
- in v th at allows the com putation of the inverse of a m atrix;
- \ by which it is possible to solve a linear system w ith m atrix A and

right hand side b by sim ply w riting A\b (see Section 5.6).

R em ark 5.1 (C om pu ting a d e te rm in an t) By means of the LU factoriza­
tion one can compute the determinant of A with a computational cost of O(n3)
operations, noting that (see Sect.1.3)

n
det(A) = det(L) det(U) = ukk.

k=i

As a matter of fact, this procedure is also at the basis of the MATLAB com­
mand d et. •

In Program 5.1 we implement the algorithm (5.11). The factor L is stored
in the (strictly) lower triangu lar part of A and U in the upper triangu lar
part of A (for the sake of storage saving). After the program execu­
tion, the two factors can be recovered by sim ply writing: L = e y e (n) +
t r i l (A , - 1) and U = t r i u (A) , where n is the size of A.

P ro gram 5.1. lugauss: Gauss factorization

f u n c t i o n A=l ugaus s (A)
%LUGAUSS LU f a c t o r i z a t i o n w i t h o u t p i v o t i n g .
% A = LUGAUSS(A) s t o r e s an upper t r i a n g u l a r m a t r i x in
% the upper t r i a n g u l a r p a r t of A and a l ower t r i a n g u l a r
% m a t r i x i n the s t r i c t l y l ower p a r t of A (t h e d i a g o n a l
% e l e me n t s of L a r e 1) .
[n , m] = s i z e (A) ;
i f n ~= m; e r r o r (’ A i s not a s q u a r e m a t r i x ’) ; e l s e

f o r k = 1 : n -1
f o r i = k+1 :n

l u
i nv
\

det

132 5 Linear systems

A (i , k) = A (i , k) / A (k , k) ;
i f A (k , k) == 0 , e r r o r (’ Nul l d i a g o n a l e l e m e n t ’) ; end
j = [k+1 : n] ; A (i , j) = A (i , j) - A (i , k) * A (k , j) ;

end
end

end
r e t u r n

E xam ple 5.5 Let us compute the solution of the system encountered in Prob­
lem 5.1 by using the LU factorization, then applying the backward and forward
substitution algorithms. We need to compute the matrix A and the right-hand
side b and execute the following instructions:
A = l u g a u s s (A) ;
y (1) = b (1) ;
f o r i = 2 : 4 ; y = [y ; b (i) - A (i , 1 : i - 1) * y (1 : i - 1)] ; end
x (4) = y (4) / A (4 , 4) ;
f o r i = 3 : - 1 : 1 ; x (i) = (y (i) - A (i , i + 1 : 4) * x (i + 1 : 4) ’) / A (i , i) ; e n d

The result is p = (8.1172, 5.9893, 5.9893, 5.7779)T. ■

E xam ple 5.6 Suppose that we solve Ax = b with

'1 1 - е 3 5 - е

A = 2 2 2 , b = 6

3 6 4 13

е e R, (5.13)

whose solution is x = (1, 1, 1)T (independently of the value of е).
Let us set е = 1. The Gauss factorization of A obtained by the Program

5.1 yields

' 1 0 0 ' '1 0 3
L = 2 1 0 , U = 0 2 - 4

3 3 1 0 0 7

If we set е = 0, despite the fact that A is non singular, the Gauss factoriza­
tion cannot be carried out since the algorithm (5.11) would involve divisions
by 0. ■

The previous example shows th a t, unfortunately, the Gauss factor­
ization A=LU does not necessarily exist for every nonsingular m atrix A.
In th is respect, the following result can be proven:

P ro p o s it io n 5 .1 For a g i v e n matr ix A G R " x" ; i ts Gauss f a c t o r ­
izat i on exists and is un ique i f f the p r i n c ip a l su bmat r i c e s Aj o f A o f
o r d e r i = 1 , . . . , n — 1 (that i s th o s e obta in ed by r e s t r i c t in g A to i ts
f i r s t i r ows and c o lumn s) ar e nons ingu la r .

Going back to Example 5.6, we can notice th at when e = 0 the second
principal subm atrix A2 of the m atrix A is singular.

5.1 The LU factorization method 133

We can identify special classes of m atrices for which the hypotheses
of Proposition 5.1 are fulfilled. In particu lar, we mention:

1. sym m etric and positive definite m atrices. A m atrix A G R nxn is
pos i t i v e de f in i t e if

Vx G R n w ith x = 0, x TA x > 0;

2. d iagonally dominant m atrices. A m atrix is (diagonally d om ina n t by
r ow if

n
\a ii \ > ^ J a ij |, i 1, . . . , n :

j = i

by c o l u m n if
n

\aii\ > Y \ aji\, i = 1 , . . . , n -
j = i

A special case occurs when in the previous inequalities we can replace
> by >. Then the m atrix A is called s t r i c t l y d iagonally dominant
(by row or by column, respectively).

If A is sym m etric and positive definite, it is moreover possible to
construct a special factorization:

A = HHT (5.14)

where H is a lower triangu lar m atrix w ith positive diagonal elements.
This is the so-called Cholesky fa c t o r i z a t i on and requires about n3/3 op­
erations (half of those required by the Gauss LU factorization). Further,
let us note that, due to the sym m etry, only the lower part of A is stored,
and H can be stored in the same area.

The elements of H can be computed by the following algorithm: we
set h11 = J a 11 and for i = 2 , . . . , n ,

(5.15)

Cholesky factorization is available in M A T L A B by setting R=chol(A), cho l
where R is the triangu lar uppe r factor HT. >LSee Exercises 5.1-5.5.

5.2 The pivoting technique

We are going to introduce a special technique th at allows us to achieve
the LU factorization for every nonsingular m atrix , even if the hypotheses
of Proposition 5.1 are not fulfilled.

Let us go back to the case described in Example 5.6 and take e =
0. Setting A (1) = A after carrying out the first step (k = 1) of the
procedure, the new entries of A are

134 5 Linear systems

1 1 3
2 0 -4
3 3 -5

(5.16)

Since the p i v o t a22 is equal to zero, this procedure cannot be continued
further. On the other hand, should we interchange the second and th ird
rows beforehand, we would obtain the m atrix

1 1 3
3 3 -5
2 0 -4

and thus the factorization could be accomplished w ithout involving a
division by 0 .

We can state th at p e rm u t a t i o n in a su itab le manner of the rows of the
original m atrix A would make the entire factorization procedure feasible
even if the hypotheses of Proposition 5.1 are not verified, provided that
det(A) = 0. Unfortunately, we cannot know a p r i o r i which rows should
be permuted. However, th is decision can be made at every step k at
which a null diagonal element a^ j is generated.

Let us return to the m atrix in (5.16): since the coefficient in position
(2 , 2) is null, let us interchange the th ird and second row of th is m atrix
and check whether the new generated coefficient in position (2 , 2) is
still null. B y executing the second step of the factorization procedure
we find the same m atrix th a t we would have generated by an a p r i o r i
perm utation of the same two rows of A.

We can therefore perform a row perm utation as soon as th is becomes
necessary, w ithout carrying out any a p r i o r i transform ation on A. Since
a row perm utation entails changing the p i v o t e l em en t , th is technique is
given the name of p i v o t in g by row. The factorization generated in this
way returns the original m atrix up to a row perm utation. Precisely we
obtain

' PA LU I (5.17)

P is a suitab le p e rm u t a t i o n matr ix in itia lly set equal to the identity
m atrix . If in the course of the procedure the rows r and s of A are
permuted, the same perm utation must be performed on the homologous

5.2 The pivoting technique 135

rows of P. Correspondingly, we should now solve the following triangu lar
system s

L y = Pb, Ux y . (5.18)

From the second equation of (5.11) we see th a t not only null pivot
(k)elements a), к are troublesome, but so are those which are very small.

k)Indeed, should a к к be near zero, possible roundoff errors affecting the
coefficients a^ j w ill be severely amplified.

E xam ple 5 .7 Consider the nonsingular matrix

A =
1 1 + 0.5 • 10- 3

20
4

During the factorization procedure by Program 5.1 no null pivot elements are
obtained. Yet, the factors L and U turn out to be quite inaccurate, as one can
realize by computing the residual matrix A - LU (which should be the null
matrix if all operations were carried out in exact arithmetic):

A LU
0 0 0
0 0 0
0 0 4

15

It is therefore recommended to carry out the pivoting at every step
of the factorization procedure, by searching among all v irtua l pivot el­

k)ements ajik) w ith i = k , . . . , n , the one w ith maxim um modulus. The
algorithm (5.11) w ith pivoting by row carried out at each step takes the
following form:

(5.19)

The M A T L A B program lu th at we have mentioned previously computes
the Gauss factorization w ith pivoting by row. Its complete syn tax is
indeed [L , U, P] =l u (A) , P being the perm utation m atrix . W hen called in

136 5 Linear systems

the shorthand mode [L , U] =lu(A) , the m atrix L is equal to P*M, where
M is lower triangu lar and P is the perm utation m atrix generated by the
pivoting by row. The program lu activates au tom atically the pivoting
by row when a null (or very sm all) pivot element is computed.

See Exercises 5.6-5.8.

5.3 How accurate is the LU factorization?

We have already noticed in Example 5.7 that, due to roundoff errors,
the product LU does not reproduce A exactly. Even though the pivoting
stra tegy damps these errors, yet the result could sometimes be rather
unsatisfactory.

E xam ple 5.8 Consider the linear system Anx n = bn , where An 6 RnXn is
the so-called Hilbert matrix whose elements are

aij = 1/(i + j — 1), i , j = 1 , . . . , n ,

while bn is chosen in such a way that the exact solution is xn = (1, 1 , . . . , 1)T.
The matrix An is clearly symmetric and one can prove that it is also positive
definite.

For different values of n we use the MATLAB function lu to get the Gauss
factorization of An with pivoting by row. Then we solve the associated linear
systems (5.18) and denote by x n the computed solution. In Figure 5.4 we
report (in logarithmic scale) the relative errors

En = ||xn - x n||/||xn||, (5.20)

having denoted by || • || the Euclidean norm introduced in the Section 1.3.1.
We have En > 10 if n > 13 (that is a relative error on the solution higher
than 1000%!), whereas Rn = LnUn — Pn An is the null matrix (up to machine
accuracy) for any given value of n. ■

On the ground of the previous remark, we could speculate by saying
that, when a linear system A x = b is solved numerically, one is indeed
looking for the exac t solution x of a pe r tu rb ed system

(A + SA)x = b + 5b , (5.21)

where SA and 5b are respectively a m atrix and a vector which depend
on the specific numerical method which is being used. We start by con­
sidering the case where SA = 0 and 5b = 0 which is simpler than the
most general case. Moreover, for sim plicity we w ill also assume th at A
is sym m etric and positive definite.

B y comparing (5.1) and (5.21) we find x — x = —A - 15b, and thus

||x — x|| = ||A- 15b||. (5.22)

5.3 How accurate is the LU factorization? 137

F ig. 5.4. Behavior versus n of En (solid l ine) and of m axi,j=i,...,n \rij\ (dashed
line) in logarithmic scale, for the Hilbert system of Example 5.8. The r ij are
the coefficients of the matrix R

In order to find an upper bound for the right-hand side of (5.22), we
proceed as follows. Since A is sym m etric and positive definite, the set of
its eigenvectors {v i }n=1 provides an orthonormal basis of R n (see [QSS06,
Chapter 5]). This means that

VT Vj — Si j , i, j — 1 , ' ' ' ,П,

where Xi is the eigenvalue of A associated w ith v i and Sij is the Kronecker
symbol. Consequently, a generic vector w G R n can be w ritten as

n
w — ^ 2 w iv i ,

i=1

for a su itab le (and unique) set of coefficients w i G R . We have

||Aw||2 — (Aw) T (Aw)
[w i (Av i) T + . . . + Wn(Avn)1] [wiAvi + + w„Av„]
(AiWi vT + . . . + Anw n v n)(A1w 1v 1 + ' . ' + Anw nv n)n

— J 2 AW i -
i=1

Denote by Amax the largest eigenvalue of A. Since ||w||2 — n=1 w 2, we
conclude that

||Aw| < Amax|w| Vw G R n . (5.23)

In a sim ilar manner, we obtain

HA_1 w ll < IMI?

138 5 Linear systems

cond

condest

rcond

upon recalling th at the eigenvalues of A 1 are the reciprocals of those
of A. This inequality enables us to draw from (5.22) that

Ux ~ x|| 1 ||db||
||x|| - Xmin ||x|| ' (.)

Using (5.23) once more and recalling th at A x = b , we finally obtain

Ux - x|| Xmax ||db||
||x|| < Xmin ||b||

(5.25)

We can conclude th at the relative error in the solution depends on
the relative error in the d ata through the following constant (> 1)

(5.26)

which is called spe c t ral c o nd i t i o n numb e r o f the matr ix A. K(A) can
be computed in M A T L A B using the command cond. Other definitions
for the condition number are available for nonsymmetric m atrices, see
[QSS06, Chapter 3].

R em ark 5.2 The MATLAB command cond(A) allows the computation of
the condition number of any type of matrix A, even those which are not sym­
metric and positive definite. A special MATLAB command condest(A) is
available to compute an approximation of the condition number of a sparse ma­
trix A, and one rcond(A) for its reciprocal, with a substantial saving of floating
point operations. If the matrix A is ill-conditioned (i.e. K (A) ^ 1), the compu­
tation of its condition number can be very inaccurate. Consider for instance
the tridiagonal matrices An = trid iag(—1, 2, —1) for different values of n. An
is symmetric and positive definite, its eigenvalues are Xj = 2 — 2 cos(j0), for
j = 1 , . . . , n , with 0 = п/ (n+1), hence K (An) can be computed exactly. In Fig­
ure 5.5 we report the value of the error EK (n) = |K(An) — cond(An)|/K(An).
Note that EK (n) increases when n increases. •

A more involved proof would lead to the following more general result
in the case where SA is an arb itra ry sym m etric and positive definite
m atrix “sm all enough” to satisfy Xmax(SA) < Xmin (A):

Ux - XU < K (A) (Xmax (SA) + Ц8Щ\
||x || 1 Xmax(S A)/Xmin \ Xmax llb ll /

(5.27)

If K (A) is “sm all” , th a t is of the order of the unity, A is said to be
we l l c ond i t i on ed. In th at case, sm all errors in the d ata w ill lead to errors
of the same order of m agnitude in the solution. This would not occur in
the case of ill c o nd i t i o n ed matrices.

5.3 How accurate is the LU factorization? 139

F ig. 5.5. Behavior of EK (n) as a function of n (in logarithmic scale)

E xam ple 5.9 For the Hilbert matrix introduced in Example 5.8, K (An) is a
rapidly increasing function of n. One has K (A4) > 15000, while if n > 13 the
condition number is so high that MATLAB warns that the matrix is “close to
singular” . Actually, K (An) grows at an exponential rate: K (An) — e3'5n (see,
[Hig02]). This provides an indirect explanation of the bad results obtained in
Example 5.8. ■

Inequality (5.25) can be reformulated by the help of the r e s idua l r:

r = b — A x. (5.28)

Should x be the exact solution, the residual would be the null vector.
Thus, in general, r can be regarded as an e s t im a t o r of the error x — x.
The extent to which the residual is a good error estim ator depends on
the size of the condition number of A. Indeed, observing that 5b =
A (x — x) = A x — b = —r, we deduce from (5.25) that

(5.29)

Thus if K (A) is “sm all” , we can be sure th a t the error is sm all pro­
vided th at the residual is sm all, whereas th is m ight not be true when
K (A) is “large” .

E xam ple 5.10 The residuals associated with the computed solution of the
linear systems of Example 5.8 are very small (their norms vary between 10~16
and 10-11); however the computed solutions differ remarkably from the exact
solution. ■

See Exercises 5.9-5.10.

140 5 Linear systems

sp d iag s

5.4 How to solve a tridiagonal system

In m any applications (see for instance Chapter 8), we have to solve a
system whose m atrix has the form

A :

a i c i

e2 a 2

0

0

c n— 1
e n an

This m atrix is called t r i d ia gona l since the only elements th a t can be
nonnull belong to the m ain diagonal and to the first super and sub
diagonals.

If the Gauss LU factorization of A exists, the factors L and U must
be bidiagonal s (lower and upper, respectively), more precisely:

1 0 a 1 c1 0
1

L =
в 2 1

, U = a 2

. c n — 1
0 в п 1 . 1 0 a n

The unknown coefficients a i and в can be determ ined by requiring that
the equality LU = A holds. This yields the following recursive relations
for the com putation of the L and U factors:

e ia 1 a 1, Pi , a i a i Pic i—1, i 2 , . . . , n . (5.30)
a i— 1

Using (5.30), we can easily solve the two bidiagonal system s L y = b and
U x = y , to obtain the following formulae:

(L y = b) y 1 = b 1 , y i = bi - p i y i—1 , i = 2 , . . . / , (5.31)

(U x = y) Xn = — , Xi = (yi - CiXi+1) / a i , i = n - 1 , . . . , 1. (5.32)
a n

This is known as the T h o m a s a l g o r i thm and allows the solution of the
original system w ith a com putational cost of the order of n operations.

The M A T L A B command sp d ia g s allows the construction of a tr id i­
agonal m atrix . For instance, the commands
b = o n e s (1 0 , 1) ; a=2*b; c=3*b;
T = s p d i a g s ([b a c] , - 1 : 1 , 1 0 , 1 0) ;

5.5 Overdetermined systems 141

compute the trid iagonal m atrix T G R 10x10 w ith elements equal to 2 on
the m ain diagonal, 1 on the first subdiagonal and 3 on the first super­
diagonal.

Note th at T is stored in a spar s e mode , according to which the only
elements stored are those different than 0. A m atrix A g R nxn is spar s e
if it has a number of nonzero entries of the order of n (and not n2). We
call pa t t e r n of a sparse m atrix the set of its nonzero coefficients.

W hen a system is solved by invoking the command \, M A T L A B is
able to recognize the type of m atrix (in particu lar, whether it has been
generated in a sparse mode) and select the most appropriate solution
algorithm . In particu lar, when A is a trid iagonal m atrix generated in
sparse mode, the Thomas algorithm is the selected algorithm .

5.5 Overdetermined systems

A linear system A x= b w ith A g R mxn is called o v e r d e t e rm in e d if m > n,
und e r d e t e rm i n e d if m < n.

An overdetermined system generally has no solution unless the right
side b is an element of range(A), where

range(A) = {y G R m : y = A x for x G R n}. (5.33)

In general, for an a rb itrary right-hand side b we can search a vector
x* G R n th at minimizes the Euclidean norm of the residual, th a t is,

&(x*) = IIA x * - b ll2 < mm||A x - b ||2 = mjn ^ (x) . (5 .34)

Such a vector x* is called l eas t - squar es s o l u t i on of the overdetermined
system A x= b.

S im ilarly to w hat was done in Section 3.4, the solution of (5.34) can
be found by imposing the condition that the gradient of the function Ф
must be equal to zero at x*. W ith sim ilar calculations we find th at x* is
in fact the solution of the square linear system

A1 Ax* = A 1 b (5.35)

which is called the system of n o rma l equations. This system is nonsin­
gular if A has f u l l rank (that is rank(A) = m in(m ,n), where the rank
of A, rank(A), is the maxim um order of the nonvanishing determ inants
extracted from A). In such a case B = ATA is a sym m etric and positive
definite m atrix , then the least-squares solution exists and is unique.

To compute it one could use the Cholesky factorization (5.14). How­
ever, due to roundoff errors, the com putation of ATA m ay be affected
by a loss of significant digits, w ith a consequent loss of the positive def­
initeness of the m atrix itself. Instead, it is more convenient to use the

142 5 Linear systems

so-called QR factorization. Any full rank m atrix A G R mxn, w ith m > n,
adm its a unique QR fa c to r iza t i on , th a t is, th a t is there exist a m atrix
Q G R mxm w ith the orthogonal property QTQ = I, and an upper trape­
zoidal m atrix R G R mxn w ith null rows from the n + 1-th one on, such
that

(5.36)A = QR

Then the unique solution of (5.34) is given by

x* = R —1QT b,

where R G R nxn and Q G R mxn are the following m atrices

Q = Q(1 : m, 1 : n) , R = R(1 : n, 1 : n).

Notice th at R is not singular.

(5.37)

E xam ple 5.11 Consider an alternative approach to the problem of finding
the regression line e(a) = a 1 a + a0 (see Section 3.4) of the data of Problem
3.3. Using the data of Table 3.2 and imposing the interpolating conditions we
obtain the overdetermined system Aa = b, where a = (a1,ao)T and

0 1 0
0.06 1 0.08
0.14 1 0.14
0.25 1

, b =
0.20

0.31 1 0.23
0.47 1 0.25
0.60 1 0.28
0.70 1 .0.29.

In order to compute its least-squares solution we use the following instructions
[Q, R] =qr (A) ;
Qt = Q (: , 1 : 2) ;
x s t a r = Rt \

R t = R (1 : 2 , :) ;
(Q t ’ *b)

A

x s ta r =
0.3741
0.0654

These are precisely the same coefficients for the regression line computed in
the Example 3.10. Notice that this procedure is directly implemented in the
command \: in fact, the instruction x s ta r = A\b produces the same x sta r
vector. ■

5.6 What is hidden behind the command \ 143

5.6 W hat is hidden behind the command \

It is useful to know th at the specific algorithm used by M A T L A B when
the \ command is invoked depends upon the structure of the m atrix A.
To determ ine the structure of A and select the appropriate algorithm ,
M A T L A B follows th is precedence (in the case of a real A):

1. if A is sparse and banded, then banded solvers are used (like the
Thomas algorithm of Section 5.4). We say th at a m atrix A G R mxn
(or in Cmxn) has l o w e r band p if a j = 0 when i > j + p and uppe r
band q if a ij = 0 when j > i + q. The maxim um between p and q is
called the bandwidth of the m atrix;

2. if A is an upper or lower triangu lar m atrix (or else a perm utation
of a triangu lar m atrix), then the system is solved by a backward
substitution algorithm for upper triangu lar m atrices, or by a forward
substitution algorithm for lower triangu lar m atrices. The check for
tr ian gu lar ity is done for full m atrices by testing for zero elements
and for sparse m atrices by accessing the sparse d ata structure;

3. if A is sym m etric and has real positive diagonal elements (which does
not im ply that A is positive definite), then a Cholesky factorization
is attem pted (chol) . If A is sparse, a preordering algorithm is applied
first;

4. if none of previous criteria are fulfilled, then a general triangu lar fac­
torization is computed by Gaussian elim ination w ith p artia l pivoting
(lu) ;

5. if A is sparse, then the UMFPACK lib ra ry is used to compute the
solution of the system ;

6 . if A is not square, proper methods based on the QR factorization
for undeterm ined system s are used (for the overdetermined case, see
Section 5.5).

The command \ is available also in Octave. For a system w ith dense
m atrix , Octave only uses the LU or the QR factorization. W hen the
m atrix is sparse Octave follows this procedure:

1 . if the m atrix is upper (w ith column perm utations) or lower (with
row perm utations) triangu lar, perform a sparse forward or backward
substitution;

2 . if the m atrix is square, sym m etric w ith a positive diagonal, attem pt
sparse Cholesky factorization;

3. if the sparse Cholesky factorization failed or the m atrix is not sym­
metric w ith a positive diagonal, factorize using the UMFPACK li­
brary;

4. if the m atrix is square, banded and if the band density is “sm all
enough” continue, else goto 3;
a) if the m atrix is trid iagonal and the right-hand side is not sparse

continue, else goto b);

144 5 Linear systems

i. if the m atrix is sym metric, w ith a positive diagonal, attem pt
Cholesky factorization;

ii. if the above failed or the m atrix is not sym m etric w ith a
positive diagonal use Gaussian elim ination w ith pivoting;

b) if the m atrix is sym m etric w ith a positive diagonal, attem pt
Cholesky factorization;

c) if the above failed or the m atrix is not sym m etric w ith a positive
diagonal use Gaussian elim ination w ith pivoting;

5. if the m atrix is not square, or any of the previous solvers flags a
singular or near singular m atrix , find a solution in the least-squares
sense.

Let us summarize

1. The LU factorization of A consists in computing a lower triangu lar
m atrix L and an upper triangu lar m atrix U such th at A = LU;

2. the LU factorization, provided it exists, is not unique. However, it can
be determ ined unequivocally by providing an additional condition
such as, e.g., setting the diagonal elements of L equal to 1. This is
called Gauss factorization;

3. the Gauss factorization exists and is unique if and only if the princi­
pal subm atrices of A of order 1 to n - 1 are nonsingular (otherwise
at least one pivot element is null);

4. if a null pivot element is generated, a new pivot element can be
obtained by exchanging in a suitab le manner two rows (or columns)
of our system . This is the pivoting strategy;

5. the com putation of the Gauss factorization requires about 2n3/3 op­
erations, and only an order of n operations in the case of trid iagonal
systems;

6 . for sym m etric and positive definite m atrices we can use the Cholesky
factorization A = HHT, where H is a lower triangu lar m atrix , and
the com putational cost is of the order of n3/3 operations;

7. the sensitiv ity of the result to perturbation of d ata depends on the
condition number of the system m atrix ; more precisely, the accuracy
of the computed solution can be low for ill conditioned matrices;

8 . the solution of an overdetermined linear system can be intended in
the least-squares sense and can be computed using the QR factor­
ization.

5.7 Iterative methods

An iterative method for the solution of the linear system (5.1) consists
in setting up a sequence of vectors {x (fc), к > 0} of R n th at c o n v e r g e s to

5.7 Iterative methods 145

the exact solution x , th at is

lim x (k) = x , (5.38)k—

for any given in itia l vector x (0) G R n . A possible stra tegy able to realize
th is process can be based on the following recursive definition

x (k+1) = B x (k) + g , к > 0, (5.39)

where B is a su itab le m atrix (depending on A) and g is a su itab le vector
(depending on A and b), which must satisfy the relation

x = B x + g. (5.40)

Since x = A -1 b th is yields g = (I — B)A _1 b.
Let e (k) = x — x (k) define the error at step k. B y subtracting (5.39)

from (5.40), we obtain

e (k+1) = B e (k).

For th is reason B is called the i t e r a t i on matr ix associated w ith (5.39). If
B is sym m etric and positive definite, by (5.23) we have

||e(k+1)|| = ||Be(k)|| < p(B)||e(k)||, Ук > 0.

We have denoted by p(B) the sp e c t ra l radius of B, th at is, the m ax­
imum modulus of eigenvalues of B. B y iterating the same inequality
backward, we obtain

||e(k)|| < [p(B)]k||e(0) U, к > 0. (5.41)

Thus e (k) ^ 0 as к ^ ж for every possible e (0) (and henceforth x (0))
provided th at p(B) < 1. Actually, th is property is also necessary for
convergence.

Should, by any chance, an approxim ate value of p(B) be available,
(5.41) would allow us to deduce the minimum number of iterations kmin
th a t are needed to damp the in itia l error by a factor e. Indeed, kmin
would be the lowest positive integer for which [p(B)]kmin < e.

In conclusion, for a generic m atrix the following result holds:

P ro p o s it io n 5 .2 For an i t e ra t i v e m e t h od o f the f o r m (5.39) w ho s e
i t e r a t i on matr ix sat i s f i e s (5.40), c o n v e r g e n c e f o r an y x (0) holds i f f
p(B) < 1, M or e o v e r , the sma l l e r p (B), the f e w e r the n um b e r o f i t e r ­
a t i on s n e c e s s a r y to r edu c e the ini t i al e r r o r by a g i v e n fa c t o r ,

146 5 Linear systems

A general technique to devise an iterative method is based on a spl i t t ing
of the m atrix A, A = P - (P - A), being P a suitab le nonsingular m atrix
(called the p r e c o n d i t i o n e r of A). Then

5 .7 .1 H ow to c o n s tru c t a n i t e r a t iv e m e th o d

has the form (5.40) provided th at we set B = P —1(P - A) = I - P —1A
and g = P —1b. Correspondingly, we can define the following iterative
method:

denotes the residual vector at iteration к . A generalization of this itera­
tive method is the following

where a k = 0 is a param eter th a t m ay change at every iteration к and
which, a priori, w ill be useful to improve the convergence properties of

I pr e c on -

the m atrix P ought to be chosen in such a w ay th at the com putational
cost for the solution of (5.44) be quite low (e.g., every P either diagonal
or triangu lar or trid iagonal w ill serve the purpose). Let us now consider
some special instance of iterative methods which take the form (5.43).

T h e J a c o b i m e th o d

If the diagonal entries of A are nonzero, we can set P = D =
d i a g (a 11, a 22, . . . , a nn), where D is the diagonal m atrix containing the
diagonal entries of A. The Jacobi method corresponds to this choice
w ith the assumption a k = 1 for all к. Then from (5.43) we obtain

P x = (P - A)x + b,

P(x(fc+1) - x (fc)) = r (k), к > 0 ,

where

r (k) = b - A x (k) (5.42)

P (x (k+1) - x (k)) = a.kr (k), к > 0 (5.43)

(5.44)

then the new itera te is defined by x (fc+1) = x (k) + a kz (k). For th a t reason

D x(k+1) = b - (A - D) x (k), к > 0,

or, componentwise,

5.7 Iterative methods 147

(5.45)

where к > 0 and x (0) = (x ^ , x 20), . . . , хП°̂)т is the in itia l vector.
The iteration m atrix is therefore

B = D_1(D - A)

0 — a 12/ a 11 . . . - a 1n/a 11

—021 /a22 0 —a2n/a22

an1/ann an2/ann . . . 0

. (5.46)

The following result allows the verification of Proposition 5.2 without
exp lic itly computing p(B):

P ro p o s it io n 5 .3 I f the matr ix A i s s t r i c t l y d iag ona l l y d om ina n t by
r ow , th e n the J a c o b i m e t h od c o nv e r g e s .

As a m atter of fact, we can verify th at p(B) < 1, where B is given in
(5.46). To start w ith, we note th at the diagonal elements of A are nonnull
owing to the strict diagonal dominance. Let A be a generic eigenvalue of
B and x an associated eigenvector. Then

n
'Sy ^ b ij х, = Axi, i = 1 , . . . , n .
j =1

Assume for sim plicity th at maxfc=1 n \xk\ = 1 (th is is not restrictive
since an eigenvector is defined up to a m ultip licative constant) and let
xi be the component whose modulus is equal to 1. Then

n n n
a ij
a\A\ = Y > ij xj = 5 3 bij xj ± E

j =1 j =1,j=i j =1,j=i ii

having noticed th at B has only null diagonal elements. Therefore \A\ < 1
thanks to the assumption made on A.

The Jacobi method is implemented in the Program 5.2 setting in the
input param eter P=’ J ’ . Input param eters are: the system m atrix A, the
right hand side b, the in itia l vector x0 and the maxim um number of
iterations allotted, nmax. The iterative procedure is term inated as soon
as the ratio between the Euclidean norm of the current residual and

148 5 Linear systems

th at of the in itia l residual is less than a prescribed tolerance t o l (for a
justification of this stopping criterion, see Section 5.10).

P ro gram 5.2. itermeth: general iterative method

f u n c t i o n [x , i t e r] = i t e r m e t h (A , b , x 0 , n m a x , t o l , P)
"/.ITERMETH Gene r a l i t e r a t i v e method
/ X = ITERMETH(A,B,X0, NMAX,TOL,P) a t t e m p t s to s o l v e the
/ s y s t em of l i n e a r e q u a t i o n s A*X=B f o r X. The N-by-N
/ c o e f f i c i e n t m a t r i x A must be n o n - s i n g u l a r and the
/ r i g h t hand s i d e column v e c t o r B must have l e n g t h
/ N. I f P=’ J ’ t he J a c o b i method i s u s e d , i f P=’ G’ the
/ G a u s s - S e i d e l method i s s e l e c t e d . Ot h e r w i s e , P i s a
/ N-by-N m a t r i x t h a t p l a y s t he r o l e of a p r e c o n d i t i o n e r
/ f o r t he dynamic R i c h a r d s o n method. TOL s p e c i f i e s the
/ t o l e r a n c e of the method. NMAX s p e c i f i e s the maximum
/ number of i t e r a t i o n s .
[n , n] = s i z e (A) ;
i f n a r g i n == 6

i f i s c h a r (P) ==1
i f P==’ J ’

L = d i a g (d i a g (A)) ;
U = e y e (n) ;
b e t a = 1 ;
a l p h a = 1 ;

e l s e i f P == ’ G’
L = t r i l (A) ;
U = e y e (n) ;
b e t a = 1 ;
a l p h a = 1 ;

end
e l s e

[L , U] = l u (P) ;
b e t a = 0 ;

end
e l s e

L = e y e (n) ;
U = L;
b e t a = 0 ;

end
i t e r = 0 ;
r = b - A * x0;
r 0 = norm (r) ;
e r r = norm (r) ;
x = x 0 ;
wh i l e e r r > t o l & i t e r < nmax

i t e r = i t e r + 1 ;
z = L\r ;
z = U\z;
i f b e t a == 0

a l p h a = z ’ * r / (z ’ *A*z) ;
end
x = x + a l p h a * z ;
r = b - A * x ;
e r r = norm (r) / r 0 ;

end

5.7 Iterative methods 149

W hen applying the Jacobi method, each component of the new vec-
(k |1)tor, say xi , is computed independently of the others. This m ay sug­

gest th a t a faster convergence could be (hopefully) achieved if the new
components a lready available x (fc+1), j = 1 , . . . , i - 1, together w ith the

old ones x jk), j > i, are used for the calculation of x (k|1). This would
lead to modifying (5.45) as follows: for к > 0 (still assum ing th at aii = 0
for i = 1, . . . , n)

T h e G a u s s -S e id e l m e th o d

(5.47)

The updating of the components is made in sequent ia l mode, whereas
in the original Jacobi method it is made s imu l taneous l y (or in parallel).
The new method, which is called the Gauss -Se ide l method , corresponds
to the choice P = D - E and a k = 1, к > 0, in (5.43), where E is a lower
triangu lar m atrix whose non null entries are e ij = - a ij , i = 2 , . . . , n ,
j = 1 , . . . , i - 1. The corresponding iteration m atrix is then

B = (D - E) —1(D - E - A).

A possible generalization is the so-called re l axat i on m e t h od in which
P = — D - E, where ш = 0 is the relaxation param eter, and a k = 1,
к > 0 (see Exercise 5.13).

Also for the Gauss-Seidel method there exist special m atrices A whose
associated iteration m atrices satisfy the assumptions of Proposition 5.2
(those guaranteeing convergence). Among them let us mention:

1 . m atrices which are s tric tly d iagonally dominant by row;
2 . m atrices which are sym m etric and positive definite.

The Gauss-Seidel method is implemented in Program 5.2 setting the
input param eter P equal to ’ G’ .

There are no general results stating th at the Gauss-Seidel method
converges faster than Jacob i’s. However, in some special instances this
is the case, as stated by the following proposition:

P ro p o s it io n 5 .4 Let A be a triAiagonal n x n n on s i n gu l a r matr ix
wh o s e d iag ona l e l em e n t s are al l nonnul l . Then the J a co b i me^thod
and the Gaus s-Seid e l m e t h od ar e e i t h e r both d i v e r g en t o r both c o n ­
v er g en t . In the la,tter ca s e , the Gaus s -Se id e l m e t h od is f a s t e r than
J a c o b i ’s; m o r e p r e c i s e l y the spe c t ral radius o f i ts i t e r a t i on matr ix is
equal to the squar e o f that o f Jacobi .

150 5 Linear systems

E xam ple 5.12 Let us consider a linear system Ax = b, where b is chosen in
such a way that the solution is the unit vector (1,1 , . . . , 1) T and A is the 10 x 10
tridiagonal matrix whose diagonal entries are all equal to 3, the entries of the
first lower diagonal are equal to — 2 and those of the upper diagonal are all equal
to —1. Both Jacobi and Gauss-Seidel methods converge since the spectral radii
of their iteration matrices are strictly less than 1. More precisely, by starting
from a null initial vector and setting to l =10~12, the Jacobi method converges
in 277 iterations while only 143 iterations are requested from Gauss-Seidel’s.
To get this result we have used the following instructions:
n = 1 0 ;
A = 3 * e y e (n) - 2 * d i a g (o n e s (n - 1 , 1) , 1) - d i a g (o n e s (n - 1 , 1) , - 1) ;
b = A* o n e s (n , 1) ;
[x , i t e r] = i t e r m e t h (A , b , z e r o s (n , 1) , 4 0 0 , 1 . e - 1 2 , ’ J ’) ; i t e r

i t e r =
277

[x , i t e r] = i t e r m e t h (A , b , z e r o s (n , 1) , 4 0 0 , 1 . e - 1 2 , ’ G’) ; i t e r

&

i t e r =
143

See Exercises 5.11-5.14.

5.8 Richardson and gradient methods

Let us now consider methods (5.43) for which the acceleration param e­
ters a k are nonnull. We call s ta t i o na ry the case when a k = a (a given
constant) for any к > 0 , d y n a m i c the case in which a k m ay change along
the iterations. In th is framework the nonsingular m atrix P is still called
a p r e c o n d i t i o n e r of A.

The crucial issue is the w ay the param eters are chosen. In th is respect,
the following result holds (see, e.g., [QV94, Chapter 2], [Axe94]).

5.8 Richardson and gradient methods 151

P ro p o s it io n 5 .5 I f both P and A ar e s y m m e t r i c and po s i t i v e de f i ­
ni te , the s ta t i o na ry R i c ha rd s on m e t h o d c o n v e r g e s f o r e v e r y po s s ib l e
c h o i c e o f x (0) i f f 0 < a < 2/Xmax, wh e r e \max(> 0) i s the maxi­
m u m e i g en v a l u e o f P —1A. Moreov e r , the sp e c t ra l radius p (B a) o f the
i t e r a t i on matr ix B a = I - a P —1A i s m in ima l w h e n a = a opt, wh e r e

2
aopt = X + XAmi^ T Xmax

(5.48)

Xmin be ing the m i n im u m e i g en va l u e o f P —1A.
Under the s a m e a s sump t i o n o n P and A, the d y n a m i c R i c ha rd s on
me th od c o n v e r g e s i f f o r i n s ta n c e ak is c h o s e n i n the f o l l ow in g way :

(5.49)

w h er e z (k) = P —1r (k) is the p r e c o n d i t i o n e d r e s idua l d e f in ed in (5.44).
The m e t h od (5.43) wi th this c h o i c e o f ak is ca l l ed the p r e c o nd i t i o n ed
g ra d i e n t me thod , o r s imp l y the g r ad i e n t m e t h od w h e n the p r e c o n d i ­
t i o n e r P is the i d en t i t y matrix.
For both cho i c e s , (5.48) and (5.49), the f o l l ow in g c o n v e r g e n c e e s t i ­
ma t e ho lds :

(k) A <
f K (P —1A) - 1
\ K (P —1A) + 1

(0) A, к > 0, (5.50)

w h er e ||v||a = V v TA v, Vv G R n
s o c i a t e d wi th the matr ix A .

is the s o - ca l l ed e n e r g y n o r m as-

k

The dynam ic version should therefore be preferred to the stationary
one since it does not require the knowledge of the extrem e eigenvalues
of P —1A. Rather, the param eter a k is determ ined in terms of quantities
which are a lready available from the previous iteration.

We can rewrite the preconditioned gradient method more efficiently
through the following algorithm (derivation is left as an exercise): given
x (0), r (0) = b - A x (0), do

152 5 Linear systems

for к = 0 , 1, . . .

P z (k) = r (k)

(z (k))T r (k)

ak = (z(k))TAz(k) ,

x (k|1) = x (k) + a kz (k),

r (k|1) = r (k) - akA z(k)

(5.51)

The same algorithm can be used to implement the stationary R ichard­
son method by sim ply replacing a k w ith the constant value a .

From (5.50), we deduce th at if P —1A is ill conditioned the convergence
rate w ill be very low even for a = a opt (as in th at case p (B aopt) ~ 1).
This circum stance can be avoided provided th at a convenient choice of
P is made. This is the reason why P is called the preconditioner or the
preconditioning m atrix.

If A is a generic m atrix it m ay be a difficult task to find a pre­
conditioner which guarantees an optimal trade-off between dam ping the
condition number and keeping the com putational cost for the solution
of the system (5.44) reasonably low.

The dynam ic Richardson method is implemented in Program 5.2
where the input param eter P stands for the preconditioning m atrix (when
not prescribed, the program implements the unpreconditioned method
by setting P=I).

E xam ple 5.13 This example, of theoretical interest only, has the purpose
of comparing the convergence behavior of Jacobi, Gauss-Seidel and gradient
methods applied to solve the following (mini) linear system:

2xi + x2 = 1, xi + 3x2 = 0 (5.52)

with initial vector x (0) = (1 ,1/2)T. Note that the system matrix is symmetric
and positive definite, and that the exact solution is x = (3/5, —1/5)T. We
report in Figure 5.6 the behavior of the relative residual E (k) = ||r(k) ||/||r(0) ||
(versus k) for the three methods above. Iterations are stopped at the first
iteration kmin for which E(kmin) < 10-14. The gradient method appears to
converge the fastest. ■

E xam ple 5.14 Let us consider a system Ax = b, where A 6 R100x100 is a
pentadiagonal matrix whose main diagonal has all entries equal to 4, while
the first and third lower and upper diagonals have all entries equal to —1. As
customary, b is chosen in such a way that x = (1, . . . , 1)T is the exact solution
of our system. Let P be the tridiagonal matrix whose diagonal elements are all
equal to 2 , while the elements on the lower and upper diagonal are all equal
to —1. Both A and P are symmetric and positive definite. With such a P as

5.9 The conjugate gradient method 153

F ig. 5.6. Convergence history for Jacobi, Gauss-Seidel and gradient methods
applied to system (5.52)

preconditioner, Program 5.2 can be used to implement the dynamic precondi­
tioner Richardson method. We fix to l= 1.e-05, nmax=5000, x0=zeros(100 , 1) .
The method converges in 18 iterations. The same Program 5.2, used with
P=’ G’ , implements the Gauss-Seidel method; this time as many as 2421 itera­
tions are required before satisfying the same stopping criterion. ■

5.9 The conjugate gradient method

In iterative schemes like (5.51) the new iterate x (fc+1) is obtained by
adding to the old iterate x (k) a vector z (k) th at is either the residual or
the preconditioned residual. A natura l question is whether it is possi­
ble to find instead of z (k) an optimal sequence of vectors, say that
ensure the convergence of the method in a minimum number of itera­
tions.

W hen the m atrix A is sym m etric and positive definite, the conjugate
gradient method (in short, CG) makes use of a sequence of vectors that
are A-o r thogona l (or A -c on ju ga t e), th a t is, Ук > 1,

(A p ^ f p (k) = 0 , j = 0 , 1 , . . . , k - 1. (5.53)

Then, setting r (0) = b — A x (0) and p (0) = r (0), the k-th iteration of the
conjugate gradient method takes the following form:

154 5 Linear systems

for к = 0 , 1, . . .

p (k)Tr (k)
ak — ф ,k p (k)TA p (k)

x (k|1) = x (k) + a kp (k),

r (k|1) = r (k) - a kA p (k),

(Ap(k))T r (k+1)
в k (Ap (k))Tp (k) ,

p (k|1) = r (k|1) - e kp (k)

(5.54)

The constant ak guarantees th a t the error is m inim ized along the descent
direction p (k), while 3k is chosen to ensure th a t the new direction p (k|1)
is A-conjugate w ith p (k). For a complete derivation of the method, see
for instance [QSS06, C hapter 4] or [Saa96]. It is possible to prove the
following im portant result:

P ro p o s it io n 5 .6 Let A be a s y m m e t r i c and po s i t i v e d e f in i t e m a ­
trix. The c o n j u ga t e g ra d i e n t m e t h o d f o r s o l v ing (5.1) c o n v e r g e s a f t e r
at m o s t n s t e p s (in exac t a r i thme t i c) . Mor eov e r , the e r r o r e (k) at the
к - th i t e r a t i on (wi th к < n) is o r th og ona l to p (j) , f o r j = 0 , . . . , к - 1
and

''e (4 »A < T T S k iie(0) i i A , » h C = т Щ - 1 . < ^ >

Therefore, in absence of rounding errors, the CG method can be
regarded as a direct method, since it term inates after a finite number
of steps. However, for m atrices of large size, it is u sua lly employed as
an iterative scheme, where the iterations are stopped when the error
gets below a fixed tolerance. In th is respect, the dependence of the error
reduction factor on the condition number of the m atrix is more favorable
than for the gradient method (thanks to the presence of the square root
of K 2(A)).

Also for the CG method it is possible to consider a precondi­
tioned version (the PCG method), w ith a preconditioner P sym m et­
ric and positive definite, which reads as follows: given x (0) and setting
r (0) = b - A x (0), z (0) = P —1r (0) and p (0) = z (0),

5.9 The conjugate gradient method 155

for k = 0 , 1, . . .

p(fc)T r (fc)
ak — m ,

p (k) A p(k)

x (fc+1) — x (k) + a k p (k),

r (fc+i) = r (k) — a kA p (k),

P z (k+1) = r (k+1)

(Ap(k))T z (fc+1)
(Ap (k))Tp (k) ,

p (k+1) = z (k+1) — в к p (k)

(5.56)

The PCG method is implemented in the M A T L A B function pcg peg

E xam ple 5.15 (F acto rization vs ite ra tiv e m ethods on th e H ilb ert system)
Let us go back to Example 5.8 on the Hilbert matrix and solve the system
(for different values of n) by the preconditioned gradient (PG) and the pre­
conditioned conjugate gradient (PCG) methods, using as preconditioner the
diagonal matrix D made of the diagonal entries of the Hilbert matrix. We fix
x (0) to be the null vector and iterate untill the relative residual is less than
10~6. In Table 5.2 we report the absolute errors (with respect to the exact
solution) obtained with PG and PCG methods and the errors obtained using
the MATLAB command \. In the latter case the error degenerates when n
gets large. On the other hand, we can appreciate the beneficial effect that a
suitable iterative method such as the PCG scheme can have on the number of
iterations. ■

\ PG PCG
n K (An) Error Error Iter. Error Iter.
4 1.55e+04 2.96e-13 1.74-02 995 2.24e-02 3
6 1.50e+07 4.66e-10 8.80e-03 1813 9.50e-03 9
8 1.53e+10 4.38e-07 1.78e-02 1089 2.13e-02 4
10 31+e0.61 3.79e-04 2.52e-03 875 6.98e-03 5
12 1.79e+16 0.24e+00 1.76e-02 1355 1.12e-02 5
14 71+e7.04. 0.26e+02 1.46e-02 1379 1.61e-02 5

T able 5.2. Errors obtained using the preconditioned gradient method (PG),
the preconditioned conjugate gradient method (PCG) and the direct method
implemented in the MATLAB command \ for the solution of the Hilbert
system. For the iterative methods we report also the number of iterations

156 5 Linear systems

gmres

ж

R em ark 5.3 (N on-sym m etric system s) The CG method is a special in­
stance of the so-called Kryl ov (or Lanczos) methods that can be used for the
solution of systems which are not necessarily symmetric. Some of them share
with the CG method the notable property of finite termination, that is, in
exact arithmetic they provide the exact solution in a finite number of itera­
tions also for nonsymmetric systems. A remarkable example is the GMRES
(Generalized Minimum RESidual) method .

Their description is provided, e.g., in [Axe94], [Saa96] and [vdV03]. They
are available in the MATLAB toolbox sparfun under the name of gmres. An­
other method of this family without the property of finite termination, which
however requires a less computational effort than GMRES, is the conjugate
gradient squared (CGS) method and its variant, the Bi-CGStab method, that
is characterized by a more regular convergence than CGS. All these methods
are available in the MATLAB toolbox sparfun. •

O ctave 5 .1 Octave provides only an implementation of the precondi­
tioned conjuguate gradient (PCG) method through the command pcg
and the preconditioned conjuguate residuals (PCR/Richardson) through
the command p cr. Other iterative methods such as GMRES, CGS, Bi-
CGStab are not yet implemented. ■

See Exercises 5.15-5.17.

