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Preface

The world we live in is becoming ever more reliant on the use of electronics
and computers to control the behavior of real-world resources. For example,
an increasing amount of commerce is performed without a single banknote
or coin ever being exchanged. Similarly, airports can safely land and send off
airplanes without ever looking out of a window. Another, more individual,
example is the increasing use of electronic personal organizers for organizing
meetings and contacts. All these examples share a similar structure; multiple
parties (e.g., airplanes or people) come together to co-ordinate their activities
in order to achieve a common goal. It is not surprising, then, that a lot of
research is being done into how a lot of mechanics of the co-ordination process
can be automated using computers.

Fuzzy logic means approximate reasoning, information granulation, com-
puting with words and so on.

Ambiguity is always present in any realistic process. This ambiguity may
arise from the interpretation of the data inputs and in the rules used to de-
scribe the relationships between the informative attributes. Fuzzy logic pro-
vides an inference structure that enables the human reasoning capabilities
to be applied to artificial knowledge-based systems. Fuzzy logic provides a
means for converting linguistic strategy into control actions and thus offers a
high-level computation.

Fuzzy logic provides mathematical strength to the emulation of certain
perceptual and linguistic attributes associated with human cognition, whereas
the science of neural networks provides a new computing tool with learning
and adaptation capabilities. The theory of fuzzy logic provides an inference
mechanism under cognitive uncertainty, computational neural networks offer
exciting advantages such as learning, adaptation, fault tolerance, parallelism,
and generalization.
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About the Book

This book is meant for a wide range of readers, especially college and university
students wishing to learn basic as well as advanced processes and techniques
in fuzzy systems. It can also be meant for programmers who may be involved
in programming based on the soft computing applications.

The principles of fuzzy systems are dealt in depth with the information
and the useful knowledge available for computing processes. The various al-
gorithms and the solutions to the problems are well balanced pertinent to the
fuzzy systems’ research projects, labs, and for college- and university-level
studies.

Modern aspects of soft computing have been introduced from the first
principles and discussed in an easy manner, so that a beginner can grasp the
concept of fuzzy systems with minimal effort.

The solutions to the problems are programmed using Matlab 6.0 and the
simulated results are given. The fuzzy logic toolbox are also provided in the
Appendix for easy reference of the students and professionals.

The book contains solved example problems, review questions, and exercise
problems.

This book is designed to give a broad, yet in-depth overview of the field
of fuzzy systems. This book can be a handbook and a guide for students of
computer science, information technology, EEE, ECE, disciplines of engineer-
ing, students in master of computer applications, and for professionals in the
information technology sector, etc.

This book will be a very good compendium for almost all readers — from
students of undergraduate to postgraduate level and also for researchers, pro-
fessionals, etc. — who wish to enrich their knowledge on fuzzy systems’ prin-
ciples and applications with a single book in the best manner.

This book focuses mainly on the following academic courses:

= Master of Computer Applications (MCA)

= Master of Computer and Information Technology

= Master of Science (Software)-Integrated

< Engineering students of computer science, electrical and electronics
engineering, electronics and communication engineering and information
technology both at graduate and postgraduate levels

= Ph.D research scholars who work in this field

Fuzzy systems, at present, is a hot topic among academicians as well as among
program developers. As a result, this book can be recommended not only for
students, but also for a wide range of professionals and developers who work
in this area.

This book can be used as a ready reference guide for fuzzy system research
scholars. Most of the algorithms, solved problems, and applications for a wide
variety of areas covered in this book can fulfill as an advanced academic book.
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In conclusion, we hope that the reader will find this book a truly helpful

guide and a valuable source of information about the fuzzy system principles
for their numerous practical applications.

Organization of the Book

The book covers 9 chapters altogether. It starts with introduction to the fuzzy
system techniques. The application case studies are also discussed.

The chapters are organized as follows:

Chapter 1 gives an introduction to fuzzy logic and Matlab.

Chapter 2 discusses the definition, properties, and operations of classical
and fuzzy sets. It contains solved sample problems related to the classical
and fuzzy sets.

The Cartesian product of the relation along with the cardinality, opera-
tions, properties, and composition of classical and fuzzy relations is dis-
cussed in chapter 3.

Chapter 4 gives details on the membership functions. It also adds features
of membership functions, classification of fuzzy sets, process of fuzzifi-
cation, and various methods by means of which membership values are
assigned.

The process and the methods of defuzzification are described in chapter
5. The lambda cut method for fuzzy set and relation along with the other
methods like centroid method, weighted average method, etc. are discussed
with solved problems inside.

Chapter 6 describes the fuzzy rule-based system. It includes the aggrega-
tion, decomposition, and the formation of rules. Also the methods of fuzzy
inference system, mamdani, and sugeno methods are described here.
Chapter 7 provides the information regarding various decision-making
processes like fuzzy ordering, individual decision making, multiperson deci-
sion making, multiobjective decision making, and fuzzy Bayesian decision-
making method.

The application of fuzzy logic in various fields along with case studies and
adaptive fuzzy in image segmentation is given in chapter 8.

Chapter 9 gives information regarding a few projects implemented using
the fuzzy logic technique.

The appendix includes fuzzy Matlab tool box.

The bibliography is given at the end after the appendix chapter.

Salient Features of Fuzzy Logic

The salient features of this book include

Detailed description on fuzzy logic techniques
Variety of solved examples
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= Review questions and exercise problems

= Simulated results obtained for the fuzzy logic techniques using Matlab
version 6.0

= Application case studies and projects on fuzzy logic in various fields.
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1

Introduction

1.1 Fuzzy Logic

In the literature sources, we can find different kinds of justification for
fuzzy systems theory. Human knowledge nowadays becomes increasingly
important - we gain it from experiencing the world within which we live
and use our ability to reason to create order in the mass of information (i.e.,
to formulate human knowledge in a systematic manner). Since we are all
limited in our ability to perceive the world and to profound reasoning, we find
ourselves everywhere confronted by uncertainty which is a result of lack of
information (lexical impression, incompleteness), in particular, inaccuracy of
measurements. The other limitation factor in our desire for precision is a nat-
ural language used for describing/sharing knowledge, communication, etc. We
understand core meanings of word and are able to communicate accurately
to an acceptable degree, but generally we cannot precisely agree among our-
selves on the single word or terms of common sense meaning. In short, natural
languages are vague.

Our perception of the real world is pervaded by concepts which do not
have sharply defined boundaries - for example, many, tall, much larger than,
young, etc. are true only to some degree and they are false to some degree as
well. These concepts (facts) can be called fuzzy or gray (vague) concepts - a
human brain works with them, while computers may not do it (they reason
with strings of Os and 1s). Natural languages, which are much higher in level
than programming languages, are fuzzy whereas programming languages are
not. The door to the development of fuzzy computers was opened in 1985
by the design of the first logic chip by Masaki Togai and Hiroyuki Watanabe
at Bell Telephone Laboratories. In the years to come fuzzy computers will
employ both fuzzy hardware and fuzzy software, and they will be much closer
in structure to the human brain than the present-day computers are.

The entire real world is complex; it is found that the complexity arises from
uncertainty in the form of ambiguity. According to Dr. Lotfi Zadeh, Principle
of Compatability, the complexity, and the imprecision are correlated and adds,
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Fuzzy sets provide means to model the uncertainty associated with vague-
ness, imprecision, and lack of information regarding a problem or a plant, etc.
Consider the meaning of a “short person.” For an individual X, the short per-
son may be one whose height is below 4/25". For other individual Y, the short
person may be one whose height is below or equal to 3'0ii". This “short” is
called as a linguistic descriptor. The term “short” informs the same meaning
to the individuals X and Y, but it is found that they both do not provide a
unique definition. The term “short” would be conveyed effectively, only when
a computer compares the given height value with the preassigned value of
“short.” This variable “short” is called as linguistic variable, which represents
the imprecision existing in the system.

The uncertainty is found to arise from ignorance, from chance and random-
ness, due to lack of knowledge, from vagueness (unclear), like the fuzziness
existing in our natural language. Lotfi Zadeh proposed the set membership
idea to make suitable decisions when uncertainty occurs. Consider the “short”
example discussed previously. If we take “short” as a height equal to or less
than 4 feet, then 210" would easily become the member of the set “short”
and 4'25" will not be a member of the set “short.” The membership value
is “1” if it belongs to the set or “0” if it is not a member of the set. Thus
membership in a set is found to be binary i.e., the element is a member of a
set or not.

It can be indicated as,

where Xa(x) is the membership of element x in set A and A is the entire set
on the universe.

This membership was extended to possess various “degree of membership”
on the real continuous interval [0,1]. Zadeh formed fuzzy sets as the sets on the
universe X which can accommodate “degrees of membership.” The concept
of a fuzzy set contrasts with a classical concept of a bivalent set (crisp set),
whose boundary is required to be precise, i.e., a crisp set is a collection of
things for which it is known whether any given thing is inside it or not. Zadeh
generalized the idea of a crisp set by extending a valuation set {1,0} (defi-
nitely in/definitely out) to the interval of real values (degrees of membership)
between 1 and 0 denoted as [0,1]. We can say that the degree of membership
of any particular element of a fuzzy set express the degree of compatibility of
the element with a concept represented by fuzzy set. It means that a fuzzy set
A contains an object x to degree a(x), i.e., a(x) = Degree(x G A), and the
map a : X N {Membership Degrees} is called a set function or membership
function. The fuzzy set A can be expressed as A = {(x, a(x))}, x G X, and it
imposes an elastic constrain of the possible values of elements x G X called the
possibility distribution. Fuzzy sets tend to capture vagueness exclusively via
membership functions that are mappings from a given universe of discourse
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x - universe of discourse

X to a unit interval containing membership values. It is important to note
that membership can take values between 0 and 1.

Fuzziness describes the ambiguity of an event and randomness describes
the uncertainty in the occurrence of an event. It can be generally seen in
classical sets that there is no uncertainty, hence they have crisp boundaries,
but in the case of a fuzzy set, since uncertainty occurs, the boundaries may
be ambiguously specified.

From the Fig. 1.2, it can be noted that a is clearly a member of fuzzy set
P, cis clearly not a member of fuzzy set P, but the membership of b is found
to be vague. Hence a can take membership value 1, ¢ can take membership
value 0 and b can take membership value between 0 and 1 [0 to 1], say 0.4,
0.7, etc. This is set to be a partial member ship of fuzzy set P.

The membership function for a set maps each element of the set to a
membership value between 0 and 1 and uniquely describes that set. The val-
ues 0 and 1 describe “not belonging to” and “belonging to” a conventional set
respectively; values in between represent “fuzziness.” Determining the mem-
bership function is subjective to varying degrees depending on the situation.
It depends on an individual's perception of the data in question and does not
depend on randomness. This is important, and distinguishes fuzzy set theory
from probability theory (Fig. 1.3).

In practice fuzzy logic means computation of words. Since computation
with words is possible, computerized systems can be built by embedding hu-
man expertise articulated in daily language. Also called a fuzzy inference
engine or fuzzy rule-base, such a system can perform approximate reasoning
somewhat similar to but much more primitive than that of the human brain.
Computing with words seems to be a slightly futuristic phrase today since
only certain aspects of natural language can be represented by the calculus of
fuzzy sets, but still fuzzy logic remains one of the most practical ways to mimic
human expertise in a realistic manner. The fuzzy approach uses a premise that
humans do not represent classes of objects (e.g. class of bald men, or the class
of numbers which are much greater than 50) as fully disjoint but rather as
sets in which there may be grades of membership intermediate between full
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Fig. 1.3. The fuzzy sets “tall” and “short.” The classification is subjective - it
depends on what height is measured relative to. At the extremes, the distinction is
clear, but there is a large amount of overlap in the middle

Fig. 1.4. Configuration of a pure fuzzy system

membership and non-membership. Thus, a fuzzy set works as a concept that
makes it possible to treat fuzziness in a quantitative manner.

Fuzzy sets form the building blocks for fuzzy IF-THEN rules which have
the general form “IF X is A THEN Y is B,” where A and B are fuzzy sets. The
term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF-
THEN rules. The IF part of an implication is called the antecedent whereas
the second, THEN part is a consequent. A fuzzy system is a set of fuzzy
rules that converts inputs to outputs. The basic configuration of a pure fuzzy
system is shown in Fig. 1.4. The fuzzy inference engine (algorithm) combines
fuzzy IF-THEN rules into a mapping from fuzzy sets in the input space X
to fuzzy sets in the output space Y based on fuzzy logic principles. From a
knowledge representation viewpoint, a fuzzy IF-THEN rule is a scheme for
capturing knowledge that involves imprecision. The main feature of reasoning
using these rules is its partial matching capability, which enables an inference
to be made from a fuzzy rule even when the rule’s condition is only partially
satisfied.

Fuzzy systems, on one hand, are rule-based systems that are constructed
from a collection of linguistic rules; on the other hand, fuzzy systems are



6 1 Introduction

nonlinear mappings of inputs (stimuli) to outputs (responses), i.e., certain
types of fuzzy systems can be written as compact nonlinear formulas. The
inputs and outputs can be numbers or vectors of numbers. These rule-based
systems in theory model represents any system with arbitrary accuracy, i.e.,
they work as universal approximators.

The Achilles’ heel of a fuzzy system is its rules; smart rules give smart
systems and other rules give smart systems and other rules give less smart or
even dumb systems. The number of rules increases exponentially with the di-
mension of the input space (number of system variables). This rule explosion is
called the principle of dimensionality and is a general problem for mathemat-
ical models. For the last five years several approaches based on decomposition
(cluster) merging and fusing have been proposed to overcome this problem.

Hence, Fuzzy models are not replacements for probability models. The
fuzzy models sometimes found to work better and sometimes they do not.
But mostly fuzzy is evidently proved that it provides better solutions for
complex problems.

1.2 Mat LAB —AN Overview

Dr Cleve Moler, Chief scientist at MathWorks, Inc., originally wrote Matlab,
to provide easy access to matrix software developed in the LINPACK and
EISPACK projects. The very first version was written in the late 1970s for
use in courses in matrix theory, linear algebra, and numerical analysis. Matlab
is therefore built upon a foundation of sophisticated matrix software, in which
the basic data element is a matrix that does not require predimensioning.

Matlab is a product of The Math works, Inc. and is an advanced interactive
software package specially designed for scientific and engineering computation.
The Matlab environment integrates graphic illustrations with precise numer-
ical calculations, and is a powerful, easy-to-use, and comprehensive tool for
performing all kinds of computations and scientific data visualization. Mat-
lab has proven to be a very flexible and usable tool for solving problems in
many areas. Matlab is a high-performance language for technical computing.
It integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar mathe-
matical notation. Typical use includes:

- Math and computation

- Algorithm development

- Modeling, simulation, and prototyping

- Data analysis, exploration, and visualization

- Scientific and engineering graphics

- Application development, including graphical user interface building

Matlab is an interactive system whose basic elements are an array that
does not require dimensioning. This allows solving many computing problems,
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especially those with matrix and vector formulations, in a fraction of the time
it would take to write a program in a scalar noninteractive language such
as C or FORTRAN. Mathematics is the common language of science and
engineering. Matrices, differential equations, arrays of data, plots, and graphs
are the basic building blocks of both applied mathematics and Matlab. It is
the underlying mathematical base that makes Matlab accessible and powerful.
Matlab allows expressing the entire algorithm in a few dozen lines, to compute
the solution with great accuracy in about a second.

Matlab is both an environment and programming language, and the major
advantage of the Matlab language is that it allows building our own reusable
tools. Our own functions and programs (known as M-files) can be created in
Matlab code. The toolbox is a specialized collection of M-files for working
on particular classes of problems. The Matlab documentation set has been
written, expanded, and put online for ease of use. The set includes online help,
as well as hypertext-based and printed manuals. The commands in Matlab are
expressed in a notation close to that used in mathematics and engineering.
There is a very large set of commands and functions, known as Matlab M-files.
As a result solving problems in Matlab is faster than the other traditional
programming. It is easy to modify the functions since most of the M-files can
be open. For high performance, the Matlab software is written in optimized
C and coded in assembly language.

Matlab’s two- and three-dimensional graphics are object oriented. Mat-
lab is thus both an environment and a matrix/vector-oriented programming
language, which enables the use to build own required tools.

The main features of Matlab are:

- Advance algorithms for high-performance numerical computations, espe-
cially in the field of matrix algebra.

- A large collection of predefined mathematical functions and the ability to
define one’s own functions.

- Two- and three-dimensional graphics for plotting and displaying data.

- A complete help system online.

- Powerful matrix/vector-oriented high-level programming language for
individual applications.

- Ability to cooperate with programs written in other languages and for
importing and exporting formatted data.

- Toolboxes available for solving advanced problems in several application
areas.

Figure 1.5 shows the main features and capabilities of Matlab.

SIMULINK is a Matlab toolbox designed for the dynamic simulation of
linear and nonlinear systems as well as continuous and discrete-time systems.
It can also display information graphically. Matlab is an interactive package
for numerical analysis, matrix computation, control system design, and linear
system analysis and design available on most CAEN platforms (Macintosh,
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1 Introduction

Fig. 1.5. Features and capabilities of Matlab

PCs, Sun, and Hewlett-Packard). In addition to the standard functions pro-
vided by Matlab, there exist large set of toolboxes, or collections of functions
and procedures, available as part of the Matlab package. The toolboxes are:

Control system. Provides several features for advanced control system
design and analysis

Communications. Provides functions to model the components of a com-
munication system’s physical layer

Signal processing. Contains functions to design analog and digital filters
and apply these filters to data and analyze the results

System identification. Provides features to build mathematical models of
dynamical systems based on observed system data

Robust control. Allows users to create robust multivariable feedback con-
trol system designs based on the concept of the singular value Bode plot
Simulink. Allows you to model dynamic systems graphically

Neural network. Allows you to simulate neural networks

Fuzzy logic. Allows for manipulation of fuzzy systems and membership
functions
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Image processing. Provides access to a wide variety of functions for read-

ing, writing, and filtering images of various kinds in different ways

- Analysis. Includes a wide variety of system analysis tools for varying
matrices

- Optimization. Contains basic tools for use in constrained and uncon-
strained minimization problems

- Spline. Can be used to find approximate functional representations of data
sets

- Symbolic. Allows for symbolic (rather than purely numeric) manipulation
of functions

- User interface utilities. Includes tools for creating dialog boxes, menu

utilities, and other user interaction for script files

Matlab has been used as an efficient tool, all over this text to develop the
applications based on neural net, fuzzy systems and genetic algorithm.

Review Questions

1) Define uncertainty and vagueness

2) Compare - precision an impression

3) Explain the concept of fuzziness a said by Lotfi A. Zadeh

4) What is a membership function?

5) Describe in detail about fuzzy system with basic configuration
6) Write short note on “degree of uncertainty”

7) Write an over view of Mat Lab
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Classical Sets and Fuzzy Sets

2.1 Introduction

The theory on classical sets and the basic ideas of the fuzzy sets are discussed
in detail in this chapter. The various operations, laws and properties of fuzzy
sets are introduced along with that of the classical sets. The classical set we
are going to deal is defined by means of the definite or crisp boundaries. This
means that there is no uncertainty involved in the location of the boundaries
for these sets. But whereas the fuzzy set, on the other hand is defined by its
vague and ambiguous properties, hence the boundaries are specified ambigu-
ously. The crisp sets are sets without ambiguity in their membership. The
fuzzy set theory is a very efficient theory in dealing with the concepts of am-
biguity. The fuzzy sets are dealt after reviewing the concepts of the classical
or crisp sets.

2.2 Classical Set

Consider a classical set where X denotes the universe of discourse or universal
sets. The individual elements in the universe X will be denoted as x. The
features of the elements in X can be discrete, countable integers, or continuous
valued quantities on the real line. Examples of elements of various universes
might be as follows.

- The clock speeds of computers CPUs.

- The operating temperature of an air conditioner.

- The operating currents of an electronic motor or a generator set.
- The integers 1-100.

Choosing a universe that is discrete and finite or one that it continuous
and infinite is a modeling choice, the choice does not alter the characterization
of sets defined on the universe. If the universe possesses continuous elements,
then the corresponding set defined on the universe will also be continuous.
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The total number of elements in a universe X is called its cardinal number and
is denoted by nx. Discrete universe is composed of countable finite collection of
elements and has a finite cardinal number and the continuous universe consists
of uncountable or infinite collection of elements and thus has a infinite cardinal
number.

As we all know, the collection of elements in the universe are called as
sets, and the collections of elements within sets are called as subsets. The
collection of all the elements in the universe is called the whole set. The null
set 0, which has no elements is analogous to an impossible event, and the
whole set is analogous to certain event. Power set constitutes all possible sets
of X and is denoted by P (X).

Example 2.1. Let universe comprised of four elements X = {1, 2, 3,4} find
cardinal number, power set, and cardinality of the power set.

Solution. The cardinal number is the number of elements in the defined set.
The defined set X consists of four elements 1, 2, 3, and 4. Therefore, the Car-
dinal number = nx =4.

The power set consists of all possible sets of X . It is given by,

Power set P (x) = {0, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1.4}, {2, 3}, {2,4},
{3, 4}, {1, 2,3}, {2, 3,4}, {1, 3,4}, {1, 2,4}, {1, 2, 3,4}}

Cardinality of the power set is given by,

VP(X) = 2 = 24 = 16.

2.2.1 Operations on Classical Sets

There are various operations that can be performed in the classical or crisp
sets. The results of the operation performed on the classical sets will be defi-
nite. The operations that can be performed on the classical sets are dealt in
detail below:

Consider two sets A and B defined on the universe X . The definitions of
the operation for classical sets are based on the two sets A and B defined on
the universe X .

Union

The Union of two classical sets A and B is denoted by A UB. It represents
all the elements in the universe that reside in either the set A, the set B or
both sets A and B. This operation is called the logical OR.

In set theoretic form it is represented as

AUB = {x/x € Aorx € B}.

In Venn diagram form it can be represented as shown in Fig. 2.1.
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Intersection

The intersection of two sets A and B is denoted A INB. It represents all those
elements in the universe X that simultaneously reside in (or belongs to) both
sets A and B.

In set theoretic form it is represented as

AMNB = {x/x GA and x GB} .

In Venn diagram form it can be represented as shown in Fig. 2.2.

Complement

The complement of set A denoted A, is defined as the collection of all elements
in the universe that do not reside in the set A.
In set theoretic form it is represented as

A={XxX/x GA,xe X}.

In Venn diagram form it is represented as shown in Fig. 2.3.
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Difference

The difference of a set A with respect to B, denoted A\B is defined as collection
of all elements in the universe that reside in A and that do not reside in B
simultaneously.

In set theoretic form it is represented as

A\B = {x/x e A and x ¥B }.

In Venn diagram form it is represented as shown in Fig. 2.4.

2.2.2 Properties of Classical Sets

In any mathematical operations the properties plays a major role. Based upon
the properties, the solution can be obtained for the problems. The following
are the important properties of classical sets:
Commutativity

A UB = B UA,

A B=B A
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Associativity
AU(BUC) = (AUB) UC,
ANMBTIC)= (ANB)mMc.
Distributivity
AUBTIMC)= (AUB)IM(AUCQC),
AMNBUC)= ATB)U(ATMC).

Idempotency
AUA = A,
ATIA = A.
Identity
AUdb= A
AMNX = A
AMNb= o
AUX = X.
Transitivity

IfACBCC, then A CC.

In this case the symbol C means contained in or equivalent to and C means
contained in.
Involution _
A=A
The other two important special properties include the Excluded middle laws
and the Demorgan’s law.

Excluded middle law includes the law of excluded middle and the law of con-
tradiction. The excluded middle laws is very important because these are the
only set operations that are not valid for both classical and fuzzy sets.

Law of excluded middle. It represents union of a set A and its complement.
A UA = X.

Law of contradication. It represents the intersection of a set A and its com-
plement
ANA =

De Morgan’'s Law

These are very important because of their efficiency in proving the tautologies
and contradictions in logic. The demorgan’s law are given by

ATIB = AUB,
AUB = ATIB.

In Venn diagram form it is represented as shown in Fig. 2.5.

The complement of a union or an intersection of two sets is equal to the
intersection or union of the respective complements of the two sets. This is
the statement made for the demorgan’s law.
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AnB AuB

Fig. 2.5. Demorgan’s law

A

Fig. 2.6. Membership mapping for Crisp Set A

2.2.3 Mapping of Classical Sets to a Function

Mapping of set theoretic forms to function theoretic forms is an important
concept. In general it can be used to map elements or subsets on one universe
of discourse to elements or sets in another universe. Suppose X and Y are
two different universe of discourse. If an element x is contained in X and
corresponds to an element y contained in Y, it is generally represented as
f : X ~ Y, which is said as the mapping from X to Y. The characteristic
function xa is defined by

X € A,

1
XA(x) 0  x€A,

where xa represents the membership in set a for the elements x in the universe.
The membership mapping for the crisp set A is shown in Fig. 2.6.
Let us define two sets A and B on the Universe X .

Union

The union of these two sets in terms of function theoretic form is given as
follows:
A UB ™ xaub (X) = Xa (x)Vxb (X)

max(XA(x), xb (x)).

Here V indicates the maximum operator.
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Intersection
The intersection of two sets in function theoretic form is given as

ATIB ™ xnnB (x)=xa(x)/1xs (x)
= min(XA(X), X B (x)).

Here J1 indicates the minimum operator.

Complement
The complement of single set on universe X , say A is given by

AN Xa(x) = 1- Xa(x).

Containment

17

The two sets A and B in universe, if one set (A) is contained in another set

B,then
A CB "™ xa(x) < xB (x).

Thus, the mapping of classical sets to functions is mentioned here.

2.2.4 Solved Examples
Example 2.2. Given the classical sets,
A=1{9,56,8,10} B ={1,23,709} C = {1, 0}

defined on universe X = { Set of all ‘n’ natural no}
Prove the classical set properties associativity and distributivity.

Solution. The associative property is given by

L. AU(BUC)= (AUB) Uc.

LHS
AUBuUCc)
(@ BUC={23709,1,0}
(b) AUBUC)= {5,6,8,10,2,3,7,9,1, 0}.
RHS
(aub)uc

@ (AuUB)=1{9,56,8,10,1, 2,3, 7}.
(b) (AuB)UC = {9,5,6,10, 8,1, 2,3, 7,0}.
From (2.1) and (2.2)
LHS = RHS
AUBUC)= (AUB) Uc.

2.1)

(2.2)
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2. (AM(BMC)= (AMB) NC

LHS
(@ (BTMC) = {1}.
() An(BnC)= {d}
RHS
(AMB)ncC

(& (AnB)= {9}.
(b) (AnB)nC = {d

From (2.3) and (2.4)

LHS = RHS
An(BnC)= (AnB)nC.

Thus associative property is proved.
The distributive property is given by,

LAUBNC)= (AUB)n (AUC)

LHS

(@ BnC= {1}
() AUBNC)={9,586,810,1}.

RHS
(AU B)n (AU C)

(@ (AUB) = {9,656,810,1,2 3,7}
(b) (AUC)= {9,56,8,10,1, 0}.

(0 (AUB)n (AUC)= {9,65,6,8,10,1}.

From (2.5) and (2.6)

LHS = RHS
AUBNC)= (AUB)n (AUC).

2An(BUC)= (AnB)U(ANC)

LHS

(@ (BUC) = {1,23,79,0}.
(b) An(BUC)= {9}.

(2.3)

(2.4)

(2.9)

(2.6)

2.7
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RHS

(@ AMB = {9}.
(b) ATC = {d}.
() (AMB)U(ATC)= {9}. (2.8)

From (2.7) and (2.8),

LHS = RHS
An(BUC)= (AnB)U(ATMB).

Hence distributive property is proved.

Example 2.3. Consider, X = {a,b,cd,ef,qg h}.
and the set A is defined as {a, d, f}. So for this classical set prove the identity
property.

Solution. Given, X = {a, b,c, d, e, f,g, h},
A= {a,d,f}
The identity property is given as

1 And= A

2. Anp= A
¢ is going to be a null set, hence it is clearly understood, that, A U &
A M will give as the same set A.

3.AnX = A
AnX = {a,d,f},
A = {a,d, f}.
Hence, An X = A.

4 AUX =X,

AUX = {a, b,cd,ef,g h}
X = {a, b,c,d,ef,g h}

Hence, AUX = X .
This identity property is proved.

2.3 Fuzzy Sets
In the classical set, its characteristic function assigns a value of either 1or 0 to

each individual in the universal set, there by discriminating between members
and nonmembers of the crisp set under consideration. The values assigned to
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Fig. 2.7. Membership function of fuzzy set A

the elements of the universal set fall within a specified range and indicate the
membership grade of these elements in the set. Larger values denote higher
degrees of set membership such a function is called a membership function
and the set is defined by it is a fuzzy set.

A fuzzy set is thus a set containing elements that have varying degrees
of membership in the set. This idea is in contrast with classical or crisp, set
because members of a crisp set would not be members unless their membership
was full or complete, in that set (i.e., their membership is assigned a value of
1). Elements in a fuzzy set, because their membership need not be complete,
can also be members of other fuzzy set on the same universe. Fuzzy set are
denoted by a set symbol with a tilde understrike. Fuzzy set is mapped to a
real numbered value in the interval 0 to 1. If an element of universe, say X, is
a member of fuzzy set A, then the mapping is given by Va(x) G [0,1]. This is

the membership mapping and is shown in Fig. 2.7.

2.3.1 Fuzzy Set Operations

Considering three fuzzy sets A, B and C on the universe X . For a given

element x of the universe, the following function theoretic operations for the
set theoretic operations unions, intersection and complement are defined for
A,B and C on X:

Union:

Vaub (x) = VA(X)VVB (x)-
Intersection:
Vana B(x) = MA(X)AMB (X).

Complement
x) = 1—AA(X).
N v
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ACx MK - mx(X)
forallx € X (x) =0.
forall x € X IMA(x) = 1

Fig. 2.8. Union of fuzzy sets

Fig. 2.9. Intersection of fuzzy sets

The venn diagram representation of these operations are shown in
Figs. 2.8- 2.10.
Any fuzzy set A defined on a universe x is a subset of that universe. The

membership value of any element x in the null set ¢is 0, and the membership
value of any element x in the whole set x is 1. This statement is given by

De Morgan’s laws stated for classical sets also hold for fuzzy sets, as
denoted by these expressions.

ATB = AUB,

AUB = ATIB.

rvj rvj rvj vj
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m

Fig. 2.10. Complement of fuzzy set

All operations on classical sets also hold for the fuzzy set except for the ex-
cluded middle laws. These two laws does not hold good for fuzzy sets. Since
fuzzy sets can overlap, a set and its complement also can overlap.

The excluded middle law for fuzzy sets is given by

AUA =X,

ATA = ¢

Comparing Venn diagram for classical sets and fuzzy sets for excluded middle
law are shown in Figs. 2.11 and 2.12.

2.3.2 Properties of Fuzzy Sets

The properties of the classical set also suits for the properties of the fuzzy
sets. The important properties of fuzzy set includes:
Commutativity

A UB = B UA,

ATIB = BNA.
Associativity
AU (BUC) = (AUB) UC,
An (BnC)= (AnB)nC.
Distributivity
AU((bnC)= (AUB)n (AU C),
An (BUC)= (AnB) U(An C).
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1
0 0
Crisp set Aand its complement Crisp An A=X (lawof exclusive middle)
Fig. 2.11. Excluded middle law for classical sets
Idempotency
A UA = A,
ATIA = A.
Identity
AUdh=A and A TIX = A
AMNd=d and AUX = X.
Transtivity
If ACBCC then ACC
Involution

A=A.

These are the important properties of the fuzzy set.

2.3.3 Solved Examples

Example 2.4. Consider two fuzzy sets A and B find Complement, Union,

Intersection, Difference, and De Morgan’s law.
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0
Fuzzy Au A g (law of contradiction)

Fig. 2.12. Excluded middle law for fuzzy set

,1 05 06 02 06
A= 2+~ +T +~ + 6T

,05 08 04 07 03
B-<-2 +“ +T +*“ +~An

Solution.

Complement
0O 05 04 08 04

A 24 3 +m 45 + 6"

05 02 06 03 07

B -
~Y+~f+ "N + N+

Union
AUB 1 08 06 07 06
2+ 3 +4 +5 + 6"
Comparing the membership values and writing maximum of the two values

determine Union of the fuzzy set.
Intersection
05 05 04 02 03

ATMB A~ 2 + A+
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Comparing the membership values and writing minimum of the two values
determine intersection of the fuzzy set.

