
[1]

Python Requests Essentials

Learn how to integrate your applications seamlessly
with web services using Python Requests

Rakesh Vidya Chandra

Bala Subrahmanyam Varanasi

BIRMINGHAM - MUMBAI

Python Requests Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1120615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-541-4

www.packtpub.com

Credits

Authors
Rakesh Vidya Chandra

Bala Subrahmanyam Varanasi

Reviewers
Yves Dorfsman

Ilsu Park

Kirk Strauser

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Reshma Raman

Content Development Editor
Ritika Singh

Technical Editor
Shivani Kiran Mistry

Copy Editors
Pranjali Chury

Ulka Manjrekar

Project Coordinator
Judie Jose

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Jason Monteiro

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Authors

Rakesh Vidya Chandra has been in the field of software development for the last
3 years. His love for programming first sparked when he was introduced to LOGO
in his school. After obtaining his bachelor's degree in Information Technology,
he worked with Agiliq Info Solutions and built several web applications using
Python. Rakesh is passionate about writing technical blogs on various open source
technologies. When not coding, he loves to dance to hip-hop and listens to EDM.

Bala Subrahmanyam Varanasi loves hacking and building web applications.
He has a bachelor's degree in Information Technology. He has been in the software
industry for the last three and a half years, where he worked with Agiliq Info Solutions
and Crypsis Technologies. Bala has also built different web applications using Python,
Ruby, and JavaScript. Apart from coding, he is interested in entrepreneurship and
is the founder of Firebolt Labs. Currently, he is working as a software engineer at
TinyOwl Technology.

Acknowledgments

We are indebted to Kenneth Rietz for building a beautiful Python library, which
helped the Python world interact with the Web seamlessly. We especially wish to
thank Thejaswi Puthraya, Javed Khan, and Daniel Roy Greenfeld for guiding us
and encouraging us on this journey.

Our content editors, Ritika Singh and Reshma Raman, have helped us all the way,
and at this juncture, we would like to thank them wholeheartedly. We would
especially like to thank Packt Publishing; our technical reviewers, Islu Park, Yves
Dorfsman, and Kirk Strauser; and our technical editor, Shivani Mistry, for their
valuable ideas and suggestions.

We express our heartfelt gratitude to our college chairman, Mr. K.V.Vishnu Raju,
who stood as an inspiration to us. We would like to thank our college principal,
Dr. D. Suryanaryana, for helping us be enthusiastic. It's our duty to express our
thanks to our alma mater, Vishnu Institute of Technology, for being the matrix
of our education.

We are grateful to our teachers Dr. Ramadevi, Mrs. M. Sri Lakshmi, and
Mr. Krishna Chaitanya Varma Alluri for motivating us all the way.

Finally, we would like to acknowledge with gratitude, the support and love from all
of our family members, friends, and well wishers.

About the Reviewers

Yves Dorfsman is a system administrator and a developer with experience in oil
and gas, financial, and software industries. He has extensive experience in Python,
both in sysadmin tasks and automation, and in software development.

Ilsu Park is an entrepreneur and software engineer currently living in Seoul, South
Korea. He studied computer science from KAIST and was a member of the hacking
and security group in college. He has a research experience in RFID security, and
his interests are decentralized networks, concurrency handling, and highly scalable
architecture. He also has contributed to various open source projects, including
Python requests and the tornado web server. He is most passionate about building
a great company.

Kirk Strauser is a software architect from San Francisco Bay Area and has used
Python personally and professionally for over 15 years. He loves learning new
things, and mentors a Curiosity Hacked guild to share his experiences with the
next generation of programmers and hackers.

I'd like to thank my lovely wife, Jennifer, and the rest of my family
for their patience with my projects.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface v
Chapter 1: Interacting with the Web Using Requests 1

Introduction to HTTP request 1
Python modules 3
Requests versus urllib2 3
Essence of Requests 5
Making a simple request 5
Response content 6
Different types of request contents 8

Custom headers 8
Sending form-encoded data 9
Posting multipart encoded files 10

Looking up built-in response status codes 11
Viewing response headers 13
Accessing cookies with Requests 13
Tracking redirection of the request using request history 14
Using timeout to keep productive usage in check 15
Errors and exceptions 16
Summary 16

Chapter 2: Digging Deep into Requests 17
Persisting parameters across Requests using Session objects 18
Revealing the structure of a request and response 19
Using prepared Requests 20
Verifying an SSL certificate with Requests 21
Body Content Workflow 22

The Keep-alive facility 23
Streaming uploads 23

Using generator for sending chunk encoded Requests 24

Table of Contents

[ii]

Getting the request method arguments with event hooks 24
Iterating over streaming APIs 25

Encodings 25
HTTP verbs 26

Self-describing the APIs with link headers 27
Transport Adapter 27
Summary 28

Chapter 3: Authenticating with Requests 29
Basic authentication 29

Using basic authentication with Requests 30
Digest authentication 31

Using Digest authentication with Requests 32
Kerberos authentication 32

Using Kerberos authentication with Requests 35
OAuth authentication 35

OAuth 1.0 36
Using OAuth 1.0 authentication with Requests 37
OAuth 2.0 37

Custom authentication 38
Summary 39

Chapter 4: Mocking HTTP Requests Using HTTPretty 41
Understanding HTTPretty 42
Installing HTTPretty 42
Working with HTTPretty 42
Setting headers 44
Working with responses 45

Rotating responses 45
Streaming responses 46
Dynamic responses through callbacks 47

Summary 48
Chapter 5: Interacting with Social Media Using Requests 49

API introduction 50
Getting started with the Twitter API 50
Obtaining an API Key 51
Creating an authentication Request 52
Getting your favorite tweet 52
Performing a simple search 53
Accessing the list of followers 54
Retweets 54
Accessing available trends 55

Table of Contents

[iii]

Updating user status 55
Interacting with Facebook 56

Getting started with the Facebook API 56
Obtaining a key 56
Getting a user profile 57
Retrieving a friends list 58
Retrieving feed 59
Retrieving albums 59

Interacting with reddit 60
Getting started with the reddit API 60
Registering a new account 60
Modifying account information 61
Performing a simple search 62
Searching subreddits 63

Summary 63
Chapter 6: Web Scraping with Python Requests
and BeautifulSoup 65

Types of data 66
Structured data 66
Unstructured data 66
Semistructured data 67

What is web scraping? 67
Dos and don'ts of web scraping 67
Predominant steps to perform web scraping 68

Key web scraping tasks 68
What is BeautifulSoup? 69

Document parsers 69
Installation 69
Objects in BeautifulSoup 69

Tags 69
BeautifulSoup 70
NavigableString 70
Comments 70

Web scraping tasks related to BeautifulSoup 71
Searching the tree 73

Navigating within the tree 73
Modifying the Tree 76

Building a web scraping bot – a practical example 76
The web scraping bot 77

Identifying the URL or URLs 78
Using an HTTP client 79
Discovering the pieces of data to scrape 80

Table of Contents

[iv]

Utilizing a web scraping tool 81
Drawing the desired data 81

Summary 86
Chapter 7: Implementing a Web Application with
Python Using Flask 87

What is Flask? 87
Getting started with Flask 88
Installing Flask 89

Installing required packages with pip 90
Survey – a simple voting application using Flask 90

Basic file structures 91
Building the application 92
Writing models with Flask-SQLAlchemy 93
Defining a model 93
Creating a database instance 94

Creating survey models 94
Creating tables in the database 96
Querying database models 96

Views 97
List of all questions 98
New survey 98
Creating a new survey 98
Displaying a survey 99
Updating a survey 99
Deleting a survey 100
New vote form to caste a vote in a survey 100
Casting a vote to a particular choice in a survey 100

Templates 101
The base template 101
The list of questions template 102
Creating a new survey template 102
Showing the details of a survey template 103
Casting a vote template 103

Running the survey application 104
Writing unit tests to survey applications 105
Summary 106

Index 107

[v]

Preface
Python is one of the evolving language of our era, and it's gaining a lot of attention
these days. It is one of the powerful and flexible open source languages instilled with
powerful libraries. For every python developer, Requests is the library that comes to
mind first when he/she needs to interact with the Web. With its batteries included
Requests turned the process of interacting with Web a cakewalk and stands as one of
the world's best client with more than 42 million downloads.

With the rise of social media, APIs turn to be a must have part of every application,
and interacting with them in the best way possible is going to be a challenge. Getting
to know how to interact with APIs, building an API, scraping the web, and such stuff
will help every budding web developer to reach new heights.

What this book covers
Chapter 1, Interacting with the Web Using Requests, covers topics such as why Requests
is better than urllib2, how to make a simple request, different types of response
content, adding custom headers to our Requests, dealing with form encoded data,
using the status code lookup, locating the request redirection, location, and timeouts.

Chapter 2, Digging Deep into Requests, talks about using session objects. It discusses
the structure of request and response, prepared Requests, SSL verification with
Requests, streaming uploads, generators, and event hooks. This chapter also
demonstrates using proxies, link headers, and transport headers.

Chapter 3, Authenticating with Requests, introduces you to the different types of
procedures that are in practice for authentication. You will gain knowledge on
authenticating with OAuth1, digest authentication, and basic authentication.

Preface

[vi]

Chapter 4, Mocking HTTP Requests Using HTTPretty, covers HTTPretty along with
its installation and usage. Then, we deal with real-time examples and learn how to
mimic the actions of a server using Python Requests and HTTPretty.

Chapter 5, Interacting with Social Media Using Requests, covers significant ground.
Starting with an introduction to the Twitter API, Facebook API, and reddit API, we
will move on to discover ways in which we can obtain keys, create an authentication
request, and work with various examples to interact with social media.

Chapter 6, Web Scraping with Python Requests and BeautifulSoup, empowers you to have
a better understanding of the libraries that are used in scraping the Web. You will
also be introduced to using the BeautifulSoup library, its installation, and procedures
to scrape the web using Python Requests and BeautifulSoup.

We would like to thank www.majortests.com for allowing us
to base the examples in this chapter around their website.

Chapter 7, Implementing a Web Application with Python Using Flask, gives an
introduction to the Flask framework and moves on to discuss how to develop a
simple Survey application which deals with creating, listing and voting various
questions. In this chapter you will acquire all the knowledge required to build a
web application using Flask.

What you need for this book
You need the following software for this book:

• Python 2.7 or above
• Python Requests
• BeautifulSoup
• HTTPretty
• Flask

Who this book is for
This book is for all Python developers, web developers, and even administrators
who want to use Requests to make HTTP Requests to web servers and perform
HTML scraping.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The process includes importing the Requests module, and then getting the web
page with get method."

A block of code is set as follows:

parameters = {'key1': 'value1', 'key2': 'value2'}
r = requests.get('url', params=parameters)

Any command-line input or output is written as follows:

>>> r = requests.get('http://google.com')

New terms and important words are shown in bold. Words that you see
on the screen, for example, in menus or dialog boxes, appear in the text
like this: "Click on Create New App button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[viii]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Interacting with the Web
Using Requests

Reading data and obtaining information from web services tends to be a crucial task
in these modern days. Everyone knows how an Application Programming Interface
(API) allowed Facebook to spread the use of the Like button all over the Web and
dominated the field of social communication. It has got its own flair to influence the
business development, product development and supply chain management. At this
stage, learning an efficient way to deal with the API's and opening the web URLs is
the need of the hour. This will greatly affect many processes of web development.

Introduction to HTTP request
Whenever our Web browser tries communicating with a Web server, it is done by
using the Hypertext Transfer Protocol (HTTP) which functions as a request-response
protocol. In this process of communication, we send a request to the web server and
expect a response in return. Take an example of downloading a PDF from a website.
We send a request saying "Get me this specific file", and we get a response from the
Web server with "Here is the file followed by the file itself". The HTTP request we are
sending possibly has much interesting information. Let us dig inside it.

Here is the raw information of the HTTP request, that I have sent through my device.
We can grasp the important parts of the request after looking at the following example:

* Connected to google.com (74.125.236.35) port 80 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.35.0
> Host: google.com
> Accept: */*
>
< HTTP/1.1 302 Found

Interacting with the Web Using Requests

[2]

< Cache-Control: private
< Content-Type: text/html; charset=UTF-8
< Location: http://www.google.co.in/?gfe_rd=cr&ei=_
qMUVKLCIa3M8gewuoCYBQ
< Content-Length: 261
< Date: Sat, 13 Sep 2014 20:07:26 GMT
* Server GFE/2.0 is not blacklisted
< Server: GFE/2.0
< Alternate-Protocol: 80:quic,p=0.002

Now, we will send a request to the server. Let us make use of these parts of the
HTTP request:

• Method: The GET / http /1.1 in the preceding example, is the HTTP
method which is case sensitive. Here are some of the HTTP request methods:

 ° GET: This fetches information from the given server using the
given URI.

 ° HEAD: The functionality of this is similar to GET but the difference is,
it delivers only the status line and header section.

 ° POST: This can submit data to the server that we wish to process.
 ° PUT: This creates or overwrites all the current representations of the

target resource, when we intend to create a new URL.
 ° DELETE: This removes all the resources that are described by the

given Request-URI.
 ° OPTIONS: This specifies the communication options for a

request/response cycle. It lets the client to mention different
options associated with the resource.

• Request URI: Uniform Resource Identifier (URI) has the ability to recognize
the name of the resource. In the previous example, the hostname is the
Request-URI.

• Request Header fields: If we want to add more information about the
request, we can use the requests header fields. They are colon-separated
key value pairs. Some of the request-headers values are:

 ° Accept-Charset: This is used to indicate the character sets that are
acceptable for the response.

 ° Authorization: This contains the value of the credentials which has
the authentication information of the user agent.

Chapter 1

[3]

 ° Host: This identifies the Internet host and port number of the resource
that has been requested, using the original URI given by the user.

 ° User-agent: It accommodates information about the user agent that
originates the request. This can be used for statistical purposes such
as tracing the protocol violations.

Python modules
There are some extensively used Python modules which help in opening URLs. Let
us have a look at them:

• httplib2: This is a comprehensive HTTP client library. It supports many
features that are left out of other HTTP libraries. It supports features like
caching, keep-alive, compression, redirects and many kinds of authentication.

• urllib2: This is an extensively used module for fetching HTTP URLs in a
complex world. It defines functions and classes that help with URL actions
such as basic and digest authentication, redirections, cookies, and so on.

• Requests: This is an Apache2 licensed HTTP library which is written in
Python, gifted with many capabilities to result in productivity.

Requests versus urllib2
Let's compare urllib2 and Requests; urllib2.urlopen(), which can be used to
open a URL (which can be a string or a request object), but there are many other
things that can be a burden while interacting with the web. At this point, a simple
HTTP library which has the capabilities to make interaction with the web smooth
is the need of the hour, and Requests is one of its kind.

The following is an example for fetching the data from a web service with urllib2
and Requests gives us a clear picture of how easy it is to work with Requests:

The following code gives an example of urllib2:

#!/usr/bin/env python

-*- coding: utf-8 -*-

import urllib2

gh_url = 'https://api.github.com'

Interacting with the Web Using Requests

[4]

req = urllib2.Request(gh_url)

password_manager = urllib2.HTTPPasswordMgrWithDefaultRealm()

password_manager.add_password(None, gh_url, 'user', 'pass')

auth_manager = urllib2.HTTPBasicAuthHandler(password_manager)

opener = urllib2.build_opener(auth_manager)

urllib2.install_opener(opener)

handler = urllib2.urlopen(req)

print handler.getcode()

print handler.headers.getheader('content-type')

200

'application/json'

The same example implemented with Requests:

#!/usr/bin/env python

-*- coding: utf-8 -*-

import requests

r = requests.get('https://api.github.com', auth=('user', 'pass'))

print r.status_code

print r.headers['content-type']

200

'application/json'

These examples can be found at https://gist.github.com/kennethreitz/973705.

Chapter 1

[5]

At this initial stage, the example may look much complicated. Don't go deep into the
details of the example. Just see the beauty of requests that allowed us to login to
GitHub with very few lines of code. The code with requests seems much simpler
and efficient than the urllib2 example. This would help us increase the productivity
in all sorts of things.

Essence of Requests
As with HTTP/1.0, HTTP/1.1 has a lot of perks and added features like reusing a
connection multiple times which decreases the considerable overhead, keep-alive
mechanism, and so on. And fortunately, requests is built from it, giving us the
benefits of interacting with the web smoothly and seamlessly. There is no need to
manually add query strings to our URLs, or to encode our POST data. Keep-alive and
HTTP connection pooling are 100 percent automatic, powered by urllib3, which
is embedded within requests. With requests we are gifted with a means to forget
about encoding parameters again and again, irrespective of whether it is GET/POST.

There is no requirement for manually adding query strings to the URLs, and also to
the features such as connection pooling keep-alive, sessions with cookie persistence,
Basic/Digest Authentication, Browser-style SSL Verification, Connection Timeouts,
Multipart File Uploads, and so on.

Making a simple request
Now let us create our first request for getting a web page, which is very simple.
The process includes importing the requests module, and then getting the
web page with the get method. Let us look into an example:

>>> import requests

>>> r = requests.get('http://google.com')

Voila! We are done.

In the preceding example, we get the google webpage, using requests.get
and saving it in the variable r, which turns out to be the response object. The
response object r contains a lot of information about the response, such as header
information, content, type of encoding, status code, URL information and many
more sophisticated details.

In the same way, we can use all the HTTP request methods like GET, POST, PUT,
DELETE, HEAD with requests.

Interacting with the Web Using Requests

[6]

Now let us learn how to pass the parameters in URLs. We can add the parameters to
a request using using the params keyword.

The following is the syntax used for passing parameters:

parameters = {'key1': 'value1', 'key2': 'value2'}
r = requests.get('url', params=parameters)

For getting a clear picture on this, let us get a GitHub user details by logging into
GitHub, using requests as shown in the following code:

>>> r = requests.get('https://api.github.com/user', auth=('myemailid.
mail.com', 'password'))

>>> r.status_code

200

>>> r.url

u'https://api.github.com/user'

>>> r.request

<PreparedRequest [GET]>

We have used the auth tuple which enables Basic/Digest/Custom Authentication to
login to GitHub and get the user details. The r.status_code result indicates that we
have successfully got the user details, and also that we have accessed the URL, and
the type of request.

Response content
Response content is the information about the server's response that is delivered
back to our console when we send a request.

While interacting with the web, it's necessary to decode the response of the server.
While working on an application, there are many cases in which we may have
to deal with the raw, or JSON, or even binary response. For this, requests has
the capability to automatically decode the content from the server. Requests can
smoothly decode many of the Unicode charsets. To add to that, Requests makes
informed guesses about the encoding of the response. This basically happens taking
the headers into consideration.