5.10 W hen should an iterative method be stopped?

In theory iterative methods require an infinite number of iterations to
converge to the exact solution of a linear system . In practice, th is is
neither reasonable nor necessary. Indeed we do not rea lly need to achieve
the exact solution, but rather an approxim ation x (k) for which we can
guarantee th a t the error be lower than a desired tolerance e. On the
other hand, since the error is itself unknown (as it depends on the exact
solution), we need a su itab le a p o s t e r i o r i error estim ator which predicts
the error starting from quantities th at have a lready been computed.

The first type of estim ator is represented by the residual at the к-th
iteration , see (5.42). More precisely, we could stop our iterative method
at the first iteration step ктin for which

||r(kmin)|| < £||b||.

Setting x = x (kmin) and r = r (kmin) in (5.29) we would obtain

11 e (kmin) 11
l|e„ ,, 1 < e K (A),

5.10 When should an iterative method be stopped? 157

which is an estim ate for the relative error. We deduce th at the control
on the residual is meaningful only for those m atrices whose condition
number is reasonably small.

E xam ple 5.16 Let us consider the linear system (5.1) where A=A20 is the
Hilbert matrix of dimension 20 introduced in Example 5.8 and b is constructed
in such a way that the exact solution is x = (1 ,1 , . . . , 1) T. Since A is sym­
metric and positive definite the Gauss-Seidel method surely converges. We use
Program 5.2 to solve this system taking x0 to be the null initial vector and
setting a tolerance on the residual equal to 10~6. The method converges in
472 iterations; however the relative error is very large and equals 0.26. This
is due to the fact that A is extremely ill conditioned, having K (A) ~ 1017. In
Figure 5.7 we show the behavior of the residual (normalized to the initial one)
and that of the error as the number of iterations increases. ■

system of Example 5.16

An alternative approach is based on the use of a different error es­
tim ator, nam ely the increment д (к) = x (k+1) — x (k). More precisely, we
can stop our iterative method at the first iteration step kmin for which

||£(fcmm)|| < £цЬ ||_

In the special case where B is sym m etric and positive definite, we have

||e(fc)|| = ||e(k+1) — д (к)Ц < p(B)||e(fc)|| + ||5(fc)||.

Since yo(B) should be less than 1 in order for the method to converge, we
deduce

з(к)|| <
1

1 — P(B)
Ц8(к)Ц (5.57)

158 5 Linear systems

From the last inequality we see th a t the control on the increment is
meaningful only if p(B) is much sm aller than 1 since in th a t case the
error w ill be of the same size as the increment.

In fact, the same conclusion holds even if B is not sym m etric and
positive definite (as it occurs for the Jacobi and Gauss-Seidel methods);
however in th a t case (5.57) is no longer true.

E xam ple 5.17 Let us consider a system whose matrix Ae R60x6° is tridiago­
nal and symmetric with entries equal to 2.001 on the main diagonal and equal
to 1 on the two other diagonals. As usual, the right hand side b is chosen in
such a way that the unit vector (1 , . . . , 1)T is the exact solution. Since A is
tridiagonal with strict diagonal dominance, the Gauss-Seidel method will con­
verge about twice as fast as the Jacobi method (in view of Proposition 5.4).
Let us use Program 5.2 to solve our system in which we replace the stopping
criterion based on the residual by that based on the increment. Using a null
initial vector and setting the tolerance to l= 10~6, after 1604 iterations the
program returns a solution whose error 0.0029 is quite large. The reason is
that the spectral radius of the iteration matrix is equal to 0.9952, which is
very close to 1. Should the diagonal entries be set equal to 3, after only 17
iterations we would have obtained an error equal to 10~6. In fact in that case
the spectral radius of the iteration matrix would be equal to 0.428. ■

Let us summarize

1. An iterative method for the solution of a linear system starts from
a given in itia l vector x (0) and builds up a sequence of vectors x (k)
which we require to converge to the exact solution as k ^ ж ;

2 . an iterative method converges for every possible choice of the in itial
vector x (0) iff the spectral radius of the iteration m atrix is stric tly
less than 1 ;

3. classical iterative methods are those of Jacobi and Gauss-Seidel. A
sufficient condition for convergence is th a t the system m atrix be
str ic tly d iagonally dominant by row (or sym m etric and definite pos­
itive in the case of Gauss-Seidel);

4. in the Richardson method convergence is accelerated thanks to the
introduction of a param eter and (possibly) a convenient precondi­
tioning m atrix;

5. w ith the conjugate gradient method the exact solution of a sym m et­
ric positive definite system can be computed in a finite number of
iterations (in exact arithm etic). This method can be generalized to
the nonsymmetric case;

6 . there are two possible stopping criteria for an iterative method:
controlling the residual or controlling the increment. The former is
meaningful if the system m atrix is well conditioned, the la tte r if the
spectral rad ius of the iteration m atrix is not close to 1 .

5.11 To wrap-up: direct or iterative? 159

5 .11 To wrap-up: direct or iterative?

In th is section we compare direct and iterative methods on several simple
test cases. For a linear system of sm all size, it doesn’t rea lly m atter since
every method will make the job. Instead, for large scale system s, the
choice w ill depend prim arily on the m atrix properties (such as symmetry,
positive definiteness, sparsity pattern , condition number), but also on the
kind of available computer resources (memory access, fast processors,
etc.). We must adm it th at in our tests the comparison w ill not be fully
loyal. One direct solver th at we w ill in fact use is the M A T L A B built-in
function \ which is compiled and optimized, whereas the iterative solvers
are not. Our computations were carried out on a processor Intel Pentium
M 1.60 GHz w ith 2048KB cache and 1GByte RAM.

A sp a r s e , b a n d e d l in e a r s y s te m w ith s m a ll b a n d w id th

The first test case concerns linear system s arising from the 5-point
finite difference discretizations of the Poisson problem on the square
(— 1 ,1)2 (see Section 8.1.3). Uniform grids of step h = 1/N in both spa­
tia l coordinates are considered, for several values of N . The correspond­
ing finite difference m atrices, w ith N 2 rows and columns, are generated
using Program 8.2. On Figure 5.8, left, we plot the m atrix structure
corresponding to the value N 2 = 256: it is sparse, banded, w ith only
5 nonnull entries per row. Any such m atrix is sym m etric and positive
definite but ill conditioned: its spectral condition number behaves like
a constant tim e h - 2 for all values of h. To solve the associated linear
system s we w ill use the Cholesky factorization, the preconditioned con­
ju gate gradient method (PCG) w ith preconditioner given by the incom­
plete Cholesky factorization (available through the command ch o lin c)
and the M A T L A B command \ that, in the current case, is in fact an
ad hoc algorithm for pentadiagonal sym m etric m atrices. The stopping
criterion for the PCG method is th a t the norm of the relative residual be
lower than 10-14 ; the CPU tim e is also inclusive of the tim e necessary
to construct the preconditioner.

In Figure 5.8, right, we compare the CPU tim e for the three differ­
ent methods versus the m atrix size. The direct method hidden by the
command \ is by far the cheapest: in fact, it is based on a variant of
the Gaussian elim ination th at is p articu larly effective for sparse banded
m atrices w ith sm all bandwith.

The PCG method, in its turn , is more convenient than the Cholesky
factorization, provided a su itab le preconditioner is used. For instance,
if N 2 = 4096 the PCG method requires 19 iterations, whereas the CG
method (w ith no preconditioning) would require 325 iterations, resulting
in fact less convenient than the simple Cholesky factorization.

160 5 Linear systems

F ig. 5.8. The structure of the matrix for the first test case (left), and the
CPU time needed for the solution of the associated linear system (right): the
solid line refers to the command \, the dashed-dotted line to the use of the
Cholesky factorization, the dashed line to the PCG iterative method

30

25

20

15

10

5

0
0 4 5 6 7

x 10

T h e c a se o f a w id e b a n d

We still consider the same Poisson equation, however th is tim e the
discretization is based on spectral methods w ith quadrature formulae
of Gauss-Lobatto-Legendre (see, for instance, [CHQZ06]). Even though
the number of grid-nodes is the same as for the finite differences, w ith
spectral methods the derivatives are approxim ated using m any more
nodes (in fact, at any given node the ж-derivatives are approximated
using all the nodes sitting on the same row, whereas a ll those on the same
column are used to compute у -derivatives). The corresponding m atrices
are still sparse and structured, however the number of non-null entries
is defin itely higher. This is clear from the example in Figure 5.9, left,
where the spectral m atrix has still N 2 = 256 rows and columns, but
the number of nonzero entries is 7936 instead of the 1216 of the finite
difference m atrix of F igure 5.8.

The CPU tim e reported in Figure 5.9, right, shows th at for this ma­
tr ix the PCG algorithm , using the incomplete Cholesky factorization as
preconditioner, performs much better than the other two methods.

A first conclusion to draw is th a t for sparse sym m etric and pos­
itive definite m atrices w ith large bandwidth, PCG is more efficient
than the direct method implemented in M A T L A B (which does not use
the Cholesky factorization since the m atrix is stored w ith the format
sp a r s e) . We point out th a t a su itab le preconditioner is however crucial
in order for the PCG method to become competitive.

F inally, we shoud keep in mind th at direct methods require more
memory storage than iterative methods, a difficulty th a t could become
insurm ontable in large scale applications.

5.11 To wrap-up: direct or iterative? 161

F ig. 5.9. The structure of the matrix used in the second test case (left), and
the CPU time needed to solve the associated linear system (right): the solid
line refers to the command \, the dashed-dotted line to the use of the Cholesky
factorization, the dashed line to the PCG iterative method

S y s te m s w ith fu ll m a tr ic e s

W ith the M A T L A B command g a l l e r y we can get access to a col­
lection of m atrices featuring different structure and properties. In partic­
u lar for our th ird test case, by the command A = g a lle r y (’ r iem an n ’ ,n)
we select the so-called Riem annn m atrix of dimension n, th a t is a n x n
full, non sym m etric m atrix whose determ inant behaves like det(A) =
O(n\n-1/2+e) for all e > 0. The associated linear system is solved by
the iterative GMRES method (see section 5.3) and the iterations w ill be
stopped as soon as the norm of the relative residual is less than 10-1 4 .
A lternatively, we w ill use the M A T L A B command \ that, in the case
at hand, implements the LU factorization.

For several values of n we w ill solve the corresponding linear system
whose exact solution is the u n ita ry vector: the right-hand side is com­
puted accordingly. The GM RES iterations are obtained w ithout pre­
conditioning and w ith a special diagonal preconditioner. The la tte r is
obtained by the command lu in c (A ,1 .e 0) based on the so-called in­
complete LU factorization , a m atrix th a t is generated from an algebraic
m anipulation of the entries of the L and U factors of A, see [QSS06]. In
F igure 5.10, right, we report the CPU tim e for n ranging between 100
and 1000. On the left we report the condition number of A, cond(A). As
we can see, the direct factorization method is far less expensive than the
un-preconditioned GMRES method, however it becomes more expensive
for large n when a suitab le preconditioner is used.

O c tave 5 .2 The g a l l e r y command is not available in Octave. However
a few are available such as the Hilbert, Hankel or Vandermonde matrices,
see the commands hankel, h ilb , inv h ilb sy lvester_m atrix , to e p litz and
vander. Moreover if you have access to M A T L A B , you can save a m atrix

g a l l e r y

lu in c

162 5 Linear systems

....... /

: : : ! У \
/

.......
У

......

F ig. 5.10. On the left, the condition number of the Riemann matrix A. On
the right, the comparison between the CPU times for the solution of the linear
system: the solid line refers to the command \,the dashed line refers to the
GMRES iterative method with no preconditioning. The values in abscissa refer
to the matrix dimension

defined in the ga llery using the save command and then load it in Octave
using lo ad . Here is an example:
In M A T L A B :

r iem an n 1 0 = g a l l e r y (’ r ie m a n n ’ , 10) ;
sav e ’ r ie m an n 1 0 ’ r ie m a n n 10

In Octave:
lo a d ’ r ie m a n n 1 0 ’ r ie m a n n 10

Note th at only Octave version 2.9 can load Mat-files properly from
M A T L A B version 7. ■

S y s te m s w ith sp a r s e , n o n sy m m e tr ic m a tr ic e s

We consider linear system s th at are generated by the finite element
discretization of diffusion-transport-reaction boundary-value problems in
two dimensions. These problems are sim ilar to the one reported in (8.17)
which refers to a one-dimensional case. Its finite element approximation,
th a t is illu strated at the end of Section 8.17 in the one-dimensional case,
makes use of piecewise linear polynom ials to represent the solution in
each triangu lar element of a grid th at partitions the region where the
boundary-value problem is set up. The unknowns of the associated alge­
braic system is the set of values atta ined by the solution at the vertices
of the internal triangles. We refer to, e.g., [QV94] for a description of
th is method, as well as for the determ ination of the entries of the ma­
trix . Let us sim ply point out th at this m atrix is sparse, but not banded
(its sparsity pattern depends on the w ay the vertices are numbered) and
nonsymmetric, due to the presence of the transport term . The lack of

5.11 To wrap-up: direct or iterative? 163

0 100 200 300 400 500 600 x 104

F ig. 5.11. The structure of one of the matrices used for the fourth test case
(left), and the CPU time needed for the solution of the associated linear system
(right): the solid line refers to the command \ ,the dashed line to the Bi-CGStab
iterative method

sym m etry, however, is not evident from the representation of its struc­
ture in F igure 5.11, left.

The sm aller the diameter h of the triangles (i.e. the lengths of their
longest edge), the higher the m atrix size. We have compared the CPU
tim e necessary to solve the linear system corresponding to the case
h = 0.1, 0.05, 0.025, 0.0125 and 0.0063. We have used the M A T LA B
command \, th at in th is case use the UMFPACK lib ra ry and the (M A T ­
L A B implementation of the) iterative method B i-CG Stab which can be
regarded as a generalization to nonsymmetric system s of the conjugate
gradient method. In abscissae we have reported the number of unknowns
th at range from 64 (for h = 0.1) and 101124 (for h = 0.0063). Also in this
case, the direct method is less expensive than the iterative one. Should
we use as preconditioner for the B i-CG Stab method the incomplete LU
factorization, the number of iterations would reduce, however the CPU
tim e would be higher than the one for the unpreconditioned case.

In co n c lu s io n

The comparisons th at we have carried out, although very lim ited,
outlines a few relevant aspects. In general, direct methods (especially
if implemented in their most sophisticated versions, such as in the \
M A T L A B command) are more efficient than iterative methods when the
la tte r are used w ithout efficient preconditioners. However, they are more
sensitive to the m atrix ill conditioning (see for instance the Example
5.15) and m ay require a substantial amount of storage.

A further aspect th a t is worth mentioning is th a t direct methods
require the knowledge of the m atrix entries, whereas iterative methods

164 5 Linear systems

don’t. In fact, w hat is nedeed at each iteration is the com putation of
m atrix-vector products for given vectors. This aspect makes iterative
methods especially interesting for those problems in which the m atrix is
not exp lic ite ly generated.

5.12 W hat we haven’t told you

Several efficient variants of the Gauss LU factorization are available for
sparse system s of large dimension. Among the most advanced, we quote
the so-called multifrontal method which makes use of a suitab le reorder­
ing of the system unknowns in order to keep the triangu lar factors L and
U as sparse as possible. The m ultifrontal method is implemented in the
software package UMFPACK. More on th is issue is available on [GL96]
and [DD99].

Concerning iterative methods, both the conjugate gradient method
and the GMRES method are special instances of Krylov methods. For a
description of Krylov methods see e.g. [Axe94], [Saa96] and [vdV03].

As it was pointed out, iterative methods converge slowly if the system
m atrix is severely ill conditioned. Several preconditioning strategies have
been developed (see, e.g., [dV89] and [vdV03]). Some of them are purely
algebraic, that is, th ey are based on incomplete (or inexact) factoriza­
tions of the given system m atrix , and are implemented in the M A T LA B

lu in c functions lu in c or the already quoted c h o l in c . Other strategies are de-
ch o lin c veloped ad hoc by exploiting the physical origin and the structure of the

problem which has generated the linear system at hand.
F in a lly it is worthwhile to mention the multigrid methods which are

based on the sequential use of a hierarchy of system s of variable dimen­
sions th at “resemble” the original one, allowing a clever error reduction
stra tegy (see, e.g., [Hac85], [Wes04] and [Hac94]).

O c tave 5 .3 In Octave, ch o lin c is not yet available. Only lu in c has
been implemented. ■

5.13 Exercises

E xercise 5.1 For a given matrix A e RnXn find the number of operations (as
a function of n) that are needed for computing its determinant by the recursive
formula (1.8).

m agic E xercise 5.2 Use the MATLAB command m agic(n), n=3,4 , . . . , 500, to con­
struct the magic squares of order n, that is, those matrices having entries for
which the sum of the elements by rows, columns or diagonals are identical.

5.13 Exercises 165

Then compute their determinants by the command det introduced in Section
1.3 and the CPU time that is needed for this computation using the cputime
command. Finally, approximate this data by the least-squares method and
deduce that the CPU time scales approximately as n 3.

E xercise 5.3 Find for which values of e the matrix defined in (5.13) does not
satisfy the hypotheses of Proposition 5.1. For which value of e does this matrix
become singular? Is it possible to compute the LU factorization in that case?

E xercise 5 .4 Verify that the number of operations necessary to compute the
LU factorization of a square matrix A of dimension n is approximately 2n3/3.

E xercise 5.5 Show that the LU factorization of A can be used for computing
the inverse matrix A-1 . (Observe that the j-th column vector of A -1 satisfies
the linear system A yj = e j , e j being the vector whose components are all null
except the j-th component which is 1.)

E xercise 5.6 Compute the factors L and U of the matrix of Example 5.7 and
verify that the LU factorization is inaccurate.

E xercise 5 .7 Explain why partial pivoting by row is not convenient for sym­
metric matrices.

E xercise 5.8 Consider the linear system Ax = b with

A
2 - 2 0

e - 2 2 0
0 - 1 3

and b such that the corresponding solution is x = (1, 1, 1)T and e is a positive
real number. Compute the Gauss factorization of A and note that l32 ^ <x
when e ^ 0. In spite of that, verify that the computed solution is accurate.

E xercise 5.9 Consider the linear systems A4x4 1, 2, 3, with

A1

15 6 8 11
6 6 5 3
8 5 7 6
11 3 6 9

Ai = (A i)4, i = 2, 3,

and b4 such that the solution is always x 4 = (1 ,1 ,1 ,1)T. Solve the system by
the Gauss factorization using partial pivoting by row, and comment on the
obtained results.

b

E xercise 5.10 Show that for a symmetric and positive definite matrix A we
have K (A2) = (K (A))2.

166 5 Linear systems

E xercise 5.11 Analyse the convergence properties of the Jacobi and Gauss-
Seidel methods for the solution of a linear system whose matrix is

A =
a 0 1
0 a 0
1 0 a

a e R.

E xercise 5.12 Provide a sufficient condition on в so that both the Jacobi
and Gauss-Seidel methods converge when applied for the solution of a system
whose matrix is

A = - 1 0 2
в 5 (5.58)

E xercise 5.13 For the solution of the linear system Ax = b with A e Rn
consider the relaxation method: given x (0) = (x10) , хП0))Т, for k = 0 , 1 ,
compute

i— 1 n (k)
(k) и ^ (k + 1) ^ (k) (k + 1) (л \ (k) . r i

r() = bi - 2 ^ aij Xj — /L aij Xj) ,x i) = (1 - ш)Х) + ■■
j = 1 j=i+1 aii

for i = 1 ,. . .,n , where ш is a real parameter. Find the explicit form of the
corresponding iterative matrix, then verify that the condition 0 < ш < 2 is
necessary for the convergence of this method. Note that if ш = 1 this method
reduces to the Gauss-Seidel method. If 1 < ш < 2 the method is known as
SOR (successive over-relaxation).

E xercise 5 .14 Consider the linear system Ax = b with A = 3 2
2 6 and say

whether the Gauss-Seidel method converges, without explicitly computing the
spectral radius of the iteration matrix.

E xercise 5.15 Compute the first iteration of the Jacobi, Gauss-Seidel and
preconditioned gradient method (with preconditioner given by the diagonal of
A) for the solution of system (5.52) with x (0) = (1 ,1/2)T.

E xercise 5.16 Prove (5.48), then show that

/T-> \ Amax Amin K (P A) 1
P(aOPt) = Amax + Amin = K (P —1A)+ 1 . (.)

E xercise 5 .17 Let us consider a set of n = 20 factories which produce 20
different goods. With reference to the Leontief model introduced in Problem
5.3, suppose that the matrix C has the following integer entries: Cĵ j = i + j — 1
for i , j = 1, . . . ,n , while bi = i, for i = 1 , . . . , 20. Is it possible to solve this
system by the gradient method? Propose a method based on the gradient
method noting that, if A is nonsingular, the matrix ATA is symmetric and
positive definite.

Eigenvalues and eigenvectors

6_______________________________________

Given a square m atrix A G Cnxn , the eigenvalue problem consists in
finding a scalar A (real or complex) and a nonnull vector x such that

A x = Ax (6 .1)

Any such A is called an eigenvalue of A, while x is the associated eigen­
vector. The la tte r is not unique; indeed all its m ultiples a x w ith a = 0,
real or complex, are also eigenvectors associated w ith A. Should x be
known, A can be recovered by using the Rayleigh quotient x HAx/||x||2,
x H being the vector whose *-th component is equal to x i .

A number A is an eigenvalue of A if it is a root of the following
polynom ial of degree n (called the characteristic polynomial of A):

Pa (A) = det(A — AI).

Consequently, a square m atrix of dimension n has exactly n eigen­
values (real or complex), not necessarily d istinct. Also, if A has real
entries, pA (A) has real coefficients, and therefore complex eigenvalues of
A necessarily occur in complex conjugate pairs.

A m atrix A g Cnxn is d iagonalizable if there exists a nonsingular
m atrix U g Cnxn such that

U _1AU = Л = d iag(A b . . . ,A „) . (6.2)

The columns of U are the eigenvectors of A and form a basis for Cn .
If A g Cmxn, there exist two un ita ry m atrices U g Cmxm and V g

Cnxn such that

U*AV = E = d ia g (a 1, . . . , a p) G R mxn, (6.3)

where p = m in(m , n) and a 1 > . . . > a p > 0. (A m atrix U is called
u n itary if AHA = AAH = I.)

Formula (6.3) is called singular value decomposition (SVD) of A and
the numbers a i (or ^i(A)) are called singular values of A.

168 6 Eigenvalues and eigenvectors

P ro b le m 6 .1 (E la s t ic sp r in g s) Consider the system of Figure 6.1
made of two pointwise bodies P 1 and P 2 of mass m, connected by two
springs and free to move along the line join ing P 1 and P 2. Let x i (t) de­
note the position occupied by Pi a t tim e t for i = 1, 2. Then from the
second law of dynam ics we obtain

m X1= K (x 2 — X1) — K x 1 , m X2 = K (x 1 — X2),

where K is the e lastic ity coefficient of both springs. We are interested
in free oscillations whose corresponding solution is x i = ai s in (u t + ф),
i = 1, 2, w ith ai = 0. In this case we find that

—m a1ui2 = K (a 2 — a 1) — K a1, —ma2ui2 = K (a 1 — a 2). (6.4)

This is a 2 x 2 homogeneous system which has a non-trivial solution
a 1, a2 iff the number A = m u2/K is an eigenvalue of the m atrix

A
2 —1

- 1 1

W ith th is definition of A, (6.4) becomes A a = Aa. Since p a (A) = (2 —
A)(1 — A) — 1, the two eigenvalues are A1 ~ 2.618 and A2 ~ 0.382 and
correspond to the frequencies of oscillation u i = \JKAi/m which are
adm itted by our system . ■

i x i (t) i
H*-------------------- ►1 1
1 1
1 1
1 1 xi (t)
1 1
1 1

- % ---------- • - - % ----------•
Pi Pi

F ig. 6.1. The system of two pointwise bodies of equal mass connected by
springs

x

P ro b le m 6 .2 (P o p u la t io n d y n a m ic s) Several m athem atical models
have been proposed in order to predict the evolution of certain species
(either human or an im al). The simplest population model, which was
introduced in 1920 by Lotka and formalized by Leslie 20 years later, is
based on the rate of m ortality and fecundity for different age intervals,
say i = 0 , . . . ,n . Let xXf1 denote the number of females (males don’t

6 Eigenvalues and eigenvectors 169

m atter in this context) whose age at tim e t falls in the i-th interval. The
values of x (0) are given. Moreover, let si denote the rate of survival of
the females belonging to the i-th interval, and mi the average number
of females generated from a female in the i-th interval.

The model by Lotka and Leslie is described by the set of equations

x (t+1) _ x (t) s xi+1 x i n
(t+1) ^ (t) x0 _ 2_jx\ 'mi.

i _ 0 , . . . , n — 1 ,

The n first equations describe the population development, the last its
reproduction. In m atrix form we have

x (t+ i) _ A x (t),

where x (t) _ (x ^ , . . . , хПП))т and A is the Leslie m atrix :

A _

mo mi
so 0

0 si

mr,
0

0 0 0 sn- 1 0

We will see in Section 6.1 th a t the dynam ics of th is population is de­
term ined by the eigenvalue of maxim um modulus of A, say A1, whereas
the distribution of the individuals in the different age intervals (normal­
ized w ith respect to the whole population), is obtained as the lim it of
x (t) for t ^ <x and satisfies A x _ A1x . This problem will be solved in
Exercise 6.2. ■

P ro b le m 6 .3 (I n te ru rb a n v ia b i l i t y) For n given cities, let A be the
m atrix whose en try aij is equal to 1 if the i-th c ity is d irectly connected to
the j - th city, and 0 otherwise. One can show th at the components of the
eigenvector x (of unit length) associated w ith the maxim um eigenvalue
provides the accessib ility rate (which is a measure of the ease of access)
to the various cities. In Example 6.2 we w ill compute th is vector for
the case of the railw ays system of the eleven most im portant cities in
Lombardy (see Figure 6.2). ■

P ro b le m 6 .4 (Im a g e co m p re ss io n) The problem of im age compres­
sion can be faced using the singular-value decomposition of a m atrix .
Indeed, a black and white im age can be represented by a real m x n rec­
tangu lar m atrix A where m and n represent the number of pixels that

170 6 Eigenvalues and eigenvectors

1 Milan
2 Pavia
3 Lodi
4 Brescia
5 Bergamo
6 Como
7 Varese
8 Lecco
9 Sondrio
10 Cremona
11 M antua

F ig . 6.2. A schematic representation of the railway network between the main
cities of Lombardy

are present in the horizontal and vertical direction, respectively, and the
coefficient aij represents the intensity of gray of the (i , j)-th pixel. Con­
sidering the singular value decomposition (6.3) of A, and denoting by u i
and v i the i-th column vectors of U and V, respectively, we find

A = a ^ v f + CT2u 2v;f + . . . + a pupv'T . (6.5)

We can approxim ate A by the m atrix A k which is obtained by truncating
the sum (6.5) to the first к terms, for 1 < к < p. If the singular values ai
are in decreasing order, a 1 > a 2 > . . . > ap, disregarding the la tte r p — к
should not sign ificantly affect the qua lity of the image. To transfer the
“compressed” image A k (for instance from one computer to another) we
sim ply need to transfer the vectors u i , v i and the singular values a i for
i = 1 , . . . , к and not all the entries of A. In Example 6.9 we w ill see this
technique in action. ■

In the special case where A is either diagonal or triangu lar, its eigen­
values are nothing but its diagonal entries. However, if A is a general
m atrix and its dimension n is sufficiently large, seeking the zeros of p a (A)
is not a convenient approach. Ad hoc algorithms are better suited, and
one of them is described in the next section.

6.1 The power method

As noticed in Problems 6.2 and 6.3, the knowledge of the whole spectrum
of A (that is the the set of all its eigenvalues) is not always required.
Often, only the extremal eigenvalues m atter, th a t is, those having largest
and sm allest modulus.

6.1 The power method 171

Suppose th at A is a square m atrix of dimension n , w ith real entries,
and assume th at its eigenvalues are ordered as follows

|A1| > |A2| > IA31 > . . . > | An |. (6 .6)

Note, in particu lar, th a t |Ai | is d istinct from the other moduli of the
eigenvalues of A. Let us indicate by x 1 the eigenvector (w ith unit length)
associated w ith A1 . If the eigenvectors of A are linearly independent, A1
and x 1 can be computed by the following iterative procedure, commonly
known as the power method:

given an a rb itrary in itia l vector x (0) G Cn and setting y (0) =
x (0)/||x(0)||, compute

for к = 1, 2 , . . .

C(k) = A y (k-1), y (k) =
x (k)

-, A(k) = (y (k))H A y (k)
|x'kMl(k)

(6.7)

Note that, by recursion, one finds y (k) = e (k)A ky (0) where в (k) =
(^ i= 1|x(i)|) -1 for к > 1. The presence of the powers of A justifies the
name given to th is method.

In the next section we w ill see th a t th is method generates a sequence
of vectors { y (k)} w ith unit length which, as к ^ to , align themselves
along the direction of the eigenvector x 1. The error ||A(k) — A1| is pro­
portional to the ratio |A2/A1|k in the case of a generic m atrix , and to
|A2/A1|2k when the m atrix A is herm itian. Consequently one obtains
th a t A(k) ^ A1 for к ^ t o .

An implementation of the power method is given in the Program 6.1.
The iterative procedure is stopped at the first iteration к when

|A(k) — A(k -1)| < e|A(fe>|,

where e is a desired tolerance. The input param eters are the real m atrix
A, the in itia l vector x0, the tolerance t o l for the stopping test and the
maxim um adm issible number of iterations nmax. Output param eters are
the maxim um modulus eigenvalue lambda, the associated eigenvector
and the actual number of iterations which have been carried out.

P ro gram 6.1. eigpower: power method

f u n c t i o n [l a m b d a , x , i t e r] = e i g p o w e r (A , t o l , n m a x , x 0)
EIGPOWER N u m e r i c a l l y e v a l u a t e one e i g e n v a l u e of a r e a l

m a t r i x .
LAMBDA=EIGPOWER(A) computes w i t h the power method the
e i g e n v a l u e of A of maximum modulus from an i n i t i a l
g u e s s whi ch by d e f a u l t i s an a l l one v e c t o r .
LAMBDA=EIGPOWER(A,TOL,NMAX,X0) u s e s an a b s o l u t e e r r o r
t o l e r a n c e TOL (t h e d e f a u l t i s 1 . e - 6) and a maximum
number of i t e r a t i o n s NMAX (t h e d e f a u l t i s 100) ,

172 6 Eigenvalues and eigenvectors

% s t a r t i n g from the i n i t i a l v e c t o r X0.
% [LAMBDA,V,ITER]=EIGP0WER(A,T0L,NMAX,X0) a l s o r e t u r n s
% t he e i g e n v e c t o r V such t h a t A*V=LAMBDA*V and the
% i t e r a t i o n number a t whi ch V was computed.
[n,m] = s i z e (A) ;
i f n ~= m, e r r o r (’ Only f o r s q u a r e m a t r i c e s ’) ; end
i f n a r g i n == 1

t o l = 1 . e - 0 6 ;
x0 = o n e s (n , 1) ;
nmax = 1 0 0 ;

end
x 0 = x 0 /norm(x0) ;
pro = A*x0;
l ambda = x0 ’ *p r o ;
e r r = t o l * a b s (l a m b d a) + 1 ;
i t e r = 0 ;
wh i l e e r r > t o l * a b s (l a m b d a) & a b s (l a m b d a) ~ = 0& i t e r < = nmax

x = p ro ; x = x /nor m(x) ;
pro = A*x; l ambdanew = x ’ *p r o ;
e r r = a bs (l a mbdanew - l a mb d a) ;
l ambda = l ambdanew;
i t e r = i t e r + 1 ;

end
r e t u r n

E xam ple 6.1 Consider the family of matrices

A(a)

a 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

a e R.

We want to approximate the eigenvalue with largest modulus by the power
method. When a = 30, the eigenvalues of the matrix are given by A1 = 39.396,
A2 = 17.8208, A3 = —9.5022 and A4 = 0.2854 (only the first four significant
digits are reported). The method approximates Ai in 22 iterations with a
tolerance e = 10~10 and x (0) = 1. However, if a = —30 we need as many
as 708 iterations. The different behavior can be explained by noting that in
the latter case one has A1 = —30.643, A2 = 29.7359, A3 = —11.6806 and
A4 = 0.5878. Thus, |A2|/|A1| = 0.9704, close to unity. ■

E xam ple 6.2 (In teru rb an v iab ility) We denote by Ae R11xi1 the matrix
associated to the railways system of Figure 6.2 , i.e. the matrix whose entry
aij is equal to one if there is a direct connection between the i-th and the
j-th cities, zero otherwise. Setting to l= 1 .e -12 and x0=ones(11 , 1) , after 26
iterations Program 6.1 returns the following approximation of the eigenvector
(of unitary length) associated to the eigenvalue of maximum modulus of A:

x ’ =
Columns 1 through 8
0.5271 0.1590 0.2165 0.3580 0.4690 0.3861 0.1590 0.2837
Columns 9 through 11
0.0856 0.1906 0.0575

6.1 The power method 173

The most reachable city is Milan, which is the one associated to the first
component of x (the highest in modulus), the least one is Mantua, which is
associated to the last component of x, that of minimum modulus. Of course
our analysis accounts solely for the existence of connections among the cities
but not on how frequent these connections are. ■

6 .1 .1 C o n v e rg en ce a n a ly s is

Since we have assumed th at the eigenvectors x 1, . . . , x n of A are linearly
independent, these eigenvectors form a basis for Cn . Thus the vectors
x (0) and y (0) can be w ritten as

n n
x (0) = ^ ^ a ix i , y (0) = в (0)Y ^ a ix i , w ith в (0) = 1/||x(0)|| and a i £ C.

i=1 i=1

At the first step the power method gives

n n
x (1) = A y (0) = в (0)А ^ a ix i = в (0)^ 3 a-i\xi

i=1 i=1

and, sim ilarly,

n 1
y(1) = '9(1>g a ' Xi“ ’ e (1) = ||x(0)|| ||x(1)|| ■

At a given step к we w ill have

n 1
y(k) = e (k)g a i\ k x i, 13(k) = |x(0)|. . . |x(k)|

and therefore

y (k) = в (к) [0-1 x 1 + 2 2 a i ^ x ^ .

Since ^ / A jJ < 1 for i = 2 , . . . , n , the vector y (k) tends to align along the
same direction as the eigenvector x 1 when к tends to + to , provided a 1 =
0. The condition on a 1, which is impossible to ensure in practice since
x 1 is unknown, is in fact not restrictive. Actually, the effect of roundoff
errors is the appearance of a non-null component along the direction of
x 1, even though th is was not the case for the in itia l vector x (0). (We can
say th at th is is one of the rare circum stances where roundoff errors help
us!)

174 6 Eigenvalues and eigenvectors

E xam ple 6.3 Consider the matrix A (a) of Example 6.1, with a = 16. The
eigenvector x i of unit length associated with Ai is (1/2,1/2,1/2,1/2)T. Let us
choose (on purpose!) the initial vector (2, —2, 3, —3)T, which is orthogonal to
x 1. We report in Figure 6.3 the quantity cos(0(k)) = (y (fc))Txi/(||y(fc)|| ||xi||).
We can see that after about 30 iterations of the power method the cosine
tends to —1 and the angle tends to n, while the sequence A(k) approaches
A1 = 34. The power method has therefore generated, thanks to the roundoff
errors, a sequence of vectors y (k) whose component along the direction of x 1
is increasingly relevant. ■

for к = 1 , . . . ,44

It is possible to prove th at the power method converges even if X1
is a m ultiple root of p a (X). On the contrary it does not converge when
there exist two distinct eigenvalues both w ith maxim um modulus. In
th at case the sequence X(k) does not converge to any lim it, rather it
oscillates between two values.

See Exercises 6.1-6.3.

6.2 Generalization of the power method

A first possible generalization of the power method consists in applying
it to the inverse of the m atrix A (provided A is non singular!). Since the
eigenvalues of A - 1 are the reciprocals of those of A, the power method
in th at case allows us to approxim ate the eigenvalue of A of minimum
modulus. In th is w ay we obtain the so-called inverse power method:

given an in itia l vector x (0), we set y (0) = x (0)/||x(0)|| and compute

for к = 1, 2 , . . .

(k) = A - 1y (k-1), y (k)
r(k)

y
x (k) H(k) = (y (k))H A - 1 y (k)x

(6 .8)

6.2 Generalization of the power method 175

If A adm its linearly independent eigenvectors, and if also the eigen­
value An of minimum modulus is d istinct from the others, then

lim i (k) = 1/An,
к—

i.e. (i (k)) - 1 tends to An for к ^ to .
At each step к we have to solve a linear system of the form A x (k) =

y (k-1) . It is therefore convenient to generate the LU factorization of A
(or its Cholesky factorization if A is sym m etric and positive definite)
once for all, and then solve two triangu lar system s at each iteration.

It is worth noticing th at the lu command (in M A T L A B and in
Octave) can generate the LU decomposition even for complex matrices.

E xam ple 6 .4 When applied to the matrix A(30) of Example 6.1, after 7 iter­
ations the inverse power method yields the value 3.5037. Thus the eigenvalue of
A(30) of minimum modulus will be approximately equal to 1/3.5037 ~ 0.2854.
■

A further generalization of the power method stems from the follow­
ing consideration. Let A ̂ denote the (unknown) eigenvalue of A nearest
to a given number (real or complex) ц. In order to approxim ate AM, we
can at first approxim ate the minimum length eigenvalue, say Amin (AM).
of the shifted m atrix AM = A — i I , and then set A ̂ = Amin(AM) + ц. We
can therefore app ly the inverse power method to AM to obtain an ap­
proximation of Amin (AM). This technique is known as the power method
with shift, and the number i is called the shift.

In Program 6.2 we implement the inverse power method w ith shift.
The inverse power method is recovered by sim ply setting i = 0. The
first four input param eters are the same as in Program 6.1, while mu is
the shift. Output param eters are the eigenvalue A ̂ of A, its associated
eigenvector x and the actual number of iterations th at have been carried
out.

P ro gram 6.2. invshift: inverse power method with shift

f u n c t i o n [l a m b d a , x , i t e r] = i n v s h i f t (A , m u , t o l , n m a x , x 0)
INVSHIFT N u m e r i c a l l y e v a l u a t e one e i g e n v a l u e of a

m a t r i x .
LAMBDA=INVSHIFT(A) compute t he e i g e n v a l u e of A of
minimum modulus w i t h t he i n v e r s e power method.
LAMBDA=INVSHIFT(A,MU) computes t he e i g e n v a l u e of A
c l o s e s t to t he g i v e n number (r e a l or complex) MU.
LAMBDA=INVSHIFT(A,MU,TOL,NMAX,X0) u s e s an a b s o l u t e
e r r o r t o l e r a n c e TOL (t h e d e f a u l t i s 1 . e - 6) and a
maximum number of i t e r a t i o n s NMAX (t h e d e f a u l t i s
1 0 0) , s t a r t i n g from the i n i t i a l v e c t o r X0.
[LAMBDA,V,ITER]=INVSHIFT(A,MU,TOL, NMAX,X0) a l s o
r e t u r n s t he e i g e n v e c t o r V such t h a t A*V=LAMBDA*V and

176 6 Eigenvalues and eigenvectors

% the i t e r a t i o n number a t whi ch V was computed.
[n , m] = s i z e (A) ;
i f n ~= m, e r r o r (’ Only f o r s q u a r e m a t r i c e s ’) ; end
i f n a r g i n == 1

x0 = r a n d (n , 1) ; nmax = 1 0 0 ; t o l = 1 . e - 0 6 ; mu = 0 ;
e l s e i f n a r g i n == 2

x0 = r a n d (n , 1) ; nmax = 1 0 0 ; t o l = 1 . e - 0 6 ;
end
[L , U] = l u (A - m u * e y e (n)) ;
i f norm (x 0) == 0

x0 = r a n d (n , 1) ;
end
x0 =x0 /norm(x0) ;
z0=L\x0;
pro=U\z0;
l ambda=x0 ’ * p r o ;
e r r = t o l * a b s (l a m b d a) + 1 ; i t e r = 0 ;
w h i l e e r r > t o l * a b s (l a m b d a) & a b s (l a m b d a) ~ = 0& i t e r < = nmax

x = p ro ; x = x /nor m(x) ;
z=L\x; pro=U\z;
lambdanew = x ’ * p r o ;
e r r = a bs (l a mbdanew - l a mb d a) ;
l ambda = l ambdanew;
i t e r = i t e r + 1 ;

end
l ambda = 1/l ambda + mu;
r e t u r n

E xam ple 6.5 For the matrix A(30) of Example 6.1 we seek the eigen­
value closest to the value 17. For that we use Program 6.2 with mu=17, to l
=10-io and x0=[1 ; 1 ; 1 ; 1] . After 8 iterations the Program returns the value
lambda=17.82079703055703. A less accurate knowledge of the shift would in­
volve more iterations. For instance, if we set mu=13 the program returns the
value 17.82079703064106 after 11 iterations. ■

The value of the shift can be modified during the iterations, by setting
i = A(k). This yields a faster convergence; however the com putational
cost grows substan tia lly since now at each iteration the m atrix AM does
change.

See Exercises 6.4-6.6.

6.3 How to compute the shift

In order to successfully apply the power method w ith shift we need to
locate (more or less accurate ly) the eigenvalues of A in the complex
plane. To th is end let us introduce the following definition.

(r)Let A be a square m atrix of dimension n. The Gershgorin circles C i >
(c)and Ci associated w ith its i-th row and i-th column are respectively

defined as

6.3 How to compute the shift 177

n
Ci) = {z € C : \z — aii \ < laij \}

j = 1,j=i n

Ci(C) = {z € C : \z - aii\< J 2 \aji\} .
j= 1,j=i

C (r is called the i-th row circle and C (c) the i-th column circle.
B y the Program 6.3 we can visualize in two different windows (that

are opened by the command f i g u r e) the row circles and the column
circles of a m atrix . The command h o ld on allows the overlapping of
subsequent pictures (in our case, the different circles th at have been
computed in sequential mode). This command can be neutralized by the
command h o ld of f . The commands t i t l e , x la b e l and y l a b e l have
the scope of visualizing the title and the axis labels in the figure.

The command p a tch was used in order to color the circles, while the
command a x is sets scaling for the x- and у -axes on the current plot.

P ro gram 6.3. gershcircles: Gershgorin circles

f u n c t i o n g e r s h c i r c l e s (A)
%GERSHCIRCLES p l o t s t he Ge r s h g o r i n c i r c l e s
% GERSHCIRCLES(A) draws the Ge r s h g o r i n c i r c l e s f o r
% the s q u a r e m a t r i x A and i t s t r a n s p o s e .
n = s i z e (A) ;
i f n (1) ~= n (2)

e r r o r (’ Only s q u a r e m a t r i c e s ’) ;
e l s e

n = n (1) ; c i r c l e r = z e r o s (n , 2 0 1) ; c i r c l e c = c i r c l e r ;
end
c e n t e r = d i a g (A) ;
r a d i i c = s u m (a b s (A - d i a g (c e n t e r))) ;
r a d i i r = s u m (a b s (A ’ - d i a g (c e n t e r))) ;
one = o n e s (1 , 2 0 1) ; c o s i s i n = e x p (i * [0 : p i / 1 0 0 : 2 * p i]) ;
f i g u r e (1) ; t i t l e (’ Row c i r c l e s ’) ;
x l a b e l (’ R e ’) ; y l a b e l (’ Im’) ;
f i g u r e (2) ; t i t l e (’ Column c i r c l e s ’) ;
x l a b e l (’ R e ’) ; y l a b e l (’ Im’) ;
f o r k = 1 : n

c i r c l e c (k , :) = c e n t e r (k) * o n e + r a d i i c (k) * c o s i s i n ;
c i r c l e r (k , :) = c e n t e r (k) * o n e + r a d i i r (k) * c o s i s i n ;
f i g u r e (1) ;
p a t c h (r e a l (c i r c l e r (k , :)) , i m a g (c i r c l e r (k , :)) , ’ r e d ’) ;
ho l d on
p l o t (r e a l (c i r c l e r (k , :)) , i m a g (c i r c l e r (k , :)) , ’ k - ’ , . . .

r e a l (c e n t e r (k)) , i m a g (c e n t e r (k)) , ’ k x ’) ;
f i g u r e (2) ;
p a t c h (r e a l (c i r c l e c (k , :)) , i m a g (c i r c l e c (k , :)) , ’ g r e e n ’) ;
ho l d on
p l o t (r e a l (c i r c l e c (k , :)) , i m a g (c i r c l e c (k , :)) , ’ k - ’ , . . .

r e a l (c e n t e r (k)) , i m a g (c e n t e r (k)) , ’ k x ’) ;
end
f o r k = 1 : n

f i g u r e (1) ;
p l o t (r e a l (c i r c l e r (k , :)) , i m a g (c i r c l e r (k , :)) , ’ k - ’ , . . .

f ig u r e

h o ld on/off

t i t l e
x la b e l
y l a b e l
p a tch
a x is

178 6 Eigenvalues and eigenvectors

r e a l (c e n t e r (k)) , i m a g (c e n t e r (k)) , ’ k x ’) ;
f i g u r e (2) ;
p l o t (r e a l (c i r c l e c (k , :)) , i m a g (c i r c l e c (k , :)) , ’ k - ’

r e a l (c e n t e r (k)) , i m a g (c e n t e r (k)) , ’ k x ’) ;
end
f i g u r e (1) ; a x i s i mage ; ho l d o f f ;
f i g u r e (2) ; a x i s i mage ; ho l d of f
r e t u r n

E xam ple 6. 6 In Figure 6.4 we have plotted the Gershgorin circles associated
with the matrix

A

30 1 2 3
4 15 - 4 - 2

- 1 0 3 5
- 3 5 0 - 1

The centers of the circles have been identified by a cross.

F ig . 6.4. Row circles (left) and column circles (right) for the matrix of Ex­
ample 6.6

R o w c irc le s

R e Re

As previously anticipated, Gershgorin circles m ay be used to locate the
eigenvalues of a m atrix , as stated in the following proposition.

P ro p o s it io n 6 .1 A ll eigenvalues of a given matrix AG Cnxn belong
to the region of the complex plane which is the intersection of the
two regions formed respectively by the union of the row circles and
the union of the column circles.
Moreover, should m row circles (or column circles), with 1 < m < n,
be disconnected from the union of the remaining n — m circles, then
their union contains exactly m eigenvalues.

There is no guarantee th a t a circle should contain eigenvalues, unless
it is isolated from the others. The previous result can be applied in order
to obtain a prelim inary guess of the shift, as we show in the following
example.

6.4 Computation of all the eigenvalues 179

E xam ple 6 .7 From the analysis of the row circles of the matrix A(30) of
Example 6.1 we deduce that the real parts of the eigenvalues of A lie between
-3 2 and 48. Thus we can use Program 6.2 to compute the maximum modulus
eigenvalue by setting the value of the shift p equal to 48. The convergence
is achieved in 16 iterations, whereas 24 iterations would be required using
the power method with the same initial guess x0=[1 ; 1 ; 1 ; 1] and the same
tolerance to l= 1 . e - 10. ■

Let us summarize

1. The power method is an iterative procedure to compute the eigen­
value of maxim um modulus of a given m atrix;

2 . the inverse power method allows the com putation of the eigenvalue of
minimum modulus; it requires the factorization of the given m atrix;

3. the power method w ith shift allows the com putation of the eigenvalue
closest to a given number; its effective application requires some a-
priori knowledge of the location of the eigenvalues of the m atrix,
which can be achieved inspecting the Gershgorin circles.

See Exercises 6.7-6.8.

6.4 Computation of all the eigenvalues

Two square m atrices A and B having the same dimension are called
similar if there exists a non singular m atrix P such that

P _1AP = B.

Sim ilar m atrices share the same eigenvalues. Indeed, if A is an eigenvalue
of A and x = 0 is an associated eigenvector, we have

B P _1x = P ^ A x = AP_1x1

th a t is, A is also an eigenvalue of B and its associated eigenvector is now
y = P _ 1x.