Difference

A/B

B/7A

De Morgan’s Laws

AUB

AnB

Example 2.5. We

ATIB

B MNA :

ATNB

A UB

0.5
~ +~ +~ + ~
0 05 04 0.7
2+ 3 +4 +5 +

02 06 02 06

+~6
0.3

g"

,0 02 04
ND 4 43+ T + “5" + |IT
,05 05 06 08 07
{uz- + “3 + T + “5" + T

03 04

want to compare two sensors based upon their detection

levels and gain settings. The following table of gain settings and sensor detec-
tion levels with a standard item being monitored provides typical membership
values to represents the detection levels for each of the sensors.

Gain setting

0
20
40
60
80

100

Sensor 1 detection levels

0

0.
0.
0.

1
1

Sensor 2 detection levels

0
5 0.35
65 0.5
85 0.75
0.90
1

The universe of discourse is X = {0, 20,40, 60, 80,100}. Find the member-
ship function for the two sensors: Find the following membership functions

using standard set operations:

(@) "S\nu(x)
(c) MSi(x)
(e) *s1lnsi(x)

(9) Msi ngi(x)

(b) MSi nS2(x)

(d) Hs2(x)

(f) ~Si nSi(x)

(h) MSi nSi(x)

Solution. The membership functions for the two sensors in standard discrete

form are
_10.5 0.65 0.85 1 1
1=~20+ KO + "6 + 80+ 1“¢
035 05 075 0.90 1

n =

“27n + 40 + "60' + -8 + 100
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(@) Msins2(x) = Mss(x) Vm(x)
05 065 0.85 1 1
20 + ~W + “60"+ 80 + 100
(b) mslns2(x) = Mss(x) JIM(x)

035 05 075 0.9 1
"20" + 40 + "60" + 80+100

05 035 015 0 0

© M (X) 20 4+ ~4n + "W + 80+100
065 05 025 0.1 0
@ MS (X)  »2n 4 40 + "6~ + 80 + 100
- - . . ros 035 015 0 01
NSNS = ASinSi = » AN i 20+ ~W + "6~ + 80 + 100J
-~ -, .. .. (05 035 015 0 01
(f) ~giUS = ~ VA 120 + ~4T + "6~ + 80 + 100J
05 065 0.85 1 11
(9) MSinsSi(x) = MSi(x) V MSi(x) 20 + KO + “6F + 80 + 100J
05 035 0.15 0 01
(h) MSinSi(x) = MSi(x) JTMSi(x) 20 + 1O + “6F + 80 + 100 J
Example 2.6. Let x be the universe of commercial aircraft of interest
X = {alo, b52, b117, C5, C130, f4, f14, f15, f16, f111, kc130} .
Let A be the fuzzy set passenger class aircraft
.0.3 0.5 0.4 0.6 0.7 1.0 101
+ +
A= fl16 + + f14 + f111 b117 b52j
Let B be the fuzzy set of cargo
_ f 04 0.4 0.6 0.8 0.9 1.0
B = \b1l7 + fTTT + "f4 + f15 + fi4 + fi6
Find the values of the operation performed on these fuzzy sets.
Solution. The operation are union, intersection, and complement.
0.4 1.0 1.0 0 0 0.6 09 0.8 1.0

(@) AUB =

al0d + b52 + bl117 + C5 + C130 + + f14 + f15 + f16

0.7 0
N
1L T ke130j
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(04 1.0 0.4 0 0 05 06 08 03
(b) ANMB ~ai0 + b52 + bTI7 + C5+ Cr30 + T + fl4 + + f16
0.4 o 1
+ f111 + KC130J
fo7 05 06 04 07 0.3 0 0 1
(c)~ 1 f16+!T+ al0+ fl4 + f15 + f111 + bT17 + b52 + C5
1 1
" c130 ¥ Kc130
0.6 0.6 04 02 01 1

(d) B \bl17 + f111 + f4 + f15 + f14 + f16 + C5 + C130 + KC130J
Example 2.7. For the given fuzzy set

_ 1 065 04 035 0
A="710+1T + 20+ ~2T + 30

0 025 06 0.25 1
10+ 1.5 + 20+ ~2T + 30

05 0.25 0 025 05
10+1T + 20+ ~2T + 3.0

27

Prove the associativity and the distributivity property for the above given

sets.

Solution.
To prove associative property

1.AU(b UC) = [AUB) UC

LHS
AU”MBUc ]
025 06 025 1
(buA) =fis + 1T + 20+ ~2T + 30
( \ (1 065 06 0.35 1] ,
AU(BUA) ={n +T5+20+tt + 30} (2.
RHS
"M UWBJ UC

1 0.65 0.6 0.35 1
(AuB) = {00+ TT + 23+ ~2T + 3.0

_\.1 065 06 035 1 1
(RAUB)UER Mo+ A~ +20+17 +3n '

4
9)

0)
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From (2.9) and (2.10),

LHS= RHS
AU]JBuCIl=(AuB )ucC

Thus associative property is proved.
To prove distribute property

2. ANl BUC AlNB U ATIC
LHS
Al BUC
\¢c ¢

05 025 06 025 1
15+ TT + 20+ ~2T + 3.0
05 025 04 025 0

2.11
An(Buc 10+ TT + 20+ ~2T + 30 (2-11)

RHS

0 025 04 025 O
10+ TT + 20+ ~2T + 30
05 025 0 025 O
10+ TT + 20+ ~2T + 30
05 025 04 025 O

AnB U AnC = (2.12)
10+ TT + 20+ ~2T + 3.0

AnB

AnC

From (2.11) and (2.12), LHS = RHS proving distributive property.
Example 2.8. Consider the following fuzzy sets

1 05 03 02

A =
2+T +T +T

B = 05 07 02 04
T +T +~ +T
Calculate, AUB, AnB, A, B by aMatlab program.
Solution. The Matlab program for the union, intersection, and complement is
Program

% enter the two matrix
u=input(‘enter the first matrix’);
v=input(‘enter the second matrix’);
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option=input(‘enter the option’);
%option 1 Union
%option 2 intersection
%option 3 complement
if (option==1)
w=max(u,v)

end
if (option==2)
p=min(u,v)
end
if (option==3)
optionl=input(‘enter whether to find complement for first matrix
or second matrix’);
if (optionl==1)
[m,n]=size(u);
g=ones(m)-u;
else
g=ones(m)-v;
end
end
Output

(1) To find union of A and B
enter the first matrix[1 0.5 0.2 0.3]
enter the second matrix[0.5 0.7 0.2 0.4]
enter the optionl
w =
1.0000 0.7000 0.2000 0.4000

(2) To find Intersection of A and B is
enter the first matrix[1 0.5 0.2 0.3]
enter the second matrix[0.5 0.7 0.2 0.4]
enter the option2
p =

0.5000 0.5000 0.2000 0.3000

(3) To find complement of A
enter the first matrix[1 0.5 0.2 0.3]
enter the second matrix[0.5 .7 .2 4]
enter the option3
enter the whether to find complement for first matrix or second matrix
1

q =
0 0.5000 0.8000 0.7000
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(4) To find complement of B
enter the first matrix[1 0.5 0.2 0.3]
enter the second matrix[0.5 .7 .2 4]
enter the option3
enter the whether to find complement for first matrix or second matrix
2

q =
0.5000 0.3000 0.8000 0.6000

Example 2.9. Consider the following fuzzy sets

01 06 04 03 08
A - + + + +
2 3 4 5 6

05 08 04 06 04
B + + + +
2 3 4 5 6

Calculate A M B (difference), B MA by writing an M-file
Solution. The Matlab program for the difference of A and B is

Program

% enter the two matrix

u=input(‘enter the first matrix’);

v=input(‘enter the second matrix’);

option=input(‘enter the option’);

%option 1 ujv

%option 2 vju

%to find difference of u and v

if option==

%to find v complement

[m,n]=size(v);
vcomp=ones(m)-v;
r=min(u,vcomp);

end

%to find difference v and u

if option==

%to find u complement
[m,n]=size(u);
ucomp=ones(m)-u;

r=min(ucomp,v);

end

fprintf(‘output result’)

printf(r)
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Output of the Matlab program

(1) to find A difference B is
enter the first matrix[0.1 0.6 0.4 0.3 0.8]
enter the second matrix[0.5 0.8 0.4 0.6 0.4]
enter the optionl
output result
r
0.1000 0.2000 0.4000 0.3000 0.6000
(2) to find B difference A is
enter the first matrix[0.1 0.6 0.4 0.3 0.8]
enter the second matrix[0.5 0.8 0.4 0.6 0.4]
enter the option2
output result
r
0.5000 0.4000 0.4000 0.6000 0.2000

Example 2.10. Consider the following fuzzy sets

08 03 06 02
IO + TS + 20 + "25

A

B

Calculate the Demorgan’'s law A UB = ATIB, and ATIB = A UB using a
matlab program.

Solution. The Matlab program for the demorgan’s law for A and B is

Program

% Demorgan’s law

% enter the two matrix
u=input(‘enter the first matrix’);
v=input(‘enter the second matrix’);
% first find u’s complement
[m,n]=size(u);
ucomp=ones(m)-u;

% second to find v's complement
[a,b]=size(V);

vcomp=ones(a)-v;
p=min(ucomp,vcomp)
g=max(ucomp,vcomp)

fprintf(p)

fprintf(q)
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Output

enter the first matrix[0.8 0.3 0.6 0.2]
enter the second matrix[0.4 0.2 0.9 0.1]
P =

0.2000 0.7000 0.1000 0.8000

0.6000 0.8000 0.4000 0.9000

Summary

In this chapter, we have defined on the classical sets and the fuzzy sets. The
various operations and properties of these sets were also dealt in detail. It
was found that the variation of the classical and the fuzzy set was in the
excluded middle law. The demorgan’s law discussed helps in determining some
tautologies while some operations are performed. Except for the excluded
middle law all other operations and properties are common for the crisp set
and the fuzzy set.

Review Questions

Define classical set.

How is the power set formed from the existing universe?

What is the difference between the whole set and the power set?

Give a few examples for classical set.

What are the operations that can be performed on the classical set?

Write the expressions involved for the operations of classical set in function

- theoretic form and set- theoretic form.

State the properties of classical sets.

What is the cardinal number of a set?

9. How is the cardinality defined for a power set?

10. What are the additional properties added with the existing properties of
classical set?

11. What is the variation between the law of excluded middle and law of
contradiction?

12. State Demorgan’s law. Explain the law with the help of Venn diagram
representation.

13. Discuss in detail how classical sets are mapped to functions.

14. Define fuzzy set.

15. What is the membership function for fuzzy set A?

o 0k wNpE

© N

16. State the reason for the membership function to be in the interval 0 to 1
17. What are the operations that can be performed by a fuzzy set?
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18. Explain about the properties present in the fuzzy set.

19. Write the expressions for the fuzzy set operation in set-theoretic form and
function theoretic form.

20. How is the excluded middle law different for the fuzzy set and the classical
set?

21. Discuss about the Demorgan’s law for the fuzzy sets. Say whether it is
similar to that of classical sets.

Exercise Problems

1. Consider two fuzzy sets one representing a scooter and other van.

0.6 0.3 0.8 0.9 0.1
1 | +

Scooter = E: — + L
van motor cycle boat scooter house J

(1 0.2 0.5 0.3 0.2 |
= { Van + motor cycle + b ~ + +h "}

Find the following:
(a) Scooter UVan (b) Scooter/Van (c) Scooter INScooter
(d) Scooter UScooter (e) Scooter NScooter
(f) Scooter UVan (g) Van UVan (h) VanTVan

2. Consider flight simulator data, the determination of certain changes in
creating conditions of the aircraft is made on the basis of hard breakpoint
in the mach region. Let us define a fuzzy set to represent the condition of

near a match number of 0.644. A second fuzzy sets in the region of mach
number 0.74

A = near mach 0.64.

f 0.1 0.6 1 0.8 0.2 ]
[0.630 + 0.635 + 0.64 + 0.645 + 0.650J .

B = near mach 0.64.

f o 0.5 0.8 1 0.4 1
[0.630 + 0.635 + 0.64 + 0.645 + 0.650J .

Find the following:
(& AuB (b)AnB (c) A d)B (¢ A B (f) AUB (g) AnB
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3. The continuous form of MOSFET and a transistor are shown in figure
below. The discretized membership functions are given by the following
equations:

‘0 01 02 03 04 05
Hn 0 + X+ 5+T +1n

Continuous Form of MOSFET and Transistor

For these two fuzzy calculate the following:
(@) HMUHt
(b) HMn He
() HT = 1- Ht
(d) HM = 1- HM

(e) De Morgan’s law

4. Samples of new microprocessors IC chip are to be sent to several customers
for beta testing. The chips are sorted to meet certain maximum electrical
characteristics say frequency, and temperature rating, so that the “best”
chips are distributed to preferred customer 1. Suppose that each sample
chip is screened and all chips are found to have a maximum operating
frequency in the range 7-15 MHz at 20°C. Also the maximum operating
temperature range (20°C £+ AT) at 8 MHz is determined. Suppose there
are eight sample chips with the following electrical characteristics:

Chip number

1 2 3 4 5 6 7 8
Frex 6 7 8 9 10 1 12 13
(MHz2)

ATmax(°C) 0 0 20 40 30 50 40 60
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The following fuzzy sets are defined.
= Set of “Fast” chips = chips with fmax > 12 MHz

A
_ (0 0O 01 01 02 08 1 1
=\T+2+T +T +T +T + 7+ 8
B = Set of “Fast” chips = chips with fmax > 8 MHz
01 05 1 1 1 1 1 1
~ +2 +3+4+5+6+7+8
C = Set of “Fast” chips = chips with Tmax > 10°C
0o 0 1 1 1 1 1 1
1+2+3+4+5+6+7+8
D = Set of “Fast” chips = chips with Tmax > 50°C
_ (0 06 01 02 05 08 1 1
+T +7+8

= 1 9+T +T +T +T

Using fuzzy set illustrate various set operations possible.

5. Consider two fuzzy sets A and B as shown in figure below. Write the fuzzy
set using membership definition and find the following properties:

(@) AUB (b)) ATIB () A () B &) A B () AUB

Figure to define the membership function

6. Consider two fuzzy sets A and B as shown

fo 05 03 07 09
A >’

02 04 06 09 0.4
B=<T +~ +~ +T + T

Find (@) AUB (b)) ATIB (c) A (d) B () A B () AUB
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7. Prove why law of excluded middle law and contradiction does not hold
good for fuzzy.

8. Consider the universe with two elements X = {a, b} and consider Y with
Y = {0,1}. Find the power set.

9. Consider a universe of four elements x = {1, 2, 3,4, 5, 6}. Find the cardinal
number power set and cardinality.

10. Consider the following fuzzy sets:

03 09 O
B -+ T+ T+

Calculate, A UB, ATB, A, B by a Matlab program.
11. For the above problem perform the De Morgan’s law by writing an M-file.
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Classical and Fuzzy Relations

3.1 Introduction

A relation is of fundamental importance in all-engineering, science, and
mathematically based fields. It is associated with graph theory, a subject
of wide impact in design and data manipulation. Relations are intimately
involved in logic, approximate reasoning, classification, rule-based systems,
pattern recognition, and control. Relations represent the mapping of the sets.
In the case of crisp relation there are only two degrees of relationship between
the elements of sets in a crisp relation, i.e., “completely related” and “not
related” . But fuzzy relations have infinite humber of relationship between the
extremes of completely related and not related between the elements of two
or more sets considered. A crisp relation represents the presence or absence of
association, interaction, or interconnectedness between the elements of two or
more sets. Degrees of association can be represented by membership grades
in a fuzzy relation by membership grades in a fuzzy relation in the same way
as degrees of set membership are represented in the fuzzy set. Crisp set can
be viewed as a restricted case of the more general fuzzy set concept. In this
chapter the classical and fuzzy relation are dealt in detail.

3.2 Cartesian Product of Relation

An ordered sequence of n elements is called as ordered n-tuple. The ordered
sequence is in the form of al,a2,...,an. An unordered sequence is that it is
a collection of n elements without restrictions in the order. The n—tuple is
called as an ordered pair when n = 2. For the crisp sets A1 A2,..., An, the
set of n-tuples al,a2,..., an, where al G Al a2 G A2, ..,an G An, is called
the Cartesian product of A1,A2,... ,An. The Cartesian product is denoted
by A1x A2 x---x An. In Cartesian product the first element in each pair is
a member of x and the second element is a member of y formally,

xxy={(xy)/xGX andy GY},
ifx=ythenx xXy=y X X
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If all the An are identical and equal to A, then the cartesian product of
A1,A2 ..., An becomes An.

Example 3.1. The elements in two sets A and B are given as A = {0,1} and
B = {e, f, g} find the Cartesian product A x B,B x A, A x A, B x B.

Solution. The Cartesian product for the given sets is as follows:

A x B ={(0,¢e),(0,f), (0,9), (1), (1 1), (1,9}

BxA=/{e0),(E1, 1)1 1)}

A x A = A2= {(0,0), (0,1), (1,0), (1,1)},

BxB=B2={(e) (ef)(eq) (fe), (ff),(f,09), (9e) @f) @9}

3.3 Classical Relations

A relation among classical sets x1,x2,...,xn and y1y2,...,yn is a subset of
the Cartesian product. It is denoted either by R or by the abbreviated form

X xY = {(xy)/xeX,yeY.

In the case of an ordered pair, the relation is a subset of the Cartesian prod-
uct A1x A2. This subset of the full Cartesian product is called as the binary
relation from Alinto A2. If it consists of three, four, or five sets are the sub-
sets of the full Cartesian product, then the relationship is termed as ternary,
quaternary, and quinary. But mostly we are into deal with that of the binary
relation only.

The strength of the relationship between ordered pairs of elements in each
universe is measured by the characteristic function denoted by x, where a
value of unity is associated with complete relationship and a value of zero is
associated with no relationship, i.e.,

v, 11X y)e X XY,
XxXxy (X,Y) \O(x,y) e x xY.

When the universe or the set are finite, a matrix called as relation matrix can
conveniently represent the relation. A two-dimensional matrix represents the
binary relation. If X = {2,4, 6} and Y = {p, q, r}, if they both are related to
each other entirely, then the relation between them can be given by:

p q r
11

Py
1
o bhN

1
111
111
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Example 3.2. Let R be a relation among the three sets
X = {Hindi, English}, Y = {Dollar, Euro, Pound, Rupees}, and Z ={India,
Nepal, United States, Canada}
R (x,y, z) = {Hindi, Rupees, India}
{Hindi, Rupees, Nepal}
{English, Dollar, Canada}
{English, Dollar, United States}.

Solution. The relation can be represented as follows:

India Nepal US Canada
Dollar 0 0 0 0

Euro 0 0 0 0

Pound O 0 0 0

Rupees 1 10 0
Hindi

India Nepal US Canada
Dollar 0 0 1 1

Euro 0 0 0 0

Pound O 0 0 0

Rupees O 0 0 0
English

3.3.1 Cardinality of Crisp Relation

Suppose n elements of the universe X are related to m elements of the universe
Y . If the cardinality of X is nx and the cardinality of Y is ny, then the
cardinality of the relation R, between these two universe nxxy = nx x ny.
The cardinality of the power set describing this relation, P (X x Y) in then
np(x xy) = 2"x"«.

3.3.2 Operations on Crisp Relation

The following are the function - theoretic operations for the two crisp sets
(R,S):

Union

R US = XRUS(x,y) : XRUS(x,y) = max[xfi(x, y),Xs(x,y)].
Intersection

R n S = XRns(x,y) : XRns(x,y) = min[xR(X,y),xs(x,y)].
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Complement

R = XR(X,y) : XR(x,y) = 1- XR(x,y).

Containment

R C S = XR(X,y) : XR(X,y) < XS(x,y).

These are the various operations that can be performed in a classical relation.

3.3.3 Properties of Crisp Relations

The properties of commutativity, associativity, distributivity, involution, and
idempotency as discussed in Sect. 2.2.2 for the classical sets also hold good for
crisp relation. This includes DeMorgan’s laws and the excluded middle laws
too. The null relation O and the complement relation E are given by:

0 0 0 1 1 1
o 000 , E= 1 11
Lo 0 0 1 1 1

3.3.4 Composition

Let R be relation that relates elements from universe X to universe Y .Let S be
the relation that relates elements from universe Y to universe Z. Let T relates
the same element in universe that R contains to the same elements in the
universe Z that S contains. The two methods of the composition operations
are:

- Max-min composition,
- Max-product composition.

The max-min composition is defined by the set-theoretic and membership
function-theoretic expressions:

T=RoS
XT (x,2z)= yg/v XR (x,y) Axs (Y¥,2)).

The max-product composition is defined by the set-theoretic and mem-
bership function-theoretic expressions:

T=RoS

XT (x,z)= yé/v (XR (x,y) =Xs (y,2))
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Example 3.3. Using max-min composition find relation between R and S:

yi y2 ¥ zi z2
X1 1 1 0 Xi 0 1
R= X2 0 0 1 , s= x2 1 0
X3 0 1 0 X3 1 1

Solution. The max-min composition is given by:

/m(x1,z1) = max (min (1, 0), min (1, 1), min (0, 1
= max [0, 1, 0] = 1,

AT(x1,z2) = max (min (1, 1), min (1, 0), min (1, 1
= max [1, 0, 1] = 1,

AT (x2,z1) = max (min (0, 0), min (0, 1), min (1, 1
= max [0, 0, 1] = 1,

AT(x2,22) = max (min (0, 1), min (0, 0), min (1, 1
= max [0, 0, 1] = 1,

AT(x3,zi_) = max (min (0, 0), min (1, 1), min (0, 1
= max [0, 1, 0] = 1,

AT(x3,z2) = max (min (0, 1), min (1, 0), min (0, 1

= max [0, 0, 0] = O,

R S

R R
Ok

3.4 Fuzzy Relations

Fuzzy relations are fuzzy subsets of X x Y, i.e., mapping from X ~ Y .It maps
elements of one universe, X to those of another universe, say Y, through the
Cartesian product of the two universes. A fuzzy relation R is mapping from

the Cartesian space X x Y to the interval [0, 1] where the strength of the
mapping is expressed by the membership function of the relation for ordered
pairs from the two expressed as or /iR (X, y). This can be expressed as

R = {((x,y), HROX,)\(x,y) e X x Y}

is called a fuzzy relation on X x Y.

3.4.1 Cardinality of Fuzzy Relations

As we know that the cardinality of fuzzy set is infinity, the cardinality of fuzzy
relations between two or more universes is also infinity.
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3.4.2 Operations on Fuzzy Relations

Let R and T be fuzzy relation on Cartesian space X x Y . Then the following

operations apply for the membership values for various set operations:
Union

The union of two fuzzy relation R and T is defined by

Mrut (X,y) = max [Hr (X,y) ,Mt (x,v)j =
Intersection

The intersection of two fuzzy relation R and T is defined by

Mrnt (X,y) = min yMR (X,y) ,Mt (x,V)
Complement

The complement of fuzzy relation R is given by

Mr (X,y) = 1- Mr (X,y) m
Containment

The containment of two fuzzy relation R and T is given by

RCT"™ Mr(X,y) < Mc (X,y)m
These are some of the operations performed on the fuzzy relation.

3.4.3 Properties of Fuzzy Relations

The properties of fuzzy relations include commutativity, associativity,
distributivity, idempotency, and involution.
Commutativity

Mrus (X,y) = Msur (X,y) =

Associativity

Mf \ut (xX,¥y) =M™

frun \(xy)m

anfs ut

Distributivity
Mfru s\nT(X’y) - MrufSnT\J(X’y) "
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Ildempotency
Hrur y) = Hr-

Involution
HR (x,Y) = Hr (x,Y) -

As in case of fuzzy set, in fuzzy relation also excluded middle law and con-
tradiction law does not holds good. The null relation O and the complete
relation E are analogous to the null set and the whole set is in set theoretic
form. Since the fuzzy relation R is also a fuzzy set, there is a overlap between

a relation and its complement, hence

R UR

1
m

RnR

I
o

3.4.4 Fuzzy Cartesian Product and Composition

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y,
then the Cartesian product between fuzzy sets A and B will result in a fuzzy

relation R which is contained with the full Cartesian product space or

AxXxB=RCX XY,

where the fuzzy relation R has membership function.

Hr (X, Y) = Haxb (X, ¥Y) = min Ha (x),Hb bl

Each fuzzy set could be thought of as a vector of membership values; each
value is associated with a particular element in each set. For example, for
fuzzy set A that has four elements, hence column vector size 4 x 1 and for

fuzzy set (vector) B that has five elements, hence a row vector of 1 x 5. The
resulting fuzzy relation R will be represented by a matrix of size 4 x 5 (i.e.,)
R will have four rows and five columns.

Example 3.4. Consider two fuzzy sets A and B. A represents universe of

three discrete temperatures x = {xi,x2,x3} and B represents universe of two
discrete flow y = {y1,y2}. Find the fuzzy Cartesian product between them:
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Solution. A represents column vector of size 3 x 1 and B represents column
vector of size 1 x 2. The fuzzy Cartesian product results in a fuzzy relation R

of size 3 x 2
Yi Y2
Xi 04 04
AXxB=R= x2 05 0.7
X3 01 01

Composition of Fuzzy Relation

Let R be a fuzzy relation on the Cartesian space X x Y, S be a fuzzy relation
onY x Z,and T be a fuzzy relation on X x Z, then the fuzzy set max-min

composition is defined as:

T = R oS (set-theoretic notation)
= j(x,z),max | min (hr (X, y) ,Hs (y, 2)*jjx GX,y GYz Gz | .
In function-theoretic form

He (x 2) = yé/Y\Ihr x y)n H§ (y, z))).
In fuzzy max-product composition is defined in terms of set-theoretic

T=Ro0S
(X, z),myix (Hr (x,y) *Hs (y,z) )/ x GX,y GY,z GZ
He (x,2)= ¥y [Hr (xy)« Hs (v.2)

Max-Average Composition

The max-average composition S O(r)gR are then defined as follows:

§099Fj (x, 2) (X, z), 2max (Hr (x,y) + Hs (y,z))/ xGX,yGY,z GZ \.

Example 3.5. Consider fuzzy relations:

yl y2 z1 z2 72
R X1 0.7 0.6 g- vl 08 05 04
X2 08 03 - y2 01 06 0.7

Find the relation T = R o S using max-min and max-product composition.
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Solution. Max—Min Composition

\iT (xi,z

T
i)

AT (xi, z2)

AT (xi,z3)

AT (x2,2

i)

AT (x2,22)

AT (x2,23)

= RoS

= max [min (0.7,0.8), min (0.6,0.1)]
= max [0.7, 0.1]

=07,

= max [min (0.7,0.5), min (0.6,0.6)]
= max [0.5, 0.6]

= 0.6,

= max [min (0.7,0.4), min (0.6,0.7)]
= max [0.4, 0.7]

=07,

= max [min (0.8,0.8), min (0.3,0.1)]
= max [0.8, 0.1]

=038,

= max [min (0.8,0.5), min (0.3,0.6)]
= max [0.5, 0.3]

= 0.5,

= max [min (0.8,0.4), min (0.3,0.7)]
= 04,

Z1 2 2
- X 07 06 07
X2 98 05 04

Max—Product Composition

\iT (xi,zi)

/T (xi,z2)

\iT (xi,z3)

max [min (0.7 x 0.8), min (0.6 x 0.1)]
max [0.56,0.06]

0.56,

max [min (0.7 x 0.5), min (0.6 x 0.6)]
max [0.35,0.36]

0.36,

max [min (0.7 x 0.4), min (0.5 x 0.7)]
max [0.28,0.35]

0.35,

45
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It (x2,z1) = max [min (0.8 x 0.8), min (0.3 x 0.1)]
= max [0.64,0.03]
= 0.64,

[iT (x2,z2) = max [min (0.8 x 0.5), min (0.3 x 0.6)]
= max [0.40,0.18]
= 0.40,

i T(x2,23) = max [min (0.8 x 0.4), min (0.3 x 0.7)]
= max [0.32,0.21]
= 0.32,

0.56 0.36 0.35
0.64 0.40 0.32

Example 3.6. In the field of computer networking there is an imprecise
relationship between the level of use of a network communication bandwidth
and the latency experienced in peer-to-peer communication. Let X be a fuzzy

set of use levels (in terms of the percentage of full bandwidth used) and Y

be a fuzzy set of latencies (in milliseconds) with the following membership

function:
[02 05 08 10 06 0.1

[L0+20 + 40 + 60 + 80+100

_fo0o3 06 09 10 06 03
Y=[05+ 1 +15+ 4 + 8 +'"0

(a) Find the Cartesian product represented by the relation R = X x Y .
Now, suppose we have second fuzzy set of bandwidth usage given by

_f03 06 07 09 1 05
X [FO + 20 + 40 + 60+ 80 + ~

(b) Find S = Z ° R using (1) Max-min composition and (2) Using
~ N1x6 ~6x6
max-product composition.

Solution. (a) Cartesian product
R=XxY

fuzzy relation R is given by

X = iR (X, %)

iAxB (x,Y)

min (iA (x),iB (y)



0.2
0.3
0.3
0.3
0.3
0.1

(b) (1) Max-min composition

zZ1Xx 6

0.2
0.5
0.6
0.6
0.6
0.1

0.3
W +20 + 40 + 60+80 + 100

0.2
0.5
0.8
0.9
0.6
0.1

0.6

0.2
0.5
0.8
1.0
0.6
0.1

0.7

3.4 Fuzzy Relations

0.2
0.5
0.6
0.6
0.6
0.1

0.9

0.2
0.3
0.3
0.3
0.3
0.1

1 0.5

S =[0.30.6090.9060.3] .

(2) Max-product composition

S (x1,z1)

S (x1,22)

S (x1,z3)

S (x1,z4)

S (x1,z5)

S (x1,z6)

max (0.06,0.18,0.21,0.27,0.3, 0.05)

0.27,

max (0.06,0.30,0.42,0.54,0.6, 0.05)

0.6,

max (0.06,0.30,0.56,0.81,0.6, 0.05)

0.81,

max (0.06,0.30,0.56,0.9, 0.6,0.05)

0.9,

max (0.06,0.30,0.42,0.54,0.6, 0.05)

0.6,

max (0.06,0.18,0.21,0.27,0.3, 0.05)

0.3,

[0.27 0.6 081 09 06 03].

47

Example 3.7. Find max-average composition for R1(x,y) and R2(y,z)

defined by the following relational matrices:

X 1
X2

XS

yl
0.1

0.3
0.8

y2
0.2
0.5

0
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Zi z2 73 z4

yi 09 0 03 04
. Y2 02 1 08 0
~ y, 08 0 07 1

y4 04 02 03 0
vs 0 1 0 08

Solution. The max-average composition is given by
R oS =2 max jIHr (x, yi) + Hs (yijzi)

= 2(14) = 0.7

H(xi,yi) + n(yi,zi)
1

0.4

0.8

14

0.7

2 ma® Hr (xi,yi) Us (yi,z2)

I H(xi,yi) + n(yi,z2)

101

2 ad

30

4
P

5

B~

T (xI, z3) = ~ max j Hr (xl,yi) Hs (¥i,z3)

H(xi,yi) + H(yi, zs)
104
210
307
413
507

2(0) 0.65

T (xI, z4) = 2 max 1Hr (xI,yi) Hs (Yi, z4)



3.4 Fuzzy Relations 49

0.5
0.2
1
1
15

= 2(1.5) =0.75

T (X2, zi) = 2max Hr (x2, yi) Hs bl , zi)
h(x2,Vi) + H(yi,z4)
1.2
0.4
0.8

0.6
1

2(12) 06
T (X2, z2) = 2 ma® HR (x2,yi)Hs (yi,z2)
H(x2,yi) + H(yi,Z2)
0.3

15

0.4

T (x2, z3) = 2 max j Hr (x2,yi) Hs bl, z3)
H(x2,yi) + H(Vi, z3)
0.6
13
0.7

0.5
1

= 2(1.3) =0.65

T (x2, z4) = 2 max 1HR (x2,yi) Hs bl, z4)
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0.7
0.5
1

0.2
18

= 2(1.8) =0.9
T (X3, Zi) = 2 max] hR (x3,Vi) Hs (M, zi)

h(x3,Vi) +p(Vi,zi)
1.7
0.2
18
0.8
0.3

0.85
2(18)

T (x3, 2) - ma® hr (x3,Vi)Hs (Vi,z2)

H(x3,Vi) + H(Vi,Z2)
0.8

1

1

0.6

13

gy 06

T (x3, ) - ma® hr (x3,Vi)Hs (Vi,z3)
h(x3, Vi) + H(Vi,Z3)
11
0.8
17

0.7
0.3

=-(17) = 0.85

T (x3, z4) = - max §Hr (x3,Vi) Hs (Vi, z4)
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i m(x3,yi) + n(yi,z4)
112

20

32

404

511

=1()= 1>

0.7 085 0.65 0.75
0.6 1 065 09
0.9 0.65 0.85 1

T (xy) =X

3.5 Tolerance and Equivalence Relations

Relations exhibit various other properties apart from that discussed in
Sects. 3.3 and 3.4. It is already said that the relation can be used in graph
theory. The various other properties that are dealt here include reflexivity,
symmetry, and transitivity. These are discussed in detail for the crisp and
fuzzy relations and are called as equivalence relation. Apart from these,
tolerance relations of both fuzzy and crisp relations are also described.

