React and
React Native

Third Edition

Adam Boduch and Roy Derks

React and React Native
Third Edition

A complete hands-on guide to modern web and mobile
development with React.js

Adam Boduch
Roy Derks

BIRMINGHAM - MUMBAI

React and React Native
Third Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Ashwin Nair
Acquisition Editor: Ashitosh Gupta

Content Development Editor: Divya Vijayan
Senior Editor: Hayden Edwards

Technical Editor: Shubham Sharma

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Nilesh Mohite

First published: March 2017
Second edition: September 2018
Third edition: April 2020

Production reference: 1290420
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-114-0

www.packt.com

http://www.packt.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

e Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Adam Boduch has been involved in large-scale JavaScript development for nearly 10 years.
Before moving to the frontend, he worked on several large-scale cloud computing products
using Python and Linux. No stranger to complexity, Adam has practical experience with
real-world software systems and the scaling challenges they pose. He is the author of
several JavaScript and React books and is passionate about innovative user experiences and
high performance.

Roy Derks is a serial start-up CTO, conference speaker, and developer from Amsterdam.
He has been actively programming since he was a teenager, starting as a self-taught
programmer using online tutorials and books. At the age of 14, he founded his first start-
up, a peer-to-peer platform where users could trade DVDs with other users for free. This
marked the start of his career in web development, which back then primarily consisted of
creating web applications using an MVC architecture with the LAMP stack. In 2015, he was
introduced to React and GraphQL at a hackathon in Berlin, and after winning a prize for his
project, he started to use these technologies professionally. Over the next few years, he
helped multiple start-ups create cross-platform applications using React and React Native,
including a start-up that he co-founded. He also started giving workshops and talks at
conferences around the globe. In 2019, he gave over 20 conference talks about React, React
Native, and GraphQL, inspiring over 10,000 developers worldwide.

About the reviewers

Emmanuel Demey works with the JavaScript ecosystem on a daily basis. He spends his
time sharing his knowledge with anyone and everyone. His first goal at work is to help the
people he works with. He has spoken at numerous French conferences (including Devfest
Nantes, Devfest Toulouse, Sunny Tech, and Devoxx France) about topics related to the web
platform, such as JavaScript frameworks (Angular, React.js, and Vue,js), accessibility, and
Nest.js. He has been a trainer for 10 years at Worldline and Zenika (two French consulting
companies). He is also the co-leader of the Google Developer Group de Lille and the co-
organizer of the Devfest Lille conference.

Atul Sandilya Tiwari is working as Mobile Application Development Engineer since 2014.
He has worked as a Software Engineer in several Silicon Valley startups. He has also been
working as a React Native Development Engineer since 2017.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Section 1: React

Chapter 1: Why React?

What is React?
React is just the view layer
Simplicity is good
Declarative Ul structures
Time and data
Performance matters
The right level of abstraction

React Features
Revamped core architecture
Lifecycle methods
The Context API
Rendering fragments
Portals
Rendering lists and strings
Handling errors
Server-side rendering

What's new in React?
Memoizing functional components
Code splitting and loading
Hooks

Summary

Further reading

Chapter 2: Rendering with JSX
Technical requirements
Your first JSX content

Hello JSX

Declarative Ul structures
Rendering HTML

Built-in HTML tags

HTML tag conventions
Describing Ul structures
Creating your own JSX elements

Encapsulating HTML

Nested elements

10
11
12
12
13
15
16
17
17
17
18
18
18
19
19
20
20
20
21
21
22

23
23
23
24
24
25
25
26
27
28
28
30

Table of Contents

Namespaced components
Using JavaScript expressions
Dynamic property values and text
Mapping collections to elements
Fragments of JSX
Using wrapper elements
Using fragments
Summary
Further reading

Chapter 3: Component Properties, State, and Context
Technical requirements
What is component state?
What are component properties?
Setting a component state
Setting an initial component state
Creating a component state
Merging the component state
Passing property values
Default property values
Setting property values
Stateless components
Pure functional components
Defaults in functional components
Container components
Providing and consuming context
Summary
Further reading

Chapter 4: Getting Started with Hooks

Technical requirements

Maintaining state using Hooks
Initial state values
Updating state values

Performing initialization and cleanup actions
Fetching component data
Canceling requests and resetting state
Optimizing side-effect actions

Sharing data using context Hooks
Sharing fetched data
Updating stateful context data

Using reducer Hooks to scale state management
Using reducer actions
Handling state dependencies

Summary

31
33
34
35
36
37
38
39
40

41
42
42
43
44
44
45
47
49
50
51
53
53
55
55
57
61
61

62
62
62
63
64
66
66
68
72
73
74
78
81
82
84
90

[ii]

Table of Contents

Chapter 5: Event Handling - The React Way
Technical requirements
Declaring event handlers
Declaring handler functions
Multiple event handlers
Importing generic handlers
Using event handler context and parameters
Getting component data
Higher-order event handlers
Declaring inline event handlers
Binding handlers to elements
Using synthetic event objects
Understanding event pooling
Summary
Further reading

Chapter 6: Crafting Reusable Components
Technical requirements
Reusable HTML elements
The difficulty with monolithic components
The JSX markup
Initial state
Event handler implementation
Refactoring component structures
Starting with the JSX
Implementing an article list component
Implementing an article item component
Implementing an add article component
Making components functional
Render props
Refactoring class components using Hooks
Rendering component trees
Feature components and utility components
Summary
Further reading

Chapter 7: The React Component Life Cycle
Technical requirements
Why components need a life cycle
Initializing properties and state
Fetching component data
Initializing state with properties
Updating state with properties
Optimizing rendering efficiency

91
91
92
92
93
93
95
95
97
99
99
100
101
103
103

104
105
105
105
106
108
109
111
111
113
115
116
118
120
122
126
127
128
128

129
129
130
131
131
134
136
138

[iii]

Table of Contents

To render or not to render

Using metadata to optimize rendering
Rendering imperative components

Rendering jQuery Ul widgets
Cleaning up after components

Cleaning up asynchronous calls
Containing errors with error boundaries
Summary
Further reading

Chapter 8: Validating Component Properties
Technical requirements
Knowing what to expect
Promoting portable components
Simple property validators
Basic type validation
Requiring values
Any property value
Type and value validators
Things that can be rendered
Requiring specific types
Requiring specific values
Writing custom property validators
Summary
Further reading

Chapter 9: Handling Navigation with Routes
Technical requirements
Declaring routes

Hello route
Decoupling route declarations
Parent and child routes
Handling route parameters
Resource IDs in routes
Optional parameters
Using link components
Basic linking
URL and query parameters
Summary
Further reading

Chapter 10: Code Splitting Using Lazy Components and Suspense
Technical requirements
Using the lazy API
Dynamic imports and bundles

139
142
143
144
146
147
149
153
154

155
155
156
156
157
157
160
163
164
165
166
168
170
172
172

173
173
174
174
175
177
179
179
184
186
187
188
190
190

191
192
192
192

[iv]

Table of Contents

Making components lazy 193
Using the Suspense component 194
Top-level Suspense components 194
Simulating latency 196
Working with spinner fallbacks 197
When to avoid lazy components 198
Lazy pages and routes 200
Summary 202
Chapter 11: Server-Side React Components 203
Technical requirements 203
What is isomorphic JavaScript? 203
The server is a render target 204
Initial load performance 204
Sharing code between the server and the browser 205
Rendering to strings 206
Backend routing 208
Frontend reconciliation 211
Fetching data 214
Summary 217
Further reading 218
Chapter 12: User Interface Framework Components 219
Technical requirements 219
Layout and organization 220
Using containers 220
Building responsive grid layouts 222
Using navigation components 225
Navigating with drawers 225
Navigating with tabs 229
Collecting user input 232
Checkboxes and radio buttons 232
Text inputs and select inputs 233
Working with buttons 235
Working with styles and themes 237
Making styles 238
Customizing themes 239
Summary 241
Section 2: React Native
Chapter 13: Why React Native? 243
Technical requirements 243
What is React Native? 243
React and JSX are familar 245

Table of Contents

The mobile browser experience

Android and iOS - different yet the same

The case for mobile web apps
Summary
Further reading

Chapter 14: Kick-Starting React Native Projects

Technical requirements

Installing and using the Expo command-line tool

Viewing your app on your phone
Viewing your app on Expo Snack
Summary

Chapter 15: Building Responsive Layouts with Flexbox

Technical requirements
Flexbox is the new layout standard
Introducing React Native styles
Building Flexbox layouts
Simple three-column layout
Improved three-column layout
Flexible rows
Flexible grids
Flexible rows and columns
Summary
Further reading

Chapter 16: Navigating Between Screens
Technical requirements
Navigation basics
Route parameters
The navigation header
Tab and drawer navigation
Handling state
Summary
Further reading

Chapter 17: Rendering Item Lists
Technical requirements
Rendering data collections
Sorting and filtering lists
Fetching list data
Lazy list loading
Summary
Further reading

[vi]

245
246
247
247
248

249
249
250
251
257
261

262
262
263
264
266
267
270
273
275
278
281
282

283
283
284
287
290
294
298
305
305

306
307
307
309
316
318
320
320

Table of Contents

Chapter 18: Showing Progress
Technical requirements
Progress and usability
Indicating progress
Measuring progress
Navigation indicators
Step progress
Summary
Further reading

Chapter 19: Geolocation and Maps

Technical requirements

Where am 1?

What's around me?

Annotating points of interest
Plotting points
Plotting overlays

Summary

Further reading

Chapter 20: Collecting User Input
Technical requirements
Collecting text input
Selecting from a list of options
Toggling between on and off
Collecting date/time input
Summary
Further reading

Chapter 21: Displaying Modal Screens

Technical requirements
Important information
Getting user confirmation

Displaying a success confirmation

Error confirmation
Passive notifications
Activity modals
Summary
Further reading

Chapter 22: Responding to User Gestures

Technical requirements
Scrolling with your fingers
Giving touch feedback
Swipeable and cancellable

321
321
321
322
325
330
332
336
337

338
338
338
341
342
342
344
347
347

348
348
348
351
355
358
363
363

364
364
365
365
366
371
375
379
382
382

383
383
384
386
389

[vii]

Table of Contents

Summary 394
Further reading 394
Chapter 23: Controlling Image Display 395
Technical requirements 395
Loading images 396
Resizing images 398
Lazy image loading 402
Rendering icons 405
Summary 408
Further reading 408
Chapter 24: Going Offline 409
Technical requirements 409
Detecting the state of the network 409
Storing application data 413
Synchronizing application data 416
Summary 421
Further reading 421
Section 3: React Architecture
Chapter 25: Native Ul Components Using NativeBase 423
Technical requirements 424
Application containers 424
Headers, footers, and navigation 427
Using layout components 431
Collecting input using form components 434
Displaying data using lists 437
Showing user notifications 440
Summary 442
Chapter 26: Handling Application State 443
Technical requirements 443
Information architecture and Flux 444
Unidirectionality 444
Synchronous update rounds 445
Predictable state transformations 445
Unified information architecture 446
Implementing Redux 446
Initial application state 447
Creating the store 448
Store provider and routes 448
The App component 449
The Home component 452

[viii]

Table of Contents

State in mobile apps 456
Scaling the architecture 457
Summary 458
Further reading 458

Chapter 27: Why Apollo? 459
Yet another approach? 460
Verbose vernacular 460
Declarative data fetching 461
Mutating application state 464
Summary 466
Further reading 466

Chapter 28: Building an Apollo React App 467
Technical requirements 467
Todo and Apollo Client 467
The GraphQL schema 469
Bootstrapping Apollo Client 470
Adding todo items 474
Rendering todo items 478
Completing todo items 479
Summary 481

Other Books You May Enjoy 482

Index 485

[ix]

Preface

I never had any interest in developing mobile apps. I used to believe strongly that it was
the web, or nothing; that there was no need for yet more applications to install on devices
already overflowing with apps. Then, React Native came along. I was already writing React
code for web applications and loving it. It turns out that I wasn't the only developer that
balked at the idea of maintaining several versions of the same app using different tooling,
environments, and programming languages. React Native was created out of a natural
desire to take what works well from a web development experience standpoint (React), and
apply it to native app development. Native mobile apps offer better user experiences than
web browsers. It turns out I was wrong; we do need mobile apps for the time being. But
that's okay, because React Native is a fantastic tool. This book is essentially my experience
as a React developer for the web and as a less experienced mobile app developer. React
Native is meant to be an easy transition for developers who already understand React for
the web. With this book, you'll learn the subtleties of doing React development in both
mobile and web environments. You'll also learn the conceptual theme of React, a simple
rendering abstraction that can target anything. Today, it's web browsers and mobile
devices. Tomorrow, it could be anything.

The second edition of this book was written to address the rapidly evolving React project-
including state-of-the-art best practices for implementing React components as well as the
ecosystem surrounding React. I think it's important for React developers to appreciate how
React works and how the implementation of React changes to better support the people
who rely on it. I've done my best to capture the essence of React as it is today and the
direction in which it's moving, in this edition of React and React Native.

Who this book is for

This book is written for any JavaScript developer—beginner or expert—who wants to start
learning how to put both of Facebook's Ul libraries to work. No knowledge of React is
required, although a working knowledge of ECMAScript (ES) will help you follow along
better.

Preface

What this book covers

This book covers the following three sections:

e React: Chapters 1 to 12
¢ React Native: Chapters 13 to 24
o React Architecture: Chapters 25 to 28

Section 1 — React

Chapter 1, Why React?, covers the basics of what React really is, and why you want to use
it.

Chapter 2, Rendering with [SX, explains that JSX is the syntax used by React to render
content. HTML is the most common output, but JSX can be used to render many things,
such as native Ul components.

Chapter 3, Component Properties, State, and Context, shows how properties are passed to
components, how state re-renders components when it changes, and the role of context in
components.

Chapter 4, Getting Started with Hooks, gets you moving with the new Hooks React API that
replaces many legacy React APIs.

Chapter 5, Event Handling — The React Way, explains that events in React are specified in
JSX. There are subtleties associated with how React processes events, and how your code
should respond to them.

Chapter 6, Crafting Reusable Components, shows that components are often composed using
smaller components. This means that you have to properly pass data and behavior to child
components.

Chapter 7, The React Component Life Cycle, explains how React components are created and
destroyed all the time. There are several other life cycle events that take place in between,
where you do things such as fetch data from the network.

Chapter 8, Validating Component Properties, shows that React has a mechanism that allows
you to validate the types of properties that are passed to components. This ensures that
there are no unexpected values passed to your component.

[2]

Preface

Chapter 9, Handling Navigation with Routes, explains that navigation is an essential part of
any web application. React handles routes declaratively using the react -router package.

Chapter 10, Code Splitting Using Lazy Components and Suspense, shows you how to structure
your components so that only code that's needed is loaded into the browser.

Chapter 11, Server-Side React Components, discusses how React renders components to the
DOM when rendered in the browser. It can also render components to strings, which is
useful for rendering pages on the server and sending static content to the browser.

Chapter 12, User Interface Framework Components, introduces you to the popular Material-UI
React framework for building responsive Uls.

Section 2 - React Native

Chapter 13, Why React Native?, shows that React Native is React for mobile apps. If you've
already invested in React for web applications, then why not leverage the same technology
to provide a better mobile experience?

Chapter 14, Kick-Starting React Native Projects, discusses how nobody likes writing
boilerplate code or setting up project directories. React Native has tools to automate these
mundane tasks.

Chapter 15, Building Responsive Layouts with Flexbox, explains why the Flexbox layout
model is popular with web Ul layouts using CSS. React Native uses the same mechanism to
lay out screens.

Chapter 16, Navigating Between Screens, discusses the fact that while navigation is an
important part of web applications, mobile applications also need tools to handle how a
user moves from one screen to the next.

Chapter 17, Rendering Item Lists, demonstrates that React Native has a list view component
that's perfect for rendering lists of items. You simply provide it with a data source, and it
handles the rest.

Chapter 18, Showing Progress, explains that progress bars are great for showing a specified
amount of progress. When you don't know how long something will take, you use a
progress indicator. React Native has both of these components.

[3]

Preface

Chapter 19, Geolocation and Maps, shows that the react-native-maps package provides
React Native with mapping capabilities. The Geolocation API that's used in web
applications is provided directly by React Native.

Chapter 20, Collecting User Input, shows that most applications need to collect input from
the user. Mobile applications are no different, and React Native provides a variety of
controls that are not unlike HTML form elements.

Chapter 21, Displaying Modal Screens, explains that alerts are designed to interrupt the user
to let them know something important has happened, while notifications are unobtrusive
updates, and confirmation is used to get an immediate answer.

Chapter 22, Responding to User Gestures, discusses how gestures on mobile devices are
something that's difficult to get right in the browser. Native apps, on the other hand,
provide a much better experience for swiping, touching, and so on. React Native handles a
lot of the details for you.

Chapter 23, Controlling Image Display, shows how images play a big role in most
applications, either as icons, logos, or photographs of things. React Native has tools for
loading images, scaling them, and placing them appropriately.

Chapter 24, Going Offline, explains that mobile devices tend to have volatile network
connectivity. Therefore, mobile apps need to be able to handle temporary offline conditions.
For this, React Native has local storage APIs.

Section 3 — React Architecture

Chapter 25, Native UI Components Using NativeBase, shows you how to build native user
interfaces using pre-built, platform-agnostic Ul components.

Chapter 26, Handling Application State, discusses how application state is important for any
React application, web or mobile. This is why understanding libraries such as Redux and
Immutable.js is important.

Chapter 27, Why Apollo?, explains that Apollo and GraphQL, used together, represent a
novel approach to handling state at scale. It is a query and mutation language, plus a
library for wrapping React components.

Chapter 28, Building an Apollo React App, shows that the real advantage of Apollo and
GraphQL lies in the fact that your state schema is shared between web and native versions
of your application.

[4]

Preface

To get the most out of this book

As you go through the book, you will uncover how all the concepts come together when
building web and mobile applications with React.

All code examples have been tested using React 16.13, React Native 0.62, Node.js 14.
Before you start, you will need the following things set up:

e A code editor
¢ A modern web browser
e Node,js

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at

www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to
you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/React-and-React-Native---Third-Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

[5]

http://www.packt.com
http://www.packtpub.com/support
http://www.packt.com/support
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition

Preface

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, path names, dummy URLs, user input, and Twitter handles. Here is an
example: "The Query component takes a GraphQL query as a prop and returns an object
with the state variables, 1oading, error, and data."

A block of code is set as follows:

import React, { Component } from 'react';

// Renders a "<button>" element, using

// "this.props.children" as the text.

export default class MyButton extends Component {
render () A

return <button>{this.props.children}</button>;

}

}

Any command-line input or output is written as follows:

$ npm install -g create-react-native-app
$ create-react-native-app my-project

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[6]

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[7]

http://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com

Section 1: React

In this section, we will cover the following chapters:

e Chapter 1, Why React?

e Chapter 2, Rendering with JSX

e chapter 3, Component Properties, State, and Context
e chapter 4, Getting Started with Hooks

e chapter 5, Event Handling — the React Way

e chapter 6, Crafting Reusable Components

e chapter 7, The React Component Life Cycle

e Chapter 8, Validating Component Properties

e chapter 9, Handling Navigation with Routes

e chapter 10, Code Splitting Using Lazy Components and Suspense
e Chapter 11, Server-Side React Components

e Chapter 12, User Interface Framework Components

Why React?

If you're reading this book, you probably know what React is. If not, don't worry. I'll do my
best to keep philosophical definitions to a minimum. However, this is a long book with a
lot of content, so I feel that setting the tone is an appropriate first step. Yes, the goal is to
learn React and React Native. But it's also to put together a lasting architecture that can
handle everything we want to build with React today and in the future.

This chapter starts with a brief explanation of why React exists. Then, we'll think about the
simplicity of React and how React is able to handle many of the typical performance issues
faced by web developers. Next, we'll go over the declarative philosophy of React and the
level of abstraction that React programmers can expect to work with. Finally, we'll touch on
some of the major features of React.

Once you have a conceptual understanding of React and how it solves problems with Ul
development, you'll be better equipped to tackle the remainder of the book.

This chapter will cover the following topics:

e What is React?
e React Features
e What's new in React?

What is React?

I think the one-line description of React on its home page
(https://facebook.github.io/react) is concise and accurate:

" A JavaScript library for building user interfaces.”

https://facebook.github.io/react)

Why React? Chapter 1

It's a library for building user interfaces (UIs). This is perfect because, as it turns out, this is
all we want most of the time. I think the best part about this description is everything that it
leaves out. It's not a mega framework. It's not a full-stack solution that's going to handle
everything from the database to real-time updates over WebSocket connections. We might
not actually want most of these prepackaged solutions.

If React isn't a framework, then what is it exactly?

React is just the view layer

React is generally thought of as the view layer in an application. You might have used a
library such as Handlebars or jQuery in the past. Just like jQuery manipulates Ul elements
and Handlebars templates are inserted into the page, React components change what the
user sees. The following diagram illustrates where React fits in our frontend code:

Application Code

Data

A
React Component

A 4
Browser DOM

This is all there is to React—the core concept. Of course, there will be subtle variations to
this theme as we make our way through the book, but the flow is more or less the same. We
have some application logic that generates some Data. We want to render this Data to the
UI, so we pass it to a React Component, which handles the job of getting the HTML into
the page.

