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Preface

The world we live in is becoming ever more reliant on the use of electronics 
and computers to control the behavior of real-world resources. For example, 
an increasing amount of commerce is performed without a single banknote 
or coin ever being exchanged. Similarly, airports can safely land and send off 
airplanes without ever looking out of a window. Another, more individual, 
example is the increasing use of electronic personal organizers for organizing 
meetings and contacts. All these examples share a similar structure; multiple 
parties (e.g., airplanes or people) come together to co-ordinate their activities 
in order to achieve a common goal. It is not surprising, then, that a lot of 
research is being done into how a lot of mechanics of the co-ordination process 
can be automated using computers.

Fuzzy logic means approximate reasoning, information granulation, com­
puting with words and so on.

Ambiguity is always present in any realistic process. This ambiguity may 
arise from the interpretation of the data inputs and in the rules used to de­
scribe the relationships between the informative attributes. Fuzzy logic pro­
vides an inference structure that enables the human reasoning capabilities 
to be applied to artificial knowledge-based systems. Fuzzy logic provides a 
means for converting linguistic strategy into control actions and thus offers a 
high-level computation.

Fuzzy logic provides mathematical strength to the emulation of certain 
perceptual and linguistic attributes associated with human cognition, whereas 
the science of neural networks provides a new computing tool with learning 
and adaptation capabilities. The theory of fuzzy logic provides an inference 
mechanism under cognitive uncertainty, computational neural networks offer 
exciting advantages such as learning, adaptation, fault tolerance, parallelism, 
and generalization.
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About the Book

This book is meant for a wide range of readers, especially college and university 
students wishing to learn basic as well as advanced processes and techniques 
in fuzzy systems. It can also be meant for programmers who may be involved 
in programming based on the soft computing applications.

The principles of fuzzy systems are dealt in depth with the information 
and the useful knowledge available for computing processes. The various al­
gorithms and the solutions to the problems are well balanced pertinent to the 
fuzzy systems’ research projects, labs, and for college- and university-level 
studies.

Modern aspects of soft computing have been introduced from the first 
principles and discussed in an easy manner, so that a beginner can grasp the 
concept of fuzzy systems with minimal effort.

The solutions to the problems are programmed using Matlab 6.0 and the 
simulated results are given. The fuzzy logic toolbox are also provided in the 
Appendix for easy reference of the students and professionals.

The book contains solved example problems, review questions, and exercise 
problems.

This book is designed to give a broad, yet in-depth overview of the field 
of fuzzy systems. This book can be a handbook and a guide for students of 
computer science, information technology, EEE, ECE, disciplines of engineer­
ing, students in master of computer applications, and for professionals in the 
information technology sector, etc.

This book will be a very good compendium for almost all readers — from 
students of undergraduate to postgraduate level and also for researchers, pro­
fessionals, etc. — who wish to enrich their knowledge on fuzzy systems’ prin­
ciples and applications with a single book in the best manner.

This book focuses mainly on the following academic courses:

• Master of Computer Applications (MCA)
• Master of Computer and Information Technology
• Master of Science (Software)-Integrated
• Engineering students of computer science, electrical and electronics 

engineering, electronics and communication engineering and information 
technology both at graduate and postgraduate levels

• Ph.D research scholars who work in this field

Fuzzy systems, at present, is a hot topic among academicians as well as among 
program developers. As a result, this book can be recommended not only for 
students, but also for a wide range of professionals and developers who work 
in this area.

This book can be used as a ready reference guide for fuzzy system research 
scholars. Most of the algorithms, solved problems, and applications for a wide 
variety of areas covered in this book can fulfill as an advanced academic book.
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In conclusion, we hope that the reader will find this book a truly helpful
guide and a valuable source of information about the fuzzy system principles
for their numerous practical applications.

Organization of the Book

The book covers 9 chapters altogether. It starts with introduction to the fuzzy
system techniques. The application case studies are also discussed.

The chapters are organized as follows:

• Chapter 1 gives an introduction to fuzzy logic and Matlab.
• Chapter 2 discusses the definition, properties, and operations of classical 

and fuzzy sets. It contains solved sample problems related to the classical 
and fuzzy sets.

• The Cartesian product of the relation along with the cardinality, opera­
tions, properties, and composition of classical and fuzzy relations is dis­
cussed in chapter 3.

• Chapter 4 gives details on the membership functions. It also adds features 
of membership functions, classification of fuzzy sets, process of fuzzifi­
cation, and various methods by means of which membership values are 
assigned.

• The process and the methods of defuzzification are described in chapter 
5. The lambda cut method for fuzzy set and relation along with the other 
methods like centroid method, weighted average method, etc. are discussed 
with solved problems inside.

• Chapter 6 describes the fuzzy rule-based system. It includes the aggrega­
tion, decomposition, and the formation of rules. Also the methods of fuzzy 
inference system, mamdani, and sugeno methods are described here.

• Chapter 7 provides the information regarding various decision-making 
processes like fuzzy ordering, individual decision making, multiperson deci­
sion making, multiobjective decision making, and fuzzy Bayesian decision­
making method.

• The application of fuzzy logic in various fields along with case studies and 
adaptive fuzzy in image segmentation is given in chapter 8.

• Chapter 9 gives information regarding a few projects implemented using 
the fuzzy logic technique.

• The appendix includes fuzzy Matlab tool box.
• The bibliography is given at the end after the appendix chapter.

Salient Features of Fuzzy Logic

The salient features of this book include

• Detailed description on fuzzy logic techniques
• Variety of solved examples
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• Review questions and exercise problems
• Simulated results obtained for the fuzzy logic techniques using Matlab

version 6.0
• Application case studies and projects on fuzzy logic in various fields.
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Introduction

1

1.1 Fuzzy Logic

In the literature sources, we can find different kinds of justification for 
fuzzy systems theory. Human knowledge nowadays becomes increasingly 
important -  we gain it from experiencing the world within which we live 
and use our ability to reason to create order in the mass of information (i.e., 
to formulate human knowledge in a systematic manner). Since we are all 
limited in our ability to perceive the world and to profound reasoning, we find 
ourselves everywhere confronted by uncertainty which is a result of lack of 
information (lexical impression, incompleteness), in particular, inaccuracy of 
measurements. The other limitation factor in our desire for precision is a nat­
ural language used for describing/sharing knowledge, communication, etc. We 
understand core meanings of word and are able to communicate accurately 
to an acceptable degree, but generally we cannot precisely agree among our­
selves on the single word or terms of common sense meaning. In short, natural 
languages are vague.

Our perception of the real world is pervaded by concepts which do not 
have sharply defined boundaries -  for example, many, tall, much larger than, 
young, etc. are true only to some degree and they are false to some degree as 
well. These concepts (facts) can be called fuzzy or gray (vague) concepts -  a 
human brain works with them, while computers may not do it (they reason 
with strings of 0s and 1s). Natural languages, which are much higher in level 
than programming languages, are fuzzy whereas programming languages are 
not. The door to the development of fuzzy computers was opened in 1985 
by the design of the first logic chip by Masaki Togai and Hiroyuki Watanabe 
at Bell Telephone Laboratories. In the years to come fuzzy computers will 
employ both fuzzy hardware and fuzzy software, and they will be much closer 
in structure to the human brain than the present-day computers are.

The entire real world is complex; it is found that the complexity arises from 
uncertainty in the form of ambiguity. According to Dr. Lotfi Zadeh, Principle 
of Compatability, the complexity, and the imprecision are correlated and adds,
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The closer one looks at a real world problem, the fuzzier becomes its
solution (Zadeh 1973)

The Fuzzy Logic tool was introduced in 1965, also by Lotfi Zadeh, and is 
a mathematical tool for dealing with uncertainty. It offers to a soft computing 
partnership the important concept of computing with words’. It provides a 
technique to deal with imprecision and information granularity. The fuzzy 
theory provides a mechanism for representing linguistic constructs such as 
“many,” “low,” “medium,” “often,” “few.” In general, the fuzzy logic provides 
an inference structure that enables appropriate human reasoning capabilities. 
On the contrary, the traditional binary set theory describes crisp events, events 
that either do or do not occur. It uses probability theory to explain if an 
event will occur, measuring the chance with which a given event is expected 
to occur. The theory of fuzzy logic is based upon the notion of relative graded 
membership and so are the functions of mentation and cognitive processes. 
The utility of fuzzy sets lies in their ability to model uncertain or ambiguous 
data, Fig. 1.1, so often encountered in real life.

It is important to observe that there is an intimate connection between 
Fuzziness and Complexity. As the complexity of a task (problem), or of a 
system for performing that task, exceeds a certain threshold, the system must 
necessarily become fuzzy in nature. Zadeh, originally an engineer and sys­
tems scientist, was concerned with the rapid decline in information afforded 
by traditional mathematical models as the complexity of the target system in­
creased. As he stressed, with the increasing of complexity our ability to make 
precise and yet significant statements about its behavior diminishes. Real- 
world problems (situations) are too complex, and the complexity involves the 
degree of uncertainty -  as uncertainty increases, so does the complexity of the 
problem. Traditional system modeling and analysis techniques are too precise 
for such problems (systems), and in order to make complexity less daunt­
ing we introduce appropriate simplifications, assumptions, etc. (i.e., degree of 
uncertainty or Fuzziness) to achieve a satisfactory compromise between the 
information we have and the amount of uncertainty we are willing to accept. 
In this aspect, fuzzy systems theory is similar to other engineering theories, 
because almost all of them characterize the real world in an approximate 
manner.

Imprecise
data Fuzzy Decisions

logic
Vague system

statements

Fig. 1.1. A fuzzy logic system which accepts imprecise data and vague statements 
such as low, medium, high and provides decisions
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Fuzzy sets provide means to model the uncertainty associated with vague­
ness, imprecision, and lack of information regarding a problem or a plant, etc. 
Consider the meaning of a “short person.” For an individual X, the short per­
son may be one whose height is below 4/25". For other individual Y, the short 
person may be one whose height is below or equal to Э'Эй". This “short” is 
called as a linguistic descriptor. The term “short” informs the same meaning 
to the individuals X and Y, but it is found that they both do not provide a 
unique definition. The term “short” would be conveyed effectively, only when 
a computer compares the given height value with the preassigned value of 
“short.” This variable “short” is called as linguistic variable, which represents 
the imprecision existing in the system.

The uncertainty is found to arise from ignorance, from chance and random­
ness, due to lack of knowledge, from vagueness (unclear), like the fuzziness 
existing in our natural language. Lotfi Zadeh proposed the set membership 
idea to make suitable decisions when uncertainty occurs. Consider the “short” 
example discussed previously. If we take “short” as a height equal to or less 
than 4 feet, then Э'Ю" would easily become the member of the set “short” 
and 4'25" will not be a member of the set “short.” The membership value 
is “1” if it belongs to the set or “0” if it is not a member of the set. Thus 
membership in a set is found to be binary i.e., the element is a member of a 
set or not.

It can be indicated as,

where Xa(x) is the membership of element x  in set A  and A  is the entire set 
on the universe.

This membership was extended to possess various “degree of membership” 
on the real continuous interval [0,1]. Zadeh formed fuzzy sets as the sets on the 
universe X which can accommodate “degrees of membership.” The concept 
of a fuzzy set contrasts with a classical concept of a bivalent set (crisp set), 
whose boundary is required to be precise, i.e., a crisp set is a collection of 
things for which it is known whether any given thing is inside it or not. Zadeh 
generalized the idea of a crisp set by extending a valuation set { 1, 0} (defi­
nitely in/definitely out) to the interval of real values (degrees of membership) 
between 1 and 0 denoted as [0,1]. We can say that the degree of membership 
of any particular element of a fuzzy set express the degree of compatibility of 
the element with a concept represented by fuzzy set. It means that a fuzzy set 
A contains an object x  to degree a(x), i.e., a(x) =  Degree(x G A), and the 
map a : X  ^  {Membership D egrees} is called a set function or membership 
function. The fuzzy set A  can be expressed as A  =  {(x , a (x))}, x G X , and it 
imposes an elastic constrain of the possible values of elements x G X  called the 
possibility distribution. Fuzzy sets tend to capture vagueness exclusively via 
membership functions that are mappings from a given universe of discourse
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X -  u n ive rse  of d iscou rse

X  to a unit interval containing membership values. It is important to note 
that membership can take values between 0 and 1.

Fuzziness describes the ambiguity of an event and randomness describes 
the uncertainty in the occurrence of an event. It can be generally seen in 
classical sets that there is no uncertainty, hence they have crisp boundaries, 
but in the case of a fuzzy set, since uncertainty occurs, the boundaries may 
be ambiguously specified.

From the Fig. 1.2, it can be noted that a is clearly a member of fuzzy set 
P , c is clearly not a member of fuzzy set P , but the membership of b is found 
to be vague. Hence a can take membership value 1, c can take membership 
value 0 and b can take membership value between 0 and 1 [0 to 1], say 0.4,
0.7, etc. This is set to be a partial member ship of fuzzy set P .

The membership function for a set maps each element of the set to a 
membership value between 0 and 1 and uniquely describes that set. The val­
ues 0 and 1 describe “not belonging to” and “belonging to” a conventional set 
respectively; values in between represent “fuzziness.” Determining the mem­
bership function is subjective to varying degrees depending on the situation. 
It depends on an individual’s perception of the data in question and does not 
depend on randomness. This is important, and distinguishes fuzzy set theory 
from probability theory (Fig. 1.3).

In practice fuzzy logic means computation of words. Since computation 
with words is possible, computerized systems can be built by embedding hu­
man expertise articulated in daily language. Also called a fuzzy inference 
engine or fuzzy rule-base, such a system can perform approximate reasoning 
somewhat similar to but much more primitive than that of the human brain. 
Computing with words seems to be a slightly futuristic phrase today since 
only certain aspects of natural language can be represented by the calculus of 
fuzzy sets, but still fuzzy logic remains one of the most practical ways to mimic 
human expertise in a realistic manner. The fuzzy approach uses a premise that 
humans do not represent classes of objects (e.g. class of bald men, or the class 
of numbers which are much greater than 50) as fully disjoint but rather as 
sets in which there may be grades of membership intermediate between full
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Fig. 1.3. The fuzzy sets “tall” and “short.” The classification is subjective -  it 
depends on what height is measured relative to. At the extremes, the distinction is 
clear, but there is a large amount of overlap in the middle

Fig. 1.4. Configuration of a pure fuzzy system

membership and non-membership. Thus, a fuzzy set works as a concept that 
makes it possible to treat fuzziness in a quantitative manner.

Fuzzy sets form the building blocks for fuzzy IF-THEN  rules which have 
the general form “IF X  is A  THEN Y  is B ,” where A  and B are fuzzy sets. The 
term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF- 
THEN rules. The IF part of an implication is called the antecedent whereas 
the second, THEN part is a consequent. A fuzzy system is a set of fuzzy 
rules that converts inputs to outputs. The basic configuration of a pure fuzzy 
system is shown in Fig. 1.4. The fuzzy inference engine (algorithm) combines 
fuzzy IF-THEN  rules into a mapping from fuzzy sets in the input space X  
to fuzzy sets in the output space Y  based on fuzzy logic principles. From a 
knowledge representation viewpoint, a fuzzy IF-THEN  rule is a scheme for 
capturing knowledge that involves imprecision. The main feature of reasoning 
using these rules is its partial matching capability, which enables an inference 
to be made from a fuzzy rule even when the rule’s condition is only partially 
satisfied.

Fuzzy systems, on one hand, are rule-based systems that are constructed 
from a collection of linguistic rules; on the other hand, fuzzy systems are
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nonlinear mappings of inputs (stimuli) to outputs (responses), i.e., certain 
types of fuzzy systems can be written as compact nonlinear formulas. The 
inputs and outputs can be numbers or vectors of numbers. These rule-based 
systems in theory model represents any system with arbitrary accuracy, i.e., 
they work as universal approximators.

The Achilles’ heel of a fuzzy system is its rules; smart rules give smart 
systems and other rules give smart systems and other rules give less smart or 
even dumb systems. The number of rules increases exponentially with the di­
mension of the input space (number of system variables). This rule explosion is 
called the principle of dimensionality and is a general problem for mathemat­
ical models. For the last five years several approaches based on decomposition 
(cluster) merging and fusing have been proposed to overcome this problem.

Hence, Fuzzy models are not replacements for probability models. The 
fuzzy models sometimes found to work better and sometimes they do not. 
But mostly fuzzy is evidently proved that it provides better solutions for 
complex problems.

1.2 Mat LAB — An Overview

Dr Cleve Moler, Chief scientist at MathWorks, Inc., originally wrote Matlab, 
to provide easy access to matrix software developed in the LINPACK and 
EISPACK projects. The very first version was written in the late 1970s for 
use in courses in matrix theory, linear algebra, and numerical analysis. Matlab 
is therefore built upon a foundation of sophisticated matrix software, in which 
the basic data element is a matrix that does not require predimensioning.

Matlab is a product of The Math works, Inc. and is an advanced interactive 
software package specially designed for scientific and engineering computation. 
The Matlab environment integrates graphic illustrations with precise numer­
ical calculations, and is a powerful, easy-to-use, and comprehensive tool for 
performing all kinds of computations and scientific data visualization. Mat- 
lab has proven to be a very flexible and usable tool for solving problems in 
many areas. Matlab is a high-performance language for technical computing. 
It integrates computation, visualization, and programming in an easy-to-use 
environment where problems and solutions are expressed in familiar mathe­
matical notation. Typical use includes:

-  Math and computation
-  Algorithm development
-  Modeling, simulation, and prototyping
-  Data analysis, exploration, and visualization
-  Scientific and engineering graphics
-  Application development, including graphical user interface building

Matlab is an interactive system whose basic elements are an array that 
does not require dimensioning. This allows solving many computing problems,
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especially those with matrix and vector formulations, in a fraction of the time 
it would take to write a program in a scalar noninteractive language such 
as C or FORTRAN. Mathematics is the common language of science and 
engineering. Matrices, differential equations, arrays of data, plots, and graphs 
are the basic building blocks of both applied mathematics and Matlab. It is 
the underlying mathematical base that makes Matlab accessible and powerful. 
Matlab allows expressing the entire algorithm in a few dozen lines, to compute 
the solution with great accuracy in about a second.

Matlab is both an environment and programming language, and the major 
advantage of the Matlab language is that it allows building our own reusable 
tools. Our own functions and programs (known as M-files) can be created in 
Matlab code. The toolbox is a specialized collection of M-files for working 
on particular classes of problems. The Matlab documentation set has been 
written, expanded, and put online for ease of use. The set includes online help, 
as well as hypertext-based and printed manuals. The commands in Matlab are 
expressed in a notation close to that used in mathematics and engineering. 
There is a very large set of commands and functions, known as Matlab M-files. 
As a result solving problems in Matlab is faster than the other traditional 
programming. It is easy to modify the functions since most of the M-files can 
be open. For high performance, the Matlab software is written in optimized 
C and coded in assembly language.

Matlab’s two- and three-dimensional graphics are object oriented. Mat- 
lab is thus both an environment and a matrix/vector-oriented programming 
language, which enables the use to build own required tools.
The main features of Matlab are:

-  Advance algorithms for high-performance numerical computations, espe­
cially in the field of matrix algebra.

-  A large collection of predefined mathematical functions and the ability to 
define one’s own functions.

-  Two- and three-dimensional graphics for plotting and displaying data.
-  A complete help system online.
-  Powerful matrix/vector-oriented high-level programming language for 

individual applications.
-  Ability to cooperate with programs written in other languages and for 

importing and exporting formatted data.
-  Toolboxes available for solving advanced problems in several application 

areas.

Figure 1.5 shows the main features and capabilities of Matlab.
SIMULINK is a Matlab toolbox designed for the dynamic simulation of 

linear and nonlinear systems as well as continuous and discrete-time systems. 
It can also display information graphically. Matlab is an interactive package 
for numerical analysis, matrix computation, control system design, and linear 
system analysis and design available on most CAEN platforms (Macintosh,
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Fig. 1.5. Features and capabilities of Matlab

PCs, Sun, and Hewlett-Packard). In addition to the standard functions pro­
vided by Matlab, there exist large set of toolboxes, or collections of functions 
and procedures, available as part of the Matlab package. The toolboxes are:

-  Control system. Provides several features for advanced control system 
design and analysis

-  Communications. Provides functions to model the components of a com­
munication system’s physical layer

-  Signal processing. Contains functions to design analog and digital filters 
and apply these filters to data and analyze the results

-  System identification. Provides features to build mathematical models of 
dynamical systems based on observed system data

-  Robust control. Allows users to create robust multivariable feedback con­
trol system designs based on the concept of the singular value Bode plot

-  Simulink. Allows you to model dynamic systems graphically
-  Neural network. Allows you to simulate neural networks
-  Fuzzy logic. Allows for manipulation of fuzzy systems and membership 

functions
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-  Image processing. Provides access to a wide variety of functions for read­
ing, writing, and filtering images of various kinds in different ways

-  Analysis. Includes a wide variety of system analysis tools for varying 
matrices

-  Optimization. Contains basic tools for use in constrained and uncon­
strained minimization problems

-  Spline. Can be used to find approximate functional representations of data 
sets

-  Symbolic. Allows for symbolic (rather than purely numeric) manipulation 
of functions

-  User interface utilities. Includes tools for creating dialog boxes, menu 
utilities, and other user interaction for script files

Matlab has been used as an efficient tool, all over this text to develop the
applications based on neural net, fuzzy systems and genetic algorithm.

R eview  Questions

1) Define uncertainty and vagueness
2) Compare -  precision an impression
3) Explain the concept of fuzziness a said by Lotfi A. Zadeh
4) What is a membership function?
5) Describe in detail about fuzzy system with basic configuration
6) Write short note on “degree of uncertainty”
7) Write an over view of Mat Lab



Classical Sets and Fuzzy Sets

2_____________________________

2.1 Introduction

The theory on classical sets and the basic ideas of the fuzzy sets are discussed 
in detail in this chapter. The various operations, laws and properties of fuzzy 
sets are introduced along with that of the classical sets. The classical set we 
are going to deal is defined by means of the definite or crisp boundaries. This 
means that there is no uncertainty involved in the location of the boundaries 
for these sets. But whereas the fuzzy set, on the other hand is defined by its 
vague and ambiguous properties, hence the boundaries are specified ambigu­
ously. The crisp sets are sets without ambiguity in their membership. The 
fuzzy set theory is a very efficient theory in dealing with the concepts of am­
biguity. The fuzzy sets are dealt after reviewing the concepts of the classical 
or crisp sets.

2.2 Classical Set

Consider a classical set where X  denotes the universe of discourse or universal 
sets. The individual elements in the universe X  will be denoted as x. The 
features of the elements in X  can be discrete, countable integers, or continuous 
valued quantities on the real line. Examples of elements of various universes 
might be as follows.

-  The clock speeds of computers CPUs.
-  The operating temperature of an air conditioner.
-  The operating currents of an electronic motor or a generator set.
-  The integers 1-100.

Choosing a universe that is discrete and finite or one that it continuous 
and infinite is a modeling choice, the choice does not alter the characterization 
of sets defined on the universe. If the universe possesses continuous elements, 
then the corresponding set defined on the universe will also be continuous.
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The total number of elements in a universe X  is called its cardinal number and 
is denoted by nx . Discrete universe is composed of countable finite collection of 
elements and has a finite cardinal number and the continuous universe consists 
of uncountable or infinite collection of elements and thus has a infinite cardinal 
number.

As we all know, the collection of elements in the universe are called as 
sets, and the collections of elements within sets are called as subsets. The 
collection of all the elements in the universe is called the whole set. The null 
set 0 , which has no elements is analogous to an impossible event, and the 
whole set is analogous to certain event. Power set constitutes all possible sets 
of X  and is denoted by P  (X ).

Exam ple 2.1. Let universe comprised of four elements X  =  {1, 2, 3, 4} find 
cardinal number, power set, and cardinality of the power set.

Solution. The cardinal number is the number of elements in the defined set. 
The defined set X  consists of four elements 1, 2, 3, and 4. Therefore, the Car­
dinal number =  nx = 4 .

The power set consists of all possible sets of X . It is given by,
Power set P (x) =  {0 ,  {1}, {2 }, {3 }, {4 }, {1, 2}, {1, 3}, {1 ,4 }, {2, 3}, {2 ,4 }, 

{3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 3, 4}, {1, 2,4}, {1, 2, 3 ,4 }}
Cardinality of the power set is given by,
VP (x) =  2Vx =  24 =  16.

2.2.1 Operations on  Classical Sets

There are various operations that can be performed in the classical or crisp 
sets. The results of the operation performed on the classical sets will be defi­
nite. The operations that can be performed on the classical sets are dealt in 
detail below:

Consider two sets A  and B  defined on the universe X . The definitions of 
the operation for classical sets are based on the two sets A  and B defined on 
the universe X .

Union

The Union of two classical sets A  and B is denoted by A  U B. It represents 
all the elements in the universe that reside in either the set A , the set B or 
both sets A  and B. This operation is called the logical OR.

In set theoretic form it is represented as

A  U B =  {x/x € A  or x € B } .

In Venn diagram form it can be represented as shown in Fig. 2.1.
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Intersection

The intersection of two sets A  and B is denoted A  П B. It represents all those 
elements in the universe X  that simultaneously reside in (or belongs to) both 
sets A  and B .

In set theoretic form it is represented as

A  П B =  {x/x G A  and x G B } .

In Venn diagram form it can be represented as shown in Fig. 2.2.

Com plem ent

The complement of set A  denoted A, is defined as the collection of all elements 
in the universe that do not reside in the set A .

In set theoretic form it is represented as

A  =  {x/x G A ,x  e  X } .

In Venn diagram form it is represented as shown in Fig. 2.3.



14 2 Classical Sets and Fuzzy Sets

Difference

The difference of a set A  with respect to B , denoted A\B is defined as collection 
of all elements in the universe that reside in A  and that do not reside in B 
simultaneously.

In set theoretic form it is represented as

A\B =  {x/x e  A  and x </ B } .

In Venn diagram form it is represented as shown in Fig. 2.4.

2.2.2 Properties o f  Classical Sets

In any mathematical operations the properties plays a major role. Based upon 
the properties, the solution can be obtained for the problems. The following 
are the important properties of classical sets:
Commutativity

A  U B =  B U A,

A B =  B A.
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Associativity
A  U (B  U C) =  (A U B) U C,
A  П (B  П C) =  (A П B) П C.

Distributivity
A  U (B П C ) =  (A U B) П (A U C ),
A  П (B U C ) =  A  П B) U (A П C ).

Idempotency
A  U A =  A,
A  П A =  A.

Identity
A  U ф =  A 
A  П X  =  A 
A  П ф =  ф 
A  U X  =  X.

Transitivity
If A С B С C, then A С C.

In this case the symbol С means contained in or equivalent to and С means 
contained in.
Involution _

A  =  A.
The other two important special properties include the Excluded middle laws 
and the Demorgan’s law.
Excluded middle law includes the law of excluded middle and the law of con­
tradiction. The excluded middle laws is very important because these are the 
only set operations that are not valid for both classical and fuzzy sets.
Law of excluded middle. It represents union of a set A  and its complement.

A  U A  =  X .

Law of contradication. It represents the intersection of a set A  and its com­
plement

A  П A  =  ф.

De M organ ’s Law

These are very important because of their efficiency in proving the tautologies 
and contradictions in logic. The demorgan’s law are given by

A  П B =  A  U B,
A  U B =  A  П B.

In Venn diagram form it is represented as shown in Fig. 2.5.
The complement of a union or an intersection of two sets is equal to the 

intersection or union of the respective complements of the two sets. This is 
the statement made for the demorgan’s law.
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A n B A u B

Fig. 2.5. Demorgan’s law

▲
A

------------ ►
0 x

Fig. 2.6. Membership mapping for Crisp Set A

2.2.3 M apping o f  Classical Sets to  a Function

Mapping of set theoretic forms to function theoretic forms is an important 
concept. In general it can be used to map elements or subsets on one universe 
of discourse to elements or sets in another universe. Suppose X  and Y  are 
two different universe of discourse. If an element x  is contained in X  and 
corresponds to an element y contained in Y , it is generally represented as 
f  : X  ^  Y , which is said as the mapping from X  to Y. The characteristic 
function xa  is defined by

XA(x)
1 x € A, 
0 x € A,

where xa  represents the membership in set a for the elements x  in the universe. 
The membership mapping for the crisp set A  is shown in Fig. 2.6.

Let us define two sets A  and B on the Universe X .

Union

The union of these two sets in terms of function theoretic form is given as 
follows:

A  U B ^  xaub (x) =  Xa (x )Vxb  (x)
=  max(xA(x), x b (x)).

Here V  indicates the maximum operator.



The intersection of two sets in function theoretic form is given as

A  П B ^  хлпв (х )= х а (х )Л х в  (x)
=  min(xA(x), х в (x )).

Here Л indicates the minimum operator.

Com plem ent

The complement of single set on universe X , say A  is given by

A ^  Xa (x ) =  1 -  Xa(x).

Containment

The two sets A  and B in universe, if one set (A) is contained in another set 
B,then

A С B ^  x a (x ) < х в  (x ).
Thus, the mapping of classical sets to functions is mentioned here.

2.2.4 Solved Examples

Exam ple 2.2. Given the classical sets,

A  =  {9, 5, 6, 8,10} B =  {1, 2, 3, 7, 9} C  =  {1, 0}

defined on universe X  =  {  Set of all ‘n ’ natural no}
Prove the classical set properties associativity and distributivity.

Solution. The associative property is given by

1. A  U (B U C ) =  (A U B) U c .
LHS
A  U (B u c )

(a) B U C  =  {2, 3, 7, 9,1, 0}.
(b) A  U (B U C ) =  {5, 6, 8,10, 2, 3, 7, 9,1, 0}. (2.1)

RHS
(a  u b )  u c

(a) (A U B) =  {9, 5, 6, 8,10,1, 2, 3, 7}.
(b) (A U B) U C  =  {9, 5, 6,10, 8,1, 2, 3, 7, 0}. (2.2)

From (2.1) and (2.2)
LHS =  RHS

A  U (B U C ) =  (A U B) U c .
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Intersection



2. (A П (B П C ) =  (A  П B) П C 
LHS
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RHS
(A П B) n C

From (2.3) and (2.4)

(a) (B П C) =  {1}.
(b) A  n (B  n C ) =  {ф}. (2.3)

(a) (A n B) =  {9}.
(b) (A n B ) n C  =  { ф}. (2.4)

LHS =  RHS
A  n (B n C ) =  (A n B) n C.

Thus associative property is proved. 
The distributive property is given by,

1. A  U (B n C ) =  (A U B) n (A U C ) 
LHS

RHS

(a) B n C  =  {1}.
(b) A  U (B n C ) =  {9, 5, 6, 8,10,1}. (2.5)

(AU B ) n (AU C )

(a) (A U B) =  {9, 5, 6, 8,10,1, 2, 3, 7}.
(b) (A U C ) =  {9, 5, 6, 8,10,1, 0}.
(c) (A U B) n (A U C ) =  {9, 5 ,6, 8,10,1}. (2.6)

From (2.5) and (2.6)

LHS =  RHS
A  U (B n C ) =  (A U B) n (A U C ).

2. A  n (B U C ) =  (A n B) U (A n C ) 
LHS

(a) (B U C) =  {1, 2, 3, 7, 9, 0}.
(b) A  n (B U C ) =  {9}. (2.7)
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RHS

(a) A  П B =  {9}.
(b) A  П C  =  {ф}.
(c) (A  П B) U (A П C ) =  {9 }. (2.8)

From (2.7) and (2.8),

LHS =  RHS
A  n (B U C ) =  (A n B) U (A П B ).

Hence distributive property is proved.

Exam ple 2.3. Consider, X  =  {a, b, c, d, e, f , g, h}.
and the set A  is defined as {a, d, f }. So for this classical set prove the identity 
property.

Solution. Given, X  =  {a, b, c, d, e, f , g, h},
A  =  {a, d, f }.
The identity property is given as

1. A иф =  A.
2. A пф =  A.

ф is going to be a null set, hence it is clearly understood, that, A U ф & 
A  П ф will give as the same set A.

3. A  n X  =  A.

A  n X  =  {a, d, f },
A  =  {a, d, f }.

Hence, A  n X  =  A.

4. A  U X  =  X ,

A  U X  =  {a, b, c, d, e, f , g, h},
X  =  {a, b, c, d, e, f , g, h}.

Hence, A U X  =  X .
This identity property is proved.

2.3 Fuzzy Sets

In the classical set, its characteristic function assigns a value of either 1 or 0 to 
each individual in the universal set, there by discriminating between members 
and nonmembers of the crisp set under consideration. The values assigned to
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Fig. 2.7. Membership function of fuzzy set A

the elements of the universal set fall within a specified range and indicate the 
membership grade of these elements in the set. Larger values denote higher 
degrees of set membership such a function is called a membership function 
and the set is defined by it is a fuzzy set.

A fuzzy set is thus a set containing elements that have varying degrees 
of membership in the set. This idea is in contrast with classical or crisp, set 
because members of a crisp set would not be members unless their membership 
was full or complete, in that set (i.e., their membership is assigned a value of 
1). Elements in a fuzzy set, because their membership need not be complete, 
can also be members of other fuzzy set on the same universe. Fuzzy set are 
denoted by a set symbol with a tilde understrike. Fuzzy set is mapped to a 
real numbered value in the interval 0 to 1. If an element of universe, say x, is 
a member of fuzzy set A, then the mapping is given by Va (x ) G [0,1]. This is
the membership mapping and is shown in Fig. 2.7.

2.3.1 Fuzzy Set Operations

Considering three fuzzy sets A, B and C  on the universe X . For a given
element x  of the universe, the following function theoretic operations for the 
set theoretic operations unions, intersection and complement are defined for 
A , B and C  on X :
Union:

Va u b (x) =  VA(x)VVB (x )-
rv rv ~  ~

Intersection:
V-л n  B(x) =  MA(x)AMB (x ).

rv rv v  v

Complement
(x) =  1 — fl,A(x).

Л v
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A с x  ̂  m-A (x) -  mx(x)

for all x  e X ( x )  = 0. 

for all x e X mx (x) = 1.

Fig. 2.8. Union of fuzzy sets

Fig. 2.9. Intersection of fuzzy sets

m

1

0 X

The venn diagram representation of these operations are shown in 
Figs. 2.8- 2.10.

Any fuzzy set A defined on a universe x is a subset of that universe. The
membership value of any element x in the null set ф is 0, and the membership 
value of any element x in the whole set x is 1. This statement is given by 

De Morgan’s laws stated for classical sets also hold for fuzzy sets, as 
denoted by these expressions.

A П B =  A U B,

A U B  =  A П B .
rvj rvj rvj rvj
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Fig. 2.10. Complement of fuzzy set

m

A

All operations on classical sets also hold for the fuzzy set except for the ex­
cluded middle laws. These two laws does not hold good for fuzzy sets. Since 
fuzzy sets can overlap, a set and its complement also can overlap.

The excluded middle law for fuzzy sets is given by

A  U A  =  X ,

A  П A  =  ф.

Comparing Venn diagram for classical sets and fuzzy sets for excluded middle 
law are shown in Figs. 2.11 and 2.12.

2.3.2 Properties o f  Fuzzy Sets

The properties of the classical set also suits for the properties of the fuzzy 
sets. The important properties of fuzzy set includes:
Commutativity

A  U B =  B U A, 
A  П B =  B П A .

rv-'

Associativity
A  U (B U C) =  (A U B) U C,

A  n (B n C) =  (A n B) n C .

Distributivity
A U (b  n C ) =  (AU B) n (AU C ),

A n (B U C ) =  (A n  B) U (A n  C ).
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0

Crisp set A and its complement
0

Crisp A и A = X (law of exclusive middle)

Fig. 2.11. Excluded middle law for classical sets

Idempotency

Identity

Transtivity

A  U A  =  A,

A П A  =  A .

A  U ф =  A  and A  П X  =  A, 
A  П ф =  ф and A  U X  =  X.

If A С B  С C  then A  С C

Involution _
A  =  A .

These are the important properties of the fuzzy set.

2.3.3 Solved Examples

Exam ple 2.4. Consider two fuzzy sets A  and B find Complement, Union, 
Intersection, Difference, and De Morgan’s law.

1
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0
Fuzzy A u A ф ф (law of contradiction)

Fig. 2.12. Excluded middle law for fuzzy set

, 1 0.5 0.6 0.2 0.6
A =  2 +  ~  +  T  +  ~  +  ~6T

,‘ 0.5 0.8 0.4 0.7 0.3
B - < - 2  +  “  +  T  +  “  +  ^

Solution.
Complement

Union

A

B -

A  U B

0 0.5 0.4 0.8 0.4 
2 + 3 + ""4 + 5 + 6"" 

0.5 0.2 0.6 0.3 0.7
~Y +  ~ f  +  ^  +  ~^  +  ~e~

1 0.8 0.6 0.7 0.6
2 + 3 + 4 + 5 + 6""

Comparing the membership values and writing maximum of the two values 
determine Union of the fuzzy set.

Intersection

0.5 0.5 0.4 0.2 0.3
A  П B ^ ~ 2  +  ^  +

A

m

A
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Comparing the membership values and writing minimum of the two values 
determine intersection of the fuzzy set.

Difference

A / B  =  A  П B 

B / A  =  B П A :

0.5 0.2 0.6 0.2 0.6
~  +  ~  +  ~  +  ~  +  ~ 6
0 0.5 0.4 0.7 0.3
2 + 3 + 4 + 5 + 6""

De Morgan’s Laws

_____  _  _  ,0  0.2 0.4 0.3 0.4
A U B =  A П B =  ^2 +  “3“  +  T  +  “5" +  l T
_____  _  _  ,0 .5 0.5 0.6 0.8 0.7
A n B =  A U B =  { “ 2"  +  “3“  +  T  +  “ 5" +  T

Exam ple 2.5. We want to compare two sensors based upon their detection 
levels and gain settings. The following table of gain settings and sensor detec­
tion levels with a standard item being monitored provides typical membership 
values to represents the detection levels for each of the sensors.

Gain setting Sensor 1 detection levels Sensor 2 detection levels
0 0 0

20 0.5 0.35
40 0.65 0.5
60 0.85 0.75
80 1 0.90

100 1 1

The universe of discourse is X  =  {0, 20,40, 60, 80,100}. Find the member­
ship function for the two sensors: Find the following membership functions 
using standard set operations:

(a) Ŝ\ и S2 (x) 

(c) MSi(x )

(e) ^s1 и s1 (x) 

(g) Msi и § i (x)

(b) MSi n S2(x) 

(d) Hs2 (x)

(f) ^Si и Si(x) 

(h) MSi и Si(x)

Solution. The membership functions for the two sensors in standard discrete 
form are

_  /0 .5  0.65 0.85 1 1
1 =   ̂ 20 +  Ю  +  "6^  +  80 +  1““

^2 =
0.35 0.5 0.75 0.90 1 
“2 ^  +  40 +  "60' +  ~8̂  +  100
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(a) Msi и s2 (x) =  M ss (x) V m S2 (x)

0.5 0.65 0.85 1 1
20 +  ~ W  +  “60" +  80 +  100

(b) ms1 n s2 (x) =  M ss (x) Л M S2 (x)

1

(c) MSi (x)

(d) MS (x)

0.35 0.5 0.75 0.9 
"20" +  40 +  "60" +  8 0 + 1 0 0

00.5 0.35 0.15 0 
20 +  ~4^ +  " W  +  8 0 + 1 0 0  
0.65 0.5 0.25 0.1 0 
”2 ^  +  40 +  "6̂  +  80 +  100

, , , , , , , , Г 0.5 0.35 0.15 0 0 1
^ 'S ^ S  =  ^SinSi =  ^  A ^  i  "20 +  ~ W  +  "6 ^  +  80 +  100 J

~ ~ , . . . . ( 0.5 0.35 0.15 0 0 1
(f) ^§iUSi =  ^  V ^  120 +  ~4T  +  " б ^  +  80 +  100 J

(g ) MSi и S i(x ) =  MSi(x ) V MSi(x)

(h) MSi n S i(x ) =  MSi(x ) Л MSi(x)

0.5 0.65 0.85 1 1 1
20 +  Ю  +  “6F  +  80 +  100 J
0.5 0.35 0.15 0 0 1
20 +  Ю  +  “6F  +  80 +  100 J

Exam ple 2.6. Let x be the universe of commercial aircraft of interest 

X  =  { a10, b52, b117, C5, C130, f4, f14, f15, f16, f111, kc130 } . 

Let A  be the fuzzy set passenger class aircraft

.0 .3  0.5 0.4
A  =  f16 +  +  f14 +  f111

0.6 0.7 1.0 1.0 1
+ +b117 b52j

Let B be the fuzzy set of cargo

_  f 0.4 0.4 0.6 0.8 0.9 1.0 
B =  \b117 +  fTTT +  "f4 +  f15 +  fi4 +  f i6

Find the values of the operation performed on these fuzzy sets. 

Solution. The operation are union, intersection, and complement.

0
(a) A  U B =

0.4 1.0 1.0 0 
a10 +  b52 +  b117 +  C5 +  C130 
0.7 0 

+ ^ т г  +

0.6 0.9 0.8 1.0
+  +  f14 +  f15 +  f16

f111 +  KC130 j
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( 0.4 1.0 0.4 0 0
(b) A П B ^ a i 0  +  b52 +  bTl7 +  C5 +  СГ30

0.4 0 I 
+  f111 +  KC130 J 

.  f 0.7 0.5 0.6 0.4 0.7 0.3 0
( c ) ~ l f l 6 +  ! T + a10 +  fl4 +  f15 +  f111 +  bT17

0.5 0.6 0.8 0.3 
+  T  +  f14 +  +  f16

0 1
+  b52 +  C5

+
1

+
1

C130 KC130 
0.6 0.6 0.4 0.2 0.1 1

(d) B \ b117 +  f111 +  f4 +  f15 +  f14 +  f16 +  C5 +  C130 +  KC130 J 

Exam ple 2.7. For the given fuzzy set

_  1 0.65 0.4 0.35 0
A  =   ̂ 1.0 +  I T  +  2.0 +  ~2T +  3.0

B

C

0 0.25 0.6 0.25 1 
10 +  1 .5  +  2.0 +  ~2T +  30
0.5 0.25 0 0.25 0.5
1.0 +  I T  +  2.0 +  ~2T +  3.0

Prove the associativity and the distributivity property for the above given 
sets.

Solution.
To prove associative property

1. A  U ( b  U C )  =  [A  U B )  U C

LHS

0.25 0.6 0.25 1
+  I T  +  2.0 +  ~2T +  3.0

RHS

A  U ^B U c j

( b  u A )  =  f  i s
(  \ ( 1 0.65 0.6 0.35 1 ] , 4

A U ( B U A )  =  { n  +  T 5" +  2.0 +  t t  +  3.0 }  (2.9)

^  u B ĵ

( A u B )  =  { n

( a u b ) u c =  \ -
\ AJ AJ j  AJ I

A  U BJ U C

, 1 0.65 0.6 0.35 1 
A U B| =  1.0 +  T T  +  2.3 +  ~2T +  3.0

1 0.65 0.6 0.35 1
A U B U A ^  1 .0+  _^ + 2 .0 +  1 ^  +  3^ (2.10)
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From (2.9) and (2.10),

LHS=  RHS

A U | B u C l = ( A u B ) и C

Thus associative property is proved. 
To prove distribute property

2. A П B U C A  П B U A П C

LHS

A  П B U C
\c  c

b  u c ^  =  

A  n (  B  u C

0.5 0.25 0.6 0.25 1 
15 +  T T  +  2.0 +  ~2T +  3.0

0.5 0.25 0.4 0.25 0 
1.0 +  T T  +  2.0 +  ~2T +  3.0

(2.11)

RHS

A n B

A n C

0 0.25 0.4 0.25 0
1.0 +  T T  +  2.0 +  ~2T +  3.0
0.5 0.25 0 0.25 0
1.0 +  T T  +  2.0 +  ~2T +  3.0

A n B  U A n C  =
0.5 0.25 0.4 0.25 0
1.0 +  T T  +  2.0 +  ~2T +  3.0

(2.12)

From (2.11) and (2.12), LHS =  RHS proving distributive property. 

Exam ple 2.8. Consider the following fuzzy sets

A =

B =

1 0.5 0.3 0.2
2 +  T  +  T  +  T

0.5 0.7 0.2 0.4
T  +  T  +  ~  +  T

Calculate, A  U B, A  n B , A, B by a Matlab program.

Solution. The Matlab program for the union, intersection, and complement is 

Program

% enter the two matrix 
u=input(‘enter the first matrix’); 
v=input(‘enter the second matrix’);
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option=input(‘enter the option’);
%option 1 Union 
%option 2 intersection 
%option 3 complement 
if (option==1)

w=max(u,v)
end
if (option==2)

p=min(u,v)
end
if (option==3)

option1=input(‘enter whether to find complement for first matrix 
or second matrix’); 

if (option1==1)
[m,n]=size(u);
q=ones(m)-u;

else
q=ones(m)-v;

end
end

Output

(1) To find union of A and B
enter the first matrix[1 0.5 0.2 0.3] 
enter the second matrix[0.5 0.7 0.2 0.4] 
enter the option1 
w =

1.0000 0.7000 0.2000 0.4000

(2) To find Intersection of A and B is 
enter the first matrix[1 0.5 0.2 0.3] 
enter the second matrix[0.5 0.7 0.2 0.4] 
enter the option2
p =

0.5000 0.5000 0.2000 0.3000

(3) To find complement of A
enter the first matrix[1 0.5 0.2 0.3] 
enter the second matrix[0.5 .7 .2 .4] 
enter the option3
enter the whether to find complement for first matrix or second matrix
1
q =

0 0.5000 0.8000 0.7000
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(4) To find complement of B
enter the first matrix[1 0.5 0.2 0.3] 
enter the second matrix[0.5 .7 .2 .4] 
enter the option3
enter the whether to find complement for first matrix or second matrix
2
q =

0.5000 0.3000 0.8000 0.6000 

Exam ple 2.9. Consider the following fuzzy sets

A --

B

0.1 0.6 0.4 0.3 0.8
+ + + +2 3 4 5 6

0.5 0.8 0.4 0.6 0.4
+ + + +2 3 4 5 6

Calculate A  П B (difference), B П A by writing an M-file 

Solution. The Matlab program for the difference of A and B is 

Program

% enter the two matrix 
u=input(‘enter the first matrix’); 
v=input(‘enter the second matrix’); 
option=input(‘enter the option’);
%option 1 u|v 
%option 2 v|u
%to find difference of u and v 
if option==1

%to find v complement 
[m,n]=size(v); 
vcomp=ones(m)-v; 
r=min(u,vcomp);

end
%to find difference v and u 
if option= = 2

%to find u complement 
[m,n]=size(u); 

ucomp=ones(m)-u; 
r=min(ucomp,v);

end
fprintf(‘output result’) 
printf(r)



2.3 Fuzzy Sets 31

Output o f  the M atlab program

(1) to find A difference B is
enter the first matrix[0.1 0.6 0.4 0.3 0.8] 
enter the second matrix[0.5 0.8 0.4 0.6 0.4] 
enter the option1 
output result

0.1000 0.2000 0.4000 0.3000 0.6000
(2) to find B difference A is

enter the first matrix[0.1 0.6 0.4 0.3 0.8] 
enter the second matrix[0.5 0.8 0.4 0.6 0.4] 
enter the option2 
output result

Calculate the Demorgan’s law A  U B =  A П B, and A  П B =  A U B using a 
matlab program.

Solution. The Matlab program for the demorgan’s law for A  and B is

Program
% Demorgan’s law 
% enter the two matrix 
u=input(‘enter the first matrix’); 
v=input(‘enter the second matrix’);
% first find u’s complement
[m,n]=size(u);
ucomp=ones(m)-u;
% second to find v ’s complement
[a,b]=size(v);
vcomp=ones(a)-v;
p=min(ucomp,vcomp)
q=max(ucomp,vcomp)
fprintf(p)
fprintf(q)

r

r
0.5000 0.4000 0.4000 0.6000 0.2000

Exam ple 2.10. Consider the following fuzzy sets

A
0.8 0.3 0.6 0.2
Ю  +  T5 +  20 +  "25

B
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Output

enter the first matrix[0.8 0.3 0.6 0.2] 
enter the second matrix[0.4 0.2 0.9 0.1]
P =

0.2000 0.7000 0.1000 0.8000
q =

0.6000 0.8000 0.4000 0.9000 

Summary

In this chapter, we have defined on the classical sets and the fuzzy sets. The 
various operations and properties of these sets were also dealt in detail. It 
was found that the variation of the classical and the fuzzy set was in the 
excluded middle law. The demorgan’s law discussed helps in determining some 
tautologies while some operations are performed. Except for the excluded 
middle law all other operations and properties are common for the crisp set 
and the fuzzy set.

Review Questions

1. Define classical set.
2. How is the power set formed from the existing universe?
3. What is the difference between the whole set and the power set?
4. Give a few examples for classical set.
5. What are the operations that can be performed on the classical set?
6. Write the expressions involved for the operations of classical set in function

-  theoretic form and set- theoretic form.
7. State the properties of classical sets.
8. What is the cardinal number of a set?
9. How is the cardinality defined for a power set?

10. What are the additional properties added with the existing properties of 
classical set?

11. What is the variation between the law of excluded middle and law of 
contradiction?

12. State Demorgan’s law. Explain the law with the help of Venn diagram 
representation.

13. Discuss in detail how classical sets are mapped to functions.
14. Define fuzzy set.
15. What is the membership function for fuzzy set A?

16. State the reason for the membership function to be in the interval 0 to 1.
17. What are the operations that can be performed by a fuzzy set?
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18. Explain about the properties present in the fuzzy set.
19. Write the expressions for the fuzzy set operation in set-theoretic form and 

function theoretic form.
20. How is the excluded middle law different for the fuzzy set and the classical 

set?
21. Discuss about the Demorgan’s law for the fuzzy sets. Say whether it is 

similar to that of classical sets.

Exercise Problems

1. Consider two fuzzy sets one representing a scooter and other van.

0.6 0.3 0.8 0.9 0.1 Scooter =  ^ ------- 1---------------- -— + ---------1---------------+ *■
van motor cycle boat scooter house J

( 1 0.2 0.5 0.3 0.2 I
=  {  Van +  motor cycle +  b ^  +  +  h ^ }  .

Find the following:
(a) Scooter U Van (b) Scooter/Van (c) Scooter П Scooter
(d) Scooter U Scooter (e) Scooter П Scooter 
(f) Scooter U Van (g) Van U Van (h) Van П Van

AJ AJ AJ AJ AJ AJ

2. Consider flight simulator data, the determination of certain changes in 
creating conditions of the aircraft is made on the basis of hard breakpoint 
in the mach region. Let us define a fuzzy set to represent the condition of 
near a match number of 0.644. A second fuzzy sets in the region of mach 
number 0.74

A  =  near mach 0.64.

_  f 0.1 0.6 1 0.8 0.2 ] 
[0.630 +  0.635 +  0.64 +  0.645 +  0.650 J .

B =  near mach 0.64.

_  f 0 0.5 0.8 1 0.4 I 
[0.630 +  0.635 +  0.64 +  0.645 +  0.650 J .

Find the following:

(a) A UB (b )A n B (c) A  (d) B  (e) A B (f) A U B  (g) A n B
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3. The continuous form of MOSFET and a transistor are shown in figure 
below. The discretized membership functions are given by the following 
equations:

0 0.4 0.6 0.7 0.8 0.9

'0  0.1 0.2 0.3 0.4 0.5
Hm ' 0 ’ +  X  +  _5  +  T  +  l ^

Continuous Form of MOSFET and Transistor

For these two fuzzy calculate the following:

(a) Hm U Ht

(b) Hm n Ht

(c) HT =  1 -  Ht

(d) HM =  1 -  HM
(e) De Morgan’s law

4. Samples of new microprocessors IC chip are to be sent to several customers 
for beta testing. The chips are sorted to meet certain maximum electrical 
characteristics say frequency, and temperature rating, so that the “best” 
chips are distributed to preferred customer 1. Suppose that each sample 
chip is screened and all chips are found to have a maximum operating 
frequency in the range 7-15 MHz at 20° C. Also the maximum operating 
temperature range (20°C ±  A T ) at 8 MHz is determined. Suppose there 
are eight sample chips with the following electrical characteristics:

Chip number
1 2 3 4 5 6 7 8

F± max 6 7 8 9 10 11 12 13
(MHz)
ATmax(°C) 0 0 20 40 30 50 40 60



The following fuzzy sets are defined.

A  =  Set of “Fast” chips =  chips with f max >  12 MHz

_ ( 0  0 0.1 0.1 0.2 0.8 1 1
=  \T +  2 +  T  +  T  +  T  +  T +  7 +  8

B =  Set of “Fast” chips =  chips with f max >  8 MHz

0.1 0.5 1 1 1 1 1 1
~  + 2 + 3 + 4 + 5 + 6 + 7 + 8  

C  =  Set of “Fast” chips =  chips with Tmax > 10° C

0 0 1 1 1 1 1 1
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8  

D =  Set of “Fast” chips =  chips with Tmax > 50° C

_ ( 0  0.6 0.1 0.2 0.5 0.8 1 1
=  |J +  T  +  T  +  T  +  T  +  T +  7 +  8

Using fuzzy set illustrate various set operations possible.

5. Consider two fuzzy sets A  and B as shown in figure below. Write the fuzzy 
set using membership definition and find the following properties:

(a) A  U B (b) A П B  (c) A  (d) B (e) A B (f) A U B
j  r̂ J r̂ J
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Figure to define the membership function

6. Consider two fuzzy sets A  and B as shown

f 0 0.5 0.3 0.7 0.9 ', 
A >’ 

0.2 0.4 0.6 0.9 0.4
B = < T  +  ~  +  ~  +  T  +  T

Find (a) A  U B (b) A  П B (c) A  (d) B (e) A B  (f) A  U B
r ''-' j  rv-' rvj



36 2 Classical Sets and Fuzzy Sets

7. Prove why law of excluded middle law and contradiction does not hold 
good for fuzzy.

8. Consider the universe with two elements X  =  {a, b} and consider Y  with
Y  =  {0 ,1 }. Find the power set.

9. Consider a universe of four elements x  =  {1, 2, 3,4, 5, 6}. Find the cardinal 
number power set and cardinality.

10. Consider the following fuzzy sets:

Calculate, A  U B, A  П B, A, B by a Matlab program.
11. For the above problem perform the De Morgan’s law by writing an M-file.

B
0.3 0.9 0 
-TT- +  -TT- +  T +



Classical and Fuzzy Relations

3______________________________

3.1 Introduction

A relation is of fundamental importance in all-engineering, science, and 
mathematically based fields. It is associated with graph theory, a subject 
of wide impact in design and data manipulation. Relations are intimately 
involved in logic, approximate reasoning, classification, rule-based systems, 
pattern recognition, and control. Relations represent the mapping of the sets. 
In the case of crisp relation there are only two degrees of relationship between 
the elements of sets in a crisp relation, i.e., “completely related” and “not 
related” . But fuzzy relations have infinite number of relationship between the 
extremes of completely related and not related between the elements of two 
or more sets considered. A crisp relation represents the presence or absence of 
association, interaction, or interconnectedness between the elements of two or 
more sets. Degrees of association can be represented by membership grades 
in a fuzzy relation by membership grades in a fuzzy relation in the same way 
as degrees of set membership are represented in the fuzzy set. Crisp set can 
be viewed as a restricted case of the more general fuzzy set concept. In this 
chapter the classical and fuzzy relation are dealt in detail.

3.2 Cartesian Product of Relation

An ordered sequence of n elements is called as ordered n-tuple. The ordered 
sequence is in the form of a1,a2, . . . , a n. An unordered sequence is that it is 
a collection of n elements without restrictions in the order. The n—tuple is 
called as an ordered pair when n =  2. For the crisp sets A 1, A 2, . . . ,  An, the 
set of n-tuples a1, a2, ..., an, where a1 G A 1, a2 G A 2,. . . , an G An, is called 
the Cartesian product of A 1, A 2, . . .  , An. The Cartesian product is denoted 
by A 1 x A 2 x - - - x  An. In Cartesian product the first element in each pair is 
a member of x  and the second element is a member of y formally,

x x y =  { ( x,y)/x G X  and y G Y }, 
if x =  y then x x y =  y x x.
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If all the An are identical and equal to A, then the cartesian product of 
A 1, A 2, . . . ,  An becomes An.

Exam ple 3.1. The elements in two sets A  and B are given as A  =  {0 ,1 } and 
B =  {e, f,  g}  find the Cartesian product A x B , B  x A, A x A, B x B.

Solution. The Cartesian product for the given sets is as follows:

A x B =  {(0, e), (0, f ) ,  (0, g), (1, e), (1, f ) ,  (1, g)},
B x A  =  {(e, 0), (e, 1), (e, 1), (f, 1), (g, 1)},
A x A  =  A2 =  {(0,0), (0,1), (1,0), (1,1)},
B x B =  B 2 =  {(e, e), (e, f ), (e, g), (f, e), (f, f ) ,  (f, g), (g, e), (g, f ), (g, g )}.

3.3 Classical Relations

A relation among classical sets x 1, x 2, . . . , x n and y 1,y2, . . . , y n is a subset of 
the Cartesian product. It is denoted either by R or by the abbreviated form

X  x Y  =  { ( x y ) / x  e  X,  y e  Y.

In the case of an ordered pair, the relation is a subset of the Cartesian prod­
uct A 1 x A 2. This subset of the full Cartesian product is called as the binary 
relation from A 1 into A2. If it consists of three, four, or five sets are the sub­
sets of the full Cartesian product, then the relationship is termed as ternary, 
quaternary, and quinary. But mostly we are into deal with that of the binary 
relation only.

The strength of the relationship between ordered pairs of elements in each 
universe is measured by the characteristic function denoted by x, where a 
value of unity is associated with complete relationship and a value of zero is 
associated with no relationship, i.e.,

, , /  1 (x, y) e X  x Y,
Xxxy (x,y) \ 0 (x ,y )  e x  x Y.

When the universe or the set are finite, a matrix called as relation matrix can 
conveniently represent the relation. A two-dimensional matrix represents the 
binary relation. If X  =  {2,4, 6} and Y  =  {p, q, r},  if they both are related to 
each other entirely, then the relation between them can be given by:

p q r
2 1 1 1  

R =  4 1 1 1
6 1 1 1
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Exam ple 3.2. Let R be a relation among the three sets
X  =  {Hindi, English}, Y  =  {Dollar, Euro, Pound, Rupees}, and Z  ={India,

Nepal, United States, Canada}

R (x, y, z) =  {Hindi, Rupees, India}
{ Hindi, Rupees, Nepal}
{ English, Dollar, Canada}
{English, Dollar, United States}.

Solution. The relation can be represented as follows:

India Nepal US Canada 
Dollar 0 0 0 0 
Euro 0 0 0 0 
Pound 0 0 0 0 
Rupees 1 1 0  0

Hindi

India Nepal US Canada 
Dollar 0 0 1 1 
Euro 0 0 0 0 
Pound 0 0 0 0 
Rupees 0 0 0 0

English

3.3.1 Cardinality o f  Crisp Relation

Suppose n elements of the universe X  are related to m elements of the universe
Y . If the cardinality of X  is nx and the cardinality of Y  is ny, then the
cardinality of the relation R, between these two universe nxxy =  nx x ny .
The cardinality of the power set describing this relation, P (X  x Y ) in then
np(x x y) =  2” x” « .

3.3.2 O perations on  Crisp Relation

The following are the function -  theoretic operations for the two crisp sets
(R,S):

Union

R U S =  XRUS(x,y) : XRUS(x,y) =  max[xfi(x, y),Xs(x,y)] .  
Intersection

R n S =  XRns(x,y)  : XRns(x,y)  =  m in[xR(x,y),xs(x,y)].
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Complement

R =  XR(x,y)  : XR(x ,y) =  1 -  XR(x,y).

Containment

R С S =  XR(x,y) : XR(x,y) < XS(x,y).

These are the various operations that can be performed in a classical relation.

3.3.3 Properties o f  Crisp Relations

The properties of commutativity, associativity, distributivity, involution, and 
idempotency as discussed in Sect. 2.2.2 for the classical sets also hold good for 
crisp relation. This includes DeMorgan’s laws and the excluded middle laws 
too. The null relation O and the complement relation E  are given by:

O
0 0 0 1 1 1
0 0 0 , E  = 1 1 1

1 0 0 0 1 1 1

3.3.4 C om position

Let R be relation that relates elements from universe X  to universe Y . Let S be 
the relation that relates elements from universe Y  to universe Z . Let T  relates 
the same element in universe that R contains to the same elements in the 
universe Z  that S contains. The two methods of the composition operations 
are:

-  Max-min composition,
-  Max-product composition.

The max-min composition is defined by the set-theoretic and membership 
function-theoretic expressions:

T =  R o S,

XT (x , z ) =  V  (XR (x , y) A xs (y, z ) ) . 
yev

The max-product composition is defined by the set-theoretic and mem­
bership function-theoretic expressions:

T  =  R o S,

XT ( x , z ) =  V  (XR (x,y ) • Xs (y ,z))  yev



yi y2 Уз zi z2
1 1 0 x i 0 1
0 0 1 , S =  x2 1 0
0 1 0 x3 1 1
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Exam ple 3.3. Using max-min composition find relation between R and S:

X1
R =  X2 

X3

Solution. The max-min composition is given by:

/лт(x1,z 1) =  max (min (1, 0), min (1, 1), min (0, 1 
=  max [0, 1, 0] =  1,

^T(x1,z2) =  max (min (1, 1), min (1, 0), min (1, 1 
=  max [1, 0, 1] =  1,

^T(x2,z1) =  max (min (0, 0), min (0, 1), min (1, 1 
=  max [0, 0, 1] =  1,

^T(x2,z2) =  max (min (0, 1), min (0, 0), min (1, 1 
=  max [0, 0, 1] =  1,

^T(x3,zi_) =  max (min (0, 0), min (1, 1), min (0, 1 
=  max [0, 1, 0] =  1,

^T(x3,z2) =  max (min (0, 1), min (1, 0), min (0, 1 
=  max [0, 0, 0] =  0,

R S
1 1
1 1
1 0

3.4 Fuzzy Relations

Fuzzy relations are fuzzy subsets of X  x Y , i.e., mapping from X  ^  Y  .It maps 
elements of one universe, X  to those of another universe, say Y , through the 
Cartesian product of the two universes. A fuzzy relation R is mapping from
the Cartesian space X  x Y  to the interval [0, 1] where the strength of the 
mapping is expressed by the membership function of the relation for ordered 
pairs from the two expressed as or /iR (x, y). This can be expressed as

R =  { ( (x,y) , HR(x,y))\(x,y) e  X  x Y }

is called a fuzzy relation on X  x Y .

3.4.1 Cardinality o f  Fuzzy Relations

As we know that the cardinality of fuzzy set is infinity, the cardinality of fuzzy 
relations between two or more universes is also infinity.
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3.4.2 Operations on  Fuzzy Relations

Let R and T  be fuzzy relation on Cartesian space X  x Y . Then the following 
operations apply for the membership values for various set operations:

Union

The union of two fuzzy relation R and T  is defined by

Mrut  (x , y) =  max [Hr ( x , y ) ,Mt (x , v ) j  ■

Intersection

The intersection of two fuzzy relation R and T  is defined by

Mr n t ( x , y) =  min yMR (x , y) ,Mt ( x ,v)

Complement

The complement of fuzzy relation R is given by

Mr ( x , y ) =  1 -  Mr ( x , y) ■

Containment

The containment of two fuzzy relation R and T is given by

R С T ^  Mr ( x , y ) < Mt (x, y) ■

These are some of the operations performed on the fuzzy relation.

3.4.3 Properties o f  Fuzzy Relations

The properties of fuzzy relations include commutativity, associativity, 
distributivity, idempotency, and involution.
Commutativity

мr u s (x,y)  =  Ms u r (x,y) ■

Associativity
Mf \ (x ,y) =  м f \ (x ,y) ■i r u  ̂  ut Rrn s u t

Distributivity
Mf \ (x,y ) =  м r \ (x ,y) ■i r u  s |nT r u [ S n T J
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Idempotency
Hr u r y ) =  Hr -

Involution
HR (х,У) =  Hr ( х ,У) -

As in case of fuzzy set, in fuzzy relation also excluded middle law and con­
tradiction law does not holds good. The null relation O and the complete 
relation E  are analogous to the null set and the whole set is in set theoretic 
form. Since the fuzzy relation R is also a fuzzy set, there is a overlap between
a relation and its complement, hence

R U R =  E,

R n R =  O.

3.4.4 Fuzzy Cartesian P roduct and C om position

Let A  be a fuzzy set on universe X  and B be a fuzzy set on universe Y , 
then the Cartesian product between fuzzy sets A  and B will result in a fuzzy 
relation R which is contained with the full Cartesian product space or

A x B =  R С X  x Y,

where the fuzzy relation R has membership function.

Hr (x, У) =  Ha x b (x, У) =  min Ha (x ) , Hb Ы

Each fuzzy set could be thought of as a vector of membership values; each 
value is associated with a particular element in each set. For example, for 
fuzzy set A  that has four elements, hence column vector size 4 x 1 and for
fuzzy set (vector) B that has five elements, hence a row vector of 1 x 5. The
resulting fuzzy relation R will be represented by a matrix of size 4 x 5 (i.e.,)
R will have four rows and five columns.

Exam ple 3.4. Consider two fuzzy sets A  and B . A  represents universe of 
three discrete temperatures x  =  { x i , x 2,x3} and B represents universe of two 
discrete flow у =  { у1, у2}. Find the fuzzy Cartesian product between them:

0.4 0.7 0.1 0.5 0.8 
A  — ------ 1---------1------ and B — ---------- 1------ .-  xi x2 x3 -  7i 72
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Solution. A  represents column vector of size 3 x 1 and B  represents column 

vector of size 1 x 2. The fuzzy Cartesian product results in a fuzzy relation R  

of size 3 x 2:
Yi Y2

xi 0.4 0.4 
A  x B  =  R  =  x 2 0.5 0.7 

x3 0.1 0.1

C o m p o sitio n  o f Fuzzy  R e la tio n

Let R  be a fuzzy relation on the Cartesian space X  x Y , S  be a fuzzy relation 
on Y  x Z , and T  be a fuzzy relation on X  x Z , then the fuzzy set max-min 

composition is defined as:

T  =  R  o S (set-theoretic notation)

=  j ( x , z ) , max |  min (̂ hr  (x, y) ,Hs (y, z)^ j  j x  G X , y  G Y z  G z |  .

In function-theoretic form

Ht  (x  z) =  V  I hr  (x  y) л  Hs (y , z) ) .ye Y \  ~  ~  )

In fuzzy m ax-product composition is defined in terms of set-theoretic 

T = R o S

(x, z ) , myix ( Hr  (x, y) * Hs (y,z) ) /  x G X , y  G Y , z  G Z

Ht  ( x , z ) = V  [Hr  ( x , y ) • Hs (y ,z) .yeY

M a x -A v e ra g e  C o m p o sitio n

The max-average composition S  O R  are then defined as follows:
~ org ~

S  O R  (x, z )
~ org ~ (x, z ), 2 max ( Hr  ( x , y ) +  Hs (y , z ) ) /  x G X , y G Y , z  G Z \ .

E x am p le  3.5. Consider fuzzy relations:

R

y1 y2
x 1 0.7 0.6
x 2 0.8 0.3 S = y1

y2

z1 z2 z2
0.8 0.5 0.4
0.1 0.6 0.7

Find the relation T  =  R  o S  using m ax-m in and m ax-product composition.
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T  =  R  o S'

\iT ( x i , zi) =  max [min (0.7,0.8), min (0.6,0.1)] 
=  max [0.7, 0.1]
=  0.7,

/i,T (xi, z2) =  max [min (0.7,0.5), min (0.6,0.6)] 
=  max [0.5, 0.6]
=  0.6,

/i,T (x i , z3) =  max [min (0.7,0.4), min (0.6,0.7)] 
=  max [0.4, 0.7]
=  0.7,

/i,T (x2, z i ) =  max [min (0.8,0.8), min (0.3,0.1)] 
=  max [0.8, 0.1]
=  0.8,

/i,T (x2, z2) =  max [min (0.8,0.5), min (0.3,0.6)] 
=  max [0.5, 0.3]
=  0.5,

/i,T (x2, z3) =  max [min (0.8,0.4), min (0.3,0.7)] 
=  0.4,

S  = x 1
x 2

z1  z2 z2 
0.7 0.6 0.7 
0.8 0.5 0.4

M ax —P ro d u c t  C o m p o sitio n

\iT (x i , z i ) =  max [min (0.7 x 0.8), min (0.6 x 0.1)] 
=  max [0.56,0.06]
=  0.56,

/лт (x i , z2) =  max [min (0.7 x 0.5), min (0.6 x 0.6)] 
=  max [0.35,0.36]
=  0.36,

\iT (x i , z3) =  max [min (0.7 x 0.4), min (0.5 x 0.7)] 
=  max [0.28,0.35]
=  0.35,
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I t  (x2, z 1) =  max [min (0.8 x 0.8), min (0.3 x 0.1)] 
=  max [0.64,0.03]
=  0.64,

[iT (x2, z2) =  max [min (0.8 x 0.5), min (0.3 x 0.6)] 
=  max [0.40,0.18]
=  0.40,

i T (x2, z3) =  max [min (0.8 x 0.4), min (0.3 x 0.7)] 
=  max [0.32,0.21]
=  0.32,

0.56 0.36 0.35 
0.64 0.40 0.32T  =

E x am p le  3.6. In the field of computer networking there is an imprecise 
relationship between the level of use of a network communication bandwidth 
and the latency experienced in peer-to-peer communication. Let X  be a fuzzy

set of use levels (in terms of the percentage of full bandwidth used) and Y

be a fuzzy set of latencies (in milliseconds) with the following membership 
function:

[02  0.5 0.8 1.0 0.6 0.1 
[ 1 0 + 2 0  +  40 +  60 +  8 0 + 1 0 0

_  f 0.3 0.6 0.9 1.0 0.6 0.3
Y =  [ 0.5 + 1 +1.5 + 4 + 8 + "20"

(a) Find the Cartesian product represented by the relation R  =  X  x Y . 

Now, suppose we have second fuzzy set of bandwidth usage given by

_ f  0.3 0.6 0.7 0.9 1 0.5 
X  [ Ю + 20 +  40 +  6 0 + 80 +  ^

(b) Find S  =  Z  ◦  R  using (1) M ax-min composition and (2) Using
~ ^  1x6 ~ 6x6

m ax-product composition.

Solution. (a) Cartesian product

R = X x Y

fuzzy relation R  is given by

X  =  i R  (x, y) =  i A x B  (x, y)

=  min ( i A  (x), i B  (y)



3.4 Fuzzy Relations 47

R

(b) (1) M ax-min composition 

z1 x 6

0.2 0.2 0.2 0.2 0.2 0.2
0.3 0.5 0.5 0.5 0.5 0.3
0.3 0.6 0.8 0.8 0.6 0.3
0.3 0.6 0.9 1.0 0.6 0.3
0.3 0.6 0.6 0.6 0.6 0.3
0.1 0.1 0.1 0.1 0.1 0.1

0.3 0.6 0.7 0.9 1 0.5 
W + 2 0  +  40 +  6 0 + 8 0  +  100

S  =  [0.3 0.6 0.9 0.9 0.6 0.3] .

(2) M ax-product composition

S  ( x1, z 1) =  max (0.06,0.18,0.21,0.27,0.3, 0.05)

=  0.27,
S  ( x1, z2) =  max (0.06,0.30,0.42,0.54,0.6, 0.05)

=  0.6,
S  ( x1, z3) =  max (0.06,0.30,0.56,0.81,0.6, 0.05)

=  0.81,
S  ( x1, z4) =  max (0.06,0.30,0.56,0.9, 0.6,0.05)

=  0.9,
S  ( x1, z5) =  max (0.06,0.30,0.42,0.54,0.6, 0.05)

=  0.6,
S  ( x 1 , z 6) =  max (0.06,0.18,0.21,0.27,0.3, 0.05)

=  0.3,
S =  [0.27 0.6 0.81 0.9 0.6 0.3 ] .

E x am p le  3.7. Find max-average composition for R 1 (x,y)  and R 2 (y,z)  

defined by the following relational matrices:

R1

y 1 y 2 У3 У4 У5
x 1 0.1 0.2 0 1 0.7
x 2 0.3 0.5 0 0.2 1
xs 0.8 0 1 0.4 0.3
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zi z2 z3 z4
yi 0.9 0 0.3 0.4
y2 0.2 1 0.8 0
Уз 0.8 0 0.7 1
y4 0.4 0.2 0.3 0
y5 0 1 0 0.8

52 =

Solution. The max-average composition is given by

R  o S  = 2  max j  Hr  (x, yi) +  Hs  (yijzi)
“  I r v  rv

=  2 (1.4) =  0.7

H(xi,yi) +  n (y i,z i)
1
0.4
0.8
1.4
0.7

2 ma^  Hr (x i , yi ) Us (yi , z 2 )

I H(xi ,yi )  + n(y i , z2)
1 0.1
2 2.1.

3 0
4 2.1.

5 7.1.

=

T  (x l , z3) =  ^  max j Hr  ( x l , yi ) Hs  (Уi, z3) 

H (xi,yi) +  H(yi, zs)
1 0.4
2 1.0
3 0.7
4 1.3
5 0.7

2 ( o )
0.65

T  ( x l , z4) =  2  m ax  1 Hr  ( x l , y i )  Hs  (Уi, z4)
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0.5
0.2
1
1
1.5

=  2(1.5) = 0 .75

T  (X2 , zi ) =  2 max Hr (x2 , yi) Hs Ы , z i)

h(x 2 ,Vi) + H(yi ,z4)
1.2
0.4
0.8
0.6
1

2 (1.2) 0.6

T  (x2, z2) =  2 ma^  HR (x2 , yi ) Hs (yi,z 2)

H(x2 , yi )  + H(yi,Z2 )
0.3
1.5
0
0.4
2

= 2 (2 )= 1 

T  (x2 , z3) =  2 max j  Hr (x2 , yi) Hs Ы ,  z3)

H(x2,y i) +  H(Vi, z3)
0.6
1.3
0.7
0.5
1

=  2(1.3) = 0 .65

T  ( x 2 , z4) =  2  m ax  1 HR ( x 2 , y i )  Hs  Ы ,  z4)
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0.7
0.5
1
0.2
1.8

=  2(1.8) = 0 .9

T  (X3, Zi) = 2  m ax] hR (x3, Vi) Hs (Vi, z i)

h(x 3 ,Vi) +p(Vi , z i )
1.7 
0.2
1.8 
0.8 
0.3

2 ( l8 )
0.85

T  (хз, Z2 ) -  ma^  h r  (xз , Vi) Hs (Vi, z2) 

H(x3,Vi) + H(Vi,Z2 )
0.8
1
1
0.6
1.3

- (L3) 0.65

T  (хз , Z3 ) - ma^  h r  (хз , Vi) Hs (Vi , z 3 ) 

h(x3, Vi) + H(Vi,Z3)
1.1
0.8
1.7
0.7
0.3

= -  (1.7) =  0.85

T  (x з , z4) =  -  m ax  <j Hr  (x з , Vi) Hs  (Vi , z4)
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i m(x3, yi) + n(y i , z4 )
1 1.2
2 0
3 2
4 0.4
5 1.1

=  1 (2) =  1>

0.7 0.85 0.65 0.75 
0.6 1 0.65 0.9 
0.9 0.65 0.85 1

3.5 T olerance and E quivalence R elation s

Relations exhibit various other properties apart from th a t discussed in 
Sects. 3.3 and 3.4. It is already said tha t the relation can be used in graph 
theory. The various other properties tha t are dealt here include reflexivity, 
symmetry, and transitivity. These are discussed in detail for the crisp and 
fuzzy relations and are called as equivalence relation. Apart from these, 
tolerance relations of both fuzzy and crisp relations are also described.