If we access the value of r.content, it results us the response content in a raw
string format. And if we access r.text, the Requests library encodes the response
(r.content value) using r.encoding and returns a new encoding string. In case,
if the value of r.encoding is None, Requests assumes the encoding type using
r.apparent_encoding, which is provided by the chardet library.

Chapter 1

[7]

We can access the server's response content in the following way:

>>> import requests

>>> r = requests.get('https://google.com')

>>> r.content

'<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
…..'

>>> type(r.content)

<type 'str'>

>>> r.text

u'<!doctype html><html itemscope=""\ itemtype="http://schema.org/WebPage"
lang="en-IN"><head><meta content="........

>>> type(r.text)

<type 'unicode'>

In the preceding lines, we try to get the google homepage, using requests.get()
and assigning it to a variable r. The r variable turns out to be a request object here,
and we can access the raw content using r.content and the encoded response
content with r.text.

If we wish to find what encoding Requests is using, or if we desire to change the
encoding, we can use the property r.encoding as shown in the following example:

>>> r.encoding

'ISO-8859-1'

>>> r.encoding = 'utf-8'

In the first line of the code, we are trying to access the type of encoding that is being
followed by Requests. It resulted in 'ISO-8859-1'. In the next line, I wished to
change the encoding to 'utf-8'. So I assigned the type of encoding to r.encoding.
If we change the encoding like we did in the second line, Requests tends to use the
latest value of r.encoding that has been assigned. So from that point in time, it uses
the same encoding whenever we call r.text.

For an instance, if the value of r.encoding is None, Requests tend to use the value of
r.apparent_encoding. The following example explains the case:

>>> r.encoding = None

>>> r.apparent_encoding

'ascii'

Interacting with the Web Using Requests

[8]

Generally, the value of apparent encoding is specified by the chardet library. With
more enthusiasm, if we attempt to set a new encoding type to r.apparent_encoding,
Requests raises an AttributeError as its value can't be altered.

>>> r.apparent_encoding = 'ISO-8859-1'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

Requests are efficient enough to use custom encodings. Take a case in which we have
created an encoding of our own, and got it registered with the module of codecs. We
can use our custom codec with ease; this is because the values of r.encoding and
Requests will take care of the decoding.

Different types of request contents
Requests has the facility to deal with different types of Request contents like binary
response content, JSON response content, and raw response content. To give a clear
picture on different types of response content, we listed the details. The examples
used here are developed using Python 2.7.x.

Custom headers
We can send custom headers with a request. For that, we just need to create a
dictionary with our headers and pass the headers parameter in the get, or post
method. In the dictionary, key is the name of the header and the value is, well,
the value of the pair. Let us pass an HTTP header to a request:

>>> import json

>>> url = 'https://api.github.com/some/endpoint'

>>> payload = {'some': 'data'}

>>> headers = {'Content-Type': 'application/json'}

>>> r = requests.post(url, data=json.dumps(payload), headers=headers)

Chapter 1

[9]

This example has been taken from the Request documents found at http://docs.
python-requests.org/en/latest/user/quickstart/#custom-headers.

In this example, we have sent a header content-type with a value application/
json, as a parameter to the request.

In the same way, we can send a request with a custom header. Say we have a
necessity to send a request with an authorization header with a value as some token.
We can create a dictionary with a key 'Authorization' and value as a token which
would look like the following:

>>> url = 'some url'

>>> header = {'Authorization' : 'some token'}

>>> r.request.post(url, headers=headers)

Sending form-encoded data
We can send form-encoded data like an HTML form using Requests. A simple
dictionary to the data argument gets this done. The dictionary of data will turn
as form-encoded automatically, when a request is made.

>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = request.post("some_url/post", data=payload)

>>> print(r.text)

{

 …

 "form": {

 "key2": "value2",

 "key1": "value1"

 },

 …

}

In the preceding example, we tried sending data that is form-encoded. While dealing
with data that is not form-encoded, we should send a string in the place of a dictionary.

Interacting with the Web Using Requests

[10]

Posting multipart encoded files
We tend to upload multipart data like images or files through POST. We can
achieve this in requests using files which is a dictionary of 'name' and value
of file-like-objects. And also we can specify it as 'name', and value could
be 'filename', fileobj just like in the following way:

{'name' : file-like-objects} or

{'name': ('filename', fileobj)}

The example is as follows:

>>> url = 'some api endpoint'

>>> files = {'file': open('plan.csv', 'rb')}

>>> r = requests.post(url, files=files)

We can access the response using 'r.text'.

>>> r.text

{

 …

 "files": {

 "file": "< some data … >"

 },

 ….

}

In the former example, we didn't specify the content-type or headers. To add to that,
we have the capability to set the name for the file we are uploading:

>>> url = 'some url'

>>> files = {'file': ('plan.csv', open('plan.csv', 'rb'), 'application/
csv', {'Expires': '0'})}

>>> r = requests.post(url, files)

>>> r.text

{

 …

 "files"

 "file": "< data...>"

 },

 …

}

Chapter 1

[11]

We can also send strings to be received as files in the following way:

>>> url = 'some url'

>>> files = {'file' : ('plan.csv', 'some, strings, to, send')}

>>> r.text

{

 …

 "files": {

 "file": "some, strings, to, send"

 },

 …

}

Looking up built-in response status
codes
Status codes are helpful in letting us know the result, once a request is sent. To know
about this, we can use status_code:

>>> r = requests.get('http://google.com')

>>> r.status_code

200

To make it much easier to deal with status_codes, Requests has got a built-in
status code lookup object which serves as an easy reference. We must compare the
requests.codes.ok with r.status_code to achieve this. If the result turns out to
be True, then it's 200 status code, and if it's False, it's not. We can also compare the
r.status.code with requests.codes.ok, requests.code.all_good to get the
lookup work.

>>> r = requests.get('http://google.com')

>>> r.status_code == requests.codes.ok

True

Now, let's try checking with a URL that is non-existent.

>>> r = requests.get('http://google.com/404')

>>> r.status_code == requests.codes.ok

False

Interacting with the Web Using Requests

[12]

We have got the facility to deal with the bad requests like 4XX and 5XX type
of errors, by notifying with the error codes. This can be accomplished by using
Response.raise_for_status().

Let us try this by sending a bad request first:

>>> bad_request = requests.get('http://google.com/404')

>>> bad_request.status_code

404

>>>bad_request.raise_for_status()

--

HTTPError Traceback (most recent call last)

----> bad_request..raise_for_status()

File "requests/models.py", in raise_for_status(self)

 771

 772 if http_error_msg:

--> 773 raise HTTPError(http_error_msg, response=self)

 774

 775 def close(self):

HTTPError: 404 Client Error: Not Found

Now if we try a working URL, we get nothing in response, which is a sign of success:

>>> bad_request = requests.get('http://google.com')

>>> bad_request.status_code

200

>>> bad_request.raise_for_status()

>>>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Chapter 1

[13]

Viewing response headers
The server response header helps us to know about the software used by the
origin server to handle the request. We can access the server response headers
using r.headers:

>>> r = requests.get('http://google.com')

>>> r.headers

CaseInsensitiveDict({'alternate-protocol': '80:quic', 'x-xss-protection':
'1; mode=block', 'transfer-encoding': 'chunked', 'set-cookie': 'PREF=ID=3
c5de2786273fce1:FF=0:TM=1410378309:LM=1410378309:S=DirRRD4dRAxp2Q_3; …..

Requests for Comments (RFC) 7230 says that HTTP header names are not
case-sensitive. This gives us a capability to access the headers with both capital
and lower-case letters.

>>> r.headers['Content-Type']

'text/html; charset=ISO-8859-1'

>>> r.headers.get('content-type')

'text/html; charset=ISO-8859-1'

Accessing cookies with Requests
We can access cookies from the response, if they exist:

>>> url = 'http://somewebsite/some/cookie/setting/url'

>>> r = requests.get(url)

>>> r.cookies['some_cookie_name']

'some_cookie_value'

We can send our own cookies, as shown in the following example:

>>> url = 'http://httpbin.org/cookies'

>>> cookies = dict(cookies_are='working')

>>> r = requests.get(url, cookies=cookies)

>>> r.text

'{"cookies": {"cookies_are": "working"}}'

Interacting with the Web Using Requests

[14]

Tracking redirection of the request using
request history
Sometimes the URL that we are accessing may have been moved or it might
get redirected to some other location. We can track them using Requests. The
response object's history property can be used to track the redirection. Requests can
accomplish location redirection with every verb except with HEAD. The Response.
history list contains the objects of the Requests that were generated in order to
complete the request.

>>> r = requests.get('http:google.com')

>>> r.url

u'http://www.google.co.in/?gfe_rd=cr&ei=rgMSVOjiFKnV8ge37YGgCA'

>>> r.status_code

200

>>> r.history

(<Response [302]>,)

In the preceding example, when we tried sending a request to 'www.google.com',
we got the r.history value as 302 which means the URL has been redirected to
some other location. The r.url shows us the proof here, with the redirection URL.

If we don't want Requests to handle redirections, or if we are using POST, GET, PUT,
PATCH, OPTIONS, or DELETE, we can set the value of allow_redirects=False,
so that redirection handling gets disabled.

>>> r = requests.get('http://google.com', allow_redirects=False)

>>> r.url

u'http://google.com/'

>> r.status_code

302

>>> r.history

[]

In the preceding example, we used the parameter allow_redirects=False, which
resulted the r.url without any redirection in the URL and the r.history as empty.

If we are using the head to access the URL, we can facilitate redirection.

>>> r = requests.head('http://google.com', allow_redirects=True)

>>> r.url

Chapter 1

[15]

u'http://www.google.co.in/?gfe_rd=cr&ei=RggSVMbIKajV8gfxzID4Ag'

>>> r.history

(<Response [302]>,)

In this example, we tried accessing the URL with head and the parameter
allow_redirects enabled which resulted us the URL redirected.

Using timeout to keep productive usage
in check
Take a case in which we are trying to access a response which is taking too much
time. If we don't want to get the process moving forward and give out an exception
if it exceeds a specific amount of time, we can use the parameter timeout.

When we use the timeout parameter, we are telling Requests not to wait for a
response after some specific time period. If we use timeout, it's not equivalent to
defining a time limit on the whole response download. It's a good practice to raise
an exception if no bytes have been acknowledged on the underlying socket for the
stated timeout in seconds.

>>> requests.get('http://google.com', timeout=0.03)

--

Timeout Traceback (most recent call
last)

…….

……..

Timeout: HTTPConnectionPool(host='google.com', port=80): Read timed\ out.
(read timeout=0.03)

In this example we have specified the timeout value as 0.03 in which the timeout
has been exceeded to bring us the response and so it resulted us the timeout
exception. The timeout may occur in two different cases:

• The request getting timed out while attempting to connect to the server that
is in a remote place.

• The request getting timed out if the server did not send the whole response
in the allocated time period.

Interacting with the Web Using Requests

[16]

Errors and exceptions
Different types of errors and exceptions will be raised when something goes wrong
in the process of sending a request and getting back a response. Some of them are
as follows:

• HTTPError: When there are invalid HTTP responses, Requests will raise an
HTTPError exception

• ConnectionError: If there is a network problem, such as refused connection
and DNS failure, Requests will raise a ConnectionError exception

• Timeout: If the request gets timed out, this exception will be raised
• TooManyRedirects: If the request surpasses the configured number of

maximum redirections, this type of exception is raised

Other types of exception that come in to the picture are Missing schema Exception,
InvalidURL, ChunkedEncodingError, and ContentDecodingError and so on.

This example has been taken from Request documents available at http://docs.
python-requests.org/en/latest/user/quickstart/#errors-and-exceptions.

Summary
In this chapter, we covered a few basic topics. We learned why Requests is better
than urllib2, how to make a simple request, different types of response contents,
adding custom headers to our Requests, dealing with form encoded data, using the
status code lookups, locating request redirection location and about timeouts.

In the next chapter, we will learn the advanced concepts in Requests, in depth, which
will help us to use the Requests library flexibly, according to the requirements.

[17]

Digging Deep into Requests
In this chapter, we are going to deal with advanced topics in the Requests module.
There are many more features in the Requests module that makes the interaction
with the web a cakewalk. Let us get to know more about different ways to use
Requests module which helps us to understand the ease of using it.

In a nutshell, we will cover the following topics:

• Persisting parameters across requests using Session objects
• Revealing the structure of request and response
• Using prepared requests
• Verifying SSL certificate with Requests
• Body Content Workflow
• Using generator for sending chunk encoded requests
• Getting the request method arguments with event hooks
• Iterating over streaming API
• Self-describing the APIs with link headers
• Transport Adapter

Digging Deep into Requests

[18]

Persisting parameters across Requests
using Session objects
The Requests module contains a session object, which has the capability to persist
settings across the requests. Using this session object, we can persist cookies, we
can create prepared requests, we can use the keep-alive feature and do many more
things. The Session object contains all the methods of Requests API such as GET,
POST, PUT, DELETE and so on. Before using all the capabilities of the Session object,
let us get to know how to use sessions and persist cookies across requests.

Let us use the session method to get the resource.

>>> import requests

>>> session = requests.Session()

>>> response = requests.get("https://google.co.in", cookies={"new-cookie-
identifier": "1234abcd"})

In the preceding example, we created a session object with requests and its get
method is used to access a web resource.

The cookie value which we had set in the previous example will be accessible using
response.request.headers.

>>> response.request.headers

CaseInsensitiveDict({'Cookie': 'new-cookie-identifier=1234abcd', 'Accept-
Encoding': 'gzip, deflate, compress', 'Accept': '*/*', 'User-Agent':
'python-requests/2.2.1 CPython/2.7.5+ Linux/3.13.0-43-generic'})

>>> response.request.headers['Cookie']

'new-cookie-identifier=1234abcd'

With session object, we can specify some default values of the properties,
which needs to be sent to the server using GET, POST, PUT and so on. We can
achieve this by specifying the values to the properties like headers, auth and
so on, on a Session object.

>>> session.params = {"key1": "value", "key2": "value2"}

>>> session.auth = ('username', 'password')

>>> session.headers.update({'foo': 'bar'})

In the preceding example, we have set some default values to the properties—
params, auth, and headers using the session object. We can override them
in the subsequent request, as shown in the following example, if we want to:

>>> session.get('http://mysite.com/new/url', headers={'foo': 'new-bar'})

Chapter 2

[19]

Revealing the structure of a request and
response
A Requests object is the one which is created by the user when he/she tries to
interact with a web resource. It will be sent as a prepared request to the server
and does contain some parameters which are optional. Let us have an eagle eye
view on the parameters:

• Method: This is the HTTP method to be used to interact with the web service.
For example: GET, POST, PUT.

• URL: The web address to which the request needs to be sent.
• headers: A dictionary of headers to be sent in the request.
• files: This can be used while dealing with the multipart upload. It's the

dictionary of files, with key as file name and value as file object.
• data: This is the body to be attached to the request.json. There are two

cases that come in to the picture here:
 ° If json is provided, content-type in the header is changed

to application/json and at this point, json acts as a body
to the request.

 ° In the second case, if both json and data are provided together,
data is silently ignored.

• params: A dictionary of URL parameters to append to the URL.
• auth: This is used when we need to specify the authentication to the request.

It's a tuple containing username and password.
• cookies: A dictionary or a cookie jar of cookies which can be added to

the request.
• hooks: A dictionary of callback hooks.

A Response object contains the response of the server to a HTTP request. It is
generated once Requests gets a response back from the server. It contains all
of the information returned by the server and also stores the Request object we
created originally.

Whenever we make a call to a server using the requests, two major transactions are
taking place in this context which are listed as follows:

• We are constructing a Request object which will be sent out to the server to
request a resource

• A Response object is generated by the requests module

Digging Deep into Requests

[20]

Now, let us look at an example of getting a resource from Python's official site.

>>> response = requests.get('https://python.org')

In the preceding line of code, a requests object gets constructed and will be
sent to 'https://python.org'. Thus obtained Requests object will be stored
in the response.request variable. We can access the headers of the Request
object which was sent off to the server in the following way:

>>> response.request.headers

CaseInsensitiveDict({'Accept-Encoding': 'gzip, deflate, compress',
'Accept': '*/*', 'User-Agent': 'python-requests/2.2.1 CPython/2.7.5+
Linux/3.13.0-43-generic'})

The headers returned by the server can be accessed with its 'headers' attribute as
shown in the following example:

>>> response.headers

CaseInsensitiveDict({'content-length': '45950', 'via': '1.1 varnish',
'x-cache': 'HIT', 'accept-ranges': 'bytes', 'strict-transport-security':
'max-age=63072000; includeSubDomains', 'vary': 'Cookie', 'server':
'nginx', 'age': '557','content-type': 'text/html; charset=utf-8',
'public-key-pins': 'max-age=600; includeSubDomains; ..)

The response object contains different attributes like _content, status_code,
headers, url, history, encoding, reason, cookies, elapsed, request.

>>> response.status_code

200

>>> response.url

u'https://www.python.org/'

>>> response.elapsed

datetime.timedelta(0, 1, 904954)

>>> response.reason

'OK'

Using prepared Requests
Every request we send to the server turns to be a PreparedRequest by default.
The request attribute of the Response object which is received from an API call
or a session call is actually the PreparedRequest that was used.

Chapter 2

[21]

There might be cases in which we ought to send a request which would incur an
extra step of adding a different parameter. Parameters can be cookies, files,
auth, timeout and so on. We can handle this extra step efficiently by using the
combination of sessions and prepared requests. Let us look at an example:

>>> from requests import Request, Session

>>> header = {}

>>> request = Request('get', 'some_url', headers=header)

We are trying to send a get request with a header in the previous example. Now,
take an instance where we are planning to send the request with the same method,
URL, and headers, but we want to add some more parameters to it. In this condition,
we can use the session method to receive complete session level state to access the
parameters of the initial sent request. This can be done by using the session object.

>>> from requests import Request, Session

>>> session = Session()

>>> request1 = Request('GET', 'some_url', headers=header)

Now, let us prepare a request using the session object to get the values of the
session level state:

>>> prepare = session.prepare_request(request1)

We can send the request object request with more parameters now, as follows:

>>> response = session.send(prepare, stream=True, verify=True)

200

Voila! Huge time saving!

The prepare method prepares the complete request with the supplied parameters.
In the previous example, the prepare_request method was used. There are
also some other methods like prepare_auth, prepare_body, prepare_cookies,
prepare_headers, prepare_hooks, prepare_method, prepare_url which are
used to create individual properties.

Verifying an SSL certificate with Requests
Requests provides the facility to verify an SSL certificate for HTTPS requests. We can
use the verify argument to check whether the host's SSL certificate is verified or not.

Let us consider a website which has got no SSL certificate. We shall send a GET
request with the argument verify to it.