You may wonder what the big deal is; React appears to be yet another rendering
technology. We'll touch on some of the key areas where React can simplify application
development in the remaining sections of the chapter.

[10]

Why React? Chapter 1

Simplicity is good

React doesn't have many moving parts to learn about and understand. Internally, there's a
lot going on, and we'll touch on these things throughout the book. The advantage of having
a small API to work with is that you can spend more time familiarizing yourself with it,
experimenting with it, and so on. The opposite is true of large frameworks, where all of
your time is devoted to figuring out how everything works. The following diagram gives
you a rough idea of the APIs that we have to think about when programming with React:

React Component

Data

React DOM

Lifecycle e

e

Events

JSX

React is divided into two major APIs:

¢ The React Component API: These are the parts of the page that are actually
rendered by React DOM.

e React DOM: This is the API that's used to perform the actual rendering on a web
page.

Within a React component, we have the following areas to think about:

¢ Data: This is data that comes from somewhere (the component doesn't care
where), and is rendered by the component.

e Lifecycle: This consists of methods or Hooks that we implement to respond to
the component's entering and exiting phases of the React rendering process as
they happen over time. For example, one phase of the lifecycle is when the
component is about to be rendered.

e Events: These are the code that we write for responding to user interactions.

e JSX: This is the syntax of React components used to describe UI structures.

Don't fixate on what these different areas of the React API represent just yet. The takeaway
here is that React, by nature, is simple. Just look at how little there is to figure out! This
means that we don't have to spend a ton of time going through API details here. Instead,
once you pick up on the basics, we can spend more time on nuanced React usage patterns
that fit in nicely with declarative UI structures.

[11]

Why React? Chapter 1

Declarative Ul structures

React newcomers have a hard time coming to grips with the idea that components mix
markup in with their JavaScript in order to declare Ul structures. If you've looked at React
examples and had the same adverse reaction, don't worry. Initially, we're all skeptical of
this approach, and I think the reason is that we've been conditioned for decades by the
separation of concerns principle. This principle states that different concerns, such as logic
and presentation, should be separate from one another. Now, whenever we see things
mixed together, we automatically assume that this is bad and shouldn't happen.

The syntax used by React components is called JSX (JavaScript XML). A component
renders content by returning some JSX. The JSX itself is usually HTML markup, mixed with
custom tags for React components. The specifics don't matter at this point; we'll go into
detail in the coming chapters. What's groundbreaking about the declarative JSX approach is
that we don't have to perform little micro-operations to change the content of a component.

Although I won't be following the convention in this book, some React
developers prefer the . jsx extension instead of . js for their components.

For example, think about using something like jQuery to build your application. You have
a page with some content on it, and you want to add a class to a paragraph when a button
is clicked. Performing these steps is easy enough. This is called imperative programming,
and it's problematic for UI development. While this example of changing the class of an
element is simple, real applications tend to involve more than three or four steps to make
something happen.

React components don't require executing steps in an imperative way. This is why JSXis
central to React components. The XML-style syntax makes it easy to describe what the Ul
should look like. That is, what are the HTML elements that this component is going to
render? This is called declarative programming and is very well suited for UI development.
Once you've declared your Ul structure, you need to specify how it changes over time.

Time and data

Another area that's difficult for React newcomers to grasp is the idea that JSX is like a static
string, representing a chunk of rendered output. This is where time and data come into
play. React components rely on data being passed into them. This data represents the
dynamic parts of the Ul For example, a Ul element that's rendered based on a Boolean
value could change the next time the component is rendered. Here's a diagram of the idea:

[12]

Why React? Chapter 1

React Component

‘ <diy/> |‘ <div/> |

React Component

¢

React Component

‘<div/>| ‘ <p/> |

Each time the React component is rendered, it's like taking a snapshot of the JSX at that
exact moment in time. As your application moves forward through time, you have an
ordered collection of rendered UI components. In addition to declaratively describing what
a Ul should be, re-rendering the same JSX content makes things much easier for developers.
The challenge is making sure that React can handle the performance demands of this
approach.

Performance matters

Using React to build Uls means that we can declare the structure of the UI with JSX. This is
less error-prone than the imperative approach of assembling the UI piece by piece.
However, the declarative approach does present a challenge: performance.

For example, having a declarative Ul structure is fine for the initial rendering, because
there's nothing on the page yet. So, the React renderer can look at the structure declared in
JSX and render it in the DOM browser.

The Document Object Model (DOM) represents HTML in the browser
after it has been rendered. The DOM API is how JavaScript is able to
change content on the page.

[13]

Why React? Chapter 1

This concept is illustrated in the following diagram:

JSX HTML

<div> <div>

o] | | | (=2

On the initial render, React components and their JSX are no different from other template
libraries. For instance, Handlebars will render a template to HTML markup as a string,
which is then inserted into the browser DOM. Where React is different from libraries such
as Handlebars is when data changes and we need to re-render the component. Handlebars
will just rebuild the entire HTML string, the same way it did on the initial render. Since this
is problematic for performance, we often end up implementing imperative workarounds
that manually update tiny bits of the DOM. We end up with a tangled mess of declarative
templates and imperative code to handle the dynamic aspects of the UL

We don't do this in React. This is what sets React apart from other view libraries.
Components are declarative for the initial render, and they stay this way even as they're re-
rendered. It's what React does under the hood that makes re-rendering declarative Ul
structures possible.

React has something called the virtual DOM, which is used to keep a representation of the
real DOM elements in memory. It does this so that each time we re-render a component, it
can compare the new content to the content that's already displayed on the page. Based on
the difference, the virtual DOM can execute the imperative steps necessary to make the
changes. So, not only do we get to keep our declarative code when we need to update the
UL but React will also make sure that it's done in a performant way. Here's what this
process looks like:

JSX Virtual DOM

imperativeAction()

<div>

) imperativeAction()
imperativeAction()

[14]

Why React?

When you read about React, you'll often see words such as diffing and
patching. Diffing means comparing old content with new content to figure
out what's changed. Patching means executing the necessary DOM

operations to render the new content.

Like any other JavaScript library, React is constrained by the run-to-completion nature of
the main thread. For example, if the React internals are busy diffing content and patching
the DOM, the browser can't respond to user input. As you'll see in the last section of this
chapter, changes were made to the internal rendering algorithms in React 16 to mitigate
these performance pitfalls.

With performance concerns addressed, we need to make sure that we're confident that
React is flexible enough to adapt to different platforms that we might want to deploy our

apps to in the future.

The right level of abstraction

Another topic I want to cover at a high level before we dive into React code is abstraction.

In the preceding section, you saw how JSX syntax translates to low-level operations that
update our Ul A better way to look at how React translates our declarative Ul components
is via the fact that we don't necessarily care what the render target is. The render target
happens to be the browser DOM with React, but it isn't restricted to the browser DOM.

React has the potential to be used for any UI we want to create, on any conceivable device.
We're only just starting to see this with React Native, but the possibilities are endless. I
personally will not be surprised when React Toast becomes a thing, targeting toasters that
can singe the rendered output of JSX onto bread. The abstraction level with React is at the

right level, and it's in the right place.

The following diagram gives you an idea of how React can target more than just the

browser:

Component

Component

Component

Component

v

3

v

v

React Web

React Native

React Desktop

React Toast

v

v

v

v

Browser

Mobile Device

Laptop

Bread

[15]

Why React? Chapter 1

From left to right, we have React Web (just plain React), React Native, React Desktop, and
React Toast. As you can see, to target something new, the same pattern applies:

¢ Implement components specific to the target.

¢ Implement a React renderer that can perform the platform-specific operations
under the hood.

This is, obviously, an oversimplification of what's actually implemented for any given
React environment. But the details aren't so important to us. What's important is that we
can use our React knowledge to focus on describing the structure of our Ul on any
platform.

React Toast will probably never be a thing, unfortunately.

Now that you understand the role of abstractions in React, let's see what's new in React 16.

React Features

The second edition of this book covers the major changes in React 16. I'm leaving this
section intact for the third edition because I think the changes that were introduced in React
16 are still new and important enough to be relevant to learning React.

The features of React 16 include the following;:

e Revamped core architecture
e Lifecycle methods

e Context API

¢ Rendering fragments

e Portals

¢ Rendering lists and strings
¢ Handling errors

e Server-side rendering

Let's look at each new feature in detail.

[16]

Why React? Chapter 1

Revamped core architecture

Perhaps the biggest change in React 16 is the change made to the internal reconciliation
code. These changes don't impact the way that you interact with the React API. Instead,
these changes were made to address some pain points that were preventing React from
scaling up in certain situations. For example, one of the main concepts of this new
architecture is that of fibers. Instead of rendering every component on the page in a run-to-
compilation way, React renders fibers—smaller chunks of the page that can be prioritized
and rendered asynchronously.

For a more in-depth look at this new architecture, these resources should be helpful:

® https://github.com/acdlite/react-fiber-architecture
® https://reactjs.org/blog/2017/09/26/react-v16.0.html

Lifecycle methods

React 16 had to revamp some of the lifecycle methods that are available to class
components. Some lifecycle methods are deprecated and will eventually be removed
because they will be problematic for future async rendering functionality in React. For
example, a common way to initialize state in a React component is to use the
componentWillMount () lifecycle method. Once this method is removed from React, you
can just set the initial state directly as an instance value.

For more information on these lifecycle methods, visit https://reactjs.org/blog/2018/
03/27/update-on-async-rendering.html.

The Context API

React has always provided a Context API for developers, but it was always considered
experimental. Context is an alternative approach to passing data from one component to
the next. For example, using properties, you can passing data through a tree of components
that is several layers deep. The components in the middle of this tree don't actually use any
of these properties—they're just acting as intermediaries. This becomes problematic as your
application grows because you have lots of properties in your source that add to the
complexity.

[17]

https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html

Why React? Chapter 1

The new Context API in React 16.3 is more stable than previous versions and provides a
way for you to supply your components with data at any tree level. You can read more
about the new Context API here: https://reactjs.org/docs/context .html.

Rendering fragments

If your React component renders several sibling elements, say three <p> elements, for
instance, you would have to wrap them in <div> because React would only allow
components to return a single element. The only problem with this approach is that it leads
to a lot of unnecessary DOM structure. Wrapping your elements with <Fragment> is the
same as wrapping them with <div>, except there won't be any superfluous DOM elements.

You can read more about fragments here: https://reactjs.org/docs/fragments.html.

Portals

When a React component returns content, it gets rendered into its parent component. Then,
that parent's content gets rendered into its parent component and so on, all the way to the
tree root. There are times when you want to render something that specifically targets a
DOM element. For example, a component that should be rendered as a dialog probably
doesn't need to be mounted at the parent. Using a portal, you can control precisely where
your component's content is rendered.

You can read more about portals here: https://reactjs.org/docs/portals.html.

Rendering lists and strings

Prior to React 16, components had to return either an HTML element or another React
component as its content. This can restrict how you compose your application. For
example, you might have a component that is responsible for generating an error message.
You used to have to wrap strings in HTML tags or map list items to HTML tags in order to
be considered a valid React component output. Now you can just return the string.
Similarly, you can just return a list of strings or a list of elements.

This blog post introducing React 16 has more details on this new functionality: https://
reactjs.org/blog/2017/09/26/react-v16.0.html.

[18]

https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html

Why React? Chapter 1

Handling errors

Error handling in React can be difficult. Where exactly do you handle errors? If a
component handles a JavaScript exception and sets an error state on the component to
true, how do you reset this state? In React 16, there are error boundaries. Error boundaries
are created by implementing the componentDidCatch () lifecycle method in a component.
This component can then serve as the error boundary by wrapping other components. If
any of the wrapped components throw an exception, the error boundary component can
render alternative content.

Having error boundaries in place like this allows you to structure your components in a
way that best suits your application. You can read more about error boundaries
here: https://reactjs.org/docs/error-boundaries.html.

Server-side rendering

Server-side rendering (SSR) in React can be difficult to wrap your head around. You're
rendering on the server, then rendering on the client too? Since the SSR pattern has become
more prevalent, the React team has made it easier to work within React 16. In addition,
there are a number of internal performance gains as well as efficiency gains by enabling
streaming rendered content to the client.

If you want to read more about SSR in React 16, I recommend the following resources:

® https://hackernoon.com/whats-new-with-server-side-rendering-in-react-
16-900d78585d67

® https://reactjs.org/docs/react-dom-server.html

However, in this book, the focus will be on using Next.js for SSR since it's so much easier
than using a manual setup. Next.js is a simple framework for building React applications
that handles many gory details related to routing and SSR.

Now that you're familiar with the big changes that came with React 16, it's time to take a
look at the cutting edge features available in the latest React release.

[19]

https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html

Why React? Chapter 1

What's new in React?

The third edition of this book includes React features that were introduced after version
16.6.0. In the following sections, I'll give you a brief introduction to the new functionality.
Each feature will be covered in greater detail as you make your way through the book.

For now, we will briefly look at the following:

¢ Memoizing functional components
e Cook splitting and loading
e Hooks

Let's start exploring them.

Memoizing functional components

The React .memo () function is the modern equivalent of the PureComponent class.
Memoized components avoid re-rendering if the component data hasn't changed. In the
past, you would extend your class component with PureComponent. This would
automatically handle checking whether the component data has changed or not and
whether or not the component should re-render.

The challenge with this approach is that it is now common for large React applications to
have a lot of functional components. Before React .memo (), there was no way to memorize
components so that they could avoid re-rendering if no data changes happened. Now, you
can pass your functional components to React .memo () and they'll behave like
PureComponent.

You can read more about React .memo () here: https://reactjs.org/docs/react-api.

html#reactmemo.

Code splitting and loading

Prior to the React . lazy () function, code splitting in large React applications was
cumbersome. Code splitting is important for large applications because it reduces the size
of the code bundles that are sent to the browser, which can dramatically improve the user
experience. Some features of an application might never be used, which means that the
code that implements those features is never delivered to the browser. This is a huge
efficiency gain.

[20]

https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo

Why React? Chapter 1

With the addition of React . lazy (), React acknowledges that code splitting and the user
experience of waiting for pieces of the application to load are integral parts of the
application, not an afterthought. By combining React .lazy () and the Suspense
component, we get fine-grained control over how our app is split up and what happens
while the user waits for it to load.

You can read more about code splitting here: https://reactjs.org/docs/code-
splitting.html.

Hooks

One of the most consequential new features of React is Hooks—functions that extend the
behavior of functional React components. Hooks are used to "hook into" the React
component machinery from your React components. Instead of relying on classes to build
components that have state or that rely on executing side effects when the component is
mounted, you can use the React Hooks API to pass functions that handle these cases.

The end result is having more flexibility with how you're able to compose React
components since functions are more easily shared between modules than component class
methods are. Hooks are the future of how React components are assembled, which will
have a big impact on the third edition of this book, where there's a new chapter devoted to
Hooks, as well as updated code in all chapters from the second edition.

You can read more about Hooks here: https://reactjs.org/docs/Hooks—intro.html.

Summary

In this chapter, you were introduced to React at a high level. React is a library, with a small
API, used to build Uls. Next, you were introduced to some of the key concepts of React.
We discussed the fact that React is simple because it doesn't have a lot of moving parts.
Next, we looked at the declarative nature of React components and JSX. Then, you learned
that React takes performance seriously and that this is how we're able to write declarative
code that can be re-rendered over and over. Next, you learned about the idea of render
targets and how React can easily become the UI tool of choice for all of them. Lastly, I gave
you a rough overview of what's new in React 16.x.

That's enough introductory and conceptual stuff for now. As we make our way toward the
end of the book, we'll revisit these ideas. For now, let's take a step back and nail down the
basics, starting with JSX.

[21]

https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

Why React? Chapter 1

Further reading

Take a look at the following links for more information:

React: https://facebook.github.io/react
Introducing Hooks: https://reactjs.org/docs/hooks—intro.html

React Fiber Architecture: https://github.com/acdlite/react-fiber-
architecture

React v16.0: https://reactjs.org/blog/2017/09/26/react-v16.0.html

Update on Async Rendering: https://reactjs.org/blog/2018/03/27/update-
on-async-rendering.html

Context: https://reactjs.org/docs/context .html

Fragments: https://reactjs.org/docs/fragments.html

Portals: https://reactjs.org/docs/portals.html

Error Boundaries: nttps://reactjs.org/docs/error-boundaries.html

What’s New With Server-Side Rendering in React 16: https://hackernoon.com/
whats—-new-with-server-side-rendering-in-react-16-900d478585d67

ReactDOMServer: https://reactjs.org/docs/react-dom-server.html

[22]

https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://facebook.github.io/react
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://github.com/acdlite/react-fiber-architecture
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/portals.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html

Rendering with JSX

This chapter will introduce you to JSX. JSX is the XML/HTML markup syntax that's
embedded in your JavaScript code and used to declare your React components. At the
lowest level, you'll use HTML markup to describe the pieces of your Ul Building React
applications involves organizing these pieces of HTML markup into components. When
you create a component, you add new vocabulary to JSX beyond basic HTML markup. This
is where React gets interesting; when you have your own JSX tags that can use JavaScript
expressions to bring your components to life. J[SX is the language used to describe Uls built
using React.

In this chapter, we'll cover the following;:

e Your first JSX content

¢ Rendering HTML

¢ Describing Ul structures

¢ Creating your own JSX elements

Using JavaScript expressions

Fragments of JSX

Technical requirements

The code present in this chapter can be found at https://github.com/PacktPublishing/
React-and-React-Native---Third-Edition/tree/master/Chapter02.

Your first JSX content

In this section, we'll implement the obligatory "hello world" JSX application. At this point,
we're just dipping our toes in the water; more in-depth examples will follow. We'll also
discuss what makes this syntax work well for declarative Ul structures.

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter02

Rendering with [SX Chapter 2

Hello JSX

Without further ado, here's your first JSX application:

import React from 'react';
import { render } from 'react-dom';

render (

<p>

Hello, JSX
</p>,
document.getElementById('root")
)i

Let's walk through what's happening here. First, we need to import the relevant pieces. The
render () function takes JSX as the first argument and renders it to the DOM node passed
as the second argument.

The actual JSX content in this example renders a paragraph with some bold text inside.
There's nothing fancy going on here, so we could have just inserted this markup into the
DOM directly as a plain string. However, the aim of this example is to show the basic steps
involved in getting JSX rendered onto the page. Now, let's talk a little bit about the
declarative Ul structure.

JSXis transpiled into JavaScript statements; browsers have no idea what
JSXis. I would highly recommend downloading the companion code for
this book

from https://github.com/PacktPublishing/React-and-React-Native-T
hird-Edition, and running it as you read along. Everything transpiles
automatically for you; you just need to follow the simple installation
steps.

Declarative Ul structures

Before we move forward with more in-depth code examples, let's take a moment to reflect
on our "hello world" example. The JSX content was short and simple. It was also
declarative because it described what to render, not how to render it. Specifically, by
looking at the JSX, you can see that this component will render a paragraph, and some bold
text within it. If this were done imperatively, there would probably be some more steps
involved, and they would probably need to be performed in a specific order.

[24]

https://github.com/PacktPublishing/React-and-React-Native-Second-Edition
https://github.com/PacktPublishing/React-and-React-Native-Second-Edition

Rendering with [SX Chapter 2

I find it helpful to think of declarative as structured and imperative as
ordered. It's much easier to get things right with a structure than to
perform steps in a specific order.

The example we just implemented should give you a feel for what declarative React is all
about. As we move forward in this chapter and throughout the book, the JSX markup will
grow more elaborate. However, it's always going to describe what is in the UI.

The render () function tells React to take your JSX markup and transform it into JavaScript
statements that update the Ul in the most efficient way possible. This is how React enables
you to declare the structure of your Ul without having to think about carrying out ordered
steps to update elements on the screen; an approach that often leads to bugs. Out of the
box, React supports the standard HTML tags that you would find on any HTML page.
Unlike static HTML, React has unique conventions that should be followed when using
HTML tags.

Rendering HTML

At the end of the day, the job of a React component is to render HTML into the

DOM browser. This is why JSX has support for HTML tags out of the box. In this section,
we'll look at some code that renders a few of the available HTML tags. Then, we'll cover
some of the conventions that are typically followed in React projects when HTML tags are
used.

Built-in HTML tags

When we render JSX, element tags reference React components. Since it would be tedious
to have to create components for HTML elements, React comes with HTML components.
We can render any HTML tag in our JSX, and the output will be just as we'd expect. Now,
let's try rendering some of these tags:

import React from 'react';
import { render } from 'react-dom';

render (
<div>
<button />
<code />
<input />
<label />

[25]

Rendering with [SX Chapter 2

<p />
<pre />
<select />
<table />

</div>,
document .getElementById ('root"')
)i

Don't worry about the formatting of the rendered output for this example. We're making
sure that we can render arbitrary HTML tags, and they render as expected, without any
special definitions and imports.

You may have noticed the surrounding <div> tag, grouping together all
of the other tags as its children. This is because React needs a root
component to render. Later in the chapter, you'll learn how to render
adjacent elements without wrapping them in a parent element.

HTML elements rendered using JSX closely follow regular HTML element syntax with a
few subtle differences regarding case sensitivity and attributes.

HTML tag conventions

When you render HTML tags in JSX markup, the expectation is that you'll use lowercase for
the tag name. In fact, capitalizing the name of an HTML tag will fail. Tag names are case-
sensitive and non-HTML elements are capitalized. This way, it's easy to scan the markup
and spot the built-in HTML elements versus everything else.

