

Contents in Detail
1. Cover Page
2. Title Page
3. Copyright Page
4. Dedication
5. About the Author
6. About the Technical Reviewer
7. Brief Contents
8. Contents in Detail
9. Acknowledgments

10. Introduction

1. Python One-Liner Example
2. A Note on Readability
3. Who Is This Book For?
4. What Will You Learn?
5. Online Resources

11. 1 Python Refresher

1. Basic Data Structures
2. Container Data Structures
3. Control Flow
4. Functions
5. Lambdas
6. Summary

12. 2 Python Tricks

1. Using List Comprehension to Find Top Earners
2. Using List Comprehension to Find Words with High

Information Value
3. Reading a File
4. Using Lambda and Map Functions
5. Using Slicing to Extract Matching Substring

Environments
6. Combining List Comprehension and Slicing
7. Using Slice Assignment to Correct Corrupted Lists
8. Analyzing Cardiac Health Data with List Concatenation
9. Using Generator Expressions to Find Companies That

Pay Below Minimum Wage
10. Formatting Databases with the zip() Function
11. Summary

13. 3 Data Science

1. Basic Two-Dimensional Array Arithmetic

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_mxw6ww/c9p1zz_pdf_out/OEBPS/Images/cover.xhtml

2. Working with NumPy Arrays: Slicing, Broadcasting, and
Array Types

3. Conditional Array Search, Filtering, and Broadcasting to
Detect Outliers

4. Boolean Indexing to Filter Two-Dimensional Arrays
5. Broadcasting, Slice Assignment, and Reshaping to Clean

Every i-th Array Element
6. When to Use the sort() Function and When to Use the

argsort() Function in NumPy
7. How to Use Lambda Functions and Boolean Indexing to

Filter Arrays
8. How to Create Advanced Array Filters with Statistics,

Math, and Logic
9. Simple Association Analysis: People Who Bought X Also

Bought Y
10. Intermediate Association Analysis to Find Bestseller

Bundles
11. Summary

14. 4 Machine Learning

1. The Basics of Supervised Machine Learning
2. Linear Regression
3. Logistic Regression in One Line
4. K-Means Clustering in One Line
5. K-Nearest Neighbors in One Line
6. Neural Network Analysis in One Line
7. Decision-Tree Learning in One Line
8. Get Row with Minimal Variance in One Line
9. Basic Statistics in One Line

10. Classification with Support-Vector Machines in One Line
11. Classification with Random Forests in One Line
12. Summary

15. 5 Regular Expressions

1. Finding Basic Textual Patterns in Strings
2. Writing Your First Web Scraper with Regular

Expressions
3. Analyzing Hyperlinks of HTML Documents
4. Extracting Dollars from a String
5. Finding Nonsecure HTTP URLs
6. Validating the Time Format of User Input, Part 1
7. Validating Time Format of User Input, Part 2
8. Duplicate Detection in Strings
9. Detecting Word Repetitions

10. Modifying Regex Patterns in a Multiline String
11. Summary

16. 6 Algorithms

1. Finding Anagrams with Lambda Functions and Sorting

2. Finding Palindromes with Lambda Functions and
Negative Slicing

3. Counting Permutations with Recursive Factorial
Functions

4. Finding the Levenshtein Distance
5. Calculating the Powerset by Using Functional

Programming
6. Caesar’s Cipher Encryption Using Advanced Indexing

and List Comprehension
7. Finding Prime Numbers with the Sieve of Eratosthenes
8. Calculating the Fibonacci Series with the reduce()

Function
9. A Recursive Binary Search Algorithm

10. A Recursive Quicksort Algorithm
11. Summary

17. Afterword
18. Index

1. i
2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii
14. xiv
15. xv
16. xvi
17. xvii
18. xviii
19. xix
20. xx
21. xxi
22. xxii
23. xxiii
24. xxiv
25. 1
26. 2
27. 3
28. 4
29. 5
30. 6
31. 7
32. 8
33. 9
34. 10

35. 11
36. 12
37. 13
38. 14
39. 15
40. 16
41. 17
42. 18
43. 19
44. 20
45. 21
46. 22
47. 23
48. 24
49. 25
50. 26
51. 27
52. 28
53. 29
54. 30
55. 31
56. 32
57. 33
58. 34
59. 35
60. 36
61. 37
62. 38
63. 39
64. 40
65. 41
66. 42
67. 43
68. 44
69. 45
70. 46
71. 47
72. 48
73. 49
74. 50
75. 51
76. 52
77. 53
78. 54
79. 55
80. 56
81. 57
82. 58
83. 59
84. 60
85. 61
86. 62
87. 63
88. 64

89. 65
90. 66
91. 67
92. 68
93. 69
94. 70
95. 71
96. 72
97. 73
98. 74
99. 75

100. 76
101. 77
102. 78
103. 79
104. 80
105. 81
106. 82
107. 83
108. 84
109. 85
110. 86
111. 87
112. 88
113. 89
114. 90
115. 91
116. 92
117. 93
118. 94
119. 95
120. 96
121. 97
122. 98
123. 99
124. 100
125. 101
126. 102
127. 103
128. 104
129. 105
130. 106
131. 107
132. 108
133. 109
134. 110
135. 111
136. 112
137. 113
138. 114
139. 115
140. 116
141. 117
142. 118

143. 119
144. 120
145. 121
146. 122
147. 123
148. 124
149. 125
150. 126
151. 127
152. 128
153. 129
154. 130
155. 131
156. 132
157. 133
158. 134
159. 135
160. 136
161. 137
162. 138
163. 139
164. 140
165. 141
166. 142
167. 143
168. 144
169. 145
170. 146
171. 147
172. 148
173. 149
174. 150
175. 151
176. 152
177. 153
178. 154
179. 155
180. 156
181. 157
182. 158
183. 159
184. 160
185. 161
186. 162
187. 163
188. 164
189. 165
190. 166
191. 167
192. 168
193. 169
194. 170
195. 171
196. 172

197. 173
198. 174
199. 175

200. 176
201. 177
202. 178
203. 179
204. 180
205. 181
206. 182
207. 183
208. 184
209. 185
210. 186
211. 187
212. 188
213. 189
214. 190
215. 191
216. BM-1

PYTHON ONE-LINERS
Write Concise, Eloquent Python Like a

Professional

by Christian Mayer

San Francisco

PYTHON ONE-LINERS. Copyright © 2020 by Christian Mayer.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-10: 1-7185-0050-5
ISBN-13: 978-1-7185-0050-1

Publisher: William Pollock
Production Editors: Janelle Ludowise and Kassie Andreadis
Cover Illustration: Rob Gale
Interior Design: Octopod Studios
Developmental Editors: Liz Chadwick and Alex Freed
Technical Reviewer: Daniel Zingaro
Copyeditor: Sharon Wilkey
Compositor: Danielle Foster
Proofreader: James Fraleigh
Indexer: JoAnne Burek

For information on distribution, translations, or bulk sales, please contact No Starch
Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for
the first edition:

Names: Mayer, Christian (Computer Scientist), author.

Title: Python one-liners: write concise, eloquent Python like a professional / Christian Mayer.

Description: San Francisco : No Starch Press, Inc., 2020. | Includes index.

Identifiers: LCCN 2020001449 (print) | LCCN 2020001450 (ebook) | ISBN

 9781718500501 | ISBN 9781718500518 (ebook)

Subjects: LCSH: Python (Computer program language)

Classification: LCC QA76.73.P98 M39 2020 (print) | LCC QA76.73.P98

 (ebook) | DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2020001449

LC ebook record available at https://lccn.loc.gov/2020001450

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be the
trademarks of their respective owners. Rather than use a trademark symbol with
every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

mailto:info@nostarch.com
http://www.nostarch.com/
https://lccn.loc.gov/2020001449
https://lccn.loc.gov/2020001450

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in it.

To my wife Anna

About the Author

Christian Mayer is a doctor of computer science and the
founder and maintainer of the popular Python site
https://blog.finxter.com/ and its associated newsletter, which
has 20,000 active subscribers and is still growing. His rapidly
growing websites help tens of thousands of students improve
their coding skills and online businesses. Christian is also the
author of the Coffee Break Python series of self-published
books.

https://blog.finxter.com/

About the Technical Reviewer

Dr. Daniel Zingaro is an assistant teaching professor of
computer science and award-winning teacher at the University
of Toronto. His main area of research is computer science
education, where he studies how students learn (and
sometimes don’t learn) computer science material. He is the
author of Algorithmic Thinking (forthcoming from No Starch
Press).

BRIEF CONTENTS

Acknowledgments

Introduction

Chapter 1: Python Refresher

Chapter 2: Python Tricks

Chapter 3: Data Science

Chapter 4: Machine Learning

Chapter 5: Regular Expressions

Chapter 6: Algorithms

Afterword

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

Python One-Liner Example

A Note on Readability

Who Is This Book For?

What Will You Learn?

Online Resources

1
PYTHON REFRESHER

Basic Data Structures

Numerical Data Types and Structures

Booleans

Strings

The Keyword None

Container Data Structures

Lists

Stacks

Sets

Dictionaries

Membership

List and Set Comprehension

Control Flow

if, else, and elif

Loops

Functions

Lambdas
Summary

2
PYTHON TRICKS

Using List Comprehension to Find Top Earners

The Basics

The Code

How It Works

Using List Comprehension to Find Words with High
Information Value

The Basics

The Code

How It Works

Reading a File

The Basics

The Code

How It Works

Using Lambda and Map Functions

The Basics

The Code

How It Works

Using Slicing to Extract Matching Substring Environments

The Basics

The Code

How It Works

Combining List Comprehension and Slicing

The Basics

The Code

How It Works

Using Slice Assignment to Correct Corrupted Lists

The Basics

The Code

How It Works

Analyzing Cardiac Health Data with List Concatenation

The Basics

The Code

How It Works

Using Generator Expressions to Find Companies That Pay
Below Minimum Wage

The Basics

The Code

How It Works

Formatting Databases with the zip() Function

The Basics

The Code

How It Works

Summary

3
DATA SCIENCE

Basic Two-Dimensional Array Arithmetic

The Basics

The Code

How It Works

Working with NumPy Arrays: Slicing, Broadcasting, and
Array Types

The Basics

The Code

How It Works

Conditional Array Search, Filtering, and Broadcasting to
Detect Outliers

The Basics

The Code

How It Works

Boolean Indexing to Filter Two-Dimensional Arrays

The Basics

The Code

How It Works

Broadcasting, Slice Assignment, and Reshaping to Clean
Every i-th Array Element

The Basics

The Code

How It Works

When to Use the sort() Function and When to Use the argsort()
Function in NumPy

The Basics

The Code

How It Works

How to Use Lambda Functions and Boolean Indexing to Filter
Arrays

The Basics

The Code

How It Works

How to Create Advanced Array Filters with Statistics, Math,
and Logic

The Basics

The Code

How It Works

Simple Association Analysis: People Who Bought X Also
Bought Y

The Basics

The Code

How It Works

Intermediate Association Analysis to Find Bestseller Bundles

The Basics

The Code

How It Works

Summary

4
MACHINE LEARNING

The Basics of Supervised Machine Learning

Training Phase

Inference Phase

Linear Regression

The Basics

The Code

How It Works

Logistic Regression in One Line

The Basics

The Code

How It Works

K-Means Clustering in One Line

The Basics

The Code

How It Works

K-Nearest Neighbors in One Line

The Basics

The Code

How It Works

Neural Network Analysis in One Line

The Basics

The Code

How It Works

Decision-Tree Learning in One Line

The Basics

The Code

How It Works

Get Row with Minimal Variance in One Line

The Basics

The Code

How It Works

Basic Statistics in One Line

The Basics

The Code

How It Works

Classification with Support-Vector Machines in One Line

The Basics

The Code

How It Works
Classification with Random Forests in One Line

The Basics

The Code

How It Works

Summary

5
REGULAR EXPRESSIONS

Finding Basic Textual Patterns in Strings

The Basics

The Code

How It Works

Writing Your First Web Scraper with Regular Expressions

The Basics

The Code

How It Works

Analyzing Hyperlinks of HTML Documents

The Basics

The Code

How It Works

Extracting Dollars from a String

The Basics

The Code

How It Works

Finding Nonsecure HTTP URLs

The Basics

The Code

How It Works

Validating the Time Format of User Input, Part 1

The Basics

The Code

How It Works

Validating Time Format of User Input, Part 2

The Basics

The Code

How It Works

Duplicate Detection in Strings

The Basics

The Code

How It Works

Detecting Word Repetitions

The Basics

The Code

How It Works

Modifying Regex Patterns in a Multiline String

The Basics

The Code

How It Works

Summary

6
ALGORITHMS

Finding Anagrams with Lambda Functions and Sorting

The Basics

The Code

How It Works

Finding Palindromes with Lambda Functions and Negative
Slicing

The Basics

The Code

How It Works

Counting Permutations with Recursive Factorial Functions

The Basics

The Code

How It Works

Finding the Levenshtein Distance

The Basics

The Code

How It Works

Calculating the Powerset by Using Functional Programming

The Basics

The Code

How It Works

Caesar’s Cipher Encryption Using Advanced Indexing and
List Comprehension

The Basics

The Code

How It Works

Finding Prime Numbers with the Sieve of Eratosthenes

The Basics

The Code

How It Works

Calculating the Fibonacci Series with the reduce() Function

The Basics

The Code

How It Works

A Recursive Binary Search Algorithm

The Basics

The Code

How It Works

A Recursive Quicksort Algorithm

The Basics

The Code

How It Works

Summary

AFTERWORD

INDEX

ACKNOWLEDGMENTS

The world doesn’t need more books; it needs better books. I’m
incredibly grateful to the people at No Starch Press for putting
everything at work toward this philosophy. This book is the
result of their invaluable advice, constructive feedback, and
hundreds of hours of diligent work. My deep gratitude goes to
the No Starch team for making the book-writing process such
a fun experience.

In particular, I’d like to thank Bill Pollock for inviting me
to write this book and for providing me inspiration and deep
insights into the publishing world.

I’m very grateful for my brilliant content editor, Liz
Chadwick, who skillfully, patiently, and eloquently
transformed my rough drafts into a much more human-
readable form. It’s because of her excellent support that the
book reached a level of clarity I would have never imagined
when starting this project.

I want to express my appreciation to Alex Freed for her
relentless focus on improving the text quality. It has been an
honor to work together with such a talented editor.

I’d like to thank my production editor, Janelle Ludowise,
for polishing the book with a great love for every detail.
Janelle put her skills to work—in a positive and enthusiastic
manner—to craft the final version of the book. Thanks,
Janelle. Many thanks as well to Kassie Andreadis, who
energetically pushed the book through to completion.

My distinctive appreciation goes to Professor Daniel
Zingaro. He didn’t shy away from investing much of his time,
effort, and excellent computer science skills into eradicating
inaccuracies from the book. He also contributed many
wonderful suggestions that brought clarity to the book.
Without his effort, the book would not only contain more bugs
but also be harder to read. That said, any inaccuracies that
remain are my own.

My doctorate supervisor, Professor Rothermel, contributed
indirectly to this book by investing considerable time, skill,
and effort into my computer science education. I owe him my
deepest gratitude and appreciation.

I’m forever grateful to my beautiful wife, Anna Altimira,
who keeps listening to, encouraging, and supporting even my
wildest ideas. I’m also thankful to my kids, Amalie and
Gabriel, for their inspiring curiosity and the happiness they
bring to my life through thousands of smiles.

Lastly, the greatest source of motivation came from the
active members of the Finxter community. First and foremost,
I’ve written this book for ambitious coders—like you—who
want to advance their coding skills and solve practical
problems in the real world. After long working days, it was
grateful emails from Finxter members that encouraged me to
write more sections of the book.

INTRODUCTION

With this book, I want to help you become a Python expert. To
do this, we’re going to focus on Python one-liners: concise,
useful programs packed into a single line of Python. Focusing
on one-liners will help you read and write code faster and
more concisely, and will improve your understanding of the
language.

There are five more reasons I think learning Python one-
liners will help you improve and are worth studying.

First, by improving your core Python skills, you’ll be able
to overcome many of the small programming weaknesses that
hold you back. It’s hard to make progress without a profound
understanding of the basics. Single lines of code are the basic
building block of any program. Understanding these basic
building blocks will help you master high-level complexity
without feeling overwhelmed.

Second, you’ll learn how to leverage wildly popular Python
libraries, such as those for data science and machine learning.
The book consists of five one-liner chapters, each addressing a
different area of Python, from regular expressions to machine
learning. This approach will give you an overview of possible
Python applications you can build, as well as teach you how to
use these powerful libraries.

Third, you’ll learn to write more Pythonic code. Python
beginners, especially those coming from other programming
languages, often write code in un-Pythonic ways. We’ll cover
Python-specific concepts like list comprehension, multiple

assignment, and slicing, all of which will help you write code
that’s easily readable and sharable with other programmers in
the field.

Fourth, studying Python one-liners forces you to think
clearly and concisely. When you’re making every single code
symbol count, there’s no room for sparse and unfocused
coding.

Fifth, your new one-liner skill set will allow you to see
through overly complicated Python codebases, and impress
friends and interviewers alike. You may also find it fun and
satisfying to solve challenging programming problems with a
single line of code. And you wouldn’t be alone: a vibrant
online community of Python geeks compete for the most
compressed, most Pythonic solutions to various practical (and
not-so-practical) problems.

PYTHON ONE-LINER EXAMPLE
The central thesis of this book is that learning Python one-
liners is both fundamental to understanding more-advanced
codebases and an excellent tool for improving your skills.
Before understanding what’s going on in a codebase with
thousands of lines, you must understand the meaning of a
single line of code.

Let’s have a quick look at a Python one-liner. Don’t worry
if you don’t fully understand it. You will master this one-liner
in Chapter 6.

q = lambda l: q(➊[x for x in l[1:] if x <= l[0]]) + [l[0]] + q([x for x in l if x > l[0]])
if l else []

This one-liner is a beautiful and concise way of
compressing the famous Quicksort algorithm, though the
meaning may be difficult to grasp for many Python beginners
and intermediates.

Python one-liners often build on each other, so one-liners
will increase in complexity throughout the book. In this book,
we’ll start with simple one-liners that will become the basis
for more-complex one-liners later. For example, the preceding

Quicksort one-liner is difficult and long, based on the easier
concept of list comprehension ➊. Here’s a simpler list
comprehension that creates a list of squared numbers:

lst = [x**2 for x in range(10)]

We can break this one-liner into even simpler one-liners
that teach important Python basics, such as variable
assignments, math operators, data structures, for loops,
membership operators, and the range() function—all of which
happens in a single line of Python!

Know that basic doesn’t mean trivial. All the one-liners
we’ll look at are useful, and each chapter addresses a separate
area or discipline in computer science, giving you a broad
perspective on the power of Python.

A NOTE ON READABILITY
The Zen of Python comprises 19 guiding principles for the
Python programming languages. You can read it in your
Python shell by entering import this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
--snip--

According to The Zen of Python, “Readability counts.”
One-liners are minimalistic programs to solve problems. In
many cases, rewriting a piece of code as a Python one-liner
will improve readability and make the code more Pythonic. An
example is using list comprehension to reduce the creation of
lists into a single line of code. Have a look at the following
example:

BEFORE
squares = []

for i in range(10):
 squares.append(i**2)

print(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In this code snippet, we need five lines of code to create a
list of the first 10 square numbers and print it to the shell.
However, it’s much better to use a one-liner solution that
accomplishes the same thing in a more readable and concise
way:

AFTER
print([i**2 for i in range(10)])
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The output is the same, but the one-liner builds on the more
Pythonic concept of list comprehension. It’s easier to read and
more concise.

However, Python one-liners can also be hard to understand.
In some cases, writing a solution as a Python one-liner isn’t
more readable. But just as the chess master must know all
possible moves before deciding which one is best, you must
know all ways of expressing your thoughts in code so that you
can decide on the best one. Going for the most beautiful
solution is not a low-priority matter; it’s at the core of the
Python ecosystem. As The Zen of Python teaches, “Beautiful is
better than ugly.”

WHO IS THIS BOOK FOR?
Are you a beginner- to intermediate-level Python coder? Like
many of your peers, you may be stuck in your coding progress.
This book can help you out. You’ve read a lot of programming
tutorials online. You’ve written your own source code and
successfully shipped small projects. You’ve finished a basic
programming course and read a programming textbook or two.
Maybe you’ve even finished a technical program in college,
where you’ve learned about the basics of computer science
and programming.

Perhaps you’re limited by certain beliefs, like that most
coders understand source code much faster than you, or that
you’re nowhere near the top 10 percent of programmers. If
you want to reach an advanced coding level and join the top
coding experts, you need to learn new applicable skills.

I can relate because when I started out studying computer
science 10 years ago, I struggled with the belief that I knew
nothing about coding. At the same time, it seemed that all my
peers were already very experienced and proficient.

In this book, I want to help you overcome these limiting
beliefs and push you one step further toward Python mastery.

WHAT WILL YOU LEARN?
Here is an overview of what you will learn.

Chapter 1: Python Refresher Introduces the very basics
of Python to refresh your knowledge.

Chapter 2: Python Tricks Contains 10 one-liner tricks to
help you master the basics, such as list comprehension, file
input, the functions lambda, map(), and zip(), the all() quantifier,
slicing, and basic list arithmetic. You’ll also learn how to
use, manipulate, and leverage data structures to solve
various day-to-day problems.

Chapter 3: Data Science Contains 10 one-liners for data
science, building on the NumPy library. NumPy is at the
heart of Python’s powerful machine learning and data
science capabilities. You’ll learn elementary NumPy basics
such as array, shape, axis, type, broadcasting, advanced
indexing, slicing, sorting, searching, aggregating, and
statistics.

Chapter 4: Machine Learning Covers 10 one-liners for
machine learning with Python’s scikit-learn library. You’ll
learn about regression algorithms that predict values.
Examples of these include linear regression, K-Nearest
Neighbors, and neural networks. You’ll also learn
classification algorithms such as logistic regression,
decision-tree learning, support-vector machines, and

random forests. Furthermore, you’ll learn about how to
calculate basic statistics of multidimensional data arrays,
and the K-Means algorithm for unsupervised learning.
These algorithms and methods are among the most
important algorithms in the field of machine learning.

Chapter 5: Regular Expressions Contains 10 one-liners
to help you achieve more with regular expressions. You’ll
learn about various basic regular expressions that you can
combine (and recombine) in order to create more-advanced
regular expressions, using grouping and named groups,
negative lookaheads, escaped characters, whitespaces,
character sets (and negative characters sets), and
greedy/nongreedy operators.

Chapter 6: Algorithms Contains 10 one-liner algorithms
addressing a wide range of computer science topics,
including anagrams, palindromes, supersets, permutations,
factorials, prime numbers, Fibonacci numbers, obfuscation,
searching, and algorithmic sorting. Many of these form the
basis of more-advanced algorithms and contain the seeds of
a thorough algorithmic education.

Afterword Concludes this book and releases you into the
real world, packed with your new and improved Python
coding skills.

ONLINE RESOURCES
To enhance the training material in this book, I’ve added
supplementary resources that you can find online at
https://pythononeliners.com/ or
http://www.nostarch.com/pythononeliners/. The interactive
resources include the following:

Python cheat sheets You can download those Python cheat
sheets as printable PDFs and pin them to your wall. The
cheat sheets contain essential Python language features,
and if you study them thoroughly, you can refresh your
Python skills and ensure that you’ve closed any knowledge
gap you may have.

https://pythononeliners.com/
http://www.nostarch.com/pythononeliners/

One-liner video lessons As part of my Python email
course, I’ve recorded many Python one-liner lessons from
this book, which you can access for free. Those lessons can
assist you in your learning and provide a multimedia
learning experience.

Python puzzles You can visit the online resources to solve
Python puzzles and use the Finxter.com app for free to test
and train your Python skills and measure your learning
progress as you go through the book.

Code files and Jupyter notebooks You must roll up your
sleeves and start working with code to make progress
toward Python mastery. Take your time to play around with
various parameter values and input data. For your
convenience, I’ve added all Python one-liners as executable
code files.

1
PYTHON REFRESHER

The purpose of this chapter is to refresh your knowledge of
basic Python data structures, keywords, control flow
operations, and other fundamentals. I wrote this book for
intermediate Python programmers who want to reach the next
level of programming expertise. To get to the expert level, you
need a thorough study of the basics.

Understanding the basics allows you to take a step back
and see the bigger picture—an important skill whether you
want to become tech lead at Google, a computer science
professor, or just a great programmer. For instance, computer
science professors will often have an incredibly profound
knowledge of the basics in their field that allows them to argue
from first principles and identify research gaps, rather than
being blinded by the latest state-of-the-art technology. This
chapter presents the most important Python basics, which
serve as a foundation for the more advanced topics in this
book.

BASIC DATA STRUCTURES
A thorough understanding of data structures is one of the most
fundamental skills you can acquire as a programmer. It will
help you no matter whether you create machine learning

projects, work on large code bases, set up and manage
websites, or write algorithms.

Numerical Data Types and Structures
The two most important numerical data types are the integer
and float. An integer is a positive or negative number without
a floating point (for example, 3). A float is a positive or
negative number with floating-point precision (for example,
3.14159265359). Python offers a wide variety of built-in
numerical operations, as well as functionality to convert
between those numerical data types. Study the examples in
Listing 1-1 carefully to master these highly important
numerical operations.

Arithmetic Operations
x, y = 3, 2
print(x + y) # = 5
print(x - y) # = 1
print(x * y) # = 6
print(x / y) # = 1.5
print(x // y) # = 1
print(x % y) # = 1
print(-x) # = -3
print(abs(-x)) # = 3
print(int(3.9)) # = 3
print(float(x)) # = 3.0
print(x ** y) # = 9

Listing 1-1: The numerical data types

Most of the operators are self-explanatory. Note that the //

operator performs integer division. The result is an integer
value that is rounded down (for example, 3 // 2 == 1).

Booleans
A variable of type Boolean can take only two values—either
False or True.

In Python, Boolean and integer data types are closely
related: the Boolean data type internally uses integer values
(by default, the Boolean value False is represented by integer 0,
and the Boolean value True is represented by integer 1). Listing
1-2 gives an example of these two Boolean keywords.

x = 1 > 2
print(x)
False

y = 2 > 1
print(y)
True

Listing 1-2: The Boolean values False and True

After evaluating the given expressions, variable x refers to
the Boolean value False, and variable y refers to the Boolean
value True.

You can use Booleans with three important keywords to
create more-complicated expressions in Python.

Keywords: and, or, not
Boolean expressions represent basic logical operators. Using
them in combination with only the following three keywords,
you can craft a wide variety of potentially complicated
expressions:

and The expression x and y evaluates to True if value x is True

and value y is True. If either of those is False, the overall
expression becomes False too.

or The expression x or y evaluates to True if value x is True or
value y is True (or both values are True). If even just one of
those is True, the overall expression becomes True too.

not The expression not x evaluates to True if value x is False.
Otherwise, the expression evaluates to False.

Consider the following Python code in Listing 1-3.

x, y = True, False

print((x or y) == True)
True

print((x and y) == False)
True

print((not y) == True)
True

Listing 1-3: The keywords and, or, and not

By using these three keywords, you can express all the
logical expressions you’ll ever need.

Boolean Operator Precedence
The order that Boolean operators are applied is an important
aspect of understanding Boolean logic. For example, consider
the natural language statement "it rains and it's cold or windy". We can
interpret this in two ways:

"(it rains and it's cold) or windy" In this case, the statement
would be True if it is windy—even if it doesn’t rain.

and "it rains and (it's cold or windy)" In this case, however, the
statement would be False if it doesn’t rain—no matter
whether it’s cold or windy.

The order of Boolean operators matters. The correct
interpretation of this statement would be the first one because
the and operator takes precedence before the or operator. Let’s
consider the code snippet in Listing 1-4.

1. Boolean Operations
x, y = True, False

print(x and not y)
True

print(not x and y or x)
True

2. If condition evaluates to False
if None or 0 or 0.0 or '' or [] or {} or set():
 print("Dead code") # Not reached

Listing 1-4: The Boolean data type

This code shows two important points. First, Boolean
operators are ordered by priority—the operator not has the
highest priority, followed by the operator and, followed by the
operator or. Second, the following values are automatically
evaluated to False: the keyword None, the integer value 0, the
float value 0.0, empty strings, or empty container types.

Strings

Python strings are sequences of characters. Strings are
immutable and so cannot be changed after creation. While
other ways to create strings exist, these are the five most
commonly used:

Single quotes 'Yes'

Double quotes "Yes"

Triple quotes for multiline strings '''Yes''' or """Yes"""

The string method str(5) == '5' is True

Concatenation 'Py' + 'thon' becomes 'Python'

Often, you’ll explicitly want to use whitespace characters
in strings. The most frequently used whitespace characters are
the newline character \n, the space character \s, and the tab
character \t.

Listing 1-5 shows the most important string methods.

Most Important String Methods
y = " This is lazy\t\n "

print(y.strip())
Remove Whitespace: 'This is lazy'

print("DrDre".lower())
Lowercase: 'drdre'

print("attention".upper())
Uppercase: 'ATTENTION'

print("smartphone".startswith("smart"))
Matches the string's prefix against the argument: True

print("smartphone".endswith("phone"))
Matches the string's suffix against the argument: True

print("another".find("other"))
Match index: 2

print("cheat".replace("ch", "m"))
Replaces all occurrences of the first by the second argument: meat

print(','.join(["F", "B", "I"]))
Glues together all elements in the list using the separator string: F,B,I

print(len("Rumpelstiltskin"))
String length: 15

print("ear" in "earth")
Contains: True

Listing 1-5: The string data type

This non-exclusive list of string methods shows that the
string data type is powerful, and you can solve many common
string problems with built-in Python functionality. If in doubt
about how to achieve a certain result regarding string
problems, consult the online reference listing all built-in string
methods:
https://docs.python.org/3/library/string.html#module-string.

Booleans, integers, floats, and strings are the most
important basic data types in Python. But often, you’ll need to
structure data items rather than just create them. In those
cases, container types are the answer. But before we dive into
container data structures, let’s quickly learn about an important
special data type: None.

The Keyword None
The keyword None is a Python constant and it means the
absence of a value. Other programming languages such as
Java use the value null instead. However, the term null often
confuses beginners, who assume it’s equal to the integer value
0. Instead, Python uses the keyword None, as shown as Listing
1-6, to indicate that it’s different from any numerical value for
zero, an empty list, or an empty string. An interesting fact is
that the value None is the only value in the NoneType data type.

def f():
 x = 2

The keyword 'is' will be introduced next
print(f() is None)
True

print("" == None)
False

print(0 == None)
False

Listing 1-6: Using the keyword None

https://docs.python.org/3/library/string.html#module-string

This code shows several examples of the None data value
(and what it is not). If you don’t define a return value for a
function, the default return value is None.

CONTAINER DATA STRUCTURES
Python ships with container data types that can handle
complex operations efficiently while being easy to use.

Lists
The list is a container data type that stores a sequence of
elements. Unlike strings, lists are mutable—you can modify
them at runtime. I can best describe the list data type with a
series of examples:

l = [1, 2, 2]
print(len(l))
3

This code snippet shows how to create a list by using
square brackets and how to populate it with three integer
elements. You can also see that lists can have repeated
elements. The len() function returns the number of elements in
a list.

Keyword: is
The keyword is simply checks whether both variables refer to
the same object in memory. This can confuse Python
newcomers. Listing 1-7 checks whether two integers and two
lists refer to the same object in memory.

y = x = 3

print(x is y)
True

print([3] is [3])
False

Listing 1-7: Using the keyword is

If you create two lists—even if they contain the same
elements—they still refer to two different list objects in
memory. Modifying one list object does not affect the other

list object. We say that lists are mutable because you can
modify them after creation. Therefore, if you check whether
one list refers to the same object in memory, the result is False.
However, integer values are immutable, so there is no risk of
one variable changing the object that will then accidentally
change all other variables. The reason is that you cannot
change the integer object 3—trying it will only create a new
integer object and leave the old one unmodified.

Adding Elements
Python provides three common ways to add elements to an
existing list: append, insert, or list concatenation.

1. Append
l = [1, 2, 2]
l.append(4)
print(l)
[1, 2, 2, 4]

2. Insert
l = [1, 2, 4]
l.insert(2, 3)
print(l)
[1, 2, 3, 4]

3. List Concatenation
print([1, 2, 2] + [4])
[1, 2, 2, 4]

All three operations generate the same list [1, 2, 2, 4]. But the
append operation is the fastest because it neither has to
traverse the list to insert an element at the correct position (as
with insert), nor create a new list out of two sublists (as with
list concatenation). Roughly speaking, you use the insert
operation only if you want to add an element at a specific
position in the list that is not the last position. And you use the
list concatenation operation to concatenate two lists of
arbitrary length. Note that a fourth method, extend(), allows you
to append multiple elements to the given list in an efficient
manner.

Removing Elements
You can easily remove an element x from a list by using the list

method remove(x):

l = [1, 2, 2, 4]
l.remove(1)
print(l)
[2, 2, 4]

The method operates on the list object itself, rather than
creating a new list with the changes made. In the previous
code example, we create a list object named l and modify this
exact object in memory by removing an element. This saves
memory overhead by reducing redundant copies of the same
list data.

Reversing Lists

You can reverse the order of list elements by using the method
list.reverse():

l = [1, 2, 2, 4]
l.reverse()
print(l)
[4, 2, 2, 1]

Reversing the list also modifies the original list object and
does not merely create a new list object.

Sorting Lists

You can sort list elements by using the method list.sort():

l = [2, 1, 4, 2]
l.sort()
print(l)
[1, 2, 2, 4]

Again, sorting the list modifies the original list object. The
resulting list is sorted in an ascending manner. Lists containing
string objects would be sorted in an ascending lexicographical
manner (from 'a' to 'z'). In general, the sorting function assumes
that two objects can be compared. Roughly speaking, if you
can calculate a > b for objects a and b of any data type, Python
can also sort the list [a, b].