3.5.1 C risp  R e la tio n  

C risp  E q u iv alen ce  R e la tio n

A relation R is called as an equivalence relation if it satisfies the following 
properties. They are (1) reflexivity, (2) symmetry, and (3) transitivity.

Reflexivity

When a relation satisfies the reflexive property then every vertex in the graph 
originates a single loop. This is shown in Fig. 3.1.

For m atrix relation reflexivity is given by,

(x i ,Xj ) e  R  or XR(xi ,Xj ) =  1.

Symmetry

When a relation satisfies symmetric property then in the graph for every edge 
pointing from vertex i to vertex j  there is a edge pointing in the opposite 
direction, i.e., from vertex j  to vertex i. This is shown in Fig. 3.2.

For m atrix relation symmetry is given by

T  (x, y) =  X2
~ X3

(Xi,Xj ) e  R  ^  (Xi,Xj ) e  R  or XR(Xi, Xj ) =  XR(Xj ,Xi).
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F ig . 3 .1 . Reflexivity

F ig . 3 .2 . Symmetry

F ig . 3 .3 . Transitivity

Transitivity

When a relation satisfies transitivity property then every pair of edges in the 
graph, one pointing from vertex i to vertex j  and the other from vertex j  to 
vertex k ( i , j , k  =  1, 2, 3) there is an edge pointing from vertex i directly to 
vertex k. This is shown in Fig. 3.3.

For m atrix relation transitivity is given by

(Xi ,Xj ) G R  and ( x j , x k ) G R  ^  (Xi,Xk) G R

or
Xn(x i , Xj ) and X n ( x j , x k) =  1 ^  Xn ( x i , x k) =  1.
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C risp  T o leran ce R e la tio n

A binary relation R  on a universe X  th a t is reflexive and symmetric is called 
as compatibility relation or a tolerance relation. When a relation is a reflexive 
and symmetric it is called as proximity relation. A tolerance relation R  can 
be reformed into an equivalence relation by at most ( n - 1) composition with 
itself, where n  is the cardinal number of the set defining R, in the case X , i.e.,

Rn  — 1 =  R 1 о R 1 о oR i =  R.

3.5.2 Fuzzy  R e la tio n  

F uzzy  E q u iv alen ce  R e la tio n

A fuzzy relation R  on a single universe X  is also a relation from X  to X . It is 

a fuzzy equivalence relation if all three of the following properties for matrix

1,

Hr  (xj , x i ) ,

relations define it; e.g.,

Reflexivity Hr  (xi , x i )

Symmetry Hr  (xi , x j )

Transitivity Hr  (xi , x j )

^  HR (xi

where A > min [A1 A2] .

F uzzy  T o le ran ce  R e la tio n

If the fuzzy relation R 1 satisfies both reflexivity and symmetry then it is called 

as fuzzy tolerance relation R 1 . A fuzzy tolerance relation can be reformed into 

fuzzy equivalence relation at most ( n - 1) compositions. This is given by:

R ^ - 1  =  R 1 о R 1 о - - - о  R 1 =  R .

3.5.3 Solved E x am p les  

E x am p le  3.8. Consider fuzzy relation

R

1 0.6 0 0.2 0.3
0.6 1 0.4 0 0.8
0 0.4 1 0 0

0.2 0 0 1 0.5
0.3 0.8 0 0.5 1

1

j
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Hr  (xi, X2 ) =  0.6, h r  (X2 , X5) =  0.8, 

Hr  (xi, x5) =  0.3 < min (0.8, 0.6) . 

One composition results in the following relation:

- 1 0.6 0.4 0.3 0.6 -
0.6 1 0.4 0.5 0.8

R o R  = 0.4 0.4 1 0 0.4
0.3 0.5 0 1 0.5
0.6 0.8 0.4 0.5 1

where transitivity still does not result for example

Hr  (xi,  X2) =  0.6, hr  (x2, X4) =  0.8,

HR (x i , x4) =  0.3 < min (0.6, 0.5).

Finally after one or two more compositions, transitivity results

R

1 0.6 0.4 0.5 0.6
0.6 1 0.4 0.5 0.8
0.4 0.4 1 0.4 0.4
0.5 0.5 0.4 1 0.5
0.6 0.8 0.4 0.5 1

2

R3(xi,x2) =  0.6 > 0.5, 
R3(x2,x 4) =  0.3 > 0.5, 

R3(xi,x4) =  0.5 > 0.5.

The transitivity is satisfied hence equivalence relation is also satisfied. 

E x am p le  3.9. Find whether the given matrix is reflexive or not

R

1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0

0 1 0 0 1

by writing an M -file.
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Solution. The Matlab program to find the reflexivity is

P ro g ra m
% to find reflexvity 
r= in p u t(‘enter the m atrix’); 
sum1=0;
[m,n]=size(r);
if(m ==n)

for i=1:m
%to find the reflexivity

if(r(1,1)==r(i,i))
else
fprintf(‘the given matrix is irreflexive’);
sum1=1;
break;
end

end
if(sum1 ~ =  1)

fprintf(‘the given matrix is reflexive’);
end

end

O u tp u t
enter the matrix[1 1 0 0 0;1 1 0 0 1;0 0 1 0 0;0 0 0 1 0;0 1 0 0 1] 
the given m atrix is reflexive.

E x am p le  3.10. Find whether the given matrix is symmetry or not

R

1 0.5 0.3 0.6 0
0.5 1 0.7 0.5 0.9
0.3 0.7 1 0.6 0
0.6 0.5 0.6 1 0.5
0 0.9 0 0.5 1

by a Matlab program.

Solution. The M atlab program is

P ro g ra m
% to find the symmetric 
r= in p u t(‘enter the m atrix’); 
sum=0; 
for i=1:m

for j=1:n
if(r(i,j)==r(j,i))
else

fprintf(‘m atrix is not symmetry’); 
sum=1;
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break;
end

end
if(sum ==1)

break;
end

end
if(sum ~=1)

fprintf(‘The given matrix is symmetry’); 
end

O u tp u t
enter the matrix[1 0.5 0.3 0.6 0;0.5 1 0.7 0.5 0.9;0.3 0.7 1 0.6 0;0.6 0.5 0.6 1 
0.5;0 0.9 0 0.5 1] 

r =
1.0000 0.5000 0.3000 0.6000 0
0.5000 1.0000 0.7000 0.5000 0.9000
0.3000 0.7000 1.0000 0.6000 0
0.6000 0.5000 0.6000 1.0000 0.5000

0 0.9000 0 0.5000 1.0000
The given matrix is symmetry.

E x am p le  3.11. Find whether the given matrix is a tolerance matrix or not

R

1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1

by writing a M atlab file.

Solution. The M atlab program is given

P ro g ra m
% to find tolerance 
r= in p u t(‘enter the m atrix’) 
sum=0; 
sum1=0;
[m,n]=size(r); 
if(m ==n) 

for i=1:m
if(r(1,1)==r(i,i))
else

fprintf(‘the given matrix is irreflexive and’); 
sum1=1; 
break; 

end 
end
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if(sum1 ~ =  1)
fprintf(‘the given matrix is reflexive and’); 

end
for i=1:m 

for j=1:n
if(r(i,j)==r(j,i))
else

fprintf(‘not symmetry hence’); 
sum=1; 
break; 

end 
end
if(sum ==1)

break;
end

end
if(sum ~=1)

fprintf(‘symmetry hence’); 
end 

end
if(sum1~=1)

if(sum ~=1)
fprintf(‘the given matrix tolerance m atrix’); 

else
fprintf(‘the given matrix is not tolerance m atrix’); 

end 
else

fprintf(‘the given matrix is not tolerance m atrix’); 
end

O u tp u t
enter the matrix[1 1 0 0 0;1 1 0 0 1;0 0 1 0 0;0 0 0 1 0;0 1 0  0 1] 

r =
1 1 0  0 0 
1 1 0  0 1 
0 0 1 0  0 
0 0 0 1 0 
0 1 0  0 1 

The given matrix is reflexive and symmetry hence the given matrix is tolerance 
matrix.
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E x am p le  3.12. To find whether the given matrix is transitivity or not

R using a M atlab program.

Solution. The Matlab program is

P ro g ra m
% to find transitvity matrix 
r= in p u t(‘enter the m atrix’) 
sum2=0;
[m,n]=size(r); 
for i=1:m 

for j=1:n  
for k=n:1

lambda1=r(i,j); 
lambda2=r(j,k); 
lambda3=r(i,k); 
p=min(lambda1,lambda2) 
if(lambda3 < =  p)

fprintf(‘The given m atrix is not transitivity’ 
sum2=1; 
break; 

end 
end
if(sum2==1)

break;
end

end
if(sum2==1)

break;
end

end
if(sum ^=2)

fprintf(‘The given matrix is transitivity’); 
end

O u tp u t
enter the matrix[1 1 0 0 1;1 1 0 0 1;0 0 1 0 0;0 0 0 1 0;1 1 0  0 1]
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1 1 0  0 1 
1 1 0  0 1 
0 0 10  0
0 0 0 1 0 
1 1 0  0 1 

The given matrix is transitivity.

E x am p le  3.13. To find whether the given matrix is equivalence or not

R

1 0.8 0.4 0.5 0.8
0.8 1 0.4 0.5 0.9
0.4 0.4 1 0.4 0.4
0.5 0.5 0.4 1 0.5
0.8 0.9 0.4 0.5 1

by means of a M atlab program.

Solution. The M atlab program is 

P ro g ra m
% to find equivalence matrix
r= in p u t(‘enter the m atrix’)
sum=0;
sum1=0;
sum2=0;
[m,n]=size(r); 
if(m ==n) 

for i=1:m
if(r(1,1)==r(i,i))
else

fprintf(‘the given matirx is irreflexive’); 
sum1=1; 
break; 

end 
end
if(sum1 ~ =  1)

fprintf(‘the given matrix is reflexive’); 
end
for i=1:m 

for j=1:n
if(r(i,j)==r(j,i))
else

fprintf(‘and not symmetry’); 
sum=1; 
break; 

end 
end
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if(sum ==1)
break;

end
end
if(sum ~=1)

fprintf(‘and symmetry’); 
end 

end
for i=1:m 

for j=1:n  
for k=n:1

lambda1=r(i,j); 
lambda2=r(j,k); 
lambda3=r(i,k); 
p=min(lambda1,lambda2) 
if(lamda3 < =  p)

fprintf(‘and not transitivity hence’); 
sum2=1; 
break; 

end 
end
if(sum2==1)

break;
end

end
if(sum2==1)

break;
end

end
if(sum ^=2)

fprintf(‘and transitivity hence’); 
end 

if(sum 1^=1) 
if(sum ^=1) 

if(sum ^=2)
fprintf(‘the given matrix is equivalence m atrix’); 

else
fprintf(‘the given matrix is not equivalence m atrix’); 

end 
else

fprintf(‘not equivalence m atrix’); 
end 
else

fprintf(‘not equivalence m atrix’); 
end
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O u tp u t
enter the matrix[1 0.8 0.4 0.5 0.8;0.8 1 0.4 0.5 0.9;0.4 0.4 1 0.4 0.4;0.5 0.5 0.4
1 0.5;0.8 0.9 0.4 0.5 1] 

r =
1.0000 0.8000 0.4000 0.5000 0.8000 
0.8000 1.0000 0.4000 0.5000 0.9000 
0.4000 0.4000 1.0000 0.4000 0.4000 
0.5000 0.5000 0.4000 1.0000 0.5000 
0.8000 0.9000 0.4000 0.5000 1.0000 

The given matrix is reflexive, symmetry, and transitivity hence the given ma­
trix is equivalence matrix.

E x am p le  3.14. To find whether the given m atrix is equivalence or not

R

1 0.8 0 0.1 0.2
0.8 1 0.4 0 0.9
0 . 0.4 1 0 0

0.1 0 0 1 0.5
0.2 0.9 0 0.5 1

using a Matlab program.

Solution. The Matlab program is 

P ro g ra m
% to find equivalence matrix
r= in p u t(‘enter the m atrix’)
sum=0;
sum1=0;
sum2=0;
sum3=0;
[m,n]=size(r);
l=m;
if(m ==n) 

for i=1:m
if(r(1,1)==r(i,i))
else

fprintf(‘the given m atrix is irreflexive’); 
sum1=1; 
break; 

end 
end
if(sum1 ~ =  1)

fprintf(‘the given matrix is reflexive’); 
end 
m

[m,n]=size(r)
n



for i=1:m 
for j=1:n

if(r(i,j)==r(j,i))
else

fprintf(‘,not symmetry’); 
sum=1; 
break; 

end 
end
if(sum ==1)

break;
end

end
if(sum ^=1)

fprintf(‘,symmetry’); 
end 

for i=1:m 
for j=1:n  

for k=l:-1:1
lambda1=r(i,j);
lambda2=r(j,k);
lambda3=r(i,k);
p=min(lambda1,lambda2);
if(lambda3 > =  p)
else

sum2=1;
break;

end
end

end
end
if(sum2 ~ =  1)

fprintf(‘and transitivity hence’); 
else

fprintf(‘and not transitivity hence’); 
end 

if(sum 1^=1) 
if(sum ^=1) 

if(sum 2^=1)
fprintf(‘the given matrix is equivalence m atrix’); 

else
fprintf(‘the given matrix is not equivalence m atrix’); 

end 
else

fprintf(‘not equivalence m atrix’);
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end
else

fprintf(‘not equivalence m atrix’); 
end 
end

O u tp u t
enter the matrix[1 0.8 0 0.1 0.2;0.8 1 0.4 0 0.9;0 0.4 1 0 0;0.1 0 0 1 0.5;0.2 .9 
0 0.5 1]

r =
1.0000 0.8000 0 0.1000 0.2000
0.8000 1.0000 0.4000 0 0.9000

0 0.4000 1.0000 0 0
0.1000 0 0 1.0000 0.5000
0.2000 0.9000 0 0.5000 1.0000

The given matrix is reflexive, symmetry and not transitivity hence the given 
m atrix is not equivalence matrix.

E x am p le  3.15. Find the fuzzy relation between two vectors R  and S

R =
0.70 0.50 
0.80 0.40

S =
0.90 0.60 0.20 
0.10 0.70 0.50

Using m ax-product method by a M atlab program.

Solution. The M atlab program for the m ax-product method is shown below 

P ro g ra m
%enter the two input vectors 
R = inpu t(‘enter the first vector’)
S = input(‘enter the second vector’)
%find the size of the two vector 
[m,n]=size(R)
[a,b]=size(S)
if(n==a)

for i=1:m
for j=1:b
c=R(i,:);
d=S(:,j);
[f,g]=size(c);
[h,q]=size(d);
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%finding product 
for l=1:g

e(1,l)=c(1,l)*d(l,1);
end

%finding maximum
t(i,j)=m ax(e);
end

end
else

end
display(‘cannot be find min-max’);

O u tp u t
enter the first vector[0.7 0.5;0.8 0.4]

R =
0.7000 0.5000 
0.8000 0.4000 

enter the second vector[0.9 0.6 0.2;0.1 0.7 0.5]
S =

0.9000 0.6000 0.2000 
0.1000 0.7000 0.5000 

the final m ax-product answer is 
t =

0.6300 0.4200 0.2500
0.7200 0.4800 0.2000

E x am p le  3.16. Find the fuzzy relation using fuzzy m ax-m in Method for the 
given using M atlab program

0 1 
0 0 
0 1 
0 0

Solution. The M atlab program for finding fuzzy relation using fuzzy max-min 
method is

1 0 1 0
R  = 0 0 0 1 and S

0 0 0 0

P ro g ra m
%enter the two vectors whose relation is to be found 
R = inpu t(‘enter the first vector’)
S= input(‘enter the second vector’)
% find the size of two vectors 
[m,n]=size(R)
[a,b]=size(S)
if(n==a)

for i=1:m
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for j=1:b 
c=R(i,:) 
d=S(:,j) 
f= d ’
%find the minimum of two vectors 
e=min(c,f)
%find the maximum of two vectors
h(i,j)=max(e);
end

end
%print the result
display(‘the fuzzy relation between two vectors is’);
display(h)

else
display(‘The fuzzy relation cannot be found’)

end

O u tp u t
enter the first vector[1 0 1 0;0 0 0 1;0 0 0 0]

R =
10  10  
0 0 0 1 
0 0 0 0

enter the second vector[0 1;0 0;0 1;0 0]
S =

0 1 
0 0
0 1
0 0

The fuzzy relation between two vectors is 
h =

0 1
0 0
0 0

Sum m ary

In this chapter, we have studied about the operations and the properties of the 
crisp and the fuzzy relation. The basic concept of relation has to be efficient in 
order to perform the problems of classification, rule base, control system, etc. 
The composition of the relation was also introduced and discussed. The special 
properties related to tha t of the crisp and fuzzy equivalence and tolerance 
relation were also described. These are used in similarity and classification 
applications.



R eview  Q uestions

66 3 Classical and Fuzzy Relations

1. State some of the applications where relation concept plays a major role.
2. W hat is the degree of relationship for the classical relation and the fuzzy 

relation? Explain the differences between the two relations in terms of 
degree of relationship.

3. W hat is meant by ordered n-tuple?
4. State the Cartesian product of set theory.
5. How are the crisp relations formed based on the Cartesian product of set?
6. On what basis is the relation matrix formed in crisp relations.
7. Define the cardinality of the classical relation.
8. Write function-theoretic operations of crisp relation.
9. Explain with function-theoretic form the operations tha t can be performed 

on the classical relation.
10. State some of the properties of the crisp relation.
11. How is the composition operation performed on the classical relations? 

Briefly describe the types of composition methods.
12. Define fuzzy relation.
13. W hat are the operations tha t can be performed on the fuzzy relations?
14. State the properties of fuzzy relations.
15. W hat are the properties tha t hold well in crisp relation but not in fuzzy 

relation? Explain.
16. Define fuzzy Cartesian product.
17. Explain about the composition methods adopted in fuzzy relation. Write 

the various expressions involved here.
18. State whether R  o S  =  S  o R. Explain.
19. Define reflexivity, symmetry, and transitivity properties of relations.
20. When does a relation become an equivalence relation?
21. State the expression for the classical equivalence relation.
22. Define tolerance classical relation.
23. Describe about the fuzzy equivalence and tolerance relation.

E xercise P roblem s

1. Consider speed control of DC motor. Two variables are speed (in RPM ) 
and load (torque) resulting in the following two fuzzy membership
functions.

0.2 0.6 0.8 0.6 0.4

0.3 0.5 0.6 1.0 0.8 0.3 0.2 
------1-------- 1-------- 1-------- 1-------- 1-------- 1------
У1 У2 У3 У4 У5 У6 У7

------1-------- 1-------- 1-------- 1-----Xi X2 X3 X4 X5

T  is on universe Y .
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(a) Find fuzzy relation tha t relates these two variables R  = S  x T . Now an­

other variable fuzzy armature current I  tha t relates elements in universe
Y  to element in two as given here

Vi Zi
0.4

У2 0.5
V3 0.6
V4 0.3
V5 0.7
V6 0.6
V7 1.0

(b) Find Q =  Io R  using m ax-m in composition and m ax-product composition.

2. The three variables of interest in the MOSFET are the amount of current 
tha t can be switched, the voltage tha t can be switched and the cost. The 
following membership function for the transistor was developed

Current =  I

Voltage =  V

0.4 0.7 1 0.8 0.6
0.8 +  0.9 +  I +  L I + L 2
0.2 0.8 1 0.9 0.7 
30 +  45 +  6 0 + 7 5  +  90

Cost
0.4 1 0.Б 
0 5  +  0 6  +  0 7

V I .The power is given by P

(a) Find the fuzzy Cartesian product P  =  V  x I .

(b) Find the fuzzy Cartesian product T  =  I  x C .

(c) Using m ax-m in composition find E  =  P  o T .

(d) Using m ax-product composition find E  =  P  o T .

3. Relating earthquake intensity to ground acceleration is an imprecise 
science. Suppose we have a universe of earthquake intensities I  =  
{5, 6, 7, 8, 9} and a universe of accelerations, A  =  {0.2, 0.4,0.6, 0.8,1.0,1.2} 
in 8s. The following fuzzy relation R  exists on confession space I  x A.

R

0.75 1 0.65 0.4 0.2 0.1
0.5 0.9 1 0.65 0.3 0
0.1 0.4 0.7 1 0.6 0
0.1 0.2 0.4 0.9 1 0.6
0 0.1 0.3 0.45 0.8 1
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Fuzzy set “intensing about 7” is defined as:

( 0.1 0.6 1 0.8 0.4
I  —  \  - Г -  +  —TT +  -Z +  —7 - +  “ TT[ 5 6 7 8 9

Determine the fuzzy membership of I  on the universe of accelerations, A.

4. The speed of the motor m  degrees per second and the voltage in volts. 
One having fuzzy set.

( 1/3 2/3 1 2/31
S 2 — < -------1---------1------1-------> — speed about 2,
v  I 0 1 2 3 1

( 1 3/4 1/2 1/4 0 01
V0  — \ 0  +  t -  +  ~  +  —  +  5 +  6 1 — voltage about 0 .

(a) Find the Cartesian product relation R  between S 2 and V0

Creating another fuzzy set on universe V  for “voltage about 3” might give

[0  1/4 1/2 1 1/2 01
V3 — \  0 +  “  +  ~  +  3 + ЁР + 6 / .

(b) Use max-min composition to find V3 o R

5. Consider two fuzzy sets A  and B

_ ( 0  0.1 0.3 0.8 1.0
A — \  б +  30 +  5 0 + 1 0 0  +  300

0.7 0.8 0.2 0.1 0.7
B  — {ir +  T  +  ir +  T o +  1.2

(a) Find fuzzy relation using the Cartesian product between A  and B  

Another fuzzy set C  is defines as

_  1.0 0.8 0.1 0.2 0 1 
C  — ^ ~ + 3 0  +  50 +  100 +  300j .

Find a relation between a C  and previously determines relation of part (a)

(b) Using max-min composition
(c) Using max-product composition

6. Using max-min find the relational matrix between R \  and R 2
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X\
R l = X2
~ X3

R 2

yi
У2 
У3 
У 4 
У5

y l
0.1
0.4
0.9

zi
0.8
0.3
1

0.4
0.1

У 2 У3 У4 У5
0.2 0.1 1 0.8 '
0.5 0 0.2 1
0.2 0.4 0.3 0.2

Z2 Z3 Z4
0.1 0.5 0.4
0.9 0.8 0.1
0.2 0.6 0.1
0.2 0.3 0
1 0.8 0.7

7. Find the relation between two fuzzy sets R 1 and R 2 using

(a) M ax-min composition
(b) M ax-product composition
(c) Max-average composition

Ri

R 2

xi У1 У 2 У3
0.3 0.1 0.6

X2 0.1 1 .0 2

zi Z2 Z3
У1 0.9 0.1 1
У2 0.1 0.5 0.4
У3 0.6 0.8 0.5
У4 0.1 0 0

tow fuzzy sets using

У4

A  =

B

Xi У1 У2 У3
0.1 0.5 0.6

X2 0.4 0.8 0.3

zi z2
У1 0.4 0.8'
У2 0.6 0.5
У3 1 0.8

9. Discuss the reflexivity property of the following fuzzy relation

1
0.4
0.7

0.7
0.5
0.5

0.3
0.8
1

10. For each of the following relation on single set state whether the relation 
is reflexive, symmetric, and transitive
(a) “is a sibling of,”



70 3 Classical and Fuzzy Relations

(b) “is a parent of,”
(c) “is a smarter than ,”
(d) “is the same height as,”
(e) “is at least as tall as.”

11. State which of the following are equivalence relations and draw graph for 
tha t equivalence relations with appropriate labels.

S et R e la tio n  o n  th e  se t
(a) People is the brother of
(b) People has the same parent
(c) Points and map as is connected by a road to
(d) Lines in plane geometry is perpendicular to
(e) Positive integers 10m times m  j  some integer

12. Find whether the given matrix is reflexive or not

R

1 1 0  0 1 
1 1 1 0  1 
0 0 10  0 
0 10  10  
0 1 1 0  1

by writing an M -file.

13. For the above given matrix in problem 12, check the symmetry and 
transitivity property.

14. Find whether the given relation is a tolerance or not

R

1 1 0  0 1 
1 1 1 0  1 
0 0 10  0 
0 10  10  
0 1 1 0  1

by writing an M -file.

15. Find whether the given matrix is equivalence or not

R

1 0.8 0.4 0.5 0.6 
0.5 1 0.4 0.3 0.9 
0.4 0.2 1 0.4 0.4 
0.5 0.5 0.3 1 0.3 
0.4 0.9 0.4 0.7 1

by means of a M atlab program .

16. Implement neuro-fuzzy NAND using fuzzy propagation algorithm in 
Matlab.

17. Find the fuzzy relation between two vectors R  and S



R  =
0.60 0.25
0.81 0.45

S  =
0.80 0.40 0.20
0.10 0.60 0.10
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using m ax-product and m ax-m in method by a Matlab program.



M em bership Functions

4

4.1 Introdu ction

Fuzziness in a fuzzy set is characterized by its membership functions. It classi­
fies the element in the set, whether it is discrete or continuous. The member­
ship functions can also be formed by graphical representations. The graphical 
representations may include different shapes. There are certain restrictions 
regarding the shapes used. The rules formed to represent the fuzziness in an 
application are also fuzzy. The “shape” of the membership function is an im­
portant criterion tha t has to be considered. There are different methods to 
form membership functions. This chapter discusses on the features and the 
various methods of arriving membership functions.

4.2  Features o f M em bersh ip  Function

The feature of the membership function is defined by three properties. They 
are:

(1) Core
(2) Support
(3) Boundary

The Fig. 4.1 shown below defines the properties listed above.
The membership can take value between 0 and 1.

(1) C ore
If the region of universe is characterized by full membership (1) in the set 

A  then this gives the core of the membership function of fuzzy at A.

The elements, which have the membership function as 1, are the elements 
of the core, i.e., here /лА (x) =  1.
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(2) S u p p o rt
If the region of universe is characterized by nonzero membership in the set 

A, this defines the support of a membership function for fuzzy set A-

The support has the elements whose membership is greater than 0. 
Ha  (x) > 0.

(3) B o u n d a ry
If the region of universe has a nonzero membership but not full member­

ship, this defines the boundary of a membership; this defines the boundary of 
a membership function for fuzzy set A:

The boundary has the elements whose membership is between 0 and 1 ,0  <
Ha  (x) < 1
These are the standard regions defined in the membership functions.

Defining two im portant terms.

Crossover point

The crossover point of a membership function is the elements in universe 
whose membership value is equal to 0.5, ha  (x) =  0.5.

Height
The height of the fuzzy set A  is the maximum value of the membership func­
tion,

max ( ha (*) .
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The membership functions can be symmetrical or asymmetrical. Membership 
value is between 0 and 1.

4 .3  C lassification  o f Fuzzy Sets

The fuzzy sets can be classified based on the membership functions. They are:

Normal fuzzy set. If the membership function has at least one element in 
the universe whose value is equal to 1, then tha t set is called as normal 
fuzzy set.
Subnormal fuzzy set. If the membership function has the membership val­
ues less than 1, then that set is called as subnormal fuzzy set.

These two sets are shown in Fig. 4.2.

Convex fuzzy set. If the membership function has membership values those 
are monotonically increasing, or, monotonically decreasing, or they are 
monotonically increasing and decreasing with the increasing values for 
elements in the universe, those fuzzy set A  is called convex fuzzy set.

Nonconvex fuzzy set. If the membership function has membership values 
which are not strictly monotonically increasing or monotonically decreas­
ing or both monotonically increasing and decreasing with increasing values 
for elements in the universe, then this is called as nonconvex fuzzy set. 
Figure 4.3 shows convex and nonconvex fuzzy set.

When intersection is performed on two convex fuzzy sets, the intersected 
portion is also a convex fuzzy set.

This is shown in Fig. 4.4.
The shaded portions show tha t the intersected portion is also a convex 

fuzzy set. The membership functions can have different shapes like triangle, 
trapezoidal, Gaussian, etc.

F ig . 4 .2 . (1) Normal fuzzy set and (2) subnormal fuzzy set
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F ig . 4 .3 . (a) Convex set and (b) Nonconvex set

4 .4  Fuzzification

Fuzzification is an im portant concept in the fuzzy logic theory. Fuzzification is 
the process where the crisp quantities are converted to fuzzy (crisp to fuzzy). 
By identifying some of the uncertainties present in the crisp values, we form 
the fuzzy values. The conversion of fuzzy values is represented by the mem­
bership functions.

In any practical applications, in industries, etc., measurement of voltage, 
current, temperature, etc., there might be a negligible error. This causes im­
precision in the data. This imprecision can be represented by the membership 
functions. Hence fuzzification is performed.

Thus fuzzification process may involve assigning membership values for 
the given crisp quantities.

4.5  M em bership  V alue A ssign m en ts

There are various methods to assign the membership values or the membership 
functions to fuzzy variables. The assignment can be just done by intuition or 
by using some algorithms or logical procedures. The methods for assigning 
the membership values are listed as follows:
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-  Intuition,
-  Inference,
-  Rank ordering,
-  Angular fuzzy sets,
-  Neural networks,
-  Genetic algorithms, and
-  Inductive seasoning

All these methods are discussed in detail in the following sections.

4 .5 .1  In tu i t io n

Intuition is based on the hum an’s own intelligence and understanding to  de­
velop the membership functions. The thorough knowledge of the problem has 
to  be known, the knowledge regarding the linguistic variable should also be 
known. Figure 4.5 shows membership function for imprecision in crisp tem­
perature reading.

For example, consider the speed of a dc-motor. The shape of the universe 
of speed given in rpm is shown in Fig. 4.6.

The curves represent membership function corresponding to various fuzzy 
variables. The range of speed is splitted into low, medium, and high. The

F ig . 4 .5 . Membership functions representing imprecision in crisp temperature 
reading

F ig . 4 .6 . Membership for fuzzy variable “speed” in rpm
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curves differentiate the ranges, said by humans. The placement of curves is 
approximate over the universe of discourse; the number of curves and the 
overlapping of curves is an im portant criteria to be considered while defining 
membership functions.

4 .5 .2  In fe ren c e

This method involves the knowledge to perform deductive reasoning. The 
membership function is formed from the facts known and knowledge.

Let us use inference method for the identification of the triangle. Let U 
be universe of triangles and A, B,  and С  be the inner angles of the triangles. 
Also A  > В  > С  > 0. Therefore the universe is given by:

U =  {(A , B , C ), A  > В  > С > 0 , A  + В  +  С  = 1 8 0 °}.

There are various types of triangles, for identifying, we define three types 
of triangles:

I  Appropriate isosceles triangle 

R  Appropriate right triangle

O Other triangles

The membership vales can be inferred to all of these triangle types through 
the method of inference, as we know the knowledge about the geometry of the 
triangles.

The membership for the approximate isosceles triangle, for the given con­
ditions A  > В  > С > 0 and A  +  В  +  С  =  180°, is given as,

h i  (Ai В ,С ) =  1 — 60j° min (A — В , В  — С ) .

The membership for the appropriate right triangle, for the same conditions,
is

Hr  {Ai В ,С ) =  1 — 90;° (A — 90°) .

The membership for the other triangles can be given as the complement 
of the logical union of the two already defined membership functions

Ho (A, В , С ) =  I  U R  (or) 

by using demorgans law, it is,

1 — h i  (A , В , С ) 
h o {A, B , C) = I n r  =  mi^  1 — hI  (А в ,С)
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E x am p le  4.1. Define the triangle for the figure shown in Fig. 4.7 with the 
three given angles.

Solution.
The condition is

A  > B  > C > 0 and A  +  B  +  C  =  180°.

Here

{U  =  A  =  85° > B  =  60° > C  =  35° > O ,A  +  B  +  C  =  180}.

The membership for the triangle shown in Fig. 4.7, for, each triangle types
are:

(1) MI (x )

MI (x) 

(2) Mr  (x)

Mr (x) 

(3) M o(x)

Mo (x)

=  1 ------- min (A -  B ,B  -  C )
60° v 7

=  1 ------- min (85 — 60°, 60 — 35)
60° v J

=  1 — —  min (25°, 25°)
60° v J

=  1 — —  x 25°60°
=  0.583,

=  1 — —  (A — 90°)
90° v 7

1
=  1 ------- (85 — 90)

90° v J

=  1 — —  x 5 
90°

=  0.944,

min 1 — M± (x),  1 =  Mr  (x)

=  min {1 — 0.583,1 — 0.944} 
=  min {0.417, 0.55}
=  0.055.
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Number who preferred
Palio Siena Astra Easter Baleno Total Percentage Rank order

Palio - 515 545 523 671 2,254 22.5 2
Siena 481 - 475 845 580 2,381 23.8 1
Astra 469 624 - 141 536 1,770 17.7 4
Easter 457 530 470 - 649 2,114 21.1 3
Baleno 265 425 402 389 - 1,481 14.8 5
Total 10,000

Hence there is highest membership for (x). Thus inference method can be 

used to calculate the membership values.

4 .5 .3  R a n k  O rd e rin g

The polling concept is used to assign membership values by rank ordering 
process. Preferences are above for pairwise comparisons and from this the 
ordering of the membership is done.

E x am p le  4.2. Suppose 1,000 people responds to a questionnaire about the 
pairwise preference among five cars, x — {Palio, Siena, Astra, Easter, Baleno}. 
Define a fuzzy set as A  on the universe of cars, “best cars” .

Solution.
The pairwise comparison is made among 1,000 people and their views are 
summarized in Table 4.1.

From the table, it is clear th a t 515 preferred Siena compared to  Palio, 
545 Astra to Palio, etc. The table forms an antisymmetric matrix. There are 
about ten comparisons made which gives a ground total of 10,000. Based on 
preferences, the percentage is calculated. The ordering is then performed. It 
is found tha t siena is selected as the best car.

Figure 4.8 shows the membership function for this example.

4 .5 .4  A n g u la r  Fuzzy  S ets

The angular fuzzy sets are different from the standard fuzzy sets in their coor­
dinate description. These sets are defined on the universe of angles, hence are 
repeating shapes every 2П cycles. Angular fuzzy sets are applied in quantita­
tive description of linguistic variables known truth-values. When membership 
of value 1 is true and tha t of 0 is false, then in between ‘0’ and ‘1’ is partially 
true or partially false.

The linguistic values are formed to vary with 9, the angle defined on the 
unit circle and their membership values are on /i(ff). The membership of this 
linguistic term  can be obtained from
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F ig . 4 .8 . Membership for best car

Ht(9) = t  tan  9,

where t  is the horizontal projection of the radial vector and is given as cos 9,
i.e., t =  cos 9. When the coordinates are in polar form, angular fuzzy sets can 
be used .

E x am p le  4.3. Consider a motor, which is used in computer peripheral appli­
cations. From the membership functions based on its rotation using angular 
fuzzy sets.

Solution. The linguistic terms relating to the direction of motion of the motor 
is given as

Fully anticlockwise (FA) -  9 =  П /2 
Partially anticlockwise (PA) -  9 =  П /4 
No rotation (NR) -  9 =  0
Partially clockwise (PC) -  9 =  —П /4
Fully clockwise (FC) -  9 =  —П /2

The angular fuzzy set for this is shown in Fig. 4.9.
The membership function is shown in F ig 4.10.
The values for membership functions used in Fig. 4.9 is obtained as follows

Ht ( Z ) =  Z  tan  9,

where Z  =  cos 9.
Therefore, the angular fuzzy membership values are shown in Table 4.2. 
Hence, angular fuzzy sets can be used to obtain fuzzy membership values.

4 .5 .5  N e u ra l N e tw o rk s

Neural networks are used to  simulate the working network of the neurons 
in the human brain. The concept of the human brain is used to perform 
computation on computers.
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Ц(0)

F ig . 4 .9 . Angular fuzzy set

F ig . 4 .1 0 . Angular fuzzy membership function

T a b le  4 .2 . Angular fuzzy membership values

в Tan в Z  =  cos в p,t(Z) =  (Z tan в)
П/2(90°) 0 1
П/4(45°) 1 0.707 0.707
0 0 2 0

In this case, the fuzzy membership function may be created for fuzzy 
classes of an input data set. The procedure is, the number of input data 
values are selected. Then it is divided into training data set and testing data 
set. The training data set may be used to train  the network.

The generations of membership function from neural network are shown 
in Fig. 4.11.
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Fig. 4.11. Generation of membership functions using neural network

Figure 4.11a shows the training data set. This is passed through a neural 
network shown in Fig. 4.11b and this data points of Fig. 4.11a is divided into 
three regions as R 1 ,R'2, and R3 as in Fig. 4.11c. Depending upon the data 
points, the regions are classified. If the data point is in region 1, then we 
assign full membership in regions 1 and zero membership in regions 2 and 3. 
Similarly if the data points are in regions 2 and 3, it will have full membership 
in regions 2 and 3 and zero membership in regions 1 and 3, and regions 1 and
2, respectively.

The neural network is then created, from which the training is done be­
tween corresponding membership values in different classes, to simulate the 
relationship between the coordinate locations and membership values. The 
neural network uses the set of data value and membership values to train
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itself as shown in Fig. 4.11d. This training process is continued until the neural 
network can simulate for the given entire set of input and output value.

After the net is trained, its performance can be checked by the testing 
data. After full training and testing process is completed, the neural network 
is ready and it can be used to determine the membership values of any input 
data in the different regions. These are all shown in Fig. 4.11g-i.

The complete mapping of the membership of different data points in dif­
ferent fuzzy classes can be determined by using neural network approach.

4 .5 .6  G e n e tic  A lg o rith m

Genetic algorithm (GA) uses the concept of Darwin’s theory of evolution. 
Darwin’s theory is based on the rule, “survival of the fittest.” Darwin also 
postulated tha t the new classes of living things came into existence through 
the process of reproduction, crossover, and m utation among existing organ­
isms.
The steps involved in computing membership functions using GA are:

(1) For the given functional mapping of a system, some membership functions 
and their shapes are assumed for various fuzzy variables to be defined.

(2) These membership functions are then coded as bit stings.
(3) These bit strings are then concatenated (joined).
(4) Similar to activation function in neural networks, GA has a fitness func­

tion.
(5) This fitness function is used to evaluate the fitness of each set of member­

ship functions.
(6) These membership functions are the parameters tha t define tha t func­

tional mapping of the system.

Thus, GA can be used to determine the membership functions.

4 .5 .7  In d u c tiv e  R easo n in g

The membership can also be generated by the characteristics of inductive 
reasoning. The induction is performed by the entropy minimization princi­
ple, which clusters the parameters corresponding to the output classes. For 
inductive reasoning method, there should be a well-defined database for the 
input-output relationships. This method can be suited for complex systems 
where the data are abundant and static. When the d a ta ’ are dynamic, this 
method is not suited, since the membership functions continually change with 
time.

There are three laws of induction (Christensen 1980).

(1) Given a set of irreducible outcomes of an experiment, the induced prob­
abilities are those probabilities consistent with all available information 
tha t maximize the entropy of the set.
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(2) The induced probability of a set of independent observations is propor­
tional to the probability density of the induced probability of a single 
observation.

(3) The induced rule is th a t of rule consistent with all available information 
of which the entropy is minimum.

The third law stated here is the mostly used for membership function 
development.

The steps involved in generating membership functions using inductive 
reasoning are as follows:

(1) It is necessary to establish a fuzzy threshold between classes of data.
(2) First, determine the threshold line with an entropy minimization screening 

method.
(3) After this, start the segmentation process.
(4) The segmentation, process, first results into two classes.
(5) Further partitioning the first two classes one more time, there is three 

different classes.
(6) The partitioning is repeated with threshold value calculations, which lead 

us to partition the data set into a number of classes or fuzzy sets.
(7) Then based on shape, membership function is determined.

Thus the generation of membership function is based on partitioning or 
analog screening concept. This draws a threshold line between two classes of 
sample data. The main concept behind drawing the threshold line is to classify 
the samples when minimizing the entropy for optimum partitioning.

4 .6  Solved E xam ples

E x am p le  4.4. Using your own intuition and definitions of the universe of 
discourse, plot fuzzy membership functions for “weight of people.”

Solution. The universe of discourse is the weight of people. Let the weights be 
in “kg” -  kilogram.

Let the linguistic variables are:
Very light -  w < 30 
Light -  30 < w < 45
Average -  45 < w < 60 
Heavy -  60 < w < 75
Very heavy -  w > 75
Representing this using triangular membership function, as shown in 

F ig .4.12.

E x am p le  4.5. Using your own intuition, plot the fuzzy membership function 
for the age of people.
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ц(х)
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Fig. 4.12. Membership function of weight of people

0 12 T5"25 3045 5060 65

Fig. 4.13. Membership function for age of profile

Solution.
The linguistic variables are defined as, let A  denotes age in years.

(1) Very young (vy) -  A  < 15

(3) Middle aged (m) -  25 < A  < 50

This is represented using triangular membership, as shown in Fig. 4.13.

E x am p le  4.6. Using the inference approach, find the membership values for 
the triangular shapes ( I  R O ) for a triangle with angles as 45°, 75°, 60°.

Solution. Let U-universe of discourse is

{u : x  =  75° > y =  60° > z =  45°,x +  y +  z =  180°}.

(1) Calculating membership of isosceles triangle

• _ VY Y M O VO

(2) Young (y) 12 < A  < 30

(4) Old (o)
(5) Very old (vo)

45 < A  < 65 
60 < A

MI (x)x) =  1 — 0.25 =  0.75.
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(2) Calculating membership of right triangle

Mr  (u) — 1 -  90°  (A -  90° )

1  (75 -  90)
90° v 7

1 -0 .1 6 6 ,

Mr  (u) — 0.833.

(3) Calculating membership of other triangle

Mo (u) 1 -  m i  (u), 1 -  mr  (u)

— min {1 -  0.75,1 -  0.833}
— min {0.25, 0.167} ,

Mo (x) — 0.167.

Thus the membership values are calculated

E x am p le  4.7. The energy E  of a particle spinning in a magnetic field B  is 
given by the equation

E  — мв  sin в,
where м is magnetic moment of spinning particle and в is complement angle 
of magnetic moment with respect to the direction of the magnetic field.

Assuming the magnetic field B  and magnetic moment м to be constants, 
the linguistic terms for the complement angle of magnetic moment are given 
as:

в — П /2 
в — П /4 
в —0 
в — -П /4  
в — -П /2

Find the membership values using the angular fuzzy set approach for these 
linguistic labels and plot these values versus в .

Solution.
The linguistic variables are given by:

High moment (H) -  в — П /2
Slighly high moment (SH) -  в — П /4 
No moment (-) -  в — 0
Slightly low moment (SL) -  в — -П /4  
Low moment (L) -  в — -П /2
The angular fuzzy set is shown in Fig. 4.14.
Calculating the angular fuzzy membership values as shown in Table 4.3. 
The plot for this calculated membership value is shown in Fig. 4.15.

High moment (H)
Slighly high moment (SH) 
No moment (-)
Slightly low moment (SL) 
Low moment (L)
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T a b le  4 .3 . Angular fuzzy membership values

в Tan в Z  =  cos в Ht =  (z tan в)
П/2 а 0 1
П/4 1 0.707 0.707
0 0 1 0
-П /4 -1 0.707 +0.707
-П /2 а 0 1

F ig . 4 .1 5 . Plot of membership function

E x am p le  4.8. Use M atlab command line commands to display the Gaussian 
membership function. Given x  =  0-10 with increment of 0.1 and Gaussian 
function is defined between 0.5 and —5.

Solution.
Step 1:First enter the x value 

x =  (0:0.1:10)’;
Step 2:enter gaussmembership function 
> >  y1 =  gaussmf(x, [0.5 5]);
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Step 3:plot the curve 
> >  plot(x, [y1])
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Gaussian membership function

E x am p le  4.9. Use Matlab command line commands to display the triangu­
lar membership function. Given x  =  0-10 with increment of 0.2 triangular 
membership function is defined between [3 4 5]

Solution.
Step 1:First enter the x value 

> >  x =  (0:0.2:10)’;
Step 2:enter triangular membership function 
> >  y1 =  trimf(x, [3 4 5]);
Step 3:plot the curve 
> >  plot(x,y1)
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Triangular membership function

E x am p le  4.10. Illustrate different types of generalized bell membership func­
tions using M atlab program
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Solution.
The M atlab program for illustrating bell membership function is given by: 

P ro g ra m

% Illustration of different generalized bell MFs
x =  (-10:0.4:10)’; 
b =  2;c =  0;
mf1 =  gbell_mf(x, [2, b, c]); 
mf2 =  gbell_mf(x, [4, b, c]); 
mf3 =  gbell_mf(x, [б, b, c]); 
mf =  [mfl mf2 mf3];
subplot(221); plot(x, mf); title(‘(a) Changing “a” ’); 
axis([-inf inf 0 1.2]); 
a =  5;c =  0;
mf1 =  gbell_mf(x, [a, 1, c]); 
mf2 =  gbelLmf(x, [a, 2, c]); 
mf3 =  gbelLmf(x, [a, 4, c]); 
mf =  [mf1 mf2 mf3];
subplot(222); plot(x, mf); title(‘(b) Changing “b” ’); 
axis([-inf inf 0 1.2]); 
a =  5;b =  2;
mf1 =  gbelLmf(x, [a, b, -5]); 
mf2 =  gbell_mf(x, [a, b, 0]); 
mf3 =  gbell_mf(x, [a, b, 5]); 
mf =  [mf1 mf2 mf3];
subplot(223); plot(x, mf); title(‘(c) Changing “c” ’); 
axis([-inf inf 0 1.2]); 
c =  0;
mf1 =  gbelLmf(x, [4, 4, c]); 
mf2 =  gbelLmf(x, [б, б, c]); 
mf3 =  gbell_mf(x, [8, 8, c]); 
mf =  [mf1 mf2 mf3];
subplot(224); plot(x, mf); title(‘(d) Changing “a” and “b” ’); 
axis([-inf inf 0 1.2]);

O u tp u t
The output membership functions for different values of a, b and c are shown 
in Fig. 4.1б.

Sum m ary

This chapter has described the different methods of obtaining the membership 
functions. The entire fuzzy system operation is based on the formation of the 
membership functions. The sense of reasoning is very im portant in forming
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F ig . 4 .1 6 . Bell membership functions

the membership functions. The inference and the angular fuzzy sets are based 
upon the angular features. In the case of neural networks and reasoning meth­
ods the memberships are tuned in a cyclic fashion and are associated with the 
rule structure. In genetic algorithms, improvements have been made to achieve 
the optimum solution. Thus by using any one of the method discussed earlier, 
the membership function may be formed.

R eview  Q uestions

1. State the features of membership functions.
2. Define normal and subnormal fuzzy set.
3. W hat is a convex fuzzy set?
4. State the properties of a convex fuzzy set.
5. How is the crossover point and the height defined based on the membership 

function?
6. Define fuzzy number.
7. Compare normal and convex fuzzy set.
8. Define fuzzification.
9. W hat are the various methods employed for the membership value assign­

ment?
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10. Justify intuition is based on human reasoning. Give some suitable exam­
ples.

11. Discuss in detail on the inference method adopted for assigning member­
ship values. Give details on the concepts of triangle used.

12. How is the polling concept adopted in rank ordering method to  define the 
membership values?

13. Give details about the method of assigning membership values using an­
gular fuzzy set with example.

14. Explain the method of generating membership function by means of neural 
networks and genetic algorithm.

15. How is membership value assigned based on inductive reasoning?

E xercise P roblem s

1. Using your own intuition, develop fuzzy membership functions for the 
fuzzy number 3, using the following shapes: (a) right angle triangle,
(b) quadrilateral, (c) Gaussian function, (d) trapezoid, and (e) isosceles 
triangle.

2. Using intuition, assign the membership functions for
(a) population of people, (b) employment strategy, and (c) usage of library.

3. Using the inference m ethod, find the membership values of the triangular 
shapes for each of the following triangles: (a) 60°, 40°, 80°, (b) 45°, 65°, 
70°, and (c) 75°, 55°, 50°.

4. The following data were determined by the pairwise comparison of work 
preferences of 100 people. When it was compared with Software (S), 69 of 
persons polled preferred Hardware (H), 45 of them  preferred Educational 
(E), 55 of them  preferred Business (B) and 25 preferred Textile (T). When 
it was compared with hardware (H), the preferences was 58-S, 45-E, 60-B, 
30-T. When it was compared with educational, 39-S, 56-H, 34-B, 25-T. 
When it was compared business, the preferences was 52-S, 49-H, 38-E, 
20-T. When it was compared with textile, the preferences was 69-S, 65-H, 
44-E, 40-B. Using rank ordering, plot the membership function for the 
“most preferred work.”

5. Using your own intuition, develop fuzzy membership functions on the real 
line for the fuzzy number 4, using the following function shapes:
(1) Symmetric triangle
(2) Trapezoid
(3) Gaussian function

6. Using your own intuition, develop fuzzy number “approximately 4 or 
approximately 8” using the following function shapes:
(1) Symmetric triangle
(2) Trapezoids
(3) Gaussian functions.
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7. Using your own intuition and your own definition of the universe of dis­
course plot fuzzy membership functions to the following variables:
(1) Height of liquid in a tank

(2)

(3)

(a) Very full
(b) Full
(c) Medium
(d) Small

(e) Very small
Race of people
(a) Very white
(b) W hite
(c) Moderate
(d) Black
(e) Very black
Age of people
(a) Very young
(b) Young
(c) Middle ages
(d) Old
(e) Very old

8. Using the Inference approach outlined in this chapter find the membership 
values for each of the triangular shapes ( I , R , I R ,  E,  R)  for each of the 
following
(1) 80°, 75°, 25°,
(2) 60°, 75°, 45°,
(3) 50°, 75°, 55°, and
(4) 45°, 45°, 90°.

9. Develop membership function for trapezoidal similar to algorithm devel­
oped for triangle and the function should have two independent variables 
hence it can be passed. For the shown in table, show the first iteration in 
trying to compute the membership values for input variables x 1 , x 2, and 
x 3 in the output regions R 1 and R2

x i X2 X3 R 1 R 2
1.0 0.5 2.3 1.0 0.0

(a) Use 3 x 3x 1 neural network,
(b) Use 3 x 3x 2 neural network.

10. For data shown in the following table (Table A) shows the first two itera­
tion using a genetic algorithm in trying to find the optimum membership 
function (right triangular function S) for the input variable x  and output 
variable y in the rule table out.

11. The following raw data were determined in a pairwise comparison of new 
scooter in a poll 100 people. When it was compare with Splender (S), 79 
of house preferred TVS Suzuki (T) 59, preferred Hero Honda (H) and 88
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T a b le  A . data
x 0 0.3 0.6 1.0
y 1 0.74 0.53 0.35

T a b le  B . rules
x L S Z -  Zero 
y Z S L -  Large

S -  Small

preferred Enfield (E), and 67 preferred infinity (I) when (T) was compared 
the preferences when (T) was compared, the preferences were 21-S, 23-H, 
37-H, and 45-I when H1 was compared the preferences were 15-S, 77-T, 
35-E, 48-I finally when an infinity was compared the preferences were 33-S, 
55-T, 52-H, and 49-E. Using rank ordering, plot the membership function 
for “most preferred bike.”

12. The energy E  of a particle spinning is a magnetic field B  is given by the 
equation

E  =  j B  sin в,

where j  is complement angle of magnetic moment with respect to direction 
of the magnetic field.

Assuming the magnetic field B  and magnetic moment j  to be constant, 
we propose/linguistic terms for the complement angle of magnetic moment 
as follows:

High moment (H) в =  П /4
Slightly high moment (SH) в =  3П/4 
No moment в =  0
Slightly low moment (SL) в =  3П/4 
Low moment (L) в =  П /4

Find the membership values using the angular fuzzy set approach for these 
linguistic labels for the complement angles and plot these values versus в .

13. Use M atlab command line commands to display the triangular mem­
bership function. Given x  =  0-20 with increment of 0.4 triangular 
membership function is defined between [6 7 8].



D efuzzification

5

5.1 Introdu ction

Defuzzification means the fuzzy to crisp conversions. The fuzzy results 
generated cannot be used as such to the applications, hence it is necessary to 
convert the fuzzy quantities into crisp quantities for further processing. This 
can be achieved by using defuzzification process. The defuzzification has the 
capability to reduce a fuzzy to  a crisp single-valued quantity or as a set, or 
converting to the form in which fuzzy quantity is present. Defuzzification can 
also be called as “rounding off” method. Defuzzification reduces the collection 
of membership function values in to  a single sealer quantity. In this chapter 
we will discuss on the various methods of obtaining the defuzzified values.

5.2 L am bda C uts for Fuzzy Sets

Consider a fuzzy set A, then the lambda cut set can be denoted by Ал, where

A ranges between 0 and 1 (0 < A < 1).
The set А л is going to be a crisp set. This crisp set is called the lambda 

cut set of the fuzzy set A , where

i.e., the value of lambda cut set is x, when the membership value corresponding 
to  x  is greater tha t or equal to the specified A. This lambda cut set can also 
be called as alpha cut set. The A cut set А л does not have title underscore, 
because it is derived from parent fuzzy set A . Since the lambda A ranges in 
the interval [0, 1], the fuzzy set A  can be transformed to infinite number of A 
cut sets. ~
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Properties of Lambda Cut Sets:

There are four properties of the lambda cut sets, they are:

(1) ( л  U б )  =  Лл и Бл^  J л
(2) ( л  П б )  =  Лл п БлV~ ~ / л
(3) =  (Лл) except for a value of A =  0.5

(4) For any A < a,where a  varies between 0 and 1, it is true that, Л а С Л л, 
where the value of Л 0 will be the universe defined.

From the properties it is understood that the standard set of operations 
or fuzzy sets is similar to the standard set operations on lambda cut sets.

5.3 L am bda C uts for Fuzzy R elations

The lambda cut procedure for relations is similar to tha t for the lambda cut 
sets. Considering a fuzzy relation R, in which some of the relational matrix

represents a fuzzy set. A fuzzy relation can be converted into a crisp relation 
by depending the lambda cut relation of the fuzzy relation as:

Rл =  { x , y / mr (x,y)  > A} .

Properties of Lambda Cut Relations:

Lambda cut relations satisfy some of the properties similar to lambda cut 
sets.

(1) (R  U s )  =  Rл U Бл.^  j л
(2) ( r  П s )  =  Rл п Бл.

(3) ( r )  л = .
(4) For A < a , where a  between 0 and 1, then R a С R л .

5.4 D efuzzification  M eth od s

Apart from the lambda cut sets and relations which convert fuzzy sets or 
relations into crisp sets or relations, there are other various defuzzification 
methods employed to convert the fuzzy quantities into crisp quantities. The 
output of an entire fuzzy process can be union of two or more fuzzy mem­
bership functions. To explain this in detail, consider a fuzzy output, which 
is formed by two parts, one part being triangular shape (Fig. 5.1a) and other 
part being trapezoidal (Fig. 5.1b). The union of these two forms (Fig. 5.1c) 
the outer envelop of the two shapes.
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F ig . 5 .1 . Typical fuzzy output

Generally this can be given as:

n
Cn = Y j Ci =  C.

There are seven methods used for defuzzifying the fuzzy output functions. 
They are:

(1) Max-membership principle,
(2) Centroid method,
(3) Weighted average method,
(4) M ean-max membership,
(5) Centre of sums,
(6) Centre of largest area, and
(7) First of maxima or last of maxima

(1) Max-membership-principle
This method is given by the expression,

Me  (-*) > Me (-) for all z e  - .

This method is also referred as height method. This is shown in Fig. 5.2.
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F ig . 5 .2 . Max-membership method

F ig . 5 .3 . Centroid method

(2) Centroid method
This is the most widely used method. This can be called as center of gravity 
or center of area method. It can be defined by the algebraic expression

Mc (—) -d z

J  Mc (-) dz ’

f  is used for algebraic integration. Figure 5.3 represents this method graphi­
cally.

(3) Weighted average method
This method cannot be used for asymmetrical output membership functions, 
can be used only for symmetrical output membership functions. Weighting 
each membership function in the obtained output by its largest membership 
value forms this method. The evaluation expression for this method is
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F ig . 5 .4 . Weighted average method

F ig . 5 .5 . Mean-max-membership

E  mc (z) z

E is used for algebraic sum. 
From Fig. 5.4

E mc (z) ’

a (0.8) +  b (0.6) 
0.8 +  0.6 .

(4) Mean-max-membership
This method is related to max-membership principle, but the present of the 
maximum membership need not be unique, i.e., the maximum membership 
need not be a single point, it can be a range. This method is also called as 
middle of maxima method the expression is given as

* _  a +  b 
Z _  2 ’

where a x b are the end point of the maximum membership range as shown 
in Fig. 5.5.

(5) Centre of sums
It involves the algebraic sum of individual output fuzzy sets, say c\ and c2 

instead of union. In this method, it is noted tha t the intersecting areas are

z

*z _

*z _
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(с)

Fig. 5.6. (a) First membership, (b) second membership, and (c) defuzzification 
step

added twice. This method is similar to the weighted average method, but 
in center of sums, the weights are the areas of the respective membership 
functions whereas in the weighted average method, the weights are individual 
membership values.

The defuzzified value z* is given as

/2 z E L i  мc k (-)d z

/2 z E L i  мск ( - ) d - '

Figure 5.6 represents the center of sums method.

(6 )  Center o f largest area

If the fuzzy set has two convex subregions, then the entire of gravity of the 
convex subregion with the largest area can be used to calculate the defuzzifi­
cation value. The equation is given as

I  Mcm (-) -dz

I  Mcm (-) dz ’

where cm is the convex region with largest area. The value z* is same as the 
value z* obtained by centroid method. This can be done even for non-convex

z* =
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regions. Figure 5.7 represents the center of largest area method.

(7) First of maxima or last of maxima

Here, the compute output of all individual output fuzzy sets ck is used to
determine the smallest value, with maximized membership degree in ck.

The evaluation expressions are ~
Let largest height in the union is represents by hgt (ck), then it is found 

by: ~
h g t (c k )  =  sup л ck ( - ) .

\ ^ / zG — ~
First of maxima is found by

z* =  inf \z E z /л ck (-) =  h gt(ck ) \ .z£— I ^ V ̂  / I

Fast of maxima is found by,

zG—
z* =  sup < z E z /л ck (—) =  hgt ck

The inf denotes infirm (greatest lower bound) and the sup denotes supremum 
(least upper bound). This method is shown in Fig. 5.8.

5.5 Solved Examples

Exam ple 5.1. Two fuzzy sets P  and Q are defined on x  as follows:

л(х\) x i  X2 X3 X4 X5
P  0.1 0.2 0.7 0.5 0.4
Q 0.9 0.6 0.3 0.2 0.8
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Find the following A cut sets

(a) ( p )  (b) (Q)o.s (c) ( p  U q )  (d) ( p n q ]
\— / 0.2 — V— — J 0.5 V— — J

(e) ( q  U p )  (f) ( p  U p )  .
V-  — )  0.8 V- — )  0.2

Solution. Given

f 0.1 0.2 0.7 0.5 0.4 
P  — s ------ 1------ +-----------1---------1------— I x i X2 X3 X4 X5

( 0.9 0.6 0.3 0.2 0.8 
Q — s ------ 1---------1---------1---------1------— [ Xi X2 X3 X4 X5

Finding
— f 0.9 0.8 0.3 0.5 0.6 
P  — s ------ 1---------1---------1---------1------— [ Xi X2 X3 X4 X5

— f 0.1 0.4 0.7 0.8 0.2
Q — < —  +  —  +  —  +  —  +  —
— i Xi X2 X3 X4 X5

^  f 1 1 1 1 1(a) ( P ) — < ----- 1--------1--------1--------1-----
V—/ 0.2 [X i X2 X3 X4 X5
f  \ [ 0 1 1 1  0

(b) ( Q ) —  ̂ — 1--------1--------1--------1—
— 0. 3 Xi X2 X3 X4 X5

0.9 0.6 0.7 0.5 0.8(c) P  U Q — I —  +  —  +  —  +  —  +  —
— — Xi X2 X3 X4 X5

f 1 1 1 0 1P  и Q ) — s ----- 1--------1--------1--------1-----
— J 06 I Xi X2 X3 X4 X5

f 0.9 0.8 0.7 0.5 0.6(d) P  U P  — i —  +  —  +  —  +  —  +  —
— — Xi X2 X3 X4 X5 

(  —\ ( 1 1 0 0 0P  U P  I — < — 1--------1--------1--------1-----
— — 0.8 Xi X2 X3 X4 X5

0.4
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(e) ( P  П Q 

P  П Q

(f) ( r n c )

( p  П p )\ AJ r  J

0.4

0.8

0.9 0.8 0.7 0.5 0.6
1 —  +  — + +

Xl X2 X3 X4 X5
0 0 0 0

s 1 1 + +
Xl X2 X3 X4 X5

0.1 0.2 0.3 0.5 0.4
1 —  +  — + +

Xl X2 X3 X4 X5
0 1 1 1

s 1 1 + +
Xl X2 X3 X4 X5

Exam ple 5.2. Given three fuzzy sets:

Find Ao.6, B 1.0 , C 0 .3 , 

Solution.

If 0.9 0.5 0.2 0.3
A — + ---- + ---- + ----
r  1[ Xl X2 X3 X4

If 0.2 1.0 0.8 0.4
B — + --- + ---- + ----r  1I Xl X2 X3 X4

1f 0.1 0.7 0.5 0.6
C — + ---- + ---- + ----
r  1[ Xl X2 X3 X4

A  , B C
r  0.2 ~0.8 0.5

(a) A0.6 —

(b) Bi.0 —

(c) C0.3 —

(d) A

(e) B

(f) C =

C

1 0  0 0
----- 1--------1--------1-----
Xl X2 X3 X4

0 1 0  0
Xl X2 X3 X4
0 1 1 1

Xl X2 X3 X4
0.1 0.5 0.8 0.7
Xl X2 X3 X4 

0 1 1 1
Xl X2 X3 X4 

0.8 0.0 0.2 0.6
Xl X2 X3 X4

1 0 0 0.9
Xl X2 X3 X4

0.9 0.3 0.5 0.4
Xl X2 X3 X4 

1 0 1 0
Xl X2 X3 X4

Exam ple 5.3. The fuzzy sets A  and B  are defined as universe, x — {0,1, 2, 3}, 
with the following membership fractions:

0.5
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ИЛ (x) 

Ив (x)
4x

Define the intervals along x-axis corresponding to the A cut sets for each 
fuzzy set A  and B  for following values of A. A =  0.2, 0.5,0.6.

Solution.

X
x  =  {0,1, 2, 3} 

0 1
Ил^
^Br

(x )
(x )

2 /x  +  3 
: 4x/2(x +  5)

2/3
0

2/4
4/12

2/5
8/14

2/6
12/16

Therefore the values are: 
X 0 1
Ил^ (x) 0.67 0.5
Ив^ (x) 0 0.33

(a) When A =  0.2 
A q.2 =  {0,1, 2, 3},
A q.2 =  {1, 2, 3}.

(b) When A =  0.5 
A q.5 =  {0, 1},
B q.5 =  {2, 3}.

(c) When A =  0.6 
A q.6 =  {0},
A q.6 =  {3}.

Exam ple 5.4. For the fuzzy relation

0.4
0.57

0.33
0.75

Solution. Given,

(a) A =  0+,

1 0.2 0.3
R  = 0.5 0.9 0.6

0.4 0.8 0.7

or the following values

1 0.2 0.3
R = 0.5 0.9 0.6

0.4 0.8 0.7

1 1 1
R0+ = 1 1 1

1 1 1

2
x

x
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(b) A =  0.2,

(c) A =  0.9,

(d) A =  0.5,

Exam ple 5.5. For the given fuzzy relation

1 1 1
R o.2 = 1 1 1

1 1 1

1 0 0
R o.9 = 0 1 0

0 0 0

1 0 0
R o.5 = 1 1 1

0 1 1

R

0.2 0.5 0.47 1 0.9
0.3 0.5 0.6 1 0.8
0.4 0.6 0.4 0.5 0.3
0.9 1 0.3 0.3 0.2

find the cut A cut relation for the following values of A =  0.4,0.7, 0.8. 

Solution. (a) A =  0.4,

R0.4 =

0 1 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 0 0 0

(b) A =  0.7,

R0.7

0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
1 1 0 0 0

(c) A =  0.8,

R0.8 =

0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
1 1 0 0 0

Exam ple 5.6. For the given membership function as shown in Fig. 5.9 deter­
mines the defuzzified output value by seven methods.

Solution. (a) Centroid method 
A n (0, 0), (2 -  0.7)
The straight line may be:
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Fig. 5.9. Membership function

У -  0 =  —  (x  -  0),

y =  0.35x.
A 12 : y =  0.7.
A 13 : not needed.
A21 : (2,0 )(3 ,1),

1 -  0 , 
у -  0 =  3— 2 (x -  2),
y =  x  -  2.

A22 : У =  1.
A23 : (4 ,1)(6,0),

У — 1 = ------- (x — 4),y 6 -  4 > ’

y =  - — (x -  4) +  1 =  - 0.5x +  3.

Solving A 12 and A 21,
Y  =  0.7 y =  x -  2, 
x -  2 =  0.7, 
x =  2.7,
У =  0.7.

/' 2 /' 2.7 ,-3
Numerator =  0.35 z2 dz +  0.7Kdz +  (z2 -  2z) dz 

J 0 J 2 J 2.7
p 4 p 6

+  /  z dz +  /  ( - 0.5z2 +  3z) dz
J 3 J 4

=  10.98.
P 2 p 2.7 p3

Denominator =  0.35 z2 dz +  0.7K dz +  (z2 -  2) dz
0 2 2.7

p 4 p 6
+  dz +  ( - 0.5z2 +  3z) dz

3 4
=  3.445.

e 
+ 

x9
o

-



Numerator
Demoninator 3.445

=  3.187.
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(b) Weighted average method

* 2 x 0.7 +  4 x 1 3176 z =  =  3.176.

(c) Mean-max method

(d) Center o f saws method

1 + 0 .7

_ 2.5 +  3.5 
” 2

=  3.

j'0 (1 x 0.7 x (3 +  2) x 2+1 x 1 x (2 +  4) x 4) 
f 06 (1 x 0.7 x (3 +  2) +  1 x 1 x (2 +  4) x 4)

f 0b (3 .5+12) dz 
f0  (1.75 +  3) dz

2.84.

(e) First of maximum 
z* =  3.

( f) Last of maxima 
z* =  4.

(g) Center o f largest area

Area of I  =  

Area of I I  =  

Area of I I  is larger, So,

-  x 0.7 x (2.7 +  0.7) =  1.19,

x 1 x (2 +  3) x ^ x 0.7x 2.255.

* /2 7 1  x 0.3 x 0.3 x 2.85 dz +  f 3 1 x 1 x 3.5dz +  f 4 1 x 2 x 1dz
f 2 7 2 x 0.3 x 0.3 dz +  f43 1 x 1dz +  f 46 2 x 2 x 1dz 

f 237 0.12825 dz +  f34 3.5 dz +  f46 5dz 
f 237 0.045 dz +  f34 dz +  f46 dz 

z* =  4.49.

Exam ple 5.7. Using Matlab program find the crisp lambda cut set relations 
for A =  0.2, the fuzzy matrix is given by

R

0.2 0.7 0.8 1
1 0.9 0.5 0.1
0 0.8 1 0.6
0. 0.4 1 0.3

*z =

*z
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Solution. The Matlab program is
Program
clear all
% Enter the matrix value 
R=input(‘Enter the matrix value’)
% Enter the lambda value 
lambda=input(‘enter the lambda value’) 
[m,n]=size(R); 

for i=1:m
for j=1:n

if(R(i,j)<lambda)
b(i,j)=0;
else
b(i,j)=1;
end

end
end

% output value 
display(‘the crisp value is’) 
display(b)
Output
Enter the matrix value

[0.2 0.7 0.8 1;1 0.9 0.5 0.1;0 0.8 1 0.6;0.2 0.4 1 0.3] 
R =

0.2000 0.7000 0.8000 1.0000
1.0000 0.9000 0.5000 0.1000

0 0.8000 1.0000 0.6000
0.2000 0.4000 1.0000 0.3000

Enter the lambda value 0.2 
lambda =  0.2000 
The crisp value is 
b =

1 1 1 1
1 1 1 0
0 1 1 1
1 1 1 1

Summary

Defuzzification is thus a natural and necessary process. Because the output 
to any practical system cannot be given using the linguistic variables like 
“moderately high,” “medium,” “very positive,” etc., it has to be given only 
in crisp quantities. These crisp quantities are thus obtained from the fuzzy 
quantities using the various defuzzification methods discussed in this chapter.
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Review Questions

1. Define defuzzification process.
2. What is the necessity to convert the fuzzy quantities into crisp quantities?
3. State the method lambda cuts employed for the conversion of the fuzzy 

set into crisp.
4. Discuss in detail on the special properties of lambda cut sets.
5. How is lambda cut method employed for a fuzzy relation?
6. List some of the methods to perform defuzzification process.
7. How does the max-membership method convert the fuzzy quantity to crisp 

quantity?
8. Centroid method is very efficient method for defuzzification, Justify. Give 

suitable example.
9. In what way does the weighted average method perform the defuzzification 

process?
10. Explain about the mean-max-membership method for converting the 

fuzzy quantity to crisp quantity. Give some details on the accuracy of 
the output obtained.

11. Compare the methods center of sums and center of largest area with 
necessary examples.

12. What is difference between first and last of maxima? Explain the process 
of conversion in each case with example.

13. Compare and contrast the methods employed for defuzzification process 
on the basis of accuracy and time consumption.

14. What are the four important criteria on which the defuzzification method 
is defined?

Exercise Problems

1. Determine crisp A cut relation for A 
following fuzzy relation matrix R:

R

0.2; for j 0 ,1,...,10 for the

0.3 0.8 0.7 0.9
1 0.7 0.6 0.2

0.1 0.7 1 0.9
0.5 0.6 0.2 0.5

2. The fuzzy set A, B, C  are all defined on the universe X  =  [0, 5] with the 
following membership functions:

Ил (x) 

Ив (x) 

Ис (x)

1
1 +  5 (x  -  5 )2

2x

x  +  5
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(a) Sketch the membership functions
(b) Define the intervals along ж-axis corresponding to the A cut sets for 

each of the fuzzy sets A, B, C  for the following values of A.
A =  0.2, A =  0.4, A =  0J,A  =  0.9.

3. Two fuzzy sets A  and B  both defined on x are as follows:

A =

B

0.5

Find

(a) (A )

(b) B  
V - /  0.3

(c) (A U A

(d) |̂ A U B

(e) ( A n ~ B

(f) ( a  n B

0.5

0.4

0.6

0.64

0.1 0.6 0.4 0.7 0.5 0.2
+ + + + +X\ X 2 жз X4 X5 X6

0.8 0.6 0.3 0.2 0.6 0
+ + + + +Xl X 2 жз X4 X 5 X6

4. For fuzzy relation R find A cut relations for the following values of A

R

(a) A =  0+ (c) A =  0.4
(b) A =  0.2 (d) A =  0.7

5. Show that any A cut relation of fuzzy tolerance relation results in a crisp
tolerance relation.

0.4 0.3 0.7 0.5
0.6 0.2 0.1 1
0.9 0.8 0.5 0.6
0.7 0.4 0.3 0.2

(e) A := 0.3
(f) A =  0.6
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Show that any A cut relation of a fuzzy equivalence relation results in a 
crisp equivalence relation.

6. For fuzzy relation A  and E  determine A cut relations for the following
values of A:
(a) A =  0+ (b) .

A

0.5 (c) A =  0.9

0.8 1 0.5 0.3 0.1 0
0.2 0.3 0.5 0.7 0.1 0.2
0.1 0.2 0.4 0.8 0.7 0.1
0.2 0.1 0.4 0.7 0.7 0.3

0.8 0.7 0.4 0.1 0
0.6 0.5 0.3 0.2 0.1
0.9 0.6 0.7 0.4 0.3
0.2 0.4 0.5 0.9 0.6
0.1 0.4 0.3 0.6 0.9
0.1 0 1 0.8 0.7

E

7. Determine the A cut sets for the six set operation for two fuzzy set R  and
S using A =  0.2 and 0.8:

A

B

0.1 0.6 0.4 0.3 0.9
20 +  40 +  60 +  8 0 + 1 0 0
0.3 0.4 0.7 0.4 0.2 
20 +  40 +  60 80 100

For the fuzzy sets operation:
(a) A U B  (b) A ПB  (c) A  (d) A / B  (e) A U B  (f) A ^ B

8. By using centroid method of defuzzification convert fuzzy value z to pre­
cise value Z * for the following graph.



9. Find the defuzzified value by weighted average method shown in figure.
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10. Find the defuzzified values using (a) center of sums methods and (b) center 
of largest area for the figure shown.

11. Find the defuzzified values for the figure shown above using first of maxima 
and last of maxima.

12. Two companies bid for a contract. The fuzzy set of two companies B\ and
B 2 is shown in the following figure. Find the defuzzified value z* using 
different methods.

13. Using Matlab program find the crisp lambda cut set relations for A =  0.4, 
the fuzzy matrix is given by:

' 0.3 0.2 0.8 0
=  1 0.1 0.5 0.1

R  =  0 0.8 1 0.5 .
0.7 0.6 1 0.3



Fuzzy Rule-Based System

6___________________________________

6.1 Introduction

Rules form the basis for the fuzzy logic to obtain the fuzzy output. The rule- 
based system is different from the expert system in the manner that the rules 
comprising the rule-based system originates from sources other than that of 
human experts and hence are different from expert systems. The rule-based 
form uses linguistic variables as its antecedents and consequents. The an­
tecedents express an inference or the inequality, which should be satisfied. 
The consequents are those, which we can infer, and is the output if the an­
tecedent inequality is satisfied. The fuzzy rule-based system uses IF-THEN 
rule-based system, given by, IF antecedent, THEN consequent. The formation 
of the fuzzy rules is discussed in this chapter.

6.2 Formation of Rules

The formation of rules is in general the canonical rule formation. For any 
linguistic variable, there are three general forms in which the canonical rules 
can be formed. They are:

(1) Assignment statements
(2) Conditional statements
(3) Unconditional statements

(1) Assignment statements

These statements are those in which the variable is assignment with the value. 
The variable and the value assigned are combined by the assignment operator 
“= .” The assignment statements are necessary in forming fuzzy rules. The 
value to be assigned may be a linguistic term.
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The examples of this type of statements are:

У =  low,
Sky color =  blue,

Climate =  hot 
a =  5 
p =  q +  r 

Temperature =  high

The assignment statement is found to restrict the value of a variable to a 
specific equality.