You can also pass HTML elements any of their standard properties. When you pass them
something unexpected, a warning about the unknown property is logged. Here's an
example that illustrates these ideas:

import React from 'react';
import { render } from 'react-dom';

render (
<pbutton title="My Button" foo="bar">
My Button
</button>,
document .getElementById('root')
)i

render (<Button />, document.getElementById('root'));

[26]

Rendering with [SX Chapter 2

When you run this example, it will fail to compile because React doesn't know about the
<Button> element; it only knows about <button>.

Later on in the book, I'll cover property validation for the components that
you make. This avoids silent misbehavior, as seen with the foo property
in this example.

You can use any valid HTML tags as JSX tags, as long as you remember that they're case-
sensitive and that you need to pass the correct attribute names. In addition to simple HTML
tags that only have attribute values, you can use HTML tags to describe the structure of
your page content.

Describing Ul structures

JSXis capable of describing screen elements in a way that ties them together to form a
complete Ul structure. Let's look at some JSX markup that declares a more elaborate
structure than a single paragraph:

import React from 'react';
import { render } from 'react-dom';

render (
<section>
<header>
<h1>A Header</hl>
</header>
<nav>
Nav Item
</nav>
<main>
<p>The main content...</p>
</main>
<footer>
<small>© 2019</small>
</footer>
</section>,
document .getElementById('root')
)

[27]

Rendering with [SX Chapter 2

This JSX markup describes some fairly sophisticated Ul structure. Yet, it's easier to read
than imperative code because it's XML, and XML is good for concisely expressing a
hierarchical structure. This is how we want to think of our UI when it needs to change, not
as an individual element or property.

Here is what the rendered content looks like:

A Header

Nav Item
The main content...

© 2018

There are a lot of semantic elements in this markup describing the structure of the UI For
example, the <header> element describes the top part of the page where the title is, and the
<main> element describes where the main page content goes. This type of complex
structure makes it clearer for developers to reason about. But before we start implementing
dynamic JSX markup, let's create some of our own JSX components.

Creating your own JSX elements

Components are the fundamental building blocks of React. In fact, components are the
vocabulary of J[SX markup. In this section, we'll see how to encapsulate HTML markup
within a component. We'll build examples that nest custom JSX elements and learn how to
namespace your components.

Encapsulating HTML

We create new JSX elements so that we can encapsulate larger structures. This means that
instead of having to type out complex markup, you can use your custom tag. The React
component returns the JSX that goes where the tag is used. Let's look at the following
example:

import React, { Component } from 'react';
import { render } from 'react-dom';

class MyComponent extends Component {

[28]

Rendering with [SX Chapter 2

render () A
return (
<section>
<h1>My Component</hl>
<p>Content in my component...</p>
</section>
)i
t
t
render (<MyComponent />, document.getElementById('root'));

Here's what the rendered output looks like:

My Component

Content in my component...

This is the first React component that we've implemented, so let's take a moment to dissect
what's going on here. We created a class called MyComponent, which extends the
Component class from React. This is how we create a new JSX element. As you can see in
the call to render (), you're rendering a <MyComponent> element.

The HTML that this component encapsulates is returned by the render () method. In this
case, when the JSX <MyComponent > is rendered by react-dom, it's replaced by a
<section> element, and everything within it.

When React renders JSX, any custom elements that you use must have
their corresponding React component within the same scope. In the
preceding example, the MyComponent class was declared in the same
scope as the call to render (), so everything worked as expected. Usually,
you'll import components, adding them to the appropriate scope. You'll
see more of this as you progress through the book.

HTML elements such as <div> often take nested child elements. Let's see whether we can
do the same with JSX elements, which we create by implementing components.

[29]

Rendering with [SX Chapter 2

Nested elements

Using JSX markup is useful for describing Ul structures that have parent-child
relationships. Child elements are created by nesting them within another component: the
parent. For example, a <11i> tag is only useful as the child of a tag or a <o1>
tag—you're probably going to make similar nested structures with your own React
components. For this, you need to use the children property. Let's see how this works.

Here's the JSX markup:

import React from 'react';
import { render } from 'react-dom';

import MySection from './MySection';
import MyButton from './MyButton';

render (
<MySection>
<MyButton>My Button Text</MyButton>

</MySection>,
document .getElementById ('root")

)

You're importing two of your own React components: MySection and MyButton. Now, if
you look at the JSX markup, you'll notice that <MyButton> is a child of <MySection>.
You'll also notice that the MyButton component accepts text as its child, instead of more
JSX elements. Let's see how these components work, starting with MySection:

import React, { Component } from 'react';

export default class MySection extends Component {
render () A
return (
<section>
<h2>My Section</h2>
{this.props.children}
</section>

)

}

This component renders a standard <section> HTML element, a heading, and then
{this.props.children}.It's this last piece that allows components to access nested

elements or text, and to render them.

[30]

Rendering with [SX Chapter 2

The two braces used in the preceding example are used for JavaScript
expressions. I'll touch on more details of the JavaScript expression syntax
found in JSX markup in the following section.

Now, let's look at the MyBut ton component:
import React, { Component } from 'react';

export default class MyButton extends Component {
render () A
return <button>{this.props.children}</button>;
}
}

This component uses the exact same pattern as MySection; take the
{this.props.children} value and surround it with markup. React handles the details
for you. In this example, the button text is a child of MyButton, which is, in turn, a child of
MySection. However, the button text is transparently passed through MySection. In other
words, we didn't have to write any code in MySection to make sure that MyButton got its
text. Pretty cool, right? Here's what the rendered output looks like:

My Section

My Button Text

We can further organize our components by placing them within a namespace.

Namespaced components

The custom elements that you've created so far have used simple names. A namespace
provides an organizational unit for your components so that related components can share
the same namespace prefix. Instead of writing <MyComponent> in your JSX markup, you
would write <MyNamespace .MyComponent>. This makes it clear that MyComponent is part
of MyNamespace.

[31]

Rendering with [SX Chapter 2

Typically, MyNamespace would also be a component. The idea of namespacing is to have a
namespace component render its child components using the namespace syntax. Let's take
a look at an example:

import React from 'react';
import { render } from 'react-dom';

import MyComponent from './MyComponent';

render (
<MyComponent>
<MyComponent .First />
<MyComponent .Second />
</MyComponent>,
document .getElementById('root')
)i

This markup renders a <MyComponent > element with two children. Instead of writing
<First>, we write <MyComponent .First>, and the same with <MyComponent . Second>.
We want to explicitly show that First and Second belong to MyComponent within the
markup.

I personally don't depend on namespaced components like these, because
I'd rather see which components are in use by looking at the import
statements at the top of the module. Others would rather import one
component and explicitly mark the relationship within the markup. There
is no one correct way to do this; it's a matter of personal taste.

Now, let's take a look at the MyComponent module:
import React, { Component } from 'react';
class First extends Component {

render () {
return <p>First...</p>;

class Second extends Component {
render () {
return <p>Second...</p>;

class MyComponent extends Component {
render () {

[32]

Rendering with [SX Chapter 2

return <section>{this.props.children}</section>;
}
}

MyComponent .First = First;
MyComponent.Second = Second;

export default MyComponent;
export { First, Second };

This module declares MyComponent as well as the other components that fall under this
namespace (First and Second). It assigns the components to the namespace component
(MyComponent) as class properties. There are a number of things that you could change in
this module. For example, you don't have to directly export First and Second since
they're accessible through MyComponent. You also don't need to define everything in the
same module; you could import First and Second and assign them as class properties.
Using namespaces is completely optional, and, if you use them, you should use them
consistently.

You now know how to build your own React components that introduce new JSX tags in
your markup. You can also control the HTML content that a given component renders and
provide components with a namespace to avoid confusion. The components that we've
looked at so far in this chapter have been static. That is, once we rendered them, they were
never updated. JavaScript expressions are the dynamic pieces of JSX and are what cause
React to update components.

Using JavaScript expressions

As you saw in the preceding section, JSX has a special syntax that allows you to embed
JavaScript expressions. Any time React renders JSX content, expressions in the markup are
evaluated. This is the dynamic aspect of JSX, and in this section, you'll learn how to use
expressions to set property values and element text content. You'll also learn how to map
collections of data to JSX elements.

[33]

Rendering with [SX Chapter 2

Dynamic property values and text

Some HTML property or text values are static, meaning that they don't change as JSX
markup is re-rendered. Other values, the values of properties or text, are based on data that
is found elsewhere in the application. Remember, React is just the view layer. Let's look at
an example so that you can get a feel for what the JavaScript expression syntax looks like in

JSX markup:

import React from 'react';
import { render } from 'react-dom';

const enabled = false;
const text = 'A Button';
const placeholder = 'input value...';
const size = 50;
render (
<section>

<button disabled={'!enabled}>{text}</button>
<input placeholder={placeholder} size={size} />
</section>,
document .getElementById ('root"')

)

Anything that is a valid JavaScript expression, including nested JSX, can go in between the
braces: {}. For properties and text, this is often a variable name or object property. Notice,
in this example, that the !enabled expression computes a Boolean value. Here's what the

rendered output looks like:

A Button input value...

If you're following along with the downloadable companion code, which I
strongly recommend doing, try playing with these values and seeing how
the rendered HTML changes.

Primitive JavaScript values are straightforward to use in JSX syntax. But what if you have
an object or array that you need to transform into JSX elements?

[34]

Rendering with [SX Chapter 2

Mapping collections to elements

Sometimes, you need to write JavaScript expressions that change the structure of your
markup. In the preceding section, you learned how to use JavaScript expression syntax to
dynamically change the property values of JSX elements. What about when you need to
add or remove elements based on JavaScript collections?

Throughout the book, when I refer to a JavaScript collection, I'm referring
to both plain objects and arrays. Or, more generally, anything that's
iterable.

The best way to dynamically control JSX elements is to map them from a collection. Let's
look at an example of how this is done:

import React from 'react';
import { render } from 'react-dom';

const array = ['First', 'Second', 'Third'];

const object = {
first: 1,
second: 2,
third: 3

}i

render (
<section>

<hl1>Array</hl>

{array.map (i => (

<1li key={i}>{i}</1li>

))

<h1>0Object</hl>

{Object.keys (object) .map (i => (
<li key={i}>
{i}:
{object[i]}

)))

</section>,
document .getElementById ('root"')

[35]

Rendering with [SX Chapter 2

The first collection is an array called array, populated with string values. Moving down to
the JSX markup, you can see the call to array.map (), which returns a new array. The
mapping function is actually returning a JSX element (<11i>), meaning that each item in the
array is now represented in the markup.

The result of evaluating this expression is an array. Don't worry— JSX
knows how to render arrays of elements.

The object collection uses the same technique, except you have to call Object .keys () and
then map this array. What's nice about mapping collections to JSX elements on the page is
that you can control the structure of React components based on the collected data. This
means that you don't have to rely on imperative logic to control the UL

Here's what the rendered output looks like:

Array

o First
e Second
e Third

Object

o first: 1
o second: 2
e third: 3

JavaScript expressions bring JSX content to life. React evaluates expressions and updates
the HTML content based on what has already been rendered and what has changed.
Understanding how to utilize these expressions is important because they're one of the
most common day-to-day activities of any React developer. Now it's time to learn how to
group together JSX markup without relying on HTML tags to do so.

Fragments of JSX

React 16 introduces the concept of JSX fragments. Fragments are a way to group together
chunks of markup without having to add unnecessary structure to your page. For example,
a common approach is to have a React component return content wrapped in a <div>
element. This element serves no real purpose and adds clutter to the DOM.

[36]

Rendering with [SX Chapter 2

Let's look at an example. Here are two versions of a component. One uses a wrapper
element and one uses the new fragment feature:

import React from 'react';
import { render } from 'react-dom';

import WithoutFragments from './WithoutFragments';
import WithFragments from './WithFragments';

render (
<div>
<WithoutFragments />
<WithFragments />
</div>,
document .getElementById ('root")
)

The two elements rendered are <WithoutFragments> and <WithFragments>. Here's
what they look like when rendered:

Without Fragments

Adds an extra div element.

With Fragments

Doesn't have any unused DOM elements.

Let's compare the two approaches now.

Using wrapper elements

The first approach is to wrap sibling elements in <div>. Here's what the source looks like:
import React, { Component } from 'react';

class WithoutFragments extends Component {
render () A
return (
<div>
<h1>Without Fragments</hl>
<p>
Adds an extra <code>div</code> element.

[371]

Rendering with [SX Chapter 2

</p>
</div>

)i
}
export default WithoutFragments;

The essence of this component is the <h1> and <p> tags. Yet, in order to return them from
render (), you have to wrap them with <div>. Indeed, inspecting the DOM using your
browser dev tools reveals that <div> does nothing but add another level of structure:

v <div
hl=Without Fragments</hl
¥ <p
"Adds an extra "
code>div</code
" element."
/p
/div

Now, imagine an app with lots of these components—that's a lot of pointless elements!
Let's see how to use fragments to avoid unnecessary tags.

Using fragments

Now, let's take a look at the withFragments component, where we have avoided using
unnecessary tags:

import React, { Component, Fragment } from 'react';

class WithFragments extends Component {
render () {
return (
<Fragment>
<h1>With Fragments</hl>
<p>Doesn't have any unused DOM elements.</p>
</Fragment>
)i

}

export default WithFragments;

[38]

Rendering with [SX Chapter 2

Instead of wrapping the component content in <div>, the <Fragment> element is used.
This is a special type of element that indicates that only its children need to be rendered.
You can see the difference compared to the WithoutFragments component if you inspect
the DOM:

h1l=With Fragments</hl
p=Doesn't have any unused DOM elements.</p

Notice how you had to import Fragment from React in the previous
example? This is because not all transpilers such as Babel understand the
Fragment element yet. In future versions, there will actually be a
shorthand way to express fragments in J[SX: <>My Content</>.But, for
now, React .Fragment should work with all React tooling. Personally, I
find the <Fragment> syntax easier to read.

With the advent of fragments in JSX markup, we have less HTML rendered on the page
because we don't have to use tags such as <div> for the sole purpose of grouping elements
together. Instead, when a component renders a fragment, React knows to render the event's
child element wherever the component is used.

Summary

In this chapter, you learned about the basics of JSX, including its declarative structure,
which leads to more maintainable code. Then, you wrote some code to render some basic
HTML and learned about describing complex structures using JSX; every React application
has at least some structure.

Next, you spent some time learning about extending the vocabulary of JSX markup by
implementing your own React components, which is how you design your Ul as a series of
smaller pieces and glue them together to form the whole. Then, you learned how to bring
dynamic content into JSX element properties, and how to map JavaScript collections to JSX
elements, eliminating the need for imperative logic to control the Ul display. Finally, you
learned how to render fragments of JSX content using new React 16 functionality, which
prevents unnecessary HTML elements from being used.

Now that you have a feel for what it's like to render Uls by embedding declarative XML in
your JavaScript modules, it's time to move on to the next chapter, where we'll take a deeper
look at component properties and state.

[39]

Rendering with [SX Chapter 2

Further reading

Refer to the following links for more information:

° Introducing JSX: nhttps://reactis.org/docs/introducing-jsx.html
. Fragments: https://reactjs.org/docs/fragments.html

[40]

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html

Component Properties, State,
and Context

React components rely on JSX syntax, which is used to describe the structure of the UI JSX
will only get you so far—you need data to fill in the structure of your React components.
The focus of this chapter is on component data, which comes in two main varieties:
properties and state. Another option for passing data to components is via a context.

I'll start things off by defining what is meant by properties and state. Then, I'll walk
through some examples that show you the mechanics of setting component state and
passing component properties. Toward the end of this chapter, we'll build on your
newfound knowledge of properties and state and introduce functional components and the
container pattern. Finally, you'll learn about context and when it makes a better choice than
a property for passing data to components.

In this chapter, we'll cover the following topics:

e What is component state?

What are component properties?

Setting a component state
¢ Passing property values

Stateless components

Container components

Providing and consuming context

Component Properties, State, and Context Chapter 3

Technical requirements

The code present in this chapter can be found at https://github.com/PacktPublishing/
React-and-React-Native-—--Third-Edition/tree/master/Chapter03.

What is component state?

React components declare the structure of UI elements using JSX. However, components
need data if they are to be useful. For example, your component JSX might declare
that maps a JavaScript collection to <1i> elements. Where does this collection come from?

State is the dynamic part of a React component. You can declare the initial state of a
component, which changes over time.

Imagine that you're rendering a component where a piece of its state is initialized to an
empty array. Later on, this array is populated with data using setState (). This is called a
change in state, and whenever you tell a React component to change its state, the
component will automatically re-render itself, calling render (). The process is visualized
here:

Component

Initial State

I
State 4—[setState() }

The state of a component is something that either the component itself can set, or other
pieces of code, outside of the component. Now we'll look at component properties and
explain how they differ from component state.

[42]

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter03

Component Properties, State, and Context Chapter 3

What are component properties?

Properties are used to pass data into your React components. Instead of calling a method
with a new state as the argument, properties are passed only when the component is
rendered. That is, you pass property values to JSX elements.

In the context of JSX, properties are called attributes, probably because
that's what they're called in XML parlance. In this book, properties and
attributes are synonymous with one another.

Properties are different than state because they don't change after the initial render of the
component. If a property value has changed, and you want to re-render the component,
then we have to re-render the JSX that was used to render it in the first place. The React
internals take care of making sure this is done efficiently. Here's a diagram of rendering
and re-rendering a component using properties:

render()

JSX

v
Props

A
Component —

This looks a lot different than a stateful component. The real difference is that with
properties, it's often a parent component that decides when to render the JSX. The
component doesn't actually know how to re-render itself. As you'll see throughout this
book, this type of top-down flow is easier to predict than state that changes all over the
place.

Let's make sense of state and properties by writing some code, starting with setting the
state of your components.

[43]

Component Properties, State, and Context Chapter 3

Setting a component state

In this section, you're going to write some React code that sets the state of components.
First, you'll learn about the initial state—that is, the default state of a component. Next,
you'll learn how to change the state of a component, causing it to re-render itself. Finally,
you'll see how a new state is merged with an existing state.

Setting an initial component state

The initial state of a component isn't actually required, but if your component uses state, it
should be set. This is because if the component expects certain state properties to be there
and they aren't, then the component will either fail or render something unexpected.
Thankfully, it's easy to set the initial component state.

The initial state of a component should always be an object with one or more properties.
For example, you might have a component that uses a single array as its state. This is fine,
but just make sure that you set the initial array as a property of the state object. Don't use
an array as the state. The reason for this is simple: consistency. Every React component uses
a plain object as its state.

Let's turn our attention to some code now. Here's a component that sets an initial state
object:

import React, { Component } from 'react';

export default class MyComponent extends Component {
state = {
first: false,
second: true
bi

render () {
const { first, second } = this.state;

return (
<main>
<section>
<button disabled={first}>First</button>
</section>
<section>
<button disabled={second}>Second</button>
</section>
</main>
)i

[44]

Component Properties, State, and Context Chapter 3

}
}

If you look at the JSX that's returned by render (), you can actually see the state values
that this component depends on—first and second. Since you've set these properties up
in the initial state, you're safe to render the component, and there won't be any surprises.
For example, you could render this component only once, and it would render as expected
thanks to the initial state set in MyComponent in the preceding code listing:

import React from 'react';
import { render } from 'react-dom';
import MyComponent from './MyComponent';

render (<MyComponent />, document.getElementById('root'));

Here's what the rendered output looks like:

First

Second

Setting the initial state isn't very exciting, but it's important nonetheless. Let's make the
component re-render itself when the state is changed.

Creating a component state

Let's create a component that has some initial state. You'll then render this component and
update its state. This means that the component will be rendered twice. Let's take a look at
the component:

import React, { Component } from 'react';

export default class MyComponent extends Component {

state = {
heading: 'React Awesomesauce (Busy)',
content: 'Loading...'
}i
render () A
const { heading, content } = this.state;
return (
<main>
<hl>{heading}</hl>

[45]

Component Properties, State, and Context Chapter 3

<p>{content }</p>
</main>
)i
}
}

The JSX of this component depends on two state values—heading and content. The
component also sets the initial values of these two state values, which means that it can be
rendered without any unexpected "gotchas." Now, let's look at some code that renders the
component and then re-renders it by changing the state:

import React from 'react';
import { render } from 'react-dom';

import MyComponent from './MyComponent';

const myComponent = render (<MyComponent />,
document .getElementById ('root'));

setTimeout (() => {
myComponent .setState ({
heading: 'React Awesomesauce',
content: 'Done!'

)i
}, 3000);

The component is first rendered with its default state. However, the interesting spot in this
code is the setTimeout () call. After 3 seconds, it uses setState () to change the two state
property values. Sure enough, this change is reflected in the UL Here's what the initial state
looks like when rendered:

React Awesomesauce (Busy)

Loading...

[46]

Component Properties, State, and Context Chapter 3

Here's what the rendered output looks like after the state change:

React Awesomesauce

Done!

This example highlights the power of having declarative JSX syntax to
describe the structure of the UI component. You declare it once and
update the state of the component over time to reflect changes in the
application as they happen. All the DOM interactions are optimized and
hidden from view.

In this example, you replaced the entire component state. That is, the call to setState ()
passed in the same object properties found in the initial state. But what if you only want to
update part of the component state?