The methods which allow a simultaneous approxim ation of all the
eigenvalues of a m atrix are generally based on the idea of transforming
A (after an infinite number of steps) into a sim ilar m atrix w ith diagonal
or triangu lar form, whose eigenvalues are therefore given by the entries
ly ing on its m ain diagonal.

Among these methods we mention the QR method which is imple­
mented in M A T L A B in the function e i g . More precisely, the command
D=eig(A) returns a vector D containing all the eigenvalues of A. However,

e ig

180 6 Eigenvalues and eigenvectors

by setting [X,D]=ei g(A) , we obtain two m atrices: the diagonal m atrix
D formed by the eigenvalues of A, and a m atrix X whose column vectors
are the eigenvectors of A. Thus, A*X=X*D.

The method of QR iterations is called in th is w ay since it makes a re­
peated use of the QR factorization introduced in Section 5.5 to compute
the eigenvalues of the m atrix A. Here we present the QR method only
for real m atrices and in its most elem entary form (whose convergence is
not always guaranteed). For a more complete description of th is method
we refer to [QSS06, Chapter 5], whereas for its extension to the complex
case we refer to [GL96, Section 5.2.10] and [Dem97, Section 4.2.1].

The idea consists in building a sequence of m atrices A (k), each of
them sim ilar to A. After setting A (0) = A, at each k = 1, 2 , . . . , using the
QR factorization we compute the m atrices Q(k+1) and R (k+1) such that

Q(k+1)R (k+1) = A (k),

whence we set A (k+1) = R (k+1)Q(k+1).
The m atrices A (k), k = 0,1, 2 , . . . are all sim ilar, thus they share

w ith A their eigenvalues (see Exercise 6.9). Moreover, if A G R nxn and
its eigenvalues satisfy |A1| > |A2| > . . . > |An |, then

lim A (k) = T =
к——

Ai t1 t 12

0 ..

t 1n

An — 1 tn-1.n

0 . . . 0 An

(6.9)

(к)The rate of decay to zero of the lower triangu lar coefficients, a i j for
i > j , when k tends to infinity, depends on max* |Aj+1/Aj|. In practice,
the iterations are stopped when m ax> j |a(k)| < e, e > 0 being a given
tolerance.

Under the further assumption th at A is sym m etric, the sequence
{A(k)} converges to a diagonal m atrix.

Program 6.4 implements the QR iteration method. The input para­
meters are the m atrix A, the tolerance t o l and the maxim um number of
iterations allowed, nmax.

P ro gram 6.4. qrbasic: method of QR iterations

f u n c t i o n D = q r b a s i c (A , t o l , n m a x)
QRBASIC computes t he e i g e n v a l u e s of a m a t r i x A.

D=QRBASIC(A,TOL,NMAX) computes by QR i t e r a t i o n s a l l
t h e e i g e n v a l u e s of A w i t h i n a t o l e r a n c e TOL and a
maximum number of i t e r a t i o n NMAX. The conve r g ence of
t h i s method i s not a l wa y s g u a r a n t e e d .

n , m] = s i z e (A) ;
i f n ~= m, e r r o r (’ The m a t r i x must be s q u a r e d ’) ; end

6.4 Computation of all the eigenvalues 181

T = A; n i t e r = 0; t e s t = n o r m (t r i l (A , - 1) , i n f) ;
wh i l e n i t e r <= nmax & t e s t >= t o l

[Q, R] = q r (T) ; T = R*Q;
n i t e r = n i t e r + 1 ;
t e s t = n o r m (t r i l (T , - 1) , i n f) ;

end
i f n i t e r > nmax

w a r n i n g ([’ The method does not c o n v e r g e ’
’ i n the maximum number of i t e r a t i o n s ’]) ;

e l s e
f p r i n t f ([’ The method co n ve r g e s i n ’ . . .

’ %i i t e r a t i o n s \ n ’] , n i t e r) ;
end
D = d i a g (T) ;
r e t u r n

E xam ple 6. 8 Let us consider the matrix A(30) of Example 6.1 and call Pro­
gram 6.4 to compute its eigenvalues. We obtain
D = q r b a s i c (A (3 0) , 1 . e - 1 4 , 1 0 0)

The method converges in 56 ite ra t io n s
D =

39.3960
17.8208
-9.5022
0.2854

These eigenvalues are in good agreement with those reported in Example 6.1,
that were obtained with the command eig . The convergence rate decreases
when there are eigenvalues whose moduli are almost the same. This is the
case of the matrix corresponding to a = — 30: two eigenvalues have about the
same modulus and the method requires as many as 1149 iterations to converge
within the same tolerance
D = q r b a s i c (A (- 3 0) , 1 . e - 1 4 , 2 0 0 0)

The method converges in 1149 ite ra t io n s
D =

-30.6430
29.7359

-11.6806
0.5878

A special case is the one of large sparse m atrices. In this case, if A is
stored in a sparse mode the command e i g s (A , k) allows the computation
of the к first eigenvalues of modulus larger than A.

F inally, let us mention how to compute the singular values of a rec­
tangu lar m atrix . Two M A T L A B functions are available: svd and sv d s .
The former computes all the singular values of a m atrix , the la tte r only
the first largest k. The integer k must be fixed as input (by default, k=6).

e ig s

svd
svds

182 6 Eigenvalues and eigenvectors

F ig . 6.5. The original image (left) and those obtained using the first 20 (cen­
ter) and 40 (right) singular values, respectively

We refer to [ABB+ 99] for a thorough description of the algorithm that
is ac tu a lly used.

E xam ple 6.9 (Im age com pression) With the MATLAB command A=
imread(’ p o u t . t i f ’) we upload a black and white image which is present in
the MATLAB toolbox Image Processing. The variable A is a matrix of 291 by

im read 240 eight bit integer numbers (u in t8) that represent the intensity of gray.
imshow The command imshow(A) produces the image on the left hand of Figure

6.5. To compute the SVD of A we must first convert A in a double precision
matrix (the floating-point numbers usually used by MATLAB), through the
command A=double(A). Now, we set [U,S,V]=svd(A). In the middle of Figure
6.5 we report the image that is obtained by using only the first 20 singular
values of S, through the commands
X = U (: , 1 : 2 0) * S (1 : 2 0 , 1 : 2 0) * (V (: , 1 : 2 0)) ’ ; i m s h o w (u i n t 8 (X)) ;

The image on the right-hand side of Figure 6.5 is obtained using the first
40 singular values. It requires the storage of 21280 coefficients (two matrices
of 291 x 40 and 240 x 40 plus the first 40 singular values) instead of 69840 that
would be required to store the whole original image. ■

O ctave 6 .1 svds and e i g s for computing the singular values and the
eigenvalues of sparse m atrices are not yet available in Octave. ■

Let us summarize

1. The method of QR iterations allows the approxim ation of all the
eigenvalues of a given m atrix A;

2. in its basic version, th is method is guaranteed to converge if A has
real coefficients and distinct eigenvalues;

3. its asym ptotic rate of convergence depends on the largest modulus
of the ratio of two successive eigenvalues.

6.6 Exercises 183

6.5 W hat we haven’t told you

We have not analyzed the issue of the condition number of the eigen­
value problem, which measures the sensitiv ity of the eigenvalues to the
variation of the entries of the m atrix . The interested reader is advised
to refer to, for instance, [Wil65], [GL96] and [QSS06, Chapter 5].

Let us ju st rem ark th at the eigenvalue com putation is not necessarily
an ill conditioned problem when the condition number of the m atrix is
large. An instance of th is is provided by the H ilbert m atrix (see Example
5.9): although its condition number is extrem ely large, the eigenvalue
com putation of the H ilbert m atrix is well conditioned thanks to the fact
th a t the m atrix is sym m etric and positive definite.

Besides the QR method, for computing sim ultaneously all the eigen­
values we can use the Jacobi method which transforms a sym m etric ma­
tr ix into a diagonal m atrix , by elim inating, step-by-step, through sim­
ila r ity transformations, every off-diagonal element. This method does
not term inate in a finite number of steps since, while a new off-diagonal
element is set to zero, those previously treated can reassume non-zero
values.

Other methods are the Lanczos method and the method which uses
the so-called Sturm sequences. For a survey of all these methods see
[Saa92].

The M A T L A B lib rary ARPACK (available through the command
a rp a c k c) can be used to compute the eigenvalues of large m atrices. The
M A T L A B function e i g s is a command th at uses th is library.

Let us mention th at an appropriate use of the deflation technique
(which consists in a successive elim ination of the eigenvalues a lready
computed) allows the acceleration of the convergence of the previous
methods and hence the reduction of their com putational cost.

See Exercises 6.9-6.10.

6.6 Exercises
E xercise 6.1 Upon setting the tolerance equal to e = 10~10, use the power
method to approximate the maximum modulus eigenvalue for the following
matrices, starting from the initial vector x (0) = (1, 2, 3)T:

' 1 2 0 ' '0.1 3.8 0" 0110<5 1 0 0 , A2 = 1 0 0 , A3 = 1 0 0
0 1 0 0 1 0 0 1 0

Then comment on the convergence behavior of the method in the three differ­
ent cases.

&

arp ackc

184 6 Eigenvalues and eigenvectors

'i lk in s o n

E xercise 6.2 (P opu lation d ynam ics) The features of a population of fishes
are described by the following Leslie matrix introduced in Problem 6.2:

Age interval (months) x(°) mi Si
0-3 6 0 0.2
3-6 12 0.5 0.4
6-9 8 0.8 0.8
9-12 4 0.3 -

Find the vector x of the normalized distribution of this population for different
age intervals, according to what we have seen in Problem 6.2.

E xercise 6.3 Prove that the power method does not converge for matrices
featuring an eigenvalue of maximum modulus A1 = ye"9 and another eigen­
value A2 = ye- "9, where i = V —1 and y,fl e R.

E xercise 6 .4 Show that the eigenvalues of A -1 are the reciprocals of those
of A.

E xercise 6.5 Verify that the power method is unable to compute the maxi­
mum modulus eigenvalue of the following matrix, and explain why:

A

I 2 2 3 3 3 2 3
1 0 —1 2
0 0 —I —3
0 0 1 0

E xercise 6. 6 By using the power method with shift, compute the largest
positive eigenvalue and the largest negative eigenvalue of

3 1 0 0 0 0 0'
1 2 1 0 0 0 0
0 1 1 1 0 0 0

A = 0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 13

A is the so-called Wilkinson matrix and can be generated by the command
w ilk in so n (7).

E xercise 6 .7 By using the Gershgorin circles, provide an estimate of the
maximum number of the complex eigenvalues of the following matrices:

i-l 1
 CM0

^H
|(M2 ' —5 0 2 2 "

0 4 0 2 1 2 1 02 2
—2 0 6 2 , B = 0 1 0 2
0 0 1 9 . 0 4 1 3 .

6.6 Exercises 185

E xercise 6. 8 Use the result of Proposition 6.1 to find a suitable shift for the
computation of the maximum modulus eigenvalue of

A =

5 0 1 - 1
0 2
0 1 - 1 1

- 1 - 1 0 0

Then compare the number of iterations as well the computational cost of the
power method both with and without shift by setting the tolerance equal to
10~14.

E xercise 6.9 Show that the matrices A(k) generated by the QR iteration
method are all similar to the matrix A.

E xercise 6.10 Use the command e ig to compute all the eigenvalues of the
two matrices given in Exercise 6.7. Then check how accurate are the conclu­
sions drawn on the basis of Proposition 6.1.

Ordinary differential equations

7__

A differential equation is an equation involving one or more derivatives
of an unknown function. If a ll derivatives are taken w ith respect to a
single independent variable we call it an ordinary differential equation,
whereas we have a partial differential equation when p artia l derivatives
are present.

The differential equation (ord inary or p artia l) has order p if p is the
maxim um order of differentiation th at is present. The next chapter will
be devoted to the study of partia l differential equations, whereas in the
present chapter we w ill deal w ith ordinary differential equations of first
order.

O rdinary differential equations describe the evolution of m any phe­
nomena in various fields, as we can see from the following four examples.

P ro b le m 7 .1 (T h e rm o d y n a m ic s) Consider a body having internal
tem perature T which is set in an environment w ith constant tem perature
Te. Assume th at its mass m is concentrated in a single point. Then the
heat transfer between the body and the external environment can be
described by the Stefan-Boltzm ann law

v (t) = e jS (T 4 (t) - T4),

where t is the tim e variable, e the Boltzmann constant (equal to 5.6 •
10~8J/m 2K4s where J stands for Joule, K for Kelvin and, obviously, m
for meter, s for second), y is the em issivity constant of the body, S the
area of its surface and v is the rate of the heat transfer. The rate of
variation of the energy E (t) = m C T (t) (where C denotes the specific
heat of the m aterial constituting the body) equals, in absolute value,
the rate v. Consequently, setting T (0) = T0, the com putation of T (t)
requires the solution of the ordinary differential equation

dT = - V t l (71)
dt m C . (.)

188 7 Ordinary differential equations

See Exercise 7.15. ■

P ro b le m 7 .2 (P o p u la t io n d y n a m ic s) Consider a population of bac­
teria in a confined environment in which no more than B elements can
coexist. Assume that, at the in itia l time, the number of individuals is
equal to y0 ^ B and the growth rate of the bacteria is a positive con­
stant C . In th is case the rate of change of the population is proportional
to the number of existing bacteria, under the restriction th at the to tal
number cannot exceed B . This is expressed by the differential equation

t = C y (1 - B) • (7 .2)

whose solution y = y(t) denotes the number of bacteria at tim e t.
Assuming th at two populations y i and y2 be in competition, instead

of (7.2) we would have

dyr = C iy i (1 - biyi - d2y2) ,
dt (7.3)

-dt- = C2y2 (1 — b2y2 — d iy i) ,

where C 1 and C2 represent the growth rates of the two populations.
The coefficients d1 and d2 govern the type of interaction between the
two populations, while bi and b2 are re lated to the available quantity
of nutrients. The above equations (7.3) are called the Lotka-Volterra
equations and form the basis of various applications. For their numerical
solution, see Example 7.7. ■

P ro b le m 7 .3 (B a s e b a l l t r a je c to r y) We want to sim ulate the tra jec ­
tory of a ball from the pitcher to the catcher. B y adopting the reference
frame of F igure 7.1, the equations describing the ball motion are (see
[Ada90], [Gio97])

dx dv ^
-T = v , T = F, dt dt

where x (t) = (x(t), y(t), z(t))T designates the position of the ball at time
t, v = (vx,v y,v z)T its velocity, while F is the vector whose components
are

Fx = —F (v)vvx + Bw (vz sin ф — vy cos ф),

Fy = —F (v)vvy + Bw vx cos ф, (7.4)

Fz = —g — F (v)vvz — B u v x sin ф.

7 Ordinary differential equations 189

F ig. 7.1. The reference frame adopted for Problem 7.3

v is the modulus of v , B = 4.1 10- 4 , ф is the pitching angle, ш is the
modulus of the angular velocity impressed to the ball from the pitcher.
F (v) is a friction coefficient, norm ally defined as

s 0.0058
F(v) = 0 .0039 + 1 + e(v-35)/5 .

The solution of this system of ord inary differential equations is post­
poned to Exercise 7.20. ■

P ro b le m 7 .4 (E le c t r ic a l c ir c u it s) Consider the electrical circuit of
Figure 7.2. We want to compute the function v(t) representing the po­
tentia l drop at the ends of the capacitor C starting from the in itia l time
t = 0 at which the switch I has been turned off. Assume th at the induc­
tance L can be expressed as an explicit function of the current intensity
i, th a t is L = L(i). The Ohm law yields

d (i i L (i i)) = ■ R ,
e --------- t t ------= i i R i + v,dt

where R i is a resistance. B y assuming the current fluxes to be directed
as indicated in Figure 7.2, upon differentiating w ith respect to t both
sides of the Kirchoff law i i = i 2 + i3 and noticing th at i3 = Cdv/dt and
i2 = v/R2, we find the further equation

d i i ^,d2 v 1 dv __t. = C ____ +_____
dt d t2 R 2 dt

190 7 Ordinary differential equations

We have therefore found a system of two differential equations whose
solution allows the description of the tim e variation of the two unknowns
i i and v. The second equation has order two. For its solution see Example
7.8. ■

-w

Fig. 7.2. The electrical circuit of Problem 7.4

7.1 The Cauchy problem

We confine ourselves to first order differential equations, as an equation
of order p > 1 can always be reduced to a system of p equations of order
1. The case of first order system s w ill be addressed in Section 7.8.

An ordinary differential equation in general adm its an infinite num­
ber of solutions. In order to fix one of them we must impose a further
condition which prescribes the value taken by this solution at a given
point of the integration interval. For instance, the equation (7.2) adm its
the fam ily of solutions y(t) = B ^(t)/(1 + ^(t)) w ith ^(t) = eCt+K, K
being an a rb itrary constant. If we impose the condition y(0) = 1, we pick
up the unique solution corresponding to the value K = ln[1/(B — 1)].

We will therefore consider the solution of the so-called Cauchy prob­
lem which takes the following form:

find y : I ^ R such that

(y'(t) = f (t,y(t)) Vt e I,
(7.5)

I y (t0) = y0:

where I is an interval of R, f : I x R ^ R is a given function and y'
denotes the derivative of y w ith respect to t . F inally, t 0 is a point of I
and y0 a given value which is called the initial data.

In the following proposition we report a classical result of Analysis.

7.2 Euler methods 191

P ro p o s it io n 7 .1 Assume that the function f (t,y) is

1. continuous with respect to both arguments;
2. Lipschitz-continuous with respect to its second argument, that is,

there exists a positive constant L such that

\f (t,y i) — f (t, y 2)| < L|yi — y21, Vt e I, Vy i , y2 e R.

Then the solution y = y(t) of the Cauchy problem (7.5) exists, is
unique and belongs to C 1(I).

Unfortunately, explicit solutions are available only for very special
types of ord inary differential equations. In some other cases, the solution
is available only in im plicit form. This is, for instance, the case w ith the
equation y' = (y — t)/(y + 1) whose solution satisfies the im plicit relation

1 y
2 ln (t2 + y 2) + a rc tg ̂ = C,

where C is an a rb itrary constant. In some other circum stances the solu­
tion is not even representable in im plicit form, as in the case of the equa-

— 12tion y' = e 1 whose general solution can only be expressed through a
series expansion. For all these reasons, we seek numerical methods capa­
ble of approxim ating the solution of every fam ily of ordinary differential
equations for which solutions do exist.

The common strategy of all these methods consists of subdividing
the integration interval I = [t0,T] , w ith T < + ro, into Nh intervals
of length h = (T — t 0)/Nh; h is called the discretization step. Then, at
each node tn (0 < n < Nh — 1) we seek the unknown value un which
approxim ates yn = y (tn). The set of values {uo = y0,u 1, . . . , u Nh } is our
numerical solution.

7.2 Euler methods

A classical method, the forward Euler method, generates the numerical
solution as follows

(7.6)

where we have used the shorthand notation f n = f (tn ,u n). This method
is obtained by considering the differential equation (7.5) at every node
tn, n = 1 , . . . , Nh and replacing the exact derivative y'(tn) by means of
the increm ental ratio (4.4).

In a sim ilar way, using th is tim e the increm ental ratio (4.8) to ap­
proximate y ' (tn+ i), we obtain the backward Euler method

192 7 Ordinary differential equations

un+i — un + hf n+ i: n — 0 , . . . , Nh 1 (7.7)

Both methods provide an instance of a one-step method since for
computing the numerical solution un+i a t the node tn+i we only need
the information related to the previous node tn . More precisely, in the
forward Euler method un+i depends exclusively on the value un previ­
ously computed, whereas in the backward Euler method it depends also
on itself through the value f n+i . For th is reason the first method is called
the explicit Euler method and the second the implicit Euler method.

For instance, the discretization of (7.2) by the forward Euler method
requires a t every step the simple com putation of

un+i un + hC un (1 un/B) :

whereas using the backward Euler method we must solve the nonlinear
equation

un+i = un + hCun+i (1 un+i/B) •

Thus, im plicit methods are more costly than explicit methods, since at
every time-level tn+i we must solve a nonlinear problem to compute
un+i. However, we w ill see th a t im plicit methods enjoy better stab ility
properties than explicit ones.

The forward Euler method is implemented in the Program 7.1; the
integration interval is tsp an = [t 0 , t f i n a l] , odefun is a string which
contains the function f (t, y(t)) which depends on the variables t and y,
or an inline function whose first two arguments stand for t and y .

P ro gram 7.1. feuler: forward Euler method

f u n c t i o n [t , y] = f e u l e r (o d e f u n , t s p a n , y , Nh, v a r a r g i n)
FEULER So l v e d i f f e r e n t i a l e q u a t i o n s u s i n g the f orwa rd

Eu l e r me t hod .
[T,Y]=FEULER(ODEFUN,TSPAN,Y0,NH) w i t h TSPAN=[T0,TF]
i n t e g r a t e s t he s y s t em of d i f f e r e n t i a l e q u a t i o n s
y ’ = f (t , y) from t i me T0 to TF w i t h i n i t i a l c o n d i t i o n
Y0 u s i n g the fo r wa r d E u l e r method on an e q u i s p a c e d
g r i d of NH i n t e r v a l s . F u n c t i o n ODEFUN(T,Y) must r e t u r n
a column v e c t o r c o r r e s p o n d i n g to f (t , y) . Each row i n
t he s o l u t i o n a r r a y Y c o r r e s p o n d s to a t i me r e t u r n e d
i n t he column v e c t o r T.
[T,Y] = FEULER(ODEFUN,TSPAN,Y0,NH,P1,P2, . . .) p a s s e s
t he a d d i t i o n a l p a r a m e t e r s P 1 , P 2 , . . . t o the f u n c t i o n
ODEFUN as ODEFUN(T, Y, P1 , P2 . . .) .

h = (t s p a n (2) - t s p a n (1)) / N h ;
t t = l i n s p a c e (t s p a n (1) , t s p a n (2) , N h + 1) ;
f o r t = t t (1 : e n d - 1)

y = [y ; y (e n d , :) + h * f e v a l (o d e f u n , t , y (e n d , :) , v a r a r g i n { : })] ;
end
t = t t ;
r e t u r n

7.2 Euler methods 193

The backward Euler method is implemented in the Program 7.2. Note
th at we have used the function f s o l v e for the solution of the non-linear
problem at each step. As in itia l d a ta for f s o l v e we use the last computed
value of the numerical solution.

P ro gram 7.2. beuler: backward Euler method

f u n c t i o n [t , u] = b e u l e r (o d e f u n , t s p a n , y 0 , N h , v a r a r g i n)
BEULER So l v e d i f f e r e n t i a l e q u a t i o n s u s i n g t he backward

Eu l e r me t hod .
[T,Y]=BEULER(ODEFUN,TSPAN,Y0,NH) w i t h TSPAN=[T0,TF]
i n t e g r a t e s t he s y s t em of d i f f e r e n t i a l e q u a t i o n s
y ’ = f (t , y) from t i me T0 to TF w i t h i n i t i a l c o n d i t i o n
Y0 u s i n g the backward Eu l e r method on an e q u i s p a c e d
g r i d of NH i n t e r v a l s . F u n c t i o n ODEFUN(T,Y) must r e t u r n
a column v e c t o r c o r r e s p o n d i n g to f (t , y) . Each row in
t he s o l u t i o n a r r a y Y c o r r e s p o n d s to a t i me r e t u r n e d
i n t he column v e c t o r T.
[T,Y] = BEULER(ODEFUN,TSPAN,Y0,NH,P1,P2, . . .) p a s s e s
t he a d d i t i o n a l p a r a m e t e r s P 1 , P 2 , . . . t o the f u n c t i o n
ODEFUN as ODEFUN(T, Y, P1 , P2 . . .) .

t = l i n s p a c e (t s p a n (1) , t s p a n (2) , N h + 1) ;
y=y0 (:) ; % a l wa y s c r e a t e a v e c t o r column
u=y . ’ ;
g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
g l o b _ h = (t s p a n (2) - t s p a n (1)) /Nh;
g l o b _ y = y ;
g l o b _ o d e f u n = o d e f u n ;
g l o b _ t = t t (2) ;

i f (" e x i s t (’ OCTAVE_VERSION’))
o p t i o n s = o p t i m s e t ;
o p t i o n s . D i s p l a y = ’ o f f ’ ;
o p t i o n s . To l Fu n =1 . e - 0 6 ;
o p t i o n s . MaxFunEval s=10000;
end

f o r g l o b _ t = t t (2 : end)
i f (e x i s t (’ OCTAVE_VERSION’))

[w i n f o] = f s o l v e (’ b e u l e r f u n ’ , g l o b _ y) ;
e l s e

w = f s o l v e (@(w) b e u l e r f u n (w) , g l o b _ y . o p t i o n s) ;
end

u = [u ; w. ’] ;
g l ob_y = w;

end
t = t t ;
c l e a r g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
end

f u n c t i o n [z] = b e u l e r f u n (w)
g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
z = w - g l o b _ y - g l o b _ h * f e v a l (g l o b _ o d e f u n , g l o b _ t , w) ;

end

194 7 Ordinary differential equations

7 .2 .1 C o n v e rg en ce a n a ly s is

A numerical method is convergent if

Vn = 0 , . . . ,N h , \yn — u n \ < C (h) (7.8)

where C (h) is infinitesim al w ith respect to h when h tends to zero. If
C (h) = O(hp) for some p > 0 , then we say th at the method converges
w ith order p . In order to verify th a t the forward Euler method converges,
we write the error as follows:

en yn un (yn un) + (un un), (7 .9)

where

un yn - i + h f (tn—l , yn - i)

denotes the numerical solution at tim e tn which we would obtain starting
from the exact solution at tim e tn - i ; see Figure 7.3. The term yn — u*n
in (7.9) represents the error produced by a single step of the forward
Euler method, whereas the term un - u n represents the propagation from
tn - i to tn of the error accum ulated at the previous time-level tn - i . The
method converges provided both terms tend to zero as h ^ 0. Assuming
th at the second order derivative of y exists and is continuous, thanks to
(4.6) we find

h2
Уп — u*n = — y''(£n), for a su itab le £n e (t n - i , t). (7 .10)

The quantity

Tn(h) = (Уп — un)/h

is named local truncation error of the forward Euler method. More in
general, the local truncation error of a given method represents the error
th a t would be generated by forcing the exact solution to satisfy that
specific numerical scheme, whereas the global truncation error is defined
as

т (h) = m ax |rn (h) I.
n=0,...,Nh

In view of (7.10), the truncation error for the forward Euler method
takes the following form

т (h) = M h/2, (7.11)

where M = m axte[to,T] \y"(t)\.

7.2 Euler methods 195

F ig. 7.3. Geometrical representation of a step of the forward Euler method

From (7.10) we deduce th at lim h^ 0 т (h) = 0, and a method for which
th is happens is said to be consistent. Further, we say th a t it is consistent
w ith order p if т (h) = O(hp) for a suitab le integer p > 1 .

Consider now the other term in (7.9). We have

un un en— 1 + h [f (tn—1: Уп— 1) f (tn— 1: un — 1)] • (7 .12)

Since f is Lipschitz continuous w ith respect to its second argument, we
obtain

\u*n — un\ < (1 + hL)\en—1\-

If e0 = 0, the previous relations yield

\en\ < \yn - u*n\ + \u*n - Un\

< h\Tn(h)\ + (1 + hL)\en—1\

< [1 + (1 + hL) + . . . + (1 + hL)n—1] hT(h)

(1 + hL)n — 1 eL(tn—to) — 1
= ---------l ---------T(h) < ---------т-------- T(h) -

We have used the identity

n 1

L

X)(1 + hL)k = [(1 + hL)n — 1]/hL,
k=0

the inequality 1 + hL < ehL and we have observed th at nh = tn — t 0.
Therefore we find

196 7 Ordinary differential equations

eL(tn to) _1 m
\en\< -------- l ----------2 h, Vn = 0 , . . . ,N h , (7.13)

and thus we can conclude th at the forward Euler method converges with
order 1. We can note th at the order of th is method coincides w ith the
order of its local truncation error. This property is shared by many
numerical methods for the numerical solution of ord inary differential
equations.

The convergence estim ate (7.13) is obtained by sim ply requiring f to
be Lipschitz continuous. A better estim ate, precisely

\en\<M h(tn —10)/2, (7.14)

holds if d f/ d y exists and satisfies the further requirement d f(t,y)/ d y <
0 for all t e [t0,T] and all —to < y < to . Indeed, in th at case, using
Taylor expansion, from (7.12) we obtain

un — un = (1 + h d f / d y(tn -i,r)n))en -i,

where nn belongs to the interval whose extrem a are yn - i and un - i , thus
\un — un \< \en - i\, provided the inequality

h < 2/ m ax \df/dy(t,y(t))\ (7.15)
tG[to \

holds. Then \en \ < \yn — un\ + \en - i \ < n h r (h) + \e0\, whence (7.14)
owing to (7.11) and to the fact th a t e0 = 0. The lim itation (7.15) on the
step h is in fact a stab ility restriction, as we w ill see in the sequel.

R em ark 7.1 (C o n sisten cy) The property of consistency is necessary in or­
der to get convergence. Actually, should it be violated, at each step the numer­
ical method would generate an error which is not infinitesimal with respect to
h. The accumulation with the previous errors would inhibit the global error to
converge to zero when h ^ 0. •

For the backward Euler method the local truncation error reads

Tn (h) = h[yn — y n - i — h f (tn,yn)] .

S till using the Taylor expansion one obtains

h
Tn (h) = — - y"(£n)

for a su itab le £n e (tn - i , t n), provided y e C 2. Thus also the backward
Euler method converges w ith order 1 w ith respect to h .

E xam ple 7.1 Consider the Cauchy problem

7.3 The Crank-Nicolson method 197

(y'(t) = cos(2y(t)) t e (0 , 1],
{ (7.16)
[y (0) = 0 ,

whose solution is y(t) = 2arcsin((e4t — 1)/(e4t + 1)). We solve it by the for­
ward Euler method (Program 7.1) and the backward Euler method (Pro­
gram 7.2). By the following commands we use different values of h, 1/2,
1/4,1/8, . . . , 1/512:
t s p a n = [0 , 1] ; y 0 =0 ; f = i n l i n e (’ c o s (2* y) ’ , ’ t ’ , ’ y ’) ;
u = i n l i n e (’ 0 . 5 * a s i n ((e x p (4 * t) - 1) . / (e x p (4 * t) + 1)) ’ , ’ t ’) ;
Nh = 2;
f o r k=1 : 1 0

[t , u f e] = f e u l e r (f , t s p a n , y 0 , N h) ;
f e (k) = a b s (u f e (e n d) - f e v a l (u , t (e n d))) ;
[t , u b e] = b e u l e r (f , t s p a n , y 0 , N h) ;
b e (k) = a b s (u b e (e n d) - f e v a l (u , t (e n d))) ;
Nh = 2*Nh;

end

The errors committed at the point t = 1 are stored in the variable fe (forward
Euler) and be (backward Euler), respectively. Then we apply formula (1.12)
to estimate the order of convergence. Using the following commands
p = l o g (a b s (f e (1 : e n d - 1) . / f e (2 : e n d))) / l o g (2) ; p (1 : 2 : end)

1.2898 1.0349 1.0080 1.0019 1.0005

p = l o g (a b s (b e (1 : e n d - 1) . / b e (2 : e n d))) / l o g (2) ; p (1 : 2 : end)

0.90703 0.97198 0.99246 0.99808 0.99952

we can verify that both methods are convergent with order 1. ■

R em ark 7.2 The error estimate (7.13) was derived by assuming that the
numerical solution {un} is obtained in exact arithmetic. Should we account
for the (inevitable) roundoff-errors, the error might blow up like O(1/h) as h
approaches 0 (see, e.g., [Atk89]). This circumstance suggests that it might be
unreasonable to go below a certain threshold h* (which is actually extremely
tiny) in practical computations. •

See the Exercises 7.1-7.3.

7.3 The Crank-Nicolson method

Adding together the generic steps of the forward and backward Euler
methods we find the so-called Crank-Nicolson method

h
+ 1 = un + 77[fn + f n+1] j n = ° , . . . , Nh — 1un (7.17)

198 7 Ordinary differential equations

It can also be derived by applying the fundamental theorem of integra­
tion (which we recalled in Section 1.4.3) to the Cauchy problem (7.5),
obtaining

tn+1

Уп+ 1 = Уп + J f (t,y(t)) dt, (7.18)

and then approximating the integral on [tn, tn+l] by the trapezoidal rule
(4.19).

The local truncation error of the Crank-Nicolson method satisfies

Tn(h) = h[y(tn) — У (tn l)] — 1 [f (tn,y(tn)) + f (tn l ,y (tn - l))]

1 У 1
= - j f (t,y(t)) dt — ^ [f (tn ,y(tn)) + f (tn-l ,y(tn-l))] .

tn- 1

The last equality follows from (7.18) and expresses the error associated
with the trapezoidal rule for numerical integration (4.19). If we assume
that y e C 3 and use (4.20), we deduce that

h2
Tn(h) = —— y'”(£n) for a suitable £n e (tn-i,tn). (7.19)

Thus the Crank-Nicolson method is consistent with order 2, i.e. its lo­
cal truncation error tends to 0 as h2. Using a similar approach to that
followed for the forward Euler method, we can show that the Crank-
Nicolson method is convergent with order 2 with respect to h .

The Crank-Nicolson method is implemented in the Program 7.3. In­
put and output parameters are the same as in the Euler methods.

P ro gram 7.3. cranknic: Crank-Nicolson method

f u n c t i o n [t , u] = c r a n k n i c (o d e f u n , t s p a n , y 0 , N h , v a r a r g i n)
CRANKNIC S o l v e d i f f e r e n t i a l e q u a t i o n s u s i n g the

C r a n k - N i c o l s o n method.
[T,Y]=CRANKNIC(ODEFUN,TSPAN,Y0,NH) w i t h TSPAN=[T0,TF]
i n t e g r a t e s t he s y s t em of d i f f e r e n t i a l e q u a t i o n s
y ’ = f (t , y) from t i me T0 to TF w i t h i n i t i a l c o n d i t i o n
Y0 u s i n g the C r a n k - N i c o l s o n method on an e q u i s p a c e d
g r i d of NH i n t e r v a l s . F u n c t i o n ODEFUN(T,Y) must r e t u r n
a column v e c t o r c o r r e s p o n d i n g to f (t , y) . Each row i n
t he s o l u t i o n a r r a y Y c o r r e s p o n d s to a t i me r e t u r n e d
i n t he column v e c t o r T.
[T, Y] = CRANKNIC(ODEFUN,TSPAN,Y0,NH,P1,P2, . . .) p a s s e s
t he a d d i t i o n a l p a r a m e t e r s P 1 , P 2 , . . . t o the f u n c t i o n
ODEFUN as ODEFUN(T, Y, P1 , P2 . . .) .

t = l i n s p a c e (t s p a n (1) , t s p a n (2) , N h + 1) ;
y=y0 (:) ; % a l wa y s c r e a t e a v e c t o r column
u=y . ’ ;
g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;

7.4 Zero-stability 199

g l o b _ h = (t s p a n (2) - t s p a n (1)) / N h ;
g l o b _ y = y ;
g l o b _ o d e f u n = o d e f u n ;

i f (“ e x i s t (’ OCTAVE_VERSION’))
o p t i o n s = o p t i m s e t ;
o p t i o n s . D i s p l a y = ’ of f
o p t i o n s . TolFun=1. e - 0 6 ;
o p t i o n s . MaxFunEva l s=10000;

end

f o r g l o b _ t = t t (2 : end)
i f (e x i s t (’ OCTAVE_VERSION’))

[w i n f o msg] = f s o l v e (’ c r a n k n i c f u n ’ , g l o b _ y) ;
e l s e

w = f s o l v e (@(w) c r a n k n i c f u n (w) , g l o b _ y . o p t i o n s) ;
end

u = [u; w. ’] ;
g l ob_y = w;

end
t = t t ;
c l e a r g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
end

f u n c t i o n z = c r a n k n i c f u n (w)
g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
z=w - g l ob_y - . . .

0 . 5 * g l o b _ h * (f e v a l (g l o b _ o d e f u n , g l o b _ t , w) + . . .
f e v a l (g l o b _ o d e f u n , g l o b _ t , g l o b _ y)) ;

end

E xam ple 7.2 Let us solve the Cauchy problem (7.16) by using the Crank-
Nicolson method with the same values of h as used in Example 7.1. As we
can see, the results confirm that the estimated error tends to zero with order
p = 2 :
y 0 =0 ; t s p a n =[0 1] ; N=2 ; f = i n l i n e (’ c o s (2* y) ’ , ’ t ’ , ’ y ’) ;
y = ’ 0 . 5 * a s i n ((e x p (4 * t) - 1) . / (e x p (4 * t) + 1)) ’ ;
f o r k=1 : 1 0

[t t , u] = c r a n k n i c (f , t s p a n , y 0 , N) ;
t = t t (e n d) ; e (k) = a b s (u (e n d) - e v a l (y)) ; N=2*N;

end
p = l o g (a b s (e (1 : e n d - 1) . / e (2 : e n d))) / l o g (2) ; p (1 : 2 : end)

1.7940 1.9944 1.9997 2.0000 2.0000

7.4 Zero-stability

There is a concept of stab ility, called zero-stability, which guarantees
that, in a fixed bounded interval, sm all perturbations of d a ta yield
bounded perturbations of the numerical solution when h ^ 0 .

200 7 Ordinary differential equations

More precisely, a numerical method for the approxim ation of problem
(7.5), where I = [t0,T], is zero-stable if 3h 0 > 0, 3C > 0 such that
yh e (0 , h0], Уе > 0 sufficiently small, if \pn \ < e, 0 < n < Nh, then

\zn — un \< Ce, 0 < n < Nh, (7.20)

where C is a constant which might depend on the length of the integra­
tion interval I , zn is the solution th at would be obtained by applying
the numerical method at hand to a perturbed problem, Pn denotes the
size of the perturbation introduced at the n-th step and £ indicates the
maxim um size of the perturbation. Obviously, e must be sm all enough
to guarantee th a t the perturbed problem still has a unique solution on
the interval of integration.

For instance, in the case of the forward Euler method un satisfies

f un+l = un + h f (tn ,u n) ,
\ (7.21)
I u 0 = Уo,

whereas zn satisfies

(zn+l zn + h [f (tn , zn) + pn+l] ,
(7.22)

{ zo = yo + po

for 0 < n < Nh — 1, under the assumption th at \pn \ < e, 0 < n < Nh.
For a consistent one-step method it can be proved th at zero-stability

is a consequence of the fact th a t f is Lipschitz-continuous w ith respect to
its second argument (see, e.g. [QSS06]). In th at case, the constant C that
appears in (7.20) depends on exp ((T — t 0)L), where L is the Lipschitz
constant.

However, th is is not necessarily true for other families of methods.
Assume for instance th at the numerical method can be w ritten in the
general form

p p
un+l = Y aju n - j + h y^ b j f n - j + h b -i fn+i, n = p,p + 1, . . .

j=0 j=0

(7.23)
for su itab le coefficients { a k} and {bk} and for an integer p > 0. This is
a linear multistep method and p + 1 denotes the number of steps. The
in itia l values u0, u l , . . . ,up must be provided. A part from u0, which is
equal to y0, the other values u l , . . . , u p can be generated by suitable
accurate methods such as e.g., the Runge-K utta methods th at we will
address in Section 7.6.

We will see some examples of m ultistep methods in Section 7.6. The
polynomial

7.4 Zero-stability 201

p
n(r) = r p + 1 — a 3 r p - 3

3=0

is called the first characteristic polynomial associated w ith the numerical
method (7.23), and we denote its roots by Г3 , j = 0 , . . . ,p. The method
(7.23) is zero-stable iff the following root condition is satisfied:

f \гз |< 1 for all j = 0 , . . . , p ,
i ' 3 ' “ (7.24)
I furthermore n '(r j) = 0 for those j such th at \rj \ = 1.

For example, for the forward Euler method we have p = 0, a 0 = 1,
b- 1 = 0 , b0 = 1. For the backward Euler method we have p = 0, a 0 = 1,
b- 1 = 1, b0 = 0 and for the Crank-Nicolson method we have p = 0,
a 0 = 1, b- i = 1/2, b0 = 1/2. In all cases there is only one root of n(r)
which is equal to 1 and therefore all these methods are zero-stable.

The following property, known as Lax-Ritchm yer equivalence the­
orem , is most crucial in the theory of numerical methods (see, e.g.,
[IK66]), and highlights the fundamental role played by the property of
zero-stability:

Any consistent method is convergent iff it is zero-stable. (7.25)

Coherently w ith w hat done before, the local truncation error for the
m ultistep method (7.23) is defined as follows

1 I p
Tn(h) = yn+1 ^ ,a3yn-3

{ 3=0 ч (7.26)
p

h^ 2jb3 f (tn - j ,y n - j) hb- 1 f (tn+1, y n+1) / .
3=0 J

The method is said to be consistent if т (h) = m ax \rn (h)\ tends to zero
when h tends to zero. We can prove th at th is condition is equivalent to
require that

p p p
J 2 a 3 = 1, —Y .ja 3 + E bj = 1 (7.27)
3=0 3=0 j =-1

which in turns amounts to say th a t r = 1 is a root of the polynomial
n(r) (see, e.g., [QSS06, Chapter 11]).

See the Exercises 7.4-7.5.

202 7 Ordinary differential equations

7.5 Stability on unbounded intervals

In the previous section we considered the solution of the Cauchy problem
on bounded intervals. In th at context, the number Nh of subintervals
becomes infinite only if h goes to zero.
On the other hand, there are several situations in which the Cauchy
problem needs to be integrated on very large (v irtu a lly infinite) time
intervals. In this case, even if h is fixed, Nh tends to infinity, and then
results like (7.13) become meaningless as the right hand side of the in­
equality contains an unbounded quantity. We are therefore interested in
methods th at are able to approxim ate the solution for a rb itrarily long
tim e-intervals, even w ith a step-size h re lative ly “large” .

Unfortunately, the economical forward Euler method does not enjoy
th is property. To see this, let us consider the following model problem

where A is a negative real number. The exact solution is y(t) = ext , which
tends to 0 as t tends to infinity. A pplying the forward Euler method to
(7.28) we find that

u0 = 1, un+l = un (1 + Ah) = (1 + Ah)n+l , n > 0. (7.29)

Thus lim n^ TO un = 0 iff

This condition expresses the requirement that, for fixed h, the numer­
ical solution should reproduce the behavior of the exact solution when tn
tends to infinity. If h > 2/\A\, then lim n^ TO \un \ = + to ; thus (7.30) is a
s tab ility condition. The property th a t lim n^ TO un = 0 is called absolute
stability.

E xam ple 7.3 Let us apply the forward Euler method to solve problem (7.28)
with A = —1. In that case we must have h < 2 for absolute stability. In Figure
7.4 we report the solutions obtained on the interval [0, 30] for 3 different values
of h: h = 30/14 (which violates the stability condition), h = 30/16 (which
satisfies, although by a little amount only, the stability condition) and h = 1/2.
We can see that in the first two cases the numerical solution oscillates. However
only in the first case (which violates the stability condition) the absolute value
of the numerical solution does not vanish at infinity (and actually it diverges).
■
Sim ilar conclusions hold when A is either a complex number (see Section
7.5.1) or a negative function of t in (7.28). However in th is case, \A|

y'(t) = Ay(t), t e (0, to),

y (0) = 1,
(7.28)

1 < 1 + h A < 1, i.e. h < 2/\A\ (7.30)

7.5 Stability on unbounded intervals 203

F ig. 7.4. Solutions of problem (7.28), with A = —1, obtained by the forward
Euler method, corresponding to h = 30/14(> 2) (dashed line), h = 30/16(< 2)
(solid line) and h = 1/2 (dashed-dotted line)

must be replaced by m axte [0jTO) |A(t)| in the stab ility condition. This
condition could however be relaxed to one which is less strict by using
a variable step-size hn which accounts for the local behavior of |A(t)| in
every interval (tn , t n+1).

In particu lar, the following adaptive forward Euler method could be
used:

choose u0 = y0 and h0 = 2a/|A(t0)|; then

for n = 0 , 1, . . . , do

^n+l n̂ + hn,
(7.31)

un+1 -- un + hnA(tn)un,

hn+1 = 2a/|A(tn+1 ̂

where a is a constant which must be less than 1 in order to have an
absolutely stab le method.

For instance, consider the problem

y,(t) = —(e - + 1)y (t) , t e (0 ,1 0 ^

w ith y(0) = 1. Since |A(t)| is decreasing, the most restrictive condition
for absolute s tab ility of the forward Euler method is h < h0 = 2/|A(0)| =
1. In Figure 7.5, left, we compare the solution of the forward Euler
method w ith th at of the adaptive method (7.31) for three values of a .
Note that, although every a < 1 is adm issible for stab ility purposes,
to get an accurate solution requires choosing a sufficiently sm all. In
F igure 7.5, right, we also plot the behaviour of hn on the interval (0,10]
corresponding to the three values of a . This picture c learly shows that
the sequence {hn} increases monotonically w ith n.

204 7 Ordinary differential equations

0

-0 .0 5

0.

"a = 0 . 4 5 /
t

F ig. 7.5. Left: the numerical solution on the time interval (0.5, 2) obtained
by the forward Euler method with h = ah0 (dashed line) and by the adaptive
variable stepping forward Euler method (7.31) (solid line) for three different
values of a. Right: the behavior of the variable step-size h for the adaptive
method (7.31)

In contrast to the forward Euler method, neither the backward Euler
method nor the Crank-Nicolson method require lim itations on h for
absolute stab ility. In fact, w ith the backward Euler method we obtain
un+i = un + Ahun+i and therefore

un+l
1

1 - Ah
n > 0 ,

which tends to zero as n ^ to for all values of h > 0. Sim ilarly, w ith
the Crank-Nicolson method we obtain

un+l
hA

1 + IT
hA

1 — T

i
n > 0 ,

which still tends to zero as n ^ to for all possible values of h > 0. We
can conclude th at the forward Euler method is conditionally absolutely
stable, while both the backward Euler and Crank-Nicolson methods are
unconditionally absolutely stable.

1.5 2

n

n

7 .5 .1 T h e r e g io n o f a b so lu te s t a b i l i t y

Let us suppose now th at in (7.28) A be a complex number w ith negative
real part. In such a case, the solution u (t) = ext still tends to 0 when
t tends to infinity. We call region of absolute stability A of a numerical
method the set of complex numbers z = hA for which the method turns
out to be absolutely stable (that is, lim n^ TO un = 0). The region of
absolute stab ility of forward Euler method is given by those numbers
hA e C such th at \1 + hA\ < 1, thus it coincides w ith the circle of

7.5 Stability on unbounded intervals 205

radius one and w ith centre (— 1,0). For the backward Euler method the
property of absolute s tab ility is instead satisfied by all values of hA which
are exterior to the circle of radius one centered in (1 , 0) (see Figure
7.6). F inally, the region of absolute stab ility of Crank-Nicolson method
coincides w ith the left hand complex plane of numbers w ith negative real
part.

Methods th at are unconditionally absolutely stab le for all complex
number A in (7.28) w ith negative real part are called A-stable. Backward
Euler and Crank-Nicolson method are therefore A-stable, and so are
m any other im plicit methods. This property makes im plicit methods
attractive in spite of being com putationally more expensive than explicit
methods.

F ig . 7.6. The absolute stability regions (in cyan) of the forward Euler method
(left), backward Euler method (centre) and Crank-Nicolson method (right)

E xam ple 7.4 Let us compute the restriction on h when using the forward
Euler method to solve the Cauchy problem y'(t) = Ay with A = — 1 + i. This
A stands on the boundary of the absolute stability region A of the forward
Euler method. Thus, any h such that h e (0,1) will suffice to guarantee that
hA e A. If it were A = —2 + 2i we should choose h e (0 ,1/2) in order to bring
hA within the stability region A. В

7 .5 .2 A b so lu te s t a b i l i t y co n tro ls p e r tu rb a t io n s

Consider now the following generalized model problem

where A and r are two continuous functions and —Amax < A(t) < —Amin
w ith 0 < Amin < Amax < + ro. In this case the exact solution does not
necessarily tend to zero as t tends to infinity; for instance if both r and
A are constants we have

Im(A)

Re(A)

y'(t) = A(t)y(t) + r(t), t e (0, + ro).

y (0) = 1,
(7.32)

206 7 Ordinary differential equations

whose lim it when t tends to infin ity is -r/ X . Thus, in general, it does
not make sense to require a numerical method to be absolutely stable
when applied to problem (7.32). However, we are going to show that
a numerical method which is absolutely stab le on the model problem
(7.28), if applied to the generalized problem (7.32), guarantees th at the
perturbations are kept under control as t tends to infin ity (possibly under
a su itab le constraint on the tim e-step h).

