
Raspberry Pi Computer Vision
Programming – Second Edition
Raspberry Pi is one of the popular
single-board computers of our generation.
All the major image processing and computer
vision algorithms and operations can be
implemented easily with OpenCV on
Raspberry Pi. This updated second edition is
packed with cutting-edge examples and new
topics, and covers the latest versions of key
technologies such as Python 3, Raspberry Pi,
and OpenCV. This book will equip you with
the skills required to successfully design and
implement your own OpenCV, Raspberry Pi,
and Python-based computer vision projects.
At the start, you'll learn the basics of Python 3,
and the fundamentals of single-board
computers and NumPy. Next, you'll discover
how to install OpenCV 4 for Python 3

on Raspberry Pi, before covering major
techniques and algorithms in image
processing, manipulation, and computer
vision. By sequentially working through the
steps in each chapter, you'll understand
essential OpenCV features. Later sections
will take you through creating graphical user
interface (GUI) apps with GPIO and OpenCV.
You'll also learn how to use the new computer
vision library, Mahotas, to perform various
image processing operations. Finally, you'll
explore the Jupyter notebook and how to
set up a Windows computer and Ubuntu
for computer vision.
By the end of this book, you'll be able to
confi dently build and deploy computer
vision apps.

Things you will learn:

• Set up a Raspberry Pi for computer
vision applications

• Perform basic image processing with
libraries such as NumPy, Matplotlib,
and OpenCV

• Demonstrate arithmetical, logical, and
other operations on images

• Work with a USB webcam and the
Raspberry Pi Camera Module

• Implement low-pass and high-pass
fi lters and understand their applications
in image processing

• Cover advanced techniques such as
histogram equalization and morphological
transformations

• Create GUI apps with Python 3
and OpenCV

• Perform machine learning with K-means
clustering and image quantization

www.packt.comwww.packt.com

Design and implement computer vision applications with Raspberry Pi,
OpenCV, and Python 3

Second Edition

Raspberry Pi
Computer Vision
Programming

Ashwin Pajankar

R
aspberry Pi Com

puter V
ision Program

m
ing – Second Edition

A
shw

in Pajankar

Raspberry Pi
Computer Vision
Programming
Second Edition

Design and implement computer vision applications
with Raspberry Pi, OpenCV, and Python 3

Ashwin Pajankar

BIRMINGHAM—MUMBAI

Raspberry Pi Computer Vision Programming
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Reshma Raman
Senior Editor: Ayaan Hoda
Content Development Editor: Nazia Shaikh
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Joshua Misquitta

First published: May 2015

Second edition: June 2020

Production reference: 1260620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-721-9

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	Get a free eBook or video every month

•	Fully searchable for easy access to vital information

•	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Ashwin Pajankar is a polymath. He is a science popularizer, a programmer, a maker, an
author, and a YouTuber. He graduated from IIIT Hyderabad with an MTech in computer
science and engineering. He has a keen interest in the promotion of science, technology,
engineering, and mathematics (STEM) education.

About the reviewers
Lentin Joseph is an author, roboticist, and robotics entrepreneur from India. He runs
a robotics software company called Qbotics Labs in Kochi/Kerala. He has 10 years of
experience in the robotics domain, primarily working with the Robot Operating System
(ROS), OpenCV, and PCL. He has authored several books on ROS, namely Learning
Robotics Using Python First Edition and Second Edition, Mastering ROS for Robotics
Programming First Edition and Second Edition, ROS Robotics Projects First Edition and
Second Edition, and Robot Operating System for Absolute Beginners. He has masters in
Robotics and Automation from Amrita Vishwa Vidapeetham University in India and
also worked at the Robotics Institute, CMU, USA. He is also a TEDx speaker.

Arush Kakkar is an author, entrepreneur, and a computer vision and deep learning
researcher. He is currently the CEO of Agrex.ai, a company started by him. It's a video
analytics company utilizing Artificial Intelligence to analyze human behavior. The
applications include analyzing customer behavior in retail stores, security threats in
sensitive installations, thermal vision processing, face recognition, and improving
operational efficiency.

He has authored two books Raspberry Pi By Example and Raspberry Pi: Amazing
Products from Scratch both published by Packt Publishing. Arush has extensive
experience in using Raspberry Pi to build products that use computer vision to
accomplish certain tasks.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

1
Introduction to Computer Vision and the Raspberry Pi

Understanding computer vision 2
OpenCV 3

Single-board computers 4
The Beagleboard family 6
ASUS Tinkerboard 6
NVIDIA Jetson 7
Intel boards 7

Raspberry Pi 8
Raspberry Pi models 8

OSes for Raspberry Pi 13

Setting up Raspbian on a
Raspberry Pi 14
Downloading the necessary software 20
Preparing the microSD card manually 23
Booting up the Raspberry Pi for the
first time 26
Connecting various RPi board models
to the internet 34

Updating the RPi 37
Summary 38

2
Preparing the Raspberry Pi for Computer Vision

Remotely logging into the RPi
with SSH 40
Remote desktop access 44

Installing OpenCV on an RPi
board 46
Heatsinks and overclocking RPi
4B 47
Summary 49

ii Table of Contents

3
Introduction to Python Programming

Technical requirements 52
Understanding Python 3 52
Python on RPi and Raspberry Pi OS 53
Python 3 IDEs on Raspberry Pi OS 54
Working with Python 3 in interactive
mode 59
The basics of Python 3 programming 59

The SciPy ecosystem 62

The basics of NumPy 62
Matplotlib 65

RPi GPIO programming with
Python 3 71
LED programming with GPIO 72
Push-button programming with GPIO 80

Summary 83

4
Getting Started with Computer Vision

Technical requirements 86
Exploring image datasets 86
Working with images using
OpenCV 86
Using matplotlib to visualize
images 89
Drawing geometric shapes with
OpenCV and NumPy 92
Working with a GUI 95
Event handling and a primitive
paint application 96
Working with a USB webcam 99
Capturing images with the webcam 100
Timelapse photography 100

Webcam video recording 103
Capturing images with the webcam
using Python and OpenCV 103
Live videos with the webcam using
Python and OpenCV 104
Webcam resolution 105
FPS of the webcam 106
Saving webcam videos 107
Playing back the video with OpenCV 109

The Pi camera module 110
Capturing images and videos with the
raspistill and raspivid utilities 112
Using picamera with Python 3 113
Using the RPi camera module and
Python 3 to record videos 116

Summary 116

Table of Contents iii

5
Basics of Image Processing

Technical requirements 118
Retrieving image properties 118
Basic operations on images 120
Splitting the image into channels 121
Adding a border to an image 121

Arithmetic operations on
images 123

Blending and transitioning
images 126
Multiplying images by a
constant and one another 130
Creating a negative of an image 131
Bitwise logical operations on
images 132
Summary 134

6
Colorspaces, Transformations, and Thresholding

Technical requirements 136
Colorspaces and converting
them 136
HSV colorspace 138
Tracking in real time based on color 140

Performing transformation
operations on images 143
Scaling 144

The translation, rotation, and affine
transformation of images 145

Perspective transformation of
images 150
Thresholding images 152
Otsu's binarization method 156
Adaptive thresholding 156

Summary 158

7
Let's Make Some Noise

Technical requirements 160
Noise 160
Introducing noise to an image 160

Working with kernels 166
2D convolution with the signal
processing module in SciPy 167

Filtering and blurring with
OpenCV 169
2D convolution filtering 169
Low-pass filtering 170

Summary 172

iv Table of Contents

8
High-Pass Filters and Feature Detection

Technical requirements 174
Exploring high-pass filters 174
Working with the Canny edge
detector 179
Finding circles and lines with Hough

transforms 182

Harris corner detection 185
Exercise 186
Summary 187

9
Image Restoration, Segmentation, and Depth Maps

Technical requirements 190
Restoring damaged images
using inpainting 190
Segmenting images 192
Mean shift algorithm segmentation 192
K-means clustering and image

quantization 194
Comparison of k-means and the mean
shift algorithm 200

Disparity maps and depth
estimation 201
Summary 202

10
Histograms, Contours, and Morphological Transformations

Technical requirements 204
Computing and visualizing
histograms 204
Histogram equalization 210

Visualizing image contours 212
Applying morphological
transformations to images 214
Summary 219

11
Real-Life Applications of Computer Vision

Technical requirements 222
Implementing the Max RGB
filter 222

Implementing background
subtraction 224
Computing the optical flow 226

Table of Contents v

Detecting and tracking motion 228
Detecting barcodes in images 232

Implementing the chroma key
effect 238
Summary 244

12
Working with Mahotas and Jupyter

Technical requirements 246
Processing images with
Mahotas 246
Reading images and built-in images 247
Thresholding images 247
The distance transform 248
Colorspace 249

Combining Mahotas and
OpenCV 250
Other popular image
processing libraries 252
Exploring the Jupyter Notebook
for Python 3 programming 252
Summary 261

13
Appendix

Technical requirements 263
Performance measurement and
the management of OpenCV 263
Reusing a Raspbian OS microSD
card 264
Formatting the SD card using the SD
card formatter 264
The Disk Management utility in

Windows 266

Tour of the raspi-config
command-line utility 268
Installation and the
environment setup on
Windows, Debian, and Ubuntu 271
Python implementations and
Python distributions 273

Other Books You May Enjoy

Leave a review - let other
readers know what you think 277

Index

Preface
Computer vision and image processing have extended from being a field of niche research
to everyday usage. However, despite this revolution, one of the key challenges faced in
computer vision development and application development is a lack of a well-designed
guide that teaches you how it works step by step. This book addresses this key challenge.

We will start with the basics of Raspberry Pi and Python and explore Python 3
programming with various supporting libraries, such as NumPy, SciPy, and Matplotlib.
Next, we will understand the basics of General-Purpose Input Output (GPIO) pins on
Raspberry Pi and learn about its programming with Python 3. We will look at a lot of
examples of Raspberry Pi and computer vision programming with Python and GPIO
throughout the entirety of this book.

Then, we will move on to the installation of OpenCV on Raspberry Pi. We will look at the
basics of OpenCV programming and explore the concepts of advanced image processing
and computer vision. We will learn about and demonstrate concepts such as thresholding,
segmentation, image quantization, image restoration, mathematical morphology, and
contours. Then, we will implement a few real-life applications with OpenCV, Python,
and GPIO.

We will also learn how to use another library—Mahotas—and the Jupyter Notebook.
Additionally, we will learn how to install all the libraries that we will discuss on a
Windows computer. Finally, the Appendix section has a range of useful topics relating
to Raspberry Pi that are not included in other chapters.

Who this book is for
This book is for Python 3 developers, computer vision professionals, and Raspberry Pi
enthusiasts who are looking to implement computer vision applications on a low-cost
platform. Basic knowledge of programming, mathematics, and electronics will be
beneficial. However, even beginners in this area will be comfortable with covering
the contents of the book as they are presented in a step-by-step manner.

viii Preface

What this book covers
Chapter 1, Introduction to Computer Vision and Raspberry Pi, illustrates the concept of
single-board computers, OpenCV, and Raspberry Pi. We will also learn how to set up
Raspbian OS on Raspberry Pi.

Chapter 2, Preparing Raspberry Pi for Computer Vision, teaches us how to set up Raspberry
Pi for demonstrations of computer vision.

Chapter 3, Introduction to Python Programming, introduces us to Python 3 programming.
We will learn about libraries such as NumPy and Matplotlib. We will also demonstrate the
use of a few programs with LEDs and push buttons in detail.

Chapter 4, Getting Started with Computer Vision, focuses on the basics of computer vision
programming and interfacing various camera modules with Raspberry Pi. We will also
learn how to work with images and the GUI in this chapter in detail.

Chapter 5, Basics of Image Processing, looks at basic operations on images, such as bitwise
arithmetic and bitwise logical operations.

Chapter 6, Colorspaces, Transformations, and Thresholding, is where we will analyze the
concept of basic segmentation and thresholding. We will learn about various geometric
and perspective transformations. We will also learn about colorspaces and their
application in detail.

Chapter 7, Let's Make Some Noise, explores the concept of filters and how to use low-pass
filters to reduce noise in images. We will learn about concepts such as kernels and
convolution in detail.

Chapter 8, High-Pass Filters and Feature Detection, goes into the aspects of detecting various
features, such as lines, circles, edges, and corners, using high-pass filtering techniques.

Chapter 9, Image Restoration, Segmentation, and Depth Map, investigates restoring
degraded and damaged images, segmenting with Python's implementation of the
k-means and mean-shift algorithms, and estimating depth maps.

Chapter 10, Histograms, Contours, and Morphological Transformations, analyzes images
with histograms, and we will learn how to enhance images by equalizing histograms.
We will also dig deeper into contours and mathematical morphological operations.

Chapter 11, Real-Life Applications of Computer Vision, demonstrates applications in the
real world with OpenCV, Python 3, and Raspberry Pi.

Preface ix

Chapter 12, Working with Mahotas and Jupyter, delves into the brief usage of another
scientific image processing library known as Mahotas. We will also understand how
to work with the Jupyter Notebook for Python 3 programming.

Chapter 13, Appendix, is a collection of assorted topics relating to Python, Raspberry Pi,
and computer vision that did not fit in to earlier chapters.

To get the most out of this book
All of the programs included in all of the chapters in this book are executed on Raspberry
Pi with Raspbian OS. You will need a Windows PC and an internet connection to set up
Raspbian OS on the Raspberry Pi board. The instructions for setting up on Windows
are included in the Appendix section. You are encouraged to use the latest revision of
Raspberry Pi (at the time of writing, it is Raspberry Pi 4B); however, the programs will
also run on any generation of the boards in the Raspberry Pi family. These programs are
written for the Python 3 interpreter and they may not work with Python 2. Apart from
the Raspberry Pi board and a Windows PC for the setup, you will also need a Raspberry
Pi camera module and a USB webcam. Also, some electronic components, such as push
buttons, LEDs, breadboards, and jumper cables, are needed to work with the Python 3
GPIO library.

If you are using the digital version of this book, we advise you to type the code in
yourself or access the code via the GitHub repository (link available in the next
section). Doing so will help you avoid any potential errors related to the copying/
pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com

x Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming. In case
there's an update to the code, it will.3 be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at (https://bit.ly/3evn0ln).

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800207219_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Just like lxterminal, we can run Linux commands from here too."

A block of code is set as follows:

p2 = Person()

p2.name = 'Jane'

p2.age = 20

print(p2.name)

print(p2.age)

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800207219_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800207219_ColorImages.pdf

Preface xi

Any command-line input or output is written as follows:

sudo apt-get install xrdp -y

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Open the Remote Desktop Connection application on your Windows PC."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

1
Introduction to

Computer Vision
and the Raspberry Pi
OpenCV is a simple and powerful programming framework for computer vision. It is
preferred by both novices and experts in the field of computer vision. We can easily learn
computer vision by writing OpenCV programs using Python 3 as the programming
language. The Raspberry Pi family of single-board computers uses Python as its
preferred development language. Using a Raspberry Pi board and Python 3 for learning
OpenCV programming is one of the best approaches that we can follow to commence
our wonderful journey into the amazing field of computer vision programming. In this
chapter, you will become familiar with all of the important concepts that you need in
order to get started with the Raspberry Pi and computer vision. By the end of this chapter,
you will be able to set up the Raspbian Operating System (OS) on various Raspberry Pi
board models. You will also learn how to connect the boards to the internet.

In this chapter, we will cover the following topics:

• Understanding computer vision

• Single-board computers

2 Introduction to Computer Vision and the Raspberry Pi

• The Raspberry Pi family of single-board computers

• Setting up the Raspbian OS on a Raspberry Pi

• Connecting various Pi board models to the internet with LAN or Wi-Fi

By the end of this chapter, you will be able to set up your own Raspberry Pi board.

Understanding computer vision
The field of computer vision is a combination of different fields, including (but not limited
to) computer science, mathematics, and electrical engineering. It includes ways to capture,
process, and analyze images and videos from the real world in order to assist in decision
making. Computer vision means mimicking biological (that is, human and non-human)
vision. The end goal of most computer vision systems is to extract useful information
from still images and videos (including prerecorded videos and live feeds) for the purpose
of decision making. Biological vision systems work in a similar fashion. Additionally,
unlike biological vision, computer vision can also acquire and work with images from
the visual spectrum that are not visible to biological entities, for example, infrared and
depth images.

Computer vision also relates to the area of extracting information from captured
images and videos. A computer vision system may accept various types of data, such as
images, videos, and live video streams, as inputs to further process, analyze, and extract
meaningful information for the purpose of making important decisions.

The fields of artificial intelligence, machine vision, and computer vision overlap and share
many topics, such as image processing, pattern recognition, and machine learning, as
depicted in the following diagram:

Figure 1.1 – The relationships between different scientific domains

Understanding computer vision 3

In order to work as a researcher in the area of computer vision, you need to have a solid
background and understanding of mathematics. However, to write programs for computer
vision using OpenCV and Python 3, you don't need to know a lot of mathematics. Note
that, in this book, you will be learning all of the mathematical and theoretical concepts
required to get started with image processing and computer vision.

The typical objectives of a computer vision system could be one or more of the following:

• The recognition of objects, the classification of visual detection, and an analysis
of motion

• The reconstruction of scenes using images

• Image denoising and restoration

Do not get stressed if you are unfamiliar with these key terms. We will explore and
implement many of these concepts throughout our journey.

OpenCV
OpenCV (also known as Open Source Computer Vision) is an open source library
for computer vision and machine learning. It has many functionalities for image
processing and computer vision. It is a cross-platform library, and it works with many
programming languages and OSes. It has a large collection of computer vision and
machine learning-related functions. It also has several Graphical User Interface (GUI)
and event handling features.

OpenCV is free for academic and commercial usage as it is under the Berkley Software
Distribution (BSD) license. It is written with the C++ programming language. It has
interfaces for most of the popular programming languages, including (but not limited to)
C/C++, Python, and Java. It runs on a variety of OSes, including Windows, Android,
Linux, macOS, and other Unix-like OSes. In this book, we will write computer
vision-related programs with OpenCV and Python 3.

The library has more than 2,500 optimized algorithms for machine learning and computer
vision tasks. It has a community of more than 47,000 computer vision professionals,
and it has been downloaded more than 18 million times. OpenCV is extensively used in
academics for teaching, research organizations, government organizations, and various
industry segments. Reputed able organizations such as Google, Yahoo, Microsoft, Intel,
IBM, Sony, Honda, and Toyota all use OpenCV.

Let's take a look at the history of OpenCV. OpenCV was originally an in-house initiative
of Intel Research and was used to develop a framework to work with images and videos.
It was initially supported by Willow Garage and then Itseez.

4 Introduction to Computer Vision and the Raspberry Pi

Note
You can visit the website of Willow Garage at http://www.
willowgarage.com/.

In August 2012, the responsibility for further development and support for OpenCV was
assumed by an independent, not-for-profit, organization, OpenCV.org. It maintains the
website for OpenCV. In May 2016, Intel acquired Itseez. The following URLs have the
press announcement from Intel and OpenCV.org:

• https://newsroom.intel.com/editorials/intel-acquires-
computer-vision-for-iot-automotive/

• https://opencv.org/intel-acquires-itseez/

Here's a brief timeline of the developments related to OpenCV:

Figure 1.2 – Timeline of OpenCV

You can find all the details, including different versions and press releases of the OpenCV
library, at https://opencv.org/.

As we will be writing computer vision programs with Raspberry Pi as the platform, we
will study single-board computers and Raspberry Pi in detail. We will learn how to set up
the Raspbian OS on various models of a Raspberry Pi single-board computer.

Single-board computers
A single-board computer (abbreviated to SBC) is a complete computer system on a single
printed circuit board (abbreviated to PCB). The board usually has a processor(s), RAM,
input/output (I/O), an Ethernet port for networking, and USB ports for interfacing with
USB devices. A few single-board computers have Wi-Fi and Bluetooth, too. SBCs run OS
distributions such as Ubuntu, Windows, Debian, and more. These OS distributions have
specially tailored versions for use with these SBCs.

http://www.willowgarage.com/
http://www.willowgarage.com/
https://newsroom.intel.com/editorials/intel-acquires-computer-vision-for-iot-automotive/
https://newsroom.intel.com/editorials/intel-acquires-computer-vision-for-iot-automotive/
https://opencv.org/intel-acquires-itseez/
https://opencv.org/

Single-board computers 5

Unlike traditional computers, an SBC is not modular and its hardware cannot be
upgraded because all the components (such as the CPU, RAM, GPU, and interfacing
ports) are integrated on a single PCB itself. SBCs are used as low-cost computers in
academia, research, and various other industries. The use of SBCs in embedded systems
is quite widespread, and many individuals, research organizations, and companies have
developed and released fully functional and usable products based on SBCs. Many of
these products are crowdfunded. The main advantage of SBCs is onboard General-
Purpose Input/Output (GPIO) pins. These pins provide functionalities such as various
buses (Serial Peripheral Interface (SPI), I2C, and SMBus), digital I/O, analog input, and
Pulse Width Modulation (PWM) output. Try not to get overwhelmed with all of this
technical vocabulary. We will learn most of these concepts in more detail with the help
of experiments. Almost all of the popular SBCs have GPIO in some form or other. Due
to their small form factor and onboard GPIO, they are popular in schools, universities,
training centers, boot camps, and maker spaces. They are frequently used in the areas of
sensor networks and the internet of things (IoT).

To summarize, the advantages of SBCs are as follows:

• Low cost

• Small size

• Low power consumption

• Provision for onboard networking and I/O

However, SBCs come with their own set of disadvantages. As all the components of an
SBC are on the same PCB, it can be very difficult to repair if a component is damaged
due to mechanical or electrical reasons. For the same reason, we cannot even upgrade
anything on an SBC. These are the only major disadvantages of SBCs.

The Microcomputer Trainer MMD-1, designed by John Titus in 1976, is the first true
single-board microcomputer that was based on the Intel microprocessor, C8080A. It was
called dyna-micro during the prototyping phase, and the production units were called
MMD-1 (short for Mini-Micro Designer 1).

We are now going to take a look at the Raspberry Pi series in detail. However, before that,
we will become acquainted with other popular SBC families.

6 Introduction to Computer Vision and the Raspberry Pi

The Beagleboard family
The BeagleBoard.org Foundation is an organization based in the USA. It is a non-profit
entity, and its objective is to provide education and collaboration around the design,
development, testing, and use of open source hardware and software in the area of
embedded systems. They have developed various SBCs named after beagles (a popular
breed of domestic canine species). You can find a list of the current SBCs that they
developed, which are in production, at http://beagleboard.org/boards.
You can also find related products and accessories for Beagle boards at the same URL.

Their latest product, at the time of writing, is PacketBeagle (http://beagleboard.
org/pocket).

ASUS Tinkerboard
The ASUS Tinkerboard is designed and manufactured by ASUS (a Taiwan-based
multinational corporation). Its size, layout, and pins are compatible with second- and
third-generation Raspberry Pi boards. You can find more details about all the editions
of the ASUS Tinkerboard at https://www.asus.com/us/Single-Board-
Computer/. The following photograph shows the top view of an ASUS Tinkerboard:

Figure 1.3 – ASUS Tinkerboard

http://beagleboard.org/boards
http://beagleboard.org/pocket
http://beagleboard.org/pocket
https://www.asus.com/us/Single-Board-Computer/
https://www.asus.com/us/Single-Board-Computer/

Single-board computers 7

NVIDIA Jetson
NVIDIA Jetson is a family of modules that is used for computer vision, AI, and speech
processing tasks (https://developer.nvidia.com/embedded/develop/
hardware). The best member for beginners to get started with is Jetson Nano. And
the best place to begin is on the web page of Jetson Nano Developer Kit at https://
developer.nvidia.com/embedded/jetson-nano-developer-kit. Here's a
side view of the developer kit:

Figure 1.4 – Nvidia Jetson Nano

Intel boards
Intel Corporation also produces many boards that can be called SBCs. You can find details
on the current generation of modules that are in production at https://software.
intel.com/en-us/iot/hardware/all. We have had the privilege of working with
several of the excellent Intel SBCs and modules. Many of them are discontinued, and you
can find the full list and support documentation for them at https://software.
intel.com/en-us/iot/hardware/discontinued. Note that you might be
able to get a good deal on used and discontinued boards from Intel. They are also great
for learning. For beginners of computer vision, I like to recommend Intel Up Squared
Kit. You can find out more at https://software.intel.com/en-us/iot/
hardware/up-squared-ai-vision-dev-kit.

https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://software.intel.com/en-us/iot/hardware/all
https://software.intel.com/en-us/iot/hardware/all
https://software.intel.com/en-us/iot/hardware/discontinued
https://software.intel.com/en-us/iot/hardware/discontinued
https://software.intel.com/en-us/iot/hardware/up-squared-ai-vision-dev-kit
https://software.intel.com/en-us/iot/hardware/up-squared-ai-vision-dev-kit

8 Introduction to Computer Vision and the Raspberry Pi

Raspberry Pi
Raspberry Pi is a series of low-cost and credit card-sized SBCs developed by the
Raspberry Pi Foundation in the United Kingdom. The purpose of developing Raspberry
Pi was to promote the teaching of basic computer skills and programming in schools, in
which it has served very well. Raspberry Pi has expanded its footprint well beyond its
intended purpose by gaining prominence in the embedded systems market and computer
science research in academia and industrial applications.

The Raspberry Pi Foundation offers downloads for many popular OS distributions.
We can use a variety of programming languages such as Python, C, C++, and Java with
Raspberry Pi. You can find more information on the Raspberry Pi Foundation website
(https://www.raspberrypi.org/).

Raspberry Pi models
The Raspberry Pi board comes in many models. Additionally, there are a lot of associated
accessories with these models. You can find the current list of models under production
on the products page of the Raspberry Pi Foundation (https://www.raspberrypi.
org/products/). Unfortunately, the page does not have any information on the
discontinued product boards of the Raspberry Pi family.

Additionally, Raspberry Pi is also available in a more flexible form that is intended for
industrial and embedded applications. This is known as a compute module. The compute
module also has many iterations. A compute module prototyping kit is also made available
by the foundation. You can find out more about compute modules and the prototyping kit
on the same Raspberry Pi products page we discussed earlier.

As we have discussed, there are many models of Raspberry Pi boards available. And
while it is tempting to discuss the technical specifications in detail for all of those boards,
it is difficult to achieve that in brief. In the first edition of the book, I discussed the
specifications of all the available Raspberry Pi board models in detail, since the number
of models was far lower and we could count them on our fingers. Since writing the second
edition of this book, there are over a dozen Raspberry Pi models. Therefore, we will
discuss the technical specifications of only a couple of board models of Raspberry Pi.

We will use the Raspberry Pi 4B 4 GB and Raspberry Pi Zero W with header models for
our computer vision examples. However, these examples can also be run on the other
board models of Raspberry Pi. This is because all the software that we use (the OS, the
programming language, and the OpenCV library) is fully backward compatible.

https://www.raspberrypi.org/
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/

Raspberry Pi 9

Raspberry Pi model 4B
You can find the product specifications of the Raspberry Pi 4B at https://
www.raspberrypi.org/products/raspberry-pi-4-model-b/
specifications/.

The following table explains the product specifications in detail:

Figure 1.5 – Product specification list of the Raspberry Pi model 4B

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

10 Introduction to Computer Vision and the Raspberry Pi

The following diagram shows all of the important connectors and components on a
Raspberry Pi board:

Figure 1.6 – Raspberry Pi 4B top view

The following photograph shows the top view of the Raspberry Pi model 4B:

Figure 1.7 – The top view of the Raspberry Pi 4B

Raspberry Pi 11

Here is a photograph of the model at an angle:

Figure 1.8 – Raspberry Pi 4B at an angle

We are going to use the 4GB variant of this model.

Raspberry Pi Zero W
You can find the specifications of the Raspberry Pi Zero W at https://www.
raspberrypi.org/products/raspberry-pi-zero-w/.

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/

12 Introduction to Computer Vision and the Raspberry Pi

The following table explains the specifications of this model in more detail:

Figure 1.9 – Product specification list of the Raspberry Pi Zero W

Where can you buy these models?
You can discover where to buy Raspberry Pi boards and their accessories on the products
page of the RPi website. Here's a screenshot:

OSes for Raspberry Pi 13

Figure 1.10 – Buying a Raspberry Pi

You can also find Raspberry Pi boards and their accessories on Amazon. If you live in a
big city, then you can find a lot of hobby electronics stores that sell Raspberry Pi boards
and related items.

OSes for Raspberry Pi
Many OSes have tailored distributions of OSes for Raspberry Pi boards. However, the early
board models do not support all OSes. The latest model board, Raspberry Pi 4B, supports
all the OSes mentioned at https://www.raspberrypi.org/downloads/.

The Raspbian OS supports all the models of the Raspberry Pi board, and it is the most
recommended OS for beginners. We are going to demonstrate how to install this in the
next section.

Raspbian is a free OS based on Debian, which is a popular distribution of Linux. Raspbian
is optimized to Raspberry Pi hardware. You can find more information about the
Raspbian project on its home page (http://raspbian.org/).

Note
Raspbian's home page mentions that it is not affiliated with the Raspberry Pi
Foundation and is managed by fans of the Raspberry Pi and Debian projects.

https://www.raspberrypi.org/downloads/
http://raspbian.org/

14 Introduction to Computer Vision and the Raspberry Pi

The Raspbian web page provides a list of recommended Raspbian images at http://
raspbian.org/RaspbianImages. An OS image is a file that can be written onto
an SD card, and this SD card can then be used to boot the Raspberry Pi board. This is
the easiest way of getting started with RPi; we will try to use it from now on. The image
provided on the RPi Foundation's download page is the one most recommended by
Raspbian. We will learn how to use this image to get started with RPi in the next section.

Setting up Raspbian on a Raspberry Pi
The setup is the one thing that usually deters many novice enthusiasts from getting started
with SBCs. Many times, the instructions are very generic and do not cover all the cases for
various types of hardware components. That is why I have dedicated an entire section to
the setup of Raspbian on RPi. In this section, we will demonstrate the setup in detail with
all the board models ever produced, with the exception of the compute modules.

We need the following components for the setup:

• A Raspberry Pi board of any model.

• If you have a Raspberry Pi 4B board, then you will need a power supply of 5V 3A
with a USB Type-C pin. Here is a photograph of a USB Type-C pin:

Figure 1.11 – USB Type-C pin

• To be on the safe side, you might want to purchase the official Raspberry Pi 15.3W
USB-C power supply by the Raspberry Pi Foundation. The URL for this product is
https://www.raspberrypi.org/products/type-c-power-supply/.

http://raspbian.org/RaspbianImages
http://raspbian.org/RaspbianImages
https://www.raspberrypi.org/products/type-c-power-supply/

Setting up Raspbian on a Raspberry Pi 15

• For all the other models of Raspberry Pi, a 5V 2.5A power supply with a Micro-USB
type pin should be compatible. Here's a photograph of a Micro-USB pin:

Figure 1.12 – A Micro-USB pin

• You might want to purchase a Raspberry Pi Universal Power Supply (https://
www.raspberrypi.org/products/raspberry-pi-universal-power-
supply/) for this purpose.

• A USB keyboard and mouse: It is a good idea to purchase a USB keyboard with an
integrated mousepad, as follows:

Figure 1.13 – A keyboard with an integrated mousepad

https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/
https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/
https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/

16 Introduction to Computer Vision and the Raspberry Pi

• For RPi Zero and RPi Zero W, the keyboard with a mousepad is mandatory because
these board models have only one Micro-USB type of connector to the peripherals
interface. Additionally, for RPi Zero and RPi Zero W, we need a USB to Micro-USB
OTG converter, as follows:

Figure 1.14 – USB OTG cable

• Raspberry Pi boards of any model work with any microSD card. The guidelines
say that we should use a class 10 microSD card with a minimum of 16 GB. You
might want to visit https://www.raspberrypi.org/documentation/
installation/sd-cards.md for guidelines, and https://elinux.org/
RPi_SD_cards for a compatibility list. RPi 1 Model A and RPi 1 Model B use SD
cards. Therefore, it is better to have a microSD to SD card adapter, as follows:

Figure 1.15 – MicroSD to SD card adapter/converter

https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://elinux.org/RPi_SD_cards
https://elinux.org/RPi_SD_cards

Setting up Raspbian on a Raspberry Pi 17

• An HDMI monitor or a VGA monitor for visual display.

• All RPi board models, except RPi 4B, RPi Zero, and RPi Zero W, have an HDMI
output and can be directly connected to the HDMI monitor with an HDMI
male-to-male cable:

Figure 1.16 – HDMI cable

RPi 4B has a micro-HDMI output. Therefore, we need a micro-HDMI to HDMI
converter. RPi Zero and RPi Zero W both have mini-HDMI outputs. So, for them, we
need a mini-HDMI to HDMI converter. The following photograph shows the HDMI,
mini-HDMI, and micro-HDMI ports, respectively:

Figure 1.17 – HDMI, mini-HDMI, and micro-HDMI ports

18 Introduction to Computer Vision and the Raspberry Pi

We also need to plug the mini- and micro-HDMI ends to the RPi boards and the HDMI
to the monitor. If you are planning to use a VGA monitor, then we will need HDMI/mini-
HDMI/micro-HDMI to VGA converters depending on the board models.

Here is a photograph of an HDMI to VGA converter:

Figure 1.18 – HDMI to VGA converter

The following is a photograph of a mini-HDMI to VGA converter:

Figure 1.19 – Mini-HDMI to VGA converter

Setting up Raspbian on a Raspberry Pi 19

The following is a photograph of a micro-HDMI to VGA converter:

Figure 1.20 – Micro-HDMI to VGA converter

We need a Windows computer and a wired or wireless internet connection.

Finally, we require an SD card reader, as follows:

Figure 1.21 – SD card reader

Many laptops have this (SD card reader) feature built-in. So, in that case, a separate reader
is not required as we can use the built-in reader.

We will need a few more hardware components by the end of the chapter. We will discuss
them when the need arises. For now, we are okay to proceed further.

20 Introduction to Computer Vision and the Raspberry Pi

Downloading the necessary software
To get started, we need to download all of the free software. Follow these instructions to
download all the necessary software:

1. We need the latest image file of the Raspbian OS. This can be downloaded from
the download page of the Raspberry Pi Foundation website at https://www.
raspberrypi.org/downloads/raspbian/. The following screenshot shows
the various options that are available for download:

Figure 1.22 – Raspbian image download page

2. By the time you visit the URL, the page might have been updated, but the download
options will usually remain the same. The first option is Raspbian Buster with
desktop and recommended software and is the most recommended for beginners.
The second option is Raspbian Buster with desktop. The third option is Raspbian
Buster Lite and comes with the bare minimum software; it has the smallest size
among all the download options.

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

Setting up Raspbian on a Raspberry Pi 21

3. We can either download the ZIP file directly, or we can download the torrent file
of the image. I recommend downloading the torrent file. Once the torrent file for
Raspbian Buster with desktop and recommended software is downloaded, we
can download the torrent software from https://www.bittorrent.com/.
Download the free classic version and install it on your PC. Then, open the torrent
file with BitTorrent and the download will begin. The following is a screenshot of a
finished download:

Figure 1.23 – BitTorrent application window

https://www.bittorrent.com/

22 Introduction to Computer Vision and the Raspberry Pi

4. At the bottom of the screen, we can see the location of the download. Additionally,
we can right-click on the finished installation and click on the Open Containing
Folder option, as follows:

Figure 1.24 – Opening the location of the downloaded image
This will open the folder that has the ZIP file for the Raspbian OS image.

5. We require software for unzipping the file. 7-Zip is the free and open source
software for this. We can download the appropriate installable file (32-bit x86 or
64-bit x64) and install it. Once the installation is complete, open the ZIP file using
the software. The following is a screenshot of 7-Zip:

Setting up Raspbian on a Raspberry Pi 23

Figure 1.25 – 7-Zip application window
Double-click on the ZIP file and then click on the Extract button in the menu. This
will extract the file. The extracted file has the img extension.

6. We require software to write this image to the microSD card and
Win32DiskImager is the perfect software for the task. Download it from http://
sourceforge.net/projects/win32diskimager/files/latest/. Run
the installation file and install it.