3.5.1 Crisp Relation

Crisp Equivalence Relation

A relation R is called as an equivalence relation if it satisfies the following
properties. They are (1) reflexivity, (2) symmetry, and (3) transitivity.

Reflexivity

When a relation satisfies the reflexive property then every vertex in the graph
originates a single loop. This is shown in Fig. 3.1.
For matrix relation reflexivity is given by,

(xi,Xj)e R or XR(xi,Xj)= 1.
Symmetry

When a relation satisfies symmetric property then in the graph for every edge
pointing from vertex i to vertex j there is a edge pointing in the opposite
direction, i.e., from vertex j to vertex i. This is shown in Fig. 3.2.

For matrix relation symmetry is given by

(Xi,Xj)e R~ (Xi,Xj)e R or XR(Xi,Xj)= XR(Xj,Xi).
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Fig. 3.1. Reflexivity

Fig. 3.2. Symmetry

Fig. 3.3. Transitivity

Transitivity

When a relation satisfies transitivity property then every pair of edges in the
graph, one pointing from vertex i to vertex j and the other from vertex j to
vertex k(i,j,k = 1,2,3) there is an edge pointing from vertex i directly to
vertex k. This is shown in Fig. 3.3.

For matrix relation transitivity is given by

(Xi,Xj) GR and (xj,xk) GR ~ (Xi,Xk) GR

or
Xn(xi,Xj) and Xn(xj,xk)= 1" Xn(xi,xk)= 1
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Crisp Tolerance Relation

A binary relation R on a universe X that is reflexive and symmetric is called
as compatibility relation or a tolerance relation. When a relation is a reflexive
and symmetric it is called as proximity relation. A tolerance relation R can
be reformed into an equivalence relation by at most (n -1) composition with
itself, where n is the cardinal number of the set defining R, in the case X , i.e.,

R12=Ri 0 Rt 0 ORI =R

3.5.2 Fuzzy Relation
Fuzzy Equivalence Relation

A fuzzy relation R on a single universe X is also a relation from X to X . It is

a fuzzy equivalence relation if all three of the following properties for matrix
relations define it; e.g.,

Reflexivity — Hr (xi,xi) 1,
Symmetry  Hr (xi,xj) Hr (xj,xi),
Transitivity  Hr (xi,xj) i

A HR (xi

where A> min [ALAZ] .

Fuzzy Tolerance Relation

If the fuzzy relation R 1satisfies both reflexivity and symmetry then it is called
as fuzzy tolerance relation R 1. A fuzzy tolerance relation can be reformed into

fuzzy equivalence relation at most (n-1) compositions. This is given by:

R~-1 = R1oR10---0 R1 = R.

3.5.3 Solved Examples

Example 3.8. Consider fuzzy relation

. 1
02 0 0 1 05
03 08 0 05 1
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is reflexive and symmetric. However it is not transitive, e.g.,

Hr (xi, X2) = 0.6, hr (X2,X5) = 0.8,
Hr (xi, x5) = 0.3 < min (0.8, 0.6) .

One composition results in the following relation:

-1 06 04 03 06-
0.6 1 04 05 08
2 RoR= 04 04 1 0 04
03 05 0 05
06 08 04 05 1

[EEN

where transitivity still does not result for example

Hr (xi, X2) = 0.6, hr (x2, X4) = 0.8,
HR (xi,x4) = 0.3 < min (0.6, 0.5).
Finally after one or two more compositions, transitivity results
1 0.6 0.4 0.5 0.6
0.6 1 0.4 0.5 0.8
R 0.4 0.4 1 0.4 0.4

0.5 0.5 0.4 1 0.5
0.6 0.8 0.4 0.5 1

R3(xi,x2) = 0.6 > 0.5,
R3(x2,x4) = 0.3 > 0.5,
R3(xi,x4) = 0.5 > 0.5.

The transitivity is satisfied hence equivalence relation is also satisfied.

Example 3.9. Find whether the given matrix is reflexive or not

by writing an M file.

Pl
0 cor r
R O O -
O O R OO
O = OO0 o
R O O R O



3.5 Tolerance and Equivalence Relations
Solution. The Matlab program to find the reflexivity is

Program

% to find reflexvity
r=input(‘enter the matrix’);
sum1=0;
[m,n]=size(r);
if(m==n)

for i=1:m

%to find the reflexivity

if(r(1,1)==r(i,i))

else
fprintf(‘the given matrix is irreflexive’);
suml=1;
break;
end
end
if(suml ~= 1)
fprintf(‘the given matrix is reflexive’);
end
end
Output

enter the matrix[1 1000;1 1001,00100,00010;0100 1
the given matrix is reflexive.

Example 3.10. Find whether the given matrix is symmetry or not

1 0.5 0.3 0.6 0
0.5 1 0.7 0.5 0.9

R 0.3 0.7 1 0.6 0 by a Matlab program.

0.6 0.5 0.6 1 0.5
0 0.9 0 0.5 1

Solution. The Matlab program is

Program

% to find the symmetric
r=input(‘enter the matrix’);

sum=0;
for i=1:m
for j=1:n
if(r(i,j)==r(j,i))
else

fprintf(‘matrix is not symmetry’);
sum=1;

55
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break;
end
end
if(sum==1)
break;
end
end
if(sum~=1)
fprintf(‘The given matrix is symmetry”);
end

Output
enter the matrix[1 0.5 0.3 0.6 0;0.5 1 0.7 0.5 0.9;0.3 0.7 1 0.6 0;0.6 0.5 0.6 1
05009005 1

r =

1.0000 0.5000 0.3000 0.6000 0
0.5000 1.0000 0.7000 0.5000 0.9000
0.3000 0.7000 1.0000 0.6000 0
0.6000 0.5000 0.6000 1.0000 0.5000
0 0.9000 0 0.5000 1.0000

The given matrix is symmetry.

Example 3.11. Find whether the given matrix is a tolerance matrix or not

1
1

R 0 by writing a Matlab file.
0

O O R
O O R, OO
O R, OO O
O O

0
Solution. The Matlab program is given

Program

% to find tolerance
r=input(‘enter the matrix’)
sum=0;
sum1=0;
[m,n]=size(r);
if(m==n)
for i=1:m
if(r(1,1)==r(i,i))
else
fprintf(‘the given matrix is irreflexive and’);
suml=1;
break;
end
end
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if(suml ~= 1)
fprintf(‘the given matrix is reflexive and’);
end
for i=1:m
for j=1:n
if(r(i.)==r(.1))
else
fprintf(‘not symmetry hence’),
sum=1;
break;
end
end
if(sum==1)
break;
end
end
if(sum~=1)
fprintf(‘symmetry hence’);
end
end
if(suml~=1)
if(sum~=1)
fprintf(‘the given matrix tolerance matrix’);
else
fprintf(‘the given matrix is not tolerance matrix’);
end
else
fprintf(‘the given matrix is not tolerance matrix’);
end

Output

enter the matrix[1 1000;1 1001,00100;00010;0100 1
r =

1 0 0 0
1 0 0 1
0 0 10 0
0 0 0 1 0
0 10 0 1

The given matrix is reflexive and symmetry hence the given matrix is tolerance
matrix.
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Example 3.12. To find whether the given matrix is transitivity or not

R using a Matlab program.

Solution. The Matlab program is

Program

% to find transitvity matrix
r=input(‘enter the matrix’)
sum2=0;
[m,n]=size(r);
for i=1:m
for j=1:n
for k=n:1
lambdal=r(i,j);
lambda2=r(j,k);
lambda3=r(i,k);
p=min(lambdal,lambda2)
if(lambda3 <= p)
fprintf(‘The given matrix is not transitivity
sum2=1;
break;
end
end
if(sum2==1)
break;
end
end
if(sum2==1)
break;
end
end
if(sum~=2)
fprintf(“The given matrix is transitivity”’);
end

Output
enter the matrix[1 1001;11001,00100,00010;1 100 1
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11001
11001
00100
0 0010
11001
The given matrix is transitivity.

Example 3.13. To find whether the given matrix is equivalence or not

1 0.8 0.4 0.5 0.8
0.8 1 0.4 0.5 0.9
R 0.4 04 1 0.4 0.4 by means of a Matlab program.
0.5 0.5 0.4 1 0.5
0.8 0.9 0.4 0.5 1

Solution. The Matlab program is

Program

% to find equivalence matrix
r=input(‘enter the matrix’)
sum=0;
sum1=0;
sum2=0;
[m,n]=size(r);
if(m==n)
for i=1:m
if(r(1,1)==r(i,i))
else
fprintf(‘the given matirx is irreflexive’);
suml=1;
break;
end
end
if(suml ~= 1)
fprintf(‘the given matrix is reflexive’);
end
for i=1:m
for j=1:n
if(r(ij)==r(j.1))
else
fprintf(‘and not symmetry’);
sum=1;
break;
end
end
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if(sum==1)
break;
end
end
if(sum~=1)
fprintf(‘and symmetry’);
end
end
for i=1:m
for j=1:n
for k=n:1
lambdal=r(i,j);
lambda2=r(j,k);
lambda3=r(i,k);
p=min(lambdal,lambda2)
if(lamda3 <= p)
fprintf(‘and not transitivity hence’);
sum2=1;
break;
end
end
if(sum2==1)
break;
end
end
if(sum2==1)
break;
end
end
if(sum~=2)
fprintf(‘and transitivity hence’);
end
if(sumi1nr=1)
if(sum~=1)
if(sum~=2)
fprintf(‘the given matrix is equivalence matrix’);
else
fprintf(‘the given matrix is not equivalence matrix’);
end
else
fprintf(‘not equivalence matrix’);
end
else
fprintf(‘not equivalence matrix’);
end
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Output
enter the matrix[1 0.8 0.4 0.5 0.8;0.8 10.4 0.5 0.9;0.4 0.4 10.4 0.4;05 0504
10.5;0.8 090405 1]
r =

1.0000 0.8000 0.4000 0.5000 0.8000

0.8000 1.0000 0.4000 0.5000 0.9000

0.4000 0.4000 1.0000 0.4000 0.4000

0.5000 0.5000 0.4000 1.0000 0.5000

0.8000 0.9000 0.4000 0.5000 1.0000
The given matrix is reflexive, symmetry, and transitivity hence the given ma-
trix is equivalence matrix.

Example 3.14. To find whether the given matrix is equivalence or not

1 0.8 0 0.1 0.2

0.8 1 0.4 0 0.9
R 0. 0.4 1 0 0 using a Matlab program.
0.1 0 0 1 0.5
0.2 0.9 0 0.5 1
Solution. The Matlab program is
Program
% to find equivalence matrix
r=input(‘enter the matrix’)
sum=0;
sum1=0;
sum2=0;
sum3=0;
[m,n]=size(r);
I=m;
if(m==n)
for i=1:m
if(r(1,1)==r(i,i))
else
fprintf(‘the given matrix is irreflexive’);
suml=1;
break;
end
end
if(suml ~= 1)
fprintf(‘the given matrix is reflexive’);
end
m
n

[m,n]=size(r)
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for i=1:m
for j=1:n
if(r(ij)==r(.1))
else
fprintf(‘,not symmetry’);
sum=1;
break;
end
end
if(sum==1)
break;
end
end
if(sum~=1)
fprintf(‘,symmetry’);
end
for i=1:m
for j=1:n
for k=I:-1:1
lambdal=r(i,j);
lambda2=r(j,k);
lambda3=r(i,k);
p=min(lambdal,lambda2);
if(lambda3 >= p)
else
sum2=1;
break;
end
end
end
end
if(sum2 ~= 1)
fprintf(‘and transitivity hence”);
else
fprintf(‘and not transitivity hence’);
end
if(sumi1nr=1)
if(sum~=1)
if(sum2n=1)
fprintf(‘the given matrix is equivalence matrix”);
else
fprintf(‘the given matrix is not equivalence matrix’);
end
else
fprintf(‘not equivalence matrix’);
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end
else
fprintf(‘not equivalence matrix’);
end
end

Output
enter the matrix[1 0.8 0 0.1 0.2;0.8 104009004 100;0100 105,02 .9
005 1]
r =
1.0000 0.8000 0 0.1000 0.2000
0.8000 1.0000 0.4000 0 0.9000
0 0.4000 1.0000 0 0

0.1000 0 0 1.0000 0.5000

0.2000 0.9000 0 0.5000 1.0000
The given matrix is reflexive, symmetry and not transitivity hence the given
matrix is not equivalence matrix.

Example 3.15. Find the fuzzy relation between two vectors R and S

0.70 0.50
0.80 0.40

0.90 0.60 0.20
0.10 0.70 0.50

Using max-product method by a Matlab program.
Solution. The Matlab program for the max-product method is shown below

Program

%enter the two input vectors
R=input(‘enter the first vector’)
S=input(‘enter the second vector’)
%find the size of the two vector
[m,n]=size(R)
[a,b]=size(S)
if(n==a)
for i=1:m
for j=1:b
c=R(i,});
d=S(:j);
[f,g]=size(c);
[h,q]=size(d);
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%finding product
for I1=1:g
e(1,h)=c(1,h)*d(l,1);
end
%finding maximum
t(i.,j)=max(e);
end
end
else
display(‘cannot be find min-max’);
end

Output
enter the first vector[0.7 0.5;0.8 0.4]
R =
0.7000 0.5000
0.8000 0.4000
enter the second vector[0.9 0.6 0.2;0.1 0.7 0.5]

10.9000 0.6000 0.2000
0.1000 0.7000 0.5000
the final max-product answer is
t=
0.6300 0.4200 0.2500
0.7200 0.4800 0.2000

Example 3.16. Find the fuzzy relation using fuzzy max-min Method for the
given using Matlab program

and S

pe

1
O O -
o O o

1
0
0

O - O
o O o o

1
0
1
0

Solution. The Matlab program for finding fuzzy relation using fuzzy max-min
method is

Program

%enter the two vectors whose relation is to be found
R=input(‘enter the first vector’)
S=input(‘enter the second vector’)
% find the size of two vectors
[m,n]=size(R)
[a,b]=size(S)
if(n==a)
for i=1:m
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for j=1:b
c=R(i,:)
d=S(:.j)
f=d’
%find the minimum of two vectors
e=min(c,f)
%find the maximum of two vectors
h(i.j)=max(e);
end
end
%print the result
display(‘the fuzzy relation between two vectors is’);
display(h)
else
display(‘The fuzzy relation cannot be found’)
end

Output
enter the first vector[1 0 10;0 00 1,0 0 0 O]
R =
10 10
0001
0000
enter the second vector[0 1,0 0;0 1,0 O]
S=
01
00
0 1
0 0
The fuzzy relation between two vectors is
h =
0 1
0 0
0 0

Summary

In this chapter, we have studied about the operations and the properties of the
crisp and the fuzzy relation. The basic concept of relation has to be efficient in
order to perform the problems of classification, rule base, control system, etc.
The composition of the relation was also introduced and discussed. The special
properties related to that of the crisp and fuzzy equivalence and tolerance
relation were also described. These are used in similarity and classification
applications.
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Review Questions

1
2.

©ONe AW

10.
11.

12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
23.

State some of the applications where relation concept plays a major role.
W hat is the degree of relationship for the classical relation and the fuzzy
relation? Explain the differences between the two relations in terms of
degree of relationship.

What is meant by ordered n-tuple?

State the Cartesian product of set theory.

How are the crisp relations formed based on the Cartesian product of set?
On what basis is the relation matrix formed in crisp relations.

Define the cardinality of the classical relation.

Write function-theoretic operations of crisp relation.

Explain with function-theoretic form the operations that can be performed
on the classical relation.

State some of the properties of the crisp relation.

How is the composition operation performed on the classical relations?
Briefly describe the types of composition methods.

Define fuzzy relation.

What are the operations that can be performed on the fuzzy relations?
State the properties of fuzzy relations.

What are the properties that hold well in crisp relation but not in fuzzy
relation? Explain.

Define fuzzy Cartesian product.

Explain about the composition methods adopted in fuzzy relation. Write
the various expressions involved here.

State whether R 0 S = S o0 R. Explain.

Define reflexivity, symmetry, and transitivity properties of relations.
When does a relation become an equivalence relation?

State the expression for the classical equivalence relation.

Define tolerance classical relation.

Describe about the fuzzy equivalence and tolerance relation.

Exercise Problems

1. Consider speed control of DC motor. Two variables are speed (in RPM)

and load (torque) resulting in the following two fuzzy membership
functions.

02 06 08 06 04
1 1 !

I k&

Xi X2 T X3 T X4

03 05 06 10 08 03 02
1 ! 1 ! !

YL Y2 T3 YT %Y

T is on universe Y .



(@)

(b)

2.

(a)
(b)
(©
(d)
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Find fuzzy relation that relates these two variables R = S x T. Now an-

other variable fuzzy armature current | that relates elements in universe
Y to element in two as given here

Zi
0.4
0.5
0.6
0.3
0.7
0.6
1.0

SSEEEESS

Find Q = IoR using max-min composition and max-product composition.

The three variables of interest in the MOSFET are the amount of current
that can be switched, the voltage that can be switched and the cost. The
following membership function for the transistor was developed

04 07 1 08 06

Current = |
08+09+ 1+ LI+L2
2 . 1 . 7
Voltage = V 0 08 09 0
30 + 45+ 60+75 + 90
0.4 1 0.6
Cost
05 + 06 + 07

The power is given by P VI.

Find the fuzzy Cartesian product P = V x I .
I xC.

Using max-min composition find E = P oT.

Find the fuzzy Cartesian product T

Using max-product composition find E = P oT.

. Relating earthquake intensity to ground acceleration is an imprecise

science. Suppose we have a universe of earthquake intensities I =
{5, 6, 7, 8, 9} and a universe of accelerations, A = {0.2,0.4,0.6, 0.8,1.0,1.2}
in 8s. The following fuzzy relation R exists on confession space | x A.

0.75 1 065 04 02 01

05 09 1 065 03 0

R 01 04 07 1 06 O
01 02 04 09 1 06

0 01 03 045 08 1
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(@)

(b)

@)

(b)
©

6.

3 Classical and Fuzzy Relations
Fuzzy set “intensing about 7” is defined as:

(01 06 1 08 04
I — \[-r5- g F g T
Determine the fuzzy membership of | on the universe of accelerations, A.

The speed of the motor m degrees per second and the voltage in volts.
One having fuzzy set.

/3 2/3 1  2/31
S2 —é % 1-----% > —speed about 2,
v 10 1 2 31

(1 3/4 12 14 0 01
W—\0 +t- +~ + — + 5+ 61—voltage about 0 .

Find the Cartesian product relation R between S2 and Vo

Creating another fuzzy set on universe V for “voltage about 3” might give
[0 14 12 1 1/2 01
V3—\0+“ +~ +3+ EP+6/.

Use max-min composition to find V30 R

Consider two fuzzy sets A and B

_ (0 01 03 0.8 1.0
A—\6+ 30 + 50+100 + 300

7 08 02 01 07
B — |r+T +|r+To+ 1.2

Find fuzzy relation using the Cartesian product between A and B
Another fuzzy set C is defines as

_ 10 08 01 02 01
C—"~+30 + 50 + 100 + 300j .

Find a relation between a C and previously determines relation of part (a)

Using max-min composition
Using max-product composition

Using max-min find the relational matrix between R\ and R2
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yl
0.1
0.4
0.9
zi
0.8
0.3
1
0.4
0.1

Y2 Y3 Y4 ¥

02 01 1 0.8

05 0 02 1

02 04 03 02
2 73 24
0.1 0.5 0.4
0.9 0.8 0.1
0.2 0.6 0.1
0.2 0.3 0
1 0.8 0.7

7. Find the relation between two fuzzy sets R1 and R2 using

(a) Max-min composition

(b) Max-product composition

(c) Max-average composition

Ri

R2

ESIRK

Y
0.3

0.1
zZi
0.9
0.1
0.6
0.1

Y2 3 M
0.1 0.6

low~

2 3
01 1

05 04
0.8 05
0 0

tow fuzzy sets using

A_

B

i %%
01 05 0.6

X2 04 08 03
Zi z2

L 04 08

¥2 06 05

B 1 08

9. Discuss the reflexivity property of the following fuzzy relation

1
0.4
0.7

0.7 03
05 08
05 1

69

10. For each of the following relation on single set state whether the relation
is reflexive, symmetric, and transitive

(a) “is a sibling of,”
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11.

12.

13.

14.

15.

16.

17.
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(b) “is a parent of,”

(c) “is a smarter than,”

(d) “is the same height as,”

(e) “is at least as tall as.”

State which of the following are equivalence relations and draw graph for
that equivalence relations with appropriate labels.

Set Relation on the set
(a) People is the brother of
(b) People has the same parent
(c) Points and map as is connected by a road to
(d) Lines in plane geometry is perpendicular to
(e) Positive integers 10m times mj some integer

Find whether the given matrix is reflexive or not

11001
1110 1
R 0010 0 by writing an M file.
010 10
0110 1

For the above given matrix in problem 12, check the symmetry and
transitivity property.
Find whether the given relation is a tolerance or not

11001
1110 1
R 0010 0 by writing an M -file.
010 10
0110 1

Find whether the given matrix is equivalence or not

1 08040506
05 1 040309
R 0.402 1 0404 by means ofaMatlab program.
050503 103
04090407 1

Implement neuro-fuzzy NAND using fuzzy propagation algorithm in
Matlab.
Find the fuzzy relation between two vectors R and S



3.5 Tolerance and Equivalence Relations

R =
0.60
0.81

S =
0.80
0.10

0.25
0.45

0.40
0.60

0.20
0.10

using max-product and max-min method by a Matlab program.
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Membership Functions

4.1 Introduction

Fuzziness in a fuzzy set is characterized by its membership functions. It classi-
fies the element in the set, whether it is discrete or continuous. The member-
ship functions can also be formed by graphical representations. The graphical
representations may include different shapes. There are certain restrictions
regarding the shapes used. The rules formed to represent the fuzziness in an
application are also fuzzy. The “shape” of the membership function is an im-
portant criterion that has to be considered. There are different methods to
form membership functions. This chapter discusses on the features and the
various methods of arriving membership functions.

4.2 Features of Membership Function

The feature of the membership function is defined by three properties. They
are:

(1) Core
(2) Support
(3) Boundary

The Fig. 4.1 shown below defines the properties listed above.
The membership can take value between 0 and 1L
(1) Core

If the region of universe is characterized by full membership (1) in the set
A then this gives the core of the membership function of fuzzy at A.

The elements, which have the membership function as 1, are the elements
of the core, i.e., here /nA (x) = 1.
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(2) Support
If the region of universe is characterized by nonzero membership in the set
A, this defines the support of a membership function for fuzzy set A-

The support has the elements whose membership is greater than O.
Ha (x) > 0.

(3) Boundary

If the region of universe has a nonzero membership but not full member-
ship, this defines the boundary of a membership; this defines the boundary of
a membership function for fuzzy set A:

The boundary has the elements whose membership is between 0 and 1,0 <

Ha (x) < 1

These are the standard regions defined in the membership functions.
Defining two important terms.

Crossover point
The crossover point of a membership function is the elements in universe
whose membership value is equal to 0.5, ha (x) = 0.5.

Height
The height of the fuzzy set A is the maximum value of the membership func-

tion,

max (ha (*)
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The membership functions can be symmetrical or asymmetrical. Membership
value is between 0 and 1.

4.3 Classification of Fuzzy Sets

The fuzzy sets can be classified based on the membership functions. They are:

Normal fuzzy set. If the membership function has at least one element in
the universe whose value is equal to 1, then that set is called as normal
fuzzy set.

Subnormal fuzzy set. If the membership function has the membership val-
ues less than 1, then that set is called as subnormal fuzzy set.

These two sets are shown in Fig. 4.2.

Convex fuzzy set. If the membership function has membership values those
are monotonically increasing, or, monotonically decreasing, or they are
monotonically increasing and decreasing with the increasing values for
elements in the universe, those fuzzy set A is called convex fuzzy set.

Nonconvex fuzzy set. If the membership function has membership values
which are not strictly monotonically increasing or monotonically decreas-
ing or both monotonically increasing and decreasing with increasing values
for elements in the universe, then this is called as nonconvex fuzzy set.
Figure 4.3 shows convex and nonconvex fuzzy set.

When intersection is performed on two convex fuzzy sets, the intersected
portion is also a convex fuzzy set.

This is shown in Fig. 4.4.

The shaded portions show that the intersected portion is also a convex
fuzzy set. The membership functions can have different shapes like triangle,
trapezoidal, Gaussian, etc.

Fig. 4.2. (1) Normal fuzzy set and (2) subnormal fuzzy set
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Fig. 4.3. (a) Convex set and (b) Nonconvex set

4.4 Fuzzification

Fuzzification is an important concept in the fuzzy logic theory. Fuzzification is
the process where the crisp quantities are converted to fuzzy (crisp to fuzzy).
By identifying some of the uncertainties present in the crisp values, we form
the fuzzy values. The conversion of fuzzy values is represented by the mem-
bership functions.

In any practical applications, in industries, etc., measurement of voltage,
current, temperature, etc., there might be a negligible error. This causes im-
precision in the data. This imprecision can be represented by the membership
functions. Hence fuzzification is performed.

Thus fuzzification process may involve assigning membership values for
the given crisp quantities.

4.5 Membership Value Assignments

There are various methods to assign the membership values or the membership
functions to fuzzy variables. The assignment can be just done by intuition or
by using some algorithms or logical procedures. The methods for assigning
the membership values are listed as follows:
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- Intuition,

- Inference,

- Rank ordering,

- Angular fuzzy sets,

- Neural networks,

- Genetic algorithms, and
- Inductive seasoning

All these methods are discussed in detail in the following sections.

4.5.1 Intuition

Intuition is based on the human’s own intelligence and understanding to de-
velop the membership functions. The thorough knowledge of the problem has
to be known, the knowledge regarding the linguistic variable should also be
known. Figure 4.5 shows membership function for imprecision in crisp tem-
perature reading.

For example, consider the speed of a dc-motor. The shape of the universe
of speed given in rpm is shown in Fig. 4.6.

The curves represent membership function corresponding to various fuzzy
variables. The range of speed is splitted into low, medium, and high. The

Fig. 4.5. Membership functions representing imprecision in crisp temperature
reading

Fig. 4.6. Membership for fuzzy variable “speed” in rpm
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curves differentiate the ranges, said by humans. The placement of curves is
approximate over the universe of discourse; the number of curves and the
overlapping of curves is an important criteria to be considered while defining
membership functions.

4.5.2 Inference

This method involves the knowledge to perform deductive reasoning. The
membership function is formed from the facts known and knowledge.

Let us use inference method for the identification of the triangle. Let U
be universe of triangles and A, B, and C be the inner angles of the triangles.
Also A > B > C > 0. Therefore the universe is given by:

u={AB,C)A>B>C>0,A+B+ C =180°}

There are various types of triangles, for identifying, we define three types
of triangles:
| Appropriate isosceles triangle

R Appropriate right triangle
O  Other triangles

The membership vales can be inferred to all of these triangle types through
the method of inference, as we know the knowledge about the geometry of the
triangles.

The membership for the approximate isosceles triangle, for the given con-
ditions A >B >C >0and A + B + C = 180° is given as,

hi (AiB,C)= 1—60j° min (A—B,B —C).
The membership for the appropriate right triangle, for the same conditions,
is
Hr {Ai B,C) = 1—90;° (A —90°).

The membership for the other triangles can be given as the complement
of the logical union of the two already defined membership functions

Ho (A,B,C)=1UR (or)

by using demorgans law, it is,

1 —hi (A,
ho{A,B,C)=Inr =mi® 1—hl (A 8,C)
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Example 4.1. Define the triangle for the figure shown in Fig. 4.7 with the
three given angles.

Solution.
The condition is

A>B>C>0 and A+ B + C = 180°.
Here
{U=A=85°>B=60°>C=235°>0,A+B+C = 180}.

The membership for the triangle shown in Fig. 4.7, for, each triangle types
are:

(1) MI (x) = 1————6(-)—omin@- B,B - C)7

=1 ~ggemin (35 —60°, 60 —35) 3
= 1—%0 min \(/25 , 25 )J
= 1—¢g0 X 25°
M (x) = 0.583,
=1—— (A—90°
(2) Mr () 90° g/ 90
1
= 1-— 85 —90
90° Q/ )J
=1——_ x5
90°

Mr (x) = 0.944,

(3) Mo(x) Min 1M+ (x), 1= Mr (X)
= min {1 —0.583,1 —0.944}
= min {0.417, 0.55}
Mo (X) = 0.055.
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Table 4.1. Pairwise preferences among five cars between 1000 people

Number who preferred
Palio Siena Astra Easter Baleno Total Percentage Rank order

Palio - 515 545 523 671 2,254 225 2
Siena 481 - 475 845 580 2,381 23.8 1
Astra 469 624 - 141 536 1,770 17.7 4
Easter 457 530 470 - 649 2,114 21.1 3
Baleno 265 425 402 389 - 1,481 14.8 5
Total 10,000

Hence there is highest membership for (x). Thus inference method can be

used to calculate the membership values.

4.5.3 Rank Ordering

The polling concept is used to assign membership values by rank ordering
process. Preferences are above for pairwise comparisons and from this the
ordering of the membership is done.

Example 4.2. Suppose 1,000 people responds to a questionnaire about the
pairwise preference among five cars, x —{Palio, Siena, Astra, Easter, Baleno}.
Define a fuzzy set as A on the universe of cars, “best cars”.

Solution.
The pairwise comparison is made among 1,000 people and their views are
summarized in Table 4.1.

From the table, it is clear that 515 preferred Siena compared to Palio,
545 Astra to Palio, etc. The table forms an antisymmetric matrix. There are
about ten comparisons made which gives a ground total of 10,000. Based on
preferences, the percentage is calculated. The ordering is then performed. It
is found that siena is selected as the best car.

Figure 4.8 shows the membership function for this example.

4.5.4 Angular Fuzzy Sets

The angular fuzzy sets are different from the standard fuzzy sets in their coor-
dinate description. These sets are defined on the universe of angles, hence are
repeating shapes every 2I1 cycles. Angular fuzzy sets are applied in quantita-
tive description of linguistic variables known truth-values. When membership
of value 1lis true and that of 0 is false, then in between ‘0’ and ‘1’ is partially
true or partially false.

The linguistic values are formed to vary with 9, the angle defined on the
unit circle and their membership values are on /i(ff). The membership of this
linguistic term can be obtained from
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Fig. 4.8. Membership for best car

Ht(9) = ttan 9,

where t is the horizontal projection of the radial vector and is given as cos 9,
i.e., t = cos 9. When the coordinates are in polar form, angular fuzzy sets can
be used.

Example 4.3. Consider a motor, which is used in computer peripheral appli-
cations. From the membership functions based on its rotation using angular
fuzzy sets.

Solution. The linguistic terms relating to the direction of motion of the motor
is given as

Fully anticlockwise (FA) - 9=1n1n/2
Partially anticlockwise (PA) - 9=1T1/4
No rotation (NR) - 9=0
Partially clockwise (PC) - 9= —f1/4
Fully clockwise (FC) - 9= —1/2

The angular fuzzy set for this is shown in Fig. 4.9.
The membership function is shown in Fig4.10.
The values for membership functions used in Fig. 4.9 is obtained as follows

Ht(Z) = Z tan 9,

where Z = cos 9.
Therefore, the angular fuzzy membership values are shown in Table 4.2.
Hence, angular fuzzy sets can be used to obtain fuzzy membership values.

455 Neural Networks

Neural networks are used to simulate the working network of the neurons
in the human brain. The concept of the human brain is used to perform
computation on computers.
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Li0)

Fig. 4.9. Angular fuzzy set

Fig. 4.10. Angular fuzzy membership function

Table 4.2. Angular fuzzy membership values

B TanB Z =cosB p,t(Z2) = (Ztans)
M/2(90°) 0 1

rn/a@4s°) 1 0.707 0.707

0 0 2 0

In this case, the fuzzy membership function may be created for fuzzy
classes of an input data set. The procedure is, the number of input data
values are selected. Then it is divided into training data set and testing data
set. The training data set may be used to train the network.