Digging Deep into Requests

[22]

The syntax to send the request is as follows:

requests.get('no ssl certificate site', verify=True)

As the website doesn't have an SSL certificate, it will result an error similar to
the following:

requests.exceptions.ConnectionError: ('Connection aborted.', error(111,
'Connection refused'))

Let us verify the SSL certificate for a website which is certified. Consider the
following example:

>>> requests.get('https://python.org', verify=True)

<Response [200]>

In the preceding example, the result was 200, as the mentioned website is SSL
certified one.

If we do not want to verify the SSL certificate with a request, then we can put the
argument verify=False. By default, the value of verify will turn to True.

Body Content Workflow
Take an instance where a continuous stream of data is being downloaded when we
make a request. In this situation, the client has to listen to the server continuously
until it receives the complete data. Consider the case of accessing the content from
the response first and the worry about the body next. In the above two situations,
we can use the parameter stream. Let us look at an example:

>>> requests.get("https://pypi.python.org/packages/source/F/Flask/Flask-
0.10.1.tar.gz", stream=True)

If we make a request with the parameter stream=True, the connection remains
open and only the headers of the response will be downloaded. This gives us the
capability to fetch the content whenever we need by specifying the conditions like
the number of bytes of data.

The syntax is as follows:

if int(request.headers['content_length']) < TOO_LONG:
content = r.content

By setting the parameter stream=True and by accessing the response as a file-like
object that is response.raw, if we use the method iter_content, we can iterate
over response.data. This will avoid reading of larger responses at once.

Chapter 2

[23]

The syntax is as follows:

iter_content(chunk_size=size in bytes, decode_unicode=False)

In the same way, we can iterate through the content using iter_lines method
which will iterate over the response data one line at a time.

The syntax is as follows:

iter_lines(chunk_size = size in bytes, decode_unicode=None,
delimitter=None)

The important thing that should be noted while using the stream
parameter is it doesn't release the connection when it is set as True,
unless all the data is consumed or response.close is executed.

The Keep-alive facility
As the urllib3 supports the reuse of the same socket connection for multiple
requests, we can send many requests with one socket and receive the responses
using the keep-alive feature in the Requests library.

Within a session, it turns to be automatic. Every request made within a session
automatically uses the appropriate connection by default. The connection that
is being used will be released after all the data from the body is read.

Streaming uploads
A file-like object which is of massive size can be streamed and uploaded using
the Requests library. All we need to do is to supply the contents of the stream as
a value to the data attribute in the request call as shown in the following lines.

The syntax is as follows:

with open('massive-body', 'rb') as file:
 requests.post('http://example.com/some/stream/url',
 data=file)

Digging Deep into Requests

[24]

Using generator for sending chunk
encoded Requests
Chunked transfer encoding is a mechanism for transferring data in an HTTP request.
With this mechanism, the data is sent in a series of chunks. Requests supports
chunked transfer encoding, for both outgoing and incoming requests. In order to
send a chunk encoded request, we need to supply a generator for your body.

The usage is shown in the following example:

>>> def generator():

... yield "Hello "

... yield "World!"

...

>>> requests.post('http://example.com/some/chunked/url/path',

 data=generator())

Getting the request method arguments
with event hooks
We can alter the portions of the request process signal event handling using hooks.
For example, there is hook named response which contains the response generated
from a request. It is a dictionary which can be passed as a parameter to the request.
The syntax is as follows:

hooks = {hook_name: callback_function, … }

The callback_function parameter may or may not return a value. When it returns
a value, it is assumed that it is to replace the data that was passed in. If the callback
function doesn't return any value, there won't be any effect on the data.

Here is an example of a callback function:

>>> def print_attributes(request, *args, **kwargs):

... print(request.url)

... print(request .status_code)

... print(request .headers)

If there is an error in the execution of callback_function, you'll receive a warning
message in the standard output.

Chapter 2

[25]

Now let us print some of the attributes of the request, using the preceding
callback_function:

>>> requests.get('https://www.python.org/',

 hooks=dict(response=print_attributes))

https://www.python.org/

200

CaseInsensitiveDict({'content-type': 'text/html; ...})

<Response [200]>

Iterating over streaming APIs
Streaming API tends to keep the request open allowing us to collect the stream
data in real time. While dealing with a continuous stream of data, to ensure that
none of the messages being missed from it we can take the help of iter_lines() in
Requests. The iter_lines() iterates over the response data line by line. This can be
achieved by setting the parameter stream as True while sending the request.

It's better to keep in mind that it's not always safe to call the
iter_lines() function as it may result in loss of received data.

Consider the following example taken from http://docs.python-requests.org/
en/latest/user/advanced/#streaming-requests:

>>> import json

>>> import requests

>>> r = requests.get('http://httpbin.org/stream/4', stream=True)

>>> for line in r.iter_lines():

... if line:

... print(json.loads(line))

In the preceding example, the response contains a stream of data. With the help of
iter_lines(), we tried to print the data by iterating through every line.

Encodings
As specified in the HTTP protocol (RFC 7230), applications can request the server
to return the HTTP responses in an encoded format. The process of encoding turns
the response content into an understandable format which makes it easy to access
it. When the HTTP header fails to return the type of encoding, Requests will try to
assume the encoding with the help of chardet.

Digging Deep into Requests

[26]

If we access the response headers of a request, it does contain the keys of
content-type. Let us look at a response header's content-type:

>>> re = requests.get('http://google.com')

>>> re.headers['content-type']

 'text/html; charset=ISO-8859-1'

In the preceding example the content type contains 'text/html;
charset=ISO-8859-1'. This happens when the Requests finds the charset
value to be None and the 'content-type' value to be 'Text'.

It follows the protocol RFC 7230 to change the value of charset to ISO-8859-1
in this type of a situation. In case we are dealing with different types of encodings
like 'utf-8', we can explicitly specify the encoding by setting the property to
Response.encoding.

HTTP verbs
Requests support the usage of the full range of HTTP verbs which are defined in
the following table. To most of the supported verbs, 'url' is the only argument
that must be passed while using them.

Method Description
GET GET method requests a representation of the specified resource. Apart from

retrieving the data, there will be no other effect of using this method.
Definition is given as requests.get(url, **kwargs)

POST The POST verb is used for the creation of new resources. The submitted
data will be handled by the server to a specified resource.
Definition is given as requests.post(url, data=None, json=None,
**kwargs)

PUT This method uploads a representation of the specified URI. If the URI is not
pointing to any resource, the server can create a new object with the given
data or it will modify the existing resource.
Definition is given as requests.put(url, data=None, **kwargs)

DELETE This is pretty easy to understand. It is used to delete the specified resource.
Definition is given as requests.delete(url, **kwargs)

HEAD This verb is useful for retrieving meta-information written in response
headers without having to fetch the response body.
Definition is given as requests.head(url, **kwargs)

Chapter 2

[27]

Method Description
OPTIONS OPTIONS is a HTTP method which returns the HTTP methods that the

server supports for a specified URL.
Definition is given as requests.options(url, **kwargs)

PATCH This method is used to apply partial modifications to a resource.
Definition is given as requests.patch(url, data=None, **kwargs)

Self-describing the APIs with link
headers
Take a case of accessing a resource in which the information is accommodated in
different pages. If we need to approach the next page of the resource, we can make
use of the link headers. The link headers contain the meta data of the requested
resource, that is the next page information in our case.

>>> url = "https://api.github.com/search/code?q=addClass+user:mozilla&pag
e=1&per_page=4"

>>> response = requests.head(url=url)

>>> response.headers['link']

'<https://api.github.com/search/code?q=addClass+user%3Amozilla&page=2&p
er_page=4>; rel="next", <https://api.github.com/search/code?q=addClass+us
er%3Amozilla&page=250&per_page=4>; rel="last"

In the preceding example, we have specified in the URL that we want to access page
number one and it should contain four records. The Requests automatically parses
the link headers and updates the information about the next page. When we try
to access the link header, it showed the output with the values of the page and the
number of records per page.

Transport Adapter
It is used to provide an interface for Requests sessions to connect with HTTP and
HTTPS. This will help us to mimic the web service to fit our needs. With the help of
Transport Adapters, we can configure the request according to the HTTP service we
opt to use. Requests contains a Transport Adapter called HTTPAdapter included in it.

Consider the following example:

>>> session = requests.Session()

>>> adapter = requests.adapters.HTTPAdapter(max_retries=6)

>>> session.mount("http://google.co.in", adapter)

Digging Deep into Requests

[28]

In this example, we created a request session in which every request we make retries
only six times, when the connection fails.

Summary
In this chapter, we learnt about creating sessions and using the session with
different criteria. We also looked deeply into HTTP verbs and using proxies.
We learnt about streaming requests, dealing with SSL certificate verifications
and streaming responses. We also got to know how to use prepared requests,
link headers and chunk encoded requests.

In the next chapter, we will learn about various types of authentication and ways to
use them with Requests.

[29]

Authenticating with Requests
Requests supports diverse kinds of authentication procedures, and it is built in such
a way that the method of authentication feels like a cakewalk. In this chapter, we opt
to throw light on various types of authentication procedures that are used by various
tech giants for accessing the web resources.

We will cover the following topics:

• Basic authentication
• Digest authentication
• Kerberos authentication
• OAuth authentication
• Custom authentication

Basic authentication
Basic authentication is a popular, industry-standard scheme of authentication,
which is specified in HTTP 1.0. This method makes use of a user-ID and password
submitted by the user to get authenticated. The submitted user-ID and password
are encoded using Base64 encoding standards and transmitted across HTTP. The
server gives access to the user only if the user-ID and the password are valid. The
following are the advantages of using basic authentication:

• The main advantage of using this scheme is that it is supported by most of
the web browsers and servers. Even though it is simple and straightforward,
it does have some disadvantages. Though all the credentials are encoded and
transferred in the requests, they are not encrypted which makes the process
insecure. One way to overcome this problem is by using SSL support while
initiating a secure session.

Authenticating with Requests

[30]

• Secondly, the credentials persist on the server until the end of the browser
session, which may lead to the seizure of the resources. And also, this
authentication process is wide open to Cross Site Request Forgery (CSRF)
attacks, as the browser automatically sends the credentials of the user in the
subsequent requests.

The basic authentication flow contains two steps:

1. If a requested resource needs authentication, the server returns http 401
response containing a WWW-Authenticate header.

2. If the user sends another request with the user ID and password in the
Authorization header, the server processes the submitted credentials
and gives the access.

You can see this in the following diagram:

Browser Server

GET Default.htm

401 Access Denied, WWW-Authenticate:
Basic realm="ExAir"

Encoded username, password, and realm
GET Default.htm, Authorization:
Basic YWr&81AddM55=9(

Returns Default.htm and 200 status

Using basic authentication with Requests
We can use the requests module to send a request to undergo basic authentication
very easily. The process can be seen as follows:

>>> from requests.auth import HTTPBasicAuth

>>> requests.get('https://demo.example.com/resource/path',
auth=HTTPBasicAuth('user-ID', 'password'))

In the preceding lines of code, we performed basic authentication by creating an
HTTPBasicAuth object; then we passed it to the auth parameter, which will be
submitted to the server. If the submitted credentials gets authenticated successfully,
the server returns a 200 (Successful) response, otherwise, it will return a 401
(Unauthorized) response.

Chapter 3

[31]

Digest authentication
Digest authentication is one of the well known HTTP authentication schemes,
which were introduced to overcome most of the drawbacks of basic authentication.
This type of authentication makes use of user-ID and password just like Basic
authentication, but the major difference comes in the picture, when the credentials
get transferred to the server.

Digest authentication increases the security of the credentials by going an extra mile
with the concept of cryptographic encryption. When the user submits the password
for the sake of authentication, the browser will apply an MD5 hashing scheme on it.
The crux of the process lies in using nonce values (pseudo-random numbers) while
encrypting the password which decreases the replay attacks.

Browser Server

GET Default.htm

Challenge
401 Access Denied, WWW-Authenticate:
Digest nonce="XXXXX"

Response
GET Default.htm, Authorization:
Digest nonce="XXXXX", response="YYYY"

Returns Default.htm and 200 status

This type of authentication gains more strength, as the password in this encryption
is not used in the form of plain text. The cracking of the password hashes becomes
difficult in digest authentication with the use of a nonce, which counters the chosen
plain text attacks.

Even though Digest authentication overcomes most of the drawbacks of Basic
authentication, it does have some disadvantages. This scheme of authentication
is vulnerable to man-in-the-middle attacks. It reduces the flexibility of storing the
password in the password's database, as all the well designed password databases
use other encryption methods to store them.

Authenticating with Requests

[32]

Using Digest authentication with Requests
Using Digest authentication with requests is very simple. Let us see how it's done:

>>> from requests.auth import HTTPDigestAuth

>>> requests.get('https://demo.example.com/resource/path',
auth=HTTPDigestAuth('user-ID', 'password'))

In the preceding lines of code, we carried out digest authentication by creating an
HTTPDigestAuth object and setting it to the 'auth' parameter which will be submitted
to the server. If the submitted credentials gets authenticated successfully, the server
returns a 200 response, otherwise, it will return a 401 response.

Kerberos authentication
Kerberos is a type of Network authentication protocol, which uses a secret key
cryptography to communicate between the client and the server. It was developed
at MIT to mitigate many security problems like replay attacks and spying. It makes
use of tickets to provide authentication for the server-side resources. It followed the
idea of avoiding additional logins (single sign on) and storing the passwords at a
centralized location.

In a nutshell, the authentication server, the ticket granting server and the host
machine act as the leading cast in the process of authentication.

• Authentication Server: A server-side application which aids in the process of
authentication by making the use of submitted credentials of a user

• Ticket Granting Server: A logical key distribution center (KDC) which
validates the tickets

• Host Machine: A server which accepts the requests and provides
the resources

Chapter 3

[33]

You can see this in the following diagram:

Once per user
login session

User Workstation Once per type
of service

Once per
service
session

Server

1

3

5

6

4

Kerberos Key Distribution Center

Authentication
Server (AS)

user/group/service
/computer database

Ticket-granting
Server (TGS)

2
KRB_AS_REQ

KRB_AS_REP

KRB_TGS_REQ

KRB_TGS_REP

KRB_AP_REQKRB_AP_REP

Authentication with Kerberos takes place in the following steps:

1. When a person logs into his machine with the credentials, a request will be
sent to ticket granting ticket (TGT).

2. If the verification of the user turns out to be true, when checked from the
user database, a session key and a TGT will be created by the authentication
server (AS).

3. Thus, the obtained TGT and session key will be sent back to the user in the
form of two messages, in which TGT will be encrypted with the ticket granting
the server's secret key. The session key will be encrypted with the client secret
key and it contains a time stamp, life time, TGS name and TGS session key.

4. The user on the other end, after receiving the two messages, uses the client
secret key that is, the user's password to decrypt the messages of the session
key. The TGT cannot be decrypted without the TGS secret key.

Authenticating with Requests

[34]

5. With the available information of the session key and the TGT, the user can
send a request for accessing the service. The request contains two messages
and some information at this point. In the two messages, one is an encrypted
message, containing a user ID and timestamp. The other is a decrypted
message, containing the HTTP service name and the life time of the ticket.
With the above two messages, an authenticator and TGT will be sent to the
ticket granting server.

6. The messages and the information (Authenticator and TGT) will be received
by the TGS, and it will check for the credibility of the HTTP service from
the KDC database and decrypt both the authenticator and the TGT. Once
everything goes fine, the TGS tries to verify some important parts like client
ID, time stamp, lifetime of TGT and authenticator. If the verification turns out
to be successful, then the TGS generates an encrypted HTTP service ticket,
HTTP service name, time stamp, information about the ticket validity and the
session key of HTTP service. All of the preceding ones will be encrypted by
the HTTP Service session key and will be sent back to the user.

7. Now, the user receives the information and decrypts it with the TGS session
key that he/she received in the earlier step.

8. In the next step, to access the HTTP service, the user sends an encrypted
HTTP service ticket and an authenticator which is encrypted with the HTTP
service session key to the HTTP service. The HTTP service uses its secret key
to decrypt the ticket and takes hold of the HTTP service session key. With the
acquired HTTP service session key, it decrypts the authenticator and verifies
the client ID time stamp, lifetime of ticket, and so on.

9. If the verification turns out to be successful, the HTTP service sends an
authenticator message with its ID and time stamp to confirm its identity
to the user. The user's machine verifies the authenticator by making use of
HTTP service session key and identifies the user as an authenticated one
who accesses the HTTP service. From then onwards, the HTTP service can
be accessed by the user without any bumps, until the session key expires.

Kerberos is a secure protocol as the passwords from the user can never be sent as
plain text. As the process of authentication takes place with the agreement of both the
client and the server through encryption and decryption, it turns out to be a rigid one
to break to some extent. The other advantage comes from its capability to give server
access to the user until the session key expires without reentering the password.

Chapter 3

[35]

Kerberos does have some disadvantages:

• The server must be continuously available for the verification of the tickets
which may result in blocking, if the server goes down.

• User's keys are saved on a central server. A breach of this server may
compromise security for the whole infrastructure.

• Kerberos necessitates a heavy infrastructure, which means a simple web
server is not sufficient.

• The setup and the administration of Kerberos requires specialized skills.

Using Kerberos authentication with Requests
Requests takes the support of the requests-kerberos library for the purpose of
authentication. For this reason, we should first install the requests-kerberos module.

>>> pip install 'requests-kerberos'

Let's have a look at the syntax:

>>> import requests

>>> from requests.kerberos import HTTPKerberosAuth

>>> requests.get('https://demo.example.com/resource/path',
auth=HTTTPKerberosAuth())

In the preceding lines of code, we carried out Kerberos authentication by creating
an HTTPKerberosAuth object and setting it to the auth parameter which will be
submitted to the server.

OAuth authentication
OAuth is an open standard authorization protocol, which allows client applications
a secure delegated access to the user accounts on third party services such as Google,
Twitter, GitHub and so on. In this topic, we are going to introduce the two versions:-
OAuth 1.0 and OAuth 2.0.

Authenticating with Requests

[36]

OAuth 1.0
OAuth authentication protocol came up with an idea of mitigating the usage of
passwords, replacing them with secure handshakes with API calls between the
applications. This was developed by a small group of web developers who are
inspired by OpenID.

Here are the Key terms used in the process of OAuth authentication.

• Consumer: The HTTP Client who can make authenticated requests
• Service Provider: The HTTP Server, which deals with the requests of OAuth
• User: A person who has the control over the protected resources on the

HTTP Server
• Consumer Key and Secret: Identifiers which have the capability to

authenticate and authorize a request
• Request Token and Secret: Credentials used to gain authorization from

the user
• Access Token and Secret: Credentials to get access to the protected resources

of the user

You can see this in the following diagram:

Consumer

Fetch
Request Token

Redirect user to
provider for

authorization

Exchange for
access token

Create connection

Verifier(1.0a)

Request Token

Request Token
Call back URL (1.0)

Request Token
Verifier (1.0a)

Service Provider

Issue
Request Token

User grants
Authorization

Redirect user
back to application

Grant access token

Consumer Key
Consumer Secret
Callback URL (1.0a)

Access Token

1

3

6

8

7

5

4

2

Chapter 3

[37]

Initially, the client application asks the service provider to grant a request token. A
user can be identified as an approved user by taking the credibility of the request
token. It also helps in acquiring the access token with which the client application
can access the service provider's resources.