Indexing List Elements

You can find out the index of a specified list element x by
using the method list.index(x):

print([2, 2, 4].index(2))
0

print([2, 2, 4].index(2,1))
1

The method index(x) finds the first occurrence of the element
x in the list and returns its index. Like other major
programming languages, Python assigns index 0 to the first
sequence and index i–1 to the i-th sequence.

Stacks
The stack data structure works intuitively as a first-in, first-out
(FIFO) structure. Think of it as a stack of paperwork: you
place every new paper on the top of a pile of old papers, and
when you work through the stack, you keep removing the
topmost document. The stack is still a fundamental data
structure in computer science, used in operating system
management, algorithms, syntax parsing, and backtracking.

Python lists can be used intuitively as stacks with the list
operations append() to add to the stack and pop() to remove the
most recently added item:

stack = [3]
stack.append(42) # [3, 42]
stack.pop() # 42 (stack: [3])
stack.pop() # 3 (stack: [])

Because of the efficiency of the list implementation, there
is usually no need to import external stack libraries.

Sets
The set data structure is a basic collection data type in Python
and many other programming languages. Popular languages
for distributed computing (for example, MapReduce or
Apache Spark) even focus almost exclusively on set
operations as programming primitives. So what is a set
exactly? A set is an unordered collection of unique elements.
Let’s break this definition into its main pieces.

Collection

A set is a collection of elements like a list or a tuple. The
collection consists of either primitive elements (integers,
floats, strings), or complex elements (objects, tuples).
However, all data types in a set must be hashable, meaning
that they have an associated hash value. A hash value of an
object never changes and is used to compare the object to
other objects. Let’s look at an example in Listing 1-8, which
creates a set from three strings after checking their hash
values. You try to create a set of lists, but fail because lists are
not hashable.

hero = "Harry"
guide = "Dumbledore"
enemy = "Lord V."
print(hash(hero))
6175908009919104006

print(hash(guide))
-5197671124693729851

Can we create a set of strings?
characters = {hero, guide, enemy}
print(characters)
{'Lord V.', 'Dumbledore', 'Harry'}

Can we create a set of lists?
team_1 = [hero, guide]
team_2 = [enemy]
teams = {team_1, team_2}
TypeError: unhashable type: 'list'

Listing 1-8: The set data type allows for only hashable elements.

You can create a set of strings because strings are hashable.
But you cannot create a set of lists, because lists are
unhashable. The reason is that the hash value depends on the
content of the item, and lists are mutable; if you change the list
data type, the hash value must change too. Because mutable
data types are not hashable, you cannot use them in sets.

Unordered
Unlike lists, elements in a set have no fixed order. Regardless
of the order in which you put stuff into the set, you can never
be sure in which order the set stores these elements. Here is an
example:

characters = {hero, guide, enemy}
print(characters)
{'Lord V.', 'Dumbledore', 'Harry'}

I put in the hero first, but my interpreter prints the enemy
first (the Python interpreter is on the dark side, obviously).
Note that your interpreter may print yet another order of the
set elements.

Unique

All elements in the set must be unique. Formally, each of two
values x, y in the set with x!=y have different hash values
hash(x)!=hash(y). Because every two elements x and y in the set
are different, you cannot create an army of Harry Potter clones
to fight Lord V.:

clone_army = {hero, hero, hero, hero, hero, enemy}
print(clone_army)
{'Lord V.', 'Harry'}

No matter how often you put the same value into the same
set, the set stores only one instance of this value. The reason is
that those heroes have the same hash value, and a set contains
at most one element per hash value. An extension of the
normal set data structure is the multiset data structure, which
can store multiple instances of the same value. However, it is
seldom used in practice. In contrast, you will use sets in almost
any nontrivial code project—for example, to intersect a set of
customers with a set of persons who visited a store, which will
return a new set of customers who also visited the store.

Dictionaries
The dictionary is a useful data structure for storing (key, value)

pairs:

calories = {'apple' : 52, 'banana' : 89, 'choco' : 546}

You can read and write elements by specifying the key
within brackets:

print(calories['apple'] < calories['choco'])
True

calories['cappu'] = 74

print(calories['banana'] < calories['cappu'])
False

Use the keys() and values() functions to access all keys and
values of the dictionary:

print('apple' in calories.keys())
True

print(52 in calories.values())
True

Access the (key, value) pairs of a dictionary with the items()

method:

for k, v in calories.items():
 print(k) if v > 500 else None
'choco'

This way, it’s easy to iterate over all keys and all values in
a dictionary without accessing them individually.

Membership
Use the keyword in to check whether the set, list, or dictionary
contains an element (see Listing 1-9).

➊ print(42 in [2, 39, 42])
 # True

➋ print("21" in {"2", "39", "42"})
 # False

 print("list" in {"list" : [1, 2, 3], "set" : {1,2,3}})
 # True

Listing 1-9: Using the keyword in

You use the keyword in to test membership of the integer
value 42 ➊ in a list of integer values or to test membership of a
string value "21" in a set of strings ➋. We say x is a member of
y if element x appears in the collection y.

Checking set membership is faster than checking list
membership: to check whether element x appears in list y, you
need to traverse the whole list until you find x or have checked
all elements. However, sets are implemented much like

dictionaries: to check whether element x appears in set y,
Python internally performs one operation y[hash(x)] and checks
whether the return value is not None.

List and Set Comprehension
List comprehension is a popular Python feature that helps you
quickly create and modify lists. The simple formula is [

expression + context]:

Expression Tells Python what to do with each element in
the list.

Context Tells Python which list elements to select. The
context consists of an arbitrary number of for and if

statements.

For example, in the list comprehension statement [x for x in

range(3)], the first part x is the (identity) expression, and the
second part for x in range(3) is the context. The statement creates
the list [0, 1, 2]. The range() function returns a range of
subsequent integer values 0, 1, and 2—when used with one
argument as in the example. Another code example for list
comprehension is the following:

(name, $-income)
customers = [("John", 240000),
 ("Alice", 120000),
 ("Ann", 1100000),
 ("Zach", 44000)]

your high-value customers earning >$1M
whales = [x for x,y in customers if y>1000000]
print(whales)
['Ann']

Set comprehension is like list comprehension, but creates a
set rather than a list.

CONTROL FLOW
Control flow functionality allows you to make decisions in
your code. Algorithms are often compared to cooking recipes
that consist of a sequential list of commands: fill the pot with
water, add salt, add rice, drain the water, and serve the rice. As

it is, without a conditional execution, the sequence of
commands would take only a few seconds to execute, and the
rice would not be ready for sure. For example, you would fill
in water, salt, and rice and immediately get rid of the water
without waiting for the water to be hot and the rice to be soft.

You need to respond in a different way to different
circumstances: you need to put the rice in the pot only if the
water is hot, and you need to remove the water from the pot
only if the rice is soft. It’s almost impossible to write programs
in a way that anticipates what happens deterministically in the
real world. Instead, you need to write programs that respond
differently if different conditions are met.

if, else, and elif
The keywords if, else, and elif (see Listing 1-10) enable you to
perform conditional execution of different code branches.

➊ x = int(input("your value: "))
➋ if x > 3:
 print("Big")
➌ elif x == 3:
 print("Medium")
➍ else:
 print("Small")

Listing 1-10: Using the keywords if, else, and elif

This first takes the user input, converts it into an integer,
and stores it in the variable x ➊. It then tests whether the
variable value is larger than ➋, equal to ➌, or smaller than ➍
the value 3. In other words, the code responds to real-world
input that is unpredictable in a differentiated manner.

Loops
To allow for repeated execution of code snippets, Python uses
two types of loops: for loops and while loops. Using these, you
can easily write a program consisting only of two lines of code
that execute forever. This repetition would be difficult
otherwise (an alternative is recursion.)

In Listing 1-11, you can see both loop variants in action.

For loop declaration
for i in [0, 1, 2]:

 print(i)

'''
0
1
2
'''

While loop - same semantics
j = 0
while j < 3:
 print(j)
 j = j + 1

'''
0
1
2
'''

Listing 1-11: Using the keywords for and while

Both loop variants print the integers 0, 1, and 2 to the shell,
but accomplish the task in two ways.

The for loop declares a loop variable i that iteratively takes
on all values in the list [0, 1, 2]. It keeps running until it runs out
of values.

The while loop executes the loop body as long as a particular
condition is met—in our case, while j < 3.

There are two fundamental ways of terminating a loop: you
can define a loop condition that eventually evaluates to False, or
use the keyword break at the exact position in the loop body.
Listing 1-12 shows an example of the latter.

while True:
 break # no infinite loop

print("hello world")
hello world

Listing 1-12: Using the keyword break

You create a while loop with a loop condition that will
always evaluate to True. So, at first sight, it seems to run
forever. An infinite while loop is common practice when, for
example, developing web servers that forever repeat the
following procedure: wait for a new web request and serve the

request. However, in some cases, you’ll still want to terminate
the loop prematurely. In the web server example, you would
stop serving files for security reasons when your server detects
that it is under attack. In these cases, you can use the keyword
break to stop the loop and execute the code that follows
immediately. In Listing 1-12, the code executes print("hello world")

after the loop ends prematurely.

It is also possible to force the Python interpreter to skip
certain areas in the loop without ending it prematurely. For
example, you may want to skip malicious web requests instead
of halting the server completely. You can achieve this by using
the continue statement, which finishes the current loop iteration
and brings the execution flow back to the loop condition (see
Listing 1-13).

while True:
 continue
 print("43") # dead code

Listing 1-13: Using the keyword continue

This code executes forever without executing the print

statement once. The reason is that the continue statement
finishes the current loop iteration and takes it back to the start,
so execution never reaches the print statement. Code that never
executes is known as dead code. For this reason, the continue

statement (as well as the break statement) is commonly used
under a certain condition by using a conditional if-else
environment.

FUNCTIONS
Functions help you to reuse code snippets at your leisure:
write them once but use them often. You define a function
with the keyword def, a function name, and a set of arguments
to customize the execution of the function body. Calling the
function with two sets of arguments can drastically change the
result of the function. For example, you can define the
function square(x) that returns the square number of input

argument x. Calling square(10) results in 10 × 10 = 100 while
calling square(100) results in 100 × 100 = 10,000.

The keyword return terminates the function and passes the
flow of execution to the caller of the function. You can also
provide an optional value after the return keyword to specify the
function result (see Listing 1-14).

def appreciate(x, percentage):
 return x + x * percentage / 100

print(appreciate(10000, 5))
10500.0

Listing 1-14: Using the keyword return

You create a function appreciate() that calculates how much a
given investment appreciates at a given percentage of return.
In the code, you calculate how much an investment of $10,000
appreciates in one year when assuming an interest rate of 5
percent. The result is $10,500. You use the keyword return to
specify that the result of the function should be the sum of the
original investment and the nominal interest of this
investment. The return value of the function appreciate() is of
type float.

LAMBDAS
You use the keyword lambda to define lambda functions in
Python. Lambda functions are anonymous functions that are
not defined in the namespace. Roughly speaking, they are
functions without names, intended for single use. The syntax is
as follows:

lambda <arguments> : <return expression>

A lambda function can have one or multiple arguments,
separated by commas. After the colon (:), you define the return
expression that may (or may not) use the defined argument.
The return expression can be any expression or even another
function.

Lambda functions play a major role in Python. You’ll see
them a lot in practical code projects: for example, to make
code shorter and more concise, or to create arguments of
various Python functions (such as map() or reduce()). Consider
the code in Listing 1-15.

print((lambda x: x + 3)(3))
6

Listing 1-15: Using the keyword lambda

First, you create a lambda function that takes a value x and
returns the result of the expression x + 3. The result is a
function object that can be called like any other function.
Because of its semantics, you denote this function as an
incrementor function. When calling this incrementor function
with the argument x=3—the suffix (3) within the print statement
in Listing 1-15—the result is the integer value 6. This book
uses lambda functions heavily, so make sure you understand
them properly (though you will also have opportunities to
improve your intuitive understanding of lambda functions).

SUMMARY
This chapter gave you a concise Python crash course to refresh
your basic Python education. You studied the most important
Python data structures and how to use them in code examples.
You learned how to control the program execution flow by
using if-elif-else statements, as well as while and for loops. You
revisited the basic data types in Python—Boolean, integer,
float, and string—and saw which built-in operations and
functions are commonly used. Most code snippets in practice
and nontrivial algorithms are built around more-powerful
container types such as lists, stacks, sets, and dictionaries. By
studying the given examples, you learned how to add, remove,
insert, and reorder elements. You also learned about
membership operators and list comprehension: an efficient and
powerful built-in method to create lists programmatically in
Python. Finally, you learned about functions and how to define

them (including the anonymous lambda function). Now, you
are ready for the first 10 basic Python one-liners.

2
PYTHON TRICKS

For our purposes, a trick is a way of accomplishing a task in a
surprisingly fast or easy manner. In this book, you’ll learn a
wide variety of tricks and techniques to make your code more
concise, while boosting your speed of implementation. While
all technical chapters in this book show you Python tricks, this
chapter addresses the low-hanging fruit: tricks you can adopt
quickly and effortlessly, but with great effect on your coding
productivity.

This chapter also serves as a stepping-stone for the more
advanced chapters that follow. You need to understand the
skills introduced in these one-liners to understand those that
follow. Notably, we’ll cover a range of basic Python
functionality to help you write effective code, including list
comprehension, file access, the map() function, the lambda

function, the reduce() function, slicing, slice assignments,
generator functions, and the zip() function.

If you’re already an advanced programmer, you could skim
over this chapter and decide which individual parts you want
to study in more depth—and which ones you already
understand well.

USING LIST COMPREHENSION
TO FIND TOP EARNERS

In this section, you’ll learn a beautiful, powerful, and highly
efficient Python feature to create lists: list comprehension.
You’ll use list comprehension in many of the one-liners to
come.

The Basics
Say you work in the human resources department of a large
company and need to find all staff members who earn at least
$100,000 per year. Your desired output is a list of tuples, each
consisting of two values: the employee name and the
employee’s yearly salary. Here’s the code you develop:

employees = {'Alice' : 100000,
 'Bob' : 99817,
 'Carol' : 122908,
 'Frank' : 88123,
 'Eve' : 93121}

top_earners = []
for key, val in employees.items():
 if val >= 100000:
 top_earners.append((key,val))

print(top_earners)
[('Alice', 100000), ('Carol', 122908)]

While the code is correct, there’s an easier and much more
concise—and therefore more readable—way of accomplishing
the same result. All things being equal, the solution with fewer
lines allows the reader to grasp the meaning of code faster.

Python offers a powerful way of creating new lists: list
comprehension. The simple formula is as follows:

[expression + context]

The enclosing brackets indicate that the result is a new list.
The context defines which list elements to select. The
expression defines how to modify each list element before
adding the result to the list. Here’s an example:

[x * 2 for x in range(3)]

The bold part of the equation, for x in range(3), is the
context and the remaining part x * 2, is the expression. Roughly

speaking, the expression doubles the values 0, 1, 2 generated
by the context. Thus, the list comprehension results in the
following list:

[0, 2, 4]

Both the expression and the context can be arbitrarily
complicated. The expression may be a function of any variable
defined in the context and may perform any computation—it
can even call outside functions. The goal of the expression is
to modify each list element before adding it to the new list.

The context can consist of one or many variables defined
using one or many nested for loops. You can also restrict the
context by using if statements. In this case, a new value will be
added to the list only if the user-defined condition holds.

List comprehension is best explained by example. Study
the following examples carefully and you’ll get a good sense
of list comprehension:

print([➊x ➋for x in range(5)])
[0, 1, 2, 3, 4]

Expression ➊: Identity function (does not change the
context variable x).

Context ➋: Context variable x takes all values returned by
the range function: 0, 1, 2, 3, 4.

print([➊(x, y) ➋for x in range(3) for y in range(3)])
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

Expression ➊: Create a new tuple from the context
variables x and y.

Context ➋: The context variable x iterates over all values
returned by the range function (0, 1, 2), while context variable y
iterates over all values returned by the range function (0, 1, 2).
The two for loops are nested, so the context variable y repeats
its iteration procedure for every single value of the context
variable x. Thus, there are 3 × 3 = 9 combinations of context
variables.

print([➊x ** 2 ➋for x in range(10) if x % 2 > 0])
[1, 9, 25, 49, 81]

Expression ➊: Square function on the context variable x.

Context ➋: Context variable x iterates over all values
returned by the range function—0, 1, 2, 3, 4, 5, 6, 7, 8, 9—but
only if they are odd values; that is, x % 2 > 0.

print([➊x.lower() ➋for x in ['I', 'AM', 'NOT', 'SHOUTING']])
['i', 'am', 'not', 'shouting']

Expression ➊: String lowercase function on context
variable x.

Context ➋: Context variable x iterates over all string
values in the list: 'I', 'AM', 'NOT', 'SHOUTING'.

Now, you should be able to understand the following code
snippet.

The Code
Let’s consider the same employee salary problem introduced
earlier: given a dictionary with string keys and integer values,
create a new list of (key, value) tuples so that the value
associated with the key is larger than or equal to 100,000.
Listing 2-1 shows the code.

Data
employees = {'Alice' : 100000,
 'Bob' : 99817,
 'Carol' : 122908,
 'Frank' : 88123,
 'Eve' : 93121}

One-Liner
top_earners = [(k, v) for k, v in employees.items() if v >= 100000]

Result
print(top_earners)

Listing 2-1: One-liner solution for list comprehension

What’s the output of this code snippet?

How It Works
Let’s examine the one-liner:

top_earners = [➊(k, v) ➋for k, v in employees.items() if v >= 100000]

Expression ➊: Creates a simple (key, value) tuple for
context variables k and v.

Context ➋: The dictionary method dict.items() ensures that
context variable k iterates over all dictionary keys and that
context variable v iterates over the associated values for
context variable k—but only if the value of context variable v

is larger than or equal to 100,000 as ensured by the
if condition.

The result of the one-liner is as follows:

print(top_earners)
[('Alice', 100000), ('Carol', 122908)]

This simple one-liner program introduces the important
concept of list comprehension. We use list comprehension in
multiple instances in this book, so make sure that you
understand the examples in this section before moving on.

USING LIST COMPREHENSION
TO FIND WORDS WITH HIGH
INFORMATION VALUE
In this one-liner, you’ll dive even deeper into the powerful
feature of list comprehension.

The Basics
Search engines rank textual information according to its
relevance to a user query. To accomplish this, search engines
analyze the content of the text to be searched. All text consists
of words. Some words provide a lot of information about the
content of the text—and others don’t. Examples for the former
are words like white, whale, Captain, Ahab (Do you know the
text?). Examples for the latter are words like is, to, as, the, a,
or how, because most texts contain those words. Filtering out
words that don’t contribute a lot of meaning is common
practice when implementing search engines. A simple
heuristic is to filter out all words with three characters or less.

The Code
Our goal is to solve the following problem: given a multiline
string, create a list of lists—each consisting of all the words in
a line that have more than three characters. Listing 2-2
provides the data and the solution.

Data
text = '''
Call me Ishmael. Some years ago - never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part
of the world. It is a way I have of driving off the spleen, and regulating
the circulation. - Moby Dick'''

One-Liner
w = [[x for x in line.split() if len(x)>3] for line in text.split('\n')]

Result
print(w)

Listing 2-2: One-liner solution to find words with high information value

What’s the output of this code?

How It Works
The one-liner creates a list of lists by using two nested list
comprehension expressions:

The inner list comprehension expression [x for x in line.split() if
len(x)>3] uses the string split() function to divide a given line into a
sequence of words. We iterate over all words x and add them to the list if
they have more than three characters.
The outer list comprehension expression creates the string line used in
the previous statement. Again, it uses the split() function to divide the
text on the newline characters '\n'.

Of course, you need to get used to thinking in terms of list
comprehensions, so the meaning may not come naturally to
you. But after reading this book, list comprehensions will be
your bread and butter—and you’ll quickly read and write
Pythonic code like this.

READING A FILE

In this section, you’ll read a file and store the result as a list of
strings (one string per line). You’ll also remove any leading
and trailing whitespaces from the lines.

The Basics
In Python, reading a file is straightforward but usually takes a
few lines of code (and one or two Google searches) to
accomplish. Here’s one standard way of reading a file in
Python:

filename = "readFileDefault.py" # this code

f = open(filename)
lines = []
for line in f:
 lines.append(line.strip())

print(lines)
"""
['filename = "readFileDefault.py" # this code',
'',
'f = open(filename)',
'lines = []',
'for line in f:',
'lines.append(line.strip())',
'',
'print(lines)']
"""

The code assumes that you’ve stored this code snippet in a
file named readFileDefault.py in a folder. The code then opens
this file, creates an empty list, lines, and fills the list with
strings by using the append() operation in the for loop body to
iterate over all the lines in the file. You also use the string
method strip() to remove any leading or trailing whitespace
(otherwise, the newline character '\n' would appear in the
strings).

To access files on your computer, you need to know how to
open and close files. You can access a file’s data only after
you’ve opened it. After closing the file, you can be sure that
the data was written into the file. Python may create a buffer
and wait for a while before it writes the whole buffer into the
file (Figure 2-1). The reason for this is simple: file access is
slow. For efficiency reasons, Python avoids writing every

single bit independently. Instead, it waits until the buffer has
filled with enough bytes and then flushes the whole buffer at
once into the file.

Figure 2-1: Opening and closing a file in Python

That’s why it’s good practice to close the file after reading
it with the command f.close(), to ensure all the data is properly
written into the file instead of residing in temporary memory.
However, in a few exceptions, Python closes the file
automatically: one of these exceptions occurs when the
reference count drops to zero, as you’ll see in the following
code.

The Code
Our goal is to open a file, read all lines, strip the leading and
trailing whitespace characters, and store the result in a list.
Listing 2-3 provides the one-liner.

print([line.strip() for line in open("readFile.py")])

Listing 2-3: One-liner solution to read a file line by line.

Go ahead and guess the output of this code snippet before
reading on.

How It Works
You use the print() statement to print the resulting list to the
shell. You create the list by using list comprehension (see
“Using List Comprehension to Find Top Earners” on page 18).
In the expression part of the list comprehension, you use the
strip() method of string objects.

The context part of the list comprehension iterates over all
lines in the file.

The output of the one-liner is simply the one-liner itself
(because it reads its Python source code file with the name
readFile.py), wrapped into a string and filled into a list:

print([line.strip() for line in open("readFile.py")])
['print([line.strip() for line in open("readFile.py")])']

This section demonstrates that by making code shorter and
more concise, you make it more readable without
compromising efficiency.

USING LAMBDA AND MAP
FUNCTIONS
This section introduces two important Python features: the
lambda and map() functions. Both functions are valuable tools in
your Python toolbox. You’ll use these functions to search a list
of strings for occurrences of another string.

The Basics
In Chapter 1, you learned how to define a new function with
the expression def x, followed by the content of the function.
However, this is not the only way of defining a function in
Python. You can also use lambda functions to define a simple
function with a return value (the return value can be any
object, including tuples, lists, and sets). In other words, every
lambda function returns an object value to its calling
environment. Note that this poses a practical restriction to
lambda functions, because unlike standard functions, they are
not designed to execute code without returning an object value
to the calling environment.

NOTE

We already covered lambda functions in Chapter 1, but because it’s such an
important concept used throughout this book, we’ll take a deeper look in this
section.

Lambda functions allow you to define a new function in a
single line by using the keyword lambda. This is useful when
you want to quickly create a function that you’ll use only once
and can be garbage-collected immediately afterward. Let’s
first study the exact syntax of lambda functions:

lambda arguments : return expression

You start the function definition with the keyword lambda,
followed by a sequence of function arguments. When calling
the function, the caller must provide these arguments. You
then include a colon (:) and the return expression, which
calculates the return value based on the arguments of the
lambda function. The return expression calculates the function
output and can be any Python expression. Consider the
following function definition as an example:

lambda x, y: x + y

The lambda function has two arguments, x and y. The return
value is simply the sum of both arguments, x + y.

You typically use a lambda function when you call the
function only once and can easily define it in a single line of
code. One common example is using lambda with the map()

function that takes as input arguments a function object f and a
sequence s. The map() function then applies the function f on
each element in the sequence s. Of course, you could define a
full-fledged named function to define the function argument f.
But this is often inconvenient and reduces readability—
especially if the function is short and you need it only once—
so it’s usually best to use a lambda function here.

Before presenting the one-liner, I’ll quickly introduce
another small Python trick that makes your life easier:
checking whether string x contains substring y by using the
expression y in x. This statement returns True if there exists at
least one occurrence of the string y in the string x. For
example, the expression '42' in 'The answer is 42' evaluates to True,
while the expression '21' in 'The answer is 42' evaluates to False.

Now let’s look at our one-liner.

The Code
When given a list of strings, our next one-liner (Listing 2-4)
creates a new list of tuples, each consisting of a Boolean value
and the original string. The Boolean value indicates whether
the string 'anonymous' appears in the original string! We call the
resulting list mark because the Boolean values mark the string
elements in the list that contain the string 'anonymous'.

Data
txt = ['lambda functions are anonymous functions.',
 'anonymous functions dont have a name.',
 'functions are objects in Python.']

One-Liner
mark = map(lambda s: (True, s) if 'anonymous' in s else (False, s), txt)

Result
print(list(mark))

Listing 2-4: One-liner solution to mark strings that contain the string 'anonymous'

What’s the output of this code?

How It Works
The map() function adds a Boolean value to each string element
in the original txt list. This Boolean value is True if the string
element contains the word anonymous. The first argument is
the anonymous lambda function, and the second is a list of
strings you want to check for the desired string.

You use the lambda return expression (True, s) if 'anonymous' in s

else (False, s) to search for the 'anonymous' string. The value s is the
input argument of the lambda function, which, in this example,
is a string. If the string query 'anonymous' exists in the string, the
expression returns the tuple (True, s). Otherwise, it returns the
tuple (False, s).

The result of the one-liner is the following:

Result
print(list(mark))
[(True, 'lambda functions are anonymous functions.'),
(True, 'anonymous functions dont have a name.'),
(False, 'functions are objects in Python.')]

The Boolean values indicate that only the first two strings
in the list contain the substring 'anonymous'.

You’ll find lambdas incredibly useful in the upcoming one-
liners. You’re also making consistent progress toward your
goal: understanding every single line of Python code you’ll
encounter in practice.

EXERCISE 2-1

Use list comprehension rather than the map() function to
accomplish the same output. (You can find the solution at
the end of this chapter.)

USING SLICING TO EXTRACT
MATCHING SUBSTRING
ENVIRONMENTS
This section teaches you the important basic concept of slicing
—the process of carving out a subsequence from an original
full sequence—to process simple text queries. We’ll search
some text for a specific string, and then extract that string
along with a handful of characters around it to give us context.

The Basics
Slicing is integral to a vast number of Python concepts and
skills, both advanced and basic, such as when using any of
Python’s built-in data structures like lists, tuples, and strings.
Slicing is also the basis of many advanced Python libraries
such as NumPy, Pandas, TensorFlow, and scikit-learn.
Studying slicing thoroughly will have a positive ripple effect
throughout your career as a Python coder.

Slicing carves out subsequences of a sequence, such as a
part of a string. The syntax is straightforward. Say you have a
variable x that refers to a string, list, or tuple. You can carve
out a subsequence by using the following notation:

x[start:stop:step].

The resulting subsequence starts at index start (included)
and ends at index stop (excluded). You can include an optional
third step argument that determines which elements are carved
out, so you could choose to include just every step-th element.
For example, the slicing operation x[1:4:1] used on variable x =

'hello world' results in the string 'ell'. Slicing operation x[1:4:2] on
the same variable results in string 'el' because only every other
element is taken into the resulting slice. Recall from Chapter 1
that the first element of any sequence type, such as strings and
lists, has index 0 in Python.

If you don’t include the step argument, Python assumes the
default step size of one. For example, the slice call x[1:4] would
result in the string 'ell'.

If you don’t include the beginning or ending arguments,
Python assumes you want to start at the start, or end at the end.
For example, the slice call x[:4] would result in the string 'hell',
and the slice call x[4:] would result in the string 'o world'.

Study the following examples to improve your intuitive
understanding even further.

 s = 'Eat more fruits!'

 print(s[0:3])
 # Eat

➊ print(s[3:0])
 # (empty string '')

 print(s[:5])
 # Eat m

 print(s[5:])
 # ore fruits!

➋ print(s[:100])
 # Eat more fruits!

 print(s[4:8:2])
 # mr

➌ print(s[::3])
 # E rfi!

➍ print(s[::-1])
 # !stiurf erom taE

 print(s[6:1:-1])
 # rom t

These variants of the basic [start:stop:step] pattern of Python
slicing highlight the technique’s many interesting properties:

If start >= stop with a positive step size, the slice is empty ➊.
If the stop argument is larger than the sequence length, Python will slice
all the way to and including the rightmost element ➋.
If the step size is positive, the default start is the leftmost element, and
the default stop is the rightmost element (included) ➌.
If the step size is negative (step < 0), the slice traverses the sequence in
reverse order. With empty start and stop arguments, you slice from the
rightmost element (included) to the leftmost element (included) ➍. Note
that if the stop argument is given, the respective position is excluded
from the slice.

Next, you’ll use slicing along with the string.find(value)

method to find the index of string argument value in a given
string.

The Code
Our goal is to find a particular text query within a multiline
string. You want to find the query in the text and return its
immediate environment, up to 18 positions around the found
query. Extracting the environment as well as the query is
useful for seeing the textual context of the found string—just
as Google presents text snippets around a searched keyword.
In Listing 2-5, you’re looking for the string 'SQL' in an Amazon
letter to shareholders—with the immediate environment of up
to 18 positions around the string 'SQL'.

Data
letters_amazon = '''
We spent several years building our own database engine,
Amazon Aurora, a fully-managed MySQL and PostgreSQL-compatible
service with the same or better durability and availability as
the commercial engines, but at one-tenth of the cost. We were
not surprised when this worked.
'''

One-Liner
find = lambda x, q: x[x.find(q)-18:x.find(q)+18] if q in x else -1

Result
print(find(letters_amazon, 'SQL'))

Listing 2-5: One-liner solution to find strings in a text and their direct environment

Take a guess at the output of this code.

How It Works
You define a lambda function with two arguments: a string
value x, and a query q to search for in the text. You assign the
lambda function to the name find. The function find(x, q) finds
the string query q in the string text x.

If the query q does not appear in the string x, you directly
return the result -1. Otherwise, you use slicing on the text
string to carve out the first occurrence of the query, plus 18
characters to the left of the query and 18 characters to the
right, to capture the query’s environment. You find that the
index of the first occurrence of q in x is using the string
function x.find(q). You call the function twice: to help determine
the start index and the stop index of the slice, but both function
calls return the same value because both the query q and the
string x do not change. Although this code works perfectly
fine, the redundant function call causes unnecessary
computations—a disadvantage that could easily be fixed by
adding a helper variable to temporarily store the result of the
first function call. You could then reuse the result from the
first function call by accessing the value in the helper variable.

This discussion highlights an important trade-off: by
restricting yourself to one line of code, you cannot define and
reuse a helper variable to store the index of the first occurrence
of the query. Instead, you must execute the same function find

to compute the start index (and decrement the result by 18
index positions) and to compute the end index (and increment
the result by 18 index positions). In Chapter 5, you’ll learn a
more efficient way of searching patterns in strings (using
regular expressions) that resolves this issue.

When searching for the query 'SQL' in Amazon’s letter to
shareholders, you find an occurrence of the query in the text:

Result
print(find(letters_amazon, 'SQL'))
a fully-managed MySQL and PostgreSQL

As a result, you get the string and a few words around it to
provide context for the find. Slicing is a crucial element of
your basic Python education. Let’s deepen your understanding
even more with another slicing one-liner.

COMBINING LIST
COMPREHENSION AND SLICING
This section combines list comprehension and slicing to
sample a two-dimensional data set. We aim to create a smaller
but representative sample of data from a prohibitively large
sample.

The Basics
Say you work as a financial analyst for a large bank and are
training a new machine learning model for stock-price
forecasting. You have a training data set of real-world stock
prices. However, the data set is huge, and the model training
seems to take forever on your computer. For example, it’s
common in machine learning to test the prediction accuracy of
your model for different sets of model parameters. In our
application, say, you must wait for hours until the training
program terminates (training highly complex models on large-
scale data sets does in fact take hours). To speed things up, you
reduce the data set by half by excluding every other stock-
price data point. You don’t expect this modification to
decrease the model’s accuracy significantly.

In this section, you’ll use two Python features you learned
about previously in this chapter: list comprehension and
slicing. List comprehension allows you to iterate over each list
element and modify it subsequently. Slicing allows you to
select every other element from a given list quickly—and it
lends itself naturally to simple filtering operations. Let’s have
a detailed look at how these two features can be used in
combination.

The Code
Our goal is to create a new training data sample from our data
—a list of lists, each consisting of six floats—by including
only every other float value from the original data set. Take a
look at Listing 2-6.

Data (daily stock prices ($))
price = [[9.9, 9.8, 9.8, 9.4, 9.5, 9.7],
 [9.5, 9.4, 9.4, 9.3, 9.2, 9.1],
 [8.4, 7.9, 7.9, 8.1, 8.0, 8.0],
 [7.1, 5.9, 4.8, 4.8, 4.7, 3.9]]

One-Liner
sample = [line[::2] for line in price]

Result
print(sample)

Listing 2-6: One-liner solution to sample data

As usual, see if you can guess the output.

How It Works
Our solution is a two-step approach. First, you use list
comprehension to iterate over all lines of the original list, price.
Second, you create a new list of floats by slicing each line; you
use line[start:stop:step] with default start and stop parameters and
step size 2. The new list of floats consists of only three (instead
of six) floats, resulting in the following array:

Result
print(sample)
[[9.9, 9.8, 9.5], [9.5, 9.4, 9.2], [8.4, 7.9, 8.0], [7.1, 4.8, 4.7]]

This one-liner using built-in Python functionality is not
complicated. However, you’ll learn about an even shorter
version that uses the NumPy library for data science
computations in Chapter 3.