The generations of membership function from neural network are shown
in Fig. 4.11.
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Fig. 4.11. Generation of membership functions using neural network

Figure 4.11a shows the training data set. This is passed through a neural
network shown in Fig. 4.11b and this data points of Fig. 4.11a is divided into
three regions as R1,R'2, and R3 as in Fig. 4.11c. Depending upon the data
points, the regions are classified. If the data point is in region 1, then we
assign full membership in regions 1 and zero membership in regions 2 and 3.
Similarly if the data points are in regions 2 and 3, it will have full membership
in regions 2 and 3 and zero membership in regions 1 and 3, and regions 1 and
2, respectively.

The neural network is then created, from which the training is done be-
tween corresponding membership values in different classes, to simulate the
relationship between the coordinate locations and membership values. The
neural network uses the set of data value and membership values to train
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itself as shown in Fig. 4.11d. This training process is continued until the neural
network can simulate for the given entire set of input and output value.

After the net is trained, its performance can be checked by the testing
data. After full training and testing process is completed, the neural network
is ready and it can be used to determine the membership values of any input
data in the different regions. These are all shown in Fig. 4.11g-i.

The complete mapping of the membership of different data points in dif-
ferent fuzzy classes can be determined by using neural network approach.

4.5.6 Genetic Algorithm

Genetic algorithm (GA) uses the concept of Darwin’s theory of evolution.
Darwin’ theory is based on the rule, “survival of the fittest.” Darwin also
postulated that the new classes of living things came into existence through
the process of reproduction, crossover, and mutation among existing organ-
isms.

The steps involved in computing membership functions using GA are:

(1) For the given functional mapping of a system, some membership functions
and their shapes are assumed for various fuzzy variables to be defined.

(2) These membership functions are then coded as bit stings.

(3) These bit strings are then concatenated (joined).

(4) Similar to activation function in neural networks, GA has a fitness func-
tion.

(5) This fitness function is used to evaluate the fitness of each set of member-
ship functions.

(6) These membership functions are the parameters that define that func-
tional mapping of the system.

Thus, GA can be used to determine the membership functions.

4.5.7 Inductive Reasoning

The membership can also be generated by the characteristics of inductive
reasoning. The induction is performed by the entropy minimization princi-
ple, which clusters the parameters corresponding to the output classes. For
inductive reasoning method, there should be a well-defined database for the
input-output relationships. This method can be suited for complex systems
where the data are abundant and static. When the data’ are dynamic, this
method is not suited, since the membership functions continually change with
time.
There are three laws of induction (Christensen 1980).

(1) Given a set of irreducible outcomes of an experiment, the induced prob-
abilities are those probabilities consistent with all available information
that maximize the entropy of the set.
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(2) The induced probability of a set of independent observations is propor-
tional to the probability density of the induced probability of a single
observation.

(3) The induced rule is that of rule consistent with all available information
of which the entropy is minimum.

The third law stated here is the mostly used for membership function
development.

The steps involved in generating membership functions using inductive
reasoning are as follows:

(1) It is necessary to establish a fuzzy threshold between classes of data.

(2) First, determine the threshold line with an entropy minimization screening
method.

(3) After this, start the segmentation process.

(4) The segmentation, process, first results into two classes.

(5) Further partitioning the first two classes one more time, there is three
different classes.

(6) The partitioning is repeated with threshold value calculations, which lead
us to partition the data set into a number of classes or fuzzy sets.

(7) Then based on shape, membership function is determined.

Thus the generation of membership function is based on partitioning or
analog screening concept. This draws a threshold line between two classes of
sample data. The main concept behind drawing the threshold line is to classify
the samples when minimizing the entropy for optimum partitioning.

4.6 Solved Examples

Example 4.4. Using your own intuition and definitions of the universe of
discourse, plot fuzzy membership functions for “weight of people.”

Solution. The universe of discourse is the weight of people. Let the weights be
in “kg” - kilogram.
Let the linguistic variables are:

Very light - w<30
Light - 30 <w <45
Average - 45 <w < 60
Heavy - 60 <w <75
Very heavy - w>75

Representing this using triangular membership function, as shown in
Fig.4.12.

Example 4.5. Using your own intuition, plot the fuzzy membership function
for the age of people.
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0 30 45 60 75
Fig. 4.12. Membership function of weight of people

0 12 T525 3045 5060 65
Fig. 4.13. Membership function for age of profile

Solution.
The linguistic variables are defined as, let A denotes age in years.
(1) Very young (vy) - A<I15
(2) Young (y) 12<A <30
(3) Middle aged (m) - 25 <A <50
(4) Old (o) 45 < A <65
(5)  Very old (vo) 60 < A

This is represented using triangular membership, as shown in Fig. 4.13.

Example 4.6. Using the inference approach, find the membership values for
the triangular shapes (1 RO) for a triangle with angles as 45°, 75°, 60°.

Solution. Let U-universe of discourse is

{u:x=75°>y=60°>z=45°x+y+ z= 180°}.

(1) Calculating membership of isosceles triangle

MI (¢ = 1—0.25 = 0.75.
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(2) Calculating membership of right triangle

Mr (u) —1- 90° (A - 90°)

1 (75 - 90)
90°'v 7
1-0.166,

Mr (u) —0.833.

(3) Calculating membership of other triangle

Mo (u) 1- mi (u),1- mr (u)

—min {1l - 0.75,1 - 0.833}
—min {0.25, 0.167} ,
Mo (x) —0.167.

Thus the membership values are calculated

87

Example 4.7. The energy E of a particle spinning in a magnetic field B is

given by the equation
E —wmB sin B,

where M is magnetic moment of spinning particle and B is complement angle

of magnetic moment with respect to the direction of the magnetic field.

Assuming the magnetic field B and magnetic moment m to be constants,
the linguistic terms for the complement angle of magnetic moment are given

as:
High moment (H) B —I1/2
Slighly high moment (SH) B —I1/4
No moment (-) B8 —0
Slightly low moment (SL) B—-M/4
Low moment (L) B—-I/2

Find the membership values using the angular fuzzy set approach for these

linguistic labels and plot these values versus B.

Solution.

The linguistic variables are given by:
High moment (H) - B —I1/2
Slighly high moment (SH) - B —I1/4
No moment (-) - B —0
Slightly low moment (SL) - B—-I/4
Low moment (L) - B—-I/2

The angular fuzzy set is shown in Fig. 4.14.

Calculating the angular fuzzy membership values as shown in Table 4.3.

The plot for this calculated membership value is shown in Fig. 4.15.
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e=n/2

Table 4.3. Angular fuzzy membership values

B Tan B Z = cOosB Ht = (z tanB)
rn/2 a 0 1

n/a 1 0.707 0.707

0 0 1 0
-Nn/4 -1 0.707 +0.707
-NnJ/2 a 0 1

Fig. 4.15. Plot of membership function

Example 4.8. Use Matlab command line commands to display the Gaussian
membership function. Given x = 0-10 with increment of 0.1 and Gaussian

function is defined between 0.5 and —5.

Solution.

Step 1:First enter the x value
x = (0:0.1:10)7;
Step 2:enter gaussmembership function
>> yl = gaussmf(x, [0.5 5]);



4.6 Solved Examples 89

Step 3:plot the curve
>> plot(x, [y1])

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Gaussian membership function

Example 4.9. Use Matlab command line commands to display the triangu-
lar membership function. Given x = 0-10 with increment of 0.2 triangular
membership function is defined between [3 4 5]
Solution.
Step 1:First enter the x value

>> x = (0:0.2:10)%;

Step 2:enter triangular membership function

>> yl = trimf(x, [34 5]);

Step 3:plot the curve

>> plot(x,yl1)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

01 2 3 4 5 6 7 8 9 10
Triangular membership function

Example 4.10. Illlustrate different types of generalized bell membership func-
tions using Matlab program
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Solution.
The Matlab program for illustrating bell membership function is given by:

Program

% Illustration of different generalized bell MFs
X = (-10:0.4:10)’;

b=2c=0

mfl = gbell_mf(x, [2 b, c]);

mf2 = gbell_mf(x, B, b, c]);

mf3 = gbell_mf(x, [6, b, c]);

mf = [mfl mf2 mf3];

subplot(221); plot(x, mf); title(‘(@) Changing “a””);
axis([-inf inf 0 1.2]);

a=5c=0

mfl = gbell_mf(x, [a, 1, cl]);

mf2 = gbelLmf(x, [a, 2, c]);

mf3 = gbelLmf(x, [a, 4, c]);

mf = [mfl mf2 mf3];

subplot(222); plot(x, mf); title(‘(b) Changing “b™);
axis([-inf inf 0 1.2]);

a=5b=2

mfl = gbelLmf(x, [a b, -5]);

mf2 = gbell_mf(x, [a, b, 0]);

mf3 = gbell_mf(x, [a, b, 5]);

mf = [mfl mf2 mf3];

subplot(223); plot(x, mf); title(‘(c) Changing “c™”);
axis([-inf inf 0 1.2]);

c=0

mfl = gbelLmf(x, [4, 4, c]);

mf2 = gbelLmf(x, [6, 6, c]);

mf3 = gbell_mf(x, [8, 8, c]);

mf = [mfl mf2 mf3];

subplot(224); plot(x, mf); title(‘(d) Changing “a” and “b””);
axis([-inf inf 0 1.2]);

Output
The output membership functions for different values of a, b and c are shown
in Fig. 4.16.

Summary

This chapter has described the different methods of obtaining the membership
functions. The entire fuzzy system operation is based on the formation of the
membership functions. The sense of reasoning is very important in forming
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Fig. 4.16. Bell membership functions

the membership functions. The inference and the angular fuzzy sets are based
upon the angular features. In the case of neural networks and reasoning meth-
ods the memberships are tuned in a cyclic fashion and are associated with the
rule structure. In genetic algorithms, improvements have been made to achieve
the optimum solution. Thus by using any one of the method discussed earlier,
the membership function may be formed.

Review Questions

State the features of membership functions.

Define normal and subnormal fuzzy set.

What is a convex fuzzy set?

State the properties of a convex fuzzy set.

How is the crossover point and the height defined based on the membership
function?

Define fuzzy number.

Compare normal and convex fuzzy set.

Define fuzzification.

W hat are the various methods employed for the membership value assign-
ment?

abrwd PR

© o N>
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10.

11.

12.

13.

14.

15.

4 Membership Functions

Justify intuition is based on human reasoning. Give some suitable exam-
ples.

Discuss in detail on the inference method adopted for assigning member-
ship values. Give details on the concepts of triangle used.

How is the polling concept adopted in rank ordering method to define the
membership values?

Give details about the method of assigning membership values using an-
gular fuzzy set with example.

Explain the method of generating membership function by means of neural
networks and genetic algorithm.

How is membership value assigned based on inductive reasoning?

Exercise Problems

1. Using your own intuition, develop fuzzy membership functions for the

fuzzy number 3, using the following shapes: (a) right angle triangle,
(b) quadrilateral, (c) Gaussian function, (d) trapezoid, and (e) isosceles
triangle.

Using intuition, assign the membership functions for

(a) population of people, (b) employment strategy, and (c) usage of library.
Using the inference method, find the membership values of the triangular
shapes for each of the following triangles: (a) 60°, 40°, 80°, (b) 45°, 65°,
70°, and (c) 75°, 55°, 50°.

The following data were determined by the pairwise comparison of work
preferences of 100 people. When it was compared with Software (S), 69 of
persons polled preferred Hardware (H), 45 of them preferred Educational
(E), 55 of them preferred Business (B) and 25 preferred Textile (T). When
it was compared with hardware (H), the preferences was 58-S, 45-E, 60-B,
30-T. When it was compared with educational, 39-S, 56-H, 34-B, 25-T.
When it was compared business, the preferences was 52-S, 49-H, 38-E,
20-T. When it was compared with textile, the preferences was 69-S, 65-H,
44-E, 40-B. Using rank ordering, plot the membership function for the
“most preferred work.”

Using your own intuition, develop fuzzy membership functions on the real
line for the fuzzy number 4, using the following function shapes:

(1) Symmetric triangle

(2) Trapezoid

(3) Gaussian function

Using your own intuition, develop fuzzy number “approximately 4 or
approximately 8” using the following function shapes:

(1) Symmetric triangle

(2) Trapezoids

(3) Gaussian functions.
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10.

11.
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Using your own intuition and your own definition of the universe of dis-
course plot fuzzy membership functions to the following variables:
(1) Height of liquid in a tank

(@) WVery full

(b) Full

(c) Medium

(d) Small

o VEry small
(2) Race of people

(a) Very white

(b) White

(c) Moderate

(d) Black

(e) Very black
(3) Age of people

(@) Very young

(b) Young

(c) Middle ages

(d) old

(e) Very old
Using the Inference approach outlined in this chapter find the membership
values for each of the triangular shapes (I,R,IR, E, R) for each of the
following
(1) 80°, 75°, 25°,
(2) 60°, 75°, 45°,
(3) 50°, 75°, 55°, and
(4) 45°, 45°, 90°.
Develop membership function for trapezoidal similar to algorithm devel-
oped for triangle and the function should have two independent variables
hence it can be passed. For the shown in table, show the first iteration in
trying to compute the membership values for input variables x1,x2, and
x3 in the output regions R1and R2

xi X2 X3 R1 R2
10 05 23 10 0.0

(a) Use 3 x 3x 1 neural network,

(b) Use 3 x 3x 2 neural network.

For data shown in the following table (Table A) shows the first two itera-
tion using a genetic algorithm in trying to find the optimum membership
function (right triangular function S) for the input variable x and output
variable y in the rule table out.

The following raw data were determined in a pairwise comparison of new
scooter in a poll 100 people. When it was compare with Splender (S), 79
of house preferred TVS Suzuki (T) 59, preferred Hero Honda (H) and 88
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12.

13.

4 Membership Functions

Table A. data

X 0 0.3 0.6 10
y 1 0.74 0.53 0.35

Table B. rules

X L S Z- Zero
y z S L - Large
S - Small

preferred Enfield (E), and 67 preferred infinity (I) when (T) was compared
the preferences when (T) was compared, the preferences were 21-S, 23-H,
37-H, and 45-1 when H1 was compared the preferences were 15-S, 77-T,
35-E, 48-1 finally when an infinity was compared the preferences were 33-S,
55-T, 52-H, and 49-E. Using rank ordering, plot the membership function
for “most preferred bike.”

The energy E of a particle spinning is a magnetic field B is given by the
equation

E = jB sins,

where j is complement angle of magnetic moment with respect to direction
of the magnetic field.

Assuming the magnetic field B and magnetic moment j to be constant,
we propose/linguistic terms for the complement angle of magnetic moment
as follows:

High moment (H) B =T/4
Slightly high moment (SH) 8 = 3I/4
No moment B=10
Slightly low moment (SL) B = 3I/4
Low moment (L) B=1T1/4

Find the membership values using the angular fuzzy set approach for these
linguistic labels for the complement angles and plot these values versus B.
Use Matlab command line commands to display the triangular mem-
bership function. Given x = 0-20 with increment of 0.4 triangular
membership function is defined between [6 7 8].
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Defuzzification

5.1 Introduction

Defuzzification means the fuzzy to crisp conversions. The fuzzy results
generated cannot be used as such to the applications, hence it is necessary to
convert the fuzzy quantities into crisp quantities for further processing. This
can be achieved by using defuzzification process. The defuzzification has the
capability to reduce a fuzzy to a crisp single-valued quantity or as a set, or
converting to the form in which fuzzy quantity is present. Defuzzification can
also be called as “rounding off” method. Defuzzification reduces the collection
of membership function values in to a single sealer quantity. In this chapter
we will discuss on the various methods of obtaining the defuzzified values.

5.2 Lambda Cuts for Fuzzy Sets

Consider a fuzzy set A, then the lambda cut set can be denoted by An, where

Aranges between 0 and 1 (0 < A< 1).
The set An is going to be a crisp set. This crisp set is called the lambda
cut set of the fuzzy set A, where

i.e., the value of lambda cut set is x, when the membership value corresponding
to x is greater that or equal to the specified A This lambda cut set can also
be called as alpha cut set. The A cut set An does not have title underscore,
because it is derived from parent fuzzy set A. Since the lambda A ranges in
the interval [0, 1], the fuzzy set A can be transformed to infinite number of A
cut sets. ~
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Properties of Lambda Cut Sets:

There are four properties of the lambda cut sets, they are:
@ (n qun = Jln n bn

(2) (}ll'lg)n: Nnn Bn
?3) = (Nn) except for a value of A= 0.5

(4) For any A< a,where a varies between 0 and 1, it is true that, /la C /ln,
where the value of /10 will be the universe defined.

From the properties it is understood that the standard set of operations
or fuzzy sets is similar to the standard set operations on lambda cut sets.

5.3 Lambda Cuts for Fuzzy Relations

The lambda cut procedure for relations is similar to that for the lambda cut
sets. Considering a fuzzy relation R, in which some of the relational matrix

represents a fuzzy set. A fuzzy relation can be converted into a crisp relation
by depending the lambda cut relation of the fuzzy relation as:

Rn = {x,y/mr (x,y) > A}.
Properties of Lambda Cut Relations:

Lambda cut relations satisfy some of the properties similar to lambda cut
sets.

@ (R Uﬂ n= Rn UBn.
(2) (r Ns) = Rnnbn
() (r)n= .

(4) For A< a, where a between 0 and 1, then Ra C Rn.

5.4 Defuzzification Methods

Apart from the lambda cut sets and relations which convert fuzzy sets or
relations into crisp sets or relations, there are other various defuzzification
methods employed to convert the fuzzy quantities into crisp quantities. The
output of an entire fuzzy process can be union of two or more fuzzy mem-
bership functions. To explain this in detail, consider a fuzzy output, which
is formed by two parts, one part being triangular shape (Fig. 5.1a) and other
part being trapezoidal (Fig.5.1b). The union of these two forms (Fig. 5.1c)
the outer envelop of the two shapes.
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Fig. 5.1. Typical fuzzy output

Generally this can be given as:
n
Cn=YjCi=C.

There are seven methods used for defuzzifying the fuzzy output functions.
They are:

(1) Max-membership principle,

(2) Centroid method,

(3) Weighted average method,

(4) Mean-max membership,

(5) Centre of sums,

(6) Centre of largest area, and

(7) First of maxima or last of maxima

(1) Max-membership-principle
This method is given by the expression,

Me (-*) > Me(-) forall z e-.

This method is also referred as height method. This is shown in Fig. 5.2.
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Fig. 5.2. Max-membership method

Fig. 5.3. Centroid method

(2) Centroid method

This is the most widely used method. This can be called as center of gravity
or center of area method. It can be defined by the algebraic expression

Mc (—-dz
J Mc(-)dz "’

f is used for algebraic integration. Figure 5.3 represents this method graphi-
cally.

(3) Weighted average method

This method cannot be used for asymmetrical output membership functions,
can be used only for symmetrical output membership functions. Weighting
each membership function in the obtained output by its largest membership
value forms this method. The evaluation expression for this method is
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Fig. 5.4. Weighted average method

Fig. 5.5. Mean-max-membership

« E mc(z)z

E mc(z) ’

E is used for algebraic sum.

From Fig. 5.4
J* a (0.8) + b(0.6)

- 0.8+ 0.6

(4) Mean-max-membership
This method is related to max-membership principle, but the present of the
maximum membership need not be unique, i.e., the maximum membership
need not be a single point, it can be a range. This method is also called as
middle of maxima method the expression is given as

* a+ b

z _ 2 7
where a x b are the end point of the maximum membership range as shown
in Fig. 5.5.
(5) Centre of sums
It involves the algebraic sum of individual output fuzzy sets, say c\ and c2

instead of union. In this method, it is noted that the intersecting areas are
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(c)

Fig. 5.6. (a) First membership, (b) second membership, and (c) defuzzification
step

added twice. This method is similar to the weighted average method, but
in center of sums, the weights are the areas of the respective membership
functions whereas in the weighted average method, the weights are individual
membership values.

The defuzzified value z* is given as

2zE L i mck(-)dz

/2ZE Li MCK(-)a -

Figure 5.6 represents the center of sums method.

(6) Center of largest area

If the fuzzy set has two convex subregions, then the entire of gravity of the
convex subregion with the largest area can be used to calculate the defuzzifi-
cation value. The equation is given as

I Mem(-) -dz
z* =
I Mem(-) dz
where cm is the convex region with largest area. The value z* is same as the

value z* obtained by centroid method. This can be done even for non-convex
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regions. Figure 5.7 represents the center of largest area method.

(7) First of maxima or last of maxima

Here, the compute output of all individual output fuzzy sets ck is used to

determine the smallest value, with maximized membership degree in ck.
The evaluation expressions are ~
Let largest height in the union is represents by hgt (ck), then it is found

by: -
hgt{c/\k) = suEn ck (-).
First of maxima is found by
7* = |Z%f_\z Ez/nck(-) = hgt(?lk) I\
Fast of maxima is found by,

z* = sup<z Ez/nck = hgt ck
p =

The inf denotes infirm (greatest lower bound) and the sup denotes supremum
(least upper bound). This method is shown in Fig. 5.8.

5.5 Solved Examples

Example 5.1. Two fuzzy sets P and Q are defined on x as follows:

n(x\) Xi x2 X3 X4 X5
P 01 02 07 05 04

Q 0.9 0.6 0.3 0.2 0.8
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Find the following A cut sets

(@ (p) () (Qo.s (¢) (p Uq) (d) (pna]
\—/ 02 — V— —J05 V— —J04
(e) (a Up) (f) (p Up) .
V- — 08 V- 4502
Solution. Given
fo.1 10.2 0.7 10.5 10.4
R S« NN [ SO [, S—
e e - T PR
(0.9 . 0.6 , 0.3 , 0.2 0.8
SR R R < I VR
Finding
— f09 08 03 05 06
P—s5——1 1 R N
— Xi X2 X3 X4 X5
— f01 04 07 08 02
Q —<— +— + — + — + —
- i Xi X2 X3 X4 X5
. 1 1 1 1 1
a) (P — <L ] 3 3 3=
@ WO.z [Xi "X2 "X3 x4 X5
A £\ [ 0 1 1 1 0
— Ao ddeede
(b) (g)OB Xi X2 X3 X4 X5
09 06 07 05 08
c) PUQ —I— + — + — + — + —
—_ — Xl X2 X3 X4 X5
PuQ —sf--l-_--l L1 0,1
—J06 1 Xi X2 X3 X4 X5
fo9 08 07 05 06
d PUP —i— +— + — + — + —
—_ — Xl X2 X3 X4 X5
( —\ é 1 1 0 0 0
PUP 1 —<= & ! ! y -~
— — 08 Xi X2 X3 X4 X5



© (g >°
Xl
P MQ s 0
04 Xl
0.1
M (rnc)  xi
C I

08 07 05 06
1— + — + +
X2 X3 X4 X5
0 0 0
1 1 + +
X2 X3 X4 X5
02 03 05 04
— + +

— +
X2 X3 X4 X5
1 1 1

1 1 + +
X2 X3 X4 X5

Example 5.2. Given three fuzzy sets:

f09 05 02
A — + - 4+ -+
r LXI X2 X3
fo.2 10 038
B — + — + T+
r ix X2 X3
f0.1 07 05
Cc — e T
r L XI X2 X3
; B C
Find A0.6, B1.o, Co.3, '?‘02’ 28 a5
Solution.
1 g ) 0 . 0
(@) A0E — o Ity
b Bio 0 10 0
B BLO— 1 o x3 x4
cos 1 1 1
©C03— i 2 x3 x4
01 05 08 07
(d) A
XI X2 X3 X4
0 1 1 1
XI X2 X3 X4
0.8 00 0.2 0.6
B XI X2 X3 x4
1 0 0 09
XI X2 X3 X4
09 03 05 04
(M) C= XI X2 X3 X4
c 1 0 1 0
a5 XI X2 X3 X4

5.5 Solved Examples

0.3

X4
0.4

X4
0.6

X4

103

Example 5.3. The fuzzy sets A and B are defined as universe, x —{0,1, 2, 3},

with the following mem

bership fractions:
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nmn (x)

4x
B (x) x

Define the intervals along x-axis corresponding to the A cut sets for each
fuzzy set A and B for following values of A A= 0.2, 0.5,0.6.

Solution. X = {0 1.2 3}

X 0 1

nn~ (X) 2/x + 3 2/3 2/4 2/5 2/6
~Br (x) :4x/2(x + 5) 0 4/12 8/14 12/16
Therefore the values are:

X 0 1

nn”™ (x) 0.67 0.5 0.4 0.33
ne” (x) 0 0.33 0.57 0.75

(&) When A= 0.2
Aqg2 = {0,1, 2, 3},

Aqg2 = {1, 2, 3}.
(b) When A= 0.5
Ag5 = {0, 1},
Bag5 = {2, 3}.
(c) When A= 0.6
Aqb = {0},
Aqb = {3}.

Example 5.4. For the fuzzy relation

1 02 03
R = 05 09 06
04 08 0.7

or the following values

Solution. Given,

1 02 03
R = 05 09 06
04 08 0.7
(@) A= 0+,
1 1 1
RO+ = 1 1 1
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(b) A= 0.2,
1 1 1
Ro2 = 1 1 1
1 1 1
(c) A= 0.9,
1 0 O
Ra9 = 0O 1 0
0 0 O
(d) A= 0.5,
1 0 O
Ro5 = 1 1 1
o 1 1

Example 5.5. For the given fuzzy relation

02 05 047 1 09
03 05 06 1 0.8
04 06 04 05 03
0.9 1 03 03 0.2

find the cut A cut relation for the following values of A= 0.4,0.7, 0.8.

Solution. (&) A= 04,

001 1 1 1
001 1 1 1
RO4= 1 1 1 1 0
110 0 0
(b) A= 0.7,
00 0 1 1
00 0 1 1
RO7 000 0 O
110 0 0
© A= 08,
00 0 1 1
00 0 1 1
ROB= g o 0 0 o
1 1.0 0 0

Example 5.6. For the given membership function as shown in Fig. 5.9 deter-
mines the defuzzified output value by seven methods.

Solution. (a) Centroid method
An (0,0), (2- 0.7)
The straight line may be:
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e +x90-

Fig. 5.9. Membership function

Y- 0= — (x- 0),

y = 0.35x.
AL2:y = 0.7.

A 13 : not needed.
A1 :(2,0)(3,1),

1- 0,
y-0=3—2(x- 2),
y=x- 2
A2 Y= 1
A23:(4,1)(6,0),

y=-—(X- 4+ 1=-05x+ 3

Solving A 12 and A 21,
Y =07 y=x- 2
X - 2=0.7,
X = 2.7,
Y= 0.7.
2 27 3

Numerator = 0.35 z2dz + 0.7Kdz + (z2- 2z) dz

Jo J2 J27
p4 p6

+ / zdz+ |/ (-0.5z22+ 3z)dz
J3 Ja
10.98.
P2 p27 p3
0.35 z2dz + 0.7K dz + (z2- 2)dz
2 27

Denominator

p4 p6
+ dz + (-0.5z22+ 3z) dz
3 4

3.445.
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* Numerator 10.98
z = ) = 3.187.
Demoninator 3.445

(b) Weighted average method

* 2x07+4x1 3176

z = = 3.176.
1+0.7
(c) Mean-max method
25+ 35
- =3
" 2

(d) Center of saws method

* jO(1l x07x B3+ 2) x2+1 x1x (2+ 4) x 4)
’ fe (1 x07x (3B+2)+1x1x(@2+4) x4
f®(3.5+12) dz
fo (.75 + 3)dz

2.84.

(e) First of maximum

z* = 3.
(f) Last of maxima
z* = 4,

(g) Center of largest area

- x07x (2.7+ 0.7) = 1.19,

Area of |

Area of 11 X1x 2+ 3)x ~x0.7x 2255

Area of 11 is larger, So,

* /271 x 0.3 x 0.3x285dz+ fzs 1x 1x 3.5dz+ f4a 1 x 2x 1dz
f272 x 03 x03dz+ f81x 1dz+ f462 x 2 x 1dz

f370.12825dz + f33.5dz + f45dz
f870.045dz + f3ldz + f4dz
z* = 449

Example 5.7. Using Matlab program find the crisp lambda cut set relations
for A= 0.2, the fuzzy matrix is given by

0.2 07 038 1
1 09 05 01
0 038 1 06
0. 04 1 03
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Solution. The Matlab program is
Program

clear all

% Enter the matrix value
R=input(‘Enter the matrix value’)

% Enter the lambda value
lambda=input(‘enter the lambda value’)
[m,n]=size(R);

for i=1:m
for j=1:n
if(R(i,j)<lambda)
b(i.j)=0;
else
b(i.j)=1;
end
end
end

% output value
display(‘the crisp value is’)
display(b)

Output
Enter the matrix value
[0.2 0.7 0.8 1;1 0.9 0.5 0.1;0 0.8 10.6;0.2 0.4 10.3]
R =
0.2000 0.7000 0.8000 1.0000
1.0000 0.9000 0.5000 0.1000
0 0.8000 1.0000 0.6000
0.2000 0.4000 1.0000 0.3000
Enter the lambda value 0.2
lambda = 0.2000
The crisp value is
b =

e
e
R R O R

P O R

Summary

Defuzzification is thus a natural and necessary process. Because the output
to any practical system cannot be given using the linguistic variables like
“moderately high,” “medium,” “very positive,” etc., it has to be given only
in crisp quantities. These crisp quantities are thus obtained from the fuzzy
quantities using the various defuzzification methods discussed in this chapter.
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Review Questions

w N

N o gk

10.

11.

12.

13.

14.

Define defuzzification process.

What is the necessity to convert the fuzzy quantities into crisp quantities?
State the method lambda cuts employed for the conversion of the fuzzy
set into crisp.

Discuss in detail on the special properties of lambda cut sets.

How is lambda cut method employed for a fuzzy relation?

List some of the methods to perform defuzzification process.

How does the max-membership method convert the fuzzy quantity to crisp
gquantity?

Centroid method is very efficient method for defuzzification, Justify. Give
suitable example.

In what way does the weighted average method perform the defuzzification
process?

Explain about the mean-max-membership method for converting the
fuzzy quantity to crisp quantity. Give some details on the accuracy of
the output obtained.

Compare the methods center of sums and center of largest area with
necessary examples.

What is difference between first and last of maxima? Explain the process
of conversion in each case with example.

Compare and contrast the methods employed for defuzzification process
on the basis of accuracy and time consumption.

What are the four important criteria on which the defuzzification method
is defined?

Exercise Problems

1. Determine crisp A cut relation for A 0.2; for j 0,1,...,10 for the

2.

following fuzzy relation matrix R:

03 08 0.7 09

1 07 06 02
01 0.7 1 09
05 06 02 05

The fuzzy set A, B, C are all defined on the universe X = [0, 5] with the

following membership functions:

1
n () 1+ 5(x - 5)2
nB (x)
2x
Nc (X)

x + 5
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(@) Sketch the membership functions
(b) Define the intervals along »axis corresponding to the A cut sets for
each of the fuzzy sets A, B, C for the following values of A

A=02,A=04A=0J,A =009
3. Two fuzzy sets A and B both defined on x are as follows:

0.1 06 04 07 05 02
+ + + + +
X\ X2 x3 X4 x5 X6

08 06 03 02 06 0
+ + + + +

B X7 X2 w x4 X5 X6
Find
@ (A)gs
(b) B

V -/ 03

© (AUA

05
d) PAUB

04
(e) (An~-B

06
f (a nB

064

4. For fuzzy relation R find A cut relations for the following values of A

04 03 07 05
06 02 01 1
09 08 05 06
0.7 04 03 02

(@ A= 0+ () A= 04 (g A=03
(b) A=02 (d) A=07 (f) A=06

5. Show that any A cut relation of fuzzy tolerance relation results in a crisp
tolerance relation.
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Show that any A cut relation of a fuzzy equivalence relation results in a
crisp equivalence relation.
. For fuzzy relation A and E determine A cut relations for the following

values of A
(@ A=0+ (b). 05 (g A=09

0.8 1 05 03 01 0
02 03 05 07 01 02
01 02 04 08 07 01
02 01 04 07 07 03

08 07 04 01 0
06 05 03 02 01
09 06 07 04 03
02 04 05 09 06
01 04 03 06 09
0.1 0 1 08 07

. Determine the Acut sets for the six set operation for two fuzzy set R and
S using A= 0.2 and 0.8:

01 06 04 03 09
20 + 40 + 60 + 80+100
03 04 070402
20 + 40 + 60 80 100

A

B

For the fuzzy sets operation:

(& AuB (b)AMNMB (c)A (d)A/B (e) AUB (f) AnB

. By using centroid method of defuzzification convert fuzzy value z to pre-
cise value z* for the following graph.
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9. Find the defuzzified value by weighted average method shown in figure.