In the second step, the service provider receives the request and issues request token,
which will be sent back to the client application. Later, the user gets redirected to the
service provider's authorization page along with the request token received before as
an argument.

In the next step, the user grants permission to use the consumer application.
Now, the service provider returns the user back to the client application, where
the application accepts an authorized request token and gives back an access token.
Using the access token, the user will gain an access to the application.

Using OAuth 1.0 authentication with Requests
The requests_oauthlib is a an optional library for oauth which is not included in the
Requests module. For this reason, we should install requests_oauthlib separately.

Let us take a look at the syntax:

>>> import requests

>>> from requests_oauthlib import OAuth1

>>> auth = OAuth1('<consumer key>', '<consumer secret>',

... '<user oauth token>', '<user oauth token secret>')

>>> requests.get('https://demo.example.com/resource/path', auth=auth)

OAuth 2.0
OAuth 2.0 is next in line to OAuth 1.0 which has been developed to overcome the
drawbacks of its predecessor. In modern days, OAuth 2.0 has been used vividly
in almost all leading web services. Due to its ease of use with more security, it has
attracted many people. The beauty of OAuth 2.0 comes from its simplicity and its
capability to provide specific authorization methods for different types of application
like web, mobile and desktop.

Authenticating with Requests

[38]

Basically, there are four workflows available while using OAuth 2.0, which are also
called grant types. They are:

1. Authorization code grant: This is basically used in web applications for the
ease of authorization and secure resource delegation.

2. Implicit grant: This flow is used to provide OAuth authorization in
Mobile Applications.

3. Resource owner password credentials grant: This type of grant is used for
applications using trusted clients.

4. Client credentials grant: This type of grant is used in machine to machine
authentication. An in-depth explanation about grant types is out of the scope
of this book.

OAuth 2.0 came up with capabilities which could overcome the concerns of OAuth
1.0. The process of using signatures to verify the credibility of API requests has been
replaced by the use of SSL in OAuth 2.0. It came up with the idea of supporting
different types of flow for different environments ranging from web to mobile
applications. Also, the concept of refresh tokens has been introduced to increase
the security.

Let us take a look at the usage:

>>> from requests_oauthlib import OAuth2Session

>>> client = OAuth2Session('<client id>', token='token')

>>> resp = client.get('https://demo.example.com/resource/path')

Custom authentication
Requests also provides the ability to write a new or custom authentication based on the
user's needs and flexibility. It is equipped with requests.auth.AuthBase class which
is a base class for all the authentication types. This can be achieved by implementing
the custom authentication in the __call__() of requests.auth.AuthBase.

Let us take a look at its syntax:

>>> import requests

>>> class CustomAuth(requests.auth.AuthBase):

... def __call__(self, r):

... # Custom Authentication Implemention

Chapter 3

[39]

... return r

...

>>> requests.get('https://demo.example.com/resource/path',

... auth=CustomAuth())

Summary
In this chapter, we gained knowledge of various types of authentication like
Basic authentication, Digest authentication, Kerberos authentication, OAuth 1.0
authentication and OAuth 2.0 authentication which are supported by Requests.
Later, we got an idea of how to use various types of authentications and the flows
of the process. We also learned to use our own custom authentication and gained
the knowledge of making different authentications work with Requests and the
ways to use them with Requests.

In the next chapter, we will be getting to know all about a handy module, HTTPretty.

[41]

Mocking HTTP Requests
Using HTTPretty

With the Requests module, we gained the means to open URLs, post data, and get
data from web services. Let us take an instance of building an application, which uses
a RESTful API and unfortunately, the API on which the server is running is down.
Even though we achieved interaction with the web using Requests, we failed this time
because we got no response from the server's side. This condition may leave us irked
and blocked from our progress, as we found no way of testing our code any further.

So, there came this idea of creating an HTTP request mock tool, which can serve
us by mocking the web server on the client side. Even though HTTPretty is no way
directly connected with Requests, we would like to introduce a mock tool which
would help us in the previously mentioned case.

HTTP mock tool helps to mock web services by faking requests.

We'll look at the following topics in this chapter:

• Understanding HTTPretty
• Installing HTTPretty
• Usage in detail
• Setting headers
• Working with responses

Mocking HTTP Requests Using HTTPretty

[42]

Understanding HTTPretty
HTTPretty is an HTTP client mock library for Python. The basic idea of HTTPretty
is inspired by Ruby's FakeWeb, which is well known to the people from the Ruby
community. HTTPretty re-implements the HTTP protocol by mimicking requests
and responses.

Essentially, HTTPretty works on socket level, which gives it the inward virtue
of working with most of the HTTP client libraries and it is more specifically battle
tested against HTTP client libraries like Requests, httplib2 and urlib2. So, we
can mock the interactions from our Request library without any difficulty.

Here are the two cases in which HTTPretty comes to the rescue:

• The condition in which the API server is down
• The condition in which the API content has changed

Installing HTTPretty
We can install HTTPretty effortlessly from Python Package Index (PyPi).

pip install HTTPretty

We will be learning many more things with examples in this process of getting used
to HTTPretty; And in this course of journey we will be using libraries like mock, sure
and obviously Requests. Here we go, with those installations:

>>> pip install requests sure mock

Let us take a peek at what exactly those packages deal with:

• mock: It is a testing library which allows us to replace parts of the system
under test with mock objects

• sure: It is a Python library which is used to make assertions

Working with HTTPretty
There are three main steps to be followed while dealing with HTTPretty:

1. Enable HTTPretty
2. Register the uniform resource locator to HTTPretty
3. Disable HTTPretty

Chapter 4

[43]

We should enable HTTPretty initially, so that it will apply monkey patching; that is,
a dynamic replacement of the attributes of the socket module. We will be using the
function register_uri for registering the uniform resource locator. The register_
uri function takes class, uri and body as arguments:

 method: register_uri(class, uri, body)

And at the end of our testing process, we should disable HTTPretty so that it doesn't
alter the behavior of the other. Let us take a look at using HTTPretty with an example:

import httpretty

import requests

from sure import expect

def example():

 httpretty.enable()

 httpretty.register_uri(httpretty.GET, "http://google.com/",

 body="This is the mocked body",

 status=201)

 response = requests.get("http://google.com/")

 expect(response.status_code).to.equal(201)

 httpretty.disable()

In this example, we used the httpretty.GET class in register_uri function to
register the uri value that is "http://google.com/". In the next line, we used
Request to get the information from the URI and then we used the expect function
to assert the expected status code. In a nutshell, the preceding code tries to mock the
URI and tests whether we are getting the same status code as expected.

We can simplify the preceding code using a decorator. As in the first and third
step, that is, enabling and disabling HTTPretty are same all the time, we can use a
decorator so that those functions get wrapped up whenever we want them to come
into the picture. The decorator looks like this: @httpretty.activate. The previous
code example can be rewritten using a decorator in the following way:

import httpretty

import requests

from sure import expect

@httpretty.activate

Mocking HTTP Requests Using HTTPretty

[44]

def example():

 httpretty.register_uri(httpretty.GET, "http://google.com/",

 body="This is the mocked body",

 status=201)

 response = requests.get("http://google.com/")

 expect(response.status_code).to.equal(201)

Setting headers
HTTP header fields supply the necessary information about the request or response.
We can mock any HTTP response header by using HTTPretty. To achieve that, we
will be adding them as keyword arguments. We should keep in mind that the keys
of the keyword arguments are always lower case and have underscores (_) instead
of dashes.

For example, if we want to mock the server, which returns Content-Type, we can
use the argument content_type. Do notice that, in the following part we are using
an inexistent URL to showcase the syntax:

import httpretty

import requests

from sure import expect

@httpretty.activate

def setting_header_example():

 httpretty.register_uri(httpretty.GET,

 "http://api.example.com/some/path",

 body='{"success": true}',

 status=200,

 content_type='text/json')

 response = requests.get("http://api.example.com/some/path")

 expect(response.json()).to.equal({'success': True})

 expect(response.status_code).to.equal(200)

Similarly, all the keyword arguments are taken by HTTPretty and changed into the
RFC2616 equivalent name.

Chapter 4

[45]

Working with responses
When we mock HTTP requests using HTTPretty, it returns an httpretty.Response
object. We can generate the following responses through callbacks:

• Rotating Responses
• Streaming Responses
• Dynamic Responses

Rotating responses
Rotating responses are the responses we receive in a given order when we send
a request to a server with the same URL and same request method. We can define
as many responses as we wish with the responses argument.

The following snippet explains the mocking of Rotating Responses:

import httpretty

import requests

from sure import expect

@httpretty.activate

def rotating_responses_example():

 URL = "http://example.com/some/path"

 RESPONSE_1 = "This is Response 1."

 RESPONSE_2 = "This is Response 2."

 RESPONSE_3 = "This is Last Response."

 httpretty.register_uri(httpretty.GET,

 URL,

 responses=[

 httpretty.Response(body=RESPONSE_1,

 status=201),

 httpretty.Response(body=RESPONSE_2,

 status=202),

 httpretty.Response(body=RESPONSE_3,

Mocking HTTP Requests Using HTTPretty

[46]

 status=201)])

 response_1 = requests.get(URL)

 expect(response_1.status_code).to.equal(201)

 expect(response_1.text).to.equal(RESPONSE_1)

 response_2 = requests.get(URL)

 expect(response_2.status_code).to.equal(202)

 expect(response_2.text).to.equal(RESPONSE_2)

 response_3 = requests.get(URL)

 expect(response_3.status_code).to.equal(201)

 expect(response_3.text).to.equal(RESPONSE_3)

 response_4 = requests.get(URL)

 expect(response_4.status_code).to.equal(201)

 expect(response_4.text).to.equal(RESPONSE_3)

In this example, we have registered three different responses using the responses
argument with the httpretty.register_uri method. And then, we sent four
different requests to the server with the same URI and the same method. As a result,
we received the first three responses in the sequence of registration. From the fourth
request, we'll get the last response defined in the responses object.

Streaming responses
Streaming responses will not have Content-Length header. Rather, they have a
Transfer-Encoding header with a value of chunked, and a body consisting of a
series of chunks you write to the socket preceded by their individual sizes. These
kinds of responses are also called Chunked Responses.

We can mock a Streaming response by registering a generator response body:

import httpretty

import requests

from time import sleep

from sure import expect

def mock_streaming_repos(repos):

 for repo in repos:

Chapter 4

[47]

 sleep(.5)

 yield repo

@httpretty.activate

def streaming_responses_example():

 URL = "https://api.github.com/orgs/python/repos"

 REPOS = ['{"name": "repo-1", "id": 1}\r\n',

 '\r\n',

 '{"name": "repo-2", "id": 2}\r\n']

 httpretty.register_uri(httpretty.GET,

 URL,

 body=mock_streaming_repos(REPOS),

 streaming=True)

 response = requests.get(URL,

 data={"track": "requests"})

 line_iter = response.iter_lines()

 for i in xrange(len(REPOS)):

 expect(line_iter.next().strip()).to.equal(REPOS[i].strip())

To mock a streaming response, we need to set the streaming argument to True while
registering uri. In the previous example, we mocked the streaming response using
the generator mock_streaming_repos, which will take the list as an argument, and
will yield the list item every half second.

Dynamic responses through callbacks
If the response from the API server is generated, depending on the values from the
request, then we call it a Dynamic response. To mock dynamic responses based on
the request, we will use a callback method as defined in the following example:

import httpretty

import requests

from sure import expect

@httpretty.activate

Mocking HTTP Requests Using HTTPretty

[48]

def dynamic_responses_example():

 def request_callback(method, uri, headers):

 return (200, headers, "The {} response from {}".format(method,
uri)

 httpretty.register_uri(

 httpretty.GET, "http://example.com/sample/path",

 body=request_callback)

 response = requests.get("http://example.com/sample/path")

 expect(response.text).to.equal(' http://example.com/sample/path')

In this example, request_callback method is registered while mocking the
response, in order to generate dynamic response content.

Summary
In this chapter, we learnt the basic concepts related to HTTPretty. We looked at what
HTTPretty is, and why we need HTTPretty. We also walked through detailed usage
of the mocking library, setting headers, and mocking different types of Responses.
These topics are enough for us to get started and keep the progress moving on.

In the next chapter, we will learn how to interact with the social networks like
Facebook, Twitter, and reddit with the requests library.

[49]

Interacting with Social Media
Using Requests

In this contemporary world, our lives are woven with a lot of interactions and
collaborations with social media. The information that is available on the web is
very valuable and it is being used by abundant resources. For instance, the news
that is trending in the world can be spotted easily from a Twitter hashtag and this
can be achieved by interacting with the Twitter API.

Using natural language processing, we can classify emotion of a person by grabbing
the Facebook status of an account. All this stuff can be accomplished easily with the
help of Requests using the concerned APIs. Requests is a perfect module, if we want
to reach out API frequently, as it supports pretty much everything, like caching,
redirection, proxies, and so on.

We will cover the following topics in this chapter:

• Interacting with Twitter
• Interacting with Facebook
• Interacting with reddit

Interacting with Social Media Using Requests

[50]

API introduction
Before diving into details, let us have a quick look at what exactly is an Application
Programming Interface (API).

A web API is a set of rules and specifications. It assists us to communicate with
different software. There are different types of APIs, and REST API is the subject
matter here. REpresentational State Transfer (REST) is an architecture containing
guidelines for building scalable web services. An API which adheres to the guidelines
and conforms to the constraints of REST is called a RESTful API. In a nutshell, the
constraints are:

• Client-server
• Stateless
• Cacheable
• Layered system
• Uniform interface
• Code on demand

Google Maps API, Twitter API, and GitHub API are various examples RESTful APIs.

Let us understand much more about an API. Take an instance of getting all
tweets from Twitter with the hashtag "worldtoday" which includes the process of
authenticating, sending requests and receiving responses from different URLs, and
dealing with different methods. All the said processes and the procedures will be
specified in the API of Twitter. By following these procedures, we can collaborate
with the web smoothly.

Getting started with the Twitter API
To get started with Twitter API we should first obtain an API key. It is a code which
is passed by the computer programs while calling an API. The basic purpose of the
API key is that it uniquely identifies the program that it is trying to interact with. It
also serves us in the process of authentication with its token.

The next step involves the process of creating an authentication request which will
give us access to the Twitter account. Once we have authenticated successfully, we
will be free to deal with tweets, followers, trends, searches, and stuff. Let us get to
know more about the steps to follow.

Chapter 5

[51]

Please note that, we will be using the Twitter API 1.1
version in all the examples.

Obtaining an API Key
Getting an API key is pretty simple. You need to follow the steps prescribed in the
following section:

1. At first, you need to sign into the page https://apps.twitter.com/ with
your your Twitter credentials.

2. Click on Create New App button.
3. Now, you need to fill the following fields to set up a new application:

 ° Name: Specify your application name. This is used to attribute the
source of a tweet and in user-facing authorization screens.

 ° Description: Enter a short description of your application. This will
be shown when a user faces the authorization screens.

 ° Website: Specify your fully qualified website URL. A fully qualified
URL includes http:// or https:// and will not have a trailing slash
in the end (for example: http://example.com or http://www.
example.com).

 ° Callback URL: This field answers the question—where should we
return after successfully authenticating.

 ° Developer Agreement: Read the Developer Agreement carefully
and then check the checkbox Yes, I agree.

4. Now, by clicking on Create your Twitter application, a new application will
be created for us with the previously specified details.

5. After the successful creation, we'll be redirected to a page where the Details
tab is selected by default. Now, select the Keys and Access Tokens tab. We
should click on Create my access token button to generate our access token.

6. Lastly, make a note of the Consumer Key (API Key), Consumer Secret (API
Secret), Access Token and Access Token Secret.

Interacting with Social Media Using Requests

[52]

Creating an authentication Request
If we remember the theme of the third chapter, we learned different kinds of
authentication with requests, such as Basic authentication, Digest authentication,
and OAuth authentication. Time to apply all that stuff in real time!

Now, we will be using OAuth1 authentication to get the access to the Twitter API.
In the first step of obtaining a key, we got access to Consumer key, Consumer secret,
Access token and Access token secret, now we should use them to authenticate our
application. The following commands show how we can accomplish the process:

>>> import requests

>>> from requests_oauthlib import OAuth1

>>> CONSUMER_KEY = 'YOUR_APP_CONSUMER_KEY'

>>> CONSUMER_SECRET = 'YOUR_APP_CONSUMER_SECRET'

>>> ACCESS_TOKEN = 'YOUR_APP_ACCESS_TOKEN'

>>> ACCESS_TOKEN_SECRET = 'YOUR_APP_ACCESS_TOKEN_SECRET'

>>> auth = OAuth1(CONSUMER_KEY, CONSUMER_SECRET,

... ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

In the preceding lines, we have sent our keys and tokens to the API and got ourselves
authenticated and stored them in the variable auth. Now, we can do all sorts of
interactions with the API using this. Let us start to interact with the Twitter API.

Keep in mind that, all the twitter interacting examples that are
depicted after this will be using the "auth" value obtained in the
previous section.

Getting your favorite tweet
Let us grab some favorite tweets of the authenticated user first. For this, we should
send a request to the Twitter API to access the favorite tweets. The request can be
sent with a Resource URL by specifying the parameters. The Resource URL for
getting the favorite list looks like this:

https://api.twitter.com/1.1/favorites/list.json

Chapter 5

[53]

We can also send some optional parameters to the URL like user_id, screen_name,
count, since_id, max_id, include_identities to accomplish our needs. Let us get
one favorite tweet now.

>>> favorite_tweet = requests.get('https://api.twitter.com/1.1/favorites/
list.json?count=1', auth=auth)

>>> favorite_tweet.json()

[{u'contributors': None, u'truncated': False, u'text': u'India has spent
$74 mil to reach Mars. Less than the budget of the film \u201cGravity,\
u201d $100 million.\n\n#respect\n#ISRO\n#Mangalyaan', u'in_reply_to_
status_id': None, …}]

In the first step, we sent a get request with the parameter count and the
authentication auth to the resource URL. In the next step, we accessed the response
within the JSON format which gave us my favorite tweet, and it is that simple.

As we have specified the count parameter as 1 in the request, we happened to see the
result with one favorite tweet. By default, if we don't specify the optional parameter
count, the request will result in 20 most recent favorite tweets.