For the sake of sim plicity we w ill confine our analysis to the forward
Euler method; when applied to (7.32) it reads

[Un+ 1 = Un + h(Xnun + rn), n > 0,

I uo = 1

and its solution is (see Exercise 7.9)

n—1 n—1 n—1
Un = uoJ^[(1 + hXk) + h ^ Y k U (1 + hXj), (7.33)

k=0 k=0 j=k+1

where Xk = X(tk) and r k = r (tk), w ith the convention th at the last
product is equal to one if к + 1 > n — 1. Let us consider the following
“perturbed” method

(Zn+1 = Zn + h(XnZn + rn + Pn+i), n > 0,
{ (7.34)

Z0 = u0 + P0,

where p0, p 1, . . . are given perturbations which are introduced at every
tim e step. This is a simple model in which p0 and pn+1, respectively,
account for the fact th a t neither u0 nor rn can be determ ined exactly.
(Should we account for all roundoff errors which are ac tua lly introduced
at any step, our perturbed model would be far more involved and diffi­
cult to analyze.) The solution of (7.34) reads like (7.33) provided uk is
replaced by zk and r k by r k + pk+1, for all к = 0 , . . . , n — 1. Then

n— 1 n— 1 n— 1
zn — un = Po (1 + hXk) + h ~̂~̂ Pk + 1 TT (1 + hXj) . (7 .35)

k=0 k=0 j =k+1

The quan tity \zn — un \ is called the perturbation error at step n. It is
worth noticing th at th is quan tity does not depend on the function r (t).

i. For the sake of exposition, let us consider first the special case where
Xk and pk are two constants equal to X and p, respectively. Assume that
h < h0(X) = 2/\X\, which is the condition on h th a t ensures the absolute
s tab ility of the forward Euler method applied to the model problem
(7.28). Then, using the following identity for the geometric sum

n— 1 n 1

k=0

ka =
1 an

7.5 Stability on unbounded intervals 207

1 a
(7.36)

we obtain

Zn — un — p \ (1 + hX)n I 1 + —) — - /• . (7.37)

It follows th at the perturbation error satisfies (see Exercise 7.10)

\Zn — un\ < ^(X)\p\, (7.38)

w ith ^(X) = 1 if X < —1, while ^(X) = \1 + 2/X\ if —1 < X < 0. The
conclusion th at can be drawn is th at the perturbation error is bounded
by \p\ times a constant which is independent of n and h. Moreover,

lim \ Zn un \ T̂ T .n ^ x \ XI

Figure 7.7 corresponds to the case where p = 0.1, X = —2 (left) and X =
—0.5 (right). In both cases we have taken h = h0(X) — 0.01. Obviously,
the perturbation error blows up when n increases if the s tab ility lim it
h < h0(X) is violated.

100 0

F ig. 7.7. The perturbation error when p = 0.1: A = —2 (left) and A = -0 .5
(right). In both cases h = h0 (A) — 0.01

ii. In the general case where X and r are non-constant, let us require
h to satisfy the restriction h < h0(X), where this tim e h0(X) = 2/Xmax.
Then,

\1 + hXk \ < a(h) — m ax {\1 hXmin\, \1 hXmax\}.

Since a(h) < 1, we can still use the iden tity (7.36) in (7.35) and obtain

0 20 40 60 80 20 40 60 80 100

208 7 Ordinary differential equations

\zn — un\< Pmax ^[a (h)]n + h ̂a(h) ^ , (7 .39)

where pmax = m ax \pk \. Notice th a t a(h) = \1 — hAmin\ if h < h* while
a(h) — \1 hAmax\ if h < h < h0(A), having set h — 2/(Amin + Amax) .
W hen h < h*, a(h) > 0 and it follows that

\zn — un\ < A----- [1 — [a(h)]n (1 — Amin)] , (7 .40)
Amin

thus

lim su p \zn — un\< , (7.41)
Amin

from which we still conclude th at the perturbation error is bounded by
pmax times a constant which is independent of n and h (although the
oscillations are no longer dam ped as in the previous case).

In fact, sim ilar conclusion holds also when h* < h < h0(A), although
th is does not follow from our upper bound (7.40) which is too pessim istic
in th is case.

In Figure 7.8 we report the perturbation errors computed on the
problem (7.32), where Ak = A(tk) = —2 —sin (tk), pk = p(tk) = 0 .1 s in (tk)
w ith h < h* (left) and w ith h* < h < h0(A) (right).

F ig . 7.8. The perturbation error when p(t) =0.1 sin(t) and A(t) = —2 — sin(t)
for t e (0,nh) with n = 500: the step-size is h = h* — 0.1 = 0.4 (left) and
h = h* + 0.1 = 0.6 (right)

iii. We consider now the general Cauchy problem (7.5). We claim that
th is problem can be re lated to the generalized model problem (7.32), in
those cases where

— Amax < d f /dy(t, y) < —Amin, Vt > 0 , Vy £ (—(X, (x),

7.5 Stability on unbounded intervals 209

for suitab le values Xmin, Amax € (0, + to). To th is end, for every t in the
generic interval (tn, t n+1), we subtract (7.6) from (7.22) to obtain the
following equation for the perturbation error:

zn un (zn — 1 un —1) + h { f (tn—1, zn —1) f (tn —1, un—1)} + hpn-

B y applying the mean-value theorem we obtain

f (tn— 1, zn— 1) f (tn— 1, Un—1) An —1 (zn— 1 un — 1),

where An—1 = fy (tn — 1 ,£n—1), fy = d f/ d y and £n— 1 is a su itab le point
in the interval whose endpoints are un—1 and zn— 1. Thus

zn — Un = (1 + hAn—1)(zn—1 — Un— 1) + hpn-

B y a recursive application of th is formula we obtain the identity (7.35),
from which we derive the same conclusions drawn in ii., provided the
s tab ility restriction 0 < h < 2/Amax holds.

E xam ple 7.5 Let us consider the Cauchy problem

y'(t) = arctan(3y) — 3y + t, t > 0, y(0) = 1. (7.42)

Since f y = 3/(1 +9y2) — 3 is negative, we can choose Xmax = max \fy| = 3 and
set h < 2/3. Thus, we can expect that the perturbations on the forward Euler
method are kept under control provided that h < 2/3. This is confirmed by
the results which are reported in Figure 7.9. Note that in this example, taking
h = 2/3 + 0.01 (thus violating the previous stability limit) the perturbation
error blows up as t increases. ■

F ig . 7.9. The perturbation errors when p(t) = sin(t) with h = 2/Xmax — 0.01
(thick line) and h = 2/\max + 0.01 (thin line) for the Cauchy problem (7.42)

210 7 Ordinary differential equations

E xam ple 7.6 We seek a limit on h that guarantees stability for the forward
Euler method applied to approximate the Cauchy problem

V = 1 - V2, t> 0, (7.43)
e _1

with y(0) = ----- -. The exact solution is y(t) = (e2t+1 — 1)/(e2t+1 + 1) and
f y = — 2y. Since f y e (—2, —0.9) for all t > 0, we can take h less than h0 = 1.
In Figure 7.10, left, we report the solutions obtained on the interval (0, 35)
with h = 0.95 (thick line) and h = 1.05 (thin line). In both cases the solution
oscillates, but remains bounded. Moreover in the first case, which satisfies the
stability constraint, the oscillations are damped and the numerical solution
tends to the exact one as t increases. In Figure 7.10, right, we report the
perturbation errors corresponding to p(t) = sin(t) with h = 0.95 (thick line)
and h = h* + 0.1 (thin line). In both cases the perturbation errors remain
bounded; moreover, in the former case the upper bound (7.41) is satisfied. ■

F ig . 7.10. On the left, numerical solutions of problem (7.43) obtained by
the forward Euler method with h = 20/19 (thin line) and h = 20/21 (thick
line). The values of the exact solution are indicated by circles. On the right,
perturbation errors corresponding to p(t) = sin(t) with h = 0.95 (thick line)
and h = h* (thin line)

In those cases where no information on y is available, finding the
value Xmax = m ax \fy \ is not a simple m atter. A more heuristic approach
could be pursued in these situations, by adopting a variable stepping
procedure. Precisely, one could take tn+i = tn + hn, where

\f y (tn, un)\

for suitab le values of a s tr ic tly less than 1. Note th at the denominator
depends on the value un which is known. In Figure 7.11 we report the
perturbation errors corresponding to the Example 7.6 for two different
values of a .

7.5 Stability on unbounded intervals 211

F ig. 7.11. The perturbation errors corresponding to p(t) = sin(t) with a = 0.8
(thick line) and a = 0.9 (thin line) for the Example 7.6, using the adaptive
strategy

The previous analysis can be carried out also for other kind of one-
step methods, in particu lar for the backward Euler and Crank-Nicolson
methods. For these methods which are A-stable, the same conclusions
about the perturbation error can be drawn w ithout requiring any lim ita­
tion on the time-step. In fact, in the previous analysis one should replace
each term 1 + hAn by (1 — h\n) _1 in the backward Euler case and by
(1 + hAn/2)/(1 — hXn/2) in the Crank-Nicolson case.

Let us summarize

1. An absolutely stab le method is one which generates a solution un of
the model problem (7.28) which tends to zero as tn tends to infinity;

2 . a method is said A-stable if it is absolutely stable for any possible
choice of the tim e-step h (otherwise a method is called conditionally
stable, and h should be lower than a constant depending on A);

3. when an absolutely stab le method is applied to a generalized model
problem (like (7.32)), the perturbation error (that is the absolute
value of the difference between the perturbed and unperturbed solu­
tion) is uniform ly bounded (w ith respect to h). In short we can say
that absolutely stab le methods keep the perturbation controlled;

4. the analysis of absolute s tab ility for the linear model problem can be
exploited to find s tab ility conditions on the tim e-step when consider­
ing the nonlinear Cauchy problem (7.5) w ith a function f satisfying
d f/ d y < 0. In th at case the stab ility restriction requires the step-size
to be chosen as a function of df/dy. Precisely, the new integration
interval [tn , t n+1] is chosen in such a w ay th at hn = tn+1 — tn satisfies
hn < 2a/\3f(tn ,u n)/3y\ for a su itab le a G (0 , 1).

See the Exercises 7.6-7.13.

212 7 Ordinary differential equations

7.6 High order methods

All methods presented so far are elem entary exam ples of one-step meth­
ods. More sophisticated schemes, which allow the achievement of a higher
order of accuracy, are the Runge-Kutta methods and the multistep meth­
ods. (whose general form was already introduced in (7.23)). Runge-K utta
(briefly, RK) methods are still one-step methods; however, they involve
several evaluations of the function f (t ,y) on every interval [tn , t n+1]. In
its most general form, a RK method can be w ritten as

s
Un+1 = Un + h Y b K , n > 0 (7.44)

i=1

where
s

K i f (tn + cih: un + h^ \a'lj K j) ? i 1, 2, . . . , S
j = 1

and s denotes the number of stages of the method. The coefficients {a ij },
{ci } and {bi } fu lly characterize a RK method and are usua lly collected
in the so-called Butcher array

c A
b ^

where A = (aij) G R sxs , b = (b j , . . . , bs)T G R s and c = (c i , . . . , cs)T G
R s . If the coefficients aij in A are equal to zero for j > i, w ith i =
1, 2 , . . . , s , then each K i can be exp lic itly computed in term s of the i — 1
coefficients K 1, . . . , K i-1 th a t have a lready been determ ined. In such a
case the RK method is explicit. Otherwise, it is implicit and solving a
nonlinear system of size s is necessary for computing the coefficients K i .

One of the most celebrated Runge-K utta methods reads

un+1 = un + 7r(K 1 + 2K 2 + 2K3 + K4) 6
(7.45)

where

K 1 = fn,

K 2 = f (tn + f ,u n + f K 1),

K3 = f (tn + f ,u n + f K 2),

K4 f (tn+1, un + h K 3):

This method can be derived from (7.18) by using the Simpson quadrature
rule (4.23) to evaluate the integral between tn and tn+1. It is explicit,

0
1 1
2 2
1
2 0 1

2
1 0 0 1

IT 1 1 1
6 3 3 6

7.6 High order methods 213

of fourth order w ith respect to h; at each tim e step, it involves four
new evaluations of the function f . Other Runge-K utta methods, either
explicit or im plicit, w ith a rb itra ry order can be constructed. For instance,
an im plicit RK method of order 4 w ith 2 stages is defined by the following
Butcher array

3-V5 1 3—2 V3
6 4 12

3+У3 3+2^3 1
6 12 4

ilUH 1
2 2

The absolute s tab ility region A of the RK methods, including explicit
RK methods, can grow in surface w ith the order: an example is pro­
vided by the left graph in Figure 7.13, where A has been reported for
some explicit RK methods of increasing order: RK1 is the forward Euler
method, RK2 is the improved Euler method, (7.52), RK3 represents the
following Butcher array

(7.46)

0
1 1
2 2
1 - 1 2

1И 2 1
6 3 6

and RK4 represents method (7.45) introduced previously.
The RK methods stand at the base of a fam ily of M A T L A B pro­

grams whose names contain the root ode followed by numbers and letters.
In particu lar, ode45 is based on a pair of explicit Runge-K utta methods
(the so-called Dormand-Prince pair) of order 4 and 5, respectively. ode23
is the im plem entation of another pair of explicit Runge-K utta methods
(the Bogacki and Shampine pair). In these methods the integration step
varies in order to guarantee th a t the error remains below a given toler­
ance (the default scalar relative error tolerance R elT o l is equal to 10—3).
The program ode23tb is an implementation of an im plicit Runge-K utta
formula whose first stage is the trapezoidal rule, while the second stage
is a backward differentiation formula of order two (see (7.49)).

M ultistep methods (see (7.23)) achieve a high order of accuracy by
involving the values un, un—1, . . . , un—p for the determ ination of un+i.
They can be derived by applying first the formula (7.18) and then ap­
proximating the integral by a quadrature formula which involves the in-
terpolant of f a t a suitab le set of nodes. A notable example of m ultistep
method is the three-step (p = 2), th ird order (explicit) Adams-Bashforth
formula (AB3)

un+1 = un + 12 (23fn — 16f n-1 + 5f n—2) (7.47)

ode
ode45
ode23

ode23tb

214 7 Ordinary differential equations

which is obtained by replacing f in (7.18) by its interpolating polynomial
of degree two at the nodes tn—2, t n—1, t n . Another im portant example is
the three-step, fourth order (im plicit) Adams-Moulton formula (AM4)

h
un+1 = un + 24 (9f n+1 + 19fn — 5 fn—1 + f n—2) (7.48)

which is obtained by replacing f in (7.18) by its interpolating polynomial
of degree three at the nodes tn—2, t n—1, t n, t n+1.

Another fam ily of m ultistep methods can be obtained by writing the
differential equation at tim e tn+1 and replacing y'(tn+1) by a one-sided
increm ental ratio of high order. An instance is provided by the two-step,
second order (im plicit) backward difference form ula (BDF2)

= 4 _ 1 + 2 h fun+1 -- 3 un 3 un— 1 + 3 J n+1 (7.49)

or by the following three-step, th ird order (im plicit) backward difference
form ula (BDF3)

18 9 2 6h
un+1 11 un 11 un— 1 + 11 un — 2 + 1 1 /n+1 (7.50)

All these methods can be recasted in the general form (7.23). It is easy to
verify th at for all of them the relations (7.27) are satisfied, thus they are
consistent. Moreover, they are zero-stable. Indeed, in both cases (7.47)
and (7.48), the first characteristic polynom ial is n (r) = r 3 — r 2 and its
roots are r 0 = 1, r 1 = r 2 = 0 , while the first characteristic polynomial
of (7.50) is n (r) = r 3 — 18/11r2 + 9/11r — 2/11 and its roots are r 0 = 1,
r 1 = 0.3182 + 0.2839*, r 2 = 0.3182 — 0.2839*, where i is the im aginary
unit. In all cases, the root condition (7.24) is satisfied.

W hen applied to the model problem (7.28), AB3 is absolutely stab le if
h < 0.545/|A|, while AM4 is absolutely stab le if h < 3/|A|. The method
BDF3 is unconditionally absolutely stab le (i.e., A -stable) for all real
negative A. However, th is is no longer true if A G C (w ith negative real
part). In other words, BDF3 fails to be A -stable (see, Figure 7.13). More
generally, according to the second Dahlquist barrier there is no multistep
A-stable method of order s tric tly greater than two.

In Figures 7.12 the regions of absolute stab ility of several Adams-
Bashfort and Adams-Moulton methods are drawn. Note th at their size
reduces as far as the order increases. In the right-hand side graphs of
F igure 7.13 we report the (unlim ited) absolute s tab ility regions of some
BDF methods: these cover a surface in the complex plane which re­
duces when the order increases, as opposed to those of the Runge-K utta
methods (reported on the left) which increase in surface when the order
increases.

7.6 High order methods 215

F ig. 7.12. The absolute stability regions of several Adams-Basforth (left) and
Adams-Moulton (right) methods

F ig . 7.13. The absolute stability regions of several explicit RK (left) and
BDF methods (right). In this case the regions are unlimited and span in the
direction shown by the arrows

R em ark 7.3 (C om pu ting ab so lu te s ta b il ity regions) It is possible to
compute the boundary dA of the absolute stability region A of a multistep
method with a simple trick. The boundary is in fact composed by the complex
numbers hX such that

h\ = (r p+1 - J ajrP-ĵ j / ^ J bjrP-ĵJ ’ (7.51)

with r as a complex number of module one. Therefore, to obtain with MAT­
LAB an approximate representation of dA it is sufficient to evaluate the second
member of (7.51) with different values of r on the unit circle (for instance, by
setting r = ex p (i* p i* (0 : 2000)/ 1000) , where i is the imaginary unit). The
graphs in Figures 7.12 and 7.13 have been obtained in this way. •

According to the first Dahlquist barrier the maximum order q of a
p + 1-step method satisfying the root condition is q = p + 1 for explicit

216 7 Ordinary differential equations

ode15s

methods and, for im plicit methods q = p + 2 if p + 1 is odd, q = p + 3 if
p + 1 is even.

R em ark 7.4 (C yc lic com posite m ethods) It is possible to overcome the
Dahlquist barriers by appropriately combining several multistep methods. For
instance, the two following methods

8 19 hUn + 1 = — H u„ + — Un — 1 + — (30/n+1 + 57 fn + 24fn-1 — fn-2),

449 19 361
Un + 1 — ---- Un + --- 'Un — 1 — -----'Un — 2n+1 240 30 n 1 240 n 2

h
+ 720 (251f"+1 +456fn — 1347fn-1 — 350fn-2),

have order five, but are unstable. However, by using them in a combined way
(the former if n is even, the latter if n is odd) they produce an A-stable 3-step
method of order five. •

M ultistep methods are implemented in several M A T L A B programs,
for instance in ode15s.

O c tave 7 .1 ode23 and ode45 are also available in Octave-forge. The
optional arguments however differ from M A T L A B . Note th at ode45 in
Octave-forge offers two possible strategies: the default one based on the
Dormand and Prince method produces generally more accurate results
than the other option th at is based on the Fehlberg method. ■

7.7 The predictor-corrector methods

In Section 7.2 it was pointed out th at im plicit methods y ield at each
step a nonlinear problem for the unknown value un+i. For its solution
we can use one of the methods introduced in C hapter 2 , or else app ly
the function f s o lv e as we have done w ith the Programs 7.2 and 7.3.

A lternatively, we can carry out fixed point iterations at every time-
step. For example, for the Crank-Nicolson method (7.17), for к = 0 , 1 ,--- .
we compute until convergence

(k+i)
xn+1 -- un +

h
f n + f (tn+1,un+ i)

It can be proved th at if the in itia l guess un+1 is chosen conveniently,
a single iteration suffices in order to obtain a numerical solution и[1+1
whose accuracy is of the same order as the solution un+1 of the original
im plicit method. More precisely, if the original im plicit method has order
p, then the in itia l guess un0+1 must be generated by an explicit method
of order (at least) p — 1.

7.7 The predictor-corrector methods 217

For instance, if we use the first order (explicit) forward Euler method
to initialize the Crank-Nicolson method, we get the Heun method (also
called improved Euler method), which is a second order explicit Runge-
K u tta method:

(7.52)

The explicit step is called a predictor, whereas the implicit one is called a
corrector. Another example combines the (AB3) method (7.47) as predic­
tor with the (AM4) method (7.48) as corrector. These kinds of methods
are therefore called predictor-corrector methods. They enjoy the order
of accuracy of the corrector method. However, being explicit, they un­
dergo a stability restriction which is typically the same as that of the
predictor method (see, for instance, the regions of absolute stability of
Figure 7.14). Thus they are not adequate to integrate a Cauchy problem
on unbounded intervals.

F ig. 7.14. The absolute stability regions of the predictor-corrector methods
obtained by combining the explicit Euler (EE) and Crank-Nicolson methods
(left) and AB3 and AM4 (right). Notice the reduced surface of the region when
compared to the corresponding implicit methods (in the first case the region
of the Crank-Nicolson method hasn’t been reported as it coincides with all the
complex half-plane Re(hX) < 0)

In Program 7.4 we implement a general predictor-corrector method.
The strings p re d ic to r and c o r re c to r identify the type of method
that is chosen. For instance, if we use the functions eeonestep and
cnonestep, which are defined in Program 7.5, we can call p red cor as
follows:

>> [t ,u]= p r e d c o r (t 0 ,y 0 ,T ,N ,f , ’ e e o n e s te p ’ , ’ cn o n estep ’) ;

218 7 Ordinary differential equations

and obtain the Heun method.
P ro gram 7.4. predcor: predictor-corrector method

f u n c t i o n [t , u] = p r e d c o r (o d e f u n , t s p a n , y , N h , . . .
p r e d i c t o r , c o r r e c t o r , v a r a r g i n)

PREDCOR So l v e d i f f e r e n t i a l e q u a t i o n s u s i n g a
p r e d i c t o r - c o r r e c t o r method
[T,Y]=PREDCOR(ODEFUN, TSPAN,Y0,NH,PRED, CORR) w i t h
TSPAN=[T0 TF] i n t e g r a t e s the s y s t em of d i f f e r e n t i a l
e q u a t i o n s y ’ = f (t , y) from t i me T0 to TF wi t h i n i t i a l
c o n d i t i o n Y0 u s i n g a g e n e r a l p r e d i c t o r c o r r e c t o r
method on an e q u i s p a c e d g r i d of NH i n t e r v a l s .
Fu n c t i o n ODEFUN(T,Y) must r e t u r n a c o l u mn - v e c t o r
c o r r e s p o n d i n g to f (t , y) . Each row i n t he s o l u t i o n
a r r a y Y c o r r e s p o n d s to a t i me r e t u r n e d i n t he column
v e c t o r T. Fu n c t i o n s PRED and CORR i d e n t i f y the t ype
of method t h a t i s chosen .
[T,Y]=PREDCOR(ODEFUN, TSPAN,Y0, NH, PRED, CORR, P1 , . .)
p a s s e s t he a d d i t i o n a l p a r a m e t e r s P 1 , . . . to the
f u n c t i o n s ODEFUN, PRED and CORR as ODEFUN(T,Y,P1, . . .) ,
P R E D (T , Y , P 1 , P 2 . . .) , C O R R (T , Y , P 1 , P 2 . . .) .

h = (t s p a n (2) - t s p a n (1)) / N h ; t t = [t s p a n (1) : h : t s p a n (2)] ;
u=y; [n , m] = s i z e (u) ; i f n < m, u=u’ ; end
f o r t = t t (1 : e n d - 1)

y = u (: , e n d) ; fn = f e v a l (o d e f u n , t , y , v a r a r g i n { : }) ;
upre = f e v a l (p r e d i c t o r , t , y , h , f n) ;
ucor = f e v a l (c o r r e c t o r , t + h , y , u p r e , h , o d e f u n , . . .

f n , v a r a r g i n { : }) ;
u = [u , u c o r] ;

end
t = t t ;
end

P ro gram 7.5. onestep: one step of forward Euler (eeonestep), one step of
backward Euler (eionestep), one step of Crank-Nicolson (cnonestep)

f u n c t i o n [u] = f e o n e s t e p (t , y , h , f)
u = y + h * f ;
r e t u r n

f u n c t i o n [u] = b e o n e s t e p (t , u , y , h , f , f n , v a r a r g i n)
u = u + h * f e v a l (f , t , y , v a r a r g i n { : }) ;
r e t u r n

f u n c t i o n [u] = c n o n e s t e p (t , u , y , h , f , f n , v a r a r g i n)
u = u + 0 . 5 * h * (f e v a l (f , t , y , v a r a r g i n { : }) + f n) ;
r e t u r n

ode113 The M A T L A B program ode113 implements a combined Adams-
Moulton-Bashforth scheme with variable step-size.

See the Exercises 7.14-7.17.

7.8 Systems of differential equations 219

7.8 Systems of differential equations

Let us consider the following system of first-order ordinary differential
equations whose unknowns are y 1(t) , . . . , ym(t):

y 1 — f 1 (t ̂y b . . . ym) ■

< .

ym f m(t■ y 1 , . . . , ym)■

where t G (t0,T], with the initial conditions

y 1 (to) — y 0 ,1 , . . . , ym(to) — y 0 ,m.

For its solution we could apply to each individual equation one of the
methods previously introduced for a scalar problem. For instance, the
n-th step of the forward Euler method would read

un+1,1 un,1 + h f 1(tn̂ un,1 ■ . ..■ un,m)t

< :

un+1,m un,m + h fm(tnT un,1■ . . . unmi')'

B y writing the system in vector form y'(t) — F (t,y (t)) , with obvious
choice of notation, the extension of the methods previously developed
for the case of a single equation to the vector case is straightforward.
For instance, the method

Un+1 — Un + h(-&F(tn+1, Un+1) + (1 - ^)F(tn, Un)), n > 0,

with u 0 — y 0, 0 < $ < 1, is the vector form of the forward Euler method
if $ — 0, the backward Euler method if $ — 1 and the Crank-Nicolson
method if $ — 1/2.

E xam ple 7.7 (P opu lation dyn am ics) Let us apply the forward Euler me­
thod to solve the Lotka-Volterra equations (7.3) with C\ = C2 = 1, &i = b2 = 0
and d1 = d2 = 1. In order to use Program 7.1 for a system of ordinary
differential equations, let us create a function f which contains the component
of the vector function F, which we save in the file f.m. For our specific system
we have:
f u n c t i o n y = f (t , y)
C1=1; C2=1; d1=1; d2=1; b1=0; b2=0;
y y (l) = C 1 * y (1) * (1 - b 1 * y (1) - d 2 * y (2)) ; % f i r s t e q u a t i o n
y (2) = - C 2 * y (2) * (1 - b 2 * y (2) - d 1 * y (1)) ; % second e q u a t i o n
y (1) = y y (1) ;
r e t u r n

220 7 Ordinary differential equations

Now we execute Program 7.1 with the following instructions
[t , u] = f e u l e r (’ f s y s ’ , [0 , 0 . 1] , [0 0] , 10 0) ;

They correspond to solving the Lotka-Volterra system on the time interval
[0,10] with a time-step h = 0.005.

The graph in Figure 7.15, left, represents the time evolution of the two
components of the solution. Note that they are periodic with period 2n. The
second graph in Figure 7.15, right, shows the trajectory issuing from the initial
value in the so-called phase plane, that is, the Cartesian plane whose coordinate
axes are y i and y2. This trajectory is confined within a bounded region of the
(yi ,y2) plane. If we start from the point (1.2,1.2), the trajectory would stay
in an even smaller region surrounding the point (1,1). This can be explained
as follows. Our differential system admits 2 points of equilibrium at which
y i = 0 and y2 = 0 , and one of them is precisely (1 , 1) (the other being (0 , 0)).
Actually, they are obtained by solving the nonlinear system

{yi = y i - y iy 2 = 0 ,

y2 = - y 2 + y2y i = 0.

If the initial data coincide with one of these points, the solution remains con­
stant in time. Moreover, while (0, 0) is an unstable equilibrium point, (1,1) is
stable, that is, all trajectories issuing from a point near (1, 1) stay bounded in
the phase plane. ■

F ig . 7.15. Numerical solutions of system (7.3). On the left, we represent y i
and y2 on the time interval (0 , 10), the solid line refers to y i , the dashed line to
y2. Two different initial data are considered: (2, 2) (thick lines) and (1.2,1.2)
(thin lines). On the right, we report the corresponding trajectories in the phase
plane

W hen we use an explicit method, the step-size h should undergo a
stability restriction similar to the one encountered in Section 7.5. When
the real part of the eigenvalues Ak of the Jacobian A(t) = [9F/9y](t, y)
of F are all negative, we can set A = — max(p(A(t)), where p(A(t)) is the
spectral radius of A(t). This A is a candidate to replace the one entering

7.8 Systems of differential equations 221

in the stability conditions (such as, e.g., (7.30)) that were derived for the
scalar Cauchy problem.

R em ark 7.5 The MATLAB programs (ode23, ode45, ...) that we have men­
tioned before can be used also for the solution of systems of ordinary differential
equations. The syntax is odeXX(’ f ’ , [t 0 t f] , y 0) , where y0 is the vector of
the initial conditions, f is a function to be specified by the user and odeXX is
one of the methods available in MATLAB. •

Now consider the case of an ordinary differential equation of order m

y (m)(t) — f (t , y , y ' , . . . , y (m-1')) (7.53)

for t G (t0,T], whose solution (when existing) is a family of functions de­
fined up to m arb itrary constants. The latter can be fixed by prescribing
m initial conditions

Setting

y (t0) — y 0, y'(t0) — y 1 , . . . , y (m 1)(t0) — ym- 1 .

W1 (t) — y(t), W2 (t) — y'(t), . . . , wm(t) — y (m 1)(t),

the equation (7.53) can be transformed into a first-order system of m
differential equations

: W2,

w2 — W3,

.

1

f (t, w 1 , . . . , wm) ,

with initial conditions

W1(t0) — У0, W2 (t0) — У1, . . . , Wm (t0) — ym-1-

Thus we can always approximate the solution of a differential equation
of order m > 1 by resorting to the equivalent system of m first-order
equations, and then applying to this system a convenient discretization
method.

E xam ple 7.8 (E lectr ica l c ircu its) Consider the circuit of Problem 7.4 and
suppose that L(i1) = L is constant and that R1 = R2 = R. In this case v can
be obtained by solving the following system of two differential equations:

' v'(t) = w(t),

w'(t) = - M R + RC) w(t) - L C v(t) + Lc c ,

(7.54)

W

W Wm

222 7 Ordinary differential equations

with initial conditions v(0) = 0, w(0) = 0. The system has been obtained from
the second-order differential equation

LG d̂tv + (R + R iC) d + (R + 1) v = e (7.55)

We set L = 0.1 Henry, C = 10~3 Farad, R = 10 Ohm and e = 5 Volt, where
Henry, Farad, Ohm and Volt are respectively the unit measure of inductance,
capacitance, resistance and voltage. Now we apply the forward Euler method
with h = 0.01 seconds in the time interval [0, 0.1], by the Program 7.1:
[t , u] = f e u l e r (’ f s y s ’ , [0 , 0 . 1] , [0 0] , 10 0) ;

where fsy s is contained in the file fsys.m:
f u n c t i o n y = f s y s (t , y)
L=0.1 ; C=1 . e - 0 3 ; R=10; e=5; LC = L*C;
y y = y (2) ; y (2) = - (L / R + R * C) / (L C) * y (2) - 2 / (L C) * y (1) + e / (L C) ;
y (1) = y y ;
r e t u r n

In Figure 7.16 we report the approximated values of v and w. As expected, v(t)
tends to e/2 = 2.5 Volt for large t. In this case the real part of the eigenvalues
of A(t) = [dF/dy](t, y) is negative and A can be set equal to —141.4214. Then
a condition for absolute stability is to take h < 2/|A| = 0.0282. ■

F ig. 7.16. Numerical solutions of system (7.54). The potential drop v(t) is
reported on the left, its derivative w on the right: the dashed line represents the
solution obtained for h = 0.001 with the forward Euler method, the continuous
line is for the one generated via the same method with h = 0.004, and the
dotted line is for the one produced via the Newmark method (7.59) (with
в = 1/2 and Z = 1/4) with h = 0.004

Sometimes numerical approximations can be directly derived on the
high order equation without passing through the equivalent first order
system. Consider for instance the case of the 2nd order Cauchy problem

f y ”(t) = f (t, y(t), y'(t)) t G (to, T],
\ y (to) = ^ , y' (to) = ^o-

(7.56)

7.8 Systems of differential equations 223

A simple numerical scheme can be constructed as follows: find un for
1 < n < Nh such that

Un+1 _ 2un + un - 1 Г/. \ fry r-rr'i
------------ h2------------ — j (tn,Un,Vn) (7.57)

w ith u0 — a 0 and v0 — (30. The quan tity vk represents a second order
approxim ation of y '(tk) (since (yn+1 — 2yn + yn - 1)/h2 is a second order
approxim ation of y''(tn)). One possib ility is to take

Vn — un+1 — — U n-1, w ith V0 — в 0 . (7.58)
2h

The leap-frog method (7.57)-(7.58) is accurate of order 2 w ith respect to
h .

A more general method is the Newmark method, in which we build
two sequences

un+1 un + hvn + h [Cf (tn+11 un+11 Vn+1) + (1/2 С) f (tn: un: vn)] :
(7.59)

Vn+1 vn + h [(1 @) f (tni uni vn) + @f (tn+1? un+1? Vn+1)] ?

w ith u0 — a 0 and v0 — (30, where Z and в are two non-negative real
numbers. This method is im plicit unless Z — в — 0, second order if
в — 1/2, whereas it is first order accurate if в — 1/2. The condition
в > 1/2 is necessary to ensure stab ility. For в — 1/2 and Z — 1/4 we
find a rather popular method th at is unconditionally stab le. However,
th is method is not suitab le for sim ulations on long tim e intervals as
it introduces oscillatory spurious solutions. For these simulations it is
preferable to use в > 1/2 and Z > (в + 1/2)2/4 even though the method
degenerates to a first order one.

In Program 7.6 we implement the Newmark method. The vector
param allows to specify the values of the coefficients (p aram (1)=Z,
р а г а т (2)=в).

P ro gram 7.6. newmark: Newmark method

f u n c t i o n [t t , u] = n e w m a r k (odefun , tsp a n ,y , Nh , param , v a r a r g i n)
%NEWMARK So l ve second o r d e r d i f f e r e n t i a l e q u a t i o n s u s i ng
% t he Newmark method
% [T,Y]=NEWMARK(ODEFUN,TSPAN,Y0,NH,PARAM) wi t h TSPAN =
% [T0 TF] i n t e g r a t e s the s y s t em of d i f f e r e n t i a l
% e q u a t i o n s y ’ ’ = f (t , y , y ’) from t i me T0 to TF wi t h
% i n i t i a l c o n d i t i o n s Y 0 = (y (t 0) , y ’ (t 0)) u s i n g the
% Newmark method on an e q u i s p a c e d g r i d of NH i n t e r v a l s .
% Fu n c t i o n ODEFUN(T,Y) must r e t u r n a s c a l a r v a l u e
% c o r r e s p o n d i n g to f (t , y , y ’) .
t t = l i n s p a c e (t s p a n (1) , t s p a n (2) , N h + 1) ;
u (1 , :) = y ;

g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
g l o b a l g l o b _ z e t a g l o b _ t h e t a g l o b _ v a r a r g i n g l o b _ f n ;

224 7 Ordinary differential equations

g l o b _ h = (t s p a n (2) - t s p a n (1)) / N h ;
g l o b _ y = y ;
g l o b _ o d e f u n = o d e f u n ;
g l o b _ t = t t (2) ;
g l o b _ z e t a = p a r a m (1) ;
g l o b _ t h e t a = p a r a m (2) ;
g l o b _ v a r a r g i n = v a r a r g i n ;

i f (“ e x i s t (’ OCTAVE_VERSION’))
o p t i o n s = o p t i m s e t ;
o p t i o n s . To l Fu n =1 . e - 1 2 ;
o p t i o n s . MaxFunEva l s=10000;

end

g l o b _ f n = f e v a l (o d e f u n , t t (1) , u (1 , :) , v a r a r g i n { : }) ;
f o r g l o b _ t = t t (2 : end)
i f (e x i s t (’ OCTAVE_VERSION’))

w = f s o l v e (’ newmar kfun ’ , g l ob_y)
e l s e

w = f s o l v e (@(w) ne wma r k f u n (w) , g l o b _ y , o p t i o n s) ;
end

g l o b _ f n = f e v a l (o d e f u n , g l o b _ t , w , v a r a r g i n { : }) ;
u = [u ; w] ;
y = w;

end
t = t t ;
c l e a r g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
c l e a r g l o b _ z e t a g l o b _ t h e t a g l o b _ v a r a r g i n g l o b _ f n ;
end

f u n c t i o n z=myfun(w)
g l o b a l g l ob_h g l o b _ t g l ob_y g l o b _ o d e f u n ;
g l o b a l g l o b _ z e t a g l o b _ t h e t a g l o b _ v a r a r g i n g l o b _ f n ;
f n 1 = f e v a l (g l o b _ o d e f u n , g l o b _ t , g l o b _ w , g l o b _ v a r a r g i n { : }) ;
z=w - g l ob_y - . . .

g l o b _ h * [g l o b _ y (1 , 2) , . . .
(1 - g l o b _ t h e t a) * g l o b _ f n + g l o b _ t h e t a * f n 1] - . . .

g l o b _ h ~ 2 * [g l o b _ z e t a * f n 1 + (0 . 5 - g l o b _ z e t a) * g l o b _ f n , 0] ;
end

E xam ple 7.9 (E lectr ica l c ircu its) We consider again the circuit of Prob­
lem 7.4 and we solve the second order equation (7.55) with the Newmark
scheme. In Figure 7.16 we compare the numerical approximations of the func­
tion v computed using the Euler scheme (dashed line and continuous line)
and the Newmark scheme with в = 1/2 and Z = 1/4 (dotted line), with the
time-step h = 0.04. The better accuracy of the latter solution is due to the
fact that the method (7.57)-(7.58) is second order accurate with respect to h.

Ж See the Exercises 7.18-7.20.

7.9 Some examples 225

We end this chapter by considering and solving three non-trivial exam­
ples of systems of ordinary differential equations.

7 .9 .1 T h e sp h e ric a l p e n d u lu m

The motion of a point x(t) = (x\(t),x2(t) ,x3(t))T with mass m sub­
ject to the gravity force F = (0,0, - g m) T (with g = 9.8 m/s2)
and constrained to move on the spherical surface of equation Ф(x) =
x 2 + x 2 + x 2 — 1 = 0 is described by the following system of ordinary
differential equations

7.9 Some examples

We denote by x the first derivative with respect to t, with x the second
derivative, with УФ the spatial gradient of Ф, equal to 2xT, with H
the Hessian m atrix of Ф whose components are Hij = д 2Ф/дxiд x j for
1 , j = 1, 2, 3. In our case H is a diagonal m atrix with coefficients equal to
2. System (7.60) must be provided with the initial conditions x(0) = x 0
and x (0) = v o .

To numerically solve (7.60) let us transform it into a system of dif­
ferential equations of order 1 in the new variable y , a vector with 6
components. Having set yi = xi and yi+3 =x.i with i = 1, 2, 3, and

We apply the Euler and Crank-Nicolson methods. Initially it is
necessary to define a M A T L A B function (f v i n c in Program 7.7)
which yields the expressions of the right-hand terms (7.61). Further­
more, let us suppose that the initial conditions are given by vector
y 0 = [0 , 1 , 0 , . 8 , 0 , 1 . 2] and that the integration interval is ts p a n = [0 ,2 5] .
We recall the explicit Euler method in the following way
[t , y] = f e u l e r (’ f v i n c ’ , t s p a n , y 0 , n t) ;

(and analogously for the backward Euler b e u le r and Crank-Nicolson
c ran k n ic methods), where n t is the number of intervals (of constant
width) used to discretize the interval [t s p a n (1) , t s p a n (2)] . In the
graphs in Figure 7.17 we report the trajectories obtained with 10000

(7.60)

A = (m (y4,y5,ye)T H (y4,y5,ye) + УФТ F) /\УФ\2,

we obtain, for i = 1, 2, 3,

y i= y3+i,
(7.61)

226 7 Ordinary differential equations

F ig . 7.17. The trajectories obtained with the explicit Euler method with
h = 0.0025 (on the left) and h = 0.00025 (on the right). The blackened point
shows the initial datum

Fig. 7.18. The trajectories obtained using the implicit Euler method with
h = 0.00125 (on the left) and using the Crank-Nicolson method with h = 0.025
(on the right)

and 100000 discretization nodes. In the second case, the solution looks
reasonably accurate. As a m atter of fact, although we do not know the
exact solution to the problem, we can have an idea of the accuracy by
noticing that the solution satisfies r(y) = y 2 + y2 + Уз _ 1 = 0 and by
consequently measuring the maximal value of the residual r (y n) when
n varies, y n being the approximation of the exact solution generated at
time tn . B y using 10000 discretization nodes we find r = 1.0578, while
with 100000 nodes we have r = 0 .1 111 , in accordance with the theory
requiring the explicit Euler method to converge with order 1.

B y using the implicit Euler method with 20000 steps we obtain the
solution reported in Figure 7.18, while the Crank-Nicolson method (of
order 2) with only 2000 steps provides the solution reported in the same
figure on the right, which is undoubtedly more accurate. Indeed, we find
r = 0.5816 for the implicit Euler method and r = 0.0966 for the Crank-
Nicolson method.

7.9 Some examples 227

F ig. 7.19. The trajectories obtained using methods ode23 (left) and ode45
(right) with the same accuracy criteria. In the second case the error control
fails and the solution obtained is less accurate

As a comparison, let us solve the same problem using the explicit
adaptive methods of type Runge-K utta ode23 and ode45, featured in
MA T L A B . These (unless differently specified) modify the integration
step in order to guarantee th at the relative error on the solution is less
than 10~3 and the absolute error is less than 10~6. We run them using
the following commands
[t 1 , y 1] = o d e 2 3 (’ f v i n c ’ , t s p a n , y 0 ’) ;
[t 2 , y 2] = o d e 4 5 (’ f v i n c ’ , t s p a n , y 0 ’) ;

obtaining the solutions in Figure 7.19.
The two methods used 783, respectively 537, non-uniformly d istrib ­

uted discretization nodes. The residual r is equal to 0.0238 for ode23
and 3.2563 for ode45. Surprisingly, the result obtained w ith the highest-
order method is thus less accurate and th is warns us as to using the ode
programs available in M A T L A B . An explanation of th is behavior is in
the fact th a t the error estim ator implemented in ode45 is less constrain­
ing than th at in ode23. B y sligh tly decreasing the relative tolerance (it
is sufficient to set o p t i o n s =o d e s e t (’ R e l T o l ’ , 1 . e - 0 4)) and renaming
the program to [t , y] = o d e 4 5 (@ f v i n c , t s p a n , y 0 , o p t i o n s) ; we can in
fact find comparable results.

P ro gram 7.7. fvinc: forcing term for the spherical pendulum problem

f u n c t i o n [f] = f v i n c (t , y)
[n , m] = s i z e (y) ; p h i x = ’ 2* y (1) ’ ;
p h i y = ’ 2 * y (2) ’ ; p h i z = ’ 2 * y (3) ’ ; H=2*eye (3) ;
mass=1; % Mass
F1=’ 0 * y (1) F 2 = ’ 0 * y (2) F 3 = ’ - m a s s * 9 . 8 ’ ; % Weight
f = z e r o s (n , m) ; x p u n t o = z e r o s (3 , 1) ; x p u n t o (1 : 3) = y (4 : 6) ;
F = [e v a l (F 1) ; e v a l (F 2) ; e v a l (F 3)] ;
G = [e v a l (p h i x) ; e v a l (p h i y) ; e v a l (p h i z)] ;
l ambda=(m*xpunto ’ *H*xpunto+F’ *G)/(G’ * G) ;
f (1 : 3) = y (4 : 6) ;
f o r k=1 : 3 ; f (k + 3) = (F (k) - l a m b d a * G (k)) / m a s s ; end
r e t u r n

228 7 Ordinary differential equations

-о.
-о.

-о.
-о.

о

F ig. 7.20. The trajectories obtained using methods ode23 (left) and ode45
(right) with the same accuracy criteria.

O c tave 7 .2 ode23 requires 924 steps while ode45 requires 575 steps for
the same accuracy.

Note th at ode45 gives results sim ilar to ode23 as opposed to ode45
in M A T L A B , see Figure 7.20. ■

7 .9 .2 T h e th r e e -b o d y p ro b lem

We want to compute the evolution of a system composed by three bodies,
knowing their in itia l positions and velocities and their masses under the
influence of their reciprocal grav itational attraction . The problem can
be formulated by using Newton’s laws of motion. However, as opposed
to the case of two bodies, there are no known closed form solutions.
We suppose th at one of the three bodies has considerably larger mass
than the two remaining, and in particu lar we study the case of the Sun-
E arth-M ars system , a problem studied by celeber m athem aticians such
as Lagrange in the eighteenth century, Poincare towards the end of the
nineteenth century and Levi-C ivita in the twentieth century

We denote by M s the mass of the Sun, by M e th a t of the E arth and
by Mm th a t of Mars. The Sun ’s mass being about 330000 tim es th at of
the Earth and the mass of M ars being about one tenth of the E arth ’s, we
can im agine th at the center of g rav ity of the three bodies approxim ately
coincides w ith the center of the Sun (which w ill therefore remain still in
th is model) and th at the three objects rem ain in the plane described by
their in itia l positions. In such case the to tal force exerted on the Earth
w ill be for instance

where x e = (xe,y e)T denote the E arth ’s position, while F es and F em
denote the force exerted by the Sun and Mars, respectively, on the Earth.

(7.62)

7.9 Some examples 229

By applying the universal gravitational law, (7.62) becomes (xm denotes
the position of Mars)

B y adimensionalizing the equations and scaling the lengths with re­
spect to the length of the Earth orb it’s semi-major axis, the following
equation is obtained

The analogous equation for planet Mars can be obtained with a similar
computation

The second-order system (7.63)-(7.64) immediately reduces to a system
of eight equations of order one. Program 7.8 allows to evaluate a function
containing the right-hand side terms of system (7.63)-(7.64).

P ro gram 7.8. threebody: forcing term for the simplified three body system

f u n c t i o n f = t h r e e b o d y (t , y)
f = z e r o s (8 , 1) ;
Ms=330000;
Me = 1;
Mm=0.1;
D1 = ((y (5) - y (1)) * 2 + (y (7) - y (3)) * 2) * (3 / 2) ;
D2 = (y (1) - 2 + y (3) * 2) - (3 / 2) ;
f (1) = y (2) ;
f (2) = 4 * p i ~ 2 * (M e / M s * (y (5) - y (1)) / D 1 - y (1) / D 2) ;
f (3) = y (4) ;
f (4) = 4 * p i ~ 2 * (M e / M s * (y (7) - y (3)) / D 1 - y (3) / D 2) ;
D2 = (y (5) - 2 + y (7) * 2) - (3 / 2) ;
f (5) = y (6) ;
f (6) = 4 * p i ~ 2 * (M m / M s * (y (1) - y (5)) / D 1 - y (5) / D 2) ;
f (7) = y (8) ;
f (8) = 4 * p i ~ 2 * (M m / M s * (y (3) - y (7)) / D 1 - y (7) / D 2) ;

Let us compare the Crank-Nicolson method (implicit) and the adap­
tive Runge-Kutta method implemented in ode23 (explicit). Having set
the Earth to be 1 unit away from the Sun, Mars will be located at about
1.52 units: the initial position will therefore be (1,0) for the Earth and
(1.52,0) for Mars. Let us further suppose that the two planets initially
have null horizontal velocity and vertical velocity equal to —5.1 units
(Earth) and —4.6 units (Mars): this way they should move along reason­
ably stable orbits around the Sun. For the Crank-Nicolson method we
choose 2000 discretization steps.