EXERCISE 2-2

Revisit this one-liner after studying Chapter 3 and come
up with a more concise one-liner solution using the

NumPy library. Hint: Use NumPy’s more powerful slicing
capabilities.

USING SLICE ASSIGNMENT TO
CORRECT CORRUPTED LISTS
This section shows you a powerful slicing feature in Python:
slice assignments. Slice assignments use slicing notation on
the left-hand side of an assignment operation to modify a
subsequence of the original sequence.

The Basics
Imagine you work at a small internet startup that keeps track
of its users’ web browsers (Google Chrome, Firefox, Safari).
You store the data in a database. To analyze the data, you load
the gathered browser data into a large list of strings, but
because of a bug in your tracking algorithm, every second
string is corrupted and needs to be replaced by the correct
string.

Assume that your web server always redirects the first web
request of a user to another URL (this is a common practice in
web development known under the HTML code 301: moved
permanently). You conclude that the first browser value will
be equal to the second one in most cases because the browser
of a user stays the same while waiting for the redirection to
occur. This means that you can easily reproduce the original
data. Essentially, you want to duplicate every other string in
the list: the list ['Firefox', 'corrupted', 'Chrome', 'corrupted'] becomes
['Firefox', 'Firefox', 'Chrome', 'Chrome'].

How can you achieve this in a fast, readable, and efficient
way (preferably in a single line of code)? Your first idea is to
create a new list, iterate over the corrupted list, and add every
noncorrupted browser twice to the new list. But you reject the
idea because you’d then have to maintain two lists in your
code—and each may have millions of entries. Also, this
solution would require a few lines of code, which would hurt
conciseness and readability of your source code.

Luckily, you’ve read about a beautiful Python feature: slice
assignments. You’ll use slice assignments to select and replace
a sequence of elements between indices i and j by using the
slicing notation lst[i:j] = [0 0 ...0]. Because you are using slicing
lst[i:j] on the left-hand side of the assignment operation (rather
than on the right-hand side as done previously), the feature is
denoted as slice assignments.

The idea of slice assignments is simple: replace all selected
elements in the original sequence on the left with the elements
on the right.

The Code
Our goal is to replace every other string with the string
immediately in front of it; see Listing 2-7.

Data
visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

One-Liner
visitors[1::2] = visitors[::2]

Result
print(visitors)

Listing 2-7: One-liner solution to replace all corrupted strings

What’s the fixed sequence of browsers in this code?

How It Works
The one-liner solution replaces the 'corrupted' strings with the
browser strings that precede them in the list. You use the slice
assignment notation to access every corrupted element in the
visitors list. I’ve highlighted the selected elements in the
following code snippet:

visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

The code replaces these selected elements with the slice on
the right of the assignment operation. These elements are

highlighted in the following code snippet:

visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

The former elements are replaced by the latter. Therefore,
the resulting visitors list is the following (highlighting the
replaced elements):

Result
print(visitors)
'''
['Firefox', 'Firefox', 'Chrome', 'Chrome',
'Safari', 'Safari', 'Safari', 'Safari',
'Chrome', 'Chrome', 'Firefox', 'Firefox']
'''

The result is the original list with each 'corrupted' string
replaced by its preceding browser string. This way, you clean
the corrupted data set.

Using slice assignments for this problem is the quickest and
most effective way of accomplishing your small task. Note
that the cleaned data has nonbiased browser usage statistics: a
browser with 70 percent market share in the corrupted data
will maintain its 70 percent market share in the cleaned data.
The cleaned data can then be used for further analysis—for
example, to find out whether Safari users are better customers
(after all, they tend to spend more money on hardware).
You’ve learned a simple and concise way of modifying a list
programmatically and in place.

ANALYZING CARDIAC HEALTH
DATA WITH LIST
CONCATENATION
In this section, you’ll learn how to use list concatenation to
repeatedly copy smaller lists and merge them into a larger list
to generate cyclic data.

The Basics

This time, you’re working on a small code project for a
hospital. Your goal is to monitor and visualize the health
statistics of patients by tracking their cardiac cycles. By
plotting expected cardiac cycle data, you’ll enable patients and
doctors to monitor any deviation from that cycle. For example,
given a series of measurements stored in the list [62, 60, 62, 64, 68,

77, 80, 76, 71, 66, 61, 60, 62] for a single cardiac cycle, you want to
achieve the visualization in Figure 2-2.

Figure 2-2: Visualizing expected cardiac cycles by copying selected values from the
measured data

The problem is that the first and the last two data values in
the list are redundant: [62, 60, 62, 64, 68, 77, 80, 76, 71, 66, 61, 60, 62].
This may have been useful when plotting only a single cardiac
cycle to indicate that one full cycle has been visualized.
However, we must get rid of this redundant data to ensure that

our expected cardiac cycles do not look like the ones in Figure
2-3 when copying the same cardiac cycle.

Figure 2-3: Visualizing expected cardiac cycles by copying all values from the
measured data (no filtering of redundant data)

Clearly, you need to clean the original list by removing the
redundant first and the last two data values: [62, 60, 62, 64, 68, 77,

80, 76, 71, 66, 61, 60, 62] becomes [60, 62, 64, 68, 77, 80, 76, 71, 66, 61].

You’ll combine slicing with the new Python feature list
concatenation, which creates a new list by concatenating (that
is, joining) existing lists. For example, the operation [1, 2, 3] + [4,

5] generates the new list [1, 2, 3, 4, 5], but doesn’t replace the
original lists. You can use this with the * operator to
concatenate the same list again and again to create large lists:
for example, the operation [1, 2, 3] * 3 generates the new list [1, 2,

3, 1, 2, 3, 1, 2, 3].

In addition, you’ll use the matplotlib.pyplot module to plot the
cardiac data you generate. The matplotlib function plot(data)

expects an iterable argument data—an iterable is simply an
object over which you can iterate, such as a list—and uses it as
y values for subsequent data points in a two-dimensional plot.
Let’s dive into the example.

The Code
Given a list of integers that reflect the measured cardiac cycle,
you first want to clean the data by removing the first and last
two values from the list. Second, you create a new list with
expected future heart rates by copying the cardiac cycle to
future time instances. Listing 2-8 shows the code.

Dependencies
import matplotlib.pyplot as plt

Data
cardiac_cycle = [62, 60, 62, 64, 68, 77, 80, 76, 71, 66, 61, 60, 62]

One-Liner
expected_cycles = cardiac_cycle[1:-2] * 10

Result
plt.plot(expected_cycles)
plt.show()

Listing 2-8: One-liner solution to predict heart rates at different times

Next, you’ll learn about the result of this code snippet.

How It Works
This one-liner consists of two steps. First, you use slicing to
clean the data by using the negative stop argument -2 to slice
all the way to the right but skip the last two redundant values.
Second, you concatenate the resulting data values 10 times by
using the replication operator *. The result is a list of 10 × 10 =
100 integers made up of the concatenated cardiac cycle data.
When you plot the result, you get the desired output shown
previously in Figure 2-2.

USING GENERATOR
EXPRESSIONS TO FIND
COMPANIES THAT PAY BELOW
MINIMUM WAGE
This section combines some of the Python basics you’ve
already learned and introduces the useful function any().

The Basics
You work in law enforcement for the US Department of Labor,
finding companies that pay below minimum wage so you can
initiate further investigations. Like hungry dogs on the back of
a meat truck, your Fair Labor Standards Act (FLSA) officers
are already waiting for the list of companies that violated the
minimum wage law. Can you give it to them?

Here’s your weapon: Python’s any() function, which takes an
iterable, such as a list, and returns True if at least one element
of the iterable evaluates to True. For example, the expression
any([True, False, False, False]) evaluates to True, while the expression
any([2<1, 3+2>5+5, 3-2<0, 0]) evaluates to False.

NOTE

Python’s creator, Guido van Rossum, was a huge fan of the built-in function
any() and even proposed to include it as a built-in function in Python 3. See
his 2005 blog post, “The Fate of reduce() in Python 3000” at
https://www.artima.com/weblogs/viewpost.jsp?thread=98196 for more
details.

An interesting Python extension is a generalization of list
comprehension: generator expressions. Generator expressions
work exactly like list comprehensions—but without creating
an actual list in memory. The numbers are created on the fly,
without storing them explicitly in a list. For example, instead
of using list comprehension to calculate the squares of the first
20 numbers, sum([x*x for x in range(20)]), you can use a generator
expression: sum(x*x for x in range(20)).

The Code
Our data is a dictionary of dictionaries storing the hourly
wages of company employees. You want to extract a list of the

https://www.artima.com/weblogs/viewpost.jsp?thread=98196

companies paying below your state’s minimum wage (< $9)
for at least one employee; see Listing 2-9.

Data
companies = {
 'CoolCompany' : {'Alice' : 33, 'Bob' : 28, 'Frank' : 29},
 'CheapCompany' : {'Ann' : 4, 'Lee' : 9, 'Chrisi' : 7},
 'SosoCompany' : {'Esther' : 38, 'Cole' : 8, 'Paris' : 18}}

One-Liner
illegal = [x for x in companies if any(y<9 for y in companies[x].values())]

Result
print(illegal)

Listing 2-9: One-liner solution to find companies that pay below minimum wage

Which companies must be further investigated?

How It Works
You use two generator expressions in this one-liner.

The first generator expression, y<9 for y in companies[x].values(),
generates the input to the function any(). It checks each of the
companies’ employees to see whether they are being paid
below minimum wage, y<9. The result is an iterable of
Booleans. You use the dictionary function values() to return the
collection of values stored in the dictionary. For example, the
expression companies['CoolCompany'].values() returns the collection of
hourly wages dict_values([33, 28, 29]). If at least one of them is
below minimum wage, the function any() would return True, and
the company name x would be stored as a string in the
resulting list illegal, as described next.

The second generator expression is the list comprehension
[x for x in companies if any(...)] and it creates a list of company names
for which the previous call of the function any() returns True.
Those are the companies that pay below minimum wage. Note
that the expression for x in companies visits all dictionary keys—
the company names 'CoolCompany', 'CheapCompany', and
'SosoCompany'.

The result is therefore as follows:

Result
print(illegal)
['CheapCompany', 'SosoCompany']

Two out of three companies must be investigated further
because they pay too little money to at least one employee.
Your officers can start to talk to Ann, Chrisi, and Cole!

FORMATTING DATABASES WITH
THE ZIP() FUNCTION
In this section, you’ll learn how to apply database column
names to a list of rows by using the zip() function.

The Basics
The zip() function takes iterables iter_1, iter_2, ..., iter_n and
aggregates them into a single iterable by aligning the
corresponding i-th values into a single tuple. The result is an
iterable of tuples. For example, consider these two lists:

[1,2,3]
[4,5,6]

If you zip them together—after a simple data type
conversion, as you’ll see in a moment—you’ll get a new list:

[(1,4), (2,5), (3,6)]

Unzipping them back into the original tuples requires two
steps. First, you remove the outer square bracket of the result
to get the following three tuples:

(1,4)
(2,5)
(3,6)

Then when you zip those together, you get the new list:

[(1,2,3), (4,5,6)]

So, you have your two original lists again! The following
code snippet shows this process in full:

lst_1 = [1, 2, 3]
lst_2 = [4, 5, 6]

Zip two lists together
zipped = list(zip(lst_1, lst_2))
print(zipped)
[(1, 4), (2, 5), (3, 6)]

Unzip to lists again
lst_1_new, lst_2_new = zip(➊*zipped)
print(list(lst_1_new))
print(list(lst_2_new))

You use the asterisk operator * to unpack ➊ all elements of
the list. This operator removes the outer bracket of the list
zipped so that the input to the zip() function consists of three
iterables (the tuples (1, 4), (2, 5), (3, 6)). If you zip those iterables
together, you package the first three tuple values 1, 2, and 3

into a new tuple, and the second three tuple values 4, 5, and 6

into another new tuple. Together, you get the resulting
iterables (1, 2, 3) and (4, 5, 6), which is the original (unzipped)
data.

Now, imagine you work in the IT branch of the controlling
department of your company. You maintain the database of all
employees with the column names: 'name', 'salary', and 'job'.
However, your data is out of shape—it’s a collection of rows
in the form ('Bob', 99000, 'mid-level manager'). You want to associate
your column names to each data entry to bring it into the
readable form {'name': 'Bob', 'salary': 99000, 'job': 'mid-level manager'}.
How can you achieve that?

The Code
Your data consists of the column names and the employee data
organized as list of tuples (rows). Assign the column names to
the rows and, thus, create a list of dictionaries. Each dictionary
assigns the column names to the respective data values
(Listing 2-10).

Data
column_names = ['name', 'salary', 'job']
db_rows = [('Alice', 180000, 'data scientist'),
 ('Bob', 99000, 'mid-level manager'),
 ('Frank', 87000, 'CEO')]

One-Liner
db = [dict(zip(column_names, row)) for row in db_rows]

Result
print(db)

Listing 2-10: One-liner solution to apply a database format to a list of tuples

What’s the printed format of the database db?

How It Works
You create the list by using list comprehension (see “Using
List Comprehension to Find Top Earners” on page 18 for more
on expression + context). The context consists of a tuple of
every row in the variable db_rows. The expression
zip(column_names, row) zips together the schema and each row. For
example, the first element created by the list comprehension
would be zip(['name', 'salary', 'job'], ('Alice', 180000, 'data scientist')), which
results in a zip object that, after conversion to a list, is in the
form [('name', 'Alice'), ('salary', 180000), ('job', 'data scientist')]. The
elements are in (key, value) form so you can convert it into a
dictionary by using the converter function dict() to arrive at the
required database format.

NOTE

The zip() function doesn’t care that one input is a list and the other is a tuple.
The function requires only that the input is an iterable (and both lists and
tuples are iterables).

Here’s the output of the one-liner code snippet:

Result
print(db)
'''
[{'name': 'Alice', 'salary': 180000, 'job': 'data scientist'},
{'name': 'Bob', 'salary': 99000, 'job': 'mid-level manager'},
{'name': 'Frank', 'salary': 87000, 'job': 'CEO'}]
'''

Every data item is now associated with its name in a list of
dictionaries. You’ve learned how to use the zip() function
effectively.

SUMMARY

In this chapter, you’ve mastered list comprehensions, file
input, the functions lambda, map(), and zip(), the all() quantifier,
slicing, and basic list arithmetic. You’ve also learned how to
use and manipulate data structures to solve various day-to-day
problems.

Converting data structures back and forth easily is a skill
with a profound impact on your coding productivity. Rest
assured that your programming productivity will soar as you
increase your ability to quickly manipulate data. Small
processing tasks like the ones you’ve seen in this chapter
contribute significantly to the common “death by a thousand
cuts”: the overwhelming harm that performing many small
tasks has on your overall productivity. By using the Python
tricks, functions, and features introduced in this chapter,
you’ve obtained effective protection against those thousand
cuts. Speaking metaphorically, the newly acquired tools help
you recover from each cut much faster.

In the next chapter, you’ll improve your data science skills
even further by diving into a new set of tools provided by the
NumPy library for numerical computations in Python.

SOLUTION TO EXERCISE 2-1

Here’s how to use list comprehension instead of the map()
function to achieve the same problem of filtering out all
lines that contain the string 'anonymous'. In this case, I even
recommend using the faster and cleaner list
comprehension feature.

mark = [(True, s) if 'anonymous' in s else (False, s) for s in txt]

3
DATA SCIENCE

The ability to analyze real-world data is one of the most
sought-after skills in the 21st century. With the help of
powerful hardware capabilities, algorithms, and ubiquitous
sensing, data scientists create meaning from massive-scale raw
data of weather statistics, financial transactions, customer
behavior, and so much else. The largest companies in the
world today—Google, Facebook, Apple, and Amazon—are
essentially huge data-processing entities, with data at the heart
of their business models.

This chapter equips you with the skills to process and
analyze numerical data by using Python’s library for numerical
calculations, NumPy. I’ll give you 10 practical problems and
explain how to solve them in a single line of NumPy code.
Because NumPy is the basis of many high-level libraries for
data science and machine learning (Pandas, scikit-learn, and
TensorFlow, for example), carefully studying this chapter will
increase your market value in today’s data-driven economy.
So, give me your full attention!

BASIC TWO-DIMENSIONAL
ARRAY ARITHMETIC
Here you’ll solve a day-to-day accounting task in a single line
of code. I’ll introduce some elementary functionalities of

NumPy, Python’s wildly important library for numerical
computations and data science.

The Basics
At the heart of the NumPy library are NumPy arrays, which
hold the data you want to manipulate, analyze, and visualize.
Many higher-level data science libraries like Pandas build
upon NumPy arrays, either implicitly or explicitly.

NumPy arrays are similar to Python lists but with some
added bonuses. First, NumPy arrays have a smaller memory
footprint and are faster in most instances. Second, NumPy
arrays are more convenient when accessing more than two
axes, known as multidimensional data (multidimensional lists
are difficult to access and modify). Because a NumPy array
can consist of more than one axis, we think of arrays in terms
of dimensions: an array with two axes is a two-dimensional
array. Third, NumPy arrays have more powerful access
functionality, such as broadcasting, which you’ll learn more
about in this chapter.

Listing 3-1 exemplifies how to create one-dimensional,
two-dimensional, and three-dimensional NumPy arrays.

import numpy as np

Creating a 1D array from a list
a = np.array([1, 2, 3])
print(a)
"""
[1 2 3]
"""

Creating a 2D array from a list of lists
b = np.array([[1, 2],
 [3, 4]])
print(b)
"""
[[1 2]
 [3 4]]
"""

Creating a 3D array from a list of lists of lists
c = np.array([[[1, 2], [3, 4]],

 [[5, 6], [7, 8]]])
print(c)
"""
[[[1 2]
 [3 4]]
 [[5 6]
 [7 8]]]
"""

Listing 3-1: Creating 1D, 2D, and 3D arrays in NumPy

You start by importing the NumPy library into the
namespace by using the de facto standard name for the library:
np. After importing the library, you create a NumPy array by
passing a standard Python list as an argument to the function
np.array(). A one-dimensional array corresponds to a simple list
of numerical values (in fact, NumPy arrays can contain other
data types too, but we’ll focus on numbers here). A two-
dimensional array corresponds to a nested list of lists of
numerical values. A three-dimensional array corresponds to a
nested list of lists of lists of numerical values. The number of
opening and closing brackets gives you the dimensionality of
the NumPy array.

NumPy arrays are more powerful than built-in Python lists.
For instance, you can calculate basic arithmetic operators +, -,
*, and / on two NumPy arrays. These element-wise operations
combine two arrays a and b (for example, adding them together
with the + operator) by combining each element of array a with
the corresponding element of array b. In other words, an
element-wise operation aggregates two elements that are at the
same positions in the arrays a and b. Listing 3-2 shows
examples of basic arithmetic operations on two-dimensional
arrays.

import numpy as np

a = np.array([[1, 0, 0],
 [1, 1, 1],
 [2, 0, 0]])

b = np.array([[1, 1, 1],
 [1, 1, 2],
 [1, 1, 2]])

print(a + b)
"""
[[2 1 1]
 [2 2 3]
 [3 1 2]]
"""

print(a - b)
"""
[[0 -1 -1]
 [0 0 -1]
 [1 -1 -2]]
"""

print(a * b)
"""
[[1 0 0]
 [1 1 2]
 [2 0 0]]
"""

print(a / b)
"""
[[1. 0. 0.]
 [1. 1. 0.5]
 [2. 0. 0.]]
"""

Listing 3-2: Basic arithmetic array operations

NOTE

When you apply NumPy operators to integer arrays, they try to generate
integer arrays as results too. Only when dividing two integer arrays by using
the division operator, a / b, will the result be a float array. This is indicated by
the decimal points: 1., 0., and 0.5.

If you look closely, you’ll find that each operation
combines two corresponding NumPy arrays element-wise.
When adding two arrays, the result is a new array: each new
value is the sum of the corresponding value from the first and
the second array. The same holds true when you use
subtraction, multiplication, and division, as shown.

NumPy provides a lot more capabilities for manipulating
arrays, including the np.max() function, which calculates the
maximum value of all values in a NumPy array. The np.min()

function calculates the minimum value of all values in a
NumPy array. The np.average() function calculates the average
value of all values in a NumPy array.

Listing 3-3 gives an example of these three operations.

import numpy as np

a = np.array([[1, 0, 0],
 [1, 1, 1],
 [2, 0, 0]])

print(np.max(a))
2

print(np.min(a))
0

print(np.average(a))
0.6666666666666666

Listing 3-3: Calculating the maximum, minimum, and average value of a NumPy
array

The maximum value of all values in the NumPy array is 2,
the minimum value is 0, and the average is (1 + 0 + 0 + 1 + 1
+ 1 + 2 + 0 + 0) / 9 = 2/3. NumPy has many more powerful
tools, but this is already enough to solve the following
problem: how do we find the maximum after-tax income in a
group of people, given their yearly salary and tax rates?

The Code
Let’s tackle this problem by using the salary data of Alice,
Bob, and Tim. It seems like Bob has enjoyed the highest salary
in the last three years. But is he actually bringing home the
most money, considering the individual tax rates of our three
friends? Take a look at Listing 3-4.

Dependencies
import numpy as np

Data: yearly salary in ($1000) [2017, 2018, 2019]
alice = [99, 101, 103]
bob = [110, 108, 105]
tim = [90, 88, 85]

salaries = np.array([alice, bob, tim])
taxation = np.array([[0.2, 0.25, 0.22],
 [0.4, 0.5, 0.5],
 [0.1, 0.2, 0.1]])

One-liner
max_income = np.max(salaries - salaries * taxation)

Result
print(max_income)

Listing 3-4: One-liner solution using basic array arithmetic

Take a guess: what’s the output of this code?

How It Works
After importing the NumPy library, you put the data into a
two-dimensional NumPy array with three rows (one row for
each person: Alice, Bob, and Tim) and three columns (one
column for each year: 2017, 2018, and 2019). You have two
two-dimensional arrays: salaries holds the yearly incomes, and
taxation holds the taxation rates for each person and year.

To calculate the after-tax income, you need to deduct the
tax (as a dollar amount) from the gross income stored in the
array salaries. For this, you use the overloaded NumPy operators
- and *, which perform element-wise computations on the
NumPy arrays.

The element-wise multiplication of two multidimensional
arrays is called the Hadamard product.

Listing 3-5 shows how the NumPy array looks after
deducting the taxes from the gross incomes.

print(salaries - salaries * taxation)
"""
[[79.2 75.75 80.34]
 [66. 54. 52.5]
 [81. 70.4 76.5]]
"""

Listing 3-5: Basic array arithmetic

Here, you can see that Bob’s large income is significantly
reduced after paying 40 percent and 50 percent tax rates,

shown in the second row.

The code snippet prints the maximum value of this
resulting array. The np.max() function simply finds the
maximum value in the array, which you store in max_income.
Thus, the maximum value is Tim’s $90,000 income in 2017,
which is taxed at only 10 percent—the result of the one-liner is
81. (again, the dot indicates the float data type).

You’ve used NumPy’s basic element-wise array arithmetic
to analyze the taxation rates of a group of people. Let’s use the
same example data set in applying intermediate NumPy
concepts such as slicing and broadcasting.

WORKING WITH NUMPY
ARRAYS: SLICING,
BROADCASTING, AND ARRAY
TYPES
This one-liner demonstrates the power of three interesting
NumPy features: slicing, broadcasting, and array types. Our
data is an array of multiple professions and salaries. You’ll use
the three concepts in combination to increase the salaries of
just the data scientists by 10 percent every other year.

The Basics
The crux of our problem is being able to change specific
values in a NumPy array with many rows. You want to change
every other value for one single row. Let’s explore the basics
you need to know to be able to solve this problem.

Slicing and Indexing

Indexing and slicing in NumPy are similar to indexing and
slicing in Python (see Chapter 2): you can access elements of a
one-dimensional array by using the bracket operation [] to
specify the index or index range. For example, the indexing
operation x[3] returns the fourth element of the NumPy array x

(because you access the first element with index 0).

You can also use indexing for a multidimensional array by
specifying the index for each dimension independently and

using comma-separated indices to access the different
dimensions. For example, the indexing operation y[0,1,2] would
access the first element of the first axis, the second element of
the second axis, and the third element of the third axis. Note
that this syntax would be invalid for multidimensional Python
lists.

Let’s move on to slicing in NumPy. Study the examples in
Listing 3-6 to master one-dimensional slicing in NumPy, and
feel free to go back to Chapter 2 to revisit basic Python slicing
if you have difficulties understanding these examples.

import numpy as np

a = np.array([55, 56, 57, 58, 59, 60, 61])
print(a)
[55 56 57 58 59 60 61]

print(a[:])
[55 56 57 58 59 60 61]

print(a[2:])
[57 58 59 60 61]

print(a[1:4])
[56 57 58]

print(a[2:-2])
[57 58 59]

print(a[::2])
[55 57 59 61]

print(a[1::2])
[56 58 60]

print(a[::-1])
[61 60 59 58 57 56 55]

print(a[:1:-2])
[61 59 57]

print(a[-1:1:-2])
[61 59 57]

Listing 3-6: One-dimensional slicing examples

The next step is to fully understand multidimensional
slicing. Much as for indexing, you apply one-dimensional

slicing separately for each axis (comma-separated) to select a
range of elements along this axis. Take your time to
thoroughly understand the examples in Listing 3-7.

import numpy as np

a = np.array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

print(a[:, 2])
Third col: [2 6 10 14]

print(a[1, :])
Second row: [4 5 6 7]

print(a[1, ::2])
Second row, every other element: [4 6]

print(a[:, :-1])
All columns except last:
[[0 1 2]
[4 5 6]
[8 9 10]
[12 13 14]]

print(a[:-2])
Same as a[:-2, :]
[[0 1 2 3]
[4 5 6 7]]

Listing 3-7: Multidimensional slicing examples

Study Listing 3-7 until you understand multidimensional
slicing. You can perform two-dimensional slicing by using the
syntax a[slice1, slice2]. For any additional dimension, add a
comma-separated slicing operation (using the start:stop or
start:stop:step slicing operators). Each slice selects an independent
subsequence of the elements in its respective dimension. If
you understand this basic idea, going from one-dimensional to
multidimensional slicing is trivial.

Broadcasting
Broadcasting describes the automatic process of bringing two
NumPy arrays into the same shape so that you can apply
certain element-wise operations (see “Slicing and Indexing”

on page 46). Broadcasting is closely related to the shape
attribute of NumPy arrays, which in turn is closely related to
the concept of axes. So, let’s dive into axes, shapes, and
broadcasting next.

Each array comprises several axes, one for each dimension
(Listing 3-8).

import numpy as np

a = np.array([1, 2, 3, 4])
print(a.ndim)
1

b = np.array([[2, 1, 2], [3, 2, 3], [4, 3, 4]])
print(b.ndim)
2

c = np.array([[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
 [[1, 2, 4], [2, 3, 5], [3, 4, 6]]])

print(c.ndim)
3

Listing 3-8: Axes and dimensionality of three NumPy arrays

Here, you can see three arrays: a, b, and c. The array
attribute ndim stores the number of axes of this particular array.
You simply print it to the shell for each array. Array a is one-
dimensional, array b is two-dimensional, and array c is three-
dimensional. Every array has an associated shape attribute, a
tuple that gives you the number of elements in each axis. For a
two-dimensional array, there are two values in the tuple: the
number of rows and the number of columns. For higher-
dimensional arrays, the i-th tuple value specifies the number of
elements of the i-th axis. The number of tuple elements is
therefore the dimensionality of the NumPy array.

NOTE

If you increase the dimensionality of an array (for example, you move from
2D to 3D arrays), the new axis becomes axis 0, and the i-th axis of the low-
dimensional array becomes the (i + 1)-th axis of the high-dimensional array.

Listing 3-9 gives the shape attributes of the same arrays
from Listing 3-8.

import numpy as np

a = np.array([1, 2, 3, 4])
print(a)
"""
[1 2 3 4]
"""
print(a.shape)
(4,)

b = np.array([[2, 1, 2], [3, 2, 3], [4, 3, 4]])
print(b)
"""
[[2 1 2]
 [3 2 3]
 [4 3 4]]
"""
print(b.shape)
(3, 3)

c = np.array([[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
 [[1, 2, 4], [2, 3, 5], [3, 4, 6]]])
print(c)
"""
[[[1 2 3]
 [2 3 4]
 [3 4 5]]

 [[1 2 4]
 [2 3 5]
 [3 4 6]]]
"""
print(c.shape)
(2, 3, 3)

Listing 3-9: The shape property of 1D, 2D, and 3D NumPy arrays

Here, you can see that the shape attributes contain much
more information than the ndim attributes. Every shape attribute
is a tuple with the number of elements along each axis:

Array a is one-dimensional, so the shape tuple has only a single element
that represents the number of columns (four elements).
Array b is two-dimensional, so the shape tuple has two elements that
enumerate the number of rows and columns.
Array c is three-dimensional, so the shape tuple has three elements—one
for each axis. Axis 0 has two elements (each element is a two-
dimensional array), axis 1 has three elements (each is a one-dimensional
array), and axis 2 has three elements (each is an integer value).

Now that you understand the shape attribute, it’ll be easier to
grasp the general idea of broadcasting: bringing two arrays
into the same shape by rearranging the data. Let’s see how
broadcasting works. Broadcasting automatically fixes element-
wise operations of NumPy arrays with different shapes. For
example, the multiplication operator * usually performs
element-wise multiplication when applied to NumPy arrays.
But what happens if the left and right data don’t match (say,
the left operator is a NumPy array, while the right is a float
value)? In this case, rather than throwing an error, NumPy
automatically creates a new array from the right-side data. The
new array has the same size and dimensionality as the array on
the left and contains the same float values.

Broadcasting, therefore, is the act of converting a low-
dimensional array into a higher-dimensional array to perform
element-wise operations.

Homogenous Values
NumPy arrays are homogeneous, meaning all values have the
same type. Here is a non-exclusive list of possible array data
types:

bool The Boolean data type in Python (1 byte)

int The integer data type in Python (default size: 4 or 8
bytes)

float The float data type in Python (default size: 8 bytes)

complex The complex data type in Python (default size: 16
bytes)

np.int8 An integer data type (1 byte)

np.int16 An integer data type (2 bytes)

np.int32 An integer data type (4 bytes)

np.int64 An integer data type (8 bytes)

np.float16 A float data type (2 bytes)

np.float32 A float data type (4 bytes)

np.float64 A float data type (8 bytes)

Listing 3-10 shows how to create NumPy arrays with
different types.

import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int16)
print(a) # [1 2 3 4]
print(a.dtype) # int16

b = np.array([1, 2, 3, 4], dtype=np.float64)
print(b) # [1. 2. 3. 4.]
print(b.dtype) # float64

Listing 3-10: NumPy arrays with different types

This code has two arrays, a and b. The first array a is of data
type np.int16. The numbers are of type integer (there is no “dot”
after the number). Specifically, when printing out the dtype

property of array a, you get the result int16.

The second array b is of data type float64. So even if you
create the array based on a list of integers, NumPy will convert
the array type to np.float64.

There are two important takeaways here: NumPy gives you
control over the data type, and the data type of a NumPy array
is homogeneous.

The Code
You have data for a variety of professions, and you want to
increase the salaries of just the data scientists by 10 percent
every other year. Listing 3-11 presents the code.

Dependencies
import numpy as np

Data: yearly salary in ($1000) [2025, 2026, 2027]
dataScientist = [130, 132, 137]
productManager = [127, 140, 145]
designer = [118, 118, 127]
softwareEngineer = [129, 131, 137]

employees = np.array([dataScientist,
 productManager,
 designer,
 softwareEngineer])

One-liner
employees[0,::2] = employees[0,::2] * 1.1

Result
print(employees)

Listing 3-11: One-liner solution using slicing and slice assignments

Take a minute and think about the output of this code
snippet. What would you expect to change? What’s the data
type of the resulting array? What is the output of this code?

How It Works
The code snippet places you in the year 2024. First, you create
a NumPy array with each row holding the expected yearly
salaries of one professional (data scientist, product manager,
designer, or software engineer). Each column gives the
respective future years’ salaries in 2025, 2026, and 2027. The
resulting NumPy array has four rows and three columns.

You have funds available to reinforce the most important
professionals in the company. You believe in the future of data
science, so you decide to reward the hidden heroes of your
company: the data scientists. You need to update the NumPy
array so that only the data scientists’ salaries increase by 10
percent every other year (non-cumulatively), starting from the
year 2025.

You develop the following beautiful one-liner:

employees[0,::2] = employees[0,::2] * 1.1

It looks simple and clean, and provides the following
output:

[[143 132 150]
 [127 140 145]
 [118 118 127]
 [129 131 137]]

Though simple, your one-liner has three interesting and
advanced concepts at play.

Slicing

First, you use the concept of slices and slice assignment. In the
example, you use slicing to get every other value of the first
row from the NumPy array employees. Then, you perform some
modifications and update every other value of the first row by
using slice assignment. Slice assignment uses the same syntax
as slicing, with one crucial difference: you select the slice on
the left of the assignment. These elements will be replaced by
the elements specified on the right of the assignment
operation. In the code snippet, you replace the content of the
first row in the NumPy array with the updated salary data.