Performing a simple search
We shall make a search with a Twitter's API now. For this, we will be making
use of Search API of Twitter. The basic URL structure for searching has the
following syntax:

https://api.twitter.com/1.1/search/tweets.json?q=%40twitterapi

It has got additional parameters like Result type, Geolocation, language,
Iterating in a result set.

>>> search_results = requests.get('https://api.twitter.com/1.1/search/
tweets.json?q=%40python', auth=auth)

>>> search_results.json().keys()

[u'search_metadata', u'statuses']

>>> search_results.json()["search_metadata"]

{u'count': 15, u'completed_in': 0.022, u'max_id_str':
u'529975076746043392', u'since_id_str': u'0', u'next_results': u'?max_id
=527378999857532927&q=%40python&include_entities=1', u'refresh_url':
u'?since_id=529975076746043392&q=%40python&include_entities=1', u'since_
id': 0, u'query': u'%40python', u'max_id': 529975076746043392}

In the preceding example, we tried to search for tweets with the words python.

Interacting with Social Media Using Requests

[54]

Accessing the list of followers
Let us access the followers of a specified user. By default, when we query for the list
of followers, it returns the 20 most recent following users. The resource URL looks
like this:

https://api.twitter.com/1.1/followers/list.json

It returns a cursored collection of user objects for users following the specified user:

>>> followers = requests.get('https://api.twitter.com/1.1/followers/list.
json', auth=auth)

>>> followers.json().keys()

[u'previous_cursor', u'previous_cursor_str', u'next_cursor', u'users',
u'next_cursor_str']

>>> followers.json()["users"]

[{u'follow_request_sent': False, u'profile_use_background_image': True,
u'profile_text_color': u'333333'... }]

Retweets
A tweet which has been reposted is called a retweet. To access the most recent
retweets that have been authored by the authenticated user, we will be using
the following URL:

https://api.twitter.com/1.1/statuses/retweets_of_me.json

The optional parameters that can be sent with it are count, since_id, max_id, trim_
user, include_entites, include_user_entities

>>> retweets = requests.get('https://api.twitter.com/1.1/statuses/
retweets_of_me.json', auth=auth)

>>> len(retweets.json())

16

>>> retweets.json()[0]

{u'contributors': None, u'text': u'I\u2019m now available to take on new
#python #django #freelance projects. Reply for more details!', {u'screen_
name': u'vabasu', ...}}

Chapter 5

[55]

Accessing available trends
Twitter trends are hashtag-driven subject matter that is popular at a specific time.
Take an instance of getting a location of the available trends in Twitter. For that,
we will use the following URL:

https://api.twitter.com/1.1/trends/available.json

The response of the resource URL is an array of locations in encoded form:

>>> available_trends = requests.get('https://api.twitter.com/1.1/trends/
available.json', auth=auth)

>>> len(available_trends.json())

467

>>> available_trends.json()[10]

{u'name': u'Blackpool', u'countryCode': u'GB', u'url': u'http://
where.yahooapis.com/v1/place/12903', u'country': u'United Kingdom',
u'parentid': 23424975, u'placeType': {u'code': 7, u'name': u'Town'},
u'woeid': 12903}

In the preceding lines of code, we searched for the locations of the available_
trends. Then, we learned that the number of locations having available_trends
is 467. Later, we tried to access the tenth location's data and it resulted in a response
with the location information which is encoded with woeid. This is a unique
identifier called Where on Earth ID.

Updating user status
To update the authenticated user's current status, which is also known as tweeting,
we follow the following procedure.

For each update attempt, the update text is compared with the authenticating user's
recent tweets. Any attempt that would result in duplication will be blocked, resulting
in a 403 error. Therefore, a user cannot submit the same status twice in a row.

>>> requests.post('https://api.twitter.com/1.1/statuses/update.
json?status=This%20is%20a%20Tweet', auth=auth)

Interacting with Social Media Using Requests

[56]

Interacting with Facebook
The Facebook API platform helps third-party developers like us to create our own
applications and services that access data on Facebook.

Let us draw the Facebook data using the Facebook API. Facebook provides two
types of APIs; that is, Graph API and Ads API. Graph API is a RESTful JSON API
with which we can access the different resources from Facebook like statuses, likes,
pages, photos, and so on. The Ads API basically deals with managing access to add
campaigns, audiences and so on.

In this chapter, we are going to use the Facebook Graph API to interact with
Facebook. It is named after its manner of representation with nodes and edges.
The nodes represent the things, which means a user, a photo, a page; and the edges
represent the connection between the things; that is page's photos, photo's comments.

All the examples in this section will be using the Graph API
version 2.2

Getting started with the Facebook API
To get started with the Facebook API, we need an opaque string called access token
which is used by Facebook to identify a user, app, or page. It is followed by the steps
of obtaining a key. We will be sending almost all our requests to the API at graph.
facebook.com except the video upload stuff. The procedure to send a request takes
place using the unique id of the node in the following way:

GET graph.facebook.com/{node-id}

And in the same way, we can POST in the following way:

POST graph.facebook.com/{node-id}

Obtaining a key
The tokens of Facebook API are portable and can be used to make calls from a mobile
client, a web browser or from a server.

There are four different types of Access tokens:

• User Access Token: This is the most commonly used type of access token
which needs the authorization of users. This token can be used to access
the user information and to post data on the user's timeline.

Chapter 5

[57]

• App Access Token: This token comes into the picture when dealing at the
Application level. This token doesn't help in getting access to the user's data,
but it gives access to read the stream.

• Page Access Token: This token can used while accessing and managing a
Facebook page.

• Client Token: This token can be embedded in an application to get access to
the app-level API's.

In this tutorial, we will be using the App access token which consists of App Id and
App Secret to get access to the resources.

Follow the below steps to obtain an App access token:

1. Create an application using the developer console of Facebook at
https://developers.facebook.com/developer-console/. Note
that we should login to http://developers.facebook.com so that
we can attain the permission to create an application.

2. Once we are done with the creation of the application, we can get
the access to App Id and App Secret on the application page of
our http://developers.facebook.com account.

That's all; obtaining a key is that simple. We don't need to create any authentication
request to send messages, as opposed to how it is on Twitter. The App Id and App
Secret are enough to give us permission to access the resources.

Getting a user profile
We can access the current user profile of the person who is logged into the site,
using the API URL https://graph.facebook.com/me with a GET request.
We need to pass the previously obtained access token as a parameter, while
we are making any Graph API call using requests.

Firstly, we need to import the requests module and then we have to store the access
token into a variable. The process works in the following way:

>>> import requests

>>> ACCESS_TOKEN = '231288990034554xxxxxxxxxxxxxxx'

In the next step, we should send the required graph API call, in the following way:

>>> me = requests.get("https://graph.facebook.com/me", params={'access_
token': ACCESS_TOKEN})

Interacting with Social Media Using Requests

[58]

Now, we have a requests.Response object called me. The me.text returns a
JSON response string. To access various elements (example, id, name, last_name,
hometown, work) of the retrieved user profile, we need to convert the json response
string into a json object string. We can achieve this by calling the method
me.json(). The me.json.keys() results all the keys in the dictionary:

>>> me.json().keys()

[u'website', u'last_name', u'relationship_status', u'locale',
u'hometown', u'quotes', u'favorite_teams', u'favorite_athletes',
u'timezone', u'education', u'id', u'first_name', u'verified',
u'political', u'languages', u'religion', u'location', u'username',
u'link', u'name', u'gender', u'work', u'updated_time', u'interested_in']

A user's id is a unique number which is used to identify the user on Facebook.
We can access the current profile ID from the user profile in the following way.
We'll use this ID in the subsequent examples to retrieve the current user's friends,
feed and albums.

>>> me.json()['id']

u'10203783798823031'

>>> me.json()['name']

u'Bala Subrahmanyam Varanasi'

Retrieving a friends list
Let us gather the friends list of a specific user. To achieve this, we should make an
API call to https://graph.facebook.com/<user-id>/friends, and replace the
user-id with the value of user's ID.

Now, let us obtain the friends list of the user id that we retrieved in the former example:

>>> friends = requests.get("https://graph.facebook.com/10203783798823031/
friends", params={'access_token': ACCESS_TOKEN})

>>> friends.json().keys()

[u'paging', u'data']

The response for the API call contains a JSON object string. The friend's information
is stored in the data attribute of the response json object, which is a list of friend
objects containing friends' IDs and names as keys.

>>> len(friends.json()['data'])

32

>>> friends.json().keys()

Chapter 5

[59]

[u'paging', u'data']

>>> friends.json()['data'][0].keys()

[u'name', u'id']

Retrieving feed
In order to retrieve the feed of posts which includes status updates and links
published by the current user, or by others on the current user's profile, we
should use the feed parameter in the request.

>>> feed = requests.get("https://graph.facebook.com/10203783798823031/
feed", params={'access_token': ACCESS_TOKEN})

>>> feed.json().keys()

[u'paging', u'data']

>>> len(feed.json()["data"])

24

>>> feed.json()["data"][0].keys()

[u'from', u'privacy', u'actions', u'updated_time', u'likes', u'created_
time', u'type', u'id', u'status_type']

In the preceding example, we sent a request to get the feeds of a specific user with
user ID 10203783798823031.

Retrieving albums
Let us access the photo albums created by the current logged-in user. It can be
achieved in the following way:

>>> albums = requests.get("https://graph.facebook.com/10203783798823031/
albums", params={'access_token': ACCESS_TOKEN})

>>> albums.json().keys()

[u'paging', u'data']

>>> len(albums.json()["data"])

13

>>> albums.json()["data"][0].keys()

[u'count', u'from', u'name', u'privacy', u'cover_photo', u'updated_time',
u'link', u'created_time', u'can_upload', u'type', u'id']

>>> albums.json()["data"][0]["name"]

u'Timeline Photos'

Interacting with Social Media Using Requests

[60]

In the preceding example, we sent a request to graph API to get access to the
albums of the user with user-id 10203783798823031. And then we tried to
access the response data through JSON.

Interacting with reddit
Reddit is one of the popular social networking, entertainment and news websites
where registered members can submit content, such as text posts or direct links.
It allows the registered users to vote the submissions either "up" or "down" to rank
the posts on the site's pages. Each content entry is categorized by area of interest
called SUBREDDITS.

In this section, we are going to access the reddit API directly, using the Python
requests library. We are going to cover the topics of a basic overview of reddit API,
getting data related to our own reddit account, and using the search API to retrieve
the links.

Getting started with the reddit API
The reddit API consists of four important parts that we need to get familiar with
before starting to interact with it. The four parts are:

1. listings: The endpoints in reddit are called listings. They contain parameters
like after/before, limit, count, show.

2. modhashes: This is a token which is used to prevent the cross site request
forgery(CSRF) exploit. We can get the modhash for us by using GET /api/
me.json.

3. fullnames: A fullname is a combination of a thing's type and its unique ID
which forms a compact encoding of a globally unique ID on reddit.

4. account: This deals with the user's account. Using this we can register, login,
set force https, update the account, update email and so on.

Registering a new account
Registering a new account on reddit is easy. First, we need to reach the reddit site—
https://www.reddit.com/, and then have to fill up the registration form which
pops up when we click on sign in or create an account link in the top right corner.
The Registration form includes:

• username: Used to identify the reddit community member uniquely
• email: An optional field used to communicate directly with a user

Chapter 5

[61]

• password: Secure password to login into the reddit platform
• verify password: This field should be the same as the password field
• captcha: This field is used to check whether the user who is trying to login is

a human or a programmable bot

Let us create a new account with a username and a password of our choice. For now,
leave the email field empty. We are going to add it in the next section.

In the following examples, I'm assuming that the username and password we created
before are OUR_USERNAME and OUR_PASSWORD respectively.

Modifying account information
Now, let's add an email to our account's profile which we intentionally left undone
while creating the account in the previous section.

1. Let us begin the process by creating a session object, which allows us to
maintain certain parameters and cookies across all requests.
>>> import requests

>>> client = requests.session()

>>> client.headers = {'User-Agent': 'Reddit API - update profile'}

2. Let us create a DATA attribute with the 'user', 'passwd' and 'api type'
attributes.
>>> DATA = {'user': 'OUR_USERNAME', 'passwd': 'OUR_PASSWORD', 'api
type': 'json'}

3. We can access our reddit account by making a post request call to the URL—
https://ssl.reddit.com/api/login with the login credentials stored in
the DATA attribute.
>>> response = client.post('https://ssl.reddit.com/api/login',
data=DATA)

4. The reddit api response to the above post request will be stored in the
response variable. The response object contains the data and errors
information as shown in the following example:
>>> print response.json()

{u'json': {u'errors': [], u'data': {u'need_https': False,
u'modhash': u'v4k68gabo0aba80a7fda463b5a5548120a04ffb43490f54072',
u'cookie': u'32381424,2014-11-09T13:53:30,998c473d93cfeb7abcd31ac4
57c33935a54caaa7'}}}

Interacting with Social Media Using Requests

[62]

5. We need to send the modhash value obtained in the previous response to
perform an update call to change our email. Now, let us call the reddit's
update API as shown in the following example:
>>> modhash = response.json()['json']['data']['modhash']

>>> update_params = {"api_type": "json", "curpass": "OUR_
PASSWORD",

... "dest": "www.reddit.com", "email": "user@
example.com",

... "verpass": "OUR_PASSWORD", "verify": True,
'uh': modhash}

>>> r = client.post('http://www.reddit.com/api/update',
data=update_params)

6. The response to the update call is stored in r. If there are no errors, then the
status_code will be 200 and errors attributes value will be an empty list
as shown in the following example:
>>> print r.status_code

200

>>> r.text

u'{"json": {"errors": []}}'

7. Now, let us check whether the email field is set by getting info about the
currently authenticated user. If the has_mail attribute is True, then we
can assume that the email is successfully updated.
>>> me = client.get('http://www.reddit.com/api/me.json')

>>> me.json()['data']['has_mail']

True

Performing a simple search
We can use reddit's search API to search the entire site or in a subreddit. In this
section we'll look at making a search API request. Proceed with the following
steps to make a search request.

To make a search api call, we need to send a get request to http://www.reddit.
com/search.json url with a search query q in the parameters.

>>> search = requests.get('http://www.reddit.com/search.json',
params={'q': 'python'})

>>> search.json().keys()

[u'kind', u'data']

>>> search.json()['data']['children'][0]['data'].keys()

Chapter 5

[63]

[u'domain', u'author', u'media', u'score', u'approved_by', u'name',
u'created', u'url', u'author_flair_text', u'title' ...]

The response to search is stored in the search variable which is a requests.
Response object. The search results are stored in the children attribute of the
data attribute. We can access title, author, score or another item in the search
results as shown in the following example:

>>> search.json()['data']['children'][0]['data']['title']

u'If you could change something in Python what would it be?'

>>> search.json()['data']['children'][0]['data']['author']

u'yasoob_python'

>>> search.json()['data']['children'][0]['data']['score']

146

Searching subreddits
Searching in reddit's subreddits by title and description is same as searching in
reddit. For that, we need to send a get request to http://www.reddit.com/search.
json URL with a search query q in the parameters.

>>> subreddit_search = requests.get('http://www.reddit.com/subreddits/
search.json', params={'q': 'python'})

The response to search is stored in the search variable which is a requests.Response
object. The search results are stored in the data attribute.

>>> subreddit_search.json()['data']['children'][0]['data']['title']

u'Python'

Summary
This chapter serves as a guide to interact with some of the most popular social
media with Python using requests. We started by learning about the definition and
importance of an API in the real world. Then we interacted with some of the most
popular social networking sites like Twitter, Facebook and reddit. Each section about
a social network will provide a hands on experience using a limited set of examples.

In the next chapter, we are going to learn step by step about Web scraping with
requests and BeautifulSoup libraries.

[65]

Web Scraping with Python
Requests and BeautifulSoup

We have become experts in how to communicate with the Web through Requests.
Everything progressed flamboyantly while working with the APIs. However, there
are some conditions where we need to be aware of API folklore.

The first thing that concerns us is not all web services have built an API for the
sake of their third-party customers. Also, there is no statute that the API should be
maintained perfectly. Even tech giants such as Google, Facebook, and Twitter tend
to change their APIs abruptly without prior notice. So, it's better to understand that
it is not always the API that comes to the rescue when we are looking for some vital
information from a web resource.

The concept of web scraping stands as a savior when we really turn imperative to
access some information from a web resource that does not maintain an API. In this
chapter, we will discuss tricks of the trade to extract information from web resources
by following all the principles of web scraping.

Before we begin, let's get to know some important concepts that will help us to
reach our goal. Take a look at the response content format of a request, which
will introduce us to a particular type of data:

>>> import requests

>>> r = requests.get("http://en.wikipedia.org/wiki/List_of_algorithms")

>>> r

<Response [200]>

>>> r.text

u'<!DOCTYPE html>\n<html lang="en" dir="ltr" class="client-nojs">\
n<head>\n<meta charset="UTF-8" />\n<title>List of algorithms - Wikipedia,
the free encyclopedia</title>\n...

Web Scraping with Python Requests and BeautifulSoup

[66]

In the preceding example, the response content is rendered in the form of
semistructured data, which is represented using HTML tags; this in turn helps
us to access the information about the different sections of a web page individually.

Now, let's get to know the different types of data that the Web generally deals with.

Types of data
In most cases, we deal with three types of data when working with web sources.
They are as follows:

• Structured data
• Unstructured data
• Semistructured Data

Structured data
Structured data is a type of data that exists in an organized form. Normally,
structured data has a predefined format and it is machine readable. Each piece of
data that lies in structured data has a relation with every other data as a specific
format is imposed on it. This makes it easier and faster to access different parts of
data. The structured data type helps in mitigating redundant data while dealing
with huge amounts of data.

Databases always contain structured data, and SQL techniques can be used to access
data from them. We can regard census records as an example of structured data.
They contain information about the date of birth, gender, place, income, and so on,
of the people of a country.

Unstructured data
In contrast to structured data, unstructured data either misses out on a standard
format or stays unorganized even though a specific format is imposed on it. Due to
this reason, it becomes difficult to deal with different parts of the data. Also, it turns
into a tedious task. To handle unstructured data, different techniques such as text
analytics, Natural Language Processing (NLP), and data mining are used. Images,
scientific data, text-heavy content (such as newspapers, health records, and so on),
come under the unstructured data type.

Chapter 6

[67]

Semistructured data
Semistructured data is a type of data that follows an irregular trend or has a structure
which changes rapidly. This data can be a self described one, it uses tags and
other markers to establish a semantic relationship among the elements of the data.
Semistructured data may contain information that is transferred from different sources.
Scraping is the technique that is used to extract information from this type of data. The
information available on the Web is a perfect example of semistructured data.

What is web scraping?
In simple words, web scraping is the process of extracting desired data from a web
resource. This method involves different procedures such as interacting with the web
resource, choosing the appropriate data, obtaining information from the data, and
converting the data to the desired format. With all the previous methods considered,
a major spotlight will be thrown on the process of pulling the required data from the
semistructured data.