10. Find the defuzzified values using (a) center of sums methods and (b) center
of largest area for the figure shown.

11. Find the defuzzified values for the figure shown above using first of maxima
and last of maxima.

12. Two companies bid for a contract. The fuzzy set of two companies B\ and

B2 is shown in the following figure. Find the defuzzified value z* using
different methods.

13. Using Matlab program find the crisp lambda cut set relations for A= 0.4,
the fuzzy matrix is given by:

'03 02 08 O

= 1 01 05 01

R = 0 08 1 0.5
07 06 1 0.3
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Fuzzy Rule-Based System

6.1 Introduction

Rules form the basis for the fuzzy logic to obtain the fuzzy output. The rule-
based system is different from the expert system in the manner that the rules
comprising the rule-based system originates from sources other than that of
human experts and hence are different from expert systems. The rule-based
form uses linguistic variables as its antecedents and consequents. The an-
tecedents express an inference or the inequality, which should be satisfied.
The consequents are those, which we can infer, and is the output if the an-
tecedent inequality is satisfied. The fuzzy rule-based system uses IF-THEN
rule-based system, given by, IF antecedent, THEN consequent. The formation
of the fuzzy rules is discussed in this chapter.

6.2 Formation of Rules

The formation of rules is in general the canonical rule formation. For any
linguistic variable, there are three general forms in which the canonical rules
can be formed. They are:

(1) Assignment statements
(2) Conditional statements
(3) Unconditional statements

(1) Assignment statements

These statements are those in which the variable is assignment with the value.
The variable and the value assigned are combined by the assignment operator
“=."” The assignment statements are necessary in forming fuzzy rules. The
value to be assigned may be a linguistic term.
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The examples of this type of statements are:

Y = low,
Sky color = blue,

Climate = hot
a=>5
p=q+r

Temperature = high

The assignment statement is found to restrict the value of a variable to a
specific equality.

(2) Conditional statements

In this statements, some specific conditions are mentioned, if the conditions
are satisfied then it enters the following statements, called as restrictions.

If x = y Then both are equal,
If Mark > 50 Then pass,
If Speed > 1,500 Then stop.

These statements can be said as fuzzy conditional statements, such as
If condition C' Then restriction F’

(3) Unconditional statements

There is no specific condition that has to be satisfied in this form of statements.
Some of the unconditional statements are:

Go to F/o
Push the value
Stop

The control may be transferred without any appropriate conditions. The
unconditional restrictions in the fuzzy form can be:

R1 : Output is B1
AND
R2 : Output is B2
AND
.., etc

where B 1 and B2 are Fuzzy consequents.
Both conditional and unconditional statements place restrictions on the
consequent of the rule-based process because of certain conditions. The fuzzy
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Table 6.1. Canonical form - Fuzzy rule-based system

Rule 1 IF condition C1 THEN restriction R1
Rule 2 IF condition C2 THEN restriction R2

Rule n: IF condition Cn THEN restriction Rn

sets and relations model the restrictions. The linguistic connections like “and,”
“or,” “else” connects the conditional, unconditional, and restriction state-
ments. the consequent of rules or output is denoted by the restrictions R1,
oz .. N

The rule-based system with a set of conditional rules (canonical form of
rules) is shown in Table 6.1.

6.3 Decomposition of Rules

There might be a compound rule structure involved in many applications. An
example for a compound rule structure is

IF x = y THEN both are equal

ELSE

IFx =y
THEN

IF x >y THEN X is highest
ELSE

IFy > x THEN Y is highest
ELSE

IF x and y are equal to zero THEN no output is obtained.
By the properties and operations defined on fuzzy sets in Chap. 2, any com-
pound rule structure can be decomposed and reduced to number of simple
canonical rules. There are various methods for decomposition of rules. They
are:

(1) Multiple conjunction antecedents

This uses fuzzy intersection operation. Since it involves linguistic “AND” con-
nective

IF X isP1AND P2ee AND Pn THEN y is Qr,

where
Pr=P1AND P2ee OR Pn.

The membership for this can be

Upr (xX) = min fipi (x),fip2 (X),..., Apn (X)
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Hence the rule can be
IF xis Pr THEN Qr.

(2) Multiple disjunctive antecedents

This uses fuzzy union operations. It involves linguistic “OR” connections
IF >kisP1OR P2e= OR Pn THEN y is Qr,
where

Pr=P1OR P2e= OR Pn

= P1lUP2ee=sUPn.

The membership for this can be

Upr (K) = max Up1(k),Up20K) ,..., Upn (K

Hence the rule can be
IF >xis Pr THEN y is Qr.

(3) Conditional statements with ELSE

(& IFP1THEN Q1 ELSE Q2 .

Considering this as one compound statement, splitting this into two canon-
ical form rules, we get

IF P1 THEN Q1O0OR IF NOT P1 THEN Q2.

(b) IFP1THEN Q1ELSE P2 THEN Q2
\ N
The decomposition for this can be of the form

IF P1 THEN Q10R

IF NOT P1 AND P2 THEN Q2.
(4) Nested IF-THEN rules

IFP1THEN ~F P2 THEN (Q2n.

This can be decomposed into
IFP1AND P2THEN Q1.

Thus the compound rules are decomposed into single canonical rules. Then
this rules may be reduced to a series of relations.
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6.4 Aggregation of Fuzzy Rules

The fuzzy rule-based system may involve more than one rule. The process of
obtaining the overall conclusion from the individually mentioned consequents
contributed by each rule in the fuzzy rule this is known as aggregation of rule.
There are two methods for determining the aggregation of rules:

(1) Conjunctive system of rules

The rules that are connected by “AND” connectives satisfy the connective
system of rules. In this case, the aggregated output may be found by the
fuzzy intersection of all individual rule consequents,

y = Y1 AND y2 and === AND yr
(or) y = y1y2/1— Nyr.
Then the membership friction is defined as

Hy (y) = min (Vy1 (y) ,Hy2 (y) ,===,%yn (y)J  foryey.

(2) Disjunctive system of rules

The rules that are connected by “OR” connectives satisfies the disjunctive
system of rules. In this case, the aggregated output may be found by the
fuzzy union of all individual rule consequents

y = Y10OR y2 OR <=+ OR yr

(or)

y = ylUy2U”U yr.

Then the membership function is defined as

Hy (y) = min (Hy1 (y) ,Hy2 (y) ;=== Hyn (y) I foryey.

6.5 Properties of Set of Rules

The properties for the sets of rules are

- Completeness,
- Consistency,

- Continuity, and
- Interaction.

(a) Completeness

A set of IF-THEN rules is complete if any combination of input values result
in an appropriate output value.

(b) Consistency

A set of IF-THEN rules is inconsistent if there are two rules with the same
rules-antecedent but different rule-consequents.
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(c) Continuity

A set of IF-THEN rules is continuous if it does not have neighboring rules
with output fuzzy sets that have empty intersection.

(d) Interaction

In the interaction property, suppose that is a rule, “IF x isA THEN y is B,”
this meaning is represented by a fuzzy relation R2, then the composition of
A and R does not deliver B

A o R=B.

These are the properties of the fuzzy set of rules

6.6 Fuzzy Inference System

Fuzzy inference systems (FISs) are also known as fuzzy rule-based systems,
fuzzy model, fuzzy expert system, and fuzzy associative memory. This is a ma-
jor unit of a fuzzy logic system. The decision-making is an important part in
the entire system. The FIS formulates suitable rules and based upon the rules
the decision is made. This is mainly based on the concepts of the fuzzy set the-
ory, fuzzy IF-THEN rules, and fuzzy reasoning. FIS uses “IF... THEN...”
statements, and the connectors present in the rule statement are “OR” or
“AND” to make the necessary decision rules. The basic FIS can take either
fuzzy inputs or crisp inputs, but the outputs it produces are almost always
fuzzy sets. When the FIS is used as a controller, it is necessary to have a crisp
output. Therefore in this case defuzzification method is adopted to best ex-
tract a crisp value that best represents a fuzzy set. The whole FIS is discussed
in detail in the following subsections.

6.6.1 Construction and Working of Inference System

Fuzzy inference system consists of a fuzzification interface, a rule base, a
database, a decision-making unit, and finally a defuzzification interface. A FIS
with five functional block described in Fig. 6.1. The function of each block is
as follows:

- a rule base containing a number of fuzzy IF-THEN rules;

- a database which defines the membership functions of the fuzzy sets used
in the fuzzy rules;

- a decision-making unit which performs the inference operations on the
rules;

- afuzzification interface which transforms the crisp inputs into degrees of
match with linguistic values; and

- a defuzzification interface which transforms the fuzzy results of the infer-
ence into a crisp output.
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Fig. 6.1. Fuzzy inference system

The working of FIS is as follows. The crisp input is converted in to fuzzy
by using fuzzification method. After fuzzification the rule base is formed.
The rule base and the database are jointly referred to as the knowledge base.
Defuzzification is used to convert fuzzy value to the real world value which is
the output.

The steps of fuzzy reasoning (inference operations upon fuzzy IF-THEN
rules) performed by FISs are:

1. Compare the input variables with the membership functions on the an-
tecedent part to obtain the membership values of each linguistic label.
(this step is often called fuzzification.)

2. Combine (through a specific t-norm operator, usually multiplication or
min) the membership values on the premise part to get firing strength
(weight) of each rule.

3. Generate the qualified consequents (either fuzzy or crisp) or each rule
depending on the firing strength.

4. Aggregate the qualified consequents to produce a crisp output. (This step
is called defuzzification.)

6.6.2 Fuzzy Inference Methods

The most important two types of fuzzy inference method are Mamdani’s fuzzy
inference method, which is the most commonly seen inference method. This
method was introduced by Mamdani and Assilian (1975). Another well-known
inference method is the so-called Sugeno or Takagi-Sugeno-Kang method
of fuzzy inference process. This method was introduced by Sugeno (1985).
This method is also called as TS method. The main difference between the
two methods lies in the consequent of fuzzy rules. Mamdani fuzzy systems
use fuzzy sets as rule consequent whereas TS fuzzy systems employ lin-
ear functions of input variables as rule consequent. All the existing results
on fuzzy systems as universal approximators deal with Mamdani fuzzy sys-
tems only and no result is available for TS fuzzy systems with linear rule
consequent.
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6.6.3 Mamdani's Fuzzy Inference Method

Mamdani’s fuzzy inference method is the most commonly seen fuzzy method-
ology. Mamdani's method was among the first control systems built using
fuzzy set theory. It was proposed by Mamdani (1975) as an attempt to con-
trol a steam engine and boiler combination by synthesizing a set of linguistic
control rules obtained from experienced human operators. Mamdani’s effort
was based on Zadeh’s (1973) paper on fuzzy algorithms for complex systems
and decision processes.

Mamdani type inference, as defined it for the Fuzzy Logic Toolbox, ex-
pects the output membership functions to be fuzzy sets. After the aggregation
process, there is a fuzzy set for each output variable that needs defuzzifica-
tion. It is possible, and in many cases much more efficient, to use a single
spike as the output membership function rather than a distributed fuzzy set.
This is sometimes known as a singleton output membership function, and it
can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency of
the defuzzification process because it greatly simplifies the computation re-
quired by the more general Mamdani method, which finds the centroid of a
two-dimensional function. Rather than integrating across the two-dimensional
function to find the centroid, the weighted average of a few data points. Sugeno
type systems support this type of model. In general, Sugeno type systems can
be used to model any inference system in which the output membership func-
tions are either linear or constant.

An example of a Mamdani inference system is shown in Fig. 6.2. To com-
pute the output of this FIS given the inputs, six steps has to be followed:

Input Output
Distributions Distribution

Yo —_

Fig. 6.2. A two input, two rule Mamdani FIS with crisp inputs
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1. Determining a set of fuzzy rules

Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules to establish a
rule strength

4. Finding the consequence of the rule by combining the rule strength and
the output membership function

5. Combining the consequences to get an output distribution

6. Defuzzifying the output distribution (this step is only if a crisp output
(class) is needed).

N

The following is a more detailed description of this process

Creating Fuzzy Rules

Fuzzy rules are a collection of linguistic statements that describe how the FIS
should make a decision regarding classifying an input or controling an output.
Fuzzy rules are always written in the following form:

if (input 1 is membership function 1) and/or (input 2 is membership
function 2) and/or.. .then (outputn is output membership functionn).

For example:

if temperature is high and humidity is high then room is hot.

There would have to be membership functions that define high temper-
ature (input 1), high humidity (input 2), and a hot room (output 1). This
process of taking an input such as temperature and processing it through a
membership function to determine “high” temperature is called fuzzification
and is discussed in section, “Fuzzification.” Also, “AND”/ “OR” in the fuzzy
rule should be defined. This is called fuzzy combination and is discussed in
following section.

Fuzzification

The purpose of fuzzification is to map the inputs from a set of sensors (or
features of those sensors such as amplitude or spectrum) to values from 0 to 1
using a set of input membership functions. In the example shown in Fig. 6.2,
there are two inputs, xo and yo shown at the lower left corner. These inputs
are mapped into fuzzy numbers by drawing a line up from the inputs to the
input membership functions above and marking the intersection point.

These input membership functions, as discussed previously, can represent
fuzzy concepts such as “large” or “small,” “old” or “young,” “hot” or “cold,”
etc. For example, xo could be the EMG energy coming from the front of
the forearm and yo could be the EMG energy coming from the back of the
forearm. The membership functions could then represent large amounts of
tension coming from a muscle or small amounts of tension. When choosing
the input membership functions, the definition of large and small may be
different for each input.
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Consequence

The consequence of a fuzzy rule is computed using two steps:

1. Computing the rule strength by combining the fuzzified inputs using the
fuzzy combination process discussed in previous section. This is shown
in Fig. 6.2. In this example, the fuzzy “AND” is used to combine the
membership functions to compute the rule strength.

2. Clipping the output membership function at the rule strength.

Combining Outputs into an Output Distribution

The outputs of all of the fuzzy rules must now be combined to obtain one
fuzzy output distribution. This is usually, but not always, done by using the
fuzzy “OR.” Figure 6.2 shows an example of this. The output membership
functions on the right-hand side of the figure are combined using the fuzzy
OR to obtain the output distribution shown on the lower right corner of the
Fig. 6.2.

Defuzzification of Output Distribution

In many instances, it is desired to come up with a single crisp output from an
FIS. For example, if one was trying to classify a letter drawn by hand on a
drawing tablet, ultimately the FIS would have to come up with a crisp number
to tell the computer which letter was drawn. This crisp number is obtained
in a process known as defuzzification. There are two common techniques for
defuzzifying:

1. Center of mass. This technique takes the output distribution and finds its
center of mass to come up with one crisp number. This is computed as
follows:

7= £zl Zjue(zj)
T£1=1uc(Zj)

where z is the center of mass and uc is the membership in class c at value
Zj. An example outcome of this computation is shown in Fig. 6.3.

2. Mean of maximum. This technique takes the output distribution and finds
its mean of maxima to come up with one crisp number. This is computed
as follows:

where z is the mean of maximum, Zj is the point at which the membership
function is maximum, and | is the number of times the output distribution
reaches the maximum level. An example outcome of this computation is
shown in Fig. 6.4.
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Output
Distribution

*m

Fig. 6.3. Defuzzification using the center of mass

Output
Distribution

Fig. 6.4. Defuzzification using the mean of maximum

Fuzzy Inputs

In summary, Fig. 6.5 shows a two input Mamdani FIS with two rules. It fuzzi-
fies the two inputs by finding the intersection of the crisp input value with
the input membership function. It uses the minimum operator to compute the
fuzzy AND for combining the two fuzzified inputs to obtain a rule strength.
It clips the output membership function at the rule strength. Finally, it uses
the maximum operator to compute the fuzzy OR for combining the outputs
of the two rules.

6.6.4 Takagi—Sugeno Fuzzy Method (TS Method)

In this section, the basic of Sugeno fuzzy model which is implemented into
the neural-fuzzy system. The Sugeno fuzzy model was proposed by Takagi,
Sugeno, and Kang in an effort to formalize a system approach to generating
fuzzy rules from an input-output data set. Sugeno fuzzy model is also know
as Sugeno-Takagi model. A typical fuzzy rule in a Sugeno fuzzy model has
the format

IF xisA andy is B THEN z = f (x,y),

where AB are fuzzy sets in the antecedent; Z = f (x,y) is a crisp function in
the consequent. Usually f (x, y) is a polynomial in the input variables x and vy,
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Input Output
Distribution Distribution

0 /\Yyo

z

Fig. 6.5. A two input, two rule Mamdani FIS with a fuzzy input

but it can be any other functions that can appropriately describe the output
of the output of the system within the fuzzy region specified by the antecedent
of the rule. When f (x,y) is a first-order polynomial, we have the first-order
Sugeno fuzzy model. When f is a constant, we then have the zero-order Sugeno
fuzzy model, which can be viewed either as a special case of the Mamdani FIS
where each rule’s consequent is specified by a fuzzy singleton, or a special
case of Tsukamoto’s fuzzy model where each rule’s consequent is specified by
a membership function of a step function centered at the constant. Moreover,
a zero-order Sugeno fuzzy model is functionally equivalent to a radial basis
function network under certain minor constraints.

The first two parts of the fuzzy inference process, fuzzifying the inputs
and applying the fuzzy operator, are exactly the same. The main difference
between Mamdani and Sugeno is that the Sugeno output membership func-
tions are either linear or constant. A typical rule in a Sugeno fuzzy model has
the form

IF Input 1= x AND Input 2=y, THEN Output is z = ax + by + c.

For a zero-order Sugeno model, the output level zis a constant (a = b =
0).The output level 2* of each rule is weighted by the firing strength wi of the
rule. For example, for an AND rule with Input 1 = x and Input 2 = vy, the
firing strength is

wi = AndMethod(f\(x), F2(y)),
where F1j2(-) are the membership functions for Inputs 1 and 2. The final
output of the system is the weighted average of all rule outputs, computed as
v-vN

BYnal output = Z-i=twizi
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Fuzzy tipping model

A Sugeno rule operates as shown in Fig. 6.6.
Figure 6.7 shows the fuzzy tipping model developed in previous sections of
this manual adapted for use as a Sugeno system. Fortunately, it is frequently
the case that singleton output functions are completely sufficient for the needs
of a given problem. As an example, the system tippersg.fis is the Sugeno type
representation of the now-familiar tipping model (Fig. 6.7).

- a = readfis(‘tippersg’);
gensurf(a)

125

4. Aggregation

5. Defuzzify
(weighted
average)

The above command gives the surface view of fuzzy tipping model as
shown in Fig. 6.8. The easiest way to visualize first-order Sugeno systems is
to think of each rule as defining the location of a “moving singleton.” That is,
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the singleton output spikes can move around in a linear fashion in the output
space, depending on what the input is. This also tends to make the system
notation very compact and efficient. Higher-order Sugeno fuzzy models are
possible, but they introduce significant complexity with little obvious merit.
Sugeno fuzzy models whose output membership functions are greater than
first-order are not supported by the Fuzzy Logic Toolbox.

Because of the linear dependence of each rule on the input variables of a
system, the Sugeno method is ideal for acting as an interpolating supervisor
of multiple linear controllers that are to be applied, respectively, to differ-
ent operating conditions of a dynamic nonlinear system. For example, the
performance of an aircraft may change dramatically with altitude and Mach
number. Linear controllers, though easy to compute and well suited to any
given flight condition, must be updated regularly and smoothly to keep up
with the changing state of the flight vehicle. A Sugeno FIS is extremely well
suited to the task of smoothly interpolating the linear gains that would be
applied across the input space; it is a natural and efficient gain scheduler.
Similarly, a Sugeno system is suited for modeling nonlinear systems by inter-
polating between multiple linear models.

Because it is a more compact and computationally efficient representation
than a Mamdani system, the Sugeno system lends itself to the use of adaptive
techniques for constructing fuzzy models. These adaptive techniques can be
used to customize the membership functions so that the fuzzy system best
models the data.

6.6.5 Comparison Between Sugeno and Mamdani Method

The main difference between Mamdani and Sugeno is that the Sugeno out-
put membership functions are either linear or constant. Also the difference
lies in the consequents of their fuzzy rules, and thus their aggregation and
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defuzzification procedures differ suitably. The number of the input fuzzy sets
and fuzzy rules needed by the Sugeno fuzzy systems depend on the number
and locations of the extrema of the function to be approximated. In Sugeno
method a large number of fuzzy rules must be employed to approximate pe-
riodic or highly oscillatory functions. The minimal configuration of the TS
fuzzy systems can be reduced and becomes smaller than that of the Mamdani
fuzzy systems if nontrapezoidal or nontriangular input fuzzy sets are used.
Sugeno controllers usually have far more adjustable parameters in the rule
consequent and the number of the parameters grows exponentially with the
increase of the number of input variables. Far fewer mathematical results exist
for TS fuzzy controllers than do for Mamdani fuzzy controllers, notably those
on TS fuzzy control system stability. Mamdani is easy to form compared to
Sugeno method.

6.6.6 Advantages of Sugeno and Mamdani Method
Advantages of the Sugeno Method

- It is computationally efficient.

- It works well with linear techniques (e.g., PID control).
- It works well with optimization and adaptive techniques.
- It has guaranteed continuity of the output surface.

- It is well suited to mathematical analysis.

Advantages of the Mamdani Method

- It is intuitive.
- It has widespread acceptance.
- It is well suited to human input.

Fuzzy inference system is the most important modeling tool based on fuzzy
set theory. The FISs are built by domain experts and are used in automatic
control, decision analysis, and various other expert systems.

6.7 Solved Examples

Example 6.1. Temperature control of the reactor where the error and change
in error is given to the controller. Here the temperature of the reactor is
controlled by the temperature bath around the reactor thus the temperature
is controlled by controlling the flow of the coolant into the reactor. Form the
membership function and the rule base using FIS editor.

Solution. In the FIS editor (choose either Mamdani or Sugeno model), we
choose triangular membership function, and we can set the linguistic variables.
The connective rules are formed and based on these rules the fuzzy associative
memory table is formed.
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Membership Function for error is

input variable "error"
Membership Function for change in error is

input variable "errorchange”

Membership Function for valve position is

output variable "Coolant value"

Rule base for the above is

e Sc

NL NS NE
PL ZE PS PL
PS NS ZE PS
ZE NL NS ZE
NS NL NL NS

NL NL NL NL

PS
PL
PL
PS
ZE
NS

PL
PL
PL
PL
PS
ZE
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Example 6.2. Consider the water tank with following rules

1. IF (level is okay) THEN (valve is no_change) (1)
2. IF (level is low) THEN (valve is open_fast) (1)
3. IF (level is high) THEN (valve is close_fast) (1)

Using Mamdani method and max-min method for fuzzification and method of
centroid for defuzzification method construct a FIS. Before editing that rules,
membership functions must be defined with membership function editor.

Solution. The following step should be followed for constructing the FIS.

Step 1: Open the FIS editor and edit the membership function for the input
and output as shown in the figure. Select the Mamdani or Sugeno
method, fuzzification method, and defuzzification method.

Step 2: Click the input variable and edit the membership function as shown
below.
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Step 3: Click the output variable and edit the member ship function as
shown below.

Step 4: Edit the rule base by clicking the rule base from view menu.
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Step 5: To view the rule viewer go to the view and click rule viewer.

Step 6: To view the surface viewer go to the view and click surface viewer.
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Step 7: Save the file to the workspace as tanklevel and go to the command
window and enter the command tanklevel.

>> tanklevel
tanklevel =
name: ‘tanklevel’
type: ‘mamdani’
andMethod: ‘min’
orMethod: ‘max’
defuzzMethod: ‘centroid’
impMethod: ‘min’
aggMethod: ‘max’
input: [1x1 struct]
output: [1x1 struct]
rule: [1x3 struct]

Thus an FIS editor is formed for a tanklevel controller.

Example 6.3. Lety = -2x + X2.

(@) Form a fuzzy system, which approximates function f , when x G [-10,10].
Repeat the same by adding random, normally distributed noise with zero
mean and unit variance.
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(b) Simulate the output when the input is sin(t). Observe what happens to
the signal shape at the output.

Solution.

Method 1
This is achieved by writing a Matlab program
Program

% Generate input-output data and plot it

x=[-10:.5:10]"; y=-2*X-X.*X;

% Plot of parabola

plot(x,y)

grid

xlabel(‘x’);ylabel(‘output’);title(‘Nonlinear characteristics’)

% Store data in appropriate form for genfisl and anfis and plot it

data=[x y];

trndata=data(1:2:size(x),:);

chkdata=data(2:2:size(x),:);

% Plot of training and checking data generated from parabolic equation

plot(trndata(:,1),trndata(:,2),'0o’,chkdata(:,1),chkdata(:,2),’x")

xlabel(‘x’);ylabel(‘output’);title(‘Measurement data’); grid

%lnitialize the fuzzy system with command genfisl. Use 5 bellshaped
membership functions.

nu=5; mftype=‘gbellmf’; fismat=genfisl(trndata, nu, mftype);

%The initial membership functions produced by genfisl are plotted

plotmf(fismat,‘input’,1)

xlabel(‘x");ylabel(‘output’);title(‘Initial membership functions’);

grid

% Apply anfis-command to find the best FIS system - max number of

iterations = 100

numep=100;

[parab, trnerr,ss,parabcheck,chkerr]=anfis(trndata,fismat,numep,[],chkdata);

%Evaluate the output of FIS system using input x

anfi=evalfis(x,parab);

% Plot of trained fuzzy system using trained data

plot(trndata(:,1),trndata(:,2),'0o’,chkdata(:,1),chkdata(:,2),'x’,x,anfi,’-")

grid

xlabel(‘x’);ylabel(‘output’);title(Goodness of fit’)

Output

iterations = 100

ANFIS info:
Number of nodes: 24
Number of linear parameters: 10
Number of nonlinear parameters: 15
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Total number of parameters: 25
Number of training data pairs: 21
Number of checking data pairs: 20
Number of fuzzy rules: 5

Start training ANFIS.

1 1.11035 1.11725

2 1.1055 1.11205

3 1.10065 1.10685

4 1.09578 1.10165

5 1.09091 1.09644
Step size increases to 0.011000
6 1.08602 1.09123

7 1.08063 1.08548

8 1.07523 1.07974

9 1.06982 1.07399
Step size increases to 0.012100 after epoch 9.
10 1.0644 1.06823

11 1.05842 1.06189

12 1.05242 1.05555

13 1.04642 1.0492

Step size increases to 0.013310

86  0.021108 0.0264632

87 0.0107584 0.0173793

88  0.0173351 0.0221364

89  0.00977897 0.0162064

90 0.0165189 0.0217102

91  0.00934733 0.0162595

Step size decreases to 0.066602 after epoch 91.
92  0.0160967 0.0218316

93  0.00734716 0.0157201

94  0.0155897 0.0219794

95  0.00732559 0.016182

Step size decreases to 0.059942 after epoch 95.
9%  0.015227 0.0222669

97  0.0061041 0.0163292

98  0.0147314 0.022553

99  0.00645142 0.0170149

Step size decreases to 0.053948 after epoch 99.
100  0.0144049 0.0229312
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Designated epoch number reached -> ANFIS training completed at epoch
100.
The respective plots obtained are:

Nonlinear characteristics

Plot of parabola

Training and checking data
20

-20

o -60
K
-80 ~ 4K
-100

-120

X
Training data (o) and checking data (x) generated from the parabolic equation
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Initial membership functions

X
Initial fuzzy system (fismat) for anfis

Goodness of fit

Fitting the trained fuzzy system on training data
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Method 2

Using a fuzzy logic toolbox graphical user interface (GUI) can perform the
same problem.

Open fuzzy toolbox GUI, choose new sugeno system

Generate a new Sugeno type fuzzy system.

I i FIS Editor: Urvtitled2 M S B
File Ed* View

Unttled2
(sugeno)
inputl otfpctl
FIS Name: UntiUed2 FIS Type: sugeno
And method pod X Curent Variable
Or method pobor 5 Name .
Implication T>pe input
Range [01]
Aggregabon
Delusaficatbn vrtaver A H*b 1 Clot®© 1

Ready
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Display a new Sugeno type system.

Generating anfis display.



Anfis editor display.

Load training data.

LUA@ifi tditor: Unti'ledi

file  £dii itfew

Training Data (000)

50
0 /1000000,
0
=100
*1S0
10 15
Load data Gereiae FIS
Type: From:
f* Tranng C Load from disk
a Testing C disk I Load from woiksp.

f'- Checkna 4* woiksp.
f Demo
Load Data. .| Claa Data |

train dala loaded

f* Grid partition
f" Sub. dustemg

Generate FIS...

6.7 Solved Examples

20 25

Train FIS
Optm Mdhcd

| hybrid yl
Erior Toteiance:

lo
Epoch»:
13

Tran Mon |

Help

r-AMRSIrfa.  -n

sof inpts: 1
tt ofoulpUs 1
tt of input nfsc
7

%%I ﬂ data

Shiclire |
ClearRot 1

TestFIS

Plot agahst
<* Training data

Tcsthgddta
Checking doto

Test Nov/

| Close
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Plot of training data. The x-axis indicates numbering of data points rather than absolute values.

Generating initial FIS matrix using grid partition.
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Default membership function type (gaussmf) and their number (4).
Anlii Ccitcf an
Fil?  Edt View

Training Da:e {000) r- Wisiklu -i
15r
auiilh. 1
Hofajpck 1
tl ofinpj mfc
4
D.5
Stucaie |
LW W Clea Flct
«J tu au G105 I
Lt Jiy - Gninid*FIS - - Td>AS — — Tni(FIS  —I
Tyse: From: Lpti-t4 1" :Li-=t
f' LoaJf i* i hifcii .
. Ttarirc oadJfronci j hifciid Plot rgéh?.
r Tcaily I ds< C  Load fromwors.;p. IIfJulL_JUIIuIsane. Tidiingdflb
Crd partten Toititgcata
Checking wh'sp P Em-to 9
- i .
(HwO3n) ( *Lb cLiifenng 1 nn ( Checking data
livfirjjrs 1 Tkurflin 1 auy, 1
Fpmh RVnrn*- T SX7I Help | Chse

Training when error tolerance is chosen to be 0.001 and number of epochs is limited
to 100.

Thus the application has been done using fuzzy toolbox GUI.

Example 6.4. Study how the nonlinearity modeled with the fuzzy system
fismatl distorts a sinusoidal signal. Assume sin(t) at the input.

Solution. Clearly higher-order harmonics are generated. Such phenomenon can
be observed, e.g., in electrical transformers. This problem should be continued
immediately after the example problem 6.3, because Matlab assumes that
fuzzy system matrix parab is available. Otherwise you must repeat example
problem 6.3.

Open Simulink in Matlab command window and open a new file to con-
figure the system.

In the Simulink library open first Blocksets and Toolboxes. In the next
window, open Fuzzy Logic Toolbox. Now you can choose either Fuzzy Logic
Controller block or Fuzzy Logic Controller with rule viewer.
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The graphical output can be viewed through the Scope block
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Output of the Simulink system

Comparison between the actual functions -2x-x2 and the fuzzy system approximation is shown below.

Simulink blocks for the comparison of the actual function and the fuzzy system approximation.
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Comparison Output Responses

Combining the Fuzzy system with Simulink is an important feature from the
user’s point of view. Once the fuzzy system has been determined, it can be
used in Simulink to simulate dynamical systems. This provides the user a
very powerful tool to investigate behavior of complex systems. Computation
by hand is tedious and in practice impossible without a computer, but it is
at this point when fuzzy systems become really interesting and exciting.

Summary

In this chapter, the formation, aggregation, and decomposition of rules are
explained. Fuzzy mathematical tools and the calculus of IF-THEN rules pro-
vides a most useful paradigm for the automation and implementation of an
extensive body of human knowledge. The chapter is also added with the var-
ious method of inference. The comparison and the advantages of the two
methods Mamdani and Sugeno model are also discussed.

Review Questions
1. In what way does the fuzzy rules play a key role in determining the output

of the system?
2. What is the general format of the fuzzy rule base system?



o 0k~ w

© © N

10.

11.
12.
13.
14.
15.

16.
17.
18.

10.
20.

6.7 Solved Examples 145

Define the antecedents and consequents present in a fuzzy rule.

What are the most two important connectives used in fuzzy rules?

How are the rules formed in a fuzzy rule-based system?

With examples discuss about the conditional and unconditional state-
ments used or the formation of rules.