(2) Conditional statements

In this statements, some specific conditions are mentioned, if the conditions 
are satisfied then it enters the following statements, called as restrictions.

If x  =  y Then both are equal,
If Mark > 50 Then pass,
If Speed > 1, 500 Then stop.

These statements can be said as fuzzy conditional statements, such as 
If condition C ' Then restriction F '

(3) Unconditional statements

There is no specific condition that has to be satisfied in this form of statements. 
Some of the unconditional statements are:

Go to F /o  
Push the value 
Stop

The control may be transferred without any appropriate conditions. The 
unconditional restrictions in the fuzzy form can be:

R 1 : Output is B 1
AND

R2 : Output is B 2
AND 

. . . ,  etc.

where B 1 and B 2 are Fuzzy consequents.
Both conditional and unconditional statements place restrictions on the 

consequent of the rule-based process because of certain conditions. The fuzzy
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Table 6.1. Canonical form -  Fuzzy rule-based system

Rule 1: IF condition C1 THEN restriction R1 
Rule 2: IF condition C2 THEN restriction R2

Rule n: IF condition Cn THEN restriction Rn

sets and relations model the restrictions. The linguistic connections like “and,” 
“or,” “else” connects the conditional, unconditional, and restriction state­
ments. the consequent of rules or output is denoted by the restrictions R 1,
Д 2 r>n, . . . ,  R  .

The rule-based system with a set of conditional rules (canonical form of 
rules) is shown in Table 6.1.

6.3 Decomposition of Rules

There might be a compound rule structure involved in many applications. An 
example for a compound rule structure is

IF x  =  y THEN both are equal 
ELSE

IF x  =  y
THEN

IF x  >  y THEN X  is highest
ELSE

IF y >  x  THEN Y  is highest
ELSE

IF x  and y are equal to zero THEN no output is obtained.
By the properties and operations defined on fuzzy sets in Chap. 2, any com­
pound rule structure can be decomposed and reduced to number of simple 
canonical rules. There are various methods for decomposition of rules. They 
are:

(1) Multiple conjunction antecedents

This uses fuzzy intersection operation. Since it involves linguistic “AND” con­
nective

IF x is P 1 AND P 2 ••• AND P n THEN y is Qr,

where
P r =  P 1 AND P 2 ••• OR P n.

The membership for this can be

Up r (x ) =  min f i p i ( x ) , f i p 2 (x) , . . . , ^ p n  (x) .



Hence the rule can be 
IF ж is P r THEN Qr .

(2) Multiple disjunctive antecedents

This uses fuzzy union operations. It involves linguistic “OR” connections 
IF ж is P 1 OR P 2 ••• OR P n THEN y is Qr,
where

P r =  P 1 OR P 2 ••• OR P n 

=  P 1 U P 2 • • • U P n .
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The membership for this can be

Up r (ж) =  max

Hence the rule can be 
IF ж is P r THEN y is Qr .

Up  1 (ж), Up 2 (ж) , . . . ,  Up n (ж)

(3) Conditional statements with ELSE

(a) IF P 1 THEN Q 1 ELSE Q 2 .

Considering this as one compound statement, splitting this into two canon­
ical form rules, we get

IF P 1 THEN Q 1 OR IF NOT P 1 THEN Q 2.

(b) IF P 1 THEN Q 1 ELSE P 2 THEN Q 2 
\ ~  ̂~

The decomposition for this can be of the form 

IF P 1 THEN Q 1 OR 

IF NOT P 1 AND P 2 THEN Q 2.

(4) Nested IF-TH EN  rules

IF P 1 THEN ^IF P 2 THEN (Q2^ .

This can be decomposed into 
IF P 1 AND P 2 THEN Q 1.
Thus the compound rules are decomposed into single canonical rules. Then 

this rules may be reduced to a series of relations.



6.4 Aggregation of Fuzzy Rules

The fuzzy rule-based system may involve more than one rule. The process of 
obtaining the overall conclusion from the individually mentioned consequents 
contributed by each rule in the fuzzy rule this is known as aggregation of rule. 
There are two methods for determining the aggregation of rules:

(1) Conjunctive system of rules

The rules that are connected by “AND” connectives satisfy the connective 
system of rules. In this case, the aggregated output may be found by the 
fuzzy intersection of all individual rule consequents,

y =  y1 AND y2 and • • • AND yr 
(or) y =  y1 Л y2 Л — Л yr .
Then the membership friction is defined as
Hy (y) =  min (Vy1 (y) ,Hy2 (y) ,•••, ^yn (y) J  for y e  y.

(2) Disjunctive system o f rules

The rules that are connected by “OR” connectives satisfies the disjunctive 
system of rules. In this case, the aggregated output may be found by the 
fuzzy union of all individual rule consequents 

y =  y1 OR y2 OR • • • OR yr 
(or)
y =  y1 U y2 U^^U yr .
Then the membership function is defined as
Hy (y) =  min (Hy1 (y) ,Hy2 (y) ,•••, Hyn (y) J  for y e  y.

6.5 Properties of Set of Rules

The properties for the sets of rules are

-  Completeness,
-  Consistency,
-  Continuity, and
-  Interaction.

(a) Completeness

A set of IF-THEN rules is complete if any combination of input values result 
in an appropriate output value.

(b) Consistency

A set of IF-THEN rules is inconsistent if there are two rules with the same 
rules-antecedent but different rule-consequents.

6.5 Properties of Set of Rules 117
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(c) Continuity

A set of IF-THEN rules is continuous if it does not have neighboring rules 
with output fuzzy sets that have empty intersection.

(d) Interaction

In the interaction property, suppose that is a rule, “IF x  is A  THEN y is B ,” 
this meaning is represented by a fuzzy relation R2, then the composition of 
A  and R  does not deliver B

A  o R  =  B .

These are the properties of the fuzzy set of rules

6.6 Fuzzy Inference System

Fuzzy inference systems (FISs) are also known as fuzzy rule-based systems, 
fuzzy model, fuzzy expert system, and fuzzy associative memory. This is a ma­
jor unit of a fuzzy logic system. The decision-making is an important part in 
the entire system. The FIS formulates suitable rules and based upon the rules 
the decision is made. This is mainly based on the concepts of the fuzzy set the­
ory, fuzzy IF-THEN rules, and fuzzy reasoning. FIS uses “IF ... THEN.. . ” 
statements, and the connectors present in the rule statement are “OR” or 
“AND” to make the necessary decision rules. The basic FIS can take either 
fuzzy inputs or crisp inputs, but the outputs it produces are almost always 
fuzzy sets. When the FIS is used as a controller, it is necessary to have a crisp 
output. Therefore in this case defuzzification method is adopted to best ex­
tract a crisp value that best represents a fuzzy set. The whole FIS is discussed 
in detail in the following subsections.

6.6.1 C onstruction  and W orking o f  Inference System

Fuzzy inference system consists of a fuzzification interface, a rule base, a 
database, a decision-making unit, and finally a defuzzification interface. A FIS 
with five functional block described in Fig. 6.1. The function of each block is 
as follows:

-  a rule base containing a number of fuzzy IF-THEN rules;
-  a database which defines the membership functions of the fuzzy sets used 

in the fuzzy rules;
-  a decision-making unit which performs the inference operations on the 

rules;
-  a fuzzification interface which transforms the crisp inputs into degrees of 

match with linguistic values; and
-  a defuzzification interface which transforms the fuzzy results of the infer­

ence into a crisp output.
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Fig. 6.1. Fuzzy inference system

The working of FIS is as follows. The crisp input is converted in to fuzzy 
by using fuzzification method. After fuzzification the rule base is formed. 
The rule base and the database are jointly referred to as the knowledge base. 
Defuzzification is used to convert fuzzy value to the real world value which is 
the output.

The steps of fuzzy reasoning (inference operations upon fuzzy IF-THEN 
rules) performed by FISs are:

1. Compare the input variables with the membership functions on the an­
tecedent part to obtain the membership values of each linguistic label. 
(this step is often called fuzzification.)

2. Combine (through a specific t-norm operator, usually multiplication or 
min) the membership values on the premise part to get firing strength 
(weight) of each rule.

3. Generate the qualified consequents (either fuzzy or crisp) or each rule 
depending on the firing strength.

4. Aggregate the qualified consequents to produce a crisp output. (This step 
is called defuzzification.)

6.6.2 Fuzzy Inference M ethods

The most important two types of fuzzy inference method are Mamdani’s fuzzy 
inference method, which is the most commonly seen inference method. This 
method was introduced by Mamdani and Assilian (1975). Another well-known 
inference method is the so-called Sugeno or Takagi-Sugeno-Kang method 
of fuzzy inference process. This method was introduced by Sugeno (1985). 
This method is also called as TS method. The main difference between the 
two methods lies in the consequent of fuzzy rules. Mamdani fuzzy systems 
use fuzzy sets as rule consequent whereas TS fuzzy systems employ lin­
ear functions of input variables as rule consequent. All the existing results 
on fuzzy systems as universal approximators deal with Mamdani fuzzy sys­
tems only and no result is available for TS fuzzy systems with linear rule 
consequent.
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6.6.3 M am dani’s Fuzzy Inference M ethod

Mamdani’s fuzzy inference method is the most commonly seen fuzzy method­
ology. Mamdani’s method was among the first control systems built using 
fuzzy set theory. It was proposed by Mamdani (1975) as an attempt to con­
trol a steam engine and boiler combination by synthesizing a set of linguistic 
control rules obtained from experienced human operators. Mamdani’s effort 
was based on Zadeh’s (1973) paper on fuzzy algorithms for complex systems 
and decision processes.

Mamdani type inference, as defined it for the Fuzzy Logic Toolbox, ex­
pects the output membership functions to be fuzzy sets. After the aggregation 
process, there is a fuzzy set for each output variable that needs defuzzifica­
tion. It is possible, and in many cases much more efficient, to use a single 
spike as the output membership function rather than a distributed fuzzy set. 
This is sometimes known as a singleton output membership function, and it 
can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency of 
the defuzzification process because it greatly simplifies the computation re­
quired by the more general Mamdani method, which finds the centroid of a 
two-dimensional function. Rather than integrating across the two-dimensional 
function to find the centroid, the weighted average of a few data points. Sugeno 
type systems support this type of model. In general, Sugeno type systems can 
be used to model any inference system in which the output membership func­
tions are either linear or constant.

An example of a Mamdani inference system is shown in Fig. 6.2. To com­
pute the output of this FIS given the inputs, six steps has to be followed:

Output ' 
D istribution

_

z'

Input
D istributions

x 0
У 0

Fig. 6.2. A two input, two rule Mamdani FIS with crisp inputs
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1. Determining a set of fuzzy rules
2. Fuzzifying the inputs using the input membership functions
3. Combining the fuzzified inputs according to the fuzzy rules to establish a 

rule strength
4. Finding the consequence of the rule by combining the rule strength and 

the output membership function
5. Combining the consequences to get an output distribution
6. Defuzzifying the output distribution (this step is only if a crisp output 

(class) is needed).

The following is a more detailed description of this process 

Creating Fuzzy Rules

Fuzzy rules are a collection of linguistic statements that describe how the FIS 
should make a decision regarding classifying an input or controling an output. 
Fuzzy rules are always written in the following form:

i f  (input 1 is membership function 1)  and/or (input 2  is membership 
function 2 )  a n d / or .. . th en  (outputn is output membership functionn).

For example:
i f  temperature is high and humidity is high then  room is hot.
There would have to be membership functions that define high temper­

ature (input 1), high humidity (input 2), and a hot room (output 1). This 
process of taking an input such as temperature and processing it through a 
membership function to determine “high” temperature is called fuzzification 
and is discussed in section, “Fuzzification.” Also, “AND” / “OR” in the fuzzy 
rule should be defined. This is called fuzzy combination and is discussed in 
following section.

Fuzzification

The purpose of fuzzification is to map the inputs from a set of sensors (or 
features of those sensors such as amplitude or spectrum) to values from 0 to 1 
using a set of input membership functions. In the example shown in Fig. 6.2, 
there are two inputs, x 0 and y0 shown at the lower left corner. These inputs 
are mapped into fuzzy numbers by drawing a line up from the inputs to the 
input membership functions above and marking the intersection point.

These input membership functions, as discussed previously, can represent 
fuzzy concepts such as “large” or “small,” “old” or “young,” “hot” or “cold,” 
etc. For example, x 0 could be the EMG energy coming from the front of 
the forearm and y 0 could be the EMG energy coming from the back of the 
forearm. The membership functions could then represent large amounts of 
tension coming from a muscle or small amounts of tension. When choosing 
the input membership functions, the definition of large and small may be 
different for each input.
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Consequence

The consequence of a fuzzy rule is computed using two steps:

1. Computing the rule strength by combining the fuzzified inputs using the 
fuzzy combination process discussed in previous section. This is shown 
in Fig. 6.2. In this example, the fuzzy “AND” is used to combine the 
membership functions to compute the rule strength.

2. Clipping the output membership function at the rule strength.

Com bining O utputs into an Output D istribution

The outputs of all of the fuzzy rules must now be combined to obtain one 
fuzzy output distribution. This is usually, but not always, done by using the 
fuzzy “OR.” Figure 6.2 shows an example of this. The output membership 
functions on the right-hand side of the figure are combined using the fuzzy 
OR to obtain the output distribution shown on the lower right corner of the 
Fig. 6.2.

Defuzzification o f  Output D istribution

In many instances, it is desired to come up with a single crisp output from an 
FIS. For example, if one was trying to classify a letter drawn by hand on a 
drawing tablet, ultimately the FIS would have to come up with a crisp number 
to tell the computer which letter was drawn. This crisp number is obtained 
in a process known as defuzzification. There are two common techniques for 
defuzzifying:

1. Center of mass. This technique takes the output distribution and finds its 
center of mass to come up with one crisp number. This is computed as

where z is the center of mass and uc is the membership in class c at value 
Zj. An example outcome of this computation is shown in Fig. 6.3.

2. Mean of maximum. This technique takes the output distribution and finds 
its mean of maxima to come up with one crisp number. This is computed 
as follows:

where z is the mean of maximum, Zj is the point at which the membership 
function is maximum, and l is the number of times the output distribution 
reaches the maximum level. An example outcome of this computation is 
shown in Fig. 6.4.

follows:
£ j= 1  Zj uc(Zj )Z =  __-___________

£1=1 u c(Z j)
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*■

Fig. 6.3. Defuzzification using the center of mass

Output
Distribution

>

Fig. 6.4. Defuzzification using the mean of maximum

Fuzzy Inputs

In summary, Fig. 6.5 shows a two input Mamdani FIS with two rules. It fuzzi- 
fies the two inputs by finding the intersection of the crisp input value with 
the input membership function. It uses the minimum operator to compute the 
fuzzy AND for combining the two fuzzified inputs to obtain a rule strength. 
It clips the output membership function at the rule strength. Finally, it uses 
the maximum operator to compute the fuzzy OR for combining the outputs 
of the two rules.

6.6.4 Takagi—Sugeno Fuzzy M ethod  (TS M ethod)

In this section, the basic of Sugeno fuzzy model which is implemented into 
the neural-fuzzy system. The Sugeno fuzzy model was proposed by Takagi, 
Sugeno, and Kang in an effort to formalize a system approach to generating 
fuzzy rules from an input-output data set. Sugeno fuzzy model is also know 
as Sugeno-Takagi model. A typical fuzzy rule in a Sugeno fuzzy model has 
the format

IF x  is A  and y is B  THEN z =  f  (x, y),

where A B  are fuzzy sets in the antecedent; Z  =  f  ( x,y)  is a crisp function in 
the consequent. Usually f  (x, y) is a polynomial in the input variables x  and y,
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Input
D istribution

/\ уо

Output
D istribution

0

z

Fig. 6.5. A two input, two rule Mamdani FIS with a fuzzy input

but it can be any other functions that can appropriately describe the output 
of the output of the system within the fuzzy region specified by the antecedent 
of the rule. When f  ( x,y)  is a first-order polynomial, we have the first-order 
Sugeno fuzzy model. When f  is a constant, we then have the zero-order Sugeno 
fuzzy model, which can be viewed either as a special case of the Mamdani FIS 
where each rule’s consequent is specified by a fuzzy singleton, or a special 
case of Tsukamoto’s fuzzy model where each rule’s consequent is specified by 
a membership function of a step function centered at the constant. Moreover, 
a zero-order Sugeno fuzzy model is functionally equivalent to a radial basis 
function network under certain minor constraints.

The first two parts of the fuzzy inference process, fuzzifying the inputs 
and applying the fuzzy operator, are exactly the same. The main difference 
between Mamdani and Sugeno is that the Sugeno output membership func­
tions are either linear or constant. A typical rule in a Sugeno fuzzy model has 
the form

IF Input 1 =  x  AND Input 2 =  y, THEN Output is z =  ax +  by +  c.

For a zero-order Sugeno model, the output level zis a constant (a =  b =  
0).The output level ẑ  of each rule is weighted by the firing strength wi of the 
rule. For example, for an AND rule with Input 1 =  x  and Input 2 =  y, the 
firing strength is

wi =  AndMethod(f\(x), F2 (y)),

where F1j2(-) are the membership functions for Inputs 1 and 2. The final 
output of the system is the weighted average of all rule outputs, computed as

v-'vN
т-v i - - Z-/i=1 wiziFinal output =  — L= 1-------

£ i=1  wi
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Input MF
Input 1

Ш т
Input 2

Ш
Input MF

F,(x)

F2(y)
Output MF

Rule 
w Weight

(firing strength)

Output 
Z Level

z = ax+by+c

Fig. 6.6. Sugeno rule
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A Sugeno rule operates as shown in Fig. 6.6.
Figure 6.7 shows the fuzzy tipping model developed in previous sections of 

this manual adapted for use as a Sugeno system. Fortunately, it is frequently 
the case that singleton output functions are completely sufficient for the needs 
of a given problem. As an example, the system tippersg.fis is the Sugeno type 
representation of the now-familiar tipping model (Fig. 6.7).
• a =  readfis(‘tippersg’);

gensurf(a)

The above command gives the surface view of fuzzy tipping model as 
shown in Fig. 6.8. The easiest way to visualize first-order Sugeno systems is 
to think of each rule as defining the location of a “moving singleton.” That is,
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the singleton output spikes can move around in a linear fashion in the output 
space, depending on what the input is. This also tends to make the system 
notation very compact and efficient. Higher-order Sugeno fuzzy models are 
possible, but they introduce significant complexity with little obvious merit. 
Sugeno fuzzy models whose output membership functions are greater than 
first-order are not supported by the Fuzzy Logic Toolbox.

Because of the linear dependence of each rule on the input variables of a 
system, the Sugeno method is ideal for acting as an interpolating supervisor 
of multiple linear controllers that are to be applied, respectively, to differ­
ent operating conditions of a dynamic nonlinear system. For example, the 
performance of an aircraft may change dramatically with altitude and Mach 
number. Linear controllers, though easy to compute and well suited to any 
given flight condition, must be updated regularly and smoothly to keep up 
with the changing state of the flight vehicle. A Sugeno FIS is extremely well 
suited to the task of smoothly interpolating the linear gains that would be 
applied across the input space; it is a natural and efficient gain scheduler. 
Similarly, a Sugeno system is suited for modeling nonlinear systems by inter­
polating between multiple linear models.

Because it is a more compact and computationally efficient representation 
than a Mamdani system, the Sugeno system lends itself to the use of adaptive 
techniques for constructing fuzzy models. These adaptive techniques can be 
used to customize the membership functions so that the fuzzy system best 
models the data.

6.6.5 Com parison Between Sugeno and M am dani M ethod

The main difference between Mamdani and Sugeno is that the Sugeno out­
put membership functions are either linear or constant. Also the difference 
lies in the consequents of their fuzzy rules, and thus their aggregation and
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defuzzification procedures differ suitably. The number of the input fuzzy sets 
and fuzzy rules needed by the Sugeno fuzzy systems depend on the number 
and locations of the extrema of the function to be approximated. In Sugeno 
method a large number of fuzzy rules must be employed to approximate pe­
riodic or highly oscillatory functions. The minimal configuration of the TS 
fuzzy systems can be reduced and becomes smaller than that of the Mamdani 
fuzzy systems if nontrapezoidal or nontriangular input fuzzy sets are used. 
Sugeno controllers usually have far more adjustable parameters in the rule 
consequent and the number of the parameters grows exponentially with the 
increase of the number of input variables. Far fewer mathematical results exist 
for TS fuzzy controllers than do for Mamdani fuzzy controllers, notably those 
on TS fuzzy control system stability. Mamdani is easy to form compared to 
Sugeno method.

6.6.6 Advantages o f  Sugeno and M am dani M ethod  

Advantages o f  the Sugeno M ethod

-  It is computationally efficient.
-  It works well with linear techniques (e.g., PID control).
-  It works well with optimization and adaptive techniques.
-  It has guaranteed continuity of the output surface.
-  It is well suited to mathematical analysis.

Advantages o f  the M am dani M ethod

-  It is intuitive.
-  It has widespread acceptance.
-  It is well suited to human input.

Fuzzy inference system is the most important modeling tool based on fuzzy 
set theory. The FISs are built by domain experts and are used in automatic 
control, decision analysis, and various other expert systems.

6.7 Solved Examples

Exam ple 6.1. Temperature control of the reactor where the error and change 
in error is given to the controller. Here the temperature of the reactor is 
controlled by the temperature bath around the reactor thus the temperature 
is controlled by controlling the flow of the coolant into the reactor. Form the 
membership function and the rule base using FIS editor.

Solution. In the FIS editor (choose either Mamdani or Sugeno model), we 
choose triangular membership function, and we can set the linguistic variables. 
The connective rules are formed and based on these rules the fuzzy associative 
memory table is formed.
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Membership Function for error is

input variable "error" 
M em bersh ip  Function fo r change in e rro r is

input variable "errorchange"

M em bersh ip  Function fo r va lve  position is

output variable "Coolant value"

Rule base for the above is
e Sc

NL NS NE PS PL
PL ZE PS PL PL PL
PS NS ZE PS PL PL
ZE NL NS ZE PS PL
NS NL NL NS ZE PS
NL NL NL NL NS ZE
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Exam ple 6.2. Consider the water tank with following rules

1. IF (level is okay) THEN (valve is no_change) (1)
2. IF (level is low) THEN (valve is open_fast) (1)
3. IF (level is high) THEN (valve is close_fast) (1)

Using Mamdani method and max-min method for fuzzification and method of 
centroid for defuzzification method construct a FIS. Before editing that rules, 
membership functions must be defined with membership function editor.

Solution. The following step should be followed for constructing the FIS.

Step 1 : Open the FIS editor and edit the membership function for the input 
and output as shown in the figure. Select the Mamdani or Sugeno 
method, fuzzification method, and defuzzification method.

Step 2 : Click the input variable and edit the membership function as shown 
below.
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Step 3 : Click the output variable and edit the member ship function as 
shown below.

Step 4 : Edit the rule base by clicking the rule base from view menu.
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Step 5 : To view the rule viewer go to the view and click rule viewer.

Step 6 : To view the surface viewer go to the view and click surface viewer.



132 6 Fuzzy Rule-Based System

Step 7 : Save the file to the workspace as tanklevel and go to the command 
window and enter the command tanklevel.

> >  tanklevel 
tanklevel =  
name: ‘tanklevel’ 
type: ‘mamdani’ 
andMethod: ‘min’ 
orMethod: ‘max’ 
defuzzMethod: ‘centroid’ 
impMethod: ‘min’ 
aggMethod: ‘max’ 
input: [1x1 struct] 
output: [1x1 struct] 
rule: [1x3 struct]

Thus an FIS editor is formed for a tanklevel controller.

Exam ple 6.3. Let y =  - 2 x  +  x2.

(a) Form a fuzzy system, which approximates function f , when x  G [-10,10]. 
Repeat the same by adding random, normally distributed noise with zero 
mean and unit variance.
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(b) Simulate the output when the input is sin(t). Observe what happens to 
the signal shape at the output.

Solution.

M ethod  1
This is achieved by writing a Matlab program 
Program

% Generate input-output data and plot it 
x=[-10:.5:10]’ ; y=-2*x-x.*x;
% Plot of parabola
plot(x,y)
grid
xlabel(‘x ’);ylabel(‘output’);title(‘Nonlinear characteristics’)
% Store data in appropriate form for genfisl and anfis and plot it 
data=[x y];
trndata=data(1:2:size(x),:);
chkdata=data(2:2:size(x),:);
% Plot of training and checking data generated from parabolic equation 
plot(trndata(:,1),trndata(:,2),‘o ’,chkdata(:,1),chkdata(:,2),‘x ’) 
xlabel(‘x ’);ylabel(‘output’);title(‘Measurement data’); grid 
%Initialize the fuzzy system with command genfis1. Use 5 bellshaped 

membership functions. 
nu=5; mftype=‘gbellmf’ ; fismat=genfis1(trndata, nu, mftype);
%The initial membership functions produced by genfis1 are plotted 
plotmf(fismat,‘input’,1)
xlabel(‘x ’);ylabel(‘output’);title(‘Initial membership functions’); 
grid
% Apply anfis-command to find the best FIS system - max number of
iterations =  100
numep=100;
[parab, trnerr,ss,parabcheck,chkerr]=anfis(trndata,fismat,numep,[],chkdata); 
%Evaluate the output of FIS system using input x 
anfi=evalfis(x,parab);
% Plot of trained fuzzy system using trained data
plot(trndata(:,1),trndata(:,2),‘o ’,chkdata(:,1),chkdata(:,2),‘x ’ ,x,anfi,‘- ’)
grid
xlabel(‘x ’);ylabel(‘output’);title(‘Goodness of fit’)

Output
iterations =  100 
ANFIS info:

Number of nodes: 24
Number of linear parameters: 10
Number of nonlinear parameters: 15
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Total number of parameters: 25 
Number of training data pairs: 21 
Number of checking data pairs: 20 
Number of fuzzy rules: 5 

Start training ANFIS.
1 1.11035 1.11725
2 1.1055 1.11205
3 1.10065 1.10685
4 1.09578 1.10165
5 1.09091 1.09644
Step size increases to 0.011000
6 1.08602 1.09123
7 1.08063 1.08548
8 1.07523 1.07974
9 1.06982 1.07399
Step size increases to 0.012100 after epoch 9.
10 1.0644 1.06823
11 1.05842 1.06189
12 1.05242 1.05555
13 1.04642 1.0492
Step size increases to 0.013310

86 0.021108 0.0264632
87 0.0107584 0.0173793
88 0.0173351 0.0221364
89 0.00977897 0.0162064
90 0.0165189 0.0217102
91 0.00934733 0.0162595
Step size decreases to 0.066602 after epoch 91.
92 0.0160967 0.0218316
93 0.00734716 0.0157201
94 0.0155897 0.0219794
95 0.00732559 0.016182
Step size decreases to 0.059942 after epoch 95.
96 0.015227 0.0222669
97 0.0061041 0.0163292
98 0.0147314 0.022553
99 0.00645142 0.0170149
Step size decreases to 0.053948 after epoch 99.
100 0.0144049 0.0229312



Designated epoch number reached - >  ANFIS training completed at epoch 
100.

The respective plots obtained are:
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Initia l m em bersh ip  functions

x
Initial fuzzy system  (fism at) fo r anfis

Goodness of fit

Fitting the trained fuzzy system on training data



M ethod  2
Using a fuzzy logic toolbox graphical user interface (GUI) can perform the 
same problem.
O pen fuzzy too lbox  G U I, choose new sugeno system
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G enera te  a new  S ugeno type  fuzzy  system .

I i FIS E d ito r: U rvtitled2 M S B

File Ed* V iew

YY Unttled2

ЛД (sugeno)

inputl otfpctl

FIS Name: UntiUed2 FIS Type: sugeno

And method 

Or method 

Implication 

Aggregabon 
Delusaficatbn

pod ж Cu rent Variable

pobor ж
Name
T>pe input 
Range [0 1 ]

vrtaver ^ H *b  1 Clot© 1

Ready
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D isp lay a new  S ugeno type  system .

G enera ting an fis d isplay.



A nfis  e d ito r d isplay.
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Load tra in ing data.
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Plot of training data. The x-axis indicates numbering of data points rather than absolute values.
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G enera ting initial FIS m atrix using grid partition.
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D efault m em bersh ip  function type (gaussm f) and the ir num ber (4).
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Training when error tolerance is chosen to be 0.001 and number of epochs is limited 
to 100.
Thus the application has been done using fuzzy toolbox GUI.

Exam ple 6.4. Study how the nonlinearity modeled with the fuzzy system 
fismatl distorts a sinusoidal signal. Assume sin(t) at the input.

Solution. Clearly higher-order harmonics are generated. Such phenomenon can 
be observed, e.g., in electrical transformers. This problem should be continued 
immediately after the example problem 6.3, because Matlab assumes that 
fuzzy system matrix parab is available. Otherwise you must repeat example 
problem 6.3.

Open Simulink in Matlab command window and open a new file to con­
figure the system.

In the Simulink library open first Blocksets and Toolboxes. In the next 
window, open Fuzzy Logic Toolbox. Now you can choose either Fuzzy Logic 
Controller block or Fuzzy Logic Controller with rule viewer.
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The graphical output can be viewed through the Scope block
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Output o f the Simulink system 

Comparison between the actual functions -2 x -x 2 and the fuzzy system approximation is shown below.

Simulink blocks for the comparison of the actual function and the fuzzy system approximation.
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Com parison Output Responses

Combining the Fuzzy system with Simulink is an important feature from the 
user’s point of view. Once the fuzzy system has been determined, it can be 
used in Simulink to simulate dynamical systems. This provides the user a 
very powerful tool to investigate behavior of complex systems. Computation 
by hand is tedious and in practice impossible without a computer, but it is 
at this point when fuzzy systems become really interesting and exciting.

Summary

In this chapter, the formation, aggregation, and decomposition of rules are 
explained. Fuzzy mathematical tools and the calculus of IF-THEN rules pro­
vides a most useful paradigm for the automation and implementation of an 
extensive body of human knowledge. The chapter is also added with the var­
ious method of inference. The comparison and the advantages of the two 
methods Mamdani and Sugeno model are also discussed.

Review Questions

1. In what way does the fuzzy rules play a key role in determining the output 
of the system?

2. What is the general format of the fuzzy rule base system?
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3. Define the antecedents and consequents present in a fuzzy rule.
4. What are the most two important connectives used in fuzzy rules?
5. How are the rules formed in a fuzzy rule-based system?
6. With examples discuss about the conditional and unconditional state­

ments used or the formation of rules.
7. How is the canonical form of rule base developed?
8. Differentiate simple and compound rules.
9. What is the purpose of decomposition of rules?

10. Discuss in detail on all the methods used for decomposition of the com­
pound rules.

11. How are the rules aggregated to obtain the final solution?
12. Write short notes on the two methods of aggregation of rules.
13. State the properties of the rule base system.
14. Define fuzzy inference system.
15. With a suitable block diagram, explain the construction and working of 

fuzzy inference system
16. What are the two fuzzy inference methods?
17. Write short note on the Mamdani method of fuzzy inference system
18. Write in detail about the Sugeno method adopted in fuzzy inference sys­

tem.
19. Compare Mamdani and Sugeno method of fuzzy inference system.
20. State the advantages of Mamdani and Sugeno model.

Exercise Problems

1. In a temperature controller for room, the linguistic comfort range is 
“slightly cold” and “not too hot” using these membership functions 
defined on a universe of temperature in °C.

,,TT ,, ( 0 0.1 0.3 0.5 0.7 0.9“Hot” =  i ----- 1---------1---------1---------1---------1------
\ 25 26 27 28 29 30

1 0.8 0.7 0.4 0.3 0.2“Cold” =  < ----- 1---------1---------1---------1---------1------
\ 25 26 27 28 29 30

Find the membership functions for:
(a) Not very hot
(b) Slightly cold or slightly hot

2. Amplifier capacity on a normalized universe say [0,100] can be linguisti­
cally defined by fuzzy variable like here:

, 0 0.2 0.6 0.9 I
“Powerful” =  i — |---------1---------1-------> ,

M  10 50 100 J ’



0.9 0.8 0.2 0.1“Weak” =  { ------ 1---------1---------1-------
\ 1 10 50 100

Find the membership functions for the following linguistic phases used to 
decrease the capacity of various amplifiers:
(a) Powerful and not weak
(b ) Very powerful or very weak
(c) Very, very powerful and not weak

3. In a boiler, pressure and temperature are linguistic parameters. Nominal 
pressure limit ranges from 300 to 900 psi. Nominal temperature limit is 
80-100° C. The fuzzy linguistic uses are as follows:

iiT ,, f 1 0.8 0.6 0.3 0.2 0“Low” temperature =  < ----- 1---------1---------1---------1---------1-----
F \ 80 82 84 86 88 90

f 0 0.2 0.3 0.5 0.7 0.9“High” temperature =  < ----- 1---------1---------1---------1---------1------
6 F \ 86 88 90 92 94 96

0 0.2 0.3 0.5 0.7 1
Hlgh pressuren 5 0 s  + 5 ^  +  60e + 8 ^  +  90e + i : ^

iiT ,, f 1 0.7 0.8 0.4 0.3 0 1
“Low” pressure =  < -------1--------- 1--------- 1--------- 1--------- 1---------- > .

F \300 600 700 800 900 1,000 J

(a) Find the following membership functions:
(1) Temperature not very low
(2) Temperature not very high

(b) Find the following membership functions:
(1) Pressure slightly
(2) Pressure fairly high ^[high]2̂  (high)0
(3) Pressure not very low or fairly low

4. In a computer system, performance depends to a large extent on relative 
spear of the components making up the system. The “speeds” of the CPU 
and memory are important factors in determining the limits of operating 
speed in terms of instruction executed per unit size

,, (0  0 0.1 0.3 0.5 0.7 1
“Fast” =  < -  +------1---------1---------1---------1---------1-------\6 1 4 8 20 45 100

„ f 1 0.9 0.8 0.5 0.2 0.1 0“Slow” =  < — |---------1--------------1---------1---------1-------
\0 1 4 8 20 45 100

Calculate the membership function for the phases:
(a) Not very fast and slightly slow
(b) Very, very fast and not slow
(c) Very slow are not fast

146 6 Fuzzy Rule-Based System
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5. The age of building is to be determined the linguistic terms are “old” and 
“young”

f 0 0.2 0.4 0.5 0.7 0.8 1
Old =  < -  +---------1---------1---------1---------1---------1-----

\0 5 10 15 20 25 30

f 0.9 0.8 0.7 0.4 0.3 0.2 0.1 
Young =  { ^  +  “  +  Т 0 + 1 б +  20 +  25 +  30

For the building in years, find the membership functions for the following 
expressions:
(a) Very old
(b) Very old or very young
(c) Not very old and fairly young ^[young]2̂
(d) Young or slightly old

6. By using the canonical from rule find the volume of the cone (!/з)Пг2  ̂
radius is 4 cm and h is 8 cm.

7. The formula
1 1 1
u z f

is used in optics. The variables u, z, and f  are the distance from the center 
of lens to the center of the object, the distance from center of lens to the 
center of the image and the focal length. Define canonical form of rules 
for this problem.

8. Given the discretized form of the fuzzy variables X , Y ,  Z , Z
^̂1 ~2

0.0 0.5 0.7 0.4 0.1
X  =  { т  +  T  +  “  +  “  +  T

0.1 0.4 1 0.6 0.2
Y  =  {~0~ +  _3~ +  4 +  1Г  +  1Г

0.1 0.4 0.8 0.5 0.1
Z  =  \ ~  +  “  +  “  +  T

_ ( 0.2 0.4 1 0.4 0.2'
Д  [ Ю  +  ТГ +  ТТ +  Т з + И

(a) Form analogous continuous membership functions for X,  Y,  Z  , Z
~ ~ ~1 ~2

(b) A system is described by a set of three rules, using the foregoing fuzzy 
variables. All the rules have to be satisfied simultaneously for the 
system to work. The rules are these:
(1) IF X  and Y  then Z^ ^ ^1

(2) IF X  and Y  then Z
~ ~ ~2

(3) IFX 2 and Y  2 then Z1



Determine the output of the system by graphical inference, using max- 
min, max-product technique if x  =  3 and y =  4 and use centroid method 
for defuzzification.

9. Let y =  f  (x) =  5x+3.
(a) Form a fuzzy system, which approximates function f , when x  G 

[—5, 5]. Repeat the same by adding random, normally distributed noise 
with zero mean and unit variance.

(b) Simulate the output when the input is cos(t). Observe what happens 
to the signal shape at the output.

10. Write FIS using Mamdani method for the following controlling room tem­
perature (assume the linguistic variable yourself).

11. With FIS for controlling the speed of the motor input should armature 
current and torque output should be speed using Sugeno method.

12. Write FIS for the controlling the water level and temperature in the boiler 
using Mamdani and Sugeno models. Assume your own linguistic variables.

13. Write an FIS for controlling the temperature of an air conditioner system 
using any one of the inference method.
Use a fuzzy rule base to model the ideal gas equation for a confined gas, 
p V  =  nRT; where p is the pressure, V  is the volume, T  is the temperature 
of the gas, n is proportional to the number of gas molecules (a constant), 
and R  is the ideal gas constant. Assume that we allow the gas temperature 
to adjust to that of the surroundings. Use rules along the lines of: IF 
(volume is large) THEN (pressure is low) and allow the use of very for 
both variables. What type of membership functions would it be a good 
idea to use?

14. Use Matlab’s Fuzzy Logic Toolbox to model the tip given after a dinner 
for two, where the food can be disgusting, not good, bland, satisfying, 
good, or delightful, and the service can be poor, average, or good. To get 
started, you type fuzzy in a Matlab window. Then use the fuzzy inference 
system and membership function editors to define and tune your rules.

15. Write down a simple fuzzy rule base by which to control the temperature 
of a shower, ignoring any delays, etc. (three rules are sufficient). Assume 
that the water is pleasant at temperatures around 35-40° C. Sketch the 
membership functions.

16. Consider the Takagi-Sugeno fuzzy rules:
Ri : IF (x is negative) THEN (yi =  e0'9z),
R2 : IF(x is zero) THEN (y2 =  4.2x),
R3 : IF (x is positive) THEN (y3 =  e -0 '7x).

148 6 Fuzzy Rule-Based System
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R IF (x is negative) TH EN ( y  = e 09z ), 

R2: IF (x  is zero) THEN (y2 = 4.2x  ),

R3: IF (x  is positive ) THEN  (y3 = e-07x ).

Evaluate y in case of x =  —3, x  =  2, and x  =  9.



Fuzzy Decision Making

7

7.1 Introduction

Decision making is essentially an important aspect in all aspects of life. Making 
decisions is the fundamental activity of human beings. In any decision process 
we consider the information about the outcome and choose among two or 
more alternatives for subsequent action. If good decisions are made, then we 
may get a good expected output.

Decision making is defined to include any choice or selection alternatives. 
A  decision is said to be made under certainty, where the outcome for each 
action can be determined precisely. A  decision is made under risk. When the 
only available knowledge concerning the outcomes consists of their conditional 
probability distributions. The uncertainty existing is the prime domain for 
fuzzy decision (FD) making.

There are various ways in which the FD can be made. They are discussed 
in detail in the following sections.

7.2 Fuzzy Ordering

Fuzzy ordering involves the decision made on rank basis. Which has first rank, 
second rank, etc. If x\ =  2 ,x2 =  5, then x 2 >  x 1, here there is no uncertainty, 
which is called as crisp ordering. The case where the uncertainty or ambiguity 
arises, then it is called fuzzy ordering or rank ordering. If the uncertainty in 
the rank is random, then probability density function (pdf) may be used for 
the random case.

Consider a random variable x i , defined using Gaussian pdf, with a mean of 
^ 1 and standard deviation a 1, also x 2, another variable which is also defined by 
using Gaussian pdf with a mean ^ 2 and standard deviation <r2. If a 1 > a 2 and 
p 1 >M2, then the density functions are plotted as shown in Fig. 7.1.

The frequency of probability that one variable is greater than the other is 
given by
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Fig. 7.1. Density function for two Gaussian random variables

P,
/  + Х

fx  (xi d x i ) ,
-ОС

(X1>X2)

where F i is cumulative distribution function.
Also, if there are two fuzzy numbers P  and Q , the ranking that P  is greater

p  ^ p
than fuzzy number Q is given by

Щ  P  >  Q ) =  Sub mini Up (x) , hq (y) ) .
P  x>y \ ~ ~ J

Also
R (̂ P >  Q ĵ =  1 if and only if P  >  Q.

Exam ple 7.1. Consider we have three fuzzy sets, given by

f1 0.8] Г 0.6 1.0] Г 0.8 1 0.4
pP i3  +  _T j  , B  =  { “ Т  +  1 г } , P  [1 Г  +  4 +  1Г

Make suitable decisions based on fuzzy ordering.

Solution. Using the truth value of inequality, A >  B, as follows:

T (A > B ) =  max min(nA(x i),n B (x2))
P P X l> x^   ̂ ^

=  max{min(0.8, 0.6), min(0.8,1.0)}
=  max{0.6,0.8}
=  0.8.

Similarly,

T (A > C ) =  0.8, T (B  >  A) =  1.0, T (B  >  C ) =  1.0, T (C  >  A) =  1.0,

T ( C  >  B ) =  0.6.



Then,

T( A  >  B , C ) =0.8 ,

T ( B  >  A, C ) =  1.0,

T ( C  >  A , B ) = 0 . 6 .

From this calculation, the overall ordering of the three fuzzy sets would be B  
first A  second, and C  third.

Thus the fuzzy ordering is performed
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7.3 Individual Decision Making

A  decision situation in this model is characterized by:

-  Set of possible actions
-  Set of goals pi (i G xn), expressed in terms of fuzzy set
-  Set of constraints Qi (j G x m), expressed in terms of fuzzy sets.

It is common that the fuzzy sets impressing goals and constraints in this 
formulation are not defined directly on the set of actions, but through the 
other sets that characterize relevant states of nature.

For the set A , then

Pi (a) =  Composition [Pi (a)] =  Pi 1 (Pi (a)) 
with P i,

Q j (a) =  Composition of Q;(a) =  Qj 1 (cjj(a)){j \4j\
with Q 1,

for a G A.
Then the FD is given by

FD(a) =  r inf Pi (a), inf Q~ (a)
iENn Л h iENm^ jK J

7.4 Multi-Person Decision Making

When decision are made by many persons, the difference of it from the 
individual decision maker is:

1. The goals of single decision makers differ, such that each places a different 
ordering arrangements.

2. The individual decision makers have access to different information upon 
which to base their decision.
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In this case, each member of a group of n single decision makers has a 
preference ordering Pk, K  G Nn, which totally or partially orders a set x.

Then a function called “Social Choice” is to be found, given the individual 
preference ordering. The social choice preference function is defined by fuzzy 
relation as

S : X  x X  ^  [0,1].

which has membership of S( x i , x j ) which indicates the preference of alterna­
tive Xi over Xj .

If number of persons preferring x i to Xj =  N (x i , x j ),
Total number of decision makers =  N .
Then,

S ( x i , x j ) =
N  ( x i , x j )

n
This defines the multi-person decision making also

I 1 if x i >  x  ̂ for some k, 
S (xi , x j ) =  { к  j

I 0 other wise.

7.5 Multi-Objective Decision Making

The process involves the selection of one alternative ai , from many alternatives 
A,  given a collection or set, say {0 } objectives which is important for a decision 
maker.

Define universe of n alternatives, i.e.,

A  =  {ai ,  a,2 , . . . ,an}  and

set of “r” objectives
O =  {0i, 02 , . . . , 0r }.

The decision function (DF) here is given as intersection of all objectives

DF =  0i A 02 А 0з A - - - A  0r .

The membership for the alternative is given by,

MDF(a*) =  max(^Dp(a)). 
aEA

Let { P }  =  {6i, b2 , . . . ,  br }  =  bi, i =  1 to r, 
then, DF =  DM(01, bi) A DM(02, b2) A - - - A  (DM(0r , br)) where DM(0n, bn) 
is called decision measure (DM).

The DM for a particular alternative is

DM(0i(a)bi) =  bi ^  0i(a) =  bi U 0i(a).



Thus hi ^  0i indicates a unique relationship between preference and ob­
jective.

Thus, the DF may be given by
r

DF =  P| (hi U 0i(a)).
i=1

and a* is the alternative that maximizes D.
Let pi =  hi u 0i (a).
So,

l p̂i (a) =  max [^ъ€ — (a) ,^o€ (a)1j.

The membership form of the optimal solution is:

Mdf(a*) =  max[min{^pi (a) , ^ P2 ( a ) , .. . , ^ Pr (a)}j.a£A

Thus the decision is made as discussed.
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7.6 Fuzzy Bayesian Decision Method

Classical Bayesian decision methods preassumes that the future states of the 
nature can be characterized as probability events. The problem here in fuzzy 
Bayesian method is that the events are vague and ambiguous and uncertain. 
This is solved by the following method:

Consider the formation of the probabilistic decision method.
Assuming the set of state of nature as:

S =  { S i , S 2 , . . . , S n }.

So, the probabilities that these states occur are given by

P  =  { P  ( Si ) , P ( S 2 ) , . . . , P ( S n)}

and n

J2 p(si) =  1.
i=1

These are called as prior probabilities. If decision maker chooses m alter­
natives, then

A { a 1, a2 , . . .  am}
and for an alternative aj , the utility value is uji , if the future state is the 
state Si .

The utility values are to be found by the decision maker for each aj -  Si 
combination.

The expected utility with j th alternative would be



E (uj ) = 5 3  UilP (Si')-
i=1

The common decision criterion is the maximum expected utility among all 
alternatives

E(u*) =  max E (u j). 
j

Which selects ax if u* =  E (x k).

Summary

Fuzzy decision making involves various methods, which were described in this 
chapter. The fuzzy ordering involves the ordering formed on the rank basis. 
The decision situation is found to vary between the individual decision making 
and multi-person decision making. Fuzzy Bayesian decision making is one of 
the most important decision making process discussed. In the case of multi­
objective decision making one alternative is found to be selected from many 
alternatives. Thus the various decision making process are described in this 
chapter.

Review Questions

1. What is meant by fuzzy decision making process?
2. What are the various methods used for fuzzy decision making?
3. Write short note on fuzzy ordering. State an example for fuzzy ordering.
4. How is the decisions made individually?
5. What are the characteristics of decision situations in individual decision 

making?
6. Discuss in detail on the multi-person decision making.
7. Compare the accuracy rate of individual decision making and multi-person 

decision making
8. What is the main aim of multi-objective decision making?
9. Derive an expression for the membership for optimal solution using multi­

objective decision making.
10. What is the importance of fuzzy Bayesian decision making?
11. Define prior probabilities in fuzzy Bayesian method.
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Applications of Fuzzy Logic

8__________________________________

8.1 Fuzzy Logic in Power Plants

8.1.1 Fuzzy Logic Supervisory C ontrol for Coal Power Plant

The high temperature Winkler gasification (HTW) process that was developed 
by Rheinbraun has been used for many years in pilot and demonstration plants 
to generate synthesis gas and fuel gas out of brown coal. Conventional methods 
were used before to control the gas throughput. While the conventional control 
engineering implementation was able to run the process in a stable operating 
point, improvements were necessary to use the HTW process in a coal power 
station with integrated coal gasification:

-  More precise control of gas throughput under fluctuations of the coal 
quality

-  More robust control in cases of fast load changes
-  Automation of supervisory control operation

On top on the existing base level automation, a supervisory fuzzy logic con­
trol strategy was implemented on the HTW plant in Berrenrath/Germany. 
Fuzzy logic was used because the control problem was strongly non-linear and 
involves multiple measured and command variables. On the other hand, ex­
tensive operator knowledge about the process was available. The implemented 
fuzzy logic supervisory control strategy successfully improved throughput con­
trol quality as well as the adaptation to different coal parameters.

High Tem perature W inkler Gasification

The process that is used to gasify the coal is called High temperature Winkler 
method (HTW). The HTW gasification method uses a high temperature fluid 
bed process to convert brown coal into synthesis gas, a mixture of carbon 
monoxide (CO) and hydrogen (H2). This gas mix can be used to produce 
chemical base products like aldehydes or organic acids. Alternatively it can be
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used in a power plant gas turbine to generate electricity. The gas produced by 
the demonstration plant is used for chemical synthesizes. Later in the power 
plant application the gas will be used to run a gas turbine/steam turbine 
combination.

The HTW process has been used for the gasification of coal by the Ger­
man coal company Rheinbraun since 1956. The demonstration plant started 
operation in 1985. It converts 720 t of coal per day into 900,000 m3 (iN) syn­
thesis gas. In 1996 Inform added a fuzzy logic supervisory control to enable 
the process for a power plant application. Figure 8.1 shows a photo of this 
plant.

The main inputs for the HTW process are coal, oxygen and steam. The 
coal is first ground to small pieces and pre-dried before it is fed into the 
bottom part of the fluid bed reactor. The steam and the oxygen are fed into 
the reactor on four different levels, into and above the fluid bed. In the fluid 
bed the coal reacts with the oxygen and the steam. This reaction takes place 
at a temperature of around 800°C and at a pressure of 10 bar. After the 
reaction in the fluid bed the generated gas enters the hot zone above the fluid 
bed. At temperatures around 1,000°C additional oxygen and steam is added 
and left over coal particles react with the gases. This way additional gas is 
produced and by-products like methane and other hydrocarbons are converted 
to carbon monoxide and hydrogen. The produced gases leave the reactor at 
the top through the reactor head. At this point the gas is still mixed with a 
lot of particles. These are filtered out and fed back into the fluid bed with a 
zyklon filter and a feed back tube.

Fig. 8.1. HTW  plant in Berrenrath, Germany
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The coal ashes accumulate at the bottom of the fluid bed reactor. They are 
removed from there out of the reactor by two conveyor spirals. The hot raw 
gas is cooled down to 270° C. Its heat is used to generate pressure steam, some 
of which is recycled back into the process. Ceramic filters remove remaining 
dust particles out of the gas. The following gas washer removes NH3, HCL and 
other gas components. The following CO conversion creates the correct carbon 
monoxide/hydrogen mix for the methanol synthesis. After a compression to 37 
bar the gas is processed in a non-selective rectisol washer (CO2/H 2S washer). 
At temperatures below —40°C liquid methanol is used to wash out carbon- 
dioxide and sulfuric components. The methanol is used again after recycling 
it and the purified synthesis gas is used at a nearby chemical plant. Figure 8.2 
shows the process diagram of the HTW plant. The coal input, the oxygen 
input, the distribution of the oxygen input over the eight different nozzles 
and the ash removal rate have to be controlled to use the coal efficiently and 
to generate the correct mixture of gases. Instead of coal a mixture of coal and 
plastic refuse can be used in the HTW process. This way the coal consumption 
is reduced and the plastic refuse is recycled into synthesis gas.

Conventional Control

The HTW demonstration plant is controlled with an Eckhardt PLS-80E DCS 
system. This system controls over 6,000 measurements and actuators. The 
main control room is equipped with ten Unix-based operator consoles and 
four real-time servers. So far nearly all the set points of the underlying control 
circuits are set and adjusted manually by the operators. They constantly 
monitor the process condition and adjust the set points of the underlying 
control circuits accordingly (i.e. coal input, oxygen input). A few years ago it 
was tried to automatically generate some set points using a conventional PID 
controller, but the results were not satisfying. This supervisory control only 
worked fine when the coal quality was very constant. Otherwise the process 
quality would deteriorate significantly and the operators had to intervene and 
switch back to manual operation.

Fig. 8.2. Process diagram of HTW  plant
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Supervisory Fuzzy Logic Control

Two main tasks have been defined for the supervisory fuzzy logic control: 
regulation of the gas throughput and process stabilization.

The fuzzy logic must keep the gas throughput at the set point and it has 
to respond to set point changes with the correct dynamic speed. The set point 
can vary from 70% (partial load) to 100% (full load). The fluctuations of the 
gas throughput result mainly from variations of the coal quality (humidity, 
ash content and granularity). These effects have to be compensated by the 
fuzzy logic.

The process stabilization must keep several process parameters in the 
optimum range. The reactor load influences the optimum of these process 
parameters. The position of the optimum also depends on the coal quality. 
The following parameters were used to define the quality of the process:

-  Temperature in the postgasification zone
-  Height and density of the fluid bed
-  Composition of the produced gas (CO, CH4, H2)

The process stabilization is especially difficult when the HTW process is 
fed with a mixture of coal and plastic refuse. This is done because plastic refuse 
is a very inexpensive fuel. But the addition of plastic to the coal results in 
drastically different process conditions. The fuzzy logic control uses the regular 
measurements of the process conditions to detect any addition of plastic to 
the coal. This will result into an adapted control strategy of the fuzzy logic 
control.

Fuzzy Logic C ontrol Design

The specification of the control task resulted into a preliminary concept of 
the fuzzy logic controller. The operator knowledge was than used to specify 
the control strategy of the fuzzy logic system. Several structured audits took 
place to evaluate the operator knowledge systematically. The audits focused 
on the operators’ manual control strategies and on the relationships between 
the inputs and the outputs of the process. This procedure is in accordance 
with the standardized fuzzy logic design method.

The audits resulted into the following concept for the fuzzy logic control: 
deviations of the gas throughput from its set point immediately result into a 
correction of the oxygen input. The coal input is adjusted accordingly to keep 
the ratio between coal and oxygen at a constant level. Changes of the reactor 
pressure predict changes of gas throughput. Therefore the pressure gradient 
is used as an early warning indicator for changes of the gas throughput.

For process stabilization and for the adaptation to different coal qualities 
the fuzzy logic controller uses the following parameters to keep the process in 
a stable operating condition:
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-  Coal to oxygen ratio
-  Distribution of the oxygen between the fluid bed zone and the gasification 

zone
-  Ash outtake
-  Fluidification with steam and inert gas

Sometimes one and the same process input value has to be modified to 
keep several different critical measurements (temperature, fluid bed height) in 
the optimum range. This can have conflicting results. For example: a too low 
fluid bed is normally corrected with an increase of the coal input. A too 
low temperature is corrected with a reduction of the coal input and a too low 
dust output is also corrected with a reduction of the coal input. But a too 
low temperature can occur together with a too low fluid bed. The ability of 
the fuzzy controller to weight different conflicting indications based on their 
significance and to use a lot of inputs to determine the best reaction to each 
situation is very useful to control complex processes.

The fuzzy logic controller has a total number of 24 inputs and eight out­
puts. A preprocessing reduces the 24 inputs to ten characteristic descriptors. 
These are fed into the fuzzy logic system. The fuzzy outputs go through a 
post-processing step to generate the actual set points for the process inputs. 
Figure 8.3 shows the core structure of the fuzzy logic system.

Integration o f  Fuzzy Logic into the DCS

The process measurements are coming to the fuzzy logic control through the 
Eckhardt DCS. The fuzzy logic system generates set point values for the 
underlying PID controllers. The fuzzy logic controller was implemented on an 
OS/2 PC. Therefore the set up of the communication between the distributed 
process control systems (DCS) and the fuzzy logic controller was an important

Fig. 8.3. Fuzzy controller structure
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part of the whole project. The communication was implemented using Factory 
Link, a well-known SCADA program by US-Data. A factory link application 
is running on the same OS/2 PC together with the fuzzy logic controller. The 
fuzzy logic controller reads data out of the Factory Link Real Time DataBase 
and it also writes data back into it. Another Factory Link task is communi­
cating with the DCS through the Eckhardt DCS bus. This way an image of 
the process measurements is created in the Factory Link RTDB and the fuzzy 
outputs are forwarded to the DCS.

Factory Link initiates a new fuzzy logic evaluation every 10 s. The DCS 
either uses the external set points generated by fuzzy logic or the internal set 
points entered by the operators. The operators can switch from the “manual 
mode” to the “fuzzy logic mode” and back. The “fuzzy logic mode” can only 
be activated when all the critical system variables are in a predefined safe 
range. The DCS automatically switches back into “manual mode” whenever 
a system variable exceeds the safe range. The fallback to “manual mode” 
also takes place if the communication between the DCS and Factory Link is 
interrupted.

Figure 8.4 shows the integration of the fuzzy logic control into Factory Link 
and the Eckhardt DCS. The OS/2 PC is also connected with a serial cable to 
a WIN95 PC, on which the fuzzy TECH development system is installed. This 
program was used to develop the fuzzy logic control and to generate C-Code 
for the implementation on the OS/2 PC. The WIN95 PC is also used for 
online optimization and visualization of the fuzzy logic controller. The serial 
link to the OS/2 PC enables the user to modify the fuzzy system on the fly 
from the fuzzy TECH development system on the WIN95 PC while the system 
is running and controlling the process.

Setting the Fuzzy Logic C ontrol into Operation

The first design of the fuzzy logic control, the data preprocessing and post­
processing were tested using the simulation tool VisSim. This way the concept

Factory Fuzzy
L ink Control RS232 □

OS/2 PC fuzzyTECH 
Developm ent PC□

| [O pera to r Console

—  PLS 80E

I/O Module

M i l l  I I I

щ O perator Console

Fig. 8.4. Integration of fuzzy logic into DCS
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was checked for any structural errors and an early prototype was presented 
to the customers. Figure 8.5 shows a test of the fuzzy logic system using sim­
ulated data as input.

After the successful completion of the simulations the fuzzy logic was tested 
offline with real time data from the DCS. To do this the fuzzy logic control 
first was implemented on the OS/2 PC. The fuzzy controller than used real 
time DCS measurement values to generate set points values for the DCS. But 
during these offline simulations the DCS was only using the internal manual 
set points and not the fuzzy logic set points. By comparing the external fuzzy 
logic set points with the internal operator set points deviations between man­
ual and automatic operation could be detected and if necessary eliminated.

After the offline testing was finished successfully the online testing started. 
For the online tests the DCS activated the external set points and so the closed 
loop performance of the fuzzy logic controller could be tested. The fuzzy logic 
controller was optimized while running in the closed loop mode from the 
fuzzy TECH development tool on the WIN95 PC. To do this the OS/2 PC was 
connected with a serial cable to the WIN95 PC. This way the fuzzification, 
inference and defuzzification were visualized in fuzzy TECH. Modifications of 
the rule base or term definitions were also entered in fuzzy TECH and than 
send to the fuzzy logic controller on the OS/2 PC.

The fuzzy controller proved to be working very effectively during the first 
few online tests. After that a long series of evaluation tests started. During 
these tests the performance of the fuzzy controller was tested using a lot of 
different coal qualities and different loads (70-100%).

Regulation o f  Gas Throughput

The conventional control focussed on process stabilization not keeping the 
throughput at its set point. The following diagram shows the changes in 
the gas throughput when fuzzy controller is active. The fuzzy logic control

Fig. 8.5. Simulation with VisSim
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clearly improves the throughput control. It compensates fluctuations in the 
granulation of the coal. Figure 8.6 shows the fluctuations of the synthesis gas 
throughput with and without fuzzy logic.

Change o f  Load

The fuzzy controller has to regulate the gas throughput in the range 70-100% 
load with a maximum load gradient of 4%min~1.

Figure 8.7 shows a load change from 94% to 76% and back to 94%. The 
resulting load gradient was 3.2% min-1 . Currently the load change behavior 
is being improved by using a modified pressure evaluation.

Adaptation  to Coal A dd-O ns

Sometimes the HTW process is fed with a mixture of coal and plastic refuse. 
The resulting process parameters vary greatly from the standard operating 
conditions. For example the content of methane in the raw gas increases. The 
fuzzy controller recognizes the different operating conditions and generates a 
matching internal set point for methane. Figure 8.8 illustrates how this enables 
the fuzzy controller to stabilize the process.

Adaptation  to Different Coal Qualities

The fuzzy controller also keeps the synthesis gas throughput constant when 
the coal quality changes. Figure 8.9 shows the results of a change of the coal’s

14 .7 .96  14 .7 .96 14 .7 .96 14 .7 .96 14 .7 .96 14 .7 .96 15 .7 .961 5 .7 .9 61 5 .7 .9 61 5 .7 .9 61 5 .7 .9 61 5 .7 .9 61 5 .7 .96 15 .7 .96 16 .7 .96 16 .7 .96 16 .7 .96  
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Fig. 8.6. Throughput control with and without fuzzy control
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water content from 18% to 12%. The fuzzy controller reduces the coal input 
to compensate the coal change. Later after switching back to moist coal the 
coal input is increased accordingly.

34.000

iVolum enstrom  Synthesegas ( S o l) ^ — Volum enstrom  Synthesegas (1st)|

Fig. 8.7. Change of load with fuzzy control

Fig. 8.8. Process stabilization
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Conclusion

The fuzzy controller was implemented very quickly. The transfer of the process 
know-how into the fuzzy controller and its realization took 15 days. So far over 
1,100 h of operating time have been evaluated. In nearly all situations the 
performance of the fuzzy controller was much superior to the manual control. 
It was able to keep the process parameters in the optimum range whenever 
the coal quality changed. It was also able to adjust the gas throughput with 
the necessary change rate. The average gas throughput was kept at the set 
point. The operating personal has accepted the fuzzy controller as a helpful 
component because its transparent integration into the PLS makes it easy for 
them to use it.

8.2 Fuzzy Logic Applications in Data Mining

8.2.1 Adaptive Fuzzy Partition in Data Base M ining:
A pplication  to  O lfaction

Introduction

Flavor and odor remain permanent challenges in academic and industrial 
research. The economic impact of the olfactory field explains the large number 
of articles involving data analysis methods to process sensorial and experi­
mental measurements. However, odor evaluation by man represents a special
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Fig. 8.9. Constant gas throughput with different coal qualities



field of research, whose specific difficulties need to be overcome to lead to 
robust results. The multiplicity of factors involved in the olfaction biological 
process prevents the derivation of efficient predictive mathematical models. 
Four points mainly define this complexity:

(1) A huge number of receptors is involved in olfaction
(2) Knowledge related to the 3D structure of these receptors is still missing
(3) Different types of chemical compounds can affect the same receptor
(4) One compound can exhibit simultaneously different odors

Furthermore, the importance of fuzziness linked to the expert’s subjectiv­
ity has to be considered. Much progress has been made in the knowledge of 
physiological and psychological factors influencing the expert’s olfaction eval­
uation, but it is not sufficient to clearly discriminate between objectivity and 
subjectivity in the characterization exhibited by panels of experts.

All these factors prevent the direct transposition of advances in 
Chemometrics and Molecular Modeling in Medicinal Chemistry into the field 
of olfaction. Nevertheless, the use of multivariate data analysis approaches can 
play an important part to improve the knowledge of the molecular descriptor 
role in olfaction and, then, the implementation of robust mathematical mod­
els. Traditional pattern recognition procedures, like Principal Component 
Analysis (PCA) (Niemi 1990), Discriminant Analysis (DA) (Hubert 1994), 
and Cluster Analysis (Kaufman and Rousseeuw 1990), and methods pertain­
ing to the field of Artificial Neural Networks, like Back Propagation Neural 
Networks (BPNN) (Hecht-Nielsen 1989) or Kohonen Self-Organizing Maps 
(SOM) (Kohonen 2001), are been widely used in the development of several 
electronic noses and in data analysis of olfactory data sets.

These approaches offer different possibilities and objectives. PCA can be 
considered as being only a projective technique. It is worth using this method 
when clusters or classes can be visually delineated. DA is really a discriminant 
technique as it aims to find linear relations in the molecular descriptor hyper­
space able to separate different compound categories included in the data set. 
Both methods, PCA and DA, work correctly if the compounds, belonging to 
different classes, are grouped in well separated regions, but, in more complex 
distributions, their classification power becomes poor.

Cluster Analysis offers a first solution to this problem. It consists of ob­
taining self-partitioning of the data, in which each cluster can be identified as 
a set of compounds clearly delineated regarding the molecular descriptor set 
involved. Instead of trying to inspect all the compounds in the database to 
understand and analyze their chemical properties, it is only required to select 
typical compounds representing each cluster to get a deeper knowledge of the 
structure of the database, i.e., of the distribution of the compounds in the 
derived hyperspace. The main problems related to this method are that:

(1) The number of clusters and the initial positions of the cluster centers can 
influence the final classification results
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(2) Compound separation is based on a binary notion of belonging, for 
which a compound located between two clusters is included in only one 
cluster

SOM has been considered as an alternative method to overcome the 
above limitations. It integrates nonlinearity into the data set, so as to project 
the molecular descriptor hyperspace onto a two-dimensional map and to pre­
serve the original topology, as the points located near each other in the original 
space remain neighbors in SOM. This technique has been used to process huge 
amounts of data in a high-dimensional space, but, like PCA, it remains an 
unsupervised projective method. Then, for predictive objectives, SOM has to 
be combined with another technique, generating a hybrid system that offers 
an automatic objective map interpretation.

Contrary to SOM, BPNN is a supervised predictive method. It is able 
to discriminate any nonlinearly separable class, relating continuous input 
and output spaces with an arbitrary degree of accuracy. This method, 
applied to several fields of chemical database analysis, has proved to be very 
efficient in modeling complex data set relationships. However, as in other 
Artificial Neural Networks techniques, the complexity of the modeling func­
tion often prevents extraction of relevant information suitable to explain 
the model and, therefore, to deliver a better understanding of biological 
mechanism.

Fuzzy concepts introduced by Zadeh (1977) provide interesting alterna­
tive solutions to the classification problems within the context of imprecise 
categories, in which olfaction can be included. In fact, fuzzy classification rep­
resents the boundaries between neighboring classes as a continuous, assign­
ing to compounds a degree of membership of each class. It has been widely 
used in the field of process control, where the idea is to convert human expert 
knowledge into fuzzy rules, and it should be able to extract relevant structure- 
activity relationships (SAR) from a database, without a priori knowledge.

A data set of olfactory compounds, divided into animal, camphoraceous, 
ethereal and fatty olfaction classes, was submitted to an analysis by a 
fuzzy logic procedure called adaptive fuzzy partition (AFP). This method 
aims to establish molecular descriptor/chemical activity relationships by dy­
namically dividing the descriptor space into a set of fuzzily partitioned 
subspaces. The ability of these AFP models to classify the four olfactory 
notes was validated after dividing the data set compounds into training and 
test sets, respectively.

The aim of this work is to apply a fuzzy logic procedure, that we called 
AFP, to a chemical database derived from olfactory studies, in order to develop 
a predictive SAR model. The database included 412 compounds associated 
with an odor appreciation defining the presence or the absence of four different 
olfactory notes. A set of 61 molecular descriptors was examined and the most 
relevant descriptors were selected by a procedure derived from the Genetic 
Algorithm concepts.
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M aterials and M ethods

Compound Selection

A database derived from the Arctander’s books (Arctander 1960, 1969), 
including 2,620 compounds and 81 olfactory notes, was submitted to a PCA 
analysis, in order to determine a reduced subset of compounds representing 
very weakly correlated odors. The relative results allowed to determine a data 
set of 412 olfactory compounds homogeneously distributed in four classes: 
animal, camphoraceous, ethereal, and fatty odors.

M olecular Descriptors

The reduced data set was distributed in a 61 multidimensional hyperspace 
derived from a selected set of 61 molecular descriptors. This descriptor 
set includes topological, physicochemical and electronic parameters. In vir­
tual screening, general descriptors have proved a good compromise, from an 
efficiency point of view, for data mining in large databases. The advantage 
of these descriptors is their ability to take into account not only the main 
structural features of each molecule, but also their global behaviors. Then, 
they should be able to take simultaneously into account the complexity of 
the olfaction mechanism and the approximation of the odor scale. Molar 
refractivity (MR), molar volume (MV), molecular weight (MW), and Van 
Der Waals volume (VdWV) were used as size descriptors.

The shape features of the molecules were characterized by topological 
indices which account for the ramification degree, the oblong character, etc., 
20 molecular connectivity indices, a series of information content descriptors 
(IC0, SIC0, CIC0, IC1, SIC1,CIC1, IDW), Wiener index (W ), centric in­
dex (C ), Balaban index (J ), Gutman index (M2), Platt number (F ), counts 
of paths of lengths 1-4, counts of vertices with 1-4 nearest neighbors were 
used The number of N, O, and S atoms in a molecule was also considered. 
A lipophilicity descriptor represented by the octanol/water partition coeffi­
cient (log Poct/water) was calculated using the Hansch and Leo method. An­
other descriptor was derived from the electronegativity of molecules (EMS) 
by the Sanderson method.

Descriptor Selection

To select, amidst the 61 descriptors, the best parameters for classifying the 
data set compounds, a method based on genetic algorithm (GA) concepts was 
used. GA, inspired by population genetics, consists of a population of indi­
viduals competing on the basis of natural selection concepts. Each individual, 
or chromosome, represents a trial solution to the problem to be solved. In 
the context of descriptor selection, the structure of the chromosome is very 
simple. Each descriptor is coded by a bit (0 or 1) and represents a compo­
nent of the chromosome. 0 defines the absence of the descriptor, 1 defines its



170 8 Applications of Fuzzy Logic

presence. The algorithm proceeds in successive steps called generations. Dur­
ing each generation, the population of chromosomes evolves by means of a 
“fitness” function (Davis 1991), which selects them by standard crossover and 
mutation operators. The crossover phase takes two chromosomes and produces 
two new individuals, by swapping segments of genetic material, i.e., bits in 
this case. Within the population, mutation removes the bits affecting a small 
probability.

Genetic algorithms are very effective for exploratory search, applicable to 
problems where little knowledge is available, but it is not particularly suitable 
for local searches. In the latter case, it is combined with a stepwise approach 
in order to reach local convergence. Stepwise approaches are quick and are 
adapted to find solutions in “promising” areas that have been already identi­
fied.

To evaluate the fitness function, a specific index was derived by using a 
fuzzy clustering method. Furthermore, to prevent over-fitting and a poor gen­
eralization, across validation procedure was included in the algorithm during 
the selection procedure, by randomly dividing the database into training and 
test sets. The fitness score of each chromosome is derived from the combina­
tion of the scores of the training and test sets.

The following parameters were used in the data processing of the data set 
of 412 olfactory compounds:

(1) Fuzzy parameters -  weighting coefficient =  1.5, tolerance convergence 
=  0.001, number of iterations =  50, number of clusters =  10.

(2) Genetic parameters -  number of chromosomes = 10 , chromosome size =  60 
(number of descriptors used), number of crossover points =  1, percentage 
of rejections =  0.1, percentage of crossovers =  0.8, percentage of muta­
tions =  0.05, time off (10,100), number of generations =  10, ascendant 
coefficient =  0.02, descendant coefficient =  —0.02. Calculations were per­
formed using proprietary software.

A daptive Fuzzy Partition

AFP is a supervised classification method implementing a fuzzy partition 
algorithm. It models relations between molecular descriptors and chemical 
activities by dynamically dividing the descriptor space into a set of fuzzy 
partitioned subspaces. In a first phase, the global descriptor hyperspace is 
considered and cut into two subspaces where the fuzzy rules are derived. 
These two subspaces are divided step by step into smaller subspaces until 
certain conditions are satisfied, namely when:

(1) The number of molecular vectors within a subspace attains a minimum 
threshold number

(2) The difference between two generated subspaces is negligible in terms of 
chemical activities represented

(3) The number of subspaces exceeds a maximum threshold number
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The aim of the algorithm is to select the descriptor and the cut position, 
which allows the maximal difference between the two fuzzy rule scores gen­
erated by the new subspaces to be determined. The score is defined by the 
weighted average of the chemical activity values in an active subspace A  and in 
its neighboring subspaces. If the number of trial cuts per descriptor is defined 
by N  cut, the number of trial partitions equals (N  cut + 1 )N . Only the best 
cut is selected to subdivide the original subspace. All the rules created during 
the fuzzy procedure are considered to establish the model between descriptor 
hyperspace and biochemical activities. The global score in the subspace Sk 
can then be calculated. All the subspaces k are considered and then the score 
of the activity O for a generic molecule is computed. The following parameters 
were used to process the data set of 165 pesticide compounds: maximal num­
ber of rules for each chemical activity =  35; minimal number of compounds 
for a given rule =  4; number of cutting for each axis =  4; p =  1.2 and q =  0.8.

Descriptor Selection

Four relevant descriptors can be selected by the GA procedure. The first 
three descriptors may correspond to topological indices encoding information 
about molecular structure. All the atoms are considered to be carbon atoms. 
The values for noncarbon heteroatoms are computed differently regarding 
the values for identically connected carbon atoms. Finally, VES, an electronic 
index, represents the variance of electronegativity computed by the Sanderson 
method (Sanderson 1976).

AFP Model

The AFP model was established on the training set compounds, defining four 
molecular descriptor -  odor relationships, one for each olfactory note. The 
number of rules implemented in each relationship was dependent on the com­
plexity of the compound distribution regarding a given odor. The animal, 
camphoraceous, ethereal and fatty odors were, respectively, represented by 
17, 18, 14, and 24 rules. The number of rules concerning the fatty odor shows 
that the corresponding relationship was the most difficult to establish. A pos­
sible explanation could be found in the fact that only complex combinations 
of molecular descriptors can represent the distribution of the ethereal com­
pounds, so requiring a high number of rules. Another one can be related to 
the cutting procedure performed by the algorithm. But this hypothesis is less 
probable as a different number of cuts, 3, 4, and 5 per axis, leads to similar 
results.

The most important ability of the AFP method is its capacity to solve 
such complex problems as olfaction, transcribing the molecular descriptor- 
activity relationships into simple rules that are directly related to the selected 
descriptors. The contribution of the GA procedure is obviously fundamental: 
it reduces the amount of information in the input step, making it easier to 
determine and interpret the model.
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Conclusion

Data base mining (DBM) algorithms, based upon molecular diversity analysis, 
are becoming a must for pharmaceutical companies in the search for new leads. 
They allow the automated classification of chemical databases, but the huge 
amount of information provided by the large number of molecular descriptors 
tested is difficult to exploit. Then, new tools have to be developed to give 
a user-friendly representation of the compound distribution in the descriptor 
hyperspace.

Furthermore, the difficulty of data mining in olfaction databases is ampli­
fied by the fact that one compound can have different odors and its activity is 
usually expressed in a qualitative way. Another source of complexity derives 
from the fact that one receptor can recognize different chemical determinants 
and the same compound can be active on different receptors.

Fuzzy logic methods, developed to mimic human reasoning in its ability 
to produce correct judgements from ambiguous and uncertain information, 
can provide interesting solutions in the classification of olfactory databases. 
In fact, these techniques should be able to represent the “fuzziness” linked to 
an expert’s subjectivity in the characterization of the odorous notes, comput­
ing intermediate values between absolutely true and absolutely false for each 
olfactory category. These values are named degrees of membership and are 
ranged between 0.0 and 1.0.

In this section, a new procedure, the AFP algorithm, was applied to a data 
set of olfactory molecules, divided into animal, camphoraceous, and ethereal 
and fatty compounds. This method consists of modeling molecular descriptor- 
activity relationships by dynamically dividing the descriptor hyperspace into 
a set of fuzzy subspaces. A large number of molecular descriptors may be 
tested and the best ones may be selected with help of an innovative procedure 
based on genetic algorithm concepts.