Broadcasting
Second, you use broadcasting, which automatically fixes
element-wise operations of NumPy arrays with different
shapes. In the one-liner, the left operator is a NumPy array,
while the right is a float value. Again, NumPy automatically
creates a new array, making it the same size and
dimensionality as the array on the left and filling it,
conceptually, with copies of the float value. In reality, NumPy
performs a computation that looks more like the following:

np.array([130 137]) * np.array([1.1, 1.1])

Array Types
Third, you may have realized that the resulting data type is not
float but integer, even if you are performing floating-point
arithmetic. When you create the array, NumPy realizes it
contains only integer values, and so assumes it to be an integer
array. Any operation you perform on the integer array won’t
change the data type, and NumPy will round down to integer
values. Again, you can access the array’s type by using the
dtype property:

print(employees.dtype)
int32
employees[0,::2] = employees[0,::2] * 1.1
print(employees.dtype)
int32

In summary, you’ve learned about slicing, slice
assignments, broadcasting, and NumPy array types—quite an
accomplishment in a one-liner code snippet. Let’s build upon

that by solving a small data science problem with real-world
impact: detecting outliers in pollution measurements of
various cities.

CONDITIONAL ARRAY SEARCH,
FILTERING, AND
BROADCASTING TO DETECT
OUTLIERS
In this one-liner, you’ll explore air-quality data of cities.
Specifically, given a two-dimensional NumPy array with
pollution measurements (columns) for multiple cities (rows),
you’ll find the cities that have above-average pollution
measurements. The skills you’ll acquire by reading this section
are important in finding outliers in data sets.

The Basics
The Air Quality Index (AQI) measures the danger of adverse
health effects and is commonly used to compare differences in
cities’ air quality. In this one-liner, you’re going to look at the
AQI of four cities: Hong Kong, New York, Berlin, and
Montreal.

The one-liner finds above-average polluted cities, defined
as cities that have a peak AQI value that is above the overall
average among all the measurements of all cities.

An important element of our solution will be to find
elements in a NumPy array that meet a certain condition. This
is a common problem in data science you’ll use very often.

So, let’s explore how to find array elements that meet a
specific condition. NumPy offers the function nonzero() that
finds indices of elements in an array that are, well, not equal to
zero. Listing 3-12 gives an example.

import numpy as np

X = np.array([[1, 0, 0],
 [0, 2, 2],
 [3, 0, 0]])

print(np.nonzero(X))

Listing 3-12: The nonzero function

The result is a tuple of two NumPy arrays:

(array([0, 1, 1, 2], dtype=int64), array([0, 1, 2, 0], dtype=int64)).

The first array gives the row indices, and the second gives
the column indices of the nonzero elements. There are four
nonzero elements in the two-dimensional array: 1, 2, 2, and 3,
found at positions X[0,0], X[1,1], X[1,2], and X[2,0] in the original
array.

Now, how can you use nonzero() to find elements that meet a
certain condition in your array? You’ll use another great
NumPy feature: Boolean array operations with broadcasting
(see Listing 3-13)!

import numpy as np

X = np.array([[1, 0, 0],
 [0, 2, 2],
 [3, 0, 0]])

print(X == 2)
"""
[[False False False]
 [False True True]
 [False False False]]
"""

Listing 3-13: Broadcasting and element-wise Boolean operators in NumPy

Broadcasting occurs as the integer value 2 is copied
(conceptually) into a new array with the same shape as the
array. NumPy then performs an element-wise comparison of
each integer against the value 2 and returns the resulting
Boolean array.

In our main code, you’ll combine the nonzero() and Boolean
array operation features to find elements that meet a certain
condition.

The Code
In Listing 3-14, you’re finding cities with above-average
pollution peaks from a set of data.

Dependencies
import numpy as np

Data: air quality index AQI data (row = city)
X = np.array(
 [[42, 40, 41, 43, 44, 43], # Hong Kong
 [30, 31, 29, 29, 29, 30], # New York
 [8, 13, 31, 11, 11, 9], # Berlin
 [11, 11, 12, 13, 11, 12]]) # Montreal

cities = np.array(["Hong Kong", "New York", "Berlin", "Montreal"])

One-liner
polluted = set(cities[np.nonzero(X > np.average(X))[0]])

Result
print(polluted)

Listing 3-14: One-liner solution using broadcasting, Boolean operators, and
selective indexing

See if you can determine what the output of this code
would be.

How It Works
The data array X contains four rows (one row for each city)
and six columns (one column for each measurement unit—in
this case, days). The string array cities contains the four names
of the cities in the order they occur in the data array.

Here is the one-liner that finds the cities with above-
average observed AQI values:

One-liner
polluted = set(cities[np.nonzero(X > np.average(X))[0]])

You first need to understand the parts before you can
understand the whole. To better understand the one-liner, let’s
deconstruct it by starting from within. At the heart of the one-
liner is the Boolean array operation (see Listing 3-15).

print(X > np.average(X))
"""
[[True True True True True True]
 [True True True True True True]
 [False False True False False False]
 [False False False False False False]]
"""

Listing 3-15: Boolean array operation using broadcasting

You use a Boolean expression to bring both operands to the
same shape with broadcasting. You use the function np.average()

to compute the average AQI value of all NumPy array
elements. The Boolean expression then performs an element-
wise comparison to come up with a Boolean array that
contains True if the respective measurement observed is an
above-average AQI value.

By generating this Boolean array, you know precisely
which elements satisfy the condition of being above-average
and which elements don’t.

Recall that Python’s True value is represented by the integer
1, and False is represented by 0. In fact, the True and False objects
are of type bool, which is a subclass of int. Thus, every Boolean
value is also an integer value. With this, you can use the
function nonzero() to find all row and column indices that meet
the condition, like so:

print(np.nonzero(X > np.average(X)))
"""
(array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2], dtype=int64),
array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 2], dtype=int64))
"""

You have two tuples, the first giving the row indices of
nonzero elements, and the second giving their respective
column indices.

We’re looking only for the names of the cities with above-
average AQI values, and nothing else, so you need just the row
indices. You can use these row indices to extract the string
names from our string array by using advanced indexing, an
indexing technique that allows you to define a sequence of
array indices without requiring it to be a continuous slice. This
way, you can access arbitrary elements from a given NumPy
array by specifying either a sequence of integers (the indices to
be selected) or a sequence of Booleans (to select the specific
indices where the corresponding Boolean value is True):

print(cities[np.nonzero(X > np.average(X))[0]])
"""
['Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong'

 'New York' 'New York' 'New York' 'New York' 'New York' 'New York'
 'Berlin']
"""

You’ll notice many duplicates in the resulting sequence of
strings, because Hong Kong and New York have multiple
above-average AQI measurements.

Now, there is only one thing left to do: remove duplicates.
You’ll do this by converting the sequence to a Python set,
which is by default duplicate-free, giving a succinct summary
of all city names with pollution that exceeded the average AQI
values.

EXERCISE 3-1

Go back to the taxation example in “Basic Two-
Dimensional Array Arithmetic” on page 42 and pull the
name of the person with the highest salary from the matrix
by using this idea of selective Boolean indexing. Problem
recap: How do we find the person with maximum after-tax
income in a group of people, given their yearly salary and
tax rates?

In summary, you learned about using Boolean expressions
on NumPy arrays (using broadcasting again) and the nonzero()

function to find rows or columns that satisfy certain
conditions. After saving the environment in this one-liner, let’s
move on and analyze influencers in social media.

BOOLEAN INDEXING TO FILTER
TWO-DIMENSIONAL ARRAYS
Here you’ll strengthen your knowledge of array indexing and
broadcasting by pulling Instagram users with more than 100
million followers from a small data set. In particular, given a
two-dimensional array of influencers (rows), with a first
column that defines the influencer’s name as a string and a
second column that defines the influencer’s follower count,
you’ll find all influencer names with more than 100 million
followers!

The Basics
NumPy arrays enrich the basic list data type with additional
functionality such as multidimensional slicing and
multidimensional indexing. Have a look at the code snippet in
Listing 3-16.

import numpy as np

a = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

indices = np.array([[False, False, True],
 [False, False, False],
 [True, True, False]])

print(a[indices])
[3 7 8]

Listing 3-16: Selective (Boolean) indexing in NumPy

You create two arrays: a contains two-dimensional
numerical data (think of it as the data array), and indices

contains Boolean values (think of it as the indexing array). A
great feature of NumPy is that you can use the Boolean array
for fine-grained access to the data array. In plain English, you
create a new array containing only those elements of the data
array a for which the indexing array indices contains True values
at the respective array positions. For example, if indices[i,j]==True,
the new array contains the value a[i,j]. Similarly, if
indices[i,j]==False, the new array does not contain the value a[i,j].
Thus, the resulting array contains the three values 3, 7, and 8.

In the following one-liner, you are going to use this feature
for a toy analysis of a social network.

The Code
In Listing 3-17, you’ll find the names of the Instagram
superstars with more than 100 million followers!

Dependencies
import numpy as np

Data: popular Instagram accounts (millions followers)

inst = np.array([[232, "@instagram"],
 [133, "@selenagomez"],
 [59, "@victoriassecret"],
 [120, "@cristiano"],
 [111, "@beyonce"],
 [76, "@nike"]])

One-liner
superstars = inst[inst[:,0].astype(float) > 100, 1]

Results
print(superstars)

Listing 3-17: One-liner solution using slicing, array types, and Boolean operators

As usual, see if you can compute the result of this one-liner
in your head before reading through the explanation.

How It Works
The data consists of a two-dimensional array, inst, and each
row represents an Instagram influencer. The first column states
their number of followers (in millions), and the second column
states their Instagram name. From this data, you want to pull
the names of the Instagram influencers with more than 100
million followers.

There are many ways to solve this in one line. The
following approach is the easiest one:

One-liner
superstars = inst[inst[:,0].astype(float) > 100, 1]

Let’s deconstruct this one-liner step by step. The inner
expression calculates a Boolean value that says whether each
influencer has more than 100 million followers:

print(inst[:,0].astype(float) > 100)
[True True False True True False]

The first column contains the number of followers, so you
use slicing to access this data; inst[:,0] returns all rows in just the
first column. However, because the data array contains mixed
data types (integers and strings), NumPy automatically assigns
a non-numerical data type to the array. The reason is that a
numerical data type would not be able to capture the string

data, so NumPy converts the data to a type that can represent
all data in the array (string and numerical). You need to
perform numerical comparisons on the first column of the data
array to check whether each value is larger than 100, so you
first convert the resulting array into a float type by using
.astype(float).

Next, you check whether the values in the float type
NumPy array are each larger than the integer value 100. Here,
NumPy again uses broadcasting to automatically bring the two
operands into the same shape so it can do the comparison
element-wise. The result is an array of Boolean values that
shows that four influencers have more than 100 million
followers.

You now take this Boolean array (also called a mask index
array) to select the influencers with more than 100 million
followers (the rows) by using Boolean indexing:

inst[inst[:,0].astype(float) > 100, 1]

Because you are interested only in the names of these
influencers, you select the second column as the final result
and store it in the superstars variable.

The influencers from our data set with more than 100
million Instagram followers are as follows:

['@instagram' '@selenagomez' '@cristiano' '@beyonce']

In summary, you’ve applied NumPy concepts such as
slicing, broadcasting, Boolean indexing, and data type
conversion to a small data science problem in social media
analysis. Next, you’ll learn about a new application scenario in
the Internet of Things.

BROADCASTING, SLICE
ASSIGNMENT, AND RESHAPING
TO CLEAN EVERY I-TH ARRAY
ELEMENT
Real-world data is seldom clean and may contain errors or
missing values for a huge variety of reasons, including

damaged or faulty sensors. In this section, you’ll learn about
how to handle small cleaning tasks to eliminate erroneous data
points.

The Basics
Say you’ve installed a temperature sensor in your garden to
measure temperature data over many weeks. Every Sunday,
you bring the temperature sensor in from the garden to digitize
the sensor values. You’re aware that the Sunday sensor values
are therefore faulty because for part of the day they measure
the temperature in your home instead of outside.

You want to clean your data by replacing every Sunday
sensor value with the average sensor value of the previous
seven days (you include the Sunday value in the average
computation because it’s not entirely faulty). Before diving
into the code, let’s explore the most important concepts you
need as a basic understanding.

Slice Assignment
With NumPy’s slice assignment feature (see “Working with
NumPy Arrays: Slicing, Broadcasting, and Array Types” on
page 46), you specify the values you want to replace on the
left of the equation, and the values to replace them with on the
right-hand side of the equation. Listing 3-18 provides an
example in case you need a small recap.

import numpy as np

a = np.array([4] * 16)
print(a)
[4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]

a[1::] = [42] * 15
print(a)
[4 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42]

Listing 3-18: Simple Python list creation and slice assignment

The code snippet creates an array containing the value 4

sixteen times. You use slice assignment to replace the last
fifteen values with the value 42. Recall that the notation
a[start:stop:step] selects the sequence starting at index start, ending

at index stop (exclusive), and considering only every step-th
sequence element. If no arguments are specified, NumPy
assumes default values. The notation a[1::] replaces all
sequence elements but the first one. Listing 3-19 shows how to
use slice assignment in combination with a feature you’ve
already seen multiple times.

import numpy as np

a = np.array([4] * 16)

a[1:8:2] = 16
print(a)
[4 16 4 16 4 16 4 16 4 4 4 4 4 4 4 4]

Listing 3-19: Slice assignment in NumPy

Here you replace every other value between index 1 and 8
(exclusive). You can see that you need to specify only a single
value, 16, to replace the selected elements, because of—you
guessed it—broadcasting! The right side of the equation is
automatically transformed into a NumPy array that is the same
shape as the left array.

Reshaping
Before diving into the one-liner, you need to learn about an
important NumPy function: the x.reshape((a,b)) function that
transforms the NumPy array x into a new NumPy array with a

rows and b columns (with shape (a,b)). Here’s an example:

a = np.array([1, 2, 3, 4, 5, 6])
print(a.reshape((2, 3)))
'''
[[1 2 3]
 [4 5 6]]
'''

If the number of columns is unambiguous, you can also let
NumPy do the work of figuring out the number of columns
automatically. Let’s say you want to reshape an array with six
elements into a two-dimensional array with two rows. NumPy
can now figure out that it needs three columns to match the six
elements in the original array. Here’s an example:

a = np.array([1, 2, 3, 4, 5, 6])
print(a.reshape((2, -1)))
'''
[[1 2 3]
 [4 5 6]]
'''

The shape value -1 for the column argument indicates that
NumPy should replace it with the correct number of columns
(which is three in this case).

The Axis Argument

Finally, let’s consider the following code snippet that
introduces the axis argument. Here is an array solar_x that
contains daily stock prices of Elon Musk’s SolarX company.
We want to calculate the average stock prices in the mornings,
middays, and evenings. How can we achieve this?

import numpy as np

daily stock prices
[morning, midday, evening]
solar_x = np.array(
 [[1, 2, 3], # today
 [2, 2, 5]]) # yesterday

midday - weighted average
print(np.average(solar_x, axis=0))
[1.5 2. 4.]

The array solar_x consists of stock prices of the SolarX
company. It has two rows (one for each day) and three
columns (one for each stock price). Say we want to calculate
the average stock price in the mornings, the middays, and the
evenings. Roughly speaking, we want to collapse together all
values in each column by averaging them. In other words, we
calculate the average along axis 0. This is exactly what the
keyword argument axis=0 is doing.

The Code
This is everything you need to know to solve the following
problem (Listing 3-20): given an array of temperature values,
replace every seventh temperature value with the average of

the last seven days (including the seventh day’s temperature
value).

Dependencies
import numpy as np

Sensor data (Mo, Tu, We, Th, Fr, Sa, Su)
tmp = np.array([1, 2, 3, 4, 3, 4, 4,
 5, 3, 3, 4, 3, 4, 6,
 6, 5, 5, 5, 4, 5, 5])

One-liner
tmp[6::7] = np.average(tmp.reshape((-1,7)), axis=1)

Result
print(tmp)

Listing 3-20: One-liner solution using the average and reshape operators, slice
assignments, and the axis argument

Can you calculate the output of this code snippet?

How It Works
The data arrives in the shape of a one-dimensional array of
sensor values.

First, you create the data array tmp with a one-dimensional
sequence of sensor values. In every line, you define all seven
sensor values for seven days of the week.

Second, you use slice assignment to replace all the Sunday
values of this array. Because Sunday is the seventh day, you
use the expression tmp[6::7] to select the respective Sunday
values, starting from the seventh element in the original array
tmp.

Third, we reshape the one-dimensional sensor array into a
two-dimensional array with seven columns and three rows,
which makes it easier to calculate the weekly average
temperature value to replace the Sunday data. Because of the
reshaping, you can now merge all seven values of each row
into a single average value. To reshape the array, you pass the
tuple values -1 and 7 to tmp.reshape(), which tells NumPy that the
number of rows (axis 0) should be selected automatically.
Roughly speaking, you specify seven columns, and NumPy

creates an array with however many rows are needed to satisfy
our condition of seven columns. In our case, it results in the
following array after reshaping:

print(tmp.reshape((-1,7)))
"""
[[1 2 3 4 3 4 4]
 [5 3 3 4 3 4 6]
 [6 5 5 5 4 5 5]]
"""

You have one row per week and one column per weekday.
Now you calculate the seven-day average by collapsing

every row into a single average value by using the np.average()

function with the axis argument: axis=1 tells NumPy to collapse
the second axis into a single average value. Note that the
Sunday value is included in the average computation (see the
problem formulation at the beginning of this section). This is
the result of the right-hand side of the equation:

print(np.average(tmp.reshape((-1,7)), axis=1))
[3. 4. 5.]

The goal of the one-liner is to replace the three Sunday
temperature values. All other values should stay constant.
Let’s see whether you achieved this objective. After replacing
all Sunday sensor values, you get the following final result of
the one-liner:

[1 2 3 4 3 4 3 5 3 3 4 3 4 4 6 5 5 5 4 5 5]

Note that you still have a one-dimensional NumPy array
with all temperature sensor values. But now you’ve replaced
the unrepresentative readings with more representative ones.

In summary, this one-liner is all about hammering down the
concepts of array shapes and reshaping, and how to use the axis

property for aggregator functions such as np.average(). While this
application was rather specific, it will be useful in a range of
situations. Next, you’ll learn about a super general concept:
sorting in NumPy.

WHEN TO USE THE SORT()
FUNCTION AND WHEN TO USE
THE ARGSORT() FUNCTION IN
NUMPY
Sorting is useful, even essential, in numerous situations. Say
you search your bookshelf for Python One-Liners. It would be
much easier to find the book if your bookshelf were
alphabetically sorted by title.

This one-liner solution will show you how to use sorting in
a single line of Python by using NumPy.

The Basics
Sorting is at the heart of more advanced applications such as
commercial computing, process scheduling in operating
systems (priority queues), and search algorithms. Fortunately,
NumPy provides various sorting algorithms. The default is the
popular Quicksort algorithm. In Chapter 6, you’ll learn how to
implement the Quicksort algorithm yourself. However, for this
one-liner, you’ll take a higher-level approach, viewing the
sorting function as a black box into which you’ll put a NumPy
array to get out a sorted NumPy array.

Figure 3-1 shows the algorithm transforming an unsorted
array into a sorted array. This is the purpose of NumPy’s sort()

function.

Figure 3-1: The difference between the sort() and argsort() functions

But often, it’s also important to get the array of indices that
would transform the unsorted array into a sorted array. For

example, the unsorted array element 1 has index 7. Because the
array element 1 is the first element of the sorted array, its
index 7 is the first element of the sorted indices. This is what
NumPy’s argsort() function does: it creates a new array of the
original index values after sorting (see the example in Figure
3-1). Roughly speaking, these indices would sort the elements
in the original array. By using this array, you can reconstruct
both the sorted and the original array.

Listing 3-21 demonstrates the use of sort() and argsort() in
NumPy.

import numpy as np

a = np.array([10, 6, 8, 2, 5, 4, 9, 1])

print(np.sort(a))
[1 2 4 5 6 8 9 10]

print(np.argsort(a))
[7 3 5 4 1 2 6 0]

Listing 3-21: The sort() and argsort() functions in NumPy

You create an unsorted array a, sort it with np.sort(a), and get
the original indices in their new sorted order with np.argsort(a).
NumPy’s sort() function is different from Python’s sorted()

function in that it can sort multidimensional arrays too!

Figure 3-2 shows two ways of sorting a two-dimensional
array.

Figure 3-2: Sorting along an axis

The array has two axes: axis 0 (the rows) and axis 1 (the
columns). You can sort along axis 0, known as vertical sorting,

or along axis 1, known as horizontal sorting. In general, the
axis keyword defines the direction along which you perform the
NumPy operation. Listing 3-22 shows technically how to do
this.

import numpy as np

a = np.array([[1, 6, 2],
 [5, 1, 1],
 [8, 0, 1]])

print(np.sort(a, axis=0))
"""
[[1 0 1]
 [5 1 1]
 [8 6 2]]
"""

print(np.sort(a, axis=1))
"""
[[1 2 6]
 [1 1 5]
 [0 1 8]]
"""

Listing 3-22: Sorting along an axis

The optional axis argument helps you sort the NumPy array
along a fixed direction. First, you sort by columns, starting
with the smallest value. Then you sort by rows. This is the
main strength of NumPy’s sort() function compared to Python’s
built-in sorted() function.

The Code
This one-liner will find the names of the top three students
with the highest SAT scores. Note that you’ll ask for the
student names and not the sorted SAT scores. Have a look at
the data and see if you can find the one-liner solution yourself.
When you’ve had a go at that, take a look at Listing 3-23.

Dependencies
import numpy as np

Data: SAT scores for different students
sat_scores = np.array([1100, 1256, 1543, 1043, 989, 1412, 1343])
students = np.array(["John", "Bob", "Alice", "Joe", "Jane", "Frank", "Carl"])

One-liner
top_3 = students[np.argsort(sat_scores)][:-4:-1]

Result
print(top_3)

Listing 3-23: One-liner solution using the argsort() function and slicing with negative
step size

As usual, try to figure out the output.

How It Works
Our initial data consists of the SAT scores of students as a one-
dimensional data array, and another array with the
corresponding names of the students. For example, John
achieved a solid SAT score of 1100, while Frank achieved an
excellent SAT score of 1412.

The task is to find the names of the three most successful
students. You’ll achieve this—not by simply sorting the SAT
scores—but by running the argsort() function to get an array of
the original indices in their new sorted positions.

Here is the output of the argsort() function on the SAT scores:

print(np.argsort(sat_scores))
[4 3 0 1 6 5 2]

You need to retain the indexes because you need to be able
to find the name of the student from the students array, which
corresponds only to the original positions. Index 4 is at the
first position of the output because Jane has the lowest SAT
score, with 989 points. Note that both sort() and argsort() sort in
an ascending manner, from lowest to highest values.

Now that you have sorted indices, you need to get the
names of the respective students by indexing the student array:

print(students[np.argsort(sat_scores)])
['Jane' 'Joe' 'John' 'Bob' 'Carl' 'Frank' 'Alice']

This is a useful feature of the NumPy library: you can
reorder a sequence by using advanced indexing. If you specify
a sequence of indices, NumPy triggers advanced indexing and

returns a new NumPy array with reordered elements as
specified by your index sequence. For instance, the command
students[np.argsort(sat_scores)] evaluates to students[[4 3 0 1 6 5 2]] so
NumPy creates a new array as follows:

[students[4] students[3] students[0] students[1] students[6] students[5] students
[2]]

From this, you know that Jane has the lowest SAT score,
while Alice has the highest. The only thing left is to reverse
the list and extract the top three students by using simple
slicing:

One-liner
top_3 = students[np.argsort(sat_scores)][:-4:-1]

Result
print(top_3)
['Alice' 'Frank' 'Carl']

Alice, Frank, and Carl have the highest SAT scores of
1543, 1412, and 1343, respectively.

In summary, you’ve learned about the application of two
important NumPy functions: sort() and argsort(). Next, you’ll
improve your advanced understanding of NumPy indexing and
slicing by using Boolean indexing and lambda functions in a
practical data science problem.

HOW TO USE LAMBDA
FUNCTIONS AND BOOLEAN
INDEXING TO FILTER ARRAYS
Real-world data is noisy. As a data scientist, you get paid to
get rid of the noise, make the data accessible, and create
meaning. Filtering data is therefore vital for real-world data
science tasks. In this section, you’ll learn how to create a
minimal filter function in a single line of code.

The Basics
To create a function in one line, you’ll need to use lambda
functions. As you know from Chapter 2, lambda functions are

anonymous functions that you can define in a single line of
code:

lambda arguments : expression

You define a comma-separated list of arguments that serve
as inputs. The lambda function then evaluates the expression
and returns the result.

Let’s explore how to solve our problem by creating a filter
function using the lambda function definition.

The Code
Consider the following problem, depicted in Listing 3-24:
create a filter function that takes a list of books x and a
minimum rating y and returns a list of potential bestsellers that
have higher than minimum rating, y'>y.

Dependencies
import numpy as np

Data (row = [title, rating])
books = np.array([['Coffee Break NumPy', 4.6],
 ['Lord of the Rings', 5.0],
 ['Harry Potter', 4.3],
 ['Winnie-the-Pooh', 3.9],
 ['The Clown of God', 2.2],
 ['Coffee Break Python', 4.7]])

One-liner
predict_bestseller = lambda x, y : x[x[:,1].astype(float) > y]

Results
print(predict_bestseller(books, 3.9))

Listing 3-24: One-liner solution using lambda functions, type conversion, and
Boolean operators

Take a guess at the output of this code before moving on.

How It Works
The data consists of a two-dimensional NumPy array in which
each row holds the name of the book title and the average user

rating (a floating-point number between 0.0 and 5.0). There
are six books in the rated data set.

The goal is to create a filter function that takes as input the
book rating data set x and a threshold rating y, and returns the
books that have a higher rating than the threshold y. You set
the threshold to 3.9.

You achieve this by defining an anonymous lambda
function that returns the result of the following expression:

x[➊x[:,1] ➋.astype(float)➌> y]

The array x is assumed to have two columns as our book
rating array books. To access the potential bestsellers, you use
an advanced indexing scheme similar to the one in Listing 3-
17.

First, you carve out the second column ➊ that holds the
book ratings and convert it to a float array by using the
astype(float) method ➋ on the NumPy array x. This is necessary
because the initial array x consists of mixed data types (float
and strings).

Second, you create a Boolean array that holds the value True

if the book at the respective row index has a rating larger than
y ➌. Note that the float y is implicitly broadcasted to a new
NumPy array so that both operands of the Boolean operator >

have the same shape. At this point, you’ve created a Boolean
array indicating for each book whether it can be considered a
bestseller: x[:,1].astype(float)> y = [True True True False False True]. So,
the first three books and the last one are bestsellers.

Third, we use the Boolean array as an indexing array on the
original book rating array to carve out all the books that have
above-threshold ratings. More specifically, we use Boolean
indexing x[[True True True False False True]] to get a subarray of the
original array with only four books: the ones with True value.
This results in the following final output of this one-liner:

Results
print(predict_bestseller(books, 3.9))
"""
[['Coffee Break NumPy' '4.6']
 ['Lord of the Rings' '5.0']

 ['Harry Potter' '4.3']
 ['Coffee Break Python' '4.7']]
"""

In summary, you’ve learned how to filter data using only
Boolean indexing and lambda functions. Next, you’ll dive into
logical operators and learn a useful trick to write the logical
and operation concisely.

HOW TO CREATE ADVANCED
ARRAY FILTERS WITH
STATISTICS, MATH, AND LOGIC
This section shows you the most basic outlier detection
algorithm: if an observed value deviates from the mean by
more than the standard deviation, it is considered an outlier.
You’ll work through an example of analyzing website data to
determine the number of active users, the bounce rate, and the
average session duration in seconds. (The bounce rate is the
percentage of visitors who leave immediately after visiting
only one website. A high bounce rate is a bad signal: it might
indicate that a site is boring or irrelevant.) You’ll look at the
data and identify outliers.

The Basics
To solve the outlier detection problem, you’ll first study three
basic skills: understanding the mean and standard deviation,
finding the absolute value, and performing the logical and
operation.

Understanding Mean and Standard Deviation
First, you’ll slowly develop our definition of an outlier by
using basic statistics. You’ll make the basic assumption that all
observed data is normally distributed around a mean value.
For example, consider the following sequence of data values:

[8.78087409 10.95890859 8.90183201 8.42516116 9.26643393 12.52747974
 9.70413087 10.09101284 9.90002825 10.15149208 9.42468412 11.36732294
 9.5603904 9.80945055 10.15792838 10.13521324 11.0435137 10.06329581
--snip--
 10.74304416 10.47904781]

If you plot the histogram of this sequence, you’ll get the
result in Figure 3-3.

The sequence seems to resemble a normal distribution with
a mean value of 10 and a standard deviation of 1. The mean,
denoted with a μ symbol, is the average value of all sequence
values. The standard deviation, denoted with a σ symbol,
measures the variation of a data set around the mean value. By
definition, if the data is truly normally distributed, 68.2
percent of all sample values fall into the standard deviation
interval [ω = μ – σ,ω = μ + σ]. This provides a range for
outliers: anything that doesn’t fall within the range is
considered an outlier.

In the example, I generated the data from the normal
distribution μ=10 and σ=1, which results in the interval ω = μ
– 1 = 9 and ω = μ + 1 = 11. In the following, you simply
assume that any observed value that is outside the interval
marked by the standard deviation around the mean is an
outlier. For our data, this means that any value that doesn’t fall
into the interval [9,11] is an outlier.

1 2

1

2

Figure 3-3: Histogram of the sequence of data values

The simple code I used to generate the plot is shown in
Listing 3-25. Can you find the code lines that define the mean
and standard deviation?

import numpy as np
import matplotlib.pyplot as plt

sequence = np.random.normal(10.0, 1.0, 500)
print(sequence)

plt.xkcd()
plt.hist(sequence)
plt.annotate(r"$\omega_1=9$", (9, 70))
plt.annotate(r"$\omega_2=11$", (11, 70))
plt.annotate(r"$\mu=10$", (10, 90))
plt.savefig("plot.jpg")
plt.show()

Listing 3-25: Plotting the histogram by using the Matplotlib library

This code shows how to plot a histogram by using Python’s
Matplotlib library. However, this is not the focus of this
section; I want to highlight only how you can create the
preceding sequence of data values.

Simply import the NumPy library and use the module
np.random, which provides a function normal(mean, deviation, shape)

that creates a new NumPy array with values randomly drawn
from the normal distribution with a given mean and standard
deviation. This is where you set mean=10.0 and deviation=1.0 to
create the data in the sequence. In this case, setting shape=500

indicates that you’re interested in only a one-dimensional data
array with 500 data points. The remaining code imports the
special xkcd plot styling plt.xkcd(), plots the histogram based on
the sequence using plt.hist(sequence), styles the plot with
annotations, and outputs the final plot.

NOTE

The name of the xkcd plot is taken from the popular web comic page xkcd
(https://xkcd.com/).

Before diving into the one-liner, let’s quickly explore the
other two basic skills you’ll need to complete this task.

Finding the Absolute Value

Second, you need to turn negative values into positive, so you
can check whether each outlier deviates more than the
standard deviation from the mean. You are interested in only
the absolute deviation, not in whether it’s positive or negative.
This is known as taking the absolute value. The NumPy
function in Listing 3-26 creates a new NumPy array with the
absolute values of the original.

import numpy as np

a = np.array([1, -1, 2, -2])

print(a)
[1 -1 2 -2]

print(np.abs(a))
[1 1 2 2]

https://xkcd.com/

Listing 3-26: Calculating the absolute value in NumPy

The function np.abs() converts the negative values in a
NumPy array into their positive counterparts.

Performing the Logical And Operation

Third, the following NumPy function performs an element-
wise logical and operation to combine two Boolean arrays a

and b and give back an array that combines the individual
Boolean values using the logical and operation (see Listing 3-
27).

import numpy as np

a = np.array([True, True, True, False])
b = np.array([False, True, True, False])

print(np.logical_and(a, b))
[False True True False]

Listing 3-27: The logical and operation applied to NumPy arrays

You combine each element at index i of array a with
element i of array b by using np.logical_and(a, b). The result is an
array of Boolean values that are True if both operands a[i] and
b[i] are already True, and False otherwise. In this way, you can
combine multiple Boolean arrays into a single Boolean array
by using standard logical operations. One useful application of
this is to combine Boolean filter arrays as done in the
following one-liner.

Note that you can also multiply two Boolean arrays a and b

—and this is equivalent to the np.logical_and(a, b) operation.
Python represents a True value as an integer value 1 (or really
any integer value different from 0) and a False value as an
integer value 0. If you multiply anything by 0, you get 0, and
therefore False. That means you’ll receive a True result (an
integer value >1) only when all operands are already True.

With this information, you are now fully equipped to
understand the following one-liner code snippet.

The Code

This one-liner will find all outlier days for which the statistics
deviate more than the standard deviation from their mean
statistics.

Dependencies
import numpy as np

Website analytics data:
(row = day), (col = users, bounce, duration)
a = np.array([[815, 70, 115],
 [767, 80, 50],
 [912, 74, 77],
 [554, 88, 70],
 [1008, 65, 128]])
mean, stdev = np.mean(a, axis=0), np.std(a, axis=0)
[811.2 76.4 88.], [152.97764543 6.85857128 29.04479299]

One-liner
outliers = ((np.abs(a[:,0] - mean[0]) > stdev[0])
 * (np.abs(a[:,1] - mean[1]) > stdev[1])
 * (np.abs(a[:,2] - mean[2]) > stdev[2]))

Result
print(a[outliers])

Listing 3-28: One-liner solution using the mean function, standard deviation, and
Boolean operators with broadcasting

Can you guess the output of this code snippet?

How It Works
The data set consists of rows that represent different days, and
three columns that represent daily active users, bounce rate,
and average session duration in seconds, respectively.

For each column, you calculate the mean value and the
standard deviation. For example, the mean value of the Daily
Active Users column is 811.2, and its standard deviation is
152.97. Note that you use the axis argument in the same way as
in “Broadcasting, Slice Assignment, and Reshaping to Clean
Every i-th Array Element” on page 60.