Preparing the microSD card manually
The best way of installing an OS on a microSD card is to do it manually. This allows us to
prepare the SD card manually so that we have easier access to the /boot/config.txt
configuration file, which must be modified, in a few cases, before booting up the RPi. We
will discuss this in detail later. The default Raspbian image has only two partitions—boot
and system. I recommend choosing, at a minimum, a 16 GB class 10 microSD card. Then,
follow these steps:

1. Unpack the fresh microSD card and insert it into the card reader. Plug the card
reader into your Windows laptop or computer. Many laptops and computers come
with an SD card reader. For these, insert the microSD card into the microSD to
SD card adapter, and insert the adapter into the slot for the SD card reader of the
computer or laptop.

http://sourceforge.net/projects/win32diskimager/files/latest/
http://sourceforge.net/projects/win32diskimager/files/latest/

24 Introduction to Computer Vision and the Raspberry Pi

2. Then, a new drive will appear in the left-hand panel of Windows File Explorer.
Right-click on the drive and choose Format. Here is a screenshot of the
Format window:

Figure 1.26 – Formatting the microSD card

3. Make sure that you check the Quick Format checkbox. Then, click on the Start
button. It will show a warning message, as follows:

Figure 1.27 – Dialogue box for confirmation

4. Click on the OK button to finish formatting.

Setting up Raspbian on a Raspberry Pi 25

5. Once the formatting is complete, we need to write the Raspbian OS image file to the
microSD card. Open Win32DiskImager and choose the Raspbian OS image file,
as shown in the following screenshot:

Figure 1.28 – The Win32 Disk Imager application window

6. Then, click on the Write button. It will show the following warning box. Simply
click on the OK button:

Figure 1.29 – Dialogue box to confirm writing of the image to the microSD card

7. Once the OS is successfully written to the SD card, it shows the following
message box:

Figure 1.30 – Confirmation message box
This means that the image has been successfully written to the microSD card. Now
we can use it to boot up the RPi.

26 Introduction to Computer Vision and the Raspberry Pi

8. Now, this step is necessary only if you are using a VGA monitor and not the HDMI
monitor. Readers using the HDMI monitor can safely ignore this step. The microSD
card's BOOT partition can be accessed using Windows File Explorer. It has the
config.txt file. Double-click and open the file. We must edit the settings in the /
boot/config.txt file, as follows, to enable a proper display on the VGA monitor:

a) Change #disable_overscan=1 to disable_overscan=1.

b) Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1.

c) Change #hdmi_group=1 to hdmi_group=2.

d) Change #hdmi_mode=1 to hdmi_mode=16.

e) Change #hdmi_drive=2 to hdmi_drive=2.

f) Change #config_hdmi_boost=4 to config_hdmi_boost=4.

g) Save the file.
The commented lines (that have # at the beginning) are disabled. We must enable these
lines by uncommenting them. This can be done by removing # at the beginning of these
commented lines.

Note
If you are using Linux or macOS, then you will find the instructions to
install the Raspbian OS on your microSD card for these OSes at https://
www.raspberrypi.org/documentation/installation/
installing-images/.

Booting up the Raspberry Pi for the first time
Let's boot up our Pi for the first time with the microSD card using the following steps:

1. Insert the microSD card into the microSD card slot of Pi. RPi 1 Model A and RPi 1
Model B do not have slots for an SD card. So, for these board models, we must use
a microSD to SD card converter.

2. Connect the Pi to the HDMI monitor. As discussed earlier, in case you have a VGA
monitor, connect it using the HDMI/mini-HDMI/micro-HDMI to VGA converter.

https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/

Setting up Raspbian on a Raspberry Pi 27

3. Connect the USB mouse and USB keyboard. It is recommended that you have a
single keyboard with a mousepad. For RPi Zero and RPi Zero W, you need to first
connect it to a USB OTG cable, and then connect the USB OTG cable to the board.

4. Connect the RPi board to an appropriate power supply. Connect the monitor to the
power supply. We need to make sure that the power is switched off at this point.

5. Ensure you verify all the connections once. Then, turn on the power supply of the
monitor. Finally, turn on the power supply for the RPi.

Now, our RPi board will start booting up. The green LED on the board will start blinking.
Congratulations! The RPi board is booting for the first time.

Note
If your HDMI monitor is showing no signal, then power down the RPi and
change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1
in /boot/config.txt on the microSD card. Boot up the RPi with this
changed setting and the HDMI monitor will show the signal.

Once the RPi boots up, the Raspbian desktop and a guided setup window appear,
as follows:

Figure 1.31 – Welcome window on Raspbian

28 Introduction to Computer Vision and the Raspberry Pi

Click on the Next button, and the following window will appear:

Figure 1.32 – Window for setting the country

In the preceding window, set Country: and Language:. It will automatically select the
time zone according to the country you selected. You can change that too if you wish.
Click on the Next button, and the following window will appear:

Figure 1.33 – Window for setting a new password

Setting up Raspbian on a Raspberry Pi 29

You can choose to set a new password for the default pi user. If you leave it blank, then it
will retain the default password. The following is the next window that appears:

Figure 1.34 – Window for setting up the screen

Check the checkbox if there are black borders on the edges of the desktop view. The
Raspbian OS will rectify it upon the next boot. The following window will appear after
you click on the Next button, but only if the board model has Wi-Fi:

Figure 1.35 – Wi-Fi connections

30 Introduction to Computer Vision and the Raspberry Pi

Choose the network that you know the credentials for, and click on the Next button. The
following window will appear:

Figure 1.36 – Connecting to the Wi-Fi at my home

Key in your Wi-Fi password here, and click on the Next button. The following window
will appear:

Figure 1.37 – Update Software

We can update the Raspbian OS and installed software here. We are going to learn how to
do it manually in the latter part of this chapter. Click on the Skip or Next button, and the
following window will appear:

Setting up Raspbian on a Raspberry Pi 31

Figure 1.38 – Confirmation of completing the initial setup

We have finished most of the setup. Now, there are a few more things to do before we
reboot out RPi, so click on the Later button.

Now, in the top-left corner of the desktop, you should see a Raspberry icon. It is the menu
for Raspbian and functions in a similar way to the Windows logo on Microsoft Windows.
Click on the logo and navigate to Preferences | Raspberry Pi Configuration:

Figure 1.39 – Raspberry Pi Configuration in the Raspbian menu

32 Introduction to Computer Vision and the Raspberry Pi

This is the Raspberry Pi Configuration tool. It will open a window as follows, and we can
change the settings of the Raspberry Pi board:

Figure 1.40 – Configuring the system

The preceding screenshot is the System tab. As of now, there is no need to change
anything here. The following is the Interfaces tab:

Figure 1.41 – Configuring interfaces

Setting up Raspbian on a Raspberry Pi 33

Enable the camera, SSH, and VNC. The following is the Performance tab:

Figure 1.42 – Memory and Overclock options

This menu has an option for overclocking and GPU memory. For the RPi 4B, overclocking
is disabled. We will learn how to overclock an RPi 4B board manually in the next chapter.
The Localisation tab is as follows:

Figure 1.43 – Localisation options

You might want to change these settings as per your region of residence.

34 Introduction to Computer Vision and the Raspberry Pi

Once all these settings have been changed as per our choice, we can restart the RPi board
by clicking on the Shutdown button in the Raspbian menu:

Figure 1.44 – Rebooting the Pi

Here, we find the option to reboot the RPi. Once we reboot, and if we have chosen to
retain the original password for the default user, pi, the following warning message
window will appear when booting up:

Figure 1.45 – Message after rebooting if the default password has not been changed

And this will keep on appearing after every boot as long as we choose to retain the default
password.

Connecting various RPi board models to the internet
We can directly plug in the Ethernet cable to the RJ45 Ethernet port Pi boards. This will
automatically detect the connection and connect to the internet.

Note
Make sure that DHCP (Dynamic Host Configuration Protocol) is enabled at
the Wi-Fi router, the managed switch, or the internet gateway.

Setting up Raspbian on a Raspberry Pi 35

PRi 1 A, PRi 1 A+, RPi Zero, RPi Zero W, and RPi 3 A+ do not have Ethernet ports.
However, RPi Zero W and RPi 3 A+ have built-in Wi-Fi. We can use a USB Wi-Fi
dongle for the remaining models:

Figure 1.46 – USB Wi-Fi adapter

Plug this Wi-Fi adapter into the USB port. If the USB ports are not enough, then use a
powered USB hub. For Raspberry Pi Zero, we need to use an additional USB OTG cable,
as discussed earlier.

After plugging in the USB Wi-Fi adapter, we need to open lxterminal. This is the
command-line utility. We can find it as a small black icon in Raspbian's taskbar and under
Accessories in the Raspbian menu. Once we click on it, the following window will appear:

Figure 1.47 – Raspberry Pi LXterminal window

36 Introduction to Computer Vision and the Raspberry Pi

We can type in the Linux commands here. After typing them in, press Enter to execute the
command. We have opened this so that we can manually configure the network interface
of Raspbian. It is quite easy. All the network-related information is stored in the /etc/
network/interfaces file. To connect to the Wi-Fi after plugging in the USB Wi-Fi
dongle, we need to add a few entries to this file. First, take the backup of the original file
by executing the following command:

mv /etc/network/interfaces /etc/network/interfaces.bkp

Then, we can create the interfaces file from scratch by running the following command:

sudo nano /etc/network/interfaces

The preceding command will open the network interface's file with a plain text editor
known as nano. It is a simple WYSIWYG editor. Enter the following lines there:

source-directory /etc/network/interfaces.d

auto lo

iface lo inet loopback

auto wlan0

allow-hotplug wlan0

iface wlan0 inet dhcp

wpa-ssid "AshwinIon"

wpa-psk "internet1"

After entering the lines, press Ctrl + X and then press Y. In the preceding settings,
substitute AshwinIon with your own SSID and internet1 with a password for the
same. Then, run the following command in Command Prompt:

sudo service networking restart

This restarts the networking service and connects to the Wi-Fi. In any case (Ethernet or
Wi-Fi), the RPi is assigned with a unique IP address. We can find it out by running the
ifconfig command at lxterminal. The output of the command will have the Ipv4
address listed under inet.

Updating the RPi 37

Another way to know the IP address of the RPi is to check the active client tables in
the router or the managed switch that the RPi board is connected to. The following is a
screenshot of my router's active client table where we can see an entry for RPi:

Figure 1.48 – Active client table of a home Wi-Fi router

Updating the RPi
Advanced Package Tool (APT) is a package management utility in Debian, Ubuntu,
Raspbian, and their derivatives. APT is used to install, upgrade, and remove software.
We will learn how to use it to update the OS and the software on the RPi board.

Run the following command:

sudo apt-get update

This command synchronizes the package list from the online source repository of
software. Indexes of all the packages are refreshed. This updates all the repositories of the
apps to all the latest update lists. This command must be executed before we execute the
upgrade command.

Then, run the following command:

sudo apt-get dist-upgrade –fix-missing -y

38 Introduction to Computer Vision and the Raspberry Pi

This downloads and installs all the packages. It also removes obsolete packages.
Depending on the speed of the internet, it takes some time. Finally, update the
firmware by running the following command:

sudo rpi-update

This will update the firmware. Following this, the RPi board will be up to date in all aspects.

Finally, we can run the following command to shut down the RPi:

sudo shutdown -h now

And the following command reboots it:

sudo reboot

This will update the firmware. Following this, the RPi board will be up to date in all aspects.

Summary
In this chapter, we learned important terms such as computer vision, OpenCV, SBCs,
and Raspberry Pi. We learned how to set up a Raspbian OS on Raspberry Pi and how
to configure a Pi to access the internet. We also learned how to update a Pi.

With the completion of this chapter, you can go ahead and set up the Raspbian OS on
your Raspberry Pi. Additionally, you can connect your RPi board to the internet using
Wi-Fi or Ethernet. This will make you ready for the computer vision adventure that will
soon follow.

In the next chapter, you will learn how to remotely access a RPi, how to overclock it,
and the installation of OpenCV 4 for Python 3 on an RPi.

2
Preparing the

Raspberry Pi for
Computer Vision

In the previous chapter, we learned the fundamentals of single-board computers,
computer vision, and OpenCV. We learned the detailed specifications of the Raspberry Pi
(RPi) 4B and the RPi Zero W. We also learned how to set up Raspbian OS on all the RPi
boards models in detail.

In this chapter, we will learn how to prepare our RPi board for computer vision.
Continuing from where we left off in the previous chapter, we will start by installing
the OpenCV library for computer vision and the other necessary software for remotely
accessing the desktop, as well as Command Prompt. We will learn how to transfer files
between an RPi and a Windows PC. We will also learn how to exploit the computation
power of the RPi by overclocking it and installing a heatsink on it to reduce the
temperature of the processor.

40 Preparing the Raspberry Pi for Computer Vision

The topics that we'll cover in this chapter are as follows:

• Remotely logging into the RPi with SSH

• Remote desktop access

• Installing OpenCV on an RPi board

• Heatsinks and overclocking the RPi 4B

Remotely logging into the RPi with SSH
We can remotely access the Command Prompt of the RPi board using various software
from Windows. We can run all the Linux commands that do not involve the GUI remotely
from Windows. As you may recall, we discussed how to enable SSH with the Raspberry
Pi Configuration tool in Chapter 1, Introduction to Computer Vision and Raspberry Pi. It
enables remote login through SSH.

In order to get started, follow these steps:

1. First, we need to install any SSH software available for free. The most popular is
PuTTY (https://www.putty.org/). I prefer to use another popular SSH
client that comes with SFTP known as the Bitvise SSH client. You can download
the installation file for Windows from https://www.bitvise.com/
ssh-client-download and install it. After doing that, open the Bitvise SSH
client. The following window will appear:

https://www.putty.org/
https://www.bitvise.com/ssh-client-download
https://www.bitvise.com/ssh-client-download

Remotely logging into the RPi with SSH 41

Figure 2.1 – Bitwise Connection window
Enter a hostname, username, and password. The hostname is nothing but the IPv4
address of our RPi board, which we learned how to find in Chapter 1, Introduction
to Computer Vision and Raspberry Pi.

42 Preparing the Raspberry Pi for Computer Vision

2. After entering all the necessary information, click the Login button. This will start
the RSA key exchange and display the following message box:

Figure 2.2 – Message window for the first-time connection

3. Click the Accept and Save button. This will save the exchanged RSA keys. Note that
this message box won't be displayed if we try to connect to Raspberry Pi again with
the same Windows computer. After that, two separate windows will appear. The first
is the Command Prompt of the Raspberry Pi. Just like LXTerminal, we can run
Linux commands from here too:

Figure 2.3 – Bitwise SSH window

Remotely logging into the RPi with SSH 43

4. We can change the font and size of the text that appears here by changing the
properties, which can be found by right-clicking the title bar. The following
is the file transfer window:

Figure 2.4 – Bitwise FTP file transfer window

On the left-hand pane, we have the Windows desktop and on the right-hand pane,
we have /home/pi, the home directory of the pi user. We can transfer files between
Windows and the RPi just by dragging and dropping them between these panes.

NOTE
We can access the Raspberry Pi Configuration Tool from the Command
Prompt using the sudo raspi-config command. This is the command-
line version of the tool.

This is how we can connect to the Command Prompt of the Raspbian OS remotely and
transfer files. Next, we will learn how to remotely access the Raspbian OS desktop.

44 Preparing the Raspberry Pi for Computer Vision

Remote desktop access
The Bitvise SSH client is great for file transfers and accessing the Command Prompt
terminal of RPi. However, we need to use another piece of software to access the desktop
of RPi remotely. There are two methods we can follow. The first one is VNC (we learned
how to enable it in Chapter 1, Introduction to Computer Vision and Raspberry Pi, using
the Raspberry Pi Configuration tool), while the other is using Windows' built-in Remote
Desktop Connection utility. We can find it in the Windows search bar, as follows:

Figure 2.5 – Remote Desktop Connection option in the Windows search bar

But before we can use it, we need to install xrdp on the RPi. Installing it is very easy.
We just need to run the following command at LXTerminal on the RPi:

sudo apt-get install xrdp -y

Information
You might want to read more about xrdp at http://xrdp.org/.

http://xrdp.org/

Remote desktop access 45

Once xrdp has been installed on the RPi, you need to follow these steps:

1. Open the Remote Desktop Connection application on your Windows PC:

Figure 2.6 – Remote Desktop Connection

2. Enter the IP address and pi in the textboxes labeled Computer and User name.
You might want to check the checkbox for Allow me to save credentials and save
the connection settings too. Once we click the Connect button, the following
window will appear:

Figure 2.7 – Credentials for the Raspbian OS for Remote Desktop Connection

46 Preparing the Raspberry Pi for Computer Vision

3. Enter the password and check the checkbox if you want to save the password for
this connection. Click the OK button; the RPi remote desktop window will appear
after a few moments. If you have less traffic on your LAN, then the working of
Remote Desktop will be smooth. The following is a screenshot of the Remote
Desktop window:

Figure 2.8 – Raspbian OS Remote Desktop

We can perform all the tasks related to the GUI from here. This means we don't need
a separate display for the RPi board if we use Remote Desktop.

Installing OpenCV on an RPi board
Follow these steps to install OpenCV on the RPi:

1. First, we need to install a few dependencies. Run the following command to install
all these dependencies:

sudo apt-get install -y libhdf5-dev libhdf5-serial-dev
libatlas-base-dev libjasper-dev libqtgui4 libqt4-test

2. Once the installation is successful, we can install OpenCV on the RPi:

pip3 install opencv-python==4.0.1.24

Heatsinks and overclocking RPi 4B 47

3. Once the installation of OpenCV is successful, we can verify it by running the
following command:

python3 -c "import cv2; print(cv2.__version__)"

The following should be the output:
4.0.1

This means that the installation is completed and that we can import OpenCV in our
Python 3 programs.

Next, we will learn how to overclock the RPi 4B and how to install heatsink on it.

Heatsinks and overclocking RPi 4B
Overclocking means running the processors at higher speeds than those that are intended.
When we overclock the processors, their temperature tends to rise and they radiate more
heat. Raspberry Pi board models do not come with any built-in coolers. You can buy
passive heatsinks from many online shops such as Amazon. The following is an example
of a heatsink with a fan:

Figure 2.9 – Small heatsink for RPi

The heatsink fan can be powered by connecting it to a 5V or 3.3V power supply. The
speed of the fan depends on the voltage, and we can connect it to the RPi power pins.
We will learn more about the GPIO and the power pins of RPi in the next chapter. The
best and the most effective heatsink that I found was the ICE Tower fan for the RPi 4B
(https://www.seeedstudio.com/ICE-Tower-CPU-Cooling-Fan-for-
Raspberry-pi-Support-Pi-4-p-4097.html).

https://www.seeedstudio.com/ICE-Tower-CPU-Cooling-Fan-for-Raspberry-pi-Support-Pi-4-p-4097.html
https://www.seeedstudio.com/ICE-Tower-CPU-Cooling-Fan-for-Raspberry-pi-Support-Pi-4-p-4097.html

48 Preparing the Raspberry Pi for Computer Vision

The following is my own Pi with the ICE Tower mounted on it:

Figure 2.10 – ICE Tower installed on Raspberry Pi

It comes with a booklet with easy installation instructions.

NOTE:
It is necessary to install an actively cooled heatsink and fan on the RPi's
processor to overclock it. Overclocking any processor without adequate cooling
may damage it.

We can overclock the CPU, GPU, and RAM of an RPi board. In this section, we will
discuss how to overclock an RPi 4B board.

Make sure that you update the firmware with the following command:

sudo rpi-update

It is necessary to update the firmware before overclocking the Pi. Once you've done that,
run the following command:

sudo nano /boot/config.txt

Summary 49

This will open /boot/config.txt using the nano text editor. At the end of the file,
add the following lines:

over_voltage=6

arm_freq=2147

In the first line, we are setting the overvoltage as overclocking requires additional power.
In the next line, we are overriding the default clock frequencies of the CPU. Save the
changes and reboot the RPi.

Often, the RPi may not boot back up. In that case, you might want to change the /boot/
config.txt settings for overclocking (using a Windows PC) to over_voltage=2
and arm_freq=1750, respectively,

In the case that these setting too fail to boot the RPi, then comment both the lines and the
RPi will boot up. Overclocking does not work stably with every processor.

When we run a computationally heavy process on the RPi board, all these additional
megahertz will manifest themselves. We can monitor the clock in real time using the
following command:

watch -n1 vcgencmd measure_clock arm

The output will cross the speed range of 2 billion (2 GHz) once we launch any heavy
program on the RPi.

All this additional processing power we obtained by overclocking the RPi board will
help us with our computer vision experiments.

Summary
In this chapter, we learned how to remotely log into the RPi and how to access the RPi
desktop remotely with RDP. We also learned how to install OpenCV and how to verify it.
Also, we learned how to overclock an RPi board.

We will be using all the skills we learned in this chapter throughout this book for
accessing the Command Prompt and desktop of Raspbian OS remotely while writing
programs for computer vision. We will also use file transfer quite a few times, as well
as the OpenCV library in most programs.

In the next chapter, we will learn the basics of Python, NumPy, matplotlib, and the RPi
GPIO library. We will also learn about the SciPy ecosystem.

3
Introduction

to Python
Programming

In the previous chapter, we learned how to remotely access the Command Prompt and the
desktop of a Raspberry Pi (RPi) board. We also installed OpenCV for Python 3. Finally,
we learned how to overclock the RPi and examined the various heatsinks for the RPi.

Continuing from where we left off at the end of the previous chapter, in this chapter, we
will start by looking at Python 3 programming on the RPi. We will have a brief look at the
Scientific Python (SciPy) ecosystem and all the libraries in it. Then, we will write basic
programs for numerical computation with NumPy N-Dimensional Arrays (ndarrays).
We will also learn how to visualize data with Matplotlib. Finally, we will explore the
hardware aspects of the RPi with the General Purpose Input Output (GPIO) library
of Python for the RPi.

In short, we will cover the following topics:

• Understanding Python 3

• The SciPy ecosystem

52 Introduction to Python Programming

• Programming with NumPy and Matplotlib

• RPi GPIO programming

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter03/programs.

Check out the following video to see the Code in Action at https://bit.ly/37UVwmO.

Understanding Python 3
Python is a high-level, interpreted, general-purpose programming language. It was
created by Guido van Rossum and was started as a personal hobby project but has since
grown into what it is today. The following is a timeline of the major milestones in the
development of the Python programming language:

Figure 3.1 – Timeline of Python development milestones

Guido van Rossum held the title of benevolent dictator for life for the Python project for
most of its life cycle. He stepped down from the role in July 2018 and has been part of the
Python Steering Council ever since.

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter03/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter03/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter03/programs
https://bit.ly/37UVwmO

Understanding Python 3 53

You can read more about Python on its home page at www.python.org.

The Python programming language has two major versions—Python 2 and Python
3. They are mostly incompatible with one another. As the preceding timeline shows,
Python 2's sunset happened on 31st December 2019. This means that there is no further
development of Python 2. Official support has also ceased to exist. The only Python
version under active development and with continued support is Python 3. A lot of code
(in fact, billions of lines of code) that is in production for many organizations is still in
Python 2. So, the migration from Python 2 to Python 3 requires a major effort.

Python on RPi and Raspberry Pi OS
Python comes pre-installed on the Raspberry Pi OS image that we downloaded. Both
versions of Python—Python 2 and Python 3—come with the Raspberry Pi OS image.
We will look at Python 3 in detail as we will write all of our programs with Python 3.

Open lxterminal or log in remotely to the RPi and run the following command:

python -V

This produces the following output:

Python 2.7.16

The -V option returns the version of the Python interpreter. So, the python command
refers to the Python 2 interpreter. However, we need Python 3. So, run the following
command in the Command Prompt:

Python3 -V

This produces the following output:

Python 3.7.3

This is the Python 3 interpreter and we will use it for all of our programming exercises
throughout this book. To find out the location of the interpreter on your disc (in our case,
our microSD card), run the following command:

which python3

This produces the following output:

/usr/bin/python3

This is where the executable for the Python 3 interpreter is located.

http://www.python.org

54 Introduction to Python Programming

Python 3 IDEs on Raspberry Pi OS
Before we get started with Python 3 programming, we will learn which Integrated
Development Environments (IDEs) can be used to write programs with Python.
Raspberry Pi OS, as of now, comes with two IDEs. Both can be accessed from the
Programming option in the Raspbian menu, as shown:

Figure 3.2 – The Thonny and Geany Python IDEs in the Raspbian menu

The first option is the Geany IDE, which can be used with many programming and
markup languages, including Python 2 and Python 3. You can read more about it at
https://geany.org/. The second option is Thonny Python IDE, which supports
Python 3 and the MicroPython variants.

I personally prefer to use Integrated Development and Learning Environment (IDLE),
which is developed and maintained by the Python Foundation. You can read more about
it at https://docs.python.org/3/library/idle.html. Earlier versions of
Raspberry Pi OS used to come with IDLE. However, it is no longer present in the latest
version of Raspberry Pi OS. Instead, we have Geany and Thonny. However, we can
download IDLE with the following command:

sudo apt-get install idle3 -y

https://geany.org/
https://docs.python.org/3/library/idle.html

Understanding Python 3 55

Once installed, we can find it in the Programming menu option under the Raspbian
menu, as shown in the following screenshot:

Figure 3.3 – The option for IDLE for Python 3

Click on it to open it. Alternatively, we can launch it from the Command Prompt with the
following command:

idle

Note that this command will not work and will throw an error if we have remotely
connected to the Command Prompt of the RPi (using an SSH client such as PuTTY
or Bitvise) as the command invokes the GUI. It will work if a visual display is directly
connected to the RPi or if we access the RPi desktop remotely. This invokes a new window,
as follows:

Figure 3.4 – Python 3 interactive mode in IDLE

This is the Python 3 interpreter prompt, or Python 3 shell. We will discuss this concept in
detail later in this chapter.

56 Introduction to Python Programming

Now, go to File | New File from the top menu. This will open a new code editor window,
as follows:

Figure 3.5 – A new blank Python program

The interpreter window will also stay open when this happens. You can either close or
minimize it. If you find it difficult to read the text in the interpreter or code editor in IDLE
due to the size of the font, you can go to Options | Configure IDLE from the menu to set
the font and size of the text. The configuration window looks as follows:

Figure 3.6 – IDLE configuration

Understanding Python 3 57

Let's write a customary Hello World! program. Type the following text into the window:

print('Hello World!')

Then, from the menu, click Run | Run Module. It will ask you to save it. Click the OK
button and it will take you to the Save dialog box. I prefer to save the code for this book by
chapter in a directory, with sub-directories for each chapter. You can make the directory
structure by running the following commands in the home directory of the pi user:

mkdir book

mkdir book/dataset

mkdir book/chapter01

We can make a separate directory for each chapter like this. Also, a separate dataset
directory to store our data is needed. After creating the prescribed directory structure,
run the following sequence of commands:

cd book

tree

We can see the directory structure in the following output of the tree command:

Figure 3.7 – Directory structure for saving programs for this book

58 Introduction to Python Programming

We can create the same directory structure by using the Save dialog box of IDLE or the
File Manager application of Raspberry Pi OS.

Once the directory corresponding to the current chapter is created, save the file there as
prog00.py. You just need to enter the filename; IDLE will automatically assign the .py
extension to the file. Then, the file will be executed by the Python 3 interpreter and the
output will be visible in the interpreter shell, as follows:

Figure 3.8 – Execution of a Python 3 program in IDLE

We can also write the same code with the Nano editor. The only difference is that we
also need to provide an extension when saving it. We can navigate to the directory
that has the prog00.py file and run the following command to feed the file to the
Python 3 interpreter:

python3 prog00.py

The Python 3 interpreter will execute the program and print the output, as follows:

Figure 3.9 – Execution of a Python 3 program in LXTerminal

Understanding Python 3 59

Working with Python 3 in interactive mode
We have seen how to write a Python 3 program using the IDLE and Nano editors. We
have also seen how to launch the program using IDLE and from the Command Prompt of
Raspberry Pi OS. Running a Python 3 program in this fashion is known as script mode.

There is also another mode—interactive mode. In interactive mode, we launch the Python
interpreter and it acts as a command-line interpreter. When we enter and run a statement,
we get immediate feedback from the interpreter. We can launch the interactive mode
in two ways. We have already seen the first way. When we launch IDLE, it opens the
interpreter and we can use it to run the Python 3 statements. The other way is to run the
python3 command in the Command Prompt. This will invoke the Python 3 interpreter
in the Command Prompt, as follows:

Figure 3.10 – Python 3 in interactive mode on the Command Prompt

Type the following statement into the prompt:

>>> print('Hello World!')

Then, press Enter. It will be executed and the output will be shown on the next line. This
way, we can execute single-line statements and small code snippets like this. We will be
using interactive mode extensively in this chapter. From the next chapter onward, we will
use script mode—that is, we will save the programs in files and launch them from the
command prompt or IDLE.

The basics of Python 3 programming
Let's start by learning the basics of Python 3 programming. Open the Python 3 interactive
prompt. Type in the following statements:

>>> pi = 3.14

>>> print(pi)

60 Introduction to Python Programming

This will show the value of the pi variable. Run the following statement:

>>> print(type(3.14))

This shows the following output:

<class 'float'>

You might have noticed that we have not declared the data type of the variable here.
That is because Python is a dynamically typed programming language. We also say that
the variable belongs to a class type. This means that it is an object, which is true for all
variables and other constructs in Python. Everything is an object in Python. This makes
Python a truly object-oriented programming language. Almost everything has attributes
and methods.

In order to exit the Command Prompt, press Ctrl + D or run the exit() statement.

Let's create our own class and an object of that class. Save the file and name it
prog01.py, then add the following code to it:

class Person:

 def __init__(self, name='', age=0):

 self.name = name

 self.age = age

 def show(self):

 print(self.name)

 print(self.age)

In the preceding code, we defined Person. The __init__() class is the initializer
function and it is called automatically whenever an object of the Person class is created.
The self parameter is a reference to the current instance of the class and is used to access
variables that belong to the class within the class definition.

Let's add some more code to prog01.py. We will create a class object, as follows:

p1 = Person('Ashwin', 25)

p1.show()

Understanding Python 3 61

We created the p1 class and then showed the properties of the object with the show()
function call. Here, we are assigning the values to class member variables at the time
of the creation of the class object.

Let's look at another way to create an object and assign values to the member variables.
Add the following code to the file:

p2 = Person()

p2.name = 'Jane'

p2.age = 20

print(p2.name)

print(p2.age)

In the preceding code, we are creating an object and the initializer function is called
with the default arguments. Then, we are assigning the values to the class variables and
accessing them directly using the class object. Run the program and see the output.

Now, open the Python 3 interpreter and run the following statements:

>>> import sys

>>> print(sys.platform)

This will return the name of the current OS (Linux). The first statement imports sys,
which is a Python standard library. It comes with the Python interpreter as part of its
batteries included motto. This means the Python interpreter comes with a large set of
useful libraries. sys.platform returns the current OS name string.

Let's try another example. In the previous chapter, we installed the OpenCV library.
Let's import that again now. We have already tested it directly from the Raspberry Pi OS
Command Prompt. Let's try to do the same in interactive mode:

>>> import cv2

>>> print(cv2.__version__)

The first statement imports the OpenCV library to the current session. The second statement
returns a string that contains the version number of the installed OpenCV library.

There are many topics in the basics of Python 3 programming, but it is very difficult to
cover all of them. Also, to do so is beyond the scope of this book. However, we will use
the topics we have just learned quite frequently in this book.

In the next section, we will explore the SciPy ecosystem libraries.

62 Introduction to Python Programming

The SciPy ecosystem
The SciPy ecosystem is a collection of libraries for programming science, mathematics,
and engineering functionalities. It has the following libraries as core components:

• NumPy

• SciPy

• Matplotlib

• IPython

• SymPy

• pandas

In this book, we will use all of these libraries except SymPy and pandas. In this section, we
will have a look at the NumPy and Matplotlib libraries. We will learn the useful aspects of
the other two libraries in the later chapters of this book.

The basics of NumPy
NumPy is a fundamental package that can be used for numerical computation with Python.
It is a matrix library for linear algebra. NumPy ndarrays can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data types can also be defined
and used. NumPy is an extension of the Python programming language. It adds support
for large multi-dimensional arrays and matrices, along with a large library of high-level
mathematical functions that can be used to operate on these arrays. We will use NumPy
arrays throughout this book to represent images and carry out complex mathematical
operations. NumPy comes with many built-in functions for all of these operations. So, we
do not have to worry about basic array operations. We can focus directly on the concepts
and code for computer vision. All of the OpenCV array structures are converted to and
from NumPy arrays. So, whatever operations you perform in NumPy, you can always
combine NumPy with OpenCV.

We will use NumPy with OpenCV a lot in this book. Let's start with some simple example
programs that will demonstrate the real power of NumPy.

NumPy comes pre-installed on Raspberry Pi OS. So, we do not have to install it separately.

Open the Python 3 interpreter and try the following examples.

The SciPy ecosystem 63

Creation of ndarrays
Let's see some examples on ndarray creation. The array() method will be used very
frequently in this book. There are many ways to create different types of arrays. We will
explore these methods as and when they are needed in this book. Follow these commands
for ndarray creation:

>>> import numpy as np

>>> x=np.array([1,2,3])

>>> x

array([1, 2, 3])

>>> y=arange(10)

>>> y=np.arange(10)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Basic operations on ndarrays
We are going to learn about the linspace() function now. It takes three
parameters—start_num, end_num, and count. This creates an array with equally
spaced points, starting from start_num and ending with end_num. You can try
out the following example:

>>> y=np.arange(10)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a=np.array([1,3,6,9])

>>> a

array([1, 3, 6, 9])

>>> b=np.linspace(0,15,4)

>>> b

array([0., 5., 10., 15.])

>>> c = a - b

>>> c

array([1., -2., -4., -6.])

64 Introduction to Python Programming

The following is the code that can be used to calculate the square of every element in
an array:

>>> a**2

array([1, 9, 36, 81], dtype=int32)

Linear algebra with ndarrays
Let's explore some examples relating to linear algebra. You will learn how to use the
transpose(), inv(), solve(), and dot() functions, which are useful when
performing operations related to linear algebra:

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])

>>> a.transpose()

array([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

>>> np.linalg.inv(a)

array([[-4.50359963e+15, 9.00719925e+15, -4.50359963e+15],

 [9.00719925e+15, -1.80143985e+16, 9.00719925e+15],

 [-4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])

>>> b = np.array([3, 2, 1])

>>> np.linalg.solve(a, b)

array([-9.66666667, 15.33333333, -6.])

>>> c = np.random.rand(3, 3)

>>> c

array([[0.91827923, 0.75063499, 0.40049332],

 [0.09520566, 0.16718726, 0.6577751],

 [0.95343917, 0.50972786, 0.65649385]])

>>> np.dot(a, c)

array([[3.96900804, 2.61419309, 3.68552507],

 [9.86978019, 6.89684344, 8.82981189],

 [15.77055234, 11.17949379, 13.9740987]])

Note:
You can explore NumPy in more detail at http://www.numpy.org.

The SciPy ecosystem 65

Matplotlib
Matplotlib is a plotting library for Python and it produces publication-quality figures.
It can produce various types of visualizations, such as plots, three-dimensional
visualizations, and images. It is important to understand the basics of Matplotlib
to work with any computer vision library, such as OpenCV.

Matplotlib was developed by John D. Hunter and it is continually developed by the open
source community. It is an integral part of the SciPy ecosystem. All the other libraries in
the SciPy ecosystem use Matplotlib for the visualization of data. pyplot is a module in
Matplotlib that provides a MATLAB-like interface for the visualization of data.

Before we begin programming with Matplotlib, we need to install it as it does not come
pre-installed on Raspberry Pi OS.

We can install it with the pip3 utility. We have already seen how to use this utility when
installing OpenCV. Let's look at it in more detail. pip means Pip Installs Packages or
Pip Installs Python. It is a recursive acronym (meaning the acronym is itself part of the
acronym). It is a command-line utility that comes with the Python interpreter and is used
for installing libraries. pip3 is the Python 3 version of this utility. It first connects to the
Python Package Index, which is a repository of Python libraries. Then, it downloads and
installs the library we need.

Note:
You can read more about the Python Package Index and pip at https://
pypi.org/project/pip/ and https://pypi.org/.

We can install Matplotlib by running the following command:

pip3 install matplotlib

Matplotlib is a big library and has many prerequisite libraries. All of these prerequisite
libraries are automatically installed by pip3 and then Matplotlib is installed. It will take
some time to do so, depending on the speed of your internet connection.

Once the installation is complete, we can write a few sample programs. We will use
Python 3 in script mode and IDLE or the Nano editor to write programs. Create a new
file, prog02.py, and add the following code to it:

import matplotlib.pyplot as plt

import numpy as np

 https://pypi.org/project/pip/
 https://pypi.org/project/pip/
https://pypi.org/

66 Introduction to Python Programming

x = np.array([1, 2, 3, 4], dtype=np.uint8)

y = x**2 + 1

plt.plot(x, y)

plt.grid('on')

plt.show()

In the first line of the preceding code, we import Matplotlib's pyplot module with the
plt alias. Then, we import NumPy. We use the array() function call to create a linear
ndarray by passing it a list of 8-bit unsigned integers (uint8 refers to the data type).
Then, we define y = x2 + 1. The plot() function plots y versus x. We can set the grid on
or off by passing 'on' or 'off' to the grid() function call. The show() function
call starts an event loop, looks for all the currently active visualization objects, and opens
a visualization window to show the plots or the other visualization. The following is
the output:

Figure 3.11 – Visualization with Matplotlib

As we can see, this shows us the visualization. The grid is visible as we turned it on. We also
have image controls at the bottom where we can save, zoom, and perform other operations
on the visualization. Note that we need to run the program directly on the RPi by using
IDLE on the Command Prompt or by using the remote desktop. Running the program from
a remote SSH command line will not throw any error but it won't show any output either.