8.3 Fuzzy Logic in Image Processing

8.3.1 Fuzzy Im age Processing 

Introduction

Fuzzy image processing is not a unique theory. It is a collection of different 
fuzzy approaches to image processing. Nevertheless, the following definition 
can be regarded as an attempt to determine the boundaries:
Fuzzy image processing is the collection of all approaches that understand, 
represent and process the images, their segments and features as fuzzy sets. 
The representation and processing depend on the selected fuzzy technique and 
on the problem to be solved.
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Fig. 8.10. General structure of fuzzy image processing

Fuzzy image processing has three main stages: image fuzzification, mod­
ification of membership values, and, if necessary, image defuzzification (see 
Fig. 8.10.).

The fuzzification and defuzzification steps are due to the fact that we 
do not possess fuzzy hardware. Therefore, the coding of image data (fuzzi­
fication) and decoding of the results (defuzzification) are steps that make 
possible to process images with fuzzy techniques. The main power of fuzzy 
image processing is in the middle step (modification of membership values, 
see Fig. 8.11). After the image data are transformed from gray-level plane 
to the membership plane (fuzzification), appropriate fuzzy techniques modify 
the membership values. This can be a fuzzy clustering; a fuzzy rule-based 
approach, a fuzzy integration approach, and so on.

N eed for Fuzzy Im age Processing

The most important of the needs of fuzzy image processing are as follows:

1. Fuzzy techniques are powerful tools for knowledge representation and 
processing

2. Fuzzy techniques can manage the vagueness and ambiguity efficiently
3. In many image-processing applications, we have to use expert knowledge 

to overcome the difficulties (e.g., object recognition, scene analysis)

Fuzzy set theory and fuzzy logic offer us powerful tools to repre­
sent and process human knowledge in form of fuzzy if-then rules. On 
the other side, many difficulties in image processing arise because the 
data/tasks/results are uncertain. This uncertainty, however, is not always 
due to the randomness but to the ambiguity and vagueness. Beside random­
ness which can be managed by probability theory we can distinguish between 
three other kinds of imperfection in the image processing (see Fig. 8.12):
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Fig. 8.13. Representation of colors as fuzzy subsets

-  Grayness ambiguity
-  Geometrical fuzziness
-  Vague (complex/ill-defiend) knowledge

These problems are fuzzy in the nature. The question whether a pixel 
should become darker or brighter than it already is, the question where is the 
boundary between two image segments, and the question what is a tree in a 
scene analysis problem, all of these and other similar questions are examples 
for situations that a fuzzy approach can be the more suitable way to manage 
the imperfection.

As an example, we can regard the variable color as a fuzzy set. It can be 
described with the subsets yellow, orange, red, violet, and blue: 
color — {yellow, orange, red, violet, blue}
The noncrisp boundaries between the colors can be represented much better. 
A soft computing becomes possible (see Fig. 8.13).

Fuzzy Im age Enhancement

Contrast Adaptation

In recent years, many researchers have applied the fuzzy set theory to develop 
new techniques for contrast improvement. Following, some of these approaches 
are briefly described.

Contrast Improvement with INT-Operator

1. Step: define the membership function

— G (gmn) — 1 + gma gmn
d
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2. Step: modify the membership values

f _ /  2 * [^mn] 0 — f^mn —
Mmn _  \ 1 -  2 * [1 -  m ]2 0.5 — Итп — 1

3. Step: generate new gray-levels

mn

Contrast Improvement Using Fuzzy Expected Value

1. Step: calculate the image histogram
2. Step: determine the fuzzy expected value (FEV)
3. Step: calculate the distance of gray-levels from FEV

Dmn _  VI (FEV)2 -  (gmn)2|

4. Step: generate new gray-levels

g'mn _  max(0, FEV -  D mn) 
g'mn _  min(L -  1, FEV +  D mn 
gmf n _  FEV

if gmn <  FEV, 
if gmn >  FEV,
otherwise.

Contrast Improvement with Fuzzy Histogram Hyperbolization

1. Step: setting the shape of membership function (regarding to the actual 
image)

2. Step: setting the value of fuzzifier Beta (a linguistic hedge)
3. Step: calculation of membership values
4. Step: modification of the membership values by linguistic hedge
5. Step: generation of new gray-levels

Contrast Improvement Based on Fuzzy if-then Rules

1. Step: setting the parameter of inference system (input features, member­
ship functions)

2. Step: fuzzification of the actual pixel (memberships to the dark, gray, and 
bright sets of pixels)(Fig. 8.14)

3. Step: inference (e.g., if dark then darker, if gray then gray, if bright then 
brighter)

4. Step: defuzzification of the inference result by the use of three singletons 

Locally Adaptive Contrast Enhancement

In many cases, the global fuzzy techniques fail to deliver satisfactory results. 
Therefore, a locally adaptive implementation is necessary to achieve better 
results.
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Fig. 8.14. Histogram fuzzification with three membership functions 

Subjective Im age Enhancement

In image processing, some objective quality criteria are usually used to ascer­
tain the goodness of the results (e.g. the image is good if it possesses a low 
amount of fuzziness indicating high contrast). The human observer, however, 
does not perceive these results as good because his judgment is subjective. 
This distinction between objectivity and subjectivity is the first major prob­
lem in the human-machine interaction. Another difficulty is the fact that 
different people judge the image quality differently. This inter-individual dif­
ference is also primarily due to the aforesaid human subjectivity.

Following, an overall enhancement system will be described briefly. The ap­
proach is based on the combination of differently enhanced images obtained by 
using different algorithms each satisfying the observer’s demand only partly. 
The fusion result should meet the subjective expectations of every individual 
observer.

A n  Overall System for Image Enhancement

The proposed enhancement system consists of two stages: an offline stage in 
which an aggregation matrix will be generated which contains the relevancy 
of different algorithms for corresponding observers, and an online stage where 
new image data will be enhanced and fused for a certain observer.

Offline Stage

The offline stage consists of five phases: image enhancement by means of dif­
ferent algorithms (or by just one algorithm with different parameters), extrac­
tion of the objective quality criteria, learning the fuzzy measure (subjective 
quality evaluation), aggregation (regarding to different images and different 
observers), and finally, a fuzzy inference (final quality measure for each image).



The result of the offline stage will be an aggregation matrix containing the 
relevance of all involving algorithms for each observer. The system phases can 
be briefly described as follows:

Phase 1 (enhancement): different algorithms Ak (or one algorithm with dif­
ferent parameters) enhance all test images Xi and deliver their results X'i,Ak. 
The selection of these algorithms is dependent on the image quality that 
we are interested in, e.g., contrast, smoothness, edginess, etc. At least two 
algorithms, or two different parameter sets for the same algorithm, should be 
selected.

Phase 2 (extraction): depending on the specific requirements of the applica­
tion, suitable quality measures h(X'i,Ak) are extracted, e.g., contrast, sharp­
ness or homogeneity measures. These criteria can serve as objective quality 
measures and will be aggregated with subjective measures in the forth phase 
via fuzzy integral.

Phase 3 (learning): the observer judges the quality of all enhanced images. The 
images are presented to the observer in random order. Moreover, the observer 
is not provided with any information about the algorithms used in the first 
phase. In order to map the subjective assessments into numerical framework, 
the ITU recommendation BT 500 can be used. The quality of the images 
generated by the fcth algorithm as excellent (=  1), good (=  2), fair (=  3), 
poor (=  4), and bad (=  5). For all M  judgments pi,b of the bth observer, the 
mean opinion score (MOS) will be calculated.

Phase 4 (aggregation of measures/judgments): considering the objective 
measures and subjective judgments, one recognizes two conflicts. First, the 
observer judges the results of the same algorithm from image to image dif­
ferently. Second, considering the divergence between objective and subjective 
assessments, the relevance of different algorithms is not always obvious. To 
solve these problems two new measures the degree of compromise m* and the 
degree of compatibility g are introduced.

Phase 5 (inference): the elements of vectors G  (degree of compatibility) and 
F  (degree of compromise) are fuzzified with three membership functions. The 
output of the inference system is an aggregation matrix quantifying the image 
quality and is represented by five nonsymmetric membership functions. Then 
the if-then rules may be formulated.

Online Stage

In the second stage the system uses only the information stored in the aggrega­
tion matrix and an index indicating the current expert looking at the images. 
The image fuzzification, therefore, plays a pivotal role in all image processing 
systems that apply any of these components. The following are the different 
kinds of image fuzzification:
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0 gray levels 255

Fig. 8.15. Histogram fuzzification

Histogram-based gray-level fuzzification (or briefly histogram fuzzification) 
Example: brightness in image enhancement 
Local fuzzification (example: edge detection)
Feature fuzzification (scene analysis, object recognition)(Fig. 8.15)
In order to be in a form suitable for computer processing an image function 

f  (x ,y )  must be digitized both spatially and in amplitude (intensity). Digiti­
zation of spatial co-ordinate (x, y) is called image sampling, while amplitude 
digitization is referred to as intensity or gray-level quantization. The latter 
term is applicable to monochrome images and reflects the fact that these 
images vary from black to white in shades of gray. The terms intensity and 
gray-level can be used interchangeably.

Suppose that a continuous image is sampled uniformly into an array of N  
rows and M  columns, where each sample is also quantized in intensity. This 
array, called a digital image, may be represented as,

where m, n are discrete variables.
Each element in the array is called an image element, picture element, or 

pixel.
There are basically two methods available for image processing. They are:

1. Frequency domain method
2. Spatial domain method

Frequency Domain technique:

/  x ii X12 xi3
X21 X22 X23

X1M  ̂
X2M

f (m, n )

\ XN1 XN2 XN3 XNM J

It refers to an aggregate of complex pixels resulting from taking the Fourier 
Transform and arises from the fact that this particular transform is composed



of complex sinusoids. Due to extensive processing requirements, frequency- 
domain techniques are not nearly as widely used as spatial domain techniques. 
However, Fourier Transform plays an important role in areas such as analysis 
of and object motion and object description.

Two-dimensional Fourier Transform pair of an N  x N  image is defined as,

1 N-1 N-1
F(u, v) =  N  ^ 2  ^ 2  f  (x, y) e x p (-j2 n (x u  +  vy)/N )

ж=0 y=0

for u =  0,1, 2 , . . . , N  -  1.
In this method, processing is done with various kinds of frequency filters. 

For example, low frequencies are associated with uniformly gray areas, and 
high frequencies are associated with regions where there are abrupt changes 
in pixel brightness.

Spatial domain technique: this method refers to aggregate of pixels composing 
an image, and they operate directly on these pixels. Processing functions in 
spatial domain may be expressed as

g ( x , y) =  h[f  ( x , y)]
f (x, y ) is the input image
g (x, y ) is the resultant image
h is the operator on f  defined over some neighborhood of (x, y )

The principal approach used in defining a neighborhood about (x, y) is 
to use a square/rectangular subimage area centered at (x,y). Although other 
neighborhood shapes such as circle are sometimes used, square arrays are by 
far most predominant because of their ease of implementation.

Smoothing: smoothing operations are used for reducing noise and other 
spurious effects that may be present in an image as a result of sampling, 
quantization, transmission or disturbances in the environment during image 
acquisition.

Mainly there are two types of smoothing techniques. They are:

1. Neighborhood averaging
2. Median filtering

Neighborhood averaging: it is a straightforward spatial domain technique for 
image smoothing. Given an image f  (x,y) ,  the procedure is to generate a 
smoothed image g (x, y ) whose intensity at every point (x, y ) is obtained by 
averaging the intensity values of pixels of f  contained in predefined neighbor­
hood of (x, y). The smoothed image is obtained by using the relation

g(x, y)  =  P  ^ 2  f  (m, n) for all x  and y in f  (x, y ) .
(n,m)ES
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Median filtering: one of the difficulties of neighborhood averaging is that it 
blurs the edges and other sharp details. This blurring can often be reduced 
significantly by the use of the median filters, in which we replace the intensity 
of each pixel by median of the intensities in a predefined neighborhood of that 
pixel, instead of by the average.

Fuzzy image processing is not a unique theory. It is a collection of different 
fuzzy approaches to image processing. Nevertheless, the following definition 
can be regarded as an attempt to determine the boundaries:

Fuzzy image processing is the collection of rail approaches that understand, 
represent and process the images, their segments and features as fuzzy sets. 
The representation and processing depend on selected fuzzy technique and on 
the problem to be solved.

Fuzzy image processing (FIP) has three main stages:

1. Image fuzzification
2. Modification of membership values
3. Image defuzzification

The general structure of an FIP is shown in the figure. The fuzzification 
and defuzzification steps are due to fact that we do not possess fuzzy hardware. 
Therefore, the coding of image data (fuzzification) and decoding of the results 
(defuzzification) are steps that make possible to process images with fuzzy 
techniques.

Basic steps in FIP

The main power of fuzzy image processing is in the middle step (modi­
fication of membership values). After the image data are transformed from 
gray-level plane to the membership plane (fuzzification), appropriate fuzzy 
techniques modify the membership values. This can be a fuzzy clustering; a 
fuzzy rule-based approach, a fuzzy integration approach and so on.



182 8 Applications of Fuzzy Logic

Necessity of FIP: there are many reasons for use of fuzzy techniques in image 
processing. The most important of them are as follows:

In many image-processing applications, we have to use expert knowledge 
to overcome the difficulties (e.g., object recognition, scene analysis). Fuzzy 
set theory and fuzzy logic offer us powerful tools to represent and process 
human knowledge in form of fuzzy if-then rules. On the other side, many 
difficulties in image processing arise because the data/tasks/results are un­
certain. This uncertainty, however, is not always due to randomness but to 
the ambiguity and vagueness. Beside randomness, which can be managed by 
probability theory, we can distinguish between three kinds of imperfection in 
image processing.

These problems are fuzzy in nature. The question whether a pixel should 
become darker than already it is, the question where is the boundary between 
two image segments, and the question what is a tree in a scene analysis 
problem, all of these and other similar questions are examples for situa­
tions that a fuzzy approach can be the more suitable way to manage the 
imperfection.

Before one is able to conduct meaningful pattern recognition exercises 
with images, one may need to preprocess the image to achieve the best image 
possible for the recognition process. The original image might be polluted 
with considerable noise, which would make the recognition process difficult. 
Processing, reducing, or eliminating this noise will be a useful step in the 
process. An image can be thought of an ordered array of pixels, each charac­
terized by gray tone. These levels might vary from a state of no brightness, 
or completely black, to a state of complete brightness, or totally white. Gray 
tone levels in between these two extremes would get increasingly lighter as we 
go from black to white.

Contrast enhancement: an image X  of N  x M  dimensions can be considered 
as an array of fuzzy singletons, each with a value of membership denoting the 
degree of brightness level p ,p  =  0,1, 2 . . . P  — 1 (e.g., range of densities from 
p =  0 to p =  255), or some relative pixel density. Using the notation of fuzzy 
sets, we can write,

X =

V

М и/хц

M2i/x21

M12/X 12

M22/X 22

M1M/x i m  \ 

M2M / X2M

MN i /x n  1 MN 2/x n  2 Mn m /x n m

where 0 < Mmn <  1 ,m =  1, 2 . . .  M, n =  1, 2 . . . N .
Contrast within an image is measure of difference between the gray-levels 

in an image. The greater the contrast, the greater is the distinction between 
gray-levels in the image. Images of high contrast have either all black or all
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white regions; there is very little similar gray-levels in the image, and very 
few black or white regions. High-contrast images can be thought of as crisp, 
and low contrast ones as completely fuzzy. Images with good gradation of 
grays between black and white are usually the best images for purposes of 
recognition by humans.

The object of contrast enhancement is to process a given image so that the 
result is more suitable than the original for a specific application in pattern 
recognition. As with all image-processing techniques we have to be especially 
careful that the processed image is not distinctly different from the original 
image, making the identification process worthless. The technique used here 
makes use of modifications to brightness membership value in stretching or 
contracting the contrast of an image.

Many contrast enhancement methods work as shown in the figure below, 
where the procedure involves primary enhancement of he image, denoted with 
an Ei in the figure, followed by a smoothing algorithm, denoted by an S, and 
a subsequent final enhancement, step E2.

Ei S E2

Method of contrast enhancement

The function of the smoothing operation of this method is to blur (make 
more fuzzy) the image, and this increased blurriness then requires the use 
of final enhancement step E2. Generally smoothing algorithms distribute a 
portion of the intensity of one pixel in the image to adjacent pixels. This 
distribution is greatest for pixels nearest to the pixels being smoothed, and it 
decreases for pixels farther from the pixel being smoothed.

The contrast intensification operator, on a fuzzy set A  generates another 
fuzzy set, A  =  INT(A) in which the fuzziness is reduced by increasing the 
values of /лл(х) that are greater than 0.5 and decreasing the values that are 
less than 0.5. If we define this transformation T1, we can define T1 for the 
membership values of brightness for an image as,

T1(^mn) =  T1 (^mn) =  2^mn , 0 ^ ^mn ^ °-5,
=  T1 (Hmn) =  1 2(1 l^mn) , °*5 ^ ^mn ^ 1*

The transformation Tr is defined as successive applications of T1 by the re­
cursive relation,

Tr (vmn) =  T1[Tr_1(^mn)j Г =  1, 2, 3 ,.. .

The graphical effect of this recursive transformation for a typical member­
ship function is shown in figure below. The increase in successive applications 
of the transformation, the curve gets steeper. As r approaches infinity, the



shape approaches a crisp function. The parameter r allows the user to use an 
appropriate level of enhancement for domain-specific situations.

184 8 Applications of Fuzzy Logic

Exam ple: Given the following 25 pixel array as shown below

110 105 140 107 110

110 132 105 115 154

140 105 105 115 154

137 135 145 150 150

140 118 115 109 148

Array of pixels with given intensities

We now scale the above values to obtain the membership functions of each 
of the pixel given as shown in the table below.

0.43 0.41 0.55 0.42 0.43

0.43 0.52 0.43 0.59 0.41

0.55 0.41 0.41 0.45 0.60

0.54 0.53 0.57 0.59 0.59

0.55 0.46 0.45 0.42 0.58

Scaled values indicating memberships of each pixel
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Applying the formulas given before does the contrast enhancement of 
above array of pixels, which are stated below again.

Tl(^mn) =  T1 (^mn) =  2^mn ? 0 — ^mn —

T1 (Mmn) 1 2(1 Mmn) °*5 — Mmn — 1?

where /i,mn is the membership of the (m , n)th element in the array of pixels.
After one application of the enhancement, i.e., the INT operator on the 

above array of pixels we get the following results.

0.37 0.33 0.60 0.35 0.37

0.37 0.54 0.37 0.66 0.33

0.60 0.33 0.33 0.40 0.68

0.57 0.56 0.63 0.66 0.66

0.60 0.42 0.40 0.35 0.65

Membership values of pixels after application of INT operator once

Thus we see that the pixels having the membership values greater than 
0.5 have been increased in intensity and those with value less than 0.5 have 
been decreased in intensity.

Sample calculations:

Consider the pixel of intensity 0.43, the new intensity value is, 2 x 0.432 =  0.37 
as 0 < 0.43 < 0.5.

Consider the pixel of intensity 0.55. As it is between 0.5 and 1.0 we get its 
new value as [1 — 2(1 — 0.55)2] =  0.60.

In this way we calculate all the new intensities of the other pixels.

Smoothing: smoothing of a pixel is done by averaging the intensity values 
in the neighborhood of the pixel and substituting the averaged value for the 
intensity of the pixel. Consider the following figure.
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Ц2 Ц0 Ц3

Ц4

We can now write the intensity of the pixel m0 as

Mo =  (Mi +  М2 +  М3 +  M4) /4 .

Also we can find the new intensity of the pixel by substituting the median of 
the intensities of the pixels in place of the intensity of the pixel.

Exam ple: Consider an array of 30 pixels denoting the letter M  as shown 
below

220 30 40 15 250

205 230 0 239 230

225 20 225 20 220

217 255 30 10 215

220 25 15 255 235

210 20 10 15 220

The noisy intensities are denoted in bold. The operation of smoothing is 
to reduce the noise caused due to them. The scaled values giving membership 
of pixels is as shown below.

The scaled membership values of the pixels can be obtained by dividing 
the pixel intensity by 255. For example consider the pixel of intensity 220, its 
membership value can be determined by dividing 220 by 255. Therefore we 
obtain the new intensity of the pixel as,

220/255 =  0.86.



8.3 Fuzzy Logic in Image Processing 187 

In similar manner, we calculate the membership values of other pixels also.

0.86 0.18 0.04 0.06 0.98

0.80 0.90 0.00 0.94 0.90

0.88 0.08 0.88 0.08 0.86

0.85 1.00 0.11 0.04 0.84

0.86 0.10 0.06 1.00 0.92

0.82 0.08 0.04 0.06 0.86

Now we apply the formula given before to each of the pixel except at 
the edges because at the edges we do not know the all the intensities in the 
neighborhood of the pixel. The application of the smoothing operation for 
once gives us the following results.

0.86 0.18 0.04 0.06 0.98

0.80 0.26 0.53 0.39 0.90

0.88 0.75 0.37 0.41 0.86

0.85 0.45 0.23 0.62 0.84

0.86 0.36 0.40 0.50 0.92

0.82 0.08 0.04 0.06 0.86

Sample calculations:

Consider the pixel in second row and second column. Its new intensity is 
given by

(0.18 +  0.80 +  0.00 +  0 .08)/4 .
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The new intensity of the pixel in second row and third column is given by

(0.04 +  0.26 +  0.88 +  0.94)/4.

Here care has to be taken to incorporate the obtained new intensity of 
the pixel in the neighborhood, i.e., we have to substitute the new intensity 
of the pixel when the new intensity of the pixel in its neighborhood is to be 
calculated.

We see that the noise due to the pixels has been decreased very much. On 
further application of the smoothing operation we can decrease the noise very 
much.

Further examples on contrast enhancement and smoothing:

Given a 10 x 10 pixel array. It represents a dark square image in which there 
is a lighter square box that is not very apparent because the background is 
very nearly the same as that of the lighter box itself.

77 89 77 64 77 71 99 56 51 38

77 122 125 125 125 122 117 115 51 26

97 115 140 135 133 153 166 112 56 31

82 112 145 130 150 166 166 107 74 23

84 107 140 138 125 158 158 120 71 18

77 110 143 148 153 145 148 122 77 13

79 102 99 102 97 94 92 115 77 18

71 77 74 77 71 64 77 89 51 20

64 64 48 51 51 38 51 31 26 18

51 38 26 26 26 13 26 26 26 13
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When we take the intensity values above and scale them on interval [0,255], 
we get membership values in the density set white (low values are to black, 
high values close to white).

0.30 0.35 0.30 0.25 0.30 0.28 0.39 0.22 0.20 0.15

0.30 0.48 0.49 0.49 0.49 0.48 0.46 0.45 0.20 0.10

0.38 0.45 0.55 0.53 0.52 0.60 0.65 0.44 0.22 0.12

0.32 0.44 0.57 0.51 0.59 0.65 0.65 0.42 0.29 0.09

0.33 0.42 0.55 0.54 0.53 0.62 0.62 0.47 0.28 0.07

0.30 0.43 0.56 0.58 0.60 0.57 0.58 0.48 0.30 0.07

0.31 0.40 0.39 0.40 0.38 0.37 0.36 0.45 0.30 0.05

0.28 0.30 0.29 0.30 0.28 0.25 0.30 0.35 0.20 0.08

0.25 0.25 0.19 0.20 0.20 0.15 0.20 0.12 0.10 0.07

0.20 0.15 0.10 0.10 0.10 0.12 0.05 0.10 0.10 0.05

Using the contrast enhancement we modify the pixel values to obtain the 
matrix as shown below.

0.18 0.24 0.18 0.12 0.18 0.16 0.30 0.10 0.08 0.05

0.18 0.46 0.48 0.48 0.48 0.46 0.42 0.40 0.08 0.05

0.29 0.40 0.60 0.56 0.54 0.68 0.75 0.39 0.10 0.03

0.20 0.39 0.63 0.52 0.66 0.75 0.75 0.35 0.17 0.02

0.22 0.35 0.60 0.58 0.56 0.71 0.71 0.44 0.16 0.01
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0.18 0.37 0.61 0.65 0.68 0.63 0.65 0.46 0.18 0.01

0.19 0.32 0.30 0.32 0.29 0.27 0.26 0.40 0.18 0.01

0.16 0.18 0.17 0.18 0.16 0.12 0.18 0.24 0.08 0.01

0.12 0.12 0.07 0.08 0.08 0.05 0.08 0.03 0.02 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The point to be noted here is that the intensity values above and below 0.5 
have been suitably modified to increase the contrast between the intensities.

Example on smoothing:

Consider the above example in which on repeated applications, the final 
enhanced image is obtained. Now some random salt and pepper is introduced 
into it. Salt and pepper noise is occurrence of black and white pixels scattered 
randomly throughout the image.

The scaled values of intensities of pixels are as shown in the matrix.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00

0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



After one application of smoothing algorithm, the intensity values are as 
shown below
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.25 0.31 0.33 0.33 0.33 0.08 0.02 0.00

0.00 0.25 0.62 0.73 0.52 0.71 0.51 0.15 0.29 0.00

0.00 0.31 0.73 0.62 0.78 0.62 0.53 0.42 0.18 0.00

0.00 0.33 0.77 0.85 0.66 0.82 0.59 0.25 0.11 0.00

0.00 0.33 0.52 0.59 0.56 0.60 0.30 0.14 0.06 0.00

0.00 0.08 0.15 0.19 0.19 0.20 0.12 0.07 0.03 0.00

0.00 0.27 0.11 0.07 0.07 0.07 0.05 0.28 0.08 0.00

0.00 0.07 0.04 0.03 0.02 0.02 0.27 0.14 0.05 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

It can be seen that after application of smoothing algorithm the noise 
intensity has been reduced. Later we apply enhancement algorithm to obtain 
the figure without any noise.

We have seen two methods of fuzzy image processing namely, contrast 
enhancement and smoothing. There are many other techniques such as filter­
ing, edge detection and segmentation. In contrast enhancement we improve 
the gradation between the black and white and are able to easily spot out the 
distinction between gray levels in the image. In smoothing we were able to 
decrease the salt and pepper noise in the image.

Conclusion

In this section we have seen in detail about the fuzzy image processing and 
the methods of image enhancement. The idea discussed can be extended even 
to higher dimensional problems. The process is found to operate based on 
the online and offline stage. Hence, this is a wide extension of fuzzy logic 
applications.
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A daptive Fuzzy Rules For Im age Segmentation

Segmenting magnetic resonance images of the same body region taken at 
different times is a challenging task. Obtaining reliable data to train a classifier 
is difficult due the differences among subjects and even differences over time 
in images acquired from a single subject. Unsupervised clustering can be used 
to group like tissues into classes. However, clustering does not provide class 
labels, is time consuming, and may not always provide suitable data partitions. 
In this paper we show how a set of adaptive fuzzy rules can be used to identify 
many of the voxels from a magnetic resonance image before clustering is done. 
This allows clustering to be done on a subset of an image with a “good” 
initialization, which mitigates the time required. The identified voxels can 
also be used to identify clusters. The fuzzy rule based system followed by a 
clustering step has been applied to 105.5 mm thick, magnetic resonance images 
of the human brain which are taken from 15 different subjects. It is shown 
that the segmentations produced are approximately five times faster than 
those produced by fuzzy clustering alone and are comparable in the accuracy 
of the segmentation.

U sing Fuzzy Rules for Segmentation

The fuzzy rules for partially segmenting MR images of the brain are built 
to operate on the T1, T2, and proton density weighted intensity feature 
images. The first step in developing a set of fuzzy rules to segment an im­
age is determining the antecedent fuzzy sets. Hence, it is necessary to find 
thresholds that separate tissue types in each of the three feature images.

In order to build fuzzy rules that apply to a large number of images, the 
tissue thresholds, which determine the antecedent fuzzy sets of the rule, are 
found via histogram analysis applied to each image slice to which the rules will 
be applied. Figures 8.16-8.18 show a typical set of intensity histograms with 
“turning points” which can be used to approximately separate tissue types. 
For example, all voxels below b1 in the PD histogram are air with those 
between b2 and b4 generally white matter (Fig. 8.17), and voxels between 
a1 and a2 in the T1 histogram (Fig. 8.16) are a mixture of gray and white 
matter. The histogram shape remains approximately the same across normal 
subjects and as will be seen will have an expected set of changes for patients 
with brain pathology. All patients with pathology have been injected with 
gadolinium whose magnetic properties cause enhancement in regions where 
the blood, brain barrier have been breached (i.e., regions where tumor exists).

Examining the histograms for a set of training images discovered the 
existence of turning points. This research used six normal and four abnormal 
slices, which were segmented or ground truthed by expert radiologists into 
tissues of interest, as a training set. Projections of voxels, known to be of a 
given tissue type, onto one or more of the histograms shown in Figs. 8.16-8.18 
allowed us to choose the turning points. The turning points in the histograms
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Fig. 8.16. T1 histogram with turning points
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Fig. 8.17. PD histogram with turning points

Fig. 8.18. T2 histogram with turning points
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are essentially the approximate boundaries between tissue types. The turning 
points are automatically chosen on each test slice. From the turning points in 
the histogram, fuzzy rules to identify four tissue classes (white matter, gray 
matter, air/bone or background, and other or skull tissues such as fat, vis­
cous fluid in the eyes, etc.) can be generated. The rules and antecedent fuzzy 
sets were generated by examining the intersection of tissue types in the three 
intensity histograms.
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The rules adapt to each slice processed because they are generated from 
the turning points found on each slice. So, technically the rules’ membership 
functions are automatically generated for each slice. The turning points are 
either peaks, valleys or the beginning of a hill in a histogram. The peaks and 
valleys can be found by searching for a maximum/minimum histogram value. 
The hill beginning is found by first creating intensity bins of width 30 (they 
contain 30 intensity levels). Next the approximate hill starting point is found 
by comparing the histogram sum in the first bin with the corresponding sum 
of the succeeding bin. If the ratio is greater than or equal to our ratio threshold 
of 1.8, then the middle intensity level of the bin was chosen as the beginning 
point of the hill. If the ratio is less than the threshold the next two bins are 
tested with the procedure continuing until a hill begin point is found. If a 
peak is found before a hill begin point, 0.1 reduces the ratio and the process 
is restarted.

Neither csf, which is a small class, nor pathology show up as a clear peak in 
any of the histograms. It was found that pathology and csf could be partially 
distinguished by viewing the voxel intensity as a percentage of the range of 
intensities in either T1 or T2 weighted images. This approach enabled rules to 
be generated for csf and pathology. The six fuzzy rules generated are shown 
in Fig. 8.19.

rv fiaxel m T1 ti Set-E  
AND voxel m Tg in Set- F  
THEN я оя / i* cxf

IF ttaxel m PD  и  Sdi-C 
AND voxe/  n  П  u  Set-A 
THEN nот-el и  White matter

IF vorel in PD  и  Set-D 
AND wrxel in П и  Set-A 
AND NOT (void  in ТВ «  Set P  AND  
voxel in T1 in Set E)
THEN voxel ie Gray tnatter

IF voxel in T1 is Set-B  
AND тюте/ m ТЙ in Set-F 
THEN noxei in Pathology

IF tjhseJ in П и  Set-B
AND NO T (voxel in T8 it Set-F)
THEN voxel it Other
IF PD voxel intennity <  Ы
AND T8 voxel intensity <  c l
THEN voxel и  Background
MIN waA плес! йа the fuzzy 'and ’ in
the rule* and N O T (x) =  1 — x.

Fig. 8.19. Fuzzy rules for MR image segmentation
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The fuzzy sets used to generate the fuzzy rules are shown in Fig. 8.120 and 
together with the rules indicate how the turning points based on histogram 
shape can be used to separate voxels of different tissue types.

The rules are applied to all voxels, but will not classify all voxels. Spatial 
information is used to assign memberships to voxels which are unclassified. 
An unclassified voxel (i.e., having a zero membership in all classes) is assigned 
a membership that is the average membership of its eight neighboring vox­
els, for each of the six classes. Also in the case of isolated classifications, i.e., 
when a voxel has a membership of 1.0 in a class A, if all the eight surrounding 
voxels have zero membership in that class, then the isolated voxel’s member­
ship for class A is made zero. This step is aimed at reducing classification 
errors.

Finally, the voxel memberships in all classes are normalized to 1 using:

Hi (x)
Hi(x) =

where (csf, GrayMatter, WhiteMatter, Pathology, Skull tissues, Background). 
The pathology rule applied to normal slices will incorrectly label a small 
number of voxels as pathology. This error will need to be corrected in later 
processing.

Patients with brain tumors are typically treated with radiation and 
chemotherapy. A side effect of treatment is that the MR characteristics of 
gray and white matter are changed and the PD histogram becomes some­
thing like that shown in Fig. 8.21. The “valley” shown in Fig. 8.17 is gone and 
“turning points” b3, b4, and b5 cannot be reliably chosen.

Our strategy is to edge detect and remove the edge voxels or sharpen 
the boundary between gray and white matter. The edge-value operator we 
used is called the DIF1 operator as described. A histogram of the voxels 
with low edge values will leave the peaks essentially the same and deepen 
the valley between the peaks. This approach can be applied to normal slices 
with the sole effect of deepening the already existing valley in the PD his­
togram.

An effective edge value threshold must be chosen to make this approach 
work. The initial threshold is chosen to be 5, then edge detection is done and 
all voxels with an edge value less than 5 are used to create a PD histogram. 
If two peaks are found in the histogram the turning points are created, oth­
erwise the threshold is increased by 5 and the histogram re-created, peak 
detection done, etc. The process continues until two peaks are found or an 
edge value limit (30 here) is reached. In the case that no peaks could be 
found approximate peaks are chosen at 1/3 and 2/3 of the region between b1 
and b2 (Fig. 8.21). Figure8.22 shows an example abnormal slice with the PD 
edge value image thresholded at 15 and the histogram of all voxels with edge 
strengths <15.
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T1 Intensity

\begin{figure}
\centerline{
\psfig {figure=fzsets_t1.eps,width=2.5in,heig 
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}
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PD Intensity
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0
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(b)

Fig. 8.20. Fuzzy sets created using turning points from histograms (a) and fuzzy 
sets created for identifying csf (b)
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(a)

Fig. 8.21. Abnormal slice: (a) raw PD image (b) histogram

(a) (b)

Fig. 8.22. PD edge value image: (a) Thresholded at 15 (i.e., white voxels are edge 
voxels with edge value >15 (b) Histogram of voxels <15

All voxels can now be classified, though imperfectly, for normal or 
abnormal volumes. The voxels that belong to classes with memberships 
greater than 0.8 are generally correctly assigned. The rest of the voxels are 
more problematic. Hence, we regroup them with a semisupervised clustering 
algorithm, ssFCM. The voxels with membership greater than 0.8 are used as 
training voxels for ssFCM and are weighted by a value of 100. The ssFCM 
algorithm works as fuzzy c-means (FCM) except that training voxels cannot 
change clusters and will always influence the cluster centroid to which they 
are assigned. When they are weighted it is the same as having w (100 here) 
instances of the train voxels influencing the cluster center location and hence 
the assignment of voxels, not in the train set, to clusters.

For a typical normal slice there will be 16,816 training voxels (memberships 
greater than 0.8) and 13,910 unassigned voxels. The remaining 34,810 voxels 
were air or skull tissue voxels and are not clustered. The clustering is done 
into c = 1 0  classes to allow comparisons with FCM partitions of these same 
images.

E x p e r im e n t s  a n d  R e s u l t s

The fuzzy rules to identify tissues followed by an ssFCM clustering were 
applied to 39 normal slices from eight volunteers and 66 abnormal slices from 
seven patients. These slices lie in a range from near the center of the ventricles
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in the axial plane, characterized by a distinct X-shaped csf area and a single 
symmetric region of white matter to slices near the top of the brain in the 
axial plane, where the ventricular area is completely absent. There were six 
normal slices and four slices with pathology used to develop the fuzzy rule 
structure. These ten slices may be viewed as a set of training slices.

To approximate ground truth a set of supervised к nearest neighbor 
(kNN) segmentations were used. These segmentations were created by multi­
ple observers choosing training sets for each slice. Segmentations that resulted 
in visually good partitions of the data are used for comparison with our un­
supervised approaches. The value к =  7 was used.

Tables 8.1 and 8.2 summarize the comparison between the hybrid system 
(fuzzy rules followed by ssFCM) and regular FCM vs. pseudo ground-truth 
(kNN) for normal and abnormal slices, respectively. The time required is much 
less for the hybrid system. There are more classification differences from the 
kNN based “ground truth” for the hybrid system than FCM. To determine 
whether the differences were significant we applied a Wilcoxon’s sum of ranks 
test. The z values obtained are shown in Table 8.3. A value z < 1.64 indi­
cates that there is a greater than 10% chance that the observed difference is 
likely to occur by chance and hence cannot be proven significant. So, the z 
values in Table 8.3 lead us to conclude there is no significant difference in the 
segmentation results.

Hence a set of fuzzy rules whose antecedent fuzzy sets adapted to each 
image are shown to be effective in reducing the time to segment magnetic res­
onance images of the human brain into tissues of interest. The segmentation

Table 8.1. Mean and standard deviation of results (test slices)

1|MI 2c|| Regular FCM 2c|| Hybrid system
Mean Std. Dev. Mean Std. Dev.

Classification differences 4080.3 1328.7 5076.9 1566.9
(33 normals)
Classification differences 2376.4 1144.7 2402.5 1327.2
(62 abnormals)
Execution time (33 normals) 23.1 7.2 4.8 2.0
Execution time (62 abnormals) 21.4 9.8 3.7 1.3

Table 8.2. Mean and standard deviation of results (training slices)

1|N| 2c||Regular FCM 2c|| Hybrid system
Mean Std. Dev. Mean Std. Dev.

Classification differences 3986.5 846.5 3558.8 464.7
(six normals) 
Classification differences 2773.0 1039.1 2167.8 879.5
(four abnormals)
Execution time (six normals) 21.7 6.4 5.7 2.0
Execution time (four abnormals) 19.8 6.4 3.0 1.1
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Table 8.3. г Values obtained from Wilcoxons’ sum of ranks test
Normal Abnormal

Test 1.4 0.82
Train 0.48 0.29

produced by the fuzzy rules serves as an initialization to a semisupervised clus­
tering algorithm which produces the final segmentation. The developed hybrid 
segmentation system is approximately five times faster than FCM clustering. 
It has been tested on 105.5 mm thick, magnetic resonance image slices of the 
human brain using T1, T2, and proton density weighted images as feature 
images (i.e., each voxel has three features). The images come from 15 dif­
ferent subjects and span a range from the ventricles (roughly the middle of 
the brain in the axial plane) to the top of the brain. The hybrid segmenta­
tions are insignificantly different than those obtained with FCM clustering 
when compared with a pseudo ground truth created from a supervised KNN 
segmentation.

The overall performance of the segmentation approach demands further 
refinement using some kind of knowledge. An example of a slice with signifi­
cant extracranial tissue that is misclassified in this approach as white matter 
is shown in Fig. 8.23. Since the tissue is clearly outside the skull, simple knowl­
edge about removing all tissue spatially outside the skull would prevent this 
tissue from being considered during processing.

The approach of using fuzzy rules whose antecedents fuzzy sets are created 
from intensity histograms can be applied to other domains of images taken 
of the same region over time as long as the shape of the histograms remains 
approximately constant. Such rules provide a fast initial segmentation that 
can be further refined via other image processing techniques or with the use 
of heuristics in conjunction with image processing algorithms.

Fig. 8.23. M R image with significant extracranial tissue (run-81)



8.4 Fuzzy Logic in Biomedicine

8.4.1 Fuzzy Logic-Based Anesthetic D epth  Control 

Introduction

In most surgical operations, to anesthetize patients, manual techniques are 
used in hospitals. The manual systems work either ON or OFF situations. 
Because of not having interval values between ON and OFF in manual sys­
tems, anesthetic operations could not be safety and comfort. For this reason, 
Fuzzy logic control is applied to control anesthesia. In this paper, an objec­
tive approach of giving anesthetic to patients during surgical operation using 
Fuzzy logic is proposed.

Fuzzy logic theory is a general mathematical approach that allows partial 
memberships. Several studies have shown fuzzy logic control to be an appro­
priate method for the control of complex processes. The basic configuration 
of the logic system considered in this section is shown in Fig. 8.24.

Fuzzy logic system inputs T and N represent blood pressures (mmHg) and 
pulse rates (p m_1), which are respectively obtained from patients during 
anesthesia. Anesthesia Output (AO) represents fuzzy logic system output.

The potential benefits of using fuzzy logic control during anesthesia; in­
creasing patients safety and comfort, directing anesthetists attention to other 
physiological variables they have to keep under control by abating their tasks, 
using optimum anesthetic agent, protecting environment by using anesthetic 
agent and decreasing the cost of surgical operations.

Fuzzy Logic C ontrol A pplication  In Anesthesia

Fuzzifier

Here two fuzzy logic input sets are used. One of them is the systolic blood 
pressure of the patients, which are obtained in operation. The second input of 
fuzzy logic set is pulse rates. The minimum and the maximum values (systolic 
blood pressure and pulse rate) are obtained from surgical operations in 10 min 
intervals from 27 patients (Table8.4).

200 8 Applications of Fuzzy Logic

Fig. 8.24. A block diagram of basic fuzzy logic system
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Table 8.4. Blood pressure, pulse rate and anesthesia ratio values accepted for fuzzy 
logic control
Variable Minimum Maximum

value value
Blood Pressure (mmHg) 60 220
Pulse Rate (p m_1) 40 150
Anesthesia Ratio (%u) 0 4

Table 8.5. Membership function values
Linguistic variables Very low Low Normal High Very high
Blood pressure (mmHg) < 80 90 100-140 160-170 > 190
Puse rate (p m)_1 < 50 60 70-90 95-110 > 120
Anesthesia ratio (%u) 0 0.5-0.8 1-2.5 3-3.6 4

The sexuality of patients that the systolic blood pressure and pulse rate 
values obtained are 12 women and 15 men. The age dispersion is between 3 
and 77.

Aiding with the anesthetists, membership function values are formed as 
very low, low, normal, high and very high intervals as shown in Table 8.5.

Fuzzifier operation is applied for blood pressure and pulse rate data. This 
operation is realized to identify whether the input data is the member of this 
set or not. To fuzzify both input data, trapezoid membership set is used.

As shown in Fig. 8.25, blood pressure data membership sets between 80 
and 194mmHg are examined in groups as named T1, T2, T3, T4, T5, T6, 
T7, T8, T9, T10, and T11. Memberships sets for blood pressure data are 
computed as:
Membership function for T1:

|j,(x) =  (80 -  x)/(80 -  84) 80 < x <  84 
p,(x) =  1 84 < x  <  90
p,(x) =  (94 — x)/(94 — 90) 90 < x  <  94

As shown in Fig. 8.26, pulse rate data membership sets between 50 and 
124 are examined in groups named as N1, N2, N3, N4, N5, N6, and N7. 
Membership sets for pulse rate data are computed as:

Membership function for N1:

ц(х) =  (80 — x)/(80 — 84) 50 < x <  54
p,(x) =  1 54 < x <  60
p,(x) =  (94 — x)/(94 — 90) 60 < x <  64

Fuzzy Rule Base and Data Base

Fuzzification is based on the rules that T and N inputs result in certain outputs 
according to the rule base. Anesthetist is consulted about input and output 
data in rule base.
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Fig. 8.25. Membership sets for blood pressure data

Fig. 8.26. Membership of pulse rate

The data given in Table 8.6 have impossible conditions in human beings. 
These values are accepted as invalid conditions (Table 8.6).

Fuzzy Inference Engine

Defining the output sets according to rule base is materialized in output unit. 
Contacts that are obtained according to this rule base are interpreted using 
minimum correlation method such as: 

if T=T1 and N=N1 then A=A1.
The rule base for T and N fuzzy inputs are shown in Table 8.7.

Defuzzifier

In defuzzifier unit, fuzzified functions, obtained from fuzzy inference engine 
are converted into numeric values. Output membership sets A1, A2, A3, A4, 
and A5 are converted into numeric values using the following equation:
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T able 8.6. Invalid input conditions

Blood pressure Pulse rate Anesthesia rate
High VeryJow Invalid condition
Very_high VeryJow Invalid condition
High Low Invalid condition
Very_high Low Invalid condition
VeryJow High Invalid condition
Low High Invalid condition
VeryJow Very_high Invalid condition
Low Very_high Invalid condition
Output membership sets according to the rule base for T and N fuzzy inputs are 
defined as A1, A2, A3, A4, and A5 shown in Table 8.5. Note that S is the invalid 
condition given in Table 8.4.

Table 8.7. Rule base for T and N fuzzy inputs
N1 N2 N3 N4 N5 N6 N7

T1 A1 A1 A2 A2 A2 S S
T2 A2 A2 A3 A3 A3 A4 A4
T3 A2 A3 A3 A3 A3 A4 A4
T4 A2 A3 A3 A3 A3 A4 A4
T5 A2 A3 A3 A3 A3 A4 A4
T6 A2 A3 A3 A3 A3 A4 A4
T7 A2 A3 A3 A3 A3 A4 A4
T8 S A4 A4 A4 A4 A5 A5
T9 S A4 A4 A4 A4 A5 A5
T10 S A4 A4 A4 A4 A5 A5
T11 S A5 A5 A5 A5 A5 A5

b
ИA(x)x

AO =  2=2----------- ;b
E  Ил{х)
x=a

AO: Anesthesia output иа(х ): Anesthetic membership function, x: Member 
(blood pressure, pulse rate).

Finally, anesthetic rate applied to the patient is determined from AO 
values. Membership function of fuzzifier is shown in Fig. 8.27.

Conclusion

Anesthetic depth control can be successfully implemented with the help of 
fuzzy logic. Membership function and base rules have been determined from 
an experimental prestudy on some patients. By this new analysis method, one 
can achieve better performance on how much and when to apply anesthetic 
agent. The main advantage of this system is that the anesthetic is given to
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the patient in a precise way, the anesthetist will spend less time to provide 
anesthetic and the patient will have a safer and less expensive operation.

8.5 Fuzzy Logic in Industrial and Control Applications

8.5.1 Fuzzy Logic Enhanced C ontrol o f  an A C  Induction  M otor 
w ith a DSP 

Introduction

Fuzzy logic is a new and innovative technology being used to enhance control- 
engineering solutions. It allows complex system design directly from engi­
neering experience and experimental results, thus quickly rendering efficient 
solutions. In a joint application project, Texas Instruments and Inform Soft­
ware have used fuzzy logic to improve AC induction motor control. The results 
were intriguing: control performance has been improved while design effort has 
been significantly reduced.

Market analysis shows that 90% of all industrial motor applications use 
AC induction type motors. The reasons for this are high robustness, reliabil­
ity, low cost, and high efficiency. The drawback of using an AC induction type 
motor is its difficult controllability, which is due to a strong nonlinear behavior 
stemming from magnetic saturation effects and a strong temperature depen­
dency of electrical motor parameters. For example, the rotor time constant of 
an induction motor can change up to 70% over the temperature range of the 
motor. These factors make mathematical modeling of motor control systems 
difficult. In real applications, only simplified models are used. The commonly 
used control methods are:



-  Voltage/frequency control (U/ f )
-  Stator current flux control (Is/ f 2)
-  Field oriented control

Of these approaches, the field-oriented control method has become the de 
facto standard for speed and position control of AC induction motors. It deliv­
ers the best dynamic behavior and a high robustness under sudden momentum 
changes. Alas, the optimization and parameterization of a field oriented con­
troller is laborious and must be performed specifically for each motor. Also, 
due to the strong dependency of the motor’s parameters, a controller opti­
mized for one temperature may not perform well if the temperature changes. 
Figure 8.28 shows the demonstration of Test Motor at the Embedded Systems 
Conference.

To avoid the undesirable characteristics of the field oriented control 
approach, the companies Texas Instruments and Inform Software have 
developed new alternative control methods, and compared them with the 
field oriented control approach. The alternative methods involved two types 
of flux controllers enhanced by fuzzy logic and NeuroFuzzy techniques, respec­
tively. The goal was to use fuzzy logic to improve the dynamic behavior of the 
flux control approach such that the robust behavior of the flux controller and 
the desirable dynamic properties of the field oriented controller are achieved 
simultaneously.

Field Oriented Control Method

Figure 8.29 shows the principle of field oriented control. It allows for control 
of the AC induction motor in the same way a separately exited DC motor 
is controlled. The flux model computes the “phase shift” between rotor flux 
field and stator field from the stator currents iu and iv, and the rotor angle 
position n. The field oriented variables of the two independent controller units 
are subsequently computed by the transformation of the stator currents using 
this “phase shift.”
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Fig. 8.28. Demonstration of the Test Motor at the Embedded Systems Conference, 
San Jose
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Decoupling

Fig. 8.29. Field-oriented control of AC induction motors

The actual control model consists of two components of cascaded standard 
PI controllers. The upper component comprises outer magnetizing current 
(imR) controller and inner isd current controller. The lower component com­
prises a speed controller and momentum controller. The input of the speed 
controller is computed as the difference between set speed nref and filtered 
measured speed n.

To optimize the field oriented control model, all controllers must be para­
meterized and optimized individually. In this application project, the method 
of optimized amplitude adaptation was used to tune the current controller, 
and the method of the symmetrical optimum was used for the velocity con­
troller. Implementation effort for the field oriented controller was three per­
son months, including parameterization and design of the flux model. The 
computation time for the inner current controllers, the flux model, and the 
coordinate transformation is 100 |j,s on a TMS320C31-40 MHz digital signal 
processor. When switching the set speed from —1,000 to +1, 000 rpm, the 
new set speed is reached within only 0.25 s without any overshoot. However, 
this excellent performance is not always available. When the motor heats up 
the control performance drops significantly, and a motor with slightly different 
characteristics will achieve only mediocre results utilizing the same controller.

Fuzzy Flux Control Method

The conventional flux control model has been enhanced by fuzzy logic in two 
steps. In the first step, the nonlinear relation between slip frequency and stator 
current was described by a fuzzy logic system (Fuzzy Block #1). Figure8.30 
shows the principle of the resulting fuzzy flux controller. The control model 
consists of three inner control loops and one outer control loop. The inner 
control loops control the three stator phase currents using standard PI con­
trollers. The outer control loop determines the slip frequency n2, also using 
a standard PI controller. The slip frequency is the input to Fuzzy Block #1, 
which outputs the set value of the stator current. The primary objective for



Fuzzy Block #1  is to keep the magnetizing current constant in all operating 
modes. The magnetizing current is a nonlinear function of the slip frequency, 
the rotor time constant, the rotor leakage factor, and a nonconstant offset 
current.

The stator frequency n 1 is the sum of the measured rotor frequency n 
and the slip frequency n2. The reference position is determined by integration 
of the stator frequency n1. Modulated by sin/cos, the reference position is 
multiplied with the set value of the stator current, and split back into a three 
phase system of the stator current set values.

The rules of the fuzzy block were not manually designed, but rather gen­
erated from existing sample data by the NeuroFuzzy add-on module of the 
fuzzy TECH design software. NeuroFuzzy utilizes neural network techniques 
to automatically generate rule bases and membership functions from sample 
data. The benefit of the NeuroFuzzy approach over the neural net approach is 
that the result of NeuroFuzzy training is a transparent fuzzy logic system that 
can be explicitly optimized and verified. In contrast, the result of a neural net 
training is a rather nontransparent black box.

Comparison with Field Oriented Control

Figure 8.31 shows the performance of the fuzzy flux controller in comparison 
with the field oriented controller. The overshoot performance is almost as good 
as that provided by the field oriented control, however, it takes the fuzzy flux 
controller almost twice as long to reach the new set speed (curve Fuzzy_1). On 
the other hand, parameterization and optimization of the fuzzy flux controller 
only required four person days. The computation time for the entire controller 
is 150 |j,s on the TMS320C31-40 MHz digital signal processor.

To improve the performance of the fuzzy flux controller, in a second step, 
the standard PI controller for the outer control loop was replaced by a fuzzy 
PI controller (Fuzzy Block # 2  in Fig. 8.31). This fuzzy PI controller does not 
use the proportional (P) and integral (I) component of the error signal, but 
rather the differential (D) and proportional (P) component then integrates the 
output. This type of fuzzy PI controller has been used very successfully in a 
number of recent applications, especially in the area of speed and temperature 
control. In contrast to the standard PI controller, the fuzzy PI controller 
implements a highly nonlinear transfer characteristic. The subwindow in the
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Fig. 8.30. Principle of fuzzy flux controller
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Fig. 8.31. Enhanced fuzzy flux controller

lower left part of Fig. 8.32 shows the transfer characteristics for the fuzzy PI 
controller implemented in this application.

The enhanced fuzzy flux controller reveals a much-improved dynamic per­
formance. The good performance attained in this case hinges on the nonlinear 
behavior of the fuzzy PI controller. In contrast to the conventional linear PI 
controller, the nonlinearity of the fuzzy PI controller produces stronger con­
trol action for a large speed error, and a smoother control action for a small 
speed error. This also results a higher robustness of the enhanced fuzzy flux 
controller against parameter changes. The implementation of the second fuzzy 
block with the fuzzy flux controller only required an additional day for the 
fuzzy logic system itself, and two additional days for the optimization of the 
total system. Hence, the total development effort for the enhanced fuzzy flux 
controller was seven person days in comparison to three-person month for 
the field-oriented controller. The computation time for the entire controller is 
200 |j,s on the used TMS320C31-40 MHz digital signal processor.

II

System Simulation Using M atlab/S im ulink  and fu z z y  TEC H

The initial design of the system was implemented in a software simulation. 
The fuzzy TECH fuzzy-system development software was used together with 
the Matlab/Simulink control-system simulation software. FuzzyTECH  allows 
using fuzzy blocks in Simulinks control diagrams. This tool combination allows 
for the design of simulations combining conventional and fuzzy logic control 
engineering technologies in the same software environment. Figure 8.32 shows 
the development of the fuzzy blocks with fuzzyTECH/Simulink. The differen­
tial equation used for the simulation of the AC induction motor is modeled.

Fuzzy Logic on  Digital Signal Processors

Because of the increasing number of successful of applications of fuzzy logic 
in both control engineering and signal processing, DSP market leader Texas 
Instruments was looking for a software partner to implement fuzzy logic on 
DSP. In 1992, a formal partnership was formed with Inform Software Corp., 
a company specializing in fuzzy logic. One product of the partnership was the 
design of dedicated versions of fuzzy TECH that allow the implementation of 
fuzzy logic systems on standard TI-DSPs. The primary objective was to reach 
an acceptable computing performance level for fuzzy logic on DSPs, a quality
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Fig. 8.32. Simulation of the enhanced fuzzy flux controller using the software prod­
ucts fuzzy TECH and Matlab/Simulink

previously unknown to software implementations of fuzzy logic. Using the 
fuzzy TECH assembly kernel for 16 bit resolution, 2.98 million fuzzy rules per 
second can be computed on the TMS230C52 (25ns instruction cycle DSP), 
including fuzzification and defuzzification. For comparison: the most recent 
dedicated fuzzy processor of VLSI (VY86C500/20) only computes 0.87 million 
fuzzy rules per second (not including fuzzification and defuzzification) with 
just 12 bit resolution (VLSI data sheet). While the referenced DSP only costs 
a few dollars in large quantities, the fuzzy processor is quoted at $75 each. 
This comparison shows that in most applications, the use of dedicated fuzzy 
processors is not necessary.

Conclusion

The application project discussed in this section shows that even in ar­
eas where traditional control engineering already offers comprehensive solu­
tions, fuzzy logic can deliver substantial benefits. The fuzzy TECH assembly 
kernel for DSPs developed by Texas Instruments and Inform Software Corp. 
allows for the integration of fuzzy logic systems together with conventional 
algorithms on the same chip, even when control loop times of a fraction of a 
millisecond are required. Texas Instruments and Inform Software Corp. now 
work on further enhancements of the fuzzy flux controller. The companies 
are currently striving for even better dynamic performance by adding a fuzzy 
air-gap flux observer to the system.



8.5.2 Truck Speed Limiter C ontrol by Fuzzy Logic 

Introduction

Commercial trucks having a maximum load of more than 12 tons are required 
to be equipped with a speed limiter that limits their maximum speed to 
53.3 mph (86 km h-1 ). This case study focuses on the electro-pneumatic design 
of such a speed limiter. In this design, a pneumatic cylinder mechanically 
limits the throttle-opening angle of the fuel pump arm. A pulse proportional 
electromechanical valve controls the cylinder pressure. This valve is connected 
to an electronic control unit (ECU) that uses a microcontroller to drive the 
valve according to the actual speed of the truck.

The design of an algorithm for this control problem proved to be difficult, 
since the same speed limiter device is used in a variety of different trucks, 
which exhibit different behaviors. In addition to this, the dynamic behavior 
of a truck differs very much depending on whether it is fully loaded or empty. 
Conventional control algorithms, such as PID controls, assume a linear model 
of the process under control and can hence not be used for a solution. A so­
lution using a mathematical model of the truck is first laborious to build and 
second of prohibitive computational effort for a low-cost 8-bit microcontroller. 
Hence, fuzzy logic control was used to design the control algorithm.

Speed Limiter Requirem ents and Conventional Control

Figure 8.33 exemplifies the function of a truck speed limiter. When the truck 
approaches the maximum velocity, the pneumatic valve reduces the throttle 
opening angle of the fuel pump arm so that the maximum velocity vs. is not 
surpassed. If the driver pushes down the accelerator pedal even more, the 
speed limiter has to ensure a smooth ride at the maximum velocity.

However, due to the dead time and nonlinearities involved with this control 
action, an actual overshoot and hunting occurs when using a proportional or 
on-off controller. Adding a differential and integral part yields a PID controller 
model. A PID controller generates the command value as a linear combination
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Time

Fig. 8.33. The function of a speed limiter is to stop the truck from driving faster 
than the maximum allowed speed (vs)
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Fig. 8.34. Tolerances for the operation of the speed limiter

of the error (P), the derivative of the error with respect to time (D) and the 
integral of the error with respect to time (I). To tune a PID controller, the 
combined weights of these three (3) components must be chosen, so that 
they approximate the nonlinear behavior of the process under control at its 
operating point. While this works with most processes that are at only one 
operating point, it fails when the operating point moves. With a truck speed 
limiter, the operating point moves because of the different load situations, 
such as driving uphill or downhill, as well as driving empty or with a full 
load. Furthermore, the characteristic of the pneumatic valve and the truck 
fuel injection are highly nonlinear and vary from one truck to another.

Hence, if a PID control algorithm is used in a truck speed limiter, it can 
only be tuned well for one operation point and one type of truck. For other 
operation points and different truck types, overshoot and hunting occurs. The 
European legislation hence allows operation of the speed limiter within a 
certain tolerance. Figure 8.34 shows an example of this. When reaching the 
maximum speed, an initial overshoot of 5km h_1 is tolerated. After this, the 
speed must be kept constant within an interval of ±1.5kmh_1. Even though 
this overshoot and hunting is tolerated by the European legislation, it causes 
annoying speed fluctuations when driving.

M echan ical Design of th e Speed L im iter

Figure 8.35 sketches the outline of the mechanical design of the speed limiter. 
An ECU compares the digital pulse signal from the speedometer with the 
maximum speed value preset in the device. Based on this, it computes the 
command value for the pulse proportional valve (PPV) that controls the air
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Fig. 8 .35. Mechanical design of the speed limiter
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Fig. 8.36. The electronic control unit of the speed limiter using a PIC 8-bit micro­
controller

pressure in the cylinder. The air stems from the vehicles’ pressured air system. 
In a nonlinear but proportional ratio, the cylinder shortens the arm linking 
the accelerator pedal to the fuel pump so that the fuel pump is throttled.

Design of the Speed L im iter E lectronic Control U nit

The ECU itself is designed as a mixed digital and analog circuit. Speedometer 
signal processing, the fuzzy logic control algorithm, and diagnosis functions are 
computed by a PIC 8-bit microcontroller (MCU). The MCU uses an external 
E2PROM to store parameters of the truck and speedometer, the maximum 
velocity, and diagnosis variables.

The MCU also generates a pulse-width modulated signal (PWM) that is 
amplified by a power stage to drive the PPV. The analog part is responsible for 
the preprocessing and filtering of the speedometer signal. Figure 8.36 shows 
a photo of the unit.

The Fuzzy Logic Contro ller

Fuzzy logic is an innovative technology to design solutions for multiparameter 
and nonlinear control problems. It uses human experience and experimen­
tal results rather than a mathematical model for the definition of a control
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Fig. 8.37. Structure of the fuzzy logic speed limiter controller

strategy. As a result, it often delivers solutions faster than conventional con­
trol design techniques. In addition, fuzzy logic implementations on microcon­
trollers are very code space and execution speed efficient.

The entire fuzzy logic algorithm was developed, tested and optimized us­
ing the software tool fuzzy  TECH. Figures 8.37-8.39 all show screen shots 
of the fuzzy logic speed limiter design in various editors and analyzers of 
fuzzy  TECH. Figure 8.37 displays the Project Editor featuring the structure 
of the fuzzy logic system. On the left-side, two input interfaces fuzzify the two 
input variables “Acceleration” and “Speed_Error.” The rule block in the mid­
dle contains all the fuzzy logic rules that represent the control strategy of the 
system. On the right-side, the output variable “PMV_Set_Value” is defuzzified 
in an output interface.

Figure 8.38 shows more details of the fuzzy logic system. Each linguistic 
variable is displayed in a variable editor window and the rules are displayed in 
the Spreadsheet Rule Editor window. Each linguistic variable contains five (5) 
terms and membership functions. They are connected by a total of 12 fuzzy 
logic rules. All membership functions are of Standard types. As a defuzzifica­
tion method, the Center-of-Maximum (CoM) method is used.

All rules in the fuzzy logic system now let the designer define the best 
reaction (output variable value) for a given situation. The situation is 
described by the combination of the input variables. After such a control 
strategy has been defined by the designer, a number of different analyzer 
tools can be used to verify the system’s performance. Figure 8.39 shows the 
3D Plot as an example. In the 3D Plot, the two horizontal axes show the two 
input variables “Acceleration” and “Speed_Error.” The vertical axis plots the
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Fig. 8.38. Definition of the linguistic variables and the rule table

Fig. 8.39. Debugging of the fuzzy logic system 
fuzzy logic controller under testing

Transfer characteristics of the

output variable, “PWM_Set_Value”, the set value for the PWM unit on the 
microcontroller. Rule 1, as shown in Figure 8.38, indicates:
IF Speed_Error=much_2_slow THEN PWM_Set_Value=HIGH_DEC 
This rule represents the engineering knowledge that if the truck is way under 
the speed limit, no pressure should be applied to the cylinder. The membership 
function of the term “much_2_slow” is shown also in the respective variable 
editor in Figure 8.38. The 3D Plot in Fig. 8.39 plots the transfer characteristic
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as a result of this. In the front part of the curve, the value of the output 
variable is very low (color of surface light). As you proceed to the left along 
the Acceleration axis, the output variable value gets higher. This is a result 
of Rule 6 that defines:
IF Acceleration = HIGH_ACC AND Speed_Error = much_2_slow THEN 
PWM_Set_Value = HIGHJNC
This rule represents the engineering knowledge that if in the same general 
case of the truck being way slower than the limit, the special case of a high 
acceleration should result in medium pressure on the cylinder. This ensures 
that the cylinder is already filled with some pressure if the truck reaches the 
limit quickly. If this rule would not have been formulated, a speed overshoot 
would occur.

O ptim ization and Im plem entation

A fair deal of optimization was accomplished offline on the PC since 
f uzzy  TECH can simulate the fuzzy logic system without the target hardware. 
However, final optimization and verification of the system was conducted on 
real trucks.

Figure 8.40 shows the test and optimization setup. The target system, 
the MCU of the ECU, is mounted in the truck and connected to the de­
velopment PC (notebook in the truck’s cabin) by a serial cable. Such serial 
connection allows for modification of the running fuzzy logic controller “on- 
the-fly.” This development technique is very efficient because it allows for 
the developer to analyze how a certain behavior of the fuzzy logic controller 
is caused by the membership function definition and the rules. Also, since 
modifications can be done in real time, the effects can be “felt” on the truck 
instantly.

One way to enable “on-the-fly” debugging is to link the fuzzy TECH 
RTRCD Module (real-time remote cross debugger) to the fuzzy logic con­
troller that runs on the MCU and connect it to a serial driver. The RTRCD 
Module consumes about l/2 KB of ROM, a few Bytes of RAM, and some 
computing resources to serve the serial communication on the MCU. Since

Target System (MCU)

Serial Link (RS232)

Development System (PC)

F ig. 8.40. Cross optimization of the running fuzzy logic controller by a serial link
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the PIC16 MCU used in this application cannot provide such resources, the 
serial debug mode of fuzzy  TECH was used rather than the RTRCD Module. 
In serial debug mode, the values of the input variables are sent from the MCU 
to fuzzy TECH running on the development PC via the serial cable and the 
results are sent back. f uzzy  TECH shows the entire fuzzy logic computation 
in its editor and analyzer windows, and allows for “on-the-fly” modifications. 
To support serial communication, a piggyback board containing a MAX232 
driver IC was mounted on the speed limiter board shown in Fig. 8.36.

The advantage of using the serial debug mode of f uzzy  TECH over the 
RTRCD Module is that code size and computation effort that previously 
was required for the fuzzy logic computation on the MCU are now saved 
and can thus be used for the serial communication. The disadvantage of the 
serial debug mode of f uzzy TECH is that it computes the systems’ results on 
the PC where real-time response cannot be guaranteed. Also, any crash of 
MS-Windows, the PC, or the serial communication will halt computation in 
serial debug mode.

Conclusion

After optimization of the fuzzy logic rule strategy on different trucks and 
various load conditions, the speed limiter showed a response curve as shown 
in Fig. 8.41. The fuzzy logic controller achieves a much smoother response, 
does not show overshoot behavior, and provides a higher accuracy of keeping 
the speed limit compared to a conventional controller.

The final fuzzy logic system was compiled to PIC16 assembly code by 
the f uzzy  TECH MP-Edition and required 417 words of ROM space and 32 
bytes of RAM. The RAM space can be used for other computation tasks 
such as preprocessing and filtering while the fuzzy logic system is not run­
ning. The entire fuzzy logic system needs less than 2 ms to compute on the 
PIC16 MCU.

Fig. 8.41. Speed limiter performance of the fuzzy logic controller



8.5.3 A nalysis of Environm ental D ata for Traffic Control U sing 
Fuzzy Logic 

Introduction

Traffic control is based on the analysis of traffic data and environmental condi­
tions. Particularly bad environmental conditions may cause hazard to drivers. 
In this section, we discuss the use of fuzzy logic for the analysis of environmen­
tal conditions such as road surface condition, visual range and weather con­
ditions detected by local sensor stations and road sensors. Because detection 
of environmental conditions involves a number of uncertainties, conventional 
approaches do not deliver satisfactory solutions. The fuzzy logic solution dis­
cussed in this section in contrast:

-  Takes into account the different types and quality of equipment used at 
the different detection stations

-  Uses a two-step plausibility check to determine the quality of sensor signals
-  Computes substitute values for missing information using sensors from 

other detection stations
-  Leads to more appropriate results for the evaluation of road surface condi­

tions and visual range to indicate slippery road conditions or fog warning

Traffic M anagem ent

The first traffic management systems used in Germany were implemented on 
roads with frequent accidents caused by fog or icy road conditions. Later, 
these system were extended to detect and control traffic to increase the traffic 
capacity. These traffic control systems use several detection stations along 
the road. These stations employ magnetic sensors for traffic detection, as well 
as weather stations transmitting environmental data from road surface and 
the air layer near the ground.

A central traffic control computer collects the data transmitted from the 
section stations. A control strategy derives an adequate speed limit for every 
section. The control objectives are:

-  Keep traffic flowing in case of peak traffic
-  Slow down traffic at the inflow to congestion
-  Warn for bad weather conditions such as fog or ice

Along the road of such an “intelligent” highway, alterable road signs posted 
on traffic sign gantries display speed limits for each lane and display nonreg­
ular events such as road work, warnings for traffic back-ups, breakdowns, an 
accident, or dangerous weather conditions (Fig. 8.42).

8.5 Fuzzy Logic in Industrial and Control Applications 217



218 8 Applications of Fuzzy Logic

Traffic Observation Section Station

Fig. 8.42. Environmental and traffic sensors in a traffic control system 

E nvironm ental D ata A nalysis

The traffic situations depend highly on environmental conditions. An intel­
ligent highway thus should warn drivers of slippery road conditions and low 
visibility. Sensors are used to indicate and classify icy or wet road pavement 
and to indicate the visual range.

An ideal weather station uses road sensors measuring road surface temper­
ature, road surface moisture, water film depth, and salt content of water film. 
Near the road, the ideal weather station detects air and ground temperature, 
amount of precipitation, type of precipitation, wind velocity and direction, 
sun beam intensity and illumination.

However, most existing weather stations are not equipped with this full 
range of sensor equipment. In addition, some sensors do not work reliably 
under all conditions. For example, a standard salinometer needs a wet road 
surface to measure the remaining salt content on the road. Besides measure­
ment problems, sensors frequently fail because of “biological attacks” such as 
spiders or butterflies that cover the surface of visual based detectors. Con­
ventional traffic control systems misinterpret this as high rain intensity or 
low visual range. This can cause completely wrong traffic warnings. Because 
sensors often stem from different vendors, conventional systems do not use 
interrelationships between the signals of different detection stations to iden­
tify such implausibilities.

Fuzzy Logic System  A rch itectu re

The fuzzy logic data analysis unit was designed as part of a larger traffic 
control system. As shown in earlier applications, fuzzy logic is well suited to 
create solutions for traffic control systems. Figure 8.43 shows the architecture 
of the analysis unit, separating a component to verify the sensor information 
from components to evaluate the road surface and visual range condition.
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SW Unit Component Module

Fig. 8.43. Architecture of environmental data analysis 

Sensor P lau s ib ility  A nalysis

A two-step approach was used to verify the sensor signals. The first step 
utilizes the fact that no weather signal remains constant. In particular, if the 
signal jumps abruptly or remains completely constant over time, the sensor 
signal is considered to be faulty.

In this case, the fuzzy logic system regenerates the information from other 
sensors. To design this fuzzy logic system, meteorological knowledge about the 
maximum gradients of all sensor signals, a time frame for a required movement 
of the signals, and maximum jumps of the gradients to identify discontinuity 
were acquired from experts.

The second step uses four separate fuzzy logic modules to combine inter­
related signals.

Road Moi s tu r e  Modul e

This module, combines all data, that indicates anything about moisture 
or water on the road. The fuzzy logic module consists of five rule blocks 
(Fig. 8.44) that implement:

-  A compensation rule block for the hygroscopical behavior of the road 
moisture sensors. For example, if the salt content is very high, the moisture 
sensor indicates higher values.

-  A cross check rule block between detected road surface moisture, the sen­
sors that detect a water film on the road, and the amount of precipita­
tion ions detected during the last 30 min. For example, if strong rain was 
detected over the past minutes, the road must be wet.

-  A cross check rule block of the humidity sensor using dew point, road 
temperature, and a moisture sensor. For example, if the dew point is
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Fig. 8.44. Road moisture fuzzy logic module

lower than the road temperature and the verified moisture indicates a dry 
road, the humidity signal must be wrong.

-  A cross check rule block to the precipitation sensor.
-  A diagnosis rule block to derive an error message from the given signal 

situation.

As result, the module produces verified signals of road moisture, amount of 
precipitation, and humidity.

Road Tempera tur e  Modul e

This fuzzy logic module contains two rule blocks (Fig. 8.45) to compute:

-  A verified value of the road surface temperature by cross check of the 
temperature signal, the gradient of this signal, and the precipitation. 
For example, the temperature signal can only decrease rapidly if a large 
amount of precipitation is detected.

-  A verified value of the freezing point, taking into account salt content 
and road surface moisture. Because the salt content sensor does not work 
with dry road conditions, a salt content forecast is used when the signal 
is not available.

Pr e c ip i t a t i o n  Type Modul e

The verification of the precipitation type is the most complex verification 
module. This fuzzy logic module verifies existing sensors that indicate the 
precipitation type by a cross check with the verified signals of road mois­
ture, precipitation quantity, visual range, and other environmental conditions 
(Fig. 8.46). If the sensor delivers implausible results or is not available, a sub­
stitute value is computed. The module consists of a number of rule blocks 
that:
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Fig. 8.45. Road temperature fuzzy logic module

f 1ИКйЦД5

Precipitation Type

Muly I

|D*3ijn M&de

Fig. 8.46. Precipitation type fuzzy logic module
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-  Indicate if the weather conditions allow for hail or snow. For example, an 
air temperature level is defined at which snow is implausible.

-  Compare the visual range with the precipitation quantity.



-  Aggregate the information with the precipitation quantity and visual 
range.

Visual Ran ge  Modul e

The visual range fuzzy logic module computes a verified value of the visual 
range by using two rule blocks (Fig. 8.47) that:

-  Cross check the visual range with the precipitation quantity. For example, 
there is no fog during heavy rain.

-  Cross check the visual range with air humidity. For example, fog only 
occurs during very high humidity.

Using these verified signals, the subsequent two components conclude road 
and fog conditions. The Road Condition component (Fig. 8.48) uses the 
qualified values of precipitation type and quantity, as well as the road mois­
ture to indicate a dangerously wet road. Precipitation type, freezing point, 
and road temperature indicate icy conditions. A final rule block aggregates 
the information to a standardized road condition classification code. An ad­
ditional component aggregates the verified values of visual range and precip­
itation type to compute the standardized visual range classification code.

Conc lu s i on

Conventional traffic systems are susceptible to faulty weather sensor signals. 
The fuzzy logic approach presented delivers more reliable results using mete­
orological expertise. The solution discussed was implemented using the fuzzy 
logic development software fuzzy  TECH. The table in Fig. 8.49 shows the num­
ber of variables, structures, rules and memberships of each component and the 
complete system used.
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F ig . 8.47. Visual range fuzzy logic module
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Fig. 8.48. Analysis of road surface condition

Module Variables Rule B locks Rules MBFs

Road Moisture 16 5 489 70

Road Tem perature 10 2 130 39

Precipitation Type 15 6 204 60

Visual range 7 2 142 36

Analysis road condition 7 3 60 33

Analysis v isual range 3 1 35 17

Com plete  unit 58 19 1060 255

Fig. 8.49. Size of fuzzy logic unit and its modules

In day to day operation, the fuzzy logic solution has shown that it can pre­
vent traffic control system malfunction in most sensor breakdown situations. 
In addition “biological attack” situations were detected and misleading rain 
or fog detection was avoided.

In a complete traffic control system, analysis of environmental conditions is 
only one component of its functionality. However, faulty weather detection can 
cause the entire traffic control system to malfunction. Thus, the enhancement 
of traffic control systems by fuzzy logic greatly improves the reliability of 
traffic control.