Our goal is to detect websites that are outliers in all three
columns. For the Daily Active Users column, every observed

value that is smaller than 811.2 – 152.97 = 658.23 or larger
than 811.2 + 152.23 = 963.43 is considered an outlier.

However, you consider a whole day to be an outlier only if
all three observed columns are outliers. You achieve this by
combining the three Boolean arrays using the logical and
operator. The result is only a single row for which all three
columns are outliers:

[[1008 65 128]]

In summary, you have learned about the NumPy’s logical
and operator and how to use it to perform basic outlier
detection, while making use of simple statistical measures
from the NumPy library. Next, you’ll learn about a secret
ingredient of Amazon’s success: coming up with relevant
recommendations of products to buy.

SIMPLE ASSOCIATION
ANALYSIS: PEOPLE WHO
BOUGHT X ALSO BOUGHT Y
Have you ever bought a product recommended by Amazon’s
algorithms? The recommendation algorithms are often based
on a technique called association analysis. In this section,
you’ll learn about the basic idea of association analysis and
how to dip your toe into the deep ocean of recommender
systems.

The Basics
Association analysis is based on historical customer data, such
as the “people who bought x also bought y” data on Amazon.
This association of different products is a powerful marketing
concept because it not only ties together related but
complementary products, but also provides you with an
element of social proof—knowing that other people have
bought a product increases the psychological safety for you to
buy the product yourself. This is an excellent tool for
marketers.

Let’s have a look at a practical example in Figure 3-4.

Figure 3-4: Product-Customer matrix—which customer has bought which product?

The four customers Alice, Bob, Louis, and Larissa bought
different combinations of the products: book, game, soccer
ball, laptop, headphones. Imagine that you know every product
bought by all four persons, but not whether Louis has bought
the laptop. What do you think: is Louis likely to buy the
laptop?

Association analysis (or collaborative filtering) provides an
answer to this problem. The underlying assumption is that if
two people performed similar actions in the past (for example,
bought a similar product), they are more likely to keep
performing similar actions in the future. Louis has a similar
buying behavior to Alice, and Alice bought the laptop. Thus,
the recommender system predicts that Louis is likely to buy
the laptop too.

The following code snippet simplifies this problem.

The Code
Consider the following problem: what fraction of customers
bought two ebooks together? Based on this data, the
recommender system can offer customers a book “bundle” to
buy if it sees that they originally intended to buy a single book.
See Listing 3-29.

Dependencies
import numpy as np

Data: row is customer shopping basket
row = [course 1, course 2, ebook 1, ebook 2]
value 1 indicates that an item was bought.
basket = np.array([[0, 1, 1, 0],
 [0, 0, 0, 1],
 [1, 1, 0, 0],
 [0, 1, 1, 1],
 [1, 1, 1, 0],
 [0, 1, 1, 0],
 [1, 1, 0, 1],
 [1, 1, 1, 1]])

One-liner
copurchases = np.sum(np.all(basket[:,2:], axis = 1)) / basket.shape[0]

Result
print(copurchases)

Listing 3-29: One-liner solution using slicing, the axis argument, the shape
property, and basic array arithmetic with broadcasting

What is the output of this code snippet?

How It Works
The basket data array contains one row per customer and one
column per product. The first two products with column
indices 0 and 1 are online courses, and the latter two with
column indices 2 and 3 are ebooks. The value 1 in cell (i,j)

indicates that customer i has bought the product j.

Our task is to find the fraction of customers who bought
both ebooks, so we’re interested in only columns 2 and 3.
First, then, you carve out the relevant columns from the
original array to get the following subarray:

print(basket[:,2:])
"""
[[1 0]
 [0 1]
 [0 0]
 [1 1]
 [1 0]
 [1 0]
 [0 1]
 [1 1]]
"""

This gives you an array of only the third and the fourth
columns.

The NumPy all() function checks whether all values in a
NumPy array evaluate to True. If this is the case, it returns True.
Otherwise, it returns False. When used with the axis argument,
the function performs this operation along the specified axis.

NOTE

You’ll notice that the axis argument is a recurring element for many NumPy
functions, so it’s worth taking your time to understand the axis argument
properly. The specified axis is collapsed into a single value based on the
respective aggregator function (all() in this case).

Thus, the result of applying the all() function on the
subarray is the following:

print(np.all(basket[:,2:], axis = 1))
[False False False True False False False True]

In plain English: only the fourth and the last customers
have bought both ebooks.

Because you are interested in the fraction of customers, you
sum over this Boolean array, giving you a total of 2, and divide
by the number of customers, 8. The result is 0.25, the fraction
of customers who bought both ebooks.

In summary, you’ve strengthened your understanding of
NumPy fundamentals such as the shape attribute and the axis

argument, as well as how to combine them to analyze
copurchases of different products. Next, you’ll stay with this
example and learn about more advanced array aggregation
techniques using a combination of NumPy’s and Python’s
special capabilities—that is, broadcasting and list
comprehension.

INTERMEDIATE ASSOCIATION
ANALYSIS TO FIND BESTSELLER
BUNDLES
Let’s explore the topic of association analysis in more detail.

The Basics
Consider the example of the previous section: your customers
purchase individual products from a corpus of four different
products. Your company wants to upsell related products (offer
a customer an additional, often related, product to buy). For
each combination of products, you need to calculate how often
they’ve been purchased by the same customer, and find the
two products purchased together most often.

For this problem, you’ve already learned everything you
need to know, so let’s dive right in!

The Code
This one-liner aims to find the two items that were purchased
most often together; see Listing 3-30.

Dependencies
import numpy as np

Data: row is customer shopping basket
row = [course 1, course 2, ebook 1, ebook 2]
value 1 indicates that an item was bought.
basket = np.array([[0, 1, 1, 0],
 [0, 0, 0, 1],
 [1, 1, 0, 0],
 [0, 1, 1, 1],
 [1, 1, 1, 0],
 [0, 1, 1, 0],
 [1, 1, 0, 1],
 [1, 1, 1, 1]])

One-liner (broken down in two lines;)
copurchases = [(i,j,np.sum(basket[:,i] + basket[:,j] == 2))
 for i in range(4) for j in range(i+1,4)]

Result
print(max(copurchases, key=lambda x:x[2]))

Listing 3-30: One-liner solution using a lambda function as the max() function’s key

parameter, list comprehension, and Boolean operators with broadcasting

What’s the output of this one-liner solution?

How It Works
The data array consists of historical purchasing data with one
row per customer and one column per product. Our goal is to

get a list of tuples: each tuple describes a combination of
products and how often that combination was bought together.
For each list element, you want the first two tuple values to be
column indices (the combination of two products) and the
third tuple value to be the number of times these products were
bought together. For example, the tuple (0,1,4) indicates that
customers who bought product 0 also bought product 1 four
times.

So how can you achieve this? Let’s break down the one-
liner, reformatted a little here as it’s too wide to fit on a single
line:

One-liner (broken down in two lines;)
copurchases = [(i,j,np.sum(basket[:,i] + basket[:,j] == 2))
 for i in range(4) for j in range(i+1,4)]

You can see in the outer format [(..., ..., ...) for ... in ... for ... in ...]

that you create a list of tuples by using list comprehension (see
Chapter 2). You’re interested in every unique combination of
column indices of an array with four columns. Here’s the
result of just the outer part of this one-liner:

print([(i,j) for i in range(4) for j in range(i+1,4)])
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

So, there are six tuples in the list, each a unique
combination of column indices.

Knowing this, you can now dive into the third tuple
element: the number of times these two products i and j have
been bought together:

np.sum(basket[:,i] + basket[:,j] == 2)

You use slicing to extract both columns i and j from the
original NumPy array. Then you add them together element-
wise. For the resulting array, you check element-wise whether
the sum is equal to 2, which would indicate that there was a 1
in both columns and so both products have been purchased
together. The result is a Boolean array with True values if two
products have been purchased together by a single customer.

You store all resulting tuples in the list copurchases. Here are
the elements of the list:

print(copurchases)
[(0, 1, 4), (0, 2, 2), (0, 3, 2), (1, 2, 5), (1, 3, 3), (2, 3, 2)]

Now there is one thing left: find the two products that have
been co-purchased most often:

Result
print(max(copurchases, key=lambda x:x[2]))

You use the max() function to find the maximum element in
the list. You define a key function that takes a tuple and returns
the third tuple value (number of copurchases), and then find
the max out of those values. The result of the one-liner is as
follows:

Result
print(max(copurchases, key=lambda x:x[2]))
(1, 2, 5)

The second and third products have been purchased
together five times. No other product combination reaches
copurchasing power this high. Hence, you can tell your boss to
upsell product 2 when selling product 1, and vice versa.

In summary, you’ve learned about various core features of
both Python and NumPy, such as broadcasting, list
comprehension, lambda functions, and the key function. Often,
the expressive power of your Python code emerges from the
combination of multiple language elements, functions, and
code tricks.

SUMMARY
In this chapter, you learned elementary NumPy basics such as
array, shape, axis, type, broadcasting, advanced indexing,
slicing, sorting, searching, aggregating, and statistics. You’ve
also improved your basic Python skills by practicing important
techniques such as list comprehension, logics, and lambda
functions. Last but not least, you’ve improved your ability to

read, understand, and write concise code quickly, while
mastering fundamental data science problems on the way.

Let’s keep this fast pace of studying various interesting
topics in the Python space. Next, you’ll dive into the exciting
topic of machine learning. You’ll learn about basic machine
learning algorithms and how to leverage their powerful
capabilities in a single line of code by using the popular scikit-
learn library. Every machine learning expert knows this library
very well. But fear not—your freshly acquired NumPy skills
will help you greatly in understanding the code snippets
covered next.

4
MACHINE LEARNING

Machine learning is found in almost every area of computer
science. Over the past few years, I’ve attended computer
science conferences in fields as diverse as distributed systems,
databases, and stream processing, and no matter where I go,
machine learning is already there. At some conferences, more
than half of the presented research ideas have relied on
machine learning methods.

As a computer scientist, you must know the fundamental
machine learning ideas and algorithms to round out your
overall skill set. This chapter provides an introduction to the
most important machine learning algorithms and methods, and
gives you 10 practical one-liners to apply these algorithms in
your own projects.

THE BASICS OF SUPERVISED
MACHINE LEARNING
The main aim of machine learning is to make accurate
predictions using existing data. Let’s say you want to write an
algorithm that predicts the value of a specific stock over the
next two days. To achieve this goal, you’ll need to train a
machine learning model. But what exactly is a model?

From the perspective of a machine learning user, the
machine learning model looks like a black box (Figure 4-1):

you put data in and get predictions out.

Figure 4-1: A machine learning model, shown as a black box

In this model, you call the input data features and denote
them using the variable x, which can be a numerical value or a
multidimensional vector of numerical values. Then the box
does its magic and processes your input data. After a bit of
time, you get prediction y back, which is the model’s predicted
output, given the input features. For regression problems, the
prediction consists of one or multiple numerical values—just
like the input features.

Supervised machine learning is divided into two separate
phases: the training phase and the inference phase.

Training Phase
During the training phase, you tell your model your desired
output y’ for a given input x. When the model outputs the
prediction y, you compare it to y’, and if they are not the same,
you update the model to generate an output that is closer to y’,
as shown in Figure 4-2. Let’s look at an example from image
recognition. Say you train a model to predict fruit names
(outputs) when given images (inputs). For example, your
specific training input is an image of a banana, but your model
wrongly predicts apple. Because your desired output is
different from the model prediction, you change the model so
that next time the model will correctly predict banana.

Figure 4-2: The training phase of a machine learning model

As you keep telling the model your desired outputs for
many different inputs and adjusting the model, you train the
model by using your training data. Over time, the model will
learn which output you’d like to get for certain inputs. That’s
why data is so important in the 21st century: your model will
be only as good as its training data. Without good training
data, the model is guaranteed to fail. Roughly speaking, the
training data supervises the machine learning process. That’s
why we denote it supervised learning.

Inference Phase
During the inference phase, you use the trained model to
predict output values for new input features x. Note that the
model has the power to predict outputs for inputs that have
never been observed in the training data. For example, the fruit
prediction model from the training phase can now identify the
name of the fruits (learned in the training data) in images it has
never seen before. In other words, suitable machine learning
models possess the ability to generalize: they use their
experience from the training data to predict outcomes for new
inputs. Roughly speaking, models that generalize well produce
accurate predictions for new input data. Generalized prediction
for unseen input data is one of the strengths of machine
learning and is a prime reason for its popularity across a wide
range of applications.

LINEAR REGRESSION
Linear regression is the one machine learning algorithm you’ll
find most often in beginner-level machine learning tutorials.
It’s commonly used in regression problems, for which the

model predicts missing data values by using existing ones. A
considerable advantage of linear regression, both for teachers
and users, is its simplicity. But that doesn’t mean it can’t solve
real problems! Linear regression has lots of practical use cases
in diverse areas such as market research, astronomy, and
biology. In this section, you’ll learn everything you need to
know to get started with linear regression.

The Basics
How can you use linear regression to predict stock prices on a
given day? Before I answer this question, let’s start with some
definitions.

Every machine learning model consists of model
parameters. Model parameters are internal configuration
variables that are estimated from the data. These model
parameters determine how exactly the model calculates the
prediction, given the input features. For linear regression, the
model parameters are called coefficients. You may remember
the formula for two-dimensional lines from school: f(x) = ax +
c. The two variables a and c are the coefficients in the linear
equation ax + c. You can describe how each input x is
transformed into an output f(x) so that all outputs together
describe a line in the two-dimensional space. By changing the
coefficients, you can describe any line in the two-dimensional
space.

Given the input features x , x , . . ., x , the linear regression
model combines the input features with the coefficients a , a ,
. . ., a to calculate the predicted output y by using this
formula:

y = f(x) = a + a × x + a × x + ... + a × x

In our stock price example, you have a single input feature,
x, the day. You input the day x with the hope of getting a stock
price, the output y. This simplifies the linear regression model
to the formula of a two-dimensional line:

y = f(x) = a + a x

1 2 k

1 2

k

0 1 1 2 2 k k

0 1

Let’s have a look at three lines for which you change only
the two model parameters a and a in Figure 4-3. The first
axis describes the input x. The second axis describes the output
y. The line represents the (linear) relationship between input
and output.

Figure 4-3: Three linear regression models (lines) described by different model
parameters (coefficients). Every line represents a unique relationship between the
input and the output variables.

In our stock price example, let’s say our training data is the
indices of three days, [0, 1, 2], matched with the stock prices
[155, 156, 157]. To put it differently:

Input x=0 should cause output y=155
Input x=1 should cause output y=156

Input x=2 should cause output y=157

Now, which line best fits our training data? I plotted the
training data in Figure 4-4.

0 1

Figure 4-4: Our training data, with its index in the array as the x coordinate, and
its price as the y coordinate

To find the line that best describes the data and, thus, to
create a linear regression model, we need to determine the
coefficients. This is where machine learning comes in. There
are two principal ways of determining model parameters for
linear regression. First, you can analytically calculate the line
of best fit that goes between these points (the standard method
for linear regression). Second, you can try different models,
testing each against the labeled sample data, and ultimately
deciding on the best one. In any case, you determine “best”
through a process called error minimization, in which the
model minimizes the squared difference (or selects the
coefficients that lead to a minimal squared difference) of the

predicted model values and the ideal output, selecting the
model with the lowest error.

For our data, you end up with coefficients of a = 155.0
and a = 1.0. Then you put them into our formula for linear
regression:

y = f(x) = a + a x = 155.0 + 1.0 × x

and plot both the line and the training data in the same space,
as shown in Figure 4-5.

Figure 4-5: A prediction line made using our linear regression model

A perfect fit! The squared distance between the line (model
prediction) and the training data is zero—so you have found
the model that minimizes the error. Using this model, you can

0

1

0 1

now predict the stock price for any value of x. For example,
say you want to predict the stock price on day x = 4. To
accomplish this, you simply use the model to calculate f(x) =
155.0 + 1.0 × 4 = 159.0. The predicted stock price on day 4 is
$159. Of course, whether this prediction accurately reflects the
real world is another story.

That’s the high-level overview of what happens. Let’s take
a closer look at how to do this in code.

The Code
Listing 4-1 shows how to build a simple linear regression
model in a single line of code (you may need to install the
scikit-learn library first by running pip install sklearn in your
shell).

from sklearn.linear_model import LinearRegression
import numpy as np

Data (Apple stock prices)
apple = np.array([155, 156, 157])
n = len(apple)

One-liner
model = LinearRegression().fit(np.arange(n).reshape((n,1)), apple)

Result & puzzle
print(model.predict([[3],[4]]))

Listing 4-1: A simple linear regression model

Can you already guess the output of this code snippet?

How It Works
This one-liner uses two Python libraries: NumPy and scikit-
learn. The former is the de facto standard library for numerical
computations (like matrix operations). The latter is the most
comprehensive library for machine learning and has
implementations of hundreds of machine learning algorithms
and techniques.

You may ask: “Why are you using libraries in a Python
one-liner? Isn’t this cheating?” It’s a good question, and the
answer is yes. Any Python program—with or without libraries
—uses high-level functionality built on low-level operations.

There’s not much point in reinventing the wheel when you can
reuse existing code bases (that is, stand on the shoulders of
giants). Aspiring coders often feel the urge to implement
everything on their own, but this reduces their coding
productivity. In this book, we’re going to use, not reject, the
wide spectrum of powerful functionality implemented by some
of the world’s best Python coders and pioneers. Each of these
libraries took skilled coders years to develop, optimize, and
tweak.

Let’s go through Listing 4-1 step by step. First, we create a
simple data set of three values and store its length in a separate
variable n to make the code more concise. Our data is three
Apple stock prices for three consecutive days. The variable
apple holds this data set as a one-dimensional NumPy array.

Second, we build the model by calling LinearRegression(). But
what are the model parameters? To find them, we call the fit()

function to train the model. The fit() function takes two
arguments: the input features of the training data and the ideal
outputs for these inputs. Our ideal outputs are the real stock
prices of the Apple stock. But for the input features, fit()

requires an array with the following format:

[<training_data_1>,
<training_data_2>,
--snip--
<training_data_n>]

where each training data value is a sequence of feature values:

<training_data> = [feature_1, feature_2, ..., feature_k]

In our case, the input consists of only a single feature x (the
current day). Moreover, the prediction also consists of only a
single value y (the current stock price). To bring the input
array into the correct shape, you need to reshape it to this
strange-looking matrix form:

[[0],
 [1],
 [2]]

A matrix with only one column is called a column vector.
You use np.arange() to create the sequence of increasing x values;
then you use reshape((n, 1)) to convert the one-dimensional
NumPy array into a two-dimensional array with one column
and n rows (see Chapter 3). Note that scikit-learn allows the
output to be a one-dimensional array (otherwise, you would
have to reshape the apple data array as well).

Once it has the training data and the ideal outputs, fit() then
does error minimization: it finds the model parameters (that
means line) so that the difference between the predicted model
values and the desired outputs is minimal.

When fit() is satisfied with its model, it’ll return a model
that you can use to predict two new stock values by using the
predict() function. The predict() function has the same input
requirements as fit(), so to satisfy them, you’ll pass a one-
column matrix with our two new values that you want
predictions for:

print(model.predict([[3],[4]]))

Because our error minimization was zero, you should get
perfectly linear outputs of 158 and 159. This fits well along
the line of fit plotted in Figure 4-5. But it’s often not possible
to find such a perfectly fitting single straight-line linear model.
For example, if our stock prices are [157, 156, 159], and you run
the same function and plot it, you should get the line in Figure
4-6.

In this case, the fit() function finds the line that minimizes
the squared error between the training data and the predictions
as described previously.

Let’s wrap this up. Linear regression is a machine learning
technique whereby your model learns coefficients as model
parameters. The resulting linear model (for example, a line in
the two-dimensional space) directly provides you with
predictions on new input data. This problem of predicting
numerical values when given numerical input values belongs
to the class of regression problems. In the next section, you’ll
learn about another important area in machine learning called
classification.

Figure 4-6: A linear regression model with an imperfect fit

LOGISTIC REGRESSION IN ONE
LINE
Logistic regression is commonly used for classification
problems, in which you predict whether a sample belongs to a
specific category (or class). This contrasts with regression
problems, where you’re given a sample and predict a
numerical value that falls into a continuous range. An example
classification problem is to divide Twitter users into the male
and female, given different input features such as their posting
frequency or the number of tweet replies. The logistic
regression model belongs to one of the most fundamental
machine learning models. Many concepts introduced in this

section will be the basis of more advanced machine learning
techniques.

The Basics
To introduce logistic regression, let’s briefly review how linear
regression works: given the training data, you compute a line
that fits this training data and predicts the outcome for input x.
In general, linear regression is great for predicting a
continuous output, whose value can take an infinite number of
values. The stock price predicted earlier, for example, could
conceivably have been any number of positive values.

But what if the output is not continuous, but categorical,
belonging to a limited number of groups or categories? For
example, let’s say you want to predict the likelihood of lung
cancer, given the number of cigarettes a patient smokes. Each
patient can either have lung cancer or not. In contrast to the
stock price, here you have only these two possible outcomes.
Predicting the likelihood of categorical outcomes is the
primary motivation for logistic regression.

The Sigmoid Function
Whereas linear regression fits a line to the training data,
logistic regression fits an S-shaped curve, called the sigmoid
function. The S-shaped curve helps you make binary decisions
(for example, yes/no). For most input values, the sigmoid
function will return a value that is either very close to 0 (one
category) or very close to 1 (the other category). It’s relatively
unlikely that your given input value generates an ambiguous
output. Note that it is possible to generate 0.5 probabilities for
a given input value—but the shape of the curve is designed in
a way to minimize those in practical settings (for most
possible values on the horizontal axis, the probability value is
either very close to 0 or very close to 1). Figure 4-7 shows a
logistic regression curve for the lung cancer scenario.

Figure 4-7: A logistic regression curve that predicts cancer based on cigarette use

NOTE

You can apply logistic regression for multinomial classification to classify the
data into more than two classes. To accomplish this, you’ll use the
generalization of the sigmoid function, called the softmax function, which
returns a tuple of probabilities, one for each class. The sigmoid function
transforms the input feature(s) into only a single probability value. However,
for clarity and readability, I’ll focus on binomial classification and the sigmoid
function in this section.

The sigmoid function in Figure 4-7 approximates the
probability that a patient has lung cancer, given the number of
cigarettes they smoke. This probability helps you make a
robust decision on the subject when the only information you
have is the number of cigarettes the patient smokes: does the
patient have lung cancer?

Have a look at the predictions in Figure 4-8, which shows
two new patients (in light gray at the bottom of the graph).
You know nothing about them but the number of cigarettes
they smoke. You’ve trained our logistic regression model (the
sigmoid function) that returns a probability value for any new
input value x. If the probability given by the sigmoid function

is higher than 50 percent, the model predicts lung cancer
positive; otherwise, it predicts lung cancer negative.

Figure 4-8: Using logistic regression to estimate probabilities of a result

Finding the Maximum Likelihood Model
The main question for logistic regression is how to select the
correct sigmoid function that best fits the training data. The
answer is in each model’s likelihood: the probability that the
model would generate the observed training data. You want to
select the model with the maximum likelihood. Your sense is
that this model best approximates the real-world process that
generated the training data.

To calculate the likelihood of a given model for a given set
of training data, you calculate the likelihood for each single
training data point, and then multiply those with each other to
get the likelihood of the whole set of training data. How to
calculate the likelihood of a single training data point? Simply
apply this model’s sigmoid function to the training data point;
it’ll give you the data point’s probability under this model. To
select the maximum likelihood model for all data points, you
repeat this same likelihood computation for different sigmoid

functions (shifting the sigmoid function a little bit), as in
Figure 4-9.

In the previous paragraph, I described how to determine the
maximum likelihood sigmoid function (model). This sigmoid
function fits the data best—so you can use it to predict new
data points.

Now that we’ve covered the theory, let’s look at how you’d
implement logistic regression as a Python one-liner.

Figure 4-9: Testing several sigmoid functions to determine maximum likelihood

The Code
You’ve seen an example of using logistic regression for a
health application (correlating cigarette consumption with
cancer probability). This “virtual doc” application would be a
great idea for a smartphone app, wouldn’t it? Let’s program
your first virtual doc using logistic regression, as shown in
Listing 4-2—in a single line of Python code!

from sklearn.linear_model import LogisticRegression
import numpy as np

Data (#cigarettes, cancer)

X = np.array([[0, "No"],
 [10, "No"],
 [60, "Yes"],
 [90, "Yes"]])

One-liner
model = LogisticRegression().fit(X[:,0].reshape(n,1), X[:,1])

Result & puzzle
print(model.predict([[2],[12],[13],[40],[90]]))

Listing 4-2: A logistic regression model

Take a guess: what’s the output of this code snippet?

How It Works
The training data X consists of four patient records (the rows)
with two columns. The first column holds the number of
cigarettes the patients smoke (input feature), and the second
column holds the class labels, which say whether they
ultimately suffered from lung cancer.

You create the model by calling the LogisticRegression()

constructor. You call the fit() function on this model; fit() takes
two arguments, which are the input (cigarette consumption)
and the output class labels (cancer). The fit() function expects a
two-dimensional input array format with one row per training
data sample and one column per feature of this training data
sample. In this case, you have only a single feature value so
you transform the one-dimensional input into a two-
dimensional NumPy array by using the reshape() operation. The
first argument to reshape() specifies the number of rows, and the
second specifies the number of columns. You care about only
the number of columns, which here is 1. You’ll pass -1 as the
number of desired rows, which is a special signal to NumPy to
determine the number of rows automatically.

The input training data will look as follows after reshaping
(in essence, you simply remove the class labels and keep the
two-dimensional array shape intact):

[[0],
 [10],

 [60],
 [90]]

Next, you predict whether a patient has lung cancer, given
the number of cigarettes they smoke: your input will be 2, 12,
13, 40, 90 cigarettes. That gives an output as follows:

['No' 'No' 'Yes' 'Yes' 'Yes']

The model predicts that the first two patients are lung
cancer negative, while the latter three are lung cancer positive.

Let’s look in detail at the probabilities the sigmoid function
came up with that lead to this prediction! Simply run the
following code snippet after Listing 4-2:

for i in range(20):
 print("x=" + str(i) + " --> " + str(model.predict_proba([[i]])))

The predict_proba() function takes as input the number of
cigarettes and returns an array containing the probability of
lung cancer negative (at index 0) and the probability of lung
cancer positive (index 1). When you run this code, you should
get the following output:

x=0 --> [[0.67240789 0.32759211]]
x=1 --> [[0.65961501 0.34038499]]
x=2 --> [[0.64658514 0.35341486]]
x=3 --> [[0.63333374 0.36666626]]
x=4 --> [[0.61987758 0.38012242]]
x=5 --> [[0.60623463 0.39376537]]
x=6 --> [[0.59242397 0.40757603]]
x=7 --> [[0.57846573 0.42153427]]
x=8 --> [[0.56438097 0.43561903]]
x=9 --> [[0.55019154 0.44980846]]
x=10 --> [[0.53591997 0.46408003]]
x=11 --> [[0.52158933 0.47841067]]
x=12 --> [[0.50722306 0.49277694]]
x=13 --> [[0.49284485 0.50715515]]
x=14 --> [[0.47847846 0.52152154]]
x=15 --> [[0.46414759 0.53585241]]
x=16 --> [[0.44987569 0.55012431]]
x=17 --> [[0.43568582 0.56431418]]
x=18 --> [[0.42160051 0.57839949]]
x=19 --> [[0.40764163 0.59235837]]

If the probability of lung cancer being negative is higher
than the probability of lung cancer being positive, the

predicted outcome will be lung cancer negative. This happens
the last time for x=12. If the patient has smoked more than 12
cigarettes, the algorithm will classify them as lung cancer
positive.

In summary, you’ve learned how to classify problems
easily with logistic regression using the scikit-learn library.
The idea of logistic regression is to fit an S-shaped curve (the
sigmoid function) to the data. This function assigns a
numerical value between 0 and 1 to every new data point and
each possible class. The numerical value models the
probability of this data point belonging to the given class.
However, in practice, you often have training data but no class
label assigned to the training data. For example, you have
customer data (say, their age and their income) but you don’t
know any class label for each data point. To still extract useful
insights from this kind of data, you will learn about another
category of machine learning next: unsupervised learning.
Specifically, you’ll learn about how to find similar clusters of
data points, an important subset of unsupervised learning.

K-MEANS CLUSTERING IN ONE
LINE
If there’s one clustering algorithm you need to know—whether
you’re a computer scientist, data scientist, or machine learning
expert—it’s the K-Means algorithm. In this section, you’ll
learn the general idea and when and how to use it in a single
line of Python code.

The Basics
The previous sections covered supervised learning, in which
the training data is labeled. In other words, you know the
output value of every input value in the training data. But in
practice, this isn’t always the case. Often, you’ll find yourself
confronted with unlabeled data—especially in many data
analytics applications—where it’s not clear what “the optimal
output” means. In these situations, a prediction is impossible
(because there is no output to start with), but you can still
distill useful knowledge from these unlabeled data sets (for

example, you can find clusters of similar unlabeled data).
Models that use unlabeled data fall under the category of
unsupervised learning.

As an example, suppose you’re working in a startup that
serves different target markets with various income levels and
ages. Your boss tells you to find a certain number of target
personas that best fit your target markets. You can use
clustering methods to identify the average customer personas
that your company serves. Figure 4-10 shows an example.

Figure 4-10: Observed customer data in the two-dimensional space

Here, you can easily identify three types of personas with
different types of incomes and ages. But how to find those
algorithmically? This is the domain of clustering algorithms

such as the widely popular K-Means algorithm. Given the data
sets and an integer k, the K-Means algorithm finds k clusters
of data such that the difference between the center of a cluster
(called the centroid) and the data in the cluster is minimal. In
other words, you can find the different personas by running the
K-Means algorithm on your data sets, as shown in Figure 4-11.

Figure 4-11: Customer data with customer personas (cluster centroids) in the two-
dimensional space

The cluster centers (black dots) match the clustered
customer data. Every cluster center can be viewed as one
customer persona. Thus, you have three idealized personas: a
20-year-old earning $2000, a 25-year-old earning $3000, and a
40-year-old earning $4000. And the great thing is that the K-
Means algorithm finds those cluster centers even in high-

dimensional spaces (where it would be hard for humans to find
the personas visually).

The K-Means algorithm requires “the number of cluster
centers k” as an input. In this case, you look at the data and
“magically” define k = 3. More advanced algorithms can find
the number of cluster centers automatically (for an example,
look at the 2004 paper “Learning the k in K-Means” by Greg
Hamerly and Charles Elkan).

So how does the K-Means algorithm work? In a nutshell, it
performs the following procedure:

Initialize random cluster centers (centroids).
Repeat until convergence
 Assign every data point to its closest cluster center.
Recompute each cluster center as the centroid of all data points assigned to it.

This results in multiple loop iterations: you first assign the
data to the k cluster centers, and then you recompute each
cluster center as the centroid of the data assigned to it.

Let’s implement it!

Consider the following problem: given two-dimensional
salary data (hours worked, salary earned), find two clusters of
employees in the given data set that work a similar number of
hours and earn a similar salary.

The Code
How can you do all of this in a single line of code?
Fortunately, the scikit-learn library in Python already has an
efficient implementation of the K-Means algorithm. Listing 4-
3 shows the one-liner code snippet that runs K-Means
clustering for you.

Dependencies
from sklearn.cluster import KMeans
import numpy as np

Data (Work (h) / Salary ($))
X = np.array([[35, 7000], [45, 6900], [70, 7100],
 [20, 2000], [25, 2200], [15, 1800]])

One-liner
kmeans = KMeans(n_clusters=2).fit(X)

Result & puzzle
cc = kmeans.cluster_centers_
print(cc)

Listing 4-3: K-Means clustering in one line

What’s the output of this code snippet? Try to guess a
solution even if you don’t understand every syntactical detail.
This will open your knowledge gap and prepare your brain to
absorb the algorithm much better.

How It Works
In the first lines, you import the KMeans module from the
sklearn.cluster package. This module takes care of the clustering
itself. You also need to import the NumPy library because the
KMeans module works on NumPy arrays.

Our data is two-dimensional. It correlates the number of
working hours with the salary of some workers. Figure 4-12
shows the six data points in this employee data set.

Figure 4-12: Employee salary data

The goal is to find the two cluster centers that best fit this
data:

One-liner
kmeans = KMeans(n_clusters=2).fit(X)

In the one-liner, you create a new KMeans object that handles
the algorithm for you. When you create the KMeans object, you
define the number of cluster centers by using the n_clusters

function argument. Then you simply call the instance method
fit(X) to run the K-Means algorithm on the input data X. The
KMeans object now holds all the results. All that’s left is to
retrieve the results from its attributes:

cc = kmeans.cluster_centers_
print(cc)

Note that in the sklearn package, the convention is to use a
trailing underscore for some attribute names (for example,
cluster_centers_) to indicate that these attributes were created
dynamically within the training phase (the fit() function).
Before the training phase, these attributes do not exist yet.
This is not general Python convention (trailing underscores are
usually used only to avoid naming conflicts with Python
keywords—variable list_ instead of list). However, if you get used
to it, you appreciate the consistent use of attributes in the sklearn

package. So, what are the cluster centers and what is the
output of this code snippet? Take a look at Figure 4-13.

Figure 4-13: Employee salary data with cluster centers in the two-dimensional
space

You can see that the two cluster centers are (20, 2000) and
(50, 7000). This is also the result of the Python one-liner.
These clusters correspond to two idealized employee personas:
the first works for 20 hours a week and earns $2000 per
month, while the second works for 50 hours a week and earns
$7000 per month. Those two types of personas fit the data
reasonably well. Thus, the result of the one-liner code snippet
is as follows:

Result & puzzle
cc = kmeans.cluster_centers_
print(cc)
'''
[[50. 7000.]
 [20. 2000.]]
'''

To summarize, this section introduced you to an important
subtopic of unsupervised learning: clustering. The K-Means
algorithm is a simple, efficient, and popular way of extracting
k clusters from multidimensional data. Behind the scenes, the
algorithm iteratively recomputes cluster centers and reassigns
each data value to its closest cluster center until it finds the
optimal clusters. But clusters are not always ideal for finding
similar data items. Many data sets do not show a clustered
behavior, but you’ll still want to leverage the distance
information for machine learning and prediction. Let’s stay in
the multidimensional space and explore another way to use the
distance of (Euclidean) data values: the K-Nearest Neighbors
algorithm.