(7.63)

(7.64)

r e t u r n

230 7 Ordinary differential equations

F ig . 7.21. The Earth’s (inmost) and Mars’s orbit with respect to the Sun as
computed with the adaptive method ode23 (on the left) (with 564 steps) and
with the Crank-Nicolson method (on the right) (with 2000 steps)

[t 2 3 , u 2 3] = o d e 2 3 (’ t h r e e b o d y ’ , [0 1 0] , . . .
[1 . 5 2 0 0 - 4 . 6 1 0 0 - 5 . 1]) ;

[t c n , u c n] = c r a n k n i c (’ t h r e e b o d y ’ , [0 10] , . . .
[1 . 5 2 0 0 - 4 . 6 1 0 0 - 5 . 1] , 20 0 0) ;

The graphs in Figure 7.21 show th at the two methods are both able to
reproduce the e llip tical orbits of the two planets around the Sun. Method
ode23 only required 543 (non-uniform) steps to generate a more accurate
solution than th at generated by an im plicit method w ith the same order
of accuracy, but which does not use step adaptivity.

O c tave 7 .3 ode23 requires 847 steps to generate a solution w ith a tol­
erance of 1e-6 . ■

7 .9 .3 S o m e s t if f p ro b lem s

Let us consider the following differential problem, proposed by [Gea71],
as a variant of the model problem (7.28):

(y'(t) = A(y(t) — g (t))+ g'(t), t > 0,
(7.65)

U 0) = Уo,

where g is a regular function and A ^ 0 , whose solution is

y(t) = (yo — g(0))ext + g(t), t > 0. (7.66)

It has two components, (y0 — g(0))ext and g (t), the first being neg­
ligible w ith respect to the second one for t large enough. In partic­
u lar, we set g(t) = t, A = —100 and solve problem (7.65) over the
interval (0,100) using the explicit Euler method: since in this case
f (t ,y) = A(y(t) — g(t)) + g'(t) we have d f/ d y = A, and the stab ility

7.9 Some examples 231

...... ;..... j
....... iI.................... 1........ ...

............L..........1......... x .:.......

..........................j" / 1....... !.......

....... L ! !

....... /1.................... !

/ ..г 1....... !.......
F ig. 7.22. Solutions obtained using method (7.47) for problem (7.65) violating
the stability condition (h = 0.0055, left) and respecting it (h = 0.0054, right)

analysis performed in Section 7.4 suggests we choose h < 2/100. This
restriction is d ictated by the presence of the component behaving like
g-ioot and appears com pletely unjustified when we th ink of its weight
w ith respect to the whole solution (to get an idea, for t = 1 we have
e-100 « 10-44). The situation gets worse using a higher order explicit
method, such as for instance the Adams-Bashforth (7.47) method of or­
der 3: the absolute s tab ility region reduces (see Figure 7.12) and, conse­
quently, the restriction on h becomes even stricter, h < 0.00545. V io lat­
ing - even sligh tly - such restriction produces com pletely unacceptable
solutions (as shown in Figure 7.22 on the left).

We thus face an apparently simple problem, but one th at becomes
difficult to solve w ith an explicit method (and more generally w ith a
method which is not A -stable) due to the presence in the solution of
two components having a d ram atica lly different behavior for t tending
to infinity: such a problem is said to be stiff.

More precisely, we say th a t a system of differential equations of the
form

y '(t) = A y(t) + v (t), A e R nxn, <p(t) e R n , (7.67)

where A has n d istinct eigenvalues A j, j = 1 , . . . , n , w ith R e(A j) < 0,
j = 1 , . . . , n , is stiff if

^ _ m axj |Re(Aj)| 1
m inj |Re(Aj

The exact solution to (7.67) is

y (t) = Y Cj tv j + ^ (t)
j= i

(7.68)

where C 1, . . . ,C n are n constants and { v j} is a base formed by the eigen­
vectors of A, while ^ (t) is a given solution of the differential equation.

1 о
5ооо

25оо 7

5о
4

-25оо
2

о
о 2 4 6 8 1о о 2 4 6 8

n

232 7 Ordinary differential equations

If r s ^ 1 we observe once again the presence of components of the so­
lution y which tend to zero with different speed. The component which
tends to zero fastest for t tending to infinity (the one associated to the
eigenvalue having maximal value) will be the one involving the strictest
restriction on the integration step, unless of course we use a method
which is absolutely stable under any condition.

E xam ple 7.10 Let us consider the system y ' = A y with t e (0,100) with
initial condition y (0) = yo, where y = (y i,y2)T, yo = (yi,o,V2 ,o)T and

A
0 1

—Л1Л2 Ai + A2

where A1 and A2 are two different negative numbers such that |Al | ^ |A2|.
Matrix A has eigenvalues Al and A2 and eigenvectors v L
(1,A2)t . Thanks to (7.68) the system’s solution is

(1, Ai) , v 2

y(t) =
CieXlt + C2eX2t

C\AieXlt + C’2 A2 eX2t
(7.69)

The constants Cl and C2 are obtained by fulfilling the initial condition:

C i = A2y i ,0 — У2,0
A2 Ai

C2 = y2,0 — Aiyi ,0
A2 Ai

Based on the remarks made earlier, the integration step of an explicit method
used for the resolution of such a system will depend uniquely on the eigenvalue
having maximal module, Al . Let us assess this experimentally using the explicit
Euler method and choosing Al = —100, A2 = —1, yL,0 = y2,0 = 1. In Figure
7.23 we report the solutions computed by violating (left) or respecting (right)
the stability condition h < 1/50. ■

The definition of stiff problem can be extended, by exerting some
precautions, to the nonlinear case (see for instance [QSS06, Chapter
11]). One of the most studied nonlinear stiff problems is given by the
Van der Pol equation

d2x 2 dx
ж = " (1 — x > dt — x '

(7.70)

proposed in 1920 and used in the study of circuits containing thermoionic
valves, the so-called vacuum tubes, such as cathodic tubes in television
sets or magnetrons in microwave ovens.

If we set y = (x, y)T, (7.70) is equivalent to the following nonlinear
first order system

0 1

— 1 ц(1 — x 2)
y . (7.71)y

7.9 Some examples 233

У1

У2 y 1

F ig. 7.23. Solutions to the problem in Example 7.10 for h = 0.0207 (left)
and h = 0.0194 (right). In the first case the condition h < 2/|A1| = 0.02 is
violated and the method is unstable. Consider the totally different scale in the
two graphs

x

. . . ----

y

10 15 20 + 25 30

F ig. 7.24. Behavior of the components of the solutions y to system (7.71) for
p = 1 (left) and p = 10 (right)

X 10

4

-4

0 2 4 2 3 4 5 6t t

35 40

Such system becomes increasingly stiff with the increase of the p pa­
rameter. In the solution we find in fact two components which denote
to ta lly different dynamics with the increase of p. The one having the
fastest dynamics imposes a limitation on the integration step which gets
more and more prohibitive with the increase of p ’s value.

If we solve (7.70) using ode23 and ode45, we realize that these are too
costly when p is large. W ith p = 100 and initial condition y = (1 , 1)T,
ode23 requires 7835 steps and ode45 23473 steps to integrate between
t = 0 and t = 100. Reading the M A T L A B help we discover that these
methods are not recommended for stiff problems: for these, other pro­
cedures are suggested, such as for instance the implicit methods ode23s
or ode15s. The difference in terms of number of steps is remarkable, as
shown in Table 7.1. Notice however that the number of steps for ode23s

234 7 Ordinary differential equations

у ode23 ode45 ode23s ode15s
0.1 471 509 614 586
1 775 1065 838 975
10 1220 2809 1005 1077
100 7835 23473 299 305
1000 112823 342265 183 220

T able 7.1. Behavior of the number of integration steps for various approxi­
mation methods with growing у parameter

is smaller than that for ode23 only for large enough values of у (thus for
very stiff problems).

7.10 W hat we haven’t told you

For a complete derivation of the whole family of the Runge-Kutta meth­
ods we refer to [But87], [Lam91] and [QSS06, Chapter 11].

For derivation and analysis of multistep methods we refer to [Arn73]
and [Lam91].

7.11 Exercises

E xercise 7.1 Apply the backward Euler and forward Euler methods for the
solution of the Cauchy problem

y' = sin(t) + y, t e (0,1], with y(0) = 0, (7.72)

and verify that both converge with order 1.

E xercise 7.2 Consider the Cauchy problem

y' = - t e - y , t e (0,1], with y(0) = 0. (7.73)

Apply the forward Euler method with h = 1/100 and estimate the number of
exact significant digits of the approximate solution at t = 1 (use the property
that the value of the exact solution is included between —1 and 0).

E xercise 7.3 The backward Euler method applied to problem (7.73) re­
quires at each step the solution of the nonlinear equation: un+1 = un —
ht„+1e-Un+1 = ф(и„+1). The solution un+1 can be obtained by the follow­
ing fixed-point iteration: for k = 0 , 1, . . . , compute = Ф(иП+1), with

= un. Find under which restriction on h these iterations converge.

E xercise 7.4 Repeat Exercise 7.1 for the Crank-Nicolson method.

7.11 Exercises 235

E xercise 7.5 Verify that the Crank-Nicolson method can be derived from the
following integral form of the Cauchy problem (7.5)

provided that the integral is approximated by the trapezoidal formula (4.19).

E xercise 7.6 Solve the model problem (7.28) with A = — 1+ i by the forward
Euler method and find the values of h for which we have absolute stability.

E xercise 7.7 Show that the Heun method defined in (7.52) is consistent.
Write a MATLAB program to implement it for the solution of the Cauchy
problem (7.72) and verify experimentally that the method has order of con­
vergence equal to 2 with respect to h.

E xercise 7.8 Prove that the Heun method (7.52) is absolutely stable if —2 <
hA < 0 where A is real and negative.

E xercise 7.9 Prove formula (7.33).

E xercise 7.10 Prove the inequality (7.38).

E xercise 7.11 Prove the inequality (7.39).

E xercise 7.12 Verify the consistency of the method (7.46). Write a MAT-
LAB program to implement it for the solution of the Cauchy problem (7.72)
and verify experimentally that the method has order of convergence equal to
3 with respect to h. The methods (7.52) and (7.46) stand at the base of the
MATLAB program ode23 for the solution of ordinary differential equations.

E xercise 7.13 Prove that the method (7.46) is absolutely stable if —2.5 <
hA < 0 where A is real and negative.

E xercise 7.14 The modified Euler method is defined as follows:

Find under which condition on h this method is absolutely stable.

E xercise 7.15 (T herm odynam ics) Solve equation (7.1) by the Crank-
Nicolson method and the Heun method when the body in question is a cube
with side equal to 1 m and mass equal to 1 Kg. Assume that To = 180K,
Te = 200K, y = 0.5 and C = 100J/(Kg/K). Compare the results obtained by
using h = 20 and h = 10, for t ranging from 0 to 200 seconds.

un+1 -- un + hf (tn , un) , un + 1 -- un + hf (tn + 1 , un + 1). (7.74)

E xercise 7.16 Use MATLAB to compute the region of absolute stability of
the Heun method.

236 7 Ordinary differential equations

E xercise 7.17 Solve the Cauchy problem (7.16) by the Heun method and
verify its order.

E xercise 7.18 The displacement x(t) of a vibrating system represented by a
body of a given weight and a spring, subjected to a resistive force proportional
to the velocity, is described by the second-order differential equation x" + 5x' +
6x = 0. Solve it by the Heun method assuming that x(0) = 1 and x'(0) = 0,
for t e [0, 5].

E xercise 7.19 The motion of a frictionless Foucault pendulum is described
by the system of two equations

x” — 2ш sin (^)y' + k2x = 0 , y'' + 2ш cos(^)x' + k2y = 0 ,

where Ф is the latitude of the place where the pendulum is located, ш =
7.29 • 10-5 sec-1 is the angular velocity of the Earth, k = g/l with g = 9.8
m/sec2 and l is the length of the pendulum. Apply the forward Euler method
to compute x = x(t) and y = y(t) for t ranging between 0 and 300 seconds
and Ф = п/4.

E xercise 7.20 (B aseb a ll tr a je c to ry) Using ode23, solve Problem 7.3 by
assuming that the initial velocity of the ball be v (0) = v0(cos(0), 0 , sin(#))T,
with vo = 38 m/s, в = 1 degree and an angular velocity equal to 180 • 1.047198
radiants per second. If x(0) = 0, after how many seconds (approximately) will
the ball touch the ground (i.e., г = 0)?

8

Numerical methods for
(initial-)boundary-value problems

Boundary-value problems are differential problems set in an interval
(a, b) of the real line or in an open multidimensional region Q С R d
(d = 2, 3) for which the value of the unknown solution (or its deriva­
tives) is prescribed at the end-points a and b of the interval, or on the
boundary dQ of the multidimensional region.

In the multidimensional case the differential equation will involve
partial derivatives of the exact solution with respect to the space co­
ordinates. Equations depending on time (denoted with t), like the heat
equation and the wave equation, are called initial-boundary-value prob­
lems. In that case initial conditions at t = 0 need to be prescribed as
well.

Some examples of boundary-value problems are reported below.

1. Poisson equation:

where f is a given function and A is the so-called Laplace operator:

The symbol d • /dxi denotes partial derivative with respect to the Xi
variable, that is, for every point x 0

u" (x) = f (x), x € (a, b), (8.1)

or (in several dimensions)

A u (x) = f (x), x = (x i , . . . , xd)T € Q, (8.2)

u (x 0 + hei) — u (x 0)
h

(8.3)

where ei is i-th unitary vector of R d.

238 8 Numerical methods for (initial-)boundary-value problems

2. Heat equation:

d u (x ,t) d2u (x ,t) . /„ ,n
M dx 2 = f (x , t) , x e (a , b) , t > 0, (8.4)

or (in several dimensions)

dU^ t) - tiA u (x ,t) = f (x ,t) , x e Q, t > 0, (8.5)
dt

where m > 0 is a given coefficient representing the thermal conduc­
tivity, and f is again a given function.

3. Wave equation:

d2u (x ,t) d2u (x ,t) ,
- C d x ^ = 0 , x e (a, b), t > 0

or (in several dimensions)

d2u (x ,t) „ . ^
— 7 ^ 2------- cA u (x ,t) = 0 , x e Q, t > 0,

where C is a given positive constant.

For more general partial differential equations, the reader is referred for
instance to [QV94], [EEHJ96] or [Lan03].

P ro b le m 8 .1 (H y d ro g e o lo g y) The study of filtration in groundwater
can lead, in some cases, to an equation like (8.2). Consider a portion Q
occupied by a porous medium (like ground or clay). According to the
Darcy law, the water velocity filtration q = (q1,q2,q3)T is equal to the
variation of the water level ф in the medium, precisely

q = - К У ф , (8.6)

where К is the constant hydraulic conductivity of the porous medium
and Уф denotes the spatial gradient of ф. Assume that the fluid density
is constant; then the mass conservation principle yields the equation
divq = 0, where divq is the divergence of the vector q and is defined as

,. dqi
d ivq = 2 . d - .< dxi = i i

Thanks to (8.6) we therefore find that ф satisfies the Poisson problem
Аф = 0 (see Exercise 8.9). ■

8 Numerical methods for (initial-)boundary-value problems 239

P ro b le m 8 .2 (T h e rm o d y n a m ics) Let Q С R d be a volume occupied
by a fluid. Denoting by J (x , t) and T (x ,t) the heat flux and the flow
temperature, respectively, the Fourier law states that heat flux is pro­
portional to the variation of the temperature T , that is

J (x , t) = —kV T (x ,t),

where k is a positive constant expressing the thermal conductivity coef­
ficient. Imposing the conservation of energy, that is, the rate of change of
energy of a volume equals the rate at which heat flows into it, we obtain
the heat equation

dT
pc— = kAT, (8.7)

where p is the mass density of the fluid and c is the specific heat capacity
(per unit mass). If, in addition, heat is produced at the rate f (x ,t) by
some other means (e.g., electrical heating), (8.7) becomes

dT
pc— = k A T + f . (8.8)

For the solution of this problem see Example 8.4. ■

R dx L dx
x

Л/W-----№ -
x + dx

—•

C dx 1/(G dx)

F ig . 8.1. An element of cable of length dx

P ro b le m 8 .3 (C o m m u n ic a t io n s) We consider a telegraph wire with
resistance R and self-inductance L per unit length. Assuming that the
current can drain away to ground through a capacitance C and a conduc­
tance G per unith length (see Figure 8.1), the equation for the voltage
v is

d2v
d t 2

, d2v
dx2

dv в
= —а д — e v - (8.9)

where c2 = 1/(L C), a = R/L + G/C and (3 = RG/(LC). Equation (8.9)
is an example of a second order hyperbolic equation. The solution of this
problem is given in Example 8.7. ■

c

240 8 Numerical methods for (initial-)boundary-value problems

8.1 Approximation of boundary-value problems

The differential equations presented so far feature an infinite number of
solutions. W ith the aim of obtaining a unique solution we must impose
suitable conditions on the boundary dQ of Q and, for the time-dependent
equations, suitable initial conditions at time t = 0.

In this section we consider the Poisson equations (8.1) or (8.2). In
the one-dimensional case (8.1), to fix the solution one possibility is to
prescribe the value of u at x = a and x = b, obtaining

(8.10)

where a and /3 are two given real numbers. This is a Dirichlet boundary-
value problem, and is precisely the problem that we will face in the next
section.
Performing double integration it is easily seen that if f G C 0([a, b]), the
solution u exists and is unique; moreover it belongs to C 2([a, b]).

Although (8.10) is an ordinary differential problem, it cannot be cast
in the form of a Cauchy problem for ordinary differential equations since
the value of u is prescribed at two different points.

In the two-dimensional case, the Dirichlet boundary-value problem
takes the following form: being given two functions f = f (x) and g =
g(x), find a function u = u(x) such that

- A u (x) = f (x) for x g Q,

2
(g(u for x G dQ

(8.11)

Alternatively to the boundary condition on (8.11), we can prescribe a
value for the partial derivative of u with respect to the normal direction
to the boundary dQ, in which case we will get a Neumann boundary-
value problem.

It can be proven that if f and g are two continuous functions and
the region Q is regular enough, then the Dirichlet boundary-value prob­
lem (8.11) has a unique solution (while the solution of the Neumann
boundary-value problem is unique up to an additive constant).

The numerical methods which are used for its solution are based on
the same principles used for the approximation of the one-dimensional
boundary-value problem. This is the reason why in Sections 8.1.1 and
8.1.2 we will make a digression on the numerical solution of problem
(8.10).

W ith this aim we introduce on [a, b] a partition into intervals Ij =
[xj ,x j+ i] for j = 0 , . . . , N with x 0 = a and x N + 1 = b. We assume for
simplicity that all intervals have the same length h.

8.1 Approximation of boundary-value problems 241

8 .1 .1 A p p ro x im a t io n b y f in ite d iffe ren ces

The differential equation must be satisfied in particu lar a t any point x j
(which we call nodes from now on) internal to (a, b), that is

- u "(xj) = f (xj), j = 1, ,N.

We can approxim ate th is set of N equations by replacing the second
derivative w ith a su itab le finite difference as we have done in C hapter 4
for the first derivatives. In particu lar, we observe th at if u : [a, b] ^ R
is a sufficiently smooth function in a neighborhood of a generic point
x e (a, b), then the quantity

52i (x) =
i(x + h) - 2u(x) + u(x - h)

h2 (8.12)

provides an approxim ation to u "(x) of order 2 w ith respect to h (see
Exercise 8.3). This suggests the use of the following approxim ation to
problem (8 .10): find { u j} juj }j=i such that

u j+ i — 2uj + u j_ i
h2 = f (x j), j = 1 , . . . , N (8.13)

w ith u0 = a and uN+1 = [3. Equations (8.13) provide a linear system

Au^ = h2f , (8.14)

where u^ = (u 1 , . . . , u N)T is the vector of unknowns, f = (f (x 1) +
a/h2, f (x 2) , . . . , f (x N_i) , f (x N) + в/Ь?)T, and A is the trid iagonal ma­
trix

A = t r id ia g (- 1, 2, - 1) =

2 - 1 0 . . . 0

- 1 2 -. :

0 - 1 0

. - 1 2 - 1
0 . . . 0 - 1 2

(8.15)

This system adm its a unique solution since A is sym m etric and positive
definite (see Exercise 8.1). Moreover, it can be solved by the Thomas
algorithm introduced in Section 5.4. We note however that, for small
values of h (and thus for large values of N), A is ill-conditioned. Indeed,
К (A) = Xmax(A)/Xmin(A) = C h _ 2, for a suitab le constant C indepen­
dent of h (see Exercise 8.2). Consequently, the numerical solution of sys­
tem (8.14), by either direct or iterative methods, requires special care. In
particu lar, when using iterative methods a suitab le preconditioner ought
to be employed.

242 8 Numerical methods for (initial-)boundary-value problems

It is possible to prove (see, e.g., [QSS06, C hapter 12]) th a t if f G
C 2([a, b]) then

h2
j=0~~~N + l'~'4~'J ' — 96 x£[a,b]

m ax \u(x>) — u> | < — m ax \f" (x) (8.16)

th at is, the finite difference method (8.13) converges w ith order two with
respect to h .

In Program 8.1 we solve the boundary-value problem

’ —u"(x) + Su'(x) + y u (x) = f (x) for x G (a, b),

u(a) = a u(b) = в,
(8.17)

which is a generalization of problem (8.10). For th is problem the finite
difference method, which generalizes (8.13), reads:

j - 2u> + u>- 1 + s u>+1 - u>- 1 + yu> = f (x>), j = 1 , . . . , N ,
h2 2h

uo = a, un+i = в.

The input param eters of Program 8.1 are the end-points a and b of
the interval, the number N of internal nodes, the constant coefficients
S and y and the function bvpfun specifying the function f . F inally,
ua and ub represent the values th at the solution should a tta in at x=a
and x=b, respectively. Output param eters are the vector of nodes x and
the computed solution uh. Notice th a t the solutions can be affected by
spurious oscillations if h > 2/\S\ (see Exercise 8 .6).

P ro gram 8.1. bvp: approximation of a two-point boundary-value problem by
the finite difference method

f u n c t i o n [x , u h] = b v p (a , b , N , d e l t a , g a m m a , b v p f u n , u a , u b , . . .
v a r a r g i n)

BVP So l ve t w o - p o i n t boundary v a l u e p r ob l e ms .
[X,UH]=BVP(A,B,N,DELTA, GAMMA, BVPFUN,UA,UB) s o l v e s
w i t h the c e n t e r e d f i n i t e d i f f e r e n c e method the
b o u n d a r y - v a l u e probl em

-D(DU/DX)/DX+DELTA*DU/DX+GAMMA*U=BVPFUN
on the i n t e r v a l (A,B) w i t h boundary c o n d i t i o n s
U(A)=UA and U(B)=UB. BVPFUN can be an i n l i n e
f u n c t i o n .

h = (b - a) / (N+ 1) ;
z = l i n s p a c e (a , b , N + 2) ;
e = o n e s (N , 1) ;
h2 = 0 . 5 * h * d e l t a ;
A = s p d i a g s ([- e - h 2 2*e+gamma*h~2 - e + h 2] , - 1 : 1 , N , N) ;
x = z (2 : e n d - 1) ;
f = h~2 * f e v a l (b v p f u n , x , v a r a r g i n { : }) ;
f = f ’ ; f (1) = f (1) + u a ; f (e n d) = f (e n d) + ub;
uh = A\f;
u h = [u a ; u h ; ub] ;
x = z ;

8.1 Approximation of boundary-value problems 243

8 .1 .2 A p p ro x im a t io n b y f in ite e lem en ts

The finite element method represents an alternative to the finite differ­
ence method and is derived from a suitable reformulation of the differ­
ential problem.

Let us consider again (8.10) and multiply both sides of the differen­
tial equation by a generic function v e C ^[a, b]). Integrating the corre­
sponding equality on the interval (a , b) and using integration by parts
we obtain

b b

j u (x)v'(x) dx — [u (x)v(x)]a = j f (x)v(x) dx.
a a

B y making the further assumption that v vanishes at the end-points
x = a and x = b, problem (8.10) becomes: find u e C x([a, b]). such that
u(a) = a, u(b) = в and

b b

j v!(x)v'(x) dx = j f (x)v(x) dx (8.18)
a a

for each v e C x([a, b]) such that v(a) = v(b) = 0. This is called weak
formulation of problem (8.10). (Indeed, both u and the test function v
can be less regular than C 1([a, b]), see, e.g. [QSS06], [QV94].)

Its finite element approximation is defined as follows:

find uh e Vh such that uh(a) = a , u h(b) = в and

N Xj+1 b
J u'h(x)v'h(x) dx = J f (x)vh(x) dx, Vvh e Vh

(8.19)

a

where

Vh = { vh e C ° ([a,b]) : vh\ij e p i , j = ° , . . . , N } .

i.e. Vh is the space of continuous functions on (a, b) whose restrictions
on every sub-interval Ij are linear polynomials. Moreover, Vh° is the sub­
space of Vh of those functions vanishing at the end-points a and b. Vh is
called space of finite elements of degree 1.

The functions in V° are piecewise linear polynomials (see Figure 8.2,
left). In particular, every function vh of Vh° admits the representation

N
vh(x) = ^ 2 vh (xj)(fj (x).

j = 1

244 8 Numerical methods for (initial-)boundary-value problems

F ig. 8.2. To the left, a generic function vh € Fh0. To the right, the basis
function of Vh0 associated with the fc-th node

where for j = 1 , . . . , N ,

p j (x

if x e l .
x j - i
xj+ i

j - i ,

■ x j+i
otherwise.

Thus, p j is null at every node x j except at x j where p j (x j) = 1 (see Fig­
ure 8.2, right). The functions p j , j = 1 , . . . , N are called shape functions
and provide a basis for the vector space V 0 .

Consequently, we can lim it ourselves to fulfill (8.19) only for the
shape functions p j , j = 1 , . . . , N . B y exploiting the fact th a t p j vanishes
outside the intervals I j - \ and I j , from (8.19) we obtain

j u'h(x)p'j(x) dx = j f (x)p j(x) dx, j = 1 , . . . , N . (8.20)

Ij 1 Ij Ij 1 Ij

On the other hand, we can w rite uh(x) = J 2 j =1 U jp j(x) + a p 0(x) +
fipN +i (x) , where Uj = Uh(xj), po(x) = (a + h — x)/h for a < x < a + h,
and p N +i (x) = (x — b + h)/h for b — h < x < b, while both p 0(x) and
p N +i (x) are zero otherwise. B y substitu ting th is expression in (8.20),
we find th at for all j = 1 , . . . , N

U j-i J p'j- 1 (x)p j(x) dx + Uj J p j(x) p j (x) dx

Ij - 1 Ij - 1 и Ij

+ U j+ iJ p j+ i (x)p j(x) dx = J f (x) p j (x) dx + B i,j + B N,j.

Ij 1 Ij

where

j

j
0

I

8.1 Approximation of boundary-value problems 245

B i,j =
—a j Po(x)Pi (x) dx = —

x i — a if j = 1,
Io

0 otherwise,

while

B N,j =
—e f'pN + i(x)p j (x) dx = — if j = NJ 0 — x N

In
0 otherwise.

In the special case where all intervals have the same length h, then
p j- i = —1/h in I j - i , p j = 1/h in I j - i and p j = —1/h in I j , p j+i = 1/h
in I j . Consequently, we obtain for j 1, ,N

—Uj- i + 2uj — Uj+i = h j f (x)p j(x) dx + B i j + B n j .
Ij —iu Ij

This linear system has the same m atrix as the finite difference system
(8.14), but a different right-hand side (and a different solution too, in
spite of coincidence of notation). F in ite difference and finite element
solutions share however the same accuracy w ith respect to h when the
nodal maxim um error is computed.

Obviously the finite element approach can be generalized to prob­
lems like (8.17) (also in the case when 6 and 7 depend on x). A further
generalization consists of using piecewise polynomials of degree greater
than 1, allowing the achievement of higher convergence orders. In these
cases, the finite element m atrix does not coincide anymore w ith th at of
finite differences, and the convergence order is greater than when using
piecewise linear polynomials.

See Exercises 8.1-8.8. Ж

а

8 .1 .3 A p p ro x im a t io n b y f in ite d iffe ren ce s o f tw o -d im e n s io n a l
p ro b lem s

Let us consider a p artia l differential equation, for instance equation (8.2),
in a two-dimensional region f2.

The idea behind finite differences relies on approxim ating the p artia l
derivatives th a t are present in the PDE again by increm ental ratios com­
puted on a suitab le grid (called the com putational grid) made of a finite
number of nodes. Then the solution u of the PDE will be approxim ated
only a t these nodes.

The first step therefore consists of introducing a com putational grid.
Assume for sim plicity th a t f? is the rectangle (a, b) x (c,d). Let us in­
troduce a partition of [a, b] in subintervals (xk, x k+i) for к = 0 , . . . , Nx,

with x 0 = a and x Nx+1 = b. Let us denote by A x = { x 0, . . . , x Nx+1}
the set of end-points of such intervals and by hx = m ax (xk+i — x k)

their maxim um length.
In a sim ilar manner we introduce a discretization of the y-axis A y =

{y0, . . . , y Ny+1} w ith y0 = c and yNy+1 = d. The cartesian product
A h = A x x A y provides the com putational grid on П (see F igure 8.3),
and h = m ax{hx,h y} is a characteristic measure of the grid-size. We
are looking for values v ,ij which approxim ate u (x i ,y j). We will assume
for the sake of sim plicity th a t the nodes be uniform ly spaced, th at is,
xi = xo+ ihx for i = 0 , . . . , Nx + 1 and yj = yo + jh y for j = 0 , . . . ,Ny + 1.

246 8 Numerical methods for (initial-)boundary-value problems

F ig. 8.3. The computational grid A h with only 15 internal nodes on a rec­
tangular domain

The second order p artia l derivatives of a function can be approxi­
m ated by a su itab le increm ental ratio , as we did for ordinary deriva­
tives. In the case of a function of two variables, we define the following
increm ental ratios:

y2u _ ui-1 , j 2ui,j + ui+1,j
°xUi,j = h2 :

s2.y Ui,j = h 2hy
ui,j- 1 2ui,j + ui,j+1

(8.21)

They are second order accurate w ith respect to hx and hy , respectively,
for the approxim ation of d2u/dx2 and d2u/dy2 a t the node (xi , y j). If
we replace the second order partia l derivatives of u w ith the formula

(8.21), by requiring th at the PDE is satisfied at all internal nodes of A h,
we obtain the following set of equations:

- (S XUi,j + S y u ij) = f i , j , i = 1 , . . . , N x , j = 1 , . . . , N y . (8 .22)

We have set f itj = f (xi , y j). We must add the equations th at enforce
the Dirichlet d a ta at the boundary, which are

U-i,j = gi,j y i , j such th at (xi , y j) G d A h, (8.23)

where d A h indicates the set of nodes belonging to the boundary dQ of
Q. These nodes are indicated by sm all squares in Figure 8.3. If we make
the further assumption th at the com putational grid is uniform in both
cartesian directions, that is, hx = hy = h, instead of (8 .22) we obtain

8.1 Approximation of boundary-value problems 247

(8.24)

The system given by equations (8.24) (or (8.22)) and (8.23) allows the
com putation of the nodal values Ui,j a t all nodes of A h. For every fixed
pair of indices i and j , equation (8.24) involves five unknown nodal values
as we can see in Figure 8.4. For th at reason th is finite difference scheme
is called the five-point scheme for the Laplace operator. We note that
the unknowns associated w ith the boundary nodes can be elim inated
using (8.23) (or (8.22)), and therefore (8.24) involves only N = NxNy
unknowns.

F ig . 8.4. The stencil of the five point scheme for the Laplace operator

The resulting system can be w ritten in a more interesting form if
we adopt the lexicographic order according to which the nodes (and,
correspondingly, the unknown components) are numbered by proceeding
from left to right, from the top to the bottom. We obtain a system of the

form (8.14), w ith a m atrix A G R NxN which takes the following block
trid iagonal form:

A = trid iag(D , T, D). (8.25)

There are Ny rows and Ny columns, and every en try (denoted by a
cap ita l letter) consists of a Nx x Nx m atrix . In particu lar, D G R NxXNx is
a diagonal m atrix whose diagonal entries are — 1/hy , while T G R NxXNx
is a sym m etric trid iagonal m atrix

1 2 2 1
T = t r i d i a g (- , T2 + h 2 , - T 2) .hx hx hy hx

A is sym m etric since all diagonal blocks are sym m etric. It is also positive
definite, th a t is v TAv > 0 Vv G R N, v = 0. Actually, by partition ing v
in Ny vectors v 4 of length Nx we obtain

Ny 2 Ny-1

v T A v = J 2 v T Tvfc - vT vk+i. (8 .26)
fc=1 y k=1

We can w rite T = 2/h?yI + l/h^K where K is the (sym m etric and
positive definite) m atrix given in (8.15). Consequently, (8.26) becomes

(vTKv i + v T K v 2 + . . . + v Ny K v Ny)/hx

which is a s tr ic tly positive real number since K is positive definite and
at least one vector v^ is non-null.

0

10

20

30

40

50

60

70

80
0 20 40 60 80

248 8 Numerical methods for (initial-)boundary-value problems

F ig. 8.5. Pattern of the matrix associated with the five-point scheme using
the lexicographic ordering of the unknowns

8.1 Approximation of boundary-value problems 249

Having proven th at A is non-singular we can conclude th at the finite
difference system adm its a unique solution u h.

The m atrix A is sparse; as such, it w ill be stored in the format sp a rse
of M A T L A B (see Section 5.4). In Figure 8.5 (obtained by using the
command spy(A)) we report the structure of the m atrix corresponding
to a uniform grid of 11 x 11 nodes, after having elim inated the rows and
columns associated to the nodes of d A h. It can be noted th at the only
nonzero elements lie on five diagonals.

Since A is sym m etric and positive definite, the associated system can
be solved efficiently by either direct or iterative methods, as illustrated
in Chapter 5. F inally, it is worth pointing out th at A shares w ith its one­
dimensional analog the property of being ill-conditioned: indeed, its con­
dition number grows like h-2 as h tends to zero, where h = m ax(hx, hy).

In the Program 8.2 we construct and solve the system (8.22)-(8.23)
(using the command \, see Section 5.6). The input param eters a, b, c
and d denote the corners of the rectangular domain Q = (a, c) x (b, d),
while nx and ny denote the values of Nx and Ny (the case Nx = Ny is ad­
m itted). F inally, the two strings fun and bound represent the right-hand
side f = f (x,y) (otherwise called the source term) and the boundary
data g = g(x,y). The output is a two-dimensional a rray u whose i, j- th
en try is the nodal value uitj . The numerical solution can be visualized
by the command me s h (x , y , u) . The (optional) string uex represents the
exact solution of the original problem for those cases (of theoretical in­
terest) where th is solution is known. In such cases the output param eter
e r ro r contains the nodal relative error between the exact and numerical
solution, which is computed as follows:

e r ro r = max|u(xi ,y j-) — ui}j\/imax\u(xi ,y j)|.
i,j ’ i,j

P ro gram 8.2. poissonfd: approximation of the Poisson problem with Dirichlet
data by the five-point finite difference method

f u n c t i o n [u , x , y , e r r o r] = p o i s s o n f d (a , c , b , d , n x , n y , f u n
b o u n d , u e x , v a r a r g i n)

POISSONFD t w o - d i m e n s i o n a l P o i s s o n s o l v e r
[U,X,Y]=POISSONFD(A,C,B,D,NX,NY,FUN,BOUND) s o l v e s by
t he f i v e - p o i n t f i n i t e d i f f e r e n c e scheme the probl em
-LAPL(U) = FUN i n t he r e c t a n g l e (A, C)X(B, D) w i t h
D i r i c h l e t boundary c o n d i t i o n s U(X,Y)=BOUND(X,Y) for
any (X,Y) on the boundary of the r e c t a n g l e .

[U,X,Y,ERROR]=POISSONFD(A,C,B,D,NX,NY,FUN, BOUND, UEX)
computes a l s o t he maximum noda l e r r o r ERROR wi t h
r e s p e c t to t he e x a c t s o l u t i o n UEX. FUN,BOUND and UEX
can be o n l i n e f u n c t i o n s .

i f n a r g i n == 8
uex = i n l i n e (’ 0 ’ , ’ x ’ , ’ y ’) ;

end
nx=nx+1 ; ny=ny+1 ; h x = (b - a) / n x ; h y = (d - c) / n y ;

250 8 Numerical methods for (initial-)boundary-value problems

n x 1=nx+1 ; hx2 =hx~2 ; h y 2 =hy~2 ;
k i i = 2 /hx2 +2 /hy2 ; k i x = - 1/hx2 ; k i y = - 1/hy2 ;
d i m=(nx+1) * (ny+1) ; K=s p e y e (d i m, d i m) ;
r h s = z e r o s (d i m , 1) ;
У = c;
f o r m = 2 : ny

x = a ; y = y + h y ;
f o r n = 2 : nx

i = n+(m- 1) * (n x + 1) ;
x = x + hx ;
r h s (i) = f e v a l (f u n , x , y , v a r a r g i n { : }) ;
K (i , i) = k i i ; K (i , i - 1) = k i x ;
K (i , i + 1) = k i x ; K (i , i + n x 1) = k i y ;
K (i , i - n x 1) = k i y ;

end
end
r h s 1 = z e r o s (d i m , 1) ;
x = [a : h x : b] ;
r h s 1 (1 : n x 1) = f e v a l (b o u n d , x , c , v a r a r g i n { : }) ;
r h s 1 (d i m- n x : d i m) = f e v a l (b o u n d , x , d , v a r a r g i n { : }) ;
y = [c : h y : d] ;
r h s 1 (1 : n x 1 : d i m- n x) = f e v a l (b o u n d , a , y , v a r a r g i n { : }) ;
r h s 1 (n x 1 : n x 1 : d im) = f e v a l (b o u n d , b , y , v a r a r g i n { : }) ;
r h s = rhs - K*rhs1 ;
nbound = [[1 :n x 1] , [d i m - n x : d i m] , . . .

[1 : n x 1 : d i m - n x] , [n x 1 : n x 1 : d i m]] ;
n i n t e r n a l = s e t d i f f ([1 : d i m] , n b o u n d) ;
K = K (n i n t e r n a l , n i n t e r n a l) ;
r h s = r h s (n i n t e r n a l) ;
utemp = K\ r h s ;
uh = r h s 1 ;
uh (n i n t e r n a l) = utemp;
k = 1 ; y = c;
f o r j = 1 : n y +1

x = a ;
f o r i = 1 : n x 1

u (i , j) = u h (k) ;
k = k + 1 ;
u e (i , j) = f e v a l (u e x , x , y , v a r a r g i n { : }) ;
x = x + hx ;

end
y = y + hy ;

end
x = [a : h x : b] ;
y = [c : h y : d] ;
i f n a r g o u t == 4

i f n a r g i n == 8
w a r n i n g (’ Exac t s o l u t i o n not a v a i l a b l e ’) ;
e r r o r = [] ;

e l s e
e r r o r = m a x (m a x (a b s (u - u e))) / m a x (m a x (a b s (u e))) ;

end
end
r e t u r n

E xam ple 8.1 The transverse displacement u of an elastic membrane from
a reference plane Q = (0 , 1)2 under a load whose intensity is f (x,y) =
8n2 sin(2nx) cos(2ny) satisfies a Poisson problem like (8.2) in the domain Q.

8.1 Approximation of boundary-value problems 251

The Dirichlet value of the displacement is prescribed on dQ as follows: g = 0
on the sides x = 0 and x = 1, and g(x, 0) = g(x, 1) = sin(2nx), 0 < x < 1.
This problem admits the exact solution u(x, y) = sin(2nx) cos(2ny). In Figure
8.6 we show the numerical solution obtained by the five-point finite difference
scheme on a uniform grid. Two different values of h have been used: h = 1/10
(left) and h = 1/20 (right). When h decreases the numerical solution im­
proves, and actually the nodal relative error is 0.0292 for h = 1/10 and 0.0081
for h = 1/20. ■

F ig . 8 .6 . Transverse displacement of an elastic membrane computed on two
uniform grids. On the horizontal plane we report the isolines of the numer­
ical solution. The triangular partition of Q only serves the purpose of the
visualization of the results

Also the finite element method can be easily extended to the two­
dimensional case. To this end the problem (8.2) must be reformulated in
an integral form and the partition of the interval (a , b) in one dimension
must be replaced by a decomposition of П by polygons (typically, trian­
gles) called elements. The shape function will still be a continuous
function, whose restriction on each element is a polynomial of degree 1
on each element, which is equal to 1 at the fc-th vertex (or node) of the
triangulation and 0 at all other vertices. For its implementation one can
use the M A T L A B toolbox pde. pde

8 .1 .4 C o n s is te n c y a n d co n v ergen ce

In the previous section we have shown that the solution of the finite
difference problem exists and is unique. Now we investigate the approx­
imation error. We will assume for simplicity that hx = hy = h. If

max\u(xi,yj) — u^j | ^ 0 as h ^ 0
i,j ’ (8.27)

the method is called convergent.

As we have a lready pointed out, consistency is a necessary condition
for convergence. A method is consistent if the residual that is obtained
when the exact solution is plugged into the numerical scheme tends to
zero when h tends to zero. If we consider the five point finite difference
scheme, at every internal node (xi , y j) of A h we define

Th(xi , yj) f (xi , yj)

— h 2 [u (x i- 1 , y j) + u (x i , y j - 1) — 4 u (x i,y j) + u (x i,y j+ 1) + u(xi+ 1 , y j)] .

This is the local truncation error a t the node (xi , y j). B y (8.2) we obtain

(d 2u u (x i - 1 ,y j) — 2 u (x i,y j)+ u (x i+ 1,y j)
Th(xi , y j) = j d x (xi , y j) ---------------------------- h2------------------------

{d^u u (x i ,y j- 1) — 2u (x i,y j) + u(xi,yj+ 1)
+ \ >---------------------------- h ------------------------

Thanks to the analysis th a t was carried out in Section 8.1.3 we can
conclude th at both terms vanish as h tends to 0. Thus

lim Th(xi, y j) = 0 , y (x i ,y j) e Ah \ dAh,
h^0

th a t is, the five-point method is consistent. It is also convergent, as stated
in the following Proposition (for its proof, see, e.g., [IK66]):

252 8 Numerical methods for (initial-)boundary-value problems

P ro p o s it io n 8 .1 Assume that the exact solution u e C 4(Q), t.e.
all its partial derivatives up to the fourth order are continuous in
the closed domain Q. Then there exists a constant C > 0 such that

(8.28)

where M is the maximum absolute value attained by the fourth order
derivatives of u in Q.

max\u(xi , y j) — щз \ < C M h 2
i,j '

E xam ple 8.2 Let us verify that the five-point scheme applied to solve the
Poisson problem of Example 8.1 converges with order two with respect to h.
We start from h =1/4 and, then we halve subsequently the value of h, until
h = 1/64, through the following instructions:
a=0 ;b = 1 ;c= 0 ;d = 1 ;
f = i n l i n e (’ 8* p i ~ 2* s i n (2 * p i * x) . * c o s (2 * p i * y) ’ , ’ x ’ , ’ y ’) ;
g = i n l i n e (’ s i n (2 * p i * x) . * c o s (2 * p i * y) ’ , ’ x ’ , ’ y ’) ;
uex=g; nx=4; ny=4;
f o r n=1:5

[u , x , y , e r r o r (n)] = p o i s s o n f d (a , c , b , d , n x , n y , f , g , u e x) ;
nx = 2 *nx ; ny = 2* ny ;

end

8.2 Finite difference approximation of the heat equation 253

The vector containing the error is
format s h o r t e ; e r r o r

1.3565e-01 4.3393e-02 1.2308e-02 3.2775e-03 8.4557e-04

As we can verify using the following commands
p = l o g (a b s (e r r o r (1 : e n d - 1) . / e r r o r (2 : e n d))) / l o g (2)

1.6443e+00 1.8179e+00 1.9089e+00 1.9546e+00

this error decreases as h2 when h ^ 0 .

Let us summarize

1 . Boundary-value problems are differential equations set in a spatia l
domain Q С Md (which is an interval if d = 1) th at require informa­
tion on the solution on the domain boundary;

2 . finite difference approximations are based on the discretization of
the given differential equation at selected points (called nodes) where
derivatives are replaced by finite difference formulae;

3. the finite difference method provides a nodal vector whose compo­
nents converge to the corresponding nodal values of the exact solu­
tion quad ratica lly w ith respect to the grid-size;

4. the finite element method is based on a su itab le integral reformu­
lation of the original differential equation, then on the assumption
that the approxim ate solution is a piecewise polynom ial;

5. m atrices arising from both finite difference and finite element ap­
proximations are sparse and ill-conditioned.

8.2 Finite difference approximation of the heat
equation

We consider the one-dimensional heat equation (8.4) w ith homogeneous
Dirichlet boundary conditions u (a ,t) = u(b,t) = 0 for any t > 0 and
in itia l condition u(x, 0) = u 0(x) for x £ [a, b].

To solve th is equation num erically we have to discretize both the x
and t variables. We can start by dealing w ith the x -variable, following the
same approach as in Section 8.1.1. We denote by uj (t) an approximation
of u (x j,t) , j = 0 , . . . , N , and approxim ate the Dirichlet problem (8.4)
by the scheme: for all t > 0

~ utt(t) — h2 (uj - l(t) — 2uj (t) + u3+l(t)) = (t^ j = 1 , . . . , N — 1,

uo(t) = un (t) = 0 ,

254 8 Numerical methods for (initial-)boundary-value problems

where f j (t) = f (xj ,t) and, for t = 0 ,

uj (0) = uo(x j), j = 0 , . . . , N .

This is ac tu a lly a semi-discretization of the heat equation, yield ing a
system of ord inary differential equations of the following form

Ж (t) = — h ? A u(t) + f V t> 0 (8.29)
u (0) = uo,

where u (t) = (u1(t) , . . . , u N - 1 (t))T is the vector of unknowns, f(t) =
(/1 (t), . . . , fN - 1 (t))T, uo = (uo(x1) , . . . , uo (xN- 1))T and A is the tr id i­
agonal m atrix introduced in (8.15). Note th at for the derivation of (8.29)
we have assumed th at u o(x o) = uo(xN) = 0 , which is coherent w ith the
homogeneous Dirichlet boundary conditions.

A popular scheme for the integration of (8.29) w ith respect to tim e is
the so-called 9 —method. Let A t > 0 be a constant tim e-step, and denote
by v k the value of a variable v referred at the tim e level t k = kA t. Then
the 9-method reads

(8.30)
or, equivalently,

(I + Q AtAj u k+1 = (I — ? A t(1 — 9) a) u k + g k+1, (8.31)

where g k+1 = A t(9 fk+1 + (1 — 9) f k) and I is the identity m atrix of order
N — 1.

For su itab le values of the param eter 9, from (8.31) we can recover
some fam iliar methods th at have been introduced in Chapter 7. For
example, if 9 = 0 the method (8.31) coincides w ith the forward Euler
scheme and we can obtain u k+1 exp licitly; otherwise, a linear system
(w ith constant m atrix I + ?9A tA / h 2) needs to be solved at each time-
step.

Regarding stab ility, when f = 0 the exact solution u (x ,t) tends to
zero for every x as t ^ж >. Then we would expect the discrete solution to
have the same behaviour, in which case we would call our scheme (8.31)
asymptotically stable, this being coherent w ith what we did in Section
7.5 for ord inary differential equations.

If 9 = 0, from (8.31) it follows that

8.2 Finite difference approximation of the heat equation 255

u k = (I — (j,AtA/h2)k u 0, к = 1 , 2 , . . .

whence u k ^ 0 as к iff

p(I — n A tA / h 2) < 1. (8.32)

On the other hand, the eigenvalues Xj of A are given by (see Exercise
8.2) Xj = 2 — 2cos(jn/N), j = 1 , . . . , N — 1. Then (8.32) is satisfied iff

A t < — h2.
2yU,

As expected, the forward Euler method is conditionally stable, and the
time-step A t should decay as the square of the grid spacing h .