8.5 .4 O ptim ization of a  W ater T reatm ent System  U sing Fuzzy 
Logic 

Introduction

This case study is about a fuzzy logic solution in biochemical production at the 
world’s largest oral penicillin production facility in Austria. After extracting 
the penicillin from the microorganisms that generated it, a waste water treat­
ment system further processes the remaining biomass. Fermentation sludge
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Fig. 8.50. Picture of a decanter and its schematic

obtained in the course of this treatment contains microorganisms and rem­
nants of nutrient salts. It is the basic material for a high quality fertilizer and 
sold as a by-product of the penicillin production. To render the fertilizer, the 
sludge is concentrated in a decanter and then cleared of the remaining water 
in a vaporizer. In order to reduce energy costs of the vaporizing process, the 
separation of water and dry substance in the decanter must be optimized. 
Before the implementation of the fuzzy logic solution, operators controlled 
the process manually.

Fuzzy Logic R ep laces M anual Control

Due to its complexity, operators control the process of proportioning decanter 
precipitants manually. Drainage control in the decanter is very crucial. To 
save energy cost in the vaporizing process, the decanter must extract as 
much water as possible. However, to achieve optimal results requires an 
operating point close to the point where the decanter becomes blocked. If 
blockage occurs the process must be stopped and the decanter manually 
cleaned, thus operators run the process far away from this optimal point. 
Alas, this results in high operational energy costs. In this case study, a 
fuzzy logic system replaced the suboptimal manual control of the operators 
(Fig. 8.50).

Fuzzy Logic A pp lications in  C hem ical In dustry

A number of conventional control techniques exist to automate continuous 
processes in chemical industry. To keep single variables of the process constant,
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Fig. 8 .5 1. Using a fuzzy logic controller to determine the set values for underlying 
PID control loops

PID controllers or the like are very common. Even though, most technical 
processes are nonlinear and PID controllers are a linear model, this works 
fine. This is because within a continuous process, the behavior of the process 
can be well-approximated linearly near the operation point. In processes with 
simple time behavior (no dead times etc.), even P (proportional) controllers 
and bang-bang controllers often suffice.

While keeping single process variables at their command values is rather 
simple, the determination of the optimal operation point as the combination 
of all set values of the variables is often a complex multivariable problem. 
In most cases a solution based on a mathematical model of the process is far 
beyond acceptable complexity. In some cases, the derivation of a mathematical 
model of the plant consumes many man-years of effort. Hence, in a large 
number of plants, operators prefer to control the operation point of the process 
manually.

In these cases, fuzzy logic provides an efficient technology for putting the 
operator control strategies into an automation solution with minimum effort. 
Figure 8.51 shows how to combine the fuzzy logic system with underlying 
PID controllers. In practical implementations, the PID controllers run on 
the same DCS as the fuzzy logic controller. Figure 8.52 shows the technical 
integration of fuzzy logic into DCS.

D ecanter Control

The sewage of the fermenters contains about 2% dry substance. In a first 
step, milk of lime neutralizes the sewage. Second, a fermenter biologically 
degrades the sewage. Third, bentonite is added in a large reactor. This results 
in a precoagulation of the sludge. Next, the slurry is enriched with cationic 
polymer before the water is separated in the decanter. The cationic poly­
mer discharges the surface charge of the sludge particles and hence leads to 
coagulation (Fig. 8.53).

Bentonite and polymer addition exert a fundamental influence on 
the drainage quality obtained in the decanter. In order to achieve a high 
drainage quality, the gradation of chemicals has to be optimized. A changed 
bentonite proportioning causes only a slow change in the precipitation process
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Online Link (Ethernet, ..) Control Processors

Process Visualization

F ig .  8 .5 2 . Integration of a fuzzy logic component in a distributed control system

F ig .  8 .5 3 . Process diagram of sludge draining

because of the dead time of the reactor of about 20min (reactor capacity 
30 m3 at a volume flow of 90 m3 h-1 ) and the dead time of the decanter of 
about 5-7 min. An increase in bentonite addition principally results in an 
improvement of coagulation. Implementation of just a polymer proportioning 
controller must only consider the dead time of the decanter. An increase in 
polymer addition first results in an improvement of coagulation, but with 
further addition coagulation impairs.

The control strategy of the operators uses two measured variables:

-  A turbidity meter measures the purity of the water. High turbidity indi­
cates a high remaining solids content of the water.

-  A conductivity meter measured the draining degree of the slurry. A high 
conductivity of the slurry indicates a high water content.

Milk of Lime Bentonite

Control S tra te g y  O bjectives

The prime objective of the control strategy is to minimize the operational cost 
of the total drying process. In particular, the objectives are:



-  Minimize amount of precipitants. The polymer used is very expensive.
-  Minimize remaining water content. The vaporization of the remaining 

water consumes large amounts of energy.
-  The biological mass content of the sewage water of the decanter should 

be 0.7g l -1 . Exceeding a value of 1.5g P 1 reduces the operability of the 
clarification plant and can even result in a breakdown of the next sewage 
stage because of its limited capacity to degrade biological mass.

-  The third objective has an absolute priority, above other objectives, to 
ensure safe operation. If the biological mass content reaches its upper 
limits, the control strategy reduces it regardless of economic considera­
tions. Besides the critical biological mass content of the sewage water, 
only the first two objectives are relevant. A rough cost estimation shows 
that the most effective way to reduce the expenses of the process is to min­
imize the energy used in the evaporators. If the dry substance content of 
the thick slurry is increased by 1% (this corresponds to a change of conduc­
tivity of about 0.5mS cm-1 ), the costs of energy (used in the evaporator) 
could be reduced by $140 per day. A reduction of bentonite addition by 
10% saves about $30 per day, and a decrease of polymer addition by 10% 
reduces costs by $40 per day. A small decrease of chemical gradation can 
result in a significant reduction of dry substance contents in thick slurry. 
Therefore the main objective of optimization is to obtain the best possible 
result of draining with least use of chemicals.

D esigning the Fuzzy Logic R u le  Base

An increase of polymer addition results in an increase of drainage grade. 
This reduces the turbidity of the sewage water (degree of suspended matter) 
and conductivity of the thick slurry (water content). Exceeding the optimum 
polymer gradation, further addition of polymer leads to a decline of the sep­
aration power in the decanter. The separation power on polymer gradation 
L = f  (dmpolymer/dt) follows a parabolic curve (Fig. 8.54). Conductivity of 
the slurry is used as an indicator for the separation power obtained. Hence, 
the control strategy is to find the minimum of conductivity by modifying the 
polymer addition.

The problem with this is that the shape of the curve and hence also the 
level and position of the minimum may significantly vary over time. The only 
way to find out the direction to the minimum from the current operating 
point is to apply a change in the polymer gradation and evaluate its effects. If 
the draining of thick slurry improves, the conclusion is that this decision was 
correct and can be repeated. If the decision results in a decline, the fuzzy logic 
controller pursues the opposite strategy. The stronger the system’s reaction 
to a change in polymer addition is, the greater is the current operation point’s 
distance to the optimum.

Likewise, an increase in bentonite addition leads to an increase in separa­
tion power of the decanter until an optimum is reached. If more bentonite is
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Fig. 8.54. Thick slurry conductivity over polymer proportion

added beyond this point, neither improvement nor decline occurs. Thus, an 
increase in bentonite addition beyond the optimal point is less critical than 
an increase in polymer addition. However, bentonite addition should be kept 
as low as possible to minimize operating cost.

S tru c tu re  of the D ecanter Contro ller

A change in bentonite addition has a greater long-term effect than a change 
in polymer addition, due to the larger dead time. As a correlation between 
bentonite and polymer addition exists, it is sensible to change the polymer 
addition independent of the separation quality in the short term and to let 
the bentonite controller run with delay.

Sewage quality is only restricted by an upper limit, whereas slurry qual­
ity is of great economical importance. For these reasons, polymer addition 
is controlled by a first set of rules in correlation to the slurry quality. An 
absolute point of reference does not exist because of the changing optimum 
of the polymer addition characteristics. Hence, no absolute input or output 
values are used. The controller determines its position in the objective func­
tion from a prior change in polymer addition and the resulting reaction of 
conductivity.

The first rule block of the fuzzy logic controller works on the targeting. 
Input values for this rule block are the increment of set point in the previous 
cycle (pr.decision) and the resulting change in conductivity (d_conductab). 
The output of the rule block is the increment (polymer1) on the set point 
of the polymer PID controller. Figure 8.55 shows the control strategy of this 
rule block as a matrix. The entries in the matrix represent the output variable 
polymer1 of the rule block.
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Difference in Conductability 
(d_conductab)

N Z P

Previous
Decision
(pr_decision)

N Z P

Z Z P

P N NP

F ig .  8 .5 5 . Matrix representing the control strategy of polymer proportion. N rep­
resents “negative”, Z represents “zero”, and P represents “positive”

A positive change in conductivity implies a decline of the plant’s operating 
state. If the controller in the previous cycle (pr_decision) recommended “neg­
ative” (reduce polymer addition) and conductivity increased as a reaction to 
this, the controller must now operate in the opposite direction and increase 
polymer addition. If the controller recommended “positive”, polymer addition 
must be reduced. Conductivity may increase although the controller has not 
given a recommendation in the previous cycle (pr.decision = 0). In this case, 
the optimum moved by external influence and action must be taken.

As the fuzzy logic controller does not know in which direction the optimum 
moved, it has to choose one direction. For this, it increases polymer addition 
to test the reaction of the process. It tests with a polymer increase rather 
then a decrease, as the curve in the figure rises more gently into the positive 
direction, and an increased use of polymer is cheaper than the raised energy 
costs that stem from the evaporation process.

If the test result is favorable, this will be confirmed in the next cycle. If 
it is negative, the controller will simply change the signs of the output in 
the subsequent cycle (see matrix in Fig. 8.55). This only represents the basic 
principle of the rule block. The final implementation of the rule block contains 
additional rules that more finely differentiate the input value. As such, the 
fuzzy logic controller can differentiate between several cases and thus adapt 
the size of gradation change to the reaction of the process that is, to the 
proximity to the optimum.

The turbidity of the sewage water forms a restriction that in some cases for­
bids the reduction of the precipitant addition. Therefore, a second rule block 
evaluates the turbidity of the sewage water (turbidity) and the output of the 
first rule block (polymer1) to determine the final polymer addition increment 
(polymer2). Figure 8.56 shows the structure of the fuzzy logic system. As long 
as turbidity units are below 2,500 TE/F, the second rule block transfers the 
first block’s recommendation to the output. Starting at about 3,000 TE/F, 
all recommendations of the first rule block are transferred, except recommen­
dations to reduce polymer addition. If about 3,500 TE/F are exceeded, the 
second rule block always recommends an increase of flocculent addition. Only
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Fig. 8.56. Structure of the fuzzy logic controller

Fig. 8.57. Total controller structure with preprocessing and postprocessing

the rate of increase of flocculent addition changes, depending on the recom­
mendation of the first rule block.

To determine the betonite addition, a third rule block uses the output of 
the second rule block and a fourth input variable, called ration. The ratio is 
calculated outside the fuzzy logic system.

In teg ra tin g  the Fuzzy Logic Controller in  th e System

Figure 8.57 shows the total structure of the entire control system. In ad­
dition to the fuzzy logic system, function blocks (CALC, RATIO) provide 
preprocessing of the sensor signals, ramp generation, and ratio control. The 
entire control system is implemented using a standard DCS. The most impor­
tant input variable of the controller is the change in the conductivity of the 
slurry. Alas, the conductivity measurement circuitry is subject to strong sig­
nal noise. Hence, a low pass filter is used that determines the average change 
in conductivity during the last 10 min at 1-min intervals. This forms the input 
variable d_conductab of the fuzzy logic system. Turbidity, the fuzzy system’s 
second input, uses a similar filter.
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Conclusion

Compared to the manual operation, the fuzzy logic controller saves about 
$70,000 in energy costs per year. Thus fuzzy logic is more efficiently used in 
water treatment system.

8.5.5 Fuzzy Logic A pplications in In d u stria l A utom ation  

Introduction

In this section, we review eight recent applications of fuzzy logic in industrial 
automation. All applications used the so-called “fuzzyPLC,” an innovative 
hardware platform that merges fuzzy logic and traditional automation tech­
niques. Following a quick overview on the fuzzyPLC, we discuss the eight 
applications and focus on how fuzzy logic enabled a superior solution com­
pared to conventional techniques. Whenever possible, we quantify the benefit 
in cost saving or quality improvement.

In recent years, fuzzy logic has proven well its broad potential in industrial 
automation applications. In this application area, engineers primarily rely 
on proven concepts. For discrete event control, they mostly use ladder logic, 
a programing language resembling electrical wiring schemes and running on 
so-called programmable logic controllers (PLC). For continuous control, either 
bang-bang type or PID type controllers are mostly employed.
While PID type controllers do work fine when the process under control is in 
a stable condition, they do not cope well in other cases:

-  The presence of strong disturbances (nonlinearity)
-  Time-varying parameters of the process (nonlinearity)

P resence of Dead T im es

The reason for this is that a PID controller assumes the process to behave 
in a strictly linear fashion. While this simplification can be made in a stable 
condition, strong disturbances can push the process operation point far away 
from the set operating point. Here, the linear assumption usually does not 
work any more. The same happens if a process changes its parameters over 
time. In these cases, the extension or replacement of PID controllers with 
fuzzy controllers has been shown to be more feasible more often than using 
conventional but sophisticated state controllers or adaptive approaches. How­
ever, this is not the only area where there is potential for fuzzy logic based 
solutions.

M u ltiv ar iab le  Control

The real potential of fuzzy logic in industrial automation lies in the straightfor­
ward way fuzzy logic renders possible the design of multivariable controllers.



In many applications, keeping a single process variable constant can be done 
well using a PID or bang-bang type controller. However, set values for all 
these individual control loops are often still set manually by operators. The 
operators analyze the process condition, and tune the set values of the PID 
controllers to optimize the operation. This is called “supervisory control” and 
mostly involves multiple variables.

Alas, both PID and bang-bang type controllers can only cope with one 
variable. This usually results in several independently operating control loops. 
These loops are not able to “talk to each other.” In cases where it is desirable 
or necessary to exploit interdependencies of physical variables, one is forced to 
set up a complete mathematical model of the process and to derive differential 
equations from it that are necessary for the implementation of a solution. In 
the world of industrial automation, this is rarely feasible:

-  Creating a mathematical model for a real-word problem can involve years 
of work.

-  Most mathematical models involve extensive simplifications and lineariza­
tions that require “fudge” factors to optimize the resulting controller later 
on.

-  Tuning the fudge factors of a controller derived from a mathematical 
model is “fishing in the dark,” because optimizing the system at one oper­
ating point using global factors usually degrades the performance at other 
operating points.

Also, many practitioners do not have the background required for rigorous 
mathematical modeling. Thus, the general observation in industry is that 
single process variables are controlled by simple control models such as PID 
or bang-bang, while supervisory control is done by human operators.

This is where fuzzy logic provides an elegant and highly efficient solution 
to the problem. Fuzzy logic lets engineers design supervisory multivariable 
controllers from operator experience and experimental results rather than 
from mathematical models. A possible structure of a fuzzy logic based control 
system in industrial automation applications is exemplified by Fig. 8.58. Each
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Fig. 8.58. Using a fuzzy logic controller to determine the set values for underlying 
PID control loops
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single process variable is kept constant by a PID controller, while the set values 
for the PID controller stem from the fuzzy logic system. This arrangement 
is typical for cases like control of several temperature zones of an oven or 
control of oxygen concentrations in different zones of a waste water basin. 
In other cases, it could be reasonable to develop the complete closed loop 
control solution in a fuzzy system. This illustrates why it is very desirable 
to integrate conventional control engineering techniques, such as ladder logic 
or instruction list language for digital logic and PID control blocks tightly 
together with fuzzy logic functionality.

M erg ing  Fuzzy Logic and PLCs

In 1990, when more and more successful applications proved the potential of 
fuzzy logic in industrial automation, the German company Moeller GmbH 
and the US/German company Inform Software created the f uzzyPLC based 
on the observation that fuzzy logic needs tight integration with conventional 
industrial automation techniques (Fig. 8.59).

To make it available at a low cost, the core of the f uzzy  PLC uses a highly 
integrated two-chip solution. An analog ASIC handles the analog/digital inter­
faces at industry standard 12 bit resolution. Snap-On modules can extend the 
periphery for large applications of up to about 100 signals. An integrated field 
bus connection, based on RS485, provides further expansion by networking. 
The conventional and the fuzzy logic computation is handled by a 16/32 bit 
RISC microcontroller. The operating system and communication routines, de­
veloped by Moeller, are based on a commercial real time multitasking kernel. 
The fuzzy inference engine, developed by Inform Software, is implemented 
and integrated into the operating system in a highly efficient manner, so that 
scan times of less than one millisecond are possible. The internal RAM of

Fig. 8.59. The fuzzyPLC contains fuzzy and conventional logic processing capabil­
ities, field bus connections, and interfaces



256 KB can be expanded by memory cards using flash technology. Thus, the 
f uzzyPLC is capable of solving quite complex and fast industrial automation 
problems in spite of its compact and low price design.

The f u z z y  PLC E ngineering Software

The fuzzy  PLC is programed by an enhanced version of the standard fuzzy logic 
system development software f uzzy  TECH from Inform Software. fuzzy TECH 
is an all-graphical, design, simulation, and optimization environment with 
implementation modules for most microcontrollers and industrial computers. 
To support the complete functionality of the f uzzy PLC, f uzzy  TECH has been 
enhanced with editors and functions to support the conventional programing 
of the PLC. Thus, a user only needs one tool to program both conventional 
and fuzzy logic parts of the solution.

The f uzzy  TECH software combines all necessary editors for membership 
functions, linguistic variables, rule tables, and system structure with ana­
lyzer functions and optimization features. The software runs on a PC and 
is linked to the f uzzy  PLC by a standard serial cable (RS232) or the field 
bus (RS485). Through this link, the developer downloads the designed sys­
tem to the f uzzyPLC. Because fuzzy logic systems often require optimization 
“on-the-fly,” f uzzy  TECH and the f uzzy  PLC feature “online-debugging” where 
the system running on the f uzzy  PLC is completely visualized by the graphical 
editors and analyzers of fuzzy TECH. Plus, in online-debugging modes, any 
modification of the fuzzy logic system is instantly translated to the f uzzy  PLC 
without halting operation.

A pp lication  Case S tud ies

In this section, we review eight recent highly successful applications of fuzzy 
logic in industrial automation using the f uzzy  PLC:

-  Antisway control of cranes
-  Fire zone control in waste incineration plants
-  Dosing control in wastewater treatment plants
-  Control of tunnel inspection robots
-  Positioning in presses
-  Temperature control in plastic molding machines
-  Climate control and building automation
-  Wind energy converter control

A ntisw ay Control of Cranes

In crane control, the objective is to position a load over a target point. While 
the load connected to the crane head by flexible cables may well sway within 
certain limits during transportation, the sway must be reduced to almost zero 
for load release when the target position is reached. Hence, a controller must

234 8 Applications of Fuzzy Logic



8.5 Fuzzy Logic in Industrial and Control Applications 235

' JOT
J— — Ы  

a » <
-,r ■

Ш  ' W i

LM L -------------- X

Г'**.  ̂ -  j И

Ш
■

W i l l " .• ....j
■ J S  |££ lj

M
Fig. 8.60. The 64 ton crane of Hochtief Corp. uses fuzzyPLC based antisway 
positioning control (Video)

use at least two input variables, for example position and sway angle. Thus, 
a simple PID controller cannot be used as it is restricted to one input. Con­
ventional solutions of the problem require highly elaborate approaches, like 
model based control or state variable controllers that need intensive engineer­
ing and hardware resources. These technologies tend to push system costs 
into regions that make antisway systems economically unaffordable. For these 
reasons, most cranes are still operated manually.

In spite of the difficulties involved with automated control, human 
operators can control cranes quite well in most cases. Because fuzzy logic 
is a technology that facilitates control system design based directly on such 
human experiences, it has been used for crane automation for almost a decade. 
The types of cranes include container cranes in harbors, steel pan cranes, 
and cranes in a manufacturing environment. Recently, a 64 ton crane that 
transports concrete modules for bridges and tunnels over a distance of 500 
yards has been automated with a fuzzy  PLC in Germany (Fig. 8.60).

The benefit was a capacity gain of about 20% due to the faster transporta­
tion and an increase in safety. Accidents were frequent, because the crane 
operators walk parallel to the crane during operation with a remote con­
troller. Before, when they had to watch the load to concentrate on the sway 
angle, they frequently stumbled over parts lying on the ground. The crane 
was commissioned in Spring 1995 and the fuzzy logic antisway controller has 
been continuously enabled by the crane operator, showing the high degree of 
acceptance by the operators. This fact is of special importance since not only 
technological feasibility but also psychological aspects are important for the 
success of an industrial automation solution (Fig. 8.61).

The real solution uses about ten inputs, two outputs, and four rule blocks 
with a total of 75 rules.

F ire Zone Control in  W aste Incineration  P lan ts

Maintaining a stable burning temperature in waste incineration plants is 
important to minimize the generation of toxic gases, such as dioxin and furan,
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Fig. 8 .6 1. A software simulation of the crane controller

as well as to avoid corrosion in the burning chambers. There are two primary 
difficulties of this temperature control process:

-  The caloric value of the waste fluctuates strongly.
-  The fire position and shape cannot be measured directly.

Because the heat generated from the burning process is used to produce elec­
trical energy, a stable incineration process is also of high commercial interest.

In recent applications at waste incineration plants in the cities of Hamburg 
and Mannheim in Germany, fuzzy logic has been successfully applied. In 
Mannheim, where two f uzzyPLCs were used to control the burning process, 
the steam generation capacity of one furnace is 28Mgh~1. Using the indus­
try standard conventional controller, steam generation fluctuated by as much 
as 10Mgh_1 in just 1 h. The fuzzy logic controller was capable of reducing 
this fluctuation to less than ±1 M gh-1 . This dramatically improved robust­
ness and also caused the NOK and SO2 emission to drop slightly, and the CO 
emission to drop to half (Fig. 8.62).

Dosing Control in W aste W ater T reatm ent P lan ts

Wastewater treatment processes are a combination of biological, chemical, 
and mechanical processes. This makes the creation of a complete mathematical 
model for their control intractable. However, there is a large amount of human 
experience that can be exploited for automated controller design. As such 
operator experience can be efficiently put to work by fuzzy logic, many plants 
already use this technique.

In a recent application in Bonn, dosing of liquid FeCl3 for phosphate 
precipitation has been successfully automated using the f uzzy  PLC. Recently
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Fig. 8.62. In a waste incineration plant, a crane continuously delivers waste from 
the bunker to the belt running through the burning zone. The exhaust gases are 
cooled and cleaned

changes in legislation require water treatment plants in Germany to limit the 
total amount of phosphate in the released water to lm g P 1. To extract the 
phosphate from the water, FeCl3 is added, which converts the phosphate into 
FePO4 that is sedimented with the sludge. Because a violation of the legal 
phosphate limit results in severe penalties, the operators tend to overdose the 
FeCl3 (Fig. 8.63).

To optimize the FeCl3 dosing, a fuzzy logic controller that uses the input 
variables phosphate concentration, its derivative, water flow, its derivative, 
and dry substance contents was designed. The output of the fuzzy logic con­
troller is the change of the set variable for the injected FeCl3. An underlying 
conventional PI type controller stabilizes the FeCl3 flow to this set point. The 
PI type controller is implemented as a function block in the fuzzy  PLC as well. 
This is an example of the combination of fuzzy logic and conventional control 
engineering techniques.

The total fuzzy logic controller uses 207 rules to express the control strat­
egy based on the five input variables of the fuzzy logic control block. The total 
implementation time was three staff months and resulted in savings of about
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Fig. 8.63. By injecting F3CI3 into the sludge, dissolved phosphate precipitates from 
the waste water

Fig. 8.64. A software simulation of a simplified precipitation controller

50% of the FeCl3 compared to the manual control before. Taking implemen­
tation time and hardware/software costs into consideration with the savings 
on FeCl3 results a return in investment time of half a year (Fig. 8.64).

Control of Tunnel Inspection Robots

The German Aerospace corporation DASA has developed a sewage pipe 
inspection system using two robot units and a support truck. The objective of 
the robots is to detect leakage in segments of the pipe by applying air pressure 
to the sealed space between the two robots. Because the vertical access shafts



can be quite far away from each other, the robots have to operate up to 400 
yards away from the truck. The robots are connected to each other and the 
truck by cables that provide air pressure, electrical energy, and control signals 
to the robots (Fig. 8.65).

When DASA developed the system, a severe control problem came up. To 
avoid entanglement of the cables that can result in the robots getting stuck 
in the pipe, cable tension must be controlled very carefully. A conventional 
approach using complex state variable controllers turned out to be too costly 
in terms of both money and design time. A control system implemented on 
two f uzzyPLCs using about 200 rules each showed very good results in a 
very short engineering time at less than 10% of the costs of a conventional 
solution.

Position ing of Presses

One area with big potential for fuzzy solutions is the control of drives. In this 
example, we discuss hydraulic axis control. One of the most complex fuzzy 
projects was done for a hydraulic press used to press laminates, printed circuit 
boards, and floor coverings. The task was the synchronized control of a 14-axis 
system. The position control of the axis, a superimposed pressure controller, 
the parallel running of the steel belt and the synchronization of all axes had 
to be solved (Fig. 8.66).

The automation system employed has a highly decentralized structure and 
consists of two large master PLCs, a number of smaller compact PLCs, a PC 
based supervisory system, and seven f uzzy  PLCs. All units are networked using 
the integrated field bus interfaces. Very important for the synchronization of 
the entire machine is the ability of the field bus network to satisfy the real 
time requirements. One typical problem involved in the control of hydraulic
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Fig. 8.65. The two robot units in the sewage pipe (right) are supplied from a 
specialized truck by cables
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Fig. 8.66. Control of hydraulic systems is difficult as many nonlinearities, such as 
the “stick-slip” effect, are involved

systems is the so-called “stick slip effect.” The transition of an axis from 
standstill to motion is highly nonlinear because of the transition from stick 
friction to slip friction. This makes designing a good controller for hydraulic 
systems difficult. In the cited application, fuzzy logic rendered a good solution 
technique, freeing system design from the burden of the theory of nonlinear 
systems synthesis. The overall design time using fuzzy logic was only a third 
of what a conventional approach had required in past applications of conven­
tional control for similar presses.

T em peratu re Control in P la stic  M olding M achines

In plastic molding machines, temperature control is crucial to achieve high and 
consistent product quality. This requires LABORIOUS tuning of the involved 
control algorithms, because the dead times involved in an extrusion machine 
are significant and there is significant coupling between the different temper­
ature zones.

To cut down the commission time for these machines, KM corporation 
has developed a self-tuning controller using the fuzzy PLC. At start up time, 
some parameters are estimated that are used to scale the nonlinear fuzzy 
controller. In contrast to conventional tuning algorithms, this controller does 
not require a cooling down of the machine to room temperature before self­
tuning can work. Even very difficult temperature zones with big dead times 
can be handled by this algorithm and the result is a very robust controller. 
This is important because the temperature properties of an empty machine 
and one filled with plastic material are extremely different. Compared to con­
ventional systems, the fuzzy logic enhanced temperature controller performs 
with a faster response time and a significantly smaller overshoot combined 
with extreme robustness (Figs. 8.67 and 8.68).
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Fig. 8.67. To achieve high product quality, keeping the temperature constant is 
critical in molding plastic

Fig. 8.68. The fuzzy logic controller in the molding machine reaches the set point 
faster and avoids overshoot

C lim ate  Control U sing Fuzzy Logic

Climate control systems reveal a high potential for energy savings. In a recent 
application at a major hospital in Europe, the integration of fuzzy logic saves 
about 25% on electrical energy, equivalent to the amount of $50,000 per year 
(Fig. 8.69).

The fuzzy logic controller outputs the set values for the coolant valve, 
the water heater valve, and the humidifier water valve. The fuzzy logic con­
trol strategy uses different temperature and humidity sensors to determine 
how to operate the air conditioning process in a way that conserves energy. 
Again, the capability of processing interdependent variables results in signif­
icant advantages over conventional solutions. For example, one knows that 
when temperature rises, relative humidity of the air decreases.
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Fig. 8 .69. An application of fuzzy logic in the A/C system of a large hospital in 
Germany saved more than 25% on energy costs

This knowledge can be exploited by implementing a fuzzy logic control 
strategy that allows the temperature controller “to tell” the humidity con­
troller that it is going to activate the heater valve. The humidity controller 
now can respond to this before it can detect it by its sensor.

W ind  E nergy C onverter Control

In recent years, technological advancements made the commercial use of 
wind energy feasible. A trend to larger plants further improved the 
cost/performance ratio. However, such large wind energy converters require 
advanced control systems both to ensure high efficiency and long life. The con­
troller sets the angle of the rotor blades based on the wind situation (pitch 
control). However, wind is not a one-dimensional figure. Strength, gustiness, 
and fluctuation of the wind angle must be evaluated to determine the optimal 
rotor blade angle (Fig. 8.70).

There is a trade-off between efficiency, safety and wear of the wind energy 
converter. If the blade angle is set to draw the maximum amount of energy 
from the wind, the risk of sudden wind gusts causing excessive mechanical 
stress on the converter increases. For these reasons, an Aerodyn wind energy 
converter was enhanced with a fuzzy system based on human experience to 
find the best compromise to this trade-off. The first implemented system is 
running in a field test and shows quite promising results. The quality of the 
controller is not only measured in constancy of the delivered power, but also in 
measures of mechanical stress on the tower, the nacelle and the rotor blades. 
The next step will be the application of the achieved results to the first 1.2 MW 
systems that are to be launched in the marketplace in 1996.

Conclusions

In all eight applications, the key to success lies in the clever combination 
of both conventional automation techniques and fuzzy logic. Fuzzy logic by
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Fig. 8.70. To maximize the efficiency of a wind energy converter, the pitch controller 
must consider many inputs

no means replaces conventional control engineering. Rather, it compliments 
conventional techniques with a highly efficient methodology to implement mul­
tivariable control strategies. Thus, the major potential for fuzzy logic lies in 
the implementation of supervisory control loops.

8.5 .6 Fuzzy K now ledge-Based System  for th e Control of a  Refuse 
Incineration  P lan t Refuse Incineration  

Introduction

A refuse incineration plant is a complex process, whose multivariable control 
problems cannot be solved conventionally by deriving an exact mathematical 
model of the process. Because of the heterogeneous composition of household 
refuses, observing the combustion chamber by a human operator partly man­
ually controlled most incineration plants. Figure 8.71 shows the diagrammatic 
layout of a refuse incineration plant.

The incoming refuse is initially stored in a bunker and then transported 
by a grapple crane into the feed hopper of the incineration plant. The refuse 
lands on the grate via the down shaft and feeder. The grate consists of two 
parallel tracks each with five under grate air zones. The optimum position of 
the fire is in the middle of the third grate zone, since at this point the refuse 
is adequately predried and thereafter there is still enough residence time in 
order to ensure complete burnout.
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Structure of a Refuse Incineration Plant

F ig .  8 .7 1 . Schematic structure of the refuse incineration plant in Hamburg 
stapelfeld

Although the crane operator attempts to homogenize the refuse by mixing, 
it is not possible to maintain a uniform feed quality. The existing automatic 
systems and control circuits have as their main objective the maintenance 
of a constant thermal output with good burnout, thereby creating the pre­
conditions for an uniformly high energy production. In order to attain this 
objective the plant operators must be highly qualified. In spite of such mea­
sures, in the majority of incineration plants it is not possible to dispense with 
manual intervention because of the extremely inhomogeneous composition 
of household refuse. During the course of manual intervention the operator 
observes the furnace and adjusts the refuse feed and the grate-operating mode 
accordingly.

While the quantities of refuse to be incinerated are steadily increasing 
the environmental laws are becoming ever more restrictive. Recent insights 
on the toxicity of chlorinated organic pollutant emissions have also dictated 
a change in the objectives of refuse incineration; together with the ideal of 
constant combustion output it is becoming ever more urgent to optimize the 
process in ecological terms, i.e., to ensure the largest possible reduction in 
volume while minimizing emissions.
During combustion a control system must therefore maintain the following 
conditions:

1. Control of the O2 concentration in the flue gas to keep it at a constant 
figure.

2. Maintanance of a uniform thermal output.
3. Maintanance of optimum flow conditions in the furnace and the first boiler 

pass with as little variation as possible so that the desired conditions for 
attaining the lowest possible

4. Degree of emissions and thus preventing corrosion are always maintained.

These conditions can only be fulfilled by optimized combustion at a stable 
operation point. Conventional control systems are incapable of reacting to
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Fig. 8.72. Covered observation area of the IR-camera

the inevitable local and intermittent in homogeneities of the refuse fed to the 
grate, which are attributable to varying calorific values and ignition properties. 
It is as a result impossible to avoid pronounced variations in the combustion 
process and such variations are always associated with unfavorable emission 
figures.

The most important control variable at the plant is the steaming capacity. 
The primary air admitted to the various under grate air compartments 
mainly affects this. Disturbances here occur as a result of the inhomoge- 
neous composition at localized points. The primary air distribution must 
therefore be continually matched to the requirements of the individual grate 
zones. Since O2 content in the flue gas must be maintained at a constant 
figure the secondary and primary air are controlled in counterbalance to each 
other.

Between the feeder and the combustion zone there is always a quantity of 
uncombusted refuse whose amount varies in accordance with the feed quality. 
As a result of this storage effect there is no direct connection between feeder 
movement and the position of the fire on the grate. The position can only 
be registered by visual observation by the plant operators or video picture 
evaluation.

A possible method of automating this process is the registration of com­
bustion by infrared thermograph. This offers the immediate advantage that 
the plant operator is in a position to observe combustion directly from the 
control room. Because of the geometry of the furnace in the plant under con­
sideration the area, which must be observed, lies mainly in grate zone 3, but 
also to some extent in zones 2 and 4, which cannot be so completely observed 
(Fig. 8.72).

This is however more than adequate in order to determine the position 
of the fire. Additionally it is possible, by statistical evaluation of the infrared 
picture, to determine the width of the combustion zone and derive from this in­
formation on asymmetric positions of the fire or secondary combustion zones.

Even if all the information given above is available it is still necessary to 
development an adequate mathematical model that will allow the information
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to be applied to a conventional control system. However combustion processes 
as a rule are of a highly nonlinear nature and represent multivariant problems. 
For conventional control system strategies the only feasible method is therefore 
to influence controllers by heuristic programing.

New solutions to problems of that kind are offered by the use of advanced 
control techniques. In particular fuzzy logic control has been applied to similar 
combustion processes. Complex interactions between the various items of in­
formation evaluated require a methodology of structured information analysis.

M ethods for th e D evelopment of Control System s

Conventional technologies of process automation require a lot human re­
sources: beside the setup of hardware and interfaces, operator’s control knowl­
edge must be acquired as well as control engineer’s experience, and software 
specialists have to be called for the implementation. This presupposes that all 
these specialists communicate with each other searching for a way to trans­
late the control strategy into the code of a programing language. For this, 
human ideas, concepts and causalities often must be expressed on a techni­
cal level. Fuzzy logic, uses linguistic variables with membership functions in 
if-then-rules, is an approved methodology to implement that kind of linguistic 
knowledge.

State-of-the-art in fuzzy logic control applications is the simple calculus of 
“fuzzy-if-then-rules” which predominantly use MIN/MAX operators. While 
fuzzy control algorithm using this simple calculations have successfully been 
applied in a variety of control problems, these approaches are only a rough 
approximation of the linguistic meaning they have to represent.

This can be prevented by using fuzzy operators representing linguistic con­
junctions like “and” and “or” and by considering rules themselves as “fuzzy.” 
Different advanced inference procedures were proposed by Zadeh known as 
the “compositional rule of inference,” Kosko using so-called Fuzzy Associative 
Maps (FAMs) and others. These concepts allow a “degree of support” (DoS) 
(also called “degree of plausibility”) to be associated with any rule. Zadehs 
concept enables a very fine tuning of the rules but involves a large computa­
tional effort that forbids its usage in most real-time systems. In order to that, 
Koskos FAMs only require a small computational effort but only introduce a 
“weight” factor to each rule.

For both computational efficiency and appropriateness, a combination of 
these methods was found: the degree to which every rule fires is determined 
by aggregating the degree to which the premise is fulfilled with its DoS. Of 
course, this operation can be computed using a fuzzy operator. Applying the 
product operator for this item, the DoS can be interpreted as a “weight” 
for every rule. This method is rather simple to use: first, define degrees of 
support of only either zero or one. Second, for fine-tuning, use values between 
0 and 1.



For larger systems handling 50 fuzzy rules and more, rule based systems 
are no longer lucid and easy to comprehend, if rules are represented in a simple 
list. Additional structural features enabling for example the classification of 
rules in rule blocks coming with appropriate rule representations must be 
used.

The choice of appropriate methods for the knowledge representation is due 
to the fact that appropriate software tools for the development of control sys­
tems are available. Although fuzzy control systems are sometimes programed 
in a conventional programing language, for complex application, it is neces­
sary to use a tool, which prevents repeated programing fuzzy methods like 
inference strategies or defuzzification methods.

For the definition of a fuzzy control strategy, a variety of software tools 
based on the concept of compiling/precompiling, which already exist in the 
market, can be used. Although this concept works well for the development of 
conventional software, it has several inherent drawbacks for the construction 
of fuzzy control systems.

This work investigates which advanced methods render the application of 
fuzzy control in complex problems possible and how fuzzy controllers may be 
built more efficiently. The results of this theoretical work have already been 
implemented in a professional fuzzy logic development system.

First one has to define an initial control strategy as a prototype. Containing 
the complete structure of the desired system, the prototype is representing all 
items of the control strategy. For the given process, the prototype was set up 
with 18 linguistic variables used in 70 fuzzy rules, with nine rule blocks. The 
control strategy is compiled and linked to the process or its simulation for 
testing.

Im provem ent of the Control System

If at first the controller does not work perfectly -  which happens often -  the 
control strategy must be revised. For the revision, existing debuggers are 
clearly inappropriate since they either work on the compiled code or do not 
work in real-time. Additionally, when a fuzzy control strategy is being designed 
for a continuous process or its simulation, trying small definition changes 
and then analyzing the subsequent reaction of the control loop do optimiza­
tion. To recompile the controller, and thereby interrupting the continuity of 
the process, a small change is always made, development time is increased 
considerably.

For these reasons, online-technology has to be used for further optimiza­
tion. With this tool, a fuzzy logic control strategy can be graphically visualized 
while the fuzzy system is actually controlling the process in real-time. This 
enables the engineer to understand the dynamic behavior of both the con­
troller and the process.

In the optimization step, one often wants to try out little modifications to 
the rule strategy or the membership functions to subsequently increase system
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performance. If a code generating approach such as a fuzzy-precompiler is 
used, whenever a change is done, the controller has to be put offline and the 
controller to be recompiled. In addition to being very inefficient, this approach 
has got another drawback: a continuous process is always put back to manual 
control out of its operating point by the recompilation. Hence, the engineer 
can no longer visualize the effect of the control strategy modification. This 
makes efficient optimization next to impossible. The incineration plant is a 
perfect example for such an application.

Once the system is readily optimized, a precompiler or compiler can be 
used for a code-optimized implementation of the final system on the controller 
hardware. The development approach for complex fuzzy logic control systems 
must cover the following steps:
Des i gn :  Def ini t ion:  the system design contains the definitions of linguistic 
variables, fuzzy operators, the fuzzy rule base and the defuzzification method. 
Graphical design tools should support this. The step results in a first prototype 
of the controller.
Off l ine opt imiza t i on:  to check the controller’s static performance, one can 
either test the controller interactively by applying input values and analyzing 
the information flow in the system or one can simulate the controller’s per­
formance on pre-recorded process data or a mathematical model of the plant, 
if available.

For all debugging, simulation and analyzing steps, a software implemen­
tation of the controller is necessary. Graphical analyzing tools and debug 
features connected to graphical design tool ease the error detection and opti­
mization. This step ends with a refined prototype.
Onl ine  opt imiza t i on:  The refined prototype is now optimized on the running 
process. To allow for online development, the workstation/PC running the 
development tool must be connected to the process controller hardware by 
just a serial cable. This step establishes the final optimized system ready for 
implementation.
Imp l em en t a t i o n :  The optimized system is code-optimized for the final sys­
tem. Highly optimizing precompiler and compiler specialized for the applied 
hardware can be used. Result is a controller software, code size and runtime 
optimized.

A New S tru c tu re  for the Control System

The application of advanced fuzzy logic development techniques has led to a 
new structure for the desired control system. The system is divided into three 
stages in each of which a short-term and a long-term strategy is operated. The 
first stage corresponds to a steaming capacity control circuit, subdivided into:

-  A short-term control cycle for the steaming capacity and
-  A long-term control cycle influencing the O2 concentration in the flue gas
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-  The set value for the long-term control system is calculated from a com­
bination of the O2 content together with the information obtained from 
the short-term control system on system behavior

The second stage controls the throughput of refuse and here:

-  The grate movement is responsible for the short-term control of the posi­
tion of the fire on the grate and

-  The feeder is utilized for the long-term adjustment of the amount of refuse 
fed to the grate

-  Characteristic parameters from the IR thermography are utilized to 
determine the position of the fire on the grate at any given time.

The third stage, which serves to optimize combustion, additional information 
from IR-thermography is employed. The optimization consists of the following 
steps:

-  Control of the primary air for the various undergrate air zones.
-  Control of the length of the fire by governing the feed velocity in the 

individual grate zones.

The utilization of fuzzy logic permits the integration of many disparate 
items of information. Besides directly measurable parameters such as, for 
example, the steaming capacity, various identifying parameters for the position 
of the fire and its lenghtare utilized which can be obtained from the IR 
thermography data.

The result is a hybrid system in which conventional calculation mthods 
are combined with the methods of fuzzy logic. This permits the uncertainties 
which ineevitably occur to be taken into account in an appropriate way. 
In order to model the control strategy from existing experts knowledge the 
individual components of the structure indicated were implemented using lin­
guistic variables and fuzzy logic rules.

The graphic development tool fuzzy  TECH was employed to implement this 
control concept. Figure 8.73 shows a section of the main worksheet in which 
the firing capacity control system is depicted. The symbols here represent 
rule blocks and interfaces. Each rule block stands for a set of fuzzy rules and 
the interfaces represent the data transfer to the upstream or down-stream 
mathematical operations.

Conclusion

This optimized fire capacity control system fundamentally ensures a more even 
combustion pattern. As a result it is possible to reduce the CO content in the 
flue gas and improve the burnout parameters while simultaneously reducing 
emissions and in particular the chlorinated organic pollutants therein.
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Fig. 8.73. Part of the structure of the fuzzy project: “power control”

8.5 .7 A pp lication  of Fuzzy Control for O ptim al O peration 
of Com plex C h illing  System s

Introduction

The optimization potentials for the operation of chilling systems within the 
building supervisory control systems are limited to abilities of PLC functions 
with their binary logic. Little information about thermal behavior of the build­
ing and the chilling system is considered by operation of chilling systems with 
PLC-solutions. The aim of this project introduced in this paper is to replace 
inefficient PLC-solutions for the operation of chilling system by a fuzzy con­
trol system. The focus of the optimization strategy realized by fuzzy control 
is to ensure an optimal operation of a chilling system. Optimal operation 
means:

-  Reducing operation time and operation costs of the system,
-  Reducing cooling energy generation and consumption costs.

Further requirement on the optimization strategy is providing a user net 
chill water supply temperature with a set point error as little as possible. 
This feature of the chilling system is important, in order to ensure research 
and working conditions in the building. Analysis of the online thermal behav­
ior of the building and the chilling system is necessary, in order to find the 
current efficient cooling potentials and methods during the operation. The 
thermal analysis also focuses the measurement of important physical values 
of the system as input variables for different fuzzy controllers, since no expert 
knowledge exists for optimally operation of the system. This realized fuzzy



control system would open new application fields for fuzzy technology within 
the building automation engineering.

The designed fuzzy controllers are software solutions, in order to use the 
existing building supervisory control system with its interface units, connected 
to the chilling system. Three different fuzzy controllers have been developed 
with a total rule number of just 70. Comparison of the system behavior before 
and after the implementation of fuzzy control system proved the benefits of 
the fuzzy logic based operation system realized here.

D escription of the C h illing  System

The chilling system described here supplies chill water to the air conditioning 
systems (AC-systems) installed in the Max Plank Institute for Radio astron­
omy in Bonn. The AC-systems ensure the research conditions by supplying 
conditioned air to the building. The amount of cooling power for the build­
ing is the sum of internal cooling load (produced by occupants, equipment 
and computers) and the external cooling load, which depends on out door 
air temperature (Tout) and sun radiation through the windows. The cooling 
machines installed here, uses the compression cooling method. The principle 
of a compression cooling machine can be described in two thermodynamically 
processes.

In the first step of the cooling process, the heat energy will be transferred 
from the system to the heat exchanger (evaporator) of the cooling machine, 
and therefore the liquid gas will evaporate by absorbing the heating energy. 
After the compression of the heated gas, in the second part of the process, 
the gas condenses again by cooling the gas through the air-cooling system. 
In that step of the process, the heat transfer is from the condensation system 
to the out door air space. The process is continuous, and based on the second 
law of the thermodynamics.

Figure 8.74 presents the chilling system as a schematic diagram. The 
whole system consists of the following components:

-  three compression-cooling machines
-  three air cooling systems and
-  two cooling load storage systems

During the operation of the cooling machines, the air cooling systems will 
be used, in order to transfer the condensation energy of the cooling machine 
to the out door air space. If the out door air temperature is much lower than 
user net return temperature on heat exchanger one, the air cooling system 
should serve as a free cooling system and replace the cooling machine. The 
additional cooling load storage systems are installed in order to fulfill the 
following requirements: firstly to load cooling energy during the night time, 
and therefore reduce the cost of electrical power consumption (by using cheap 
night tariff for electrical power), and secondly supplying cooling energy during
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Fig. 8.74. Schematic diagram as a part of the chilling system with simplified 
instrumentation

the operation time, if a maximum cooling energy is needed and cannot be pro­
vided by existing cooling machines. In both cases the cooling storage system 
does not reduce energy consumption, but the cost of energy production and 
consumption.

S ta te  of the Control E ngineering for O peration of C h illing System s

The heart of a building energy management system is the Building Supervi­
sory Control System, which consists of a hierarchically organised, function ori­
entated control system having separate intelligent automation units. A clearly 
defined division of functions by hierarchical levels with extensive communi­
cation horizontally and vertically across all levels is an essential aspect of 
perfect operational efficiency. The building supervisory control system with 
its “distributed intelligence” is configured into four hierarchical information- 
processing levels, as shown in Fig. 8.75.

Sup erv iso ry Level for Im plem entation  of the Fuzzy Control System

The initial function of this Level is to analyze the operating status of the 
systems. The main function of this level is to Control, monitor and log the 
processes within the Building as a whole but serves also for configuring of 
the automation units at the automation level. The supervisory control level 
has access to all physical data points of the chilling system. The fuzzy control 
system for optimization strategy realized here is a software solution and is 
implemented into the supervisory control system. The designed software Fuzzy 
control has to be translated into a system orientated mathematical, and logical
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Fig. 8.75. Distributed intelligence building supervisory systems with implemented 
fuzzy controller

programming language (GPL). All the operation instruction formulated in 
the supervisory level will be transferred to the chilling system through the 
automation level as shown in Fig. 8.75.

A utom ation  Level for the O peration of the C h illing  System

The automation level houses the distributed intelligence for mathematically 
and physically based operation functions as multicontrollers. The purpose 
of the D3-C (Distributed Direct Digital Control) systems is to monitor and 
control the most important status and processes within the building. The 
D3-C system, which also provides PLC functions, allows a logical link to be 
set up in the form of time or status elements, in order to guarantee optimum 
performance. The control strategy for the inner control loops of the chilling 
system has been realized on this level. Therefore the supervisory level sends 
the set points and the start/stop instructions as result of fuzzy controllers for 
each unit of the system to this level.

Fuzzy Control System

The aim of the fuzzy control system which has to be developed, and imple­
mented into the existing building supervisory system as shown in Fig. 8.75 is 
to run the chilling system in such a way that the following requirements for
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the operation of the system will be fulfilled: regarding the cooling potential 
of the out door air, the air cooling system should serve as a cooling power 
generator as long as possible. The free cooling system (FC system) should 
run before the cooling load storage system (CLS-system), and cooling ma­
chines. This has to be considered by the fuzzy controller for the operation 
of cooling machines. The CLS-system should run during the daytime before 
any cooling machine, if the cooling load of the building is expected to be 
low.

Optimization strategy for the discharge of CLS-system will ensure that 
there will not be a peak in the electrical power consumption, and reduce 
the cost of electrical power consumption, by keeping of low price tariffs for 
electrical power. The cooling machines should run at their lowest possible 
level. The fuzzy control system must ensure supply of the needed cooling 
power during the operation time of the building by lowest cost and shortest 
system operation time with a low range of set point error for the supply 
temperature.

A concept of knowledge engineering by measuring and analyzing of system 
behavior is necessary, since no expert knowledge exists for the formulate of 
the fuzzy rules. Measuring of two physical values of the system is necessary, in 
order to consider system behavior for an online optimization strategy. These 
process values are: the out door air temperature Tout, which partially presents 
the thermal behavior of the building, and the user net return temperature 
(Trun), which contains the total cooling load alternation of the building. 
These requirements focus on three different fuzzy controllers for the different 
components of the chilling system as shown in Fig. 8.76.

Conclusions

An optimization strategy for the operation of a complex chilling system is 
realized by Fuzzy control system, and implemented into an existing building 
automation system. The focus of the optimization strategy by fuzzy control 
is to ensure an optimal operation of a chilling system. Optimal operation 
means: reducing operation time and operation costs of the system, reducing 
cooling energy generation, and consumption costs. Few rules for each con­
troller were necessary, in order to have the fine-tuning of the fuzzy control 
system. Three fuzzy controllers were necessary in order to reach maximum 
efficiency by operation of different components of the chilling system. This 
realized fuzzy control system is able to forecast the maximum cooling power 
of the building, but also to determine the cooling potential of the out door 
air. The operation of systems by fuzzy control enormously reduced the cost 
of cooling power.
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Fig. 8.76. Combination of three fuzzy controllers for the operation of the chilling 
system

8.5.8 Fuzzy Logic Control of an  In d ustria l Indexing M otion 
A pp lication  

Introduction

The use of closed loop control systems in factory automation continues to 
increase as manufacturing tolerances tightens and consumers are demand­
ing ever-higher quality products. Closed loop systems, by their very nature, 
provide tighter control and increased robustness compared to open loop sys­
tems. However, most industrial closed loop control algorithms used in today’s
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factories are based on the traditional proportional-integral-derivative, or PID, 
controller. The PID controller has provided adequate control for years dating 
back to the 1920s, but does have some weaknesses that make it vulnerable in 
the face of ever more demanding factory automation applications.

Background

Most PID controllers used in industry are tuned by a trial and error method. 
Even if a more systematic design based on classical control theory is used, it 
is still limited by the assumption that the plant is linear, or at least a plant 
that operates in a linear region, and its dynamics do not change over time. 
When nonlinear effects arise in the system to be controlled, the PID con­
troller may have difficulty controlling it. This nonlinearity includes friction, 
saturation, backlash, hysteresis, etc. Ultimately, all physical systems will dis­
play nonlinear, time-varying behavior as inputs grow unbounded and as the 
systems are operated over extended periods of time. The PID controller may 
have difficulty controlling these types of plants whereas a more robust type of 
controller will provide better performance. One such type of control is fuzzy 
logic control.

Fuzzy logic control is an intelligent control technique that uses human 
expert knowledge of the system to be controlled and incorporates it into a 
series of control rules. It is, however, more than just a series of if-then rules 
that operate on variables belonging to sets described by binary logic. These 
rules operate on variables that will have varying degrees of membership in 
fuzzy, or multivalued, sets depending upon the operating region of the system. 
This method of control mimics that of human reasoning. We investigate the 
increased servo motor controller robustness potential through the use of fuzzy 
logic control for a particular industrial indexing operation.

Problem  D escription

The hardware setup of an electric servomotor that feeds paper to a specific 
length in a manufacturing process is illustrated in Fig. 8.77. Its exact duplicate 
was built in the laboratory for this investigation. The paper is cut and used 
as a component in a consumer product. Repeatable and accurate feed length 
is critical as it affects the quality of the final product. The motor is directly 
coupled to a knurled drive roller via a flexible coupling. The flexible coupling 
allows for any slight misalignment between the motor shaft and the drive 
roller. It provides radial flexibility while minimizing torsional flexibility. A 
second roller, namely the tension roller, provides the friction that pulls the 
paper between the two rollers. Tension adjustment is provided via a tensioning 
screw above the tension roller.

The present method of controlling this feed-to-length servo application 
is by commercially available controller, motor drive and servomotor. This 
configuration is illustrated in Fig. 8.78. The controller uses PD position control
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Fig. 8.77. Paper feed system
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Fig. 8.78. Control system configuration

based upon a quadrature incremental encoder feedback signal. The motor 
drive also has its own inner velocity control loop that provides additional 
stability.

The present PD control provides adequate performance and can meet the 
present manufacturing specifications. The motivation behind this research is 
to find an improved method of control. Why attempt to improve upon an 
adequate control solution? There are several reasons.

There is a need to retune the present PD controller whenever a plant 
parameter changes. This can be as small as a change in paper thickness or it 
could be a parameter that slowly changes with time such as bearing friction. 
If a more robust means of control is used, it may require less tuning of the 
controller in the field. This then provides improved standardization of iden­
tical machines in the field because all machines will use similar or identical 
controller parameters.

This type of mechanical configuration (motor coupled to load via a flexible 
coupling) is very common. There are plants with this configuration that are 
very likely poorly controlled by PID control and that could benefit from this 
even more than the present plant.
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Fuzzy Logic Position Loop Design

In designing an FLC for servo motor position control, several key items must 
be clearly defined. First of all, as in the design of any control system, the 
performance specifications must be specified. These may include:

-  Time response
-  Stability and robustness
-  Disturbance rejection

Once these are established, the FLC design proceeds with the assignment of:

-  A universe of discourse for each input and output variable
-  Linguistic labels for the variables and their values
-  Membership functions for each variable
-  Rule base
-  The method for combining membership functions from different universes 

of discourse
-  The implication method
-  The aggregation method
-  The defuzzification method

Simulation and tuning then follow to complete the design.

P e r f o r m a n c e  Spe c i f i c a t ion s

The performance requirements of the paper feed system are:

1. Feed length: 0.680" + 0.010"
2. Feed time: 98 ms
3. Overshoot: <0.007"

These machine performance requirements translate into closed loop servo con­
trol requirements:

1. Feed length: 866 servomotor encoder counts ±12 counts
2. Settling time: 98 ms
3. Resolution: 0.000785 in per count
4. Percent overshoot: <8 encoder counts
5. Disturbance rejection: in this system, frictional torque can be considered 

a low frequency disturbance

Obviously, it is desirable to attenuate any low frequency disturbance but some 
friction may actually help dampen this system.

High Frequency attenuation: The actual plant is known to have a resonant 
dip at 700 rad s_1 and a resonant peak at 1,000 rad s_1. These frequencies and 
higher must be attenuated to ensure the magnitude does not approach and 
climb above the 0 dB line.
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S tru c tu re  of the Fuzzy Logic Position Loop

Many servo motion control applications do not fully utilize all three parame­
ters of the PID controller. Instead, only the proportional and derivative gains 
are used. Proportional gain adjustments vary the bandwidth to meet the set­
tling time specification. Derivative gain adjustments vary the system response 
to meet overshoot requirements. Increasing derivative gain will reduce the con­
trol signal magnitude when the error rate is high, thereby reducing or elimi­
nating overshoot. Integral gain is normally only used to reduce steady state 
error caused by friction, gravity, etc. However, the misapplication of integral 
gain can cause stability problems.

Likewise, when designing an FLC, we begin by looking at the error signal 
and the rate of change of the error. With these two pieces of information, we 
can determine the state of the system and hopefully control it. Therefore, the 
FLC designed here will be a two input one output controller; the inputs being 
the error and error rate and the output being the control signal to the plant.

The FLC in this section is positioned as shown in Fig. 8.79, directly where 
a PD controller would be positioned in the control loop. This configuration 
is the most straightforward and allows a direct comparison between the FLC 
and PD controllers.

Note in Fig. 8.79 that the second input, y, is the discrete time approxima­
tion of the rate of change of the inverted output signal. y  is used instead of 
the time derivative of the error because the error can change instantaneously 
with a step input. This instantaneous change produces an impulse in the error 
rate, which adversely affects the FLC performance. The output, however, can­
not change instantaneously and is therefore used as one of the FLC inputs. 
However, with a continuously differentiable error signal, the error rate should 
be used instead.

Position
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Command + Error
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Scaling

. e

FLC Plant

Motor
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Position
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F ig . 8 .7 9 . FLC control configuration
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T able 8.8. Membership parameters

e, Ay, u -  Triangular membership functions
г e — ai 

&2 —a1 ifai Л e  Л a2 and ai  — a2

(e) —
ai —e if a2 Л e  Л a3 and a3 — a2

1 if ai — a2 — a3
0 Otherwise

e Ay u
Linguistic
variable

ai a 2 a3 ai a2 a3 a i a2 a3

NX - - - — TO —1.10 —1.00 - - -
NL — TO —1.00 —0.40 —1.10 —1.00 —0.70 —1.30 —1.00 —0.70
NM -0.85 — 0.33 —0.15 —0.80 —0.60 —0.25 —0.90 —0.60 —0.30
NS — 0.40 —0.12 —0.15 —0.30 —0.17 0.00 —375 —175 0.00
ZE — 0.07 0.00 0.07 —0.10 0.00 0.10 —0.225 0.00 0.225
PS 0.015 0.12 0.40 0.00 0.17 0.30 0.00 0.175 0.375
PM 0.15 0.33 0.85 0.25 0.60 0.80 0.30 0.60 0.90
PL 0.40 1.00 TO 0.70 1.00 1.10 0.70 1.00 1.30
PX - - - 1.00 1.10 TO - - -

Se ttin g  Up the Fuzzy Logic Controller

There are three essential ingredients in a FLC: fuzzification, rule base, and 
defuzzification. Fuzzification is accomplished through the definition of the 
fuzzy membership functions, shown in Table 8 .8 . Here, the numerical values 
of e  and y  are translated to symbolic ones, such as positive medium (PM) 
or negative large (NL) etc. with an associated grade. This grade is defined 
by using the triangular membership functions. These triangular membership 
functions for e , y, and u  are defined as:
e  = (ai a2 a3) G R3, with a i < a2 < a3. The value of a2 is the center of e  
where the linguistic label has its maximum membership grade of one, that is 
He(a2) = 1, a3, and a 1 are the other two defining membership function points 
that lie to the left and right of a2. These membership functions are fully 
described by the equation at the top of Table 8 .8 . The membership functions 
for y and u  are defined in the same manner. The final parameters for each of 
the membership functions are based on the fine-tuning of the controller.

Once the input signals are converted to symbolic variable through fuzzifi­
cation, they are ready to be processed by using an English-like rule base, con­
sisting of if-then statements. Generating the rules for a fuzzy inference system 
is often the most difficult step in the design process. It usually requires some 
expert knowledge of the plant dynamics. This knowledge could be in the form 
of an intuitive understanding gained from an operator who has experience 
manually controlling it. Or, it could come from a plant model, which is then 
used in a computer simulation. This latter method was used in this study. 
The rule base for the FLC proposed in this study is listed in Table 8.9. These 
rules follow from an initial rule base that was modified in the tuning process
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Table 8.9. Rule base
Output rate

N X N L NM NS Z E PS PM PL PX
N L N L
NM N L NM LN NM NS ZE

rorro
NS NM N L NS PS
ZE N L NS ZE* PS PL

w PS NS PS PL PM
PM Z E PS PM P L PM PL
PL PL

♦Weighted 0.1 o f other rules

in order to achieve the desired control and robustness. Multiple simulations 
were run to arrive at these final rules. The total number of rules in this FLC 
is 39 out of a possible 63.

The final step in FLC is to compute the numerical value of the controller 
output based the outcomes rule inference. Using the common centroid method, 
also known as the center of gravity (CoG) method, does this.

FLC Tuning

Tuning an FLC may seem at first to be a daunting task. There are many 
parameters that can be adjusted. These include the rules, membership func­
tions and any other gains within the control system. The approach used here 
is to reduce the fine-tuning effort to the adjustment of two gains; the output 
gain and the ou tpu t  rate  gain.

As shown in Fig. 8.79, the output gain adjusts the control signal, u(t), and 
the output rate gain adjusts the magnitude of the output rate signal, y(k). 
One method of tuning is, the error signal, e, will always be automatically 
normalized based on the present reference signal magnitude and no further 
adjustment of this gain is allowed nor needed. The output gain is in some 
ways analogous to the proportional gain in a PD controller and the output 
rate gain is analogous to the derivative gain. This analogy breaks down when 
the FLC is grossly mistuned. Adjustment of the output gain changes the 
system bandwidth and adjustment of the output rate gain will change the 
overshoot characteristics.
The overall FLC tuning process is as follows:

-  Gross adjustment of the system is done by iteratively adjusting rules, 
membership functions, the output gain and the output rate gain. Rule 
optimization is accomplished through computer simulation on a trial and 
error basis. If there is inadequate knowledge represented in the rule base 
to properly control the plant, additional membership functions and rules 
must be added to the FLC.
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-  Once gross tuning is accomplished, the FLC is finely tuned. This involves 
slight adjustments of individual membership functions and the output and 
output rate gains.

To better understand the tuning process requires an understanding of how 
membership function parameters affect the system response. The reason this 
is important is because the adjustment of the output gain and the output rate 
gain are actually an adjustment of the control signal’s membership functions 
and the output rate’s membership functions.

Let us begin with the output gain. Increasing the output gain effectively 
stretches the control signal membership functions in proportion to the output 
gain. As the membership functions widen and move away from the origin, 
it makes the meaning of their associated linguistics quantify larger numbers. 
Imagine the control signal membership functions moving away from the origin 
and widening. The effect will be that for a constant value generated in the 
antecedent, the consequent becomes larger. The opposite is true when the out­
put gain is decreased. Keep in mind that increasing or decreasing the output 
gain is not actually stretching or contracting the membership functions. The 
change in gain merely has the same effect as if the gain was left unchanged 
and the membership functions were changed.

Moving or changing the width of individual control signal membership 
functions will have a similar effect. The membership function whose position 
or width has changed relative to its adjacent membership functions will have 
a greater or lesser effect on the control signal. A simple example is the ZE 
control signal membership function used in this study. As this membership 
function is widened relative to its adjacent membership functions, it will move 
the COG closer to zero during defuzzification. This then has the effect of 
reducing the control signal gain when both the error and output rate are 
small. Narrowing the ZE membership function will move the COG further 
away from zero and therefore increase the gain when both the error and error 
rate are small.

Changing the output rate gain has the effect of stretching or contracting 
the output rate membership functions. This is similar to the effect the output 
gain has on the control signal membership functions. However, there is one 
major distinction. The output rate membership functions are scaled inversely 
proportional to the output rate gain. As the gain is increased, the member­
ship functions effectively narrow and move closer to the origin hence making 
the meaning of their associated linguistics quantify greater numbers during 
input fuzzification. In this study, increasing the output rate gain will slow and 
dampen the system response. The opposite is true when the output rate gain 
is decreased.
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R em arks

There are some essential points to keep in mind when designing an FLC:

-  Thoroughly study the physical problem at hand before beginning FLC 
design.

-  Initially, keep it simple. Start with the minimum number of inputs, out­
puts and membership functions (perhaps five or less). This will hopefully 
keep the maximum number of rules manageable.

-  Initially, use triangular (or similarly simple) membership functions and 
space them uniformly over the universe of discourse. Always normalize 
the universe of discourse between minus one and one or zero and one.

-  Initially, add rules to the rule base such that they monotonically increase 
or decrease across rows and down columns (i.e., avoid rows and columns 
such as NL, NM, NS, NM, ZE).

-  Initially, scale the input and output signals to determine their effect on 
the overall response. Perhaps this will suffice in designing and tuning the 
FLC. If the response is poor and does not meet specifications, then modify 
the rules. Modify membership functions only for fine-tuning when output 
gain and output rate gain adjustment is inadequate.

-  Keep in mind that it will be relatively straightforward to design an FLC 
for a plant for which the designer understands the nominal conditions. The 
challenge and difficulty is designing a robust FLC that is relatively insensi­
tive to changing plant parameters encountered in the factory environment. 
In this case, membership function positions may need to be dramatically 
changed. Also, the rules may need modification such that they do not nec­
essarily monotonically increase or decrease across rows and down columns.

-  Designing an FLC, as with most controller designs, is an iterative process 
that may require many cycles before specifications are met. Fewer cycles 
should be needed on subsequent designs as the designer gains experience.

Conclusions

An FLC has been developed to control the position of a servomotor in an 
industrial indexing application. The FLC’s performance can be compared to a 
PD position controller. This can be done by software and hardware prototype 
demonstrations that disturbances and parameter variations have less effect on 
the performance of the FLC than the PD controller. These parameters include 
step size, load inertia, friction and input disturbances. There is, however, 
a tradeoff between the robust performance of FLC and the complexity of 
the controller and control design. The decision on whether to adopt an FLC 
method will have to be made based on the improvement/cost ratio for each 
application.
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8.6 Fuzzy Logic in Automotive Applications

8.6.1 Fuzzy A ntilock B rake System  

Introduction

In recent years fuzzy logic control techniques have been applied to a wide 
range of systems. Many electronic control systems in the automotive industry 
such as automatic transmissions, engine control and Antilock Brake Systems 
(ABS) are currently being used. These electronically controlled automotive 
systems realize superior characteristics through the use of fuzzy logic based 
control rather than traditional control algorithms.

ABS is implemented in automobiles to ensure optimal vehicle control and 
minimal stopping distances during hard or emergency braking. The number 
of cars equipped with ABS has been increasing continuously in the last few 
years. ABS is now accepted as an essential contribution to vehicle safety. 
The methods of control utilized by ABS are responsible for system perfor­
mance.

Intel Corporation is the leading supplier of microcontrollers for ABS and 
enjoys a technology agreement with Inform Software Corporation the lead­
ing supplier of fuzzy logic tools and systems. The combination of Intel ABS 
architecture and fuzzy logic is a result of long-term investment and exploration 
of new technologies and ideas. The increasing automotive customer awareness 
of ABS has greatly increased the demand for this technology. Improving ABS 
capability is a mutual goal of automotive manufacturers and Intel Corpora­
tion. The growing interest in the automotive community to implement fuzzy 
logic control in automotive systems has produced several major automotive 
product introductions.

Fuzzy Logic Overview

Formal control logic is based in the teachings of Aristotle, where an element 
either is or is not a member of a particular set. Since many of the objects 
encountered in the real world do not fall into precisely defined membership 
criteria, some experimentation was inevitable. Zadeh was one of those who 
investigated alternative forms of data classification. The result of this investi­
gation was the introduction of fuzzy sets and fuzzy theory at the University of 
California Berkeley in 1965. Fuzzy logic, a more generalized data set, allows 
for a “class” with continuous membership gradations. This form of classifica­
tion with degrees of membership offers a much wider scope of applicability, 
especially in control applications.

Although fuzzy logic is rigorously structured in mathematics, one advan­
tage is the ability to describe systems linguistically through rule statements. 
One such control rule statement for an air conditioning unit might be:

“If temperature is Hot and Time of Day is Noon then air conditioning 
equals very high.”
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Several rules, similar to the example, could be used to describe a system 
and controlled response. The parameters of Hot, Time and Very High are 
defined by membership functions. As linguistic descriptions of a system are 
much easier to produce than complex mathematical models, fuzzy logic has 
great appeal for controlling complex systems as changes in the system have 
little if any effect upon the algorithm.

Fuzzy ABS would require more complex control constructs than simple 
“if-then” rules. In this type of control system, input variables map directly 
to output variables. This simple mapping does not provide enough flexibility 
to encode a complex system such as an ABS system. However, more complex 
techniques are available which can be applied to fuzzy logic systems. For 
example, it is possible to build a control with intermediate fuzzy variables, 
or systems, which have memory. With these constructs, it is possible to build 
rules such as...

“If the rear wheels are turning slowly and a short time ago the vehicle 
speed was high, then reduce rear brake pressure.”

Such rules lend themselves to development of an ABS braking system 
based on fuzzy logic. The output of a fuzzy logic system is determined in 
one of several ways. The COG technique will be discussed in this paragraph. 
Once all rules are evaluated, their outputs are combined in order to provide 
a single value that will be defuzzified. This output calculation is performed 
as follows. The control rule output value is multiplied by its position along 
the X -axis, yielding position times weight for the rule. This calculation is 
repeated for all control rules. These position/weight products are combined 
to form the sum of products. This sum of the products is divided by the sum 
of output values to determine the COG output along the X -axis. COG is the 
final system output in a control algorithm.

Fuzzy ABS

ABS systems were introduced to the commercial vehicle market in the early 
1970s to improve vehicle braking irrespective of road and weather conditions. 
However, due to the technical difficulties and high cost of early systems, ABS 
was not recognized by automakers as an advantage until the mid-1980s. The 
ABS market has rapidly grown and is forecast to be $5 billion yearly by 1995 
and $10 billion or more by the year 2000. Experts predict that 35-50% of all 
cars built worldwide in 5 years will have ABS as standard equipment.

Electronic control units (ECUs), wheel speed sensors, and brake modula­
tors are major components of an ABS module. Wheel speed sensors transmit 
pulses to the ECU with a frequency proportional to wheel speed. The ECU 
then processes this information and regulates the brake accordingly. The ECU 
and control algorithm are partially responsible for how well the ABS system 
performs.

Since ABS systems are nonlinear and dynamic in nature they are a prime 
candidate for fuzzy logic control. For most driving surfaces, as vehicle braking
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force is applied to the wheel system, the longitudinal relationship of friction 
between vehicle and driving surface rapidly increases. Wheel slip under these 
conditions is largely considered to be the difference between vehicle velocity 
and a reduction of wheel velocity during the application of braking force. 
Brakes work because friction acts against slip. The more slip given enough 
friction, the more braking force is brought to bear on the vehicles momentum. 
Unfortunately, slip can and will work against itself during cornering or on 
wet or icy surfaces where the coefficient of surface friction varies. If braking 
force continues to be applied beyond the driving surface’ useful coefficient of 
friction, the brake effectively begins to operate in a nonfriction environment. 
Increasing brake force in a decreasing frictional environment often results in 
full wheel lockup. It has been both mathematically and empirically proven a 
sliding wheel produces less friction a moving wheel.

Inputs to the Intel Fuzzy ABS are derived from wheel speed. Acceleration 
and slip for each wheel may be calculated by combining the signals from each 
wheel. These signals are then processed in the Intel Fuzzy ABS system to 
achieve the desired control. Unlike earlier 8-bit microcontroller architectures 
with limited math capability, the Intel Fuzzy ABS example utilizes a high 
performance, low cost, 16-bit 8XC196Kx architecture to take advantage of 
improved math execution timing.

M o d e l  BUILDER

Unlike a conventional ABS system, performance of the Intel Fuzzy ABS sys­
tem can be optimized with less detailed knowledge of the internal system 
dynamics. This is due to the process used to refine the rule base and in 
the initial development of the system using Inform Software Corporation 
fuzzyTECH(R) 3.0 MCU-96 software tuned for the Intel Architecture with 
optimized code output and the associated Real Time Cross Debugger. The 
software tool set combined with a linguistic approach to control implemented 
in the Intel Fuzzy ABS solution allows for rapid development. A cornerstone 
of this rapid development is the Intel fuzzy logic modeling software kit called 
fuzzy BUILDER.

The development system, called fuzzyTECH(R) MCU-96, is specifically 
optimized for the MCS(R) 96 architecture. It contains:

-  A fully graphical CASE tool that supports all design steps for fuzzy system 
engineering.

-  A simulation and optimization tool for fuzzy systems. This tool displays 
system performance and can be interfaced to conventional simulators to 
obtain performance data.

-  A code generator which generates complete C-Code for the fuzzy system. 
The C-Code calls optimized assembly routines on the target controller for 
fast performance.
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T a b le  8 .1 0 . Performance of a 20 MHz 8XC196Kx device
7 Rules 20 Rules 20 FAM rules 80 FAM rules
2 in/1 out 2 in/1 out 2 in/1 out 3 in/1 out
0.22 ms 0.33 ms 0.34 ms 0.50 ms

The following Table 8.10 shows the performance of several test systems on a 
20 MHz 8XC196Kx device. All times shown are worst-case execution results. 
Note FAM rules are individually weighted as opposed to a system in which 
all rules have identical weight:

Conventional ABS control algorithms must account for nonlinearity in 
brake torque due to temperature variation and dynamics of brake fluid 
viscosity. Also, external disturbances such as changes in frictional coefficient 
and road surface must be accounted for, not to mention the influences of tire 
wear and system components aging. These influential factors increase system 
complexity, in turn effecting mathematical models used to describe systems. 
As the model becomes increasingly complex equations required to control ABS 
also become increasingly complicated. Due to the highly dynamic nature of 
ABS many assumptions and initial conditions are used to make control achiev­
able. Once control is achieved the system is implemented in-vehicle and tested. 
The system is then modified to attain the desired control status. However, due 
to the nature of fuzzy logic, influential dynamic factors are accounted for in 
a rule based description of ABS. This type of “intelligent” control allows for 
faster development of system code.
ABS B lock d iagram :

4 W.D. Ignition Feed­
back

Brake Data Input

Main Program
Fuzzy Logic 

Inference 
Engine

Data Output

PWM
Error
Lamp

f Wheel\
Speed

Inpu ts :
The Inputs to the Intel Fuzzy ABS are represented in the diagram above and 
consist of:
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1. The brake: this block represents the brake pedal deflection/assertion. This 
information is acquired in a digital or analog format.

2. The 4 W.D: this indicates if the vehicle is in the 4-wheel-drive mode.
3. The ignition: this input registers if the ignition key is in place, and if the 

engine is running or not.
4. Feed-back: this block represents the set of inputs concerning the state of 

the ABS system.
5. Wheel speed: in a typical application this will represent a set of four input 

signals that convey the information concerning the speed of each wheel. 
This information is used to derive all necessary information for the control 
algorithm

F u z z yT E C H (R ) 3.0

The proposed system shown above has two types of outputs. The PWM signals 
to control ABS braking, and an Error lamp signal to indicate a malfunction 
if one exists.

In tel Fuzzy A BS Features

In the Intel Fuzzy ABS an embedded 87C196JT microcontroller (a member 
of the 8XC196Kx family) is used in conjunction with Inform Software Cor­
poration fuzzyTECH(R) software. Rules constitute the base of the algorithm 
and are evaluated in sequence, one after the other.

In contrast, if a custom dedicated fuzzy parallel processor were to be 
used, rules could be evaluated in parallel. The parallel processing method sug­
gests a fast processing cycle. However, in this case data acquisition and data 
output continues using conventional peripherals. The time gained in parallel 
rule processing can be lost in acquiring and manipulating data via external 
peripherals. The best solution continues to use a software fuzzy algorithm on 
a microcontroller with fast internal peripherals. In this case, sequential rule 
processing is transparent to the system and the process appears to have been 
done in parallel. The MCS(R) 96 family of microcontrollers is equipped with 
high performance internal peripherals that make data acquisition and data 
conditioning of outputs fast and easy to handle. This, and the wide range 
of addressing modes, broad availability of interrupts and a powerful set of 
instructions make Intel microcontrollers immanently suitable for fuzzy logic 
applications.