K-NEAREST NEIGHBORS IN ONE
LINE
The popular K-Nearest Neighbors (KNN) algorithm is used for
regression and classification in many applications such as
recommender systems, image classification, and financial data
forecasting. It’s the basis of many advanced machine learning
techniques (for example, in information retrieval). There is no
doubt that understanding KNN is an important building block
of your proficient computer science education.

The Basics
The KNN algorithm is a robust, straightforward, and popular
machine learning method. It’s simple to implement but still a
competitive and fast machine learning technique. All other
machine learning models we’ve discussed so far use the
training data to compute a representation of the original data.
You can use this representation to predict, classify, or cluster
new data. For example, the linear and logistic regression
algorithms define learning parameters, while the clustering
algorithm calculates cluster centers based on the training data.
However, the KNN algorithm is different. In contrast to the
other approaches, it does not compute a new model (or
representation) but uses the whole data set as a model.

Yes, you read that right. The machine learning model is
nothing more than a set of observations. Every single instance
of your training data is one part of your model. This has
advantages and disadvantages. A disadvantage is that the
model can quickly blow up as the training data grows—which
may require sampling or filtering as a preprocessing step. A
great advantage, however, is the simplicity of the training
phase (just add the new data values to the model).
Additionally, you can use the KNN algorithm for prediction or
classification. You execute the following strategy, given your
input vector x:

1. Find the k nearest neighbors of x (according to a predefined distance
metric).

2. Aggregate the k nearest neighbors into a single prediction or
classification value. You can use any aggregator function such as
average, mean, max, or min.

Let’s walk through an example. Your company sells homes
for clients. It has acquired a large database of customers and
house prices (see Figure 4-14). One day, your client asks how
much they must expect to pay for a house of 52 square meters.
You query your KNN model, and it immediately gives you the
response $33,167. And indeed, your client finds a home for
$33,489 the same week. How did the KNN system come to
this surprisingly accurate prediction?

First, the KNN system simply calculates the k = 3 nearest
neighbors to the query D = 52 square meters using Euclidean
distance. The three nearest neighbors are A, B, and C with
prices $34,000, $33,500, and $32,000, respectively. Then, it
aggregates the three nearest neighbors by calculating the
simple average of their values. Because k = 3 in this example,
you denote the model as 3NN. Of course, you can vary the
similarity functions, the parameter k, and the aggregation
method to come up with more sophisticated prediction models.

Figure 4-14: Calculating the price of house D based on the three nearest neighbors
A, B, and C

Another advantage of KNN is that it can be easily adapted
as new observations are made. This is not generally true for
machine learning models. An obvious weakness in this regard
is that as the computational complexity of finding the k nearest
neighbors becomes harder and harder, the more points you
add. To accommodate for that, you can continuously remove
stale values from the model.

As I mentioned, you can also use KNN for classification
problems. Instead of averaging over the k nearest neighbors,

you can use a voting mechanism: each nearest neighbor votes
for its class, and the class with the most votes wins.

The Code
Let’s dive into how to use KNN in Python—in a single line of
code (see Listing 4-4).

Dependencies
from sklearn.neighbors import KNeighborsRegressor
import numpy as np

Data (House Size (square meters) / House Price ($))
X = np.array([[35, 30000], [45, 45000], [40, 50000],
 [35, 35000], [25, 32500], [40, 40000]])

One-liner
KNN = KNeighborsRegressor(n_neighbors=3).fit(X[:,0].reshape(-1,1), X[:,1])

Result & puzzle
res = KNN.predict([[30]])
print(res)

Listing 4-4: Running the KNN algorithm in one line of Python

Take a guess: what’s the output of this code snippet?

How It Works
To help you see the result, let’s plot the housing data from this
code in Figure 4-15.

Figure 4-15: Housing data in the two-dimensional space

Can you see the general trend? With the growing size of
your house, you can expect a linear growth of its market price.
Double the square meters, and the price will double too.

In the code (see Listing 4-4), the client requests your price
prediction for a house of 30 square meters. What does KNN
with k = 3 (in short, 3NN) predict? Take a look at Figure 4-16.

Beautiful, isn’t it? The KNN algorithm finds the three
closest houses with respect to house size and averages the
predicted house price as the average of the k=3 nearest
neighbors. Thus, the result is $32,500.

If you are confused by the data conversions in the one-
liner, let me quickly explain what is happening here:

KNN = KNeighborsRegressor(n_neighbors=3).fit(X[:,0].reshape(-1,1), X[:,1])

Figure 4-16: Housing data in the two-dimensional space with predicted house price
for a new data point (house size equals 30 square meters) using KNN

First, you create a new machine learning model called
KNeighborsRegressor. If you wanted to use KNN for classification,
you’d use KNeighborsClassifier.

Second, you train the model by using the fit() function with
two parameters. The first parameter defines the input (the
house size), and the second parameter defines the output (the
house price). The shape of both parameters must be an array-
like data structure. For example, to use 30 as an input, you’d
have to pass it as [30]. The reason is that, in general, the input
can be multidimensional rather than one-dimensional.
Therefore, you reshape the input:

print(X[:,0])
"[35 45 40 35 25 40]"

print(X[:,0].reshape(-1,1))
"""
[[35]
 [45]
 [40]
 [35]
 [25]
 [40]]
"""

Notice that if you were to use this 1D NumPy array as an
input to the fit() function, the function wouldn’t work because it
expects an array of (array-like) observations, and not an array
of integers.

In summary, this one-liner taught you how to create your
first KNN regressor in a single line of code. If you have a lot
of changing data and model updates, KNN is your best friend!
Let’s move on to a wildly popular machine learning model
these days: neural networks.

NEURAL NETWORK ANALYSIS IN
ONE LINE
Neural networks have gained massive popularity in recent
years. This is in part because the algorithms and learning
techniques in the field have improved, but also because of the
improved hardware and the rise of general-purpose GPU
(GPGPU) technology. In this section, you’ll learn about the
multilayer perceptron (MLP) which is one of the most popular
neural network representations. After reading this, you’ll be
able to write your own neural network in a single line of
Python code!

The Basics
For this one-liner, I have prepared a special data set with
fellow Python colleagues on my email list. My goal was to
create a relatable real-world data set, so I asked my email
subscribers to participate in a data-generation experiment for
this chapter.

The Data

If you’re reading this book, you’re interested in learning
Python. To create an interesting data set, I asked my email
subscribers six anonymized questions about their Python
expertise and income. The responses to these questions will
serve as training data for the simple neural network example
(as a Python one-liner).

The training data is based on the answers to the following
six questions:

How many hours have you looked at Python code in the last seven days?
How many years ago did you start to learn about computer science?
How many coding books are on your shelf?

What percentage of your Python time do you spend working on real-
world projects?
How much do you earn per month (round to $1000) from selling your
technical skills (in the widest sense)?
What’s your approximate Finxter rating, rounded to 100 points?

The first five questions will be your input, and the sixth
question will be the output for the neural network analysis. In
this one-liner section, you’re examining neural network
regression. In other words, you predict a numerical value (your
Python skills) based on numerical input features. We’re not
going to explore neural network classification in this book,
which is another great strength of neural networks.

The sixth question approximates the skill level of a Python
coder. Finxter (https://finxter.com/) is our puzzle-based
learning application that assigns a rating value to any Python
coder based on their performance in solving Python puzzles.
In this way, it helps you quantify your skill level in Python.

Let’s start with visualizing how each question influences
the output (the skill rating of a Python developer), as shown in
Figure 4-17.

https://finxter.com/

Figure 4-17: Relationship between questionnaire answers and the Python skill
rating at Finxter

Note that these plots show only how each separate feature
(question) impacts the final Finxter rating, but they tell you
nothing about the impact of a combination of two or more
features. Note also that some Pythonistas didn’t answer all six
questions; in those cases, I used the dummy value -1.

What Is an Artificial Neural Network?

The idea of creating a theoretical model of the human brain
(the biological neural network) has been studied extensively in
recent decades. But the foundations of artificial neural
networks were proposed as early as the 1940s and ’50s! Since
then, the concept of artificial neural networks has been refined
and continually improved.

The basic idea is to break the big task of learning and
inference into multiple micro-tasks. These micro-tasks are not
independent but interdependent. The brain consists of billions
of neurons that are connected with trillions of synapses. In the
simplified model, learning is merely adjusting the strength of
synapses (also called weights or parameters in artificial neural
networks). So how do you “create” a new synapse in the
model? Simple—you increase its weight from zero to a
nonzero value.

Figure 4-18 shows a basic neural network with three layers
(input, hidden, output). Each layer consists of multiple neurons
that are connected from the input layer via the hidden layer to
the output layer.

Figure 4-18: A simple neural network analysis for animal classification

In this example, the neural network is trained to detect
animals in images. In practice, you would use one input
neuron per pixel of the image as an input layer. This can result
in millions of input neurons that are connected with millions
of hidden neurons. Often, each output neuron is responsible
for one bit of the overall output. For example, to detect two
different animals (for example, cats and dogs), you’ll use only
a single neuron in the output layer that can model two different
states (0=cat, 1=dog).

The idea is that each neuron can be activated, or “fired”,
when a certain input impulse arrives at the neuron. Each
neuron decides independently, based on the strength of the
input impulse, whether to fire or not. This way, you simulate
the human brain, in which neurons activate each other via
impulses. The activation of the input neurons propagates
through the network until the output neurons are reached.
Some output neurons will be activated, and others won’t. The
specific pattern of firing output neurons forms your final
output (or prediction) of the artificial neural network. In your
model, a firing output neuron could encode a 1, and a
nonfiring output neuron could encode a 0. This way, you can
train your neural network to predict anything that can be
encoded as a series of 0s and 1s (which is everything a
computer can represent).

Let’s have a detailed look at how neurons work
mathematically, in Figure 4-19.

Figure 4-19: Mathematical model of a single neuron: the output is a function of the
three inputs.

Each neuron is connected to other neurons, but not all
connections are equal. Instead, each connection has an
associated weight. Formally, a firing neuron propagates an
impulse of 1 to the outgoing neighbors, while a nonfiring
neuron propagates an impulse of 0. You can think of the
weight as indicating how much of the impulse of the firing
input neuron is forwarded to the neuron via the connection.
Mathematically, you multiply the impulse by the weight of the
connection to calculate the input for the next neuron. In our
example, the neuron simply sums over all inputs to calculate
its own output. This is the activation function that describes
how exactly the inputs of a neuron generate an output. In our
example, a neuron fires with higher likelihood if its relevant
input neurons fire too. This is how the impulses propagate
through the neural network.

What does the learning algorithm do? It uses the training
data to select the weights w of the neural network. Given a
training input value x, different weights w lead to different

outputs. Hence, the learning algorithm gradually changes the
weights w—in many iterations—until the output layer
produces similar results as the training data. In other words,
the training algorithm gradually reduces the error of correctly
predicting the training data.

There are many network structures, training algorithms,
and activation functions. This chapter shows you a hands-on
approach of using the neural network now, within a single line
of code. You can then learn the finer details as you need to
improve upon this (for example, you could start by reading the
“Neural Network” entry on Wikipedia,
https://en.wikipedia.org/wiki/Neural_network).

The Code
The goal is to create a neural network that predicts the Python
skill level (Finxter rating) by using the five input features
(answers to the questions):

WEEK How many hours have you been exposed to Python
code in the last seven days?

YEARS How many years ago did you start to learn about
computer science?

BOOKS How many coding books are on your shelf?

PROJECTS What percentage of your Python time do you
spend implementing real-world projects?

EARN How much do you earn per month (round to $1000)
from selling your technical skills (in the widest sense)?

Again, let’s stand on the shoulders of giants and use the
scikit-learn (sklearn) library for neural network regression, as in
Listing 4-5.

Dependencies
from sklearn.neural_network import MLPRegressor
import numpy as np

Questionaire data (WEEK, YEARS, BOOKS, PROJECTS, EARN, RATING)
X = np.array(
 [[20, 11, 20, 30, 4000, 3000],
 [12, 4, 0, 0, 1000, 1500],
 [2, 0, 1, 10, 0, 1400],

https://en.wikipedia.org/wiki/Neural_network

 [35, 5, 10, 70, 6000, 3800],
 [30, 1, 4, 65, 0, 3900],
 [35, 1, 0, 0, 0, 100],
 [15, 1, 2, 25, 0, 3700],
 [40, 3, -1, 60, 1000, 2000],
 [40, 1, 2, 95, 0, 1000],
 [10, 0, 0, 0, 0, 1400],
 [30, 1, 0, 50, 0, 1700],
 [1, 0, 0, 45, 0, 1762],
 [10, 32, 10, 5, 0, 2400],
 [5, 35, 4, 0, 13000, 3900],
 [8, 9, 40, 30, 1000, 2625],
 [1, 0, 1, 0, 0, 1900],
 [1, 30, 10, 0, 1000, 1900],
 [7, 16, 5, 0, 0, 3000]])

One-liner
neural_net = MLPRegressor(max_iter=10000).fit(X[:,:-1], X[:,-1])

Result
res = neural_net.predict([[0, 0, 0, 0, 0]])
print(res)

Listing 4-5: Neural network analysis in a single line of code

It’s impossible for a human to correctly figure out the
output—but would you like to try?

How It Works
In the first few lines, you create the data set. The machine
learning algorithms in the scikit-learn library use a similar
input format. Each row is a single observation with multiple
features. The more rows, the more training data exists; the
more columns, the more features of each observation. In this
case, you have five features for the input and one feature for
the output value of each training data.

The one-liner creates a neural network by using the
constructor of the MLPRegressor class. I passed max_iter=10000 as
an argument because the training doesn’t converge when using
the default number of iterations (max_iter=200).

After that, you call the fit() function, which determines the
parameters of the neural network. After calling fit(), the neural
network has been successfully initialized. The fit() function
takes a multidimensional input array (one observation per row,

one feature per column) and a one-dimensional output array
(size = number of observations).

The only thing left is calling the predict function on some
input values:

Result
res = neural_net.predict([[0, 0, 0, 0, 0]])
print(res)
[94.94925927]

Note that the actual output may vary slightly because of the
nondeterministic nature of the function and the different
convergence behavior.

In plain English: if . . .

. . . you have trained 0 hours in the last week,

. . . you started your computer science studies 0 years ago,

. . . you have 0 coding books in your shelf,

. . . you spend 0 percent of your time implementing real Python
projects, and
. . . you earn $0 selling your coding skills,

the neural network estimates that your skill level is very low (a
Finxter rating of 94 means you have difficulty understanding
the Python program print("hello, world")).

So let’s change this: what happens if you invest 20 hours a
week learning and revisit the neural network after one week:

Result
res = neural_net.predict([[20, 0, 0, 0, 0]])
print(res)
[440.40167562]

Not bad—your skills improve quite significantly! But
you’re still not happy with this rating number, are you? (An
above-average Python coder has at least a 1500–1700 rating
on Finxter.)

No problem. Buy 10 Python books (only nine left after this
one). Let’s see what happens to your rating:

Result
res = neural_net.predict([[20, 0, 10, 0, 0]])
print(res)
[953.6317602]

Again, you make significant progress and double your
rating number! But buying Python books alone will not help
you much. You need to study them! Let’s do this for a year:

Result
res = neural_net.predict([[20, 1, 10, 0, 0]])
print(res)
[999.94308353]

Not much happens. This is where I don’t trust the neural
network too much. In my opinion, you should have reached a
much better performance of at least 1500. But this also shows
that the neural network can be only as good as its training data.
You have very limited data, and the neural network can’t really
overcome this limitation: there’s just too little knowledge in a
handful of data points.

But you don’t give up, right? Next, you spend 50 percent of
your Python time selling your skills as a Python freelancer:

Result
res = neural_net.predict([[20, 1, 10, 50, 1000]])
print(res)
[1960.7595547]

Boom! Suddenly the neural network considers you to be an
expert Python coder. A wise prediction of the neural network,
indeed! Learn Python for at least a year and do practical
projects, and you’ll become a great coder.

To sum up, you’ve learned about the basics of neural
networks and how to use them in a single line of Python code.
Interestingly, the questionnaire data indicates that starting out
with practical projects—maybe even doing freelance projects
from the beginning—matters a lot to your learning success.
The neural network certainly knows that. If you want to learn
my exact strategy of becoming a freelancer, join the free
webinar about state-of-the-art Python freelancing at
https://blog.finxter.com/webinar-freelancer/.

In the next section, you’ll dive deeper into another
powerful model representation: decision trees. While neural
networks can be quite expensive to train (they often need
multiple machines and many hours, and sometimes even
weeks, to train), decision trees are lightweight. Nevertheless,

https://blog.finxter.com/webinar-freelancer/

they are a fast, effective way to extract patterns from your
training data.

DECISION-TREE LEARNING IN
ONE LINE
Decision trees are powerful and intuitive tools in your machine
learning toolbelt. A big advantage of decision trees is that,
unlike many other machine learning techniques, they’re
human-readable. You can easily train a decision tree and show
it to your supervisors, who do not need to know anything
about machine learning in order to understand what your
model does. This is especially great for data scientists who
often must defend and present their results to management. In
this section, I’ll show you how to use decision trees in a single
line of Python code.

The Basics
Unlike many machine learning algorithms, the ideas behind
decision trees might be familiar from your own experience.
They represent a structured way of making decisions. Each
decision opens new branches. By answering a bunch of
questions, you’ll finally land on the recommended outcome.
Figure 4-20 shows an example.

Figure 4-20: A simplified decision tree for recommending a study subject

Decision trees are used for classification problems such as
“which subject should I study, given my interests?” You start
at the top. Now, you repeatedly answer questions and select
the choices that describe your features best. Finally, you reach
a leaf node of the tree, a node with no children. This is the
recommended class based on your feature selection.

Decision-tree learning has many nuances. In the preceding
example, the first question carries more weight than the last
question. If you like math, the decision tree will never
recommend art or linguistics. This is useful because some
features may be much more important for the classification
decision than others. For example, a classification system that
predicts your current health may use your sex (feature) to
practically rule out many diseases (classes).

Hence, the order of the decision nodes lends itself to
performance optimizations: place the features at the top that
have a high impact on the final classification. In decision-tree
learning, you’ll then aggregate the questions with little impact
on the final classification, as shown in Figure 4-21.

Figure 4-21: Pruning improves efficiency of decision-tree learning.

Suppose the full decision tree looks like the tree on the left.
For any combination of features, there’s a separate
classification outcome (the tree leaves). However, some
features may not give you any additional information with
respect to the classification problem (for example, the first
Language decision node in the example). Decision-tree
learning would effectively get rid of these nodes for efficiency
reasons, a process called pruning.

The Code
You can create your own decision tree in a single line of
Python code. Listing 4-6 shows you how.

Dependencies
from sklearn import tree
import numpy as np

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [1, 8, 1, "linguistics"],
 [5, 7, 9, "art"]])

One-liner
Tree = tree.DecisionTreeClassifier().fit(X[:,:-1], X[:,-1])

Result & puzzle
student_0 = Tree.predict([[8, 6, 5]])
print(student_0)

student_1 = Tree.predict([[3, 7, 9]])
print(student_1)

Listing 4-6: Decision-tree classification in a single line of code

Guess the output of this code snippet!

How It Works
The data in this code describes three students with their
estimated skill levels (a score from 1–10) in the three areas of
math, language, and creativity. You also know the study
subjects of these students. For example, the first student is
highly skilled in math and studies computer science. The
second student is skilled in language much more than in the
other two skills and studies linguistics. The third student is
skilled in creativity and studies art.

The one-liner creates a new decision-tree object and trains
the model by using the fit() function on the labeled training data
(the last column is the label). Internally, it creates three nodes,
one for each feature: math, language, and creativity. When
predicting the class of student_0 (math = 8, language = 6,
creativity = 5), the decision tree returns computer science. It has
learned that this feature pattern (high, medium, medium) is an

indicator of the first class. On the other hand, when asked for
(3, 7, 9), the decision tree predicts art because it has learned
that the score (low, medium, high) hints to the third class.

Note that the algorithm is nondeterministic. In other words,
when executing the same code twice, different results may
arise. This is common for machine learning algorithms that
work with random generators. In this case, the order of the
features is randomly organized, so the final decision tree may
have a different order of the features.

To summarize, decision trees are an intuitive way of
creating human-readable machine learning models. Every
branch represents a choice based on a single feature of a new
sample. The leaves of the tree represent the final prediction
(classification or regression). Next, we’ll leave concrete
machine learning algorithms for a moment and explore a
critical concept in machine learning: variance.

GET ROW WITH MINIMAL
VARIANCE IN ONE LINE
You may have read about the Vs in Big Data: volume,
velocity, variety, veracity, and value. Variance is yet another
important V: it measures the expected (squared) deviation of
the data from its mean. In practice, variance is an important
measure with relevant application domains in financial
services, weather forecasting, and image processing.

The Basics
Variance measures how much data spreads around its average
in the one-dimensional or multidimensional space. You’ll see a
graphical example in a moment. In fact, variance is one of the
most important properties in machine learning. It captures the
patterns of the data in a generalized manner—and machine
learning is all about pattern recognition.

Many machine learning algorithms rely on variance in one
form or another. For instance, the bias-variance trade-off is a
well-known problem in machine learning: sophisticated
machine learning models risk overfitting the data (high

variance) but represent the training data very accurately (low
bias). On the other hand, simple models often generalize well
(low variance) but do not represent the data accurately (high
bias).

So what exactly is variance? It’s a simple statistical
property that captures how much the data set spreads from its
mean. Figure 4-22 shows an example plotting two data sets:
one with low variance, and one with high variance.

Figure 4-22: Variance comparison of two company stock prices

This example shows the stock prices of two companies.
The stock price of the tech startup fluctuates heavily around its
average. The stock price of the food company is quite stable
and fluctuates only in minor ways around the average. In other
words, the tech startup has high variance, and the food
company has low variance.

In mathematical terms, you can calculate the variance
var(X) of a set of numerical values X by using the following
formula:

The value is the average value of the data in X.

The Code

As they get older, many investors want to reduce the overall
risk of their investment portfolio. According to the dominant
investment philosophy, you should consider stocks with lower
variance as less-risky investment vehicles. Roughly speaking,
you can lose less money investing in a stable, predictable, and
large company than in a small tech startup.

The goal of the one-liner in Listing 4-7 is to identify the
stock in your portfolio with minimal variance. By investing
more money into this stock, you can expect a lower overall
variance of your portfolio.

Dependencies
import numpy as np

Data (rows: stocks / cols: stock prices)
X = np.array([[25,27,29,30],
 [1,5,3,2],
 [12,11,8,3],
 [1,1,2,2],
 [2,6,2,2]])

One-liner
Find the stock with smallest variance
min_row = min([(i,np.var(X[i,:])) for i in range(len(X))], key=lambda x: x[1])

Result & puzzle
print("Row with minimum variance: " + str(min_row[0]))
print("Variance: " + str(min_row[1]))

Listing 4-7: Calculating minimum variance in a single line of code

What’s the output of this code snippet?

How It Works
As usual, you first define the data you want to run the one-
liner on (see the top of Listing 4-7). The NumPy array X

contains five rows (one row per stock in your portfolio) with
four values per row (stock prices).

The goal is to find the ID and variance of the stock with
minimal variance. Hence, the outermost function of the one-
liner is the min() function. You execute the min() function on a
sequence of tuples (a,b), where the first tuple value a is the row

index (stock index), and the second tuple value b is the
variance of the row.

You may ask: what’s the minimal value of a sequence of
tuples? Of course, you need to properly define this operation
before using it. To this end, you use the key argument of the
min() function. The key argument takes a function that returns a
comparable object value, given a sequence value. Again, our
sequence values are tuples, and you need to find the tuple with
minimal variance (the second tuple value). Because variance is
the second value, you’ll return x[1] as the basis for comparison.
In other words, the tuple with the minimal second tuple value
wins.

Let’s look at how to create the sequence of tuple values.
You use list comprehension to create a tuple for any row index
(stock). The first tuple element is simply the index of row i.
The second tuple element is the variance of this row. You use
the NumPy var() function in combination with slicing to
calculate the row variance.

The result of the one-liner is, therefore, as follows:

"""
Row with minimum variance: 3
Variance: 0.25
"""

I’d like to add that there’s an alternative way of solving this
problem. If this wasn’t a book about Python one-liners, I
would prefer the following solution instead of the one-liner:

var = np.var(X, axis=1)
min_row = (np.where(var==min(var)), min(var))

In the first line, you calculate the variance of the NumPy
array X along the columns (axis=1). In the second line, you
create the tuple. The first tuple value is the index of the
minimum in the variance array. The second tuple value is the
minimum in the variance array. Note that multiple rows may
have the same (minimal) variance.

This solution is more readable. So clearly, there is a trade-
off between conciseness and readability. Just because you can
cram everything into a single line of code doesn’t mean you

should. All things being equal, it’s much better to write
concise and readable code, instead of blowing up your code
with unnecessary definitions, comments, or intermediate steps.

After learning the basics of variance in this section, you’re
now ready to absorb how to calculate basic statistics.

BASIC STATISTICS IN ONE LINE
As a data scientist and machine learning engineer, you need to
know basic statistics. Some machine learning algorithms are
entirely based on statistics (for example, Bayesian networks).

For example, extracting basic statistics from matrices (such
as average, variance, and standard deviation) is a critical
component for analyzing a wide range of data sets such as
financial data, health data, or social media data. With the rise
of machine learning and data science, knowing about how to
use NumPy—which is at the heart of Python data science,
statistics, and linear algebra—will become more and more
valuable to the marketplace.

In this one-liner, you’ll learn how to calculate basic
statistics with NumPy.

The Basics
This section explains how to calculate the average, the
standard deviation, and the variance along an axis. These three
calculations are very similar; if you understand one, you’ll
understand all of them.

Here’s what you want to achieve: given a NumPy array of
stock data with rows indicating the different companies and
columns indicating their daily stock prices, the goal is to find
the average and standard deviation of each company’s stock
price (see Figure 4-23).

Figure 4-23: Average and variance along axis 1

This example shows a two-dimensional NumPy array, but
in practice, the array can have much higher dimensionality.

Simple Average, Variance, Standard Deviation
Before examining how to accomplish this in NumPy, let’s
slowly build the background you need to know. Say you want
to calculate the simple average, the variance, or the standard
deviation over all values in a NumPy array. You’ve already
seen examples of the average and the variance function in this
chapter. The standard deviation is simply the square root of the
variance. You can achieve this easily with the following
functions:

import numpy as np

X = np.array([[1, 3, 5],
 [1, 1, 1],
 [0, 2, 4]])

print(np.average(X))
2.0

print(np.var(X))
2.4444444444444446

print(np.std(X))
1.5634719199411433

You may have noted that you apply those functions on the
two-dimensional NumPy array X. But NumPy simply flattens
the array and calculates the functions on the flattened array.
For example, the simple average of the flattened NumPy array
X is calculated as follows:

(1 + 3 + 5 + 1 + 1 + 1 + 0 + 2 + 4) / 9 = 18 / 9 = 2.0

Calculating Average, Variance, Standard Deviation Along
an Axis
However, sometimes you want to calculate these functions
along an axis. You can do this by specifying the keyword axis

as an argument to the average, variance, and standard
deviation functions (see Chapter 3 for a detailed introduction
to the axis argument).

The Code
Listing 4-8 shows you exactly how to calculate the average,
variance, and standard deviation along an axis. Our goal is to
calculate the averages, variances, and standard deviations of
all stocks in a two-dimensional matrix with rows representing
stocks and columns representing daily prices.

Dependencies
import numpy as np

Stock Price Data: 5 companies
(row=[price_day_1, price_day_2, ...])
x = np.array([[8, 9, 11, 12],
 [1, 2, 2, 1],
 [2, 8, 9, 9],
 [9, 6, 6, 3],
 [3, 3, 3, 3]])

One-liner
avg, var, std = np.average(x, axis=1), np.var(x, axis=1), np.std(x, axis=1)

Result & puzzle
print("Averages: " + str(avg))
print("Variances: " + str(var))
print("Standard Deviations: " + str(std))

Listing 4-8: Calculating basic statistics along an axis

Guess the output of the puzzle!

How It Works
The one-liner uses the axis keyword to specify the axis along
which to calculate the average, variance, and standard

deviation. For example, if you perform these three functions
along axis=1, each row is aggregated into a single value. Hence,
the resulting NumPy array has a reduced dimensionality of
one.

The result of the puzzle is the following:

"""
Averages: [10. 1.5 7. 6. 3.]
Variances: [2.5 0.25 8.5 4.5 0.]
Standard Deviations: [1.58113883 0.5 2.91547595 2.12132034 0.]
"""

Before moving on to the next one-liner, I want to show you
how to use the same idea for an even higher-dimensional
NumPy array.

When averaging along an axis for high-dimensional
NumPy arrays, you’ll always aggregate the axis defined in the
axis argument. Here’s an example:

import numpy as np

x = np.array([[[1,2], [1,1]],
 [[1,1], [2,1]],
 [[1,0], [0,0]]])

print(np.average(x, axis=2))
print(np.var(x, axis=2))
print(np.std(x, axis=2))

"""
[[1.5 1.]
 [1. 1.5]
 [0.5 0.]]
[[0.25 0.]
 [0. 0.25]
 [0.25 0.]]
[[0.5 0.]
 [0. 0.5]
 [0.5 0.]]
"""

There are three examples of computing the average,
variance, and standard deviation along axis 2 (see Chapter 3;
the innermost axis). In other words, all values of axis 2 will be
combined into a single value that results in axis 2 being
dropped from the resulting array. Dive into the three examples

and figure out how exactly axis 2 is collapsed into a single
average, variance, or standard deviation value.

To summarize, a wide range of data sets (including
financial data, health data, and social media data) requires you
to be able to extract basic insights from your data sets. This
section gives you a deeper understanding of how to use the
powerful NumPy toolset to extract basic statistics quickly and
efficiently from multidimensional arrays. This is needed as a
basic preprocessing step for many machine learning
algorithms.

CLASSIFICATION WITH
SUPPORT-VECTOR MACHINES IN
ONE LINE
Support-vector machines (SVMs) have gained massive
popularity in recent years because they have robust
classification performance, even in high-dimensional spaces.
Surprisingly, SVMs work even if there are more dimensions
(features) than data items. This is unusual for classification
algorithms because of the curse of dimensionality: with
increasing dimensionality, the data becomes extremely sparse,
which makes it hard for algorithms to find patterns in the data
set. Understanding the basic ideas of SVMs is a fundamental
step to becoming a sophisticated machine learning engineer.

The Basics
How do classification algorithms work? They use the training
data to find a decision boundary that divides data in the one
class from data in the other class (in “Logistic Regression in
One Line” on page 89, the decision boundary would be
whether the probability of the sigmoid function is below or
above the 0.5 threshold).

A High-Level Look at Classification

Figure 4-24 shows an example of a general classifier.

Figure 4-24: Diverse skill sets of computer scientists and artists

Suppose you want to build a recommendation system for
aspiring university students. The figure visualizes the training
data consisting of users classified according to their skills in
two areas: logic and creativity. Some people have high logic
skills and relatively low creativity; others have high creativity
and relatively low logic skills. The first group is labeled as
computer scientists, and the second group is labeled as artists.

To classify new users, the machine learning model must
find a decision boundary that separates the computer scientists
from the artists. Roughly speaking, you’ll classify a user by
where they fall with respect to the decision boundary. In the
example, you’ll classify users who fall into the left area as
computer scientists, and users who fall into the right area as
artists.

In the two-dimensional space, the decision boundary is
either a line or a (higher-order) curve. The former is called a
linear classifier, and the latter is called a nonlinear classifier.
In this section, we’ll explore only linear classifiers.

Figure 4-24 shows three decision boundaries that are all
valid separators of the data. In our example, it’s impossible to
quantify which of the given decision boundaries is better; they
all lead to perfect accuracy when classifying the training data.

But What Is the Best Decision Boundary?

Support-vector machines provide a unique and beautiful
answer to this question. Arguably, the best decision boundary
provides a maximal margin of safety. In other words, SVMs
maximize the distance between the closest data points and the
decision boundary. The goal is to minimize the error of new
points that are close to the decision boundary.

Figure 4-25 shows an example.

Figure 4-25: Support-vector machines maximize the error of margin.

The SVM classifier finds the respective support vectors so
that the zone between the support vectors is as thick as
possible. Here, the support vectors are the data points that lie
on the two dotted lines parallel to the decision boundary.
These lines are denoted as margins. The decision boundary is
the line in the middle with maximal distance to the margins.
Because the zone between the margins and the decision
boundary is maximized, the margin of error is expected to be
maximal when classifying new data points. This idea shows
high classification accuracy for many practical problems.

The Code
Is it possible to create your own SVM in a single line of
Python code? Take a look at Listing 4-9.

Dependencies
from sklearn import svm

import numpy as np

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [10, 1, 2, "computer science"],
 [1, 8, 1, "literature"],
 [4, 9, 3, "literature"],
 [0, 1, 10, "art"],
 [5, 7, 9, "art"]])

One-liner
svm = svm.SVC().fit(X[:,:-1], X[:,-1])

Result & puzzle
student_0 = svm.predict([[3, 3, 6]])
print(student_0)

student_1 = svm.predict([[8, 1, 1]])
print(student_1)

Listing 4-9: SVM classification in a single line of code

Guess the output of this code.