Dos and don'ts of web scraping
Scraping a web resource is not always welcomed by the owners. Some companies
put a restriction on using bots against them. It's etiquette to follow certain rules
while scraping. The following are the dos and don'ts of web scraping:

• Do refer to the terms and conditions: The first thing that should come to our
mind before we begin scraping is terms and conditions. Do visit the website's
terms and conditions page and get to know whether they prohibit scraping
from their site. If so, it's better to back off.

• Don't bombard the server with a lot of requests: Every website runs on a
server that can serve only a specific amount of workload. It is equivalent to
being rude if we bombard the server with lots of requests in a specific span
of time, which may result in sever breakdown. Wait for some time between
requests instead of bombarding the server with too many requests at once.

Some sites put a restriction on the maximum number of requests
processed per minute and will ban the request sender's IP address
if this is not adhered to.

• Do track the web resource from time to time: A website doesn't always stay
the same. According to its usability and the requirement of users, they tend
to change from time to time. If any alteration has taken place in the website,
our code to scrape may fail. Do remember to track the changes made to the
site, modify the scrapper script, and scrape accordingly.

Web Scraping with Python Requests and BeautifulSoup

[68]

Predominant steps to perform web scraping
Generally, the process of web scraping requires the use of different tools and libraries
such as the following:

• Chrome DevTools or FireBug Add-on: This can be used to pinpoint the
pieces of information in an HTML/XML page.

• HTTP libraries: These can be used to interact with the server and to pull a
response document. An example of this is python-requests.

• Web scraping tools: These are used to pull data from a semistructured
document. Examples include BeautifulSoup or Scrappy.

The overall picture of web scraping can be observed in the following steps:

1. Identify the URL(s) of the web resource to perform the web scraping task.
2. Use your favorite HTTP client/library to pull the semistructured document.
3. Before extracting the desired data, discover the pieces of data that are in

semistructured format.
4. Utilize a web scraping tool to parse the acquired semistructured document

into a more structured one.
5. Draw the desired data that we are hoping to use. That's all, we are done!

Key web scraping tasks
While pulling the required data from a semistructured document, we perform
various tasks. The following are the basic tasks that we adopt for scraping:

• Searching a semistructured document: Accessing a particular element or
a specific type of element in a document can be accomplished using its tag
name and tag attributes, such as id, class, and so on.

• Navigating within a semistructured document: We can navigate through
a web document to pull different types of data in four ways, which are
navigating down, navigating sideways, navigating up, and navigating back
and forth. We can get to know more about these in detail later in this chapter.

• Modifying a semistructured document: By modifying the tag name or the
tag attributes of a document, we can streamline and pull the required data.

Chapter 6

[69]

What is BeautifulSoup?
The BeautifulSoup library is a simple yet powerful web scraping library. It has
the capability to extract the desired data when provided with an HTML or XML
document. It is charged with some superb methods, which help us to perform web
scraping tasks effortlessly.

Document parsers
Document parsers aid us in parsing and serializing the semistructured documents
that are written using HTML5, lxml, or any other markup language. By default,
BeautifulSoup has Python's standard HTMLParser object. If we are dealing
with different types of documents, such as HTML5 and lxml, we need to install
them explicitly.

In this chapter, our prime focus will be laid only on particular parts of the library,
which help us to understand the techniques to develop a practical scraping bot that
we will build at the end of this chapter.

Installation
Installing BeautifulSoup is pretty straightforward. We can use pip to install it
with ease:

$ pip install beautifulsoup4

Whenever we intend to scrape a web resource using BeautifulSoup, we need to
create a BeautifulSoup object for it. The following are the commands to do this:

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup(<HTML_DOCUMENT_STRING>)

Objects in BeautifulSoup
The BeautifulSoup object parses the given HTML/XML document and converts it
into a tree of Python objects, which are discussed in the following sections.

Tags
The word "tag" represents an HTML/XML tag in the provided document. Each
tag object has a name and a lot of attributes and methods. The following example
showcases the way to deal with a tag object:

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup("<h1 id='message'>Hello, Requests!</h1>")

Web Scraping with Python Requests and BeautifulSoup

[70]

In order to access the type, name, and attributes of the BeautifulSoup object, with
soup, that we created in the preceding example, use the following commands:

• For accessing the tag type:
>>> tag = soup.h1

>>> type(tag)

<class 'bs4.element.Tag'>

• For accessing the tag name:
>>> tag.name

'h1'

• For accessing the tag attribute ('id' in the given html string)
>>> tag['id']

'message'

BeautifulSoup
The object that gets created when we intend to scrape a web resource is called
a BeautifulSoup object. Put simply, it is the complete document that we are
planning to scrape. This can be done using the following commands:

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup("<h1 id='message'>Hello, Requests!</h1>") >>>
type(soup)

<class 'bs4.BeautifulSoup'>

NavigableString
A NavigableString object represents the contents of tag. We use the .string
attribute of the tag object to access it:

>>> tag.string

u'Hello, Requests!'

Comments
The comment object illustrates the comment part of the web document. The following
lines of code exemplify a comment object:

>>> soup = BeautifulSoup("<p><!-- This is comment --></p>")

>>> comment = soup.p.string

>>> type(comment)

<class 'bs4.element.Comment'>

Chapter 6

[71]

Web scraping tasks related to BeautifulSoup
As cited in the previous section of Key web scraping tasks, BeautifulSoup always
follows those basic tasks in the process of web scraping. We can get to know these
tasks in detail with the help of a practical example, using an HTML document. We
will be using the following HTML document that is scraping_example.html, as an
example through out the chapter:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>
 Chapter 6 - Web Scrapping with Python Requests and
 BeatuifulSoup
 </title>
 </head>
 <body>
 <div class="surveys">
 <div class="survey" id="1">
 <p class="question">
 Are you from India?
 </p>
 <ul class="responses">
 <li class="response">Yes - 21

 <li class="response">No - 19

 </div>
 <div class="survey" id="2">
 <p class="question">
 Have you ever seen the rain?
 </p>
 <ul class="responses">
 <li class="response">Yes - 40

 <li class="response">No - 0

 </div>
 <div class="survey" id="3">
 <p class="question">
 Do you like grapes?
 </p>

Web Scraping with Python Requests and BeautifulSoup

[72]

 <ul class="responses">
 <li class="response">Yes - 34

 <li class="response">No - 6

 </div>
 </div>
 </body>
</html>

To give a crystal clear understanding of the preceding web document, we showcased it
as a document tree. The following diagram represents the preceding HTML document:

When we create the BeautifulSoup object for the previously shown web document,
it will result in a tree of Python objects.

To perform different tasks with the previous document, scraping_example.html,
we need to create a BeautifulSoup object. To create it, open the Python shell and
run the following commands:

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup(open("scraping_example.html"))

Chapter 6

[73]

From now, we will use the preceding BeautifulSoup object to execute different
tasks. Let's perform the web scraping tasks on the scraping_example.html
document and get an overall idea on all the tasks.

Searching the tree
To identify the different tags in an HTML/XML document, we need to search the
whole document. In similar situations, we can use BeautifulSoup methods such
as find, find_all, and so on.

Here is the syntax to search the whole document to identify the tags:

• find(name, attributes, recursive, text, **kwargs)

 ° name: This is the first occurring tag name that appears in the process
of discovery. It can be a string, a regular expression, a list, a function,
or the value True.

• find_all(name, attributes, recursive, text, limit, **kwargs)

 ° name: This is used to access specific types of tags with their name.
It can be a string, a regular expression, a list, a function, or the
value True.

 ° limit: This is the maximum number of results in the output.

The common attributes for the preceding two methods are as follows:

• attributes: These are the attributes of an HTML/XML tag.
• recursive: This takes a Boolean value. If it is set to True, the BeautifulSoup

library checks all the children of a specific tag. Vice versa, if it is set to false,
the BeautifulSoup library checks the child at the next level only.

• text: This parameter identifies tags that consist of the string content.

Navigating within the tree
Different tasks are involved in navigating the document tree with the
Beautifulsoup4 module; they are discussed in the following section.

Navigating down
We can access a particular element's data by moving down in a document. If we
consider the document tree in the previous figure, we can access different elements
by moving downward from the top element—html.

Web Scraping with Python Requests and BeautifulSoup

[74]

Every element can be accessed using its tag name. Here is a way to access the
contents of the html attribute:

>>> soup.html
<html lang="en">
...
...
</html>

Here are the ways in which we can access the elements of the preceding document
tree by navigating down. In order to access the title element, we should go from
top to bottom, that is, from html to head and from head to title, as shown in the
following command:

>>> soup.html.head.title

<title>Chapter 6 - Web Scraping with Python Requests and BeatuifulSoup</
title>

Similarly, you can access the meta element, as shown in the following command:

>>> soup.html.head.meta

<meta charset="utf-8"/>

Navigating sideways
To access the siblings in a document tree, we should navigate sideways.
The BeautifulSoup library provides various tag object properties such as
.next_sibling, .previous_sibling, .next_siblings, and .previous_siblings.

If you look at the preceding diagram containing the document tree, the different
siblings at different levels of the tree, when navigated sideways, are as follows:

• head and body
• div1, div2, and div3

In the document tree, the head tag is the first child of html, and body is the
next child of html. In order to access the children of the html tag, we can use
its children property:

>>> for child in soup.html.children:

... print child.name

...

head

body

Chapter 6

[75]

To access the next sibling of head element we can use .find_next_sibling:

>>> soup.head.find_next_sibling()

<body>

 <div class="surveys">

 .

 .

 .

 </div>

</body>

To access the previous sibling of body, we can use .find_previous_sibling:

>>> soup.body.find_previous_sibling

<head><meta charset="utf-8"/><title>... </title></head>

Navigating up
We can access a particular element's parent by moving toward the top of the document
tree. The BeautifulSoup library provides two properties—.parent and .parents—
to access the first parent of the tag element and all its ancestors, respectively.

Here is an example:

>>> soup.div.parent.name

'body'

>>> for parent in soup.div.parents:

... print parent.name

...

body

html

[document]

Navigating back and forth
To access the previously parsed element, we navigate back in the node of a tree,
and to access the immediate element that gets parsed next, we navigate forward in
the node of a tree. To deal with this, the tag object provides the .find_previous_
element and .find_next_element properties, as shown in the following example:

>>> soup.head.find_previous().name

'html'

Web Scraping with Python Requests and BeautifulSoup

[76]

>>> soup.head.find_next().name

'meta'

Modifying the Tree
The BeautifulSoup library also facilitates us to make changes to the web document
according to our requirements. We can alter a tag's properties using its attributes,
such as the .name, .string, and .append() method. We can also add new tags
and strings to an existing tag with the help of the .new_string() and .new_tag()
methods. There are also other methods, such as .insert(), .insert_before(),
.insert_after(), and so on, to make various modifications to the document tree.

Here is an example of changing the title tag's .string attribute:

• Before modifying the title tag the title contents are:
>>> soup.title.string

u'Chapter 6 - Web Scrapping with Python Requests and
BeatuifulSoup'

• This is the way to modify the contents of a title tag:
>>> soup.title.string = 'Web Scrapping with Python Requests and
BeatuifulSoup by Balu and Rakhi'

• After the modifications the contents of the tilte tag looks like this:
>>> soup.title.string

u'Web Scrapping with Python Requests and BeatuifulSoup by Balu and
Rakhi'

Building a web scraping bot – a practical
example
At this point of time, our minds got enlightened with all sorts of clues to scrape the
Web. With all the information acquired, let's look at a practical example. Now, we
will create a web scraping bot, which will pull a list of words from a web resource
and store them in a JSON file.

Let's turn on the scraping mode!

Chapter 6

[77]

The web scraping bot
Here, the web scraping bot is an automated script that has the capability to extract
words from a website named majortests.com. This website consists of various tests
and Graduate Record Examinations (GRE) word lists. With this web scraping bot,
we will scrape the previously mentioned website and create a list of GRE words and
their meanings in a JSON file.

The following image is the sample page of the website that we are going to scrape:

Web Scraping with Python Requests and BeautifulSoup

[78]

Before we kick start the scraping process, let's revise the dos and don't of web
scraping as mentioned in the initial part of the chapter. Believe it or not they
will definitely leave us in peace:

• Do refer to the terms and conditions: Yes, before scraping majortests.com,
refer to the terms and conditions of the site and obtain the necessary legal
permissions to scrape it.

• Don't bombard the server with a lot of requests: Keeping this in mind,
for every request that we are going to send to the website, a delay has been
instilled using Python's time.sleep function.

• Do track the web resource from time to time: We ensured that the code
runs perfectly with the website that is running on the server. Do check the
site once before starting to scrape, so that it won't break the code. This can
be made possible by running some unit tests, which conform to the structure
we expected.

Now, let's start the implementation by following the steps to scrape that we
discussed previously.

Identifying the URL or URLs
The first step in web scraping is to identify the URL or a list of URLs that will result
in the required resources. In this case, our intent is to find all the URLs that result in
the expected list of GRE words. The following is the list of the URLs of the sites that
we are going to scrape:

http://www.majortests.com/gre/wordlist_01,

http://www.majortests.com/gre/wordlist_02,

http://www.majortests.com/gre/wordlist_03, and so on

Our aim is to scrape words from nine such URLs, for which we found a common
pattern. This will help us to crawl all of them. The common URL pattern for all
those URLs is written using Python's string object, as follows:

http://www.majortests.com/gre/wordlist_0%d

Chapter 6

[79]

In our implementation, we defined a method called generate_urls, which will
generate the required list of URLs using the preceding URL string. The following
snippet demonstrates the process in a Python shell:

>>> START_PAGE, END_PAGE = 1, 10

>>> URL = "http://www.majortests.com/gre/wordlist_0%d"

>>> def generate_urls(url, start_page, end_page):

... urls = []

... for page in range(start_page, end_page):

... urls.append(url % page)

... return urls

...

>>> generate_urls(URL, START_PAGE, END_PAGE)

['http://www.majortests.com/gre/wordlist_01', 'http://www.majortests.com/
gre/wordlist_02', 'http://www.majortests.com/gre/wordlist_03', 'http://
www.majortests.com/gre/wordlist_04', 'http://www.majortests.com/gre/
wordlist_05', 'http://www.majortests.com/gre/wordlist_06', 'http://
www.majortests.com/gre/wordlist_07', 'http://www.majortests.com/gre/
wordlist_08', 'http://www.majortests.com/gre/wordlist_09']

Using an HTTP client
We will use the requests module as an HTTP client to get the web resources:

>>> import requests

>>> def get_resource(url):

... return requests.get(url)

...

>>> get_resource("http://www.majortests.com/gre/wordlist_01")

<Response [200]>

In the preceding code, the get_resource function takes url as an argument and
uses the requests module to get the resource.

Web Scraping with Python Requests and BeautifulSoup

[80]

Discovering the pieces of data to scrape
Now, it is time to analyze and classify the contents of the web page. The content
in this context is a list of words with their definitions. In order to identify the
elements of the words and their definitions, we used Chrome DevTools. The
perceived information of the elements (HTML elements) can help us to identify
the word and its definition, which can be used in the process of scraping.

To carry this out open the URL (http://www.majortests.com/gre/wordlist_01)
in the Chrome browser and access the Inspect element option by right-clicking on
the web page:

From the preceding image, we can identify the structure of the word list, which
appears in the following manner:

<div class="grid_9 alpha">
 <h3>Group 1</h3>

 <table class="wordlist">
 <tbody>
 <tr>
 <th>Abhor</th>
 <td>hate</td>
 </tr>
 <tr>

Chapter 6

[81]

 <th>Bigot</th>
 <td>narrow-minded, prejudiced person</td>
 </tr>
 ...
 ...
 </tbody>
 </table>
</div>

By looking at the parts of the previously referred to web page, we can interpret
the following:

• Each web page consists of a word list
• Every word list has many word groups that are defined in the same div tag
• All the words in a word group are described in a table having the class

attribute—wordlist

• Each and every table row (tr) in the table represents a word and its
definition using the th and td tags, respectively

Utilizing a web scraping tool
Let's use BeautifulSoup4 as a web scraping tool to parse the obtained web page
contents that we received using the requests module in one of the previous steps.
By following the preceding interpretations, we can direct BeautifulSoup to access
the required content of the web page and deliver it as an object:

def make_soup(html_string):
 return BeautifulSoup(html_string)

In the preceding lines of code, the make_soup method takes the html content in the
form of a string and returns a BeautifulSoup object.

Drawing the desired data
The BeautifulSoup object that we obtained in the previous step is used to extract
the required words and their definitions from it. Now, with the methods available in
the BeautifulSoup object, we can navigate through the obtained HTML response,
and then we can extract the list of words and their definitions:

def get_words_from_soup(soup):
 words = {}

 for count, wordlist_table in enumerate(

Web Scraping with Python Requests and BeautifulSoup

[82]

 soup.find_all(class_='wordlist')):

 title = "Group %d" % (count + 1)

 new_words = {}
 for word_entry in wordlist_table.find_all('tr'):
 new_words[word_entry.th.text] = word_entry.td.text

 words[title] = new_words

 return words

In the preceding lines of code, get_words_from_soup takes a BeautifulSoup
object and then looks for all the words contained in the wordlists class using
the instance's find_all() method, and then returns a dictionary of words.