For an ABS implementation, the MCS(R) 96 family is also a perfect match. 
The High Speed Input Output unit can be used to effectively handle I/O 
without impacting precious on-chip timer resources. Most microcontrollers 
in the Intel 16-bit family have also incorporated on-chip Analog-to-Digital 
converters with 1,024 discrete codes (10-bit resolution). The use of on-chip 
A/D reduces chip count. The A/D can be used to sense braking a c t i o n  taken 
by the driver. In addition, there is a large set of both direct and indirect
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interrupts to deal with real-time events and exceptions. The priority scheme 
of the interrupts can be modified dynamically in software.

For outputs the on-chip pulse width modulator (PWM) unit is available 
for use in providing variable output signals to the individual wheels. Changing 
the frequency and/or the duty cycle of the PWM can be done simply with a 
very fast register write operation.

In addition to the peripherals, microcontrollers in the Intel 16-bit MCS(R) 
96 family have internal RAM and ROM. Program instructions and data can 
be stored on-chip for optimized execution. No long external bus cycles are 
required to read data due to the large register based architecture. This feature 
is extremely beneficial to fuzzy logic. The knowledge base, i.e., the rules and 
the membership functions can be stored on-chip. Thus, rules can be evaluated 
in a very short amount of time.

Conclusion

The use of fuzzy-logic in conjunction with microcontrollers is a fairly new 
development in automotive applications. Fuzzy logic and or neural networks 
are used to control automotive applications like ABS, automatic braking for 
collision avoidance, adaptive cruise control and chassis control.

8.6 .2 A ntilock-B rak ing System  and Vehicle Speed E stim ation 
U sing Fuzzy Logic

Introduction

Vehicle dynamics and braking systems are complex and behave strongly 
nonlinear which causes difficulties in developing a classical controller for ABS. 
Fuzzy logic, however facilitates such system designs and improves tuning abil­
ities. The underlying control philosophy takes into consideration wheel accel­
eration as well as wheel slip in order to recognize blocking tendencies. The 
knowledge of the actual vehicle velocity is necessary to calculate wheel slips. 
This is done by means of a fuzzy estimator, which weighs the inputs of a longi­
tudinal acceleration sensor and four-wheel speed sensors. If lockup tendency is 
detected, magnetic valves are switched to reduce brake pressure. Performance 
evaluation is based both on computer simulations and an experimental car.

Fuzzy control, a relatively new, intelligent, knowledge based control tech­
nique performs exceptionally well in nonlinear, complex and even in not math­
ematically describable systems. Thus the use of fuzzy logic for an ABS seems 
to be promising.

A ntilock-B rak ing System s

The aim of an ABS is to minimize brake distance while steerability is retained 
even under hard braking. To understand the underlying physical effect, which
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Fig. 8.80. (a) Friction characteristics; (b) Wheel model
Fz: Wheel load; R: Wheel radius; ш: Angular wheel frequency ; v: Velocity o f  wheel 
cen ter ; FL: Longitudinal f o r c e

leads to wheel blocking during braking, consider Fig. 8.80a: coefficient of 
friction is shown as a function of wheel slip, relating to the terms given in 
Fig. 8.80b.

Calculating the wheel slip by

v  — wR  
s = --------- 100%,

v

the longitudinal wheel force results in F±(s) = /i(s)Fz.
At the beginning of an uncontrolled full braking, the operating point starts 

at s = 0, then rises steeply and reaches a peak at s = smax. After that, 
the wheel locks within a few milliseconds because of the declining friction 
coefficient characteristic which acts as a positive feedback. At this moment



the wheel force remains constant at the low level of sliding friction. Steering 
is not possible any more.

Therefore a fast and accurate control system is required to keep wheel slips 
within the shaded area shown in Fig. 8.80a.

V ehicle Speed

A crucial point in the development of wheel slip control systems is the deter­
mination of the vehicle speed. There are several methods possible: until now 
the velocity is measured with inductive sensors for the wheel rotational speed. 
Especially in the case of brake slips the measured speed does not correspond 
with reality. To obtain very accurate results, optical or microwave sensors take 
advantage of a correlation method. However, these sensors are very expensive 
and will not be used for ABS.

Sensors and A ctuators

The experimental car was fitted with sensors and actuators shown in Fig. 8.81. 
Each wheel is connected to a metallic gearwheel, which induces a current 
within an attached sensor. The frequency of the rectangular shaped cur­
rent is proportional to the angular frequency and can be evaluated by a 
microcontroller. In addition to common ABS fitted cars, a capacitive acceler­
ation sensor for measuring the longitudinal acceleration ax is implemented.

Furthermore Fig. 8.81 depicts the hydraulic unit including main brake 
cylinder, hydraulic lines and wheel brake cylinders. By means of two magnetic 
two-way valves each wheel, braking pressure p i , j is modulated. Three discrete 
conditions are possible: decrease pressure, hold pressure firm, and increase 
pressure (up to main brake pressure level only). Each valve is hydraulically 
connected to the main brake cylinder, to the wheel brake cylinders and to the 
recirculation.
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F ig .  8 .81 . Sensors and actuators of the experimental car
CG: Center of gravitiy; ax: Longitudinal acceleration; wi:j : Angular wheel frequency; 
HU: Hydraulic Unit; p i , j : Wheel brake pressure; i: l=left, r=right; j : f=front, r=rear
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F ig .  8 .82 . Estimation of car velocity

E stim ation  of Vehicle Speed U sing Fuzzy Logic

There exists an estimation system based on Kalman-Filter, which performs 
well, but is not suitable because of very high performance requirements. In 
this approach the speed estimation uses multisensor data fusion that means 
several sensors measure vehicle speed independently and the estimator decides 
which sensor is most reliable. Figure 8.82 represents the schematic structure 
of the fuzzy estimator. The signals of the four wheel speed sensors ^ i,j are 
used as well as the signal of the acceleration sensor ax.

In a data preprocessing block the measured signals are filtered by a lowpass 
and the inputs for the fuzzy estimator are calculated: four wheels slip u itj , 
and an acceleration value Ava. The applied formulas are:

3ui, j (k)

and
AVa(k)

whereby aOffset is a correction value consisting of an offset and a road slope 
part. Comparing the measured acceleration with the derivative of the vehicle 
speed v Fuz, which is calculated with the fuzzy logic system, derives it. After 
this subtraction, the signal is low pass filtered to obtain the constant com­
ponent aOffset v Fuz (k — 1) is the estimated velocity of the previous cycle. A 
time-delay of T  is expressed by the term 1/z.

The fuzzy estimator itself is divided into two parts. The first (Logic 1) 
determines which wheel sensor is most reliable, and the second (Logic 2) 
decides about the reliability of the integral of the acceleration sensor, shown 
in Fig. 8.83.

This cascade structure is chosen to reduce the number of rules.
Starting at block “Logic 1” and “Logic 2” the crisp inputs are fuzzificated. 

Figure 8.84 shows the input-membership-functions (IMF) with four linguistic 
values (N egat iv e , Zero, P o s i t i v e  and V ery -Pos i t iv e).

VFuz(k 1) Шi, j (k 1)R 100% 
VFuz(k 1)

(ax(k) aOffset(k))T
VFuz(k 1)

100%
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F ig . 8 .83 . Stucture of the fuzzy estimator

g j  a va [%]

F ig . 8 .8 4 . Input membership functions

k j  =  k a

F ig . 8 .8 5 . Output membership functions

The rule base consists of 35 rules altogether. To classify the present driving 
condition vehicle acceleration is taken into consideration. This should be ex­
plained for three situations:

1. Ava Positive: braking situation, all wheels are weighted low because of 
wheel slips appearing.

2. Ava Zero: if wheel speeds tend to constant driving the acceleration signal 
is low weighted in order to adjust the sensor.

3. Ava Negative: the experimental car was rearwheel driven therefore rear 
wheels are less weighted than front wheels.

Figure 8.85 depicts the output-membership-functions (OMF). Here, three 
linguistic values are sufficient. The output of the estimation is derived as a 
weighted sum of the wheel measurement plus the integrated and corrected 
acceleration:
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F ig . 8 .8 6 . Fuzzy characteristic surface

vFuz (k)
ki ^ i (k)R + ka [vFuz (k 1) T ax,Corrected (k)]

i=1
4

J 2 ki + ka 
i=1

The Fuzzy-A BS A lgorithm

The Fuzzy-Controller uses two input values: the wheel slip SB:

Sb —

awheel —

vFuz &R vFuz vWheel and the wheel acceleration:
vFuz

^Vwheel
d t

vFuz
Avwheel 

At ’

with wheel speed vwheel and vehicle speed vFuz, which is given by the Fuzzy- 
Estimator.

The input variables are transformed into fuzzy variables slip and dvwheel/dt 
by the fuzzification process. Both variables use seven linguistic values, the slip 
variable is described by the terms
sl ip — {zero, v e r y  small, too  small, sm a l l e r  than  op t imum , op t imum , too  large, 
v e r y  l a r g e},
and the acceleration dvwheel/dt by
dvwheel/dt — {nega t iv e  large, n e ga t iv e  m ed ium , n e ga t iv e  small, n e ga t iv e  f ew ,  
zero, p o s i t i v e  small, p o s i t i v e  la r g e}.

As a result of two fuzzy variables, each of them having seven labels, 49 
different conditions are possible. The rule base is complete that means, all 49 
rules are formulated and all 49 conditions are allowed. These rules create a 
nonlinear characteristic surface as shown in Fig. 8.86.

4
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F ig . 8 .8 7 . Structure of the fuzzy ABS controller 

t  F 4 9  —o —[ y ^ l u e s lif  I

F49

F ig . 8 .8 8 . Fuzzy calculations

Using this characteristic surface, the two fuzzy input values slip and 
dywheel/dt can be mapped to the fuzzy output value p r e s su r e .  The labels 
for this value are:
p r e s s u r e  = {posi t iv e  fa s t ,  p o s i t i v e  slow, zero, n e ga t iv e  slow, n e ga t iv e  f a s t}

The structure of the fuzzy ABS controller is shown in Fig. 8.87.
The optimal breaking pressure results from the defuzzification of the lin­

guistic variable p r e s su r e .  Finally a three-step controller determines the posi­
tion of the magnetic valves, whether the pressure should be increased, hold 
firm or decreased.

Figure 8.88 summarizes the total amount of fuzzy calculations. Numbers 
within a rectangle indicate the quantity of fuzzy rules.

S im ulation  of a  Full B rak ing

After implementation of the whole system in SIMULINK, a full braking on 
high-m-road was carried out, with and without the fuzzy ABS. Without fuzzy 
ABS the braking pressure reaches a very high level and the wheels block within 
short. This results in an unstable behavior, the vehicle cannot be steered any 
more and the stopping distance increases.

With fuzzy ABS controller activated, steerability is not only retained dur­
ing the whole braking maneuver, but the slowing down length was consid­
erably shortened as well. The following graphs show the steady decline of 
the vehicle speed, the fluctuating decline of the wheel speed of the left front 
wheel as an example and the fluctuating level of the wheel slip. The applied 
braking pressure is depicted in the last diagram. The other wheels behave 
approximately similar (Fig. 8.89).
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F ig . 8 .89 . Simulations of a full braking

I m p le m e n a t io n  o f  t h e  F u z z y  A B S  C o n t r o l le r

The fuzzy ABS controller uses the microprocessor SAB 80C166 together with 
the fuzzy coprocessor SAE 81C99A. Due to the implementation of Fuzzy al­
gorithms into the hardware of the coprocessor, the calculation speed of the 
host processor increased significantly. While the control cycle time was set to 
a standard value of 7 ms, the computation time was only 0.5 ms! This offers 
facilities for implementation of extended vehicle dynamics control. The flexi­
bility of the coprocessor is considerable, up to 64 rule bases are possible, each 
of them having up to 256 inputs and rules. Furthermore an interface to most 
commonly used microprocessors is available. Arbitrary shapes of member­
ship functions, different defuzzification modes including “Center of Gravity,” 
an enormous rule engine with up to 10 million rule calculations per second 
makes this device a very interesting product in the field of real time fuzzy 
control.
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The basis of the controlling algorithm consists of a nonlinear characteristic 
surface, which was created by fuzzy logic. The convincing advantage of fuzzy 
logic is the ability to modify and tune certain parts of this characteristic 
surface easily and carefully. Just the linguistic rules or variables need to be 
varied. This simplifies the development and shortens the development time 
considerable. Implementation of the fuzzy ABS leads to excellent results of 
braking behavior of the test vehicle. The deceleration level and steerability is 
comparable to commercially available systems.

8.7 Application of Fuzzy Expert System

8.7.1 A pplications of H ybrid  Fuzzy E xpert System s in Com puter 
Networks Design

Introduction

The task of designing and configuring large computer networks most suited 
to a certain application and environment is difficult, as it requires highly 
specialized technical skills and knowledge, as well as a deep understanding 
of a dynamic commercial market. Current expert systems have made solid 
achievements in supporting decision makers; they use prior experience to solve 
problems in different domains. Hybrid fuzzy expert systems have appeared 
all over the world proving that integrated fuzzy expert systems/neural net­
works methods replaces classical hard decision methods and providing better 
performance.

The current most significant trend in the computing world is the growth of 
distributed processing, a technique that puts computing power closer to users 
rather than in large, central mainframes. Computer communication networks 
are the key for such distributed systems as they ease the share of information 
between cities, building complexes, buildings, departments, and networked 
nodes. Computer communication networks are generally classified into three 
broad categories each differentiated primarily by the distances they span:

-  Local area networks (LANs) are short-distance networks (usually with a 
range of less than 1 mile) typically used within a building or building 
complex for high-speed data transfer between computers, terminals, and 
shared peripheral devices,

-  Metropolitan-area networks (MANs) are medium-distance, high-speed 
networks with range of from 1 mile to 50 miles. MANs often transmits 
voice and video in addition to data, and

-  Wide area networks (WANs) are primarily long-distance networks used 
for the efficient transfer of voice, data, or video between local, metropol­
itan, campus, and premise networks. WANs typically use lower-transfer
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rates, and common-carrier services or private networking via satellite and 
microwave facilities.

In this age of internet working the ability to effectively communicate is the 
key to the business success. Efficient and optimal network design is necessary 
to make communication networks usable and affordable. By network design, 
we mean the selection of various network devices and connections to accom­
plish an organization’s operational objectives. A network’s configuration can 
greatly affect its performance and cost. It is, therefore, vital that the best com­
bination of equipment, connections, and placement of network connections for 
end-user nodes be made to satisfy an organization’s objectives.

These objectives may include a multitude of factors other than the prices 
of the computers and the networks, such as the reliability, the response, the 
availability, and the serviceability.

Professional designers with intensive knowledge and experience are needed 
for large computer communication network design, modeling and simulation. 
Such designers must be well informed about the most recent updates in this 
rapidly advancing field to be able to handle the available state of-the-art 
technologies. Since designers of such caliber are difficult to find and usually 
very expensive, we proposed the use of hybrid fuzzy expert systems to play 
their role and/or assist them in their task.

In this section, we focus on presenting the design, the knowledge repre­
sentation, and the operation of a network design hybrid fuzzy expert system 
(FES).

E xpert System s in  N etwork Design

ELAND, an Expert Design of Local Area Networks, has been the first activity 
in applying expert systems in network design. The ELAND’s problem decom­
position approach to the computer network design problem was suitable for 
solving the problem 5-8 years ago.

In COMNED, we proposed a modern approach for using expert systems 
for network design, keeping in mind (1) the system openness and modularity 
in-order to allow the system future updatability and functionality and (2) the 
usage of the available powerful network simulation tools.

COMNED has been fully implemented in the Telecommunication and Net­
working Laboratories, of the University of Miami, the expert system recom­
mends the network feasible solutions most suited to the user’s application 
and environment. A network simulation package receives the configuration of 
the network solutions from the expert system to be modeled, simulated and 
evaluated, after which the values of the performance indices are reported back 
to the expert system. One of the most significant properties of the computer 
communication market is its rapid advancement and change in a very short 
period of time.
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Using classical expert systems and machine learning approaches to learn 
new emerging technologies, we have to learn the values of all the design vari­
ables for this technology and create all the facts/rules required to make the 
technology available as a design option the next time the system is used.

Consider learning the value of a design variable like the “noise_resistance” 
for a newly emerging cabling system, then the knowledge engineer should 
enter the degree of truth for the low, medium, high, and very_high val­
ues of this design variable for this cabling system. The problem with this 
approach is that when using the experience of different design experts or 
knowledge engineers their estimates for the degrees of certainty could highly 
differ, then with this approach there will be multiple basis for the estimation 
process.

A second problem emerged with this approach. Consider, for example, that 
a 1.0 degree of truth was given to the ATM topology support for 500 nodes, 
and now the system was required to learn a new topology which has better 
capabilities in supporting the 500 nodes, then the degree of truth of the ATM 
topology support for this number of nodes should change to a lower value for 
the 1.0 to be given to the newly learned topology. On what basis this change 
should happen? If we depend on the knowledge engineer estimate then we are 
magnifying the problem of multiple estimation basis. If we consider a fixed 
change like 0.1 decrease (the degree of truth of the ATM topology support 
for 500 nodes will change to 0.9), we then find that many cases are far from 
realistic.

Also during the development of COMNED, a significant potential was 
found in integrating fuzzy sets, fuzzy logic, and neural networks into the 
knowledge representation and the reasoning process of the expert system. 
In particular we realized that:

1. The nature of knowledge representation and its suitableness to undergo 
the well-founded FES theory. Sixty to 70% of the used expert system 
facts/rules were found to be of fuzzy nature.

2. Hybrid fuzzy reasoning, was found to give better reasoning performance.

In addition, neural networks could be integrated with fuzzy expert sys­
tems to tune the shapes of fuzzy membership functions of the different design 
variables, this will improve the reasoning and confidence performance of the 
expert system and make the FES approach more justifiable.

For all the above reasons, we found ourselves motivated to present a hybrid 
FES approach for network design, keeping all the objectives of COMNED, and 
using fuzzy logic/neural networks to improve the system reasoning, manage 
the confidence calculation and estimation, and solve the above mentioned 
machine learning problem.
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Network Design H ybrid  Fuzzy E xpert System :
A rch itectu re  and O peration

The hybrid FES proposed in this paper is a part of a global network design 
system called “END,” An Expert Network Designer. The internal structure 
of the hybrid FES is shown in Phase #1, Phase #2, and Phase #4 areas 
of Fig. 8.90. END is divided into four distinct Phases -  the configuration 
entry phase, solution recommendation phase, model simulation phase, and 
the performance analysis phase.

C on f igu ra t ion  Entry P ha s e

In this phase, the hybrid FES interacts with the user through a user interface 
to obtain a general description of the networking project. The description is 
obtained through a group of planners which issue a number of hierarchical 
questions going from the highest possible network level, which is the num­
ber of network sites, the WAN interconnectivity between the different sites, 
passing by the number of buildings in each site, the number of floors in each 
building. etc., and ending with the number of workstations and servers in the 
departmental LANs. The system questions are designed to be as simple as pos­
sible for any person, not necessarily a network specialist, who is aware of the
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network general functionality and layout. The system uses a fuzzy knowledge 
base consisting of a database of information necessary for providing expert 
advice, a set of assertions relating these pieces of information, domain-specific 
information about the network configuration, traffic characteristics, and mea­
sures for determining the suitability of various models in its model library, as 
well as information about modeling, analysis, and simulation in general.

The answers of the configuration questions and the other design guidelines 
are used to find the network feasible solutions through a fuzzy network design 
inference engine. This inference engine uses fuzzy rule-based heuristics on an 
if-then formalism. In the case of finding multiple solutions for a certain user 
configuration, the system interacts with the user, in a solution refinement 
session, with a new set of questions, depending on the different solutions 
obtained, to be able to filter the solutions to the most suitable solutions for 
the user environment.

The user answers are used to revise the design guidelines initially assumed 
by the system. The Technology and Design Techniques Learning is a neural 
network/knowledge acquisition learning subsystem used to improve the time- 
efficiency of END’s network design problem solver and allow the hybrid FES 
to learn the new emerging network technologies, modern network design tech­
niques, and the updated specifications of the existing technologies. Finally, 
the Neural Membership Functions Tuning subsystem is a neural network to 
tune the membership functions of the fuzzy network design variables.

So lu t ion s  R e c om m en d a t io n  P ha s e

In this phase, the hybrid FES reports the best feasible topologies and cabling 
systems most suited to the user’s application and environment (entered in the 
last phase) for each subnet, backbone and WAN, in addition to the confidence 
rank in each solution. At the end of the user interaction session, a graphical 
layout of each global feasible network solution is given to the user on a GUI. 
Optional full solution reasoning is available if the operator is interested in 
knowing why these solutions were chosen.

M odel S im u la t ion  P ha s e

If the operator chooses to run the optional network simulation ranking, END 
will generate a separate model for each feasible solution under a network 
simulation package with the aid of a communications -  oriented simulation 
language, run the simulations, and report the simulation results to the expert 
system part.

So lu t ion s  Analysis P h a s e

In this phase a Performance Analyzer receives the simulation results from 
previous phase, in conjunction with the global network solutions from the 
Solution Recommendation Phase, to start classifying the different solutions 
with respect to their significance in each measured performance parameter.
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The hybrid FES is designed to have two solution ranking subsystems:

1. A Techn ica l  Ranker which ranks the solutions according to the measured 
performance parameters.

2. A C on f id en c e  Ranker which simply ranks the solutions according to the 
user confidences in their satisfaction to the solution properties.

All solutions with confidence less than a preassigned value are initially elimi­
nated as feasible solutions.

All the other solutions are ranked first according to the Technical Ranker, 
and second according to the Confidence Ranker.

Network Design Problem

The network design problem solving structure is a tree traversal. Figure 8.91 
presents the decomposition of the network design problem, which introduces 
in each step a sequence of subproblems that must be solved. The global phys­
ical network problem “root node” is decomposed into subproblems for each 
network site and the WAN connecting these sites. In the design tree lower 
levels each network site problem is decomposed into subproblems for each 
building in the site and the site’s backbone. Then each building problem is 
further decomposed into subproblems for each subnetwork in the building 
and the building’s backbone. Finally, all the backbone and the subnetwork 
problems are decomposed into topology and cabling system subproblems.

The global network design problem is finally decomposed at the tree leaves 
into a number of topology and cabling system subproblems. For solving these 
two problems, COMNED uses a single general purpose subnetwork design 
inference engine which is invoked every time the system reaches the design

F ig . 8 .9 1 . Design problem decomposition
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tree leaves to obtain the suitable topology and cabling system for the currently 
active problem. This problem decomposition represents the formalization of 
the practical approach used by design experts for computer networks design.

O peration and K nowledge R epresen tation

The expert system uses fuzzy fact-like and constraint-like structures to repre­
sent the specification of the different network topologies and cabling systems. 
In addition, it uses conceptual application-oriented design rules to represent 
the logic of network design.

There are three main fuzzy inferencing rules, the first for finding feasi­
ble cabling systems, the second for finding feasible topologies, and the third 
for finding WAN feasible solutions. A prolog-like format of the main infer­
ence rules and design decision trees are shown in Fig. 8.92. The subnetwork 
general specifications (obtained from the user and represented by the expert 
planners as design guidelines) are passed as arguments to these three infer­
ence rules which therefore will obtain, using the fuzzy predefined knowledge, 
the cabling systems “Cable_media,” the network “Topology,” and WAN types 
“WAN_Type” satisfying the passed subnetwork specifications. It is clear from 
the cabling system design decision tree and the inferencing rule shown in 
Fig. 8.92a, that the chosen cabling system depends on three design variables, 
the level of noise resistance “noise_resistance,” the budget required to con­
nect one node using this cabling system “cable_with_budget_per_station,” and 
the distance supported by the cabling system “cable_with_distance.” The val­
ues of such variables for the chosen cabling system (Cable_noise_resistance, 
Cable_budget, and Cable_distance) should be, compared to the general spec­
ifications obtained from the user (Noise, Budget, and Distance), of equal 
or higher noise resistance “Noise=<Cable_noise_resistance,” of less budget 
requirements “Budget>=Cable_budget” and able to support wider network 
span “Distance=<Cable_distance.”

Such design variables are chosen in our system as fuzzy variables with 
different membership functions. For example, the “noise_resistance” is a fuzzy 
variable with four membership functions low, medium, high, and very_high.

low(noise_resistance)= Fi (cabling_sytem)medium(noise_resistance)
= Fi (cabling_system)

high(noise_reistance)= F3(cabling_system)very_high(noise_reistance)
= F4 (cabling_system)

The four membership functions F1, F2, F3, and F4 were chosen to be gaussian 
functions, as shown in Fig. 8.93. The values of such functions represent 
the degree of truth of the satisfaction of these membership functions of the 
“noise_resistance” fuzzy design variable. The membership functions are cho­
sen such that the functions will have a contour similar to that estimated by a 
single knowledge engineer or a design expert.
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(a) Cabling system design tree and inference rule

cable(Cable_media,Budget,Distance,Noise):-
no/se_r^es/sfanc^e(Cab/e_no/se,Cab/e_med/a),Wo/se<=Cab/e_no/se_;^es/stanc^e, 

cable_with_budget_per_station(Cable_media,Cable_budget),Budget=> Cable_budget, 
cable_with__/stannc(Cable_ined/a,Cable__/sSannc),)DsSannce<Cable__/stannc::95.

(b) Topology design tree and inference rule

topology(Budget,Stbtions,Relibbility,Ibm,Expbnd,Speed,Topology):-
topologg(CвUdg)__e)_wtabon(Copologg,Ctin__WbUdg)),
BвUde)>=MM^nWbUde)

number_gf_stbtigns(Mbx_stbtigns,Tgoglggy),
Stbtigns=<Mbx_stbtigns,
Exobnd=<Mbx_stbtigns,

l^_i^^!^^t^iiiiit^((^^lli^t^ii^,'T^fo:gllg^),
lbm_envirgnment(Ibm,Tgoglggy),
_ig__soeed(soeed,Tgoglggy)::95.

wbn_tyoe(WAN_oupgse,Trbffic_nbture,Distbnce,WAN_Tyoe):-
wbn_ou/ogse(Wy4W_ou/ogse,WAW_Tyoe),
traff/'c_nbture_bnd_d/'stbnce(Traff/'c_nbture,Distbnce,WAW_Type)::95

F ig . 8 .92 . Inference engine design trees and rules

Consider that the user entry for a subnetwork media noisiness (part of 
any subnetwork general specification obtained from the system user during 
the Con figu ra t ion  Entry P h a s e ) was level high. From Fig. 8.93, a cabling sys­
tem like the unshielded_twisted_pair will have a degree of truth equal to 0.09 
while another cabling system like the thick_coaxial will have a degree of truth 
equal to 0.82. Similar membership functions are used for the other two fuzzy 
design variables “cable_with_budget_per_station” and “cable_with_distance.” 
Obtaining the degree of truth for each of the three fuzzy design variables 
(Cable_noise_resistance, Cable_budget, and Cable_distance) say d1,d2, and d3, 
for a specific cabling system, we can realize that the degree of truth of choos­
ing this particular cabling system “Cable_media” (which is the same like the 
degree of linguistic certainty of the rule used in its choice) is:
Conf = min(min(d1, d2, d3), 95),
where 95 is the linguistic certainty of the premise of the rule “cable 
(Cable_media, Budget, Distance, Rule).”
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Degree of Truth

super unshielded thin coaxial 

F ig . 8 .9 3 . Membership functions of the noise_resistance fuzzy variable

The above method is used in the MILORD computation method for cal­
culating the degree of linguistic certainty of fuzzy rule.

All the above applies for all the design variables in the “topology” and 
“wan_type” design inference rules shown in Fig. 8.92b,c. For example, the 
membership functions of the fuzzy design variable “ibm_environment,” which 
shows the extent of suitableness of a specific networking topology for an IBM 
mainframe environment (used as a fuzzy design variable in the last raw of the 
topology design inference rule), has two membership functions yes and no. 
yes(ibm_environment)=G1 (topology) 
no(ibm_environment)=G2 (topology)

The two membership functions G 1 and G2 were chosen as gaussian and 
constant functions, respectively. The two functions are shown in Fig. 8.93. The 
values of such functions represents the degree of truth of the satisfaction of 
these membership functions of the “ibm_environment” fuzzy design variable.

E xpert S ystem  Shell and Solution R easoning

The hybrid FES uses an optimized FES shell based on MILORD system shell 
which provides an inference engine to supervise the execution of the system 
rules. It uses standard backward chaining with uncertain reasoning capabilities 
based on fuzzy logic to satisfy the top-level goal. The engine allows the appli­
cation of degrees of certainty by means of expert-defined linguistic statements.
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F ig .  8 .9 4 . Connectionist neural model for fuzzy membership function optimization

It also provides the features of accumulating proofs for query explanation and 
solution reasoning.

The system stores proofs and explanations for the system predefined 
knowledge, the user collected knowledge, and the system queries. The expla­
nations for the system predefined knowledge and the user collected knowledge 
are used by the design/solution reasoning subsystem to explain the system 
decisions. The system query explanations are used by the Online Help and 
Query Explanation subsystem to explain the purpose and the role of these 
queries to the system operators whenever requested.

System  O utput

The hybrid fuzzy rule-based expert system reports the best feasible topologies 
and cabling systems for each subnet, backbone, and WAN during its opera­
tion, in addition to the confidence rank in each solution. At the end of the 
user interaction session, a graphical layout of each global feasible network 
solution is given to the user on the GUI. Finally, if the operator chooses to 
run the optional network simulation ranking, the system will generate a sep­
arate model for each feasible solution under the network simulation package, 
run the simulations, and report the best solution to the operator. In addition 
an optional full solution reasoning is available if the operator is interested in 
knowing why these solutions were chosen.



Using different shapes, centers and values for the membership function, it 
was found that there is a general increase in the number of feasible solution 
with the increase in the values of the membership functions of the different 
fuzzy design variables and vice versa. The change in the number of solutions 
is not directly proportional to the change in the membership functions but 
it depends on many other factors, like the user’s network configuration, the 
nature of the feasible solutions and the operating point in the formalized 
network design space. Minimum inferencing was found to be less sensitive to 
the changes of the membership functions. Product and Average inferencing 
were found to be more sensitive to such changes.

M em bersh ip  Functions O ptim ization in  the N etwork D esign Fuzzy 
E xpert System

In the previous sections a FES was successfully applied in computer commu­
nication network design. The only problem with this approach was the choice 
of the membership functions of the different network fuzzy design variables 
and their shapes.

A neural network connectionist model could be used to solve the problem of 
choosing the optimal shape of the fuzzy membership functions in the network 
design FES. The neural network connectionist model has just one fuzzy output 
which is the network feasible solutions for the input network configurations. 
Figure 8.94 shows the proposed neural-network connectionist model:
Layer 1: the nodes in this layer transmit network configuration input values 

(NC-1 to NC-n) to the next layer directly.
Layer 2: the output function of this node is the membership function of the 

different fuzzy design variables.
Layer 3: the links in this layer are used to perform the precondition matching 

of the fuzzy logic rules of the network design FES.
Layer 4: the nodes in this layer have two operation modes: down-up trans­

mission and up-down transmission modes. In the down-up transmission 
mode, the links at layer four should perform the OR operation to integrate 
the fired rules which have the same consequence.

Layer 5: there are two kinds of nodes in this layer. The first kind of node 
performs the up-down transmission for the estimated confidence in the 
obtained feasible solutions (training data from a design expert based on 
the input network configuration and the output feasible solutions) to be 
fed into the network. The second kind of node performs the down-up 
transmission for the proposed confidence in the same obtained feasible 
solutions.

Again a two-stage hybrid learning algorithm is used. This learning algorithm 
will determine optimal centers and widths of the membership functions of the 
fuzzy design variables used in Layers 2 and 4.
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Sensitivity to Changes in the M em bership Functions
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In phase one of the hybrid learning algorithm, a self-organized learning 
scheme is used to locate initial membership functions. In phase two, a super­
vised learning scheme is used to optimally adjust the membership functions for 
desired outputs. To initiate the learning scheme, training data (the estimated 
confidence in each network feasible solution) and the desired or guessed coarse 
of fuzzy partition (i.e., the general membership function shapes of the different 
fuzzy network design variables) must be provided from the outside world. Be­
fore this network is trained, an initial form of the network is first constructed. 
Then, during the learning process, some nodes and links of this initial network 
are deleted or combined to form the final structure of the network.

With the connectionist neural network model for fuzzy membership func­
tion optimization, the category of the network design FES will move from 
Loosely Coupled hybrid FES model to Fully Integrated model.

Conclusion

Fuzzy expert systems have proved to be very successful in formalizing the 
practical rules used by the design experts for computer networks design, for­
malizing the logic of solving computer network design problems, and initially 
choosing the most suitable solutions for a certain networking requirement. By 
using fuzzy expert systems to generate the network models/simulations the 
user is not required to have any kind of background of the simulation pack­
age operation. Neither is the user required to bean expert in networks design. 
The user is only required to answer a group of general questions about the 
network requirement: he/she will get a network design, a description of the 
design, why it was chosen, a graphical diagram of the design, a design sim­
ulation, vector simulation results (curves), and even results analysis by the 
expert system. Automating the process of network modeling and simulation 
generation is very important as it can save the user time and expense.

Fuzzy logic addresses several problems with current expert systems like, 
providing better knowledge representation, better reasoning performance, and 
better management of confidence factors. Fuzzy logic was found to aid the eas­
iness of the learning process, in this paper, it was clear how fuzzy logic solved 
the problem of multiple estimation basis by the usage of predefined mem­
bership functions and how the problem of saturating the membership func­
tions was eliminated by the usage of the membership functions axis-shifting. 
Proposing the full integration of neural networks to tune the shapes of fuzzy 
membership functions will improve the performance of the FES and make the 
FES approach more justifiable.

8.7 .2 Fuzzy E xpert S ystem  for D rying Process Control 

Introduction

The problems during the synthesis of the automatic control systems for diver­
sified processes in agriculture and industry cannot be sufficiently solved using
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classical control methods. The difficulties occur when a number of mutually 
dependent variables, having different values under diversified conditions, are 
to be controlled. In many of the controlled processes, the system operator 
knows the way to change the control variables in the case of altered condi­
tions on the basis of the experience. In order to realize the automation of a 
certain process, it is necessary to implement the information based on expe­
rience into the control system. This is very difficult to achieve in the classical 
control systems.

Mentioned problems can be solved through integration of the expert sys­
tem and the fuzzy control. The expert systems are based on the computer 
control of the processes. Every expert system includes existence of a knowl­
edge basis, which is in fact implementation of the experience, obtained by 
the system investigation, into the process control. The form, the structure, 
and the components of the knowledge basis, depend on the controlled process 
itself. Using the set of measured data, the demand for doing an action in the 
system as well as the action character, can be established (qualitatively and 
quantitatively) according to the knowledge basis.

The knowledge basis handling is very often based on the fuzzy logic. In 
most of the cases the expert system is in fact a fuzzy system used for inclusion 
of the working regimes into the control system. The fuzzy logic is very success­
fully applied in the process control itself, i.e., in the control of the measured 
values. The advantages of the fuzzy logic are stated when the control of a 
number of the mutually dependent values, influenced by the same controlling 
variables, is concerned. The fuzzy logic can achieve that error signals of all 
the controlled values are taken into account at the same moment. Based on 
the fuzzy system control rules, which are obtained by the investigation of the 
controlled process in different working conditions, the outputs that can bring 
the system very fast into the desired condition are generated.

E xpert S ystem  Development

An optimum regime in the knowledge basis should be defined as one en­
abling the highest proportion of the obtained final product and used fuel, for 
the given values of input parameters, including the adequate output material 
moisture content. During the operation, the control system selects, in this way, 
the nominal values obtained by the fuzzy controller of the fuel flow-rate and 
the belt-conveyer speed. It is important to notice that the belt-conveyer speed 
and the fuel flow-rate are now changing simultaneously, i.e., it is not necessary 
to wait for the variation of the output temperature in order to change the fuel 
flow rate. The structure of the described conception of the control system is 
shown in Fig. 8.95.

The synthesis of this fuzzy control system can be divided into the five 
steps:

1. Creation of the knowledge basis
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F ig . 8 .9 5 . Structure of the fuzzy control system for direct rotary dryer

2. Definition of the input material moisture content and presentation of the 
input variables using fuzzy variables

3. Selection of the operational regimes
4. Selection of the control rules and synthesis of the fuzzy controller
5. Choice of the fuzzy controller parameters

The knowledge basis should ensure the selection of the nominal values for 
the fuel flow-rate and the belt-conveyer speed on the basis of the measured 
input material moisture content, height of the material layer, and nominal 
temperature at the dryer output (between 80°C and 90°C).

In order to implement into the expert system and to obtain the data from 
the knowledge basis, it is necessary to present the measured input material 
moisture content in the form of the triangular fuzzy numbers:

A = ( a i , a 2, a 3) (8.1)

where a i, lower range of the fuzzy number; a 2, nominal value of the fuzzy 
number corresponding to the higher degree of membership; a3, upper range 
of the fuzzy number.

Graphical interpretation of the input moisture content using fuzzy num­
bers is shown in Fig. 8.96.

Every measured value of the input material moisture content will always 
have exactly two corresponding fuzzy numbers having the membership func­
tions different from zero. Two nominal values of the fuel flow-rate and the 
belt-conveyer speed, along with the given nominal output temperature and 
height of the material layer, are chosen for these two fuzzy numbers out of 
the knowledge basis. Based on the membership function for these two fuzzy 
numbers, and on these two nominal values for the fuel flow rate, the fuel 
flow-rate nominal value is calculated. Situation is a little bit different if the
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belt-conveyer speed is considered. The belt-conveyer speed is changing in pre­
cisely determined shift quanta. If the two different values for the belt-conveyer 
speed are chosen from the knowledge basis as the nominal values, one of these 
values must be adopted as the nominal value for the belt-conveyer speed. The 
difference between these two values is one shift quantum.

Fuzzy C ontro ller Synthesis

For the process control itself it is necessary to present the output tempera­
ture and the fuel flow-rate deviations from theirs nominal values in the form of 
fuzzy variables. In the case of the belt-conveyer speed, situation is again differ­
ent (the belt-conveyer speed is changed in the shift quanta), so the deviation 
of the belt-conveyer speed from the nominal value can always be presented 
by a certain number of the shift quanta. Concerning the process control, the 
belt conveyer-speed can be changed for the exactly determined number of 
quanta. The belt-conveyer speed preservation (influenced by the input mater­
ial moisture content) at the nominal value is a part of the process control with 
applied expert system. On the other hand, maintenance of the fuel flow-rate, 
and the output temperature, at the nominal values is carried out using fuzzy 
controller.

Deviations of the output temperature and the fuel flow-rate from the nom­
inal values can be expressed as:

It is necessary to express the deviations To and Gf in the form of fuzzy num­
bers. To is expressed by the linguistic fuzzy variables having the following

AGf = Gf -  Gfn

(8.2)

(8.3)
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F ig .  8 .9 7 . Interpretation of the output temperature deviation by the linguistic fuzzy 
variables

meaning: LNT -  large negative deviation of the temperature, MNT -  mean 
negative deviation of the temperature, ZRT -  zero deviation of the tempera­
ture, MPT -  mean positive deviation of the temperature, LPT -  large positive 
deviation of the temperature.

The membership functions of these fuzzy variables are shown in Fig. 8.97.
It can be noticed from Fig. 8.97 that membership functions of the fuzzy 

variables, describing the deviation of the output temperature, depend on a 
single parameter, marked with KTo. This parameter remains changeable in 
the program for the system control. The variations of this parameter make 
possible that the user is able to adjust the performances of the fuzzy con­
troller according to his demands. The parameter KTo has immense influence 
at the fuzzy controller behavior. The proper work of whole the control system 
depends on the proper selection of this parameter. Deviation of the fuel flow- 
rate from the nominal value is represented by the fuzzy variables in a similar 
way. The membership functions of the linguistic variables describing deviation 
of the fuel flow-rate are shown in Fig. 8.98 and have the following meanings: 
LNG -  large negative deviation of the fuel flow-rate, MNG -  mean negative 
deviation of the fuel flow-rate, ZRG -  zero deviation of the fuel flow-rate, 
MPG -  mean positive deviation of the fuel flow rate, LPG -  large positive 
deviation of the fuel flow rate.

In the case of presenting the fuel flow-rate deviation from the nominal 
value by the fuzzy variables, one parameter remains also unfixed (KGf). In 
order to avoid the possibility of the steady-state error in the case of the mea­
surement error, the uneven distribution of the points having maximum degree 
of membership for the linguistic variables is adopted.

D efuzzification

Generation of the signal controlling the fuel-flow valve is obtained using the 
defuzzification method. The output (controlling) signal, which is brought to

Output Temperature Deviation from Nominal Value

2KTo -K T o 0 KTo 2KTo
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F ig .  8 .98 . Interpretation of the deviation of the fuel flow rate by the fuzzy variables

T a b le  8 .1 1 . Fuzzy control rules
AGt \ATa LNT MNT ZRT MPT LPT
LNG 1: LPO 2: LPO 3:ZRO 4: ZRO 5: MNO
MNG 6: LPO 7: MPO 8: ZRO 9: MNO 10: MNO
ZRG 11: LPO 12: MPO 13: ZRO 14: MNO 15: LNO
MPG 16: MPO 17: MPO 18: ZRO 19: MNO 20: LNO
LPG 21: MPO 22: ZRO 23: ZRO 24: LNO 25: LNO

the valve, is proportional to the necessary change of the fuel flow-rate. The 
corresponding fuzzy variables are as follows: LNO -  large negative output, 
MNO -  mean negative output, ZRO -  zero output, MPO -  mean positive 
output, VPO -  large positive output.

The nominal value for the zero output is 0, while the nominal values for 
LNO, MNO, MPO, and VPO are chosen by the user, so that the performances 
of the fuzzy controller can be adjusted by changing these parameters. It is 
adopted that MPO = —MNO = Kos and LPO = —LNO = Kob. Kos and 
Kob are two more parameters that influence the performance of the fuzzy 
controller. The degree of membership of the output fuzzy variables is generated 
on the basis of the fuzzy control rules. Fuzzy control of this one system is based 
on 25 control rules, which can be represented as in Table 8.11. The rules are 
shown in such a way that rows present the deviation of the fuel flow-rate, 
and columns present the deviation of the output temperature. Each table 
field corresponds to the single control rule, i.e., to the fuzzy variable, which 
describes the system output for the corresponding input fuzzy variables. The 
rules can be numbered in order to enable easier analysis. This is also done in 
Table 8.11.

Every decision rule represents the one fuzzy relation between the tem­
perature deviation, the fuel flow rate deviation, and the system output. The 
decision rules are given in the form of the logical implications:

LNG MNG ZRG SPG LPG

I I I I I 1 I I I 1 1 I I I I
-5KGf -KGf 0 KGf 5KGf

Fuel Flow-Rate
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If ATo = (Linguistic variable LVT)
And AGf = (Linguistic variable LVG) 
then
Output = (Linguistic variable LVO)

All the control rules can be considered as the fuzzy phrases in the form of 
the fuzzy implications. If one of the control rules is marked with N as fuzzy 
phrase, according to the Min-Max-Gravity Method its membership function 
would be:

^N(ATo, AGf, output) = Min {^LVT(ATo), |j,LVG(A Gf), ^LVO(output)}
(8.4)

LVT, LVG, and LVO are the linguistic variables describing input and output. 
The total value of the fuzzy output membership function is given by the 
expression:

^OUTPUT(ATo, AGf, output) = Max {^N1(ATo, AGf, output),. . . ,  ^Nn
x(ATo, AGf, output)} (8.5)

Therefore, the fuzzy output membership function is determined by the 
maximum degree of membership of a fuzzy phrase, from the set of the control 
rules. This means in practice, that the degree of membership of the certain 
output linguistic variable LVO is equal to the maximum degree of membership 
among all the fuzzy implications, which implicate the control rule LVO. In this 
manner, the degrees of membership of all the output linguistic variables taking 
the values LNO, MNO, ZRO, MPO, and LPO, are defined. The output itself 
is calculated as the center of gravity from the following expression:

£  LVOj^OUTPUT(ATo, AGf, LVO,)

output = £  MOUTPUT(ATo, AGf, LVO<)
i

Conclusions

The explained process control is especially convenient to use in the systems 
where more dependent variables have to be controlled. It is also applicable in 
the systems where it is desirable to change the operational regimes and where 
the nominal values of the controlled variables are changeable during the system 
operation on the basis of the input parameters. The concept of the knowledge 
basis is in operation with the fuzzy variables. In other words, the knowledge 
basis is developed as the fuzzy system and used for the operational regime 
definition. The model of fuzzification and defuzzification was worked out.

The linguistic variables of the model have different distance between the 
points having maximum degree of membership. In this manner, by using rela­
tively low number of the linguistic variables, rough and fast control is obtained
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for the large disturbances, while slow and precise control is obtained in the 
case of small disturbances. Compared with classical control, the result is in 
the highly improved response to the disturbances of the system.

The fuzzy logic can find an adequate application in the drying process 
control because of the almost unpredictable way of the input material modifi­
cation. In order to achieve the high quality of the final product, rational energy 
consumption and the increment of productivity, it is necessary to vary working 
regimes, i.e., to control a large number of mutually dependent variables. It is 
also necessary to implement the working regime selection experience into the 
control system. Considering the above facts, it is reasonable to expect that 
expert system with the fuzzy control can give very good results in the drying 
process automation.

8.7 .3 A Fuzzy E xpert System  for P roduct Life C ycle M anagem ent 

Introduction

The real-world decision-making is too much complex, uncertain and impre­
cise to lend itself to precise, prescriptive analysis. It is this realization that 
underlies the rapidly growing shift from conventional techniques of decision 
analysis to technologies based on fuzzy logic. It was originally proposed as a 
means for representing uncertainty and formalizing qualitative concepts that 
have no precise boundaries. So far, engineering applications of fuzzy logic have 
gained much more attention than business and finance applications, but an 
even larger potential exists in the latter fields.

Fuzzy logic is an excellent means to combine Artificial Intelligence meth­
ods. The advantage of fuzziness dealing with imprecision fit ideally into de­
cision systems; the vagueness and uncertainty of human expressions is well 
modeled in the fuzzy sets, and a pseudo-verbal representation, similar to an 
expert’s formulation, can be achieved. Fuzzy logic avoids the abrupt change 
from one discrete output state to another when the input is changed only 
marginally. This is achieved by a quantization of variables into membership 
functions.

Expert systems were designed to reason through knowledge to solve prob­
lems using methods that humans use. A FES is an expert system that utilizes 
fuzzy sets and fuzzy logic to overcome some of the problems, which occur 
when the data provided by the user are vague or incomplete.

In this section, we illustrate that the fuzzy approach may be useful in 
industrial economics. In particular a FES is adapted for product life cycle 
management. All products have certain life cycles. The well-known p r o d u c t  
l i fe c y c l e  approach describes the changing features of markets during their 
evolution. It may therefore serve as the theoretical framework within which 
the market changes can be explained. The life cycle refers to the period from 
product’s first launch into market until its final withdrawal and it is split up 
in phases.
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Although life cycle varies in accordance with the product and sector base, 
usually there are four phases in life cycle period as shown in Fig. 8.99. First 
period is the Entrance Phase, second period is the Development Phase, third 
one is the Maturity Phase and fourth period is the Satisfaction Phase. En­
trance Phase is the period of a product presentation to market and effort 
spent for acceptance and in general it is the period of catching up at par 
point. Development Phase is the best step in which the product has reached 
maximum profit and has been through the brightest period. In the Maturity 
Phase problems come up gradually and decrease in sales starts. Decrease in 
sales start but companies try to keep sales high by some other marketing ac­
tivities, which are called as other sales efforts. In that period increase in sales 
like jumping sales (comb tooth) occur. It is generally agreed that innovation, 
performance, and competition depend significantly on the maturity of mar­
kets. Satisfaction Phase is the period that the companies would not prefer to 
be in and will start to lose in a while.

During maturity period significant changes are made in the way that the 
product is behaving into the market. Since an increase in profit is the major 
goal of a company that introduces a product into a market, the product’s life 
cycle management is very important. Presentation of a new product to the 
market at the best time shall provide advantage to companies in competition 
and increase in share in the market.

In the conventional product life cycle, introduction of new product to 
market corresponds to the point shown as point “A” in Fig. 8.99. When the 
company comes to this point in the end of maturity period, it has to choose one 
of the alternatives of new product, new market, or withdrawal of goods from 
market, so as not to enter into the fourth period, the regression. Depending 
on the structure in which the company is, new product alternative can be the
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new product in physical/functional context, new product in the consumer’s 
view or alternative usage.

Point chosen as point “A” in Fig. 8.99 in the existing systems is considered 
to be late for the new product to enter to market. Because, this point is the 
period in which the company withstands a number of costs called other sales 
efforts (promotion, excess goods, discount, etc.) to keep the sales active. It is 
plain to see from review of the conventional life cycle that profit has started 
to fall in spite of the increase in sales.

It is suggested in the proposed system to determine the point specified as 
point “A” in Fig. 8.99 by means of the expert system. In this proposed struc­
ture, “A” point can be taken to an earlier time than in the existing policies. 
In operation of the system, product life cycle maturity period characteristics 
will be reviewed and efforts will be made to determine the most suitable time 
for presentation of the product to market by evaluation of the factors named 
as macro and micromarket indicators.

To support the decision process, a FES is designed to determine whether 
the entrance of a new product into market or not. Finally, when operating the 
FES, three different deductions can be made, as preservation of the present 
status, introduction of new product to market and withdrawal of product from 
market.

Fuzzy E xpert System s

Expert systems were designed to reason through knowledge to solve problems 
using methods that humans use. Expert systems use heuristic knowledge -  
rather than numbers -  to control the process of solving the problem. Expert 
systems have their knowledge encoded and maintained separately from the 
computer program, which uses that knowledge to solve the problem. Expert 
systems are capable of explaining how a particular conclusion was reached, 
and why requested information is needed.

A FES is an expert system that utilizes fuzzy sets and fuzzy logic to 
overcome some of the problems, which occur when the data provided by the 
user are vague or incomplete. The power of fuzzy set theory comes from the 
ability to describe linguistically a particular phenomenon or process, and then 
to represent that description with a small number of very flexible rules. In a 
fuzzy system, the knowledge is contained both in its rules and in fuzzy sets, 
which hold general description of the properties of the phenomenon under 
consideration.

One of the major differences between a FES and another expert system 
is that the first can infer multiple conclusions. In fact it provides all possi­
ble solutions whose truth is above a certain threshold, and the user or the 
application program can then choose the appropriate solution depending on 
the particular situation. This fact adds flexibility to the system and makes it 
more powerful. Fuzzy expert systems use fuzzy data, fuzzy rules, and fuzzy



inference, in addition to the standard ones implemented in the ordinary expert 
systems.

The Fuzzy E xpert System  Design

The fuzzy expert system design steps are shown as following:

1. Identification of the problem and choice of the type of fuzzy system, which 
best suits the problem requirement. A modular system can be designed 
consisting of several fuzzy modules linked together. A modular approach, 
if applicable, may greatly simplify the design of the whole system, dra­
matically reducing its complexity and making it more comprehensible.

2. Definition of input and output variables, their linguistic attributes (fuzzy 
values) and their membership function (fuzzification of input and output).

3. Definition of the set of heuristic fuzzy rules. (if-then rules).
4. Choice of the fuzzy inference method (selection of aggregation operators 

for precondition and conclusion).
5. Translation of the fuzzy output in a crisp value (defuzzification methods).
6. Test of the fuzzy system prototype, drawing of the goal function between 

input and output fuzzy variables, change of membership functions and 
fuzzy rules if necessary, tuning of the fuzzy system, validation of results.

In building FES, the crucial steps are the fuzzification and the construction 
of blocks of fuzzy rules. These steps can be handled in two different ways. The 
first is by using information obtained through interviews to the experts of the 
problem. The second is by using methods of machine-learning, neural networks 
and genetic algorithms to learn membership functions and fuzzy rules. The 
two approaches are quite different. The first does not use the past history 
of the problem, but it relies on the experience of experts who have worked in 
the field for years. The second is based only on past data and project into the 
future the same structure of the past. The first approach seems preferable 
for our purpose, because no systematic past data on industrial districts are 
available and because the empirical identification of the industrial districts 
requires a careful assessment of their characteristics that only experts in this 
field can make.

We can formalize the steps in the following manner.
For each linguistic variable, input Xi(i = 1 . . . m )  and output y, we have to fix 
the one’s range of variability Ui and V.
Vi, (i = 1 . . .m ) , if n i is the number of the linguistic attribute of the variable 
xi and n ^ l^ n . j ;  We define the set where, Vji G n i , Vni G [1,n]A* are the 
fuzzy numbers describing the linguistic attributes of the input variable xi , in 
the same way, we define the set B  = {B\, B 2, . . . ,  B k, . . . ,  B Y}, where Vk G 
[1, r ]B k are the fuzzy numbers describing the linguistic attributes of the output 
variable y .

At every elements of Ai and B  is associated a membership function; 
/j,A\(x) : Ui ^  [0,1] and j B l : Vi ^  [0,1].

298 8 Applications of Fuzzy Logic
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The elements of Ai and B  overlap in some “grey” zone, which cannot be 
characterized precisely. Many phenomena in the world do not fall clearly into 
one crisp category or another.

Experts that use abstraction as a way of simplifying the problem can 
contribute to identify these “grey” zones. The choice of the slopes of the 
elements of and B is a mathematical translation of what the experts think 
about the single terms. The second step is the block-rules construction. We 
define the set of L fuzzy rules where,

I F ((x i i s  A11) 0  (x2 i s  A22) 0  ®(xm i s  A™,)) T H E N (y  i s  B k). (8.8)

The relations above are called “precondition” and the symbol represents one 
of the possible aggregation operators. In practical applications, the MIN and 
MAX operators, or a convex combination of them, are widely used and so a 
“negative” or “positive” compensation will occur for different values of

Instead of MIN and MAX, it is also possible to use other t-norms or conorms, 
which represent different ways of linking the “and” with the “or”. More gener­
ally, indicating with MAnB a general membership of the intersection and with 
MAUB a general membership of the union, we can define as membership of the 
aggregated set with  A 0B

This is not, in general, a t-norm or a t-conorm. In particular, if we use the 
algebraic product and sum as intersection and union, we obtain the Gamma 
operator [8]

The parameter denotes the degree of compensation. As it is shown in some 
recent work, this aggregator concept can represent the human decision process 
more accurately than others.

The aggregation of precondition and conclusion can be made in several 
ways. The more used are the MAX and the BSUM methods. The choice 
depends of the type of application. The MAX has the meaning of keeping as 
“winner” the strongest rule, in the sense that if a rule is “firing” (activated) 
more then one time, the result is the maximum level of firing. In the BSUM 
case, all the firing degree is considered and the fial result is the sum of the 
different level of activation (not over one). In any case, the two methods 
produce a fuzzy set, which has membership function Magg (y).

m
L < Л  e  [1,n i], Vn  e  [1,n], Ук e  [1,r], (8.7)

1

j M I N  + (1 — j )M A X  with y e  [0,1]. (8.9)

Maob — И'Агв * VYaub with Y e  [0,1]. (8.10)

(1-7) n
(8.11)

1
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Now we have a result of the fuzzy inference system, which is a fuzzy re­
play. We need to return to a “crisp” value, and this step is called “defuzzifica­
tion.” This operation produces a “crisp” action ythat adequately represents 
the membership function ^agg (_). There is no unique way to perform this 
operation. To select the proper method, it is necessary to understand the 
linguistic meaning that underlies the defuzzification process. Two of these 
different linguistic meanings are of practical importance: the “best compro­
mise” and the “most plausible result.” A method of the first type is the Center 
of Area (CoA) that produces the abscissa of the center of gravity of the fuzzy 
output set

_ = J  VMagg (V)dV 
f  Magg (y)d_

A method of the second type is the “Mean of Maximum” (MoM). Rather then 
balancing out the different inference results, this method selects the typical 
value of the terms that is most valid.

M arketin g  Decision M odel

The system structure identifies the fuzzy logic inference flow from the input 
variables to the output variables. The fuzzification in the input interfaces 
translates analog inputs into fuzzy values. The fuzzy inference takes place in 
rule blocks, which contain the linguistic control rules. The outputs of these 
rule blocks are linguistic variables. The defuzzification in the output interfaces 
translates them into analog variables.

Global.Market

P er fo rman ce  o f  „product Manufacture

T a rge t  M arket

E conom ic.condit ions
P o l i t i c a lC i r c u m s  tan c e s
Competition
Other S e l l i n g  E ffo r t s
Pr opor t iona l-In crea se - inS e l ls
Manufacture .P o  int
Re newa l

The following Fig. 8.100 shows the whole structure of this fuzzy system 
including input interfaces, rule blocks and output interfaces. The connecting 
lines symbolize the data flow. The fuzzification method, “Compute MBF,” is 
the standard fuzzification method used in almost all applications. This method 
only stores the definition points of the membership functions in the generated 
code and computes the fuzzification at runtime.

For output variables, different defuzzification methods exist as well. The 
most often used method is CoM, which delivers the best compromise of the 
firing rules.

In Fig. 8.100, rule block of the structure of the fuzzy logic system is shown. 
This block contains the rules of the system describing the control strategy. 
The rule blocks contain the control strategy of a fuzzy logic system.
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F ig . 8 .1 00 . Structure of the fuzzy logic system

T a b le  8 .12 . Rules of the rule block “Rule Block Global Market”
IF T H E N

E c o n o m ic  c o n d . A N D P o l i t ic a l  c irc u m s . G lo b a l m a rk e t
Negative Negative Pessimistic
Negative Ineffective Pessimistic
Negative Positive Pessimistic
Ineffective Negative Pessimistic
Ineffective Ineffective Pessimistic
Ineffective Positive Optimistic
Positive Negative Pessimistic
Positive Ineffective Optimistic
Positive Positive Optimistic

Each rule block confines all rules for the same context. A context is defined 
by the same input and output variables of the rules. The rules’ “IF” part 
describes the situation, for which the rules are designed. The “THEN” part 
describes the response of the fuzzy system in this situation. The DoS is used 
to weigh each rule according to its importance. Factors named as global market 
indicators; overall economic situation and legal and political circumstances 
prevailing in the market are reviewed. The rules in DT of the Global Market, 
can be summarized in production rules as following (see Table 8.12).

Factors named as target market indicators; combination of product is 
reviewed through comparison of performances of the product and its rival. 
Result of review reveals the probability that performance of the product can 
be lower or higher than or equal to that of the closest rival product. The 
condition of “manufacture point” has three condition domain factors: 
m .p .< c.m .p .  , m .p .= c.m .p .  a n d  m .p .> c.m .p .
Above, “m.p.” as manufacture point of our product, “c.m.p.” as manufacture 
point of competitor product. The Fuzzy expert rules in the target market can 
be summarized as following (see Table 8.13).
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T a b le  8 .1 3 . Rules of the ruleblock “Rule Block Manufacture”
IF T H E N

C o m p e t i t io n  A N D O th e r  s e ll in g A N D  P r o p .  in c re a se  M a n u fa c tu re
e f fo r ts in  se lls

Decreased Decreased Decreased Poor
Decreased Decreased Increased Good
Decreased Increased Decreased Good
Decreased Increased Increased Very good
Increased Decreased Decreased Good
Increased Decreased Increased Very good
Increased Increased Decreased Very good
Increased Increased Increased Very good

T a b le  8 .14 . Rules of the ruleblock “Rule Block Target Market”
IF T H E N

M a n u fa c tu re  p o in t A N D R e n e w a l T a rg e t  m a rk e t
Mp<cmp not_ok Wait
Mp<cmp ok Medium
Mp=cmp not_ok Wait
Mp=cmp ok Impulsive
Mp>cmp not_ok Wait
Mp>cmp ok Impulsive

Factors of innovation in micromarket indicators; technological novelty sig­
nificant in competitiveness is reviewed in the form of physical and functional 
production novelty, alternative usage and new markets. The fuzzy expert rules 
in the manufacture can be summarized in production rules as following (see 
Table 8.14).

As the result of sales rates’ decrease, the company will initiate other sales 
efforts to increase sales. These efforts will escalate cost of other sales efforts. 
Thus, profit rate will drop as a big portion of the profit is used to finance other 
sales efforts. The fuzzy expert rules in the performance can be summarized in 
production rules in Table 8.15.

As the result of operating the expert system, three different deductions can 
be made, as preservation of the present status, introduction of new product 
to market and withdrawal of product from market, i.e.:

I f  PERFORMANCE = Active Then  “Preserve the present status”
I f  PERFORMANCE = Passive Then  “Introduce new product to market” 
I f  PERFORMANCE = Bad T hen  “Withdraw the product from market”

MBF of Performance is represented in Fig. 8.101.

Conclusion

This section proposed an effort on the issue of the life cycle management. The 
idea, surely new, is to reproduce, in a structural way, what the experts do when
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T a b le  8 .1 5 . Rules of the ruleblock “Ruleblock performance”
IF T H E N

G lo b a l m a rk e t  A N D M a n u fa c tu re  A N D T a rg e t m a rk e t P e r fo rm a n c e
Pessimistic Poor Wait Bad
Pessimistic Poor Medium Bad
Pessimistic Poor Impulsive Passive
Pessimistic Good Wait Bad
Pessimistic Good Medium Passive
Pessimistic Good Impulsive Passive
Pessimistic Very good Wait Passive
Pessimistic Very good Medium Passive
Pessimistic Very good Impulsive Active
Optimistic Poor Wait Passive
Optimistic Poor Medium Passive
Optimistic Poor Impulsive Active
Optimistic Good Wait Passive
Optimistic Good Medium Active
Optimistic Good Impulsive Active
Optimistic Very good Wait Active
Optimistic Very good Medium Active
Optimistic Very good Impulsive Active

T a b le  8 .16 . Project statistics
Input Output Intermediate Rule Rules Membership

variables variables variables blocks functions
Global Mar. 2 1 1 1 9 6
Manufacture 3 1 1 1 8 7
Target Mar. 2 1 1 1 6 5
Performance 7 1 3 1 18 3
Result 7 1 3 4 41 21

have to decide a new product’s market entering time. This study is applied on 
liquid detergent production. Experts’ accumulated experience is translated in 
the decision tree and in the ruleblocks. As the result of the performed study, 
the most suitable time for introduction of the product to the market can be 
determined, instead of withstanding the costs of other sales efforts and losing 
profit as well as risking the loss of market share in the product’s maturity 
period. When operating the expert system, three different deductions can 
be made, as preservation of the present status, introduction of new product 
to market and withdrawal of product from market. This structure, which 
has been designed solely for a liquid detergent producing company, can be 
conveniently used for different sectors too with new rule bases to be obtained 
from experts of the other sectors. The information about the variables, rules, 
membership functions for different parameters in the project is as shown in 
Table 8.16.
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F ig . 8 .1 01 . MBF of performance

8.7.4 A Fuzzy E xpert System  D esign for D iagnosis of P ro sta te  
Cancer 

Introduction

In recent years, the methods of artificial intelligence have largely been used in 
the different areas including the medical applications. In the medicine area, 
many expert systems (ESs) were designed. ONCOCIN and ONCO-HELP are 
the ESs for diagnosis of the general cancer diseases. For example, ONCO- 
HELP is multimedia knowledge based decision support system for individ­
ual tumor entities. It makes individual and prognosis-oriented treatment of 
patient’s tumor possible (if corresponding predictor’s respective prognostic 
factors are known). Trough registration of individual patient data over tumor 
type, histology, metastatic type, methathesis localization and amount, as well 
as corresponding laboratory parameters together with a corresponding knowl­
edge based on a patient individual prognosis-score can be determined. Using 
this score, a therapy concept is drafted. ONCO-HELP evaluates this concept 
by using therapy controls with regards to tumor progression/regression and 
side effects of the therapy.

Soft computing technology is an interdisciplinary research field in com­
putational science. Various techniques in soft computing such as ESs, neural 
networks, fuzzy logic, genetic algorithms, Bayesian statistics, khaos theory, 
etc., have been developed and applied to solve many challenging tasks in 
medicine and engineering design. There are some publications in the area 
prostate cancer prognosis or diagnosis by aid of soft computing methods.

We have developed a rule-based FES that uses the laboratory and other 
data and simulates an expert-doctor’s behavior. As known when the prostate 
cancer can be diagnosed earlier, the patient can be completely treated. If 
there is a biopsy for diagnosing, the cancer may spread to the other vital 
organs. For this reason the biopsy method is undesirable. As laboratory data, 
prostate specific antigen (PSA) and prostate volume (PV) and age of the 
patient are used. Using this data and help from an expert-doctor, the fuzzy 
rules to determine the necessity of biopsy and the risk factor was developed.
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T a b le  8 .17 . Fuzzy rules
Rule No PSA Age PV PCR
Rule 1 VL Very young VS VL

Rule 43 VL MA H VL

Rule 77 VH Old VS H

The developed system gives to the user the patient possibility ratio of the 
prostate cancer.

Additionally, the FES is rapid, economical, without risk compared to tra­
ditional diagnostic systems, and it has also a high reliability and can be used 
as learning system for medical students.

M ater ia ls  and M ethods

The clinics and laboratory data for the developed system can be taken from 
the literature. For the design process PSA, age and PV are used as input 
parameters and prostate cancer risk (PCR) is used as output. For fuzzification 
of these factors the linguistic variables very small (VS), small (S), middle (M), 
high (H), very high (VH), very low (VL), and low (L) were used. For the 
inference mechanism the Mamdani max-min inference was used.

Fuzzy E xpert System

The units of the used factors are: PSA (ngm P 1), age (year), PV (ml) and 
PCR (%). Parts of the developed fuzzy rules are shown in the Table 8.17. 
Total of 80 rules are formed.

For example, Rule 1, Rule 43 and Rule 77 can be interpreted as follows:

Rule 1: if PSA=VL and Age=Very Young and PV=VS, then PCR=very 
low, i.e., if the patient’s PSA is very small and patient is very young and 
patient’s PV is very small, then patient’s prostate cancer risc is very low. 

Rule 43: if PSA=VL and Age=Middle Age and PV=H, then PCR=VL, i.e., 
if the patient’s PSA is very low and patient has middle age and patient’s 
PV is high, then patient’s prostate cancer risc is very low.

Rule 77: if PSA=VH and Age=Old and PV=VS, then PCR=VH, i.e., if the 
patient’s PSA is very high and patient is old and patient’s PV is very 
small, then patient’s PCR is high.

Fuzzfication of the used factors are made by aid of the follows functions. 
These formulas can be determined by aid both of the expert-doctor and 
literature.
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F ig .  8 .1 02 . The structure of FES

input variable "PSA"

F ig . 8 .1 03 . Membership function of PSA

0 < a < 16 
50 < a
3.8 < c < 308 

c  < 3.8 
c  > 308

1;
b;
z
0
0

65 < b 
0 < b <  65
0 < d < 100 

d < 0 
d  > 100 

(8.12)

Developed FES has a structure shown as in the Fig. 8.102.

1

S tru c tu re  of the Fuzzy Factors

The memberships of the used factors are obtained from the formulas above 
and shown in the Fig. 8.103-8.106.

From the developed rules and from the formulas we obtained, for example, 
for PSA linguistic expressions as follows:
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input variable “Age”

F ig . 8 .1 04 . Membership function of the age

input variable “PV”

F ig .  8 .1 05 . The membership function of the PV

Very
1

1
Low Low Middle High

1 1 1 
Very High

0.5 - \  / \ -

0
10 20 30 40 50 60 70 80 90 100 

output variable “PCR”

F ig . 8 .1 06 . Membership function of the PCR

0
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MVerylow (A)

MMiddle(̂ )

— ; 0 < a < 4
0; Diger durumlar

a < 4 
4 < a  < 8 

8 < a < 12 
a > 12

№gh(A)

MLow (A)

4 ;

0 < a  < 4 
4 < a < 8 

a > 8

a < 8 
8 < a  < 12 
12 < a < 16 

a  > 16

MVeryhigh ( A) a —12 ; 4 ;
a < 12 

12 < a <  16 
a > 16

(8.13)

The other linguistic expressions (Very Young, Young, Middle Age and 
Older) are determined similarly. For the output factor PCR the linguistic 
expressions are Very low, Low, Middle, High and Very high, which can be 
expressed as Very small, Small, Middle, High and Very high, respectively, in 
the formulas mentioned above. For example, for High PSA, Middle Age, and 
Very Big PV the membership functions will have forms, respectively:

Mhigh(PSA) = {0/8 + 0.25/9 + 0.5/10 + 0.75/11 + 1/12 + 0.75/13 + 0.5/14

Mmiddie(Age) = {0/35 + 0.33/40 + 0.67/45 + 1/50 + 0.67/55 + 0.33/60 + 0/65}, 
Mveryhigh(PV) = {0/2129+01/133+0.2/137+• • -+ 1/171 + 1/175+- • - + 1/308}.

Defuzzification

In this stage, truth degrees ( a ) of the rules are determined for the each rule by
aid of the min and then by taking max between working rules. For example, 
for PSA=40ngml~1, Age=55 year, PV=230ml the rules 60 and 80 will be 
fired and we will obtain:

«60 = min(Very High PSA, Middle Age, Very Big PV)
= min(1, 0.67,1) =0.67,

«80 = min(Very High PSA, Old Age, Very Big PV)
= min(1, 0.33,1) = 0.33.

From Mamdani max-min inference we will obtain the membership function 
of our system as max( a 60, a 80)=0.67, that means Very High PCR. Then
we can calculate the crisp output. The crisp value of the PCR is calculated 
by the method center of gravity defuzzifier by the formula:

As also seen from the Fig. 8.107, the value of PCR=78.4. This means that 
the patient has the prostate cancer with a possibility 78.4%. Because this is 
a quite high percentage, doctor has to decide a biopsy.

+ 0.25/15 + 0/16},

D* I  DMmiddle(D)dD
J Mmiddle(D)dD
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A ge = 55 PSA = 40 PV = 230 PCR = 78.4
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F ig .  8 .1 07 . Calculation of the value PCR for the values PSA=8ngml , Age=55, 
PV=300ml

0 3

Conclusion

This section describes a design of a FES for determination of the possibility 
of the diagnosis of the prostate cancer, which can be used by the specialist 
doctors for treatment and by the students for learning the scope. This system 
can be developed further with increasing the knowledge rules from one side 
and with adding the neural network to the system from the other side.

8.7 .5 The V alidation  of a  Fuzzy E xpert S ystem  for U m bilical Cord 
A c id -B ase  A nalysis

In troduction

The umbilical cord vein carries blood from the placenta to the fetus and 
the two smaller cord arteries return blood from the fetus. The blood from the 
placenta has been freshly oxygenated, and has a relatively high partial pressure 
of oxygen (pO2) and low partial pressure of carbon dioxide (pCO2). Oxygen 
in the blood fuels a e r o b i c  cell metabolism, with carbon dioxide produced as 
“waste”. Thus the blood returning from the fetus has relatively low oxygen 
and high carbon dioxide content. Some carbon dioxide dissociates to form 
carbonic acid in the blood, which increases the acidity (lowers the pH).

Samples of blood may be taken from blood vessels in the umbilical cord of 
the neonate immediately on delivery, and a blood gas analysis machine mea­
sures the pH, partial pressure of carbon dioxide (pCO2) and partial pressure of
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oxygen (pO2). A parameter termed base d e f i c i t  o f  ex trace llu lar f lu id  (BDe c  f ) 
can be derived from the pH and pC O 2 parameters. This can distinguish the 
cause of a low pH between the distinct physiological conditions of r e sp i ra to r y  
ac id os is ,  due to a short-term accumulation of CO2, and a m eta b o l i c  a c id os is ,  
due to lactic acid from a longer-term oxygen deficiency.

There are, however, a number of difficulties with the procedure. Difficul­
ties in obtaining the samples can result in two samples from the same vessel 
or mixed samples, whilst blood in the syringe can alter due to exposure to 
air. Blood gas analysis machines require regular internal calibration and ex­
ternal quality control checks to ensure continuing accuracy and precision to 
the manufacturer’s specifications, During a trial on ST-waveform monitoring 
in Plymouth, routine cord blood sampling on every delivery was initiated. 
Careful retrospective analysis of the cord blood gas results highlighted a 25% 
failure rate to obtain arterial and venous paired samples with all parameters. 
This sampling error rate is broadly in line with other studies in which the 
importance of paired samples was recognized.

A model of clinical expertise required for the accurate interpretation of 
umbilical acid-base status was developed, and encapsulated in a rule-based 
expert system. This expert system checks results to ensure their consistency, 
identifies whether the results come from arterial or venous vessels, and then 
produces an interpretation of their meaning.

A number of problems were identified in the implementation of conven­
tional crisp rules used in the initial system. The interpretation section of the 
crisp expert system utilized a number of rules of a form similar to:

IF arterial pH < 7:05 AND arterial BDec f  > 12 mmolp1
THEN severe arterial metabolic acidemia
Such rules feature sharp boundary cut-offs which are not representative 

of real decision making processes and do not employ any form of uncertainty 
representation in the conclusion to imply a less than certain diagnosis.

Fuzzy logic and fuzzy set theory provide a good framework for managing 
uncertainty and imprecision in medicine and have been successfully applied 
to a number of areas. It was felt that a fuzzy logic based expert system would 
offer more realistic and acceptable interpretation. In a fuzzy system, a rule 
such as above may be replaced by:

IF arterial pH is low AND arterial BDe c  f  is high THEN arterial acidemia 
is metabolic

The use of fuzzy logic allows for more gradual changes between categories 
and allows for a representation of certainty in the rule consequence through 
the ability to fire rules with varying strength dependent on the antecedents. 
Additionally, fuzzy logic can allow the results to be presented to clinicians in 
a more natural form.

A preliminary investigation was performed to convert the crisp expert sys­
tem directly into a FES and it was found that, after tuning, this fuzzy system 
improved the performance of the crisp expert system to a level effectively in­
distinguishable from the clinical experts. However, although this preliminary
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FES utilized a set of fuzzy rules to perform the interpretation, it was charac­
terized by a number of restrictions. It functioned with crisp input and output 
variables with no indication of imprecision, and it on ly  interpreted results 
that had been already validated by the crisp expert system as comprising an 
error-free arterial-venous pair. An “integrated” FES was then developed, with 
knowledge gained from the preliminary FES, to validate and interpret all acid- 
base results. When the development of the integrated system was complete, 
a comprehensive validation process was undertaken to reevaluate the numeric 
and linguistic outputs of both the numeric and linguistic interpretations of 
the system.