How It Works
The code breaks down how you can use support-vector
machines in Python in the most basic form. The NumPy array
holds the labeled training data with one row per user and one
column per feature (skill level in math, language, and
creativity). The last column is the label (the class).

Because you have three-dimensional data, the support-
vector machine separates the data by using two-dimensional
planes (the linear separator) rather than one-dimensional lines.
As you can see, it’s also possible to separate three classes
rather than only two as shown in the preceding examples.

The one-liner itself is straightforward: you first create the
model by using the constructor of the svm.SVC class (SVC
stands for support-vector classification). Then, you call the fit()
function to perform the training based on your labeled training
data.

In the results part of the code snippet, you call the predict()

function on new observations. Because student_0 has skills

indicated as math=3, language=3, and creativity=6, the
support-vector machine predicts that the label art fits this
student’s skills. Similarly, student_1 has skills indicated as
math=8, language=1, and creativity=1. Thus, the support-
vector machine predicts that the label computer science fits
this student’s skills.

Here’s the final output of the one-liner:

Result & puzzle
student_0 = svm.predict([[3, 3, 6]])
print(student_0)
['art']

student_1 = svm.predict([[8, 1, 1]])
print(student_1)
['computer science']

In summary, SVMs perform well even in high-dimensional
spaces when there are more features than training data vectors.
The idea of maximizing the margin of safety is intuitive and
leads to robust performance when classifying boundary cases
—that is, vectors that fall within the margin of safety. In the
final section of this chapter, we’ll zoom one step back and
have a look at a meta-algorithm for classification: ensemble
learning with random forests.

CLASSIFICATION WITH RANDOM
FORESTS IN ONE LINE
Let’s move on to an exciting machine learning technique:
ensemble learning. Here’s my quick-and-dirty tip if your
prediction accuracy is lacking but you need to meet the
deadline at all costs: try this meta-learning approach that
combines the predictions (or classifications) of multiple
machine learning algorithms. In many cases, it will give you
better last-minute results.

The Basics
In the previous sections, you’ve studied multiple machine
learning algorithms that you can use to get quick results.
However, different algorithms have different strengths. For

example, neural network classifiers can generate excellent
results for complex problems. However, they are also prone to
overfitting the data because of their powerful capacity to
memorize fine-grained patterns of the data. Ensemble learning
for classification problems partially overcomes the problem
that you often don’t know in advance which machine learning
technique works best.

How does this work? You create a meta-classifier
consisting of multiple types or instances of basic machine
learning algorithms. In other words, you train multiple models.
To classify a single observation, you ask all models to classify
the input independently. Next, you return the class that was
returned most often, given your input, as a meta-prediction.
This is the final output of your ensemble learning algorithm.

Random forests are a special type of ensemble learning
algorithms. They focus on decision-tree learning. A forest
consists of many trees. Similarly, a random forest consists of
many decision trees. Each decision tree is built by injecting
randomness in the tree-generation procedure during the
training phase (for example, which tree node to select first).
This leads to various decision trees—exactly what you want.

Figure 4-26 shows how the prediction works for a trained
random forest using the following scenario. Alice has high
math and language skills. The ensemble consists of three
decision trees (building a random forest). To classify Alice,
each decision tree is queried about Alice’s classification. Two
of the decision trees classify Alice as a computer scientist.
Because this is the class with the most votes, it’s returned as
the final output for the classification.

Figure 4-26: Random forest classifier aggregating the output of three decision trees

The Code
Let’s stick to this example of classifying the study field based
on a student’s skill level in three areas (math, language,
creativity). You may think that implementing an ensemble
learning method is complicated in Python. But it’s not, thanks
to the comprehensive scikit-learn library (see Listing 4-10).

Dependencies
import numpy as np
from sklearn.ensemble import RandomForestClassifier

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [5, 1, 5, "computer science"],
 [8, 8, 8, "computer science"],
 [1, 10, 7, "literature"],
 [1, 8, 1, "literature"],
 [5, 7, 9, "art"],

 [1, 1, 6, "art"]])

One-liner
Forest = RandomForestClassifier(n_estimators=10).fit(X[:,:-1], X[:,-1])

Result
students = Forest.predict([[8, 6, 5],
 [3, 7, 9],
 [2, 2, 1]])
print(students)

Listing 4-10: Ensemble learning with random forest classifiers

Take a guess: what’s the output of this code snippet?

How It Works
After initializing the labeled training data in Listing 4-10, the
code creates a random forest by using the constructor on the
class RandomForestClassifier with one parameter n_estimators that
defines the number of trees in the forest. Next, you populate
the model that results from the previous initialization (an
empty forest) by calling the function fit(). To this end, the input
training data consists of all but the last column of array X,
while the labels of the training data are defined in the last
column. As in the previous examples, you use slicing to
extract the respective columns from the data array X.

The classification part is slightly different in this code
snippet. I wanted to show you how to classify multiple
observations instead of only one. You can achieve this here by
creating a multidimensional array with one row per
observation.

Here’s the output of the code snippet:

Result
students = Forest.predict([[8, 6, 5],
 [3, 7, 9],
 [2, 2, 1]])
print(students)
['computer science' 'art' 'art']

Note that the result is still nondeterministic (the result may
be different for different executions of the code) because the
random forest algorithm relies on the random number

generator that returns different numbers at different points in
time. You can make this call deterministic by using the integer
argument random_state. For example, you can set random_state=1

when calling the random forest constructor:
RandomForestClassifier(n_estimators=10, random_state=1). In this case,
each time you create a new random forest classifier, the same
output results because the same random numbers are created:
they are all based on the seed integer 1.

In summary, this section introduced a meta-approach for
classification: using the output of various decision trees to
reduce the variance of the classification error. This is one
version of ensemble learning, which combines multiple basic
models into a single meta-model that’s able to leverage their
individual strengths.

NOTE

Two different decision trees can lead to a high variance of the error: one
generates good results, while the other one doesn’t. By using random
forests, you mitigate this effect.

Variations of this idea are common in machine learning—
and if you need to quickly improve your prediction accuracy,
simply run multiple machine learning models and evaluate
their output to find the best one (a quick-and-dirty secret of
machine learning practitioners). In a way, ensemble learning
techniques automatically perform the task that’s often done by
experts in practical machine learning pipelines: selecting,
comparing, and combining the output of different machine
learning models. The big strength of ensemble learning is that
this can be done individually for each data value at runtime.

SUMMARY
This chapter covered 10 basic machine learning algorithms
that are fundamental to your success in the field. You’ve
learned about regression algorithms to predict values such as
linear regression, KNNs, and neural networks. You’ve learned
about classification algorithms such as logistic regression,
decision-tree learning, SVMs, and random forests.

Furthermore, you’ve learned how to calculate basic statistics
of multidimensional data arrays, and to use the K-Means
algorithm for unsupervised learning. These algorithms and
methods are among the most important algorithms in the field
of machine learning, and there are a lot more to study if you
want to start working as a machine learning engineer. That
learning will pay off—machine learning engineers usually
earn six figures in the United States (a simple web search
should confirm this)! For students who want to dive deeper
into machine learning, I recommend the excellent (and free)
Coursera course from Andrew Ng. You can find the course
material online by asking your favorite search engine.

In the next chapter, you’ll study one of the most important
(and most undervalued) skills of highly efficient programmers:
regular expressions. While this chapter was a bit more on the
conceptual side (you learned the general ideas, but the scikit-
learn library did the heavy lifting), the next chapter will be
highly technical. So, roll up your sleeves and read on!

5
REGULAR EXPRESSIONS

Are you an office worker, student, software developer,
manager, blogger, researcher, author, copywriter, teacher, or
self-employed freelancer? Most likely, you’re spending many
hours in front of your computer, day after day. Improving your
daily productivity—only by a small fraction of a percentage—
will mean a gain of thousands, if not tens of thousands, of
dollars of productivity and hundreds of hours of additional free
time over the years.

This chapter shows you an undervalued technique that
helps master coders be more efficient when working with
textual data: using regular expressions. This chapter shows
you 10 ways of using regular expressions to solve everyday
problems with less effort, time, and energy. Study this chapter
about regular expressions carefully—it’ll be worth your time!

FINDING BASIC TEXTUAL
PATTERNS IN STRINGS
This section introduces regular expressions using the re module
and its important re.findall() function. I’ll start by explaining
several basic regular expressions.

The Basics

A regular expression (regex, for short) formally describes a
search pattern that you can use to match sections of text. The
simple example in Figure 5-1 shows a search of Shakespeare’s
text Romeo and Juliet for the pattern Juliet.

Figure 5-1: Searching Shakespeare’s Romeo and Juliet for the pattern Juliet

Figure 5-1 shows that the most basic regular expression is a
simple string pattern. The string 'Juliet' is a perfectly valid
regular expression.

Regular expressions are incredibly powerful, and can do
much more than regular text search, but they’re built using
only a handful of basic commands. Learn these basic
commands and you’ll be able to understand and write complex
regular expressions. In this section, we’ll focus on the three
most important regex commands that extend the functionality
of simple search of string patterns in a given text.

The Dot Regex

First, you need to know how to match an arbitrary character by
using the dot regex, the . character. The dot regex matches any
character (including whitespace characters). You can use it to
indicate that you don’t care which character matches, as long
as exactly one matches:

import re

text = '''A blockchain, originally block chain,
is a growing list of records, called blocks,
which are linked using cryptography.
'''

print(re.findall('b...k', text))
['block', 'block', 'block']

This example uses the findall() method of the re module. The
first argument is the regex itself: you search for any string
pattern starting with the character 'b', followed by three
arbitrary characters, ... , followed by the character 'k'. This
regex b...k matches the word 'block' but also 'boook', 'b erk', and
'bloek'. The second parameter to findall() is the text you’re

searching. The string variable text contains three matching
patterns, as you can see in the output of the print statement.

The Asterisk Regex
Second, say you want to match text that begins and ends with
the character 'y' and an arbitrary number of characters in
between. How do you accomplish this? You can do by this
using the asterisk regex, the * character. Unlike the dot regex,
the asterisk regex can’t stand on its own; it modifies the
meaning of another regex. Consider the following example:

print(re.findall('y.*y', text))
['yptography']

The asterisk operator applies to the regex immediately in
front of it. In this example, the regex pattern starts with the
character 'y', followed by an arbitrary number of characters, .*,
followed by the character 'y'. As you can see, the word
'cryptography' contains one such instance of this pattern:
'yptography'.

You may wonder why this code doesn’t find the long
substring between 'originally' and 'cryptography', which should also
match the regex pattern y.*y. The reason is simply that the dot
operator matches any character except the newline character.
The string stored in the variable text is a multiline string with
three new lines. You can also use the asterisk operator in
combination with any other regex. For example, you can use
the regex abc* to match the strings 'ab', 'abc', 'abcc', and 'abccdc'.

The Zero-or-one Regex
Third, you need to know how to match zero or one characters
by using the zero-or-one regex, the ? character. Just like the
asterisk operator, the question mark modifies another regex, as
you can see in the following example:

print(re.findall('blocks?', text))
['block', 'block', 'blocks']

The zero-or-one regex, ?, applies to the regex immediately
in front of it. In our case, this is the character s. The zero-or-
one regex says that the pattern it modifies is optional.

There is another use of the question mark in Python’s re

package, but it has nothing to do with the zero-or-one regex:
the question mark can be combined with the asterisk operator,
*?, to allow for nongreedy pattern matching. For example, if
you use the regex .*?, Python searches for a minimal number of
arbitrary characters. In contrast, if you use the asterisk
operator * without the question mark, it greedily matches as
many characters as possible.

Let’s look at an example. When searching the HTML string
'<div>hello world</div>' by using the regex <.*>, it matches the
whole string '<div>hello world</div>' rather than only the prefix
'<div>'. If you want only the prefix, you can use the nongreedy
regex <.*?>:

txt = '<div>hello world</div>'

print(re.findall('<.*>', txt))
['<div>hello world</div>']

print(re.findall('<.*?>', txt))
['<div>', '</div>']

Equipped with these three tools—the dot regex ., the
asterisk regex *, and the zero-or-one regex ?—you’re now able
to comprehend the next one-liner solution.

The Code
Our input is a string, and our goal is to use a nongreedy
approach to find all patterns that start with the character 'p', end
with the character 'r', and have at least one occurrence of the
character 'e' (and, possibly, an arbitrary number of other
characters) in between!

These types of text queries occur quite frequently—
especially in companies that focus on text processing, speech
recognition, or machine translation (such as search engines,
social networks, or video platforms). Take a look at Listing 5-
1.

Dependencies
import re

Data
text = 'peter piper picked a peck of pickled peppers'

One-Liner
result = re.findall('p.*?e.*?r', text)

Result
print(result)

Listing 5-1: One-liner solution to search for specific phrases (nongreedy)

This code prints a list of all matching phrases in the text.
What are they?

How It Works
The regex search query is p.*?e.*?r. Let’s break this down.
You’re looking for a phrase that starts with the character 'p' and
ends with the character 'r'. Between those two characters, you
require one occurrence of the character 'e'. Apart from that, you
allow an arbitrary number of characters (whitespace or not).
However, you match in a nongreedy manner by using .*?,
which means Python will search for a minimal number of
arbitrary characters. Here’s the solution:

Result
print(result)
['peter', 'piper', 'picked a peck of pickled pepper']

Compare this solution with the one you’d get when using
the greedy regex p.*e.*r:

result = re.findall('p.*e.*r', text)
print(result)
['peter piper picked a peck of pickled pepper']

The first greedy asterisk operator .* matches almost the
whole string before it terminates.

WRITING YOUR FIRST WEB
SCRAPER WITH REGULAR
EXPRESSIONS

In the previous section, you learned about the most powerful
way to find arbitrary text patterns in strings: regular
expressions. This section will further motivate your use of
regular expressions and develop your knowledge with a
practical example.

The Basics
Suppose you’re working as a freelance software developer.
Your client is a fintech startup that needs to stay updated about
the latest developments in cryptocurrency. They hire you to
write a web scraper that regularly pulls the HTML source code
of news websites and searches it for words starting with 'crypto'

(for example, 'cryptocurrency', 'crypto-bot', 'crypto-crash', and so on).

Your first attempt is the following code snippet:

import urllib.request

search_phrase = 'crypto'

with urllib.request.urlopen('https://www.wired.com/') as response:
 html = response.read().decode("utf8") # convert to string
 first_pos = html.find(search_phrase)
 print(html[first_pos-10:first_pos+10])

The method urlopen() (from the module urllib.request) pulls the
HTML source code from the specified URL. Because the
result is a byte array, you have to first convert it to a string by
using the decode() method. Then you use the string method find()

to return the position of the first occurrence of the searched
string. With slicing (see Chapter 2), you carve out a substring
that returns the immediate environment of the position. The
result is the following string:

,r=window.crypto||wi

Aw. That looks bad. As it turns out, the search phrase is
ambiguous—most words containing 'crypto' are semantically
unrelated to cryptocurrencies. Your web scraper generates
false positives (it finds string results that you originally didn’t
mean to find). So how can you fix it?

Luckily, you’ve just read this Python book, so the answer is
obvious: regular expressions! Your idea to remove false

positives is to search for occurrences in which the word 'crypto'

is followed by up to 30 arbitrary characters, followed by the
word coin. Roughly speaking, the search query is crypto + <up to

30 arbitrary characters> + coin. Consider the following two
examples:

'crypto-bot that is trading Bitcoin'—yes
'cryptographic encryption methods that can be cracked easily with
quantum computers'—no

So how to solve this problem of allowing up to 30 arbitrary
characters between two strings? This goes beyond a simple
string search. You can’t enumerate every exact string pattern—
a virtually infinite number of matches is allowed. For example,
the search pattern must match all of the following: 'cryptoxxxcoin',
'crypto coin', 'crypto bitcoin', 'crypto is a currency. Bitcoin', and all other
character combinations with up to 30 characters between the
two strings. Even if you had only 26 characters in the alphabet,
the number of strings that would theoretically match our
requirement exceeds 26 =
2,813,198,901,284,745,919,258,621,029,615,971,520,741,376.
In the following, you’ll learn how to search a text for a regex
pattern that corresponds to a large number of possible string
patterns.

The Code
Here, given a string, you will find occurrences in which the
string 'crypto' is followed by up to 30 arbitrary characters,
followed by the string 'coin'. Let’s first look at Listing 5-2
before discussing how the code solves the problem.

Dependencies
import re

Data
text_1 = "crypto-bot that is trading Bitcoin and other currencies"
text_2 = "cryptographic encryption methods that can be cracked easily with
quantum computers"

One-Liner
pattern = re.compile("crypto(.{1,30})coin")

30

Result
print(pattern.match(text_1))
print(pattern.match(text_2))

Listing 5-2: One-liner solution to find text snippets in the form crypto(some text)coin

This code searches two string variables, text_1 and text_2.
Does the search query (pattern) match them?

How It Works
First, you import the standard module for regular expressions
in Python, called re. The important stuff happens in the one-
liner where you compile the search query crypto(.{1,30})coin. This
is the query that you can use to search various strings. You use
the following special regex characters. Read them from top to
bottom and you’ll understand the meaning of the pattern in
Listing 5-2:

() matches whatever regex is inside.
. matches an arbitrary character.
{1,30} matches between 1 and 30 occurrences of the previous regex.

(.{1,30}) matches between 1 and 30 arbitrary characters.
crypto(.{1,30})coin matches the regex consisting of three parts: the word
'crypto', an arbitrary sequence with 1 to 30 chars, followed by the word
'coin'.

We say that the pattern is compiled because Python creates
a pattern object that can be reused in multiple locations—
much as a compiled program can be executed multiple times.
Now, you call the function match() on our compiled pattern and
the text to be searched. This leads to the following result:

Result
print(pattern.match(text_1))
<re.Match object; span=(0, 34), match='crypto-bot that is trading Bitcoin'>

print(pattern.match(text_2))
None

The string variable text_1 matches the pattern (indicated by
the resulting match object), but text_2 doesn’t (indicated by the
result None). Although the textual representation of the first
matching object doesn’t look pretty, it gives a clear hint that

the given string 'crypto-bot that is trading Bitcoin' matches the regular
expression.

ANALYZING HYPERLINKS OF
HTML DOCUMENTS
In the preceding section, you learned how to search a string for
a large number of patterns by using the regex pattern .{x,y}.
This section goes further, introducing many more regular
expressions.

The Basics
Knowing more regular expressions will help you solve real-
world problems quickly and concisely. So what are the most
important regular expressions? Study the following list
carefully because we’ll use all of them in this chapter. Just
view the ones you’ve already seen as a small repetition
exercise.

The dot regex . matches an arbitrary character.
The asterisk regex <pattern>* matches an arbitrary number of the regex
<pattern>. Note that this includes zero matching instances.

The at-least-one regex <pattern>+ can match an arbitrary number of
<pattern> but must match at least one instance.
The zero-or-one regex <pattern>? matches either zero or one instances
of <pattern>.
The nongreedy asterisk regex *? matches as few arbitrary characters as
possible to match the overall regex.
The regex <pattern>{m} matches exactly m copies of <pattern>.

The regex <pattern>{m,n} matches between m and n copies of
<pattern>.
The regex <pattern_1>|<pattern_2> matches either <pattern_1> or
<pattern_2>.
The regex <pattern_1><pattern_2> matches <pattern_1> and then
<pattern_2>.
The regex (<pattern>) matches <pattern>. The parentheses group
regular expressions so you can control the order of execution (for
example, (<pattern_1><pattern_2>)|<pattern_3> is different from
<pattern_1> (<pattern_2>|<pattern_3>). The parentheses regex also
creates a matching group, as you’ll see later in the section.

Let’s consider a short example. Say you create the regex b?

(.a)*. Which patterns will the regex match? The regex matches
all patterns starting with zero or one b and an arbitrary number

of two-character-sequences ending in the character 'a'. Hence,
the strings 'bcacaca', 'cadaea', '' (the empty string), and 'aaaaaa' would
all match the regex.

Before diving into the next one-liner, let’s quickly discuss
when to use which regex function. The three most important
regex functions are re.match(), re.search(), and re.findall(). You’ve
already seen two of them, but let’s study them more
thoroughly in this example:

import re

text = '''
"One can never have enough socks", said Dumbledore.
"Another Christmas has come and gone and I didn't
get a single pair. People will insist on giving me books."
Christmas Quote
'''

regex = 'Christ.*'

print(re.match(regex, text))
None

print(re.search(regex, text))
<re.Match object; span=(62, 102), match="Christmas has come and gone and I
didn't">

print(re.findall(regex, text))
["Christmas has come and gone and I didn't", 'Christmas Quote']

All three functions take the regex and the string to be
searched as an input. The match() and search() functions return a
match object (or None if the regex did not match anything). The
match object stores the position of the match and more
advanced meta-information. The function match() does not find
the regex in the string (it returns None). Why? Because the
function looks for the pattern only at the beginning of the
string. The function search() searches for the first occurrence of
the regex anywhere in the string. Therefore, it finds the match
"Christmas has come and gone and I didn't".

The findall() function has the most intuitive output, but it’s
also the least useful for further processing. The result of findall()

is a sequence of strings rather than a match object—so it
doesn’t give us information about the precise location of the

match. That said, findall() has its uses: in contrast to the match()

and search() methods, the function findall() retrieves all matched
patterns, which is useful when you want to quantify how often
a word appears in a text (for example, the string 'Juliet' in the
text 'Romeo and Juliet' or the string 'crypto' in an article about
cryptocurrency).

The Code
Say your company asks you to create a small web bot that
crawls web pages and checks whether they contain links to the
domain finxter.com. They also ask you to make sure the
hyperlink descriptions contain the strings 'test' or 'puzzle'. In
HTML, hyperlinks are enclosed in an <a> tag environment.
The hyperlink itself is defined as the value of the href attribute.
So more precisely, the goal is to solve the following problem,
depicted in Listing 5-3: given a string, find all hyperlinks that
point to the domain finxter.com and contain the strings 'test' or
'puzzle' in the link description.

Dependencies
import re

Data
page = '''
<!DOCTYPE html>
<html>
<body>

<h1>My Programming Links</h1>
test your Python skills
Learn recursion
Great books from NoStarchPress
Solve more Python puzzles

</body>
</html>
'''

One-Liner
practice_tests = re.findall("(<a.*?finxter.*?(test|puzzle).*?>)", page)

Result
print(practice_tests)

Listing 5-3: One-liner solution to analyze web page links

This code finds two occurrences of the regular expression.
Which ones?

How It Works
The data consists of a simple HTML web page (stored as a
multiline string) containing a list of hyperlinks (the tag
environment link text). The one-liner solution uses
the function re.findall() to check the regular expression (<a.*?

finxter.*?(test|puzzle).*?>). This way, the regular expression returns
all occurrences in the tag environment <a. . .> with the
following restrictions.

After the opening tag, you match an arbitrary number of
characters (nongreedily, to prevent the regex from “chewing
up” multiple HTML tag environments), followed by the string
'finxter'. Next, you match an arbitrary number of characters
(nongreedily), followed by one occurrence of either the string
'test' or the string 'puzzle'. Again, you match an arbitrary number
of characters (nongreedily), followed by the closing tag. This
way, you find all hyperlink tags that contain the respective
strings. Note that this regex also matches tags where the
strings 'test' or 'puzzle' occur within the link itself. Please also
note that you use only nongreedy asterisk operators '.*?' to
ensure that you always search for minimal matches rather than
matching—for example, a very long string enclosed in
multiple nested tag environments.

The result of the one-liner is the following:

Result
print(practice_tests)
[('test your Python skills', 'test'),
('Solve more Python puzzles', 'puzzle')]

Two hyperlinks match our regular expression: the result of
the one-liner is a list with two elements. However, each
element is a tuple of strings rather than a simple string. This is
different from the results of findall(), which we’ve discussed in
previous code snippets. What’s the reason for this behavior?
The return type is a list of tuples—with one tuple value for
each matching group enclosed in (). For instance, the regex

(test|puzzle) uses the parentheses notation to create a matching
group. If you use matching groups in your regex, the function
re.findall() will add one tuple value for every matched group. The
tuple value is the substring that matches this particular group.
For example, in our case, the substring 'puzzle' matches the
group (test|puzzle). Let’s dive more deeply into the topic of
matching groups to clarify this concept.

EXTRACTING DOLLARS FROM A
STRING
This one-liner shows you another practical application of
regular expressions. Here, you’re working as a financial
analyst. As your company considers acquiring another
company, you’re assigned to read the other company’s reports.
You’re particularly interested in all dollar figures. Now, you
could scan the whole document manually, but the work is
tedious, and you don’t want to spend your best hours of the
day doing tedious work. So you decide to write a small Python
script. But what’s the best way of doing it?

The Basics
Fortunately, you’ve read this regex tutorial, so instead of
wasting a lot of time writing your own lengthy, error-prone
Python parser, you go for the clean solution with regular
expressions—a wise choice. But before you dive into the
problem, let’s discuss three more regex concepts.

First, sooner or later you want to match a special character
that’s also used as a special character by the regex language. In
this case, you need to use the prefix \ to escape the meaning of
the special character. For example, to match the parenthesis
character '(', which is normally used for regex groups, you need
to escape it with the regex \(. This way, the regex character '('

loses its special meaning.

Second, the square bracket environment [] allows you to
define a range of specific characters to be matched. For
example, the regex [0-9] matches one of the following

characters: '0', '1', '2', . . . , '9'. Another example is the regex [a-e],
which matches one of the following characters: 'a', 'b', 'c', 'd', 'e'.

Third, as we discussed in the previous one-liner section, the
parentheses regex (<pattern>) indicates a group. Every regex can
have one or multiple groups. When using the re.findall() function
on a regex with groups, only the matched groups are returned
as a tuple of strings—one for each group—rather than the
whole matched string. For example, the regex hello(world) called
on the string 'helloworld' would match the whole string but return
only the matched group world. On the other hand, when using
two nested groups in the regex (hello(world)), the result of the
re.findall() function would be a tuple of all matched groups
('helloworld', 'world'). Study the following code to understand
nested groups completely:

string = 'helloworld'

regex_1 = 'hello(world)'
regex_2 = '(hello(world))'

res_1 = re.findall(regex_1, string)
res_2 = re.findall(regex_2, string)

print(res_1)
['world']
print(res_2)
[('helloworld', 'world')]

Now, you know everything you need to know to understand
the following code snippet.

The Code
To recap, you want to investigate all monetary numbers from a
given company report. Specifically, your goal is to solve the
following problem: given a string, find a list of all occurrences
of dollar amounts with optional decimal values. The following
example strings are valid matches: $10, $10., or $10.00021.
How can you achieve this efficiently in a single line of code?
Take a look at Listing 5-4.

Dependencies
import re

Data
report = '''
If you invested $1 in the year 1801, you would have $18087791.41 today.
This is a 7.967% return on investment.
But if you invested only $0.25 in 1801, you would end up with $4521947.8525.
'''

One-Liner
dollars = [x[0] for x in re.findall('(\$[0-9]+(\.[0-9]*)?)', report)]

Result
print(dollars)

Listing 5-4: One-liner solution to find all dollar amounts in a text

Take a guess: what’s the output of this code snippet?

How It Works
The report contains four dollar values in various formats. The
goal is to develop a regex that matches all of them. You design
the regex (\$[0-9]+(.[0-9]*)?) that matches the following patterns.
First, it matches the dollar sign $ (you escape it because it’s a
special regex character). Second, it matches a number with an
arbitrary number of digits between 0 and 9 (but at least one
digit). Third, it matches an arbitrary number of decimal values
after the (escaped) dot character '.' (this last match is optional
as indicated by the zero-or-one regex ?).

On top of that, you use list comprehension to extract only
the first tuple value of all three resulting matches. Again, the
default result of the re.findall() function is a list of tuples, with
one tuple for each successful match and one tuple value for
each group within the match:

[('$1', ''), ('$18087791.41', '.41'), ('$0.25', '.25'), ('$4521947.8525', '.8525')]

You’re interested in only the global group—the first value
in the tuple. You filter out the other values by using list
comprehension and get the following result:

Result
print(dollars)
['$1 ', '$18087791.41', '$0.25', '$4521947.8525']

It’s worth noting again that implementing even a simple
parser without the powerful capabilities of regular expressions
would be difficult and error-prone!

FINDING NONSECURE HTTP
URLS
This one-liner shows you how to solve one of those small,
time-intensive problems that web developers often run into.
Say you own a programming blog and you’ve just moved your
website from the unsecure protocol http to the (more) secure
protocol https. However, your old articles still point to the old
URLs. How can you find all occurrences of the old URLs?

The Basics
In the preceding section, you learned how to use square
bracket notation to specify an arbitrary range of characters. For
example, the regular expression [0-9] matches a single-digit
number with a value from 0 to 9. However, the square bracket
notation is more powerful than that. You can use an arbitrary
combination of characters within the square brackets to specify
exactly which characters match—and which don’t. For
example, the regular expression [0-3a-c]+ matches the strings
'01110' and '01c22a' but not the strings '443' and '00cd'. You can also
specify a fixed set of characters not to match by using the
symbol ^: the regular expression [^0-3a-c]+ matches the strings
'4444d' and 'Python' but not the strings '001' and '01c22a'.

The Code
Here our input is a (multiline) string, and our aim is to find all
occurrences of valid URLs that start with the prefix http://.
However, don’t consider invalid URLs without a top-level
domain (there has to be at least one . in the found URL). Take
a look at Listing 5-5.

Dependencies
import re

Data
article = '''

The algorithm has important practical applications
http://blog.finxter.com/applications/
in many basic data structures such as sets, trees,
dictionaries, bags, bag trees, bag dictionaries,
hash sets, https://blog.finxter.com/sets-in-python/
hash tables, maps, and arrays. http://blog.finxter.com/
http://not-a-valid-url
http:/bla.ba.com
http://bo.bo.bo.bo.bo.bo/
http://bo.bo.bo.bo.bo.bo/333483--33343-/
'''

One-Liner
stale_links = re.findall('http://[a-z0-9_\-.]+\.[a-z0-9_\-/]+', article)

Results
print(stale_links)

Listing 5-5: One-liner solution to find valid http:// URLs

Again, try to come up with the output the code will produce
before looking up the correct output that follows.

How It Works
In the regular expression, you analyze a given multiline string
(potentially an old blog article) to find all URLs that start with
the string prefix http://. The regular expression expects a
positive number of (lowercase) characters, numbers,
underscores, hyphens, or dots ([a-z0-9_\-\.]+). Note that you need
to escape the hyphen (\-) because it normally indicates a range
within the square brackets. Similarly, you need to escape the
dot (\.) because you actually want to match the dot and not an
arbitrary character. This results in the following output:

Results
print(stale_links)
['http://blog.finxter.com/applications/',
'http://blog.finxter.com/',
'http://bo.bo.bo.bo.bo.bo/',
'http://bo.bo.bo.bo.bo.bo/333483--33343-/']

Four valid URLs may need to be moved to the more secure
HTTPS protocol.

At this point, you’ve already mastered the most important
features of regular expressions. But there’s a level of deep

understanding that you’ll reach only by practicing and
studying a lot of examples—and regular expressions are no
exception. Let’s study a few more practical examples of how
regular expressions can make your life easier.

VALIDATING THE TIME FORMAT
OF USER INPUT, PART 1
Let’s learn to check the correctness of user-input formatting.
Say you write a web application that calculates health statistics
based on the sleep duration of your users. Your users enter the
time they went to bed and the time they wake up. An example
for a correct time format is 12:45, but because web bots are
spamming your user input fields, a lot of “dirty” data is
causing unnecessary processing overhead on your servers. To
address this issue, you write a time-format checker that
determines whether the input is worth processing further with
your backend application. With regular expressions, writing
the code takes only a few minutes.

The Basics
In the previous few sections, you’ve learned about the
re.search(), re.match(), and re.findall() functions. These are not the
only regex functions. In this section, you’ll use re.fullmatch(regex,

string), which checks whether the regex matches the full string as
the name suggests.

Furthermore, you’ll use the regex syntax pattern{m,n} that
matches between m and n instances of the regex pattern, but no
more and no less. Note that it attempts to match the maximal
number of occurrences of pattern. Here’s an example:

import re
print(re.findall('x{3,5}y', 'xy'))
[]
print(re.findall('x{3,5}y', 'xxxy'))
['xxxy']
print(re.findall('x{3,5}y', 'xxxxxy'))
['xxxxxy']
print(re.findall('x{3,5}y', 'xxxxxxy'))
['xxxxxy']

Using the bracket notation, the code doesn’t match
substrings with fewer than three and more than five 'x'

characters.

The Code
Our goal is to write a function input_ok that takes a string
argument and checks whether it has the (time) format XX:XX,
where X is a number from 0 to 9; see Listing 5-6. Note that, for
now, you accept semantically wrong time formats such as
12:86, but the next one-liner section tackles this more
advanced problem.

Dependencies
import re

Data
inputs = ['18:29', '23:55', '123', 'ab:de', '18:299', '99:99']

One-Liner
input_ok = lambda x: re.fullmatch('[0-9]{2}:[0-9]{2}', x) != None

Result
for x in inputs:
 print(input_ok(x))

Listing 5-6: One-liner solution to check whether a given user input matches the
general time format XX:XX

Before you move on, try to determine the results of the six
function calls in this code.

How It Works
The data consists of six input strings as received by the
frontend of your web application. Are they correctly
formatted? To check this, you create the function input_ok by
using a lambda expression with one input argument x and a
Boolean output. You use the function fullmatch(regex, x) and
attempt to match the input argument x by using our time-
formatting regex. If you couldn’t match it, the result takes the
value None and the Boolean output becomes False. Otherwise,
the Boolean output is True.

The regex is simple: [0-9]{2}:[0-9]{2}. This pattern matches
two leading numbers from 0 to 9, followed by the colon:,
followed by two trailing numbers from 0 to 9. Thus, the result
of Listing 5-6 is the following:

Result
for x in inputs:
 print(input_ok(x))
'''
True
True
False
False
False
True
'''

The function input_ok correctly identifies the correct formats
of the time inputs. In this one-liner, you’ve learned how highly
practical tasks—that would otherwise take multiple lines of
code and more effort—can be finished successfully in a few
seconds with the right tool set.