The SciPy ecosystem 67

Save the prog02.py code file as prog03.py. After the plot() function call and
before grid() call, add the following lines:

y = x + 1

plt.plot(x, y)

plt.title('Graph')

plt.xlabel('X-Axis')

plt.ylabel('Y-Axis')

The rest of the code remains as it is. Save the program. Here, we are demonstrating the
visualization of multiple plots in the same window. We are also adding a title and labels to
the graph. Run the prog03.py file and the following is the output:

Figure 3.12 – Multiple graphs with Matplotlib

We can add the following line just before plt.show() to save the visualization on
the disk:

plt.savefig('test1.png', dpi=300, bbox_inches='tight')

68 Introduction to Python Programming

This will save the visualization in the current directory and name it test1.png.

Let's move on to the more interesting part. We can visualize ndarrays as images with
the imshow() function. Let's see an example. Create a new file named prog04.py
and add the following code to it:

import matplotlib.pyplot as plt

import numpy as np

x = np.array([[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9]], dtype = np.uint8)

plt.imshow(x)

plt.show()

In the preceding code, we are creating a two-dimensional array (with a size of 5x2) and
visualizing it as an image with the imshow() call. The following is the output:

Figure 3.13 – Visualizing numbers as an image

As this is an image, we really do not need grid and axis ticks. We can add the following
two lines to the code before plt.show() to turn them off:

plt.axis('off')

plt.grid('off')

Run the modified code and observe the output.

The SciPy ecosystem 69

The image has been rendered with what we call as default colormap. A colormap is a
color scheme for visualizations. If we change plt.imshow(x) to plt.imshow(x,
cmap='gray'), then the following is the output:

Figure 3.14 – The image in greyscale mode

There are a lot of colormaps. We can even create our own custom colormaps; however,
for the demonstration of computer vision algorithms, that is not needed as the existing
colormaps suffice. If you are curious about the available colormap names that we can use,
you can find them out as follows. Open the Python 3 interpreter in the interactive mode
and import the pyplot module to Matplotlib:

>>> import matplotlib.pyplot as plt

The plt.colormaps() list has names of all the colormaps. First, we check how many
colormaps are there, which is easy. Run the following statement:

>>> print(len(plt.colormaps()))

This will print the number of colormaps. Finally, run the following statement to see a list
of all the available colormaps:

>>> print(plt.colormaps())

70 Introduction to Python Programming

The list is quite long and we will be using only a few of the colormaps from the list for our
demonstrations. In the prog04.py file, change plt.imshow(x) to plt.imshow(x,
cmap='Accent'), and the following will be the output:

Figure 3.14 – The image with the Accent colormap

This much knowledge of Matplotlib is more than enough to get started with OpenCV and
computer vision.

Up to now, we have seen examples of visualization of one-dimensional and
two-dimensional ndarrays. Now, let's see how we can create a random three-dimensional
ndarray and how to visualize it. Observe the following code:

import matplotlib.pyplot as plt

import numpy as np

x = np.random.rand(3, 3, 3)

plt.imshow(x)

plt.axis('off')

plt.grid('off')

plt.show()

In the preceding code, we are using np.random.rand() to create a random three-
dimensional array. We just need to pass to it the size of every dimension. In the
preceding example, we are creating a three-dimensional matrix with a size of 3x3x3. Run
the preceding code and see the output for yourself. All the images we will work with
throughout this book are represented as either two-dimensional or three-dimensional
ndarrays. This knowledge of data visualization will be very helpful once we start working
with images.

RPi GPIO programming with Python 3 71

RPi GPIO programming with Python 3
One of the main unique selling points of the RPi and similar single-board computers
is the onboard GPIO pins. A few early models of the RPi boards have 26 pins. Most
recent models have 40 pins for GPIO. We can obtain the details of the pins on a board by
running the pinout command on the Command Prompt. The following is the output
of the command for my RPi 4B board:

Figure 3.16 – Part 1 of the command pinout

In the top left, we can see the 40 pins for GPIO. Pin number 1 is labeled there. The red
circle above it is pin number 2. The pin adjacent to pin number 1 is pin number 3, and
so on. The following part of the output shows the numbering of all the pins:

Figure 3.17 – Part 2 of the command pinout

72 Introduction to Python Programming

As we can see in the preceding output, we have power pins (3V3, 5V, and GND) and digital
I/O pins, marked as GPIOxx.

LED programming with GPIO
Now, we will see how to program LEDs with GPIO pins as output pins. Let's prepare
a simple circuit for blinking an LED, first.

For that, we need jumper cables, an LED, and a 220-ohm resistor. Prepare your circuit
as in the following diagram:

Figure 3.18 – LED-resistor circuit

As we can see in the preceding circuit diagram, we are connecting the anode of the LED
to physical pin 8 through a 220-ohm resistor, and the cathode of the LED is connected
to physical pin 6, which is a Ground (GND) pin.

Note:
You will find many beautiful circuit diagrams like this throughout this book. I
used an open source software called Fritzing to generate them. You can access
Fritzing's home page at https://fritzing.org/. Fritzing files have
the *.fzz extension. These files are part of the downloadable code bundle
for this book.

https://fritzing.org/

RPi GPIO programming with Python 3 73

Now, let's get into the code. For that, we need to install the GPIO library. The latest version
of Raspberry Pi OS comes with the GPIO library already installed. However, if it is not
there, we can install it by running the following command:

sudo apt-get install python3-rpi.gpio -y

Now, create a new file, prog05.py, in the same directory and add the following code to it:

import RPi.GPIO as GPIO

from time import sleep

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)

while True:

 GPIO.output(8, GPIO.HIGH)

 sleep(1)

 GPIO.output(8, GPIO.LOW)

 sleep(1)

In the preceding code, the first two lines import the required libraries.
setwarnings(False) disables all the warnings and setmode() is used to set
the pin addressing mode. There are two modes, GPIO.BOARD and GPIO.BCM. In the
GPIO.BOARD mode, we refer to the pins by their physical location numbers. In the
GPIO.BCM mode, we refer to the pins by their Broadcom SOC channel number. I prefer
the GPIO.BOARD mode because it is easy to remember the pins by their physical location
number. setup() is used to set each GPIO pin as an input or output.

In the preceding code, the first argument is the pin number, the second argument is the
mode, and the third one is the initial state of the pin. output() is used to send either
HIGH or LOW signals to the pin. sleep() is imported from the time library and it
produces a delay of a given number of seconds. Run the preceding program to make
the LED blink. In order to terminate the program, press Ctrl + C on the keyboard.

Similarly, we can write the following code for the same circuit to flash the LED to convey
a Save our Souls (SOS) message visually:

import RPi.GPIO as GPIO

from time import sleep

74 Introduction to Python Programming

GPIO.setwarnings(False) # Ignore Warnings

GPIO.setmode(GPIO.BOARD) # Use Physical Pin Numbering

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)

def flash(led, duration):

 GPIO.output(led, GPIO.HIGH)

 sleep(duration)

 GPIO.output(led, GPIO.LOW)

 sleep(duration)

while True:

 flash(8, 0.2)

 flash(8, 0.2)

 flash(8, 0.2)

 sleep(0.3)

 flash(8, 0.5)

 flash(8, 0.5)

 flash(8, 0.5)

 flash(8, 0.2)

 flash(8, 0.2)

 flash(8, 0.2)

 sleep(1)

In the preceding program, we defined a custom flash() function that accepts the pin
number and the duration of the flash. Then, we set the provided pin to HIGH for the given
duration and then set it to LOW for the given duration. So, the LED connected to the pin
is alternately turned on and off for the given duration. When this happens in the pattern
of . . . - - - . . . (triple dots followed by a triple dash followed by triple dots),
which is Morse code for SOS, it is called a distress signal. For each . (dot) character,
we flash the LED for 0.2 seconds, and for each – (dash) character, we flash it for half a
second. We have added all of this to the preceding infinite while loop. When we run the
program, it starts flashing the SOS message until we terminate it by pressing Ctrl + C on
the keyboard.

RPi GPIO programming with Python 3 75

Let's look at some more GPIO and Python 3 programming. Prepare a circuit as in the
following diagram:

Figure 3.19 – A circuit diagram with two LEDs

As we can see here, we just need to connect the anode of an additional LED to pin 10
through a 220-ohm resistor and a cathode of the same LED to the GND pin. We will
make both the LEDs blink alternately. The following is the code for this:

import RPi.GPIO as GPIO

from time import sleep

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(10, GPIO.OUT, initial=GPIO.LOW)

while True:

 GPIO.output(8, GPIO.HIGH)

 GPIO.output(10, GPIO.LOW)

 sleep(1)

76 Introduction to Python Programming

 GPIO.output(8, GPIO.LOW)

 GPIO.output(10, GPIO.HIGH)

 sleep(1)

You should now be familiar with all of the functions in the preceding code as we discussed
them in the earlier two examples. This code, upon execution, makes the LEDs blink for 1
second alternately.

Now, there is another way to produce the same output. Take a look at the following program:

import RPi.GPIO as GPIO

from time import sleep

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(10, GPIO.OUT, initial=GPIO.LOW)

counter = 0

while True:

 if counter % 2 == 0:

 led1 = 8

 led2 = 10

 else:

 led1 = 10

 led2 = 8

 GPIO.output(led1, GPIO.HIGH)

 GPIO.output(led2, GPIO.LOW)

 sleep(1)

 counter = counter + 1

In the preceding program, we are using slightly different logic to demonstrate the usage
of if statement in Python 3. We have a variable named counter, which is set to 0 at the
beginning. In the while loop, we check whether the counter value is even or odd, and
depending on that, we set which LED is to be turned on and which is to be turned off. At
the end of the loop, we increment counter by 1. The output of this program is the same
as the earlier one and it can be terminated by pressing Ctrl + C.

RPi GPIO programming with Python 3 77

Now, let's experiment with numerous LEDs. We will need a breadboard for this. Prepare
a circuit as in the following diagram:

Figure 3.20 – A diagram for the chaser circuit

78 Introduction to Python Programming

For programming, we will try a bit of a different approach. We will use the gpiozero
library of Python 3. If it is not installed by default on your Raspbian distribution, it can be
installed with the following command:

pip3 install gpiozero

This uses the BCM numbering system when addressing the pins. Save the following code
in a Python file and run it to see a beautiful chaser effect:

from gpiozero import LED

from time import sleep

led1 = LED(2)

led2 = LED(3)

led3 = LED(4)

led4 = LED(17)

led5 = LED(27)

led6 = LED(22)

led7 = LED(10)

led8 = LED(9)

led9 = LED(11)

sleeptime = 0.2

while True:

 led1.on()

 sleep(sleeptime)

 led1.off()

 led2.on()

 sleep(sleeptime)

 led2.off()

 led3.on()

 sleep(sleeptime)

 led3.off()

RPi GPIO programming with Python 3 79

 led4.on()

 sleep(sleeptime)

 led4.off()

 led5.on()

 sleep(sleeptime)

 led5.off()

 led6.on()

 sleep(sleeptime)

 led6.off()

 led7.on()

 sleep(sleeptime)

 led7.off()

 led8.on()

 sleep(sleeptime)

 led8.off()

 led9.on()

 sleep(sleeptime)

 led9.off()

All of the preceding code is self-explanatory and should be easy for you to understand
by now. In the first line, we imported LED. We can pass to it a BCM pin number as an
argument. It can be assigned to a variable and the variable then can call the on() and
off() functions to turn the LED associated with it on and off, respectively. We also
called sleep() between on() and off().

80 Introduction to Python Programming

Push-button programming with GPIO
Now, we are going to see how we can connect a push button to a RPi board with an
internal pull-up resistor. Prepare a circuit as in the following diagram:

Figure 3.21 – A diagram for interfacing a push button

In the preceding circuit, we connect one end of the push button to pin number 7 and
another to GND. Save the following code to a Python file:

from time import sleep

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

RPi GPIO programming with Python 3 81

GPIO.setwarnings(False)

button = 7

GPIO.setup(button, GPIO.IN, GPIO.PUD_UP)

while True:

 button_state = GPIO.input(button)

 if button_state == GPIO.HIGH:

 print ("HIGH")

 else:

 print ("LOW")

 sleep(0.5)

In the preceding code, we are initializing pin 7 as an input pin. In setup(), the second
argument decides the mode of the GPIO pin (IN or OUT). The third argument, GPIO.
PUD_UP, decides whether it should be connected to an internal pull-up resistor. If we
connect the button to an internal pull-up resistor, the GPIO pin to which the button
is connected to is set to HIGH when the button is not pressed. If we press the button,
it sets to LOW. GPIO.input() and returns the button state. Launch the program and
the output will show HIGH if the button is open and LOW if the button is pressed. The
following is the output:

Figure 3.22 – The output of the push button program

82 Introduction to Python Programming

So, this is how we can detect a key press. The program can be terminated by pressing
Ctrl + C.

We can also try a slightly different circuit and code. Prepare a circuit, as follows:

Figure 3.23 – Another circuit for the push button

In the preceding circuit, we connected one end of the push button to pin 7 and the other
to a 3V3 pin. Do not connect this end to the 5V pin because when we push the button, it
will connect to pin 7 and the GPIO pins can only handle up to 3V3 (3.3 V). Connecting
them to a 5V source will damage the pins and the board. Prepare the circuit and make a
copy of the code with the following command:

cp prog06.py prog07.py

Summary 83

In the new prog07.py file, we just have to make a small change in the setup()
function call, as follows:

GPIO.setup(button, GPIO.IN, GPIO.PUD_DOWN)

This will connect the push button to the internal pull-down resistor. The pin connected
to the push button remains set to LOW when the button is open and set to HIGH when the
button is pushed. Run the program and the output looks as follows:

Figure 3.24 – The output of the second push button program

The program will show LOW in the beginning. If we push the button, it will become HIGH.
The program can be terminated by pressing CTRL + C. This is another way of detecting
a key press.

Summary
We learned the basics of Python 3 programming in this chapter. We also learned about
the SciPy ecosystem and experimented with the NumPy and Matplotlib libraries. Finally,
we saw how to use the GPIO pins of the RPi with LEDs and push buttons.

In the next chapter, we will get started with Python 3 and OpenCV programming. We will
also try out a lot of hands-on exercises to learn about programming using a webcam and a
RPi camera module.

4
Getting Started with

Computer Vision
In the previous chapter, we learned the basics of programming of Python 3, NumPy,
matplotlib, and General Purpose Input Output (GPIO). In this chapter, we will focus on
the acquisition of images and videos. This chapter has a lot of coding examples that we
will be using throughout the book.

In this chapter, we will cover the following topics:

• Exploring image datasets

• Working with images using OpenCV

• Using matplotlib to visualize images

• Drawing geometric shapes with OpenCV and NumPy

• Working with a GUI

• Event handling and a primitive paint application

• Working with a USB webcam

• The Pi camera module

86 Getting Started with Computer Vision

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter04/programs.

Check out the following video to see the Code in Action at https://bit.
ly/3dtrA2t.

Exploring image datasets
We will need sample images for our computer vision programs with Python and OpenCV.
We can find a lot of images online. However, many of those images are under copyright.
Most computer vision researchers and professionals use standard image datasets. We
prefer to use the following image datasets all the time:

• http://sipi.usc.edu/database/

• http://www.imageprocessingplace.com/root_files_V3/image_
databases.htm

• http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php

Download these datasets. They will be in compressed zip format. Extract them into the
~/book/dataset directory. From this chapter onward, we will write a lot of programs
for computer vision that will require images, and we will use the images from these
datasets for all our needs. The other option for images is to use a web camera and RPi
camera module to capture images, which we will learn about later in this chapter.

Working with images using OpenCV
In this section, we will learn to read and store images using the OpenCV API and Python.
All the programs in this book will use the OpenCV library. It can be imported with the
following Python 3 statement:

import cv2

The cv2.imread() function reads an image from the disk and stores it in a NumPy
ndarray. It accepts two arguments. The first argument is the name of the image file on
the disk. The image should either be in the same directory where we are saving the current
Python 3 script, or we must pass the absolute path of the image file as an argument to
the cv2.imread() function.

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter04/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter04/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter04/programs
https://bit.ly/3dtrA2t
https://bit.ly/3dtrA2t
http://sipi.usc.edu/database/
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php

Working with images using OpenCV 87

The second argument is a flag that specifies the mode in which the image should be read.
The flag can have one of the following values:

• cv2.IMREAD_GRAYSCALE: This reads an image from the disk in grayscale mode.
The numerical value corresponding to this flag is 0.

• cv2.IMREAD_UNCHANGED: This reads an image from the disk as it is. The
numerical value corresponding to this flag is -1.

• cv2.IMREAD_COLOR: This reads the image in color mode, and it is the default
value for the argument of the parameter. The numerical value corresponding to
this flag is 1. This is the default value of the argument.

The following is the code for reading an image in color mode:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', cv2.
IMREAD_COLOR)

We can rewrite the last line with the flags as follows:

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

The preceding style of writing code for reading the source images with numerical flags is
very simple. So, we will use it throughout the book:

cv2.imshow('Mandrill', img)

cv2.waitKey(0)

cv2.destroyWindow('Mandrill')

The cv2.imshow() function displays an image in a window on the screen. It accepts
two arguments. The string that is the name of the window is the first argument, and the
NumPy ndarray variable that has the image to be displayed is the second variable.

The cv2.waitKey() function is a function used for binding the events for the keyboard.
It accepts an argument, which is the number of milliseconds the function needs to wait
to detect the keypress of the keyboard. If we pass it 0, it waits for the press of a key on the
keyboard indefinitely. It is the only function in the OpenCV library that can handle the
events of the keyboard. We must call it immediately after the call of the cv2.imshow()
function. If we do not call it that way, no window for the image will be displayed on the
screen as cv2.waitKey() is the only function that fetches and handles events.

The cv2.destroyWindow() function accepts the name of the windows to be destroyed
as an argument. When all the windows the current program displays must be destroyed,
we use the cv2.destoyAllWindows() function to do this. We will use these functions
in almost all of the OpenCV programs throughout this book.

88 Getting Started with Computer Vision

We can also create a window in advance that has a specific name, and then associate an
image with that window later in the program when we need it. It is recommended that
we create a window in advance before we process an image. The following code snippet
demonstrates this:

cv2.namedWindow('Lena', cv2.WINDOW_AUTOSIZE)

cv2.imshow('Mandrill', img)

cv2.waitKey(0)

cv2.destroyWindow('Mandrill')

Let's put it all together to get the following script:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

cv2.imshow('Mandrill', img)

cv2.waitKey(0)

cv2.destroyWindow('Mandrill')

The preceding code imports an image, displays it on the screen, and then waits for a
keystroke on the keyboard to close the image window. The following is a screenshot
of the output of the preceding code:

Figure 1: Reading and visualizing a color image with OpenCV

Using matplotlib to visualize images 89

The cv2.imwrite() function saves a NumPy ndarray to a specific path on the disk.
The first argument is the string that is the name of the file with which we want to save
the image, and the second argument is the name of the NumPy array that has the image.
Additionally, the cv2.waitKey() function can detect specific keystrokes on the
keyboard. Let's look at a demonstration of both of the functions as follows:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

cv2.imshow('Mandrill', img)

keyPress = cv2.waitKey(0)

if keyPress == ord('q'):

 cv2.destroyWindow('Mandrill')

elif keyPress == ord('s'):

 cv2.imwrite('test.jpg', img)

 cv2.destroyWindow('Mandrill')

Here, the line keyPress = cv2.waitKey(0) saves the value of the keystroke on the
keyboard in the keyPress variable. The ord() function accepts a single character and
returns an integer that represents the Unicode of the character if it is a Unicode object.
Based on the value of the keyPress variable, we can either exit straight away, or exit after
saving the image to the disk. For example, if we press the Esc key, the cv2.waitKey()
function returns the value of 27.

Using matplotlib to visualize images
Matplotlib is a very robust data visualization library for the Python 3 programming
language. It is also capable of visualizing images. It also offers a wide range of options for
plotting, and we will learn many of its capabilities in the later chapters of this book. Let's
write a program that displays an image with matplotlib that we read in grayscale mode
using the OpenCV cv2.imread() function:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 0)

import matplotlib.pyplot as plt

plt.imshow(img)

plt.title('Mandrill')

plt.axis('off')

plt.show()

90 Getting Started with Computer Vision

Note
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files emailed
directly to you.

In the preceding example, we are reading an image in grayscale mode and displaying
it with the matplotlib plt.imshow() function. The following is the output of the
preceding program:

Figure 2: Visualizing a BGR image as an RGB image with matplotlib

I know that the image does not look natural. This is because we are reading the image in
grayscale mode and visualizing it with the default colormap. Make the following changes
in plt.imshow(), and we will find the output more palatable to our eyes. The following
is the output:

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Using matplotlib to visualize images 91

Figure 3: Visualizing a grayscale image

This was all about grayscale images.

The cv2.imread() function also works with color images. It reads and saves them as a
three-dimensional ndarray of Blue, Green, and Red (BGR) pixels.

However, the matplotlib plt.imshow() function displays NumPy ndarrays as images
in the RGB colorspace. If we read an image with the cv2.imread() function in the
default BGR format of OpenCV and show it with the plt.imshow() function, the
plt.imshow() function will treat the value for the intensity of the blue color as the
value of the intensity of the red color and vice versa. This will make the image appear with
distorted colors. Make the following change to the preceding code in the respective lines
and run the program again:

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

plt.imshow(img)

Make the changes and run the code to see the color image with distorted colors. To solve
this issue, we must convert the image read in the BGR colorspace by the cv2.imread()
function to the RGB colorspace so that the plt.imshow() function will be able to
render it in a fashion that makes sense to the human eyes and brain. We will use the cv2.
cvtColor() function for this task, and we will learn about this in more detail later on in
this book.

92 Getting Started with Computer Vision

Drawing geometric shapes with OpenCV
and NumPy
Let's learn how to draw various geometric shapes using the OpenCV drawing functions.
We will also use NumPy here.

The following code imports all the required libraries for this demonstration:

import cv2

import numpy as np

The following code creates an RGB ndarray of all zeros. It is an image in which all the
pixels are black:

image = np.zeros((200, 200, 3), np.uint8)

We are using the np.zeros() function to create an ndarray of all zero elements.

We'll start by drawing a line, as it is a simple geometric shape. With the help of the
following code, we'll draw a line with coordinates (0, 199) and (199, 0), with red color [(0,
0, 255) in BGR], and with a thickness of 2 pixels:

cv2.line(image, (0, 199), (199, 0), (0, 0, 255), 2)

All the OpenCV functions for drawing have the following common parameters:

• img: This is the image where we need to draw the geometric shapes.

• color: This is passed as a tuple of (B, G, R) to express the colors where the value of
the intensity of each color is in between 0 and 255.

• thickness: The default value of the argument for this parameter is 1. For all the
shapes that are geometrically closed, such as an ellipse, a circle, and a rectangle, -1
completely fills in the shape with the color specified as an argument.

• LineType: This can have any one of the following three values:

8: Eight-connected lines (this is the default value of the argument for this
parameter).

4: Four-connected lines.

cv2.LINE_AA: This stands for anti-aliasing (it is usually used with geometric
shapes that have curves such as an ellipse or circle).

Drawing geometric shapes with OpenCV and NumPy 93

The following line of code will help us to draw a rectangle with (20, 20) and (60, 60) as
diagonally opposite vertices and the color blue:

cv2.rectangle(image, (20, 20), (60, 60), (255, 0, 0), 1)

The following line of code will help us to draw a circle with the center located at (80, 80),
10 pixels as the radius, and green as the fill color:

cv2.circle(image, (80, 80), 10, (0, 255, 0), -1)

The following line of code will help us to draw a full ellipse with no rotations, a center
located at pixels (99, 99), and the lengths of the major and minor axes as 40 pixels and
20 pixels, respectively:

cv2.ellipse(image, (99, 99), (40, 20), 0, 0, 360, (128, 128,
128), -1)

The following code plots a polygon that has four points. It is defined as follows:

points = np.array([[100, 5], [125, 30], [175, 20], [185, 10]],
np.int32)

points = points.reshape((-1, 1, 2))

cv2.polylines(image, [points], True, (255, 255, 0))

If we pass False as the value for the third argument in the call of the polylines()
function, it joins all the points with the line segments and will not plot a closed shape.

We can also print text in the image using the cv2.putText() function. The following
code adds the text to the image with (80, 180) as the bottom-left corner of the text,
HERSHEY_DUPLEX as the font with size of text 1, and the color of the text as pink:

cv2.putText(image, 'Test', (80, 180), cv2.FONT_HERSHEY_DUPLEX,
1, (255, 0, 255))

The cv2.putText() function accepts one of the following fonts as an argument:

• FONT_HERSHEY_DUPLEX

• FONT_HERSHEY_COMPLEX

• FONT_HERSHEY_SIMPLEX

94 Getting Started with Computer Vision

• FONT_HERSHEY_PLAIN

• FONT_HERSHEY_SCRIPT_SIMPLEX

• FONT_HERSHEY_SCRIPT_COMPLEX

• FONT_HERSHEY_TRIPLEX

• FONT_HERSHEY_COMPLEX_SMALL

The output image is shown using this familiar snippet of code:

cv2.imshow('Shapes', image)

cv2.waitKey(0)

cv2.destroyAllWindows()

The output of the preceding code is as follows:

Figure 4: Drawing geometric shapes

Note
If the pixels of the geometric shapes overlap, then those pixels will always have
the value that is assigned by the latest geometric function. For example, the
ellipse overlaps the line and the circle in the preceding figure.

As an exercise, change the values of the arguments passed to all the geometric functions
and run the code again to understand the functionality better.

Working with a GUI 95

Working with a GUI
By now we are aware of how to create a named window using the call of the OpenCV
cv2.namedWindow() function. We will now demonstrate how to create trackbars using
the cv2.CreateTrackbar() function, how to associate it with a named window,
and how to use those trackbars to choose the value of the color channels in the RGB
colorspace. Let's get started with the following code:

import numpy as np

import cv2

def empty(z):

 pass

image = np.zeros((300, 512, 3), np.uint8)

cv2.namedWindow('Palette')

cv2.createTrackbar('B', 'Palette', 0, 255, empty)

cv2.createTrackbar('G', 'Palette', 0, 255, empty)

cv2.createTrackbar('R', 'Palette', 0, 255, empty)

while(True):

 cv2.imshow('Palette', image)

 if cv2.waitKey(1) == 27 :

 break

 blue = cv2.getTrackbarPos('B', 'Palette')

 green = cv2.getTrackbarPos('G', 'Palette')

 red = cv2.getTrackbarPos('R', 'Palette')

 image[:] = [blue, green, red]

cv2.destroyWindow('Palette')

In the preceding code, we first create an image with all the pixels colored black and a
named window with the name of Palette. The cv2.createTrackbar() function
creates a trackbar. The following is the list of arguments accepted by this function:

• Name: The name of the trackbar.

• Window_name: The name of the output window the trackbar is to be associated with.

• Value: The initial value of the slider of the trackbar when it is created.

• Count: The maximum value of the slider of the trackbar (the minimum value of the
slider is always 0).

• Onchange(): This function is called when we change the position of the slider of
the trackbar.

96 Getting Started with Computer Vision

We have created a function and named it empty(). We do not intend to perform
any activity when we change the slider of the trackbar. We are just passing the call
of this function to the cv2.createTrackbar() function. The call of the cv2.
getTrackbarPos() function returns the most recent position of the slider of the
trackbar. Based on the positions of the sliders of all three trackbars, we set the color
of the palette. The application closes when we press the Esc key on the keyboard. The
application we created should look like this:

Figure 5: A BGR color palette

OpenCV also offers a lot of functionality to handle events. We will explore that next.

Event handling and a primitive paint
application
A variety of keyboard and mouse events are recognized by OpenCV. We can view the list
of events by following these instructions. Open the Python 3 Interpreter in interactive
mode by running the python3 command on Command Prompt, and then run the
following statements:

>>> import cv2

>>> events = [i for i in dir(cv2) if 'EVENT' in i]

>>> print(events)

Event handling and a primitive paint application 97

It will show the following output:

['EVENT_FLAG_ALTKEY', 'EVENT_FLAG_CTRLKEY', 'EVENT_FLAG_
LBUTTON', 'EVENT_FLAG_MBUTTON', 'EVENT_FLAG_RBUTTON', 'EVENT_
FLAG_SHIFTKEY', 'EVENT_LBUTTONDBLCLK', 'EVENT_LBUTTONDOWN',
'EVENT_LBUTTONUP', 'EVENT_MBUTTONDBLCLK', 'EVENT_MBUTTONDOWN',
'EVENT_MBUTTONUP', 'EVENT_MOUSEHWHEEL', 'EVENT_MOUSEMOVE',
'EVENT_MOUSEWHEEL', 'EVENT_RBUTTONDBLCLK', 'EVENT_RBUTTONDOWN',
'EVENT_RBUTTONUP']

We can write code to handle a couple of these events and create a simple and primitive
paint application. Let's import the required libraries using the following code:

import cv2

import numpy as np

Create a black background and a named window:

windowName = 'Drawing'

img = np.zeros((512, 512, 3), np.uint8)

cv2.namedWindow(windowName)

Define a custom function, called draw_circle():

def draw_circle(event, x, y, flags, param):

 if event == cv2.EVENT_LBUTTONDBLCLK:

 cv2.circle(img, (x, y), 40, (0, 255, 0), -1)

 if event == cv2.EVENT_MBUTTONDOWN:

 cv2.circle(img, (x, y), 20, (0, 0, 255), -1)

 if event == cv2.EVENT_LBUTTONDOWN:

 cv2.circle(img, (x, y), 30, (255, 0, 0), -1)

In the preceding definition, we are drawing circles using various properties on the mouse
events. Now, let's call the setMouseCallback() function and pass it the name of the
window and the draw_circle() function as arguments:

cv2.setMouseCallback(windowName, draw_circle)

98 Getting Started with Computer Vision

This call will bind the draw_circle() function with the given window's mouse events.
Finally, we write the loop for displaying the image window and exit when the Esc key
is pressed:

while(True):

 cv2.imshow(windowName, img)

 if cv2.waitKey(20) == 27:

 break

cv2.destroyAllWindows()

Run the entire code and you will see the following output:

Figure 6: A simple paint application

As we have programmed the left, middle, and down button's double-click events,
depending on these events and the location of the cursor, your output will be different.

We will use the drawing API in OpenCV sparingly in this book. The functionality that
we will use the most throughout this book is related to the webcam. The next section is
dedicated to the interfacing and use of the webcam with OpenCV and the Raspberry Pi.

Working with a USB webcam 99

Working with a USB webcam
Cameras are image sensors. That said, analog cameras and motion film cameras record
images on films. Digital cameras have digital sensors to capture the image and these are
stored in electronic formats on various types of storage mediums. A subset of digital
cameras is USB webcams. These webcams, as their name indicates, can be interfaced to a
computer via USB, hence the name, USB webcam. In this section, we will learn about the
interfacing of USB webcams with the Raspberry Pi and programming using shell scripts,
Python 3, and OpenCV in detail.

Note
All these webcams work with Raspberry Pi boards. However, a few webcams
may have issues. The https://elinux.org/RPi_USB_Webcams
URL has a list of many webcams and details regarding compatibility.

All the programs in this book are tested with the RPi 4B and a Logitech C310 webcam.
You can view its product page at https://www.logitech.com/en-in/product/
hd-webcam-c310.

Attach the USB webcam to the RPi using the USB port on the board and run the following
command in the Terminal:

lsusb

The output of this command shows the list of all the USB devices connected to the Linux
computer. The following is the output shown on my RPi board:

pi@raspberrypi:~/book/chapter04 $ lsusb

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 005: ID 046d:081b Logitech, Inc. Webcam C310

Bus 001 Device 004: ID 1c4f:0002 SiGma Micro Keyboard TRACER
Gamma Ivory

Bus 001 Device 003: ID 046d:c077 Logitech, Inc. M105 Optical
Mouse

Bus 001 Device 002: ID 2109:3431 VIA Labs, Inc. Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

As you can see in the preceding output, the second entry corresponds to the USB webcam
that is connected to the RPi board. We can also see a USB mouse and a USB keyboard
connected to the RPi board.

https://elinux.org/RPi_USB_Webcams
https://www.logitech.com/en-in/product/hd-webcam-c310
https://www.logitech.com/en-in/product/hd-webcam-c310

100 Getting Started with Computer Vision

Capturing images with the webcam
Let's now demonstrate how to capture images with the USB webcam attached to the RPi.
We can install the fswebcam utility by running the following command on the terminal:

sudo apt-get install fswebcam

Once we install it, we can run the following command to capture a photograph with the
USB webcam:

fswebcam -r 1280x960 --no-banner ~/book/chapter04/camtest.png

This command captures an image with a resolution of 1280 x 960 pixels using the USB
webcam connected to the RPi. The command-line --no-banner argument passed to
the command disables the banner for the timestamp. The image is saved with the filename
passed as the last argument. If we run this command repeatedly, the new photograph
that is captured will be overwritten to the same file. So, next time we run the command,
we must pass a different filename as a parameter to the command if we do not want
to overwrite the earlier file.

Note
If you want to read more about fswebcam (or any Linux command for that
matter), you can run the man fswebcam command on Command Prompt.

Timelapse photography
Capturing photographs at regular intervals with a camera and playing them back at a
higher frame rate than they were captured at is known as timelapse photography. For
example, if we capture photographs at the rate of one photograph per minute for 10 hours,
we will have 600 photographs. If we stitch all of them into a video and play it back with a
frame rate of 30 photos per second, we will have a 20-second video. This video is known
as a timelapse video. We can use the RPi board with a USB webcam for this. We have
already learned how to use a USB webcam with an RPi board to do this. We have also
learned the usage of the fswebcam utility. We will write a script that captures images with
timestamps in the filename. Then, we will add this script to the crontab to execute it at
regular intervals. Cron is a job schedular for Unix-like OSes. It is driven by a file named
crontab (cron table). It is a Unix configuration file that specifies the scripts or programs
to be run at a particular time or interval.

Working with a USB webcam 101

Let's create a shell script with the name of timelapse.sh and save it in a location of our
choice on the disk. We must add the following code to the script file and save it:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")

fswebcam -r 1280x960 --no-banner Image_$DATE.png

Let's make the mode of the script executable by running the following command:

chmod +x timelapse.sh

This script takes a photograph using the USB webcam and then saves it to a location in
the disk. The captured image has a new filename every time because the filename has a
timestamp when the image is captured. We must execute this script manually once to
make sure it works without any problem and that it captures an image in the filename
format of Image_<timestamp>.png.

Once the script is checked for any issues, it must be executed at regular intervals to
capture images for the timelapse sequence. For that to happen, we must add it to the
crontab. The syntax for an entry in the crontab is as follows:

1 2 3 4 5 /location/command

Let's check the meaning of the terms in the syntax:

• 1: Position of minutes (can range from 0-59)

• 2: Position of hours (can range from 0-23)

• 3: Position of the day of the month (can range from 0-31)

• 4: Position of the month (can range from 0-12 [1 for January])

• 5: Position of the day of the week (can range from 0-7 [7 or 0 for Sunday])

• /location/command: Script or command name to schedule

Therefore, the entry for the crontab to run the timelapse.sh script once every minute
is as follows:

* * * * * /home/pi/book/chapter04/timelapse.sh 2>&1

102 Getting Started with Computer Vision

Open the crontab of user pi using the following command:

crontab –e

This will open the crontab. When we execute this for the very first time on our RPi,
it will ask which text editor to choose. Choose the Nano option by entering 1. Add the
preceding line to the crontab as an entry. Then save and exit it.