Development of th e Fuzzy E xpert System

A new set of fuzzy rules was developed for both the vessel identification and 
the interpretation capabilities. Fresh knowledge elicitation sessions were un­
dertaken with the same experts that had developed the crisp rules. Two sets of 
fuzzy rules were employed; the v e s s e l  id en t i f i ca t io n  rules and the in t e rp r e ta t i o n  
rules. The sample(s) parameters are passed through the vessel identification 
rules to determine whether they represent an arterial-venous pair. Once ves­
sel identification has been carried out, the sample(s) are passed through the 
interpretation rules. The Mamdani model of inference was used, with the min 
operator used for implication. Probabilistic operators were used for and  and o r  
as, in elicitation sessions with experts, the fuzzy output sets produced with the 
probabilistic operators were favored as they avoided the “plateau”s produced 
with the standard max, min operators. It was found that the probabilistic 
family generated smoother transition surfaces for the vessel identification rules 
and produced higher performance for the interpretation rules. Fuzzy sets were 
modeled with s i gm o id  membership functions. Center-of-gravity (centroid) de­
fuzzification was performed on the fuzzy output variables to produce numeric 
outputs, and linguistic approximation was performed to produce linguistic 
output.

Vessel Identification Rules

As two samples may both be accidentally obtained from the vein, both from 
the arteries, one may be mixed arterial-venous, or both may be mixed, a 
“safe” vessel identification rule may be that if all parameters differ by more 
than a specified uncertainty, then the samples can definitely be taken as a 
true arterial-venous pair. The expected imprecision in each parameter may be 
established through a number of clinical experiments. A fuzzy rule-base was 
designed to produce the behavior that if all parameters differed by more than 
these values then the results were labeled as an arterial-venous pair -  with 
smooth transitions between each of the categories.
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In terp re tation  Rules

The basic principles of acid-base analysis elicited from the experts were that 
(1) a c id em ia  is based on the absolute value of arterial pH (lower arterial pH 
implies worse a c i d em ia ), refined by the value of the venous pH; (2) c om p on en t  
is based on arterial BD e c  f  (high BD e c  f  implies m eta b o l i c  component, low 
BDec f  implies r e sp i r a to r y  component), refined by venous BDec f ; and (3) 
du ra t ion  is based on pH and BDec f  differences (smaller differences imply 
c h r o n i c  duration, larger differences imply a cu t e  duration), refined by absolute 
arterial values. These basic principles were encapsulated in the fuzzy rules such 
that there was smooth transition over all input and output sets. This ensured 
that, as far as possible, continuous changes in input parameters resulted in 
continuous changes in the fuzzy output sets.

V alidation  of th e Fuzzy E xpert System

The cases for each task can be selected by the independent engineer from 
the database of over 10,000 results (approximately 400 abnormals), but this 
provided serious problems. Cases could not be selected from the entire data­
base on a uniform random basis, as this would have resulted in approximately 
75% paired arterial-venous samples, and approximately 98% n o rm a l  interpre­
tations. In essence it was desired to uniformally span the t a r g e t  outputs, so 
that a roughly even spread across the various output sets would have been 
obtained from the combined experts (and expert system).

N um eric In terp retation

The centroids of the integrated FES were combined into a single index by:

component duration 
condition = a c i d em ia  +--------—--------1------ —----, (8.14)

where the relative weighting of the three terms was determined empirically. 
Given that the three output variables are arranged in such a way that low 
scores indicate a worsening condition for the infant, to the extreme s e v e r e ,  
metabo li c ,  c h r o n i c  a c id em ia ,  this index can be thought of as indicating the 
hea lth  of the infant as represented by its acid-base balance at birth. The ex­
perts were asked to rank 50 cases from “worst” to “best,” in terms of likelihood 
that the infant may have suffered intrapartum asphyxial damage, on the basis 
of the acid-base information alone.

L ingu istic  In terp retation

The experts were given the two sets of pH and BDe c  f  parameters from each 
of 50 cases, and were asked to indicate their opinion of the closest linguistic
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interpretation for three linguistic variables; a c id em ia ,  c om pon en t ,  and dura­
tion. For each variable they were instructed to mark zero, o n e  or two  terms to 
indicate the closest match. This was specifically designed to allow the expert 
to mark two adjacent labels if they felt a result fell in-between two labels, or 
to mark no label if there was insufficient information, or no label was appro­
priate.

S ta tis t ic a l M ethods

Spearman rank order correlation can be used to determine the degree of as­
sociation between two sets of rank-ordered data. This was used to calculate 
the difference between the expert system’s ranking of cases, specified by the 
index described above, and the experts’ ordering. Note that this is effectively 
the same as minimizing the mean square error between the desired rankings 
and the obtained rankings. To measure the agreement between two expert’s 
linguistic categorization a measure of (nominal) categorical agreement was re­
quired. The x 2 statistic can be used to measure the degree of a s s o c ia t i o n  be­
tween two categorical variables, but this statistic makes no distinction between 
departure from chance association due to a g r e em en t  or d isa g r e em en t .  In 1960, 
Cohen introduced a measure of a g r e em en t  between two categorical variables 
termed the kappa coefficient. This plain kappa statistic measured only exact 
agreement and, to overcome this problem, Cohen later introduced w e ig h t e d  
kappa to allow for partial agreement. Plain and weighted kappa was used 
to calculate the degree of agreement between experts and the expert system 
linguistic outputs.

Conclusions

Fuzzy expert system has thus been designed for umbilical cord acid-base analy­
sis. The FES presented here, while a significant development, can be validated 
more thoroughly against clinical data.

8.7 .6 A Fuzzy E xpert System  A rch itectu re  Im plem enting 
Onboard P lann ing  and Scheduling for Autonom ous Sm all S a te llite  

Introduction

Not only the improvement of technology makes the inherent characteristic of 
small satellite, that is “faster, better, and cheaper,” to be developed forward 
endless, the idea of establishing “virtual presence” in space in the next century 
also requires the small satellite developing towards “smarter.” So, several new 
technologies need to be demonstrated, and one of the most crucial is on board 
autonomy.
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On Board Autonom y

For a long time, the satellite operations which include a large number of func­
tions, such as planning mission, sequence the execution commands, tracking 
the spacecraft’s internal hardware state, ensuring correct functioning, recov­
ering in cases of failure, and subsequently working around faulty subsystems, 
or reconfiguring system, were carried out through humans intervention on the 
ground. This traditional approach is necessary and useful to the traditional 
spacecraft, but will not be viable anymore in the future due to (1) up-link 
and down-link communication time delay which makes driving a deep space 
mission impossible; (2) a desire to limit the operations team and cost; (3) 
ensuring high reliability through handling failures real-time. On board auton­
omy integrates three separate technologies: an on board planner/scheduler, a 
robust multithreaded executive including internal commands and telemeter­
ing, telecontrol commands, and a fault diagnosis and recovery system.

In the new model of operations, the scientists or operators will commu­
nicate high-level science goals directly to the spacecraft. The spacecraft will 
then perform its own science planning and scheduling, translate those sched­
ules into commands sequence, verify that they will not damage the spacecraft, 
and ultimately execute them without routine human intervention. In the case 
of error recovery, the spacecraft will have to understand the impact of the 
error on its previously planned sequence and then reschedule in light of the 
new information and potentially degraded capabilities. The goal of the plan­
ner/scheduler is to generate a set of synchronized low level commands that 
once executed will achieve mission’s goals.

P lann ing  and Scheduling

Planning and scheduling is not a new subject. Many planning and scheduling 
methods have been proposed and analyzed since at least the 1950s. Although 
related and often tightly coupled, strictly speaking, planning, and schedul­
ing are distinctly different activities. Planning is the construction of the 
project/process model and definition of constraints/objectives. Scheduling 
refers to the assignment of resources to activities (or activities to resources) at 
specific points in, or duration of, time. The definition of the problem is thus 
primarily a planning issue, whereas the execution of the plan is a schedul­
ing issue. Yet planning and scheduling are coupled; the performance of the 
scheduling algorithm depends on the problem formulation, and the problem 
formulation may benefit from information obtained during scheduling. Be­
cause of uncertainties, and being based on incomplete data, planning and 
scheduling problems are dynamic. No schedule is static until the project is 
completed, and most plans change almost as soon as they are announced.

Depending on the duration of the project, the same may also be true 
for the objectives. The dynamics may be due to poor estimates, incomplete 
data, or unanticipated disturbances. As a result, finding an optimal schedule
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is often confounded not only by meeting existing constraints but also adapting 
to additional constraints and changes to the problem structure.

Practically speaking, finding an optimal schedule is often less important 
than coping with uncertainties during planning and unpredictable distur­
bances during schedule execution. In some cases, plans are based upon well- 
known processes in which resource behaviors and task requirements are all 
well known and can be accurately predicted. In many other cases, however, 
predictions are less accurate due to lack of data or predictive models. In these 
cases the schedule may be subject to major changes as the plan upon which 
it is based changes. Although methods exist for finding optimal solutions to 
some specific scheduling problem formulations, many methods do not work 
when the structure of the constraints or objectives change.

Though lots of successful applications about planning and scheduling in 
spacecraft operations have recently been reported, and all of them are impor­
tant for the development of this field, the inherent fuzziness and uncertainty 
of planning and scheduling was ignored made the achieving of onboard auto­
mated planning and scheduling system become idealization and no reality. 
Rules-based FES not only maintain the value of based rules and the merit 
of using fuzzy logic control to describe uncertainty systems, and utilize the 
predominance of using expert systems to denote and control knowledge.

Fuzzy E xpert System s

Expert systems based conventional logic are not efficient in handling inaccu­
rate and inexact information. Fuzzy logic based expert system is a powerful 
tool providing failure analysis of a complex and nonlinear dynamic system, like 
a final control element. To date, fuzzy expert systems are the most common 
use of fuzzy logic. They are used in several wide-ranging fields, including:

-  Linear and nonlinear control
-  Pattern recognition
-  Financial systems
-  Operation research
-  Data analysis

As previously mentioned, this section adopts a rules-based FES 
architecture used to on-board planning and scheduling. The architecture 
also considered all kinds of limits of on board operations, such as processing 
capability of CPU, memory size, and the desire of real-time. In response 
to above consideration, this section presents an architecture, which is de­
veloped using rules-based FES. In order to adapt the requirement of on 
board operation, the resource restrain is also considered in the architecture, 
such as processing speed of CPU, the capacity of storage and the real-time 
requirement.
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Domain and R equirem ents

As we known, the characteristics of small satellites make on board automated 
planning and scheduling function different form other project applications. 
Small Satellite domain places a number of requirements on the software ar­
chitecture that differentiates it from domains considered by other researchers 
or other projects. There are some major properties of the domain that drove 
the architecture design as following:

1. Human could not intervene a on board small satellite real-time, but the 
high reliability must be ensured. Though small satellite is cheaper than 
large spacecraft, it is also expensive and often unique, so a high reliability 
must be requirement by user. However, the harsh environment of space or 
the inability to test in all flight conditions and still cause unexpected hard­
ware or software failures, so that small satellite must have autonomous 
operations function that can rapidly react to contingencies by retrying 
failed actions, reconfiguring subsystems or ensuring the small satellite to 
prevent further, potentially irretrievable, damage.

2. The resources of small satellite is severely limited, and must be used 
optimized in order to achieve the missions. Small satellite uses various 
resources, including obvious ones like fuel and electrical power, and less 
obvious ones like the number of times a battery can be reliably discharged 
and recharged. Some of these resources are renewable but most of them 
are not. Hence, autonomous operations require significant emphasis on 
the careful utilization of nonrenewable resources and on planning for the 
replacement of renewable resources before they run dangerously low.

3. Small satellite operation is a complicated concurrent activity. Small 
satellite has a number of different subsystems, all of which operate con­
currently. Hence, reasoning about the small satellite needs to reflect its 
concurrent nature. In particular, the planning and scheduling needs to be 
able to schedule concurrent activities in different parts of the small satel­
lite, including constraints between concurrent threads active to handle 
concurrent commands to different parts of the small satellite.

M odule and M ethod

Formally, resource constrained project scheduling (RCPS) is characterized by 
the following:
G iv en : A set of tasks T , a set of resources R, a capacity function C : ^  N , a 
duration function D : T ^  N , a utilization function U : T x R ^  N , a partial 
order P  on T , and a deadline d.
F in d : An assignment of start times S  : T ^  N , satisfying the following:

1. Precedence constraints: if t i precedes t 2 in the partial order P , then S ( t\)+
D (ti) < S (t2).
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2. Resource constraints: for any time x, let ru nn in g  (x) = {t|S(t) < x < 
S (t )  + D(t)}, then for all time x, and all r  G R, (running x) U(t, r )  < C (r ) .

3. Deadline: for all tasks t  : S(t) > 0 and S (t) + D(t) < d.

Severa l Concepts

A ctiv it ies

As a data structure, activities performs specific detail functions which space­
craft must execute. An activity represents an action or step in the database. 
It maybe use one or more constraints. Moreover, An activity maybe include 
one or more subactivities.

Subactivities are activities that can be scheduled any time within the par­
ent activity subject to resource constraints within the subactivity. Subactivi­
ties are similar to the constraint-defined activities without the exact temporal 
relationship between the parent and subactivities.

An activity may have multiple execution modes. Any activity may be 
executed in more than one manner depending upon which constrains are used 
to complete it. Interruption modes may depend on the resources that are 
applied to the activity.

Constra in s

Different from typical RCPS questions, onboard autonomous planning and 
scheduling includes other types of constraints: temporal constraints, prece­
dence constraints, and availability constraints, besides resource constraints. 
Constraints turn a relatively smooth solution space with many optimal solu­
tions to a very nonuniform space with few feasible solutions.

A valid plan must satisfy many constraints, including ordering constraints 
(e.g., the catalystbed heaters must warm up for 90min before using the reac­
tion control thrusters), synchronization constraints (e.g., the antenna must be 
pointed at the Earth during up-link), safety constraints (e.g., do not point the 
radiators within 20° of the sun), and resource constrains (e.g., the CCD cam­
era requires 50 W of power). These are all expressed as temporal constraints. 
As the most important constraints of small satellite on board planning and 
scheduling system, resource constraints have four types: automic, concurrency, 
depletable, and nondepletable. Automic resources are physical devices that 
can only be used (reserved) by one activity at a time, star tracker, reaction 
wheel, CPU are automic resources.
C o n cu r r en c y  r e s o u r c e s  are similar to atomic except they must be made avail­
able to the activity before they are reserved, a telecommunications downlink 
pass is a kind of concurrency resources.
N on-dep le tab le  r e s o u r c e s  are resources that can used more than one activity 
can use a different quantity of the resource, solar array power is the typical 
nondepletable resources.
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CONSTRAINS-IF:
Status_AttitudePrecision< 0.3 
Status-AttitudeStability< 0.001 
StatusStartUniversalTime=[6000,1200] 
StatusLatitude=[-35,14]
Status Jongitude=[25,70]
Resource-Power> 120 
PremiseFuzzyDegree=0.85 
A CTIVITIES_ THEN:
Actimty-CCDCamerajprepare 
A ctiv i tyR eco rd erO pen  
Activity-CCDCamera- Work 
Activity-DataProcess-compress 
RULE.END

F ig . 8 .1 08 . An example of constrains which is used to photograph

D epletab le  r e s o u r c e s  are similar to nondepletable except that their capacity is 
diminished after use, in some cases their capacity can be replenished (battery 
energy, memory capacity) and in other cases it cannot (fuel).

In many solution methods which have been proposed and implemented, 
heuristic methods were devised to find good solutions, or to find simply feasible 
solutions for the really difficult problems mostly. Most research now consists 
of designing better heuristics for specific instances of scheduling problems. 
However, heuristic solutions are typically limited to a specific set of constraints 
or problem formulation, and devising new heuristics is difficult at best.

Because of the severely limited on-board processing capabilities, heuristic 
methods, which were used frequently in other projects, are no more suit­
able for on-board spacecraft planning and scheduling. In order to suffice the 
fuzziness or uncertainty of spacecraft planning and scheduling under condi­
tion of severely limited on-board resources, we adopted onboard planning and 
scheduling fuzzy expert system architecture (OPSFESA) which fuzzy logic is 
useful in handling uncertain systems, and expert system theory is advantage 
of handling rule based knowledge system.

Constrains are denoted in the form of fuzzy rules as “if . .. then.. . . ” 
Figure 8.108 is the example of CCD Camera Working, in which, attitude 
control precision, attitude control stability, universal time, latitude position 
and longitude position status is required, and power resource must be sufficed, 
all these premises have one fuzzy degree, under the premise and fuzzy degree, 
the activities include CCD camera preparation, data recorder opening, CCD 
camera working and compressing image data. Figure 8.109 is the example of 
CCD camera preparation activity, the example of resources and status is in 
Figs. 8.110 and 8.111.

A rch itectu re

O PSFESA is achieved through the cooperation of the following components:
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A CTIVITY Activity_CCDCamera_prepare 
Related_Device=[CCDCamera, heater]
Constraint= {
Status-CCDCameraTemperature> 20,
Resomce_Power> 10,
Duration=90 }
SubActivities= {NONE}
Commands=14
//the procedure which a ch ieve the activity  
RunningElag
//one o f  Idle, Running, Finished, Non-valid 
ACTIVITYEND

F ig . 8 .1 09 . An activity example

RESOURCE Resource_Power
NO=155
Value=120
Reliability=0.97
RESOURCEEND

F ig . 8 .1 10 . An example of resource

STATUS Status_Precision
NO=22
Value=0.57
ChangeOrder=[]
// i f  Statue value changes by order
Reliability=0.97
STATUSEND

F ig .  8 .1 11 . An example of status

Goals p ro f i l e  contains the list of all high-level goals that have to be achieved 
over the entire duration of the mission, which is put into by communication 
from ground or initiate before being lunched;
E ngin e  management center which attempters and coordinates every parts, 
has functions, activating fuzzy inference mode, retrieving mission goals and 
commands sequence, driving subsystems and assemblies, and so on.
Fuzzy ru le s  base storage of all constrains and activities also include mainte­
nance of them.
Fuzzy in f e r e n c e  m od e  is the kernel of OPSFESA; in their high level goals are 
translated acceptable low level commands sequence which be used to control 
subsystems and assemblies directly.
C om m a n d s  s eq u en c e  The detailed sequence of low-level commands to achieve 
high-level goals, however, is not prestored but is generated on board by the 
planner.
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Fuzzy planning and scheduling mode is composed of fuzzy rules base and 
fuzzy inference mode.

Continuous operation is achieved by repetition of the following cycle:

1. Retrieve high level mission goals from the goals profile send to fuzzy in­
ference mode;

2. Ask the engine to activate fuzzy planning and scheduling mode, in there, 
mission goals are transmitted low level commands sequence;

3. Send the new generated schedule which is a set of commands sequence to 
the database, in there, commands are retrieved to control subsystems or 
assemblies. If a new schedule is generated, the engine will continue exe­
cuting its current schedule and start executing the new schedule when the 
clock reaches the beginning of the new scheduling horizon, and making 
sure that the commands succeed and either retries failed commands or 
generates an alternate low level command sequence. Hard command exe­
cution failures may require the modification of the schedule in which case 
the executive will coordinate the actions needed to keep the spacecraft 
in a “safe state” and request the generation of a new schedule from the 
planning and scheduling architecture.

4. Repeat the cycle from step 1 when one of the following conditions apply
(a ) A new goals profile needs for generating a new schedule;
(b) The engine has requested a new schedule as a result of a hard failure.

OPSFESA is the only component that is activated as a “batch process” and 
dies after a new schedule has been generated. This ensures the high reliability 
and rapidity required by the domain.

The results of OPSFESA is generation of spacecraft low level commands 
sequence from high level goals specifications. So, it will encoding of complex 
spacecraft operability constraints, flight rules, spacecraft hardware models, 
science experiment goals and operations procedures to allow for automated 
generation of low level commands sequence. Because on-board resources are 
severely limited, the architecture needs to generate courses of action that 
achieve high quality execution and cover extended periods of time. OPSFESA 
always has to trade off the level of goal satisfaction with respect to the long 
term “mission success” and within the resource limitations.

We choose to plan at infrequent intervals because of the limited on-board 
processing capabilities of the spacecraft. The planner must share the CPU 
with other critical computation tasks such as the execution engine, the real 
time control loops and the fault detection, isolation and recovery system. 
While the planner generates a plan, the spacecraft must continue to oper­
ate. More importantly, the plan often contains critical tasks whose execution 
cannot be interrupted in order to install newly generated plans.

There will be a copy of the on-board planner built into the ground system. 
This copy will be used to generate experience and rules of thumb as to what 
sets of goals are easily achievable and what sets are difficult to achieve for the 
onboard system based on these rules of thumb. The operators will define the
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goals for each mission phase and since the Remote agent is closing the loop 
around these goals, the best prediction of spacecraft behavior is that the goals 
will be achieved on schedule.

OPSFESA must be able to respond to unexpected events during plan 
execution without having to plan the response. Although it is sometimes nec­
essary to replan, this should not be the only option. Many situations require 
responses that cannot be made quickly enough if the has to plan them. The ex­
ecutive must be able to react to events in such a way that the rest of the plan 
is stall valid. To support this, the plan must be flexible enough to tolerate 
both the unexpected events and the executive’s responses without breaking. 
By choosing an appropriate level of abstraction for the activities, and second, 
by generating plans in which the activities have flexible start and end time.

Changing the start or end time of an activity may also affect other ac­
tivities in the plan. Although flexibility in the activity start and end times 
typically occurs because the times are under-constrained, flexibility can also 
occur because the duration of an activity is not determined until execution 
time. The plan must be able to represent this kind of uncertainty. There two 
ways of doing this. One is to use the existing capability for flexible and end 
times; a second approach is to fix the end time of the activity to the latest 
end time, and change the semantics of the activity.

Conclusion

The most important distinction between the OPSFESA and other similar sys­
tems is that our architecture pays more attention to the characteristic of small 
satellite and its constrains and limitations, that makes the realized system to 
be smarter and terser. Besides planning and scheduling technology, the key 
technologies of spacecraft autonomy also include a robust multithreaded exec­
utive including internal commands and telemetering, telecontrol commands, 
and a model-based fault diagnosis and recovery system.

8.8 Fuzzy Logic Applications in Power Systems

8.8.1 Introduction  to  Power System Control 

M otivation

A reliable, continuous supply of electric energy is essential for the function­
ing of today’s complex societies. Due to a combination of increasing energy 
consumption and impediments of various kinds concerning the extension of ex­
isting electric transmission networks, these power systems are operated closer 
and closer to their limits. Deregulatory efforts will tighten the economical con­
straints under which utilities have to operate their own network or allow or 
prevent competitors from using it. This in turn will require more precise power
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flow control which is made possible by phase angle controllers being developed 
using new power electronic equipment. However, it is to be expected that these 
highly nonlinear components will introduce harmonics and require nonlinear 
control in order to prevent system destabilization. This situation requires a 
significantly less conservative power system operation regime, which, in turn, 
is possible only by monitoring and controlling the system, state in much more 
detail than was necessary previously.

Power System C ontrol Tasks

In electric power systems, one can distinguish three different control levels:

-  Generating unit controls, which consist of prime mover control and exci­
tation control with automatic voltage control (AVR) and power system 
stabilization (PSS). The first controls generator speed deviation and en­
ergy supply system variable like boiler pressure or water flow. Excitation 
control aims at maintaining the generator terminal voltage and reactive 
power output within its machine-dependent limits.

-  System generation control, which determines active power output such 
that the overall system generation meets the system load. It further con­
trols the frequency and the tie line flows between different power system 
areas.

-  Finally transmission control monitors power and voltage control devices 
like tap-changing transformers, synchronous condensers and static VAR 
compensators. In reality all controls affect both components and systems. 
For example the AVR is known to introduce local mode oscillations as well 
as inter-area oscillations, which in turn are counteracted by a well-tuned 
PSS.

From the viewpoint of system automation, generating unit control is a 
complete closed-loop system and in the last decade a lot of effort has been 
dedicated to improve the performance of the controllers. The main problem 
for example with excitation control is that the control law is based on a lin­
earized machine model and the control parameters are tuned to some nominal 
operating conditions.

In case of a large disturbance, the system conditions will change in a highly 
nonlinear manner and the controller parameters are no longer valid. In this 
case the controller may even add a destabilizing effect to the disturbance by 
for example adding negative damping. These problems provide an important 
motivation to explore novel control techniques like fuzzy systems and their 
potential in the area of prediction, approximation, classification and control. 
Power system control consists of four steps:

1. System parametric or state-space modeling based on physical components 
or assumed properties
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2. System parameter identification based on component data and measure­
ments

3. System observation of inputs and outputs by filtering, prediction, state 
estimation, etc

4. Design of an open-loop or closed-loop system control law such that the 
operating conditions are met

In the case of electric power systems and electric machines, individual 
components are modeled in terms of resistors, inductors, capacitors, machine 
inertia, etc. Their interaction is modeled according to the laws of electro­
magnetic circuits and fields. The resulting set of differential equations then 
defines a state-space model whose parameters, for example the machine re­
actances have to be identified under steady state and transient conditions. 
Voltage signals on the other hand are modeled as a trignometric sum of sin 
and cos functions without taking the underlying physical model into account. 
In this case the free parameters to be identified are the signal amplitudes.

System identification may be defined as the process of determining the 
parameters of the dynamic system model using observed input and output 
data. Dynamic load modeling attempts to model individual as well as com­
posite loads of the system. Identification of machine parameters is another 
identification task.

System observation in power systems concerns off- and online monitoring 
of directly or indirectly observable system variables. Load forecasting, for 
example is an offline monitoring task, power quality monitoring an online 
monitoring task. State estimation calculates the most likely values for power 
system parameters like bus voltage and line flow by giving a least-squares 
estimate of a set of redundant measurements.

Closed-loop control attempts to counter-balance undesirable effects like 
undamped frequency oscillations or voltage deviations in a closed-loop feed­
back environment. Excitation control, automatic voltage regulation and PSS 
fall in this category.

Assume that the plant has been modeled by the following single-input, 
single-output noise-free continuous system and the parameters of the nonlinear 
plant model f  and observer model h have been identified.

dx(t)/dt =  f  (x, u ,t), 
y =  h (x ,u ,t),

where x  G Жт is the state vector of the modeled plant, u e Ж is the control 
input of the system, y e  Ж is the observed output of the system, f  is a 
nonlinear state-space model of the plant, and h is the nonlinear observer 
model.

r is a reference signal, f  (e ,t)  denotes the controller and e =  r — y is the 
feedback error to be minimized.

In the case of a power system stabilizer the reference signal is the refer­
ence voltage Vref and the terminal voltage Vt, the plant output is the angular
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Fig. 8.112. Closed loop control system

speed deviation Dw, and the control signal is the stabilizing voltage vs. The 
plant model comprises excitation system, AVR and generator model. So far 
the continuous system model has been considered. If the system in Fig. 8.112 
is discretized taking into account k =  1 . . .n  time-steps t =  kT , the con­
trol, output and error signals will become higher-dimensional vectors, as for 
example

u =  [u(k), u(k — 1 ) , . . . ,  u(k — m)]T
e =  [e(k), e(k — 1 ) , . . . ,  e(k — n)]T
y(k) =  hd(x(k), x(k — 1),. . . ,u (k ) ,u (k  — 1) ...)

In the case of feedback error minimization, task 4 of the controller design 
consists in finding a function

ф : Ж" — >Ж such that ф(е) =  u(k +  1) and |e(k + 1 ) \ =  min .

In the case of linear controllable and observable systems, a controller f  can 
be found through inversion of the system transfer function and pole placement. 
In the case of nonlinear systems there is no general closed form of f . How fuzzy 
systems can provide an approximation of the controller f  is explored in the 
following sections.

State o f  the A rt o f  Fuzzy C ontrol for Power Systems

In the case of power systems, control measurement data can be obtained for 
the discretized plant output y, the reference signal r and the control input
u. In analogy to neural networks, let this data be referred to as the training 
data. A short overview of the studies of fuzzy systems of type u =  F (e) as 
controllers f  (e) in the area of power systems or generation control is now 
given. The majority of fuzzy controllers can be found in the area of excitation 
control, especially power system stabilizers (PSS). An upcoming important 
area is control of FACTS devices like thyristors and GTOs. Table 8.18 gives 
an snapshot of the state-of-the-art. Given the considerable number of publica­
tions Table 8.18 cannot claim to give a complete overview. Instead this short
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Table 8.18. Overview of fuzzy systems applications to power system control

Application Fuzzy
approach

Membership
functions

comments

PSS Self-adaptive B-Spline 1-machine, 2-line-inf. Bus; Lab 
experiment, micromachine system 
DSP controller

PSS Rule-based Triangular 1-machine, 2-line-inf. Bus; Lab 
experiment, micromachine system 
DSP controller

PSS Self-adaptive Trapezoidal Simulation on analog power system 
simulator (12 machine max); Proto­
type field test on two hydro units, 
frequency response study, capacitor 
bank switching

PSS Self-adaptive Gaussian Computer simulation, utility power 
system

AVR & PSS Rule-based Trapezoidal Computer simulation, 3-machine 
test system

PSS Rule-based Triangular Computer simulation, 2-machine, 
4-line-inf. bus

PSS Self-adaptive Triangular Computer simulation, 1-machine, 
2-line-inf. bus

PSS Rule-based Triangular Computer simulation, 3-machine, 
7-line-inf. bus

FACTS Self-adaptive Trapezoidal Computer simulation, 5-macine, 
13-line-inf. Bus, capacitor bank 
switching, thyristor controlled 
braking resistor, static VAR 
compensator

Induction
motor

Rule-based Trapezoidal Lab inverter/3 hp induction motor, 
PC-based microcontroller

Variable speed Rule-based 
drive

Triangular Lab inverter/reduced ratings, 
induction motor, DSP-based 
microcontroller

PWM inverter Rule-based Triangular Lab prototype of wind energy 
conversion system

summary intends to provide the reader with some information on typical ap­
proaches and project states. The implementation of the fuzzy controller on a 
PC or DSP in order to control actual small generators or motors in an exper­
imental laboratory environment. In most cases the membership functions are 
established based on data samples.

Those approaches listed as rule-based attempt to justify the fuzzy sets in 
terms of linguistic descriptions like “if angle is small then deviation should 
be small.” The comparison of fuzzy controllers and conventional controllers 
stresses advantages of fuzzy controllers as being “generic” parametric models
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instead of circuit based state space models. The self-adaptive controllers can 
be easily tuned to different operating conditions and all projects report better 
tracking capabilities of the fuzzy controllers when compared to conventional 
controllers. However, the sensitivity issues concerning the range of validity of 
the tuning and the detection of changes of operating conditions still need to be 
investigated for conventional as well as for fuzzy controllers. This is especially 
important for power system control where topology, load and generation can 
change stochastically and discontinuously.

Application  o f  a Fuzzy Logic Controller as a Power System 
Stabilizer

The design process of the fuzzy logic controller (FLC) has five steps:

-  Selection of the fuzzy control variables
-  Membership function definition
-  Rule creation
-  Inference engine
-  Defuzzification strategies

To design the FLC, variables which can represent the dynamic performance 
of the plant to be controlled should be chosen as the inputs to the controller. 
In addition to the proper input signals, signal gains and fuzzy subsets should 
be defined. It is common to use the output error (e) and the rate or derivative 
of the output (e') as controller inputs. In the case of the fuzzy logic based 
power system stabilizer (FPSS), the generator speed deviation (Dw) and its 
derivative (Dw), the acceleration, are considered as the inputs of the FPSS. 
After sampling, two appropriate gains, SG and AG are applied to speed de­
viation and acceleration, respectively, and then fed to the FPSS. The output 
of the controller is also scaled by an output gain, UG, and added to the AVR 
input signal.

The measured input variables are converted into suitable linguistic vari­
ables. In this case, seven fuzzy subsets, NB (Negative Big), NM (Negative 
Medium), NS (Negative Small), Z (Zero), PS (Positive Small), PM (Positive 
Medium) and PB (Positive Big) have been chosen. Membership functions for 
the input variables used here are shown in Fig. 8.113. These membership func­
tions are symmetrical and each one overlaps with the adjacent functions by 
50%.

In practice, the membership functions are normalized in the interval 
[—L, L], which is symmetrical around zero. Thus, control signal amplitudes 
(fuzzy variables) are expressed in terms of controller parameters (gains). These 
parameters can be defined as:

K j  =  2L /X rangej ,

where X rangej  defines the full range o f the control variable X j .
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fig. 8.113. Architecture of ANF PSS

Table 8.19. FPSS control rule table 
Aw

NB NM NS Z PS PM PB
NB NB NB NB NM NM NS Z
NM NB NB NM NM NS Z PS
NS NB NM NS NS Z PS PM
Z NM NM NS Z PS PM PM
PS NM NS Z PS PS PM PB
PM NS Z PS PM PM PB PB
PB Z PS PM PM PB PB PB

In this case, both inputs of the FPSS have seven subsets. Thus, a fuzzy 
rule table with 49 rules should be constructed. A rule table that is formulated 
based on the past experience of manual tuning of a conventional PSS (CPSS) 
is shown in Table 8.19. In the next step, the controller output is computed 
by the inference mechanism. As an example, consider a pair of D w and D 
&w inputs to the controller. In fuzzification stage these inputs are converted 
to membership grades for each of the seven subsets, e.g., mw(PB), mw(PM), 
etc., and mw& (PB), mw& (PM), etc. Thus, there is a set of 49 pairs of 
membership grades for each of input pair. The smaller element in each pair 
would be the grade of membership for any of the possible control actions. For 
example, the FPSS output membership grade for the first rule in Table 8.19 
is given by:

rtOut =  minK  (NB), ^ (NB)],
The output of the FPSS is limited to 0.1 pu and is divided in seven subsets. 

Also, the output membership functions are chosen as singleton functions as 
indicated in Table 8.20.

The output of the inference process at this stage is a fuzzy set. In order to 
take a nonfuzzy (crisp) control action, the fuzzy control action inferred from 
the fuzzy control algorithm must be defuzzified. Three different defuzzification
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T a b le  8 .20 . Output membership functions

Output
subsets

NB NM NS Z PS PM PB

uout pu -0.10 -0.06 -0.03 0.0 0.03 0.06 0.10

methods, the Max criterion method, the MoM method and the centre of grav­
ity method are commonly used. To ensure that all of the fired rules have some 
contribution in the output control action, the centre of gravity method, using 
the following equation, is employed in this study:

=  £ R=UjeSuout(^ K u t (Z )
pss SRu}eX  ut(Z) ’

where fj0oUt(Z ) denotes the output membership grade for *th rule with the 
output subset of Z . To achieve the best performance with FPSS, the input 
and output gains need to be selected properly. For this purpose, the speed 
deviation and its derivative were measured for a variety of small and large 
disturbances applied to the system. The universe of discourse for both inputs 
of the FPSS is normalized.

Therefore, appropriate gains should be chosen such that they map the 
measured inputs of the FPSS to their suitable linguistic variables. For exam­
ple, for a small disturbance the measured inputs should be mapped to the 
“Small” domain, whereas for a large disturbance they should be mapped to 
the saturated region of the “Large” domain. It was found for the system under 
study that for different applied disturbances on the system, the magnitude of 
D &w was about ten times that of D w. As the same membership functions 
are used here for both inputs, the input gain for D w should be about ten 
times the input gain for D &w. After fixing the input gains, the output gain 
should be selected such that the controller is sensitive to the errors in the 
lower region of the universe of discourse. At the same time, to minimize the 
time the control stays in the saturated region of the controller, the output 
gain selected should not be very high.

A  Self Learning Fuzzy Power System Stabilizer

A lot of effort is required in the creation and tuning of the fuzzy rules for an 
FLC which can be time consuming and nontrivial. A self-learning adaptive 
network can be used to reduce this effort. A class of adaptive networks, which 
are functionally equivalent to FLC, combines the idea of the FLC and adaptive 
network structures.

Essentially, an adaptive network is a superset of multilayer feed forward 
network with supervised learning capability. The network consists of nodes 
and directional links through which the nodes are connected. Each node 
performs a particular function, which may vary from node to node. In this



8.8 Fuzzy Logic Applications in Power Systems 329

network, the links between the nodes only indicate the direction of flow of 
signals and a part or all of the nodes contain the adaptive parameters. These 
parameters are specified by the learning algorithm and should be updated to 
achieve the desired input-output mapping.

An adaptive network based FLC employed as a fuzzy logic PSS (ANFPSS), 
Fig. 8.113, has two inputs, the generator speed deviation and its derivative, 
and one control output. The node functions in each layer are:

-  Layer 1 performs a membership function
-  Layer 2 represents the firing strength of each rule
-  Layer 3 calculates the normalized firing strength of each rule
-  Layer 4 output is the weighted consequent part of the rule table
-  Layer 5 computes the overall output as the summation of all incoming

nodes.

This adaptive network is functionally equivalent to a fuzzy logic PSS. 
Because the adaptive network has the property of learning, the learning algo­
rithm can tune fuzzy rules and membership functions of the controller auto­
matically. Learning is based on the error evaluated by comparing the output 
of the ANFPSS and a desired PSS.

In a typical situation, a desired controller may either not be available, 
or the extensive input-output data required for training may not be easy to 
procure. A self-learning FLC does not require another desired controller to 
obtain the training data. It is trained from the controlled plant output, which 
in the case of the self-learning ANFPSS has been taken as the generator speed 
deviation.

In this approach, first a function approximator (or model) is required to 
represent the input-output behavior of the plant. An adaptive network based 
fuzzy logic model, which has the same structure as the controller, is employed 
to model the plant. The function of this model is to compute the derivative of 
the model output with respect to its input by means of the back propagation 
process. Consequently, by propagating errors between the actual and the de­
sired plant outputs, back through the model, error in the control signal can be 
calculated. The error in the control signal can be used to train the controller. 
A block diagram of the self-learning FLC, showing an adaptive network con­
taining two subnetworks, the fuzzy controller and the plant model, is shown 
in Fig. 8.114.

The training process for the controller starts from an initial state at t =  0. 
Then the FLC and the plant model generate the next states of control and 
D w at time t =  h. The process continues till the plant state trajectory is 
determined based on the minimization of a performance index.

A number of studies have been performed to investigate the performance 
of the self-learning FLC structure employed as a self-learning ANF PSS on 
a single-machine infinite-bus system. One such for a 0.2 pu step increase in 
torque under leading power factor conditions is shown in Fig. 8.115.
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CONTROLLER

Output
Error

Time (second)

F ig . 8 .1 15 . Response curve

C ontrol Design Techniques

When fuzzy systems are used as controllers, they are called fuzzy controllers. 
If fuzzy systems are used to model the process and controllers are designed 
based on the model, then resulting controllers also are called fuzzy controllers. 
Therefore, fuzzy controllers are nonlinear controllers with a special structure. 
Fuzzy control has represented the most successful applications of fuzzy the­
ory to practical problems. Fuzzy control can be classified into static fuzzy 
control and adaptive fuzzy control. In static fuzzy control, the structure and 
parameters of the fuzzy controller are fixed and do not change during real­
time operation. On the other hand in adaptive fuzzy control, the structure 
and/or parameters of the fuzzy controller change during real-time operation. 
Fixed fuzzy control is simpler than adaptive fuzzy control, but requires more
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knowledge of the process model or heuristic rules. Adaptive fuzzy control, on 
the other hand, is more expensive to implement, but requires less information 
and may perform better.

Fixed Fuzzy Controller Design

Fuzzy control and conventional control have similarities and differences. They 
are similar in the sense that they must address the same issues that are com­
mon to any control problem, such as stability and performance. However, 
there is a fundamental difference between fuzzy control and conventional con­
trol. Conventional control starts with a mathematical model of the process 
and controllers are designed based on the model. Fuzzy control, on the other 
hand, starts with heuristics and human expertise (in terms of fuzzy IF-THEN 
rules) and controllers are designed by synthesizing these rules. That is, the 
information used to construct the two types of controllers is different; see 
Fig. 8.116. Advanced fuzzy controllers, however, can make use of both heuris­
tics and mathematical models.

For many practical problems, it is difficult to obtain an accurate yet simple 
mathematical model, but there are human experts who can provide heuris­
tics and rule-of-thumb that are very useful for controlling the process. Fuzzy 
control is most useful for these kinds of problems. If the mathematical model 
of the process is unknown, we can design fuzzy controllers in a systematic 
manner that guarantees certain key performance criteria.

The design techniques for fuzzy controllers can be classified into the 
trial-and-error approach and the theoretical approach. In the trial-and-error 
approach, a set of fuzzy IF-THEN rules are collected from human experts or 
documented knowledge base, and the fuzzy controllers are constructed from 
these fuzzy IF-THEN rules. The fuzzy controllers are tested in the real sys­
tem and if the performance is not satisfactory, the rules are fine-tuned or 
redesigned in a number of trial-and-error cycles until the performance is sat­
isfactory. In theoretical approach, the structure and parameters of the fuzzy 
controller are designed in such a way that certain performance criteria are

conventional fuzzy
control control

F ig . 8 .1 16 . Fuzzy control and conventional control
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guaranteed. Both approaches, of course, can be combined to give the best 
fuzzy controllers.

Trial-and-Error Approach

The trial-and-error approach to fuzzy controller design can be summarized in 
the following steps:

1. Select state and control variables. The state variables should characterize 
the key features of the system and the control variables should be able to 
influence the states of the system. The state variables are the inputs to 
the fuzzy controller and the control variables are the output of the fuzzy 
controller.

2. Construct IF-THEN rules between the state and control variables. The 
formulation of these rules can be achieved in two different heuristic 
approaches. The most common approach is the linguistic verbalization 
of human experts. Another approach is to interrogate experienced experts 
or operators using a carefully organized questionnaire.

3. Test the fuzzy IF-THEN rules in the system. The closed-loop system with 
the fuzzy controller is run and if the performance is not satisfactory, fine 
tune or redesign the fuzzy controller and repeat the procedure until the 
performance is satisfactory.

The resulting fuzzy IF-THEN rule can be in the following two types:

Type I : IF xi is A\ AN D... AND x n is A N ,
THEN u is B f .

Type II : IF xi is A\ AN D... AND x n is АП,
THEN u is c0 +  cixi +  ... +  ctnx n.

In Type I, both the antecedent and consequent have linguistic variables, 
On the other hand in Type II, the consequent is parameterized function of the 
input to the fuzzy controller, or the state variables. Comparing the two types, 
the THEN part of the rule is changed from a linguistic description to a simple 
mathematical formula. This change makes it easier to combine the rules. In 
fact, Type II, the Takagi-Sugeno system, is a weighted average of the rules 
in the THEN parts of the rules. This framework is useful in tuning the rules 
mathematically. Type II, on the other hand has drawbacks (1) its THEN part 
is a mathematical formula and therefore may not provide a natural framework 
to represent human knowledge and (2) there is not much freedom left to apply 
different principles in fuzzy logic, so that the versatility of fuzzy systems is 
not fully represented in this framework.

Theoretical Approach

Knowing the mathematical model of a system is not a necessary condition 
for designing fuzzy controllers. However, in order to analyze the performance
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of the closed loop fuzzy control system theoretically, we need to have some 
knowledge on the model of the system. This approach assumes a mathematical 
model for the system, so that mathematical analysis can be performed to 
establish the properties of the designed system.
Theoretical approach can be classified into the following categories:

1. Stable controller design
2. Optimal controller design
3. Sliding mode controller design
4. Supervisory controller design
5. Fuzzy system model-based controller design

Expert System Applications

The major use of artificial intelligence today is in expert systems, AI programs 
that act as intelligent advisors or consultants. Drawing on stored knowledge 
in a specific domain, an inexperienced user applies inferencing capability to 
tap the knowledge base. As a result, almost anyone can solve problems and 
make decisions in a subject area nearly as well as an expert. It is not easy to 
give a precise definition of an expert system, because the concept of expert 
system itself is changing as technological advances in computer systems take 
place and new tasks are incorporated into the old ones. In simple words, it 
can be defined as a computer program that models the reasoning and action 
processes of a human expert in a given problem area. Expert systems, like 
human experts, attempt to reason within specific knowledge domains.

An expert system permits the knowledge and experience of one or more 
experts to be captured and stored in a computer. This knowledge can then be 
used by anyone requiring it. The purpose of an expert system is not to replace 
the experts, but simply to make their knowledge and experience more idely 
available. Typically there are more problems to solve than there are experts 
available to handle them. The expert system permits others to increase their 
productivity, improve the quality of their decisions, or simply to solve prob­
lems when an expert is not available. Valuable knowledge is a major resource 
and it often lies with only a few experts. It is important to capture that knowl­
edge so others can use it. Experts retire, get sick, move on to other fields, and 
otherwise become unavailable. Thus the knowledge is lost. Books can capture 
some knowledge, but they leave the problem of application up to the reader. 
Expert systems provide a direct means of applying expertise.

An expert system has three main components: a knowledge base, an infer­
ence engine, and a man-machine interface. The knowledge base is the set of 
rules describing the domain knowledge for use in problem solving. The prime 
element of the man-machine interface is a working memory, which serves to 
store information from the user of the system and the intermediate results 
of knowledge processing. The inference engine uses the domain knowledge 
together with the acquired information about the problem to reason and pro­
vide expert solution.
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A  W orking Definition

An expert system is an artificial intelligence (AI) program incorporating a 
knowledge base and an inferencing system. It is a highly specialized piece of 
software that attempts to duplicate the function of an expert in some field 
of expertise. The program acts as an intelligent consultant or advisor in the 
domain of interest, capturing the knowledge of one or more experts. Nonex­
perts can then tap the expert system to answer questions, solve problems, and 
make decisions in the domain.

The expert system is a fresh new, innovative way to capture and package 
knowledge. Its strength lies in its ability to be put to practical use when an 
expert is not available. Expert systems make knowledge more widely available 
and help overcome the age-old problem of translating knowledge into practical, 
useful results. It is one more way that technology is helping us get a hand 
on the oversupply of information. All AI software is knowledge-based as it 
contains useful facts, data, and relationships that are applied to a problem.

Expert systems, however, are a special type of knowledge based system, 
they contain heuristic knowledge. Heuristics are primarily from real world ex­
perience, not from textbooks. It is knowledge that directly from those people 
the experts -  who have worked for years within the domain. It is knowledge de­
rived from learning by doing. It is perhaps the most useful kind of knowledge, 
specifically related to everyday problems. It has been said that knowledge is 
power.

Certainly there is truth in that but in a more practical sense, knowledge 
becomes power only when it is applied. The bottom line in any field of en­
deavor is RESULTS, some positive benefit or outcome. Expert systems are 
one more way to achieve results faster and easier.

Desirable Expert System Features

Expert systems are far more useful if they have some additional features. 
These include an explanation facility, ease of modification, transportability, 
and adaptive learning ability. Let us take a look at each of these key features.

Expert systems are very impersonal and get right to the point. Many 
first time users are surprised at how quickly the expert system comes up 
with a recommendation, conclusion, or selection. The result is usually stated 
concisely, and sometimes very curtly, using rule clauses. A natural language 
interface will help improve this situation, but that is not the main problem. A 
more important issue is that often users have difficulty in “buying” the output 
decision. They question it or perhaps do not believe it. Users frequently want 
to know how the expert system arrived at that answer. Most of the better 
expert systems have a means for explaining their conclusion. Typically, this 
takes the form of showing the rules involved in the decision and the sequence 
in which they were fired. All of the information is retained in the database for 
that purpose. When users want to know the expert system’s line of reasoning,
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they can read the rules and follow the logic themselves. Some rule formats 
permit the inclusion of an explanation statement that justifies or elaborates 
on the need for or importance of the rule.

The explanation facility is important because it helps the user feel com­
fortable with the outcome. Sometimes the outcome is a surprise or somewhat 
different than expected. It is difficult for an individual to follow the advice 
of the expert in these cases. However, once the expert system explains itself, 
the user better understands the decision and feels more at ease in making a 
decision based upon it.

Ease o f  M odification

As indicated earlier, the integrity of the knowledge base depends upon how 
accurate and up to date it is. In domains where rapid changes take place, it is 
important that some means be provided for quickly and easily incorporating 
this knowledge. When the expert system was developed using one of the newer 
development tools, it is usually a simple matter to modify the knowledge 
base by writing new rules, modifying existing rules, or removing rules. The 
better systems have special software subsystems, which allow these changes 
to be made without difficulty. If the system has been programed in LISP or 
Prolog, changes are much more difficult to make. In examining or evaluating 
an expert system, this feature should be considered seriously in context of the 
modification.

Transportability

The wider the availability of an expert system the more useful the system will 
be. An expert system is usually designed to operate on one particular type 
of computer, and the software development tools used to create the expert 
system usually dictate this. If the expert system will operate on only one 
type of computer, its potential exposure is reduced. The more different types 
of computers for which the expert system is available, the more widely the 
expertise can be used. If possible, when the expert system is to be developed, 
it should be done in such a way that it is readily transportable to different 
types of machines. This may mean choosing a programing language or software 
development tool that is available on more than one target machine.

A daptive Learning Ability

This is an advanced feature of some expert systems that allows them to learn 
their own use or experience. As the expert system is being operated, the 
engine will draw conclusions that can, in fact, produce new knowledge. New 
functions stored temporarily in the database, but in some systems they can 
lead to the development of a new rule which can be stored in the knowledge
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base and used again in the problem. The more the system is used, the more 
it learns about the domain and more valuable it becomes.

The term learning as applied to expert systems refers to the process of the 
expert system new things by adding additional rules or modifying existing 
rules. On the other hand, if the system incorporates the ability to learn it 
becomes a much more powerful and effective problem solver. Today few expert 
systems have this capability, but it is a feature that is sure to be further 
developed into future systems.

Suitable A pplication  Areas for Expert Systems

Expert systems are best suited for problems with limited domains and well- 
defined expertise. Application areas involving common sense and analogical 
reasoning do not lend themselves well to expert system development. The 
suitability of expert system-based approaches can be determined by taking 
into consideration some criterion based on general experience in this field. 
Expert systems are found to be suitable for those problems for which the 
solution steps are not clearly defined. The action taken depends not only 
on the present values of data but on the outcome of previous decisions, his­
torical data, past experience and trends. In power systems, many promising 
applications have been reported in the broad fields of system control, alarm 
processing and fault diagnosis, system monitoring, decision support, system 
analysis and planning.

Expert System Applications

Expert systems are ideal when it is necessary for an individual to select the 
best alternative from a long list of choices. Based on the criteria supplied to it, 
the expert system can choose the best option. For example, there are expert 
systems that will help you select one of the many places to invest your money 
based on your own financial condition, goals, and personality traits.

An expert system can be created to help an individual troubleshoot and 
repair a complex piece of equipment. The various troubles and symptoms 
can be given to an expert system, which then identifies the problem and 
suggests courses of action for repair. Expert systems also can be used to aid 
in diagnosing medical cases. Symptoms and test results can be given to the 
expert system, which then searches its knowledge base in an attempt to match 
these input conditions with a particular malady or disease. This results in a 
conclusion about the illness and some possible suggestions on how to treat it. 
Such an expert system can greatly aid a doctor in diagnosing an illness and 
prescribing treatment. It does not replace doctors, but helps them confirm 
their own decisions and may provide alternative conclusions.

Expert systems perform financial analysis. Some expert systems evaluate 
stocks and recommend buy, sell, or hold positions. Other expert systems can 
be used in tax planning and budgeting. Expert systems have been used to help
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Table 8.21. Generic expert system categories
Control -  intelligent automation
Debugging- renovation corrections to faults
Design -  development products to specification
Diagnosis -  estimated defects
Instruction -  optimized computer instruction
Interpretation -  clarification of situations
Planning -  developing goal-oriented scheme
Prediction -  intelligent guessing of outcome
Repair -  automatic diagnosis, debugging, planning, and fixing

locate oil and mineral deposits or to configure complex computer systems and 
recommend a specific policy in a variety of insurance applications. Expert sys­
tems also have been used to locate oil spills and provide speedy critical advice 
to commanders in battlefield situations. The variety of potential applications 
is enormous. If one or more experts exist in the domain of interest, and the 
knowledge can be codified and represented in symbolic form, then an expert 
system can be created.

In power systems, many promising applications have been reported in the 
broad field of system control, alarm processing and fault diagnosis, system 
monitoring, decision support, system analysis and planning. An excellent re­
view of the popular application areas can be found. Table 8.21 shows the 
main categories of applications suitable for expert systems. If the problem to 
be solved falls into one of these categories, it is a candidate for expert systems 
solution. This is not to imply that an expert system is the only answer. There 
may very well be a more conventional algorithmic program that will do the 
job. In any case, assuming the problem is one of these types, an expert system 
should most certainly be considered as an alternative. Now let us take a look 
at each category in more detail.

Reasoning with U ncertainty in Rule Based Expert Systems

One of the important feature in expert systems is their ability to deal with 
incorrect or uncertain information. There will be times when an expert system, 
in gathering initial inputs, will ask you a question for which you do not have 
the answer. In such a case, you simply say that you do not know. Expert 
systems are designed to deal with cases such as this. Because you may not 
have a particular fact, the search process will undoubtedly take a different 
path. It may take longer to come up with an answer, but the expert system 
will give you an answer.

Traditional algorithmic software simply cannot deal with incomplete in­
formation. If you leave out a piece of data, you may not receive an answer at 
all. If the data is incorrect, the answer will be incorrect. This is where artifi­
cial intelligence programs, particularly expert systems, are particularly useful.
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When the inputs are ambiguous or completely missing, the program may still 
find a solution to your problem. The system may qualify that solution, but 
at least it is an answer that can in many cases be put to practical use. This 
is consistent with expert level problem solving where one rarely has all the 
facts before making a decision. Our common sense or knowledge of the prob­
lem tells us what is important to know and what is less important. Experts 
almost always work with incomplete or questionable information, but that it 
does not prevent them from solving the problem.

Thus, increasingly in the design of expert systems, there has been a focus 
on methods of obtaining approximate solutions to a problem when there is 
no clear conclusion from the given data. Logically, as expert system problems 
become more complex, the difficulty of reaching a conclusion with complete 
certainty increases, so in some cases, there must be a method of handing un­
certainty. In, researchers report that a classical expert system gave incorrect 
results due to the sharpness of the boundaries created by the if-then rules 
of the system; however, once a method for dealing with uncertainty (in these 
two cases fuzzy set theory) was used, the expert system reached the desired 
conclusions. The successful performance of expert systems relies heavily on 
human expert knowledge derived from domain experts based on their experi­
ence. The other forms of knowledge include causal knowledge and information 
from case studies, databases, etc. Knowledge is typically expressed in the form 
of high-level rules. The expert knowledge takes the form of heuristics, proce­
dural rules and strategies in nature.

It inherently contains vagueness and imprecision because an expert is not 
able to explicitly express their knowledge. The process of acquiring knowledge 
is also quite imprecise, because the expert is usually not aware of all the tools 
used in the reasoning process. The knowledge that one reasons with may 
itself contains uncertainty. Uncertain data and incomplete information are 
other sources of uncertainty in expert systems.

Uncertainty in rule-based expert systems occurs in two forms. The first 
form is linguistic uncertainty which occurs if an antecedent contains vague 
statements such as the “level is high” or “the value is near 20.” The other 
form of uncertainty, called evidential uncertainty, occurs if the relationship 
between an observation and a conclusion is not entirely certain. This type 
of uncertainty is most commonly handled using conditional probability that 
indicates the likelihood that a particular observation leads to a specific conclu­
sion. The study of making decisions under either of these types of uncertainty 
will be referred to as plausible or approximate reasoning in this work. Several 
methods of dealing with uncertainty in expert systems have been proposed, 
including

-  Subjective probability
-  Certainty factors
-  Fuzzy measures
-  Fuzzy set theory
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The first three methods are generally used to handle evidential uncertainty, 
while the last method, fuzzy set theory is used to incorporate linguistic un­
certainty. These methods of reasoning with uncertainty will be discussed in 
the following sections. For a comprehensive list of methods used in reasoning 
with uncertainty including a discussion about their application.

As expert assessments of the indicators of the problem may be imprecise, 
fuzzy sets may be used for determining the degree to which a rule from the 
expert system applies to the data that is analyzed. When applying a method 
of reasoning with uncertainty to a rule based expert system, there must be a 
method of combining or propagating uncertainty between rules. A  method of 
propagating uncertainty for the method of reasoning with uncertainty will be 
discussed in the next section.

Exam ple A pplication : Fault Diagnosis

In the past few years, great emphasis has been put in applying the expert 
systems for transmission system fault diagnosis. However, very few papers deal 
with the unavoidable uncertainties that occur during operation involving the 
fault location and other available information. This example shows a method 
using fuzzy sets to cope with such uncertainties.

Problem  Statement

To reduce the outage time and enhance service reliability, it is essential for 
dispatchers to locate fault sections in a power system as soon as possible. 
Currently, heuristic rules from dispatchers’ past experiences are extensively 
used in fault diagnosis. The important role of such experience has motivated 
extensive recent work on the application of expert system in this field. The 
uncertainties occur due to failures of protective relays and breakers, errors 
of local acquisition and transmission, and inaccurate occurrence time, etc. 
An effective approach is thus necessary to deal with uncertainties in these 
expert systems. Fault diagnosis in electric power system is a facet operation. 
Every signal and step contains some uncertainties, which can be modeled by 
membership functions (Fig. 8.117).

Fuzzy set theory is used to determine the most likely fault sections in 
the approach presented here. Membership functions of the possible fault sec­
tions are the most important factors in the inference procedures and decision 
making. In this example, the membership function of a hypothesis is used to 
describe the extent to which the available information and the system knowl­
edge match the hypothesis. They are manipulated during inference based on 
rules concerning fault sections.
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Temperature (°C)

F ig . 8 .1 17 . Fuzzy sets for representation of uncertainty

F ig . 8 .1 18 . Fuzzy expert system structure

Structure o f  the Fault Diagnosis System

The FES structure is shown in Fig. 8.118. Its database contains the power 
system topology, and the status of all breakers and protective relays after the 
fault.

The knowledge base of the FES contains all the data of the protection sys­
tem. The information is based on known statistics of protection performance 
used in the system. If these data are not available when a fault occurs, the FES 
asks the dispatcher to provide them and then saves them in the database for 
future use. Models for estimation of possible faults, and heuristic rules about 
the relay characteristics for actual fault determination are also included here.

Island Identification

When a fault occurs in a power system, the relays corresponding to the 
fault sections should trip the circuit breakers to isolate the fault sections 
from being extended. Thus the power system is separated into several parts 
named subnetworks after the operation of protective relays and circuit break­
ers (Fig. 8.119). Generally, only a few subsections are formed from the faults. 
Since the fault sections are confined to these subnetworks, the magnitude of 
the problem can be reduced greatly. An expert system is developed to identify 
the island by using the real-time information of circuit breakers and adopting 
the real-time network topology determination method.
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The framework of this efficient method is described as follows:

-  Initializing the network: the expert system identifies the power system pre­
fault status as the normal operation state by using the real-time network 
topology determination method. When a fault occurs, the power system 
status would be changed by the operation of relays and circuit breakers.

-  Healthy subnetwork identification: the next step is to identify the network 
topology of the healthy part of the postfault power system by using the 
real-time network topology determination method. The healthy subnet­
work is called set Shealthy.

-  Island identification: by comparing the initial network topology with the 
healthy subnetwork topology, the differences between them are identified 
as the island. This subnetwork is called Sisland.

Fault Section Identification

When a fault occurs, the change in breaker status activates the FES. It then 
classifies the breakers into two sets: no-trip status set and tripped status set. 
According to the procedures described in previous section, a fault hypothesis 
Fi is formed as follows:

where Ci is one of the possible fault sections being considered; Pfault is the 
fuzzy set which contain all the possible fault sections and their membership 
functions; Fi (CB) is the fuzzy subset by considering only the tripped circuit 
breakers; Fi (RL) is the fuzzy subset by considering only the operated relays. 

The following rules are used to determine the overall grade of the results:

Rule 1: if (first stage protection has operated) then (ignore the signals in 
second and third stage protections)

Rule 2: if (first and second protection have isolated the suspected fault sec­
tion) then (ignore the signals of third stage protection)

Rule 3: if (all three stage protections have not isolated the suspected fault 
section) then (no fault at this section)
During decision making, the most likely fault sections are determined 
by comparing the above membership grades for each possible fault 
section using either or both of the following methods

(1) Maximum selection: the most likely fault section is the one with the 
highest membership grade

Fi =  Fi(CB) U Fi (RL)
(8.15)
(8.16)
(8.17)
(8.18)
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(2) a-Level selection : the a-level set includes all fault sections with a mem­
bership grade
According to the methods described above, two additional rules are 
formed for decision making:

Rule 4: (maximum selection): if (section M  has the greatest membership func­
tion compared with all the other possible fault sections) then (select 
M  as the fault section)

Rule 5: (a-level selection): if (the membership grade of a fault section is 
greater than the constant a) then (add this section to the fault section 
set) case study

Conclusion

A fuzzy system can be used to approximate a controller. The determination of 
the membership functions and the fuzzy rule base is illustrated in two ways:

-  The empirical way using linguistic sets and rules and human knowledge
-  The self-organizing way using data samples and analysis

Both approaches do not necessarily need a detailed state space model of the 
plant. The advantage of the first approach is the use of heuristics and human 
knowledge. However the demonstration of stability for this type of controller 
is very tedious if not impossible.

A lot of progress has been made concerning the application of fuzzy 
systems to power system control problems. Recently, fuzzy controllers have
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achieved commercialization. Generally, a conventional rule-based expert 
system for bulk power system needs several hundreds of rules. It is time 
consuming in inference procedures to search for suitable rules during in­
ferencing. On the other hand, fuzzy set based expert systems tend to be 
much faster compared to traditional rule-based expert systems for most of 
the rules are replaced by the calculation of the membership functions of 
the applicable rules. Only a few rules or functions are used in the inference 
engine.

The fuzzy set approach for uncertainty processing in expert systems offers 
many advantages to compared other approaches to deal with uncertainty.

-  Small memory space and computer tim e: the knowledge base is very small 
because there are only a few rules needed during inference. The compu­
tation time is therefore also small.

-  Small number of rules: with properly designed linguistic variables and 
level of granularity, only a few fuzzy rules are needed for each situation.

-  Flexibility of the system : membership functions representing the parame­
ters can be changed dynamically according to the situation. It is also 
possible to develop a self-learning module that modifies the grades of 
membership automatically according to changing situations.

8.9 Fuzzy Logic in Control

8.9.1 Fuzzy Logic Controller

Control systems are an arrangement of physical components designed to alter 
or regulate the system based on control action 

Control system may be of two systems:

(1) Open loop control system -  control action is independent of system output
(2) Closed loop control system -  control action depends on system output

Controllers designed may be of two types:

(1) Regulatory type of control
(2) Tracking controllers

Regulatory type o f control or regulator: object of the control system is to 
maintain the physical variable at some constant value in the presence of dis­
turbances, it is a regulator.

Ex: Room temperature control, autopilot.
Tracking controllers: a physical variable is required to follow or track some 
desired time function.

Ex: Automatic aircraft landing function.
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Control Problem: It is stated as:

(1) The output or response of the physical system under control is adjusted 
as required by the error signal.

(2) The error signal is the difference between the actual (sensor) response of 
the plant and the desired response, as specified by a reference input.

General C ontrol System Design Stages

The following steps are followed in designing a controller for a complex system:

(1) Large scale systems are decomposed into a collection of decoupled sub­
systems.

(2) The temporal variations of the systems are made to be “slowly varying.”
(3) The nonlinear plant dynamics are locally linearized about a set of oper­

ating points.
(4) A set of state variables, control variables, or output features is made avail­

able.
(5) A simple P, PD, and PID controllers are designed for each decoupled 

system.
(6) There may be uncertainties due to external environment, the controller 

design should be such that to meet all the requirements.
(7) A supervisory control system, either automatic or human expert opera­

tor, forms a feedback control loop and helps in adjusting the controllers 
parameters.

Assum ptions M ade in Fuzzy Control System  Design

Whenever a fuzzy logic based control policy is selected, the following assump­
tions are made:

(1) The plant is observable and controllable: state, input and output variables 
are usually available for observation and measurement or computation

(2) There exists knowledge about
(a) Set of expert production linguistic rules
(b) Engineering common sense
(c) Intuition
(d) A set of input/output measurements data
(e) Analytic model

(3) A solution exists
(4) The control engineer is looking for a “good enough” solution, not neces­

sarily the optimum one
(5) A controller is to be designed with the best of our knowledge and within 

an acceptable range of precision
(6) The problems of stability and optimality are still open problems in fuzzy 

controller design
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The concept of control surface or decision surface is important in fuzzy control 
systems methodology.

Consider a nonlinear system,

u(t) =  h[t, x(t), r(t)]

The function h is a nonlinear hyper surface in an n-dimensional space.
Consider a linear system, with output feedback or state feedback, it gen­

erally is a hyper plane in an n-dimensional space.
This surface is known as control or decision surface. The control surface 

describes the dynamics of the controller.

How Control Surface is O btained?

The control surface, which relates the control action to measure the state and 
output variables is obtained using four structure.

A  fuzzy production rule system consists of four structures:

(1) A set of rules that represents the policies and strategies of the expert 
decision maker

(2) A set of input data assessed prior to actual decision
(3) A method for evaluating any proposed action, given the available data
(4) A method for determining when to stop searching for better ones

The input data, rules and output data are generally fuzzy sets expressed as 
membership function defined on a proper space. The method used for the eval­
uation of rules is known as approximate reasoning or interpolative reasoning.

The above reasoning is commonly represented by composition of fuzzy 
relations applied to a fuzzy relational equation.

Thus the control surface is obtained from the four structured rules. It is 
then sampled at a finite number of points, depending on the required resolu­
tions and a lookup table is constructed. The look up table could be downloaded 
onto a real memory chip and would constitute a fixed controller for the plant.

Simple Fuzzy Logic Controller

The block diagram for simple fuzzy logic controller is shown in Fig. 8.120. 
Knowledge base: this is a module which contains the knowledge about all 
the input and output fuzzy partitions. It will include the term set and the 
corresponding membership functions defining the input variables to the fuzzy 
rule base system and the output variables, or control actions, to the plant 
under control.

Control Surface (Decision Surface)



346 8 Applications of Fuzzy Logic

Fig. 8.120. Simple fuzzy logic controller

Design o f  a Simple Fuzzy Logic Control

It involves the following steps:
(1) Identify the variables of the plant, i.e., inputs, states, and the outputs
(2) Partition the universe of discourse or the interval spanned by each variable 

into a number of fuzzy subsets, assigning each a linguistic label
(3) Assign or determine a membership function for each fuzzy subset
(4) Assign the fuzzy relationships between the inputs’, states’ fuzzy subsets 

on the one hand and the outputs’ fuzzy subsets on the other hand, to form 
the rule base

(5) Choose appropriate scaling factors for the input and output variables in 
order to normalize the variables to the [0,1] or the [—1,1] interval

(6) Fuzzify the inputs to the controller
(7) Use fuzzy approximate reasoning to infer the output contributed from 

each rule
(8) Aggregate the fuzzy outputs recommended by each rule
(9) Apply defuzzification to form a crisp output

Feature o f  Simple Fuzzy Logic Control

(1) Fixed and uniform input and output scaling factors
(2) Flat, single partition rule-base with fixed and noninteractive rules
(3) Fixed membership functions
(4) Limited number of rules, which increases exponentially with the number 

of input variables
(5) Fixed metaknowledge, including the methodology for approximate rea­

soning, rules aggregation and output defuzzification
(6) Low level control and no hierarchial rule structure

This is a nonadaptive simple fuzzy logic controller, whereas for adaptive
fuzzy logic controller, they are adaptively based on some adaptation law, to
optimize the controller.
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The principal design elements in this case are:

(1) Fuzzification strategies and the interpretation of fuzzification operator or 
fuzzifier

(2) Knowledge base
(a) Normalization of the universe of discourse
(b) Fuzzy partitions of input and output spaces
(c) Completeness of the partitions
(d) Choice of the membership function

(3) Rule base
(a) Choice of process of state and control variables (input and output)
(b) Source of derivation of fuzzy control rules
(c) Types of fuzzy control rules
(d) Completeness of fuzzy control rules

(4) Decision making logic
(a) Definition of fuzzy implication
(b) Interpretation of sentence connective
(c) Interpretation of sentence connective
(d) Inference mechanism

(5) Defuzzification strategies and the interpretation of a defuzzification 
operator (defuzzifier)

If all the five above are fixed, the fuzzy logic control system is simple and 
nonadaptive. Adaptation or change in any of the five design parameters above 
creates an adaptive fuzzy control system.

Fuzzy Logic C ontrol System  M odels

The fuzzy logic control system models are expressed in two different forms:

(1) Fuzzy rule based structure
(2) Fuzzy relational equations

(1) Fuzzy Rule Based Structure
There are five types of fuzzy rule based system models:
(1) If the input and the output restrictions are given in the form of 

singletons
IF A i : ж =  х, THEN B i : y =  y

(2) If the input restrictions are in the form of crisp sets and output are 
given by singleton

IF A1 : Xj_i < x  <  ж, THEN B 1 : y =  y,

(3) If the input conditions are crisp sets and the output is a fuzzy set

General Fuzzy Logic Controllers

IF A 1 : X j_ i <  x  <  х ,  THEN y  =  B 1



(4) If the input conditions are fuzzy sets and the outputs are crisp func­
tions,

IF ж =  A i THEN B i : y =  f ,(x )

(5) If both the input and output restrictions are given by fuzzy sets

IF A i THEN B i

(2) Fuzzy Relational Equations
The following are the fuzzy relational equations describing a number of 
commonly used fuzzy control system models,
(1) For a discrete first-order system with input U , the fuzzy model is

Xk+i =  xk o uk o R  for к = 1 , 2 ,.. .

(2) For a discrete P th order system with single input U , the fuzzy system 
equation is,

x k+p x k o xk+i o *** o x k+p-i o uk+p-i o R 
yk+p — x k+p

(3) A second-order system with full state feedback is described as

Uk =  xk o xk-1  o R 
yk =  x k

(4) A discrete Pth order SISO system with full state feedback is repre­
sented by the following fuzzy relational equation,

uk+p y k o yk+i o ***o yk+p-i o R

In all the cases,

R  =  R 1 U R 2 U ■■■ ,U  Rr,

R  =  { R 1,R 2, . . . , R 1},

where R  is a system transfer function.

R 1 : IF x is A 1, THEN y is B 1 
R2 : IF x is A 2, THEN y is B 2

348 8 Applications of Fuzzy Logic

Rr : IF x is A r, THEN y is B r
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Aircraft Landing C ontrol Problem

This example shows the flexibility and reasonable accuracy for the fuzzy 
control.

Simulation of the Final Descent and Landing Approach of an Aircraft: 
the desired downward velocity is proportional to the square of the height 
(Fig. 8.121):

(1) At higher altitudes, a large downward velocity is desired
(2) As altitude (height) diminishes, the desired downward velocity gets 

smaller and smaller
(3) As the height becomes vanishingly small, the downward velocity also goes 

to zero
In this way, the aircraft will descend from altitude promptly, but will 
touch down very gently to avoid damage.

State Variables Assumed: The two state variables for this simulation will be:

(1) The height above the ground h
(2) The vertical velocity of the aircraft v

The control output will be a force, that, when applied to the aircraft, will 
alter its height h and velocity v. The differential control equations are,

Mass m moving with velocity v has momentum,

p =  mv

(1) If no external forces is applied, the mass will continue in the same direction 
at the same velocity v
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(2) If a force f  is applied over a time interval At, a change in velocity of
A v  =  f  ■ At/m  is obtained.

If At =  1.0s and m =  1.0(lbs2 ft-1 )
A v =  f (lb)

(or) change in velocity is proportional to the applied force.
In different notation,

V+1 =  Vi +  fi 
hi+1 =  hi +  Vi

V+1 -  new velocity, Vi -  old velocity, hi+ 1 -  new height, and hi -  old 
height.

The above “control equations” define the new value of the state variables 
v and h in response to control input. The following procedures are done:

STEP 1 : Construct membership functions for the height h, the velocity v, 
and the control force f . Define membership functions for state variable.

STEP 2 : Define membership function for the control output.
STEP 3 : Define the rules and form FAM table. The values in FAM (Fuzzy 

Associative Memory) table, are the control outputs.
S’TEP 4 : Define the initial conditions and perform simulation.
Here the simulation is done for four cycles, to obtain the accuracy.
Since the task at the hand is to control the aircrafts vertical descent during 

approach and landing, we will start with the aircraft at an altitude of 1,000 ft, 
with a downward velocity of —20fts-1 .

The state variables are updated for each cycle using,

Vi+1 =  Vi +  fi 
hi+1 =  hi +  Vi

Membership values for height (Fig. 8.122)

Linguistic Height (ft)
variables 0 100 200 300 400 500 600 700 800 900 1,000
Large (L) 0 0 0 0 0 0 0.2 0.4 0.6 0.8 1.0
Medium (M) 0 0 0 0 0.2 0.4 0.6 0.8 1.0 0.8 0.6
Small (S) 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0 0
Near zero 
(NZ)

1.0 0.8 0.6 0.4 0.2 0 0 0 0 0 0
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Fig. 8.122. Membership values of height

Membership values for velocity (Fig. 8.123)

Linguistic Velocity (ft s - 1)
variables -3 0 -2 5 - 20 -15 -10 - 5 0 5 10 15 20 25 30
Up large (UL) 0 0 0 0 0 0 0 0 0 0.5 1.0 1.0 1.0
Up small (US) 0 0 0 0 0 0 0 0.5 1.0 0.5 0 0 0
Zero (Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
Down small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0
Down large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0

F ig . 8 .1 23 . Membership value of velocity
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Membership values for control force (Fig. 8.124)

Linguistic Control force (lbs)
variables —30 —25 —20 — 15 — 10 —5 0 5 10 15 20 25 30
Up large (UL) 0 0 0 0 0 0 0 0 0 0.5 1.0 1.0 1.0
Up small (US) 0 0 0 0 0 0 0 0.5 1.0 0.5 0 0 0
Zero (Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
Down small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0
Down large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0

c f  —►

Fig. 8.124. Membership values for control force

Based on the rule base formed, FAM table is formed,

_____________________________FAM Table_____________________________
Velocity

Height DL DS Z US UL
DL DL
DL DL
DS DL
DS DS

SIM U LATIO N

Simulation is done assuming the initial conditions, 
Cycle 1:

Initial height h0: 1,000ft 
Initial velocity У0: — 20fts_1 
Control f 0: has to be computed

L Z DS DL
M US Z DS
S UL US Z

NZ UL UL Z
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10 0

1.0

J
0.6

-10 0 10 20

Fig. 8.125. Defuzzification (centroid method)

From the membership values,
Height h fires L at 1.0 and M at 0.6 
Velocity v fires only DL at 1.0

From the FAM table,
Rule: IF h =  L and v =  DL THEN f  =  Z min(1.0,1.0) =  1.0 
Height Velocity Output
L(1.0) AND DL(1.0) -  Z(1.0)
M(0.6) AND DL(1.0) -  US(0.6)
Defuzzification using centroid method (as shown in Fig. 8.125) 
The new values of state variables,

hi =  h0 +  v0 =  1, 000 +  (-20 ) =  980 ft
V  =  V0 +  f 0 =  -2 0  +  5 .8=  -14.2 ft s_1

Cycle 2:
The new hi and Vi are used for computation.