How is the canonical form of rule base developed?

Differentiate simple and compound rules.

What is the purpose of decomposition of rules?

Discuss in detail on all the methods used for decomposition of the com-
pound rules.

How are the rules aggregated to obtain the final solution?

Write short notes on the two methods of aggregation of rules.

State the properties of the rule base system.

Define fuzzy inference system.

With a suitable block diagram, explain the construction and working of
fuzzy inference system

What are the two fuzzy inference methods?

Write short note on the Mamdani method of fuzzy inference system
Write in detail about the Sugeno method adopted in fuzzy inference sys-
tem.

Compare Mamdani and Sugeno method of fuzzy inference system.

State the advantages of Mamdani and Sugeno model.

Exercise Problems

1 In a temperature controller for room, the linguistic comfort range is

“slightly cold” and “not too hot” using these membership functions
defined on a universe of temperature in °C.

(0 01 03 05 07 09
= 1 !

\25 26 27 28 29 30

1 08 07 _04 _03 _02
“Cold” = <——1 EL L L L
\ 25 26 27 28 29 30

Find the membership functions for:

(@) Not very hot
(b) Slightly cold or slightly hot

Amplifier capacity on a normalized universe say [0,100] can be linguisti-
cally defined by fuzzy variable like here:

,0 02 06 091
“Powerful” = i — } 1- 1 >,
M 10 50 1007
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“Weak” = K—-'————; kL
1 10 50 100

Find the membership functions for the following linguistic phases used to
decrease the capacity of various amplifiers:
(a) Powerful and not weak
(b) Very powerful or very weak
(c) Very, very powerful and not weak

3. In a boiler, pressure and temperature are linguistic parameters. Nominal
pressure limit ranges from 300 to 900 psi. Nominal temperature limit is
80-100° C. The fuzzy linguistic uses are as follows:

f1 08 06 _03 _02 0
1 1 1 1

iiT
“Low" temEe rature = <-— 1 1 1 1 —
\ 80 82 84 86 88 90

fo 02 03 _05 _07 _09
1 1 1 1 1

“Hi%h" temEerature 1 1 1 1
\ 86 88 90 92 94 96

0 0.2 0.3 0.5 0.7 1
Hlgh pressuren 50s + 52 + 60e + 8™ + 90e + i: "

ir -, f1 0.7 0.8 0.4 0.3 0
“Low” 'j_;)ressure =< 1 1 3 3 1
\300 600 700 800 900 1,000

1
>,
J

(@) Find the following membership functions:
(1) Temperature not very low
(2) Temperature not very high

(b) Find the following membership functions:
(1) Pressure slightly

(2) Pressure fairly high ~[high]2™ (high)0

(3) Pressure not very low or fairly low
4. In a computer system, performance depends to a large extent on relative
spear of the components making up the system. The “speeds” of the CPU
and memory are important factors in determining the limits of operating
speed in terms of instruction executed per unit size

_ {0 0 01 03 05 07 1
N6 1 4 8 720 45 100

“Fast”

f1 .09 0805 02 01 0
\0 1 4 8 T 20 45 " 100

Calculate the membership function for the phases:
(@) Not very fast and slightly slow

(b) Very, very fast and not slow

(c) Very slow are not fast
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5. The age of building is to be determined the linguistic terms are “old” and
“young”

fo 02 04 05 07 08 1
+ | 1 1 1

<- 4 EE kL kL kL
\O0 5 10 15 20 25 30

Old

f0.9 08 07 04 03 02 01
Young= {~ +“ + TO+ 16+ 20 + 25 + 30

For the building in years, find the membership functions for the following
expressions:
(@) Very old
(b) Very old or very young
(c) Not very old and fairly young “[young]2"
(d) Young or slightly old
6. By using the canonical from rule find the volume of the cone (!/3)Mr2~
radius is 4cm and h is 8cm.
7. The formula

is used in optics. The variables u, z, and f are the distance from the center
of lens to the center of the object, the distance from center of lens to the
center of the image and the focal length. Define canonical form of rules
for this problem.

8. Given the discretized form of the fuzzy variables X,Y, Z ,Z

~ 2
00 05 07 04 01
X={1T +T +* +* +7T

01 04 1 06 02
Y = {~0~+ 3+ 4+ 1 + 1T

01 04 08 05 o01
Z = \ —_~ + “ + “ + T
_ (02 04 1 04 0.2
A [O +Tr+TT+ T3+ U
(@) Form analogous continuous membership functions for X, Y, Zl, 22
(b) A system is described by a set of three rules, using the foregoing fuzzy
variables. All the rules have to be satisfied simultaneously for the
system to work. The rules are these:
(1) IF X and X then Z

(2) IF X and Y then 22

(3) IFX 2and Y 2then Zl
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13.

14.
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Determine the output of the system by graphical inference, using max-
min, max-product technique if x = 3 and y = 4 and use centroid method
for defuzzification.

Lety = f (X) = 5x+3.

(@) Form a fuzzy system, which approximates function f, when x G
[-5, 5]. Repeat the same by adding random, normally distributed noise
with zero mean and unit variance.

(b) Simulate the output when the input is cos(t). Observe what happens
to the signal shape at the output.

Write FIS using Mamdani method for the following controlling room tem-

perature (assume the linguistic variable yourself).

With FIS for controlling the speed of the motor input should armature

current and torque output should be speed using Sugeno method.

Write FIS for the controlling the water level and temperature in the boiler

using Mamdani and Sugeno models. Assume your own linguistic variables.

Write an FIS for controlling the temperature of an air conditioner system

using any one of the inference method.

Use a fuzzy rule base to model the ideal gas equation for a confined gas,

pV = nRT; where p is the pressure, V is the volume, T is the temperature

of the gas, n is proportional to the number of gas molecules (a constant),
and R is the ideal gas constant. Assume that we allow the gas temperature
to adjust to that of the surroundings. Use rules along the lines of: IF

(volume is large) THEN (pressure is low) and allow the use of very for

both variables. What type of membership functions would it be a good

idea to use?

Use Matlab's Fuzzy Logic Toolbox to model the tip given after a dinner

for two, where the food can be disgusting, not good, bland, satisfying,

good, or delightful, and the service can be poor, average, or good. To get
started, you type fuzzy in a Matlab window. Then use the fuzzy inference
system and membership function editors to define and tune your rules.

Write down a simple fuzzy rule base by which to control the temperature

of a shower, ignoring any delays, etc. (three rules are sufficient). Assume

that the water is pleasant at temperatures around 35-40°C. Sketch the
membership functions.

Consider the Takagi-Sugeno fuzzy rules:

Ri : IF (x is negative) THEN (yi = e092),
R2: IF(x is zero) THEN (y2 = 4.2x),
R3: IF (x is positive) THEN (y3 = e-0'7x).
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R IF (X is negative) THEN (y = e09z),
R2: IF (x is zero) THEN (y2 = 4.2x ),

R3: IF (x is positive) THEN (y3= e-07x ).

Evaluate y incase of x = —3, x = 2, and x = 9.
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Fuzzy Decision Making

7.1 Introduction

Decision making is essentially an important aspect in all aspects of life. Making
decisions is the fundamental activity of human beings. In any decision process
we consider the information about the outcome and choose among two or
more alternatives for subsequent action. If good decisions are made, then we
may get a good expected output.

Decision making is defined to include any choice or selection alternatives.
A decision is said to be made under certainty, where the outcome for each
action can be determined precisely. A decision is made under risk. When the
only available knowledge concerning the outcomes consists of their conditional
probability distributions. The uncertainty existing is the prime domain for
fuzzy decision (FD) making.

There are various ways in which the FD can be made. They are discussed
in detail in the following sections.

7.2 Fuzzy Ordering

Fuzzy ordering involves the decision made on rank basis. Which has first rank,
second rank, etc. If X\ = 2,x2= 5, then x2 > x 1, here there is no uncertainty,
which is called as crisp ordering. The case where the uncertainty or ambiguity
arises, then it is called fuzzy ordering or rank ordering. If the uncertainty in
the rank is random, then probability density function (pdf) may be used for
the random case.

Consider a random variable x i, defined using Gaussian pdf, with a mean of
~ 1 and standard deviation a1, also x 2, another variable which is also defined by
using Gaussian pdf with a mean ~2 and standard deviation <2. Ifa1>a2 and
p1>M2, then the density functions are plotted as shown in Fig. 7.1.

The frequency of probability that one variable is greater than the other is
given by



152 7 Fuzzy Decision Making

Fig. 7.1. Density function for two Gaussian random variables
[ +X
P(X1>X2) fx (xi dxi),

where Fi is cumulative distribution function.
Also, if there are two fuzzy numbers P and Q, the ranking that P is greater
p P

than fuzzy number Q is given by

W P > Q)= Submini Up (X) ,hg (Y) ) .
P x>y \ ~ ~ J

Also
R"™P>Qy=1ifandonlyif P > Q.

Example 7.1. Consider we have three fuzzy sets, given by

f1  0.8] ro.6 1.0] rog 1 04
P i3+ Tj, B={“T+1r}, P [I1l + 4+ 1T

Make suitable decisions based on fuzzy ordering.

Solution. Using the truth value of inequality, A > B, as follows:

T(é > E) = )mgxxl\ min(nA(xi),nB(x2))
= max{min(0.8, 0.6), min(0.8,1.0)}
= max{0.6,0.8}
= 0.8.

Similarly,

T(A>C)=08 T(B >A)=10 T(B >C)=10, T(C>A)= 10,

T(C > B) = 0.6.
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Then,
T(A > B,C) =0.8,
T(B > A, C) = 10,
T(C > A,B)=0.6.
From this calculation, the overall ordering of the three fuzzy sets would be B

first A second, and C third.

Thus the fuzzy ordering is performed

7.3 Individual Decision Making

A decision situation in this model is characterized by:

- Set of possible actions
- Set of goals pi(i G xn), expressed in terms of fuzzy set
- Set of constraints Qi(j G xm), expressed in terms of fuzzy sets.

It is common that the fuzzy sets impressing goals and constraints in this
formulation are not defined directly on the set of actions, but through the
other sets that characterize relevant states of nature.

For the set A, then

Pi(a) = Composition [Pi(a)] = Pi1(Pi(a))
with Pi,

Qj(a) = Composition of Q;(a) = Qj 1{ggNa))
with Q1,

for a G A.
Then the FD is given by

D@ = 1 P R

7.4 Multi-Person Decision Making

When decision are made by many persons, the difference of it from the
individual decision maker is:

1. The goals of single decision makers differ, such that each places a different
ordering arrangements.

2. The individual decision makers have access to different information upon
which to base their decision.
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In this case, each member of a group of n single decision makers has a
preference ordering Pk, K G Nn, which totally or partially orders a set x.

Then a function called “Social Choice” is to be found, given the individual
preference ordering. The social choice preference function is defined by fuzzy

relation as
S:X x X ™ [01].
which has membership of S(xi,xj) which indicates the preference of alterna-

tive Xi over Xj.
If number of persons preferring xi to Xj = N (xi,xj),
Total number of decision makers = N.

Then,
N (xi,xj)

S (xi,xj) = "

This defines the multi-person decision making also
1 if xi>x" for some Kk,

|
S (xi,xj)={ K j
1 I 0 other wise.

7.5 Multi-Objective Decision Making

The process involves the selection of one alternative ai, from many alternatives
A, given acollection or set, say {0} objectives which is important for a decision

maker.
Define universe of n alternatives, i.e.,

A = {ai, a2,...,an} and

set of “r” objectives
O = {0i,02,...,0r}.

The decision function (DF) here is given as intersection of all objectives
DF = 0i AO2 AO3 A---A Or.
The membership for the alternative is given by,

MDHFa®) = max("“Dp(a)).

Let {P} = {6i, b2,..., br} = bi, i= 1tor,
then, DF = DM(01, bi) A DM(02,b2) A---A (DM(Or,br)) where DM(0n, bn)
is called decision measure (DM).

The DM for a particular alternative is

DM(0i(a)bi) = bi ~ Oi(a) = bi UOi(a).
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Thus hi ~ 0i indicates a unique relationship between preference and ob-
jective.
Thus, the DF may be given by
r
DF = PJ] (hi U0i(a)).
i=1
and a* is the alternative that maximizes D.
Let pi = hi u 0i(a).
So,
1"pi(a) = max [*v€ —(a),”o€(a)l].

The membership form of the optimal solution is:
*) = in{Api N AN i
Mdf(a*) rgﬁ([mln{ pi(a),~pP2(a),.. ., Pr(a)}j.

Thus the decision is made as discussed.

7.6 Fuzzy Bayesian Decision Method

Classical Bayesian decision methods preassumes that the future states of the
nature can be characterized as probability events. The problem here in fuzzy
Bayesian method is that the events are vague and ambiguous and uncertain.
This is solved by the following method:

Consider the formation of the probabilistic decision method.

Assuming the set of state of nature as:

S = {Si,S2,...,Sn}.
So, the probabilities that these states occur are given by
P = {P(Si),P(S2),...,P(Sn)}

and
n

J si) = 1.
i:zllo( )

These are called as prior probabilities. If decision maker chooses m alter-
natives, then
A {ai,az2,... am}

and for an alternative aj, the utility value is uji, if the future state is the

state Si.

The utility values are to be found by the decision maker for each aj - Si
combination.

The expected utility with j th alternative would be
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n

E(uj) =53 UilP (S
=1

The common decision criterion is the maximum expected utility among all
alternatives
E(u*) = max E (uj).
J

Which selects ax if u* = E (xK).

Summary

Fuzzy decision making involves various methods, which were described in this
chapter. The fuzzy ordering involves the ordering formed on the rank basis.
The decision situation is found to vary between the individual decision making
and multi-person decision making. Fuzzy Bayesian decision making is one of
the most important decision making process discussed. In the case of multi-
objective decision making one alternative is found to be selected from many
alternatives. Thus the various decision making process are described in this
chapter.

Review Questions

What is meant by fuzzy decision making process?

What are the various methods used for fuzzy decision making?

Write short note on fuzzy ordering. State an example for fuzzy ordering.

How is the decisions made individually?

What are the characteristics of decision situations in individual decision

making?

Discuss in detail on the multi-person decision making.

Compare the accuracy rate of individual decision making and multi-person

decision making

8. What is the main aim of multi-objective decision making?

9. Derive an expression for the membership for optimal solution using multi-
objective decision making.

10. What is the importance of fuzzy Bayesian decision making?

11. Define prior probabilities in fuzzy Bayesian method.

ok wdNpR

N o
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Applications of Fuzzy Logic

8.1 Fuzzy Logic in Power Plants

8.1.1 Fuzzy Logic Supervisory Control for Coal Power Plant

The high temperature Winkler gasification (HTW) process that was developed
by Rheinbraun has been used for many years in pilot and demonstration plants
to generate synthesis gas and fuel gas out of brown coal. Conventional methods
were used before to control the gas throughput. While the conventional control
engineering implementation was able to run the process in a stable operating
point, improvements were necessary to use the HTW process in a coal power
station with integrated coal gasification:

- More precise control of gas throughput under fluctuations of the coal
quality

- More robust control in cases of fast load changes

- Automation of supervisory control operation

On top on the existing base level automation, a supervisory fuzzy logic con-
trol strategy was implemented on the HTW plant in Berrenrath/Germany.
Fuzzy logic was used because the control problem was strongly non-linear and
involves multiple measured and command variables. On the other hand, ex-
tensive operator knowledge about the process was available. The implemented
fuzzy logic supervisory control strategy successfully improved throughput con-
trol quality as well as the adaptation to different coal parameters.

High Temperature Winkler Gasification

The process that is used to gasify the coal is called High temperature Winkler
method (HTW). The HTW gasification method uses a high temperature fluid
bed process to convert brown coal into synthesis gas, a mixture of carbon
monoxide (CO) and hydrogen (H2). This gas mix can be used to produce
chemical base products like aldehydes or organic acids. Alternatively it can be
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used in a power plant gas turbine to generate electricity. The gas produced by
the demonstration plant is used for chemical synthesizes. Later in the power
plant application the gas will be used to run a gas turbine/steam turbine
combination.

The HTW process has been used for the gasification of coal by the Ger-
man coal company Rheinbraun since 1956. The demonstration plant started
operation in 1985. It converts 720 t of coal per day into 900,000 m3 (iN) syn-
thesis gas. In 1996 Inform added a fuzzy logic supervisory control to enable
the process for a power plant application. Figure 8.1 shows a photo of this
plant.

The main inputs for the HTW process are coal, oxygen and steam. The
coal is first ground to small pieces and pre-dried before it is fed into the
bottom part of the fluid bed reactor. The steam and the oxygen are fed into
the reactor on four different levels, into and above the fluid bed. In the fluid
bed the coal reacts with the oxygen and the steam. This reaction takes place
at a temperature of around 800°C and at a pressure of 10 bar. After the
reaction in the fluid bed the generated gas enters the hot zone above the fluid
bed. At temperatures around 1,000°C additional oxygen and steam is added
and left over coal particles react with the gases. This way additional gas is
produced and by-products like methane and other hydrocarbons are converted
to carbon monoxide and hydrogen. The produced gases leave the reactor at
the top through the reactor head. At this point the gas is still mixed with a
lot of particles. These are filtered out and fed back into the fluid bed with a
zyklon filter and a feed back tube.

Fig. 8.1. HTW plant in Berrenrath, Germany
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The coal ashes accumulate at the bottom of the fluid bed reactor. They are
removed from there out of the reactor by two conveyor spirals. The hot raw
gas is cooled down to 270°C. Its heat is used to generate pressure steam, some
of which is recycled back into the process. Ceramic filters remove remaining
dust particles out of the gas. The following gas washer removes NH3, HCL and
other gas components. The following CO conversion creates the correct carbon
monoxide/hydrogen mix for the methanol synthesis. After a compression to 37
bar the gas is processed in a non-selective rectisol washer (CO2/H 2S washer).
At temperatures below —40°C liquid methanol is used to wash out carbon-
dioxide and sulfuric components. The methanol is used again after recycling
it and the purified synthesis gas is used at a nearby chemical plant. Figure 8.2
shows the process diagram of the HTW plant. The coal input, the oxygen
input, the distribution of the oxygen input over the eight different nozzles
and the ash removal rate have to be controlled to use the coal efficiently and
to generate the correct mixture of gases. Instead of coal a mixture of coal and
plastic refuse can be used in the HTW process. This way the coal consumption
is reduced and the plastic refuse is recycled into synthesis gas.

Conventional Control

The HTW demonstration plant is controlled with an Eckhardt PLS-80E DCS
system. This system controls over 6,000 measurements and actuators. The
main control room is equipped with ten Unix-based operator consoles and
four real-time servers. So far nearly all the set points of the underlying control
circuits are set and adjusted manually by the operators. They constantly
monitor the process condition and adjust the set points of the underlying
control circuits accordingly (i.e. coal input, oxygen input). A few years ago it
was tried to automatically generate some set points using a conventional PID
controller, but the results were not satisfying. This supervisory control only
worked fine when the coal quality was very constant. Otherwise the process
quality would deteriorate significantly and the operators had to intervene and
switch back to manual operation.

Fig. 8.2. Process diagram of HTW plant
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Supervisory Fuzzy Logic Control

Two main tasks have been defined for the supervisory fuzzy logic control:
regulation of the gas throughput and process stabilization.

The fuzzy logic must keep the gas throughput at the set point and it has
to respond to set point changes with the correct dynamic speed. The set point
can vary from 70% (partial load) to 100% (full load). The fluctuations of the
gas throughput result mainly from variations of the coal quality (humidity,
ash content and granularity). These effects have to be compensated by the
fuzzy logic.

The process stabilization must keep several process parameters in the
optimum range. The reactor load influences the optimum of these process
parameters. The position of the optimum also depends on the coal quality.
The following parameters were used to define the quality of the process:

- Temperature in the postgasification zone
- Height and density of the fluid bed
- Composition of the produced gas (CO, CH4,H2)

The process stabilization is especially difficult when the HTW process is
fed with a mixture of coal and plastic refuse. This is done because plastic refuse
is a very inexpensive fuel. But the addition of plastic to the coal results in
drastically different process conditions. The fuzzy logic control uses the regular
measurements of the process conditions to detect any addition of plastic to
the coal. This will result into an adapted control strategy of the fuzzy logic
control.

Fuzzy Logic Control Design

The specification of the control task resulted into a preliminary concept of
the fuzzy logic controller. The operator knowledge was than used to specify
the control strategy of the fuzzy logic system. Several structured audits took
place to evaluate the operator knowledge systematically. The audits focused
on the operators’ manual control strategies and on the relationships between
the inputs and the outputs of the process. This procedure is in accordance
with the standardized fuzzy logic design method.

The audits resulted into the following concept for the fuzzy logic control:
deviations of the gas throughput from its set point immediately result into a
correction of the oxygen input. The coal input is adjusted accordingly to keep
the ratio between coal and oxygen at a constant level. Changes of the reactor
pressure predict changes of gas throughput. Therefore the pressure gradient
is used as an early warning indicator for changes of the gas throughput.

For process stabilization and for the adaptation to different coal qualities
the fuzzy logic controller uses the following parameters to keep the process in
a stable operating condition:
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- Coal to oxygen ratio

- Distribution of the oxygen between the fluid bed zone and the gasification
zone

- Ash outtake

- Fluidification with steam and inert gas

Sometimes one and the same process input value has to be modified to
keep several different critical measurements (temperature, fluid bed height) in
the optimum range. This can have conflicting results. For example: a too low
fluid bed is normally corrected with an increase of the coal input. A too
low temperature is corrected with a reduction of the coal input and a too low
dust output is also corrected with a reduction of the coal input. But a too
low temperature can occur together with a too low fluid bed. The ability of
the fuzzy controller to weight different conflicting indications based on their
significance and to use a lot of inputs to determine the best reaction to each
situation is very useful to control complex processes.

The fuzzy logic controller has a total number of 24 inputs and eight out-
puts. A preprocessing reduces the 24 inputs to ten characteristic descriptors.
These are fed into the fuzzy logic system. The fuzzy outputs go through a
post-processing step to generate the actual set points for the process inputs.
Figure 8.3 shows the core structure of the fuzzy logic system.

Integration of Fuzzy Logic into the DCS

The process measurements are coming to the fuzzy logic control through the
Eckhardt DCS. The fuzzy logic system generates set point values for the
underlying PID controllers. The fuzzy logic controller was implemented on an
0S/2 PC. Therefore the set up of the communication between the distributed
process control systems (DCS) and the fuzzy logic controller was an important

Fig. 8.3. Fuzzy controller structure
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part of the whole project. The communication was implemented using Factory
Link, a well-known SCADA program by US-Data. A factory link application
is running on the same OS/2 PC together with the fuzzy logic controller. The
fuzzy logic controller reads data out of the Factory Link Real Time DataBase
and it also writes data back into it. Another Factory Link task is communi-
cating with the DCS through the Eckhardt DCS bus. This way an image of
the process measurements is created in the Factory Link RTDB and the fuzzy
outputs are forwarded to the DCS.

Factory Link initiates a new fuzzy logic evaluation every 10s. The DCS
either uses the external set points generated by fuzzy logic or the internal set
points entered by the operators. The operators can switch from the “manual
mode” to the “fuzzy logic mode” and back. The “fuzzy logic mode” can only
be activated when all the critical system variables are in a predefined safe
range. The DCS automatically switches back into “manual mode” whenever
a system variable exceeds the safe range. The fallback to “manual mode”
also takes place if the communication between the DCS and Factory Link is
interrupted.

Figure 8.4 shows the integration of the fuzzy logic control into Factory Link
and the Eckhardt DCS. The OS/2 PC is also connected with a serial cable to
a WIN95 PC, on which the fuzzy TECH development system is installed. This
program was used to develop the fuzzy logic control and to generate C-Code
for the implementation on the OS/2 PC. The WIN95 PC is also used for
online optimization and visualization of the fuzzy logic controller. The serial
link to the OS/2 PC enables the user to modify the fuzzy system on the fly
from the fuzzy TECH development system on the WIN95 PC while the system
is running and controlling the process.

Setting the Fuzzy Logic Control into Operation

The first design of the fuzzy logic control, the data preprocessing and post-
processing were tested using the simulation tool VisSim. This way the concept

Factory Fuzzy
Link Control RS232
OS/Z PC fuzzyTECH

Development PC

| [Operator Console

— PLS 80E I I ‘
Operator Console

1/0 Module

Mill 111

Fig. 8.4. Integration of fuzzy logic into DCS
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was checked for any structural errors and an early prototype was presented
to the customers. Figure 8.5 shows a test of the fuzzy logic system using sim-
ulated data as input.

After the successful completion of the simulations the fuzzy logic was tested
offline with real time data from the DCS. To do this the fuzzy logic control
first was implemented on the OS/2 PC. The fuzzy controller than used real
time DCS measurement values to generate set points values for the DCS. But
during these offline simulations the DCS was only using the internal manual
set points and not the fuzzy logic set points. By comparing the external fuzzy
logic set points with the internal operator set points deviations between man-
ual and automatic operation could be detected and if necessary eliminated.

After the offline testing was finished successfully the online testing started.
For the online tests the DCS activated the external set points and so the closed
loop performance of the fuzzy logic controller could be tested. The fuzzy logic
controller was optimized while running in the closed loop mode from the
fuzzy TECH development tool on the WIN95 PC. To do this the OS/2 PC was
connected with a serial cable to the WIN95 PC. This way the fuzzification,
inference and defuzzification were visualized in fuzzy TECH. Modifications of
the rule base or term definitions were also entered in fuzzy TECH and than
send to the fuzzy logic controller on the OS/2 PC.

The fuzzy controller proved to be working very effectively during the first
few online tests. After that a long series of evaluation tests started. During
these tests the performance of the fuzzy controller was tested using a lot of
different coal qualities and different loads (70-100%).

Regulation of Gas Throughput

The conventional control focussed on process stabilization not keeping the
throughput at its set point. The following diagram shows the changes in
the gas throughput when fuzzy controller is active. The fuzzy logic control

Fig. 8.5. Simulation with VisSim
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clearly improves the throughput control. It compensates fluctuations in the
granulation of the coal. Figure 8.6 shows the fluctuations of the synthesis gas
throughput with and without fuzzy logic.

Change of Load

The fuzzy controller has to regulate the gas throughput in the range 70-100%
load with a maximum load gradient of 4% min~1.

Figure 8.7 shows a load change from 94% to 76% and back to 94%. The
resulting load gradient was 3.2% min-1. Currently the load change behavior
is being improved by using a modified pressure evaluation.

Adaptation to Coal Add-Ons

Sometimes the HTW process is fed with a mixture of coal and plastic refuse.
The resulting process parameters vary greatly from the standard operating
conditions. For example the content of methane in the raw gas increases. The
fuzzy controller recognizes the different operating conditions and generates a
matching internal set point for methane. Figure 8.8 illustrates how this enables
the fuzzy controller to stabilize the process.

Adaptation to Different Coal Qualities

The fuzzy controller also keeps the synthesis gas throughput constant when
the coal quality changes. Figure 8.9 shows the results of a change of the coal’s
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Fig. 8.6. Throughput control with and without fuzzy control
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water content from 18% to 12%. The fuzzy controller reduces the coal input
to compensate the coal change. Later after switching back to moist coal the
coal input is increased accordingly.

34.000

iv m Sy (Sor—Vi (1st)]

Fig. 8.7. Change of load with fuzzy control

Fig. 8.8. Process stabilization
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Conclusion

The fuzzy controller was implemented very quickly. The transfer of the process
know-how into the fuzzy controller and its realization took 15 days. So far over
1,100 h of operating time have been evaluated. In nearly all situations the
performance of the fuzzy controller was much superior to the manual control.
It was able to keep the process parameters in the optimum range whenever
the coal quality changed. It was also able to adjust the gas throughput with
the necessary change rate. The average gas throughput was kept at the set
point. The operating personal has accepted the fuzzy controller as a helpful
component because its transparent integration into the PLS makes it easy for
them to use it.

8.2 Fuzzy Logic Applications in Data Mining

8.2.1 Adaptive Fuzzy Partition in Data Base Mining:
Application to Olfaction

Introduction
Flavor and odor remain permanent challenges in academic and industrial
research. The economic impact of the olfactory field explains the large number

of articles involving data analysis methods to process sensorial and experi-
mental measurements. However, odor evaluation by man represents a special
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Fig. 8.9. Constant gas throughput with different coal qualities
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field of research, whose specific difficulties need to be overcome to lead to
robust results. The multiplicity of factors involved in the olfaction biological
process prevents the derivation of efficient predictive mathematical models.
Four points mainly define this complexity:

(1) A huge number of receptors is involved in olfaction

(2) Knowledge related to the 3D structure of these receptors is still missing
(3) Different types of chemical compounds can affect the same receptor

(4) One compound can exhibit simultaneously different odors

Furthermore, the importance of fuzziness linked to the expert’s subjectiv-
ity has to be considered. Much progress has been made in the knowledge of
physiological and psychological factors influencing the expert’s olfaction eval-
uation, but it is not sufficient to clearly discriminate between objectivity and
subjectivity in the characterization exhibited by panels of experts.

All these factors prevent the direct transposition of advances in
Chemometrics and Molecular Modeling in Medicinal Chemistry into the field
of olfaction. Nevertheless, the use of multivariate data analysis approaches can
play an important part to improve the knowledge of the molecular descriptor
role in olfaction and, then, the implementation of robust mathematical mod-
els. Traditional pattern recognition procedures, like Principal Component
Analysis (PCA) (Niemi 1990), Discriminant Analysis (DA) (Hubert 1994),
and Cluster Analysis (Kaufman and Rousseeuw 1990), and methods pertain-
ing to the field of Artificial Neural Networks, like Back Propagation Neural
Networks (BPNN) (Hecht-Nielsen 1989) or Kohonen Self-Organizing Maps
(SOM) (Kohonen 2001), are been widely used in the development of several
electronic noses and in data analysis of olfactory data sets.

These approaches offer different possibilities and objectives. PCA can be
considered as being only a projective technique. It is worth using this method
when clusters or classes can be visually delineated. DA is really a discriminant
technique as it aims to find linear relations in the molecular descriptor hyper-
space able to separate different compound categories included in the data set.
Both methods, PCA and DA, work correctly if the compounds, belonging to
different classes, are grouped in well separated regions, but, in more complex
distributions, their classification power becomes poor.

Cluster Analysis offers a first solution to this problem. It consists of ob-
taining self-partitioning of the data, in which each cluster can be identified as
a set of compounds clearly delineated regarding the molecular descriptor set
involved. Instead of trying to inspect all the compounds in the database to
understand and analyze their chemical properties, it is only required to select
typical compounds representing each cluster to get a deeper knowledge of the
structure of the database, i.e., of the distribution of the compounds in the
derived hyperspace. The main problems related to this method are that:

(1) The number of clusters and the initial positions of the cluster centers can
influence the final classification results
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(2) Compound separation is based on a binary notion of belonging, for
which a compound located between two clusters is included in only one
cluster

SOM has been considered as an alternative method to overcome the
above limitations. It integrates nonlinearity into the data set, so as to project
the molecular descriptor hyperspace onto a two-dimensional map and to pre-
serve the original topology, as the points located near each other in the original
space remain neighbors in SOM. This technique has been used to process huge
amounts of data in a high-dimensional space, but, like PCA, it remains an
unsupervised projective method. Then, for predictive objectives, SOM has to
be combined with another technique, generating a hybrid system that offers
an automatic objective map interpretation.

Contrary to SOM, BPNN is a supervised predictive method. It is able
to discriminate any nonlinearly separable class, relating continuous input
and output spaces with an arbitrary degree of accuracy. This method,
applied to several fields of chemical database analysis, has proved to be very
efficient in modeling complex data set relationships. However, as in other
Avrtificial Neural Networks techniques, the complexity of the modeling func-
tion often prevents extraction of relevant information suitable to explain
the model and, therefore, to deliver a better understanding of biological
mechanism.

Fuzzy concepts introduced by Zadeh (1977) provide interesting alterna-
tive solutions to the classification problems within the context of imprecise
categories, in which olfaction can be included. In fact, fuzzy classification rep-
resents the boundaries between neighboring classes as a continuous, assign-
ing to compounds a degree of membership of each class. It has been widely
used in the field of process control, where the idea is to convert human expert
knowledge into fuzzy rules, and it should be able to extract relevant structure-
activity relationships (SAR) from a database, without a priori knowledge.

A data set of olfactory compounds, divided into animal, camphoraceous,
ethereal and fatty olfaction classes, was submitted to an analysis by a
fuzzy logic procedure called adaptive fuzzy partition (AFP). This method
aims to establish molecular descriptor/chemical activity relationships by dy-
namically dividing the descriptor space into a set of fuzzily partitioned
subspaces. The ability of these AFP models to classify the four olfactory
notes was validated after dividing the data set compounds into training and
test sets, respectively.