Once we exit the crontab, it will show us the following message:

crontab: installing new crontab

Once we do this, our setup for the timelapse is live. We can change the settings in the
entry of the crontab to the settings of our choice. To run the script every 5 minutes,
use the following:

*/5 * * * * /home/pi/book/chapter04/timelapse.sh 2>&1

To run the script every 2 hours, use the following:

* */2 * * * /home/pi/book/chapter04/timelapse.sh 2>&1

Once we capture all the images for our timelapse, we must encode them in a video that
has a frame rate of 24, 25, 29, or 30 frames per second (FPS). These are all the standard
frame rates. I prefer to encode the video using 30 FPS. Raspberry Pi is a slow computer for
video editing. It is recommended that you copy the images to a faster computer to encode
the video. For Linux computers, I prefer to use the command-line MEncoder utility. We
can use the other utilities or video editing tools for this task too. The following are the
steps needed to create a timelapse video with MEncoder on the Raspberry Pi or any
other Linux computer:

1. Install MEncoder using the following command on Command Prompt:

 sudo apt-get install mencoder -y

2. Navigate to the output directory by issuing the following command:

 cd /home/pi/book/chapter04

3. Create a list of the images to be used in our timelapse sequence using the following
command:

 ls Image_*.png > timelapse.txt

Working with a USB webcam 103

4. Finally, we can use the following command to create a nice timelapse video:

mencoder -nosound -ovc lavc -lavcopts
vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf
scale=1280:960 -o timelapse.avi -mf type=jpeg:fps=30
mf://@timelapse.txt

This creates the video with the timelapse.avi filename in the current directory where
we are running the command (also known as the present working directory). The frame
rate of the video will be 30 FPS. Very soon, we will learn how to play this video file.

Webcam video recording
We can use the USB webcam connected the RPi to record live videos using the command-
line ffmpeg utility. We can install the ffmpeg utility using the following command:

sudo apt-get install ffmpeg

We can use the following command to record a video:

ffmpeg -f video4linux2 -r 25 -s 544x288 -i /dev/video0 test.avi

We can terminate the operation of recording the video by pressing Ctrl + C on the keyboard.

We can play the video using the command-line omxplayer utility. It comes preinstalled
with the latest release of Raspbian, so we do not have to install it separately. To play a
file with the timelapse.avi filename, navigate to the location of the video file using
Command Prompt and run the following command:

omxplayer timelapse.avi

We can even double-click on the video files in the Raspbian GUI to play them with VLC
media player.

Capturing images with the webcam using Python and
OpenCV
Let's learn how to capture images with the webcam connected to the RPi using Python 3
and OpenCV:

import cv2

import matplotlib.pyplot as plt

cap = cv2.VideoCapture(0)

104 Getting Started with Computer Vision

if cap.isOpened():

 ret, frame = cap.read()

else:

 ret = False

print(ret)

print(type(frame))

cv2.imshow('Frame from Webcam', frame)

cv2.waitKey(0)

cap.release()

cv2.destroyAllWindows()

In the previous code snippet, the cv2.VideoCapture() function creates an object
to capture the video using the webcam connected to the RPi. The argument for it could
either be the index of the video device or a video file. In this case, we are passing the index
of the video device, which is 0. If we have more cameras connected to the RPi board,
we can pass the appropriate device index based on which camera is chosen. If we have
connected only one camera, then we just pass 0.

We can find out the number of cameras and device indexes associated with those cameras
by running the following command:

ls -l /dev/video*

The cap.read() function returns a Boolean ret value and a NumPy frame ndarray
that contains the image it captured. If the operation of capturing the image is successful,
then ret will have a Boolean value of True; otherwise, it will have a Boolean value of
False. The preceding code captures an image using the USB camera identified by /dev/
video0, displays it on the screen, and then finally saves it to the disk with the filename
test.png. The cap.release() function releases the video capture device.

Live videos with the webcam using Python and
OpenCV
We can use the previous code with a few modifications to display a live video stream from
a USB webcam:

import cv2

windowName = "Live Video Feed"

cv2.namedWindow(windowName)

cap = cv2.VideoCapture(0)

Working with a USB webcam 105

if cap.isOpened():

 ret, frame = cap.read()

else:

 ret = False

while ret:

 ret, frame = cap.read()

 cv2.imshow(windowName, frame)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

The previous code shows the live video captured by the webcam until we press the Esc
key on the keyboard. The preceding code example is the template for the all the code
examples for the processing of live videos captured using the USB webcam connected
to the RPi board.

Webcam resolution
We can read the properties of the webcam using cap.get(). We must pass 3 to get
the width and 4 to get the height. We can also set the properties with cap.set() in
the same way. The following code demonstrates this:

import cv2

windowName = "Live Video Feed"

cv2.namedWindow(windowName)

cap = cv2.VideoCapture(0)

print('Width : ' + str(cap.get(3)))

print('Height : ' + str(cap.get(4)))

cap.set(3, 5000)

cap.set(4, 5000)

print('Width : ' + str(cap.get(3)))

print('Height : ' + str(cap.get(4)))

if cap.isOpened():

 ret, frame = cap.read()

else:

 ret = False

106 Getting Started with Computer Vision

while ret:

 ret, frame = cap.read()

 cv2.imshow(windowName, frame)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

In the preceding code, we are setting both the height and width to 5000. The webcam
does not support this resolution, so the height and width will both be set to the maximum
resolution supported by webcam. Run the preceding code and observe the output printed
in Command Prompt.

FPS of the webcam
We can retrieve the FPS of the webcam we are using, and we can also calculate the actual
FPS ourselves. The FPS that we retrieve as a property of the webcam and the calculated
FPS could be different. Let's check this. Import all the required libraries:

import time

import cv2

Next, initiate an object for the video capture:

cap = cv2.VideoCapture(0)

We can fetch the camera resolution using cap.get(), as follows:

fps = cap.get(cv2.CAP_PROP_FPS)

print("FPS with CAP_PROP_FPS : {0}".format(fps))

Then, we will capture 120 frames continuously. We record the time before and after the
operation as follows:

num_frames = 120

print("Capturing {0} frames".format(num_frames))

start = time.time()

for i in range(0, num_frames):

 ret, frame = cap.read()

end = time.time()

Working with a USB webcam 107

Then, finally, we compute the actual time required to capture the frames, and we can
calculate the FPS using the following formula:

The code is as follows:

seconds = end - start

print("Time taken : {0} seconds".format(seconds))

fps = num_frames / seconds

print("Actual FPS calculated : {0}".format(fps))

cap.release()

Run the entire program, and the output should be like this:

FPS with CAP_PROP_FPS : 30.0

Capturing 120 frames

Time taken : 9.86509919166565 seconds

Actual FPS calculated : 12.164094619685105

We usually never get the FPS retrieved from the properties due to hardware limitations.

Saving webcam videos
We use the OpenCV cv2.VideoWriter() function to save the live USB webcam
stream to a video file on the disk. The following code demonstrates this:

import cv2

windowName = "Live Video Feed"

cv2.namedWindow(windowName)

cap = cv2.VideoCapture(0)

filename = 'output.avi'

codec = cv2.VideoWriter_fourcc('W', 'M', 'V', '2')

framerate = 30

resolution = (640, 480)

Output = cv2.VideoWriter(filename, codec,

 framerate, resolution)

108 Getting Started with Computer Vision

if cap.isOpened():

 ret, frame = cap.read()

else:

 ret = False

while ret:

 ret, frame = cap.read()

 Output.write(frame)

 cv2.imshow(windowName, frame)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

In the preceding code, the call of the cv2.VideoWriter() function accepts the
arguments for the following parameters:

• filename: This is the name of the video file to be written on the disk.

• fourcc: This means the four-character code. We use the cv2.VideoWriter_
fourcc() function for this. This function accepts a four-character code as an
argument. A few supported four-character code formats are WMV2, MJPG, H264,
WMV1, DIVX, and XVID. You can read more about four-character codes at
http://www.fourcc.org/codecs.php.

• framerate: This refers to the FPS of the video to be captured.

• resolution: This is the resolution in pixels with which the video is to be captured
and saved on the disk.

The preceding code records the video until the Esc key on the keyboard is pressed,
and then saves it on the disk with the filename specified in the argument of the
cv2.VideoWriter() function.

http://www.fourcc.org/codecs.php

Working with a USB webcam 109

Playing back the video with OpenCV
We can easily play back the video using OpenCV. We just need to pass the name of
the video file to the VideoCapture() function in place of the index of the webcam
(which is 0, in our case). In order to decide the FPS for the playback, we need to pass
the appropriate argument to the call of the waitKey() function. Suppose we want to
play back the video at 25 FPS, then the argument to be passed can be calculated with the
1000/25 = 40 formula. We know that waitKey() waits for the number of milliseconds
we pass to it as an argument. And, a second has 1,000 milliseconds, hence the formula.
For 30 FPS, this will be 33.3. Let's take a look at the following code:

import cv2

windowName = "OpenCV Video Player"

cv2.namedWindow(windowName)

filename = 'output.avi'

cap = cv2.VideoCapture(filename)

while(cap.isOpened()):

 ret, frame = cap.read()

 if ret:

 cv2.imshow(windowName, frame)

 if cv2.waitKey(33) == 27:

 break

 else:

 break

cv2.destroyAllWindows()

cap.release()

The preceding program plays the video file with a frame rate of 30 FPS and terminates
after the last frame or when we press the Esc key on the keyboard. You might want to play
with the program and try to change the output frame rate by changing the value of the
argument to the call of the cv2.waitKey() function.

In the next section, we will study the Pi camera module in more detail.

110 Getting Started with Computer Vision

The Pi camera module
A webcam uses a USB port for interfacing with a computer. That is why we can use it with
any computer that has a USB port. The Pi camera modules (also known as Pi camera
boards) are sensors that are specifically manufactured for RPi boards. The Raspberry Pi
Foundation and many other third-party manufacturers produce them. Basically, they
are PCBs with a specialized image sensor on them (that is why they are known as Pi
camera boards).

The Pi camera board does not have a USB port. It connects to Raspberry Pi through a
Camera Serial Interface (CSI) interface strip. Because of the dedicated connection that
uses CSI, the performance of a Pi camera board is much better than a USB webcam.
We can use Python 3 with a Pi camera module connected to the RPi to capture videos
and still images programmatically. It is not possible to use the Pi camera board with
any computer other than a Raspberry Pi (and a select few single-board computers that
support connectivity with the camera module).

The camera modules are offered in two varieties—the camera module and the NoIR
module. The camera module is great for daytime and well-illuminated scenes. The NoIR
module is essentially a camera module without the Infrared (IR) filter. It does not
produce impressive results during the daytime or in well-illuminated scenes. However,
it is great in low light or in dark scenes when used with IR light.

You can find the latest versions of both of these modules at their product pages at
https://www.raspberrypi.org/products/camera-module-v2/ and
https://www.raspberrypi.org/products/pi-noir-camera-v2/. There
have been generations of these camera boards/modules, V1 and V2. The V1s are of
5 megapixels and are no longer produced. The V2s are the latest and they have an
8-megapixel sensor. You can read about the differences between them at https://www.
raspberrypi.org/documentation/hardware/camera/.

All the cameras come with a detachable ribbon that can be used to connect the camera
to the RPi boards using the Camera Serial Interface (CSI) port. The following is a
photograph of a camera module and the ribbon:

https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/pi-noir-camera-v2/
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.raspberrypi.org/documentation/hardware/camera/

The Pi camera module 111

Figure 7: The Pi camera board and the CSI interface ribbon

We must connect the blue end to the CSI port of the RPi board and the other end to the
camera board.

The RPi Zero and RPi Zero W are equipped with smaller CSI ports. There are separate
ribbons for them. The following is a photograph of such a ribbon:

Figure 8: Mini CSI ribbon

112 Getting Started with Computer Vision

The following is a photograph of a Pi NoIR board connected to an RPi Zero board:

Figure 9: Pi NoIR with RPi Zero

I have already mentioned that the Pi Camera V1 is not in production anymore. You will
find a lot of these V1 modules at low prices (from $5 to $7) online. Additionally, there are
other manufacturers that produce similar boards that are compatible with RPi CSI ports.
They are also available online for purchase.

Capturing images and videos with the raspistill and
raspivid utilities
In order to capture still photographs and motion videos using the camera module of the
RPi, we need to use the command-line raspistill and raspivid utilities. To capture
an image, run the following command:

raspistill -o test.png

This command captures and saves an image in the current directory with the test.png
filename.

To capture a 20-second video with the RPi camera module, run the following command in
Command Prompt:

raspivid -o vid.h264 -t 20000

The Pi camera module 113

Unlike the fswebcam and ffmpeg utilities, the raspistill and raspivid utilities
do not write anything to Command Prompt. So, we must check the current directory
for any output. Additionally, we can run the following command after executing the
raspistill and raspivid utilities to check whether these commands have been
executed successfully:

echo $?

Many computers and OSes cannot play videos in the H.264 format directly. For that, we
need to wrap them in the popular and widely supported MP4 format. To do this, we need
a command-line utility known as MP4Box. We can install it by running the following
command on Command Prompt:

sudo apt install -y gpac

Now, record an H.264 video:

raspivid -t 30000 -w 640 -h 480 -fps 25 -b 1200000 -p
0,0,640,480 -o pivideo.h264

Wrap it in the MP4 format and remove the original file (if you want to), as follows:

MP4Box -add pivideo.h264 pivideo.mp4

rm pivideo.h264

Just like the fswebcam utility, the raspistill utility can also be used to capture a
timelapse sequence. In the timelapse.sh shell script that we prepared earlier, replace
the line that calls the fswebcam utility with the appropriate raspistill command to
record a photograph of a timelapse sequence. Then, use the MEncoder utility on the RPi
or any other Linux computer to create a nice timelapse video.

Using picamera with Python 3
picamera is a Python package that provides a programming interface to the RPi camera
module. The most recent version of Raspbian has picamera installed. If you do not have
it installed, you can install it by running the following commands:

pip3 install picamera

pip3 install "picamera[array]"

114 Getting Started with Computer Vision

The following program quickly demonstrates the basic usage of the picamera module to
capture a picture:

from time import sleep

from picamera import PiCamera

camera = PiCamera()

camera.resolution = (1024, 768)

camera.start_preview()

sleep(2)

camera.capture('test.png')

We are importing the time and picamera libraries in the first two lines. The call to
the start_preview() function starts the preview of the scene to be captured. The
sleep(5) function waits for 5 seconds before the capture() function captures and
saves the photo to the file specified in its arguments.

The picamera module offers the capture_continuous() function for timelapse
photography. Let's demonstrate how to use it in the following program:

camera = PiCamera()

camera.start_preview()

sleep(2)

for filename in camera.capture_continuous('img{counter:03d}.
png'):

 print('Captured %s' % filename)

 sleep(1)

In the preceding code, the capture_continuous() function records the photographs
for a timelapse sequence with the Pi camera board connected to the RPi. In this way, we
do not have to depend on the crontab utility to continuously call the script because we
can control it better programmatically.

We can record videos by using the start_recording(), wait_recording(), and
stop_recording() functions, as follows:

import picamera

camera = picamera.PiCamera()

camera.resolution = (320, 240)

camera.start_recording('my_video.h264')

camera.wait_recording(5)

camera.stop_recording()

The Pi camera module 115

We can add text to the images as follows:

from time import sleep

from picamera import PiCamera

camera = PiCamera()

camera.resolution = (1024, 768)

camera.start_preview()

camera.annotate_text = 'Hello World!'

sleep(2)

camera.capture('test.png')

We can store an image in a three-dimensional NumPy array as follows:

import time, picamera

import numpy as np

with picamera.PiCamera() as camera:

 camera.resolution = (320, 240)

 camera.framerate = 24

 time.sleep(2)

 output = np.empty((240, 320, 3), dtype=np.uint8)

 camera.capture(output, 'rgb')

 print(type(output))

We can also store the image captured in a NumPy array that is compatible with the
OpenCV image format (BGR), as follows:

import time, picamera

import numpy as np

with picamera.PiCamera() as camera:

 camera.resolution = (320, 240)

 camera.framerate = 24

 time.sleep(2)

 image = np.empty((240 * 320 * 3,), dtype=np.uint8)

 camera.capture(image, 'bgr')

 image = image.reshape((240, 320, 3))

 print(type(image))

116 Getting Started with Computer Vision

This stores the image in OpenCV's preferred BGR format. We can use the cv2.imshow()
function to display this image.

Using the RPi camera module and Python 3 to record
videos
We have already learned how to record a video with a USB webcam connected to RPi
and the combination of Python 3 and OpenCV. I have noticed that the same code works
for the RPi camera module too. We just need to connect the RPi camera module to the
RPi and disconnect the USB webcam in order for the code to work with the RPi camera
module and record videos using the code. Please go ahead and give it a try!

Summary
In this chapter, we learned how to work with images and videos. We also learned how
to capture images with a USB webcam and RPi camera board. We also learned the basics
of GUIs and the event handling functionality offered by OpenCV. We have gained good
hands-on experience of shell and Python 3 programming. We will be using the image and
video acquisition and handling techniques that we have learned here throughout
the book.

In the next chapter, we will learn about the basics of image processing and how to write
programs with NumPy and OpenCV.s

5
Basics of Image

Processing
In the previous chapter, we learned about and demonstrated various ways to capture
images and videos for image processing and computer vision applications. We learned
how to use Command Prompt and Python 3 programming extensively to read images
and to interface with the USB webcam and the Raspberry Pi camera module.

In this chapter, we will look at how to perform basic arithmetic and logical operations on
images with NumPy, OpenCV, and matplotlib. We will also learn about different color
channels and image properties in detail.

The following is a list of the topics that will be covered in this chapter:

• Retrieving image properties

• Basic operations on images

• Arithmetic operations on images

• Blending and transitioning images

• Multiplying images by constants and one another

• Creating a negative of an image

• Bitwise logical operations on images

118 Basics of Image Processing

This chapter has a lot of hands-on exercises that use Python 3 programming. We will use
a lot of concepts, such as reading images from a disk and visualizing them, that we learned
in earlier chapters when we demonstrate operations on images in this chapter.

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter05/programs.

Check out the following video to see the Code in Action at https://bit.ly/2V8vzev.

Retrieving image properties
We can retrieve and use many properties, such as the data type, the dimensions, the shape,
and the size of bytes of an image with NumPy. Open the Python 3 interpreter by running
the python3 command in the command prompt. Then, run the following statements one
by one:

>>> import cv2

>>> img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 0)

>>> print(type(img))

The following is the output of these statements:

<class 'numpy.ndarray'>

The preceding output confirms that the OpenCV imread() function read an image and
stored it in NumPy's ndarray format. The following statement prints dimensions of the
image it read:

>>> print(img.ndim)

2

The image is read in grayscale mode, which is why it is a two-dimensional image. It just
has a single channel composed of intensities of grayscale. Now, let's see its shape:

>>> print(img.shape)

(256, 256)

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter05/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter05/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter05/programs
https://bit.ly/2V8vzev

Retrieving image properties 119

The preceding statement prints the height and width in pixels. Let's see the size of
the image:

>>> print(img.size)

65536

If we multiply the height and width of the image, too, we get the preceding number. Let's
see the data type of the NumPy ndarray:

>>> print(img.dtype)

uint8

This is an unsigned integer of 8 bits for storing the grayscale intensity value of a pixel.
The intensities vary from 0 to 255, which are the limits of the 8-bit unsigned data type.
Each pixel consumes some bytes in memory. Let's see how to find out how many bytes it
consumes in total, as follows:

>>> print(img.nbytes)

65536

Now, let's repeat the same exercise for a color image. For that, let's read the same image in
color mode:

>>> img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 1)

>>> print(type(img))

The following is the output of this:

<class 'numpy.ndarray'>

Let's check the number of dimensions:

>>> print(img.ndim)

3

We have read the image in color mode and it is a three-dimensional NumPy ndarray.
One of those two dimensions represents the height and width and one of the dimensions
represents the color channels. Let's check out the shape now:

>>> print(img.shape)

(256, 256, 3)

120 Basics of Image Processing

The first two values represent the width and height in pixels. The last value represents the
number of channels. These channels represent the intensity values for the blue, green, and
red colors of a pixel. Let's see the size of the image:

>>> print(img.size)

196608

If we multiply all three numbers in the earlier output (256, 256, and 3), we get a value of
19,6608. The data type of the ndarray will be the same (uint8). Let's confirm this:

>>> print(img.dtype)

uint8

Let's see how many bytes the image occupies in the main memory:

>>> print(img.nbytes)

196608

In the next section, we will learn about basic operations on images.

Basic operations on images
Let's perform a few basic operations, such as splitting and combining the channels of a
color image and adding a border to an image. We will continue this demonstration in
interactive mode. Let's import OpenCV and read a color image, as follows:

>>> import cv2

>>> img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 1)

For any image, the origin—the (0, 0) pixel—is the pixel at the upper-left corner. We can
retrieve the intensity values for all the channels by running the following statement:

>>> print(img[10, 10])

[34 38 44]

These are the intensity values of the blue, green, and red channels, respectively, for pixel
(10, 10). If you only want to access an individual channel for a pixel, then run the
following statement:

>>> print(img[10, 10, 0])

34

Basic operations on images 121

The preceding output, 34, is the intensity of the blue channel. Similarly, we can access the
green and red channels with img[10, 10, 0] and img[10, 10, 0], respectively.

Splitting the image into channels
Let's write a simple program to split an image into its constituent channels. There are
multiple ways to do this. OpenCV offers the split() function to do this. Let's see a
demonstration of this:

>>> import cv2

>>> img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 1)

>>> b, g, r = cv2.split(img)

The last statement in the preceding list splits the color image into its constituent channels.
We can also separate the channels with a bit of a faster method by using the NumPy
ndarray indices, as follows:

>>> b = img[:, :, 0]

>>> g = img[:, :, 1]

>>> r = img[:, :, 2]

The split() function is a bit costlier (computationally) than the previous NumPy
indexing method. We can also merge the channels, as follows:

>>> img1 = cv2.merge((b, g, r))

The preceding code merges all the constituent channels to form the original image. You
may also want to create a Python 3 script file, add all the preceding code to that, and
visualize the image with the cv2.imshow() function.

Next, we will learn how to add a border to images.

Adding a border to an image
We can add borders to an image with the copyMakeBorder() function. It accepts the
following arguments:

• Src: The image

• top, bottom, left, right: The width of the border in terms of the number
of pixels

122 Basics of Image Processing

• borderType : The type of border. This can be one of the following types:

a) cv2.BORDER_REFLECT

b) cv2.BORDER_REFLECT_101 or cv2.BORDER_DEFAULT

c) cv2.BORDER_REPLICATE

d) cv2.BORDER_WRAP

e) cv2.BORDER_CONSTANT: Adds a border with a constant color. The value of the
border color is the following argument.

• Value: The color of the border if the border type is cv2.BORDER_CONSTANT

Let's look at a few examples of borders around images. Consider the following program:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 1)

b1 = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_WRAP)

b2 = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_
CONSTANT, value=[255, 0, 0])

cv2.imshow('Wrap', b1)

cv2.imshow('Constant', b2)

cv2.waitKey(0)

cv2.destroyAllWindows()

The output of the preceding code is as follows:

Figure 5.1 – Demonstration of borders

Arithmetic operations on images 123

You might want to try some other border options. The following code creates a
replicate-style border:

cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REPLICATE)

The following code creates a different replicate-style border:

cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT)

cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT_101)

This is how we create various types of borders for images. In the next section, we will look
at carrying out arithmetic operations on images.

Arithmetic operations on images
We know that images are nothing but NumPy ndarrays and we can perform arithmetic
operations on images just as we can perform them on ndarrays. If we know how to apply
numerical or arithmetic operations to matrices, then we should not have any trouble
doing the same when the operands for those operations are images. Images must be of
the same size and must have the same number of channels for us to perform arithmetic
operations on them, and these operations are performed on individual pixels. There are
many arithmetic operations, such as addition and subtraction. The first is the addition
operation. We can add two images by using either the NumPy Addition or the add()
function in OpenCV, as follows:

import cv2

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

cv2.imshow('NumPy Addition', img1 + img2)

cv2.imshow('OpenCV Addition', cv2.add(img1, img2))

cv2.waitKey(0)

cv2.destroyAllWindows()

124 Basics of Image Processing

The following is the output of the preceding code:

Figure 5.2 – Addition with OpenCV and NumPy

We can clearly see the difference between the two images that appear in the output. The
reason for this is that OpenCV's add() function is a saturation operation and NumPy's
addition operator is a modulo operation. Let's see in detail what that means. Open Python
3 in interactive mode and run the following statements:

>>> import numpy as np

>>> import cv2

>>> a = np.array([240], np.uint8)

>>> b = np.array([20], np.uint8)

>>> a + b

array([4], dtype=uint8)

We know that the maximum value that uint8 can store is 255. Any value that exceeds
255 is then divided by 256 and the remainder is stored in the uint8 data type:

>>> cv2.add(a, b)

array([[255]], dtype=uint8)

As you can see in the preceding code, in the case of cv2.add(), it just sets the value
exceeding 255 to 255 for the uint8 data type.

Arithmetic operations on images 125

Similarly, we can compute subtraction with NumPy subtraction and cv2.subtract().
The following is an example of this:

import cv2

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

cv2.imshow('NumPy Subtract', img1 - img2)

cv2.imshow('OpenCV Subtract', cv2.subtract(img1, img2))

cv2.waitKey(0)

cv2.destroyAllWindows()

The result of the preceding code is as follows:

Figure 5.3 – Subtraction with NumPy and OpenCV

Let's try an exercise to understand the difference between the subtraction operation with
NumPy and the subtraction operation with OpenCV in interactive mode, as follows:

>>> import cv2

>>> import numpy as np

>>> a = np.array([240], np.uint8)

>>> b = np.array([20], np.uint8)

>>> b - a

array([36], dtype=uint8)

126 Basics of Image Processing

We know that the lowest number that uint8 can store is 0. If the number is negative,
NumPy adds 256 to it for the uint8 data type:

>>> cv2.subtract(b, a)

array([[0]], dtype=uint8)

As this shows, in the case of cv2.subtract(), the negative value is just rounded up to
0 for the uint8 data type.

Note:
We are aware that the subtraction operation is not commutative. This means
that a – b is not equal to b – a in most cases. So, if both of the images are
of the same size and type, then cv2.subtract(img1, img2) and
cv2.subtract(img2, img1) produce different results. However, the
addition operation is commutative. So, cv2.add(img1, img2) and
cv2.add(img2, img1) always produce the same result.

Blending and transitioning images
The cv2.addWeighted() function computes the weighted sum of the two images
that we pass in as arguments. This causes them to blend. The following is some code that
demonstrates this concept of blending:

import cv2

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

cv2.imshow('Blended Image',

 cv2.addWeighted(img1, 0.5, img2, 0.5, 0))

cv2.waitKey(0)

cv2.destroyAllWindows()

In the preceding code, we are passing the following five arguments to the OpenCV cv2.
addWeighted() function:

• img1: The first image

• alpha: The coefficient for the first image (0.5 in the preceding example)

• img2: The second image

Blending and transitioning images 127

• beta: The coefficient for the second image (0.5 in the preceding example)

• gamma: The scalar value (0 in the preceding example)

OpenCV uses the following formula to compute the output image:

output image = (alpha * img1) + (beta * img2) + gamma

Every pixel of the output image is computed with this formula, and the following is the
output of the preceding code:

Figure 5.4 – Image blending

We can create a transition effect, which we see in films and video editing software, with
the use of the same OpenCV function. The following code example creates a very smooth
transition from one image to the other:

import cv2

import time

import numpy as np

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

for i in np.linspace(0, 1, 100):

128 Basics of Image Processing

 alpha = i

 beta = 1-alpha

 print('ALPHA =' + str(alpha) + ' BETA =' + str(beta))

 cv2.imshow('Image Transition',

 cv2.addWeighted(img1, alpha, img2, beta, 0))

 time.sleep(0.05)

 if cv2.waitKey(1) == 27 :

 break

cv2.destroyAllWindows()

The output of the preceding code creates a transition effect.

We can also create a nice app with a trackbar, as follows:

import cv2

import time

import numpy as np

def emptyFunction():

 pass

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

output = cv2.addWeighted(img1, 0.5, img2, 0.5, 0)

windowName = "Transition Demo"

cv2.namedWindow(windowName)

cv2.createTrackbar('Alpha', windowName, 0,

 1000, emptyFunction)

while(True):

 cv2.imshow(windowName, output)

 if cv2.waitKey(1) == 27:

 break

 alpha = cv2.getTrackbarPos('Alpha', windowName) / 1000

 beta = 1 - alpha

 output = cv2.addWeighted(img1, alpha, img2, beta, 0)

 print(alpha, beta)

cv2.destroyAllWindows()

Blending and transitioning images 129

The output of the preceding code creates a nice transitioning app. We can even connect
two push buttons to the GPIO of Raspberry Pi in the pull-up configuration, as follows:

Figure 5.5 – A circuit with push buttons

We can write the following code to integrate the buttons with the image transitioning
functionality:

import time

import RPi.GPIO as GPIO

import cv2

alpha = 0

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

button1 = 7

button2 = 11

GPIO.setup(button1, GPIO.IN, GPIO.PUD_UP)

GPIO.setup(button2, GPIO.IN, GPIO.PUD_UP)

while True:

130 Basics of Image Processing

 button1_state = GPIO.input(button1)

 if button1_state == GPIO.LOW and alpha < 1:

 alpha = alpha + 0.2

 button2_state = GPIO.input(button2)

 if button2_state == GPIO.LOW:

 if (alpha > 0):

 alpha = alpha - 0.2

 if (alpha < 0):

 alpha = 0

 beta = 1 - alpha

 output = cv2.addWeighted(img1, alpha, img2, beta, 0)

 cv2.imshow('Transition App', output)

 if cv2.waitKey(1) == 27:

 break

 time.sleep(0.5)

 print(alpha)

cv2.destroyAllWindows()

The preceding code, on the press of the buttons, changes the value of the alpha variable
and the blending proportion of the images. Run the preceding program and press the
buttons to see the action. We will use the preceding circuit and program as a template for
many programs in this book.

In the next section, we will understand how to multiply images with one another and with
a constant.

Multiplying images by a constant and one
another
Just like normal matrices or NumPy ndarrays, images can be multiplied by a constant and
with one another. We can multiply an image by a constant, as follows:

import cv2

img1 = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img2 = cv2.imread('/home/pi/book/dataset/4.2.05.tiff', 1)

cv2.imshow('Image1', img1 * 2)

cv2.waitKey(0)

cv2.destroyAllWindows()

Creating a negative of an image 131

In the preceding code, every element of the ndarray representing the image is multiplied
by 2. Run the preceding program and see the output. We can also multiply images with
one another, as follows:

cv2.imshow('Image1', img1 * 2)

The result is likely to look like noise.

Creating a negative of an image
In terms of pure mathematics, when we invert the colors of an image, it creates a negative
of the image. This inversion operation can be computed by subtracting the color of a pixel
from 255. If it is a color image, we invert the color of all the planes. For a grayscale image,
we can directly compute the inversion by subtracting it from 255, as follows:

import cv2

img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 0)

negative = abs(255 - img)

cv2.imshow('Grayscale', img)

cv2.imshow('Negative', negative)

cv2.waitKey(0)

cv2.destroyAllWindows()

The following is the output of this:

Figure 5.6 – A negative of an image

132 Basics of Image Processing

Try to find the negative of a color image, we just need to read the image in color mode in
the preceding program.

Note:
The negative of a negative will be the original grayscale image. Try this on
your own by computing the negative of the negative again for our color and
grayscale images.

Bitwise logical operations on images
The OpenCV library has many functions for computing bitwise logical operations on
images. We can compute bitwise logical AND, OR, XOR (exclusive OR), and NOT (inversion)
operations. The best way to demonstrate how these functions work is to use them with
binary (black and white) images:

import cv2

import numpy as np

import matplotlib.pyplot as plt

a = [0, 255, 0]

img1 = np.array([a, a, a], dtype=np.uint8)

img2 = np.transpose(img1)

not_out = cv2.bitwise_not(img1)

and_out = cv2.bitwise_and(img1, img2)

or_out = cv2.bitwise_or(img1, img2)

xor_out = cv2.bitwise_xor(img1, img2)

titles = ['Image 1', 'Image 2', 'Image 1 NOT', 'AND', 'OR',
'XOR']

images = [img1, img2, not_out, and_out, or_out, xor_out]

for i in range(6):

 plt.subplot(2, 3, i+1)

 plt.imshow(images[i], cmap='gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

Bitwise logical operations on images 133

We created our own custom binary image to better demonstrate the functionality of
the bitwise logical NOT, AND, OR, and XOR operations, respectively. We will use the
matplotlib library plt.subplot() function to visualize multiple images at the
same time.

In the preceding example, we created a grid of two rows and three columns to show the
original input images and the computed outputs of the bitwise logical operations with
OpenCV functions. Each image is displayed in one part of the grid. The first position is
the top left, the second position is adjacent to that, and so on. We can change the line and
make it plt.subplot(3, 2, i+1) to create a grid of three rows and two columns.
We will use this technique later on in this book, too. We will use it to display images side
by side in a single output window.

We can also use the plt.subplot() function without a loop. For each image, we must
write the following set of statements. I am writing the code block for one image. Write the
same for the other images:

plt.subplot(2, 3, 1)

plt.imshow(img1, cmap='gray')

plt.title('Image 1')

plt.axis('off')

Finally, we use the call of the plt.show() function to display everything on the screen.
We use this technique to display two or three images. If we have more images than that,
then we can use the loop technique to display multiple images in the same output window.
The following is our output:

Figure 5.7 – Logical operations on images

134 Basics of Image Processing

You might want to implement the code for bitwise logical operations on the grayscale and
color images.

Note:
We can also achieve the same result by using NumPy's logical operations.

Summary
In this chapter, we started by looking at image processing with OpenCV and NumPy. We
learned about some important concepts, such as image channels, arithmetic and logical
operations, and the negative of an image. Along the way, we also learned to use a bit more
functionality in Python 3 and the NumPy library. The bitwise logical operations that we
learned today will be very useful when writing programs for the functionality of object
tracking by color in the next chapter.

In the next chapter, we will study colorspaces, transformations, and thresholding images.

6
Colorspaces,

Transformations,
and Thresholding

In the previous chapter, we learned how to perform basic mathematical and logical
operations on images. In this chapter, we will continue to explore some more intriguing
concepts in the area of computer vision and its applications in the real world. Just like in
the earlier chapters of this book, we will have a lot of hands-on exercises with Python 3
and create many real-world apps. We will cover a very wide variety of advanced topics
in the area of computer vision. The major topics we will learn about are related to
colorspaces, transformations, and thresholding images. After completing this chapter, you
will be able to write programs for a few basic real-world applications, such as tracking
an object that's a specific color. You will also be able to apply geometric and perspective
transformations to images and live USB webcam feeds.

In this chapter, we will explore the following topics:

• Colorspaces and converting them

• Performing transformation operations on images

• Perspective transformation of images

• Thresholding images

136 Colorspaces, Transformations, and Thresholding

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter06/programs.

Check out the following video to see the Code in Action at https://bit.ly/384oYqM.

Colorspaces and converting them
Let's understand the concept of a colorspace. A colorspace is a mathematical model that is
used to represent a set of colors. With colorspaces, we can represent colors with numbers.
If you've ever have worked with web programming, then you must have come across
various codes for colors since colors are represented in HTML with Hexadecimal numbers.
This is a good example of representing colors with a colorspace and allows us to perform
numerical and logical computations with them. Representing colors with colorspaces also
allows us to reproduce the colors with ease in analog and digital forms.

We will frequently use BGR, RGB, HSV, and grayscale colorspaces throughout this book.
In BGR and RGB, B stands for blue, G stands for green, and R stands for red. OpenCV
reads and stores a color image in the BGR colorspace. The HSV colorspace represents a
set of colors with a component for hue, a component for saturation, and a component
for value. It is a very commonly used colorspace in the areas of computer graphics and
computer vision. OpenCV has a function, cv2.cvtColor(img, conv_flag),
that changes the colorspace of the image that's passed to it as an argument. The source
and target colorspaces are denoted by the argument that's passed to the conv_flag
parameter. This function converts the numerical value of a color from the source
colorspace into the target colorspace with the use of mathematical formulae used for
colorspace conversion.

Note:
You can read more about colorspaces and conversion at the following URL:
http://colorizer.org.

As you may recall, earlier, in Chapter 4, Getting Started with Computer Vision, we
discussed that OpenCV loads images in BGR format and that Matplotlib uses the RGB
format for images. So, when we display images read by OpenCV in BGR format with
matplotlib in RGB format, the red and blue channels are interchanged in the visualization
and the image looks funny. We should convert an image from BGR into RGB before
displaying the image with matplotlib. There are two ways to do this.

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter06/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter06/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter06/programs
https://bit.ly/384oYqM
http://colorizer.org

Colorspaces and converting them 137

Let's look at the first way. We can split the image into B, G, and R channels and merge
them into an RGB image with the split() and merge() functions, as follows:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 1)

b,g,r = cv2.split (img)

img = cv2.merge((r, g, b))

plt.imshow (img)

plt.title ('COLOR IMAGE')

plt.axis('off')

plt.show()

However, the split and merge operations are computationally expensive. A better
approach is to use the cv2.cvtColor() function to change the colorspace of an
image from BGR to RGB, as demonstrated in the following code:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 1)

img = cv2.cvtColor (img, cv2.COLOR_BGR2RGB)

plt.imshow (img)

plt.title ('COLOR IMAGE')

plt.axis('off')

plt.show()

In the preceding code, we used the cv2.COLOR_BGR2RGB flag for color conversion.
OpenCV has plenty of such flags for color conversion. We can run the following program
to see the entire list:

import cv2

j=0

for filename in dir(cv2):

 if filename.startswith('COLOR_'):

 print(filename)

 j = j + 1

print('There are ' + str(j) +

 ' Colorspace Conversion flags in OpenCV '

 + cv2.__version__ + '.')