The dictionary of words obtained previously will be saved in a JSON file using the
following helper method:

def save_as_json(data, output_file):
 """ Writes the given data into the specified output file"""
 with open(output_file, 'w') as outfile:
 json.dump(data, outfile)

On the whole, the process can be depicted in the following program:

import json
import time

import requests

from bs4 import BeautifulSoup

START_PAGE, END_PAGE, OUTPUT_FILE = 1, 10, 'words.json'

Identify the URL
URL = "http://www.majortests.com/gre/wordlist_0%d"

def generate_urls(url, start_page, end_page):
 """
 This method takes a 'url' and returns a generated list of url
strings

 params: a 'url', 'start_page' number and 'end_page' number

Chapter 6

[83]

 return value: a list of generated url strings
 """
 urls = []
 for page in range(start_page, end_page):
 urls.append(url % page)
 return urls

def get_resource(url):
 """
 This method takes a 'url' and returns a 'requests.Response'
object

 params: a 'url'
 return value: a 'requests.Response' object
 """
 return requests.get(url)

def make_soup(html_string):
 """
 This method takes a 'html string' and returns a
'BeautifulSoup' object

 params: html page contents as a string
 return value: a 'BeautifulSoup' object
 """
 return BeautifulSoup(html_string)

def get_words_from_soup(soup):

 """
 This method extracts word groups from a given 'BeautifulSoup'
object

 params: a BeautifulSoup object to extract data
 return value: a dictionary of extracted word groups
 """

 words = {}

Web Scraping with Python Requests and BeautifulSoup

[84]

 count = 0

 for wordlist_table in soup.find_all(class_='wordlist'):

 count += 1
 title = "Group %d" % count

 new_words = {}
 for word_entry in wordlist_table.find_all('tr'):
 new_words[word_entry.th.text] = word_entry.td.text

 words[title] = new_words
 print " - - Extracted words from %s" % title

 return words

def save_as_json(data, output_file):
 """ Writes the given data into the specified output file"""
 json.dump(data, open(output_file, 'w'))

def scrapper_bot(urls):
 """
 Scrapper bot:
 params: takes a list of urls

 return value: a dictionary of word lists containing
 different word groups
 """

 gre_words = {}
 for url in urls:

 print "Scrapping %s" % url.split('/')[-1]

 # step 1

 # get a 'url'

 # step 2

Chapter 6

[85]

 html = requets.get(url)

 # step 3
 # identify the desired pieces of data in the url using
Browser tools

 #step 4
 soup = make_soup(html.text)

 # step 5
 words = get_words_from_soup(soup)

 gre_words[url.split('/')[-1]] = words

 print "sleeping for 5 seconds now"
 time.sleep(5)

 return gre_words

if __name__ == '__main__':

 urls = generate_urls(URL, START_PAGE, END_PAGE+1)

 gre_words = scrapper_bot(urls)

 save_as_json(gre_words, OUTPUT_FILE)

Here is the content of the words.json file:

{"wordlist_04":
 {"Group 10":
 {"Devoured": "greedily eaten/consumed",
 "Magnate": "powerful businessman",
 "Cavalcade": "procession of vehicles",
 "Extradite": "deport from one country back to the home...
 .
 .
 .
}

Web Scraping with Python Requests and BeautifulSoup

[86]

Summary
In this chapter, you learned about different types of data that we encountered with
web sources and tweaked some ideas. We came to know about the need for web
scraping, the legal issues, and the goodies that it offers. Then, we jumped deep
into web scraping tasks and their potential. You learned about a new library
called BeautifulSoup, and its ins and outs, with examples.

We came to know the capabilities of BeautifulSoup in depth and worked on
some examples to get a clear idea on it. At last, we created a practical scraping
bot by applying the knowledge that we gained from the previous sections, which
enlightened us with an experience to scrape a website in real time.

In the next chapter, you will learn about the Flask microframework and we will
build an application using it by following the best practices.

[87]

Implementing a
Web Application with

Python Using Flask
To ensure prosperity in the process of learning about the Requests module, there
seems to be nothing more important than an application of all the skills and
knowledge that you attained until now. So, here we pave the way to apply the
expertise you have gained till date, by creating a web application with the Flask
framework. This will give you an in-depth knowledge of developing a practical web
application and writing test cases for it. We do incline ourselves towards following the
best practices and a hands-on approach in this process. Let us dive in to learn the stuff.

What is Flask?
Flask is a small yet powerful framework for creating web applications with Python.
It can be called a micro framework. It is so small that if you could build a good
rapport with it, you can understand all of its source code. It is powerful because of its
goodies called extensions and its ability to provide all the basic services as a whole.
The extensions can be added according to the application's requirement. The man
behind Flask framework is Armin Ronacher, who released it on April 1, 2010.

Implementing a Web Application with Python Using Flask

[88]

Flask goodies are as follows:

• Flask comes up with an inbuilt development server, which assists you in the
development process and in the testing of programs.

• Error logging is made simple in Flask, with its interactive web-based
debugger. When executing your code, if any bug has emerged in the way,
an error stack trace will be shown on the web page, which makes it easy to
deal with. This can be achieved by setting the flag of app.debug to True.

• With its lightweight nature, Flask is a perfect framework to build RESTful
web services. The route decorator which helps to bind a function to a URL
can take the HTTP methods as arguments that pave a way to build API's in
an ideal manner. In addition, working with JSON data is simple with Flask.

• The template support for Flask is served by a flexible template engine called
Jinja2. This makes the process of rendering the templates a smoother task.

• The Session object is another goodie which saves the user's session. It stores
the requests of the user so that the application can remember the different
requests from the user.

• Flask uses the Web Server Gateway Interface (WSGI) protocol while dealing
with requests from clients and it is 100 % WSGI compliant.

Getting started with Flask
We can kick-start our application development with a simple example, which gives
you an idea of how we program in Python with a flask framework. In order to write
this program, we need to perform the following steps:

1. Create a WSGI application instance, as every application in Flask needs one
to handle requests from the client.

2. Define a route method which associates a URL and the function which
handles it.

3. Activate the application's server.

Here is an example which follows the preceding steps to make a simple application:

from flask import Flask

app = Flask(__name__)

@app.route("/")

Chapter 7

[89]

def home():

 return "Hello Guest!"

if __name__ == "__main__":

 app.run()

In the preceding lines of code, we have created a WSGI application instance using
the Flask's Flask class, and then we defined a route which maps the path "/" and the
view function home to process the request using a Flask's decorator function Flask.
route(). Next, we used the app.run() which tells the server to run the code. And
at that end, it will result in a web page showing up "Hello Guest!", when the
code is executed.

Installing Flask
Before initiating the programming process, you will need to install the required
dependencies. Let's initiate the installation process by creating a virtual environment
using virtual environment wrapper. It's one of the best practices to use a virtual
environment while creating an application. The virtual environment wrapper is a
tool which puts all the dependencies of the project in one place.

This practice will mitigate a lot of complications while dealing with different projects
in your system. In our tutorial the installation and application development goes
forward using Python version 2.7.

The following are the steps for setting up the environment:

1. Install the virtual environment wrapper using pip. You may have to use
sudo for administrative privileges:
$ pip install virtualenvwrapper

2. All the installation packages related to virtual environments are placed
in one folder for the sake of convenience. Virtualenvwrapper identifies
the directory using an environmental variable WORKON_HOME. So, set the
environmental variable to ~/Envs or anything of your choice.
$ export WORKON_HOME=~/Envs

3. Create the WORKON_HOME directory using the following command if it doesn't
exist on your local machine:
$ mkdir -p $WORKON_HOME

Implementing a Web Application with Python Using Flask

[90]

4. In order to use the utilities provided by the virtualenvwrapper, we need
to activate the shell script virtualenvwrapper.sh as shown in the following
lines. On Ubuntu machines, we can find this script in the /usr/local/bin
location:
$ source /usr/local/bin/virtualenvwrapper.sh

5. For the sake of convenience, add the commands in steps 2 and 4 to your shell
startup file to initialize and activate the virtualenvwrapper utilities at your
terminal's startup.

6. Now, use the mkvirtualenv command to create a new virtual environment
for your project with the name survey. Once the survey environment is
activated it gets displayed with the environment name in the closed braces
before the shell prompt.
$ mkvirtualenv survey

New python executable in survey/bin/python

Installing setuptools, pip...done.

(survey) $

Installing required packages with pip
We are going to use Flask-SQLAlchemy in this project which is a Flask extension
module that acts as an Object Relational Mapper (ORM) to interact with the database.
We will also be using modules like requests, httpretty, beautifulsoup in the
development of our survey application which we will be building in this tutorial.

Now install the following packages with your virtual environment activated:

(survey)~ $ pip install flask flask-sqlalchemy requests
httpretty beautifulsoup4

Survey – a simple voting application
using Flask
To create the survey application, we are going to follow an approach which will give
you an easy understanding of the ins and outs of the application and also will make
this process of developing a joyride.

Chapter 7

[91]

Our development procedure drives you through the process of getting you
introduced to all the functions that the project deals with. And then, we will
implement each and every function step-by-step. During the development process
we will be following the Model-View-Controller (MVC) design pattern, which is
popular for developing web applications.

The main aim of the survey application is to record the number of responses —
'yes', 'no' and 'maybe' - for the created survey questions.

Basic file structures
For developing a Flask application, we are following a specific structure to organize
the contents of our application. Here is the file structure of the application that we
are going to develop:

Here is a description of all the files and folders present in our application's
file structure:

Name of the File/Folder Description
__init__.py Initializes our project and adds it to the PYTHONPATH
server.py Invokes the application development server to startup.
survey/__init__.py Initializes our application and brings various components into

one place.
survey/app.db A sqlite3 file to store your data
survey/models.py Defines the models of our application.
survey/templates A place to put all the Jinja2 templates.
survey/tests.py A file in which various test cases related to the app are written.
survey/views.py Defines the routes of your application.

Implementing a Web Application with Python Using Flask

[92]

In our Survey application, survey_project is the project root. Now, let us create all
the files and folders with respect to the above file structure and place the following
contents in the survey_project/__init__.py file.

import os
import sys
current_dir = os.path.abspath(os.path.dirname(os.path.dirname(__
file__)))
parent_dir = os.path.abspath(os.path.join(current_dir, os.pardir))
sys.path.insert(0, parent_dir)

Building the application
Now, we will introduce you to all the functions of the survey application.
The following is the detailed set of tasks our application is bound to:

• Create survey questions
• View list of all questions
• View a specific question
• Modify a question
• Delete a question
• Up-vote a question

Every question stores information related to a specific survey. The fields that
a Question model (a single definitive source of information about the data)
contains are as follows:

• id: A primary key to identify each question uniquely
• question_text: Describes the survey
• number_of_yes_votes: Stores the number of 'yes' votes polled
• number_of_no_votes: Stores the number of 'no' votes polled
• number_of_maybe_votes: Stores the number of 'maybe' votes polled

Now, let us start designing the resource holders, what we call URLs, for the
previously mentioned tasks. These URLs need specific HTTP methods to
communicate with the server.

Chapter 7

[93]

The following table throws a spotlight on how we are going to design the URLs:

Task HTTP method URL
List of all questions GET http://[hostname:port]/

Create a survey question POST http://[hostname:port]/
questions

View a specific question GET http://[hostname:port]/
questions/[question_id]

Modify a question PUT http://[hostname:port]/
questions/[question_id]

Delete a question DELETE http://[hostname:port]/
questions/[question_id]

Up-vote a question POST http://[hostname:port]/
questions/[question_id]/vote

Up-vote a question form GET http://[hostname:port]/
questions/[question_id]/vote

New question form GET http://[hostname:port]/
questions/new

Writing models with Flask-SQLAlchemy
SQLAlchemy is a Python Object Relational Mapper (ORM) and a query toolkit to
interact with various databases. It provides a set of utilities which includes a base
class to represent the models and a set of helper classes and functions to represent
a database.

A model is a logical representation of a table in a relational
database which contains information about data.

Flask-SQLAlchemy is an extension to the Flask framework which adds support
to SQLAlchemy.

Defining a model
While defining a model with Flask-SQLAlchemy, we need to keep the following
three steps in mind:

1. Create a database instance.
2. Define a model using the database instance created before.
3. Call a method in the database instance to create the tables in the database.

Implementing a Web Application with Python Using Flask

[94]

Creating a database instance
In our application, we do need to create a database instance to store the data. For
that, we need to configure the 'SQLALCHEMY_DATABASE_URI' attribute in the WSGI
application instance as shown in the following code. This code should be saved in
the survey/__init__.py file.

__init__.py

import os

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

BASE_DIR = os.path.abspath(os.path.dirname(__file__))

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = \
 'sqlite:///' + os.path.join(BASE_DIR, 'app.db')
db = SQLAlchemy(app)

In the preceding lines of code, we created a WSGI application instance using
the Flask's Flask class and configured the 'SQLALCHEMY_DATABASE_URI' variable.
Next, we created a database instance called db which is used to define models and
to perform various queries.

Creating survey models
In order to store the data related to the survey application in the database, we
should define a model called Question. This code lives in survey/models.py file.

models.py

class Question(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 question_text = db.Column(db.String(200))
 number_of_yes_votes = db.Column(db.Integer, default=0)
 number_of_no_votes = db.Column(db.Integer, default=0)
 number_of_maybe_votes = db.Column(db.Integer, default=0)

In the preceding code, we defined the Question model which extends from
db.Model. It contains five fields to store the data related to a specific survey:

• id

• question_text

Chapter 7

[95]

• number_of_yes_votes

• number_of_no_votes

• number_of_maybe_votes

Now let us go ahead and add a constructor method, which enables us to set the
instance variables for the Question object that we created in the previous lines of code:

class Question(db.Model):
 ...
 ...

 def __init__(self,
 question_text,
 number_of_yes_votes=0,
 number_of_no_votes=0,
 number_of_maybe_votes=0):

 self.question_text = question_text

 self.number_of_yes_votes = number_of_yes_votes
 self.number_of_maybe_votes = number_of_maybe_votes
 self.number_of_no_votes = number_of_no_votes

The preceding __init__() method takes the Question object and its values as
parameters. Then, it will set the instance variables of the object that we passed.

Now, we will create a method called vote() which increments the counter variables
for the 'yes', 'no' and 'maybe' votes.

class Question(db.Model):
 ...
 ...

 def vote(self, vote_type):
 if vote_type == 'yes':
 self.number_of_yes_votes += 1
 elif vote_type == 'no':
 self.number_of_no_votes += 1
 elif vote_type == 'maybe':
 self.number_of_maybe_votes += 1
 else:
 raise Exception("Invalid vote type")

Implementing a Web Application with Python Using Flask

[96]

In the preceding lines of code, we defined a vote() method, which takes the
Question object as its first argument and the vote_type as its second argument.
Based on the vote_type ('yes', 'no', or 'maybe'), the corresponding number_
of_<vote_type>_votes of the Question object that we passed gets incremented.

Creating tables in the database
Now that we are done with defining the models related to our application using
the database instance object called db, we need to create corresponding tables in the
databases. For that, we need to call the method create_all(), which is present in
the database instance — db.

In our application, we generally call this function before invoking the server defined
in runserver.py file.

Querying database models
Now, we have the database models ready. Let us query the data from the database
using the SQLAlchemy's ORM. We'll perform the basic create, retrieve, update,
and delete (CRUD) operations on our database instance — db.

Before making queries, let us move to our project root directory and fire up the
Python console to execute the following commands:

>>> from survey import app, db

>>> from survey.models import Question

Now, let us create a Question object in the database. Creating an object using
SQLAlchemy's ORM involves three essential steps as shown in the following code:

>>> question = Question("Are you an American?")

>>> db.session.add(question)

>>> db.session.commit()

We can see that:

• The first step creates a Python object for the model.
• The next step adds the created Python object to the db's session.
• The last step involves committing the object to the database.

Retrieving the objects from the database is very simple using the ORM. The
following query retrieves all the objects from the database:

>>> Question.query.all()

[<Question 1 - u'Are you an American?'>]

Chapter 7

[97]

We can also retrieve a model object from the database using its primary key.
If we look at the Question model, we have a primary key with the column
name id. Now, let us go ahead and access it.

>>> Question.query.get(1)

<Question 1 - u'Are you an American?'>

It is time to vote a survey. Fetch the object with id value 1 and use its vote()
method to increase the number of votes of that choice.

>>> question = Question.query.get(1)

>>> question.number_of_yes_votes

0

>>> question.vote('yes')

>>> db.session.add(question)

>>> db.session.commit()

Let us learn how to delete a record from the database using the db.session.
delete() method as shown in the following code:

>>> question = Question.query.get(1)

>>> db.session.delete(question)

>>> db.session.commit()

If you try to access the same object, it will result in the None value.

>>> print Question.query.get(1)

None

Views
A view is a Python function, which receives a web request and sends back a web
response. The response of a view can be a simple string, web page, the content of a
file, or anything. Whenever a Flask application gets a request from the client, it will
look for a view function to service it. The view contains the business logic which is
necessary to process a request.

In the previous sections, we have created the necessary database models. Now, in
this section, we will write the view functions. Let us create view for every resource
we mentioned in the previous table, which throws spot light on how we are going to
design the URLs. All the views should be created in the file survey/views.py.

Implementing a Web Application with Python Using Flask

[98]

List of all questions
This view shows all the surveys that we have created in the database. The Flask
application will invoke this view whenever the client requests the root of the
application. Add the following code to the survey/views.py file:

from flask import render_template
from survey import app
from survey.models import Question

@app.route('/', methods=['GET'])
def home():
 questions = Question.query.all()
 context = {'questions': questions,
 'number_of_questions': len(questions)}
 return render_template('index.html',
 **context)

The @app.route() decorator maps the path '/' and the view function home().
The home view retrieves all the questions from the database using the SQLAlchemy
ORM and renders a template named 'index.html' using the render_template
method. The render_template method takes the template name and a sequence of
arguments to return a web page.

New survey
This view returns an HTML web form to create a new survey question. This view is
called when a user visits the path /questions/new. Add the following code to the
survey/views.py file:

. . .

. . .
@app.route('/questions/new', methods=['GET'])
def new_questions():
 return render_template('new.html')

Creating a new survey
This view creates a new survey in the database and shows the list of available
questions as a response. This is invoked by the Flask application, when a user
submits a request to a URL containing /questions, using the POST method.
The data to create a new question can be accessed within a view using the
request.form dictionary.

@app.route('/questions', methods=['POST'])
def create_questions():

Chapter 7

[99]

 if request.form["question_text"].strip() != "":
 new_question = Question(question_text=request.form["question_
text"])
 db.session.add(new_question)
 db.session.commit()
 message = "Succefully added a new poll!"
 else:
 message = "Poll question should not be an empty string!"

 context = {'questions': Question.query.all(),
 'message': message}
 return render_template('index.html',
 **context)

Displaying a survey
This view shows the requested survey using the question_id argument
passed in the URL. This view gets triggered when a user requests the path
'/questions/<question_id>' with the HTTP 'GET' verb:

@app.route('/questions/<int:question_id>', methods=['GET'])
def show_questions(question_id):
 context = {'question': Question.query.get(question_id)}
 return render_template('show.html',
 **context)

Updating a survey
This view is used whenever a user wants to modify an existing question. This is
invoked when a user submits the data to modify the Question. We can connect
with this resource using HTTP's 'PUT' method at '/questions/<question_id>':

@app.route('/questions/<int:question_id>', methods=['PUT'])
def update_questions(question_id):
 question = Question.query.get(question_id)
 if request.form["question_text"].strip() != "":
 question.question_text = request.form["question_text"]
 db.session.add(question)
 db.session.commit()
 message = "Successfully updated a poll!"
 else:

 message = "Question cannot be empty!"

 context = {'question': question,

Implementing a Web Application with Python Using Flask

[100]

 'message': message}

 return render_template('show.html',
 **context)

Deleting a survey
This view is used to delete a specific survey from the database. The specific survey is
identified based on the question_id value passed in the URL. The users can access
this web page at '/questions/<question_id>' using the 'DELETE' HTTP verb.
Once the question gets deleted from the database, the user will be prompted with a
message and a list of available questions.