Merging the component state

When you set the state of a React component, you're actually merging the state of the
component with the object that you pass to setState (). This is useful because it means
that you can set part of the component state while leaving the rest of the state as it is. Let's
look at an example now. First, let's implement a component that has some initial state set
on it:

import React, { Component } from 'react';

export default class MyComponent extends Component {

state = {
first: 'loading...',
second: 'loading...',
third: 'loading...',
fourth: 'loading...',
doneMessage: 'finished!'

bi

render () A

const { state } = this;

return (

{Object.keys (state)
.filter (key => key !== 'doneMessage')

[47]

Component Properties, State, and Context

Chapter 3

.map (key => (
<li key={key}>
{key}:
{statelkey]}

This component renders the keys and values of its state—except for doneMessage. Each
value defaults to 1oading. ... To iterate over objects, we have to use Object .keys (),
which returns an array of the object keys. Next, filter () is used to return a new array of
object keys but without the doneMessage value. Finally, we can call map () to map each
object key to an <11i> element. The value that corresponds to the key is looked up on the

state object, like so: state [key].

Let's write some code that sets the state of each state property individually:

import React from 'react';
import { render } from 'react-dom';
import MyComponent from './MyComponent';

const myComponent = render (<MyComponent />,
document .getElementById ('root"'));

setTimeout (() => {

myComponent .setState({ first: 'done!' });
}, 1000);
setTimeout (() => {

myComponent .setState ({ second: 'done!' });
}, 2000);
setTimeout (() => {

myComponent .setState ({ third: 'done!' });
}, 3000);
setTimeout (() => {

myComponent .setState (state => ({

...state,

fourth: state.doneMessage

)i
}, 4000);

[48]

Component Properties, State, and Context Chapter 3

The takeaway from this example is that you can set individual state properties on
components. It will efficiently re-render itself. Here's what the rendered output looks like
for the initial component state:

first: loading...
second: loading...
third: loading...
fourth: loading...

Here's what the output looks like after three of the set Timeout () callbacks have run:

first: done!
second: done!
third: done!
fourth: finished!

The fourth call to setState () looks different from the first three. Instead of passing a new
object to merge into the existing state, you can pass a function. This function takes a state
argument—the current state of the component. This is useful when you need to base state
changes on current state values. In this example, the doneMessage value is used to set the
value of fourth. The function then returns the new state of the component. It's up to you to
merge existing state values into the new state. You can use the spread operator to do this
(...state).

Components with state usually have an initial state. You can then change the initial values
by calling setsState (). If you only need to change part of the state, you can pass an object
with only the values that you want to change and React will take care of merging the values
into the overall state of the component. Now that we've looked at the state of a component
that changes over time, it's time to learn about properties that never change.

Passing property values

Properties are like state data that gets passed into components. However, properties are
different from state in that they're only set once, which is when the component is rendered.
In this section, you'll learn about default property values. Then, we'll look at setting
property values. After this section, you should be able to grasp the differences between
component state and properties.

[49]

Component Properties, State, and Context Chapter 3

Default property values

Default property values work a little differently than default state values. They're set as a
class attribute called defaultProps. Let's take a look at a component that declares default

property values:

import React, { Component } from 'react';

export default class MyButton extends Component {
static defaultProps = {
disabled: false,
text: 'My Button'
i

render () {
const { disabled, text } = this.props;

return <button disabled={disabled}>{text}</button>;

}
}

Why not just set the default property values as an instance property, like you would with
default state? The reason is that properties are immutable, and there's no need for them to
be kept as an instance property value. State, on the other hand, changes all the time, so the
component needs an instance-level reference to it. You can see that this component sets
default property values for disabled and text. These values are only used if they're not
passed in through the JSX markup used to render the component.

Let's go ahead and render this component without any properties, to make sure that the
defaultProps values are used:

import React from 'react';
import { render } from 'react-dom';
import MyButton from './MyButton';

render (<MyButton />, document.getElementById('root'));

The same principle of always having default state applies to properties too. We want to be
able to render components without having to know in advance what the dynamic values of
the component are. In this example, the MyButton component renders a <button> element
using the default disabled and text property values. Now, let's write some code that
passes new property values to components that will override any default value for a given

property.

[50]

Component Properties, State, and Context Chapter 3

Setting property values

React component properties are set by passing JSX attributes to the component when it is
rendered. In chapter 8, Validating Component Properties, I'll go into more detail about how
to validate the property values that are passed to components. Now let's create a couple of
components that expect different types of property values:

import React, { Component } from 'react';

export default class MyButton extends Component {
render () A
const { disabled, text } = this.props;

return <button disabled={disabled}>{text}</button>;
}
}

This simple button component expects a Boolean disabled property and a string text
property. Let's create one more component that expects an array property value:

import React, { Component } from 'react';

export default class MyList extends Component {
render () A
const { items } = this.props;

return (

{items.map (i => (
<li key={i}>{i}</1i>
)) 1}

)
}

You can pass just about anything you want as a property value via JSX, just as long as it's a
valid JavaScript expression. The MyList component accepts an items property, an array
that is mapped to <1i> elements. Now, let's write some code to set these property values:

import React from 'react';

import { render as renderJSX } from 'react-dom';
import MyButton from './MyButton';

import MyList from './MyList';

const appState = {
text: 'My Button',

[51]

Component Properties, State, and Context Chapter 3

disabled: true,
items: ['First', 'Second', 'Third']

bi

function render (props) {
renderJSX (
<main>
<MyButton text={props.text} disabled={props.disabled} />
<MyList items={props.items} />
</main>,
document .getElementById ('root"')
)i
t

render (appState) ;

setTimeout (() => {
appState.disabled = false;
appState.items.push('Fourth');

render (appState) ;
}, 1000);

The render () function looks like it's creating new React component instances every time
it's called. React is smart enough to figure out that these components already exist, and that
it only needs to figure out what the difference in output will be with the new property
values. In this example, the call to setTimeout () causes a delay of 1 second. Then, the
appState.disabled value is changed to false and the appState.items array has a
new value added to the end of it. The call to render () will re-render the <MyButton> and
<MyList> components with new property values.

Another takeaway from this example is that you have an appState object that holds on to
the state of the application. Pieces of this state are then passed into components as
properties when the components are rendered. State has to live somewhere, and, in this
case, it's outside of the component. I'll build on this topic in the next section, where you will
learn how to implement stateless functional components.

[52]

Component Properties, State, and Context Chapter 3

Stateless components

The components you've seen so far in this book have been classes that extend the base
Component class. It's time to learn about functional components in React. In this section,
you'll learn what a functional component is by implementing one. Then, you'll learn how to
set default property values for stateless functional components.

Pure functional components

A functional React component is just what its name suggests—a function. Picture the
render () method of any React component that you've seen. This method, in essence, is the
component. The job of a functional React component is to return JSX; just like a class-based
React component. The difference is that this is all a functional component can do. It has no
state and no lifecycle methods.

Why would you want to use functional components? It's a matter of simplicity more than
anything else. If your component renders some JSX and does nothing else, then why bother
with a class when a function is simpler?

A pure function is a function without side effects. That is to say, called with a given set of
arguments, the function always produces the same output. This is relevant for React
components because, given a set of properties, it's easier to predict what the rendered
content will be. Functions that always return the same value with a given argument values
are easier to test as well.

Let's look at a functional component now:

import React from 'react';

export default ({ disabled, text }) => (
<button disabled={disabled}>{text}</button>
)i

Concise, isn't it? This function returns a <button> element, using the properties passed in
as arguments (instead of accessing them through this.props). This function is pure
because the same content is rendered if the same disabled and text property values are
passed. Now, let's see how to render this component:

import React from 'react';
import { render as renderJSX } from 'react-dom';
import MyButton from './MyButton';

function render ({ first, second }) {

[53]

Component Properties, State, and Context Chapter 3

renderJSX (
<main>
<MyButton text={first.text} disabled={first.disabled} />
<MyButton text={second.text} disabled={second.disabled} />
</main>,
document .getElementById ('root"')
)i
}

render ({
first: {
text: 'First Button',
disabled: false
b
second: |
text: 'Second Button',
disabled: true
}
F) i

There's zero difference between the class-based and function-based React components,
from a JSX point of view. The JSX looks exactly the same whether the component was
declared using the class or function syntax.

The convention is to use the arrow function syntax to declare functional
React components. However, it's perfectly valid to declare them using a
traditional JavaScript function syntax, if that's better suited to your style.

Here's what the rendered HTML looks like:

First Button Second Button

Functional components rely on property values being passed to them for anything
dynamic. For example, if a component renders a functional component, it usually passes in
property values and these can change each time it is rendered. But what about default
property values for functional components?

[54]

Component Properties, State, and Context Chapter 3

Defaults in functional components

Functional components are lightweight; they don't have any state or lifecycle. They do,
however, support some metadata options. For example, you can specify the default
property values of functional components the same way you would with a class
component. Here's an example of what this looks like:

import React from 'react';

const MyButton = ({ disabled, text }) => (
<button disabled={disabled}>{text}</button>

)i

MyButton.defaultProps = {
text: 'My Button',
disabled: false

bi

export default MyButton;

The defaultProps property is defined on a function instead of a class. When React
encounters a functional component with this property, it knows to pass in the default
properties if they're not provided via JSX.

Functional components are an important part of React applications because they're highly
focused on taking property values and rendering markup that uses these values. The term
"pure function" is used to indicate that a function, in our case, a React component, doesn't
have any side effects. As long as you give it the same property values, the same output is
rendered. Functional components can also have default property values, just as their class-
based counterparts can.

You might have noticed a pattern at this point: some components have state that changes
over time. These components then pass state values to other components as properties.
These stateful components are called container components.

Container components

In this section, you're going to learn about the concept of container components. This is a
common React pattern, and it brings together many of the concepts that you've learned
about state and properties.

[551]

Component Properties, State, and Context Chapter 3

The basic premise of container components is simple: don't couple data fetching with the
component that renders the data. The container is responsible for fetching the data and
passing it to its child component. It contains the component responsible for rendering the
data.

The idea is that you should be able to achieve some level of substitutability with this
pattern. For example, a container could substitute its child component. Or, a child
component could be used in a different container. Let's look at the container pattern in
action, starting with the container itself:

import React, { Component } from 'react';
import MyList from './MyList';

function fetchData () {
return new Promise (resolve => {

setTimeout (() => {
resolve (['First', 'Second', 'Third']);

}, 2000);
1)
}

export default class MyContainer extends Component {
state = { items: [] };

componentDidMount () {
fetchData () .then(items => this.setState({ items }));
t

render () A
return <MyList {...this.state} />;
}
}

The job of this component is to fetch data and to set its state. Any time the state is set,
render () is called. This is where the child component comes in. The state of the container
is passed to the MyList component as properties. Let's take a look at the MyList
component next:

import React from 'react';

export default ({ items }) => (

{items.map (i => (
<li key={i}>{i}</1i>
))

)i

[561]

Component Properties, State, and Context Chapter 3

MyList is a functional component that expects an items property. Let's see how the
container component is actually used:

import React from 'react';
import { render } from 'react-dom';
import MyContainer from './MyContainer';

render (<MyContainer />, document.getElementById('root'));

Container component design will be covered in more depth in chapter ¢, Crafting Reusable
Components. The idea of this example is to give you a feel for the interplay between state
and properties in React components.

When you load the page, you'll see the following content rendered after the 3 seconds it
takes to simulate an HTTP request:

¢ First
¢ Second
e Third

Containers are an important concept in React applications, as they help to separate the
work of getting data and using data to render markup. You'll encounter many variations of
this pattern in any given React code base. The basic idea is that the container does the work
to get the data, and then passes it as properties to the component responsible for rendering
visual elements.

Over time, you might end up with a lot of container components in your app that all share
similar state that needs to be passed to child components. This amounts to lots of code to
pass property values around. For data that is truly global in your application, we can use
context to access it.

Providing and consuming context

As your React application grows, it will use more components. Not only will it have more
components, but the structure of your application will change so that the components are
nested more deeply. The components that are nested at the deepest level still need to have
data passed to them. Passing data from a parent component to a child component isn't a big
deal. The challenge is when you have to start using components as indirection for passing
data around your app.

[571

Component Properties, State, and Context Chapter 3

For data that needs to make its way to any component in your app, you can create and use
a context. There are two key concepts to remember when using contexts in
React—providers and consumers. A context provider creates data and makes sure that it's
available to any React components. A context consumer is a component that uses this data
within the context.

You might be wondering whether or not context is just another way of saying global data in
a React application. Essentially, this is exactly what contexts are used for. Using the React
approach to wrap components with a context works better than creating global data
because you have better control of how your data flows down through your components.
For example, you can have nested contexts and a number of other advanced use cases. But,
for now, let's just focus on simple usage.

Let's say that you have some application data that determines permissions for given
application features. This data could be fetched from an API or it could be hardcoded. In
either case, the requirement is that you don't want to have to pass all of this permission
data through the component tree. It would be nice if the permission data were just there,
for any component that needs it.

Starting at the very top of the component tree, let's look at index. js:

import React from 'react';

import { render } from 'react-dom';

import { PermissionProvider } from './PermissionContext';
import App from './App';

render (
<PermissionProvider>
<App />
</PermissionProvider>,
document .getElementById ('root"')
)i

The <App> component is the child of the <PermissionProvider> component. This means
that the permission context has been provided to the <App> component and any of its
children, all the way down the tree. Let's take a look at the PermissionContext. js
module where the permission context is defined:

import React, { Component, createContext } from 'react';
const { Provider, Consumer } = createContext ('permissions');
export class PermissionProvider extends Component {

state = {
first: true,

[581]

Component Properties, State, and Context Chapter 3

second: false,
third: true
bi

render () A
return (
<Provider value={this.state}>{this.props.children}</Provider>

)
}

const PermissionConsumer = ({ name, children }) => (
<Consumer>{value => value[name] && children}</Consumer>

)i
export { PermissionConsumer };

The createContext () function is used to create the actual context. The return value is
an object containing two components—Provider and Consumer. Next, there's a simple
abstraction for the permission provider that's to be used all throughout the app. The state
contains the actual data that components might want to use. In this example, if the value is
true, the feature should be displayed as normal. If it's false, then the feature doesn't have
permission to render. Here, the state is only set once; however, since this is a regular React
component, you could set the state in the same way you would set the state on any other
component. The value that's rendered is the <Provider> component. This provides any
children with context data, set via the value property.

Next, there's a small abstraction for permission consumers. Instead of having every
component that needs to test for permissions implement the same logic over and over, the
PermissionConsumer component can do it. The child of the <Consumer> component is
always a function that takes the context data as an argument. In this example, the
PermissionConsumer component has a name property, for the name of the feature. This is
compared with the value from the context and, if it's false, nothing is rendered.

Now let's look at the App component:

import React, { Fragment } from 'react';
import First from './First';

import Second from './Second';

import Third from './Third';

export default () => (
<Fragment>
<First />
<Second />

[591]

Component Properties, State, and Context Chapter 3

<Third />
</Fragment>

)

This component renders three components that are features and each needs to check for
permissions. Without the context functionality of React, you would have to pass this data as
a series of properties to each of these components through this component. If <First> had
children or grandchildren that needed to check permissions, the same property-passing
mechanism can get quite messy.

Now let's take a look at the <First> component (<Second>and <Third> components are
almost exactly the same):

import React from 'react';
import { PermissionConsumer } from './PermissionContext';

export default () => (
<PermissionConsumer name="first">
<div>
<button>First</button>
</div>
</PermissionConsumer>

)i

This is where the PermissionConsumer component is put to use. You just need to supply
it with a name property, and the child component is the component that is rendered if the
permission check passes. The <PermissionConsumer> component can be used anywhere,
and there's no need to pass data in order to use it. Here's what the rendered output of these
three components looks like:

First
Third

The second component isn't rendered because its permission in the PermissionProvider
component is set to false. Context should be used sparingly, because it can lead to
confusion about where data comes from and which components throughout your
application rely on it. Often, you'll start out using state to manage data and then, later on,
discover that you're passing this state to every component in your app. To avoid this, you
can refactor data that's shared by every component from state into context. Remember,
context should be used sparingly. If you rely on context for accessing data too much, it's a
good indication that your app has too much global data and should be revised. For the data
that must be global, context is a good way to avoid too much property-passing code.

[60]

Component Properties, State, and Context Chapter 3

Summary

In this chapter, you learned about state and properties in React components. We started off
by defining and comparing the two concepts. Then, we implemented several React
components and manipulated their state, allowing you to dynamically update what the
user sees on the screen. Next, you learned about properties by implementing code that
passed property values from JSX to the component, in cases where the component only
needs to display values instead of changing them. Next, you were introduced to the
concept of a container component, which is used to decouple data fetching from rendering
content, leading to a clear separation of concerns. Finally, you learned about the new
context API in React 16 and how to use it to avoid too many repetitive properties when you
have global application data.

In the following chapter, you'll learn about the new React Hooks API and how it supports
using functional components for everything, including state and lifecycle management.

Further reading

Visit the following links for more information:

¢ Instance Properties: https://reactjs.org/docs/react-component.
html#instance-properties-1

e Setting the Initial State: https://reactjs.org/docs/react-without-esé6.
html#setting-the—-initial-state

e Context: https://reactjs.org/docs/context .html

. Spread syntax: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Spread_syntax

[61]

https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

Getting Started with Hooks

One of the most anticipated new features of React is Hooks, an API that allows your
functional components to "Hook" into React functionality. The overarching motivation for
this feature is to simplify your components. For example, forcing React developers to use
classes to define their components leads to the overuse of wrapper components to pass
state around their apps. With Hooks, you can stick with simple functions to implement
your components and have a clear picture of how everything fits together.

In this chapter, we'll cover the following topics:

¢ Maintaining state using Hooks

e Performing initialization and cleanup actions

¢ Sharing data using context Hooks

¢ Using reducer Hooks to scale state management

Technical requirements

The code present in this chapter can be found at https://github.com/PacktPublishing/
React-and-React-Native---Third-Edition/tree/master/Chapter04.

Maintaining state using Hooks

The first React Hook API that we'll look at is called usestate (), which enables your
functional React components to be stateful. Before Hooks were introduced to React, our
only option for creating stateful components was to use a class so that we could access the
setState () method. In this section, you'll learn how to initialize state values, and how to
change the state of a component using Hooks.

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter04

Getting Started with Hooks Chapter 4

Initial state values

When our components are first rendered, they probably expect some state values to be set.
This is called the initial state of the component, and we can use the usestate () Hook to
set the initial state. Let's take a look at an example:

import React, { Fragment, useState } from 'react';

export default function App() {

const [name] = useState('Adam');
const [age] = useState(35);
return (

<Fragment>

<p>My name is {name}</p>
<p>My age is {age}</p>
</Fragment>
)i
}

The App component is a functional React component, a function that returns JSX markup.
But it's also now a stateful component, thanks to the usestate () Hook. This example
initializes two pieces of state, name and age. This is why there are two calls to useState (),
one for each state value.

You can have as many pieces of state in your component as you need. The best practice is to
have one call to useState () per state value. You could always define an object as the state
of your component using only one call to useState (), but this complicates things because
you have to access state values through an object instead of directly. Updating state values
is also more complicated using this approach. When in doubt, use one usestate () Hook
per state value.

When we call usestate (), we get an array returned to us. The first value of this array is
the state value itself. Since we've used array destructuring syntax here, we can call the
value whatever we want; in this case, it is name and age. Both of these constants have
values when the component is first rendered because we passed the initial state values for
each of them to usestate (). Here's what the page looks like when it's rendered:

My name is Adam

My age is 35

[63]

Getting Started with Hooks Chapter 4

Now that you've seen how to set the initial state values of your components, let's learn
about updating these values.

Updating state values

React components use state for values that change over time. The state values used by
components start off in one state, as we saw in the previous section, and then change in
response to some event. For example, the server responds to an API request with new data
or the user has clicked a button or changed a form field.

With functional components that use the usestate () Hook, state values are updated
differently to class components that rely on the setState () method. Instead of using
setState () to update every piece of component state, you have individual functions to set
each state value. The useState () Hook returns an array. The first item is the state value
and the second is the function used to update the value. Let's take a look at an example:

import React, { Fragment, useState } from 'react';

export default function App () {

const [name, setName] = useState('Adam');
const [age, setAge] = useState(35);
return (
<Fragment>
<section>

<input value={name} onChange={e => setName (e.target.value)} />
<p>My name is {name}</p>
</section>
<section>
<input
type="number"
value={age}
onChange={e => setAge (e.target.value)}
/>
<p>My age is {age}</p>
</section>
</Fragment>
)
}

[64]

Getting Started with Hooks Chapter 4

Just like the example from the Initial state values section, the App component in this example
has two pieces of state: name and age. Unlike the previous example, this component uses
two functions to update each piece of state. These are returned from the call to

useState (). Let's take a closer look:

const [name, setName] = useState('Adam');
const [age, setAge] = useState(35);
Now we have two functions — setName () and setAge () — that can be used to update the

state of our component. Let's take a look at the text input field that updates the name state:

<section>
<input value={name} onChange={e => setName (e.target.value)} />
<p>My name is {name}</p>

</section>

Whenever the user changes the text in the <input> field, the onChange event is triggered.
The handler for this event calls setName (), passing it e.target.value as an argument.
The argument passed to setName () is the new state value of name. The succeeding
paragraph shows that the text input is also updated with the new name value every time
the user changes the text input.