138 Colorspaces, Transformations, and Thresholding

The last few lines of the output are shown in the following code block (I am not including
the entire output due to space limitations):

.

.

.

.

.

COLOR_YUV420p2RGBA

COLOR_YUV420sp2BGR

COLOR_YUV420sp2BGRA

COLOR_YUV420sp2GRAY

COLOR_YUV420sp2RGB

COLOR_YUV420sp2RGBA

COLOR_mRGBA2RGBA

There are 274 colorspace conversion flags in OpenCV 4.0.1.

HSV colorspace
The term HSV stands for hue, saturation, and value. In this colorspace or color model, a
color is represented by the hue (also known as the tint), the shade (which is the saturation
scale or the amount of gray with white and black on extreme ends), and the brightness
(the value or the luminescence). The intensities of the colors red, yellow, green, cyan, blue,
and magenta are represented by the hue. The term saturation means the amount of gray
component present in the color. The brightness or the intensity of the color is represented
by the value component.

The following code converts a color from BGR into HSV and prints it:

import cv2

import numpy as np

c = cv2.cvtColor(np.array([[[255, 0, 0]]],

 dtype=np.uint8),

 cv2.COLOR_BGR2HSV)

print(c)

Colorspaces and converting them 139

The preceding code snippet will print the HSV value of blue represented in BGR. The
following is the output:

[[[120 255 255]]]

We will heavily use the HSV colorspace throughout this book. Before proceeding further,
let's create a small app with a trackbar that adjusts the saturation of the color when the
tracker moves:

import cv2

def emptyFunction():

 pass

img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 1)

windowName = "Saturation Demo"

cv2.namedWindow(windowName)

cv2.createTrackbar('Saturation Level',

 windowName, 0,

 24, emptyFunction)

while(True):

 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

 h, s, v = cv2.split(hsv)

 saturation = cv2.getTrackbarPos('Saturation Level',
windowName)

 s = s + saturation

 v = v + saturation

 img1 = cv2.cvtColor(cv2.merge((h, s, v)), cv2.COLOR_
HSV2BGR)

 cv2.imshow(windowName, img1)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

140 Colorspaces, Transformations, and Thresholding

In the preceding code, we first converted the image from BGR into HSV and split it into
H, S, and V components. Then, we added a number to saturation (s), as well as a value
(v), based on the position of the tracker in the trackbar. Then, we merged all the channels
to create an HSV image and then converted it back into BGR to be displayed with the
cv2.imshow() function. The following is a screenshot of the output window:

Figure 6.1 – App for adjusting the saturation of an image

Tracking in real time based on color
Now, let's learn how to demonstrate the concept of converting colorspaces to implement
a real-life mini project. The HSV colorspace makes it easy for us to work with a range of
a color. To track an object that can have colors in a specific range, we need to convert the
image's colorspace into HSV and check if any part of the image falls within the specific
range of the color we are interested in. OpenCV has a function, cv2.inRange(), that
offers the functionality to define a color range.

This function accepts an image and the upper bound and the lower bound of the range
of the color as arguments. Then, it checks if any pixel of the given image falls within the
range of color (the upper bound and the lower bound). If the pixel value in the image lies
in the given range of color, the corresponding pixel in the output image is set to the value
0; otherwise, it is set to the value 255. This creates a binary image that can be used as a
mask for computing the logical operations that we will use for tracking the application.

Colorspaces and converting them 141

The following example demonstrates this concept. We are using the logical
bitwise_and() function to extract the range of the color we are interested in:

import numpy as np

import cv2

cap = cv2.VideoCapture(0)

while (True):

 ret, frame = cap.read()

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 image_mask = cv2.inRange(hsv, np.array([40, 50, 50]),

 np.array([80, 255, 255]))

 output = cv2.bitwise_and(frame, frame, mask=image_mask)

 cv2.imshow('Original', frame)

 cv2.imshow('Output', output)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

In this program, we are tracking the green-colored objects. The output should look like
what's shown in the following screenshot. Here, I used the lid (cover) of a container,
which is a greenish color:

Figure 6.2 – Tracking an object by color in real time

142 Colorspaces, Transformations, and Thresholding

The parts of the wall also have a greenish tint. Due to this, they are also visible in the output.

I have not included the intermediate mask image we computed in the preceding output.
We can view it in a separate output window by adding the following line of code to the
code we wrote earlier:

cv2.imshow('Image Mask', image_mask)

This mask is purely black and white, also known as a binary image. If we make
modifications to the preceding code, we can track objects that have distinct colors.
We must create another mask for the range of colors we are interested in. Then, we
can combine both masks, as follows:

blue = cv2.inRange(hsv, np.array([100, 50, 50]), np.array([140,
255, 255]))

green = cv2.inRange(hsv, np.array([40, 50, 50]), np.array([80,
255, 255]))

image_mask = cv2.add(blue, green)

output = cv2.bitwise_and(frame, frame, mask=image_mask)

Run this code and check the output for yourself. We can add a trackbar to this code
to select a range of blue or green colors. The following are the steps to do this:

1. First, import all the required libraries:

import numpy as np

import cv2

2. Then, we define an empty function:

def emptyFunction():

 pass

3. Let's initialize all the required objects and variables:

cap = cv2.VideoCapture(0)

windowName = 'Object Tracker'

trackbarName = 'Color Chooser'

cv2.namedWindow(windowName)

cv2.createTrackbar(trackbarName,

 windowName, 0, 1,

 emptyFunction)

color = 0

Performing transformation operations on images 143

4. Here, we have the main loop:

while (True):

 ret, frame = cap.read()

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 color = cv2.getTrackbarPos(trackbarName, windowName)

 if color == 0:

 image_mask = cv2.inRange(hsv, np.array([40, 50,
50]),

 np.array([80, 255,
255]))

 else:

 image_mask = cv2.inRange(hsv, np.array([100, 50,
50]),

 np.array([140, 255,
255]))

 output = cv2.bitwise_and(frame, frame, mask=image_
mask)

 cv2.imshow(windowName, output)

 if cv2.waitKey(1) == 27:

 break

5. Finally, we destroy all the windows and release the camera:

cv2.destroyAllWindows()

cap.release()

Run the preceding code and see the output for yourself. By now we are aware of the GPIO
interface and the push buttons. As an exercise, try to implement the same functionality
with the push buttons so that there will be separate push buttons for tracking blue and
green colors.

Performing transformation operations on
images
In this section, we will learn how to perform various mathematical transformation
operations on images with OpenCV and Python 3.

144 Colorspaces, Transformations, and Thresholding

Scaling
Scaling means resizing an image. It is a geometric operation. OpenCV offers a function,
cv2.resize(), for performing this operation. It accepts an image, a method for the
interpolation of pixels, and the scaling factor as arguments and returns a scaled image.
The following methods are used for the interpolation of the pixels in the output:

• cv2.INTER_LANCZOS4: This deals with the Lanczos interpolation method over
a neighborhood of 8x8 pixels.

• cv2.INTER_CUBIC: This deals with the bicubic interpolation method over a
neighborhood of 4x4 pixels and is preferred for performing the zooming operation
on an image.

• cv2.INTER_AREA: This means resampling using pixel area relation. This is
preferred for performing the shrinking operation on an image.

• cv2.INTER_NEAREST: This means the method of nearest-neighbor interpolation.

• cv2.INTER_LINEAR: This means the method of bilinear interpolation. This is the
default argument for the parameter.

The following example demonstrates performing upscaling and downscaling on an image:

import cv2

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

upscale = cv2.resize(img, None, fx=1.5, fy=1.5,

 interpolation=cv2.INTER_CUBIC)

downscale = cv2.resize(img, None, fx=0.5, fy=0.5,

 interpolation=cv2.INTER_AREA)

cv2.imshow('upscale', upscale)

cv2.imshow('downscale', downscale)

cv2.waitKey(0)

cv2.destroyAllWindows()

In the preceding code, we first upscale in both axes and then downscale in both axes by
factors of 1.5 and 0.5, respectively. Run the preceding code to see the output. Also,
as an exercise, try to pass different numbers as scaling factors.

Performing transformation operations on images 145

The translation, rotation, and affine transformation of
images
The cv2.warpAffine() function is used to compute operations such as translation,
rotation, and affine transformations on input images. It accepts an input image, the matrix
of the transformation, and the size of the output image as arguments, and then it returns
the transformed image.

Note:
You can find out more about the mathematical aspects of affine
transformations at http://mathworld.wolfram.com/
AffineTransformation.html.

The following examples demonstrate different types of mathematical transformations
that can be applied to images with the cv2.warpAffine() function. The translation
operation means changing (more precisely, shifting) the location of the image in the
XY reference plane. The shifting factor in the x and y axes can be represented with a
two-dimensional transformation matrix, T, as follows:

The following code shifts the location of the image in the XY plane by a factor of
(-50, 50):

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

input=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

rows, cols, channel = img.shape

T = np.float32([[1, 0, -50], [0, 1, 50]])

output = cv2.warpAffine(input, T, (cols, rows))

plt.imshow(output)

plt.title('Shifted Image')

plt.show()

http://mathworld.wolfram.com/AffineTransformation.html
http://mathworld.wolfram.com/AffineTransformation.html

146 Colorspaces, Transformations, and Thresholding

The output of the preceding code is as follows:

Figure 6.3 – Output of the translation operation

As shown in the preceding output, a part of the image in the output is cropped (or
truncated), since the size of the output window is the same as the input window, and the
original image has shifted beyond the first quadrant of the XY plane. Similarly, we can use
the cv2.warpAffine() function to apply the operation of rotation with scaling to an
input image. For this demonstration, we must define a matrix of the rotation using the
cv2.getRotationMatrix2D() function.

This accepts the angle of anti-clockwise rotation in degrees, the center of the rotation, and
the scaling factor as arguments. Then, it creates a matrix of the rotation operation that can
be passed as an argument to the call of the cv2.warpAffine() function. The following
example applies the rotation operation to an input image with 45 degrees as the angle of
the rotation and the center of the image as the center of the rotation operation, and it also
scales the output image down to half (50%) the size of the original input image:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

rows, cols, channel = img.shape

R = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 0.5)

Performing transformation operations on images 147

output = cv2.warpAffine(input, R, (cols, rows))

plt.imshow(output)

plt.title('Rotated and Downscaled Image')

plt.show()

The output will be as follows:

Figure 6.4 – Output of the rotation operation

We can also create a very nice animation by modifying the preceding program. The trick
here is that, in the while loop, we must change the angle of rotation at a regular interval
and show those frames successively to create the rotation effect on a still image. The
following code example demonstrates this:

import cv2

from time import sleep

image = cv2.imread('/home/pi/book/dataset/house.tiff',1)

rows, cols, channels = image.shape

angle = 0

while(1):

 if angle == 360:

148 Colorspaces, Transformations, and Thresholding

 angle = 0

 M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)

 rotated = cv2.warpAffine(image, M, (cols, rows))

 cv2.imshow('Rotating Image', rotated)

 angle = angle +1

 sleep(0.2)

 if cv2.waitKey(1) == 27 :

 break

cv2.destroyAllWindows()

Run the preceding code and check the output for yourself. Now, let's try to implement this
trick on a live webcam. Use the following code to do so:

import cv2

from time import sleep

cap = cv2.VideoCapture(0)

ret, frame = cap.read()

rows, cols, channels = frame.shape

angle = 0

while(1):

 ret, frame = cap.read()

 if angle == 360:

 angle = 0

 M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)

 rotated = cv2.warpAffine(frame, M, (cols, rows))

 cv2.imshow('Rotating Image', rotated)

 angle = angle +1

 sleep(0.2)

 if cv2.waitKey(1) == 27 :

 break

cv2.destroyAllWindows()

Run the preceding code and see it in action.

Performing transformation operations on images 149

Now, let's learn about the concept of the affine mathematical transformation and
demonstrate the same with OpenCV and Python 3. An affine transformation is a
geometric mathematical transformation that ensures that the parallel lines in the
original input image remain parallel in the output image. The usual inputs to the affine
transformation operation are a set of three points that are not in the same line in the input
image and the corresponding set of three points that are not in the same line in the output
image. These sets of points are passed to the cv2.getAffineTransform() function
to compute the transformation matrix, and that computed transformation matrix, in turn,
is passed to the call of the cv2.warpAffine() function as an argument. The following
example demonstrates this concept very well:

import cv2

import numpy as np

from matplotlib import pyplot as plt

image = cv2.imread('/home/pi/book/dataset/4.2.06.tiff', 1)

input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

rows, cols, channels = input.shape

points1 = np.float32([[100, 100], [300, 100], [100, 300]])

points2 = np.float32([[200, 150], [400, 150], [100, 300]])

A = cv2.getAffineTransform(points1, points2)

output = cv2.warpAffine(input, A, (cols, rows))

plt.subplot(121)

plt.imshow(input)

plt.title('Input')

plt.subplot(122)

plt.imshow(output)

plt.title('Affine Output')

plt.show()

150 Colorspaces, Transformations, and Thresholding

The following is the output:

Figure 6.5 – Affine transformation

As we can see, the preceding code creates a shear-like effect on the input image.

Perspective transformation of images
In the mathematical operation of perspective transformation, a set of four points in
the input image is mapped to a set of four points in the output image. The criteria for
selecting the set of four points in the input and the output image is that any three points
(in the input and the output image) must not be in the same line. Like affine mathematical
transformation, in perspective transformation, the straight lines in the input images
remain straight. However, there is no guarantee that the parallel lines in the input image
remain parallel in the output image.

One of the most prominent real-life examples of this mathematical operation is the
zoom and the angled zoom functions in image editing and viewing software tools. The
amount of zoom and angle of zooming depend on the matrix of the transformation that is
computed by the two sets of points that we discussed earlier. OpenCV provides the cv2.
getPerspectiveTransform() function, which accepts two sets of four points from
the input image and the output image and computes the matrix of the transformation. The
cv2.warpPerspective() function accepts the computed matrix as an argument and
applies it to the input image to compute the perspective transform of the input image. The
following code demonstrates this aptly:

import cv2

import numpy as np

from matplotlib import pyplot as plt

Perspective transformation of images 151

image = cv2.imread('/home/pi/book/dataset/ruler.512.tiff', 1)

input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

rows, cols, channels = input.shape

points1 = np.float32([[0, 0], [400, 0], [0, 400], [400, 400]])

points2 = np.float32([[0,0], [300, 0], [0, 300], [300, 300]])

P = cv2.getPerspectiveTransform(points1, points2)

output = cv2.warpPerspective(input, P, (300, 300))

plt.subplot(121)

plt.imshow(input)

plt.title('Input Image')

plt.subplot(122)

plt.imshow(output)

plt.title('Perspective Transform')

plt.show()

The output will appear as follows:

Figure 6.6 – Zoom operation with perspective transform

As an exercise for this section (and to improve your understanding of the operation of
perspective transformation), pass various combinations of sets of points in the input
and the output images to the program to see how the output changes when the input
is changed. From the example we just discussed, you may get the impression that the
parallelism between the lines in the input and the output image is preserved, but that is
because of our choice of sets for the points in the input image and the output image.
If we choose different sets of points, then the output will obviously be different.

152 Colorspaces, Transformations, and Thresholding

These are all the transformation operations we can perform on images with OpenCV.
Next, we will see how to threshold images with OpenCV.

Thresholding images
Thresholding is the simplest way to divide images into various parts, which are known as
segments. Thresholding is the simplest form of segmentation operation. If we apply the
thresholding operation to a grayscale image, it is usually (but not all the time) transformed
into a binary image. A binary image is a strictly black and white image and it can either
have a 0 (black) or 255 (white) value for a pixel. Many segmentation algorithms, advanced
image processing operations, and computer vision applications use thresholding as the
first step for processing images.

Thresholding is perhaps the simplest image processing operation. First, we must define
a value for the threshold. If a pixel has a value greater than the threshold, then we
assign 255 (white) to that pixel; otherwise, we assign 0 (black) to the pixel. This is the
simplest way we can implement the thresholding operation on an image. There are other
thresholding techniques too, and we will learn about and demonstrate them in this
section.

The OpenCV cv2.threshold() function applies thresholding to images. It accepts the
image, the value of the threshold, the maximum value, and the technique of thresholding
as arguments and returns the thresholded image as the output. This function assigns the
value of the maximum value to a pixel if its value is greater than the value of the threshold.
As we mentioned earlier, there are variations of this method. Let's take a look at all the
thresholding techniques in detail.

Let's assume that (x, y) is the input pixel. Here, we can threshold an image in the
following ways:

• cv2.THRESH_BINARY: If intensity(x, y) > thresh, then set intensity(x, y) =
maxVal; otherwise, set intensity(x, y) = 0.

• cv2.THRESH_BINARY_INV: If intensity(x, y) > thresh, then set intensity(x, y) =
0; otherwise, set intensity(x, y) = maxVal.

• cv2.THRESH_TRUNC: If intensity(x, y) > thresh, then set intensity(x, y) =
threshold; else leave intensity(x, y) as it is.

• cv2.THRESH_TOZERO: If intensity(x, y)> thresh; then leave intensity(x, y) as it is;
otherwise, set intensity(x, y) = 0.

• cv2.THRESH_TOZERO_INV: If intensity(x, y) > thresh, then set intensity(x, y) =
0; otherwise, leave intensity(x, y) as it is.

Thresholding images 153

Grayscale images with gradients are excellent input for thresholding algorithms as we
can visually see the thresholding in action. In the following example, we are using a
grayscale gradient image as an input to demonstrate the thresholding operation. We have
set the value of the threshold to 127, so the image is segmented into two or more parts,
depending on the value of the intensity of pixels and thresholding technique that we
are using:

import cv2

import matplotlib.pyplot as plt

import numpy as np

img = cv2.imread('/home/pi/book/dataset/gray21.512.tiff', 1)

th = 127

max_val = 255

ret, o1 = cv2.threshold(img, th, max_val,

 cv2.THRESH_BINARY)

print(o1)

ret, o2 = cv2.threshold(img, th, max_val,

 cv2.THRESH_BINARY_INV)

ret, o3 = cv2.threshold(img, th, max_val,

 cv2.THRESH_TOZERO)

ret, o4 = cv2.threshold(img, th, max_val,

 cv2.THRESH_TOZERO_INV)

ret, o5 = cv2.threshold(img, th, max_val,

 cv2.THRESH_TRUNC)

titles = ['Input Image', 'BINARY', 'BINARY_INV',

 'TOZERO', 'TOZERO_INV', 'TRUNC']

output = [img, o1, o2, o3, o4, o5]

for i in range(6):

 plt.subplot(2, 3, i+1)

 plt.imshow(output[i], cmap='gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

154 Colorspaces, Transformations, and Thresholding

The following is the output:

Figure 6.7 – Output of the thresholding operation

You might want to create an application with a trackbar. We can also interface two push
buttons in the pull-up configuration and write some code to adjust the threshold on a live
video with the help of those two push buttons:

import RPi.GPIO as GPIO

import cv2

thresh = 127

cap = cv2.VideoCapture(0)

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

button1 = 7

button2 = 11

GPIO.setup(button1, GPIO.IN, GPIO.PUD_UP)

GPIO.setup(button2, GPIO.IN, GPIO.PUD_UP)

while True:

 ret, frame = cap.read()

 button1_state = GPIO.input(button1)

 if button1_state == GPIO.LOW and thresh < 256:

Thresholding images 155

 thresh = thresh + 1

 button2_state = GPIO.input(button2)

 if button2_state == GPIO.LOW and thresh > -1:

 thresh = thresh - 1

 ret1, output = cv2.threshold(frame, thresh, 255,

 cv2.THRESH_BINARY)

 print(thresh)

 cv2.imshow('Thresholding App', output)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

Prepare a circuit by connecting two push buttons to pins 7 and 11. Connect a webcam to
a USB or Pi Camera Module to the CSI port. Then, run the preceding code. The following
will be the output:

Figure 6.8 – Thresholding a live USB webcam feed

The output looks like this because we are applying thresholding to the live feed and the
color image. OpenCV applies thresholding to all the channels. As an exercise, convert
the input frame into grayscale and then apply different types of thresholds to it.

156 Colorspaces, Transformations, and Thresholding

Otsu's binarization method
In our previous examples of thresholding, we chose the value of the thresholding
argument. However, the value of the threshold for the input image is a technique that's
automatically determined by Otsu's binarization method. However, this method does not
work for all images. The prerequisite is that the input image must have two peaks in the
histogram. Such images are known as bimodal histogram images. We will learn more
about this concept and demonstrate how to use histograms and histograms of images later
in this book. A bimodal histogram usually means that the image has a background and
a foreground. Otsu's binarization works best with such images.

This method is not recommended for images other than those that have bimodal histograms
as it will produce improper results. This method is always combined with other thresholding
methods. While calling the cv2.threshold() function, we have to pass 0 as an
argument to the threshold parameter, as shown in the following code snippet:

ret, output = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)

Run the preceding code and see the output.

Adaptive thresholding
In the earlier examples (including Otsu's binarization), the threshold is the same for all the
pixels in the entire image. That is why those techniques are known as global thresholding
techniques. However, they do not produce good results for all types of images. For images
where lighting is not uniform, global thresholding methods are not the best. We can
use algorithms that compute the threshold values locally, depending on the value of the
nearby pixel. Such techniques are known as local or adaptive thresholding techniques.

The cv2.adaptiveThreshold() method accepts a source image, maximum value,
adaptive thresholding method, thresholding algorithm, block size, and a constant as
inputs and produces a thresholded image as output. The following shows how to use the
mean and Gaussian methods for deciding on the neighborhood in order to determine
a threshold value:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.05.tiff', 0)

block_size = 123

constant = 6

Thresholding images 157

th1 = cv2.adaptiveThreshold(img, 255,

 cv2.ADAPTIVE_THRESH_MEAN_C,

 cv2.THRESH_BINARY,

 block_size, constant)

th2 = cv2.adaptiveThreshold (img, 255,

 cv2.ADAPTIVE_THRESH_GAUSSIAN_C,

 cv2.THRESH_BINARY,

 block_size, constant)

output = [img, th1, th2]

titles = ['Original', 'Mean Adaptive', 'Gaussian Adaptive']

for i in range(3):

 plt.subplot(1, 3, i+1)

 plt.imshow(output[i], cmap='gray')

 plt.title(titles[i])

 plt.xticks([])

 plt.yticks([])

plt.show()

The following is the output of the preceding code:

Figure 6.9 – Mean and Gaussian adaptive thresholding methods

As we can see in the preceding output image, the outputs produced by the mean and
Gaussian adaptive threshold are different. We must choose the proper thresholding
algorithm based on the input image to get the desired results. Often, a trial and error
method is the best for choosing the thresholding algorithms and the value of the threshold.

158 Colorspaces, Transformations, and Thresholding

Summary
This was an interesting chapter. We started by looking at colorspaces and their application
for object tracking by color. Then, we learned about transformations and thresholding.
We also learned how to create a small app with push buttons for live thresholding. All the
concepts we demonstrated, especially thresholding techniques, will be very useful for the
advanced image processing applications we will learn about later in this book.

In the next chapter, we will learn about a few signal processing concepts and image noise.
We will learn about techniques for filtering images and removing noise in images. We
will also combine those concepts with the RPi's GPIO and create a few nice live image
processing apps.

7
Let's Make Some

Noise
In the previous chapter, we learned and demonstrated the concepts of colorspaces and
converting them, mathematical transformations, and thresholding operations.

In this chapter, we will learn and demonstrate the concepts related to noise and filtering.
This entire chapter is dedicated to understanding the concept of noise in detail. First, we
will learn how to simulate various types of noise pattern in depth. Then, we will learn and
demonstrate how to use image kernels and the convolution operation. We will also learn
how to use the convolution operation to apply various types of filters. Finally, we will learn
the basics of low pass filters and demonstrate how to use them to perform blurring and
noise removal operations.

We will also use GPIO for demonstrations. In this chapter, we will cover the following topics:

• Noise

• Working with kernels

• 2D convolution with the Signal Processing module in SciPy

• Filtering and blurring with OpenCV

After completing this chapter, you will be able to work with noisy images and reduce the
amount of noise in them.

160 Let's Make Some Noise

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter07/programs.

Check out the following video to see the Code in Action at https://bit.ly/3i7iagG.

Noise
Let's understand the concept of noise in detail. In the field of signal processing, noise is
simply just any unwanted signal mixed in with the expected signal. When we talk in terms
of noise in images or videos, we can define noise as the undesired variation of intensity
and color of pixels. This noise can come from multiple sources.

A few examples include dust on a camera lens, grains in the photo film (this one is desired
in analog photography and filmmaking), errors in the CCD sensor and its storage, errors
during transmission and reception, and errors while scanning the photograph. A very
high amount of noise is not desired. This is because high noise reduces the useful and
expected signal, affecting the quality of images.

We can mathematically represent the signal-to-noise ratio with the following formula:

Note:
A higher signal-to-noise ratio means a better quality regarding the signal and
the image.

Introducing noise to an image
As discussed in the previous section, there can be multiple sources where noise can
originate. We can also introduce noise to a digital image by simulating various types of
noise. In this section, we will learn how to simulate salt-and-pepper noise, Gaussian noise,
Poisson noise, and random normal noise.

Salt-and-pepper noise
The random introduction of white (salt) and black (pepper) pixels to any image is known
as salt-and-pepper noise. We can introduce it to any grayscale image like so:

import numpy as np
import cv2
import random

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter07/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter07/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter07/programs
https://bit.ly/3i7iagG

Noise 161

import matplotlib.pyplot as plt
img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)
output = np.zeros(img.shape, np.uint8)
p = 0.05
for i in range (img.shape[0]):
 for j in range(img.shape[1]):
 r = random.random()
 if r < p/2:
 output[i][j] = 0
 elif r < p:
 output[i][j] = 255
 else:
 output[i][j] = img[i][j]
plt.imshow(output, cmap='gray')
plt.title('Salt and Pepper Sprinkled')
plt.axis('off')
plt.show()

In the preceding code, the noise density (denoted by p) is set to 0.05. We are generating
a random number for each pixel and if it is less than p/2, we set the pixel to black. If it is
between p/2 and p, then we set the pixel to white. Otherwise, the pixel is not modified.
Since we are using the random.random() function to generate the noise, the generated
noise is different each time we execute the program. The output with the introduced noise
looks as follows:

Figure 7.1 – Salt and pepper noise

162 Let's Make Some Noise

We can create a small app that adjusts the custom introduced noise with push buttons
in the live webcam feed. Now, connect two push buttons to RPi's 7 and 11 GPIO pins
in pull-up mode and write the following program:

import RPi.GPIO as GPIO

import cv2

import numpy as np

import random

p = 0.00

cap = cv2.VideoCapture(0)

ret, frame = cap.read()

output = np.zeros(frame.shape, np.uint8)

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

button1 = 7

button2 = 11

GPIO.setup(button1, GPIO.IN, GPIO.PUD_UP)

GPIO.setup(button2, GPIO.IN, GPIO.PUD_UP)

In the preceding code, we are initializing the GPIO of the RPi and we are also creating the
object for the USB webcam. Now, let's write the logic to adjust the amount of noise we get
when pressing the push buttons:

while True:

 ret, frame = cap.read()

 button1_state = GPIO.input(button1)

 if button1_state == GPIO.LOW and p <= 0.1:

 p = p + 0.01

 if p > 0.1:

 p = 0.1

 button2_state = GPIO.input(button2)

 if button2_state == GPIO.LOW and p > 0:

 p = p - 0.01

 if p < 0:

 p = 0

 for i in range (frame.shape[0]):

 for j in range(frame.shape[1]):

Noise 163

 r = random.random()

 if r < p/2:

 output[i][j] = 0, 0, 0

 elif r < p:

 output[i][j] = 255, 255, 255

 else:

 output[i][j] = frame[i][j]

 print(p)

 cv2.imshow('Salt and pepper Noise App', output)

 if cv2.waitKey(1) == 27:

 break

cap.release()

cv2.destroyAllWindows()

The preceding program is computationally expensive because we are computing the noise
and the output image continuously. If you are experiencing low frame rates, then reduce
the resolution of the USB webcam connected to RPi. The output of the code will be like
that shown in the preceding image.

Gaussian noise
This type of noise is named after the mathematician Carl Friedrich Gauss because the
values of noise are normally distributed (also known as gaussian distributed). We can
simulate this type of noise as follows:

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)

row, col = img.shape

img = img.astype(np.float32)

mean = 0

var = 0.1

sigma = var**0.5

gauss = np.random.normal(mean, sigma, (row, col))

gauss = gauss.reshape(row, col)

noisy = img + gauss

164 Let's Make Some Noise

print(abs(noisy-img))

plt.imshow(noisy, cmap='gray')

plt.title('Gaussian (Normally distributed) Noise')

plt.axis('off')

plt.show()

The preceding code simulates Gaussian noise of a mean and variance of 0 and 1,
respectively, on a grayscale image. We are first converting the image from uint8 into
float32 because the noise points can have floating values. We are using the np.random.
normal() function to compute the data points for the noise. Note that the amount of noise
it produces depends on the values of the mean and variance. For the values we used, the
noise is not perceivable to us. Run the code and view the output. It will be as follows:

Figure 7.2 – Gaussian (normally distributed) noise

Poisson noise
The noise that is distributed according to the Poisson curve is known as Poisson noise. It
is also known as shot noise. This phenomenon occurs because of the particle's nature in
terms of light. Let's take a look at some example code where we'll introduce Poisson noise
to an image:

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)

Noise 165

img = img.astype(np.float32)

vals = len(np.unique(img))

vals = 2 ** np.ceil(np.log2(vals))

noisy = np.random.poisson(img * vals) / float(vals)

print(abs(noisy-img))

plt.imshow(noisy, cmap='gray')

plt.title('Poisson Noise')

plt.axis('off')

plt.show()

The np.random.poisson() function produces random data points distributed along
the Poisson curve. These data points are added to the image to create a noisy image with
Poisson noise. Run the preceding code and view the output. It will be as follows:

Figure 7.3 – Poisson noise

Random normal noise
We've already seen an example of Gaussian normal noise. We can also generate random
normal noise, as follows:

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)

166 Let's Make Some Noise

img = img.astype(np.float32)

row, col = img.shape

rand_noise = np.random.randn(row, col)

rand_noise = rand_noise.reshape(row, col)

noisy = img + img * rand_noise

print(abs(noisy-img))

plt.imshow(noisy, cmap='gray')

plt.title('Random Normal Noise')

plt.axis('off')

plt.show()

In the preceding code, the NumPy np.random.randn() function creates the data
points for the random noise, which are then added to the image. This produces an image
with the random noise applied. Run the preceding code and view the output. It will be
as follows:

Figure 7.4 – Poisson noise

Working with kernels
Now, let's learn about kernels. We will learn how to use kernels for signal and image
processing operations. Kernels are square numerical matrices. Depending on the size and
components of the kernel, if we convolve the kernel with the image, we get blurred or
sharpened output. Kernels are used for a variety of image processing operations.

2D convolution with the signal processing module in SciPy 167

Let's look at an example of a simple kernel used for averaging. It can be represented with
the following formula:

By using the preceding formula, an averaging kernel that's 3x3 in size can be expressed
as follows:

The value of the number of rows and the number of columns is always odd and always the
same. They are all square matrices.

We can use the following NumPy code to create the preceding kernel:

K = np.ones((3, 3), np.uint8)/9

Now, we'll learn how to use the preceding kernel and other kernels to process the sample
images from the dataset.

2D convolution with the signal processing
module in SciPy
Now, let's take a look at the mathematical background of convolution. Convolution is
understanding how the shape of a function is affected by another function. The process
of computing it and the resultant function is known as a convolution. We can perform
convolutions on 1D, 2D, and multidimensional data. Signals are multidimensional
entities. Images are a type of signal. So, we can apply convolution to an image.

Note
You can read more about convolution at http://www.songho.ca/
dsp/convolution/convolution2d_example.html.

http://www.songho.ca/dsp/convolution/convolution2d_example.html
http://www.songho.ca/dsp/convolution/convolution2d_example.html

168 Let's Make Some Noise

We can perform convolution operations on images with various kernels to process images.
For that, we will learn how to use the signal module from SciPy. Let's install the SciPy
library with the following command:

pip3 install scipy

We can perform convolution operations on images with various kernels to process images.
The function that performs convolution on 2D data is signal.convolve2d(). We
must pass a grayscale image and a kernel as arguments to it, which then compute the
convolution for the given data. The following is an example:

import scipy.signal

import numpy as np

import matplotlib.pyplot as plt

import cv2

img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)

k1 = np.ones((7, 7), np.uint8)/49

blurred = scipy.signal.convolve2d(img, k1)

k2 = np.array([[0, -1, 0],

 [-1, 25, -1],

 [0, -1, 0]], dtype=np.int8)

sharpened = scipy.signal.convolve2d(img, k2)

plt.subplot(131)

plt.imshow(img, cmap='gray')

plt.title('Original Image')

plt.axis('off')

plt.subplot(132)

plt.imshow(blurred, cmap='gray')

plt.title('Blurred Image')

plt.axis('off')

plt.subplot(133)

plt.imshow(sharpened, cmap='gray')

plt.title('Sharpened Image')

plt.axis('off')

Filtering and blurring with OpenCV 169

The output is as follows:

Figure 7.5 – Performing operations with kernels

As expected, the blur kernel produced a blurred output and the sharpening kernel
produced a sharpened image. You may want to change the kernels and observe the
effects on the image.

Filtering and blurring with OpenCV
OpenCV also has many filtering and convolution functions. These filtering functions are
cv2.filter2D(), cv2.boxFilter(), cv2.blur(), cv2.GaussianBlur(),
cv2.medianBlur(), cv2.sepFilter2D(), and cv2.BilateralFilter().
In this section, we will explore all these functions in detail.

2D convolution filtering
The cv2.filter2D() function, just like the scipy.signal.convolve2d()
function, convolves a kernel with an image, thus applying a linear filter to the image. The
advantage of the cv2.filter2D() function is that we can apply it to data that has more
than two dimensions. We can apply this to color images, too.

This function accepts the input image, the depth of the output image (-1 means the
input and the output have the same depth), and a kernel for the convolution operation
as arguments. The following code demonstrates the usage of this function:

import cv2

import numpy as np

from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

output = cv2.filter2D(input, -1, np.ones((15, 15),
np.uint8)/225)

170 Let's Make Some Noise

plt.subplot(121)

plt.imshow(input)

plt.title('Input')

plt.axis('off')

plt.subplot(122)

plt.imshow(output)

plt.title('Output')

plt.axis('off')

plt.show()

The following is the output:

Figure 7.6 – Filtered and blurred versions of the same image

Note:
You can find interactive tutorials on convolution at the following
URL: http://micro.magnet.fsu.edu/primer/java/
digitalimaging/processing/kernelmaskoperation/

Low-pass filtering
As we discussed earlier, low-pass filters allow low-frequency components to pass through
them. Edges and noise are usually high-frequency components. These are filtered out. So,
low-pass filters are excellent for noise removal, blurring, and smoothing images.

The OpenCV library offers ready-made functions for performing low-pass filtering. We
do not have to write programs from scratch to apply low-pass filters. These functions have
code for the kernels written in their definition. We just have to pass arguments to the
function and the function automatically creates the kernel and applies it to the image.

http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/
http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/

Filtering and blurring with OpenCV 171

The cv2.boxFilter() function accepts the input source image, ddepth, and the size of
the kernel as arguments, applies the kernel to the input image, and then returns the blurred
image as output. The last parameter is normalize, which could be passed a Boolean value
of True or False. This will decide whether the output is normalized. If normalization is
passed the True value, the output is multiplied by 1/(number of rows * number of columns),
which creates a normalized box filter effect, while if it is passed the False value, the output
is multiplied by 1, which creates an unnormalized box filter effect.