@app.route('/questions/<int:question_id>', methods=['DELETE'])
def delete_questions(question_id):
 question = Question.query.get(question_id)
 db.session.delete(question)
 db.session.commit()
 context = {'questions': Question.query.all(),
 'message': 'Successfully deleted'}
 return render_template('index.html',
 **context)

New vote form to caste a vote in a survey
This view returns a web page containing a HTML form to vote a particular choice in
a survey. It can be accessed at '/questions/<question_id>/vote'.

@app.route('/questions/<int:question_id>/vote', methods=['GET'])
def new_vote_questions(question_id):
 question = Question.query.get(question_id)
 context = {'question': question}
 return render_template('vote.html',
 **context)

Casting a vote to a particular choice in a
survey
This view is used to cast a new vote to a particular choice in a survey. The user has
to submit the specific choice to the resource '/questions/<question_id>/vote'
using the 'POST' method. After the successful casting of a vote, the user is redirected
to the survey details page.

@app.route('/questions/<int:question_id>/vote', methods=['POST'])

Chapter 7

[101]

def create_vote_questions(question_id):
 question = Question.query.get(question_id)

 if request.form["vote"] in ["yes", "no", "maybe"]:
 question.vote(request.form["vote"])

 db.session.add(question)
 db.session.commit()
 return redirect("/questions/%d" % question.id)

Templates
A template is a simple text document which contains block tags or variables.
Flask micro-framework makes use of the Jinja2 template engine for rendering
the HTML pages.

In our application, we use five different templates which includes a base template—
base.html. This base template is a layout consisting of the common elements of
all the templates. The four other templates (index.html, show.html, vote.html
and new.html) make use of a concept called template inheritance provided by the
Jinja2 template engine. It is used to enable those common features to get showed
up without a redundant code in every template.

The base template
This template is a skeleton for all the other templates. It contains a common
navigation menu section and a placeholder to hold the primary content block
of every page in this application. The survey/templates/base.html template
will contain the following code:

<html>
 <head>
 <title>Welcome to Survey Application</title>
 </head>
 <body>
 {% if message %}
 <p style="text-align: center;">{{ message }}</p>
 {% endif %}
 <div>
 Home |
 All Questions |
 Create a new Question
 </div>

Implementing a Web Application with Python Using Flask

[102]

 <hr>
 {% block content %}{% endblock %}
 </body>
</html>

The list of questions template
As we need to show the list of questions in a web page, we iterate over the
questions variable using a for loop tag and display all the vote counts of
a specific survey. Add the following to the survey/templates/index.html file:

{% extends "base.html" %}

{% block content %}
 <p>Number of Questions - {{
number_of_questions }}</p>
 {% for question in questions %}
 <div>
 <p>
 <p>{{
question.question_text }}</p>

 Yes - {{ question.number_of_yes_votes }}
 No - {{ question.number_of_no_votes }}
 Maybe - {{ question.number_of_maybe_votes }}

 </p>
 </div>
 {% endfor %}
 <hr />
{% endblock %}

Creating a new survey template
To show an HTML form containing a new survey question, we defined a template
called survey/templates/new.html:

new.html

{% extends "base.html" %}

{% block content %}
 <h1>Create a new Survey</h1>
 <form method="POST" action="/questions">

Chapter 7

[103]

 <p>Question: <input type="text" name="question_text"></p>
 <p><input type="submit" value="Create a new Survey"></p>
 </form>
{% endblock %}

Showing the details of a survey template
To display all the details of a survey, create a template in the following way. This
template also includes a link to the cast your vote page. Add the following code
to the survey/templates/show.html file:

{% extends "base.html" %}

{% block content %}
 <div>
 <p>
 {% if question %}
 <p>{{ question.question_text }}</p>

 Yes - {{ question.number_of_yes_votes }}
 No - {{ question.number_of_no_votes }}

 Maybe - {{
question.number_of_maybe_votes}}

 <p>Cast
your vote now</p>
 {% else %}
 Not match found!
 {% endif %}
 </p>
 </div>
 <hr />
{% endblock %}

Casting a vote template
To cast a vote, we need to display a web page containing a HTML form with a survey
and its choices. Add the following code to the survey/templates/vote.html file:

{% extends "base.html" %}

{% block content %}
 <div>

Implementing a Web Application with Python Using Flask

[104]

 <p>
 {% if question %}
 <p>{{ question.question_text }}</p>

 <form action="/questions/{{ question.id }}/vote"
method="POST">
 <input type="radio" name="vote"
value="yes">Yes

 <input type="radio" name="vote" value="no">No

 <input type="radio" name="vote"
value="maybe">Maybe

 <input type="submit" value="Submit" />

 </form>
 <p>Back to
Question</p>
 {% else %}
 Not match found!
 {% endif %}
 </p>
 </div>
 <hr />
{% endblock %}

Running the survey application
Hurray! We succeeded in creating an application which will allow the users to create
a survey, retrieve a survey, update a survey, delete a survey, and cast the vote of a
choice for a survey. Perform the following steps for running the server:

1. Before running the server, let us go ahead and fill the contents of server.py
with the following code:
import sys

from survey import app, db
from survey import views

def main():
 db.create_all()
 app.run(debug=True)
 return 0

if __name__ == '__main__':
 sys.exit(main())

Chapter 7

[105]

2. Now, let us run the application using the runserver.py script as shown in
the following lines:
$ python runserver.py

* Running on http://127.0.0.1:5000/

* Restarting with reloader

3. Now, the server is up and running. To access the application on a web
browser, visit the URL—http://127.0.0.1:5000/.

We are done!

Writing unit tests to survey applications
Creating an application without test cases is half done. Even though you take a lot
of care while developing the application, there might be a chance of encountering
errors at some point. Writing test cases will always leave us at a safe point.

In this section, we are going to write unit test cases for some tasks in our survey
application. Add the following test case code to survey/tests.py file:

import unittest
import requests

from bs4 import BeautifulSoup
from survey import db
from survey.models import Question

class TestSurveyApp(unittest.TestCase):

 def setUp(self):
 db.drop_all()
 db.create_all()

 def test_defaults(self):
 question = Question('Are you from India?')
 db.session.add(question)
 db.session.commit()

 self.assertEqual(question.number_of_yes_votes, 0)
 self.assertEqual(question.number_of_no_votes, 0)
 self.assertEqual(question.number_of_maybe_votes, 0)

 def test_votes(self):
 question = Question('Are you from India?')

Implementing a Web Application with Python Using Flask

[106]

 question.vote('yes')
 db.session.add(question)
 db.session.commit()

 self.assertEqual(question.number_of_yes_votes, 1)
 self.assertEqual(question.number_of_no_votes, 0)
 self.assertEqual(question.number_of_maybe_votes, 0)

 def test_title(self):
 title = "Welcome to Survey Application"
 response = requests.get("http://127.0.0.1:5000/")
 soup = BeautifulSoup(response.text)
 self.assertEqual(soup.title.get_text(),
 title)

We can see the following from the preceding block of code:

• The initial lines of code import all the necessary modules into the memory.
• The setUp() method in the TestSurveyApp drops all the existing tables and

creates them for every test case.
• The test_defaults test case will test the defaults of the Question object

that was created. If the defaults do not match the expected inputs, the test
case fails.

• The test_votes() will up-vote a specific choice for a survey and test
whether the voted choice gets incremented and other choices remain
the same.

• The test_title() will test whether the title of a response matches with
the expected title. It uses the BeautifulSoup library to access the title from
the response contents.

Summary
In this chapter, we learnt about the Flask micro-framework and looked at
the different features of Flask. We also set up a virtual environment using
virtualenvwrapper, and created a web application using Flask, Flask-SQLAlchemy,
and Jinja2. Finally, we wrote unit tests for the developed application.

[107]

Index
A
Access tokens, Facebook API

App Access Token 57
Client Token 57
obtaining 57
Page Access Token 57
User Access Token 56

Application Programming
Interface (API) 1, 50

B
base template 101
basic authentication

about 29
advantages 29, 30
flow 30
using, with Requests 30

BeautifulSoup
about 69
document parsers 69
installing 69
objects 69
tree, modifying 76
tree, navigating 73
tree, navigating back and forth 75
tree, navigating down 73
tree, navigating sideways 74, 75
tree, navigating up 75
tree, searching 73
web scraping tasks 71, 72

Body Content Workflow
about 22
keep-alive facility 23

uploads, streaming 23
built-in response status codes

viewing 11

C
Chrome DevTools 68
Chunked Responses 46
chunk encoded Requests

sending, with generator 24
cookies

accessing, with Requests 13
custom authentication 38
custom headers

about 8
URL 9

D
data

types 66
database instance, survey application

creating 94
database models, querying 96, 97
model, defining 94, 95
tables, creating 96

Digest authentication
about 31
using, with Requests 32

document parsers 69

E
errors and exceptions

ConnectionError 16
HTTPError 16

[108]

Timeout 16
TooManyRedirects 16
URL 16

event hooks
used, for obtaining request method

arguments 24, 25
extensions 87

F
Facebook API

about 56
Access tokens 56
albums, retrieving 59
feed, retrieving 59
friends list, retrieving 58
key, obtaining 56, 57
user profile, getting 57, 58

FireBug Add-on 68
Flask

about 87
application, creating 88, 89
features 88
installing 89, 90
required packages, installing with pip 90

Flask micro-framework 101
Flask-SQLAlchemy

about 90, 93
used, for writing models 93

form-encoded data
sending 9

G
generator

used, for sending chunk encoded
Requests 24

Graduate Record Examinations
(GRE) word lists 77

grant types, OAuth 2.0
about 38
Authorization code grant 38
Client credentials grant 38
Implicit grant 38
Resource owner password

credentials grant 38

H
HTTPAdapter 27
HTTP libraries 68
HTTP request

about 1, 2
methods 2
Request Header fields 2, 3
Request URI 2

HTTPretty
about 42
headers, setting 44
HTTP requests, mocking 45
installing 42
working with 42, 43

HTTP verbs
DELETE method 26
GET method 26
HEAD method 26
OPTIONS method 27
PATCH method 27
POST method 26
PUT method 26

Hypertext Transfer Protocol (HTTP) 1

J
Jinja2 88

K
Kerberos authentication

about 32-35
Authentication Server 32
Host Machine 32
Ticket Granting Server 32
ticket granting ticket (TGT) 33, 34
using, with Requests 35

L
link headers

used, for describing APIs 27

M
micro framework 87

[109]

model
about 93
defining 93

Model-View-Controller (MVC) 91
multipart encoded files

posting 10

O
OAuth 2.0

about 37
grant types 38

OAuth authentication
about 35
OAuth 1.0 36, 37
OAuth 1.0, using with Requests 37
OAuth 2.0 37, 38

Object Relational Mapper (ORM) 90
objects, BeautifulSoup

BeautifulSoup object 70
comments 70
NavigableString 70
tags 69

P
prepared Requests

using 20, 21
productive usage

checking, with timeout parameter 15
Python modules

httplib2 3
Requests 3
urllib2 3

Python Package Index (PyPi) 42

R
reddit API

about 60
account 60
account information, modifying 61, 62
fullnames 60
listings 60
modhashes 60
new account, registering 60

parts 60
simple search, performing 62
subreddits, searching in 63

REpresentational State Transfer (REST) 50
Requests

basic authentication, using with 30
creating 5, 6
Digest authentication, using with 32
essence 5
Kerberos authentication, using with 35
OAuth 1.0 authentication, using with 37
parameters, persisting with

Session objects 18
redirection tracking, with request

history 14
used, for accessing cookies 13
used, for verifying SSL certificate 21
versus urllib2 3-5

Requests for Comments (RFC) 13
Requests object, parameters

auth 19
cookies 19
data 19
files 19
headers 19
hooks 19
Method 19
params 19
URL 19

response content
about 6-8
custom headers 8
form-encoded data, sending 9
multipart encoded files, posting 10
types 8

response headers
viewing 13

responses
dynamic responses, through callbacks 47
rotating responses 45, 46
streaming responses 46, 47
structure 19, 20

RESTful API 50
retweet 54

[110]

S
scraping 67
semistructured data 67
Session objects

used, for persisting parameters across
Requests 18

SSL certificate
verifying, with Requests 21

streaming API
encoding 25
HTTP verbs 26, 27
iterating 25

Streaming Requests
URL 25

structured data 66
survey application

building 92
creating 90
database instance, creating 94
executing 104
file structure 91
models, defining 93
models, writing with

Flask-SQLAlchemy 93
unit tests, writing 105, 106
URLs, designing 93

T
tasks, web scraping

semistructured document, modifying 68
semistructured document, navigating 68
semistructured document, searching 68

template
about 101
base template 101
details of survey template, displaying 103
list of questions, displaying 102
new survey template, creating 102
vote template, casting 103

template inheritance 101
timeout parameter

used, for checking productive usage 15
Transport Adapter 27

Twitter API
about 50
authentication request, creating 52
favorite tweet, getting 52
followers list, accessing 54
key, obtaining 51
retweet 54
simple search, performing 53
trends, accessing 55
URL 51
user status, updating 55

types, of data
semistructured data 67
structured data 66
unstructured data 66

U
unit tests

writing, to survey application 105, 106
unstructured data 66
urllib2

examples, URL 4
versus Requests 3-5

V
view

about 97
new survey, creating 98
new survey question, creating 98
new vote form, creating 100
survey, deleting 100
survey, displaying 99
survey questions, listing 98
survey, updating 99
vote, casting 100

virtual environment wrapper 89

W
web scraping

about 65-67
dos and don'ts 67
process 68

[111]

requisites 68
tasks 68

web scraping bot
about 77
building 76
data, discovering to scrape 80, 81
desired data, drawing 81-85
dos and don'ts 78

HTTP client, using 79
URL/URLs, identifying 78

web scraping tools
about 68
utilizing 81

Web Server Gateway Interface (WSGI)
protocol 88

Where on Earth ID (woeid) 55

Thank you for buying
Python Requests Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Network Programming
Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various
besopke client/server networking
applications using standard and
popular third-party Python libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

3. Provides practical, hands-on recipes
combined with short and concise
explanations on code snippets.

IPython Notebook Essentials
ISBN: 978-1-78398-834-1 Paperback: 190 pages

Compute scientific data and execute code
interactively with NumPy and SciPy

1. Perform Computational Analysis interactively.

2. Create quality displays using matplotlib and
Python Data Analysis.

3. Step-by-step guide with a rich set of
examples and a thorough presentation
of The IPython Notebook.

Please check www.PacktPub.com for information on our titles

Python Data Analysis
ISBN: 978-1-78355-335-8 Paperback: 348 pages

Learn how to apply powerful data analysis techniques
with popular open source Python modules

1. Learn how to find, manipulate, and analyze
data using Python.

2. Perform advanced, high performance linear
algebra and mathematical calculations with
clean and efficient Python code.

3. An easy-to-follow guide with realistic examples
that are frequently used in real-world data
analysis projects.

Python for Secret Agents
ISBN: 978-1-78398-042-0 Paperback: 216 pages

Analyze, encrypt, and uncover intelligence data using
Python, the essential tool for all aspiring secret agents

1. Build a toolbox of Python gadgets for
password recovery, currency conversion,
and civic data hacking.

2. Use stenography to hide secret messages
in images.

3. Get to grips with geocoding to find villains'
secret lairs.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Interacting with the Web Using Requests
	Introduction to HTTP request
	Python modules
	Requests versus urllib2
	Essence of Requests
	Making a simple request
	Response content
	Different types of request contents
	Custom headers
	Sending form-encoded data
	Posting multipart encoded files

	Looking up built-in response status codes
	Viewing response headers
	Accessing cookies with Requests
	Tracking redirection of the request using request history
	Using timeout to keep productive usage in check
	Errors and exceptions
	Summary

	Chapter 2: Digging Deep into Requests
	Persisting parameters across Requests using Session objects
	Revealing the structure of a request and response
	Using prepared Requests
	Verifying an SSL certificate with Requests
	Body Content Workflow
	The Keep-alive facility
	Streaming uploads

	Using generator for sending chunk encoded Requests
	Getting the request method arguments with event hooks
	Iterating over streaming APIs
	Encodings
	HTTP verbs

	Self-describing the APIs with link headers
	Transport Adapter
	Summary

	Chapter 3: Authenticating with Requests
	Basic authentication
	Using basic authentication with Requests

	Digest authentication
	Using Digest authentication with Requests

	Kerberos authentication
	Using Kerberos authentication with Requests

	OAuth authentication
	OAuth 1.0
	Using OAuth 1.0 authentication with Requests
	OAuth 2.0

	Custom authentication
	Summary

	Chapter 4: Mocking HTTP Requests Using HTTPretty
	Understanding HTTPretty
	Installing HTTPretty
	Working with HTTPretty
	Setting headers
	Working with responses
	Rotating responses
	Streaming responses
	Dynamic responses through callbacks

	Summary

	Chapter 5: Interacting with Social Media Using Requests
	API introduction
	Getting started with the Twitter API
	Obtaining an API Key
	Creating an authentication Request
	Getting your favorite tweet
	Performing a simple search
	Accessing the list of followers
	Retweets
	Accessing available trends
	Updating user status

	Interacting with Facebook
	Getting started with the Facebook API
	Obtaining a key
	Getting a user profile
	Retrieving a friends list
	Retrieving feed
	Retrieving albums

	Interacting with reddit
	Getting started with the reddit API
	Registering a new account
	Modifying account information
	Performing a simple search
	Searching subreddits

	Summary

	Chapter 6: Web Scraping with Python Requests and BeautifulSoup
	Types of data
	Structured data
	Unstructured data
	Semistructured data

	What is web scraping?
	Dos and don'ts of web scraping
	Predominant steps to perform web scraping

	Key web scraping tasks
	What is BeautifulSoup?
	Document parsers
	Installation
	Objects in BeautifulSoup
	Tags
	BeautifulSoup
	NavigableString
	Comments

	Web scraping tasks related to BeautifulSoup
	Searching the tree
	Navigating within the tree

	Modifying the Tree

	Building a web scraping bot – a practical example
	The web scraping bot
	Identifying the URL or URLs
	Using an HTTP client
	Discovering the pieces of data to scrape
	Utilizing a web scraping tool
	Drawing the desired data

	Summary

	Chapter 7: Implementing a
Web Application with
Python Using Flask
	What is Flask?
	Getting started with Flask
	Installing Flask
	Installing required packages with pip

	Survey – a simple voting application using Flask
	Basic file structures
	Building the application
	Writing models with Flask-SQLAlchemy
	Defining a model
	Creating a database instance
	Creating survey models
	Creating tables in the database
	Querying database models

	Views
	List of all questions
	New survey
	Creating a new survey
	Displaying a survey
	Updating a survey
	Deleting a survey
	New vote form to caste a vote in a survey
	Casting a vote to a particular choice in a survey

	Templates
	The base template
	The list of questions template
	Creating a new survey template
	Showing the details of a survey template
	Casting a vote template

	Running the survey application
	Writing unit tests to survey applications
	Summary

	Index