Next, let's look at the age number input field and how this value is passed to setAge ():

<section>
<input
type="number"
value={age}
onChange={e => setAge(e.target.value)}
/>
<p>My age is {age}</p>
</section>

The age field follows the exact same pattern as the name field. The only difference is that
we've made the input a number type. Any time the number changes, setAge () is called
with the updated value in response to the onChange event. The following paragraph shows
that the number input is also updated with every change that is made to the age state.

Here is what the two inputs and their two corresponding paragraphs look like when they're
rendered on the screen:

[65]

Getting Started with Hooks Chapter 4

Adam
My name is Adam
35

My age is 35

In this section, you learned about the usestate () Hook, which is used to add state to
functional React components. Each piece of state uses its own Hook and has its own value
variable and its own setter function. This greatly simplifies accessing and updating state in
your components. Any given state value should have an initial value so that the component
can render correctly the first time. To re-render functional components that use state
Hooks, you can use the setter functions that useState () returns to update your state
values as needed.

The next Hook that you'll learn about is used to perform initialization and cleanup actions.

Performing initialization and cleanup actions

Often, our React components need to perform actions when the component is created. For
example, a common initialization action is to fetch API data that the component needs.
Another common action is to make sure that any pending API requests are canceled when
the component is removed. In this section, you'll learn about the useEf fect () Hook and
how it can help you with these two scenarios. You'll also learn how to make sure that the
initialization code doesn't run too often.

Fetching component data

The useEffect () Hook is used to run "side-effects" in your component. Another way to
think about side effect code is that functional components have only one job: return JSX
content to render. If the component needs to do something else, such as fetching API data,
this should be done in a useEf fect () Hook. For example, if you were to just make the API
call as part of your component function, you would likely introduce race conditions and
other difficult-to-fix buggy behavior.

[66]

Getting Started with Hooks Chapter 4

Let's take a look at an example that fetches API data using Hooks:

import React, { Fragment, useEffect, useState } from 'react';

function fetchUser () {
return new Promise (resolve => {
setTimeout (() => {
resolve ({ id: 1, name: 'Adam' });

}, 1000);
1)
}

export default function App () {

const [id, setId] = useState('loading...');
const [name, setName] = useState('loading...');
useEffect (() => {

fetchUser () .then (user => {
setId(user.id);
setName (user.name) ;
)i
)i

return (
<Fragment>
<p>ID: {id}</p>
<p>Name: {name}</p>
</Fragment>
)i
}

The useEffect () Hook expects a function as an argument. This function is called after the
component finishes rendering, in a safe way that doesn't interfere with anything else that
React is doing with the component under the covers. Let's look at the pieces of this example
more closely, starting with the mock API function:

function fetchUser () |
return new Promise (resolve => {
setTimeout (() => {
resolve ({ id: 1, name: "Adam" });

}, 1000);
)i
}

The fetchUser () function returns a promise. The promise resolves a simple object with
two properties, id and name. The setTimeout () function delays the promise resolution
for 1 second, so this function is asynchronous just like a normal fetch () call would be.

[671]

Getting Started with Hooks Chapter 4

Next, let's look at the Hooks used by the App component:

const [id, setId] = useState("loading...");
const [name, setName] = useState("loading...");
useEffect (() => {

fetchUser () .then (user => {
setId(user.id);
setName (user.name) ;
}) i
}) i

As you can see, we're using two Hooks in this component: useState () and useEffect ().
Combining Hook functionality like this is powerful and encouraged. First, we set up the id
and name states of the component. Then, useEffect () is used to set up a function that
calls fetchUser () and sets the state of our component when the promise resolves.

Here is what the App component looks like when it's first rendered, using the initial state of
id and name:

ID: loading...

Name: loading...

After 1 second, the promise returned from fetchUser () is resolved with data from the
API, which is then used to update the id and name states. This results in App being re-
rendered:

ID: 1

Name: Adam

There is a good chance that your users will navigate around your application while an API
request is still pending. The useEffect () Hook can be used to deal with canceling these
requests.

Canceling requests and resetting state

There's a good chance that at some point, your users will navigate around your app and
cause components to unmount before responses to their API requests arrive. When this
happens, an error occurs because the component will attempt to update the state values of a
component that has been removed.

[68]

Getting Started with Hooks Chapter 4

Thankfully, the useEffect () Hook has a mechanism to clean up things such as pending
API requests when the component is removed. Let's take a look at an example of this in
action:

import React, { Fragment, useEffect, useState } from "react";
import { Promise } from "bluebird";

Promise.config({ cancellation: true });

function fetchUser () {
return new Promise (resolve => {
setTimeout (() => {
resolve ({ id: 1, name: "Adam" });
}, 1000);
}) i
}
export default function User () {
const [id, setId] = useState("loading...");
const [name, setName] = useState("loading...");
useEffect (() => {
const promise = fetchUser () .then (user => {

setId(user.id);
setName (user.name) ;

)i

return () => {
promise.cancel();

bi

}) i

return (
<Fragment>
<p>ID: {id}</p>
<p>Name: {name}</p>
</Fragment>
)i
}

This looks a lot like the component from the fetching component data example. It has the
same state, it fetches data inside useEffect (), and it renders the same output. There are a
couple of important differences though. Let's start by taking a closer look at the
useEffect () Hook:

useEffect (() => {

const promise fetchUser () .then (user => {

[69]

Getting Started with Hooks Chapter 4

setId(user.id);
setName (user.name) ;

1)

return () => {
promise.cancel () ;

i

P

Just like in the fetching component data example, this effect creates a promise by calling the
fetchUser () API function. It also returns a function, which React runs when the
component is removed. In this example, the promise that is created by calling

fetchUser () is canceled by calling promise.cancel (). This prevents the component
from trying to update its state after it has been removed.

Another important difference compared with the preceding example is that here, we're
using the Bluebird library for promises since they support cancellation. There are many
other ways that you can "cancel" asynchronous operations in the function returned by the
useEffect () Hook, but I found Bluebird to be well worth the added dependency for this
added capability.

Now, let's look at the App component, which renders and removes the User component:

import React, { Fragment, useState } from 'react';
import User from './User';

const ShowHideUser = ({ show }) => (show ? <User /> : null);

export default function App () {

const [show, setShow] = useState(false);
return (
<Fragment>
<button onClick={() => setShow(!show) }>
{show ? 'Hide User' : 'Show User'}
</button>
<ShowHideUser show={show} />
</Fragment>

)i
}

[70]

Getting Started with Hooks Chapter 4

The App component renders a button that is used to toggle the show state. This state value
determines whether or not the User component is rendered, but by using the
ShowHideUser convenience component. If show is t rue, <User> is rendered, otherwise,
User is removed, triggering our useEffect () cleanup behavior.

Here's what the screen looks like when it first loads:

Show User

The User component isn't rendered because the show state of the App component is false.
Try clicking on the show button. This will change the show state and render the User
component:

Hide User

ID: loading...

Name: loading...

The "loading..." strings are the two initial state values for the id and name states. These will
be updated when the API promise resolves after 1 second:

Hide User

ID: 1

Name: Adam

You can click on the Hide User button once more to remove the User component. Now,
click on the Show User button, and then click on Hide User before it finishes loading.
Without the cleanup code that we added to useEf fect (), this would trigger an error. In
fact, you can test this by commenting out the call to promise.cancel ().

Effects are run by React after every render. This might not be what you want, especially if
your effect is something that is relatively slow, such as an asynchronous network request.
Instead, we want to call the API after the first render, and that's it. We'll take a look at how
to do this next.

[71]

Getting Started with Hooks Chapter 4

Optimizing side-effect actions

By default, React assumes that every effect that is run needs to be cleaned up. This typically
isn't the case. For example, you might have specific property or state values that require
cleanup when they change. You can pass an array of values to watch as the second
argument to useEffect (). For example, if you have a resolved state that requires
cleanup when it changes, you would write your effect code like this:

const [resolved, setResolved] = useState(false);
useEffect (() => {
// ...the effect code...
return () => {
// ...the cleanup code that depends on "resolved"
}
}, I[resolved]);

In this code, the cleanup function will only ever run if the resolved state value changes. If
the effect runs and the resolved state hasn't changed, then the cleanup code will not run.
Another common case is to never run the cleanup code, except for when the component is
removed. In fact, this is what we want to happen in the example from the previous section.
Right now, the cleanup code runs after every render. This means that we're repeatedly
fetching the user API data when all we really want is to fetch it once when the component
is first mounted.

Let's make some modifications to the User component from the canceling requests
example:

import React, { Fragment, useEffect, useState } from 'react';
import { Promise } from 'bluebird';

Promise.config({ cancellation: true });
function fetchUser () {

console.count ('fetching user');
return new Promise (resolve => {

setTimeout (() => {
resolve ({ id: 1, name: 'Adam' });
}, 1000);
)i
)3
export default function User () {
const [id, setId] = useState('loading...');
const [name, setName] = useState('loading...');

[72]

Getting Started with Hooks Chapter 4

useEffect (() => {
const promise = fetchUser () .then (user => {
setId(user.id);
setName (user.name) ;

1)

return () => {
promise.cancel () ;

return (
<Fragment>
<p>ID: {id}</p>
<p>Name: {name}</p>
</Fragment>
)i
}

We've added a second argument to useEffect (), an empty array. This tells React that
there are no values to watch and that we only want to run the cleanup code when the
component is removed. We've also added console.count (' fetching user') to the
fetchUser () function. This makes it easier to look at the browser dev tools console and
make sure that our component data is only fetched once. If you remove the [] argument
that is passed to useEffect (), you'll notice that fetchUser () is called several times.

In this section, you learned about the side effects in React components. Effects are an
important concept, as they are the bridge between your React components and the outside
world. One of the most common use cases for effects is to fetch data that the component
needs, when it is first created, and then clean up after the component when it is removed.

Now, we're going to look at another way to share data with React components: context.

Sharing data using context Hooks

React applications often have a few pieces of data that are global in nature. This means that
several components, possibly every component in the app, share this data. For example,
information about the currently logged-in user might be used in several places. In cases like
this, it makes sense to provide a context where this data can be easily accessed by
components that are rendered in this context.

In this section, you'll learn how to consume context data and how to consume it using
Hooks.

[73]

Getting Started with Hooks Chapter 4

Sharing fetched data

Most of our components will directly fetch the data that they and their children need. In
other cases, our app has some API endpoint with data that is used by several components
throughout the application. To share global data like this, you can use the React context
APIL. As the name suggests, components that are rendered within a context are able to
access the data provided by the context.

Let's build an example to help clarify what this means and how it relates to Hooks. Here is
the UserContext context and the UserProvider component:

import React, { createContext, useState, useEffect } from "react";

export const UserContext = createContext();
function fetchUser () |
return new Promise (resolve => {
setTimeout (() => {
resolve ({ id: 1, name: "Adam" });

}, 1000);
)i
}

export function UserProvider ({ children }) {
const [user, setUser] = useState({ name: "..." });

useEffect (() => {
fetchUser () .then (user => {
setUser (user) ;

return <UserContext.Provider
value={user}>{children}</UserContext.Provider>;

}

First, we have the UserContext object, created by calling the createContext () React
API. Next, we have the mock API function, fetchUser (). Finally, we have the
UserProvider component. The job of this component is to call the fetchUser () APl and
set the user state as the response from the API when it arrives. To do this, we're using the
useState () and useEffect () Hooks.

[74]

Getting Started with Hooks Chapter 4

This component renders the <UserContext .Provider> component, passing in any
children it receives. The value property is then made available to any child components of
UserProvider. In this case, the value is the state that is set by calling the fetchUser ()
API. We've set ourselves up to be able to pass the user value to any components of our
application. Let's see how this is done by creating a simple App component with three pages
on it:

import React, { useState } from 'react';
import { UserProvider } from './UserContext';
import { Pagel, Page2, Page3 } from './Pages';

function ChoosePage ({ page }) {
const Page = [Pagel, Page2, Page3] [pagel;
return <Page />;

}

function App () {

const [page, setPage] = useState(0);

return (

<UserProvider>

<button onClick={ () => setPage(0)} disabled={page === 0}>
Page 1

</button>

<button onClick={ () => setPage(l)} disabled={page === 1}>
Page 2

</button>

<button onClick={ () => setPage(2)} disabled={page === 2}>
Page 3

</button>

<ChoosePage page={page} />

</UserProvider>

)i
}

export default App;

The App component renders three buttons that, when clicked, render their corresponding
page component. The page state is used to control the page that is displayed and defaults
to 0. When App is first rendered, the Page1 component is rendered. This happens with the
help of ChoosePage, which renders the correct page based on the page state that is passed
to it. Here's what you'll see when the page state first loads:

[75]

Getting Started with Hooks Chapter 4

Page 1 | Page 2 | Page 3

Page 1

Logged in as ...

The Page 1 button is disabled because it is the currently active page. There's an ellipsis
following the Logged in as message at the bottom of the page. This is because the
UserProvider component is waiting for the fetchUser () API call to respond. When the
response arrives and the context data is updated, the Page1 component is updated:

Page 1 | Page 2 | Page 3

Page 1

Logged in as Adam

Last but not least, let's take a look at the page components that use context Hooks:

import React, { Fragment, useContext } from 'react';
import { UserContext } from './UserContext';

function Username () {
const user = useContext (UserContext);
return (
<p>
Logged in as {user.name}
</p>
)
}
export function Pagel () {
return (
<Fragment>

<hl>Page 1</hl>
<Username />
</Fragment>
)i
}

export function Page2 () {
return (

[76]

Getting Started with Hooks Chapter 4

<Fragment>
<hl>Page 2</hl>
<Username />
</Fragment>
)i
}

export function Page3 () {
return (
<Fragment>
<h1>Page 3</hl>
<Username />
</Fragment>
)i
t

All three page components look pretty much the same, except for the <h1> text used in
each. Let's focus in on the Username component that is used by each page:

function Username () {
const user = useContext (UserContext);
return (
<p>
Logged in as {user.name}
</p>

)i
}

This is where the useContext () Hook is used. The user context value is actually the state
that is set by the UserProvider component when the API call responds. This means that
the user context value is updated by the useContext () Hook whenever the user value
changes.

Another important idea from this example is that the page components (Pagel, Page2,
and Page3) have no knowledge of this global user data. Instead of having to pass data
down from the top-level component as property values, we can rely on useContext ()
when we need access to global data, no matter how deeply nested the component is in our
JSX markup. Components that have nothing to do with the data, like the page components
in this example, there's no need to touch it.

[77]

Getting Started with Hooks Chapter 4

Updating stateful context data

Global data that is shared throughout your application isn't limited to read-only API
response data. Sometimes, components themselves need to update global state values. To
enable this capability, we need to pass not only data from context producers, but also a
mechanism to update the data. Since the data stored in a context provider is a state created
with useState (), we can just pass along the setter function, along with the state value.

Let's illustrate these ideas by extending the sharing fetched data example. Instead of a user
context, we'll add a status context. This way, components that are rendered within this
context will have access to the status state value, and the status state setter function.
Here's what the StatusProvider component looks like:

import React, { createContext, useState } from "react";
export const StatusContext = createContext ();

export function StatusProvider ({ children }) {
const value = useState("set a status");

return (
<StatusContext.Provider
value={value}>{children}</StatusContext.Provider>

)i
}

The StatusProvider component has a status state with a default string value. Recall that
useState () returns an array of state value, and a state setter function. This array is then
passed to the value property of <StatusContext.Provider>. Now, let's take a look at the
page components that display and update the status context data:

import React, { Fragment, useContext } from 'react';
import { StatusContext } from './StatusContext';

function SetStatus () {
const [status, setStatus] = useContext (StatusContext);
return <input value={status} onChange={e => setStatus(e.target.value)}
/>;
t
export function Status() {
const [status] = useContext (StatusContext);

return <p>{status}</p>;

}

export function Pagel () {

[78]

Getting Started with Hooks Chapter 4

return (
<Fragment>
<hl>Page 1</hl>
<SetStatus />
</Fragment>

)

export function Page2 () A
return (
<Fragment>
<hl>Page 2</hl>
</Fragment>

)

export function Page3 () {
return (
<Fragment>
<h1>Page 3</hl>
<SetStatus />
</Fragment>
)i
t

Let's take a closer look at the two utility components that consume context data with
useContext ():

function SetStatus () |
const [status, setStatus] = useContext (StatusContext);
return <input value={status} onChange={e => setStatus(e.target.value)}
/>;
}
export function Status() {
const [status] = useContext (StatusContext);

return <p>{status}</p>;

}

The setstatus component is used to render an input so that the user can provide new
values for the status context. When they do, the setstatus () function that comes from
the context data array is used to update the context state. The Status component only
renders status, so it doesn't need the setStatus () function that comes from
useContext (). The Page2 component doesn't render the Set Status component, but
Pagel and Page2 do.

[79]

Getting Started with Hooks Chapter 4

The status component is used by the App component to display status on every page,
including Page2. Let's see these pages in action now. Here is what the first page looks like
when it first loads, using the default status context:

Page 1 | Page 2 | Page 3

Page 1

set a status

set a status

The text input that sets the status is part of the Page1 component. The succeeding status
label shows that the text input that displays the status is part of the App component and
will be rendered on every page. Let's try changing the status:

Page 1 | Page2 Page 3

Page 1

|status updated|

status updated

The setstatus () function that was passed in context data is used to update the status
state in the statusProvider component. The new context data is propagated throughout
the application components that use it, any time it changes. Let's see what the second page
looks like after we've updated the status:

Page 1 | Page 2 | Page 3

Page 2

status updated

[80]

Getting Started with Hooks Chapter 4

The Page2 component doesn't use the Set Status component, which is why there's no
input shown here. But the status label that is rendered by the App component hasn't
changed. Lastly, let's take a look at the third page:

Page 1 | Page 2 | Page 3

Page 3

status updated

status updated

As expected, the updated status context data is reflected here as well. In fact, since Page3
uses the setStatus component, you can update the status again and navigate around
the pages again. The result will be the same since the same mechanics are in place.

This section showed you how to create a context for global data that various components in
your application need to share. One common scenario is an API endpoint with data that
most components in the application need access to. You can implement a context provider
component that performs this API data fetch and then shares it with other components. The
components that require this global data can use the useContext () Hook, which feels a lot
like using the usestate () Hook.

You also learned that context data can be changed by different components. This involves
passing a state setting function as part of the context data so that components can use it to
update the context value. In the next section, we'll look at using reducer Hooks to help
simplify complex state management.

Using reducer Hooks to scale state
management

The usestate () Hook is a great way to manage the state of your component. It can
become a challenge to use this Hook when your component has a lot of related pieces of
state. You end up with a lot of setter functions that you need to call individually, once
you've figured out how a change in one state value affects another state value. With
reducers, you have one dispatch () function that's used to update the state of your
component.

[81]

Getting Started with Hooks Chapter 4

In this section, you'll learn about the basics of reducer actions and how they update the
state of your component. Then, we'll look at a more in-depth example that shows you how
to handle updating state values that depend on other state values.

Using reducer actions

A reducer function in a React application is a function that takes the current state, an action,
and any other arguments that are needed to update the state. It returns the new state of the
component. The action argument tells the reducer function what new state to return and is
often used in a switch statement. Let's look at an example now:

import React, { Fragment, useReducer } from 'react';

function reducer (state, action) {
switch (action.type) {
case 'changeName':

return { ...state, name: action.value };
case 'changeAge':

return { ...state, age: action.value };
default:

throw new Error (${action.type} is not a valid action’);

export default function App () {
const [{ name, age }, dispatch] = useReducer (reducer, {});

return (
<Fragment>
<input
placeholder="Name"
value={name}

onChange={e => dispatch({ type: 'changeName',6K wvalue: e.target.value
)}
/>
<p>Name: {name}</p>
<input
placeholder="Age"
type="number"
value={age}
onChange={e => dispatch({ type: 'changeAge', value: e.target.value
)}
/>
<p>Age: {age}</p>
</Fragment>

[82]

Getting Started with Hooks Chapter 4

)
}

Here, we have an App component that renders two fields and two labels. When the text
value changes, it should update the corresponding label value. This is done by using two
pieces of state, one for each field. Let's take a closer look at how state is set up with the
useReducer () Hook:

const [{ name, age }, dispatch] = useReducer (reducer, {});

The useReducer () function takes two arguments: the reducer function that updates the
state, and the initial state of the component. The return value of useReducer () is an array
with the state as the first element and the dispatcher function as the second. When we use
reducers, we only have one object as the state of the component, instead of several smaller,
unrelated state values. This is why we're destructuring the state object into name and age
constants. Now, let's take a look at the reducer function itself:

function reducer (state, action) {
switch (action.type) {
case "changeName":

return { ...state, name: action.value };
case "changeAge":

return { ...state, age: action.value };
default:

throw new Error (${action.type} is not a valid action’);

}

The state argument is the current state of the component. The action argument is the
argument that's passed to dispatch (). The action.type value is used to determine what
to do. This reducer only has two possible actions: changeName and changeAge. Based on
this, we use the object spread operator to return a new state object, made from the existing
state and the updated state object values. In this case, based on the action.type value,
either the name or age state values will be updated.

It's also important to have a default handler in place that throws an error when an
unexpected action is passed to the reducer. It's highly likely that you will get this wrong at
some point and it's better to have the reducer complain loudly about the invalid action than
to have to figure out why your component has the wrong state set on it.