The following line shows us an example of a normalized box filter:

output = cv2.boxFilter(input, -1, (3, 3), normalize=True)

The following line shows us an example of an unnormalized box filter:

output = cv2.boxFilter(input, -1, (3, 3), normalize=False)

The cv2.blur() function directly creates a normalized box filter and applies it to the
image. We must pass the source input image and the size of the kernel as arguments.
We do not have to specify if we want to have normalized output. This will produce the
normalized output by default. The following two lines produce the same output:

output = cv2.blur(input, (3, 3))

output = cv2.boxFilter(input, -1, (3, 3), normalize=True)

The OpenCV cv2.GaussianBlur() function applies a Gaussian kernel to the input
image. We must pass the input source image and the size of the kernel as arguments to the
call of this function. The third parameter is a standard deviation in the direction of the X
axis. We are passing 0 as an argument for that. This function filters out all the Gaussian
noise in the image. The following is the code example for this:

output = cv2.GaussianBlur(input, (3, 3), 0)

The OpenCV cv2.medianBlur() function applies a median filter and returns a
blurred image. This filter is very effective against the images that have the salt-and-pepper
type of noise. We need to pass the source input image and a number that defines the size
of the square matrix as arguments for the call of this function, as follows:

output = cv2.medianBlur(img, 3)

172 Let's Make Some Noise

This function computes the median of all the values of the members of the kernel. The
value of the center of the kernel is replaced with the computed value of the median. This is
a sliding window type of filter where the window of the matrix of the kernel slides over the
matrix of the image and the pixel in the image that overlaps with the center of the kernel
matrix is processed with a convolution operation using the computed value of the median.

The cv2.sepFilter2D() function applies a separable linear filter to an image. The
following is a sample function call:

output = cv2.sepFilter2D(img, ddepth=-1, kernelX=1, kernelY=1,
delta=1)

In the preceding function call, we have the following:

• ddepth: The depth of the output image (-1 if it is the same for the source and
target images)

• kernelX: The coefficient for filtering each row

• kernelY: The coefficient for filtering each column

• delta: The constant value that's added to the filtered result

As an exercise for this chapter, you may want to use the cv2.BilateralFilter()
function in one of your programs to filter an image.

Summary
In this chapter, we learned about noise and low-pass filtering techniques and how they are
used to smooth images. The techniques we learned about in this chapter are very useful if
we wish to remove various types of noise from images. You will use these techniques for
removing, smoothing, and blurring noise while writing programs for real-life applications
such as detecting movement in real time with a USB webcam.

In the next chapter, we will study high-pass filtering techniques and how to detect edges
using various functions offered by OpenCV that implement various mathematical
morphological operators.

8
High-Pass Filters and

Feature Detection
In the previous chapter, we learned about kernels and low-pass filters and their
applications. We learned about and demonstrated how to use low-pass filters in blurring,
smoothing, and de-noising images.

In this chapter, we will learn about and demonstrate the uses of high-pass filters. This
includes their application in image processing and computer vision. First, we will explore
the Laplacian, Scharr, and Sobel high-pass filters. Then, we will learn about the Canny
edge detection algorithm. We will also demonstrate Hough transforms for circles and
lines. We will conclude by looking at corner detection with the Harris algorithm.

The following is a list of the topics we will cover in this chapter:

• Exploring high-pass filters

• Working with the Canny edge detector

• Finding circles and lines with Hough transforms

• Harris corner detection

After following this chapter, you will be able to use high-pass filters to detect the features
in input images, such as edges, corners, lines, and circles.

174 High-Pass Filters and Feature Detection

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter08/programs.

Check out the following video to see the Code in Action at https://bit.ly/2CFnpnD.

Exploring high-pass filters
The concept of high-pass filters is exactly the opposite of low-pass filters. High-pass filters
allow high-frequency components of information (such as signals and images) to pass
through them. That is why they are known as high-pass filters. In an image, edges are
high-frequency components. The kernels we use in high-pass filters boost the intense
components in an image. That is why when we apply high-pass filters to images, we get
the edges in the output.

Note:
You can read more about high-pass filters at https://
diffractionlimited.com/help/maximdl/High-Pass_
Filtering.htm. Another type of signal filter is band-pass filters, which
allow signals in a range (or band) of frequencies to pass through them. These
filters allow us to highlight the edges in images and reduce the noise by using
blurring at the same time. You can read more about them at https://
homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm.

OpenCV has a lot of library functions that implement high-pass filters. We will look at
how to use the Laplacian(), Sobel(), and Scharr() functions.

Note:
You can learn about the mathematical aspects of high-pass filtering in more
detail by referring to the following web pages:

https://www.tutorialspoint.com/dip/Sobel_operator.
htm

https://www.tutorialspoint.com/dip/Laplacian_
Operator.htm

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter08/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter08/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter08/programs
https://bit.ly/2CFnpnD
https://diffractionlimited.com/help/maximdl/High-Pass_Filtering.htm
https://diffractionlimited.com/help/maximdl/High-Pass_Filtering.htm
https://diffractionlimited.com/help/maximdl/High-Pass_Filtering.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://www.tutorialspoint.com/dip/Sobel_operator.htm
https://www.tutorialspoint.com/dip/Sobel_operator.htm
https://www.tutorialspoint.com/dip/Laplacian_Operator.htm
https://www.tutorialspoint.com/dip/Laplacian_Operator.htm

Exploring high-pass filters 175

The following is a list of parameters commonly used by all of the high-pass filtering
functions and their meanings:

• src: This is the parameter for the source image in which edges are to be detected.

• ddepth: This is the parameter for deciding the depth of the target image. -1 means
the source image and the target image have the same depth. The high-pass filtering
functions offered by OpenCV support the following combinations of the depths of
source and target images:

Figure 8.1 – A list of filter functions supported by OpenCV

• dx: This is the order of the derivative of X (this is not required for Laplacian()).

• dy: This is the order of the derivative of Y (this is not required for Laplacian()).

• ksize: This is the size of the matrix for the kernel (this can be 1, 3, 5, or 7 for the
Sobel() function or a positive odd number for the Laplacian() function, and
it is not required for the Scharr() function).

• scale: This is the scale, which is optional. This is the factor of the optional scale for
the computed Laplacian values. Scaling is not applied by default.

• delta: This is the value of delta. This is an optional constant and is added to the
final output.

• borderType: This is the method for the extrapolation of pixels for the pixels
located at the boundary.

Let's write some code to demonstrate the functionality of the Sobel(), Laplacian(),
and Scarr() functions. In the following code, we are computing the Laplacian and the
first-order derivative of X of the input image using the Scarr() and Sobel() functions:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.05.tiff', 0)

laplacian = cv2.Laplacian(img, ddepth=cv2.CV_32F, ksize=17,

176 High-Pass Filters and Feature Detection

 scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

sobel = cv2.Sobel(img, ddepth=cv2.CV_32F, dx=1, dy=0,

 ksize=11, scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

scharr = cv2.Scharr(img, ddepth=cv2.CV_32F, dx=1, dy=0,

 scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

images=[img, laplacian, sobel, scharr]

titles=['Original', 'Laplacian', 'Sobel', 'Scharr']

for i in range(4):

 plt.subplot(2, 2, i+1)s

 plt.imshow(images[i], cmap = 'gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

The computation of the derivative of X of the image with the Laplacian(), Scharr(),
and Sobel() functions returns the vertical edges in the input image. The following
screenshot shows the output of the preceding code:

Figure 8.2 – The x derivative using a high-pass filter

Exploring high-pass filters 177

We can connect two push buttons to the 7 and 11 GPIO pins in pull-up configuration and
program them to adjust the values of dx and dy. The following is the code to do this:

import RPi.GPIO as GPIO

import cv2

x = 0

y = 1

cap = cv2.VideoCapture(0)

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

button1 = 7

button2 = 11

GPIO.setup(button1, GPIO.IN, GPIO.PUD_UP)

GPIO.setup(button2, GPIO.IN, GPIO.PUD_UP)

while True:

 print(x, y)

 ret, frame = cap.read()

 button1_state = GPIO.input(button1)

 if button1_state == GPIO.LOW:

 x = 0

 y = 1

 button2_state = GPIO.input(button2)

 if button2_state == GPIO.LOW:

 x = 1

 y = 0

178 High-Pass Filters and Feature Detection

Now, let's compute the output image with the cv2.Scharr() function:

 output = cv2.Scharr(frame, ddepth=cv2.CV_32F,

 dx=x, dy=y,

 scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

 cv2.imshow('Salt and pepper Noise App', output)

 if cv2.waitKey(1) == 27:

 break

cap.release()

cv2.destroyAllWindows()

Run the preceding program and observe the edge detection on the live video feed from
the USB webcam connected to the Raspberry Pi board. We can also add the X derivative
to the Y derivative (computed with Scharr) of the same live video feed, as follows:

import cv2

cap = cv2.VideoCapture(0)

while True:

 ret, frame = cap.read()

 output1 = cv2.Scharr(frame, ddepth=cv2.CV_32F,

 dx=0, dy=1,

 scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

The previous code segment computes the Scharr derivative of the Y axis. Now, let's write
the code for the Scharr derivative of the X axis, as follows:

 output2 = cv2.Scharr(frame, ddepth=cv2.CV_32F,

 dx=1, dy=0,

 scale=1, delta=0,

 borderType=cv2.BORDER_DEFAULT)

 cv2.imshow('Addition of Vertical and Horizontal',

 cv2.add(output1, output2))

 if cv2.waitKey(1) == 27:

Working with the Canny edge detector 179

 break

cap.release()

cv2.destroyAllWindows()

Run the preceding program and observe the added X and Y Scharr derivatives. You
can implement similar programs with Sobel derivatives. All of these filters are used
for detecting edges in the image.

In the next section, we will see how to use high-pass filters to detect edges in an image
with the Canny edge detection algorithm.

Working with the Canny edge detector
The Canny edge detection algorithm was developed by John Canny. Canny's algorithm
heavily uses the concept of high-pass filters. It has multiple steps.

Note:
You can read more about the Canny edge detection algorithm at http://
homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm.

OpenCV has the cv2.Canny() function, which offers Canny's algorithm. The following
are the steps of the algorithm:

1. A Gaussian kernel with a size of 5 x 5 pixels is applied to the input image to remove
any noise.

2. Then, we compute the gradient of the intensity of the filtered image. We can use the
L1 or the L2 norm for this step.

3. We then apply non-maximum suppression and identify the candidates for the
possible sets of edges.

4. The final step is the operation of hysteresis. We finalize the edges depending on the
thresholds passed to the images.

Note:
You can read more about the L1 and L2 norms and non-maximum suppression
at http://www.chioka.in/differences-between-the-l1-
norm-and-the-l2-norm-least-absolute-deviations-
and-least-squares/ and https://towardsdatascience.
com/non-maximum-suppression-nms-93ce178e177c.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm.
http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm.
http://www.chioka.in/differences-between-the-l1-norm-and-the-l2-norm-least-absolute-deviations-and-least-squares/
http://www.chioka.in/differences-between-the-l1-norm-and-the-l2-norm-least-absolute-deviations-and-least-squares/
http://www.chioka.in/differences-between-the-l1-norm-and-the-l2-norm-least-absolute-deviations-and-least-squares/
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

180 High-Pass Filters and Feature Detection

The following is a list of parameters for the cv2.Canny() function:

• img: The input source image where we need to detect edges.

• threshold1: The lower bound for the threshold.

• threshold2: The upper bound for the threshold.

• L2gradient: If this value is True, the function uses the L2 norm to compute
the set of edges, which is more accurate but computationally expensive. If it is
False, then the L1 norm is used to compute the set of edges, which requires
less computation but is less accurate.

This function computes and returns the set of detected edges in the source input image.
The following code demonstrates this concept well:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.05.tiff', 0)

edges1 = cv2.Canny(img, 50, 300, L2gradient=False)

edges2 = cv2.Canny(img, 100, 150, L2gradient=True)

images = [img, edges1, edges2]

titles = ['Original', 'L1 Gradient', 'L2 Gradient']

for i in range(3):

 plt.subplot(1, 3, i+1)

 plt.imshow(images[i], cmap = 'gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

The output of the preceding code is as follows:

Figure 8.3 – The output of Canny edge detection

Working with the Canny edge detector 181

We can make the preceding program more interesting by computing the edges in real
time, such that the thresholds are adjustable by OpenCV's trackbars:

import cv2

cv2.namedWindow('Canny')

img = cv2.imread('/home/pi/book/dataset/4.1.05.tiff', 0)

def empty(z):

 pass

cv2.createTrackbar('Threshold 1', 'Canny', 50, 100, empty)

cv2.createTrackbar('Threshold 2', 'Canny', 150, 300, empty)

while(True):

 l1 = cv2.getTrackbarPos('Threshold 1', 'Canny')

 l2 = cv2.getTrackbarPos('Threshold 2', 'Canny')

 output = cv2.Canny(img, l1, l2, L2gradient=False)

 cv2.imshow('Canny', output)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

In the previous code, we created two trackbars for the upper and lower thresholds of
the Canny algorithm. We used the L1 norm to compute the edges. The output will be
as follows:

Figure 8.4 – The output of the Canny edge detection algorithm with trackbars

182 High-Pass Filters and Feature Detection

We can apply this algorithm on real-life images, such as a live video feed from our
webcam. In the next section, we will learn how to detect circles and lines with the
Hough transform.

Finding circles and lines with Hough transforms
OpenCV offers a cv2.HoughCircles() function to detect circles in an image with
Hough's method. This returns the centers and radii of the detected circles. It accepts
an image, the (cv2.HOUGH_GRADIENT) method of detection, the inverse ratio of the
resolution, the minimum distance between the centers of the circles to be detected, the
highest threshold of the Canny method used internally, the threshold for the accumulator,
and the maximum and minimum distances of the circles to be detected.

Note:
You can find more details about the mathematical aspects of Hough transforms
for circles at https://www.cis.rit.edu/class/simg782/
lectures/lecture_10/lec782_05_10.pdf.

In the following code, we accept the live video feed from a USB webcam as input. Then,
we remove the noise by blurring the input frame, and then we pass the blurred frame to
the call of the cv2.HoughCircles() function. Then, we visualize the detected circles
with the cv2.Circle() function, as follows:

import cv2

cap = cv2.VideoCapture(0)

while (True):

 ret , frame = cap.read()

 grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 blur = cv2.blur(grey, (5, 5))

 circles = cv2.HoughCircles(blur,

 method=cv2.HOUGH_GRADIENT,

 dp=1, minDist=200,

 param1=50, param2=13,

 minRadius=30, maxRadius=175)

 if circles is not None:

 for i in circles [0,:]:

 cv2.circle(frame, (i[0], i[1]), i[2], (0, 255, 0),
2)

https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf

Working with the Canny edge detector 183

 cv2.circle(frame, (i[0], i[1]), 2, (0, 0, 255), 3)

 cv2.imshow('Detected', frame)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

Run the preceding program and observe the output. It should look as follows:

Figure 8.5 – The detected circles

The OpenCV cv2.HoughLines() function detects lines in an image. It accepts
a grayscale image, the value of rho (the distance accuracy of an accumulator), theta
(the angle accuracy of the accumulator), and the parameter of the threshold for the
accumulator as arguments. We will demonstrate this with a live USB webcam video feed.
The returned output is in polar format, which must be converted into the X/Y coordinate
system before visualization:

import numpy as np

import cv2

cap = cv2.VideoCapture(0)

while True:

 ret, img = cap.read()

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

184 High-Pass Filters and Feature Detection

 edges = cv2.Canny(gray, 50, 250, apertureSize=5,

 L2gradient=True)

 lines = cv2.HoughLines(edges, 1, np.pi/180, 200)

 if lines is not None:

 for rho,theta in lines[0]:

 a = np.cos(theta)

 b = np.sin(theta)

 x0 = a*rho

 y0 = b*rho

 pts1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))

 pts2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))

 cv2.line(img, pts1, pts2, (0, 0, 255), 2)

 cv2.imshow('Detected Lines', img)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

Run the preceding code and observe its output. The output is as follows:

Figure 8.6 – The detected lines

Harris corner detection 185

The Hough transforms must be finely adjusted for the given input. This means that if we
cannot see any lines or circles in the correct places, then we can try adjusting the value of
the arguments passed to these Hough transform functions. Sometimes, it could produce
false results, as in lines and circles will be visible even when there are none in the input
frame. Again, for correct results, we must adjust the value of the arguments passed to
these functions.

Harris corner detection
OpenCV has the cv2.cornerHarris() function for detecting corners. Its arguments
are as follows:

• img: The input image, which must be grayscale and have the float32 type.

• blockSize: This is the size of the neighborhood considered for corner detection.

• ksize: The aperture parameter of the Sobel derivative used.

• k: The free Harris detector parameter used in the equation.

The following is an example program that implements Harris corner detection:

import cv2

import numpy as np

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.1.05.tiff', 0)

img = np.float32(img)

dst = cv2.cornerHarris(img, 2, 3, 0.04)

ret, dst = cv2.threshold(dst, 0.01*dst.max(), 255, 0)

dst = np.uint8(dst)

plt.imshow(dst, cmap='gray')

plt.axis('off')

plt.show()

186 High-Pass Filters and Feature Detection

In the preceding program, we coverted the image into 32-bit float format and then
we fed it to the corner detection function. Then, we threshholded the image. We used
0.01*dst.max() as the value of the threshold to compute the binary image. Then, we
converted the output into 8-bit integer format so that the output image could be displayed
with matplotlib, as follows:

Figure 8.7 – The detected corners

We can use this corner detection method in industrial and robotics applications to detect
the corners of regular and predictable objects. It is very useful in real-world automation.

Exercise
To practice what you have learned in this chapter, explore the HoughLinesP(),
goodFeaturesToTrack(), and FastFeatureDetector() functions in OpenCV
for detecting various features. Write programs using these functions to detect lines using
probabilistic Hough transforms and other features.

Summary 187

Summary
In this chapter, we learned the concept and demonstration of high-pass filters. We applied
high-pass filters on images to obtain various results. We also demonstrated the various
techniques for detecting features, such as corners, lines, edges, and circles. All of these
feature-detection algorithms rely on high-pass filtering. Canny's algorithm for edge
detection uses Gaussian high-pass filters. The Harris corner detection algorithm uses
Sobel spatial derivatives. All of these geometric feature-detection algorithms are routinely
employed in real life in industrial automation, smart vehicles, and robotics.

In the next chapter of this book, we will learn the concepts and demonstrate the
restoration of degraded images; the segmentation of images; k-means clustering of
one-, two-, and multi-dimensional data; image quantization using k-means clustering;
and the estimation of a depth map in detail.

9
Image Restoration,
Segmentation, and

Depth Maps
In the previous chapter, we demonstrated how to use high-pass filters and their
applications in algorithms to detect edges.

In this chapter, we will learn about a few more advanced processing techniques regarding
images. First, we will get started with the restoration of damaged or degraded images.
Then, we will explore the fundamentals of various types of segmentation techniques. We
have already seen that thresholding is a basic form of segmentation. We will explore this
concept in more detail in this chapter. Finally, we will compute the disparity map and
estimate the depths of objects in an image.

In this chapter, we will cover the following topics:

• Restoring damaged images using inpainting

• Segmenting images

• Disparity maps and depth estimation

By the end of this chapter, we will be able to restore damaged images, apply various
segmentation algorithms to images, and estimate the depth of objects using disparity maps.

190 Image Restoration, Segmentation, and Depth Maps

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter09/programs.

Check out the following video to see the Code in Action at https://bit.ly/2NsIzXY.

Restoring damaged images using inpainting
The restoration of an image is the computational process of reconstructing damaged
parts from existing parts of an image. If we capture an image on film with a photographic
camera and develop it on paper, the photographic paper tends to degrade with the passage
of time, leading to degradation of the photograph. Faulty sensors and imperfections
such as dust and dirt on the camera lenses can introduce errors in the captured image.
The process of transmission and reception can also introduce errors in the digital image.
Image inpainting techniques can restore degraded and damaged images. Many algorithms
are available to repair images. The OpenCV library implements two of the repairing
methods using the cv2.inpaint() function.

This function accepts a degraded or damaged source image, a mask for image inpainting,
the size of the inpainting neighborhood, and the inpainting method as arguments. The
mask of inpainting is the damaged area represented by a grayscale image where white
pixels refer to the area to be repaired or inpainted. The following code demonstrates both
of the methods that we discussed above. The output produced by both methods is almost
the same. We can create the damaged mask using free image editing software such as
GIMP. Take a look at the following code:

import cv2

import matplotlib.pyplot as plt

image = cv2.imread('/home/pi/book/dataset/Damaged.tiff')

mask = cv2.imread('/home/pi/book/dataset/Mask.tiff', 0)

input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

output_TELEA = cv2.inpaint(input, mask, 5, cv2.INPAINT_TELEA)

output_NS = cv2.inpaint(input, mask, 5, cv2.INPAINT_NS)

plt.subplot(221)

plt.imshow(input)

plt.title('Damaged Image')

plt.axis('off')

plt.subplot(222)

plt.imshow(mask, cmap='gray'),

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter09/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter09/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter09/programs
https://bit.ly/2NsIzXY

Restoring damaged images using inpainting 191

plt.title('Mask')

plt.axis('off')

plt.subplot(223),

plt.imshow(output_TELEA)

plt.title('Telea Method')

plt.axis('off')

plt.subplot(224)

plt.imshow(output_NS)

plt.title('Navier Stokes Method')

plt.axis('off')

plt.show()

In the preceding code, we have used two techniques. The cv2.INPAINT_TELEA flag is
based on a technique described in the paper named An Image Inpainting Technique Based
on the Fast Marching Method, which was written and published in 2004 by Alexandru Telea.

The cv2.INPAINT_NS flag is based on a technique described in the paper Navier-Stokes,
Fluid Dynamics, and Image and Video Inpainting, which was written and published in
2001 by Bertalmio Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro.

The following is the output:

Figure 9.1 – The restoration of degraded images

In the preceding output, the first image is the damaged image. The second image is the
binary mask corresponding to the damage. The images in the second row are the restored
images using the Telea method and the Navier-Stokes method.

192 Image Restoration, Segmentation, and Depth Maps

Note
You can find out more about image inpainting at https://www.math.
ucla.edu/~imagers/htmls/inp.html.

Segmenting images
The segmentation of images is the process of dividing images into many sections or parts,
also known as segments. This process is carried out using particular criteria. The simplest
way in which we can divide images into segments is through thresholding. We have already
learned about and demonstrated the techniques of thresholding in Chapter 6, Colorspaces,
Transformations, and Thresholding. We will demonstrate two more methods of segmentation
in this chapter. Those methods are the Mean Shift algorithm and k-means clustering.

Mean shift algorithm segmentation
Bogdan Georgescu and Chris M. Christoudias developed the mean shift algorithm and
implemented it in C++. The Python implementation of the same algorithm is known
as PyMeanShift. PyMeanShift uses ndarrays and NumPy for storing and processing
images. That is why it is compatible with NumPy-based image processing libraries
such as OpenCV, Mahotas, and scikit-image.

Note
You can find out more about this on the project GitHub page at https://
github.com/fjean/pymeanshift.

There is no binary package for the installation of PyMeanShift on Linux, Unix, and
other operating systems based on them. We must build it and install it from the source.
Download the latest version of the source code from this URL: https://github.com/
fjean/pymeanshift. The download will be a ZIP file. Copy it to the home directory
of the pi user, /pi/home, and extract it. Navigate to the directory where we extracted it
and run the following commands in order on LXTerminal:

cd ~

cd pymeanshift-master/

sudo python3 setup.py build

sudo python3 setup.py install

Once the installation is complete, run the following command on Command Prompt
to check whether it was successful:

python3 -c "import pymeanshift as pms"

https://www.math.ucla.edu/~imagers/htmls/inp.html
https://www.math.ucla.edu/~imagers/htmls/inp.html
https://github.com/fjean/pymeanshift
https://github.com/fjean/pymeanshift
https://github.com/fjean/pymeanshift
https://github.com/fjean/pymeanshift

Segmenting images 193

The pymeanshift library offers the pms.segment() function, which segments
the images represented by NumPy ndarrays. It accepts the source input image to be
segmented, the spatial radius, the radius of the range, and the minimum density as
arguments. Then, it returns a segmented image, a labeled color image, and a set of
regions. The following is the code example to demonstrate the functionality:

import cv2

import pymeanshift as pms

from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

(segmented_image, labels_image, number_regions) = pms.segment(

 input, spatial_radius=2, range_radius=2, min_density=300)

plt.subplot(131)

plt.imshow(input)

plt.title('Input')

plt.axis('off')

plt.subplot(132)

plt.imshow(segmented_image)

plt.title('Segmented Output')

plt.axis('off')

plt.subplot(133)

plt.imshow(labels_image)

plt.title('Labeled Output')

plt.axis('off')

plt.show()

The output of the preceding code is as follows:

Figure 9.2 – Segmentation with PyMeanShift

194 Image Restoration, Segmentation, and Depth Maps

As an exercise, pass different values of arguments to the function parameters and compare
the output. We can apply this to a live feed video from a webcam as follows:

import cv2

import pymeanshift as pms

cap = cv2.VideoCapture(0)

while True:

 ret, frame = cap.read()

 (segmented_image, labels_image, number_regions) = pms.
segment(

 frame, spatial_radius=2, range_radius=2, min_
density=50)

 cv2.imshow('Segmented', segmented_image)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

Usually, the segmentation is computationally a very expensive operation and, therefore,
the frames per second (FPS) for a live video is very low. The output of this will be similar
to the previous one (Figure 2).

K-means clustering and image quantization
The k-means clustering algorithm is a classification algorithm. Suppose that the input
to the algorithm is a set of size n, and then the output divides that set into k number
of partitions. That is why it is known as the k-means algorithm. Essentially, based on
particular criteria, we are dividing or classifying the data into k number of classes
or partitions. When this is applied to the data with two or more dimensions (that
is, multidimensional data), it is called clustering. OpenCV has the cv2.kmeans()
function that implements the k-means clustering algorithm for single-dimensional and
multidimensional data. It accepts the arguments for the following parameters:

• Data: This is the input data to the k-means clustering algorithm. This data must be
in the floating-point numerical format.

• K: The total number of partitions in the output of the algorithm. It must be known
in advance (if the input is the color image, this will mean the number of colors in
the output segmented image).

• Criteria: The termination criteria for the algorithm.

Segmenting images 195

• Attempts: The number of times the algorithm is run with the different initial labels.

• Flags: This signifies the position of the initial centers for the clusters, which are
passed in any one of the following values as arguments:

cv2.KMEANS_RANDOM_CENTERS

cv2.KMEANS_PP_CENTERS

cv2.KMEANS_USE_INITIAL_LABELS

Let's try to demonstrate this program for one-dimensional data first. We will create our
own random data for this. Let's create and visualize the data:

import numpy as np

import cv2

from matplotlib import pyplot as plt

x = np.random.randint(25, 100, 25)

y = np.random.randint(175, 255, 25)

z = np.hstack((x, y))

z = z.reshape((50, 1))

z = np.float32(z)

plt.hist(z, 256, [0, 256])

plt.show()

The sample random data will look like the following output:

Figure 9.3 – One-dimensional data

196 Image Restoration, Segmentation, and Depth Maps

We can clearly see the data divided into two groups. Now, let's make Raspberry Pi classify
it and highlight the groups and their centers. Remove or comment out the last two lines
of the preceding code and add the following lines:

criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)

flags = cv2.KMEANS_RANDOM_CENTERS

compactness, labels, centers = cv2.kmeans(z, 2,

 None,

 criteria,

 10, flags)

A = z[labels==0]

B = z[labels==1]

plt.hist(A, 256, [0, 256], color = 'g')

plt.hist(B, 256, [0, 256], color = 'b')

plt.hist(centers, 32, [0, 256], color = 'r')

plt.show()

Let's run the preceding program. Note that we are rerunning the calls to the
np.random.randint() functions so the dataset will be slightly different. Nevertheless,
it will have two different groups, which are highlighted as follows:

Figure 9.4 – K-means applied to one-dimensional data

Segmenting images 197

We can implement this method in two-dimensional data as follows:

import numpy as np

import cv2

from matplotlib import pyplot as plt

X = np.random.randint(25, 50, (25, 2))

Y = np.random.randint(60, 85, (25, 2))

Z = np.vstack((X, Y))

Z = np.float32(Z)

criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)

ret,label,center=cv2.kmeans(Z, 2, None, criteria,

 10, cv2.KMEANS_RANDOM_CENTERS)

A = Z[label.ravel()==0]

B = Z[label.ravel()==1]

plt.scatter(A[:,0], A[:,1])

plt.scatter(B[:,0], B[:,1], c = 'g')

plt.scatter(center[:,0], center[:,1],

 s = 80, c = 'r', marker = 's')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.show()

198 Image Restoration, Segmentation, and Depth Maps

The output is as follows:

Figure 9.5 – K-means on two-dimensional data

In the preceding output, we can clearly see our data clustered into two groups. Let's write
the code that applies the k-means clustering algorithm to a color image with the values
for the sizes of k as 2, 4, and 12:

import cv2

import matplotlib.pyplot as plt

import numpy as np

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

Z = img.reshape((-1, 3))

Z = np.float32(Z)

criteria = (cv2.TERM_CRITERIA_EPS +

 cv2.TERM_CRITERIA_MAX_ITER,

 10, 1.0)

In the preceding code, we are reading the image in color mode and reshaping it. We are
also converting it into 32-bit float format. Then, we are setting the criteria for clustering
in the last line.

Segmenting images 199

Let's compute the quantized image with the value of k as 2, as follows:

k = 2

ret, label1, center1 = cv2.kmeans(Z, k, None, criteria, 10,

 cv2.KMEANS_RANDOM_CENTERS)

center1=np.uint8(center1)

res1 = center1[label1.flatten()]

output1 = res1.reshape((img.shape))

In the previous code, we are computing the clusters with the cv2.kmeans() function
and then flattening and reshaping them after converting the data into an 8-bit integer
format.

Let's now compute the quantized image as follows with the value of k as 4:

k = 4

ret, label1, center1 = cv2.kmeans(Z, k, None, criteria, 10,

 cv2.KMEANS_RANDOM_CENTERS)

center1=np.uint8(center1)

res1 = center1[label1.flatten()]

output2 = res1.reshape((img.shape))

Let's now compute the quantized image as follows with the value of k as 12:

k = 12

ret, label1, center1 = cv2.kmeans(Z, k, None, criteria, 10,

 cv2.KMEANS_RANDOM_CENTERS)

center1=np.uint8(center1)

res1 = center1[label1.flatten()]

output3 = res1.reshape((img.shape))

Finally, let's display all the images in a grid using matplotlib:

output = [img, output1, output2, output3]

titles = ['Original Image', 'K=2', 'K=4', 'K=12']

for i in range(4):

 plt.subplot(2, 2, i+1)

 plt.imshow(output[i])

 plt.title(titles[i])

 plt.xticks([])

200 Image Restoration, Segmentation, and Depth Maps

 plt.yticks([])

plt.show()

In the preceding code, initially, we are assigning random centers to all the clusters using
the cv2.KMEANS_RANDOM_CENTERS flag. The following output of the program we
wrote has the original image and the segmented images using quantization, with 2, 4,
and 12 colors. The following is the output:

Figure 9.6 – K-means clustering and image quantization

As an exercise, run the preceding program with different values of the arguments to the
functions and compare the outputs. It will be interesting to implement this on the live video
from a webcam. Do not expect a high frame rate as it is computationally very expensive.

Comparison of k-means and the mean shift algorithm
The k-means algorithm has a time complexity of O(n). The mean shift segmentation
algorithm has a time complexity of O(n2). This difference of complexity is because the
k-means algorithm provides the number of clusters through the argument at runtime. The
mean shift segmentation algorithm must compute the number of clusters by itself at the
time of execution. In applications where we do not know the number of clusters, we must
use the mean shift algorithm. However, when we do know the number of clusters already,
it is recommended that you use the k-means algorithm as it runs considerably faster when
the number of clusters is known in advance.

Disparity maps and depth estimation 201

Disparity maps and depth estimation
Disparity refers to the difference in the location of an object in the images captured
by the left and right eyes or cameras. This difference or disparity is caused by parallax.
Our brain uses this information regarding disparity to estimate the depth of objects
(that is, their distance from us). We can compute the disparity between two images by
applying this principle to every pixel in the pair of images captured by a webcam. This
disparity information can be used to compute the estimated depth, thus mimicking the
functionality of the brains of primates.

In terms of biology, this is known as Stereoscopic Vision, which enables us to see in
three dimensions. OpenCV offers a cv2.StereoBM,compute() function that accepts
the left image and the right image as an argument and returns a disparity map of the
image pair. The StereoBM_create() function initializes the stereo state. It can have
a number of disparities and block sizes as arguments. By default, they are 0 and 21,
respectively. In the following example, we are calling this with default arguments. This
stereo state is used to calculate the map of the disparities with the cv2.StereoBM.
compute() functions. We need two images as inputs. One of these images corresponds
to the input of the right camera, and the other corresponds to the input of the left camera.
The following code demonstrates this concept using both functions:

import cv2

import matplotlib.pyplot as plt

Right= cv2.imread('/home/pi/book/dataset/imRsmall.jpg', 0)

Left = cv2.imread('/home/pi/book/dataset/imLsmall.jpg', 0)

stereo_BM_state=cv2.StereoBM_create()

output_map=stereo_BM_state.compute(Left, Right)

titles=['Left', 'Right', 'Depth Map']

output=[Left, Right, output_map]

for i in range(3):

 plt.subplot(1, 3, i+1)

 plt.imshow(output[i], cmap='gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

202 Image Restoration, Segmentation, and Depth Maps

The output of the preceding code will be as follows:

Figure 9.7 – Estimation of depth from the disparity map

In the preceding output, the brighter area in the output disparity map signifies more
disparity. It means that objects in the source input image that correspond to the brighter
areas in the output map of disparities are closer to the camera. Similarly, the darker colors
in the output map of disparities signify that the object corresponding to those areas in
the source input image is further away from the camera.

Summary
In this chapter, we learned about the concept of image inpainting and the restoration of
damaged and degraded images. Then, we demonstrated many methods for the segmentation
of images, including the mean shift algorithm and k-means clustering. Finally, we looked at
how to estimate the depths of objects in images using disparity maps. All of these techniques
are useful in many real-life applications. For example, whenever we want to send images
over the network, we can use image quantization so that it consumes less bandwidth.

In the next chapter, we will learn about a few more advanced concepts such as histograms,
the histograms of grayscale and color images, the detection of contours in images, and
mathematical morphological operations.

10
Histograms,

Contours, and
Morphological

Transformations
In the previous chapter, we learned about and demonstrated the basic- and intermediate-
level concepts surrounding the areas of image processing and computer vision.

From this chapter onward, we will learn about and demonstrate advanced concepts that
will prepare us for writing programs for applications in real life. First, we will look at
the theoretical foundations of computing histograms with an ndarray. Then, we will
learn how to compute it for grayscale and color image channels. We will also learn how
to compute and visualize contours. Finally, we will learn about various mathematical
morphological operations in detail and demonstrate how to use them with various
structuring elements. We will learn about and demonstrate the following topics:

• Computing and visualizing histograms

• Visualizing image contours

• Applying morphological transformations to images

204 Histograms, Contours, and Morphological Transformations

After completing this chapter, you will be able to comfortably work with all the concepts
discussed throughout. These concepts are very useful when it comes to writing code for
real-life applications in the area of computer vision.

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter10/programs.

Check out the following video to see the Code in Action at https://bit.
ly/2NsLkZv.

Computing and visualizing histograms
A histogram is a graphical representation of a distribution of data. Basically, it is the
graphical depiction of a frequency distribution table. Let me explain this through an
example. Suppose we have a dataset such as (1, 2, 1, 3, 4, 1, 2, 3, 4, 4, 2, 3, 4). Here,
a frequency distribution looks as follows:

Figure 10.1 – Frequency distribution

If we are to plot a bar graph so that the x axis represents elements and the y axis represents
the frequency in which they occur, then this is known as a histogram. We can use
np.histogram() to compute a histogram. plt.hist() can compute and directly
plot it. Let's write some code that will use both functions to interpret the data in the
preceding table:

import numpy as np

import matplotlib.pyplot as plt

a = np.array([1, 2, 1, 3, 4, 1, 2, 3, 4, 4, 2, 3, 4])

hist, bins = np.histogram(a)

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter10/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter10/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter10/programs
https://bit.ly/2NsLkZv
https://bit.ly/2NsLkZv

Computing and visualizing histograms 205

print(hist)

print(bins)

plt.hist(a)

plt.show()

The output looks as follows:

Figure 10.2 – Histogram of an ndarray

The graphical representation of the occurrences of shades of gray or the tones of colors is
known as the histogram of an image. In the histogram of an image, we have the values of
the shades of gray, or tones of colors, on the X-axis. The Y-axis represents the number of
occurrences of those shades of gray for a grayscale image, or the tones of colors for a
color image.

The values of the intensities of the gray or color image always range from 0 to 255 on the
X-axis. The Y-axis shows the number of pixels. For a grayscale image, the histogram is
computed for the complete image while for a color image, we compute the histograms
of color channels separately.