The aim of this work is to apply a fuzzy logic procedure, that we called
AFP, to achemical database derived from olfactory studies, in order to develop
a predictive SAR model. The database included 412 compounds associated
with an odor appreciation defining the presence or the absence of four different
olfactory notes. A set of 61 molecular descriptors was examined and the most
relevant descriptors were selected by a procedure derived from the Genetic
Algorithm concepts.
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Materials and Methods
Compound Selection

A database derived from the Arctander’'s books (Arctander 1960, 1969),
including 2,620 compounds and 81 olfactory notes, was submitted to a PCA
analysis, in order to determine a reduced subset of compounds representing
very weakly correlated odors. The relative results allowed to determine a data
set of 412 olfactory compounds homogeneously distributed in four classes:
animal, camphoraceous, ethereal, and fatty odors.

Molecular Descriptors

The reduced data set was distributed in a 61 multidimensional hyperspace
derived from a selected set of 61 molecular descriptors. This descriptor
set includes topological, physicochemical and electronic parameters. In vir-
tual screening, general descriptors have proved a good compromise, from an
efficiency point of view, for data mining in large databases. The advantage
of these descriptors is their ability to take into account not only the main
structural features of each molecule, but also their global behaviors. Then,
they should be able to take simultaneously into account the complexity of
the olfaction mechanism and the approximation of the odor scale. Molar
refractivity (MR), molar volume (MV), molecular weight (MW), and Van
Der Waals volume (VdWYV) were used as size descriptors.

The shape features of the molecules were characterized by topological
indices which account for the ramification degree, the oblong character, etc.,
20 molecular connectivity indices, a series of information content descriptors
(Ico, SsIco, CICo, IC1, SIC1,CIC1, IDW), Wiener index (W), centric in-
dex (C), Balaban index (J), Gutman index (M2), Platt number (F), counts
of paths of lengths 1-4, counts of vertices with 1-4 nearest neighbors were
used The number of N, O, and S atoms in a molecule was also considered.
A lipophilicity descriptor represented by the octanol/water partition coeffi-
cient (log Poct/water) was calculated using the Hansch and Leo method. An-
other descriptor was derived from the electronegativity of molecules (EMS)
by the Sanderson method.

Descriptor Selection

To select, amidst the 61 descriptors, the best parameters for classifying the
data set compounds, a method based on genetic algorithm (GA) concepts was
used. GA, inspired by population genetics, consists of a population of indi-
viduals competing on the basis of natural selection concepts. Each individual,
or chromosome, represents a trial solution to the problem to be solved. In
the context of descriptor selection, the structure of the chromosome is very
simple. Each descriptor is coded by a bit (0 or 1) and represents a compo-
nent of the chromosome. 0 defines the absence of the descriptor, 1 defines its
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presence. The algorithm proceeds in successive steps called generations. Dur-
ing each generation, the population of chromosomes evolves by means of a
“fitness” function (Davis 1991), which selects them by standard crossover and
mutation operators. The crossover phase takes two chromosomes and produces
two new individuals, by swapping segments of genetic material, i.e., bits in
this case. Within the population, mutation removes the bits affecting a small
probability.

Genetic algorithms are very effective for exploratory search, applicable to
problems where little knowledge is available, but it is not particularly suitable
for local searches. In the latter case, it is combined with a stepwise approach
in order to reach local convergence. Stepwise approaches are quick and are
adapted to find solutions in “promising” areas that have been already identi-
fied.

To evaluate the fitness function, a specific index was derived by using a
fuzzy clustering method. Furthermore, to prevent over-fitting and a poor gen-
eralization, across validation procedure was included in the algorithm during
the selection procedure, by randomly dividing the database into training and
test sets. The fitness score of each chromosome is derived from the combina-
tion of the scores of the training and test sets.

The following parameters were used in the data processing of the data set
of 412 olfactory compounds:

(1) Fuzzy parameters - weighting coefficient = 1.5, tolerance convergence
= 0.001, number of iterations = 50, number of clusters = 10.

(2) Genetic parameters - number of chromosomes =10, chromosome size = 60
(number of descriptors used), number of crossover points = 1, percentage
of rejections = 0.1, percentage of crossovers = 0.8, percentage of muta-
tions = 0.05, time off (10,100), number of generations = 10, ascendant
coefficient = 0.02, descendant coefficient = —0.02. Calculations were per-
formed using proprietary software.

Adaptive Fuzzy Partition

AFP is a supervised classification method implementing a fuzzy partition
algorithm. It models relations between molecular descriptors and chemical
activities by dynamically dividing the descriptor space into a set of fuzzy
partitioned subspaces. In a first phase, the global descriptor hyperspace is
considered and cut into two subspaces where the fuzzy rules are derived.
These two subspaces are divided step by step into smaller subspaces until
certain conditions are satisfied, namely when:

(1) The number of molecular vectors within a subspace attains a minimum
threshold number

(2) The difference between two generated subspaces is negligible in terms of
chemical activities represented

(3) The number of subspaces exceeds a maximum threshold number
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The aim of the algorithm is to select the descriptor and the cut position,
which allows the maximal difference between the two fuzzy rule scores gen-
erated by the new subspaces to be determined. The score is defined by the
weighted average of the chemical activity values in an active subspace A and in
its neighboring subspaces. If the number of trial cuts per descriptor is defined
by N cut, the number of trial partitions equals (N cut +1)N. Only the best
cut is selected to subdivide the original subspace. All the rules created during
the fuzzy procedure are considered to establish the model between descriptor
hyperspace and biochemical activities. The global score in the subspace Sk
can then be calculated. All the subspaces k are considered and then the score
of the activity O for a generic molecule is computed. The following parameters
were used to process the data set of 165 pesticide compounds: maximal num-
ber of rules for each chemical activity = 35; minimal number of compounds
for a given rule = 4; number of cutting for each axis = 4;p = 1.2 and q = 0.8.

Descriptor Selection

Four relevant descriptors can be selected by the GA procedure. The first
three descriptors may correspond to topological indices encoding information
about molecular structure. All the atoms are considered to be carbon atoms.
The values for noncarbon heteroatoms are computed differently regarding
the values for identically connected carbon atoms. Finally, VES, an electronic
index, represents the variance of electronegativity computed by the Sanderson
method (Sanderson 1976).

AFP Model

The AFP model was established on the training set compounds, defining four
molecular descriptor - odor relationships, one for each olfactory note. The
number of rules implemented in each relationship was dependent on the com-
plexity of the compound distribution regarding a given odor. The animal,
camphoraceous, ethereal and fatty odors were, respectively, represented by
17, 18, 14, and 24 rules. The number of rules concerning the fatty odor shows
that the corresponding relationship was the most difficult to establish. A pos-
sible explanation could be found in the fact that only complex combinations
of molecular descriptors can represent the distribution of the ethereal com-
pounds, so requiring a high number of rules. Another one can be related to
the cutting procedure performed by the algorithm. But this hypothesis is less
probable as a different number of cuts, 3, 4, and 5 per axis, leads to similar
results.

The most important ability of the AFP method is its capacity to solve
such complex problems as olfaction, transcribing the molecular descriptor-
activity relationships into simple rules that are directly related to the selected
descriptors. The contribution of the GA procedure is obviously fundamental:
it reduces the amount of information in the input step, making it easier to
determine and interpret the model.
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Conclusion

Data base mining (DBM) algorithms, based upon molecular diversity analysis,
are becoming a must for pharmaceutical companies in the search for new leads.
They allow the automated classification of chemical databases, but the huge
amount of information provided by the large number of molecular descriptors
tested is difficult to exploit. Then, new tools have to be developed to give
a user-friendly representation of the compound distribution in the descriptor
hyperspace.

Furthermore, the difficulty of data mining in olfaction databases is ampli-
fied by the fact that one compound can have different odors and its activity is
usually expressed in a qualitative way. Another source of complexity derives
from the fact that one receptor can recognize different chemical determinants
and the same compound can be active on different receptors.

Fuzzy logic methods, developed to mimic human reasoning in its ability
to produce correct judgements from ambiguous and uncertain information,
can provide interesting solutions in the classification of olfactory databases.
In fact, these techniques should be able to represent the “fuzziness” linked to
an expert’'s subjectivity in the characterization of the odorous notes, comput-
ing intermediate values between absolutely true and absolutely false for each
olfactory category. These values are named degrees of membership and are
ranged between 0.0 and 1.0.

In this section, a new procedure, the AFP algorithm, was applied to a data
set of olfactory molecules, divided into animal, camphoraceous, and ethereal
and fatty compounds. This method consists of modeling molecular descriptor-
activity relationships by dynamically dividing the descriptor hyperspace into
a set of fuzzy subspaces. A large number of molecular descriptors may be
tested and the best ones may be selected with help of an innovative procedure
based on genetic algorithm concepts.

8.3 Fuzzy Logic in Image Processing

8.3.1 Fuzzy Image Processing
Introduction

Fuzzy image processing is not a unique theory. It is a collection of different
fuzzy approaches to image processing. Nevertheless, the following definition
can be regarded as an attempt to determine the boundaries:

Fuzzy image processing is the collection of all approaches that understand,
represent and process the images, their segments and features as fuzzy sets.
The representation and processing depend on the selected fuzzy technique and
on the problem to be solved.
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Fig. 8.10. General structure of fuzzy image processing

Fuzzy image processing has three main stages: image fuzzification, mod-
ification of membership values, and, if necessary, image defuzzification (see
Fig. 8.10.).

The fuzzification and defuzzification steps are due to the fact that we
do not possess fuzzy hardware. Therefore, the coding of image data (fuzzi-
fication) and decoding of the results (defuzzification) are steps that make
possible to process images with fuzzy techniques. The main power of fuzzy
image processing is in the middle step (modification of membership values,
see Fig. 8.11). After the image data are transformed from gray-level plane
to the membership plane (fuzzification), appropriate fuzzy techniques modify
the membership values. This can be a fuzzy clustering; a fuzzy rule-based
approach, a fuzzy integration approach, and so on.

Need for Fuzzy Image Processing

The most important of the needs of fuzzy image processing are as follows:

1 Fuzzy techniques are powerful tools for knowledge representation and
processing

2. Fuzzy techniques can manage the vagueness and ambiguity efficiently

3. In many image-processing applications, we have to use expert knowledge
to overcome the difficulties (e.g., object recognition, scene analysis)

Fuzzy set theory and fuzzy logic offer us powerful tools to repre-
sent and process human knowledge in form of fuzzy if-then rules. On
the other side, many difficulties in image processing arise because the
data/tasks/results are uncertain. This uncertainty, however, is not always
due to the randomness but to the ambiguity and vagueness. Beside random-
ness which can be managed by probability theory we can distinguish between
three other kinds of imperfection in the image processing (see Fig. 8.12):
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Fig. 8.13. Representation of colors as fuzzy subsets

- Grayness ambiguity
- Geometrical fuzziness
- Vague (complex/ill-defiend) knowledge

These problems are fuzzy in the nature. The question whether a pixel
should become darker or brighter than it already is, the question where is the
boundary between two image segments, and the question what is a tree in a
scene analysis problem, all of these and other similar questions are examples
for situations that a fuzzy approach can be the more suitable way to manage
the imperfection.

As an example, we can regard the variable color as a fuzzy set. It can be
described with the subsets yellow, orange, red, violet, and blue:
color —{yellow, orange, red, violet, blue}

The noncrisp boundaries between the colors can be represented much better.
A soft computing becomes possible (see Fig. 8.13).

Fuzzy Image Enhancement
Contrast Adaptation

In recent years, many researchers have applied the fuzzy set theory to develop
new techniques for contrast improvement. Following, some of these approaches
are briefly described.

Contrast Improvement with INT-Operator

1. Step: define the membership function

gma  gmn

—G(gmn) — 1+ q
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2. Step: modify the membership values

f [ 2*[mn] 0 —fm —
MAA_ \ 1-2*1-m ]2 05— —1

3. Step: generate new gray-levels

Contrast Improvement Using Fuzzy Expected Value

1. Step: calculate the image histogram
Step: determine the fuzzy expected value (FEV)
3. Step: calculate the distance of gray-levels from FEV

N

Dmn _ VI(FEV)2- (gmn)2]

4. Step: generate new gray-levels

gmn _ max(0, FEV - Dmn) if gmn < FEV,
gmn _ min(L - 1L, FEV + Dmn if gmn > FEV,
gihn _ FEV otherwise.

Contrast Improvement with Fuzzy Histogram Hyperbolization

1. Step: setting the shape of membership function (regarding to the actual
image)

Step: setting the value of fuzzifier Beta (a linguistic hedge)

Step: calculation of membership values

Step: modification of the membership values by linguistic hedge

Step: generation of new gray-levels

o wDN

Contrast Improvement Based on Fuzzy if-then Rules

1. Step: setting the parameter of inference system (input features, member-
ship functions)

2. Step: fuzzification of the actual pixel (memberships to the dark, gray, and
bright sets of pixels)(Fig. 8.14)

3. Step: inference (e.g., if dark then darker, if gray then gray, if bright then
brighter)

4. Step: defuzzification of the inference result by the use of three singletons

Locally Adaptive Contrast Enhancement

In many cases, the global fuzzy techniques fail to deliver satisfactory results.
Therefore, a locally adaptive implementation is necessary to achieve better
results.
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Fig. 8.14. Histogram fuzzification with three membership functions

Subjective Image Enhancement

In image processing, some objective quality criteria are usually used to ascer-
tain the goodness of the results (e.g. the image is good if it possesses a low
amount of fuzziness indicating high contrast). The human observer, however,
does not perceive these results as good because his judgment is subjective.
This distinction between objectivity and subjectivity is the first major prob-
lem in the human-machine interaction. Another difficulty is the fact that
different people judge the image quality differently. This inter-individual dif-
ference is also primarily due to the aforesaid human subjectivity.

Following, an overall enhancement system will be described briefly. The ap-
proach is based on the combination of differently enhanced images obtained by
using different algorithms each satisfying the observer’'s demand only partly.
The fusion result should meet the subjective expectations of every individual
observer.

An Overall System for Image Enhancement

The proposed enhancement system consists of two stages: an offline stage in
which an aggregation matrix will be generated which contains the relevancy
of different algorithms for corresponding observers, and an online stage where
new image data will be enhanced and fused for a certain observer.

Offline Stage

The offline stage consists of five phases: image enhancement by means of dif-
ferent algorithms (or by just one algorithm with different parameters), extrac-
tion of the objective quality criteria, learning the fuzzy measure (subjective
quality evaluation), aggregation (regarding to different images and different
observers), and finally, a fuzzy inference (final quality measure for each image).
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The result of the offline stage will be an aggregation matrix containing the
relevance of all involving algorithms for each observer. The system phases can
be briefly described as follows:

Phase 1 (enhancement): different algorithms Ak (or one algorithm with dif-
ferent parameters) enhance all test images Xi and deliver their results X'i,Ak.
The selection of these algorithms is dependent on the image quality that
we are interested in, e.g., contrast, smoothness, edginess, etc. At least two
algorithms, or two different parameter sets for the same algorithm, should be
selected.

Phase 2 (extraction): depending on the specific requirements of the applica-
tion, suitable quality measures h(X'i,AK) are extracted, e.g., contrast, sharp-
ness or homogeneity measures. These criteria can serve as objective quality
measures and will be aggregated with subjective measures in the forth phase
via fuzzy integral.

Phase 3 (learning): the observer judges the quality of all enhanced images. The
images are presented to the observer in random order. Moreover, the observer
is not provided with any information about the algorithms used in the first
phase. In order to map the subjective assessments into numerical framework,
the ITU recommendation BT 500 can be used. The quality of the images
generated by the fcth algorithm as excellent (= 1), good (= 2), fair (= 3),
poor (= 4), and bad (= 5). For all M judgments pi,b of the bth observer, the
mean opinion score (MOS) will be calculated.

Phase 4 (aggregation of measures/judgments): considering the objective
measures and subjective judgments, one recognizes two conflicts. First, the
observer judges the results of the same algorithm from image to image dif-
ferently. Second, considering the divergence between objective and subjective
assessments, the relevance of different algorithms is not always obvious. To
solve these problems two new measures the degree of compromise m* and the
degree of compatibility g are introduced.

Phase 5 (inference): the elements of vectors G (degree of compatibility) and
F (degree of compromise) are fuzzified with three membership functions. The
output of the inference system is an aggregation matrix quantifying the image
quality and is represented by five nonsymmetric membership functions. Then
the if-then rules may be formulated.

Online Stage

In the second stage the system uses only the information stored in the aggrega-
tion matrix and an index indicating the current expert looking at the images.
The image fuzzification, therefore, plays a pivotal role in all image processing
systems that apply any of these components. The following are the different
kinds of image fuzzification:
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Fig. 8.15. Histogram fuzzification

Histogram-based gray-level fuzzification (or briefly histogram fuzzification)

Example: brightness in image enhancement

Local fuzzification (example: edge detection)

Feature fuzzification (scene analysis, object recognition)(Fig. 8.15)

In order to be in a form suitable for computer processing an image function
f (x,y) must be digitized both spatially and in amplitude (intensity). Digiti-
zation of spatial co-ordinate (x,y) is called image sampling, while amplitude
digitization is referred to as intensity or gray-level quantization. The latter
term is applicable to monochrome images and reflects the fact that these
images vary from black to white in shades of gray. The terms intensity and
gray-level can be used interchangeably.

Suppose that a continuous image is sampled uniformly into an array of N
rows and M columns, where each sample is also quantized in intensity. This
array, called a digital image, may be represented as,

[ Xii X122  xi3 XM A
X2l X2 X3 X2M
f (m, n)
\ XN1 XN2 XN3 XNM J

where m, n are discrete variables.

Each element in the array is called an image element, picture element, or
pixel.

There are basically two methods available for image processing. They are:

1. Frequency domain method
2. Spatial domain method

Frequency Domain technique:

It refers to an aggregate of complex pixels resulting from taking the Fourier
Transform and arises from the fact that this particular transform is composed
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of complex sinusoids. Due to extensive processing requirements, frequency-
domain techniques are not nearly as widely used as spatial domain techniques.
However, Fourier Transform plays an important role in areas such as analysis
of and object motion and object description.

Two-dimensional Fourier Transform pair of an N x N image is defined as,

1 N-1 N-1
F(u,v) = N "2 N2 (X y)exp(-j2n(xu + vy)/N)
#»0  y=0

foru=0,1,2,...,N - 1

In this method, processing is done with various kinds of frequency filters.
For example, low frequencies are associated with uniformly gray areas, and
high frequencies are associated with regions where there are abrupt changes
in pixel brightness.

Spatial domain technique: this method refers to aggregate of pixels composing
an image, and they operate directly on these pixels. Processing functions in
spatial domain may be expressed as

g(x,y) = h[f (x,y)]

f (x, y) is the input image

g(x, y) is the resultant image

h is the operator on f defined over some neighborhood of (x, y)

The principal approach used in defining a neighborhood about (x,y) is
to use a square/rectangular subimage area centered at (x,y). Although other
neighborhood shapes such as circle are sometimes used, square arrays are by
far most predominant because of their ease of implementation.

Smoothing: smoothing operations are used for reducing noise and other
spurious effects that may be present in an image as a result of sampling,
quantization, transmission or disturbances in the environment during image
acquisition.

Mainly there are two types of smoothing techniques. They are:

1. Neighborhood averaging
2. Median filtering

Neighborhood averaging: it is a straightforward spatial domain technique for
image smoothing. Given an image f (x,y), the procedure is to generate a
smoothed image g(x, y) whose intensity at every point (x, y) is obtained by
averaging the intensity values of pixels of f contained in predefined neighbor-
hood of (x, y). The smoothed image is obtained by using the relation

g(x,y) =P 22 f(m,n) for all x andy in f (x,y).
(n,m)ES
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Median filtering: one of the difficulties of neighborhood averaging is that it
blurs the edges and other sharp details. This blurring can often be reduced
significantly by the use of the median filters, in which we replace the intensity
of each pixel by median of the intensities in a predefined neighborhood of that
pixel, instead of by the average.

Fuzzy image processing is not a unique theory. It is a collection of different
fuzzy approaches to image processing. Nevertheless, the following definition
can be regarded as an attempt to determine the boundaries:

Fuzzy image processing is the collection of rail approaches that understand,
represent and process the images, their segments and features as fuzzy sets.
The representation and processing depend on selected fuzzy technique and on
the problem to be solved.

Fuzzy image processing (FIP) has three main stages:

1. Image fuzzification
2. Modification of membership values
3. Image defuzzification

The general structure of an FIP is shown in the figure. The fuzzification
and defuzzification steps are due to fact that we do not possess fuzzy hardware.
Therefore, the coding of image data (fuzzification) and decoding of the results
(defuzzification) are steps that make possible to process images with fuzzy
techniques.

Basic steps in FIP

The main power of fuzzy image processing is in the middle step (modi-
fication of membership values). After the image data are transformed from
gray-level plane to the membership plane (fuzzification), appropriate fuzzy
techniques modify the membership values. This can be a fuzzy clustering; a
fuzzy rule-based approach, a fuzzy integration approach and so on.
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Necessity of FIP: there are many reasons for use of fuzzy techniques in image
processing. The most important of them are as follows:

In many image-processing applications, we have to use expert knowledge
to overcome the difficulties (e.g., object recognition, scene analysis). Fuzzy
set theory and fuzzy logic offer us powerful tools to represent and process
human knowledge in form of fuzzy if-then rules. On the other side, many
difficulties in image processing arise because the data/tasks/results are un-
certain. This uncertainty, however, is not always due to randomness but to
the ambiguity and vagueness. Beside randomness, which can be managed by
probability theory, we can distinguish between three kinds of imperfection in
image processing.

These problems are fuzzy in nature. The question whether a pixel should
become darker than already it is, the question where is the boundary between
two image segments, and the question what is a tree in a scene analysis
problem, all of these and other similar questions are examples for situa-
tions that a fuzzy approach can be the more suitable way to manage the
imperfection.

Before one is able to conduct meaningful pattern recognition exercises
with images, one may need to preprocess the image to achieve the best image
possible for the recognition process. The original image might be polluted
with considerable noise, which would make the recognition process difficult.
Processing, reducing, or eliminating this noise will be a useful step in the
process. An image can be thought of an ordered array of pixels, each charac-
terized by gray tone. These levels might vary from a state of no brightness,
or completely black, to a state of complete brightness, or totally white. Gray
tone levels in between these two extremes would get increasingly lighter as we
go from black to white.

Contrast enhancement: an image X of N x M dimensions can be considered
as an array of fuzzy singletons, each with a value of membership denoting the
degree of brightness level p,p = 0,1,2...P —1 (e.g., range of densities from
p = 0 to p = 255), or some relative pixel density. Using the notation of fuzzy
sets, we can write,

Mn/xuy, M2/ X 12 MLIM/xim \
M2i/x21 MR2/ X 22 M2M/X2M

X =
MNi/xnl1l MN2/xn?2 Mhm/xnm

\Y

where0<MmM< 1,m=12..M,n=12...N.

Contrast within an image is measure of difference between the gray-levels
in an image. The greater the contrast, the greater is the distinction between
gray-levels in the image. Images of high contrast have either all black or all
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white regions; there is very little similar gray-levels in the image, and very
few black or white regions. High-contrast images can be thought of as crisp,
and low contrast ones as completely fuzzy. Images with good gradation of
grays between black and white are usually the best images for purposes of
recognition by humans.

The object of contrast enhancement is to process a given image so that the
result is more suitable than the original for a specific application in pattern
recognition. As with all image-processing techniques we have to be especially
careful that the processed image is not distinctly different from the original
image, making the identification process worthless. The technique used here
makes use of modifications to brightness membership value in stretching or
contracting the contrast of an image.

Many contrast enhancement methods work as shown in the figure below,
where the procedure involves primary enhancement of he image, denoted with
an Ei in the figure, followed by a smoothing algorithm, denoted by an S, and
a subsequent final enhancement, step E2.

Ei S E2

Method of contrast enhancement

The function of the smoothing operation of this method is to blur (make
more fuzzy) the image, and this increased blurriness then requires the use
of final enhancement step E2. Generally smoothing algorithms distribute a
portion of the intensity of one pixel in the image to adjacent pixels. This
distribution is greatest for pixels nearest to the pixels being smoothed, and it
decreases for pixels farther from the pixel being smoothed.

The contrast intensification operator, on a fuzzy set A generates another
fuzzy set, A = INT(A) in which the fuzziness is reduced by increasing the
values of /nn(x) that are greater than 0.5 and decreasing the values that are
less than 0.5. If we define this transformation T1, we can define T1 for the
membership values of brightness for an image as,

T1("mn) = T1("mn) = 2" mn , 0™ ~mn ~ °-5,

TiMHmMN) =1 21 Mmn), °*5""mn » 1*

The transformation Tr is defined as successive applications of T1 by the re-
cursive relation,

Tr(vmn) = T1[Tr_1("mn)j = 1,2 3,...

The graphical effect of this recursive transformation for a typical member-
ship function is shown in figure below. The increase in successive applications
of the transformation, the curve gets steeper. As r approaches infinity, the
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shape approaches a crisp function. The parameter r allows the user to use an
appropriate level of enhancement for domain-specific situations.

Example: Given the following 25 pixel array as shown below

110 105 140 107 110
110 132 105 115 154
140 105 105 115 154
137 135 145 150 150
140 118 115 109 148

Array of pixels with given intensities

We now scale the above values to obtain the membership functions of each
of the pixel given as shown in the table below.

0.43 0.41 0.55 0.42 0.43
0.43 0.52 0.43 0.59 0.41
0.55 0.41 0.41 0.45 0.60
0.54 0.53 0.57 0.59 0.59
0.55 0.46 0.45 0.42 0.58

Scaled values indicating memberships of each pixel



8.3 Fuzzy Logic in Image Processing 185

Applying the formulas given before does the contrast enhancement of
above array of pixels, which are stated below again.

TI("mn) = T1("mn) = 2 mn ? 0 —"mn —
Ti(Mmn) 1 21 Mmn) °*5 —Mnn —1?

where Amn is the membership of the (m, n)th element in the array of pixels.
After one application of the enhancement, i.e.,, the INT operator on the
above array of pixels we get the following results.

0.37 0.33 0.60 0.35 0.37
0.37 0.54 0.37 0.66 0.33
0.60 0.33 0.33 0.40 0.68
0.57 0.56 0.63 0.66 0.66
0.60 0.42 0.40 0.35 0.65

Membership values of pixels after application of INT operator once

Thus we see that the pixels having the membership values greater than
0.5 have been increased in intensity and those with value less than 0.5 have
been decreased in intensity.

Sample calculations:

Consider the pixel of intensity 0.43, the new intensity value is, 2 x 0.432 = 0.37
as 0 < 043 < 05.

Consider the pixel of intensity 0.55. As it is between 0.5 and 1.0 we get its
new value as [1 —2(1 —0.55)2] = 0.60.

In this way we calculate all the new intensities of the other pixels.
Smoothing: smoothing of a pixel is done by averaging the intensity values

in the neighborhood of the pixel and substituting the averaged value for the
intensity of the pixel. Consider the following figure.



Hy
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In similar manner, we calculate the membership values of other pixels also.

0.86 0.18 0.04 0.06 0.98
0.80 0.90 0.00 0.94 0.90
0.88 0.08 0.88 0.08 0.86
0.85 1.00 0.11 0.04 0.84
0.86 0.10 0.06 1.00 0.92
0.82 0.08 0.04 0.06 0.86

Now we apply the formula given before to each of the pixel except at
the edges because at the edges we do not know the all the intensities in the
neighborhood of the pixel. The application of the smoothing operation for
once gives us the following results.

0.86 0.18 0.04 0.06 0.98
0.80 0.26 0.53 0.39 0.90
0.88 0.75 0.37 0.41 0.86
0.85 0.45 0.23 0.62 0.84
0.86 0.36 0.40 0.50 0.92
0.82 0.08 0.04 0.06 0.86

Sample calculations:

Consider the pixel in second row and second column. Its new intensity is
given by
(0.18 + 0.80 + 0.00 + 0.08)/4.
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The new intensity of the pixel in second row and third column is given by
(0.04 + 0.26 + 0.88 + 0.94)/4.

Here care has to be taken to incorporate the obtained new intensity of
the pixel in the neighborhood, i.e., we have to substitute the new intensity
of the pixel when the new intensity of the pixel in its neighborhood is to be
calculated.

We see that the noise due to the pixels has been decreased very much. On
further application of the smoothing operation we can decrease the noise very
much.

Further examples on contrast enhancement and smoothing:

Given a 10 x 10 pixel array. It represents a dark square image in which there
is a lighter square box that is not very apparent because the background is
very nearly the same as that of the lighter box itself.

7 89 7 64 7 71 99 56 51 38

7 122 125 125 125 122 117 115 51 26
97 115 140 135 133 153 166 112 56 31
82 112 145 130 150 166 166 107 74 23
84 107 140 138 125 158 158 120 71 18
7 110 143 148 153 145 148 122 7 13
79 102 99 102 97 94 92 115 7 18
71 77 74 7 71 64 7 89 51 20
64 64 48 51 51 38 51 31 26 18

51 38 26 26 26 13 26 26 26 13



8.3 Fuzzy Logic in Image Processing

189

When we take the intensity values above and scale them on interval [0,255],
we get membership values in the density set white (low values are to black,

high values close to white).

0.30 0.35
0.30 0.48
0.38 0.45
0.32 0.44
0.33 0.42
0.30 0.43
0.31 0.40
0.28 0.30
0.25 0.25
0.20 0.15

0.49

0.55

0.56

0.29

0.10

0.49

0.54

0.58

0.30

0.10

0.30

0.49

0.52

0.59

0.53

0.60

0.38

0.28

0.20

0.10

0.48

0.62

0.57

0.25

0.12

0.39

0.46

0.62

0.58

0.36

0.30

0.05

0.45

0.44

0.42

0.47

0.48

0.45

0.35

0.10

0.28

0.30

0.20

0.10

0.09

0.07

0.07

0.05

0.08

0.07

0.05

Using the contrast enhancement we modify the pixel values to obtain the
matrix as shown below.

0.18

0.18

0.29

0.20

0.22

0.46

0.40

0.18

0.48

0.60

0.63

0.60

0.12

0.48

0.56

0.52

0.58

0.18

0.48

0.54

0.66

0.56

0.71

0.71

0.44

0.08

0.08

0.10

0.17

0.16

0.05

0.05

0.03

0.02

0.01
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0.18 037 061 0.65 0.68 063 065 046 018 001

019 032 030 0.32 0.29 0.27 0.26 040 0.18 0.01

0.16 0.18 0.17 0.18 0.16 0.12 0.18 024 0.08 o001
0.12 012 0.07 0.08 0.08 0.05 0.08 0.03 0.02 0.01

0.01 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The point to be noted here is that the intensity values above and below 0.5
have been suitably modified to increase the contrast between the intensities.

Example on smoothing:

Consider the above example in which on repeated applications, the final
enhanced image is obtained. Now some random salt and pepper is introduced
into it. Salt and pepper noise is occurrence of black and white pixels scattered
randomly throughout the image.

The scaled values of intensities of pixels are as shown in the matrix.

0.00 0.00 000 000 0.00 000 0.00 o0.00 0.00 0.00
0.00 0.00 000 000 0.00 000 0.0 0.00 0.00 0.00
0.00 0.00 1.00 1.00 100 100 1.00 0.00 0.00 0.00
0.00 0.00 100 1.00 0.00 100 1.00 0.00 1.00 0.00
0.00 0.00 1.00 1.00 1.00 000 1.00 0.00 0.00 0.00
0.00 0.00 1.00 1.00 100 100 1.00 0.00 0.00 0.00
0.00 0.00 000 000 0.00 000 0.00 o0.00 0.00 0.00
0.00 0.00 000 000 0.00 000 0.00 o0.00 0.00 0.00
0.00 0.00 100 000 0.00 000 0.00 1.00 0.00 0.00

0.00 000 0.00 000 000 0.0 000 000 000 0.00
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After one application of smoothing algorithm, the intensity values are as
shown below

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.25 0.31 0.33 0.33 0.33 0.08 0.02 0.00

0.00 0.25 0.62 0.73 0.52 0.71 0.51 0.15 0.29 0.00

0.00 031 0.73 0.62 0.78 0.62 053 042 0.18 0.00

0.00 0.33 0.77 0.85 0.66 0.82 0.59 0.25 0.11 0.00

0.00 0.33 0.52 0.59 0.56 0.60 0.30 0.14 0.06 0.00

0.00 0.08 0.15 0.19 0.19 0.20 0.12 0.07 0.03 0.00

0.00 0.27 0.11 0.07 0.07 0.07 0.05 0.28 0.08 0.00

0.00 0.07 0.04 0.03 0.02 0.02  0.27 0.14 0.05 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

It can be seen that after application of smoothing algorithm the noise
intensity has been reduced. Later we apply enhancement algorithm to obtain
the figure without any noise.