In the case of the backward Euler method (9 = 1), we would have
from (8.31)

u k = [(I + ^ At A /h2)- 1] k u 0, к = 1 , 2 , . . .

Since all the eigenvalues of the m atrix (I + л A tA / h2)- 1 are real, positive
and strictly less than 1 for every value of A t , this scheme is uncondition­
ally stable. More generally, the 9-scheme is unconditionally stable for all
the values 1/2 < 9 < 1, and conditionally stable if 0 < в < 1/2 (see, for
instance, [QSS06, Chapter 13]).

As far as the accuracy of the 9-method is concerned, its local trun­
cation error is of the order of A t + h2 if в = 2 while it is of the order of
A t 2 + h2 if в = 1 . The latter is the C'rank-Nicolson method (see Section
7.3) and is therefore unconditionally stable and second-order accurate
with respect to both A t and h.

The same conclusions hold for the heat equation in a two-dimensional
domain. In this case in the scheme (8.30) one must substitute to the
m atrix A/h2 the finite difference m atrix defined in (8.25).

Program 8.3 solves numerically the heat equation on the time interval
(0, T) and on the square domain Q = (a, b) x (c, d) using the 9-method.
The input parameters are the vector xspan= [a,b], yspan= [c,d] and
tsp an = [0 ,T], the number of discretization intervals in space (n s te p (1))
and in time (n ste p (2)) , the string fun which contains the function
f (t , x 1(t) ,x2(t)), g which contains the Dirichlet function and u0 that
defines the initial function u0(x1, x 2). Finally, the real number th e ta is
the coefficient 9.
P ro gram 8.3. heattheta: 9-method for the heat equation in a square domain

f u n c t i o n [x , u] = h e a t t h e t a (x s p a n , t s p a n , n s t e p , t h e t a , mu, . . .
u0 , g , f , v a r a r g i n)

%HEATTHETA s o l v e t he h e a t e q u a t i o n w i t h the
% t h e t a - m e t h o d .
% [X,U]=HEATTHETA(XSPAN, TSPAN, NSTEP, THETA,MU,U0,G,F)
% s o l v e t he h e a t e q u a t i o n D U/DT - MU D"2U/DX"2 = F in

256 8 Numerical methods for (initial-)boundary-value problems

% (XSPAN (1) , XSPAN (2)) X (TSPAN (1) , TSPAN(2)) u s i n g the
% t h e t a - m e t h o d w i t h i n i t i a l c o n d i t i o n U(X,0)=U0(X) and
% D i r i c h l e t boundary c o n d i t i o n s U(X,T)=G(X,T) fo r
% X = XSPAN (1) and X = XSPAN (2) . MU i s a p o s i t i v e c o n s t a n t ,
% F, G and U0 a r e i n l i n e f u n c t i o n s . NSTEP(1) i s the
% number of s pace i n t e g r a t i o n i n t e r v a l s , NSTEP(2)+1 i s
% t he number of t ime - i n t e g r a t i o n i n t e r v a l s .
h = (x s p a n (2) - x s p a n (1)) / n s t e p (1) ;
dt = (t s p a n (2) - t s p a n (1)) / n s t e p (2) ;
N = n s t e p (1) + 1;
e = o n e s (N , 1) ;
D = s p d i a g s ([- e 2*e - e] , [- 1 , 0 , 1] , N , N) ;
I = speye (N) ;
A = I+mu*dt* t h e t a * D / h “2;
An = I - m u * d t * (1 - t h e t a) * D / h “2;
A(1 , :) = 0 ; A(1 , 1) = 1 ;
A(N , :) = 0; A(N,N) = 1;
x = l i n s p a c e (x s p a n (1) , x s p a n (2) , N) ;
x = x ’ ;
fn = f e v a l (f , x , t s p a n (1) , v a r a r g i n { : }) ;
un = f e v a l (u 0 , x , v a r a r g i n { : }) ;
[L , U] = l u (A) ;
f o r t = t s p a n (1) +d t : d t : t s p a n (2)

f n 1 = f e v a l (f , x , t , v a r a r g i n { : }) ;
r hs = An*un+dt* (t h e t a * f n 1 + (1 - t h e t a) * f n) ;
temp = f e v a l (g , [x s p a n (1) , xspan (2)] , t , v a r a r g i n { : }) ;
r h s ([1 , N]) = temp;
u = L \ r h s ;
u = U\u;
fn = f n 1 ;
un = u ;

end
r e t u r n

E xam ple 8.3 We consider the heat equation (8.4) in (a,b) = (0,1) with
p = 1, f (x, t) = — sin(x) sin(t)+sin(x) cos(t), initial condition u(x, 0) = sin(x)
and boundary conditions u(0, t) = 0 and u(1 ,t) = sin(1) cos(t). In this case
the exact solution is u(x,t) = sin(x) cos(t). In Figure 8.7 we compare the
behavior of the errors maxi=0,...,N \u(xi, 1) — uM\ with respect to the time-
step on a uniform grid in space with h = 0.002. {uM} are the values of the
finite difference solution computed at time tM = 1. As expected, for в = 0.5
the в-method is second order accurate until when the time-step is so small that
the spatial error dominates over the error due to the temporal discretization.

E xam ple 8 .4 (T herm odynam ics) We consider an aluminum bar (whose
density is p = 2700 Kg/m3), of three meters length, with thermal conductivity
k = 273 W/mK (Watt per meters-Kelvin). We are interested to the evolution
of the temperature in the bar starting from the initial condition T(x, 0) = 500
K if x e (1, 2), 250 K otherwise and subject to the following Dirichlet boundary
conditions: T (0,t) = T (3,t) = 250 K. In Figure 8.8 we report the evolution
of the temperature starting from the initial data computed with the Euler
method (в = 1, left) and the Crank-Nicolson method (в = 0.5, right). The

8.3 The wave equation 257

F ig. 8.7. The error versus At for the 9-method (for 0 = 1, solid line, and
0 = 0.5 dashed line), for three different values of h: 0.008 (□), 0.004 (o) and
0.002 (no symbols)

results show that the Crank-Nicolson method suffers a clear instability due
to the low smoothness of the initial datum (about this point, see also [QV94,
Chapter 11]). On the contrary, the implicit Euler method provides a stable
solution which decays correctly to 250 K as t grows since the source term f is
null. ■

F ig . 8 .8 . Temperature profiles in an aluminum bar at different time-steps
(from t = 0 to t = 2 seconds with steps of 0.25 seconds), obtained with the
backward Euler method (left) and the Crank-Nicolson method (right)

8.3 The wave equation

We consider the second-order hyperbolic equation in one dimension

d2u d2u
— c ^ r = f

dt2 dx2
(8.33)

258 8 Numerical methods for (initial-)boundary-value problems

W hen f = 0, the general solution of (8.33) is the d ’A lembert traveling-
wave solution

i(x, t) = Ф1 (y C — x) + Ф2 (\fct + x) , (8.34)

for a rb itrary functions ф1 and ф2.
In the sequel we consider problem (8.33) for x G (a, b) and t > 0.

Therefore, we complete the differential equation w ith the in itia l data

du
u(x, 0) = uo(x) and — (x, 0) = vo(x), x G (a, b),

and the boundary data

u (a ,t) = 0 and u(b,t) = 0 , t > 0 . (8.35)

In th is case, u m ay represent the transverse displacement of an elastic
v ibrating string of length b — a, fixed at the endpoints, and c is a positive
coefficient depending on the specific mass of the string and on its tension.
The string is subjected to a vertical force of density f . The functions
u 0(x) and v0(x) denote respectively the in itia l displacement and the
in itia l velocity of the string.

The change of variables

^1
du
d x ,

U2
du

transforms (8.33) into the first-order system

дш д ш
dt + dx

x G (a, b), t > 0 (8.36)

where

ш U1
Ш2 A = 0 —1

c 0

and the in itia l conditions are w1(x, 0) = u'0(x) and w2(x, 0) = v0(x) for
x G (a, b).

In general, we can consider system s of the form (8.36) where ш, f :
R x [0, ж) ^ R p and A g R pxp is a m atrix w ith constant coefficients.
This system is said hyperbolic if A is diagonalizable and has real eigen­
values, th a t is, if there exists a nonsingular m atrix T G Rpxp such that

A = T ^T 1

where Л = diag(X 1, ..., Xp) is the diagonal m atrix of the real eigenvalues
of A, while T = (ш1, ш2, . . . , шр) is the m atrix whose column vectors are
the right eigenvectors of A. Thus

8.3 The wave equation 259

A w k = Xk u k, k = 1 , . . . , p .

Introducing the characteristic variables w = T - 1 ш, system (8.36) be­
comes

dw dw
d + ~dx = g,

where g = T - 1 f . This is a system of p independent scalar equations of
the form

dwk dwk _
+ Xk^ — = gk,dt dx

k = 1 , . . . ,p.

W hen gk = 0, its solution is given by w k(x,t) = w k(x — Xkt, 0), k =
1 , . . . , p and thus the solution ш = Tw of problem (8.36) with f = 0 can
be written as

ш ^ ^) = Y ^ w k(x — Xkt, 0)ш1>
k = 1

The curve (xk(t),t) in the plane (x,t) that satisfies x'k(t) = Xk is the k-th
characteristic curve and wk is constant along it. Then ш(т,Т) depends
only on the initial datum at the points x — Xkt. For this reason, the set of
p points that form the feet of the characteristics issuing from the point
(x, t) ,

D(t, x) = {x e R : x = x — Xkt , k = 1 , ...,p}, (8.37)

is called the domain of dependence of the solution ш(т, t).
If (8.36) is set on a bounded interval (a, b) instead of on the whole real

line, the inflow point for each characteristic variable w k is determined
by the sign of Xk. Correspondingly, the number of positive eigenvalues
determines the number of boundary conditions that can be assigned at
x = a, whereas at x = b it is admissible to assign a number of conditions
which equals the number of negative eigenvalues.

E xam ple 8.5 System (8.36) is hyperbolic since A is diagonalizable with ma­
trix

T = \fc Vc

and presents two distinct real eigenvalues (representing the propagation
velocities of the wave). Moreover, one boundary condition needs to be pre­
scribed at every end-point, as in (8.35). ■

260 8 Numerical methods for (initial-)boundary-value problems

R em ark 8.1 Notice that replacing д-U by t , d— by x and f by one, the
wave equation becomes t2 — cx2 = 1 which represents an hyperbola in the (x, t)
plane. Proceeding analogously in the case of the heat equation (8.4), we end
up with t — цх2 = 1 which represents a parabola in the (x,t) plane. Finally, for
the Poisson equation in two dimensions, replacing by x2, d— by x2 and f
by one, we get xi +x2 = 1 which represents an ellipse in the (x i , x 2) plane. Due
to the geometric interpretation above, the corresponding differential operators
are classified as hyperbolic, parabolic and elliptic, respectively. •

8 .3 .1 A p p ro x im a t io n b y f in ite d iffe ren ces

To discretize in tim e the wave equation we use the Newmark method
(7.59) proposed in Chapter 7. S till denoting by A t the (uniform) time-
step and using in space the classical finite difference method on a grid
w ith nodes x j = x 0 + jh , j = 0 , . . . , N , x 0 = a and x N = b, we obtain
the following scheme: for any n > 1 find {un, v jn, j = 1 , . . . , N — 1} such
that

un+1 = un + A tv n

+ A t2 [Z(cw”+1 + f (tn+1, x j)) + (1/2 — Z)(cwn + f (tn , x j))] , (8.38)

vn+1 = v n + A t [(1 — 9)(cwn + f (tn , x j)) + d(cwn+1 + f (tn+1, x j))] ,

w ith u° = u0(x j) and v° = v0(x j) and wk = (uk+1 — 2vh) + u lk_ 1)/h2
for к = n or к = n + 1 . System (8.38) must be completed imposing the
boundary conditions (8.35).

This method is implemented in Program 8.4. The input param eters
are the vectors x sp an = [a ,b] and tsp a n = [0 ,T], the number of discretiza­
tion intervals in space (n s te p (1)) and in tim e (n s te p (2)) , the string fun
which contains the function f (t,x (t)) and the strings u0 and v0 to de­
fine the in itia l data . F inally, the vector param allows to specify the values
of the coefficients (param (1)=0, param(2)=Z). The Newmark method is
second order accurate w ith respect to A t if в = 1/2, whereas it is first
order if в = 1/2. Moreover, the condition в > 1/2 is necessary to ensure
stab ility (see Section 7.8).

P ro gram 8.4. newmarkwave: Newmark method for the wave equation

f u n c t i o n [x , u] = n e w m a r k w a v e (x s p a n , t s p a n , n s t e p , p a r a m , c , . . .
u0 , v 0 , g , f , v a r a r g i n)

%NEWMARKWAVE s o l v e the wave e q u a t i o n w i t h the Newmark
% method.
% [X,U] = NEWMARKWAVE(XSPAN, TSPAN, NSTEP, PARAM,C,U0,V0,G,F)
% s o l v e the wave e q u a t i o n D"2 U/DT"2 - C D"2U/DX"2 = F
% i n (XSPAN(1) , XSPAN (2)) X (TSPAN(1) ,TSPAN(2)) u s i n g the
% Newmark method wi t h i n i t i a l c o n d i t i o n s U(X, 0)=U0(X) ,
% DU/DX(X,0)=V0(X) and D i r i c h l e t boundary c o n d i t i o n s
% U(X,T)=G(X,T) f o r X = XSPAN (1) and X = XSPAN (2) . C i s a
% p o s i t i v e c o n s t a n t , F,G,U0 and V0 a r e i n l i n e f u n c t i o n s .

8.3 The wave equation 261

% NSTEP(1) i s t he number of s pa ce i n t e g r a t i o n i n t e r v a l s ,
% NSTEP(2) + 1 i s the number of t ime - i n t e g r a t i o n i n t e r v a l s .
% PARAM (1) = THETA and PARAM(2) = ZETA.
% [X,U]=NEWMARKWAVE(XSPAN, TSPAN, NSTEP, PARAM,C,U0,V0,G,F,
% P 1 , P 2 , . . .) p a s s e s t he a d d i t i o n a l p a r a m e t e r s P 1 , P 2 , . . .
% to the f u n c t i o n s U0 , V0 , G, F.
h = (x s p a n (2) - x s p a n (1)) / n s t e p (1) ;
dt = (t s p a n (2) - t s p a n (1)) / n s t e p (2) ;
t h e t a = p a r a m (1) ; z e t a = p a r a m (2) ;
N = n s t e p (1) + 1;
e = o n e s (N , 1) ; D = s p d i a g s ([e - 2* e e] , [- 1 , 0 , 1] ,N ,N) ;
I = s p e y e (N) ;
l ambda = d t /h ;
A = I - c * l a m b d a “2 * ze t a*D;
An = I +c * l a mb d a “2 * (0 . 5 - z e t a) * D ;
A (1 , :) = 0; A (1 , 1) = 1; A(N , :) = 0; A(N,N) = 1;
x = l i n s p a c e (x s p a n (1) , x s p a n (2) , N) ;
x = x ’ ;
fn = f e v a l (f , x , t s p a n (1) , v a r a r g i n { : }) ;
un = f e v a l (u 0 , x , v a r a r g i n { : }) ;
vn = f e v a l (v 0 , x , v a r a r g i n { : }) ;
[L , U] = l u (A) ;
a l p h a = d t “2 * z e t a ; b e t a = dt “2 * (0 . 5 - z e t a) ;
t h e t a 1 = 1 - t h e t a ;
f o r t = t s p a n (1) +d t : d t : t s p a n (2)

f n 1 = f e v a l (f , x , t , v a r a r g i n { : }) ;
r hs = A n * u n + d t * I * v n + a l p h a * f n 1 + b e t a * f n ;
temp = f e v a l (g , [x s p a n (1) , xspan (2)] , t , v a r a r g i n { : }) ;
r h s ([1 , N]) = temp;
u = L \ r h s ; u = U\u;
v = vn + d t * ((1 - t h e t a) * (c*D*un/h“2+fn) + . . .

t h e t a * (c * D * u / h “2 + f n 1)) ;
fn = f n 1 ; un = u; vn = v;

end
r e t u r n

E xam ple 8.6 Using Program 8.4 we study the evolution of the initial con­
dition u0(x) = e-10x for x e (—2, 2). We assume v0 = 0 and homogeneous
Dirichlet boundary conditions. In Figure 8.9 we compare the solutions ob­
tained at time t = 3 using h = 0.04 and time-steps equal to 0.15 (dashed line),
to 0.075 (continuous line) and to 0.0375 (dashed-dotted line). The parameters
of the Newmark method are в =1/2 and Z = 0.25, that ensure a second order
unconditionally stable method. ■

E xam ple 8 .7 (C om m unications) In this example we use the equation
(8.9) to model how a telegraph wire transmits a pulse of voltage. The equation
is a combination of diffusion and wave equations, and accounts for effects of
finite velocity in a standard mass transport equation. In Figure 8.10 we com­
pare the evolution of a sinusoidal pulse using the wave equation (8.33) (dotted
line) and the telegraph equation (8.9) with c = 1 , a = 2 and в = 1 (continuous
line). The presence of the diffusion effect is evident. ■

An alternative approach to the Newmark method is to discretize the
first order equivalent system (8.36). We consider for simplicity the case

262 8 Numerical methods for (initial-)boundary-value problems

F ig. 8.9. Comparison between the solutions obtained using the Newmark
method for a discretization with h = 0.04 and A t = 0.154 (dashed line),
A t = 0.075 (continuous line) and A t = 0.0375 (dashed-dotted line)

F ig. 8.10. Propagation of a pulse of voltage using the wave equation (dotted
line) and the telegraph equation (continuous line)

(a , b) = R and f = 0. Then, the half-plane {(x , t) : —to < x < ж , t > 0}
is discretized by choosing a spatia l grid size h, a tem poral step A t and
the grid points (xj , tn) as follows

Xj = jh , j € Z, tn = n A t, n G N.

B y setting - = At/h, some popular schemes for the discretization of
(8.36) are:

1. the upwind (or forward Euler/uncentred) method

w n + = wn - - A(wn+1 - wn_i)
j x j 2 j (8.39)

+ - jAKwj+i - 2Wjn + wn_i) ,

where |A| = Т|Л|Т 1 and j^| is the diagonal m atrix of the moduli
of the eigenvalues of A;

8.4 What we haven’t told you 263

2. the Lax-W endroff method

шП*1 = шП — - A j — o jU)
j J 2 " " (8.40)

+ — 2ш” + шП_1).

The upwind method is first order accurate (in time and in space),
while the Lax-Wendroff scheme is second order.

About stability, since all these schemes are explicit, they can only
be conditionally stable. In particular, the upwind and the Lax-Wendroff
schemes satisfy ||шп Щ < ||ш0||̂ , where

h Y j v '2, v = (vj^j = -co
is a discrete norm under the following condition

h

A t < P A Y (8.41)
known as the CFL or Courant, Friedrichs and Lewy condition. As usual
p(A) denotes the spectral radius of A. For the proof, see, e.g., [QV94],
[LeV02], [GR96], [QSS06, Chapter 13].

See Exercises 8.9-8.10. Ж
8.4 W hat we haven’t told you

We could simply say that we have told you almost nothing, since the field
of numerical analysis which is devoted to the numerical approximation
of partial differential equations is so broad and multifaceted to deserve
an entire monograph simply for addressing the most essential concepts
(see, e.g., [TW98], [EEHJ96]).

We would like to mention that the finite element method is nowadays
probably the most widely diffused method for the numerical solution
of partial differential equations (see, e.g., [QV94], [Bra97], [BS01]). As
already mentioned the M A T L A B toolbox pde allows the solution of a
broad family of partial differential equations by the linear finite element
method.

Other popular techniques are the spectral methods (see, [CHQZ06],
[Fun92], [BM92], [KS99]) and the finite volume method (see, [Kro98].
[Hir88] and [LeV02]).

O ctave 8 .1 Neither Octave nor Octave-forge feature a pde toolbox.
However, several Octave programs for partial differential equations can
be found surfing on the web. ■

264 8 Numerical methods for (initial-)boundary-value problems

8.5 Exercises

E xercise 8.1 Verify that matrix (8.15) is positive definite.

E xercise 8.2 Verify that the eigenvalues of the matrix Ae R (N-i)x(N-i) ,
defined in (8.15), are

Xj =2(1 — cos(je)), j = 1 , . . . , N — 1,

while the corresponding eigenvectors are

q j = (s in (je) ,s in (2 je) , . . , sin((N — 1)j0))T,

where в = п/N. Deduce that K (A) is proportional to h-2 .

E xercise 8.3 Prove that the quantity (8.12) provides a second order approx­
imation of u ''(x) with respect to h.

E xercise 8 .4 Compute the matrix and the right-hand side of the numerical
scheme that we have proposed to approximate problem (8.17).

E xercise 8.5 Use the finite difference method to approximate the boundary-
value problem

| —u” + l f u = w in (0, ^

{ u (0) = u (1) = 0 ,

where u = u (x) represents the vertical displacement of a string of length 1,
subject to a transverse load of intensity w per unit length. T is the tension and
k is the elastic coefficient of the string. For the case in which w = 1 +sin(4nx),
T = 1 and k = 0.1, compute the solution corresponding to h = 1/i, i =
10, 20, 40, and deduce the order of accuracy of the method.

E xercise 8 .6 We consider problem (8.17) on the interval (0,1) with 7 = 0,
f = 0, a = 0 and в = 1. Using the Program 8.1 find the maximum value hcru
of h for which the numerical solution is monotone (as is the exact solution)
when S = 100. What happens if S = 1000? Suggest an empirical formula for
hcrit(5) as a function of S, and verify it for several values of S.

E xercise 8 .7 Use the finite difference method to solve problem (8.17) in the
case where the following Neumann boundary conditions are prescribed at the
endpoints

u'(a) = a, u'(b) = в.

Use the formulae given in (4.11) to discretize u'(a) and u'(b).

8.5 Exercises 265

E xercise 8.8 Verify that, when using a uniform grid, the right-hand side
of the system associated with the centered finite difference scheme coincides
with that of the finite element scheme provided that the composite trapezoidal
formula is used to compute the integrals on the elements Ik-1 and Ik.

E xercise 8.9 Verify that divV0 = Аф, where V is the gradient operator
that associates to a function u the vector whose components are the first
order partial derivatives of u.

E xercise 8.10 (T herm odynam ics) Consider a square plate whose side
length is 20 cm and whose thermal conductivity is к = 0.2 cal/sec-cm-C.
Denote by Q = 5 cal/cm3-sec the heat production rate per unit area. The
temperature T = T(x,y) of the plate satisfies the equation - AT = Q/к. As­
suming that T is null on three sides of the plate and is equal to 1 on the fourth
side, determine the temperature T at the center of the plate.

Solutions of the exercises

9__________________________________

9.1 Chapter 1

So lu tion 1.1 Only the numbers of the form ±0.1a2 • 2e with a2 = 0,1 and
e = ±2, ±1, 0 belong to the set F(2, 2, —2, 2). For a given exponent, we can
represent in this set only the two numbers 0.10 and 0.11, and their opposites.
Consequently, the number of elements belonging to F(2, 2, —2, 2) is 20. Finally,
Ш = 1/2.

So lu tion 1.2 For any fixed exponent, each of the digits a2, . . . , a t can assume
в different values, while a\ can assume only в —1 values. Therefore 2(в — 1)e t-1
different numbers can be represented (the 2 accounts for the positive and
negative sign). On the other hand, the exponent can assume U — L + 1 values.
Thus, the set F(e,t, L ,U) contains 2(в — 1)et-1 (U — L + 1) different elements.

So lu tion 1.3 Thanks to the Euler formula i = ein/2; we obtain i = e-n/2,
that is, a real number. In MATLAB

>> exp (-p i/2)
ans =

0.2079
>> i~i
ans =

0.2079

So lu tion 1.4 Use the instruction U = 2*eye(10)-3*diag(ones(8 ,1),2) (re­
spectively, L = 2*eye(10)-3*d iag(ones(8 ,1),-2)).

So lu tion 1.5 We can interchange the third and seventh rows of the previous
matrix using the instructions: r= [1 :10]; r(3)= 7; r(7)= 3; Lr=L(r , :) . Notice
that the character : in L (r , :) ensures that all columns of L are spanned in the
usual increasing order (from the first to the last). To interchange the fourth
column with the eighth column we can write c= [1 :10]; c(8)=4; c(4)=8;
Lc=L(: ,c) . Similar instructions can be used for the upper triangular matrix.

L (r , :)

268 9 Solutions of the exercises

So lu tion 1.6 We can define the matrix A = [v1;v2;v3;v4] where v1, v2,
v3 and v4 are the 4 given row vectors. They are linearly independent iff the
determinant of A is different from 0, which is not true in our case.

So lu tion 1.7 The two given functions f and g have the symbolic expression:

>> syms x
>> f=sqrt(x~2+1) ; p r e t ty (f)

(x2+ l) 1/2

>> g=sin(x~3)+cosh(x); p re tty (g)

s in (x3) + cosh(x)
p r e t t y The command p re t ty (f) prints the symbolic expression f in a format that

resembles type-set mathematics. At this stage, the symbolic expression of the
first and second derivatives and the integral of f can be obtained with the
following instructions:

>> d i f f (f , x)
ans =
1/(x*2+1) * (1/2)*x
>> d i f f (f , x , 2)
ans =
-1/(x*2+1)*(3/2)*x*2+1/(x*2+1)*(1/2)
>> i n t (f , x)
ans =
1/2*x*(x~2+1)~ (1/2)+1/2*asinh(x)

Similar instructions can be used for the function g.

So lu tion 1.8 The accuracy of the computed roots downgrades as the polyno­
mial degree increases. This experiment reveals that the accurate computation
of the roots of a polynomial of high degree can be troublesome.

So lu tion 1.9 Here is a possible program to compute the sequence:
f u n c t i o n I = s e q u e n c e (n)
I = z e r o s (n + 2 , 1) ; I (1) = (e x p (1) - 1) / e x p (1) ;
f o r i = 0 : n , I (i + 2) = 1 - (i + 1) * I (i + 1) ; end

The sequence computed from this program doesn’t tend to zero (as n in­
creases), but it diverges with alternating sign.

So lu tion 1.10 The anomalous behavior of the computed sequence is due to
the propagation of roundoff errors from the innermost operation. In particular,
when 41-n хП is less than ем /2, the elements of the sequence are equal to 0.
This happens for n > 29.

So lu tion 1.11 The proposed method is a special instance of the Monte Carlo
method and is implemented by the following program:

9.1 Chapter 1 269

f u n c t i o n my p i = p i m o n t e c a r l o (n)
x = r a n d (n , 1) ; y = r a n d (n , 1) ;
z = x . ~ 2+y . ~2 ;
v = (z <= 1) ;
m=sum(v) ; mypi=4*m/n;

The command rand generates a sequence of pseudo-random numbers. The
instruction v = (z <= 1) is a shortand version of the following procedure: we
check whether z(k) <= 1 for any component of the vector z. If the inequality
is satisfied for the k-th component of z (that is, the point (x (k) , y (k)) belongs
to the interior of the unit circle) v(k) is set equal to 1, and to 0 otherwise.
The command sum(v) computes the sum of all components of v, that is, the sum
number of points falling in the interior of the unit circle.

By launching the program as mypi=pimontecarlo(n) for different values
of n, when n increases, the approximation mypi of n becomes more accurate.
For instance, for n=1000 we obtain mypi=3.1120, whilst for n=300000 we have
mypi=3.1406.

So lu tion 1.12 To answer the question we can use the following function:
f u n c t i o n p i g = b b p a l g o r i t h m (n)
p i g = °;
f o r m=0 :n

m8 = 8 *m;
p i g = p i g + (1/16)~m*(4/(m8+1) - (2/(m8+4)+ . . .

1/(m8+5)+1/(m8+6))) ;
end
r e t u r n

For n=10 we obtain an approximation p ig of n that coincides (in the MATLAB
precision) with the persistent MATLAB variable p i. In fact, this algorithm is
extremely efficient and allows the rapid computation of hundreds of significant
digits of n.

So lu tion 1.13 The binomial coefficient can be computed by the following
program (see also the MATLAB function nchoosek): nchoosek
f u n c t i o n b c = b i n c o e f f (n , k)
k = f i x (k) ; n = f i x (n) ;
i f k > n , d i s p (’ k must be be tween 0 and n ’) ;

b r e a k ; end
i f k > n/2 , k = n - k ; end
i f k <= 1 , bc = n~k; e l s e

num = (n - k + 1) : n ; den = 1 : k ; e l = num./den;
bc = p r o d (e l) ;

end

The command f i x (k) rounds k to the nearest integer smaller than k.
The command d isp (s tr in g) displays the string, without printing its name.
In general, the command break terminates the execution of for and while
loops. If break is executed in an i f , it terminates the statement at that point.
Finally, p ro d (e l) computes the product of all elements of the vector e l.

f i x
d isp
b reak

prod

So lu tion 1.14 The following functions compute f n using the form f i = f i-1 +
f i - 2 (f ib rec) or using the form (1.14) (fibmat):

270 9 Solutions of the exercises

f u n c t i o n f = f i b r e c (n)
i f n == 0

f = 0 ;
e l s e i f n == 1

f = 1 ;
e l s e

f = f i b r e c (n - 1) + f i b r e c (n - 2) ;
end
r e t u r n

f u n c t i o n f = f i b m a t (n)
f = [0 ; 1] ;
A = [1 1; 1 0] ;
f = A~n*f;
f = f (1) ;
r e t u r n

For n=20 we obtain the following results:

>> t=cputime; fn= fib rec(20) , cpu=cputime-t
fn =

6765
cpu =

1.3400
>> t=cputime; fn=fibmat(20) , cpu=cputime-t
fn =

6765
cpu =

0

The recursive function f ib rec requires much more CPU time than fibmat.
The latter requires to compute only the power of a matrix, an easy operation
in MATLAB.

9.2 Chapter 2

So lu tion 2.1 The command fp lo t allows us to study the graph of the given
function f for various values of 7 . For 7 = 1, the corresponding function does
not have real zeros. For 7 = 2, there is only one zero, a = 0, with multiplicity
equal to four (that is, f (a) = f ' (a) = f''(a) = f'''(a) = 0 , while f (4) (a) = 0).
Finally, for y = 3, f has two distinct zeros, one in the interval (—3, —1) and
the other one in (1, 3). In the case y = 2, the bisection method cannot be
used since it is impossible to find an interval (a,b) in which f (a)f (b) < 0 .
For y = 3, starting from the interval [a,b] = [—3, —1], the bisection method
(Program 2.1) converges in 34 iterations to the value a = —1.85792082914850
(with f (a) ~ —3.6 • 10-12), using the following instructions:

>> f= in lin e (’ cosh(x)+ cos(x)-3 ’) ; a=-3; b=-1; to l= 1 .e-10 ; nmax=200;
>> [z e ro ,re s ,n ite r]= b ise c t io n (f ,a ,b ,to l,n m a x)
zero =

-1.8579

9.2 Chapter 2 271

re s =
-3.6872e-12

n it e r =
34

Similarly, choosing a=1 and b=3, for 7 = 3 the bisection method converges after
34 iterations to the value a = 1.8579208291485 with f (a) ~ —3.6877 • 10-12.

So lu tion 2.2 We have to compute the zeros of the function f (V) = pV +
aN2/V — abN3/V2 — pNb — kNT . Plotting the graph of f , we see that this
function has just a simple zero in the interval (0 .01 , 0.06) with f (0.01) < 0 and
f (0.06) > 0. We can compute this zero using the bisection method as follows:

>> f= in lin e (’ 35000000*x+401000./x-17122.7./x.~2-1494500’) ;
>> [z e ro ,re s ,n ite r]= b ise c t io n (f ,0 .0 1 ,0 .0 6 ,1 .e -1 2 ,1 0 0)
zero =

0.0427
re s =

-6.3814e-05
n it e r =

35

So lu tion 2.3 The unknown value of w is the zero of the function f (w) =
s(1,w) — 1 = 9.8[sinh(w) — sin(w)]/(2w2) — 1. From the graph of f we conclude
that f has a unique real zero in the interval (0.5,1). Starting from this interval,
the bisection method computes the value w = 0.61214447021484 with the
desired tolerance in 15 iterations as follows:

>> f= in lin e (’ 9 .8/2*(sinh (omega)- sin(omega))./omega.~2 -1 ’ , ’ omega’) ;
>> [z e ro ,re s ,n ite r]= b is e c t io n (f ,0 .5 ,1 ,1 .e -0 5 ,1 0 0)
zero =

6.1214e-01
re s =

3.1051e-06
n it e r =

15

So lu tion 2.4 The inequality (2.6) can be derived by observing that |e(fc) | <
|I(k)|/2 with |I(k)| < 2 II(k-1)| < 2- k - 1 (b — a). Consequently, the error at the
iteration kmin is less than e if kmin is such that 2 - k m i n - 1 (b — a) < e, that is,
2 - k m i n - 1 < e/(b — a), which proves (2 .6).

So lu tion 2.5 The first formula is less sensitive to the roundoff error.

So lu tion 2.6 In Solution 2.1 we have analyzed the zeros of the given function
with respect to different values of 7 . Let us consider the case when 7 = 2.
Starting from the initial guess x (0) = 1, the Newton method (Program 2.2)
converges to the value a = 0.0056 in 18 iterations with to l= 1.e-10 while the
exact zero of f is equal to 0. This discrepancy is due to the fact that f is almost
a constant in a neighborhood of its zero. Actually, the corresponding residual

272 9 Solutions of the exercises

computed by MATLAB is 0. Let us set now y = 3. The Newton method with
to l= 1.e-16 converges to the value 1.85792082915020 in 9 iterations starting
from x (0) = 1, while if x (0) = —1 after 10 iterations it converges to the value
— 1.85792082915020 (in both cases the residuals are zero in MATLAB).

So lu tion 2.7 The square and the cube roots of a number a are the solutions
of the equations x 2 = a and x 3 = a, respectively. Thus, the corresponding
algorithms are: for a given x (0) compute

x (k+1) = 1 (x (k) +— , k > 0 for the square root,
2 V x(k))

x (k+1) = - I 2x(k) + a | , k > 0 for the cube root.
3 \ (x (k))2 J

So lu tion 2.8 Setting 5x(k = x (k) — a , from the Taylor expansion of f we
find:

0 = f (a) = f (x(k)) — Sx(k)f ' (x (k)) + 1(Sx(k))2 f ' ' (x (k)) + O((Sx(k))3). (9.1)

The Newton method yields

Sx(k+1) = Sx(k) — f (x(k))/ f ' (x(k)). (9.2)

Combining (9.1) with (9.2), we have

5x(k+1) = 1 (5x (k))2 + Q((5x(k))3).

After division by (Sx(k)) 2 and letting k we prove the convergence result.

So lu tion 2.9 For certain values of в the equation (2.2) can have two roots
that correspond to different configurations of the rods system. The two initial
values that are suggested have been chosen conveniently to allow the Newton
method to converge toward one or the other root, respectively. We solve the
problem for в = kn/100 with k = 0 , . . . , 80 (if в > 2.6389 the Newton method
does not converge since the system has no admissible configuration). We use
the following instructions to obtain the solution of the problem (shown in
Figure 9.1):

>> a1=10; a2=13; a3=8; a4=10;
>> ss = num2str((a1~2 + a2~2 - a3~2+ a4~ 2)/(2*a2*a4),15);
>> n=100; x01=-0.1; x02=2*pi/3; nmax=100;
>> fo r i=0:80

w = i*p i/n ; k=i+1 ; b eta (k) = w;
ws = num2str(w,15);
f = in l in e ([’ 10/13*cos(’ ,w s ,’)-co s(x)

- c o s (’ ,w s , ’ -x)+ ’ , s s] , ’ x ’) ;
df = in l in e ([’ s in (x) - s in (’ ,w s , ’ - x) ’] , ’ x ’) ;
[z e ro ,re s ,n ite r]= n ew to n (f ,d f ,x 01 , 1e - 12 ,nmax);

9.2 Chapter 2 273

a lp h a l(k) = zero; n i t e r i (k) = n it e r ;
[z e ro ,re s ,n ite r]= n ew to n (f ,d f ,x 02 , 1e - 12 ,nmax);
alpha2 (k) = zero; n i t e r 2 (k) = n it e r ;

end

The components of the vectors a lp h a l and alpha2 are the angles computed for
different values of в , while the components of the vectors n i t e r l and n it e r 2
are the number of Newton iterations (5-7) necessary to compute the zeros with
the requested tolerance.

F ig . 9.1. The two curves representing the two possible configurations which
correspond to the choice of the parameter в ё [0, 2п/3]

So lu tion 2.10 From an inspection of its graph we see that f has two positive
real zeros (a 2 — 1.5 and a 3 — 2.5) and one negative (a i — —0.5). The Newton
method converges in 4 iterations (having set x (0) = —0.5 and to l = l.e -1 0)
to the value a 1:

>> f= in lin e (’ exp(x)-2*x~2’) ; d f= in lin e (’ exp (x)-4*x ’) ;
>> x0=-0.5; to l= 1 .e-10 ; nmax=100;
>> format long; [z e ro ,re s ,n ite r]= n ew to n (f ,d f ,x 0 ,to l,nm ax)
zero =

-0.53983527690282
re s =

0
n it e r =

4

The given function has a maximum at X — 0.3574 (which can be obtained
by applying the Newton method to the function f '): for x(0) < X the method
converges to the negative zero. If x(0) = X the Newton method cannot be
applied since f '(x) = 0. For x (0) > X the method converges to the positive
zero.

So lu tion 2.11 Let us set x (0) = 0 and to l= 10~17. The Newton method
converges in 39 iterations to the value 0.64118239763649, which we identify
with the exact zero a . We can observe that the (approximate) errors x(k) — a,

274 9 Solutions of the exercises

for к = 0 ,1 , . . . , 29, decrease only linearly when к increases. This behavior is
due to the fact that a has multiplicity greater than 1 (see Figure 9.2). To
recover a second-order method we can use the modified Newton method.

F ig . 9.2. Error vs iteration number of the Newton method for the computation
of the zero of the function f (x) = x3 — 3x22-x + 3x4-x — 8 -x

So lu tion 2.12 We should compute the zero of the function f (x) = sin(x) —
^/2gh/v'^. From an inspection of its graph, we can conclude that f has one zero
in the interval (0, n/2). The Newton method with x (0) = n/4 and to l= 10-10
converges in 5 iterations to the value 0.45862863227859.

So lu tion 2.13 Using the data given in the exercise, the solution can be ob­
tained with the following instructions:

>> f= in lin e (’ 6000-1000*(1+x).*((1+x).~5 - 1) ./ x ’) ;
>> d f= in lin e (’ 1000*((1+x).~5.*(1-5*x) - 1) ./ (x .* 2) ’) ;
>> [z e ro ,r e s ,n ite r]= b is e c t io n (f ,0 .0 1 ,0 .1 ,1 .e -1 2 ,4) ;
>> [z e ro ,re s ,n ite r]= n e w to n (f ,d f ,z e ro ,1 . e - 12 , 100) ;

The Newton method converges to the desired result in 3 iterations.

So lu tion 2.14 By a graphical study, we see that (2.32) is satisfied for a value
of a in (n/6,n/4). Using the following instructions:

>> f= in lin e (’ - l 2*cos(g+a)/sin(g+a)~2- l 1*co s(a)/ sin (a)~ 2 ’ , . . .
’ a ’ , ’ g ’ , ’ l 1 ’ , ’ l 2 ’) ;

>> d f= in lin e (’ l2/sin(g+a)+2*l2*cos(g+a)~2/sin(g+a)~3+...
l1/sin (a)+ 2*l1*cos(a)~ 2/sin (a)~ 3’ , ’ a ’ , ’ g ’ , ’ l 1 ’ , ’ l 2 ’)
>> [z e ro ,re s ,n ite r]= n e w to n (f ,d f ,p i/ 4 ,1 .e -1 5 ,1 0 0 ,3 * p i/ 5 ,8 ,1 0) ;

the Newton method provides the approximate value 0.59627992746547 in 6
iterations, starting from x (0) = n/4. We deduce that the maximum length of
a rod that can pass in the corridor is L = 30.84.

9.2 Chapter 2 275

So lu tion 2.15 If a is a zero of f with multiplicity m, then there exists a
function h such that h (a) = 0 and f (x) = h(x)(x — a)m. By computing the
first derivative of the iteration function of the Newton method, we have

Ф'м (x) 1 [f '(x)]2 — f (x) f ' ' (x) _ f (x) f ' '(x)
[f '(x)]2 [f '(x)]2

By replacing f , f ' and f '' with the corresponding expressions as functions of
h(x) and (x — a)m, we obtain lim^^a ф'м (x) = 1 — 1/m, hence ф'м (a) = 0
if and only if m = 1. Consequently, if m = 1 the method converges at least
quadratically, according to (2.9). If m > 1 the method converges with order 1
following Proposition 2.1.

So lu tion 2.16 Let us inspect the graph of f by using the following com­
mands:

>> f= ’ x.~3+4*x.~2-10’ ; f p lo t (f , [- 1 0 ,1 0]) ; g r id on;
>> f p lo t (f , [- 5 ,5]) ; g r id on;
>> f p lo t (f , [0 ,5]) ; g r id on

We can see that f has only one real zero, equal approximately to 1.36 (see
Figure 9.3). The iteration function and its derivative are:

ф^) =

^ (x) =

2x3 + 4x2 + 10 f (x) + x,3x2 + 8x 3x2 + 8x
(6x 2 + 8x)(3x2 + 8x) — (6x + 8)(2x3 + 4x2 + 10)

(3x2 + 8x)2 ,

and ф(a) = a . We easily deduce that ф' (a) = 0 by noting that ф' (x) =
(6x + 8) f (x)/(3x2 + 8x)2. Consequently, the proposed method converges (at
least) quadratically.

F ig . 9.3. Graph of f (x) = x3 + 4x2 — 10 for x ё [0, 2]

So lu tion 2.17 The proposed method is convergent at least with order 2 since
ф' (a) = 0.

276 9 Solutions of the exercises

So lu tion 2.18 By keeping the remaining parameters unchanged, the method
converges after only 3 iterations to the value 0.64118573649623 which differs by
less than 10_9 from the result previously computed. However, the behavior of
the function, which is quite flat near x = 0 , suggests that the result computed
previously could be more accurate. In Figure 9.4 we show the graph of f in
(0.5, 0.7), obtained with the following instructions:

>> f=’ x~3-3*x~2*2~(-x) + 3*x*4~(-x) - 8" (- x) ’ ;
>> f p lo t (f , [0 .5 0 .7]) ; g r id on

9.3 Chapter 3

So lu tion 3.1 Since x e (xo,x„) , there exists an interval I i = (xi - 1 ,x i) such
that x e Ij,. We can easily see that maxxgji |(x - x j - i) (x - xj)| = h 2/4. If
we bound lx — xi+1l above by 2h, lx — xi - 2 l by 3h and so on, we obtain the
inequality (3.6).

So lu tion 3.2 In all cases we have n = 4 and thus we should estimate the fifth
derivative of each function in the given interval. We find: maxIg [_1i1] |f15) | <
1.18, maxIg[_ iii] lf2(6)l < 1.54, maxi e [_l/2,I /2] |/c(5)l < 1.41. The correspond­
ing errors are therefore bounded by 0.0018, 0.0024 and 0.0211, respectively.

So lu tion 3.3 Using the command p o ly f it we compute the interpolating
polynomials of degree 3 in the two cases:

>> years=[1975 1980 1985 1990];
>> east= [70.2 70.2 70.3 7 1 .2];
>> west=[72.8 74.2 75.2 7 6 .4];
>> c e a s t= p o ly f it (y e a r s ,e a s t ,3) ;
>> cw est= p o ly fit(yea rs ,w est,3);
>> esteast= p o lyva l(ceast,[197 0 1983 1988 1995])

9.3 Chapter 3 277

e s te a s t =
69.6000 70.2032 70.6992 73.6000

>> estw est= polyval(cw est,[1970 1983 1988 1995])
estw est =

70.4000 74.8096 75.8576 78.4000

Thus, for Western Europe the life expectation in the year 1970 is equal to
70.4 years (e stw est(1)), with a discrepancy of 1.4 years from the real value.
The symmetry of the graph of the interpolating polynomial suggests that the
estimation for the life expectation of 78.4 years for the year 1995, can be
overestimated by the same quantity (in fact, the real life expectation is equal
to 77.5 years). A different conclusion holds concerning Eastern Europe. Indeed,
in that case the estimation for 1970 coincides exactly with the real value, while
the estimation for 1995 is largely overestimated (73.6 years instead of 71.2).

So lu tion 3.4 We choose the month as time-unit. The initial time t 0 = 1
corresponds to November 1987, while t 7 = 157 to November 2000. With the
following instructions we compute the coefficients of the polynomial interpo­
lating the given prices:

>> time = [1 14 37 63 87 99 109 157];
>> p ric e = [4 .5 5 6 6 .5 7 7 .5 8 8] ;
>> [c] = p o ly f it (t im e ,p r ic e ,7) ;

Setting [p r ic e 2002]= p o lyva l(c ,18 1) we find that the estimated price of the
magazine in November 2002 is approximately 11.2 euros.

So lu tion 3.5 The interpolatory cubic spline, computed by the command
sp lin e in this special case, coincides with the interpolating polynomial. This
wouldn’t be true for the natural interpolating cubic spline.

So lu tion 3.6 We use the following instructions:

>> T = [4 :4 :2 0];
>> rho=[1000.7794,1000.6427,1000.2805,999.7165,998.9700];
>> Tnew = [6 :4 :1 8] ; format long e;
>> rhonew = spline(T,rho,Tnew)
rhonew =

Columns 1 through 2
1.000740787500000e+03 1.000488237500000e+03

Columns 3 through 4
1.000022450000000e+03 9.993649250000000e+02

The comparison with the further measures shows that the approximation is
extremely accurate. Note that the state equation for the sea-water (UNESCO,
1980) assumes a fourth-order dependence of the density on the temperature.
However, the coefficient of the fourth power of T is of order of 10-9 .

So lu tion 3.7 We compare the results computed using the interpolatory cubic
spline obtained using the MATLAB command sp lin e (denoted with s3), the

278 9 Solutions of the exercises

F ig . 9.5. The cubic splines s3 (c ont inuou s l i ne), s3d (dashed l i n e) and s3n
(dot t ed l i n e) for the data of Exercise 3.7. The circles denote the values used in
the interpolation

interpolatory natural spline (s3n) and the interpolatory spline with null first
derivatives at the endpoints of the interpolatory interval (s3d) (computed with
Program 3.1). We use the following instructions:

>> year=[1965 1970 1980 1985 1990 1991];
>> production=[17769 24001 25961 34336 29036 33417];
>> z= [1962 :0 .1 :1992];
>> s3 = sp lin e (yea r ,p ro d u c tio n ,z);
>> s3n = cu b icsp lin e (year,p ro d u ctio n ,z);
>> s3d = cu b ic sp lin e (yea r ,p ro d u c tio n ,z ,0 ,[0 0]) ;

In the following table we resume the computed values (expressed in thousands
of tons of goods):

year 1962 1977 1992
s3 514.6 2264.2 4189.4
s3n 1328.5 2293.4 3779.8
s3d 2431.3 2312.6 2216.6

The comparison with the real data (1238, 2740.3 and 3205.9 thousands of tons,
respectively) shows that the values predicted by the natural spline are accurate
also outside the interpolation interval (see Figure 9.5). On the contrary, the
interpolating polynomial introduces large oscillations near this end-point and
underestimates the production of as many as —7768.5 x106 Kg for 1962.