[83]

Getting Started with Hooks Chapter 4

Here is what the screen looks like when App is first rendered:

Name
Name:
Age

Age:

Here's what you'll see when you enter some text into these two inputs:

Adam

Name: Adam

35

Age: 35

This example used a reducer function to update two unrelated pieces of state. In other
words, you probably could have used the useState () Hook just as easily. However, now
that you have an idea of what reducers are is and how they handle different actions that are
dispatched to them, you're ready to look at a more complex example that involves state
values that depend on other state values.

Handling state dependencies

When our components have one piece of state that depends on another, it's difficult to use
the usestate () Hook. This Hook comes with the assumption that when a state needs to be
updated, it's one piece at a time. In real applications, there are often scenarios where
updating one piece of state means that another piece of state needs to be updated as well,
based on this new value.

Let's look at an example that allows the user to select an item and the quantity of that item.
It then shows the cost. This means that whenever the quantity or item fields change, the
total must also change. Here's the reducer code:

import React, { Fragment, useReducer, useEffect } from 'react';

const initialState = {

[84]

Getting Started with Hooks Chapter 4

options: [
{ id: 1, name: 'First', wvalue: 10 },
{ id: 2, name: 'Second', wvalue: 50 },

{ id: 3, name: 'Third', wvalue: 200 }
]I
quantity: 1,
selected: 1
bi

function reduceButtonStates (state) {
return {
...state,
decrementDisabled: state.quantity === 0
incrementDisabled: state.quantity === 1

Fi

0

function reduceTotal (state) {

const option = state.options.find(option => option.id ===
state.selected);

return { ...state, total: state.quantity * option.value };

function reducer (state, action) {
let newState;
switch (action.type) {
case 'init':
newState = reduceTotal (state);
return reduceButtonStates (newState);
case 'decrementQuantity':
newState = { ...state, quantity: state.quantity - 1 };
newState = reduceTotal (newState);
return reduceButtonStates (newState);
case 'incrementQuantity':
newState = { ...state, quantity: state.quantity + 1 };
newState = reduceTotal (newState);
return reduceButtonStates (newState);
case 'selectItem':
newState = { ...state, selected: Number (action.id) };
return reduceTotal (newState);
default:
throw new Error (${action.type} is not a valid action’);

[85]

Getting Started with Hooks Chapter 4

Here's the App component that uses the reducer:

export default function App () {
const [
{
options,
selected,
quantity,
total,
decrementDisabled,
incrementDisabled
}I
dispatch
] = useReducer (reducer, initialState);

useEffect (() => {
dispatch ({ type: 'init' });
oo [1)

return (
<Fragment>
<section>
<button
disabled={decrementDisabled}
onClick={ () => dispatch({ type: 'decrementQuantity' })}
>

</button>
<button
disabled={incrementDisabled}
onClick={ () => dispatch({ type: 'incrementQuantity' })}
>
+
</button>
<input readOnly value={quantity} />
</section>
<section>
<select
value={selected}
onChange={e => dispatch({ type: 'selectItem',K id: e.target.value

{options.map (o => (
<option key={o.id} value={o.id}>
{o.name}
</option>
))

</select>

[86]

Getting Started with Hooks Chapter 4

</section>
<section>
{total}
</section>
</Fragment>
)i
}

Before jumping into code explanations, let's see what this code actually does. Here's what
you'll see when the screen first loads:

-+ 1
First v
10

By default, the quantity is set to 1 and the First item is selected. The total cost is displayed
beneath the two fields. When the page first loads, the total is 10 since the cost of the First
item is 10 and the quantity is set to 1. Let's try changing the quantity value, using the
increment and decrement buttons beside it:

- + |5

First v
50

Here, we've changed the quantity to 5. As you can see, the total reflects this quantity by
changing to 50. The quantity state has minimum (0) and maximum (10) restrictions, so if
you bring the quantity value up to 10, the increment button is disabled:

- | + 10

First v
100

If you change the selected item, the total is reflected based on the current quantity value:

+ 110

Second ¥
500

[871]

Getting Started with Hooks Chapter 4

This example has several pieces of state that depend on one another in moderately complex
ways. This is a perfect opportunity to put the useReducer () Hook into action. Let's break
down what's going on in the code. We'll start by looking at the initial state:

const initialState = {
options: [
{ id: 1, name: 'First', wvalue: 10 },
{ id: 2, name: 'Second', value: 50 },

{ id: 3, name: 'Third', wvalue: 200 }
1,
quantity: 1,
selected: 1

bi

The options array is the items that the user can select from; initial quantity is 1, and the
selected value represents which item is selected. Later on, this component will set several
other state values, but these are all that are needed for the initial render. Next, let's take a
closer look at the reducer functions that maintain the state of this component:

function reduceButtonStates (state) {

return {
...state,
decrementDisabled: state.quantity === 0,
incrementDisabled: state.quantity === 10

}i

function reduceTotal (state) {

const option = state.options.find(option => option.id ===
state.selected);
return { ...state, total: state.quantity * option.value };

function reducer (state, action) {
let newState;
switch (action.type) {
case 'init':
newState = reduceTotal (state);
return reduceButtonStates (newState);
case 'decrementQuantity':
newState = { ...state, quantity: state.quantity - 1 };
newState = reduceTotal (newState);
return reduceButtonStates (newState);
case 'incrementQuantity':
newState = { ...state, quantity: state.quantity + 1 };
newState = reduceTotal (newState);
return reduceButtonStates (newState);

[881]

Getting Started with Hooks Chapter 4

case 'selectItem':

newState = { ...state, selected: Number (action.id) };
return reduceTotal (newState);
default:

throw new Error (${action.type} is not a valid action’);

}

The reducer () function is passed to useReducer () and is responsible for handling
different action paths. This particular reducer handles the following actions:

e init: When the component first mounts.

¢ decrementQuantity: The decrement quantity button was pressed.
¢ incrementQuantity: The increment quantity button was pressed.
e selectItem: The selected item was changed.

Every one of these actions has the potential to change the total state, which is why the code
to compute the total was moved into its own function: reduceTotal (). For example, if the
quantity changes or the item changes, we need to compute a new total. When the
component first mounts, we also need to compute total, because we don't want to have a
default state for something that's derived from other state values. Instead, we introduced
the init action and use the useEffect () Hook to call it once when the component is first
mounted.

The state of the increment and decrement buttons is dependent on the quantity value. So,
the incrementDisabled and decrementDisabled state values are computed in the
reduceButtonStates () function, which is used by the init, decrementQuantity, and
incrementQuantity actions.

At first glance, it might seem like there's a lot going on in the reducer () function, and
you'd be right, there is. But in this example, the goal is to keep related state operations close
to one another since they're related. The perfect place to do this is in a reducer function.
Developers look at our code and follow the action flow without much trouble. We also
managed to factor out common reducer behavior into their own functions. All of this
results in a functional component that doesn't have to directly perform any complex state
updates. Instead, it just needs to make dispatch () calls, keeping the component itself
focused on markup and event handling.

In this section, you learned that the useReducer () Hook is similar to the useState ()
Hook in that they are both React state management APIs. Using a reducer function is
helpful when you want to keep your component state together as a single object so that you
can update it more easily when the updates are complex due to dependencies.

[891]

Getting Started with Hooks Chapter 4

Summary

This chapter introduced you to the new React Hooks API. You started out by using the
usestate () Hook, which is fundamental for using state in functional React components.
Then, you learned about useEffect (), which enables life cycle management in functional
React components, such as fetching API data when the component is mounted and cleaning
up any pending async operations when it is removed. Then, you learned how to use the
useContext () Hook in order to access global application data. Lastly, you learned about
the useReducer () Hook: an effective replacement for usesState () when your component
state grows too big or too complex for usestate ().

In the following chapter, you'll learn about event handling in React components.

[90]

Event Handling - The React
Way

The focus of this chapter is event handling. React has a unique approach to handling
events: declaring event handlers in JSX. I'll get things going by looking at how event
handlers for particular elements are declared in JSX. Then, you'll learn about binding
handler context and parameter values. Next, we'll implement inline and higher-order event
handler functions.

Then, you'll learn how React actually maps event handlers to DOM elements under the
hood. Finally, you'll learn about the synthetic events that React passes to event handler
functions, and how they're pooled for performance purposes. Once you've completed this
chapter, you'll be comfortable implementing event handlers in your React components. At
that point, your applications come to life for your users because they are then able to
interact with them.

The following topics are covered in this chapter:

¢ Declaring event handlers
¢ Using event handler context and parameters
¢ Declaring inline event handlers

Binding handlers to elements

Using synthetic event objects

Understanding event pooling

Technical requirements

The code present in this chapter can be found at https://github.com/PacktPublishing/
React-and-React-Native---Third-Edition/tree/master/Chapter05.

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter05

Event Handling - The React Way Chapter 5

Declaring event handlers

The differentiating factor with event handling in React components is that it's declarative.
Contrast this with something like jQuery, where you have to write imperative code that
selects the relevant DOM elements and attaches event handler functions to them.

The advantage of the declarative approach to event handlers in JSX markup is that they're
part of the Ul structure. Not having to track down code that assigns event handlers is
mentally liberating.

In this section, you'll write a basic event handler, so you can get a feel for the declarative
event handling syntax found in React applications. Then, you'll learn how to use generic
event handler functions.

Declaring handler functions

Let's take a look at a basic component that declares an event handler for the click event of
an element:

import React, { Component } from "react";

export default class MyButton extends Component {
onClick () {
console.log("clicked");

}

render () A
return <button onClick={this.onClick}>{this.props.children}</button>;

}
}

The event handler function, this.onClick (), is passed to the onClick property of the
<button> element. By looking at this markup, you can see exactly which code will run
when the button is clicked.

View the official React documentation for the full list of supported event
property names at https://facebook.github.io/react/docs/

Next, let's take a look at how to respond to more than one type of event using different
event handlers with the same element.

[92]

https://facebook.github.io/react/docs/

Event Handling - The React Way Chapter 5

Multiple event handlers

What I really like about the declarative event handler syntax is that it's easy to read when
there's more than one handler assigned to an element. Sometimes, for example, there are
two or three handlers for an element. Imperative code is difficult to work with for a single
event handler, let alone several of them. When an element needs more handlers, it's just
another JSX attribute. This scales well from a code-maintainability perspective, as this
example shows:

import React, { Component } from "react";

export default class MyInput extends Component {
onChange () {
console.log("changed") ;

}

onBlur () |
console.log("blured");

}

render () A
return <input onChange={this.onChange} onBlur={this.onBlur} />;

}
}
This <input> element could have several more event handlers, and the code would be just
as readable.

As you keep adding more event handlers to your components, you'll notice that a lot of
them do the same thing. Next, you'll learn how to share generic handler functions across

components.

Importing generic handlers

Any React application is likely going to share the same event handling logic for different
components. For example, in response to a button click, the component should sort a list of
items. It's these types of generic behaviors that belong in their own modules so that several
components can share them. Let's implement a component that uses a generic event
handler function:

import React, { Component } from "react";
import reverse from "./reverse";

export default class MyList extends Component {

[93]

Event Handling - The React Way Chapter 5

state = {
items: ["Angular", "Ember", "React"]

bi
onReverseClick = reverse.bind(this);

render () A
const {
state: { items },
onReverseClick
} = this;

return (
<section>
<button onClick={onReverseClick}>Reverse</button>

{items.map ((v, 1) => (
<li key={i}>{v}</1li>
))}

</section>
)i
t
t

Let's walk through what's going on here, starting with the imports. You're importing a
function called reverse (). This is the generic event handler function that you're using
with your <button> element. When it's clicked, the list should reverse its order.

The onReverseClick method actually calls the generic reverse () function. It is created
using bind () to bind the context of the generic function to this component instance.

Finally, looking at the JSX markup, you can see that the onReverseClick () function is
used as the handler for the button click.

So, how does this work exactly? You have a generic function that somehow changes the
state of this component because you bound context to it? Well, pretty much, yes—that's it.
Let's look at the generic function implementation now:

export default function reverse() {
this.setState(this.state.items.reverse());

}

This function depends on a this.state property and an items array within the state. The
key is that the state is generic; an application could have many components with an items
array in its state.

[94]

Event Handling - The React Way Chapter 5

Here's what our rendered list looks like:

Reverse

e Angular
« Ember
+ React

As expected, clicking on the button causes the list to sort, using your generic reverse ()
event handler:

Reverse

e React
e Ember
¢ Angular

In this section, you learned how to declare event handler functions for your JSX elements.
You then learned how to assign more than one event handler to an element and how to
import and use generic handler functions. Next, you'll learn how to bind the context and
the argument values of event handler functions.

Using event handler context and parameters

In this section, you'll learn about React components that bind their event handler contexts
and how you can pass data into event handlers. Having the right context is important for
React event handler functions, because they usually need access to component properties or
state. Being able to parameterize event handlers is also important, because they don't pull
data out of DOM elements.

Getting component data

In this section, you'll learn about scenarios where the handler needs access to component
properties, along with argument values. You'll render a custom list component that has a
click event handler for each item in the list. The component is passed an array of values as
follows:

import React from "react";
import { render } from "react-dom";
import MyList from "./MyList";

[95]

Event Handling - The React Way Chapter 5

const items = [

{ id: 0, name: "First" },
{ id: 1, name: "Second" },
{ id: 2, name: "Third" }
1;

render (<MyList items={items} />, document.getElementById("root"));

Each item in the list has an id property, which is used to identify the item. You'll need to be
able to access this ID when the item is clicked on in the Ul so that the event handler can
work with the item. Here's what the MyList component implementation looks like:

import React, { Component } from "react";

export default class MyList extends Component {
constructor () {
super () ;
this.onClick = this.onClick.bind(this);
}

onClick (id) {

const { name } = this.props.items.find(i => i.id === id);
console.log("clicked", ""${name}"");
}
render () A
return (

{this.props.items.map(({ id, name }) => (
<1li key={id} onClick={this.onClick.bind(null, id) }>
{name}
</1li>
))}

)
}

Here is what the rendered list looks like:

+ First
¢ Second
e Third

[961]

Event Handling - The React Way Chapter 5

You have to bind the event handler context, which is done in the constructor. If you look at
the onClick () event handler, you can see that it needs access to the component so that it
can look up the clicked item in this.props.items. Also, the onClick () handler is
expecting an id parameter. If you take a look at the JSX content of this component, you can
see that calling bind () supplies the argument value for each item in the list. This means
that when the handler is called in response to a click event, the id of item is already
provided.

This approach to parameterized event handling is quite different from prior approaches.
For example, I used to rely on getting parameter data from the DOM element itself. This
works well when you only need one event handler, and it can extract the data it needs from
the event argument. This approach also doesn't require setting up several new functions by
iterating over a collection and calling bind ().

And therein lies the trade-off. React applications avoid touching the DOM, because the
DOM is really just a render target for React components. If you can write code that doesn't
introduce explicit dependencies to DOM elements, your code will be portable. This is what
you've accomplished with the event handler in this example.

If you're concerned about the performance implications of creating a new
function for every item in a collection, don't be. You're not going to render
thousands of items on the page at a time. Benchmark your code, and if it
turns out that bind () is the slowest part, then you probably have a really
fast application.

In the next section, you'll learn how to build event handler functions on the fly using
higher-order functions.

Higher-order event handlers

A higher-order function is a function that returns a new function. Sometimes, higher-order
functions take functions as arguments too. In the Getting component data example, you used
bind () to bind the context and argument values of your event handler functions. Higher-
order functions that return event handler functions are another technique. The main
advantage of this technique is that you don't have to call bind () several times. Instead, you
just call the function where you want to bind parameters to the function. Let's look at an
example component:

import React, { Fragment, Component } from "react";

export default class App extends Component {
state = {

[97]

Event Handling - The React Way Chapter 5

first: O,

second: O,

third: 0
bi

onClick = name => () => {
this.setState(state => ({
...state,
[name] : state[name] + 1
1))
ti

render () A
const { first, second, third } = this.state;

return (
<Fragment>
<button onClick={this.onClick ("first") }>First {first}</button>
<button onClick={this.onClick ("second") }>Second {second}</button>
<button onClick={this.onClick ("third") }>Third {third}</button>
</Fragment>
)i
t
t

This component renders three buttons and has three pieces of state—a counter for each
button. The onClick () function is automatically bound to the component context because
it's defined as an arrow function. It takes a name argument and returns a new function. The
function that is returned uses this name value when called. It uses computed property
syntax (variables inside []) to increment the state value for the given name. Here's what
that component content looks like after each button has been clicked a few times:

First3 Second3 Third 3

In this section, you learned how to make your event handler functions interact with your
component data. If you have a class-based component, you can bind your function context
to the component class so that you have direct access to the component state and
properties. You also learned that higher-order functions are another option for generating
distinct callback functions by passing an argument to the higher-order function. In the next
section, you'll learn about inline event handler functions.

[981]

Event Handling - The React Way Chapter 5

Declaring inline event handlers

The typical approach to assigning handler functions to JSX properties is to use a named
function. However, sometimes, you might want to use an inline function, where the
function is defined as part of the markup. This is done by assigning an arrow function
directly to the event property in the JSX markup:

import React, { Component } from "react";

export default class MyButton extends Component {
render () A

return (
<pbutton onClick={e => console.log("clicked", e)}>

{this.props.children}
</button>
)
}
}

The main use of inlining event handlers like this is when you have a static parameter value
that you want to pass to another function. In this example, you're calling console.log ()
with the clicked string. You could have set up a special function for this purpose outside
of the JSX markup by creating a new function using bind (), or by using a higher-order
function. But then you would have to think of yet another name for yet another function.
Inlining is just easier sometimes. Next, you'll learn about how React binds handler
functions to the underlying DOM elements in the browser.

Binding handlers to elements

When you assign an event handler function to an element in JSX, React doesn't actually
attach an event listener to the underlying DOM element. Instead, it adds the function to an
internal mapping of functions. There's a single event listener on the document for the page.
As events bubble up through the DOM tree to the document, the React handler checks to
see whether any components have matching handlers. The process is illustrated here:

I Document H map() H Event Handlers |
T

[renden]
| Element H render() H React Component |

[991]

Event Handling - The React Way Chapter 5

Why does React go to all of this trouble, you might ask? It's the same principle that I've
been covering in the last few chapters: keep the declarative Ul structures separated from
the DOM as much as possible.

For example, when a new component is rendered, its event handler functions are simply
added to the internal mapping maintained by React. When an event is triggered and it hits
the document object, React maps the event to the handlers. If a match is found, it calls the
handler. Finally, when the React component is removed, the handler is simply removed
from the list of handlers.

None of these DOM operations actually touch the DOM. It's all abstracted by a single event
listener. This is good for performance and the overall architecture (keep the render target
separate from the application code).

In the following section, you'll learn about the synthetic event implementation used by
React to ensure good performance and safe asynchronous behavior.

Using synthetic event objects

When you attach an event handler function to a DOM element using the native
addEventListener () function, the callback will get an event argument passed to it. Event
handler functions in React are also passed an event argument, but it's not the standard
Event instance. It's called SsyntheticEvent, and it's a simple wrapper for native event
instances.

Synthetic events serve two purposes in React:

e They provide a consistent event interface, normalizing browser inconsistencies.
¢ Synthetic events contain information that's necessary for propagation to work.

Here's a diagram of the synthetic event in the context of a React component:

‘ Synthetic Event H Component

[100]

Event Handling - The React Way Chapter 5

When a DOM element that is part of a React component dispatches an event, React will
handle the event because it sets up its own listeners for them. Then, it will either create a
new synthetic event or will reuse one from the pool depending on availability. If there are
any event handlers declared for the component that match the DOM event that was
dispatched, they will run with the synthetic event passed to them.

In the next section, you'll see how these synthetic events are pooled for performance
reasons and the implications of this on asynchronous code.

Understanding event pooling

One challenge of wrapping native event instances is that it can cause performance issues.
Every synthetic event wrapper that's created will also need to be garbage collected at some
point, which can be expensive in terms of CPU time.

When the garbage collector is running, none of your JavaScript code is
able to run. This is why it's important to be memory efficient; frequent
garbage collection means less CPU time for code that responds to user
interactions.

For example, if your application only handles a few events, this wouldn't matter much. But
even by modest standards, applications respond to many events, even if the handlers don't
actually do anything with them. This is problematic if React constantly has to allocate new
synthetic event instances.

React deals with this problem by allocating a synthetic instance pool. Whenever an event is
triggered, it takes an instance from the pool and populates its properties. When the event
handler has finished running, the synthetic event instance is released back into the pool, as
shown here:

‘ Poil }47

‘Synthetic Event‘ [release(e)]

A
handler(e)

This prevents the garbage collector from running frequently when a lot of events are
triggered. The pool keeps a reference to the synthetic event instances, so they're never
eligible for garbage collection. React never has to allocate new instances either.

[101]

Event Handling - The React Way Chapter 5

However, there is one gotcha that you need to be aware of. It involves accessing the
synthetic event instances from asynchronous code in your event handlers. This is an issue
because, as soon as the handler has finished running, the instance goes back into the pool.
When it goes back into the pool, all of its properties are cleared. Here's an example that
shows how this can go wrong:

import React, { Component } from "react";

function fetchData () {
return new Promise (resolve => {
setTimeout (() => {
resolve () ;
}, 1000);
F) i
}

export default class MyButton extends Component {
onClick(e) A
console.log("clicked", e.currentTarget.style);

fetchData () .then(() => {
console.log("callback", e.currentTarget.style);
F) i
}

render () A
return <button onClick={this.onClick}>{this.props.children}</button>;
}
}

The second call to console.log () is attempting to access a synthetic event property from
an asynchronous callback that doesn't run until the event handler completes, which causes
the event to empty its properties. This results in a warning and an undefined value.