For a color image, we can compute a channel-wise histogram. The following program
visualizes the histogram for a grayscale image:

import numpy as np

import matplotlib.pyplot as plt

import cv2

206 Histograms, Contours, and Morphological Transformations

img = cv2.imread('/home/pi/book/dataset/boat.512.tiff', 0)

plt.subplots_adjust(hspace=0.25, wspace=0.25)

plt.subplot(1, 2, 1)

plt.imshow(img, cmap='gray')

plt.axis('off')

plt.title('Original Image')

plt.subplot(1, 2, 2)

hist, bins = np.histogram(img.ravel(),

 bins=256,

 range=(0, 255))

plt.bar(bins[:-1], hist)

plt.title('Histogram')

plt.show()

In the preceding code, the plt.subplots_adjust(hspace=0.25,
wspace=0.25) function call adjusts the horizontal and vertical spaces between the
images in the subplots. We are using np.histogram() to compute the histogram
of the image. We are using the ravel() function to flatten the image.

We know that the intensity levels of grayscale are between 0 and 255. Therefore, we are
passing the relevant arguments for the bins and range. Finally, we are using plt.bar()
to plot the histogram using the bar graph. The following is the output:

Figure 10.3 – Histogram of a grayscale image

Computing and visualizing histograms 207

We can even use the plt.hist() function to compute the same histogram. Just replace
the lines containing np.histogram() and plt.bar() with the following line:

plt.hist(img.ravel(), bins=256, range=(0, 255))

The output is as follows:

Figure 10.4 – Histogram of a grayscale image

As we can see, both methods produce the same output. We can compute the histogram for
all the channels of a color image and show them with plt.hist(), as follows:

import numpy as np

import matplotlib.pyplot as plt

import cv2

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

b = img[:, :, 0]

g = img[:, :, 1]

r = img[:, :, 2]

plt.subplots_adjust(hspace=0.5, wspace=0.25)

plt.subplot(2, 2, 1)

plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),

 cmap='gray')

208 Histograms, Contours, and Morphological Transformations

plt.axis('off')

plt.title('Original Image')

plt.subplot(2, 2, 2)

plt.hist(r.ravel(), bins=256, range=(0, 255), color='r')

plt.title('Red Histogram')

plt.subplot(2, 2, 3)

plt.hist(g.ravel(), bins=256, range=(0, 255), color='g')

plt.title('Green Histogram')

plt.subplot(2, 2, 4)

plt.hist(b.ravel(), bins=256, range=(0, 255), color='b')

plt.title('Blue Histogram')

plt.show()

The output is as follows:

Figure 10.5 – Histogram of a color image

Computing and visualizing histograms 209

OpenCV offers the cv2.calcHist() function to compute and visualize histograms
channels of color images separately. The cv2.calcHist() function accepts an image
array, mask, channel index, range, and size as arguments to compute the histogram for a
single channel of a color image. The following example demonstrates this by computing
and visualizing a histogram for each color channel separately:

import cv2

from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/dataset/house.tiff', 1)

input=cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

histr_RED = cv2.calcHist([input], [0], None, [256], [0, 255])

histr_GREEN = cv2.calcHist([input], [1], None, [256], [0, 255])

histr_BLUE = cv2.calcHist([input], [2], None, [256], [0, 255])

The preceding code computes the histograms for all the constituent channels of the input
color image. Now, let's display the histogram with matplotlib, as follows:

plt.subplot(221)

plt.imshow(input)

plt.title('Original Image')

plt.axis('off')

plt.subplot(222)

plt.plot(histr_RED, color='r'),

plt.title('Red')

plt.xlim([0, 255])

plt.yticks([])

plt.subplot(223)

plt.plot(histr_GREEN, color='g')

plt.title('Green')

plt.xlim([0, 255])

plt.yticks([])

plt.subplot(224)

plt.plot(histr_BLUE, color='b')

plt.title('Blue')

plt.xlim([0, 255])

plt.yticks([])

plt.show()

210 Histograms, Contours, and Morphological Transformations

The preceding code produces the following output. First, it shows the original image and
then it will visualize the histograms of all the color channels:

Figure 10.6 – Histogram of a color image

In the next subsection, we will learn about and demonstrate histogram equalization.

Histogram equalization
Histogram equalization is an image processing technique. It is used to improve the
contrast in an image. It spreads out the most frequent intensity values. This means that
the intensity range of the image is stretched out. This operation increases the contrast of
the lower contrast areas, which enhances the images. There are multiple ways to equalize
histograms. One option is that we can use the cv2.equalizeHist() function to
equalize the histogram globally for an image. The other method we can use is called
contrast limited adaptive histogram equalization. Unlike global histogram equalization,
it computes several histograms for different regions of an image. This is also known as
local histogram equalization:

1. In the following code, we are demonstrating how to equalize histograms for the
individual channels of an RGB image and then merging them again to get a contrast
enhanced output color image:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.2.03.tiff', 1)

Computing and visualizing histograms 211

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

R, G, B = cv2.split(img)

2. Let's equalize the color channels of the image separately and then merge the
equalized channels to create the equalized image:

output1_R = cv2.equalizeHist(R)

output1_G = cv2.equalizeHist(G)

output1_B = cv2.equalizeHist(B)

output1 = cv2.merge((output1_R,

output1_G, output1_B))

3. Now, let's use the CLAHE method to equalize the color channels and then merge
them to obtain the equalized image with CLAHE:

clahe = cv2.createCLAHE(clipLimit=2.0,

tileGridSize=(8, 8))

output2_R = clahe.apply(R)

output2_G = clahe.apply(G)

output2_B = clahe.apply(B)

output2 = cv2.merge((output2_R, output2_G,

output2_B))

output = [img, output1, output2]

titles = ['Original Image',

'Adjusted Histogram', 'CLAHE']

for i in range(3):

plt.subplot(1, 3, i+1)

plt.imshow(output[i])

plt.title(titles[i])

plt.axis('off')

plt.show()

212 Histograms, Contours, and Morphological Transformations

The output of both methods is as follows. The first one is the original image, the
second one is the histogram adjusted image, and the third image is a histogram
equalized image that was produced with CLAHE:

Figure 10.7 – Histogram equalization

In the next section, we will learn and demonstrate how to visualize image contours.

Visualizing image contours
A curve that joins all the points that lie continuously along the boundary that have
the same value as the color of the pixels is known as a contour. Contours are used for
detecting the boundaries in an image. Contours are also used for image segmentation.
Contours are usually computed using edges in an image. However, contours are closed
curves and that is their main distinction from the edges in an image. It is always a good
idea to apply the thresholding operation to an image before we extract contours from
an image. It will increase the accuracy of the computation of the contour operation.

The cv2.findContours() function is used to compute the contours in an image.
This function accepts an image array, the mode of the retrieval of the contours, and the
method for the approximation of contours as arguments. It then returns a list of computer
contours in the image. The contour retrieval mode can be any of the following:

• CV_RETR_CCOMP

• CV_RETR_TREE

• CV_RETR_EXTERNAL

• CV_RETR_LIST

The method for the approximation of the contours can be any of the following:

• CV_CHAIN_APPROX_TC89_L1

• CV_CHAIN_APPROX_TC89_KCOS

Visualizing image contours 213

• CV_CHAIN_APPROX_NONE

• CV_CHAIN_APPROX_SIMPLE

Once we've computed all the contours with the cv2.findContours() function,
they can be visualized with the cv2.drawContours() function. We have already
learned about and demonstrated the functions we can use to draw lines, circles, and
other geometric shapes in Chapter 4, Getting Started with Computer Vision. The cv2.
drawContours() function works in the same way. This function accepts the image
array where contours are to be visualized, the list of detected contours using the cv2.
findContours() function, the index of the contour to be drawn (we have to pass -1
as an argument for this parameter in order to draw all the contours in the image), and the
color and the thickness of the contour as arguments. The following program computes
and visualizes all the contours in an image:

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 1)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray, 75, 255, 0)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,

 cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img, contours, -1, (0, 0, 255), 2)

original = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 1)

original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB)

output = [original, img]

titles = ['Original', 'Contours']

for i in range(2):

 plt.subplot(1, 2, i+1)

 plt.imshow(output[i])

 plt.title(titles[i])

 plt.axis('off')

plt.show()

214 Histograms, Contours, and Morphological Transformations

The output is as follows:

Figure 10.8 – Contours in a color image

In order to explore the concept of contours further and understand it better, write a few
programs that use the cv2.findContours() and cv2.drawContours() functions
with the different combinations of methods, colors, and modes. Then, compare all the
output images with each other.

Applying morphological transformations
to images
Morphological operations are mathematical in nature and they change the shape of an
image. These operations can best be demonstrated visually with binary images. We can
apply morphological operations to eliminate a lot of unnecessary information, such as
noise, in an image. A morphological operation accepts an image and a kernel as inputs.
We will create a custom binary image as a binary image since this is the most suitable
way to visually demonstrate morphological operations.

The mathematical morphological operation of erosion contracts the boundaries in an
image. In a binary image, the white part is considered the foreground and the black part
is considered the background. The erosion operation sets all the pixels on the boundary
of the background part that is white to black, thus effectively shrinking the white region.
Morphological dilation is the exact opposite of the erosion operation. It adds the white
pixels near the boundary of the foreground, so it effectively expands the white foreground
in the image. The intensity of any morphological operation depends on the type and size
of the kernel used in the operation and the number of times the operation is performed
on an image. The morphological gradient operation is the computed difference between
the dilation operation and the erosion operation.

Applying morphological transformations to images 215

Let's take a look at a few morphological operations in action. Now, let's import all the
required libraries:

import numpy as np

import cv2

from matplotlib import pyplot as plt

Let us create a sample image,img = np.array([[0, 0, 0, 0, 0, 0,
0],

 [0, 0, 0, 0, 0, 0, 0],

 [0, 0, 255, 255, 255, 0, 0],

 [0, 0, 255, 255, 255, 0, 0],

 [0, 0, 255, 255, 255, 0, 0],

 [0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8)

Let's create a kernel and compute the morphological operations:

kernel = np.ones((3, 3), np.uint8)

erosion = cv2.erode(img, kernel, iterations = 1)

dilation = cv2.dilate(img, kernel, iterations = 1)

gradient = cv2.morphologyEx(img,

 cv2.MORPH_GRADIENT,

 kernel)

titles=['Original', 'Erosion',

 'Dilation', 'Gradient']

output=[img, erosion, dilation, gradient]

Finally, let's visualize the computed outputs:

for i in range(4):

 plt.subplot(2, 2, i+1)

 plt.imshow(output[i], cmap='gray')

 plt.title(titles[i])

 plt.axis('off')

plt.show()

216 Histograms, Contours, and Morphological Transformations

The output of the preceding code is as follows:

Figure 10.9 – Morphological operations

In the previous example, we first created a custom image to act as the source or the
input. Then, we created a kernel that's 3x3 in size and applied it to the source image
for all the mathematical morphological operations. OpenCV provides the cv2.
getStructuringElement() function, which returns a custom kernel of the given
shape and size in the arguments. The shape could be one of the values from cv2.MORPH_
CROSS, cv2.MORPH_RECT, or cv2.MORPH_ELLIPSE. Also, the size that's passed
must be an odd positive integer. You may want to print and see the values in the matrices
that are used to represent the images in order to understand what exactly happens with
numbers. Now, let's look at the various structuring elements:

1. Open Python 3 in interactive mode and run the following statements:

>>> import cv2

>>> k = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

>>> k

The output is as follows:
array([[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1]], dtype=uint8)

Applying morphological transformations to images 217

2. Let's look at an elliptical structural element:

>>> k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,
5))

>>> k

The output is as follows:
array([[0, 0, 1, 0, 0],

[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1],

[0, 0, 1, 0, 0]], dtype=uint8)

3. Let's look at a cross-structural element:

>>> k = cv2.getStructuringElement(cv2.MORPH_CROSS,(5, 5))

>>> k

The output is as follows:
array([[0, 0, 1, 0, 0],

 [0, 0, 1, 0, 0],

 [1, 1, 1, 1, 1],

 [0, 0, 1, 0, 0],

 [0, 0, 1, 0, 0]], dtype=uint8)

Let's look at the remaining morphological operations by using a custom 3x3
cross kernel.

4. Let's import all the necessary libraries:

import numpy as np

import cv2

from matplotlib import pyplot as plt

5. The following lines create a sample binary image:

img = np.array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],

[0, 0, 255, 255, 255, 0, 0],

[0, 0, 255, 255, 255, 0, 0],

[0, 0, 255, 255, 255, 0, 0],

218 Histograms, Contours, and Morphological Transformations

[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8)

6. Let's now create the matrix for the structuring element:

kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,
3))

7. Let's now apply the mathematical morphological operations to the sample
binary image:

open = cv2.morphologyEx(img,

cv2.MORPH_OPEN,

kernel)

close = cv2.morphologyEx(img,

cv2.MORPH_CLOSE,

kernel)

tophat = cv2.morphologyEx(img,

cv2.MORPH_TOPHAT,

kernel)

blackhat = cv2.morphologyEx(img,

cv2.MORPH_BLACKHAT,

kernel)

hitmiss = cv2.morphologyEx(img,

cv2.MORPH_HITMISS,

kernel)

8. Let's now visualize the input and the output:

titles=['Original', 'Open',

'Close', 'Top hat',

'Black hat', 'Hit Miss']

output=[img, open, close,

tophat, blackhat,

hitmiss]

for i in range(6):

plt.subplot(2, 3, i+1)

plt.imshow(output[i], cmap='gray')

Summary 219

plt.title(titles[i])

plt.axis('off')

plt.show()

The output of the preceding code is as follows:

Figure 10.10 – More morphological operations

Let's understand the meaning of the operations we demonstrated here. Erosion followed
by dilation is known as opening. Dilation followed by erosion is known as opening. Top
hat extracts small elements and details from images. Top hat is the difference between the
input image and the opening of the image. Black hat is the difference between the closing
of the image and the image itself. Finally, hit-or-miss is an operation that detects a given
configuration or pattern in a binary image.

Summary
In this chapter, we learned and demonstrated the concepts of histograms in general and
saw how to create a simple histogram from a simple single-dimensional array. Then, we
saw how to visualize a histogram for grayscale and color images. We also demonstrated
how to use image contours. Finally, we visually demonstrated the operations that are
performed in the area of mathematical morphology. These morphological operations
will be extremely useful for real-life applications, some of which we will demonstrate
in Chapter 11, Real-Life Applications of Computer Vision.

In the next chapter, we will demonstrate many of the concepts we learned in this and the
earlier chapters by building real-life applications such as movement detectors, chroma
keys with a green screen, and barcode detection in still images. It will be an exciting and
interesting chapter that culminates all the knowledge we have gained so far.

11
Real-Life

Applications of
Computer Vision

In the previous chapter, we studied various advanced concepts in computer vision such as
morphological operations and contours.

This chapter is the culmination of all the computer vision concepts we've learned and
demonstrated in the earlier chapters. In this chapter, we will use the computer vision
operation we learned about earlier in detail to implement a few real-life projects. We will
also learn about a few new concepts such as background subtraction and the computation
of optical flow and then demonstrate them for small applications. This chapter contains a
lot of hands-on programming examples, as well as detailed explanations of the code and
new functionality.

222 Real-Life Applications of Computer Vision

In this chapter, we will learn and demonstrate the code for the following topics:

• Implementing the Max RGB filter

• Implementing background subtraction

• Computing the optical flow

• Detecting and tracking motion

• Detecting barcodes in images

• Implementing the chroma key effect

After completing this chapter, you will be able to implement the concepts you've learned
about to create real-life applications such as security systems and motion detection
systems using the Raspberry Pi (RPi) and some camera sensors.

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter11/programs.

Check out the following video to see the Code in Action at https://bit.ly/2Z43syb.

Implementing the Max RGB filter
We know that filters allow and block signals or data, depending on some criteria. Let's
manually write the code for implementing a special filter based on the value of the
intensity of the colors of pixels. This is known as the Max RGB filter. In a Max RGB filter,
we compare the intensities of all the color channels of a color image for every pixel.

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter11/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter11/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter11/programs
https://bit.ly/2Z43syb

Implementing the Max RGB filter 223

Then, we keep the intensity of the channel(s) with the maximum intensity and reduce
the intensities of all the other channels to zero. This happens for every pixel in an image.
Suppose, for a pixel, the intensities are (30, 200, 120). Then, after applying the Max RGB
filter, it will be (0, 200, 0). Let's take a look at a program that will implement this with the
NumPy and OpenCV functions:

import cv2

import numpy as np

def maxRGB(img):

 b = img[:, :, 0]

 g = img[:, :, 1]

 r = img[:, :, 2]

 M = np.maximum(np.maximum(b, g), r)

 b[b < M] = 0

 g[g < M] = 0

 r[r < M] = 0

 return(cv2.merge((b, g, r)))

cap = cv2.VideoCapture(0)

while True:

 ret, frame = cap.read()

 cv2.imshow('Max RGB Filter', maxRGB(frame))

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

224 Real-Life Applications of Computer Vision

Run the preceding program and view the output. It is interesting to see the filtered live
feed. The output looks as follows:

Figure 11.1 – Output of a Max RGB filter

In the next section, we will learn and demonstrate the concept of background subtraction.

Implementing background subtraction
Static cameras are used in many applications, such as security and monitoring. We
can separate the background and moving objects by applying a process known as
background subtraction. It usually returns a binary image with the background (the
static part of the scene) in black pixels and the moving (changing or dynamic) parts
in white pixels. OpenCV can implement this through two algorithms. The first is
createBackgroundSubtractorKNN(). This creates a K-Nearest Neighbour (KNN)
background subtractor object. Then, we can call the apply() function with the object to
obtain the foreground mask. We can directly display the foreground mask in real time.

Implementing background subtraction 225

The following is a demonstration of how to use it:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

fgbg = cv2.createBackgroundSubtractorKNN()

while(True):

 ret, frame = cap.read()

 fgmask = fgbg.apply(frame)

 cv2.imshow('frame', fgmask)

 if cv2.waitKey(30) == 27:

 break

cap.release()

cv2.destroyAllWindows()

The output is a binary video stream, as shown in the following screenshot. I am waving my
hand, which is highlighted by white pixels:

Figure 10.2 – Background subtraction with KNN

226 Real-Life Applications of Computer Vision

Note that if you keep your hand still for some time, OpenCV will consider it as a part of
the background and will slowly dissolve it in the output.

Another similar function is cv2.createBackgroundSubtractorMOG2(). This
also generates the foreground mask using the apply() function. The following is a
sample program using it:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

fgbg = cv2.createBackgroundSubtractorMOG2()

while(True):

 ret, frame = cap.read()

 fgmask = fgbg.apply(frame)

 cv2.imshow('frame', fgmask)

 if cv2.waitKey(30) == 27:

 break

cap.release()

cv2.destroyAllWindows()

Run the preceding program and view the output. In both programs, we are creating
the fgbg object and using the apply() function to compute the foreground mask,
that is, fgmask. Then, we are just displaying the foreground mask in real time with the
imshow() function. The expected output of this code can be seen in the preceding
screenshot. Run the program and view the output for yourself.

Computing the optical flow
Optical flow (also known as optic flow) is the pattern that appears in the motion of
objects in a video (live or recorded). Pay attention to the word appearance in the previous
sentence. This means that if the observer (in our case, the camera) is in motion, then the
objects in the scene are also considered to be moving, even if they are static. This is known
as relative motion. In brief, the optical flow highlights the relative motion in the video.
OpenCV has implementations for many of the functions that can compute the optical
flow. The cv2.calcOpticalFlowFarneback() function computes the optical flow
with the dense method. This means that it computes the flow for all the points. This
function implements the Gunner Farneback algorithm.

Computing the optical flow 227

NOTE:
You can read more about the Gunner Farneback argument at the following
URL:

http://www.diva-portal.org/smash/get/diva2:273847/
FULLTEXT01.pdfTwo-Frame

Let's see how we can compute the optical flow with OpenCV and Python 3 with the
following code:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

ret, frame1 = cap.read()

prvs = cv2.cvtColor(frame1,

 cv2.COLOR_BGR2GRAY)

hsv = np.zeros_like(frame1)

hsv[..., 1] = 255

while(cap):

 ret, frame2 = cap.read()

 next = cv2.cvtColor(frame2,

 cv2.COLOR_BGR2GRAY)

 flow = cv2.calcOpticalFlowFarneback(prvs,

 next,

 None, 0.5,

 3, 15,

 3, 5,

 1.2, 0)

 mag, ang = cv2.cartToPolar(flow[..., 0],

 flow[..., 1])

 hsv[..., 0] = ang * 180/np.pi/2

 hsv[..., 2] = cv2.normalize(mag, None, 0,

 255, cv2.NORM_MINMAX)

 rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

 cv2.imshow('Optical Flow', rgb)

 if cv2.waitKey(1) == 27:

 break

 prvs = next

228 Real-Life Applications of Computer Vision

cap.release()

cv2.destroyAllWindows()

In the preceding program, cv2.calcOpticalFlowFarneback() returns the
coordinates of flow in the XY (Cartesian) system. We then convert it into polar with
the cv2.cartToPolar() function. Then, the hue shows the angle of the motion and
the value shows the intensity of the motion in the final HSV frame, which is converted
into BGR and shown as output. The output will look like what's shown in the preceding
screenshot. The only difference will be that the optical flow will be denoted by various
colors.

The concept of the optical flow has applications in the following areas:

• Object detection and tracking

• Movement detection and tracking

• Navigation of robots

Detecting and tracking motion
Let's build a system for detecting and tracking motion in real time with the RPi, OpenCV,
and Python. We will use a very simple technique to detect motion. Basically, we will
compute the difference between the successive frames of a video feed (a video file or a live
feed from a USB webcam). Then, we will plot contours around the area of pixels where we
wish to detect the difference between successive frames:

1. We will begin by importing OpenCV and NumPy. Also, initialize an object
corresponding to the USB webcam:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

2. We will apply the dilation operation to the frames in the video. We need a kernel for
that. We will define it before the video loop. Let's define it as follows:

k = np.ones((3, 3), np.uint8)

3. The following code captures and stores the successive frames in separate variables:

t0 = cap.read()[1]

t1 = cap.read()[1]

Detecting and tracking motion 229

4. Now, let's write the block for the while loop. In this block, we compute the
absolute difference between the frames we captured earlier. We are going to use the
cv2.absdiff() function for this. Then, we will convert the computed absolute
difference into grayscale to process it further:

while(True):

d=cv2.absdiff(t1, t0)

grey = cv2.cvtColor(d, cv2.COLOR_BGR2GRAY)

The following is the output of the preceding code. It shows the grayscale of the
absolute difference between the successively captured frames:

Figure 11.3 – Absolute difference between successive frames

5. The output that we computed in the previous step has some noise. Due to this, we
must blur it first with the Gaussian blurring technique to remove the noise:

blur = cv2.GaussianBlur(grey, (3, 3), 0)

230 Real-Life Applications of Computer Vision

6. We apply the technique of binary thresholding to transform the blurred output from
the previous step into a binary image for further processing with the following code:

ret, th = cv2.threshold(blur, 15, 255, cv2.THRESH_BINARY)

7. Now, let's apply the dilation morphological operation to this binary image. This
makes it easy to detect the boundaries in the thresholded image:

dilated = cv2.dilate(th, k, iterations=2)

The following is the output of the dilation operation:

Figure 11.4 – Dilated output

8. Let's go ahead and find the contours in the dilated image:

contours, hierarchy = cv2.findContour(dilated,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

t2=t0

cv2.drawContours(t2, contours, -1, (0, 255, 0), 2)

cv2.imshow('Output', t2)

Detecting and tracking motion 231

9. Now, let's copy the latest frame to the variable holding the older frame and then
capture the next frame with the webcam:

t0=t1

t1=cap.read()[1]

We end the while loop when the Esc key on the keyboard is pressed:
if cv2.waitKey(5) == 27 :

break

Once the while loop ends, we perform the usual cleaning-up tasks such as
releasing the camera capture object and destroying the display window:

cap.release()

cv2.destroyAllWindows()

The following is the output of executing the program:

Figure 11.5 – Detected and highlighted movement

232 Real-Life Applications of Computer Vision

Keep in mind that this code is computationally expensive. Do not expect a very high
framerate on the older and non-overclocked models of the RPi. As an exercise, draw
contours of different colors. We can also compute the centroid with the help of the cv2.
moments() function and represent those with small circles. This will make the output
more interesting.

Detecting barcodes in images
A barcode is a way that information is represented visually and is easy to understand for
purpose-made machines. There are many barcode formats. The usual format has parallel
vertical lines of different thicknesses and different amounts of space in between them.

In this section, we will demonstrate how to detect a simple parallel-lines formatted
barcode from a still image. We will use the following image of a soda can:

Figure 11.6 – The original source image

1. Let's read the source image of a soda can using the following code:

import numpy as np

import cv2

image=cv2.imread('/home/pi/book/dataset/barcode.jpeg', 1)

input = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Detecting barcodes in images 233

2. The horizontal image of a barcode has a low and a high vertical gradient. So, the
candidate image must have the region that fits this criterion. We will use the
cv2.Sobel() function to compute the horizontal and vertical derivatives and
then compute the difference to find out the region that fits the criteria. Let's see
how to do that:

hor_der = cv2.Sobel(input, ddepth=-1, dx=1, dy=0, ksize =
5)

ver_der = cv2.Sobel(input, ddepth=-1, dx=0, dy=1,
ksize=5)

diff = cv2.subtract(hor_der, ver_der)

3. OpenCV provides the cv2.convertScaleAbs() function. It converts any
numeric array into an array of 8-bit unsigned integers. Let's use it, as follows:

diff = cv2.convertScaleAbs(diff)

The output is as follows:

Figure 11.7 – Difference between horizontal and vertical Sobel derivatives

4. The preceding output shows regions with very horizontal and very low vertical
gradients. Let's apply a Gaussian blur to remove noise from the preceding output.
Use the following code to do so:

blur = cv2.GaussianBlur(diff, (3, 3), 0)

234 Real-Life Applications of Computer Vision

The following is the output of the preceding code:

Figure 11.8 – After applying a Gaussian blur

5. Now, let's convert this image into a binary image by applying thresholding to it. The
following is the code to do so:

ret, th = cv2.threshold(blur, 225, 255, cv2.THRESH_
BINARY)

The following is the output binary image:

Figure 11.9 – Binary output

Detecting barcodes in images 235

6. As shown in the preceding image, it is a binary image with the barcode and other
high vertical gradient areas highlighted. We can dilate the image for further
processing. It fills in the gap in between the vertical lines:

dilated = cv2.dilate(th, None, iterations = 10)

The output of the preceding code contains a lot of rectangle-shaped boxes
corresponding to the barcode and other regions in the original image. We are
interested in the region containing the barcode, not the other regions:

Figure 11.10 – Dilated binary output

7. The morphological erosion operation will eliminate most of the other regions that
do not correspond to the barcode:

eroded = cv2.erode(dilated, None, iterations = 15)

236 Real-Life Applications of Computer Vision

The following is the output of the preceding code:

Fig.11.11 – Eroded image

8. Let's find the list of all the contours in this computed binary image. Use the
following code to do so:

(contours, hierarchy) = cv2.findContours(eroded, cv2.
RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

9. The biggest contour in this binary image is the contour corresponding to the region
of the barcode. The following code finds the biggest contour in the image:

areas = [cv2.contourArea(temp) for temp in contours]

max_index = np.argmax(areas)

largest_contour = contours[max_index]

10. Let's retrieve the coordinates of the bounding rectangle of the biggest contour with
the OpenCV cv2.boundingRect() function and then draw the rectangle in
the image:

x, y, width, height = cv2.boundingRect(largest_contour)

cv2.rectangle(image, (x, y), (x+width,
y+height),(0,255,0), 2)

cv2.imshow('Detected Barcode',image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Detecting barcodes in images 237

The preceding code draws the bounding rectangle over the area corresponding to
the biggest contour in the image (which is the region of the barcode), as shown in
the following output:

Figure 11.12 – Detected barcode
As shown in the previous screenshot, the approximate region with the barcode is
outlined with a blue colored rectangle. This same code may not work with a lot of
images, but it works with most images. We may have to tune the code to detect the
regions with barcodes in the other images. You might want to change the following
lines of code for the specific inputs:

blur = cv2.GaussianBlur(diff, (3, 3), 0)

dilated = cv2.dilate(th, None, iterations = 10)

eroded = cv2.erode(dilated, None, iterations = 15)

Based on this program, we can create many real-life applications. The first
application is a barcode region detector for a live video feed from a USB webcam.
The other application we can create is a generic program to detect barcodes. To tune
the arguments that are passed to the functions, we can use trackbars.

In the next section, we will learn how to apply film-style chroma keying with OpenCV
and Python 3 using the RPi and a USB webcam.

238 Real-Life Applications of Computer Vision

Implementing the chroma key effect
Chroma keying is also known as chroma key compositing. It is also colloquially known
as the green screen or blue screen effect due to the green or blue background that we use
while creating this effect. It is a post-production technique and can also be used on still
images and live videos. In the chroma key effect, we place an object or a person in the
foreground and capture an image or footage. The background is usually a green- or
blue-colored fabric or wall. Then, we replace the green or blue color in the captured image
or footage with another video or an image. This makes the viewers feel that the person
or the object in the foreground is at a different location than the studio where they were
filmed. This effect is one of the most used effects in film-making and live weather forecasts
in news broadcasts:

1. Let's start by importing all the needed libraries and initiating a video capture object:

import numpy as np

import cv2

cap = cv2.VideoCapture(0)

2. To obtain the better frame rate or frames per second (FPS), let's set the resolution
of the USB webcam to 640x480 pixels. This will yield a better frame rate and the
green screen effect will look natural:

cap.set(3, 640)

cap.set(4, 480)

3. In the next step, we read the image that is to be used as the background. The image
to be used as the background must have the same resolution as the resolution
the webcam is set to. In this case, we have set it to 640x480. We know that all the
arithmetic and logical operations that we will perform on NumPy arrays (in this
case, the background image and the frames of the live feed from the USB webcam
connected to the RPi) need the operand arrays to be of the same dimensions;
otherwise, the Python 3 interpreter will throw an error. The following is the code
for this:

bg = cv2.imread('/home/pi/book/dataset/bg.jpg', 1)

4. Let's write the familiar logic for the loop and read the frames of the live feed from
the USB webcam, as follows:

while True:

ret, frame = cap.read()

Implementing the chroma key effect 239

We can use a green colored cloth (such as a curtain) or paper as the background for
this demonstration. We will also use the box of the RPi camera module as the object
in the foreground. The following is a photo of the original scene:

Figure 11.13 – Input video

5. As we discussed in Chapter 6, Colorspaces, Transformations, and Thresholding, when
we need to work with color ranges, the HSV colorspace is the best way to represent
colors. Let's convert the image into the HSV colorspace and then compute the mask
for the green screen in the background with the following code:

hsv=cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

image_mask=cv2.inRange(hsv, np.array([40, 50, 50]),

np.array([80, 255, 255]))

240 Real-Life Applications of Computer Vision

This computes the mask for the image. The pixels in green (or any shade of it) are
replaced with color and the remaining pixels are replaced with black:

Figure 11.14 – Computing the mask

6. After computing the mask corresponding to the background image, we can
apply the mask to the image in the background in order to hide the object in the
foreground with the black pixels, as follows:

bg_mask=cv2.bitwise_and(bg, bg, mask=image_mask)

Implementing the chroma key effect 241

The preceding code replaces the white pixels with the pixels of the image we chose
as the background. Also, the pixels corresponding to the foreground are in black, as
shown in the following output:

Figure 11.15 – White pixels in the mask replaced with the background

7. Now, we must extract the foreground from the live feed of the USB webcam. We can
do this with the following code:

fg_mask=cv2.bitwise_and(frame, frame, mask=cv2.bitwise_
not(image_mask))

242 Real-Life Applications of Computer Vision

The preceding code extracts all the pixels that are not green (or shades of it). It
 also assigns the color black to the pixels that correspond to the background (the
green screen):

Figure 11.16 – Black pixels in the mask replaced with the foreground

8. Now, it is time for us to add the last two outputs we computed. This will replace the
green background with the custom image and produce the chroma key effect:

cv2.imshow('Output', cv2.add(bg_mask, fg_mask))

if cv2.waitKey(1) == 27:

break

cv2.destroyAllWindows()

cap.release()

Implementing the chroma key effect 243

The following is the final output:

Figure 11.17 – Final output

Congratulations! We have managed to achieve a film-style chroma key effect with our RPi
camera module box and a green cloth. We can see that the effect is imperfect. This is due
to imperfect illumination. The webcam is not registering a few pixels as green pixels, but
pixels of another color. The remedy to this is to have good and uniform illumination for
the green background and foreground object.

The simple rule to be followed while implementing the chroma key effect is that the object
we are chroma keying must not be the same color as the background screen. So, if we are
using a green colored background, then neither the object nor any of its part can be green.
The same is true for a blue background screen.

244 Real-Life Applications of Computer Vision

Summary
In this chapter, have learned how to demonstrate real-life applications using the concepts
and techniques in computer vision we learned about in the previous chapters of this book.
With the concepts we learned in this chapter, we can write a program for creating a simple
security application.

From here on out, using the knowledge we've gained from the experiments in this book,
we can explore the areas of image processing and computer vision with OpenCV in more
detail. Our journey surrounding the OpenCV library concludes here.

In the next chapter, we will learn how to use another powerful, yet very easy to use,
computer vision library for Python called Mahotas. We will also learn and demonstrate
how to use Jupyter Notebook for scientific programming with Python 3.

12
Working with

Mahotas and Jupyter
In the previous chapter, we learned about and demonstrated the use of real-life
applications in the area of computer vision using Raspberry Pi with OpenCV and
Python 3 programming.

In this chapter, we are going to learn the basics of another computer vision library—
Mahotas. We are also going to have a look at a Jupyter project and understand how
we can use the Jupyter Notebook for Python 3 programming. The topics we will learn
in this chapter are as follows:

• Processing images with Mahotas

• Combining Mahotas and OpenCV

• Other popular image processing libraries

• Exploring the Jupyter Notebook for Python 3 programming

After following this chapter, you will be comfortable with using Mahotas for image
processing. You will also be able to confidently run Python 3 programs with the
Jupyter Notebook.

246 Working with Mahotas and Jupyter

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Chapter12/programs.

Check out the following video to see the Code in Action at https://bit.ly/3fWRYDB.

Processing images with Mahotas
Mahotas is a Python library for image processing and computer vision-related tasks. It was
developed by Luis Pedro.

It implements many computer vision-related algorithms. It has been implemented in C++
and it operates on NumPy arrays. It also has a clean interface for Python 3.

Mahotas currently has over 100 functions for image processing and computer vision, and
that number keeps growing with every release. This project is under active development
and there is a new release every few months. Apart from the added functionality, every
new release brings improvements in performance.

Note:
You can learn more about Mahotas by referring to https://mahotas.
readthedocs.io/en/latest/.

We can install mahotas on Raspberry Pi with the following command:

pip3 install mahotas

A component of Mahotas will be installed in /home/pi/.local/bin. We can add this
to the PATH variable permanently, as follows:

1. Open the ~/.profile file in editing mode by running the following command:

nano ~/.profile

2. Add the following line to the end:

PATH='$PATH:/home/pi/.local/bin'

3. Reboot Raspberry Pi:

sudo reboot

We can verify whether mahotas has been installed successfully by running the following
command on Command Prompt:

python3 -c 'import mahotas'

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter12/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter12/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Chapter12/programs
https://bit.ly/3fWRYDB
https://mahotas.readthedocs.io/en/latest/
https://mahotas.readthedocs.io/en/latest/

Processing images with Mahotas 247

If this command doesn't return an error, then the installation is successful. Now, let's look
at creating some programs with Mahotas.

Reading images and built-in images
Mahotas has many built-in images. Let's see how to use them. Look at the following code:

import matplotlib.pyplot as plt
import mahotas
photo = mahotas.demos.load('luispedro')
plt.imshow(photo)
plt.axis('off')
plt.show()

In the preceding code, mahotas.demos.load() is used for loading built-in images
to a NumPy array. luispedro is an image of the author of the library. Unlike OpenCV,
Mahotas reads and stores color images in RGB format. We can also load and display the
image in grayscale mode, as follows:

photo = mahotas.demos.load('luispedro', as_grey=True)

plt.imshow(photo, cmap='gray')

We can load other library images, as follows:

photo = mahotas.demos.load('nuclear')

photo = mahotas.demos.load('lena')

photo = mahotas.demos.load('DepartmentStore')

We can also read the images stored on a disk, as follows:

photo= mahotas.imread('/home/pi/book/dataset/4.1.01.tiff')

This function works in the same way as the cv2.imread() OpenCV function.