We have seen two methods of fuzzy image processing namely, contrast
enhancement and smoothing. There are many other techniques such as filter-
ing, edge detection and segmentation. In contrast enhancement we improve
the gradation between the black and white and are able to easily spot out the
distinction between gray levels in the image. In smoothing we were able to
decrease the salt and pepper noise in the image.

Conclusion

In this section we have seen in detail about the fuzzy image processing and
the methods of image enhancement. The idea discussed can be extended even
to higher dimensional problems. The process is found to operate based on
the online and offline stage. Hence, this is a wide extension of fuzzy logic
applications.
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Adaptive Fuzzy Rules For Image Segmentation

Segmenting magnetic resonance images of the same body region taken at
different times is a challenging task. Obtaining reliable data to train a classifier
is difficult due the differences among subjects and even differences over time
in images acquired from a single subject. Unsupervised clustering can be used
to group like tissues into classes. However, clustering does not provide class
labels, is time consuming, and may not always provide suitable data partitions.
In this paper we show how a set of adaptive fuzzy rules can be used to identify
many of the voxels from a magnetic resonance image before clustering is done.
This allows clustering to be done on a subset of an image with a “good”
initialization, which mitigates the time required. The identified voxels can
also be used to identify clusters. The fuzzy rule based system followed by a
clustering step has been applied to 105.5 mm thick, magnetic resonance images
of the human brain which are taken from 15 different subjects. It is shown
that the segmentations produced are approximately five times faster than
those produced by fuzzy clustering alone and are comparable in the accuracy
of the segmentation.

Using Fuzzy Rules for Segmentation

The fuzzy rules for partially segmenting MR images of the brain are built
to operate on the T1, T2, and proton density weighted intensity feature
images. The first step in developing a set of fuzzy rules to segment an im-
age is determining the antecedent fuzzy sets. Hence, it is necessary to find
thresholds that separate tissue types in each of the three feature images.

In order to build fuzzy rules that apply to a large number of images, the
tissue thresholds, which determine the antecedent fuzzy sets of the rule, are
found via histogram analysis applied to each image slice to which the rules will
be applied. Figures 8.16-8.18 show a typical set of intensity histograms with
“turning points” which can be used to approximately separate tissue types.
For example, all voxels below bl in the PD histogram are air with those
between b2 and b4 generally white matter (Fig.8.17), and voxels between
al and a2 in the T1 histogram (Fig. 8.16) are a mixture of gray and white
matter. The histogram shape remains approximately the same across normal
subjects and as will be seen will have an expected set of changes for patients
with brain pathology. All patients with pathology have been injected with
gadolinium whose magnetic properties cause enhancement in regions where
the blood, brain barrier have been breached (i.e., regions where tumor exists).

Examining the histograms for a set of training images discovered the
existence of turning points. This research used six normal and four abnormal
slices, which were segmented or ground truthed by expert radiologists into
tissues of interest, as a training set. Projections of voxels, known to be of a
given tissue type, onto one or more of the histograms shown in Figs. 8.16-8.18
allowed us to choose the turning points. The turning points in the histograms
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Fig. 8.16. T1 histogram with turning points
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Fig. 8.17. PD histogram with turning points

Fig. 8.18. T2 histogram with turning points

are essentially the approximate boundaries between tissue types. The turning
points are automatically chosen on each test slice. From the turning points in
the histogram, fuzzy rules to identify four tissue classes (white matter, gray
matter, air/bone or background, and other or skull tissues such as fat, vis-
cous fluid in the eyes, etc.) can be generated. The rules and antecedent fuzzy
sets were generated by examining the intersection of tissue types in the three
intensity histograms.
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The rules adapt to each slice processed because they are generated from
the turning points found on each slice. So, technically the rules’ membership
functions are automatically generated for each slice. The turning points are
either peaks, valleys or the beginning of a hill in a histogram. The peaks and
valleys can be found by searching for a maximum/minimum histogram value.
The hill beginning is found by first creating intensity bins of width 30 (they
contain 30 intensity levels). Next the approximate hill starting point is found
by comparing the histogram sum in the first bin with the corresponding sum
of the succeeding bin. If the ratio is greater than or equal to our ratio threshold
of 1.8, then the middle intensity level of the bin was chosen as the beginning
point of the hill. If the ratio is less than the threshold the next two bins are
tested with the procedure continuing until a hill begin point is found. If a
peak is found before a hill begin point, 0.1 reduces the ratio and the process
is restarted.

Neither csf, which is a small class, nor pathology show up as a clear peak in
any of the histograms. It was found that pathology and csf could be partially
distinguished by viewing the voxel intensity as a percentage of the range of
intensities in either T1 or T2 weighted images. This approach enabled rules to
be generated for csf and pathology. The six fuzzy rules generated are shown
in Fig. 8.19.

rv fiaxel m T1 ti Set-E
AND voxel m Tg in Set-F
THEN so08a/ i* cxf

IF ttaxel m PD un Sdi-C
AND voxe/ n Tl u Set-A
THEN norel 1 White matter

IF vorel in PD n Set-D

AND wrxel in TT 1 Set-A

AND NOT (void in TB« Set P AND
voxel in T1 in Set E)

THEN voxel ie Gray tnatter

IF voxel in T1 is Set-B
AND TioTe/ m TV in Set-F
THEN noxei in Pathology

IF thseJ in n u Set-B

AND NOT (voxel in T8 it Set-F)
THEN voxel it Other

IF PD voxel intennity < bl

AND T8 voxel intensity < cl

THEN voxel n Background

MIN waA nnec! ia the fuzzy ‘and’ in
the rule*and NOT(x) = 1—x.

Fig. 8.19. Fuzzy rules for MR image segmentation
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The fuzzy sets used to generate the fuzzy rules are shown in Fig. 8.120 and
together with the rules indicate how the turning points based on histogram
shape can be used to separate voxels of different tissue types.

The rules are applied to all voxels, but will not classify all voxels. Spatial
information is used to assign memberships to voxels which are unclassified.
An unclassified voxel (i.e., having a zero membership in all classes) is assigned
a membership that is the average membership of its eight neighboring vox-
els, for each of the six classes. Also in the case of isolated classifications, i.e.,
when a voxel has a membership of 1.0 in aclass A, if all the eight surrounding
voxels have zero membership in that class, then the isolated voxel's member-
ship for class A is made zero. This step is aimed at reducing classification
errors.

Finally, the voxel memberships in all classes are normalized to 1 using:

Higy = )

where (csf, GrayMatter, WhiteMatter, Pathology, Skull tissues, Background).
The pathology rule applied to normal slices will incorrectly label a small
number of voxels as pathology. This error will need to be corrected in later
processing.

Patients with brain tumors are typically treated with radiation and
chemotherapy. A side effect of treatment is that the MR characteristics of
gray and white matter are changed and the PD histogram becomes some-
thing like that shown in Fig. 8.21. The “valley” shown in Fig. 8.17 is gone and
“turning points” b3, b4, and b5 cannot be reliably chosen.

Our strategy is to edge detect and remove the edge voxels or sharpen
the boundary between gray and white matter. The edge-value operator we
used is called the DIF1 operator as described. A histogram of the voxels
with low edge values will leave the peaks essentially the same and deepen
the valley between the peaks. This approach can be applied to normal slices
with the sole effect of deepening the already existing valley in the PD his-
togram.

An effective edge value threshold must be chosen to make this approach
work. The initial threshold is chosen to be 5, then edge detection is done and
all voxels with an edge value less than 5 are used to create a PD histogram.
If two peaks are found in the histogram the turning points are created, oth-
erwise the threshold is increased by 5 and the histogram re-created, peak
detection done, etc. The process continues until two peaks are found or an
edge value limit (30 here) is reached. In the case that no peaks could be
found approximate peaks are chosen at 1/3 and 2/3 of the region between bl
and b2 (Fig. 8.21). Figure8.22 shows an example abnormal slice with the PD
edge value image thresholded at 15 and the histogram of all voxels with edge
strengths <15.
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T1 Intensity

\begin{figure}

\centerline{

\psfig {figure=fzsets_t1.eps,width=2.5in,heig
.{figure=fzets_csf_t2.eps,width=2.5in,heig

}
0 \centerline{b}\end{figure}
b2 b3 b4 b5 b6
PD Intensity
T1 Intensity
(b)

Fig. 8.20. Fuzzy sets created using turning points from histograms (a) and fuzzy
sets created for identifying csf (b)
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@)
Fig. 8.21. Abnormal slice: (a) raw PD image (b) histogram

@ (b)

Fig. 8.22. PD edge value image: (a) Thresholded at 15 (i.e., white voxels are edge
voxels with edge value >15 (b) Histogram of voxels <15

All voxels can now be classified, though imperfectly, for normal or
abnormal volumes. The voxels that belong to classes with memberships
greater than 0.8 are generally correctly assigned. The rest of the voxels are
more problematic. Hence, we regroup them with a semisupervised clustering
algorithm, ssFCM. The voxels with membership greater than 0.8 are used as
training voxels for ssFCM and are weighted by a value of 100. The ssFCM
algorithm works as fuzzy c-means (FCM) except that training voxels cannot
change clusters and will always influence the cluster centroid to which they
are assigned. When they are weighted it is the same as having w (100 here)
instances of the train voxels influencing the cluster center location and hence
the assignment of voxels, not in the train set, to clusters.

For a typical normal slice there will be 16,816 training voxels (memberships
greater than 0.8) and 13,910 unassigned voxels. The remaining 34,810 voxels
were air or skull tissue voxels and are not clustered. The clustering is done
into c =10 classes to allow comparisons with FCM partitions of these same
images.

Experiments and Results

The fuzzy rules to identify tissues followed by an ssFCM clustering were
applied to 39 normal slices from eight volunteers and 66 abnormal slices from
seven patients. These slices lie in a range from near the center of the ventricles
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in the axial plane, characterized by a distinct X-shaped csf area and a single
symmetric region of white matter to slices near the top of the brain in the
axial plane, where the ventricular area is completely absent. There were six
normal slices and four slices with pathology used to develop the fuzzy rule
structure. These ten slices may be viewed as a set of training slices.

To approximate ground truth a set of supervised k nearest neighbor
(kN N) segmentations were used. These segmentations were created by multi-
ple observers choosing training sets for each slice. Segmentations that resulted
in visually good partitions of the data are used for comparison with our un-
supervised approaches. The value k = 7 was used.

Tables 8.1 and 8.2 summarize the comparison between the hybrid system
(fuzzy rules followed by ssFCM) and regular FCM vs. pseudo ground-truth
(kN N) for normal and abnormal slices, respectively. The time required is much
less for the hybrid system. There are more classification differences from the
kNN based “ground truth” for the hybrid system than FCM. To determine
whether the differences were significant we applied a Wilcoxon’s sum of ranks
test. The z values obtained are shown in Table8.3. A value z < 1.64 indi-
cates that there is a greater than 10% chance that the observed difference is
likely to occur by chance and hence cannot be proven significant. So, the z
values in Table 8.3 lead us to conclude there is no significant difference in the
segmentation results.

Hence a set of fuzzy rules whose antecedent fuzzy sets adapted to each
image are shown to be effective in reducing the time to segment magnetic res-
onance images of the human brain into tissues of interest. The segmentation

Table 8.1. Mean and standard deviation of results (test slices)

Y Z||Regular FCM ZX||Hybrid system

Mean Std. Dev. Mean Std. Dev.
Classification differences 4080.3 1328.7 5076.9 1566.9
(33 normals)
Classification differences 2376.4 11447 2402.5 1327.2
(62 abnormals)
Execution time (33 normals) 23.1 7.2 4.8 2.0
Execution time (62 abnormals) 21.4 9.8 3.7 1.3

Table 8.2. Mean and standard deviation of results (training slices)

1IN] 2c] |Regular FCM Z]|Hybrid system

Mean Std. Dev. Mean Std. Dev.
Classification differences 3986.5 846.5 3558.8 464.7
(six normals)
Classification differences 2773.0 1039.1 2167.8 879.5
(four abnormals)
Execution time (six normals) 21.7 6.4 5.7 2.0

Execution time (four abnormals) 19.8 6.4 3.0 11
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Table 8.3. r Values obtained from Wilcoxons’ sum of ranks test

Normal Abnormal
Test 14 0.82
Train 0.48 0.29

produced by the fuzzy rules serves as an initialization to a semisupervised clus-
tering algorithm which produces the final segmentation. The developed hybrid
segmentation system is approximately five times faster than FCM clustering.
It has been tested on 105.5 mm thick, magnetic resonance image slices of the
human brain using T1, T2, and proton density weighted images as feature
images (i.e., each voxel has three features). The images come from 15 dif-
ferent subjects and span a range from the ventricles (roughly the middle of
the brain in the axial plane) to the top of the brain. The hybrid segmenta-
tions are insignificantly different than those obtained with FCM clustering
when compared with a pseudo ground truth created from a supervised KNN
segmentation.

The overall performance of the segmentation approach demands further
refinement using some kind of knowledge. An example of a slice with signifi-
cant extracranial tissue that is misclassified in this approach as white matter
is shown in Fig. 8.23. Since the tissue is clearly outside the skull, simple knowl-
edge about removing all tissue spatially outside the skull would prevent this
tissue from being considered during processing.

The approach of using fuzzy rules whose antecedents fuzzy sets are created
from intensity histograms can be applied to other domains of images taken
of the same region over time as long as the shape of the histograms remains
approximately constant. Such rules provide a fast initial segmentation that
can be further refined via other image processing techniques or with the use
of heuristics in conjunction with image processing algorithms.

Fig. 8.23. MR image with significant extracranial tissue (run-81)



200 8 Applications of Fuzzy Logic

8.4 Fuzzy Logic in Biomedicine

8.4.1 Fuzzy Logic-Based Anesthetic Depth Control
Introduction

In most surgical operations, to anesthetize patients, manual techniques are
used in hospitals. The manual systems work either ON or OFF situations.
Because of not having interval values between ON and OFF in manual sys-
tems, anesthetic operations could not be safety and comfort. For this reason,
Fuzzy logic control is applied to control anesthesia. In this paper, an objec-
tive approach of giving anesthetic to patients during surgical operation using
Fuzzy logic is proposed.

Fuzzy logic theory is a general mathematical approach that allows partial
memberships. Several studies have shown fuzzy logic control to be an appro-
priate method for the control of complex processes. The basic configuration
of the logic system considered in this section is shown in Fig. 8.24.

Fuzzy logic system inputs T and N represent blood pressures (mmHg) and
pulse rates (p m_1), which are respectively obtained from patients during
anesthesia. Anesthesia Output (AO) represents fuzzy logic system output.

The potential benefits of using fuzzy logic control during anesthesia; in-
creasing patients safety and comfort, directing anesthetists attention to other
physiological variables they have to keep under control by abating their tasks,
using optimum anesthetic agent, protecting environment by using anesthetic
agent and decreasing the cost of surgical operations.

Fuzzy Logic Control Application In Anesthesia
Fuzzifier

Here two fuzzy logic input sets are used. One of them is the systolic blood
pressure of the patients, which are obtained in operation. The second input of
fuzzy logic set is pulse rates. The minimum and the maximum values (systolic
blood pressure and pulse rate) are obtained from surgical operations in 10 min
intervals from 27 patients (Table8.4).

Fig. 8.24. A block diagram of basic fuzzy logic system
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Table 8.4. Blood pressure, pulse rate and anesthesia ratio values accepted for fuzzy
logic control

Variable Minimum Maximum
value value
Blood Pressure (mmHg) 60 220
Pulse Rate (p m_1) 40 150
Anesthesia Ratio (%u) 0 4

Table 8.5. Membership function values

Linguistic variables Very low Low Normal High Very high
Blood pressure (mmHg) < 80 0 100-140  160-170 > 190
Puse rate (p m)_1 < 50 60 70-90 95-110 > 120
Anesthesia ratio (%u) 0 0.5-0.8 1-25 3-3.6 4

The sexuality of patients that the systolic blood pressure and pulse rate
values obtained are 12 women and 15 men. The age dispersion is between 3
and 77.

Aiding with the anesthetists, membership function values are formed as
very low, low, normal, high and very high intervals as shown in Table 8.5.

Fuzzifier operation is applied for blood pressure and pulse rate data. This
operation is realized to identify whether the input data is the member of this
set or not. To fuzzify both input data, trapezoid membership set is used.

As shown in Fig. 8.25, blood pressure data membership sets between 80
and 194mmHg are examined in groups as named T1, T2, T3, T4, T5, T6,
T7, T8, T9, T10, and T11l. Memberships sets for blood pressure data are
computed as:

Membership function for T1:

1,09 = (80 - x)/(80 - 84) 80 < x< 84

p(x) =1 84 < x < 90

p,(X) = (94 —x)/(94 —90) 90 < x < XA
As shown in Fig. 8.26, pulse rate data membership sets between 50 and
124 are examined in groups named as N1, N2, N3, N4, N5, N6, and N7.

Membership sets for pulse rate data are computed as:
Membership function for N1:

u(x) = (80 —x)/(80 —84) 50 < x< 54
p.(x) = 1 54 < x < 60
p,(X) = (94 —x)/(94 —90) 60 < x < 64

Fuzzy Rule Base and Data Base

Fuzzification is based on the rules that T and N inputs result in certain outputs
according to the rule base. Anesthetist is consulted about input and output
data in rule base.
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Fig. 8.25. Membership sets for blood pressure data

Fig. 8.26. Membership of pulse rate

The data given in Table 8.6 have impossible conditions in human beings.
These values are accepted as invalid conditions (Table 8.6).

Fuzzy Inference Engine

Defining the output sets according to rule base is materialized in output unit.
Contacts that are obtained according to this rule base are interpreted using
minimum correlation method such as:

if T=T1 and N=N1 then A=A1.
The rule base for T and N fuzzy inputs are shown in Table 8.7.

Defuzzifier

In defuzzifier unit, fuzzified functions, obtained from fuzzy inference engine
are converted into numeric values. Output membership sets Al, A2, A3, A4,
and A5 are converted into numeric values using the following equation:
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Table 8.6. Invalid input conditions

Blood pressure Pulse rate Anesthesia rate
High VeryJow Invalid condition
Very_high VeryJow Invalid condition
High Low Invalid condition
Very_high Low Invalid condition
VeryJow High Invalid condition
Low High Invalid condition
VeryJow Very_high Invalid condition
Low Very_high Invalid condition

Output membership sets according to the rule base for T and N fuzzy inputs are
defined as Al, A2, A3, A4, and A5 shown in Table 8.5. Note that S is the invalid
condition given in Table 8.4.

Table 8.7. Rule base for T and N fuzzy inputs

N1 N2 N3 N4 N5 N6 N7
T1 Al Al A2 A2 A2 S S
T2 A2 A2 A3 A3 A3 A4 A4
T3 A2 A3 A3 A3 A3 A4 A4
T4 A2 A3 A3 A3 A3 A4 A4
T5 A2 A3 A3 A3 A3 A4 A4
T6 A2 A3 A3 A3 A3 A4 A4
T7 A2 A3 A3 A3 A3 A4 A4
T8 S A4 Ad A4 A4 A5 A5
T9 S A4 A4 A4 A4 A5 A5
T10 S Ad A4 A4 A4 A5 A5
T11 S A5 A5 A5 A5 A5 A5
b
A (X)X
AO = 2—b2 ----------- ;
E W1n{x)

AO: Anesthesia output mna(x): Anesthetic membership function, x: Member
(blood pressure, pulse rate).

Finally, anesthetic rate applied to the patient is determined from AO
values. Membership function of fuzzifier is shown in Fig. 8.27.

Conclusion

Anesthetic depth control can be successfully implemented with the help of
fuzzy logic. Membership function and base rules have been determined from
an experimental prestudy on some patients. By this new analysis method, one
can achieve better performance on how much and when to apply anesthetic
agent. The main advantage of this system is that the anesthetic is given to
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the patient in a precise way, the anesthetist will spend less time to provide
anesthetic and the patient will have a safer and less expensive operation.

8.5 Fuzzy Logic in Industrial and Control Applications

8.5.1 Fuzzy Logic Enhanced Control of an AC Induction Motor
with a DSP

Introduction

Fuzzy logic is a new and innovative technology being used to enhance control-
engineering solutions. It allows complex system design directly from engi-
neering experience and experimental results, thus quickly rendering efficient
solutions. In a joint application project, Texas Instruments and Inform Soft-
ware have used fuzzy logic to improve AC induction motor control. The results
were intriguing: control performance has been improved while design effort has
been significantly reduced.

Market analysis shows that 90% of all industrial motor applications use
AC induction type motors. The reasons for this are high robustness, reliabil-
ity, low cost, and high efficiency. The drawback of using an AC induction type
motor is its difficult controllability, which is due to a strong nonlinear behavior
stemming from magnetic saturation effects and a strong temperature depen-
dency of electrical motor parameters. For example, the rotor time constant of
an induction motor can change up to 70% over the temperature range of the
motor. These factors make mathematical modeling of motor control systems
difficult. In real applications, only simplified models are used. The commonly
used control methods are:
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- Voltage/frequency control (U/ f)
- Stator current flux control (Is/f 2)
- Field oriented control

Of these approaches, the field-oriented control method has become the de
facto standard for speed and position control of AC induction motors. It deliv-
ers the best dynamic behavior and a high robustness under sudden momentum
changes. Alas, the optimization and parameterization of a field oriented con-
troller is laborious and must be performed specifically for each motor. Also,
due to the strong dependency of the motor’'s parameters, a controller opti-
mized for one temperature may not perform well if the temperature changes.
Figure 8.28 shows the demonstration of Test Motor at the Embedded Systems
Conference.

To avoid the undesirable characteristics of the field oriented control
approach, the companies Texas Instruments and Inform Software have
developed new alternative control methods, and compared them with the
field oriented control approach. The alternative methods involved two types
of flux controllers enhanced by fuzzy logic and NeuroFuzzy techniques, respec-
tively. The goal was to use fuzzy logic to improve the dynamic behavior of the
flux control approach such that the robust behavior of the flux controller and
the desirable dynamic properties of the field oriented controller are achieved
simultaneously.

Field Oriented Control Method

Figure 8.29 shows the principle of field oriented control. It allows for control
of the AC induction motor in the same way a separately exited DC motor
is controlled. The flux model computes the “phase shift” between rotor flux
field and stator field from the stator currents iu and iv, and the rotor angle
position n. The field oriented variables of the two independent controller units
are subsequently computed by the transformation of the stator currents using
this “phase shift.”

Fig. 8.28. Demonstration of the Test Motor at the Embedded Systems Conference,
San Jose
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Decoupling

Fig. 8.29. Field-oriented control of AC induction motors

The actual control model consists of two components of cascaded standard
Pl controllers. The upper component comprises outer magnetizing current
(imR) controller and inner isd current controller. The lower component com-
prises a speed controller and momentum controller. The input of the speed
controller is computed as the difference between set speed nref and filtered
measured speed n.

To optimize the field oriented control model, all controllers must be para-
meterized and optimized individually. In this application project, the method
of optimized amplitude adaptation was used to tune the current controller,
and the method of the symmetrical optimum was used for the velocity con-
troller. Implementation effort for the field oriented controller was three per-
son months, including parameterization and design of the flux model. The
computation time for the inner current controllers, the flux model, and the
coordinate transformation is 100 ]js on a TMS320C31-40 MHz digital signal
processor. When switching the set speed from —1,000 to +1, 000 rpm, the
new set speed is reached within only 0.25s without any overshoot. However,
this excellent performance is not always available. When the motor heats up
the control performance drops significantly, and a motor with slightly different
characteristics will achieve only mediocre results utilizing the same controller.

Fuzzy Flux Control Method

The conventional flux control model has been enhanced by fuzzy logic in two
steps. In the first step, the nonlinear relation between slip frequency and stator
current was described by a fuzzy logic system (Fuzzy Block #1). Figure8.30
shows the principle of the resulting fuzzy flux controller. The control model
consists of three inner control loops and one outer control loop. The inner
control loops control the three stator phase currents using standard Pl con-
trollers. The outer control loop determines the slip frequency n2, also using
a standard PI1 controller. The slip frequency is the input to Fuzzy Block #1,
which outputs the set value of the stator current. The primary objective for
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Fuzzy Block #1 is to keep the magnetizing current constant in all operating
modes. The magnetizing current is a nonlinear function of the slip frequency,
the rotor time constant, the rotor leakage factor, and a nonconstant offset
current.

The stator frequency nl is the sum of the measured rotor frequency n
and the slip frequency n2. The reference position is determined by integration
of the stator frequency nl. Modulated by sin/cos, the reference position is
multiplied with the set value of the stator current, and split back into a three
phase system of the stator current set values.

The rules of the fuzzy block were not manually designed, but rather gen-
erated from existing sample data by the NeuroFuzzy add-on module of the
fuzzy TECH design software. NeuroFuzzy utilizes neural network techniques
to automatically generate rule bases and membership functions from sample
data. The benefit of the NeuroFuzzy approach over the neural net approach is
that the result of NeuroFuzzy training is a transparent fuzzy logic system that
can be explicitly optimized and verified. In contrast, the result of a neural net
training is a rather nontransparent black box.

Comparison with Field Oriented Control

Figure 8.31 shows the performance of the fuzzy flux controller in comparison
with the field oriented controller. The overshoot performance is almost as good
as that provided by the field oriented control, however, it takes the fuzzy flux
controller almost twice as long to reach the new set speed (curve Fuzzy_1). On
the other hand, parameterization and optimization of the fuzzy flux controller
only required four person days. The computation time for the entire controller
is 150 |]js on the TMS320C31-40 MHz digital signal processor.

To improve the performance of the fuzzy flux controller, in a second step,
the standard P1 controller for the outer control loop was replaced by a fuzzy
Pl controller (Fuzzy Block #2 in Fig. 8.31). This fuzzy PI controller does not
use the proportional (P) and integral (I) component of the error signal, but
rather the differential (D) and proportional (P) component then integrates the
output. This type of fuzzy Pl controller has been used very successfully in a
number of recent applications, especially in the area of speed and temperature
control. In contrast to the standard Pl controller, the fuzzy Pl controller
implements a highly nonlinear transfer characteristic. The subwindow in the

Fig. 8.30. Principle of fuzzy flux controller
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Fig. 8.31. Enhanced fuzzy flux controller

lower left part of Fig. 8.32 shows the transfer characteristics for the fuzzy PI
controller implemented in this application.

The enhanced fuzzy flux controller reveals a much-improved dynamic per-
formance. The good performance attained in this case hinges on the nonlinear
behavior of the fuzzy Pl controller. In contrast to the conventional linear PI
controller, the nonlinearity of the fuzzy PI controller produces stronger con-
trol action for a large speed error, and a smoother control action for a small
speed error. This also results a higher robustness of the enhanced fuzzy flux
controller against parameter changes. The implementation of the second fuzzy
block with the fuzzy flux controller only required an additional day for the
fuzzy logic system itself, and two additional days for the optimization of the
total system. Hence, the total development effort for the enhanced fuzzy flux
controller was seven person days in comparison to three-person month for
the field-oriented controller. The computation time for the entire controller is
200 ]js on the used TMS320C31-40 MHz digital signal processor.

System Simulation Using Matlab/Simulink and fuzzy TECH

The initial design of the system was implemented in a software simulation.
The fuzzyTECH fuzzy-system development software was used together with
the Matlab/Simulink control-system simulation software. FuzzyTECH allows
using fuzzy blocks in Simulinks control diagrams. This tool combination allows
for the design of simulations combining conventional and fuzzy logic control
engineering technologies in the same software environment. Figure 8.32 shows
the development of the fuzzy blocks with fuzzyTECH/Simulink. The differen-
tial equation used for the simulation of the AC induction motor is modeled.

Fuzzy Logic on Digital Signal Processors

Because of the increasing number of successful of applications of fuzzy logic
in both control engineering and signal processing, DSP market leader Texas
Instruments was looking for a software partner to implement fuzzy logic on
DSP. In 1992, a formal partnership was formed with Inform Software Corp.,
a company specializing in fuzzy logic. One product of the partnership was the
design of dedicated versions of fuzzy TECH that allow the implementation of
fuzzy logic systems on standard T1-DSPs. The primary objective was to reach
an acceptable computing performance level for fuzzy logic on DSPs, a quality
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Fig. 8.32. Simulation of the enhanced fuzzy flux controller using the software prod-
ucts fuzzy TECH and Matlab/Simulink

previously unknown to software implementations of fuzzy logic. Using the
fuzzy TECH assembly kernel for 16 bit resolution, 2.98 million fuzzy rules per
second can be computed on the TMS230C52 (25ns instruction cycle DSP),
including fuzzification and defuzzification. For comparison: the most recent
dedicated fuzzy processor of VLSI (VY86C500/20) only computes 0.87 million
fuzzy rules per second (not including fuzzification and defuzzification) with
just 12 bit resolution (VLSI data sheet). While the referenced DSP only costs
a few dollars in large quantities, the fuzzy processor is quoted at $75 each.
This comparison shows that in most applications, the use of dedicated fuzzy
processors is not necessary.

Conclusion

The application project discussed in this section shows that even in ar-
eas where traditional control engineering already offers comprehensive solu-
tions, fuzzy logic can deliver substantial benefits. The fuzzy TECH assembly
kernel for DSPs developed by Texas Instruments and Inform Software Corp.
allows for the integration of fuzzy logic systems together with conventional
algorithms on the same chip, even when control loop times of a fraction of a
millisecond are required. Texas Instruments and Inform Software Corp. now
work on further enhancements of the fuzzy flux controller. The companies
are currently striving for even better dynamic performance by adding a fuzzy
air-gap flux observer to the system.
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8.5.2 Truck Speed Limiter Control by Fuzzy Logic
Introduction

Commercial trucks having a maximum load of more than 12 tons are required
to be equipped with a speed limiter that limits their maximum speed to
53.3 mph (86 km h-1). This case study focuses on the electro-pneumatic design
of such a speed limiter. In this design, a pneumatic cylinder mechanically
limits the throttle-opening angle of the fuel pump arm. A pulse proportional
electromechanical valve controls the cylinder pressure. This valve is connected
to an electronic control unit (ECU) that uses a microcontroller to drive the
valve according to the actual speed of the truck.

The design of an algorithm for this control problem proved to be difficult,
since the same speed limiter device is used in a variety of different trucks,
which exhibit different behaviors. In addition to this, the dynamic behavior
of a truck differs very much depending on whether it is fully loaded or empty.
Conventional control algorithms, such as PID controls, assume a linear model
of the process under control and can hence not be used for a solution. A so-
lution using a mathematical model of the truck is first laborious to build and
second of prohibitive computational effort for a low-cost 8-bit microcontroller.
Hence, fuzzy logic control was used to design the control algorithm.

Speed Limiter Requirements and Conventional Control

Figure 8.33 exemplifies the function of a truck speed limiter. When the truck
approaches the maximum velocity, the pneumatic valve reduces the throttle
opening angle of the fuel pump arm so that the maximum velocity vs. is not
surpassed. If the driver pushes down the accelerator pedal even more, the
speed limiter has to ensure a smooth ride at the maximum velocity.
However, due to the dead time and nonlinearities involved with this control
action, an actual overshoot and hunting occurs when using a proportional or
on-off controller. Adding a differential and integral part yields a PID controller
model. A PID controller generates the command value as a linear combination

Time

Fig. 8.33. The function of a speed limiter is to stop the truck from driving faster
than the maximum allowed speed (vs)
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Fig. 8.34. Tolerances for the operation of the speed limiter

of the error (P), the derivative of the error with respect to time (D) and the
integral of the error with respect to time (I). To tune a PID controller, the
combined weights of these three (3) components must be chosen, so that
they approximate the nonlinear behavior of the process under control at its
operating point. While this works with most processes that are at only one
operating point, it fails when the operating point moves. With a truck speed
limiter, the operating point moves because of the different load situations,
such as driving uphill or downhill, as well as driving empty or with a full
load. Furthermore, the characteristic of the pneumatic valve and the truck
fuel injection are highly nonlinear and vary from one truck to another.

Hence, if a PID control algorithm is used in a truck speed limiter, it can
only be tuned well for one operation point and one type of truck. For other
operation points and different truck types, overs