The aim of this example is to illustrate how things can break when you
write asynchronous code that interacts with events. Just don't do it!

In this section, you learned that events are pooled for performance reasons, which means
that you should never access event objects in an asynchronous way.

[102]

Event Handling - The React Way Chapter 5

Summary

This chapter introduced you to event handling in React. The key differentiator between
React and other approaches to event handling is that handlers are declared in JSX markup.
This makes tracking down which elements handle which events much simpler.

You learned that having multiple event handlers on a single element is a matter of adding
new JSX properties. Next, you learned that it's a good idea to share event handling
functions that handle generic behavior. Context can be important for event handler
functions if they need access to component properties or state. You learned about the
various ways to bind event handler function context and parameter values. These include
calling bind () and using higher-order event handler functions.

Then, you learned about inline event handler functions and their potential use, as well as
how React actually binds a single DOM event handler to the document object. Synthetic
events are abstractions that wrap native events; you learned why they're necessary and
how they're pooled for efficient memory consumption.

In the next chapter, you'll learn how to create components that are reusable for a variety of
purposes. Instead of writing new components for each use case that you encounter, you'll
learn the skills necessary to refactor existing components so that they can be used in more
than one context.

Further reading

Visit the following link for more information:

. Handling Events: https://reactis.org/docs/handling-events.html

[103]

https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/docs/handling-events.html

Crafting Reusable Components

The focus of this chapter is to show you how to implement React components that serve
more than just one purpose. After reading this chapter, you'll feel confident about how to
compose application features.

The chapter starts with a brief look at HTML elements and how they work in terms of
helping to implement features versus having a high level of utility. Then, you'll see the
implementation of a monolithic component and discover the issues that it will cause down
the road. The next section is devoted to re-implementing the monolithic component in such
a way that the feature is composed of smaller components.

Finally, the chapter ends with a discussion of rendering trees of React components and
gives you some tips on how to avoid introducing too much complexity as a result of
decomposing components. I'll close this final section by reiterating the concept of high-level
feature components versus utility components.

The following topics will be covered in this chapter:

Reusable HTML elements
The difficulty with monolithic components

Refactoring component structures

Render props

Refactoring class components using Hooks

Rendering component trees

Feature components and utility components

Crafting Reusable Components Chapter 6

Technical requirements

You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-—--Third-Edition/tree/master/Chapter06.

Reusable HTML elements

Let's think about HTML elements for a moment. Depending on the type of HTML element,
it's either feature-centric or utility-centric. Utility-centric HTML elements are more reusable
than feature-centric HTML elements. For example, consider the <section> element. This is
a generic element that can be used just about anywhere, but its primary purpose is to
compose the structural aspects of a feature—the outer shell of the feature and the inner
sections of the feature. This is where the <section> element is most useful.

On the other side of the fence, you have elements such as <p>, , and <button>.
These elements provide a high level of utility because they're generic by design. You're
supposed to use <button> elements whenever you have something that's clickable by the
user, resulting in an action. This is a level lower than the concept of a feature.

While it's easy to talk about HTML elements that have a high level of utility versus those
that are geared toward specific features, the discussion is more detailed when data is
involved. HTML is static markup—React components combine static markup with data.
The question is, how do you make sure that you're creating the right feature-centric and
utility-centric components?

The aim of this chapter is to find out how to go from a monolithic React component that
defines a feature to a smaller feature-centric component combined with utility components.

The difficulty with monolithic components

If you could implement just one component for any given feature, it would simplify your
job. At the very least, there wouldn't be many components to maintain, and there wouldn't
be many communication paths for data to flow through, because everything would be
internal to the component.

[105]

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter06

Crafting Reusable Components Chapter 6

However, this idea doesn't work for a number of reasons. Having monolithic feature
components makes it difficult to coordinate any kind of team development effort. The
bigger monolithic components become, the more difficult they are to refactor into
something better later on.

There's also the problem of feature overlap and feature communication. Overlap happens
because of similarities between features—it's unlikely that an application will have a set of
features that are completely unique to one another. That would make the application very
difficult to learn and use. Component communication essentially means that the state of
something in one feature will impact the state of something in another feature. State is
difficult to deal with, and even more so when there is a lot of state packaged up in a
monolithic component.

The best way to learn how to avoid monolithic components is to experience one first hand.
You'll spend the remainder of this section implementing a monolithic component. In the
following section, you'll see how this component can be refactored into something a little
more sustainable.

The JSX markup

The monolithic component we're going to implement is a feature that lists articles. It's just
for illustrative purposes, so we don't want to go overboard on the size of the component.
It'll be simple, yet monolithic. The user can add new items to the list, toggle the summary of
items in the list, and remove items from the list. Here is the render method of the
component:

render () A
const { articles, title, summary } = this.state;

return (
<section>
<header>
<hl1>Articles</h1>
<input
placeholder="Title"
value={title}
onChange={this.onChangeTitle}
/>
<input
placeholder="Summary"
value={summary}
onChange={this.onChangeSummary}
/>
<button onClick={this.onClickAdd}>Add</button>

[106]

Crafting Reusable Components Chapter 6

</header>
<article>

{articles.map (i => (
<1li key={i.id}>
<a

href={"#${i.id} "}
title="Toggle Summary"
onClick={this.onClickToggle.bind (null, i.id)}

>
{i.title}

<a
href={"#${i.1id}" }
title="Remove"
onClick={this.onClickRemove.bind (null, i.id)?}
>
X

<p style={{ display: i.display }}>{i.summary}</p>
</1li>
))}

</article>
</section>

)
}

This is definitely more JSX than is necessary in one place. We'll improve on this in the
following section, but for now, let's implement the initial state for this component.

I strongly encourage you to download the companion code for this book

from
https://github.com/PacktPublishing/React—-and-React-Native-—--Thir

d-Edition. I can break apart the component code so that I can explain it
on these pages. However, it's an easier learning experience if you can see
the code modules in their entirety, in addition to running them.

[107]

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition

Crafting Reusable Components Chapter 6

Initial state

Now, let's look at the initial state of this component:

state = {
articles: [
{
id: id.next (),
title: "Article 1",
summary: "Article 1 Summary",
display: "none"

id: id.next (),

title: "Article 2",

summary: "Article 2 Summary",
display: "none"

id: id.next (),

title: "Article 3",

summary: "Article 3 Summary",
display: "none"

id: id.next (),
title: "Article 4",
summary: "Article 4 Summary",
display: "none"
}
Is
title: "",

summary: ""

bi

The state consists of an array of articles, a title string, and a summary string. Each
article object in the articles array has several string fields to help render the article and
an id field, which is a number. The number is generated by id.next (). Let's take a look at
how this works:

const id = (function* () {
let 1 = 1;
while (true) {
yield i;
i+=1;

1O

[108]

Crafting Reusable Components Chapter 6

The id constant is a generator. It is created by defining an inline generator function and
calling it right away. This generator will yield numbers infinitely. So calling id.next () the
first time returns 1, the next is 2, and so on. This simple utility will come in handy when it's
time to add new articles and we need a new unique ID.

Event handler implementation

At this point, you have the initial state and the JSX of the component. Now it's time to
implement the event handlers:

onChangeTitle = e => {
this.setState({ title: e.target.value });
}i

onChangeSummary = e => {
this.setState ({ summary: e.target.value });

}i

The onChangeTitle () and onChangeSummary () methods use setState () to update the
title and summary state values, respectively. The new values come from

the target .value property of the event argument, which is the value that the user types
into the text input:

onClickAdd = () => {
this.setState(state => ({
articles: [

...state.articles,
{
id: id.next (),
title: state.title,
summary: state.summary,
display: "none"
}
I
title: "",
summary: ""
1)
i

[109]

Crafting Reusable Components Chapter 6

The onClickAdd () method adds a new article to the articles state. This state value is an
array. We use the spread operator to build a new array from the existing array
([...state.articles]), and the new object gets added to the end of the new array. The
reason we're building a new array and passing it to setState () is so that there are no
surprises. In other words, we're treating state values as immutable so that other code that
updates the same state doesn't accidentally cause problems:

onClickRemove = id => {
this.setState(state => ({
...state,
articles: state.articles.filter(article => article.id !== id)

)i
bi

The onClickRemove () method removes the article with the given ID from the articles
state. It does this by calling filter () on the array, which returns a new array so the
operation is immutable. The filter removes the object with the given ID:

onClickToggle = id => {
this.setState(state => {
const articles = [...state.articles];
const index = articles.findIndex (article => article.id === id);

articles[index] = {

...articles[index],

display: articles[index] .display ? "" : "none"
}i

return { ...state, articles };
)i
}i

The onClickToggle () method toggles the visibility of the article with the given ID. We
carry out two immutable operations in this method. First, we build a new articles array
from state.articles. Then, based on the index of the given ID, we replace the article
object at the index with a new object. We use the object spread operator to fill in the
properties ({ . ..articles[index]}), and then the display property value is toggled
based on the existing display value.

[110]

Crafting Reusable Components Chapter 6

Here's a screenshot of the output rendered:

Articles

Add

Article 1 X
Article 2 X
Article 3 X
Article 4 X

At this point, we have a component that does everything that we need our feature to do.
However, it's monolithic and difficult to maintain. Imagine if we had other places in our
app that use the same pieces of MyFeature? They have to re-invent them because they
cannot be shared. In the following section, we'll work on breaking down MyFeature into
smaller reusable components.

Refactoring component structures

You have a monolithic feature component—now what? Let's make it better.

In this section, you'll learn how to take the feature component that you just implemented in
the preceding section and split it into more maintainable components. You'll start with the
JSX, as this is probably the best refactor starting point. Then, you'll implement new
components for the feature.

Next, you'll make these new components functional, instead of class-based. Finally, you'll
learn how to use render props to reduce the number of direct component dependencies in
your application and how to remove classes entirely by using Hooks to manage state
within functional components.

Starting with the JSX

The JSX of any monolithic component is the best starting point for figuring out how to
refactor it into smaller components. Let's visualize the structure of the component that
we're currently refactoring;:

[111]

Crafting Reusable Components Chapter 6

MyFeature

Form Controls

List

List Item

The top part of the JSX is the form controls, so this could easily become its own component:

<header>
<hl1>Articles</h1>
<input
placeholder="Title"
value={title}
onChange={this.onChangeTitle}
/>
<input
placeholder="Summary"
value={summary}
onChange={this.onChangeSummary}
/>
<button onClick={this.onClickAdd}>Add</button>
</header>

Next, you have the list of articles:

{articles.map (i => (
<li key={i.id}>

<a
href="#"
onClick={
this.onClickToggle.bind (null, i.id)
}
>
{i.title}

<a
href="#"
onClick={this.onClickRemove.bind(null, i.id)}
>
X

[112]

Crafting Reusable Components Chapter 6

<p style={{ display: i.display }}>
{i.summary}
</p>
</1li>
)}

Within this list, there's potential for an article component, which would be everything in
the <1i> tag. Let's try building this next.

Implementing an article list component

Here's what the article list component implementation looks like:

import React, { Component } from "react";

export default class Articlelist extends Component {
render () {
const { articles, onClickToggle, onClickRemove } = this.props;

return (

{articles.map(article => (
<1li key={article.id}>
<a
href={"#S${article.id}" }
title="Toggle Summary"
onClick={onClickToggle.bind(null, article.id)}
>
{article.title}

<a
href={"#S${article.id}" }
title="Remove"
onClick={onClickRemove.bind(null, article.id)?}
>
X

<p style={{ display: article.display }}>{article.summary}</p>
</1li>
))

)i

[113]

Crafting Reusable Components Chapter 6

We're taking the relevant JSX out of the monolithic component and putting it here. Now,
let's see what the feature component of JSX looks like:

render () A
const { articles, title, summary } = this.state;

return (
<section>
<header>
<hl>Articles</hl1>
<input
placeholder="Title"
value={title}
onChange={this.onChangeTitle}
/>
<input
placeholder="Summary"
value={summary}
onChange={this.onChangeSummary}
/>
<button onClick={this.onClickAdd}>Add</button>
</header>
<ArticlelList
articles={articles}
onClickToggle={this.onClickToggle}
onClickRemove={this.onClickRemove}
/>
</section>
)
}

The list of articles is now rendered by the <ArticleList> component. The list of articles to
render is passed to this component as a property along with two of the event handlers.

Wait. Why are we passing event handlers to a child component? The
reason is so that the ArticleList component doesn't have to worry
about state or how the state changes. All it cares about is rendering
content, and making sure the appropriate event callbacks are hooked up
to the appropriate DOM elements. This is a container component concept
that I'll expand upon later in this chapter.

Now that we have an ArticleList component, let's see whether we can further break it
down into smaller reusable components.

[114]

Crafting Reusable Components Chapter 6

Implementing an article item component

After implementing the article list component, you might decide that it's a good idea to
break this component.

Another way to look at it is this—if it turns out that we don't actually need the item as its
own component, this new component doesn't introduce much indirection or complexity.
Without further ado, here's the article item component:

import React, { Component } from "react";

export default class Articleltem extends Component {
render () A
const { article, onClickToggle, onClickRemove } = this.props;

return (

<a
href={" #{article.id} }
title="Toggle Summary"
onClick={onClickToggle.bind(null, article.id)}
>
{article.title}

<a
href={" #{article.id} }
title="Remove"
onClick={onClickRemove.bind(null, article.id)}
>
X

<p style={{ display: article.display }}>{article.summary}</p>
</1li>

)i

[115]

Crafting Reusable Components Chapter 6

Here's the new ArticleItem component being rendered by the ArticleList component:

import React, { Component } from "react";
import ArticleItem from "./ArticleItem";

export default class Articlelist extends Component {

render () {
const { articles, onClickToggle, onClickRemove } = this.props;
return (

{articles.map (i => (
<Articleltem
key={1i.id}

article={i}
onClickToggle={onClickToggle}
onClickRemove={onClickRemove}

/>

Do you see how this list just maps the list of articles? What if you wanted to implement
another article list that does some filtering too? If so, it's beneficial to have a reusable
ArticleItem component. Next, we'll move the add article markup into its own
component.

Implementing an add article component

Now that we're done with the article list, it's time to think about the form controls used to
add a new article. Let's implement a component for this aspect of the feature:

import React, { Component } from "react";

export default class AddArticle extends Component {
render () A

const {
name,
title,
summary,
onChangeTitle,
onChangeSummary,
onClickAdd

} = this.props;

[116]

Crafting Reusable Components Chapter 6

return (
<section>
<hl>{name}</h1>
<input placeholder="Title" value={title} onChange={onChangeTitle}
/>
<input
placeholder="Summary"
value={summary}
onChange={onChangeSummary}
/>
<button onClick={onClickAdd}>Add</button>
</section>

)
}

Now, our feature component only needs to render <AddArticle> and <ArticleList>
components:

render () {
const { articles, title, summary } = this.state;

return (
<section>

<AddArticle
name="Articles"
title={title}
summary={summary }
onChangeTitle={this.onChangeTitle}
onChangeSummary={this.onChangeSummary}
onClickAdd={this.onClickAdd}

/>

<Articlelist
articles={articles}
onClickToggle={this.onClickToggle}
onClickRemove={this.onClickRemove}

/>

</section>
)i
}

The focus of this component is on the feature data, while it defers to other components for
rendering Ul elements. Several components that we've created while refactoring
MyFeature are classes and they don't need to be. Let's make them simple functions instead.

[117]

Crafting Reusable Components Chapter 6

Making components functional

While implementing these new components, you may have noticed that they don't have
any responsibilities other than rendering JSX using property values. These components are
good candidates for pure function components. Whenever you come across components
that only use property values, it's a good idea to make them functional. For one thing, it
makes it explicit that the component doesn't rely on any state or life cycle methods. It's also
more efficient because React doesn't perform as much work when it detects that a
component is a function.

Here is the functional version of the ArticleList component:

import React from "react";
import ArticleItem from "./ArticleItem";

export default function Articlelist ({
articles,
onClickToggle,
onClickRemove
P A
return (

{articles.map (i => (
<Articleltem
key={1i.id}
article={i}
onClickToggle={onClickToggle}
onClickRemove={onClickRemove}
/>
))}

)i
}

Here is the functional version of the ArticleItem component:
import React from "react";

export default function ArticlelItem({ article, onClickToggle, onClickRemove
B A
return (

<a
href={"#${article.id} }
title="Toggle Summary"
onClick={onClickToggle.bind(null, article.id)}
>

[118]

Crafting Reusable Components Chapter 6

{article.title}

<a
href={"#${article.id} }
title="Remove"
onClick={onClickRemove.bind(null, article.id)}

>
X

<p style={{ display: article.display }}>{article.summary}</p>

</1li>
)i
}

Here is the functional version of the AddArticle component:

import React from "react";

export default function AddArticle ({
name,
title,
summary,
onChangeTitle,
onChangeSummary,
onClickAdd
oA
return (
<section>
<hl>{name}</hi1>
<input placeholder="Title" value={title} onChange={onChangeTitle} />
<input placeholder="Summary" value={summary}
onChange={onChangeSummary} />
<button onClick={onClickAdd}>Add</button>
</section>
)

[119]

Crafting Reusable Components Chapter 6

Another added benefit of making components functional is that there's less opportunity to
introduce unnecessary methods or other data.

In this section, you learned about using JSX as the basis for refactoring larger components
into smaller more reusable ones. This leads to more components, but they're smaller, more
focused, and are reusable. In the next section, we'll look at how render props makes it
possible to pass components around as properties instead of directly importing them as
dependencies.

Render props

Imagine implementing a feature that is composed of several smaller components — like
what you've been working on in this chapter. The MyFeature component depends on
ArticleList and AddArticle. Now imagine using MyFeature in different parts of your
application where it makes sense to use a different implementation of ArticleList or
AddArticle. The fundamental challenge is substituting one component for another.

Render props are a nice way to address this challenge. The idea is that you pass a property
to your component whose value is a function that returns a component to render. This way,
instead of having the feature component directly depend on its child components, you can
configure them as you like; they pass them in as render prop values.

Render props aren't a React 16 feature. They're a technique whose
popularity increase coincided with the release of React 16. It's an officially
recognized way to deal with dependency and substitution problems. You
can read more about render props at https://reactjs.org/docs/render-
props.html.

Let's look at an example. Instead of having MyFeature directly depend on AddArticle
and ArticleList, you can pass them as render props. Here's what the render () method
of MyFeature looks like when it's using render props to fill in the holes where
<AddArticle>and <ArticleList> used to be:

render () {
const { articles, title, summary } = this.state;
const {
props: { addArticle, articlelist },
onClickAdd,
onClickToggle,
onClickRemove,
onChangeTitle,
onChangeSummary

[120]

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html

Crafting Reusable Components Chapter 6

} = this;

return (
<section>
{addArticle ({
title,
summary,
onChangeTitle,
onChangeSummary,
onClickAdd
)}
{articlelist ({ articles, onClickToggle, onClickRemove })}
</section>
)i
t

The addArticle () and articleList () functions are called with the same property
values that would have been passed to <AddArticle>and <ArticleList>, respectively.
The difference now is that this module no longer imports AddArticle or ArticleList as
dependencies.

Now, let's take a look at the index. js file where <MyFeature> is rendered:

render (
<MyFeature
addArticle={ ({
title,
summary,
onChangeTitle,
onChangeSummary,
onClickAdd
P)o=>
<AddArticle
name="Articles"
title={title}
summary={summary}
onChangeTitle={onChangeTitle}
onChangeSummary={onChangeSummary }
onClickAdd={onClickAdd}
/>
)}
articlelList={({ articles, onClickToggle, onClickRemove }) => (
<Articlelist
articles={articles}
onClickToggle={onClickToggle}
onClickRemove={onClickRemove}

/>

[121]

Crafting Reusable Components Chapter 6

)}
/>I
document .getElementById ("root")
)i

There's a lot more going on here now than there was when it was just <MyFeature> being
rendered. Let's break down why that is. Here is where you pass the addArticle and
articleList render props. These prop values are functions that accept argument values
from MyComponent. For example, the onClickToggle () function comes from MyFeature
and is used to change the state of that component. You can use the render prop function to
pass this to the component that will be rendered, along with any other values. The return
value of these functions is what is ultimately rendered.

In this section, you learned that by passing render property values - functions that render
JSX markup - you can avoid hardcoding dependencies in places where you might want to
share functionality. Passing a different property value to a component is usually easier than
changing which dependencies are used by a given module. In the final section of this
chapter, we'll refactor the MyFeature component into a functional component that uses
Hooks for state management.

Refactoring class components using Hooks

Prior to the addition of Hooks to React, we would often end up using class-based
components just because the component had state data to maintain. Hooks exist so that you
can implement React components using regular functions and still have access to the React
APIs that you used to access through class attributes and methods. In this section, we'll
rewrite the MyFeature component so that it's a function and it uses the usesState () hook.