Thresholding images
We already know the basics of thresholding. We can threshold a grayscale image by using
a couple of functions available in mahotas. Let's demonstrate Otsu's binarization:

import matplotlib.pyplot as plt
import numpy as np
import mahotas
photo = mahotas.demos.load('luispedro', as_grey=True)

248 Working with Mahotas and Jupyter

photo = photo.astype(np.uint8)
T_otsu = mahotas.otsu(photo)
plt.imshow(photo > T_otsu, cmap='gray')
plt.axis('off')
plt.show()

The mahotas.otsu() function accepts a grayscale image as an argument and returns
the value of the threshold. The photo > T_otsu code returns the thresholded image.
The following is the output:

Figure 12.1 – Otsu's binarization

We can perform thresholding with the Riddler-Calvard method, too, as follows:

T_rc = mahotas.rc(photo)
plt.imshow(photo > T_rc, cmap='gray')

The mahotas.rc() function accepts a grayscale image as an argument and returns the
value of the threshold. The photo > T_rc code returns the thresholded image. Run this
and check the output. It will show us a thresholded image with the Riddler-Calvard method.

The distance transform
The distance transform is a morphological operation. It is best visualized with binary
(0 and 1) images. It transforms binary images into grayscale images in such a way that
the grayscale intensity of a point visualizes its distance from the boundary in the image.
The mahotas.distance() function accepts an image and computes the distance
transform. Let's look at an example:

import matplotlib.pyplot as plt

import numpy as np

Processing images with Mahotas 249

import mahotas

f = np.ones((256, 256), bool)

f[64:191, 64:191] = False

plt.subplot(121)

plt.imshow(f, cmap='gray')

plt.title('Original Image')

dmap = mahotas.distance(f)

plt.subplot(122)

plt.imshow(dmap, cmap='gray')

plt.title('Distance Transform')

plt.show()

This creates a custom image of a square filled with the color black against a white
background. Then, it computes the distance transform and visualizes it. This produces
the following output:

Figure 12.2 – Distance transform demonstration

Colorspace
We can convert an RGB image into sepia, as follows:

import matplotlib.pyplot as plt

import mahotas

photo = mahotas.demos.load('luispedro')

250 Working with Mahotas and Jupyter

photo = mahotas.colors.rgb2sepia(photo)

plt.imshow(photo)

plt.axis('off')

plt.show()

The preceding code reads a grayscale image from the library and converts it into an image
with sepia colorspace using the call of the rgb2sepia() function. It accepts an image
as an argument and returns the converted image. The following is the output of the
previous program:

Figure 12.3 – A sepia image

In the next section, we will learn how we can combine the code for Mahotas and OpenCV.

Combining Mahotas and OpenCV
Just like OpenCV, Mahotas uses NumPy arrays to store and process images. We can also
combine OpenCV and Mahotas. Let's see an example of this, as follows:

import cv2

import numpy as np

import mahotas as mh

cap = cv2.VideoCapture(0)

while True:

Combining Mahotas and OpenCV 251

 ret, frame = cap.read()

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 T_otsu = mh.otsu(frame)

 output = frame > T_otsu

 output = output.astype(np.uint8) * 255

 cv2.imshow('Output', output)

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

cap.release()

In the preceding program, we converted a live frame into a grayscale version. Then, we
applied a Mahotas implementation of Otsu's binarization, which converted the frame
from the live video feed into a Boolean binary image. We need to convert this to the
np.uint8 type and multiply it by 255 (all of which takes the form of ones in binary
8-bit) so that we can use it with cv2.imshow(). The output is as follows:

Figure 12.4 – A screenshot of the output window

We usually use the OpenCV functionality to read the live feed from the USB webcam.
Then, we can use the functions from Mahotas, or any other image processing library,
to process the frame. This way, we can combine the code from two different image
processing libraries.

252 Working with Mahotas and Jupyter

In the next section, we will learn the names and URLs of a few other Python image
processing libraries.

Other popular image processing libraries
Python 3 has many third-party libraries. Many of these libraries use NumPy for
processing images. Let's have a look at a list of the available libraries:

• skimage (https://scikit-image.org/)

• SimplelTK (http://www.simpleitk.org/)

• scipy.ndimage (https://docs.scipy.org/doc/scipy/reference/
ndimage.html)

These are all NumPy-based image processing libraries. The Python imaging library
and its well-maintained fork, pillow (https://pillow.readthedocs.io/en/
stable/), are non-NumPy-based image manipulation libraries. They also have interfaces
to convert images between the NumPy and PIL image formats.

We can combine code that uses various libraries to create various computer vision
applications with the desired functionality.

In the next section, we will explore the Jupyter Notebook.

Exploring the Jupyter Notebook for Python 3
programming
The Jupyter Notebook is a web-based interactive interface that works like the interactive
mode of Python 3. The Jupyter Notebook has 40 programming languages, including
Python 3, R, Scala, and Julia. It provides an interactive environment for programming
that can have visualizations, rich text, code, and other components, too.

Jupyter is a fork of the IPython project. All the language-agnostic parts of IPython were
moved to Jupyter and the Python-related functionality of Jupyter is provided by an
IPython kernel. Let's see how we can install Jupyter on Raspberry Pi:

1. Run the following commands one by one in Command Prompt:

sudo pip3 uninstall ipykernel

The previous command uninstalls the earlier version of the ipykernel utility.

https://scikit-image.org/
http://www.simpleitk.org/
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://docs.scipy.org/doc/scipy/reference/ndimage.html

Exploring the Jupyter Notebook for Python 3 programming 253

2. The following commands install all the required libraries:

sudo pip3 install ipykernel==4.8.0

sudo pip3 install jupyter

sudo pip3 install prompt-toolkit==2.0.5

These commands will install Jupyter and the required components on Raspberry Pi.
To launch the Jupyter Notebook, log in to Raspberry Pi's graphical environment (directly
or using Remote Desktop) and run the following command in lxterminal:

jupyter notebook

This will launch the Jupyter Notebook server process and open a web browser window
with a Jupyter Notebook interface, as follows:

Figure 12.5 – The startup directory

254 Working with Mahotas and Jupyter

The previous screenshot shows us the directory structure of the directory where we ran
the command to launch. I ran it in the directory for the code for our current chapter, /
home/pi/book/chapter12. The LXTerminal window where we ran the command
shows the server log, as follows:

Figure 12.6 – The Jupyter Notebook server log

Now, let's get back to the browser window that is running Jupyter. In the top-right corner
of the browser window, we have options to log out and quit. Below that, we can see the
Upload button, the New drop-down menu, and the refresh symbol.

On the right-hand side, we can see three tabs. The first one, as we already saw, shows the
directory structure from where we launched Jupyter in Command Prompt. The second
tab shows the currently running processes.

Exploring the Jupyter Notebook for Python 3 programming 255

Let's explore the New drop-down option on the right-hand side. The following screenshot
shows the options available under this menu:

Figure 12.7 – The New menu dropdown

We can see an option for Python 3 under the Notebook section. If you have any other
programming languages that use Jupyter, then those languages will also be shown here.
We will explore that shortly. The other options are Text File, Folder, and Terminal.
The first two options under Other create a blank file and a blank directory, respectively.
Terminal, when clicked, launches LXTerminal in a new tab of the browser window,
shown in the following screenshot:

Figure 12.8 – Command Prompt running in a web browser tab

256 Working with Mahotas and Jupyter

If we click on the original tab (listed as Home Page in the browser tabs) and check under
the Running option, we can see an entry corresponding to the current terminal window
tab, as shown in the following screenshot:

Figure 12.9 – A list of running subprocesses in Jupyter

As we can see, there are options to see the current notebooks and terminals launched
under this server. We can shut them down from here. Go to Files and under the New
dropdown, select Python 3. This will open a Python 3 notebook under a new tab in the
same browser window:

Figure 12.10 – A new Jupyter Notebook tab

Exploring the Jupyter Notebook for Python 3 programming 257

We can see that the name of the notebook is Untitled. We can click on the name and it
will open a modal dialog box to rename the notebook, as follows:

Figure 12.11 Renaming a notebook

Rename the notebook. After that, in the main Home Page tab, under Files, we can see
the test01.ipynb file. Here, ipynb means an IPython notebook. You can see an
entry in the Running tab, too. In the /home/pi/book/chapter12/ directory, we
can find the test01.ipynb file. Now, let's see how we can use this file for Python 3
programming. Switch to the test01 notebook tab in the browser again. Let's explore
the interface in detail:

Figure 12.12 – A Jupyter notebook

We can see a long text area after the In []: text. We can write code snippets here.
Make sure that Code is selected from the dropdown of the menu. Then, add the
following code to the text area:

print('Hello World')

258 Working with Mahotas and Jupyter

We can run it by clicking on the Run button in the menu bar. The output will be printed
here and a new text area will appear. The cursor will automatically set there:

Figure 12.13 – Running the Hello World! program

The best thing about this notebook is that we can edit and re-execute the earlier cells. Let's
try to understand the icons in the menu:

Figure 12.14: The icon buttons in the menu

Let's go from left to right. The first symbol (the floppy disk) is to save. The + symbol adds
a text area cell after the currently highlighted cell. Then, we have the cut, copy, and paste
options. The up and down arrows are used to shift the current text area cell up and down.
Then, we have Run and the interrupt the kernel, restart the kernel, and restart and run
the whole notebook buttons. The drop-down box decides the type of the cell. It has the
following four options:

Figure 12.15 – Types of cells

If we want the cell to run the code, we choose Code. Markdown is a markup language
used for rich text. Select an empty text area cell and change it to the Markdown type.
Then, enter # Test into the cell and execute it. This will create a level-one heading,
as follows:

Exploring the Jupyter Notebook for Python 3 programming 259

Figure 12.16 – A level 1 heading

We can use ## for level-two headings, ### for level-three headings, and so on.

One of the major features of the Jupyter Notebook is that we can even run the OS
commands in a notebook. We need to precede the commands with the ! symbol and
run them in the cell as Code. Let's look at a demonstration of this. Run the!ls -la
command in the notebook and it should produce the following result:

Figure 12.17 – Running OS commands in the Jupyter notebook

We can also show visualizations and images with matplotlib in the notebook. For that,
we need to use the magic %matplotlib function. We can use this to set the backend of
matplotlib to the inline backend of the Jupyter notebook, as follows:

%matplotlib inline

260 Working with Mahotas and Jupyter

Let's see a short demonstration of this:

Figure 12.18 – Showing images in the Jupyter notebook

This is how we can show visualizations and images in the notebook itself.

This is a very useful concept. We can have rich text, OS commands, Python code, and
output (including visualizations) in a single notebook. We can even share these ipynb
notebook files electronically. Just like Python 3, we can use the Jupyter Notebook with
a lot of languages, such as Julia, R, and Scala. The only limitation is that we cannot mix
code of multiple programming languages in a single notebook.

The last thing I want to explain is how to clear the output. Click on the Cell menu. It looks
as follows:

Summary 261

Figure 12.19 – Clearing all the output

We have the Clear option under Current Outputs and All Output. These clear the output
of the current cell and the entire notebook, respectively.

I recommend exploring all the options in the menu bar yourself.

Summary
In this chapter, we explored the basics of Mahotas, which is a NumPy-based image
processing library. We looked at a few image processing-related functions and learned
how to combine Mahotas and OpenCV code for image processing. We also learned the
names of other NumPy- and non-NumPy-based image processing libraries. You can
explore those libraries further.

The last topic we learned about, the Jupyter Notebook, is very handy for quickly
prototyping ideas and sharing code electronically. Many computer vision and data science
professionals now use Jupyter notebooks for their Python programming projects.

In the Appendix section of this book, I have explained all the topics that I could not list
under this chapter. These topics will be immensely useful to anyone who uses Raspberry
Pi for various purposes.

13
Appendix

All the topics that could not be covered in this book's main chapters are instead covered
here. This appendix is largely a collection of useful topics, including tips and tricks. So,
let's look at a few tips and tricks relating to Raspberry Pi, Python 3, and OpenCV.

Technical requirements
The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/raspberry-pi-computer-vision-programming/tree/
master/Appendix/programs.

Check out the following video to see the Code in Action at https://bit.ly/3ewQwHs.

Performance measurement and the
management of OpenCV
OpenCV has a lot of optimized and unoptimized code. The optimized code uses features
of modern microprocessors, such as instruction pipelining and AVX.

We can check whether the optimization of OpenCV is enabled on the computer we are
currently using with the cv2.useOptimized() function. We can also use the cv2.
setUseOptimized() function to toggle the optimization. The cv2.getTickCount()
function returns the number of clock ticks (also known as clock cycles) from the time that
the computer was turned on. This function is called before and after the execution of the
code snippet that we are interested in.

https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Appendix/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Appendix/programs
https://github.com/PacktPublishing/raspberry-pi-computer-vision-programming/tree/master/Appendix/programs
https://bit.ly/3ewQwHs

264 Appendix

Then, we compute the difference between the clock cycles and it returns the number of clock
cycles needed to execute the code snippet. The cv2.getTickFrequency() function
returns the frequency of the clock cycles. Then, we can divide the difference between
the clock cycles by the frequency of the clock cycles to obtain the time required for the
execution of the code snippet:

import cv2
cv2.setUseOptimized(True)
print(cv2.useOptimized())
img = cv2.imread('/home/pi/book/dataset/4.1.01.tiff', 0)
e1 = cv2.getTickCount()
img1 = cv2.medianBlur(img, 23)
e2 = cv2.getTickCount()
t = (e2 - e1)/cv2.getTickFrequency()
print(t)

The output of the preceding code is as follows:

True

0.004361807

We can also use the functions in the time Python 3 library to establish the amount of
time required to run any code snippet. Try this out as an exercise. Next, we will see how
to reuse a Raspbian OS microSD card.

Reusing a Raspbian OS microSD card
We have learned to write the Raspbian OS to a microSD card using Win32 Disk Imager.
Now, we are going to see how to reuse that microSD card for any other purpose. Insert
the microSD card into the microSD card reader and connect it to a Windows PC. It will
show two partitions. Only one of these is readable and it will be labeled boot. It should
also have the config.txt file, which has a size of around 250 MB. The other partition is
unreadable. We cannot use this microSD card as it is used for another purpose. So, we need
to use a few tools to format this card before we can reuse it again for any other purpose.

Formatting the SD card using the SD card formatter
There is a free tool for formatting SD cards. We can download it from https://www.
sdcard.org/downloads/formatter/. Install this tool and open it, and it will show
the following window. The drive letters could be different depending on the number of
drives on your computer. The following is a screenshot of the application:

https://www.sdcard.org/downloads/formatter/
https://www.sdcard.org/downloads/formatter/

Reusing a Raspbian OS microSD card 265

Figure 13.1 – The SD card formatter

Choose any drive (it will format the entire card anyway) and click on the Format button.
This will show the following confirmation box:

Figure 13.2 – Confirmation dialogue

266 Appendix

Click the Yes button and it will format the card. After formatting, there will be only one
drive letter corresponding to the card. The card is completely formatted now and we can
use it as if it is fresh.

The Disk Management utility in Windows
We can even use the Disk Management utility in Windows to format the microSD card.
In the search bar, type Disk and you will find the Create and format Disk Partitions
option. You can also find this utility from the Windows Control Panel, too. Again, insert
the Raspbian OS microSD card that you want to reuse into an SD card reader and connect
it to a Windows computer. Open the Disk Management tool and you will see something
as in the following screenshot:

Figure 13.3 – The Disk Management utility window

Reusing a Raspbian OS microSD card 267

This lists all the disks (removable and non-removable) attached to the system. Out of
these, the one that is removable (with a boot partition of 256 MB) is the microSD card.
As you can see in the preceding screenshot, I inserted the Raspbian OS microSD card
without expanding the filesystem (I mean, I wrote the Raspbian OS to it, but did not use
it to boot up the Raspberry Pi board). That is why it shows two allocated partitions and
one unallocated partition. If you have used the card to boot up a Raspberry Pi board, it
expands the filesystem and the second biggest partition occupies the unallocated part.
So, used Raspbian OS microSD cards show two partitions only. Anyway, we can just
right-click on an allocated partition and choose the Delete Volume… option. Do this
for both of the allocated partitions:

Figure 13.4 – Deleting partitions of the SD card

The disk will look as follows after deleting all the allocated parts:

Figure 13.5 – Creating a new partition on the SD card

268 Appendix

Just right-click on the disk corresponding to the microSD card and click on New Simple
Volume. This will launch a wizard to a new volume. Complete the guided wizard with all
the default options and you will get a fresh disk for reuse. You can rewrite the Raspbian
OS to this or use it to store your favorite MP3 songs. This Disk Management tool gives
us better control over the finer aspects of disk formatting and partitioning.

Tour of the raspi-config command-line utility
We can configure Raspberry Pi by using one of the following three methods:

• The Raspberry Pi configuration tool in the Raspbian OS menu

• By altering the content of /boot/config.txt

• With the raspi-config command-line utility

We will provide a detailed tour of the raspi-config tool in detail in this section. Open
the Raspberry Pi command prompt and run the following command:

sudo raspi-config

This will open the Raspberry Pi configuration tool in Command Prompt, as in the
following screenshot:

Figure 13.6 – The main menu of the raspi-config utility

Tour of the raspi-config command-line utility 269

The first option is used to change the password for the pi user. The second option in the
main menu, Network Options, has the facility to change the way the Raspberry Pi board
is connected to the network:

Figure 13.7 – Network Options

The third option in the main menu (Boot Options) details the booting options, as follows:

Figure 13.8 – Boot Options

The fourth option in the main menu (Localization Options) allows you to set the locale,
time zone, keyboard layout, and Wi-Fi country, as follows:

Figure 13.9 – Localization Options

270 Appendix

The fifth option in the main menu is Interfacing Options, which appears as follows:

Figure 13.10 – Interfacing Options

Out of the preceding options, we have already enabled P1 Camera, P2 SSH, and P3 VNC
for our demonstrations.

The sixth option in the main menu is for overclocking Raspberry Pi 1 and Raspberry Pi 2.
Other models have to be overclocked manually.

The seventh option in the main menu is Advanced Options, as follows:

Figure 13.11 – Advanced Options

Installation and the environment setup on Windows, Debian, and Ubuntu 271

In the preceding screenshot, A1 Expand Filesystem expands the filesystem to make sure
all the space in the microSD card is available for use. A3 Memory Split is used to allocate
memory for the graphics.

The eighth option updates the raspi-config tool. If you are accessing the command
prompt of the Raspberry Pi board, then this is the best way to configure Raspberry Pi.

Installation and the environment setup on
Windows, Debian, and Ubuntu
We can demonstrate all the areas we have learned on other desktop computers with the
Windows and Linux OSes. Only the part related to the Raspberry Pi camera module will
not work with the other computers as desktop motherboards usually do not come with
DSI ports. We can also run the code examples on other single-board computers that run
Debian or Ubuntu.

The process to install the packages is the same on Ubuntu, Debian, and their derivatives.
All the modern Linux distributions come with Python 3. We just need to use the apt and
pip3 tools for installation.

For a Windows PC, we need to install everything from scratch. Let's get started with
understanding how to install Python 3 by taking the following steps:

1. Visit www.python.org and download the installation file for the latest
Python 3 release:

Figure 13.12 – The Python Foundation home page

http://www.python.org

272 Appendix

Run the downloaded setup file. It will open an installation wizard, as follows:

Figure 13.13 – The Python 3 installation options
Be sure to check the Add Python 3.8 to PATH checkbox.

2. Then, click on Customize installation. The following window will appear:

Figure 13.14 – Optional features for installation

Python implementations and Python distributions 273

Check all the checkboxes and then click the Next button. In the next window, keep
all the options as they are and finish the installation.

3. Once the installation is completed, we can verify it by searching IDLE in the
Windows search bar. Also, in cmd (Command Prompt of Windows), we can
verify whether the python and pip3 commands are working.

A Python 3 interpreter comes in the form of the binary executable python.exe
file for Windows, and we can call it directly on Command Prompt if we have checked
the appropriate option during the installation, as discussed previously. We can install
all the packages used in the earlier chapters of this book with the pip3 utility on
Command Prompt.

Python implementations and
Python distributions
A Python implementation is a program that acts as the Python programming language
interpreter. The interpreter provided by https://www.python.org/ and the one
that comes with Linux is known as CPython. Other popular implementations include
(but are not limited to) the following:

• MicroPython

• IronPython

• Stackless Python

• Jython

• PyPy

• CircuitPython

We can find a list of alternative implementations and their project URLs at
https://www.python.org/download/alternatives/.

A Python distribution is a Python interpreter implementation and an additional set of
packages bundled together. A few Python implementations are distributions themselves.
Actually, there is no clear distinction between the terms implementation and distribution.
We can find more information about distributions at https://wiki.python.org/
moin/PythonDistributions.

https://www.python.org/
https://www.python.org/download/alternatives/
https://wiki.python.org/moin/PythonDistributions
https://wiki.python.org/moin/PythonDistributions

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Computer Vision with TensorFlow 2.x
Krishnendu Kar
ISBN: 978-1-83882-706-9

• Explore methods of feature extraction and image retrieval and visualize different
layers of the neural network model

• Use TensorFlow for various visual search methods for real-world scenarios
• Build neural networks or adjust parameters to optimize the performance of models
• Understand TensorFlow DeepLab to perform semantic segmentation on images and

DCGAN for image inpainting
• Evaluate your model and optimize and integrate it into your application to operate

at scale
• Get up to speed with techniques for performing manual and automated image

annotation

https://www.packtpub.com/in/data/advanced-computer-vision-with-tensorflow-2-x

276 Other Books You May Enjoy

PyTorch Computer Vision Cookbook

Michael Avendi

ISBN: 978-1-83864-483-3

• Develop, train and deploy deep learning algorithms using PyTorch 1.x

• Understand how to fine-tune and change hyperparameters to train deep
learning algorithms

• Perform various CV tasks such as classification, detection, and segmentation

• Implement a neural style transfer network based on CNNs and pre-trained models

• Generate new images and implement adversarial attacks using GANs

• Implement video classification models based on RNN, LSTM, and 3D-CNN

• Discover best practices for training and deploying deep learning algorithms for
CV applications

https://www.packtpub.com/au/data/pytorch-computer-vision-cookbook

Leave a review - let other readers know what you think 277

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
2D convolution

using, with Signal Processing
module in SciPy 167-169

2D convolution filtering 169
7-Zip 22
8-bit unsigned integers 233

A
adaptive thresholding 156, 157
Advanced Package Tool (APT) 37
anti-aliasing 92
arithmetic operations

performing, on images 123-125
ASUS Tinkerboard

reference link 6

B
background subtraction

implementing 224, 226
barcodes

detecting, in images 232-237
batteries included motto 61

Beagleboard
about 6
URL 6

Berkley Software Distribution (BSD) 3
bimodal histogram images 156
binary image 142
Bitvise SSH client

installation link 40
bitwise logical operations

computing, on images 132-134

C
Camera Serial Interface (CSI) 110
Canny edge detection algorithm

reference link 179
Canny edge detector

about 179-182
reference link 179

chroma key compositing 238
chroma key effect

implementing 238-243
chroma keying 238
clock cycles 263
colorspace

about 136-138, 249, 250
converting 136-138

280 Index

converting, to implement
real-life mini project 140-143

HSV colorspace 138-140
URL 136

compute module 8
computer vision

about 2
objective 3

contrast limited adaptive histogram
equalization 210

CPython 273

D
damaged images

restoring, with inpainting 190, 191
Debian

Python 3 installation 271
depth estimation 201, 202
Disk Management utility

in Windows 266-268
disparity maps 201
distance transform 248
distress signal 34, 74
Dynamic Host Configuration
Protocol (DHCP) 34
dyna-micro 5

E
events

handling 96-98

F
four-character code 108
frames per second (FPS) 102, 194, 238

retrieving, of USB webcam 106

Fritzing
reference link 73

G
gaussian distributed 163
Gaussian noise 163, 164
Geany IDE

reference link 54
General-Purpose Input/Output

(GPIO) pins 5
geometric shapes

drawing, with NumPy 92, 93
drawing, with OpenCV 92, 93

global thresholding techniques 156
GPIO

LED programming 72-79
push-button programming 80-83

Graphical User Interface (GUI)
about 3
working with 95, 96

Gunner Farneback argument
reference link 226

H
Harris Corner detection

about 185
implementing 185, 186

heatsinks
for RPi 47

high-pass filters
about 174
exploring 174-179
reference link 174

histogram
about 204
computing 204-210

Index 281

visualizing 204-210
histogram equalization 210, 212
Hough transforms

reference link 182
used, for finding circles

and lines 182-185
HSV colorspace 138-140
hue, saturation, and value (HSV) 138

I
ICE Tower fan

reference link 47
image contours

visualizing 212-214
image datasets

exploring 86
reference links 86

image inpainting
reference link 191

image processing
libraries, reference links 252
with OpenCV 86-89

image properties
retrieving 118-120

image quantization 199, 200
images

arithmetic operations,
performing 123-125

barcodes, detecting 232-237
bitwise logical operations,

computing 132-134
blending 126-130
border, adding 121-123
capturing, with raspistill and

raspivid utilities 112, 113
capturing, with USB webcam 100

morphological transformations,
applying to 214-219

multiplying, by constant 130
negative, creating 131
noise, adding 160
operations, performing 120
perspective transformation 150, 151
segmenting 192
splitting, into channels 121
transformation operations,

performing 143
transitioning 126-130
visualizing, with Matplotlib 89-91

images processing, with Mahotas
about 246
colorspace 249, 250
distance transform 248

images, thresholding
about 152-155
adaptive thresholding 156, 157
Otsu's binarization method 156

Infrared (IR) filter 110
inpainting

damaged images, restoring 190, 191
Integrated Development and Learning

Environment (IDLE)
reference link 54

Integrated Development
Environments (IDEs) 54

intel boards
about 7
reference link 7

Intel Up Squared Kit
reference link 7

internet of things (IoT) 5

282 Index

J
Jetson Nano Developer Kit

reference link 7
Jupyter Notebook

exploring, for Python 3
programming 252-261

K
kernels

working with 166, 167
k-means algorithm

versus mean shift algorithm 200
k-means clustering algorithm

using 194-198
K Nearest Neighbor (KNN) 224

L
L1 and L2 norms

reference link 179
LED programming

with GPIO 72-79
local histogram equalization 210
low-pass filtering 170-172

M
Mahotas

built-in images, reading with 247
combining, with OpenCV 250, 251
images processing 246
images, reading with 247
images, thresholding with 247, 248
reference link 246

mathematical aspects, of affine
transformations

reference link 145

mathematical transformation
operations, on images

affine transformation 145-150
performing 143
rotation 145-150
scaling 144
translation 145-150

Matplotlib
about 65-70
installing 65
using, to visualize images 89-91

Max RGB filter
about 222
implementing 222-224

mean shift algorithm
versus k-means algorithm 200

mean shift algorithm
segmentation 192-194

Mini-Micro Designer 1 (MMD-1) 5
morphological transformations

applying, to images 214-219
motion

detecting 228-232
MP4Box 113

N
Navier-Stokes method 191
ndarrays, NumPy

creating 63
operations, performing 63, 64
with linear algebra 64

non-maximum suppression
reference link 179

NumPy
reference link 64
used, for drawing geometric

shapes 92, 93

Index 283

NumPy, SciPy ecosystem
basics 62
linear algebra, using with ndarrays 64
ndarrays, creating 63
operations, performing on

ndarrays 63, 64
NVIDIA Jetson

about 7
reference link 7

O
Open Source Computer Vision (OpenCV)

about 3
blurring functions 169
combining, with Mahotas 250, 251
filtering functions 169
installing, on RPi board 46, 47
management 263, 264
performance measurement 263, 264
URL 4
used, for capturing images with

USB webcam 103, 104
used, for capturing live videos

with USB webcam 104, 105
used, for drawing geometric

shapes 92, 93
used, for image processing 86-89
used, for playing back USB

webcam videos 109
optical flow (optic flow)

application areas 228
computing 226-228

OSes
for Raspberry Pi 13, 14
reference link 13

Otsu's binarization Method 156

P
PacketBeagle

URL 6
perspective transformation

of images 150, 151
picamera

using, with Python 3 113-115
Pi camera boards 110
Pi camera module 110, 112
Pip Installs Python (pip)

about 65
reference link 65

Poisson noise 164, 165
present working directory 103
primitive paint application

creating 96-98
printed circuit board (PCB) 4
Pulse Width Modulation (PWM) 5
push-button programming

with GPIO 80-83
PuTTY

URL 40
PyMeanShift 192
Python

configuring, on Raspberry Pi 53
configuring, on Raspbian OS 53
URL 273
used, for capturing images with

USB webcam 103, 104
used, for capturing live videos

with USB webcam 104, 105
Python 3

about 52, 53
picamera, using with 113-115
Raspberry Pi GPIO programming 71, 72
reference link 53

284 Index

used, for capturing videos with
RPi camera module 116

working with, in interactive mode 59
Python 3 IDEs

configuring, on Raspbian OS 54-58
Python 3 installation

on Debian 271
on Ubuntu 271
on Windows 271-273

Python 3 programming
basics 59-61
Jupyter Notebook, exploring for 252-261

Python distributions
about 273
reference link 273

Python implementations
about 273
reference link 273

Python Package Index
reference link 65

R
random normal noise 165
Raspberry Pi (RPi)

about 8
heatsinks 47
logging, remotely with SSH 40-43
OSes 13
Python, configuring 53
Raspbian, setting up 14
URL 8

Raspberry Pi configuration
methods 268

Raspberry Pi Foundation
reference link 8

Raspberry Pi GPIO programming
using, with Python 3 71, 72

Raspberry Pi Model 4B
about 9-11
product specifications 9, 10
reference link 9

Raspberry Pi models
about 8
buying, stores 12, 13
Raspberry Pi Model 4B 9
Raspberry Pi Zero W 12

Raspberry Pi Universal Power Supply
reference link 15

Raspberry Pi Zero W
about 12
reference link 11

Raspbian
URL 13

Raspbian image
boot 23
reference link 14
system 23

Raspbian OS
about 13
Python 3 IDEs, configuring 54-58
Python, configuring 53

Raspbian OS desktop
accessing remotely 44-46

Raspbian OS installation, on microSD card
for OSes, reference link 26

Raspbian OS microSD card
reusing 264

Raspbian, setting up on Raspberry Pi
about 14
booting up, with microSD card 26-34
component requisites 14-19
microSD card, preparing

manually 23-26
RPi board models, connecting

to internet 34-37

Index 285

software requisites, downloading 20-23
raspi-config command-line utility

overview 268-271
raspistill and raspivid utilities

used, for capturing images 112, 113
used, for capturing videos 112, 113

relative motion 226
RPi 4B

overclocking 47-49
RPi board

OpenCV, installing 46, 47
updating 37, 38

RPi camera module
used, for capturing videos

with Python 3 116
RPi USB Webcams

reference link 99

S
salt and pepper noise 160-163
Save our Souls (SOS) 73
SciPy

2D convolution, with Signal
Processing module 167-169

SciPy ecosystem
about 62
libraries 62
Matplotlib 65
NumPy 62

script mode 59
SD card formatter

used, for formatting SD card 264-266
SD cards

formatting, with SD card
formatter 264-266

SD cards, formatting tool
download link 264

Secure Shell (SSH)
used, for logging remotely

into RPi 40-43
segments 152
Serial Peripheral Interface (SPI) 5
Signal Processing module

using, with 2D convolution
in SciPy 167-169

shot noise 164, 165
single-board computer (SBC)

about 4
advantages 5
ASUS Tinkerboard 6
Beagleboard 6
disadvantages 5
intel boards 7
Microcomputer Trainer MMD-1 5
NVIDIA Jetson 7

Stereoscopic Vision 201
sudo raspi-config command 43

T
Telea method 191
timelapse photography 100-103
timelapse video 100
torrent software

download link 21
tracking

detecting 228-232

U
Ubuntu

Python 3 installation 271
USB webcam

 FPS, retrieving 106
images, capturing with 100

286 Index

resolution 105, 106
timelapse photography 100-103
used, for capturing images

with OpenCV 103, 104
used, for capturing images

with Python 103, 104
used, for capturing live videos

with OpenCV 104, 105
used, for capturing live videos

with Python 104, 105
used, for recording videos 103
video, playing back with OpenCV 109
videos, saving 107, 108
working with 99

V
videos

capturing, with raspistill and
raspivid utilities 112, 113

W
Win32DiskImager 23
Windows

Disk Management utility 266-268
Python 3 installation 271-273

X
xrdp

URL 44

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Computer Vision and the Raspberry Pi
	Understanding computer vision
	OpenCV

	Single-board computers
	The Beagleboard family
	ASUS Tinkerboard
	NVIDIA Jetson
	Intel boards

	Raspberry Pi
	Raspberry Pi models

	OSes for Raspberry Pi
	Setting up Raspbian on a Raspberry Pi
	Downloading the necessary software
	Preparing the microSD card manually
	Booting up the Raspberry Pi for the first time
	Connecting various RPi board models to the internet

	Updating the RPi
	Summary

	Chapter 2: Preparing the Raspberry Pi for Computer Vision
	Remotely logging into the RPi with SSH
	Remote desktop access
	Installing OpenCV on an RPi board
	Heatsinks and overclocking RPi 4B
	Summary

	Chapter 3: Introduction to Python Programming
	Technical requirements
	Understanding Python 3
	Python on RPi and Raspberry Pi OS
	Python 3 IDEs on Raspberry Pi OS
	Working with Python 3 in interactive mode
	The basics of Python 3 programming

	The SciPy ecosystem
	The basics of NumPy
	Matplotlib

	RPi GPIO programming with Python 3
	LED programming with GPIO
	Push-button programming with GPIO

	Summary

	Chapter 4: Getting Started with Computer Vision
	Technical requirements
	Exploring image datasets
	Working with images using OpenCV
	Using matplotlib to visualize images
	Drawing geometric shapes with OpenCV
and NumPy
	Working with a GUI
	Event handling and a primitive paint application
	Working with a USB webcam
	Capturing images with the webcam
	Timelapse photography
	Webcam video recording
	Capturing images with the webcam using Python and OpenCV
	Live videos with the webcam using Python and OpenCV
	Webcam resolution
	FPS of the webcam
	Saving webcam videos
	Playing back the video with OpenCV

	The Pi camera module
	Capturing images and videos with the raspistill and raspivid utilities
	Using picamera with Python 3
	Using the RPi camera module and Python 3 to record videos

	Summary

	Chapter 5: Basics of Image Processing
	Technical requirements
	Retrieving image properties
	Basic operations on images
	Splitting the image into channels
	Adding a border to an image

	Arithmetic operations on images
	Blending and transitioning images
	Multiplying images by a constant and one another
	Creating a negative of an image
	Bitwise logical operations on images
	Summary

	Chapter 6: Colorspaces, Transformations, and Thresholding
	Technical requirements
	Colorspaces and converting them
	HSV colorspace
	Tracking in real time based on color

	Performing transformation operations on images
	Scaling
	The translation, rotation, and affine transformation of images

	Perspective transformation of images
	Thresholding images
	Otsu's binarization method
	Adaptive thresholding

	Summary

	Chapter 7: Let's Make Some Noise
	Technical requirements
	Noise
	Introducing noise to an image

	Working with kernels
	2D convolution with the signal processing module in SciPy
	Filtering and blurring with OpenCV
	2D convolution filtering
	Low-pass filtering

	Summary

	Chapter 8: High-Pass Filters and Feature Detection
	Technical requirements
	Exploring high-pass filters
	Working with the Canny edge detector
	Finding circles and lines with Hough transforms

	Harris corner detection
	Exercise
	Summary

	Chapter 9: Image Restoration, Segmentation, and Depth Maps
	Technical requirements
	Restoring damaged images using inpainting
	Segmenting images
	Mean shift algorithm segmentation
	K-means clustering and image quantization
	Comparison of k-means and the mean shift algorithm

	Disparity maps and depth estimation
	Summary

	Chapter 10: Histograms, Contours, and Morphological Transformations
	Technical requirements
	Computing and visualizing histograms
	Histogram equalization

	Visualizing image contours
	Applying morphological transformations
to images
	Summary

	Chapter 11: Real-Life Applications of Computer Vision
	Technical requirements
	Implementing the Max RGB filter
	Implementing background subtraction
	Computing the optical flow
	Detecting and tracking motion
	Detecting barcodes in images
	Implementing the chroma key effect
	Summary

	Chapter 12: Working with Mahotas and Jupyter
	Technical requirements
	Processing images with Mahotas
	Reading images and built-in images
	Thresholding images
	The distance transform
	Colorspace

	Combining Mahotas and OpenCV
	Other popular image processing libraries
	Exploring the Jupyter Notebook for Python 3 programming
	Summary

	Chapter 13: Appendix
	Technical requirements
	Performance measurement and the management of OpenCV
	Reusing a Raspbian OS microSD card
	Formatting the SD card using the SD card formatter
	The Disk Management utility in Windows

	Tour of the raspi-config command-line utility
	Installation and the environment setup on Windows, Debian, and Ubuntu
	Python implementations and Python distributions

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