From the membership values,
Height h =  980 ft fires L at 0.96 and M at 0.64
Velocity v =  —14.2fts 

From the FAM table,
i fires DS at 0.58 and DL at 0.42

Height Velocity Output
L(0.96) AND DS(0.58) -  DS(0.58)
L(0.96) AND DL(0.42) -  Z(0.42)
M(0.64) AND DS(0.58) -  Z(0.58)
M(0.64) AND DL(0.42) -  US(0.42)
Defuzzification using centroid method (as shown in Fig. 8.126),
we get, fi =  - 0.5 lbs -  the output force computed from results of cycle 1
The new values of state variables,

h2 =  h1 +  V1 =  980 + (  — 14.2) =  965.8 ft 
V2 =  V1 +  f 1 =  —1 4 .2 + (—0.5) =  14.7fts_1

Cycle 3:
The new h2 and V2 are used for computation.
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Fig. 8 .126 . Defuzzification (centroid method)

-20

From the membership values,
Height h =  965.8 ft fires L at 0.93 and M at 0.67 
Velocity v =  —14.7 fts-1 fires DL at 0.43 and DS at 0.57 

From the FAM table,
Height Velocity Output
L(0.93) AND DL(0.43) -  Z(0.43)
L(0.93) AND DS(0.57) -  DS(0.57)
M(0.67) AND DL(0.43) -  Us (0.43)
M(0.67) AND DS(0.57) -  Z(0.57)
Defuzzification using centroid method (as shown in Fig. 8.127),
we get, f2 =  —0.4 lbs -  the output force computed from results of cycle 2
The new values of state variables,

h3 =  h2 +  v2 =  965 .8+ ( —14.7) =  951.1ft 
V3 =  V2 +  f 2 =  —1 4 .7 + (—0.4) =  — 15.1fts-1

Cycle 4:
The new h3 and V3 are used for computation.

From the membership values,
Height h =  951.1 ft fires L at 0.9 and M at 0.7 
Velocity v =  —15.1 fts-1 fires DS at 0.49 and DL at 0.51 

From the FAM table,

Z

Z Z

0
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Fig. 8.127. Defuzzification (centroid method)

Z
1.0

DS 1.0 0.51— к
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Height
L(0.9)
L(0.9)

Fig. 8.128. Defuzzification (centroid method) 

Velocity Output 
DS(0.49)
Z(0.51) 
z (0.49)
US(0.51)

Defuzzification using centroid method (as shown in Fig. 8.128), 
we get, f3 =  0.3 lbs -  the output force computed from results of cycle 4 
The new final values of state variables,

AND DS(0.49)
AND DL(0.51)

M(0.7) AND DS(0.49)
m (0.7) AND DL(0.51)

h4 =  h3 +  v3 =  951.1 +  ( — 15.1) =  936.0 ft 
V4 =  V3 +  f 3 =  —1 5 .1 + 0 .3 =  —14.8fts - i

Thus we may obtain the curve of downward velocity vs. the altitude as 
discussed at the starting.

Z
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Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4
Height (ft) 1000 980 965.8 951.1 936
Velocity (fts_1) -20 -14.2 -14.7 - 15.1 - 14.8
Control Force 5.8 0.5 - 0.4 0.3 -

Height ( f t) ------- ►

Plot of downward velocity vs altitude

Advantages o f  Using This Control

(1) It is accurate and flexible
(2) The trend towards the compilation and fusion of different forms of knowl­

edge representation for the best possible identification and control of ill- 
defined complex systems

8.9.2 A utom atic Generation Control Using Fuzzy Logic Controllers

Objective: The objective of the controller is to generate and deliver power 
in an interconnected system as economically and reliably as possible while 
maintaining the voltage and frequency within permissible limits:

-  AGC is used in real time control to match the generation with demand
-  The rising and falling of demand, alters the system voltage and frequency
-  Real power and reactive power is changed due to change in frequency and 

voltage
-  LFC  controls real power and frequency
-  AVR controls the reactive power and voltage
-  AG C  tracks system load and generation level of each committed unit

Now it is dealt only with load frequency control (LFC):

-  LFC is of importance in electric power system design and operation
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Fig. 8.129. Modeling of load frequency control

FLC

' Fuzzy
inference——►ф ф -j—* Fuzzification —* — ► Defuzzsification Controlled y 

Plant

u(t)

Rule Base

Fig. 8.130. Block diagram of fuzzy logic controller

-  Conventionally PI (Proportional Integral) controllers, is applied to speed 
governor system for load frequency control Modeling of LFC is shown in 
Fig. 8.129

PI control approach achieves zero steady state error in frequency but it 
exhibits relatively poor dynamic performance by large overshoots and large 
settling time.

Using FLC, applying to LFC problems, gives a better dynamic response. 

Design o f  Fuzzy Logic Controllers

The block diagram of fuzzy logic controller is shown in Fig. 8.130. It involves:

(1) Fuzzification of input parameters
(2) Rule definition
(3) Inference mechanism
(4) Defuzzification
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Fuzzification o f  Input Parameters

(1) Process of converting crisp input variables into fuzzy variables
(2) Fuzzy variables depends on system nature
(3) The error and derivative of error are selected as controlled inputs
(4) Del f  and Del Ptie are inputs
(5) Input and output signals are expressed as linguistic variables
(6) Seven linguistic variables are taken -  NL, NM, NS, Z, PS, PM, PL
(7) Each linguistic variable has a fuzzy membership value.

The membership functions of Del f , Del Ptie and output are shown in 
Figs. 8.131-8.133.

Fig. 8.131. Membership function of Del f

Fig. 8.132. Membership function of Del Ptie

-1 -0 ,8  -0 .6  -0 .4  -0 .2  0 0.2 0.4 0.6 O.i 

Fig. 8.133. Membership function of output



Knowledge based rules are defined and based on that FAM table is formed
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Rule Definition

Def f /  
Del Ptie

NL NM NS Z PS PM PL

NL NL NL NL NL NM NS Z
NM NL NL NM NM NS Z PS
NS NL NM NS NS Z PS PM
Z NL NM NS Z PS PM PL
PS NM NS Z PS PS PM PL
PM NS Z PS PM PL PL PL
PL Z PS PM PL PL PL PL

Inference M echanism

(1) It takes fuzzy input from fuzzifier in form of membership value matrix 
and uses fuzzy rule base to decide the fuzzy value of output

IF (Del f  =  NS) AND (Del Ptie =  PS) THEN (O /P  =  Z) 
min (p,(NS), P-(PS)) =  output

(2) Product inference method may be used 

Defuzzification

(1) This stage converts fuzzy output into a crisp value
(2) Crisp control action is required in practical application
(3) Centroid method is employed here

Thus by using the above, FLC is implemented for the AGC 

Simulation Results

Thus in the case of PI the settling time is high and large overshoots whereas 
using fuzzy logic controller, the convergence has reached faster and no large 
overshoots. Figure 8.134 shows the comparison of output of fuzzy logic con­
troller and proportional integral controller.

8.10 Fuzzy Pattern Recognition

Pattern recognition means determining the structure in the data by compa­
rison to known structures. The known structures are obtained from different 
methods of classifications. These classification methods may be classification 
using equivalence relation and classification using fuzzy c means. In statistical
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pattern recognition, each input observation is stored as a multidimensional 
data vector (also know as feature vector) and each component of it is known 
as feature. Feature can be defined as the measurement done on the input data 
that is to be classified. The purpose of the pattern recognition process is to 
assign each input data to one of the “c” possible classes. The fundamental 
objective of pattern recognition is classification. Different input observations 
should be assigned the same class if they have similar features and to different 
classes if they have dissimilar features.

Typical pattern recognition as system is as shown in Fig. 8.135:
The data used to design a pattern can be divided into two categories: 
Design data (training data)
Test data

1. Design data: design samples are used to establish the algorithmic parame­
ters of the pattern recognition system. The design samples may be labeled 
(the class to which they belong is known) or unlabeled (the class to which 
they belong is unknown)

2. Test data: test samples are used to test the overall performance of the 
system.

Obviously, the test samples are labeled.
Feature analysis:

This is a method of reconditioning the raw data so that the information 
that is most relevant and for classification and interpretation (recognition) is 
enhanced and represented in a minimal number of features.

It consists of three components:

1. Feature nomination
2. Feature selection
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3. Feature extraction

Feature nomination: it is the process of proposing the original “p” features. 
It is usually done by the workers close to the physical process. These features 
can be characteristics of various sensors. These are influenced by the physical 
constraints.
Feature selection: it is the process of choosing the best subset of “s” features 
from the original “p” features.
Feature extraction: it describes the process of transforming the original “p” di­
mensional feature space into an “s” dimensional feature space in some manner 
that the best preserves the information available in the original “p” space. 
Cluster analysis:

It refers to the process of identifying the number of subclasses of “c” 
clusters in a data universe X  comprised of “n” data samples, and partitioning 
X  into “c” clusters in the data.
Cluster validity:

In many cases, the number of clusters in the data is known. However, it 
may be reasonable to expect cluster substructure at more than one value of 
“c” . In this situation it is necessary to identify the value of “c” that gives the 
most plausible number of clusters in the data for the analysis. This problem 
is known as cluster validity. If the data used are labeled, there is unique and 
absolute measures of cluster validity. For unlabeled data, no absolute measure 
of clustering validity exits.
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Classifier design:
Partitioning the feature space into “c” regions and for each subclass in 

the data, is usually in the domain of the classifier design. Crisp classifier 
partitions the feature space into disjoint sets. Fuzzy classifiers assign a fuzzy 
labeled vector to each vector in feature space. The classifier maps the input 
features onto a classification state. There are many similarities between the 
classification and pattern recognition. Basically, classification determines the 
structure in the data whereas pattern recognition attempts to take a new data 
and assigns them to one of the classes defined in the classification process. 
Classification defines the “patterns” and pattern recognition assigns a data to 
the class.

In both classification and pattern recognition process there are feed back 
loops as shown in Fig 8.136.

Fig. 8.136. Classification and pattern recognition process

The loop for classification is required when one needs better segmentation. 
Second loop is required when pattern matching fails.
Single sample identification:

Typical problem in pattern recognition is data collection from the phys­
ical process and classify them into known patterns. The known patterns are 
represented as class structure and each class structure is described by number 
of features.

Suppose we have several typical patterns stored in our knowledge base and 
we are given a new data sample that has not yet been classified. We want to 
determine which pattern the sample most closely resembles.

Express typical patterns as fuzzy sets A \ ,A 2,A 3, . . . ,  A m.
Now suppose we are given a new data sample, which is characterized by 

crisp singleton, x0. Using the simple criterion of maximum membership, the 
typical pattern that the data sample most closely resembles is found by the 
following expression:

MAi(xo) =  max ai (xo),^A 2 (xo), ••• , (xo)}, (8.19)

where x 0 belongs to the fuzzy set Aj, which is the set indication for the set 
with highest membership at point x0.
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The below Fig. 8.137 shows this expressed by above (8.19), where clearly 
the new data sample defined by the singleton expressed by x 0 most closely 
resembles the pattern described by fuzzy set A 2.

Fig. 8.137. Data sample resemblance

Example: suppose the single data sample is described by a data trilet, where 
the three coordinates are the angles of a specific triangle:
(1) New data is crisp singleton

For example x 0 =  {A  =  85,B =  50, C  =  45}; the five known patterns are 
isosceles, right, right isosceles, equilateral and all other triangles.

MI (A, B , C ) =  1 -  1/60 min(A -  B , B  -  C ) ^  mI (85, 50,45) =  0.916 
MR(A ,B ,C ) =  1 -  1/90|A -  901 ^  mr(85, 50,45) =  0.94 

Mir(A, B, C ) =  mivmr ^  Mir(85, 50,45) =  0.916 
Me (A, B , C ) =  1 -  1/180(A -  C ) ^  me (85, 50, 45) =  0.8 

Mi  (A, B,  C ) =  1/180 min{3(A -  B),  3(B -  C), 2|A -  90|, IA -  C  |}
^  Mt (85, 50,45) =  0.05

using the criterion of maximum membership, we see from these values 
that x 0 most closely resembles the right triangle pattern R.

(2) New data is fuzzy set
Consider the case where the new data sample is not crisp, but rather a 
fuzzy set itself. Suppose we have m typical patterns represented as fuzzy 
sets A I on X  (I  =  1, 2 . . . m)  and a new piece of data, perhaps consisting 
for group of observations, is represented by a fuzzy set B  on X . The task 
is to find which Ai the sample B  most closely matches.
If we define two identical fuzzy vectors (they are of same length and they 

contain the same elements in an ordered sense) a and b, then the inner product 
a • b T reaches a maximum value as the outer product a ® b T reaches a mini­
mum. These two norms, the inner product and outer product can be used 
simultaneously in pattern recognition studies because they measure closeness 
or similarity.

We can extend the fuzzy vectors to the case of fuzzy sets whereas vectors 
are defined on a finite countable universe, sets can be used to address infinite­
valued universes.
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Let A  and B  be two fuzzy sets then either of the expressions

(A, B )i =  [(A • B) n ( A 0 B ), (8 .20)
(A ,B )2 =  1/ 2[(A • B) +  ( ! © B ). (8 .21)

Describes the two metrics to assess the degree of similarity of the two sets 
A  and B :

(A, B) =  (A, B )i or (A, B) =  (A, B )2 (8.22)

In particular, when either of the values of (A, B) approaches 1, then the two 
fuzzy sets A  and B  are “more closely similar” when either of the values (A, 
B) approaches a value 0, the two fuzzy sets are “ far more apart” (dissimilar). 
The metric 1 uses minimum property to describe similarity and the metric 2 
uses arithmetic property to describe similarity.

The first metric always gives a value lesser than the value obtained from 
the second metric both of these represent a concept called “APPROACHING  
DEGREE.”

Example: suppose we have a universe of five discrete elements, X  =  
{ x i , x 2, x 3, x 4, x 5}, and we have two fuzzy sets A  and B, on this universe. 
Note that the two fuzzy sets are actually crisp sets and complements to each 
other

A =  {1 /X i  +  1 /X 2 +  0/X 3 +  0/X 4 +  0/X 5}
B  =  {0 /X i +  0/ X 2 +  1/X 3 +  1/X 4 +  1/X 5}

If we calculate the inner and outer products we get

A  • B =  0 
A  0  B =  1
(A, B)i =  (A, B )2

The conclusion is that a crisp set and its complement are completely 
dissimilar.

Example: suppose we have a one-dimensional universe on the real line, X  =  
[— x ,  <xj; and we define two fuzzy sets A  and B  having normal Gaussian 
membership functions which are defined mathematically as

He (x) =  exp— (x — b)2/ab2}, 
jiA(x) =  exp— (x — a)2/a a2}

A  • B  =  exp— (a — b)2/ ( a a +  ab)2} =  h a (x0) =  he (xo).

xo =  (a a • b +  • a)/(aa +  &b)

It can be shown that the inner product o f the two fuzzy sets is equal to
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and the outer product is calculated to be

A  0  B  =  0.

Hence the values are

(A, B )i =  exp[-(a  -  b)2/ j  +  j b)2] Л 1 
(A , B )2 =  1/2[exp[—((a — b)2/(aa +  ab)2) +  1]

In usual pattern recognition problems we are interested in comparing a data 
sample to a number of known patterns.

Suppose we have a collection of M  patterns, each represented by a fuzzy 
set, Ai where i =  1, 2, ■■■ , m  and a sample pattern B, all defined on the 
universe. Now the question of which pattern most closely resembles the pattern 
B. A useful metric that has appeared in the literature is to compare the data 
sample to each of the known patterns in a pairwise comparisons, then select the 
pair with largest approaching degree values as the one governing the pattern 
recognition process. The known pattern that is involved in the maximum 
approaching degree value is then the pattern the data sample most closely 
resembles in a maximal sense. This concept has been termed the “maximum 
approaching degree.”

The below equation shows this concept for m known patterns:

(B, Ai) =  mаx{ (B, A 1  ̂(B, A2), (B, A3) ■■■(B, Am)} (8.23)

Example: suppose an earthquake engineering consultant have to assess earth­
quake damage in a region just hit by a large earthquake. The assessment of 
damage will base very important to residents of the area because the insurance 
companies will base their claim payouts on the assessment. From previous his­
torical records you determine that the six categories of the modified Mercalli 
Intensity (I) scale (VI) to (XI) are most appropriate for the range of damage 
to the buildings in the region. These damage patterns can all be represented 
by Gaussian membership functions A i i = 1 , 2 , . . . ,  6 of the following form.

MAi (x) =  exp[— (x — ai ) ‘2/{Jai 2]

Where parameters ai and <jj define the shape of each membership func­
tion. Historical database provides the information shown in Table 8.22 for the 
parameters for the six regions.

Table 8.22. Parameters for Gaussian membership functions
Ai A2 A3 A4 As A6
VI VII VIII IX X XI

ai 5 20 35 49 71 92
& ai 5 10 13 26 18 4
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The pattern of damage to buildings in a given location is determined by in­
spection and is represented by a fuzzy set B , with the following characteristics:

HB (x) =  exp— (x — b)2/ab2]; b =  41 and ab =  10

Hb (41) =  1; hb (x =  41) =  0; Xo =  41

Now conducting the following calculations, using the similarity metric to de­
termine the maximum approaching degree:

(B, A x) =  1/2(0.004 +  1) «  0.5

(B ,A 2) =0.67 

(B ,As) =0.97 

(B ,A 4) =  0.98 

(B ,As) =0.65 

(B,Ae) = 0 .5

from this list we can see that Mercalli Intensity IX (A4) most closely resembles 
the damaged area because of the maximum membership value of 0.98.

Suppose if the membership function of the damaged region to be a simple 
singleton with the following characteristics:
This example reduces to the single data sample problem posed earlier, i.e., 

(B, Ai )  =  HAi (xo) A 1 =  HAi (Xo) 

the calculations produce the following results:

Ha i (41) «  0 

Ha2(41) =0.01 

Наз(41) =0.81 

HA4(41) =0.91 

HA5(41) =0.06 

НАб(41) ~  0
Again, Mercalii scale IX (A4) would be chosen on the basis of maximum 
membership (0.91). If we were to make selection without regard to the shapes 
of the membership values, we would be inclined erroneously to select region 
VIII because its mean value of 35 closer to the singleton 41 then it is to the 
mean value of region IX, i.e., to 49.
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So far we have considered only one-dimensional pattern recognition; that is, 
the patterns here have been constructed only on a single feature. If we have 
to consider many features in the pattern recognition process there are three 
popular methods:

-  Nearest neighbor classifier
-  Nearest center classifier
-  Weighted approaching degree

The first two methods are restricted to the recognition of crisp singleton data 
samples.

In the nearest neighbor classifier method we can consider m features for 
each data sample, so each sample ( x j ) is a vector of features,

X i {x i1, x i2 , x i3: • ••: x i1 }  .

Now suppose we have n data samples in a universe, or X  =  { x 1 , x 2,x 3 ,x4, . . . ,
xm} .

Using a conventional fuzzy classification approach, we can cluster the sam­
ples into c-fuzzy partitions, then get c-hard partitions from these by using the 
equivalent relations idea or by hardening soft partitions U .

Now if we have a new singleton data sample, say x , then the nearest 
neighbor classifier is given by the following distance measure d:

d ( X , X i ) =  min { d ( X , X k)}1<k<n

for each of the n data samples where X i G A j , that is, points X  and X j are 
nearest neighbors, hence both would belong to the same class.

In another method for singleton recognition, the nearest classifier method 
works as follows.

We again start with n known data samples, X  =  { x 1t x 2, x 3, x 4, . . . ,  x n}  
and each data sample is m-dimensional (characterized by m features). We can 
cluster these samples into fuzzy classes and each have a centre class, so

V  =  { v 1, v2 , V3 , . . . ,  Vc}

Is a vector of the “c” class centers.
If we have a new singleton data sample, say x , the nearest center classifier 

is then given by
And now the data singleton, x, is classified as belonging to the fuzzy 

partition Aj.
d ( X , V i ) =  min {d( X, Vk )}1<k<c

In the third method for addressing multifeature pattern recognition for a 
sample with several (m ) fuzzy features, we will use the approaching degree

8.10.1 Multifeature Pattern Recognition
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concept again to compare the new data pattern with some known data pat­
terns. Define a new data sample characterized by m features as a collection of 
noninteractive fuzzy sets, B  =  {B\, B 2, B3, . . . ,  Bm}. Because the new data 
sample is characterized by m features, each of the known patterns, A i , is also 
described by m features. Hence each known pattern in m-dimensional space 
is a fuzzy class given by, Ai =  {A ii , A i2, A i3,. . . , A im}  where i =  1, 2,. . . ,c  
describe the c-classes. Since some of the features may be more important than 
others in the pattern recognition process, we introduce normalized weighting 
factors Wj, where

m
■ £ W j  =  1
j = 1

m
(B, Ai )  =  Y ,  Wj  ( B j , A i j ) 

j=i
Then the equations in the approaching degree concept is modified for each of 
the known c-patterns (I = 1 , 2 , . . . , c )  by As before in the approaching degree, 
sample B  is closest to pattern Aj  when

( B , A j ) =  max { ( B , Ai ) } ,1<i<C

m
VAi (x) =  Y 1  Wj • VAij (x ). 

j = 1
Note that when the collection of fuzzy sets B  =  { B 1, B 2, B 3, . . . ,  B m}  reduces 
to a collection of crisp singletons, i.e., B  =  { x 1, x 2, x 3, . . . ,  x m} then the above 
equations get modified as,

And the sample singleton is closest to pattern A j

Va (x ) =  max {v-Ai(x)}.1<i<c i

Thus the membership function of pattern A j is obtained.
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9 ______________________________________________________________

9.1 Fuzzy Logic Control of a Switched Reluctance 
Motor

This section presents the use of fuzzy logic control (FLC) for switched 
reluctance motor (SRM) speed. The FLC performs a PI (Proportional 
Integral)-like control strategy, giving the current reference variation based on 
speed error and its change. The performance of the drive system was eval­
uated through digital simulations through the toolbox Simulink of Matlab 
program.

The SRM has becoming an attractive alternative in variable speed drives, 
due to its advantages such as structural simplicity, high reliability, and low 
cost. An important characteristic of the SRM is that the inductance of the 
magnetic circuit is a nonlinear function of the phase current and rotor position. 
So, for the control and optimization of this drive, a precise magnetic model 
is necessary. To obtain this model is not an easy task, because the magnetic 
circuit operates at varying levels of saturation under operating conditions. 
Further, the nonlinear characteristic of this plant represents a challenge to 
classical control. To overcome this drawback, some alternatives have been 
suggested in using fuzzy and neuronal systems. This paper proposes to control 
SR drives using FLC, which is mainly applied to complex plants, where it is 
difficult to obtain accurate mathematical model or when the model is severely 
nonlinear. FLC has the ability to handle numeric and linguistic knowledge 
simultaneously. In this section we present a study by simulation of the use 
of an FLC for SR drive. The SRM simulated has a structure of six poles on 
the stator and four on the rotor and power of 1 HP. The nonlinear model of 
this motor was simulated with the Matlab Simulink package and two tables 
were used to represent the nonlinearities: I (в, A), current in function of rotor 
position and flux, and т(в, I), torque in function of rotor position and current. 
The objective of the FLC is to present a good performance, even if the two 
tables for a given motor were not accurately determined. The proposed control 
can be divided into two parts. The first employs FLC and will generate current
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Fig. 9.1. SRM with six poles on the stator and four poles on the rotor

reference variations, based on speed error and its change. The second one has 
the function of selecting the phase that should be fed to optimize the torque, 
based on rotor position.

9.1.1 M otor

In a SRM, both stator and rotor have different magnetic reluctance along 
various radial axis. Figure 9.1 shows the controlled SRM, which has six poles 
on the stator and four on the rotor.

SRM electromechanical model can be represented by the following 
equations:

V = R I + d A -
(9.1)

Te = З Ц А ̂
(9.2)

dw
T =  Te -  TL =  J —  , dt

(9.3)

where V  is the stator voltage, R  resistance in the winding, A leakage magnetic 
flux, Те electromechanical torque, tl load torque, в rotor position, w speed, 
and J  momentum of inertia.

9.1.2 M otor Simulation

Matlab Simulink package was used to simulate the SRM. This choice was 
taken because this software has a good performance and satisfies all features 
required. Simulation was based on (9.1)-(9.3) and the tables of torque in 
function of angle and current, т (в, I) and current in function of angle and flux 
linkage, I (в, A). These tables, extracted from the numeric data of the motor 
design by a finite elements program, were used to avoid the time consuming 
due to partial derivatives equations solution. See, in Fig. 9.2, the block diagram 
used.
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Fig. 9.2. Block diagram of the simulation

9.1.3 Current Reference Setting

In this part, we determine current reference for the three phases currents hys­
teresis control. The FLC generates current reference changes (A Iref), based on 
speed error (eu =  uref—uactual) and its change (ceu =  eu (k + 1 )—eu (k)). A Iref 
is integrated to achieve current reference. We will show how the limits for the 
universes of the antecedents and consequents were initially settled. The eu  has 
its minimal value when the motor speed has nominal value, +180rads-1 , and 
is inverted to —180rads-1 . So, we have eu  =  uref —u  =  (—180) — (+180) =  
—360rads-1 . The maximum value, +360, is obtained in the opposite situa­
tion. The maximum torque obtained with the motor nominal current (5 A) is 
1.2 N m, thus which we can calculate the maximum absolute value for ceu :

A u
J —— =  т 

A t

ceu  =  eu (k ) — eu (k — 1)
— (uref u  (k)) (uref u (k 1))
=  — (u (k) — u (k — 1)) =  —A u,

A t A t  2 x 10-3
*  A u = J  Iceu| = J  = 13  x 10-3 x 1-2 — w ,

where A t is the interruption time.
The maximum absolute value for the A Iref universe was obtained by trial 

and error. So, the initial limits for the universe of the antecedents and conse­
quents were the following:
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-1.5 -0.5 0

(a)

0.5 1.0 1.5(180 rad/s)

(b)

(c)

1.5 (1A)

Fig. 9.3. Linguistic rules for current reference determination: (a) speed error, 
(b) change of speed error, (c) change of current reference

eu  : —360a +  360 (rads-1 ), 
ceu  : —19a + 19  (rads-1 s-1 ),
A /ref : —1a + 1  (A).

After some manual changes in these limits to optimize the speed control, we 
got the following values:

eu  : —180 to +180 (rads-1 ) 
ceu  : —19 to + 19  (rads-1 s-1 )
A I ref : —0.7 to +  0.7 (A)

Both antecedents and consequent linguistic variables are represented by seven 
triangular membership functions as shown in Fig. 9.3. The rule database 
formed with the given inputs to obtain the output is as shown in Table 9.1.
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Table 9.1. Rule database

еш /ceu NB NM NS ZE PS PM PB
NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PB ZE PS PM PB PB PB PB

£ 4
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Fig. 9.4. Simulation results: (a) speed x time, (b) current reference x time

5

Some simulation results are presented on Fig. 9.4, which shows this control 
performance when there is a change in load and in speed reference. At first, 
0.1 Nm load is applied to this motor. At 0.27s, load is increased to 1N m, 
requiring higher torque. At 0.61s, speed reference is decreased to 80rads-1 
and in consequence current decreases for deceleration.

9.1.4 C hoice o f  the Phase to be  Fed

This part of the control determines which phase should be fed. Its inputs are 
rotor position and speed.

Consider a phase ideal inductance profile shown in Fig. 9.5. If ш >  0 and 
в e  interval 1, feed the corresponding phase. The presence of current in this 
increasing inductance region will produce positive torque. If еш >  0, current 
should produce electrical torque, те, higher than load one, Tload to accelerate. If 
еш >  0 < 0, те, should be lower than Tload for deacceleration. Current reference 
value (electrical torque) and so acceleration or deacceleration is established by 
the first part of the control. It is also possible to decelerated the motor feeding
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Time (s)

(a)

Time (s)
(b)

Fig. 9.6. Speed change from 180 to 80 rad s-1 : (a) without feeding and (b) feeding 
the phase with decreasing inductance

the phase with decreasing inductance. However, it would cause overshoot. 
Figure 9.6 shows speed change from 180 to 80 rad s-1 , feeding and not feeding 
the decreasing inductance phase.

If ш > 0,9 e  interval 2 and there will be current in this phase, the source 
will not supply the phase.

The converter capacitor voltage will disenergize the phase to avoid pro­
duction of negative torque.

The optimum energization angle 9on is 150 before the ideal inductance 
profile starts increasing. This choice is taken by the fact that actual inductance
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-------- Actual inductance profile
--------  Real inductance profile

F ig .  9 .7 . Actual and ideal inductance profiles

profile is not constant between 9i and 92 (see Fig. 9.7). Inductance decreases 
between 9i and 9on and increases between 9on and 92. Therefore, if the phase 
is fed before 9on, there will be negative torque applied. On the other hand, 
feeding in 9on will provide positive torque between 9on and 92. Its value will be 
low, but important to compensate the torque fall supplied by another phase 
that is being disenergized in this same period. Another advantage is that 
current increases faster due to low inductance in 9on and will have reached 
the reference when rotor position be in the region of high inductance change
( [929^max])-

Finally to conclude, to get dynamics performance predictions of SRMs, 
including its control, a simulating model has been shown in this paper. The 
nonlinear modeling has been represented by look-up tables to obtain torque 
and current. A control has been developed for the SRM speed. This control 
has two parts. Part 1 determines the reference current, and so electromechan­
ical torque. Part 2 chooses which phase should be fed, based on 9 and speed, 
and is responsible for imposing speed direction. It was shown that inverting 
speed direction by energizing the phase with decreasing inductance to deac- 
celerate the motor provided speed overshoot, while the use of load torque on 
deacceleration made the speed response more smooth. The FLC has demon­
strated a good accuracy and has performed well for the speed control of the 
SRM, surpassing its nonlinearities.

9.2 Modelling and Fuzzy Control of DC Drive

An industrial DC drive (22 kW) with fuzzy controller is simulated. Two mod­
els (linear and nonlinear) and two controllers (PID and fuzzy) are investigated. 
Using fuzzy controller for DC drive operation was successful. Two mathemat­
ical models of a DC drive are used. The first model is build as linear transfer 
function of converter and DC motor. The second model is build using ad­
vanced blocks from Power System Blockset (PSB) library. The library is an 
extension of Matlab/Simulink environment from The MathWorks, Inc. Using 
fuzzy logic and PSB library model seems to be new and promising approach 
to control of an electric drive.
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F ig . 9 .8 . Linear model of DC motor

9.2.1 Linear M odel o f  D C  Drive

A linear and nonlinear model of DC drive will be used. The linear model 
consists of two parts: converter/rectifier and DC motor. A linear model of 
DC motor (Fig. 9.8) was build using Simulink blocks. There are two inputs 
(voltage and load) and two outputs (angular motor velocity and current). Its 
parameters are computed automatically from nominal catalogue data: motor 
power, voltage, current, speed, etc.). It is very convenient to use nominal 
motor data as rotor inductance and resistance. DC motor constant and other 
internal motor parameters are difficult to find converter/rectifier is described 
as first-order inertia

kp(s)
Gc Tmip s +  1

is mean dead time of con-where kp is gain of converter/rectifier and Tmip 
verter/rectifier.

The dead time Tmip may vary from zero to one-half the period of an 
AC source (0.01s for 50 Hz). It is assumed that six-phase thyristor bridge 
with mean dead time Tmip =  1.67ms is used in the converter. A classic DC 
drive with two PID controllers is presented on Fig. 9.9. It was assumed to 
neglect a derivative signal and to use PI operation of a current controller only. 
Parameters of the current controller were derived from the model parameters 
using rules of module and symmetry. Then Nonlinear Control Design Blockset 
(NCD) was used for automatic tuning of the controller parameters to minimize 
the transient overshot.

Simple transfer function model of motor current versus voltage was used

Gm
kia

Tas +  1
where kia is gain of DC motor and Ta the armature circuit time constant.

Similar procedure was used to find parameters of velocity controller. The 
simulation results (DC motor current and angular velocity vs. time) are pre­
sented on Fig. 9.10. This is raw simulation as linear model has very low granu­
larity: AC component of current and switching of currents in thyristor bridge 
are neglected. Only envelope of transients can be seen on simulation output.
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F ig .  9 .9 . DC drive with PI controllers in current and velocity loops. PSB is used 
to build advanced drive model (upper part of block diagram,)

<1a>

F ig .  9 .1 0 . Current (upper red) and angular velocity (lower blue) of DC motor. 
Simulink and linear model were used for simulation
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9.2.2 Using PSB to  M odel the D C Drive

An advanced set of linear and nonlinear blocks can be found in PSB. Three 
AC sources, three-phase six-pulse converter, pulse generator, and DC motor 
are taken from the library. They are used to prepare high-quality model of 
three-phase DC drive (see Fig. 9.9).

The three-phase bridge converter is the most frequently used motor con­
trol system. Two of six thyristors conduct at any time instant. Gating of each 
thyristor initiates a pulse of load current; therefore this is a six-pulse con­
trolled rectifier. The three-phase six-pulse rectifier is also capable of inverter 
operation in the fourth quadrant. Electrical phenomena of thyristor bridge 
and DC motor are modeled very exactly. Simulation results (Figs. 9.11 and 
9.12) are almost exact with real measurement data on industrial object, but 
computation is slow comparing to linear model.

9.2.3 Fuzzy Controller o f  D C  Drive

The fuzzy controller is presented on Fig. 9.13. Advanced model using PSB is 
used, but transfer function model can also be useful for preliminary tuning of 
controller parameters.

<1a>

0 0.5 1 1.5
<ws>

Time

F ig .  9 .1 1 . Simulated current signal (red) and angular velocity (blue) using Simulink 
and Power System Blockset (PSB)
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F ig . 9 .12 . Detail of simulated current signal using Simulink and PSB

synchronization signals

= £  v |----------

3 0 —
vba

3 0 -----^
vc

CB

CTL

A I

: $ i
pulses
6 - pulse 
converter

s i .

Jobi=2.7

Pulse_generator

________  RN

I Speed nz* | ^  | ] 
reference ^  regPI ia\

Sp ramp

Speed
reference

Sp_ramp

Run
inidodr 22KW

Й€)
■ A

Ш -
Load torque

w0

1 |lN T EGerr^
Mux

Integrator
Fuzzy

Controller_1

—r^kom ■«*-

F ig .  9 .1 3 . DC drive with fuzzy controller in current loop. PSB is used to build 
advanced drive model (upper part of block diagram,)
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Linguistic Variables and Rules

There are two fuzzy variables (error and INTEG error) and seven linguistic 
variables (from big negative to big positive). The fuzzy controller attributes 
are:
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F ig . 9 .1 4 . Fuzzy control surface

type: ‘mamdani’ 
andMethod: ‘prod’ 
orMethod: ‘max’ 
defuzzMethod: ‘centroid’ 
impMethod: ‘prod’ 
aggMethod: ‘max’ 
input: [1x2 struct] 
output: [1x1 struct] 
rule: [1x25 struct]

The membership functions (pimf and gausmf are used) and rules are design 
tools that give opportunity to model a control surface and controller proper­
ties. It is obvious that using this attributes one can more precisely fulfill a 
quality criterion in full operational range. The control surface (Fig. 9.14) is 
defined with 25 rules.

9.2.4 Results

Simulation output for fuzzy controller is similar to PI controller output pre­
sented -  unless one considers how controller reacts for external disturbation. 
The investigation showed that even simple fuzzy controller used to control 
DC drive operation (Fig. 9.13) is more precise and faster than of PI controller 
(Fig. 9.15).

9.3 Fuzzy Rules for Automated Sensor Self-Validation 
and Confidence Measure

In this section we present a methodology for the development of a generic, 
automated self-validation technique that can be used to improve the operation
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F ig .  9 .15 . Detail of simulation results (motor current). Fuzzy controller (here) 
reacts faster than PI
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of a controller-based system. The reliability of a controller-based system de­
pends on the validity of the data provided for the development and opera­
tion of the controller. The self-validation algorithm described in this paper is 
based on fuzzy logic rules described by membership functions. The member­
ship functions are created from data set parameters (e.g., the standard devi­
ation and the range of the data set). Raw data are median filtered and then 
passed through these membership functions to obtain a measure of confidence. 
The methodology is illustrated using temperature data from an iron-melting 
cupola furnace.

The most important step before developing an intelligent algorithm for 
sensor fusion or inferential measurement is to determine what data are to be 
used for development of the system. In an industrial implementation of a con- 
trollerbased system, the key input signals or data may suffer from severe noise 
and external disturbances. For reliable operation of these systems, we require 
a valid data set from the sensors. Invalid or erroneous data will result in an 
incorrect operation of the controller and hence a deterioration in the overall 
performance quality of the system. In this section we develop a methodology 
for automated data self-validation; i.e., the only information used to estab­
lish the confidence of the particular sensor’s data is that sensor’s historical 
behavior.

Previously neural networks were used to validate signal sets. To imple­
ment neural networks, large data sets are required to train a network. This is 
not always a feasible option because of the nonavailability of large data sets. 
Moreover, a neural network trained by a particular data set is inclined to that 
particular application. Hence this technique is not generic.

The objective of this section is to develop and implement a generic and 
automated self-validation system. The presented methodology utilizes fuzzy 
logic rules for establishing a confidence measure for the sensor data under 
consideration.

<la>
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9.3.1 Preparation o f  M em bership Functions 

Data Preprocessing

The signal self-validation algorithm is based only actual data taken from the 
system. We for now assume that the developer has validated the data set 
used for preparation of the membership functions. Note, however, that the 
following methodology can be implemented in a recursive manner to establish 
the confidence of an unknown data set. To remove the effects of impulse noise, 
the raw data are passed through a median filter.

C urve Fitting

To quantify the variations in sensor readings, a polynomial curve is used to 
approximate the data set. By using this approximation, the regular “noise” 
level of the signal should be quantified. The user should chose the order of 
the polynomial such that it is high enough to give a good correlation of the 
original data set, but low enough to not be seriously affected by the spikes. 
The order chosen will depend on the amount of noise in each data set and 
therefore may be unique to each sensor.

Param eter Calculation

Descriptions

Although the overall shapes of the three fuzzy membership functions are the 
same for every sensor, the range of values is unique to each sensor. There­
fore, certain parameters must be calculated in order to adapt the membership 
functions to the specific sensor. In our design, the nine parameters listed in 
Table 9.2 have been selected as necessary to complete the membership func­
tions.

T a b le  9 .2 . List of parameters to complete membership functions

Parameter Description
Ti Low temperature
T2 Minimum of ideal range of temperature
Тз Maximum of ideal range of temperature
Ti High temperature
Rr Max/min of ideal rate of change
Rs High/low rate of change
Si, S2, S3 Standard deviation parameters
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Parameters Ti, T2 , T3 , T4

As discussed, the pre-processed temperature sensor data are fitted to a poly­
nomial curve, Tfit, to reduce the amount of noise. The noise can then found by 
subtracting points on the fitted curve from the original data set. The standard 
deviation of this error, ат , is used to determine temperature range parameters 
Ti, T2, T3, and T4 as follows:

Ti =  minimum (Tfit) — 3ат ,
T2 =  minimum (Tfit) — ат ,
T3 =  maximum (Tfit) +  ат , and 
T4 =  maximum (Tfit) +  3ат

Parameters R 7 , Rg

A similar method is used to calculate the rate of change parameters R 7 and 
Rg. The rate of change of the median-filtered original data is found by incre­
mentally dividing the change in temperature by the change in time. The fitted 
curve rate of change, Rfit, is found by taking the mathematical derivative of 
the coefficients of the fitted curve, Tfit. Again, by subtracting points on the 
fitted curve from the original data, the standard deviation of this error, aR, 
is found. Then R 7 and Rg are determined as follows:

R 7 =  maximum (abs (Rflt)) +  aR,
Rg =  maximum (abs (Rflt)) +  3aR.

Parameters Si, S2, S3

The final parameters to be determined are those relevant to the standard 
deviation; i.e., S1, S2, and S3. The fitted curve of standard deviation, Sfit, is 
found by taking the standard deviation of a window of five coefficients from 
fitted curve, Tfit. Points of Sfit are subtracted from the standard deviations of 
the original data. The standard deviation of this difference, aS, is then found. 
Note: aS is actually the standard deviation of the standard deviations of the 
difference between the real and fitted curves (ат ).

51 =  ат,
5 2 =  maximum (abs (Sfit)) +  aS, and
5 3 =  maximum (abs (Sfit)) +  3aS.

9.3.2 Fuzzy Rules 

M em bership Functions

The first membership function analyzes the temperature values. The range is 
from zero to well above the highest expected temperature. Each of the mem­
bership functions is trapezoidal in shape. The parameters for each of the
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Membership Function2 - Rate of Change in Temperature

Fig. 9.16. Membership functions (a) top, (b) middle, and (c) bottom figures

functions are shown in Fig. 9.16. Data in the ideal range will have the highest 
confidence while data outside this range have diminished confidence.

The second membership function analyzes the rate of change in the tem­
perature values and is shown in Fig. 9.16b. It is symmetric about the origin, 
and the highest/lowest values of the range are well above/below the high­
est/lowest expected rate of change. Again, the shape is trapezoidal. High rates 
of change are typically uncharacteristic of the process and thus this data with 
this behavior are given lower confidence.

The third membership function deals with standard deviation parame­
ters and is shown in Fig. 9.16c. These parameters are computed for constant, 
normal, and high-noise ranges of the data. The purpose of the constant mem­
bership is to detect when sensor values have “flat-lined.” This scenario can 
be indicative of a sensor or signal conditioner failure and thus we reduce the 
self-confidence as a means of raising a flag to the system monitor.

9.3.3 Im plem entation

In this section, we demonstrate the fuzzy logic self-validation methodology 
on real data obtained from the experimental cupola at the Albany Research
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F ig .  9 .17 . Block diagram of presented methodology

Center (ALRC), OR. The sensor data are contained in a data file that consist 
of the sample time and the sampled value. Although only temperature sensors 
have been considered for this illustration, the scheme effectively produces a 
confidence plot and measure for all the sensors. The methodology was im­
plemented with a combination of Excel, Matlab, and LabView routines. The 
routines automate the process completely such that the user selects a data file 
and the program produces the membership functions in a format that can be 
implemented by the Matlab Fuzzy Logic Toolbox.

Description

The complete procedure of the self-validation scheme can be described with 
the block diagram of the LabView graphical interface as shown in Fig. 9.17. 
The data are first acquired and then verified. For our purposes, verifying the 
data was selecting data from good data records. In general, this can be au­
tomated using a recursive self-validation routine and then selecting only data 
with long sections of highly confident data. The verified data were, however, 
median filtered to remove any impulse noise.

Parameters for the fuzzy block are computed from the verified data. These 
parameters are then used to define membership functions. The real data are 
then median filtered and then passed through the membership functions of the 
fuzzy block to obtain their self-confidence measure. The results are illustrated 
with the confidence plots in Section “Confidence Plots” .

Confidence Plots

The results of the self-validation scheme are illustrated with the help of the 
figures. Figure 9.18 shows the confidence plots of good quality and corrupted 
data. The fuzzy logic membership functions were developed using the good 
data file and thus its confidence is consistently very high as shown in Fig. 9.19.

Figure 9.18 also presents a deliberately corrupted data set showing vari­
ous types of inconsistent data behavior including data flat-lining, high rates 
of change, and being out of ideal range. In each case one notes that the 
self-confidence of the data is diminished as shown in Fig. 9.19. These figures 
illustrate the effectiveness of the algorithm in detecting data inconsistent with 
the historical behavior of the sensor.
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Actual.......... Filtered

F ig . 9 .1 8 . Original and corrupted data

------ Confidence

F ig .  9 .19 . Confidence of corrupted sensor signal

To conclude, in this section, we have described research that has been 
performed to design a signal self-validation methodology. Self-validation is 
accomplished by implementing the fuzzy rules described. The membership 
functions are applied to the median-filtered data set. The validation is based 
on the confidence measure array that is obtained as the output. In addition 
to validating the data, this scheme implemented in LabView also provides 
information about the occurrences of bad data in terms of spikes and warns 
the engineer of the uncertainty levels in the sensor output. The methodology 
was demonstrated on temperature data for an iron-melting cupola furnace.

This validation scheme is generic in nature. Though our specific application 
is data from the cupola furnace, it can be applied any application where 
time-series data is provided. The fuzzy rules of the developed self-validation 
scheme are based on the individual data sets coming in from independent 
sensors. So if any of the sensors fails, the scheme operates despite the fault 
and hence is a fault tolerant system. Moreover through this scheme we know 
of the occurrences of all the spikes or disturbances. Hence, if we eliminate 
these disturbances or random movements the scheme will prove effective in 
preventing the poor use of the control elements.
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F ig . 9 .2 0 . The cart system to be controlled

9.4 FLC of Cart

Fuzzy logic control design is somewhat different from conventional control 
design methods in that it departs from standard analysis tools such as the 
Bode frequency response plot and the root locus diagram. In some cases, it 
may be appropriate to use an entirely fuzzy-based approach. But fuzzy logic 
can also be used in a hybrid approach with conventional control methods, 
making the most of both worlds. In this section, we examine how fuzzy logic 
can simplify gain scheduling between two different PID controllers. The system 
we will be looking at here is a simple one: a spring-mass-damper system from 
Dynamics 101 as illustrated in Fig. 9.20. While a basic PID controller will do 
a fine job of making it behave, fuzzy logic can provide a convenient way to 
meet stringent control objectives.

In response to a square wave, we want to move the cart back and forth 
between points A  and B. Notice that near point B  there is a wall, a hard 
stop that we want to keep the cart away from. On the other hand, at point 
A  we have considerably more leeway. Let us also assume we want to conserve 
control power and mechanical wear and tear by using looser, more relaxed 
control at point A . The design goal is relaxed control at point A , tight control 
(specifically, fast response with no overshoot) at point B . This situation is 
similar to the operation of a robot arm in an application where you want 
precise movement in one position and energy conservation elsewhere. Because 
the plant is a simple one, both the precise control and the relaxed control can 
be implemented with a basic PID controller. But to meet both criteria we 
need some kind of gain scheduling to alternate between the two controllers, 
each of which has gain parameters tuned for its specific control objective. We 
can design a fuzzy controller to handle the gain scheduling for us. Let us start 
with the Simulink model of the system shown in Fig. 9.21.

The cart system is lightly damped. Its dynamics are described in the trans­
fer function block as a function of the frequency domain variable s

G(s)  =  w2/ ( s 2 +  2Qws +  w2), 

where the natural frequency w =  1 rads-1 and the damping is 5 =  0.1.



388 9 Fuzzy Logic Projects with Matlab

F ig . 9 .2 1 . Simulink block diagram of cart system with PID controller in place

F ig .  9 .2 2 . Left: closed-loop step response with tight control gains. Right: closed-loop 
step response with loose control gains

Let us assume that we have already specified our gains for both the tightly 
controlled system and the loosely controlled one. There are any number of 
ways to choose these gains, and the ones we list later are not necessarily 
optimal in any sense.

Tight control: K p =  60, K ; =  4, K d =  14,
Loose control: K p =  5, K ; =  1, K d =  2.
The main design constraint we want to guarantee with the tight control 

is zero overshoot near setpoint B. On the other hand, the main consideration 
for the loose control gains is minimizing the control effort (while providing a 
small degree of damping). Figure 9.22 shows the closed-loop step response for 
each set of gains.

The point of this particular example is to show how we can use fuzzy logic 
to work hand-in-hand with conventional control. We do this by making use 
of what is known as Sugeno fuzzy inference system (FIS) (named for fuzzy 
logic pioneer Michio Sugeno) to implement a blend of the two different PID 
controllers. First, we need to make sure we have a good understanding of 
how a Sugeno system calculates its outputs. In a Sugeno system, the output 
membership function is a linear function of the inputs. The fuzzy rules for a 
single input/single output system look like this
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F ig . 9 .2 3 . The fuzzy inference system editor in the Fuzzy Logic Toolbox

I f  input is high, then output =  q*input +  r,

where q is a gain operating on the input and r is a constant. We need to build 
a Sugeno system with four inputs: cart position (so we can decide if we are 
close to point A  or point B) and the P, I, and D signals to which we apply the 
appropriate gains K p, K ;, and K d. (The astute reader may notice that the P 
signal is the same thing as the cart position, but we will continue to refer to 
both signals for clarity.) Now we can build a rule set with exactly two rules:

1. If cart is near_A then control is loose [so use the gains K p =  5, K ; =  1,
Kd =  2],

2. If cart is near_B then control is tight [so use the gains K p =  60, K ; =  4,
Kd =  14].

The antecedents of these rules (e.g., “if cart is near_A” ) depend on the mem­
bership function for the terms “near_A” and “near_B.” The consequents of 
these rules (e.g., “then control is loose” ) contain the three gains K p, K ;, and 
K d that we have calculated ahead of time. One output membership function 
implements all three gains at once. The system switches between two different 
controllers, so there are two output membership functions and two rules.

The window shown in Fig. 9.23 is the FIS editor, which we use to create our 
inputs and outputs for the fuzzy controller. We are building a four input/one 
output system, so we add inputs (cart, prop, int, deriv), and a single output 
(control action). We will specify these with the membership function editor.
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F ig . 9 .2 4 . Membership function editor
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F ig . 9 .25 . Simulink block diagram of cart system with fuzzy controller in place

The membership function editor shown in Fig. 9.24 is where we define 
what we mean by the phrase “cart is near_A” . Point A  corresponds to the 
numerical value 0 and point B  corresponds to the value 1. We have chosen 
to make a smooth ramp from one to the other. Notice that this means the 
statement ‘cart is near_A’ is 100% true when position =  0; it is 50% true when 
position =  0.5; and it is 0% true when position =  1. The converse is true of 
the statement ‘cart is near_B.’

Once we have built our fuzzy controller using the graphical editors avail­
able in the Fuzzy Logic Toolbox, we save its specification in the Matlab 
workspace as a memory-resident variable. Alternatively, you may use Mat- 
files to save it to disk. The fuzzy controller is now available to be used in the 
fuzzy controller block in a Simulink diagram.

Figure 9.25 contains an updated version of our Simulink block diagram. 
Notice that we have replaced the three PID gains with a fuzzy controller
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F ig . 9 .2 7 . Fuzzy Logic Toolbox output surface viewer

block. Also, we are using the cart position as an extra input so we can blend 
between the two sets of gains depending on where the cart is.

The plot in Fig. 9.26 shows the simulation of our system as it responds 
to a square wave. Notice that, just as we expected, the control of the cart 
near point B  is tighter and has no overshoot, while the control is much looser 
near point A. So the Sugeno fuzzy system has successfully implemented a 
convenient gain scheduler for us.

In Fig. 9.27 we see the surface plot of the fuzzy controller. This is a plot 
of show the controller’s output signal changes as a function of the cart’s 
position and the proportional signal. Where the three-dimensional shape is
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mountainous, the control power required is higher and, as expected, corre­
sponds to the region where the cart position is near point B. So we are look­
ing at a map of the required control effort. This kind of visualization can be 
extremely valuable to a control designer, and it is just one example of the 
built-in tools available with the Fuzzy Logic Toolbox.

9.5 A  Simple Fuzzy Excitation Control System (AVR) 
in Power System Stability Analysis

This section develops a controller based on fuzzy logic to simulate an auto­
matic voltage regulator (AVR) in transient stability power system analysis. 
It was simulated a one machine control to check if the fuzzy controller imple­
mentation was possible. After that the controller developed was applied to an 
18 bus bar system in order to show its behavior, which results were compared 
to the results obtained with the AVR itself.

From the power system point of view, the excitation system must con­
tribute for the effective voltage control and enhancement of the system sta­
bility. It must be able to respond quickly to a disturbance enhancing the 
transient stability and the small signal stability.

Three principal control systems directly affect a synchronous generator: 
the boiler, governor, and exciter controls. Assuming that the generating unit 
has no losses. It is a reasonable assumption when total losses of turbine and 
generator are compared to total output. Under this assumption all power re­
ceived, as steam must leave the generator terminals as electric power. The 
governor controls the steam power amount admitted to the turbine. The ex­
citation system controls the generated EMF of the generator and therefore 
controls not only the output voltage, but also the power factor and current 
magnitude as well.

In many present-day systems the exciter is a DC generator driven by ei­
ther the steam turbine (on the same shaft as the generator) or an induction 
motor. An increasing number are solid-state systems consisting of some form 
of rectifier or thyristor system supplied from the AC bus from an alternator 
exciter.

The voltage regulator is the intelligence of the system and controls the 
output of the exciter so that the generated voltage and reactive power change 
in the desired way. In most modern systems the AVR is a controller that 
senses the generator output voltage (and sometimes the current) then initiates 
corrective action by changing the exciter control in the desired direction. The 
speed of the AVR is of great interest in studying stability. Because of the high 
inductance in the generator field winding, it is difficult to make rapid changes 
in field current. This introduces a considerable lag in the control function and 
is one of the major obstacles to be overcome in designing a regulating system. 
The purpose of this work is the development of a fuzzy controller (software) 
to simulate the AVR behavior.
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9.5.1 Transient Stability Analysis

The first demand of electrical system reliability is to keep the synchronous 
generators working in parallel and with adequate capacity to satisfy the load 
demand. If at any time, a generator looses synchronism with the rest of the 
system, significant voltage, and current fluctuation can occur and transmis­
sion lines can be automatically removed from the system by their relays deeply 
affecting the system configuration. The second demand is maintaining power 
system integrity. The high voltage transmission system connects the genera­
tion sources to the load centers. Interruption of these nets can obstruct the 
power flow to the load. This usually requires the power system topology study, 
once almost all electrical systems are connected to each other. When a power 
system under normal load condition suffers a disturbance there is synchronous 
machine voltage angles rearrangement. If at each disturbance occurrence an 
unbalance is created between the system generation and load, a new opera­
tion point will be established and consequently there will be voltage angles 
adjustments. The system adjustment to its new operation condition is called 
“transient period” and the system behavior during this period is called “dy­
namic performance.”

As a primitive definition, it can be said that the system oscillatory response 
during the transient period, short after a disturbance, is damped and the 
system goes in a definite time to a new operating condition, so the system 
is stable. This means that the oscillations are damped that the system has 
inherent forces which tend to reduce the oscillations. The instability in a power 
system can be shown in different ways, according to its configuration and its 
mode of operation, but it can also be observed without synchronism loss.

9.5.2 A utom atic Voltage Regulator

Automatic devices control generators voltages output and frequency, in order 
to keep them constant according to pre-established values.

These automatic devices are:

-  Automatic voltage regulator
-  Governor

However any governor due to its action loop, is slower than the AVR. This 
is associated mainly to its final action in the turbine. The main objective of 
the AVR is to control the terminal voltage by adjusting the generators exciter 
voltage. The AVR must keep track of the generator terminal voltage all the 
time and under any load condition, working in order to keep the voltage within 
pre-established limits. Based on this, it can be said that the AVR also controls 
the reactive power generated and the power factor of the machine once these 
variables are related to the generator excitation level.

The AVR quality influences the voltage level during steady state operation, 
and also reduces the voltage oscillations during transient periods, affecting
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F ig . 9 .28 . AVR model type II of IEEE [4]: RT-IEEE2

F ig . 9 .29 . Block diagram of one synchronous machine with AVR simulated in 
Matlab

the overall system stability. Figure 9.28 illustrates the AVR model used in the 
program developed.

9.5.3 Fuzzy Logic Controller Results A pplied to a One 
Synchronous M achine System

The block diagram shown in Fig. 9.29 shows a synchronous machine for which 
output the voltage is controlled by an AVR applied to its excitation system, 
in the Matlab simulation. All data were taken from reference.

Next step is to replace the AVR device by a fuzzy logic controller in order 
to check its efficiency in the synchronous machine excitation voltage control. 
The rule base used by fuzzy controller to simulate an AVR in the Matlab 
program is shown in Fig. 9.30. The fuzzy controller run with the input and 
output normalized universe [—1, 1] (Fig. 9.31). The seven linguistic variables
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F ig .  9 .30 . The output rule base used by fuzzy logic controller in Matlab program 
simulation

№

F ig .  9 .31 . Fuzzy logic controller model

used were generator voltage error and generator voltage error variation, which 
are:

-  LN: large negative
-  MN: medium negative
-  SN: small negative
-  Z: zero
-  SP: small positive
-  MP: medium positive
-  LP: large positive

MN MN SN SN Z

MN MN SN Z SP

SN SN Z SP SP

SN Z SP SP MP

Z SP SP MP MP

SP SP MP MP LP

SP MP MP LP LP
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F ig . 9 .3 2 . One machine analysis (terminal voltage Vt)

time (s)

F ig . 9 .3 3 . One machine analysis (load angle)

Figure 9.32 shows the terminal voltage of a synchronous machine connected 
to an infinite bus bar by a transmission line. Figure 9.33 shows the load angle 
of a synchronous machine.

Next Fig. 9.34 shows the synchronous machine electric torque controlled 
by the AVR and by the fuzzy controller.

9.5.4 Fuzzy Logic Controller in an 18 Bus Bar System

The 18 bus IEEE system was simulated in an stability analysis program de­
veloped by Federal University of Uberlandia called Transufu, for two different 
disturbance types: short circuit and generation loss.



9.5 A Simple Fuzzy Excitation Control System (AVR) 397

F ig . 9 .3 4 . One machine analysis (electrical torque)
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F ig . 9 .35 . The 18 bus bar system analysis (terminal voltage V in bus bar 7)

Four load modeling kinds were studied: constant impedance, constant cur­
rent, 50% constant current and 50% constant power (mist 1), and finally 21% 
constant current and 79% constant power (mist 2). The fuzzy controller ap­
plied here has seven predicates.

Figure 9.35 shows the terminal voltage at bus bar 7 of the IEEE system for 
a short circuit simulation at bus bar 12 lasting 300 ms. The load was modeled 
as 50% I constant and 50% P constant.

Figure 9.36 shows the terminal voltage at the IEEE system bus bar 7 for 
a generator loss simulation at bus bar 4 at 2 s. The load was modeled as 50% 
constant current and 50% constant power.
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F ig . 9 .3 6 . The 18 bus bar system analysis (terminal voltage V  in bus bar 12)

It could be observed for both studies (Matlab simulation and stability 
program simulation) an excellent response of the fuzzy controller and with 
no oscillation, while the AVR response presented a ripple in both studies and 
some oscillations before reaching the steady state operation point. It is shown 
that an excellent performance of the fuzzy control over the conventional one 
for the excitation control of synchronous machines could be achieved.

9.6 A  Low Cost Speed Control System of Brushless DC  
Motor Using Fuzzy Logic

In this section, it focuses on a low cost speed control system using a fuzzy logic 
controller for a brushless DC (BLDC) motor. In a digital controller of BLDC 
motor, the control accuracy is of a high level, and it has a fast response time. 
We used a hall IC signal for the permanent magnet rotor position and for the 
speed feedback signals, and also for a microcontroller of 8-bit type (80CL580); 
furthermore, we designed the fuzzy logic controller and implemented the speed 
control system of BLDC motor. To acquire an accurate FLC algorithm, a 
simulation with the Matlab program has been made, while the performance 
of the system, done with an experiment for a unit step response, was also 
verified.

Recently, a BLDC motor has been rapidly demanded due to preciseness of 
industrial technology and increase of various kind of control device. Because 
a BLDC motor is suitable as a servomotor because of its high efficiency and 
excellent control character. So, we designed a low cost controller for BLDC 
motor, with high rely on quality. In this section, fuzzy reasoning algorithm 
was adapted to response well to various kinds of load. Also, the 80CL580, i.e.,



8-bit CPU was used to produce the system for a low cost. Additionally we 
designed a F/V  converter to monitor a digital speed change in analog signal 
for a efficiency analyzing. So we evaluate a step response characteristic and 
experimented response characteristic in a instant torque change using torque 
meter device.

9.6.1 Proposed  System

Figure 9.37 shows a block diagram of proposed system.
The system above is composed of BLDC motor, six step inverter, gate 

drive of inverter, Programmable Logic Device (PLD), and fuzzy reasoning 
controller. Switching logic, speed multiplexer, and PWM resolution converter 
are located within the PLD. Initially, the hall IC signal feedback occurred 
starting the motor by speed command. Logic signals of FET are generated 
using these three hall IC signals in the switching logic part. This circuit is 
shown in Fig. 9.38.

Only one phase of driving part is shown in this figure, it is realized using 
FET gate switching signals that are generated mixing hall IC signals and using 
AND operation between PWM which is speed control signal and RUN signal 
which is control of RUN/STOP. Also, only one speed signal is created using 
three hall IC signals in the speed pulse multiplexer. This circuit is shown in 
Fig. 9.39.
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Six Step Inverter

Fig. 9.37. Overall system block diagram
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F ig .  9 .39 . The speed pulse multiplexer

In Fig. 9.39, we extend frequency as three times using XOR logical opera­
tion because the resolution of frequency is low related to speed at one hall IC 
signal. The PWM duty ratio for motor control is generated using the fuzzy 
reasoning algorithm, and the speed command that was input by speed signal 
feedback with fuzzy controller. The circuit for a PWM resolution is shown in 
Fig. 9.40. The resolution range of a PWM duty ratio supplied in an 80CL580 
microcontroller is 0-255. As the circuit of Fig. 9.40, we enhanced the PWM 
duty resolution to two times and improved an accuracy of the speed control.

A specification of the BLDC motor we used in this paper are four pole, six 
slot, three phase, and a level of 50 W. A speed of the motor is 2,000 rpm to the 
DC 30 V, a inductance between the phases is 25 mH and resistance between 
phases is 3.2 П. Therefore, to observe the switching time for a drive, the speed 
frequency of the BLDC motor revolved at N  rpm is following:

F m =  N  rpm /60.
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F ig . 9 .40 . The PWM resolution converter

So, the speed frequency is 6 x Fm, and a switching frequency of the one FET 
is 2 x Fm because a FET turns on/off at one time for one a period of the hall 
IC signals.

9.6.2 Fuzzy Inference System

Recently the PI and the PID controller have been widely used as a control 
method of servodriving in industrial control fields. A driving specific property 
can be estimated well, once a control constant is properly set. But the control 
constant should be changed in order to maintain an optimum driving state 
if the driving point or the motor parameters are changed. Recently the fuzzy 
controller has appeared which is based on knowledge or an experience of expert 
rather than on a complicate mathematical modeling. The fuzzy controller 
works well using experimental information even if not having mathematical 
modeling. Moreover, the fuzzy controller is capable of real time control using 
fuzzy rule base. In this study, we tried to control the speed of BLDC motor 
using Mamdani-style FIS, which is composed of each one of input, and of 
output variable. Generally it is most important to assign the range of input 
and output membership function in the fuzzy inference engine. We defined 
input and output variables of FIS in this paper as following:

Де =  Cm -  V, (9.4)

Dnew =  Dold +  д о .  (9.5)
The fuzzy input value Де is deviation between motor speed command Cm and 
hall IC signal value V . When Vrot is counter step number per one rotation, V
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becomes average motor speed of one rotation. The fuzzy output AD changes 
the pulse duty D new which determines motor speed so that stable speed and 
torque may be maintained in case of starting or load changing of motor. The 
fuzzy rule base to control the speed of BLDC motor is composed of following 
five rules:

Rule 1 IF (e is GN) THEN (AD is GN)
Rule 2 IF (e is SN) THEN (AD is SN)
Rule 3 IF (e is Ze) THEN (AD is Ze)
Rule 4 IF (e is Sp) THEN (AD is SP)
Rule 5 IF (e is GP) THEN (AD is GP)

у  =  S  Vrot 
6 '

Each linguistic variable presents degree of fuzzy input and output vari­
ables. GN means great negative, SN small negative, ZE zero, SP small posi­
tive, and GP great positive. On starting a BLDC motor simulation using FIS, 
the specific response character of 1,400 rpm speed was controlled with initial 
condition of Cm as 7,600 and D old as 1% and was experimented in a motor 
load condition. Also, we implemented software simulation using the Matlab 
Ver. 5.1 (Math Work Co.) for exact performance result of fuzzy logic reasoning 
and realized fuzzy algorithm in the BLDC motor target board.

Figure 9.41 shows the flow chart of fuzzy reasoning system.
At first, to input A e value acquired from hall IC signals to the FIS and to 

fuzzify the inputs value Ae is fuzzified. Output values of fuzzy membership 
function to be reasoned and mapping results to be aggregated according to 
each rule. Then to defuzzify output result, to be effected on PWM duty and 
finally speed to be returned of the motor. Figure 9.42 shows the membership 
function of fuzzy input and Fig. 9.43 shows the membership function of fuzzy 
output. In Fig. 9.42, control range of input variable Ae being between —500 
and 500, two trapezoidal membership function and, three triangle membership 
function have been used. In the Fig. 9.43, control range of output variable A D  
being between —100 and 100, two trapezoidal membership function and three 
triangle membership function have been used.

Figure 9.44 presents a three-dimensional curve mapping from the error 
value e to the AD  amount. ж-axis is present error value Ae, у-axis is AD, 
and z-axis is degree of Ae, AD.

9.6.3 Experim ental Result

In this section, following the experimental set has been composed.
As Fig. 9.45, a controller of the motor, a driver, a RS-232C communication 

port, a start switch, and LED panel are composed on one board, the response 
characteristic of the system was confirmed using a frequency to voltage (F/V) 
converter. Also the torque meter was used to inflict a constant load. The
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F ig . 9 .4 1 . Flow chart of fuzzy reasoning

circuit of the F /V  converter module for analysis and its frequency response 
are as following Figs. 9.46 and 9.47.
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Membership function plots

input variable “Delta”

F ig . 9 .42 . Input membership function

Membership function plots

output variable “DDuty”

F ig . 9 .4 3 . Output membership function
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F ig . 9 .4 4 . Three-dimensional mapping curve

F ig . 9 .4 5 . The experimental set
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F ig . 9 .46 . The circuit of F/V converter

v 
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
30 60 100 150 200 250 300 Hz 

F ig . 9 .47 . The frequency response of F/V converter
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After setting a speed command for 1,400 rpm in the program of the target 
board pushing the start switch on the board, we measured a unit step response. 
Also we inflict a constant load of 500 g cm in a moment with torque meter 
during the operation. The characteristic of a unit step response to no load is 
shown in the Fig. 9.48.

In this figure, the rising time to be increased up to 60% of a maximum 
speed is about 250 ms. Also, the characteristic of a response to constant 
load (500 g cm) while the motor is operating of to 1,400 rpm is shown in the 
Fig. 9.49.

The characteristic curve to a load variation is similar to that to no load.
Hence in this section, we realized the controller for a BLDC motor, which 

is demanded increasingly using the fuzzy logic, and evaluated a performance 
of the system with the experimental set. We detected a speed of the motor 
using only the hall IC signals instead of an expensive encoder. In this section, 
we presented fuzzy reasoning algorithm to control BLDC motor in order to 
improve the PI controller, which is hard to get optimum control under the 
unstable driving situation or different condition of load. As a low cost CPU 
like 80CL580 was used, execution speed was slightly slow, but we could get 
the same simulation result compared to the existing speed controller. Here­
after if we take advantage of PI controller and fuzzy reasoning system, better 
characteristic controller for speed control in BLDC motor may be made.
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Appendix A  

Fuzzy Logic in Matlab

Fuzzy logic in Matlab can be dealt very easily due to the existing new Fuzzy 
Logic Toolbox. This provides a complete set of functions to design an imple­
ment various fuzzy logic processes. The major fuzzy logic operation includes 
fuzzification, defuzzification, and the fuzzy inference. These all are performed 
by means of various functions and even can be implemented using the Graphi­
cal User Interface (GUI). Many of the applications can be simulated using the 
“fuzzy logic controller” Simulink block present in Matlab-Simulink toolbox. 
The features are:

-  It provides tools to create and edit fuzzy inference system (FIS).
-  Allows integrating fuzzy systems into simulation with Simulink.
-  It is possible to create stand-alone C programs that call on fuzzy systems 

built with Matlab.

The Toolbox provides three categories of tools:

1. Command line functions
2. Graphical or interactive tools
3. Simulink blocks.

Command Line FIS Functions

addmf -  Add membership function to FIS. 
addrule -  Add rule to FIS. 
addvar -  Add variable to FIS. 
defuzz -  Defuzzify membership function. 
evalfis -  Perform fuzzy inference calculation. 
evalmf -  Generic membership function evaluation. 
gensurf -  Generate FIS output surface. 
getfis -  Get fuzzy system properties.
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mf2mf -  Translate parameters between functions.
mfstrtch -  Stretch membership function.
newfis -  Create new FIS. parsrule -  parse fuzzy rules.
plotfis -  Display FIS input-output diagram.
plotmf -  Display all membership functions for one variable
readfis -  Load FIS from disk.
rmmf -  Remove membership function from FIS.
rmvar -  Remove variable from FIS.
setfis -  Set fuzzy system properties.
showfis -  Display annotated FIS.
showrule -  Display FIS rules
writefis -  Save FIS to disk.

Graphical User Interface Editors (GUI tools)

fuzzy -  Basic FIS editor.
mfedit -  Membership function editor.
ruleedit -  Rule editor and parser.
ruleview -  Rule viewer and fuzzy inference diagram.
surfview -  Output surface viewer.

Simulink Blocks

Once fuzzy system is created using GUI tools or some other method can 
be directly embedded into Simulink using the fuzzy logic controller block as 
shown in Fig. A.1.

Important. make sure that the FIS matrix corresponding to the fuzzy system 
is both in the Matlab workspace and referred to by name in the dialog box 
associated with this fuzzy logic controller.
Although it is possible to use the Fuzzy Logic Toolbox by working strictly 
from the command line, in general it is much easier to build a system up 
graphically, so that GUI tools are commonly used for building, editing, and 
observing FIS.
The process of mapping from a given input to an output using fuzzy logic 
involves membership functions, fuzzy logic operators, and IF-THEN rules.

FLC

Fig. A .1 . Fuzzy logic controller Simulink block
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Membership functions. this Toolbox includes 11 built-in membership function 
types, built from several basic functions: piecewise linear functions (trian­
gular and trapezoidal), the Gaussian distribution function (Gaussian curves 
and generalized bell), the sigmoid curve, and quadratic and cubic polynomial 
curves (Z,S,  and Pi curves) (refer Fig. A.2).

Fuzzy logic operators. according to the fuzzy logical operations, any number 
of well-defined methods can fill in for the AND operation or the OR operation. 
In the Fuzzy Logic Toolbox, two built-in AND methods are supported: min 
(minimum) and prod (algebraic product). Two built-in OR methods are also 
supported: max (maximum), and the probor (probabilistic OR, also known as 
algebraic sum).

Related to implication method, two built-in methods are supported, and 
they are the same functions that are used by the AND method, so that, min 
method truncates the output fuzzy set, and prod scales the output fuzzy set.

Related to aggregation method, three built-in methods are supported: max 
(maximum), probor (probabilistic OR), and sum (simply the sum of each 
rule’s output set).

Although centroid calculation is the most popular defuzzification method, 
there are five built-in methods supported: centroid, bisector, middle of maxi­
mum, largest of maximum, and smallest of maximum.

IF-TH EN  rules: since rules can be edited in three different formats (verbose, 
symbolic, and indexed), verbose format makes the system easier to interpret.

Every rule has a weight (a number between 0 and 1) which is applied to 
the number given by the antecedent. Generally this weight is 1 and so it has 
no effect at all on the implication process. For example, let us enter a sample 
rule (rule number 1):
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Verbose form at: 1. IF temperature is warm THEN sky is gray (1) 
Symbolic form at: 1. (temperature =  =  warm) = >  sky =  gray (1) 
Indexed form at: 1,1 (1): 1

i.e., the first “1” corresponds to the input variable, the second corresponds to 
the output variable, the third displays the weight applied to each rule, and 
the fourth is shorthand that indicates whether this is an OR (2) rule or an 
AND (1) rule. So a literal interpretation of rule number 1 is: “if input 1 is 
MF1 (the first membership function associated with input 1) then output 1 
should be MF1 (the first membership function associated with output 1) with 
the weight 1.” Notice that as long as the aggregation method is commutative, 
then the order in which the rules are executed is not important.
Once a FLC is created, it can be saved to disk (FIS-file is created, i.e., jug- 
gler.fis) as an ASCII text format so that it can be edited and modified. An 
FLC can also be saved into Matlab workspace as a matrix variable (FIS ma­
trix) so that it can be modified but its representation is extremely different 
from FIS-file representation.

Next, main windows corresponding to GUI tools are depicted as shown in 
Figs. A.3-A.8.

project_angle

FIS Name: juggler FIS Type: sugeno

And method 

Or method

prod Current Variable

max
Name

Implication Type

RangeJ
Aggiegation

d
Defuzzification w ldvei T || Help Close

System "juggler": 2 inputs, 1 output, and Э lutes

Fig. A .3 . Basic FIS editor
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F ig . A .4 .  Membership function editor (input 1)

I Membership Function Editor : juggler
File Edit View

FIS Variables

f ( u ) j  

x hit theta

Project_angle

Membership function plots

Current variable 

Name theta

Type output

Range

Display Range

[0.0]

Current Membership Function 

Name 

Type 

Params

out1mf

linear

[-0.02185 -0.5 0.3146]

Help Close

Ready

413

Fig. A .5 . Membership function editor (output 1, in Sugeno style)
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F ig . A .6 .  Rule editor (sample with nine rule in verbose format)

Fig. A .7 . Rule viewer (in Sugeno style)
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F ig . A .8 .  Surface viewer (input 1 and input 2 versus output 1)

Fuzzy Controllers: Examples

In order to see some results with FLC techniques, we will look at the example of 
water level control (can be executed by typing sltank in Matlab command window). 
We can change the valve controlling the water that flows in, but the outflow rate 
depends on the diameter of the outflow pipe (constant in this example) and the 
pressure in the tank (which varies the water level: see Fig.A.9). This system has 
some very nonlinear characteristics. Controller’s input is the current error (error = 
desired water level — actual water level), and its output is the rate at which the 
valve is opening or not:
Rules should be as follows:

1. IF (level is okay) THEN (valve is no_change) (1)
2. IF (level is low) THEN (valve is open_fast) (1)
3. IF (level is high)THEN (valve is close_fast) (1)

Before editing that rules, membership functions must be defined with member­
ship function editor (see Fig. A.10):
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FIS Variables

Water Level Control

F ig . A .9 .  Water level control

Membership function plots

FIS Variables Membership function plots

FIS Variables Membership function plots

level

F ig . A .1 0 . Membership function for input and output

rate

rate

Some other rules (with AND connectives) could be added after some delay:

4. IF (level is okay) and (rate is positive) THEN (valve is close_slow) (1)
5. IF (level is okay) and (rate is negative) THEN (valve is open_slow) (1)
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Logic
Controller

F ig . A .1 1 . Simulink model

F ig .  A .1 2 . Fuzzy logic and PID

This FIS system can be simulated in Simulink and comparison between 
fuzzy logic control and PID control is done changing cont parameter ( —1 
means fuzzy control, 0 means PID control) (refer Figs. A.11 and A.12): 

Obtained results are as follows:
Thus the “fuzzy logic controller” technique is used efficiently to control 

the level of liquid in the tank.

Summary

Thus Fuzzy Logic Toolbox in Matlab can be used for various applications. The 
membership values are assigned easily. The application developed is capable of 
executing within a fraction of second. The fuzzification and the defuzzification 
process are performed using command line functions as well by the GUI. The 
user can obtain the output in any required form.
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