First, let's take a look at the functional version of MyFeature:

import React, { useState } from "react";

const id = (function* () {
let 1 = 1;
while (true) {
yield i;
i += 1;

1O

export default function MyFeature ({ addArticle, articlelist }) {
const [articles, setArticles] = useState([

{

[122]

Crafting Reusable Components

Chapter 6

id: id.next (),

title: "Article 1",

summary: "Article 1 Summary",
display: "none"

}I
1)s

const [title, setTitle] = useState("");

const [summary, setSummary] = useState("");

function onChangeTitle(e) {
setTitle (e.target.value);

function onChangeSummary (e) {
setSummary (e.target.value);

function onClickAdd () {
setArticles ([
...articles,
{
id: id.next (),
title: title,
summary: summary,
display: "none"
}
1)
setTitle("");
setSummary ("");

function onClickRemove (id) {

setArticles (articles.filter (article => article.id

}

function onClickToggle (id) {
const index = articles.findIndex (article => article.
const updatedArticles = [...articles];
updatedArticles[index] = {

...articles[index],
display: articles[index] .display ?
bi

setArticles (updatedArticles);

t==1id));

id === 1id);

[123]

Crafting Reusable Components Chapter 6

return (
<section>
{addArticle ({
title,
summary,
onChangeTitle,
onChangeSummary,
onClickAdd
)}
{articlelist ({ articles, onClickToggle, onClickRemove })}
</section>
)i
t

Even though we've completely changed the implementation of MyFeature, none of the
other utility components, such as AddArticle or ArticleList, require any changes.
Now, let's take a closer look at what was changed, starting with the component declaration:

export default function MyFeature ({ addArticle, articlelList }) {

}

Now, MyFeature is a function that takes two properties (addArticle and articleList)
as arguments. Next, let's look at how state is initialized in this function:

const [articles, setArticles] = useState([
{
id: id.next (),
title: "Article 1",
summary: "Article 1 Summary",
display: "none"

id: id.next (),

title: "Article 2",

summary: "Article 2 Summary",
display: "none"

id: id.next (),

title: "Article 3",

summary: "Article 3 Summary",
display: "none"

id: id.next (),
title: "Article 4",
summary: "Article 4 Summary",

[124]

Crafting Reusable Components Chapter 6

display: "none"
}
1)

const [title, setTitle] = useState("");
const [summary, setSummary] = useState("");

Now, instead of assigning the pieces of state that our component needs to a state property
on a class, we're using the usestate () hook to initialize our state values and state setter
functions. One immediate benefit of this approach is that the state values are now accessible
throughout the function scope. We no longer need to access state values via this.state.

Next, let's look at the event handler implementations:

function onChangeTitle (e) {
setTitle (e.target.value);

function onChangeSummary (e) {
setSummary (e.target.value);

function onClickAdd () {
setArticles ([
...articles,
{
id: id.next (),
title: title,
summary: summary,
display: "none"
}
1)
setTitle("");
setSummary ("") ;

function onClickRemove (id) {
setArticles (articles.filter (article => article.id !== id));

function onClickToggle (id) {

const index = articles.findIndex (article => article.id === id);
const updatedArticles = [...articles];
updatedArticles[index] = {

...articles[index],

display: articles[index].display ? "" : "none"

}i

[125]

Crafting Reusable Components Chapter 6

setArticles (updatedArticles);
t

Now, instead of using this.setState () to update any values, we can just use the setter
functions. For example, setArticles () updates the articles state. In cases where
updating the state depends on the previous state value, we can simply access the previous
value directly. For example, in the onClickToggle () handler, we need access to the
articles array before we can update it. The articles constant is available to us to read
the current state value, which leads to simpler code; we no longer need to pass a callback
function to setState ().

The callbacks are now functions nested inside the MyFeature function, instead of class
methods. The functions are named, so no readability is lost. Also, there's no scope to worry
about since everything, including state values, is within the larger component function
scope.

This section showed you how to take an existing class component that has state and
refactor it into a functional component with state. The usestate () hook leads to
simplified state management code. In the following section, we'll look at the concept of
component trees.

Rendering component trees

Let's take a moment and reflect on what we've accomplished so far in this chapter. The
feature component that was once monolithic ended up focusing almost entirely on the state
data. It handled the initial state and handled transforming the state, and it would handle
network requests that fetch state, if there were any. This is a typical container component in
a React application, and it's the starting point for data.

[126]

Crafting Reusable Components Chapter 6

The new components that you implemented, to better compose the feature, were the
recipients of this data. The difference between these components and their container is that
they only care about the properties that are passed into them at the time they're rendered.
In other words, they only care about data snapshots at a particular point in time. From here,
these components might pass the property data into their own child components as
properties. The generic pattern for composing React components is as follows:

Container Component

Iltem Detail Component

‘ Utility Component |

| Utility Component ‘

List Component

| Iltem Component ‘

| I[tem Component |

The Container Component will typically contain one direct child. In this diagram, you can
see that the container has either an Item Detail Component or a List Component. Of
course, there will be variations in these two categories, as every application is different.
This generic pattern has three levels of component composition. Data flows in one direction
from the container all the way down to the utility components.

Once you add more than three layers, the application architecture becomes difficult to
comprehend. There will be the odd case where you'll need to add four layers of React
components but, as a rule of thumb, you should avoid this.

Feature components and utility components

In the monolithic component example, you started off with a single component that was
entirely focused on a feature. This means that the component has very little utility
elsewhere in the application.

[127]

Crafting Reusable Components Chapter 6

The reason for this is because top-level components deal with application state. Stateful
components are difficult to use in any other context. As you refactored the monolithic
feature component, you created new components that moved further away from the data.
The general rule is that the further your components move from stateful data, the more
utility they have, because their property values could be passed in from anywhere in the
application.

Summary

This chapter was about avoiding a monolithic component design. However, monoliths are
often a necessary starting point in the design of any React component.

You began by learning about how the different HTML elements have varying degrees of
utility. Next, you learned about the issues with monolithic React components and walked
through the implementation of a monolithic component.

Then, you spent several sections learning how to refactor the monolithic component into a
more sustainable design. From this exercise, you learned that container components should
only have to think in terms of handling state, while smaller components have more utility
because their property values can be passed from anywhere. You also learned that you can
use render props for better control over component dependencies and substitution.

In the next chapter, you'll learn about the React component life cycle. This is an especially
relevant topic for implementing container components.

Further reading

Visit the following links for more information:

e Render Props: https://reactjs.org/docs/render-props.html

. Components and Props: https://reactjs.org/docs/components—and-props.
html#functional-and-class—components

[128]

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components
https://reactjs.org/docs/components-and-props.html#functional-and-class-components

The React Component Life
Cycle

The goal of this chapter is for you to learn about the life cycle of React components and how
to write code that responds to life cycle events. You'll learn why components need a life
cycle in the first place. Then, you'll implement several components that initialize their
properties and state using these methods.

Next, you'll learn about how to optimize the rendering efficiency of your components by
avoiding rendering when it isn't necessary. Then, you'll see how to encapsulate the
imperative code in React components and how to clean up when components are
unmounted. Finally, you'll learn how to capture and handle errors using new React 16 life
cycle methods.

Here are the sections we'll cover in this chapter:

e Why components need a life cycle

Initializing properties and state

Optimizing rendering efficiency

Rendering imperative components

Cleaning up after components

Containing errors with error boundaries

Technical requirements

You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-—-Third-Edition/tree/master/Chapter07.

https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/React-and-React-Native---Third-Edition/tree/master/Chapter07

The React Component Life Cycle Chapter 7

Why components need a life cycle

React components go through a life cycle. In fact, the render () method that you've
implemented in your components so far in this book is actually a life cycle method.
Rendering is just one life cycle event in a React component.

For example, there are life cycle events for when the component is mounted to the DOM,
when the component is updated, and so on. Life cycle events are yet another moving part,
so you'll want to keep them to a minimum. As you'll learn in this chapter, some
components do need to respond to life cycle events to perform initialization, render
heuristics, clean up after the component when it's unmounted from the DOM, or to handle
errors thrown by the component.

The following diagram gives you an idea of how a component flows through its life cycle,
calling the corresponding methods in turn:

Initial Render Update
[getDerivedStateFromProps()] [getDerivedStateFromProps() J
[render()] [shouldComponentUpdate() J
[componentDidMount()] [render() J

[getSnapshotBeforeUpdate() J

|

[componentDidUpdate() J

These are the two main life cycle flows of a React component. The first happens when the
component is initially rendered. The second happens whenever the component is updated.
Here's a rough overview of each of the methods:

® getDerivedStateFromProps (): This method allows you to update the state of
the component based on the property values of the component. This method is
called when the component is initially rendered and when it receives new
property values.

e render (): Returns the content to be rendered by the component. This is called
when the component is first mounted to the DOM, when it receives new
property values, and when setState () is called.

[130]

The React Component Life Cycle Chapter 7

e componentDidMount (): This is called after the component is mounted to the
DOM. This is where you can perform component initialization work, such as
fetching data.

¢ shouldComponentUpdate (): You can use this method to compare new states or
props with current states or props. Then, you can return false if there's no need
to re-render the component. This method is used to make your components more
efficient.

® getSnapshotBeforeUpdate (): This method lets you perform operations
directly on the DOM elements of your component before they're actually
committed to the DOM. The difference between this method and render () is
that get SnapshotBeforeUpdate () isn't asynchronous. With render (), there's
a good chance that the DOM structure could change between when it's called
and when the changes are actually made in the DOM.

e componentDidUpdate (): This is called when the component is updated. It's rare
that you'll have to use this method.

The other life cycle method that isn't included in this diagram is
componentWillUnmount (). This is the only life cycle method that's called when a
component is about to be removed. We'll see an example of how to use this method at the
end of this chapter. On that note, let's get coding.

Initializing properties and state

In this section, you'll see how to implement the initialization code in React components.
This involves using life cycle methods that are called when the component is first created.
First, you'll implement a basic example that sets the component up with data from the APL
Then, you'll see how the state can be initialized from properties, and also how the state can
be updated as properties change.

Fetching component data

When your components are initialized, you'll want to populate their state or properties.
Otherwise, the component won't have anything to render other than its skeleton markup.
For instance, let's say you want to render the following user list component:

import React from "react";

const ErrorMessage = ({ error }) => (error ? {error} :
null);

[131]

The React Component Life Cycle Chapter 7

const LoadingMessage = ({ loading }) => (loading ? {loading}
null);
export default ({ error, loading, users }) => (

<section>

<ErrorMessage error={error} />
<LoadingMessage loading={loading} />

{users.map (user => (
<1li key={user.id}>{user.name}</1i>
))}

</section>

)i
There are three pieces of data that this JSX relies on, as follows:

¢ loading: This message is displayed while fetching API data.
e error: This message is displayed if something goes wrong.
e users: Data that's fetched from the API.

There are two helper components being used here: ErrorMessage and LoadingMessage.
They're used to format the error and the 1oading states, respectively. If error or
loading is null, nothing is rendered. Otherwise, an error or loading message is
rendered by the respective component.

How should we go about making the API call and using the response to populate the
users collection? The answer is to use a container component that makes the API call and
then renders the UserList component:

import React, { Component } from "react";
import { users } from "./api";
import UserList from "./UserList";

export default class UserListContainer extends Component {
state = {
error: null,
loading: "loading...",

users: []
bi
componentDidMount () {
users () .then(

result => {
this.setState({ loading: null, error: null, users: result.users });
b

[132]

The React Component Life Cycle Chapter 7

error => {
this.setState({ loading: null, error });
t
)i
t

render () A
return <UserList {...this.state} />;
}
}

Let's take a look at the render () method. Its job is to render the <UserList> component,
passing in this.state as properties. The actual API call happens in the
componentDidMount () method. This method is called after the component is mounted
into the DOM.

Due to the naming of componentDidMount (), React newcomers think
that it's bad to wait until the component is mounted to the DOM before
issuing requests for component data. In other words, the user experience
might suffer if React has to perform a lot of work before the request is
even sent. In reality, fetching data is an asynchronous task and initiating it
before or after render () makes no real difference as far as your
application is concerned. You can read more about this at https://
reactjs.org/blog/2018/03/27/update-on—async-rendering.html.

Once the API call returns with data, the users collection is populated, causing the
UserList to re-render itself, only this time, it has the data it needs. Let's take a look at the
users () mock API function call being used here:

export function users(fail) {
return new Promise((resolve, reject) => {
setTimeout (() => {
if (fail) |
reject ("epic fail");

} else {
resolve ({
users: [
{ id: 0, name: "First" },
{ id: 1, name: "Second" 1},

{ id: 2, name: "Third" }

[133]

https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html

The React Component Life Cycle Chapter 7

It returns a promise that's resolved with an array after 2 seconds. Promises are a good tool
for mocking things such as API calls because they enable you to use more than HTTP calls
as a data source in your React components. For example, you might be reading from a local
file or using a library that returns promises that resolve data from various sources.

Here's what the UserList component renders when the 1oading state is a string, and the
users state is an empty array:

loading...

Here's what it renders when loadingis null and users is non-empty:

o First
e Second
e Third

I want to reiterate the separation of responsibilities between the UserListContainer and
UserList components. Because the container component handles the life cycle
management and the actual API communication, you can create a generic user list
component. In fact, it's a functional component that doesn't require any state, which means
you can reuse it in other container components throughout your application.

Now that we've seen how to set the state of a component using fetched API data, let's figure
out how to set the state of a component using property values that are passed to it.

Initializing state with properties

The preceding example showed you how to initialize the state of a container component by
making an API call in the componentDidMount () life cycle method. However, the only
populated part of the component state was the users collection. You might want to
populate other pieces of state that don't come from API endpoints.

For example, the error and loading state messages have default values set when the state
is initialized. This is great, but what if the code that is rendering UserListContainer
wants to use a different loading message? You can achieve this by allowing properties to
override the default state. Let's build on the UserListContainer component:

import React, { Component } from "react";
import { users } from "./api";
import UserList from "./UserList";

[134]

The React Component Life Cycle Chapter 7

export default class UserListContainer extends Component {
state = {
error: null,
users: []

bi

componentDidMount () {
users () .then(
result => {
this.setState({ error: null, users: result.users });
s
error => {
this.setState({ loading: null, error });
t
)i

render () A
return <UserList {...this.state} />;

static getDerivedStateFromProps (props, state) |
return {
...state,
loading: state.users.length === 0 ? props.loading : null

bi

UserListContainer.defaultProps = {
loading: "loading..."

bi

The loading property no longer has a default string value.

Instead, defaultProps provides default values for properties. The new life cycle method
is getDerivedStateFromProps (). It uses the loading property to set the 1oading state.
Since the 1oading property has a default value, it's safe to just change the state. The
method is called before the component mounts and on subsequent re-renders of the
component.

[135]

The React Component Life Cycle Chapter 7

This method is static because of internal changes in React 16. The
expectation is that this method behaves like a pure function and has no
side effects. If this method were an instance method, you would have
access to the component context and side effects would be commonplace.

The challenge with this new React 16 method is that it's called on initial render and on
subsequent re-renders. Prior to React 16, you could use the componentWillMount ()
method for code that you only wanted to run prior to the initial render. In this example,
you have to check whether there are values in the users collection before setting the
loading state to null — you don't know if this is the initial render or the 40th render.

Let's see how we can pass state data to UserListContainer now:

import React from "react";
import { render } from "react-dom";
import UserListContainer from "./UserListContainer";

render (
<UserListContainer loading="playing the waiting game..." />,
document .getElementById ("root")

)i

Here's what the initial loading message looks like when UserList is first rendered:

playing the waiting game...

Just because the component has state doesn't mean that you can't allow for customization.
Next, you'll learn a variation of this concept—updating the component state with
properties.

Updating state with properties

You've seen how the componentDidMount () and getDerivedStateFromProps () life
cycle methods help get your components the data they need. There's one more scenario that
you need to consider—re-rendering the component container.

Let's take a look at a simple button component that tracks the number of times it's been
clicked:

import React from "react";

export default ({ clicks, disabled, text, onClick }) => (

[136]

The React Component Life Cycle Chapter 7

<section>
<p>{clicks} clicks</p>
<button disabled={disabled} onClick={onClick}>
{text}
</button>
</section>

)i
Now, let's implement a container component for this feature:

import React, { Component } from "react";
import MyButton from "./MyButton";

export default class MyFeature extends Component {
state = {
clicks: O,
disabled: false,

text: ""
}i
onClick = () => {
this.setState (state => ({ ...state, clicks: state.clicks + 1 }));
}i
render () A

return <MyButton onClick={this.onClick} {...this.state} />;

static getDerivedStateFromProps ({ disabled, text }, state) {
return { ...state, disabled, text };

MyFeature.defaultProps = {
text: "A Button"
bi

The same approach that we used for initializing the state with properties is being used here.
The getDerivedStateFromProps () method is called before every render and is where
you can use prop values to figure out if and how the component state should be
updated. Let's see how to re-render this component and whether or not the state behaves as
expected:

import React from "react";

import { render as renderJSX } from "react-dom";
import MyFeature from "./MyFeature";

let disabled = true;

[137]

The React Component Life Cycle Chapter 7

function render () {
disabled = !disabled;

renderJSX (<MyFeature {...{ disabled }} />,
document .getElementById ("root"));
t

setInterval (render, 3000);
render () ;

Sure enough, everything goes as planned. Whenever the button is clicked, the click counter
is updated. <MyFeature> is re-rendered every 3 seconds, toggling the disabled state of
the button. When the button is re-enabled and clicking resumes, the counter continues from
where it left off.

Here is what the MyBut ton component looks like when it's first rendered:

0 clicks

A Button

Here's what it looks like after it has been clicked a few times and the button has moved into
a disabled state:

9 clicks

A Button

In this section, you learned about initializing property and state values in your components
by using different life cycle methods. Without these methods, you would have a hard time
ensuring that your components have the data that they need when they need it. In the next
section, we'll consider different ways to optimize the efficiency of our components using
life cycle methods.

Optimizing rendering efficiency

The next life cycle method you're going to learn about is used to implement heuristics that
improve component rendering performance. You'll see that if the state of a component
hasn't changed, then there's no need to render. Then, you'll implement a component that
uses specific metadata from the API to determine whether or not the component needs to
be re-rendered.

[138]

The React Component Life Cycle Chapter 7

To render or not to render

The shouldComponentUpdate () life cycle method is used to determine whether or not the
component will render when asked to. For example, if this method were implemented and
returned false, the entire life cycle of the component would short-circuit, and no render
would happen. This can be an important check to have in place if the component is
rendering a lot of data and is re-rendered frequently. The trick is knowing whether or not
the component state has changed.

Let's take a look at a simple list component:

import React, { Component } from "react";

function referenceEquality (arrl, arr2) {
return arrl === arr2;

}

function valueEquality(arrl, arr2) {
for (let 1 = 0; i < arrl.length; i++) {
if (arrl[i] !== arr2[i]) {
return false;

}

return true;

}

export default class MyList extends Component {
state = {
items: new Array (5000).£fill (null) .map((v, i) => 1)
}i

shouldComponentUpdate (props, state) {
if ('referenceEquality(this.state.items, state.items)) {
return !valueEquality(this.state.items, state.items);

}

return false;

}

render () A
return (

{this.state.items.map (item => (
<li key={item}>{item}</1i>
)))

)

[139]

The React Component Life Cycle Chapter 7

}
}

The items state is initialized to an array with 5000 items in it. This is a fairly large
collection, so you don't want the virtual DOM inside React to constantly diff this list. The
virtual DOM is efficient at what it does, but not nearly as efficient as code, which can
perform a simple should or shouldn't render check. The shouldComponentRender ()
method that you've implemented here does exactly that. It compares the new state with the
current state with the help of two utility functions:

e referenceEquality ():Returns true if two arguments are the same reference.
This is an extremely fast check to perform.
e valueEqulity ():Returns true if the two array values are the same. This isn't

quite as fast because it needs to iterate over the whole array, but it's still faster
than the virtual DOM.

The idea for having these two functions separated like this is to handle the fast common
case, which is that setState () wasn't even called and we have the same array reference,
so there's no need to do anything else. If it's not the same object, then we can check for
value changes. Even if the values are all the same, and it's a new array reference, this
method still pays off because it's relatively fast to run and often avoids a trip to the virtual
DOM.

Now, let's put this component to work and see what kind of efficiency gains you get:

import React from "react";
import { render as renderJSX } from "react-dom";
import MyList from "./MyList";

function render () {
const myList = renderJSX (<MyList />, document.getElementById("root"));
myList.data = myList.setState(state => ({
items: [0, ...state.items.slice(1)]
)i
}

for (let 1 = 0; i < 100; i++) |
render () ;

}

[140]

The React Component Life Cycle Chapter 7

You're rendering <MyList>, over and over, in a loop. Each iteration has 5,000 list items to
render. Since the state doesn't change, the call to shouldComponentUpdate () returns
false on every one of these iterations. This is important for performance reasons because
there are a lot of them. You're not going to have code that re-renders a component in a tight
loop, in a real application. This code is meant to stress the rendering capabilities of React. If
you were to comment out the shouldComponentUpdate () method, you'd see what I
mean. Here's what the performance profile looks like for this component:

2300 ms 2400 ms 2500 ms 2600 ms 2700 ms
» Network
Frames 74.8 ms 372.8 ms |

b Interactions

¥ User Timing
(React Tree R...ompleted Root)
MyList [mount]

The initial render takes the longest—a few hundred milliseconds. But then you have all of
these tiny time slices that are completely imperceptib