So lu tion 3.8 The interpolating polynomial p and the spline s3 can be eval­
uated by the following instructions:

>> p ert = 1 .e-04 ;
>> x= [-1 : 2/20 : 1] ; y= sin (2*pi*x) + (- 1) . " [1 : 21]* p e r t ; z= [-1 : 0 . 01 : 1] ;
>> c = p o ly f it (x ,y ,2 0) ; p = p o lyva l(c ,z); s3 = sp lin e (x ,y ,z) ;

When we use the unperturbed data (pert=0) the graphs of both p and s3
are indistinguishable from that of the given function. The situation changes
dramatically when the perturbed data are used (pert=1.e-04). In particular,

9.3 Chapter 3 279

the interpolating polynomial shows strong oscillations at the end-points of the
interval, whereas the spline remains practically unchanged (see Figure 9.6).
This example shows that approximation by splines is in general more stable
with respect to perturbation errors.

F ig . 9.6. The interpolating polynomial (dot t ed l i ne) and the interpolatory
cubic spline (c on t inuou s l i n e) corresponding to the perturbed data. Note the
severe oscillations of the interpolating polynomial near the end-points of the
interval

So lu tion 3.9 If n = m, setting f = n n f we find that the first member of
(3.21) is null. Thus in this case n n f is the solution of the least-squares problem.
Since the interpolating polynomial is unique, we deduce that this is the only
solution to the least-squares problem.

So lu tion 3.10 The coefficients (obtained by the command p o ly f it) of the
requested polynomials are (only the first 4 significant digits are shown):

K = 0.67, a4 = 6.301 10_8, аз = —8.320 10_8, a2 = —2.850 10_4, a i =
9.718 10_4, ao = —3.032;

K = 1.5, a 4 = —4.225 10_8, аз = —2.066 10_6, a 2 = 3.444 10_4, a i =
3.36410-3 , ao = 3.364;

K = 2, a4 = —1.012 10_7, a3 = —1.431 10_7, a2 = 6.988 10_4, a i =
— 1.060 10_4, ao = 4.927;

K = 3, a4 = —2.323 10_7, a3 = 7.980 10_7, a 2 = 1.420 10_3, a i =
— 2.605 10_3, ao = 7.315.

In Figure 9.7 we show the graph of the polynomial computed using the
data in the column with K = 0.67 of Table 3.1.

So lu tion 3.11 By repeating the first 3 instructions reported in Solution 3.7
and using the command p o ly f it , we find the following values (in 105 Kg):
15280.12 in 1962; 27407.10 in 1977; 32019.01 in 1992, which represent good
approximations to the real ones (12380, 27403 and 32059, respectively).

280 9 Solutions of the exercises

F ig . 9.7. Least-squares polynomial of degree 4 (c on t i nuous l i n e) compared
with the data in the first column of Table 3.1

So lu tion 3.12 We can rewrite the coefficients of the system (3.23) in terms
of mean and variance by noting that the variance can be expressed as v =
-ГГ E " n Xi - M 2.—+ 1 ' i = n г

So lu tion 3.13 The desired property is deduced from the first equation of the
system that provides the coefficients of the least-squares straight line.

So lu tion 3.14 We can use the command in te rp f t as follows:

>> d ischarge = [0 35 0.125 5 0 5 1 0 .5 0.125 0];
>> y = in te rp ft(d isch a rg e ,100) ;

The graph of the obtained solution is reported in Figure 9.8.

F ig . 9.8. The trigonometric interpolant obtained using the instructions in
Solution 3.14. Dots refer to the experimental data available

9.4 Chapter 4
So lu tion 4.1 Using the following third-order Taylor expansions of f at the
point xn, we obtain

f (x i) = f (xo) + h f '(xo) + Щ. f "(xo) + ^ f " ' (i i) ,
f (x2) = f (xo) + 2hf'(xo) + 2h2f''(xo) + ^ f ' f a),

with ^i e (xo,x i) and £2 e (xo,x 2) as two suitable points. Summing this two
expressions yields

1 h 2
— [—3f(xo) + 4 f (x i) — f (x2)] = f ' (xo) + y [f ' ' ' (6) — 2f ' ' ' (6)],

then the thesis follows for a suitable £o e (xo ,x2). A similar procedure can be
used for the formula at xn .

So lu tion 4.2 Taylor expansions yield
h2 h 3

f (x + h) = f (x) + h f '(x) + h - f ''(x) + ^ f '''(£),
2 6

h2 h 3
f (x — h) = f (x) — h f ' (x) + T f ''(x) — l f f '''f a) ,

where £ and ^ are suitable points. Subtracting these two expressions and di­
viding by 2h we obtain the result (4.10).

So lu tion 4.3 Assuming that f e C4 and proceeding as in Solution 4.2 we
obtain the following errors (for suitable points ^i , £2 and £3):

«. — 4 f (4) d i) h 3 ,b . — 1 f (4) (b) h 3 , c . ^0 f (4) (C3)h4.

So lu tion 4.4 Using the approximation (4.9), we obtain the following values:

9.4 Chapter 4 281

t (months) 0 0.5 1 1.5 2 2.5 3
Sn — 78 45 19 7 3 ----
n ' —— 77.91 39.16 15.36 5.91 1.99 ——

By comparison with the exact values of n' (t) we can conclude that the com­
puted values are sufficiently accurate.

So lu tion 4.5 The quadrature error can be bounded by

(b — a)3/(24M2) max |f''(x)|,x£. [a,o\

where [a,b] is the integration interval and M the (unknown) number of subin­
tervals.

The function f i is infinitely differentiable. From the graph of f i ' we infer
that l f ' ' (x)l < 2 in the integration interval. Thus the integration error for f i
is less than 10~4 provided that 53/(24M2)2 < 10~4, that is M > 322.

Also the function f 2 is differentiable to any order. Since maxx£[o(,\ lf2'(x)l =
\f2eA/4n, the integration error is less than 10~4 provided that M > 439. These
inequalities actually provide an over estimation of the integration errors. In­
deed, the (effective) minimum number of intervals which ensures that the error
is below the fixed tolerance of 10~4 is much lower than that predicted by our
result (for instance, for the function f i this number is 51). Finally, we note
that since f 3 is not differentiable in the integration interval, our theoretical
error estimate doesn’t hold.

282 9 Solutions of the exercises

So lu tion 4.6 On each interval I k, к = 1 , . . . , M , the error is equal to
H3/24f''(£fc) with S,k € (xk-1 ,xk) and hence the global error will be H3/24
S M=1 f ''(£k). Since f '' is a continuous function in (a,b) there exists a point
С € (a,b) such that f ' ' (£) = M E M=1 f ''(&). Using this result and the fact
that M H = b — a, w e derive equation (4.14).

So lu tion 4.7 This effect is due to the accumulation of local errors on each
sub-interval.

So lu tion 4.8 By construction, the mid-point formula integrates exactly the
constants. To verify that the linear polynomials also are exactly integrated, it
is sufficient to verify that I (x) = I PM (x). As a matter of fact we have

b
I (x) = f x dx = b-----— , I PM (x) = (b — a) b + a .

So lu tion 4.9 For the function f 1 we find M = 71 if we use the trapezoidal
formula and only M = 7 for the Gauss formula. Indeed, the computational
advantage of this latter formula is evident.

So lu tion 4.10 Equation (4.18) states that the quadrature error for the com-
site t
b a

posite trapezoidal formula with H = H1 is equal to CH 2, with C
^2 f (С). If f '' does not vary “too much” , we can assume that also the

error with H = H2 behaves like CH22. Then, by equating the two expressions

I (f) ~ I1 + CH?, I (f) ~ I2 + CH22, (9.3)

a

we obtain C = (I1 — I2)/(H2 — H2). Using this value in one of the expressions
(9.3), we obtain equation (4.32), that is, a better approximation than the one
produced by I 1 or I2.

So lu tion 4.11 We seek the maximum positive integer p such that I approx(xp)
= I (xp). For p = 0,1, 2, 3 we find the following nonlinear system with 4 equa­
tions in the 4 unknowns a , в , x and z:

p = 0 ^ a + в = b

p = 1 ^ ax + e z =

p = 2 ^ a x 2 + e z 2

p = 3 ^ a x 3 + в z3

From the first two equations we can eliminate a and z and reduce the system
to a new one in the unknowns в and x. In particular, we find a second-order
equation in в from which we can compute в as a function of x. Finally, the
nonlinear equation in x can be solved by the Newton method, yielding two
values of xz that are the abscissae of the Gauss quadrature points.

— a,
2 2 b2 a 2

b3 — a3
3 :

4 4 b4 a 4

9.4 Chapter 4 283

24 72
(1 + (x — n) 2)5 (2x — 2n)4 (1 + (x — n)2)4(2x — 2n)2

24
+ (1 + (x — n)2)3 ’
—4ex cos(x)’

we find that the maximum of |f(4)(x)| is bounded by M i ~ 25, while that of
|f2(4) (x)| by M2 ~ 93. Consequently, from (4.22) we obtain H < 0.21 in the
first case and H < 0.16 in the second case.

So lu tion 4.13 Using the command i n t (’ exp(-x~2/2) ’ , 0 , 2) we obtain for
the integral at hand the value 1.19628801332261.

The Gauss formula applied to the same interval would provide the value
1.20278027622354 (with an absolute error equal to 6.4923e-03), while the
Simpson formula gives 1.18715264069572 with a slightly larger error (equal
to 9.1354e-03).

So lu tion 4.14 We note that I k > 0 Vk, since the integrand is non-negative.
Therefore, we expect that all the values produced by the recursive formula
should be non-negative. Unfortunately, the recursive formula is unstable to
the propagation of roundoff errors and produces negative elements:

>> I(1)=1/exp(1); fo r k=2:20, I (k) = 1 -k *I(k -1); end
>> I (20)

-30.1924

Using the composite Simpson formula, with H < 0.25, we can compute the
integral with the desired accuracy.

So lu tion 4.15 For the Simpson formula we obtain

I i = 1.19616568040561’ I2 = 1.19628173356793’ ^ I r = 1.19628947044542,

with an absolute error in I R equal to -1.4571e-06 (we gain two orders of mag­
nitude with respect to I i and a factor 1/4 with respect to I2). Using the Gauss
formula we obtain (the errors are reported between parentheses):

11 = 1.19637085545393 (—8.2842e — 05)’
12 = 1.19629221796844 (—4.2046e — 06)’
I r = 1.19628697546941 (1.0379e — 06).

The advantage of using the Richardson extrapolation method is evident.

So lu tion 4.16 We must compute by the Simpson formula the values j (r) =
a/ (e or 2) j r f (£)d£ with r = к/10 , for к = 1’ . . . ’ 10 and f (£) = e ^£2.

In order to estimate the integration error we need the fourth derivative
f (4)(£) = e ̂(S2 + 8£ + 12). The maximum of f (4) in the integration interval
(0’ r) is attained at £ = r since f (4) is monotonically increasing. Then we
obtain the following values:

So lu tion 4.12 Since

f(4)(x) =

f 24)(x) =

284 9 Solutions of the exercises

>> г=[0 . 1 : 0 . 1 : 1] ;
>> maxf4=exp(r).*(r.~2+8*r+12);
maxf4 =

Columns 1 through 6
14.1572 16.6599 19.5595 22.9144 26.7917 31.2676

Columns 7 through 10
36.4288 42.3743 49.2167 57.0839

For a given r the error is below 10-10 provided that H < 10-102880/(rf(4) (r)).
For r = к/10 with к = 1 , . . . , 10 by the following instructions we can compute
the minimum numbers of subintervals which ensure that the previous inequal­
ities are satisfied. The components of the vector M contain these numbers:
>> x = [0 .1 :0 .1 :1]; f4=exp(x).*(x."2+8*x+12);
>> H = (10~(-10)*2880./(x.*f4)).~ (1/4); M=fix(x./H)
M =

4 11 20 30 41 53 67 83 100 118
Therefore, the values of j (r) are:
>> sigma=0.36; epsilon0 = 8.859e-12;

f = in l in e (’ exp (x).*x .~ 2 ’) ;
fo r k = 1:10

г = k/10 ;
j(k)= sim p son c(0 ,r ,M (k),f);
j (k) = j(k)*sigm a/r*ep silo n 0 ;

end

So lu tion 4.17 We compute E (213) using the Simpson composite formula by
increasing the number of intervals until the difference between two consecutive
approximations (divided by the last computed value) is less than 10-11:

>> f= in lin e (’ 2 .3 9 e -1 1 ./ ((x .~ 5).* (ex p (1 .4 3 2 ./ (T *x))-1)) ’ , ’ x ’ , ’ T’) ;
>> a=3.e-04; b=14.e-04; T=213;
>> i=2 ; e r r = 1 ; Io ld = 0 ; while e r r >= 1 .e -11
I= sim p so n c(a ,b ,i,f ,T);
e r r = ab s (I -Io ld)/ ab s (I) ;
Iold=I;
i=i+1 ;
end

The procedure returns the value i = 59. Therefore, using 58 equispaced in­
tervals we can compute the integral E(213) with ten exact significant digits.
The same result could be obtained by the Gauss formula using 53 intervals.
Note that as many as 1609 intervals would be nedeed if using the composite
trapezoidal formula.

So lu tion 4.18 On the whole interval the given function is not regular enough
to allow the application of the theoretical convergence result (4.22). One pos­
sibility is to decompose the integral into the sum of two intervals, (0, 0.5) and
(0.5,1), in which the function is regular (it is actually a polynomial of degree
3). In particular, if we use the Simpson rule on each interval we can even
integrate f exactly.

9.5 Chapter 5 285

9.5 C hap ter 5
So lu tion 5.1 The number r k of algebraic operations (sums, subtractions and
multiplications) required to compute a determinant of a matrix of order к > 2
with the Laplace rule (1.8), satisfies the following difference equation:

with r 1 = 0. Multiplying both side of this equation by 1/к!, we obtain

So lu tion 5.2 We use the following MATLAB commands to compute the
determinants and the corresponding CPU-times:

>> t = [] ; fo r i = 3:500
A = m ag ic (i) ; t t = cputime; d=det(A); t= [t , cp u tim e-tt];

The coefficients of the cubic least-squares polynomial that approximate the
data n=[3:500] and t are

>> format long; c= p o ly f it (n ,t ,3)

Columns 1 through 3
0.00000002102187 0.00000171915661 -0.00039318949610

Column 4
0.01055682398911

The first coefficient (that multiplies n3), is small, but not small enough with
respect to the second one to be neglected. Indeed, if we compute the fourth
degree least-squares polynomial we obtain the following coefficients:

>> c = p o ly f it (i , t ,4)

Columns 1 through 3
-0.00000000000051 0.00000002153039 0.00000155418071
Columns 4 through 6
-0.00037453657810 -0.00037453657810 0.01006704351509

From this result, we can conclude that the computation of a determinant of a
matrix of dimension n requires approximately n3 operations.

So lu tion 5.3 We have: detA 1 = 1, detA2 = e, detA3 = detA = 2e + 12.
Consequently, if e = 0 the second principal submatrix is singular and the
Proposition 5.1 cannot be applied. The matrix is singular if e = —6 . In this
case the Gauss factorization yields

rk — кт̂ - 1 = 2к — 1 ,

rk rk- 1 2 к — 1
к! — (к — 1)! = к!

Summing both sides from 2 to n gives the solution:

end

c

c

286 9 Solutions of the exercises

'1 0 0 '1 7 3
L = 2 1 0 , U = 0 —12 —4

3 1.25 1 0 0 0

Note that U is singular (as we could have predicted since A is singular).

So lu tion 5.4 At step 1, n — 1 divisions were used to calculate the l 1k entries
for i = 2, . . . , n . Then (n — 1)2 multiplications and (n — 1)2 additions were
used to create the new entries a (2), for j = 2 , . . . , n . At step 2, the numbers of
divisions is (n — 2), while the numbers of multiplications and additions will be
(n — 2)2. At final step n — 1 only 1 addition, 1 multiplication and 1 division is
required. Thus, using the identies

q(q + 1) £ 2 _ q(q + 1)(2q + 1) q > 1 ,

we can conclude that to complete the Gaussian factorization 2(n — 1)n(n +
1)/3+n(n—1) operations are required. Neglecting the lower order terms, we can
state that the Gaussian factorization process has a cost of 2n3/3 operations.

So lu tion 5.5 By definition, the inverse X of a matrix A 6 RnXn satisfies
XA = AX = I. Therefore, for j = 1 , . . . , n the column vector y j of X is the
solution of the linear system A yj where ej is the j-th vector of the
canonical basis of Rn with all components equal to zero except the j-th that
is equal to 1. After computing the LU factorization of A, the computation of
the inverse of A requires the solution of n linear systems with the same matrix
and different right-hand sides.

2 6S = 1s

e

So lu tion 5.6 Using the Program 5.1 we compute the L and U factors:

001 ' 1 1 3
L = 2 1 0 , U = 0 —8.88 • 10~16 14

3 —3.38 • 1015 1 0 0 4.73 • 10~16

If we compute their product we obtain the matrix

>> L*U
ans =

1.0000 1.0000 3.0000
2.0000 2.0000 20.0000
3.0000 6.0000 -2.0000

which differs from A since the entry in position (3,3) is equal to —2 while in
A it is equal to 4.

So lu tion 5.7 Usually, only the triangular (upper or lower) part of a sym­
metric matrix is stored. Therefore, any operation that does not respect the
symmetry of the matrix is not optimal in view of the memory storage. This
is the case when row pivoting is carried out. A possibility is to exchange si­
multaneously rows and columns having the same index, limiting therefore the
choice of the pivot only to the diagonal elements. More generally, a pivoting
strategy involving exchange of rows and columns is called c omp l e t e p i vo t ing
(see, e.g., [QSS06, Chap. 3]).

9.5 Chapter 5 287

So lu tion 5.8 The L and U factors are:
1 0 0 2 - 2 0 "

е 2) 2 1 0 , U = 0 е 0
0 - 1/е 1 0 0 3

When е ^ 0 l32 ^&>. In spite of that, the solution of the system is accurate
also when е tends to zero as confirmed by the following instructions:

>> e=1 ; fo r k=1:10
b=[0 ; e ; 2] ;
L=[1 0 0; (e -2)* 0 .5 1 0; 0 -1/e 1]; U=[2 -2 0; 0 e 0; 0 0 3];
y=L\b; x=U\y; e rr(k)= m ax(abs(x -ones(3 ,1))); e=e*0.1;

end
>> e r r
e r r =

0 0 0 0 0 0 0 0 0 0

So lu tion 5.9 The computed solutions become less and less accurate when
i increases. Indeed, the error norms are equal to 2.63 • 10-14 for i = 1, to
9.89 • 10-10 for i = 2 and to 2.10 • 10- 6 for i = 3. This can be explained by
observing that the condition number of Ai increases as i increases. Indeed,
using the command cond we find that the condition number of Ai is ~ 103 for
i = 1, ~ 107 for i = 2 and ~ 1011 for i = 3.

So lu tion 5.10 If (A, v) are an eigenvalue-eigenvector pair of a matrix A, then
A2 is an eigenvalue of A2 with the same eigenvector. Indeed, from Av = Av
follows A2v = AAv = A2v. Consequently, if A is symmetric and positive
definite K (A2) = (K (A))2.

So lu tion 5.11 The iteration matrix of the Jacobi method is:

B j =
0 0 - а -
0 0 0

- а - 1 0 0

Its eigenvalues are {0, а 1, —а 1}. Thus the method converges if |а| > 1.
The iteration matrix of the Gauss-Seidel method is

Bgs =
0 0 - а -
0 0 0
0 0 а -2

with eigenvalues {0, 0 ,а 2}. Therefore, the method converges if |а| > 1. In
particular, since p (B cs) =
than the Jacobi method.

[jo(Bj)] , the Gauss-Seidel converges more rapidly

1

1

So lu tion 5.12 A sufficient condition for the convergence of the Jacobi and
the Gauss-Seidel methods is that A is strictly diagonally dominant. The second
row of A satisfies the condition of diagonal dominance provided that 1в1 < 5.
Note that if we require directly that the spectral radii of the iteration matrices
are less than 1 (which is a sufficient and necessary condition for convergence),
we find the (less restrictive) limitation 1в1 < 25 for both methods.

288 9 Solutions of the exercises

So lu tion 5.13 The relaxation method in vector form is

(I — wD_1E)x (k+i) [(1 — w)I + wD_1F]x(k) + wD-1 b

where A = D — E — F, D being the diagonal of A, and E and F the lower (resp.
upper) part of A. The corresponding iteration matrix is

В(ш) = (I — wD- 1E)-1 [(1 — w)I + wD_1F].

If we denote by Xi the eigenvalues of В(ш), we obtain

I det [(1 — w)I + wD- 1F] | = |1 — u\n .

Therefore, at least one eigenvalue must satisfy the inequality |Xi | > |1 — ш|.
Thus, a necessary condition to ensure convergence is that |1 — ш| < 1, that is,
0 < ш < 2.

So lu tion 5.14 The given matrix is symmetric. To verify whether it is also
definite positive, that is, zTAz > 0 for all z = 0 of R2, we use the following
instructions:

>> syms z l z2 r e a l
>> z= [z1 ;z2]; A=[3 2; 2 6] ;
>> pos=z’ *A*z; simple(pos)
ans =

3*z1~2+4*z1*z2+6*z2~2

The command syms z 1 z2 r e a l is necessary to declare that the symbolic
variables z1 and z2 are real numbers, while the command sim ple(pos) tries
several algebraic simplifications of pos and returns the shortest. It is easy to see
that the computed quantity is positive since it can be rewritten as 2* (z 1+z2)~2
+z1~2+4*z2~2. Thus, the given matrix is symmetric and positive definite, and
the Gauss-Seidel method is convergent.

So lu tion 5.15 We find:

for the Jacobi method:
(1)

= 2 (1 — 4 0))
c21) = — 1 (x10));

= *-
c11)
(1) 1.

' 3 .

for the Gauss-Seidel method:
„(1) _ 1= 2 (1 — x20))
x(1) = _ 1 x(1) x2 = 3 x1 ,

= *-

x(1) = 1 x 1 = 4 ,
X(1) = — x 2 = 1

for the gradient method, we first compute the initial residual

r(°) b Ax (0) 2 1
1 3

(0) - 3/2
- 5/2

Then, since

P - 1 = 1/2 0
0 1/3

4
2

1

we have z (0) = P -1 r (0) = (-3/4, - 5/6)T. Therefore

(z(0))T r (0) = 77
а 0 = (z(0))T Az(0) = 107,

and

x (1) = x (0) + аoz(0) = (197/428, -32/321)T.

So lu tion 5.16 In the stationary case, p (Ba) = min|1 - аA|, where A are the
eigenvalues of P - 1A. The optimal value of а is obtained solving the equation
|1 - аAmin | = |1 - аAmax|, that is 1 - аAmin = - 1 + а\ таХ, which yields
(5.48). Since,

p(Ba) — 1 O' r̂nin Уа ^ а opt,

for а = а р we obtain (5.59).

So lu tion 5.17 In this case the matrix associated to the Leontieff model is
not positive definite. Indeed, using the following instructions:

>> fo r i=1:20; for j=1:20; c (i , j)= i+ j ; end; end; A=eye(20)-c;
>> m in(eig(A))
ans =

-448.5830
>> max(eig(A))
ans =

30.5830

we can see that the minimum eigenvalue is a negative number and the maxi­
mum eigenvalue is a positive number. Therefore, the convergence of the gra­
dient method is not guaranteed. However, since A is nonsingular, the given
system is equivalent to the system ATAx = ATb, where ATA is symmetric
and positive definite. We solve the latter by the gradient method requiring
that the norm of the residual be less than 10-10 and starting from the initial
data x (0) = 0 :

>> b = [1 :2 0] ’ ; aa=A’ *A; b=A’ *b; x0 = zero s(2 0 ,1);
>> [x ,ite r]= ite rm e th (a a ,b ,x 0 , 100, 1 . e - 10) ;

The method converges in 15 iterations. A drawback of this approach is that the
condition number of the matrix AT A is, in general, larger than the condition
number of A.

9.6 Chapter 6 289

9.6 Chapter 6

So lu tion 6.1 A1: the power method converges in 34 iterations to the value
2.00000000004989. A2: starting from the same initial vector, the power method
requires now 457 iterations to converge to the value 1.99999999990611. The
slower convergence rate can be explained by observing that the two largest

290 9 Solutions of the exercises

eigenvalues are very close one another. Finally, for the matrix A3 the method
doesn’t converge since A3 features two distinct eigenvalues (i and - i) of max­
imum modulus.

So lu tion 6.2 The Leslie matrix associated with the values in the table is

" 0 0.5 0.8 0.3"
0.2 0 0 0
0 0.4 0 0 .

_ 0 0 0.8 0 _

Using the power method we find A1 ~ 0.5353. The normalized distribution of
this population for different age intervals is given by the components of the cor­
responding unitary eigenvector, that is, x 1 ~ (0.8477, 0.3167, 0.2367, 0.3537)T.

So lu tion 6.3 We rewrite the initial guess as

(0) (0)y = e (0) ^01x 1 + 02x 2 + ^2 ,аiXi^

with в (0) = 1/||x(0)||. By calculations similar to those carried out in Section(0)
6.1, at the generic step к we find:

Vk
7

(k) k fo(k) I ik'd , -ik'd , Aiy () = 7 в (4 a ^ e + a 2x 2e + ^ a i — x

The first two terms don’t vanish and, due to the opposite sign of the exponents,
the sequence of the y (k) oscillates and cannot converge.

So lu tion 6.4 From the eigenvalue equation Ax = Ax, we deduce A-1 Ax =
AA- 1x, and therefore A-1x = (1/A)x.

So lu tion 6.5 The power method applied to the matrix A generates an oscil­
lating sequence of approximations of the maximum modulus eigenvalue (see,
Figure 9.9). This behavior is due to the fact that this eigenvalue is not unique.

So lu tion 6.6 To compute the eigenvalue of maximum modulus of A we use
Program 6.1:

>> A=wilkinson(7);
>> x0=ones(7,1); to l= 1 .e-15 ; nmax=100;
>> [lam bda,x ,iter]= eigpow er(A ,to l,nm ax,x0);

After 35 iterations we obtain lambda=3.76155718183189. To find the largest
negative eigenvalue of A, we can use the power method with shift and, in
particular, we can choose a shift equal to the largest positive eigenvalue that
we have just computed. We find:

>> [lam bda2,x ,iter]= eigpow er(A -lam bda*eye(7),to l,nm ax,x0);
>> lambda2+lambda
ans =

-1.12488541976457

9.6 Chapter 6 291

F ig. 9.9. The approximations of the maximum modulus eigenvalue of the
matrix of Solution 6.5 computed by the power method

after i t e r = 33 iterations. These results are satisfactory approximations of
the largest (positive and negative) eigenvalues of A.

So lu tion 6.7 Since all the coefficients of A are real, eigenvalues occur in con­
jugate pairs. Note that in this situation conjugate eigenvalues must belong to
the same Gershgorin circle. The matrix A presents 2 column circles isolated
from the others (see Figure 9.10 on the left). Each of them must contain only
one eigenvalue that must therefore be real. Then A admits at least 2 real
eigenvalues.

Let us consider now the matrix B that admits only one isolated column
circle (see Figure 9.10 on the right). Then, thanks to the previous consideration
the corresponding eigenvalue must be real. The remaining eigenvalues can be
either all real, or one real and 2 complex.

2 4 6 8 10 12 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4

F ig. 9.10. On the left, column circles of the matrix A of Solution 6.7. On the
right, column circles of the matrix B of Solution 6.7

So lu tion 6 .8 The row circles of A feature an isolated circle of center 5 and
radius 2 the maximum modulus eigenvalue must belong to. Therefore, we can
set the value of the shift equal to 5. The comparison between the number of
iterations and the computational cost of the power method with and without
shift can be found using the following commands:

292 9 Solutions of the exercises

A=[5 0 1 -1 ; 0 2 0 -1 / 2 ; 0 1 - 1 1 ; -1 -1 0 0] ;
to l= 1 e -1 4 ; x0= [1 2 3 4] ’ ; nmax=1000;
t i c ; [la m b d a 1 ,x 1 , i t e r 1] = e ig p o w e r (A , t o l , n m a x ,x 0) ;
t o c , i t e r 1

Elapsed time i s 0.033607 seconds.
ite r1 = 35

t i c ; [la m b d a 2 ,x 2 , i t e r 2] = in v s h i f t (A ,5 , t o l ,n m a x ,x 0) ;
t o c , i t e r 2

Elapsed time i s 0.018944 seconds.
i t e r 2 = 12

The power method with shift requires in this case a lower number of iterations
(1 versus 3) and almost half the cost than the usual power method (also
accounting for the extra time needed to compute the Gauss factorization of A
off-line).

So lu tion 6.9 Using the qr command we have immediately:

>> A=[2 -1/2 0 -1/2; 0 4 0 2; -1/2 0 6 1/2; 0 0 1 9] ;
>> [Q,R]=qr(A)
Q =

- 0 . 9701 0.0073 -0.2389 -0.0411
0 -0.9995 -0.0299 -0.0051

0 . 2425 0.0294 -0.9557 -0.1643

R =
0 0 -0.1694 0.9855

- 2 . 0616 0.4851 1.4552 0.6063
0 -4.0018 0.1764 -1.9881
0 0 -5.9035 -1.9426
0 0 0 8.7981

To verify that RQ is similar to A, we observe that

QT A = QT QR = R

thanks to the orhogonality of Q. Thus C = QTAQ = RQ , since QT = Q-1 ,
and we conclude that C is similar to A.

So lu tion 6.10 We can use the command e ig in the following way: [X,D]=eig
(A), where X is the matrix whose columns are the unit eigenvectors of A and D
is a diagonal matrix whose elements are the eigenvalues of A. For the matrices
A and В of Exercise 6.7 we should execute the following instructions:

>> A=[2 -1/2 0 -1/2; 0 4 0 2; -1/2 0 6 1/2; 0 0 1 9] ;
>> so rt(e ig (A))
ans =

2.0000
4.0268

9.7 Chapter 7 293

5.8003
9.1728

>> B=[-5 0 1/2 1/2; 1/2 2 1/2 0; 0 1 0 1/2; 0 1/4 1/2 3];
>> so r t(e ig (B))
ans =

-4.9921
-0.3038
2.1666
3.1292

9.7 Chapter 7
So lu tion 7.1 Let us approximate the exact solution y(t) = 1 [e 1 — sin(t) —
cos(t)] of the Cauchy problem (7.72) by the forward Euler method using dif­
ferent values of h: 1/2, 1/4, 1/8,. . . , 1/512. The associated error is computed
by the following instructions:

>> y 0=0 ; f= in lin e (’ s in (t)+ y ’ , ’ t ’ , ’ y ’) ;
>> y=’ 0 .5 * (e x p (t) - s in (t) - c o s (t)) ’ ;
>> tspan=[0 1] ; N=2 ; fo r k=1:10

[t t ,u]= feu le r (f ,tsp a n ,y 0 ,N);t= tt(en d);e (k)= a b s (u (e n d)-ev a l(y)) ;
N=2*N;end

>> e
e =

Columns 1 through 6
0.4285 0.2514 0.1379 0.0725 0.0372 0.0189

Columns 7 through 10
0.0095 0.0048 0.0024 0.0012

Now we apply formula (1.12) to estimate the order of convergence:

>> p= log(abs(e(1 :end-1) ./ e (2 :e n d)))/ lo g (2)
P =

Columns 1 through 6
0.7696 0.8662 0.9273 0.9620 0.9806 0.9902

Columns 7 through 9
0.9951 0.9975 0.9988

As expected the order of convergence is one. With the same instructions (sub­
stituting the program fe u le r with the program beu ler) we obtain an estimate
of the convergence order of the backward Euler method:

>> p= log(abs(e(1 :end-1) ./ e (2 :e n d)))/ lo g (2)
p =

Columns 1 through 6
1.5199 1.1970 1.0881 1.0418 1.0204 1.0101

Columns 7 through 9
1.0050 1.0025 1.0012

So lu tion 7.2 The numerical solution of the given Cauchy problem by the
forward Euler method can be obtained as follows:

294 9 Solutions of the exercises

>> tspan=[0 1]; N=100;f= inline(’ - t* e x p (-y) ’ , ’ t ’ , ’ y ’);y0=0;
>> [t ,u]= feu le r (f ,tsp a n ,y0 ,N);

To compute the number of exact significant digits we can estimate the
constants L and M which appear in (7.13). Note that, since f (t , y (t)) < 0 in
the given interval, y(t) = log(1 - 12/2) is a monotonically decreasing function,
vanishing at t = 0. Since f is continuous together with its first derivative, we
can approximate L as L = max0<t<1 |L(t)| with L(t) = d f / d y = t e - y . Note
that L(0) = 0 and L(t) > 0 for all t e (0,1]. Thus, L = e.

Similarly, in order to compute M = max0<t<1 |y''(t)| with y ” = - e - y -
t 2e -2y , we can observe that this function has its maximum at t = 1 , and then
M = e + e2. From (7.13) we deduce

K 00 - 5(1)1 < ^ 2 1 = 0 2 6

Therefore, there is no guarantee that more than one significant digit be exact.
Indeed, we find u(end)=-0.6785, while the exact solution at t = 1 is y(1) =
- 0.6931.

So lu tion 7.3 The iteration function is ф(и) = u - h t n+1e - u and the fixed-
point iteration converges if Ф ' (u)| < 1. This property is ensured if h (t0 +
(n + 1)h) < eu. If we substitute и with the exact solution, we can provide
an a p r io r i estimate of the value of h. The most restrictive situation occurs
when и = - 1 (see Solution 7.2). In this case the solution of the inequality
(n + 1)h2 < e-1 is h < \Je - 1 /(n + 1).

So lu tion 7.4 We repeat the same set of instructions of Solution 7.1, however
now we use the program cranknic (Program 7.3) instead of feu le r . According
to the theory, we obtain the following result that shows second-order conver­
gence:

>> p= log(abs(e(1 :end-1) ./ e (2 :e n d)))/ lo g (2)
p =

Columns 1 through 6
2.0379 2.0092 2.0023 2.0006 2.0001 2.0000

Columns 7 through 9
2.0000 2.0000 2.0000

So lu tion 7.5 Consider the integral formulation of the Cauchy problem (7.5)
in the interval [tn ,tn+1]:

t̂ +1

y(tn+1) - y(tn) = J f (т , у(т))d r

fl
- 2 [f (t n , y (t n)) + f (tn + 1,y(tn + 1))] ,

where we have approximated the integral by the trapezoidal formula (4.19).
By setting u0 = y (t0) and replacing y (t n) by the approximate value u n and
the symbol - by =, we obtain

h
Un + 1 = Un + 2 [f (tn ,Un) + f (tn + 1,Un + 1)] , ^ 0,

which is the Crank-Nicolson method.

9.7 Chapter 7 295

So lu tion 7.6 We must impose the limitation |1 — h + ih\ < 1, which yields
0 < h < 1.

So lu tion 7.7 Let us rewrite the Heun method in the following (Runge-Kutta
like) form:

Un+1 = u n + 2 (k1 + k2), k1 = h f (tn,Un), k2 = h f (tn+1 , u n + k1) .(9.4)

We have hTn+1(h) = y(tn+1) — y (tn) — k + fe)/2, with &1 = h f (t n , y (t n))
and k2 = h f (tn+1 , y (t n) + k1). Therefore, the method is consistent since

limTn+1 = y (tn) — i [f (t n , y (t n)) + f (tn,y(tn))] = 0.n^ 0 2

The Heun method is implemented in Program 9.1. Using this program,
we can verify the order of convergence as in Solution 7.1. By the following
instructions, we find that the Heun method is second-order with respect to h

>> p= log(abs(e(1 :end-1) ./ e (2 :e n d)))/ lo g (2)
p =

Columns 1 through 6
1.7642 1.8796 1.9398 1.9700 1.9851 1.9925

Columns 7 through 9
1.9963 1.9981 1.9991

P ro gram 9.1. rk2: Heun method

f u n c t i o n [t , u] = r k 2 (o d e f u n , t s p a n , y 0 , Nh, v a r a r g i n)
h = (t s p a n (2) - t s p a n (1) - t 0) / N h ; t t = [t s p a n (1) : h : t s p a n (2)]
u (1) =y 0 ;
f o r s = t t (1 : e n d - 1)

t = s ; y = u (e n d) ;
k 1= h * f e v a l (o d e f u n , t , y , v a r a r g i n { : }) ;
t =
y =
u =

end
t = t t ;
r e t u r n

t + h ;
y + k 1 ; k2 = h * f e v a l (o d e f u n , t , y , v a r a r g i n { : }) ;
[u , u (e n d) + 0 . 5 * (k 1 + k 2)] ;

So lu tion 7.8 Applying the method (9.4) to the model problem (7.28) we
obtain k1 = h\ un and k2 = hAun(1 + hA). Therefore un+1 = un[1 + h\ +
(hA)2/2] = unp2(hA). To ensure absolute stability we must require that
|p2(hA)| < 1, which is equivalent to 0 < p 2 (hA) < 1, since p 2 (hA) is posi­
tive. Solving the latter inequality, we obtain —2 < hA < 0, that is, h < 2/|A|.

296 9 Solutions of the exercises

So lu tion 7.9 Note that

u n = u n - 1(1 + hAn - 1) + h,rn - 1.

Then proceed recursively on n .

So lu tion 7.10 The inequality (7.38) follows from (7.37) by setting

1 1
1 + T +A A

The conclusion follows easily.

So lu tion 7.11 From (7.35) we have

n - 1
\zn u n\ < pmaxa + hpmax^ ^̂ (h) .

k = 0

The result follows using (7.36).

So lu tion 7.12 We have

hTn+1(h) = y(tn+1) - y(tn) - ^(^1 + 4k2 + кз),6

%1 = h f (tn , y (t n)) , %2 = h f (tn + I ,y(tn) + ^),

%3 = h f (tn+1 , y(tn) + 2%2 - ^1).

This method is consistent since

lim Tn+1 = y (tn) - i [f (t n , y (t n)) + 4 f (t n , y (t n)) + f (tn,y(tn))] = 0.1^0 6

This method is an explicit Runge-Kutta method of order 3 and is imple­
mented in Program 9.2. As in Solution 7.7, we can derive an estimate of its
order of convergence by the following instructions:

>> p= log(abs(e(1 :end-1) . / e (2 :e n d)))/ lo g (2)
p =

Columns 1 through 6
2.7306 2.8657 2.9330 2.9666 2.9833 2.9916

Columns 7 through 9
2.9958 2.9979 2.9990

So lu tion 7.13 From Solution 7.8 we obtain the relation

1 2 1 3 un+1 = un [1 + h\ + - (hA) + - (hA)] = u np3 (hA).2 6

By inspection of the graph of p 3, obtained with the instruction

>> c=[1/6 1/2 1 1]; z= [-3 :0 .0 1 :1]; p = p o lyva l(c ,z); p lo t (z ,a b s (p))

we deduce that |p3(hA)| < 1 for -2 .5 < hA < 0.

9.7 Chapter 7 297

P ro gram 9.2. rk3 : explicit Runge-Kutta method of order 3

func t i o n [t , u] = rk3 (o d e f u n , t s p a n , y 0 , Nh, v a r a r g i n)
h= (t span (2) - t s p an (1))/Nh; t t = [t s p a n (1) : h : t s p a n (2)] ;
u (1) =y0 ;
f o r s = t t (1 : end - 1)

t = s ; y = u (en d) ;
k 1=h* f e v a l (ode fun , t , y , v a r a r g i n { : }) ;
t = t + h * 0 . 5 ; y = y + 0 . 5*k1 ;
k2 =h* f e v a l (ode fun , t , y , v a r a r g i n { : }) ;
t = s + h; y = u (e nd) + 2* k 2 - k 1 ;
k3 =h* f e v a l (ode fun , t , y , v a r a r g i n { : }) ;
u = [u, u (end) + (k1+4*k2 +k3)/6] ;

end
t = t t ;

So lu tion 7.14 The method (7.74) applied to the model problem (7.28) gives
the equation u n+i = u n(1 + hA + (hA)2). From the graph of 1 + г + z2 with
z = hA, we deduce that the method is absolutely stable if —1 < hA < 0.

So lu tion 7.15 To solve Problem 7.1 with the given values, we repeat the
following instructions with N=10 and N=20:

>> f= in lin e (’ -1.68*10~(-9)*y~4+2.6880’ , ’ t ’ , ’ y ’) ;
>> [t,u c]= cran k n ic (f ,[0 ,2 0 0],1 8 0 ,N);
>> [t ,u]= p red co r(f ,[0 200],180 ,N ,’ feonestep ’ , ’ cnonestep’) ;

The graphs of the computed solutions are shown in Figure 9.11. The solutions
obtained by the Crank-Nicolson method are more accurate than those obtained
by the Heun method.

F ig . 9 .11. Computed solutions with N = 10 (lef t) and N = 20 (r ight) for
the Cauchy problem of Solution 7.15: the solutions computed by the Crank-
Nicolson method (c on t i nuou s l in e), and by the Heun method (dashed l i n e)

So lu tion 7.16 Heun method applied to the model problem (7.28), gives

298 9 Solutions of the exercises

un+1 = u ^ 1 + hA + 2 h 2 A j .

In the complex plane the boundary of its region of absolute stability satisfies
|1 + hA + h 2A2/2\2 = 1, having set hA = x + iy. This equation is satisfied by
the pairs (x,y) such that f (x,y) = x4 + y4 + 2x2y 2 + 4x3 + 4xy2 + 8x2 + 8x = 0.
We can represent this curve as the level curve f (x ,y) = г (corresponding to
the level г = 0). This can be done by means of the following instructions:

>> f=’ x.~4+y.~4+2*(x.~2).*(y.~2)+4*x.*y.~2+4*x.~3+8*x.~2+8*x’ ;
>> [x ,y]= m eshgrid ([-2 . 1 : 0 . 1 : 0 . 1] , [- 2 : 0 . 1 : 2]) ;
>> c o n to u r (x ,y ,e v a l(f) , [0 0])

meshgrid The command meshgrid draws in the rectangle [—2.1, 0.1] x [—2, 2] a grid
with 23 equispaced nodes in the x-direction, and 41 equispaced nodes in the

contour y-direction. With the command contour we plot the level curve of f (x, y) (eval­
uated with the command eva l (f)) corresponding to the value г = 0 (made
precise in the input vector [0 0] of contour). In Figure 9.12 the continuous
line delimitates the region of absolute stability of the Heun method. This region
is larger than the corresponding region of the forward Euler method (which
corresponds to the interior of the dashed circle). Both curves are tangent to
the imaginary axis at the origin (0 , 0).

F ig . 9.12. Boundaries of the regions of absolute stability for the Heun method
(c on t i nuous l i n e) and the forward Euler method (dashed l i ne). The correspond­
ing regions lie at the interior of the boundaries

So lu tion 7.17 We use the following instructions:

>> tspan=[0 1] ; y 0=0 ; f= in lin e (’ co s(2* y) ’ , ’ t ’ , ’ y ’) ;
>> y=’ 0 .5 *as in ((e x p (4 * t)-1) ./ (ex p (4 * t)+ 1)) ’ ;
>> N=2 ; fo r k=1:10

[tt ,u]= p red co r(f ,tsp an ,y0 ,N ,’ feonestep ’ , ’ cnonestep’) ;
t= tt(en d); e (k)= ab s(u (en d)-ev a l(y)); N=2*N; end

>> p= log(abs(e(1 :end-1) . / e (2 :e n d)))/ lo g (2)
p =

Columns 1 through 6

9.7 Chapter 7 299

2.4733 2.2507 2.1223 2.0601 2.0298 2.0148
Columns 7 through 9

2.0074 2.0037 2.0018

As expected, we find that the order of convergence of the method is 2. However,
the computational cost is comparable with that of the forward Euler method,
which is first-order accurate only.

So lu tion 7.18 The second-order differential equation of this exercise is equiv­
alent to the following first-order system:

x' = z, z' = —5z — 6x,

with x(0) = 1, z(0) = 0. We use the Heun method as follows:

>> tspan=[0 5] ; y0=[1 0];
>> [tt,u]= p red co r(’ fsp r in g ’ ,tsp an ,y0 ,N ,’ feonestep ’ , ’ cnonestep’) ;

where N is the number of nodes and fspring.m is the following function:

function y= fsp r in g (t,y)
b=5; k=6 ;
yy=y; y (1)= yy(2) ; y (2)= -b*yy(2) -k * y y (1) ;

In Figure 9.13 we show the graphs of the two components of the solution,
computed with N=20,40 and compare them with the graph of the exact solution
x(t) = 3e -2t — 2e-3t and that of its first derivative.

F ig . 9.13. Approximations of x(t) (c on t inuou s l in e) and x '(t) (dashed l i ne)
computed with N=20 (thin l i n e) and N=40 (thick l i n e). Small circles and squares
refer to the exact functions x(t) and x '(t), respectively

So lu tion 7.19 The second-order system of differential equations is reduced
to the following first-order system:

(x' = z,

| z' = 2ш sin(^) — k2x, (9.5)
[v' = —2ш sin(^)z — k2y.

300 9 Solutions of the exercises

If we suppose that the pendulum at the initial time to = 0 is at rest in the
position (1, 0), the system (9.5) must be given the following initial conditions:

x (0) = 1 , y (0) = 0 , г (0) = 0 , v(0) = 0.

Setting Ф = n/4, which is the average latitude of the Northern Italy, we use
the forward Euler method as follows:

>> [t , y] = f e u l e r (’ f f o c a u l t ’ , [0 300] , [1 0 0 0] ,Nh);

where Nh is the number of steps and ffocau lt.m is the following function:

function y= ffo c au lt (t ,y)
l=20; k2=9.8/l; psi=pi/4; omega=7.29*1.e-05;
yy=y; y (1)= yy(3); y(2)=yy(4) ;
y(3)= 2*om ega*sin (psi)*yy(4)-k2*yy(1);
y (4)= -2*om ega*sin (psi)*yy(3)-k2*yy(2);

By some numerical experiments we conclude that the forward Euler method
cannot produce acceptable solutions for this problem even for very small h. For
instance, on the left of Figure 9.14 we show the graph, in the phase plane (x, y),
of the motion of the pendulum computed with N=30000, that is, h = 1/100. As
expected, the rotation plane changes with time, but also the amplitude of the
oscillations increases. Similar results can be obtained for smaller h and using
the Heun method. In fact, the model problem corresponding to the problem at
hand has a coefficient A that is purely imaginary. The corresponding solution
(a sinusoid) is bounded for t that tends to infinity, however it doesn’t tend to
zero.

Unfortunately, both the forward Euler and Heun methods feature a region
of absolute stability that doesn’t include any point of the imaginary axis (with
the exception of the origin). Thus, to ensure the absolute stability one should
choose the prohibited value h = 0.

To get an acceptable solution we should use a method whose region of
absolute stability includes a portion of the imaginary axis. This is the case,
for instance, for the adaptive Runge-Kutta method of order 3, implemented in
the MATLAB function ode23. We can invoke it by the following command:

>> [t,u]= ode23(’ f f o c a u lt ’ , [0 300] , [1 0 0 0]) ;

In Figure 9.14 (right) we show the solution obtained using only 1022 integration
steps. Note that the numerical solution is in good agreement with the analytical
one.

O ctave 7.1 In Octave, ode23 returns after 1419 iterations. Moreover ode23
returns a different final result. ■

So lu tion 7.20 We fix the right hand side of the problem in the following
f un c t i o n

9.8 Chapter 8 301

0 0 4

0 .03

0 02

0 .01

0

- 0 01

- 0 02

- 0 03

- 0 . 0 4 -0 . 0,5- 3 - 2 -1 0 1 2 3 - 1 - 0 5 0 0 5 1

F ig. 9.14. Trajectories on the phase plane for the Foucault pendulum of
Solution 7.19 computed by the forward Euler method (l e f t) and the third-
order adaptive Runge-Kutta method (r i gh t)

f u n c t i o n y = b a s e b a l l (t , y)
ph i = 0; omega = 1 8 0 0 * 1 . 0 4 7 1 9 8 e - 0 1 ;
B = 4 . 1 * 1 . e - 4 ; yy=y ;
g = 9 . 8 ;
vmodulo = s q r t (y (4) ~ 2 + y (5) ~ 2 + y (6) ~ 2) ;
Fv = 0 . 0 0 3 9 + 0 . 0 0 5 8 / (1 + e x p ((v m o d u l o - 3 5) / 5)) ;
y (1) = y y (4) ;
y (2) = y y (5) ;
y (3) = y y (6) ;
y (4) = - F v * v m o d u l o * y (4) + B * o m e g a * (y y (6) * s i n (p h i) - y y (5)

* c o s (p h i)) ;
y (5) = - F v * v m o d u l o * y (5) + B * o m e g a * y y (4) * c o s (p h i) ;
y (6) = - g - F v * v m o d u l o * y (6) - B * o m e g a * y y (4) * s i n (p h i) ;
r e t u r n

At this point we only need to recall ode23 as follows:

>> [t,u]= ode23(’b a s e b a ll ’ , [0 0 . 4] , . . .
[0 0 0 38*cos(1*pi/180) 0 38*s in (1*p i/180)]);

Using command fin d we approximately compute the time at which the altitude
becomes negative, which corresponds to the exact time of impact with the
ground:

>> n=m ax(find(u(:,3)>=0));
t (n)
ans = 0.1066

In Figure 7.1 we report the trajectories of the baseball with an inclination of
1 and 3 degrees represented on the plane X1X3 and on the x ix 2x3 space.

9.8 Chapter 8

So lu tion 8.1 We can verify directly that x TAx > 0 for all x = 0. Indeed,

302 9 Solutions of the exercises

F ig . 9 .15. The trajectories followed by a baseball launched with an initial
angle of 1 degree (so l id l i ne), respectively, 3 degrees (dashed l i ne)

[xi X2 . . . XN- 1 XN]

2 - 1 0 .. 0

- 1 2 -. :

0 - 1 0

0
- 1 2 - 1
0 - 1 2

Xi
X2

XN-1
XN

— 2Xi — 2X1X2 + 2x2 — 2X2X3 + . . . — 2xn — 1XN + 2x n .

The last expression is equivalent to (x1 —x 2)2 + .. . + (xn -1 — xn)2 +x1 +xN,
which is, positive provided that at least one Xi is non-null.

So lu tion 8.2 We verify that Aqj — Xj q j . Computing the matrix-vector prod­
uct w — Aqj and requiring that w is equal to the vector Xj q j , we find:

' 2 sin (j0) — sin(2j 0) — 2(1 — cos(j0)) s in (j0),

— s in (jk e) + 2 sin (j(k + 1)0) — sin (j(k + 2)0) — 2(1 — cos(j0)) sin(2j 0),
* k — 1 , . . . , N — 2

_ 2sin(N j0) — sin((N — 1)j0) — 2(1 — cos(j0)) sin(Nj0).

The first equation is an identity since sin(2j0) — 2 sin(j0) cos(j0). The other
equations can be simplified since

sin (jk0) — sin((k + 1) j 0) cos(j0) — cos((k + 1) j 0) s in (j0),

sin (j(k + 2)0) — sin((k + 1) j 0) cos(j0) + cos((k + 1) j 0) s in (j0).

Since A is symmetric and positive definite, its condition number is K (A) —
Xmax/Xmin, that is, K(A) — X1/XN — (1 — cos(Nn/(N + 1)))/(1 — cos(n/(N +
1))). Using the Taylor expansion of order 2 of the cosine function, we obtain
K (A) ~ N2, that is, K (A) ~ h - 2 .

So lu tion 8.3 We note that

h ‘2 h ‘3 h4
u(x + h) = u(x) + hu' (x) + — u"(x) + — u" (x) + — u(4)(£+),2 6 24

h2 h3 h4
u(x - h) = u (x) - hu ' (x) + — u''(x) - — u" (x) + ^ ru (4)(£_),2 6 24

where £+ e (x,x + h) and e (x - h,x) . Summing the two expression we
obtain

h4
u(x + h) + u(x - h) = 2u(x) + h2u ''(x) + ^ (u (4)(^+) + u (4) (£_)),

which is the desired property.

So lu tion 8.4 The matrix is again tridiagonal with entries a i i - 1 = - 1 - h f ,
2 Л * 2a ii = 2+h 7 , a i ,i +1 = - 1+h2. The right-hand side, accounting for the bound­

ary conditions, becomes f = (f (x1)+a.(1+hS/2)fh2, f (x 2) , . f (xN- 1), f (x N)
+в(1 - hS/2)/h2)T.

So lu tion 8.5 With the following instructions we compute the corresponding
solutions to the three given values of h :

>> fb vp= in line(’ 1+ sin(4*p i*x)’ , ’ x ’) ;
>> [z ,u h 10]= b vp (0 ,1 ,9 ,0 ,0 .1 ,fb vp ,0 ,0);
>> [z ,uh 20]= b vp (0 ,1 ,19 ,0 ,0 .1 ,fb vp ,0 ,0);
>> [z ,uh 40]= b vp (0 ,1 ,39 ,0 ,0 .1 ,fb vp ,0 ,0);

Since we don’t know the exact solution, to estimate the convergence order we
compute an approximate solution on a very fine grid (for instance h = 1/1000),
then we use this latter as a surrogate for the exact solution. We find:

>> [z ,uh ex]= b vp (0 ,1 ,999 ,0 ,0 .1 ,fb vp ,0 ,0);
>> max(abs(uh10-uhex(1 : 100 : end)))
ans =

8.6782e-04
>> m ax(abs(uh20-uhex(1:50:end)))
ans =

2.0422e-04
>> m ax(abs(uh40-uhex(1:25:end)))
ans =

5.2789e-05

Halving h, the error is divided by 4, proving that the convergence order with
respect to h is 2.

So lu tion 8.6 To find the largest h crit which ensures a monotonic solution (as
the analytical one) we execute the following cycle:

>> fbvp=inl ine(’ 1+0.*x’ , ’ x ’) ; fo r k=3:1000
[z,uh]=bvp(0 , 1 , k , 100, 0 ,fb vp ,0 , 1) ; i f sum (d iff(uh)> 0)==length(uh)
- 1 , break, end, end

9.8 Chapter 8 303

304 9 Solutions of the exercises

We let h(= 1/(k+1)) vary till the forward incremental ratios of the numerical
solution uh are all positive. Then we compute the vector di f f (uh) whose com­
ponents are 1 if the corresponding incremental ratio is positive, 0 otherwise. If
the sum of all components equals the vector length of uh diminished by 1, then
all incremental ratios are positive. The cycle stops when k=499, that is, when
h = 1/500 if S = 1000, and when h = 1/1000 if S = 2000. We can therefore
guess that one should require h < 2/S = h crit in order to get a monotonically
increasing numerical solution. Indeed, this restriction on h is precisely what
can be proven theoretically (see, for instance, [QV94]). In Figure 9.16 we show
the numerical solutions obtained when S = 100 for two values of h.

1

0

- 0 . 20 0 . 2 0 .4 0 . 6 0 . 8 1

F ig. 9.16. Numerical solution for Problem 8.6 obtained for h = 1/10 (dashed
l ine) and h = 1/60 (c on t inuou s l ine)

So lu tion 8.7 We should modify the Program 8.1 in order to impose Neumann
boundary conditions. In the Program 9.3 we show one possible implementation.

P ro gram 9.3. neumann: approximation of a Neumann boundary-value problem

f u n c t i o n [x , u h] = n e u m a n n (a , b , N , d e l t a , g a m m a , bvpfun
u a , u b , v a r a r g i n)

h = (b - a) / (N+ 1) ; x = [a : h : b] ; e = one s (N+2 , 1) ;
A = s p d i a g s ([- e - 0 . 5 * h * d e l t a 2*e+gamma*h~2 . . .

- e + 0 . 5 * h * d e l t a] , - 1 : 1 , N+2, N+2);
f = h~2 * f e v a l (b v p f u n , ’ x ’ , v a r a r g i n { : }) ; f = f ’ ;
A (1 , 1) = - 3 / 2 * h ; A (1 , 2) = 2 * h ; A (1 , 3) = - 1 / 2 * h ;
f (1)=h~2* u a ;
A(N+2,N+2)=3/2*h; A(N+2,N+1)=-2*h; A(N+2,N)=1/2*h;
f (N+2)=h~2*ub;
uh = A\f;
r e t u r n

So lu tion 8.8 The trapezoidal integration formula, used on the two subinter­
vals I k -1 and I k, produces the following approximation

9.8 Chapter 8 305

f h h
J f (x) yk (x) dx ~ 2 f (xk) + 2 f (xk) = h f (xk),

Ik-1lJIk

since p k(x j) = Sjk, Vj,k. Thus, we obtain the same right-hand side of the
finite difference method.

So lu tion 8.9 We have Уф = (дф/dx, дф/ду)т and therefore divV0 =
d2ф/dx2 + д 2ф/ду2, that is, the Laplacian of ф.

So lu tion 8.10 To compute the temperature at the center of the plate, we
solve the corresponding Poisson problem for various values of Ax = Ay , using
the following instructions:

>> k=0; fun=inl ine (’ 25’ , ’ x ’ , ’ y ’) ; bound=inl ine(’ (x==1)’ , ’ x ’ , ’ y ’) ;
>> for N = [10 ,20 ,40 ,80 ,160],

[u ,x,y]= po issonfd(0 ,0 ,1 ,1 ,N ,N ,fun ,bound);
k=k+1; uc(k) = u(N/2+1,N/2+1); end

The components of the vector uc are the values of the computed temperature
at the center of the plate as the step-size h of the grid decreases. We have

>> uc
2.0168 2.0616 2.0789 2.0859 2.0890

We can therefore conclude that at the center of the plate the temperature is
about 2.08°C. In Figure 9.17 we show the isolines of the temperature for two
different values of h .

F ig . 9.17. The isolines of the computed temperature for Ax = Ay = 1/10
(dashed l i n e s) and for Ax = Ay = 1/80 (c on t inuou s l i n e s)

References

[ABB+99]

[Ada90]

[Arn73]

[Atk89]

[Axe94]

[BB96]

[BM92]

[Bra97]

[BS01]

[But87]

[CHQZ06]

[CLW69]

[Dav63]

[DD99]

Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Don-
garra J., Croz J. D., Greenbaum A., Hammarling S., McKen-
ney A., and Sorensen D. (1999) LAPACK Use r ’s Guide. SIAM,
Philadelphia, 3rd edition.
Adair R. (1990) The phy s i c s o f baseball. Harper and Row, New
York.
Arnold V. (1973) Ordinary Dif ferent ial Equations. The MIT
Press, Cambridge.
Atkinson K. (1989) An In troduc t i on to Numeri cal Analysis. John
Wiley, New York.
Axelsson O. (1994) I t erat i ve Solut ion Methods. Cambridge Uni­
versity Press, New York.
Brassard G. and Bratley P. (1996) Fundamenta l s o f Algorith-
mics , 1/e. Prentice Hall, New York.
Bernardi C. and Maday Y. (1992) Approximations Spec t ral es des
Problem,es aux Limit es Elliptiques. Springer-Verlag, Paris.
Braess D. (1997) Fini t e Elements : Theory, Fast So l ve r s and
Appli cat ions in Sol id Me chan i c s . Cambridge University Press,
Cambridge.
Babuska I. and Strouboulis T. (2001) The Fini t e Element
Method and its Reliability. Oxford University Press, Padstow.
Butcher J. (1987) The Numeri ca l Analysis o f Ordinary Di f f e r en­
tial Equations: Runge -Ku t ta and General Linear Methods. Wi­
ley, Chichester.
Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A.
(2006) Spectral Methods : Fundamenta l s i n Singl e Doma in s .
Springer-Verlag, Berlin Heidelberg.
Carnahan B., Luther H., and Wilkes J. (1969) Applied Numeri cal
Methods. John Wiley ans Sons, Inc., New York.
Davis P. (1963) In te rpo l at ion and Approximat ion . Blaisdell
Pub., New York.
Davis T. and Duff I. (1999) A combined unifrontal/multifrontal
method for unsymmetric sparse matrices. A CM Transac t i ons on
Mathemat i c al So f twar e 25(1): 1-20.

308 References

[Dem97]

[Deu04]

[Die93]

[DL92]

[DR75]

[DS83]

[dV89]

[Eat02]

[EEHJ96]

[EKM05]

[Fun92]

[Gau97]

[Gea71]

[Gio97]

[GL96]

[GR96]

[Hac85]

[Hac94]

[HH05]

[Hig02]

[Hir88]

[HLR01]

[IK66]

Demmel J. (1997) Applied Numeri ca l Linear Algebra. SIAM,
Philadelphia.
Deuflhard P. (2004) Newton Methods f o r Nonl inear Problems.
Affine Invar i an c e and Adaptive Algori thms. Springer Series in
Computational Mathematics, 35: Springer-Verlag, Berlin.
Dierckx P. (1993) Curve and Sur fa c e Fi t t ing wi th Splines. Clare-
don Press, New York.
DeVore R. and Lucier J. (1992) Wavelets. Acta Numeri ca 1:
1-56.
Davis P. and Rabinowitz P. (1975) Methods o f Numeri cal In t e ­
g rat i on . Academic Press, New York.
Dennis J. and Schnabel R. (1983) Numeri cal Methods f o r Uncon­
s t rained Optimizat ion and Nonl inear Equations. Prentice-Hall,
Englewood Cliffs, New York.
der Vorst H. V. (1989) High Performance Preconditioning. SIAM
J. Sci. Stat. Comput . 10: 1174-1185.
Eaton J. (2002) GNU Octave manual. Network Theory Ltd.,
Bristol.
Eriksson K., Estep D., Hansbo P., and Johnson C. (1996) Com­
putat ional Dif ferent ial Equations. Cambridge Univ. Press, Cam­
bridge.
Etter D., Kuncicky D., and Moore H. (2005) In troduc t i on to
MATLAB 7. Prentice Hall, Englewood Cliffs.
Funaro D. (1992) Po l ynomia l Approximation o f Dif ferential
Equations . Springer-Verlag, Berlin Heidelberg.
Gautschi W. (1997) Numeri cal Analysis. An Introduct ion.
Birkhauser, Berlin.
Gear C. (1971) Numeri cal Init ial Value Prob l ems in Ordinary
Dif ferent ial Equat ions . Prentice-Hall, Upper Saddle River NJ.
Giordano N. (1997) Computat i onal ph y s i c s . Prentice-Hall, Up­
per Saddle River NJ.
Golub G. and Loan C. V. (1996) Matrix Computations . The
John Hopkins Univ. Press, Baltimore and London, 3rd edition.
Godlewski E. and Raviart P.-A. (1996) Hyperbol i c S y s t em s o f
Cons er vat i ons Laws , volume 118. Springer-Verlag, New York.
Hackbusch W. (1985) Mult igr id Methods and Applications.
Springer-Verlag, Berlin Heidelberg.
Hackbusch W. (1994) I terat ive Solut ion o f Large Sparse Sy s t ems
o f Equations. Springer-Verlag, New York.
Higham D. and Higham N. (2005) MATLAB Guide. S e c ond edi­
t i on . SIAM, Philadelphia.
Higham N. (2002) Accurac y and Stabil ity o f Numeri cal Algo­
ri thms. S e c ond edit ion. SIAM Publications, Philadelphia, PA.
Hirsh C. (1988) Numeri cal Computat i on o f In t e rnal and Exter­
nal Flows, volume 1. John Wiley and Sons, Chichester.
Hunt B., Lipsman R., and Rosenberg J. (2001) A gu id e to MAT­
LAB: f o r B e g inn e r s and Exper i enced Users. Cambridge Univer­
sity Press.
IsaacsonE. and Keller H. (1966) Analysis o f Numeri ca l Methods.
Wiley, New York.

References 309

[KS99]

[Lam91]

[Lan03]

[LeV02]

[Mei67]

[MH03]

[Pal04]

[Pan92]

[PBP02]

[PdDKUK83]

[Pra02]

[QSS06]

[QV94]

[RR85]

[Saa92]

[Saa96]

[SM03]

[TW98]

[Ube97]

[Urb02]

[vdV03]

[Kro98] KrOner D. (1998) Fini t e v o l um e s c h em e s in mult idimens ions .
Pitman Res. Notes Math. Ser., 380, Longman, Harlow.
Karniadakis G. and Sherwin S. (1999) Spectral/hp Element
Methods f o r CFD. Oxford University Press, Padstow.
Lambert J. (1991) Numeri ca l Methods f o r Ordinary Dif ferential
Sys tems . John Wiley and Sons, Chichester.
Langtangen H. (2003) Advanced Topics in Computat i onal Par ­
tial Dif ferent ial Equations: Numeri ca l Methods and Diffpack
Programming . Springer-Verlag, Berlin Heidelberg.
LeVeque R. (2002) Fini t e Volume Methods f o r Hyperbol i c Prob­
l em s . Cambridge University Press, Cambridge.
Meinardus G. (1967) Approximation o f Func t i ons : Theo ry and
Numeri cal Me thods . Springer-Verlag, Berlin Heidelberg.
Marchand P. and Holland O. (2003) Graphics and Guis With
Matlab. CRC Press.
Palm W. (2004) In troduc t i on to Matlab 7 f o r Engineers.
McGraw-Hill, New York.
Pan V. (1992) Complexity of Computations with Matrices and
Polynomials. SIAM Rev i ew 34: 225-262.
Prautzsch H., Boehm W., and Paluszny M. (2002) Bez i e r and
B-Spl ine Techniques. Springer-Verlag, Berlin Heidelberg.
Piessens R., de Doncker-Kapenga E., Uberhuber C., and Ka-

haner D. (1983) QUADPACK: A Subrout ine Package f o r Auto­
ma t i c In teg ra t ion . Springer-Verlag, Berlin Heidelberg.
Pratap R. (2002) Gett ing Start ed with MATLAB: A Quick In tro ­
du c t i on f o r Sc i en t i s t s and Engin ee r s . Oxford University Press,
Padstow.
Quarteroni A., Sacco R., and Saleri F. (2006) Numeri cal Math­
emat i c s , volume 37 of Texts in Applied Mathemat i c s . Springer-
Verlag, New York, 2nd edition.
Quarteroni A. and Valli A. (1994) Numeri cal Approximation o f
Partial Dif ferent ial Equat ions . Springer-Verlag, Berlin Heidel­
berg.
Ralston A. and Rabinowitz P. (1985) A First Cour se in Numer ­
ical Analysi s . McGraw-Hill, Singapore.
Saad Y. (1992) Numeri ca l Methods f o r Large Eigenvalue Prob­
l em s . Halstead Press, New York.
Saad Y. (1996) It erat i ve Methods f o r Sparse Linear Sys tems.
PWS Publishing Company, Boston.
Siili E. and Mayers D. (2003) An In troduc t i on to Numeri cal
Analysi s . Cambridge University Press, Cambridge.
Tveito A. and Winther R. (1998) In troduc t i on to Part ial Dif f er ­
ent ial Equations. A Computat i onal Approach. Springer-Verlag,
Berlin Heidelberg.
Uberhuber C. (1997) Numeri cal Computat ion: Methods, So f t ­
ware, and Analysis. Springer-Verlag, Berlin Heidelberg.
Urban K. (2002) Wavel et s in Numeri ca l Simulat ion. Springer
Verlag, Berlin Heidelberg.
van der Vorst H. (2003) I t erat i ve K r y l o v Methods f o r Large Lin­
ea r s y s t em s . Cambridge University Press, Cambridge.

310 References

[Wes04]

[Wil65]

Wesseling P. (2004) An In troduc t i on to Mult igr id Methods. R.T.
Edwards, Inc., Philadelphia.
Wilkinson J. (1965) The Algebraic Eigenvalue Problem. Claren­
don Press, Oxford.

Index

. . . 33
= 30

Abel’s theorem 60
abs 7
absolute

error 4
stability 202
stability region 204, 215, 235

Adams-Bashforth methods 213, 215
Adams-Moulton methods 214, 215
adaptive

formula 115
forward Euler method 203

adaptivity 87, 115
a itk en 59
Aitken’s

convergence 58
extrapolation 57
method 56

algorithm 26
Gauss 129
Horner 61
Strassen 27
synthetic division 61
Thomas 140, 241
Winograd and Coppersmith 27

aliasing 85
angle 7
ans 30
approximation 74

least-squares 93

arpackc 183
average 99
ax is 177

backward
difference formula 214
finite difference 104
substitutions 128

Bairstow’s method 66
baseball trajectory 188, 236
basis 3
biomechanics 72, 94
b isec tio n 43
bisection method 41, 53
Bogacki and Shampine pair 213
boundary conditions 240, 264
boundary-value problem 237

Dirichlet 240
Neumann 240

break 269
Broyden method 66
Butcher array 212, 213

cancellation 5
Cauchy

problem 190
theorem 61

characteristic
polynomial 167, 201
variables 259

Chebyshev
interpolation 80
nodes 80

312 Index

chol 133
Cholesky factorization 133
cholinc 164
c le a r 30
climatology 71, 76
communications 239
compass 7
complex 6
complex numbers 6
complexity 26
computational cost 26
cond 138
condest 138
condition number 138, 249
conj 7
consistency 196, 251
consistent method 195, 252
conv 20
convergence 25

Euler method 194
finite differences 251
Gauss-Seidel method 149
interpolation 79
iterative method 145
Newton method 46
order 25
power method 173
Richardson method 151

cos 30
cputime 27
Cramer rule 125
Crank-Nicolson method 197, 255,

257
cross 15
cub icsp lin e 90
cumtrapz 109
cyclic composite methods 216

Dahlquist barrier 214, 215
dblquad 119
deconv 20
deflation 61, 63, 183
degree of exactness 107
Dekker-Brent method 65
demography 102, 110, 120
derivative

partial 49
Descartes’s rule 61
det 131

determinant 131
d iag 12
d i f f 22
direct methods 126
discretization step 191
d isp 269
divergence operator 238
domain of dependence 259
Dormand-Prince pair 213
dot 14

economy 125
e ig 179
eigenvalue 15, 167

extremal 170
problem 167

eigenvector 15, 167
e ig s 181
elastic membrane 250
elastic springs 168
electrical circuits 189, 221, 224
electromagnetism 102, 121
elliptic operator 260
end 27
eps 3, 5
еы 3
equation

heat 253
Poisson 240
telegraph 239
wave 257

error
absolute 4, 24
computational 24
estimator 25, 47, 56, 115, 139
interpolation 77
local truncation 194
perturbation 206
relative 4, 24
roundoff 3
truncation 24, 194, 252

etime 27
Euler

backward method 191, 257
formula 7
forward method 191, 202
improved method 217

e x it 29
exp 30

Index 313

explicit method 192
exponent 3
extrapolation, Richardson method

121
eye 9

factorization
Cholesky 133, 175
Gauss 129
LU 127, 136, 175
QR 142

fe u le r 192
fev a l 16, 35
f f t 83
Fibonacci sequence 32
f igu re 177
finance 71, 92, 94
fin d 43
finite

difference method 241, 245
element method 162, 243, 245

finite difference
backward 104
centered 104
forward 103

f ix 269
fixed point 52

iterations
convergence 58

convergence 53, 55
iteration function 53
iterations 53

floating-point
numbers 2, 3
operations 26

format 3
formula

adaptive 115
backward difference 214
Euler 7

forward
Euler adaptive method 203
Euler method 191
finite difference 103
substitutions 127

Foucault pendulum 236
Fourier

discrete series 83
fast transform 83

inverse fast transform 83
law 239

fp lo t 15, 41, 87
fso lve 66 , 67, 193
function

derivative 21
graph 15
primitive 21

function 33
funtool 23
fzero 17, 65, 67

Gauss
algorithm 129
factorization 129, 132
quadrature formulae 119

Gauss-Legendre formula 113
Gauss-Seidel method 149, 158
Gershgorin circles 176, 178, 184
gmres 156
g r id 16
g rid d a ta 97
g rid d a ta3 97
griddatan 97

heat equation 238, 253
help 30
Heun method 217, 218, 235
Hilbert matrix 136, 139, 155, 157
hold off 177
hold on 177
horner 62
hydraulic network 123
hydraulics 101, 105
hydrogeology 238
hyperbolic

operator 260
system 258

Horner’s algorithm 61

i f 27
i f f t 83
imag 7
image compression 169, 182
implicit method 192
improved Euler method 217
increment 157
Inf 4
in l in e 35

314 Index

in t 22
in te rp i 87
in te rp i q 87
in te rp 2 97
in te rp 3 97
in te rp f t 84
interpolant 74
interpolation

Chebyshev 80
composite 86 , 97
error 77
Lagrangian polynomial 75
nodes 74
piecewise linear 86
polynomial 74
rational 75
spline 88
trigonometric 74, 81

interurban viability 169, 172
inv 10
investment fund 39, 68
in v sh if t 175
iteration function 57
iterative methods 126, 144
iterm eth 147

Jacobi method 146, 158

Kirchoff law 189
Kronecker symbol 75
Krylov methods 156, 164

Lagrange
characteristic polynomials 76
form 76

Lanczos method 183
Laplace

operator 237, 247
rule 11

law
Fourier 239
Kirchoff 189
Ohm 189

leap-frog method 223
least-squares

method 92
solution 141, 142

Legendre polynomials 112
Leontief model 125

lexicographic order 247
Lipschitz continuous function 191
load 30
log log 25
Lotka and Leslie model 169
Lotka-Volterra equations 188
LU

factorization 127, 136
incomplete 161

lu 131
lugauss 131
lu in c 161, 164

magic 164
mantissa 3
m atrix 8

bidiagonal 140
companion 66
determinant 10
diagonal 12
diagonally dominant 133, 147
Hankel 161
hermitian 13
Hilbert 136, 139, 157, 161
ill conditioned 138
inverse 10
iteration 145
Leslie 169, 184
permutation 134
positive definite 133, 149
product 10
Riemann 162
similar 179
sparse 141, 143
square 9
strictly diagonal 149
sum 9
symmetric 13, 133, 149
transpose 13
triangular 12
tridiagonal 140, 149, 241
Vandermonde 130, 161
well conditioned 138
Wilkinson 184

mesh 249
contour 298
meshgrid 97, 298
method

9 - 254

Index 315

Adams-Bashforth 213
Adams-Moulton 214
Aitken 56
backward Euler 191, 257
Bairstow 66
Bi-CGStab 156
bisection 41
Broyden 66
CGS 156
conjugate gradient 153
consistent 195
Crank-Nicolson 197, 255, 257
Dekker-Brent 65
dynamic Richardson 150
explicit 192
finite elements 162, 263
forward Euler 191
forward Euler/uncentred 262
Gauss-Seidel 149
GMRES 156, 161
gradient 151
Heun 217, 218, 235
implicit 192
improved Euler 217
Jacobi 146
Krylov 156, 164
Lax-Wendroff 263
leap-frog 223
least-squares 92
Monte Carlo 268
multifrontal 164
multigrid 164
multistep 200, 213
Muller 66
Newmark 222, 223, 260
Newton 45
Newton-Horner 63
power 171
predictor-corrector 216
QR 179
quasi-Newton 66
relaxation 149, 166, 288
Runge-Kutta 212
SOR 166
spectral 263
stationary Richardson 150
upwind 262

midpoint formula 106
composite 106

mkpp 90
model

Leontief 125
problem 202

generalized 205
multistep method 200, 213
Muller’s method 66

NaN 5
narg in 35
nchoosek 269
Neumann boundary conditions 264
newmark 223
newmark 315
Newmark method 222, 223, 260
newton 48
Newton method 45, 56

adaptive 46
for systems 49
modified 46

Newton-Cotes formulae 119
Newton-Hoorner, method 63
newtonhorner 64
newtonsys 50
nodes

Chebyshev 80
Gauss-Legendre-Lobatto 113

norm 15
normal equations 96, 141
not a number 5
not -a-knot c ond i t i on 90
numerical integration 105

ode 213
ode113 218
ode15s 216
ode23 213, 221
ode23tb 213
ode45 213, 221
Ohm law 189
one-step method 192
ones 14
optics 102, 122
ordinary differential equation 187
overflow 4, 5

parabolic operator 260
partial

derivative 237

316 Index

differential equation 187
patch 177
path 32
pattern of a m atrix 141
pcg 155
pchip 91
pde 251
pdetool 97, 263
permutation m atrix 134
phase plane 220
piecewise linear interpolation 86
pivot elements 129
pivoting 134

by row 134
complete 286

Pn 17
Poisson equation 237
poly 38, 79
polyder 20, 79
po lyderiv 21
p o ly f it 21, 76, 94
p o ly in t 20
po ly in teg 21
polynomial 18

characteristic 167
division 20, 62
Lagrangian interpolation 75
product 20
Taylor 22

p o lyval 18, 76
population dynamics 41, 54, 168,

184, 188, 219
Malthus model 41
predator/prey model 41, 54
Verhulst model 41, 54

eigpower 171
power method 171

inverse 174
with shift 175

ppval 90
preconditioner 146, 150

incomplete LU factorization 164
predator/prey model 41
predictor-corrector method 216
p re tty 268
problem

boundary-value 237
Cauchy 190
stiff 230, 231

prod 269
ptomedioc 107

QR
factorization 142
method 179

q rbasic 180
quad2dc 119
quad2dg 119
quadl 114
quadrature

nodes 111
weights 111

quadratures
Gauss 113
interpolatory 111

quasi-Newton methods 66
q u it 29
quiver 15
qu iver3 15

rand 27
rank 141

full 141
Rayleigh quotient 167
rcond 138
r e a l 7
realmax 4
realm in 4
rectangle formula 106

composite 106
region of absolute stability 204, 235
regression line 94
relaxation method 149, 166, 288
residual 47, 139, 156
re tu rn 34
robotics 73, 90
rods system 40, 68
root 16

condition 201
roots 19, 66
roundoff error 3, 135, 136
rpmak 97
rsmak 97
rule

Cramer 125
Descartes 61
Laplace 11

Runge’s function 79, 81

Index 317

Runge-Kutta method 212

save 30
scalar product 14
semi-discretization 254
shape function 244
shift 175
significant digits 3
simpadpt 117, 118
simple 23, 288
Simpson

adaptive formula 116
composite formula 109
formula 109

simpsonc 110
s in 30
singular value decomposition 167
singular values 167
sparse matrix 141, 249
spdemos 97
spdiags 140
spectral radius 145
spectrometry 124, 129
spectrum 170
spherical pendulum 225
spline 88

natural cubic 88
sp lin e 90
spy 249
sq rt 30
stability

absolute 205
asymptotical 254
conditioned absolute 204
region of absolute 235
unconditioned absolute 204

Steffensen’s method 58
stencil 247
stiff problems 230
stopping test

for fixed point iterations 55
for iterative methods 156

Strassen algorithm 27
Sturm, sequences 66, 183
successive over-relaxation method

166
sum 269
svd 181
syms 22, 288

synthetic division algorithm 61
system

hyperbolic 258
linear 123
nonlinear 49
overdetermined 141
triangular 127
tridiagonal 140
underdetermined 128, 141

ta y lo r 22
Taylor polynomial 22, 73
ta y lo r to o l 73
theorem

Abel 60
Cauchy 61
Descartes 61
equivalence 201
first mean-value 21
of integration 21

thermodynamics 187, 235, 239, 265
Thomas algorithm 140, 241
three-body problem 228
t i t l e 177
toolbox 18, 28, 30
trapezoidal formula 109

composite 108
trap z 109
trigonometric interpolant 82
t r i l 12
t r iu 12
truncation error 194, 252, 255

underflow 4

Van der Pol equation 232
vander 130
variance 99, 280
vector 14

column 9
component 14
linearly independent 14
norm 15
row 9

wave equation 238
wavelet 98
wavelets 98
weak formulation 243

318 Index

w ilk inson 184

x lab e l 177

y la b e l 177

zero

multiple 16
of a function 16
simple 16

zero-stability 199
zeros 9, 14

Editorial Policy

1. Textbooks on topics in the field o f computational science and engineering w ill be
considered. They should be written for courses in C SE education. Both graduate and
undergraduate textbooks w ill be published in TCSE . Multidisciplinary topics and
multidisciplinary teams of authors are especially welcome.

2 . Format: Only works in English w ill be considered. They should be submitted in
camera-ready form according to Springer-Verlag’s specifications. Electronic material
can be included if appropriate. Please contact the publisher. Technical instructions
and/or T E X macros are available via http://www.springer.com/sgw/cda/frontpage/
o, 11855,5-40017-2-71391-o,oo.html

3. Those considering a bookwhichmight be suitable for the series are strongly ad­
vised to contact the publisher or the series editors at an early stage.

General Remarks

T C SE books are printed by photo-offset from the master-copy delivered in camera-
ready form by the authors. For this purpose Springer-Verlag provides technical in­
structions for the preparation o f manuscripts. See also Editorial Policy.

Careful preparation o f manuscripts w ill help keep production time short and ensure
a satisfactory appearance o f the finished book.

The following terms and conditions hold:
Regarding free copies and royalties, the standard terms for Springer mathematics
monographs and textbooks hold. Please write to martin.peters@springer.com for de­
tails.

Authors are entitled to purchase further copies o f their book and other Springer books
for their personal use, at a discount o f 33,3% directly from Springer-Verlag.

http://www.springer.com/sgw/cda/frontpage/
mailto:martin.peters@springer.com

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
e-mail: barth@nas.nasa.gov

Michael Griebel
Institut fur Numerische Simulation
der Universitat Bonn
Wegelerstr. 6
53115 Bonn, Germany
e-mail: griebel@ins.uni-bonn.de

David E. Keyes
Department of Applied Physics
and Applied Mathematics
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY 10027, USA
e-mail: david.keyes@columbia.edu

Risto M. Nieminen
Laboratory of Physics
Helsinki University of Technology
02150 Espoo, Finland
e-mail: rni@fyslab.hut.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
e-mail: dirk.roose@cs.kuleuven.ac.be

Tamar Schlick
Department of Chemistry
Courant Institute of Mathematical
Sciences
New York University
and Howard Hughes Medical Institute
251 Mercer Street
New York, NY 10012, USA
e-mail: schlick@nyu.edu

Editor at Springer: Martin Peters
Springer-Verlag, Mathematics Editorial IV
Tiergartenstrasse 17
D-69121 Heidelberg, Germany
Tel.: *49 (6221) 487-8185
Fax: *49 (6221) 487-8355
e-mail: martin.peters@springer.com

mailto:barth@nas.nasa.gov
mailto:griebel@ins.uni-bonn.de
mailto:david.keyes@columbia.edu
mailto:rni@fyslab.hut.fi
mailto:dirk.roose@cs.kuleuven.ac.be
mailto:schlick@nyu.edu
mailto:martin.peters@springer.com

Texts in Computational Science
and Engineering
Vol. I H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 2nd Edition 2003. X X V I, 855 pp. Hardcover. ISB N 3-540-43416-X

Vol. 2 A . Quarteroni, F. Saleri, Scientific Computing with M ATLAB and Octave. 2nd Edition 2006. XIV,
318 pp. Hardcover. ISB N 3-540-32612-X

Vol. 3 H. P. Langtangen, Python Scripting fo r Computational Science. 2nd Edition 2006. X X IV, 736 pp.
Hardcover. ISB N 3-540-29415-5

F or further information on these books, please have a look at our mathematics catalogue at the following
URL: w w w . s p r i n g e r . c o m / s e r i e s / 5 1 5 1

Monographs in Computational Science
and Engineering

Vol. I J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K .-A . Mardal, A . Tveito. Computing the Electrical
Activity in the Heart. 2006. X I, 318 pp. Hardcover. ISB N 3-540-33432-7

For further information on this book, please have a look at our mathematics catalogue at the following
URL: w w w . s p r i n g e r . c o m / s e r i e s / 7 4 1 7

Lecture Notes
in Computational Science
and Engineering

Vol. I D.Funaro, Spectral Elements fo r Transport-Dominated Equations. 1997. X , 211 pp. Softcover.
ISB N 3 -5 4 0 -62 6 4 9 -2

Vol. 2 H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 1999. XX III, 682 pp. Hardcover. ISB N 3-540-65274-4

Vol. 3 W. Hackbusch, G. Wittum (eds.), Multigrid Methods V. Proceedings o f the Fifth European M ulti­
grid Conference held in Stuttgart, Germany, October 1-4 , 1996. 1998. VIII, 334 pp. Softcover.
ISB N 3 -5 4 0 -6 3 1 3 3 -X

Vol. 4 P. Deuflhard, J. Hermans, B. Leimkuhler, A . E. Mark, S. Reich, R. D. Skeel (eds.), Computational
M olecular Dynamics: Challenges, Methods, Ideas. Proceedings o f the 2nd International Symposium
on Algorithm s for Macromolecular Modelling, Berlin, M ay 2 1-2 4 ,1 9 9 7 . 1998. X I, 489 pp. Softcover.
ISB N 3-540-63242-5

Vol. 5 D. Kroner, M. Ohlberger, C. Rohde (eds.), A n Introduction to Recent Developments in Theory
and Numerics fo r Conservation Laws. Proceedings o f the International School on Theory and Numer­
ics for Conservation Law s, Freiburg /Littenweiler, October 20-24, 1997. 1998. VII, 285 pp. Softcover.
ISB N 3 -5 4 0 -6 5 0 8 1 -4

Vol. 6 S. Turek, Efficient SolversforIncom pressible Flow Problems. A n Algorithm ic and Computational
Approach. 1999. X V II, 352 pp, with CD -ROM . Hardcover. ISB N 3-540-65433-X

http://www.springer.com/series/5151
http://www.springer.com/series/7417

Vol. 7 R. von Schwerin, M ulti Body System SIMulation. Numerical Methods, Algorithm s, and Software.
1999. X X , 338 pp. Softcover. ISB N 3-540-65662-6

Vol. 8 H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput­
ing. Proceedings o f the International FORTW IH R Conference on H PSE C, Munich, March 16-18,1998.
1999. X , 471 pp. Softcover. ISB N 3-540-65730-4

Vol. 9 T. J. Barth, H. Deconinck (eds.), H igh-OrderM ethodsfor Computational Physics. 1999. VII, 582
pp. Hardcover. ISB N 3-540-65893-9

Vol. 10 H. P. Langtangen, A . M. Bruaset, E. Quak (eds.), Advances in Software Tools forScientific Com ­
puting. 2000. X , 357 pp. Softcover. ISB N 3-540-66557-9

Vol. 11 B.Cockburn, G .E .K arniadakis, C .-W .Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications. 2000. X I, 470 pp. Hardcover. ISB N 3-540-66787-3

Vol. 12 U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Prac­
tical Applications. 2000. XIII, 375 pp. Softcover. ISB N 3-540-67629-5

Vol. 13 B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.
Parallelldatorcentrum Seventh Annual Conference, Stockholm, Decem ber 1999, Proceedings. 2000. XIII,
301 pp. Softcover. ISB N 3-540-67264-8

Vol. 14 E. D ick, K. Riemslagh, J. Vierendeels (eds.), M ultigridM ethods VI. Proceedings o f the Sixth Eu­
ropean Multigrid Conference Held in Gent, Belgium , September 27-30,1999. 2000. IX, 293 pp. Softcover.
ISB N 3-540-67157-9

Vol. 15 A . Frommer, T. Lippert, B. M edeke, K. Schilling (eds.), Numerical Challenges in Lattice Quan­
tum Chromodynamics. Joint Interdisciplinary Workshop o f John von Neumann Institute for Computing,
Julich and Institute o f Applied Computer Science, Wuppertal University, A ugust 1999. 2000. VIII, 184
pp. Softcover. ISB N 3-540-67732-1

Vol. 16 J. Lang, Adaptive M ultilevel Solution ofN onlinearParabolic P D E Systems. Theory, Algorithm,
and Applications. 2001. XII, 157 pp. Softcover. ISB N 3-540-67900-6

Vol. 17 B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.
2001. X , 197 pp. Softcover. ISB N 3-540-41083-X

Vol. 18 U. van Rienen, M. Gunther, D. Hecht (eds.), Scientific Computing in Electrical Engineering. Pro­
ceedings o f the 3rd International Workshop, A ugust 20-23, 2000, Warnemunde, Germany. 2001. XII, 428
pp. Softcover. ISB N 3-540-42173-4

Vol. 19 I. Babuska, P. G. Ciarlet, T. M iyoshi (eds.), Mathematical M odeling and Numerical Simulation
in Continuum Mechanics. Proceedings o f the International Symposium on Mathematical Modeling and
Numerical Simulation in Continuum Mechanics, September 29 - October 3, 2000, Yamaguchi, Japan.
2002. VIII, 301 pp. Softcover. ISB N 3-540-42399-0

Vol. 20 T. J. Barth, T. Chan, R. Haimes (eds.), M ultiscale and Multiresolution Methods. Theory and A p ­
plications. 2002. X , 389 pp. Softcover. ISB N 3-540-42420-2

Vol. 21 M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.
Proceedings o f the 3rd International FORTW IH R Conference on H PSEC, Erlangen, March 12-14, 2001.
2002. XIII, 408 pp. Softcover. ISB N 3-540-42946-8

Vol. 22 K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.
2002. XV, 181 pp. Softcover. ISB N 3-540-43055-5

Vol. 23 L. F. Pavarino, A . Toselli (eds.), RecentDevelopm ents in Domain Decomposition Methods. 2002.
XII, 243 pp. Softcover. ISB N 3-540-43413-5

Vol. 24 T. Schlick, H. H. Gan (eds.), Computational Methods fo r Macromolecules: Challenges andAp-
plications. Proceedings o f the 3rd International Workshop on Algorithm s for Macromolecular M odeling,
New York, October 12-14, 2000. 2002. IX, 504 pp. Softcover. ISB N 3-540-43756-8

Vol. 25 T. J. Barth, H. Deconinck (eds.), Error Estimation andAdaptive Discretization Methods in Com ­
putational Fluid Dynamics. 2003. VII, 344 pp. Hardcover. ISB N 3-540-43758-4

Vol. 26 M. Griebel, M. A . Schweitzer (eds.), M eshfree M ethodsforPartial Differential Equations. 2003.
IX, 466 pp. Softcover. ISB N 3-540-43891-2

Vol. 27 S. Muller, Adaptive M ultiscale Schemes fo r Conservation Laws. 2003. XIV, 181 pp. Softcover.
ISB N 3-540-44325-8

Vol. 28 C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe, P. M onk (eds.), Computational E lec­
tromagnetics. Proceedings o f the G A M M Workshop on "Computational Electromagnetics” , K iel, Ger­
many, January 26-28, 2001. 2003. X , 209 pp. Softcover. ISB N 3-540-44392-4

Vol. 29 M. A . Schweitzer, A Parallel Multilevel Partition o f Unity M ethod fo r Elliptic Partial Differen­
tial Equations. 2003. V, 194 pp. Softcover. ISB N 3-540-00351-7

Vol. 30 T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloem en Waanders (eds.), Large-Scale PDE-
Constrained Optimization. 2003. VI, 349 pp. Softcover. ISB N 3-540-05045-0

Vol. 31 M. Ainsworth, P. D avies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation . Direct and Inverse Problems. 2003. VIII, 399 pp. Softcover. ISB N 3-540-00744-X

Vol. 32 H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Com pu­
tational M odelling. 2003. X V, 432 pp. Hardcover. ISB N 3-540-40367-1

Vol. 33 H. P. Langtangen, A . Tveito (eds.), Advanced Topics in Computational Partial Differential Equa­
tions. Numerical M ethodsandD iffpack Programming. 2003. X IX , 658 pp. Softcover. ISB N 3-540-01438-1

Vol. 34 V. John, Large Eddy Simulation o f Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class o f LE S Models. 2004. XII, 261 pp. Softcover. ISB N 3-540-40643-3

Vol. 35 E. Bansch (ed.), Challenges in Scientific Computing - C ISC 2002. Proceedings o f the Confer­
ence Challenges in Scientific Computing, Berlin, October 2-5, 2002. 2003. VIII, 287 pp. Hardcover.
ISB N 3-540-40887-8

Vol. 36 B. N. Khoromskij, G. Wittum, Numerical Solution o f Elliptic Differential Equations by Reduc­
tion to the Interface. 2004. X I, 293 pp. Softcover. ISB N 3-540-20406-7

Vol. 37 A . Iske, Multiresolution Methods in Scattered Data Modelling. 2004. XII, 182 pp. Softcover.
ISB N 3-540-20479-2

Vol. 38 S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems. 2004. XIV, 446 pp. Softcover.
ISB N 3-540-20890-9

Vol. 39 S. Attinger, P. Koumoutsakos (eds.), M ultiscale Modelling and Simulation. 2004. VIII, 277 pp.
Softcover. ISB N 3-540-21180-2

Vol. 40 R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Wildlund, J. X u (eds.), Domain Decom po­
sition Methods in Science and Engineering. 2005. X V III, 690 pp. Softcover. ISB N 3-540-22523-4

Vol. 41 T. Plewa, T. Linde, V G . Weirs (eds.), Adaptive M esh Refinement - Theory and Applications.
2005. XIV, 552 pp. Softcover. ISB N 3-540-21147-0

Vol. 42 A . Schmidt, K .G . Siebert, Design ofAdaptive Finite Element Software. The Finite Element Tool­
box A LB E R T A . 2005. XII, 322 pp. Hardcover. ISB N 3-540-22842-X

Vol. 43 M. Griebel, M .A. Schweitzer (eds.), M eshfree Methods fo r Partial Differential Equations II.
2005. XIII, 303 pp. Softcover. ISB N 3-540-23026-2

Vol. 44 B. Engquist, P. Lotstedt, O. Runborg (eds.), M ultiscale Methods in Science and Engineering.
2005. XII, 291 pp. Softcover. ISB N 3-540-25335-1

Vol. 45 P. Benner, V. Mehrmann, D .C. Sorensen (eds.), Dimension Reduction o f Large-Scale Systems.
2005. XII, 402 pp. Softcover. ISB N 3-540-24545-6

Vol. 46 D. Kressner (ed.), Numerical Methods fo r General and Structured Eigenvalue Problems. 2005.
XIV, 258 pp. Softcover. ISB N 3-540-24546-4

Vol. 47 A . Bori^i, A . Frommer, B. Joo, A . Kennedy, B. Pendleton (eds.), Q C D and Numerical Analysis
III. 2005. XIII, 201 pp. Softcover. ISB N 3-540-21257-4

Vol. 48 F. Graziani (ed.), Computational Methods in Transport. 2006. VIII, 524 pp. Softcover.
ISB N 3 -5 4 0 -28 1 2 2 -3

Vol. 49 B. Leimkuhler, C. Chipot, R. Elber, A . Laaksonen, A . Mark, T. Schlick, C. Schutte, R. Skeel
(eds.), New Algorithms fo r M acrom olecular Simulation. 2006. X V I, 376 pp. Softcover.
ISB N 3 -5 4 0 -2 5 5 4 2 -7

Vol. 50 M. Bucker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations. 2006. X VIII, 362 pp. Softcover. ISB N 3-540-28403-6

Vol. 51 A .M . Bruaset, A . Tveito (eds.), Numerical Solution ofPartial Differential Equations on Parallel
Computers 2006. XII, 482 pp. Softcover. ISB N 3-540-29076-1

Vol. 52 K.H. Hoffmann, A . M eyer (eds.), Parallel Algorithms and Cluster Computing. 2006. X , 374 pp.
Softcover. ISB N 3-540-33539-0

Vol. 53 H.-J. Bungartz, M. Schafer (eds.), Fluid-Structure Interaction. 2006. VII, 388 pp. Softcover.
ISB N 3 -5 4 0 -3 4 5 9 5 -7

F o r further information on these books please have a look at ourmathematics catalogue at the following
URL: w w w . s p r i n g e r . c o m / s e r i e s / 3 5 2 7

http://www.springer.com/series/352

Texts in Computational Science - i
and Engineering ^

This textbook is an introduction to Scientific

Com puting, in which several num erical m ethods

for the com puter solution of certain classes of

m athem atical problem s arc illustrated. The

authors show how to compute the zeros or the

integrals of continuous functions, solve linear

systems, approxim ate functions by polynomials

and construct accurate approxim ations for the

solution of ordinary and partial differential

equations. To make the presentation concrete

and appealing, the program m ing environm ents

Matlab and Octave, which is freely distributed,

are adopted as faithful Companions. The book

contains the solutions to several problems posed

in exercises and examples, often originating

from specific applications. A specific section is

devoted to subject* which were ПО! addfe£S*d

in the book and contains the bibliographical

references for a more comprehensive treatm ent

of the material. The second edition features

many new* problems and examples, as well as

m ore num erical m ethods for linear and n o n ­

linear systems and ordinary and partial differen­

tial equations.

) sfxingef.com