VALIDATING TIME FORMAT OF
USER INPUT, PART 2
In this section, you’ll dive deeper into validating the time
format of user inputs to solve the problem of the previous
section: invalid time inputs such as 99:99 should not be
considered valid matches.

The Basics
A useful strategy to solve problems is to address them
hierarchically. First, strip down the problem to its core and
solve the easier variant. Then, refine the solution to match
your specific (and more complicated) problem. This section
refines the previous solution in an important way: it doesn’t
allow invalid time inputs such as 99:99 or 28:66. Hence, the
problem is more specific (and more complicated), but you can
reuse parts of our old solution.

The Code

Our goal is to write a function input_ok that takes a string
argument and checks whether it has the (time) format XX:XX,
where X is a number between 0 and 9; see Listing 5-7.
Additionally, the given time must be a valid time format in the
24-hour time ranging from 00:00 to 23:59.

Dependencies
import re

Data
inputs = ['18:29', '23:55', '123', 'ab:de', '18:299', '99:99']

One-Liner
input_ok = lambda x: re.fullmatch('([01][0-9]|2[0-3]):[0-5][0-9]', x) != None

Result
for x in inputs:
 print(input_ok(x))

Listing 5-7: One-liner solution to check whether a given user input matches the
general time format XX:XX and is valid in the 24-hour time

This code prints six lines. What are they?

How It Works
As mentioned in the introduction of this section, you can reuse
the solution of the previous one-liner to solve this problem
easily. The code stays the same—you modified only the
regular expression ([01][0-9]|2[0-3]):[0-5][0-9]. The first part ([01][0-

9]|2[0-3]) is a group that matches all possible hours of the day.
You use the or operator | to differentiate hours 00 to 19 on the
one hand, and hours 20 to 23 on the other hand. The second
part [0-5][0-9] matches the minutes of the day from 00 to 59. The
result is, therefore, as follows:

Result
for x in inputs:
 print(input_ok(x))

'''
True
True
False
False
False

False
'''

Note that the sixth line of the output indicates that the time
99:99 is no longer considered a valid user input. This one-liner
shows how to use regular expressions to check whether the
user input matches the semantic requirements of your
application.

DUPLICATE DETECTION IN
STRINGS
This one-liner introduces an exciting capability of regular
expressions: reusing parts you’ve already matched later in the
same regex. This powerful extension allows you to solve a
new set of problems, including detecting strings with
duplicated characters.

The Basics
This time, you’re working as a computer linguistics researcher
analyzing how certain word usages change over time. You use
published books to classify and track word usage. Your
professor asks you to analyze whether there’s a trend toward a
more frequent use of duplicate characters in words. For
example, the word 'hello' contains the duplicate character 'l',
while the word 'spoon' contains the duplicate character 'o'.
However, the word 'mama' would not be counted as a word with
a duplicate character 'a'.

The naive solution to this problem is to enumerate all
possible duplicate characters 'aa', 'bb', 'cc', 'dd', . . . , 'zz' and
combine them in an either-or regex. This solution is tedious
and not easily generalized. What if your professor changes
their mind and asks you to check for repeat characters with up
to one character in between (for example, the string 'mama'

would now be a match)?

No problem: there’s a simple, clean, and effective solution
if you know the regex feature of named groups. You’ve
already learned about groups that are enclosed in parentheses
(...). As the name suggests, a named group is just a group with

a name. For instance, you can define a named group around
the pattern ... with the name name by using the syntax (?

P<name>...). After you define a named group, you can use it
anywhere in your regular expression with the syntax (?P=name).
Consider the following example:

import re

pattern = '(?P<quote>[\'"]).*(?P=quote)'
text = 'She said "hi"'
print(re.search(pattern, text))
<re.Match object; span=(9, 13), match='"hi"'>

In the code, you search for substrings that are enclosed in
either single or double quotes. To accomplish that, you first
match the opening quote by using the regex ['"] (you escape the
single quote, \’, to avoid Python wrongly assuming that the
single quote indicates the end of the string). Then, you use the
same group to match the closing quote of the same character
(either a single or double quote).

Before diving into the code, note that you can match
arbitrary whitespaces with the regex \s. Also, you can match
characters that are not in a set Y by using the syntax [^Y].
That’s everything you need to know to solve our problem.

The Code
Consider the problem illustrated in Listing 5-8: given a text,
find all words that contain duplicate characters. A word in this
case is defined as any series of non-whitespace characters
separated by an arbitrary number of whitespace characters.

Dependencies
import re

Data
text = '''
It was a bright cold day in April, and the clocks were
striking thirteen. Winston Smith, his chin nuzzled into
his breast in an effort to escape the vile wind, slipped
quickly through the glass doors of Victory Mansions,
though not quickly enough to prevent a swirl of gritty
dust from entering along with him.
-- George Orwell, 1984
'''

One-Liner
duplicates = re.findall('([^\s]*(?P<x>[^\s])(?P=x)[^\s]*)', text)

Results
print(duplicates)

Listing 5-8: One-liner solution to find all duplicate characters

What are the words with duplicate characters found in this
code?

How It Works
The regex (?P<x>[^\s]) defines a new group with the name x. The
group consists of only a single arbitrary character that is not
the whitespace character. The regex (?P=x) immediately follows
the named group x. It simply matches the same character
matched by the group x. You’ve found the duplicate
characters! However, the goal is not to find duplicate
characters, but words with duplicate characters. So you match
an arbitrary number of non-whitespace characters [^\s]* before
and after the duplicate characters.

The output of Listing 5-8 is the following:

Results
print(duplicates)
'''
[('thirteen.', 'e'), ('nuzzled', 'z'), ('effort', 'f'),
('slipped', 'p'), ('glass', 's'), ('doors', 'o'),
('gritty', 't'), ('--', '-'), ('Orwell,', 'l')]
'''

The regex finds all words with duplicate characters in the
text. Note that there are two groups in the regex of Listing 5-8,
so every element returned by the re.findall() function consists of
a tuple of matched groups. You’ve already seen this behavior
in previous sections.

In this section, you’ve enhanced your regex tool set with
one powerful tool: named groups. In combination with two
minor regex features of matching arbitrary whitespace
characters with \s and defining a set of characters that are not

matched with the operator [^...], you’ve made serious progress
toward Python regex proficiency.

DETECTING WORD REPETITIONS
In the preceding section, you learned about named groups. The
goal of this section is to show you more advanced ways of
using this powerful feature.

The Basics
While working as a researcher over the last few years, I spent
most of my time writing, reading, and editing research papers.
When editing my research papers, a colleague used to
complain that I was using the same words repeatedly (and too
closely in the text). Wouldn’t it be useful to have a tool that
checks your writing programmatically?

The Code
You’re given a string consisting of lowercase, whitespace-
separated words, without special characters. Find a matching
substring where the first and the last word are the same
(repetition) and in-between are at most 10 words. See Listing
5-9.

Dependencies
import re

Data
text = 'if you use words too often words become used'

One-Liner
style_problems = re.search('\s(?P<x>[a-z]+)\s+([a-z]+\s+){0,10}(?P=x)\s', ' ' + text
+ ' ')

Results
print(style_problems)

Listing 5-9: One-liner solution to find word repetitions

Does this code find word repetitions?

How It Works

Again, you assume that a given text consists of only
whitespace-separated, lowercase words. Now, you search the
text by using a regular expression. It might look complex at
first, but let’s break it down piece by piece:

'➊\s(?P<x>[a-z]+)\s+➋([a-z]+\s+){0,10}➌(?P=x)\s'

You start with a single whitespace character. This is
important to ensure that you start with a whole word (and not
with a suffix of a word). Then, you match a named group x that
consists of a positive number of lowercase characters from 'a'

to 'z', followed by a positive number of whitespaces ➊.

You proceed with 0 to 10 words, where each word consists
of a positive number of lowercase characters from 'a' to 'z',
followed by a positive number of whitespaces ➋.

You finish with the named group x, followed by a
whitespace character to ensure that the last match is a whole
word (and not only a prefix of a word) ➌.

The following is the output of the code snippet:

Results
print(style_problems)
<re.Match object; span=(12, 35), match=' words too often words '>

You found a matching substring that may (or may not) be
considered as bad style.

In this one-liner, you stripped down the problem of finding
duplicate words to its core and solved this easier variant. Note
that in practice, you’d have to include more complicated cases
such as special characters, a mix of lowercase and uppercase
characters, numbers, and so on. Alternatively, you could do
some preprocessing to bring the text into the desired form of
lowercase, whitespace-separated words, without special
characters.

EXERCISE 5-1

Write a Python script that allows for more special
characters, such as characters to structure your sentences
(period, colon, comma).

MODIFYING REGEX PATTERNS
IN A MULTILINE STRING
In the final regex one-liner, you’ll learn how to modify a text
rather than matching only parts of it.

The Basics
To replace all occurrences of a certain regex pattern with a new
string replacement in a given text, use the regex function
re.sub(regex, replacement, text). This way, you can quickly edit large
text bases without a lot of manual labor.

In the previous sections, you learned how to match patterns
that occur in the text. But what if you don’t want to match a
certain pattern if another pattern occurs? The negative
lookahead regex pattern A(?!X) matches a regex A if the regex X
does not match afterward. For example, the regex not (?!good)

would match the string 'this is not great' but would not match the
string 'this is not good'.

The Code
Our data is a string, and our task is to replace all occurrences
of Alice Wonderland with 'Alice Doe', but not to replace occurrences
of 'Alice Wonderland' (enclosed in single quotes). See Listing 5-10.

Dependencies
import re

Data
text = '''
Alice Wonderland married John Doe.
The new name of former 'Alice Wonderland' is Alice Doe.
Alice Wonderland replaces her old name 'Wonderland' with her new name 'Doe'.
Alice's sister Jane Wonderland still keeps her old name.
'''

One-Liner
updated_text = re.sub("Alice Wonderland(?!')", 'Alice Doe', text)

Result
print(updated_text)

Listing 5-10: One-liner solution to replace patterns in a text

This code prints the updated text. What is it?

How It Works
You replace all occurrences of Alice Wonderland with Alice Doe, but
not the ones that end with the single quote '. You do this by
using a negative lookahead. Note that you check only whether
the closing quote exists. For example, a string with an opening
quote but without a closing quote would match, and you’d
simply replace it. This may not be desired in general, but it
leads to the desired behavior in our example string:

Result
print(updated_text)
'''
Alice Doe married John Doe.
The new name of former 'Alice Wonderland' is Alice Doe.
Alice Doe replaces her old name 'Wonderland' with her new name 'Doe'.
Alice's sister Jane Wonderland still keeps her old name.
'''

You can see that the original name of 'Alice Wonderland' is left
unchanged when enclosed in single quotes—which was the
goal of this code snippet.

SUMMARY
This chapter covered a lot of ground. You’ve learned about
regular expressions, which you can use to match patterns in a
given string. In particular, you’ve learned about the functions
re.compile(), re.match(), re.search(), re.findall(), and re.sub(). Together,
they cover a high percentage of regular expression use cases.
You can pick up other functions as you apply regular
expressions in practice.

You’ve also learned about various basic regular expressions
that you can combine (and recombine) in order to create more
advanced regular expressions. You’ve learned about
whitespaces, escaped characters, greedy/nongreedy operators,
character sets (and negative characters sets), grouping and
named groups, and negative lookaheads. And finally, you’ve
learned that it’s often better to solve a simplified variant of the
original problem than trying to generalize too early.

The only thing left is to apply your new regex skill in
practice. A good way of getting used to regular expressions is
to start using them in your favorite text editor. Most advanced
text and code editors (including Notepad++) ship with
powerful regular expression functionality. Also, consider
regular expressions when working with textual data (for
example when writing emails, blog articles, books, and code).
Regular expressions will make your life easier and save you
many hours of tedious work.

In the next chapter, we’ll dive into the supreme discipline
of coding: algorithms.

6
ALGORITHMS

Algorithms are ancient concepts. An algorithm is nothing
more than a set of instructions, much like a cooking recipe.
However, the role algorithms play in society is increasing
drastically in importance: algorithms and algorithmic decision-
making are ubiquitous as computers become a larger and
larger part of our lives.

A 2018 study highlights that “Data, in the form of
observations about our world, permeate modern society. . . .
This information can in turn be used to make informed—and
in some cases even fully automated—decisions. . . . It seems
likely that such algorithms will interface with human decision-
making, a development necessary to gain societal acceptance
and thus wide-scale use.”

NOTE

For more information on this study, see “The Growing Ubiquity of Algorithms
in Society: Implications, Impacts, and Innovations” by S. C. Olhede and P. J.
Wolfe at
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2017.0364#d2696064
e1.

As society undergoes major trends in automation, artificial
intelligence, and ubiquitous computing, the societal gap
between those who understand algorithms and those who don’t
grows rapidly. For example, the logistics sector undergoes a
major trend toward automation—with self-driving cars and

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2017.0364#d2696064e1

trucks on the rise—and professional drivers face the fact that
algorithms take over their jobs.

The constantly shifting landscape of sought-after skills and
jobs in the 21st century makes it imperative for young people
to understand, control, and manipulate basic algorithms. While
the only constant is change, the concepts and basics of
algorithms and algorithmic theory form the basis upon which
much of the upcoming changes are built. Roughly speaking,
understand algorithms and you’ll be well equipped to thrive in
the upcoming decades.

This chapter aims to improve your understanding of
algorithms, focusing more on your intuition and a well-
rounded understanding of concepts and practical
implementations than on theory. While algorithmic theory is as
important as practical implementations and conceptual
understanding, many great books focus on the theory part.
After reading this chapter, you will intuitively understand
some of the most popular algorithms in computer science—
and improve your practical Python implementation skills. This
may provide you a strong foundation for the upcoming
technological breakthroughs.

NOTE

The book Introduction to Algorithms by Thomas Cormen et al. (MIT Press,
2009) is an excellent follow-up resource on algorithmic theory.

Let’s start with a small algorithm to solve a simple problem
that is relevant for programmers who want to find good jobs.

FINDING ANAGRAMS WITH
LAMBDA FUNCTIONS AND
SORTING
Anagrams are a popular topic in programming interviews to
test your computer science vocabulary and how good you are
at developing your own simple algorithms. In this section,
you’ll learn about a simple algorithm to find anagrams in
Python.

The Basics
Two words are anagrams if they consist of the same characters
and if every character of the first word appears in the second
word exactly once. This is illustrated in Figure 6-1 and in the
following examples:

“listen” → “silent”
“funeral ” → “real fun”
“elvis” → “lives”

Figure 6-1: The word elvis is an anagram of the word lives.

We’ll now work on this problem and arrive at a concise
Pythonic solution to figuring out whether two words are
anagrams. Let’s start coding.

The Code
Our goal is to write a function is_anagram() that takes two strings
x1 and x2 and returns True if those are anagrams! Before you
read on, pause for a moment and think about the problem.
How would you approach it in Python? Listing 6-1 shows one
solution.

 ## One-Liner
➊ is_anagram = lambda x1, x2: sorted(x1) == sorted(x2)

 ## Results
 print(is_anagram("elvis", "lives"))
 print(is_anagram("elvise", "livees"))
 print(is_anagram("elvis", "dead"))

Listing 6-1: One-liner solution to check whether two strings are anagrams

This code prints three lines. What are they?

How It Works
Two strings are anagrams if they have the same sorted
character sequence, so our method is to sort both strings and
then make an element-wise comparison. It’s that easy. There is
no need for external dependencies. You simply create a
function is_anagram() ➊ by using the lambda function definition
(see Chapter 1) with two arguments x1 and x2. The function
returns the result of the expression sorted(x1) == sorted(x2), which
is True if the sorted character sequences consist of the same
characters. Here’s the output of the two sorted character
sequences:

print(sorted("elvis"))
['e', 'i', 'l', 's', 'v']

print(sorted("lives"))
['e', 'i', 'l', 's', 'v']

Both strings 'elvis' and 'lives' consist of the same characters,
so the sorted list representation is the same. The result of the
three print statements is the following:

Results
print(is_anagram("elvis", "lives")) # True
print(is_anagram("elvise", "livees")) # True
print(is_anagram("elvis", "dead")) # False

As a small side note for advanced coders: the runtime
complexity of sorting a sequence of n elements in Python
grows asymptotically like the function n log(n). That means
our one-liner algorithm is more efficient than the naive
solution of checking whether every character exists in both

strings and removing the character if this is the case. The naive
algorithm grows asymptotically like the quadratic function
n**2.

However, there’s another efficient way, called
histogramming, whereby you create a histogram for both
strings that counts the number of occurrences of all characters
in that string, and then compare the two histograms. Assuming
a constant-sized alphabet, the runtime complexity of
histogramming is linear; it grows asymptotically like the
function n. Feel free to implement this algorithm as a small
exercise!

FINDING PALINDROMES WITH
LAMBDA FUNCTIONS AND
NEGATIVE SLICING
This section introduces another computer science term that’s
popular in interview questions: palindromes. You’ll use a one-
liner to check whether two words are palindromes of each
other.

The Basics
First things first: what is a palindrome? A palindrome can be
defined as a sequence of elements (for example, a string or a
list) that reads the same backward as it does forward. Here are
a few fun examples that are palindromes if you take out the
whitespace:

“Mr Owl ate my metal worm”
“Was it a car or a cat I saw?”

“Go hang a salami, I’m a lasagna hog”
“Rats live on no evil star”
“Hannah”
“Anna”

“Bob”

Our one-liner solution will require your basic
understanding of slicing. As you know from Chapter 2, slicing
is a Python-specific concept for carving out a range of values
from sequence types such as lists or strings. Slicing uses the

concise notation [start:stop:step] to slice a sequence starting at
index start (inclusive) and ending at index stop (exclusive). The
third parameter step allows you to define the step size, which is
how many characters from the original sequence your slice
will skip before taking the next character (for example, step=2

means that your slice will consist of only every other
character). When using a negative step size, the string is
traversed in reverse order.

This is everything you need to know to come up with a
short and concise one-liner solution in Python.

The Code
When given a string, you want your code to check whether the
reverse sequence of characters equals the original sequence, to
determine whether the string is a palindrome. Listing 6-2
shows the solution.

One-Liner
is_palindrome = lambda phrase: phrase == phrase[::-1]

Result
print(is_palindrome("anna"))
print(is_palindrome("kdljfasjf"))
print(is_palindrome("rats live on no evil star"))

Listing 6-2: One-liner solution to check whether a phrase is a palindrome

How It Works
The simple one-liner solution does not depend on any external
library. You define a lambda function that takes a single
argument phrase—the string to be tested—and returns a Boolean
value that says whether the sequence of characters remains
unchanged when reversed. To reverse the string, you use
slicing (see Chapter 2).

The result of the one-liner code snippet is the following:

Result
print(is_palindrome("anna")) # True
print(is_palindrome("kdljfasjf")) # False
print(is_palindrome("rats live on no evil star")) # True

The first and third strings are palindromes, but the second
isn’t. Next let’s dive into another popular computer science
concept: permutations.

COUNTING PERMUTATIONS
WITH RECURSIVE FACTORIAL
FUNCTIONS
This section explains a simple and effective way of computing
the factorial in a single line of code to figure out the maximum
number of possible permutations in a data set.

The Basics
Consider the following problem: England’s Premier League
has 20 soccer teams, each of which can reach any of the 20
ranks at the end of the season. Given 20 fixed teams, you can
calculate how many possible versions of these rankings exist.
Note that the question is not how many rankings a single team
can achieve (the answer would be 20) but how many total
rankings of all teams exist. Figure 6-2 shows just three
possible rankings.

Figure 6-2: Three possible rankings of the soccer teams in England’s Premier
League

In computer science terminology, you would denote each
ranking as a permutation, defined as a specific order of set
elements. Our goal is to find the number of possible
permutations of a given set. The number of those permutations
has important implications for programs involved in betting
applications, match prediction, and game analysis. For
example, if each of 100 different rankings has the same initial
probability, the probability of a specific ranking is 1/100 = 1

percent. This can be used as a base probability (a priori
probability) for game-prediction algorithms. Under these
assumptions, a randomly guessed ranking has a 1 percent
probability of being the correct outcome after one season.

To calculate the number of permutations of a given set of n
elements, you can use the factorial function n!. In the next few
paragraphs, you’ll learn why this is the case. The factorial is
defined as follows:

n! = n × (n – 1) × (n – 2) × . . . × 1

For example:

1! = 1
3! = 3 × 2 × 1 = 6

10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3,628,800
20! = 20 × 19 × 18 × . . . × 3 × 2 × 1 =

2,432,902,008,176,640,000

Let’s take a look at how this works. Say you have a set of
10 elements S = {s0, s1, s2, . . . , s9} and 10 buckets B = {b0,
b1, b2, . . . , b9}. You want to place exactly one element from
S into each bucket. In the soccer example, the 20 teams are the
elements, and the 20 table ranks are the buckets. To get one
specific permutation of S, you simply place all elements into
all buckets. The number of different ways of assigning
elements to buckets is the total number of permutations of
elements in S.

The following algorithm determines the number of
permutations for a set with 10 elements (which need to be
placed into 10 buckets):

1. Take the first element from the set S. There are 10 empty buckets so you
have 10 options for where you can place the element. You place one
element in a bucket.

2. Now one bucket is occupied. Take the second element from the set.
There now remain 9 empty buckets so you have 9 options.

3. Finally, take the 10th (last) element from the set. Nine buckets are now
occupied. There is only one empty bucket, so you have one option.

In total, you have 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 =
10! options. Each potential placement of an element in a

bucket represents one permutation of the set elements. The
number of permutations of a set with n elements is therefore
n!.

Recursively, the factorial function can also be defined as
follows:

n! = n × (n – 1)!

The recursion base cases are defined as shown here:

1! = 0! = 1

The intuition behind these base cases is that a set with one
element has one permutation, and a set with zero elements has
one permutation (there is one way of assigning zero elements
to zero buckets).

The Code
The one-liner in Listing 6-3 will compute the number of
permutations n! of a set with n elements.

The Data
n = 5

The One-Liner
factorial = lambda n: n * factorial(n-1) if n > 1 else 1

The Result
print(factorial(n))

Listing 6-3: One-liner solution defining the factorial function recursively

Try figuring out what the output of this code would be.

How It Works
In the code, you use the recursive definition of the factorial.
Let’s quickly improve our intuitive understanding of recursion.
Stephen Hawking came up with a concise way to explain
recursion: “To understand recursion, one must first understand
recursion.”

The Merriam-Webster dictionary defines recursion as “a
computer programming technique involving the use of a . . .

function . . . that calls itself one or more times until a specified
condition is met, at which time the rest of each repetition is
processed from the last one called to the first.” At the heart of
this definition is the recursive function, which is simply a
function that calls itself. But if the function keeps calling
itself, it would never stop.

For this reason, we set a certain base case. When the base
case is met, the last function call terminates and returns a
solution to the second-to-last function call. The second-to-last
function call also returns the solution to the third-to-last
function call. This causes a chain reaction of propagating the
results to the higher recursion level until the first function call
returns the final result. This may feel difficult to grasp in a few
lines of English text, but stay with me: we will discuss this
with the aid of the given one-liner example next.

In general, you create a recursive function f in four steps:

1. Break the original problem into smaller problem instances.
2. Take the smaller problem instances as the input of function f (which will

then break the smaller input into even smaller problem instances and so
on).

3. Define a base case, which is the smallest possible input that can be
solved directly without any further call of the function f.

4. Specify how you can recombine the obtained smaller solutions into the
larger solution.

You create a lambda function with one argument n and
assign the lambda function to the name factorial. Finally, you
call the named function factorial(n-1) to calculate the result of the
function call factorial(n). The value n could be the number of
soccer teams in the Premier League (n=20) or any other value
such as the one in Listing 6-3 (n=5).

Roughly speaking, you can use the simpler solution for
factorial(n-1) to construct the solution of the harder problem
factorial(n) by multiplying the former with the input argument n.
As soon as you reach the recursion base case n <= 1, you simply
return the hardcoded solution factorial(1) = factorial(0) = 1.

This algorithm shows how you can often find a simple,
concise, and efficient way of solving problems by thoroughly
understanding the problem first. Choosing the simplest

solution idea is one of the most important things you can do
when creating your own algorithms. Beginners often find they
write cluttered and unnecessarily complicated code.

In this case, the recursive (one-liner) definition of the
factorial is shorter than an iterative (one-liner) definition
without recursion. As an exercise, try rewriting this one-liner
without using a recursive definition and without external
libraries—it’s not trivial and certainly not that concise!

FINDING THE LEVENSHTEIN
DISTANCE
In this section, you’ll learn about an important practical
algorithm to calculate the Levenshtein distance. Understanding
this algorithm is more complicated than previous algorithms,
so you’ll also train yourself to think through a problem clearly.

The Basics
The Levenshtein distance is a metric to calculate the distance
between two strings; in other words, it’s used to quantify the
similarity of two strings. Its alternate name, the edit distance,
describes precisely what it measures: the number of character
edits (insertions, removals, or substitutions) needed to
transform one string into another. The smaller the Levenshtein
distance, the more similar the strings.

The Levenshtein distance has important applications in
things like the autocorrection functionality on your
smartphone. If you type helo in your WhatsApp messenger,
your smartphone detects a word outside its library and selects
several high-probability words as potential replacements, and
then sorts them by Levenshtein distance. For example, the
word with minimal Levenshtein distance and, hence, maximal
similarity is the string 'hello', so your phone may automatically
correct helo to hello.

Let’s consider an example with the two less similar strings
'cat' and 'chello'. Knowing that the Levenshtein distance
computes the minimal number of edits required to reach the

second string starting from the first string, Table 6-1 shows the
minimal sequence.

Table 6-1: The Minimal Sequence Needed to Change 'cat' to 'chello'

Current wordEdit made

cat —

cht Replace a with h

che Replace t with e

chel Insert l at position 3

chell Insert l at position 4

chello Insert o at position 5

Table 6-1 transforms the string 'cat' to the string 'chello' in five
editing steps, meaning the Levenshtein distance is 5.

The Code
Now let’s write a Python one-liner that calculates the
Levenshtein distance of strings a and b, a and c, and b and c (see
Listing 6-4).

The Data
a = "cat"
b = "chello"
c = "chess"
The One-Liner

ls = ➊lambda a, b: len(b) if not a else len(a) if not b else min(
 ➋ ls(a[1:], b[1:])+(a[0] != b[0]),
 ➌ ls(a[1:], b)+1,
 ➍ ls(a, b[1:])+1)

The Result
print(ls(a,b))
print(ls(a,c))
print(ls(b,c))

Listing 6-4: Calculating the Levenshtein distance of two strings in one line

Based on what you know so far, try to calculate the output
before running the program.

How It Works
Before diving into the code, let’s quickly explore an important
Python trick heavily used in this one-liner. In Python, every
object has a truth value and is either True or False. Most objects
are in fact True and, intuitively, you can probably guess the few
objects that are False:

The numerical value 0 is False.
The empty string '' is False.

The empty list [] is False.
The empty set set() is False.
The empty dictionary {} is False.

As a rule of thumb, Python objects are considered False if
they are empty or zero. Equipped with this information, let’s
look at the first part of the Levenshtein function: you create a
lambda function that takes two strings a and b and returns the
number of edits required to transform string a into string b ➊.

There are two trivial cases: if string a is empty, the minimal
edit distance is len(b), since you would just need to insert each
character of string b. Similarly, if string b is empty, the minimal
edit distance is len(a). That means if either string is empty, you
can directly return the correct edit distance.

Let’s say both strings are non-empty. You can simplify the
problem by calculating the Levenshtein distance of smaller
suffixes of the original strings a and b, as shown in Figure 6-3.

Figure 6-3: Calculating the Levenshtein distance of the words 'cat' and 'chello'

recursively by solving the smaller problem instances first

To compute the Levenshtein distance between the strings
'cat' and 'chello' in a recursive manner, you solve the easier
problems first (recursively):

1. You calculate the distance between the suffixes at and hello because if
you know how to transform at into hello, you can easily transform cat
into chello by modifying the first character (or by keeping the first
character if both strings start with the same character). Assuming this
distance is 5, you can now conclude that the distance between cat and
chello is also at most 5 because you can reuse the exact same sequence of
edits (both words begin with the character c and you don’t have to edit
this character).

2. You calculate the distance between at and chello. Assuming this distance
is 6, you can now conclude that the distance between cat and chello is at
most 6 + 1 = 7 because you can simply remove the character c at the
beginning of the first word (one additional operation). From there, you
can reuse the exact same solution to come from at to chello.

3. You calculate the distance between cat and hello. Assuming this distance
is 5, you can now conclude that the distance between cat and chello is at
most 5 + 1 because you need to insert the character c at the beginning of
the second word (one additional operation).

As these are all possible cases of what you can do with the
first character (substitution, removal, insertion), the
Levenshtein distance between cat and chello is the minimum of

the three cases 1, 2, and 3. Let’s now further examine the three
cases in Listing 6-4.

First, you calculate the edit distance from a[1:] to b[1:] in a
recursive manner ➋. If the leading characters a[0] and b[0] are
different, you have to fix it by replacing a[0] by b[0], so you
increment the edit distance by one. If the leading characters
are the same, the solution of the simpler problem ls(a[1:], b[1:]) is
also a solution to the more complex problem ls(a, b), as you’ve
seen in Figure 6-3.

Second, you calculate the distance from a[1:] to b in a
recursive manner ➌. Say you know the result of this distance
(going from a[1:] to b)—how can you calculate the distance one
step further from a to b? The answer is to simply remove the
first character a[0] from the beginning of a, which is one
additional operation. With this, you have reduced the more
complicated problem to the easier one.

Third, you calculate the distance from a to b[1:] in a
recursive manner ➍. Say you know the result of this distance
(going from a to b[1:]). How can you calculate the distance
from a to b? In this case, you can simply go one step further
(from a to b[1:] to b) by inserting the character b[0] at the
beginning of the word b[1:], which would increment the
distance by one.

Finally, you simply take the minimum edit distance of all
three results (replace the first character, remove the first
character, insert the first character).

This one-liner solution demonstrates once again the
importance of training your recursion skills. Recursion may
not come naturally to you, but rest assured that it will after
studying many recursive problems like this one.

CALCULATING THE POWERSET
BY USING FUNCTIONAL
PROGRAMMING
In this section, you’ll learn about an important mathematical
concept known as the powerset: the set of all subsets. You’ll

need powersets in statistics, set theory, functional
programming, probability theory, and algorithmic analysis.

The Basics
The powerset is the set of all subsets of the given set s. It
includes the empty set {}, the original set s, and all other
possible subsets of the original set. Here are a few examples.

Example 1:

Given set: s = {1}
Powerset: P = {{},{1}}

Example 2:

Given set: s = {1, 2}

Powerset: P = {{},{1},{2},{1,2}}

Example 3:

Given set: s = {1, 2, 3}
Powerset: P = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

To calculate a powerset P of a set s with n elements, you
use the smaller powerset P of a subset of s with (n – 1)
elements. Say you want to calculate the powerset of set s = {1,
2, 3}.

1. Initialize the powerset P with zero elements as P = {{}}. In other
words, this is the powerset of the empty set. It contains only the empty
set itself.

2. To create the powerset P with n elements from the powerset P with
(n – 1) elements, you take one (arbitrary) element x from the set s and
incorporate all arising subsets into the larger powerset P by using the
following procedure:

3. Go over all sets p in P and create a new subset that consists of the
union of x and p. This results in a new temporary set of sets T. For
example, if P = {{}, {1}, {2}, {1,2}}, you’ll create the temporary set of
sets T = {{3}, {1,3}, {2,3}, {1,2,3}} by adding the element x = 3 to all
sets in P .

4. Merge the new set of sets T with the powerset P to obtain powerset
P . For example, you obtain powerset P by merging the temporary set T
with the powerset P as follows: P = T union P .

5. Go to 2 until original set s is empty.

n

n–1

0 0

n n–1

n

n–1

2

2

n–1

n 3

2 3 2

I’ll explain this strategy in more detail in the following
section.

The reduce() Function
But first, you need to properly understand an important Python
function that you’ll use in the one-liner: the reduce() function.
The reduce() function is built into Python 2, but the developers
decided it was used little enough that they didn’t include it in
Python 3, so you’ll need to import it first from the functools
library.

The reduce() function takes three arguments: reduce(function,

iterable, initializer). The function arguments define how two values x

and y are reduced to a single value (for example, lambda x, y: x +

y). This way, you can iteratively reduce two values of an iterable

(the second argument) to a single value—until only a single
value is left in the iterable. The initializer argument is optional—if
you don’t set it, Python assumes the first value of the iterable as
a default.

For example, calling reduce(lambda x, y: x + y, [0, 1, 2, 3]) performs
the following computation: (((0 + 1)+ 2)+ 3) = 6. In other words,
you first reduce the two values x=0 and y=1 to the sum x + y = 0 +

1 = 1. Then, you use this result of the first call of the lambda
function as input to the second call of the lambda function: x=1

and y=2. The result is the sum x + y = 1 + 2 = 3. Finally, we use the
result of this second call of the lambda function as input to the
third call of the lambda function by setting x=3 and y=3. The
result is the sum x + y = 3 + 3 = 6.

In the last example, you have seen that the value x always
carries the result of the previous (lambda) function. The
argument x serves as the accumulated value, while the
argument y serves as the update value from the iterable. This is
the intended behavior to iteratively “reduce” all values in the
iterable argument to a single one. The optional third parameter
initializer specifies the initial input for x. This allows you to
define a sequence aggregator as shown in Listing 6-5.

List Arithmetic

Before diving into the one-liner, you need to understand two
more list operators. The first is the list concatenation operator
+, which glues together two lists. For example, the result of the
expression [1, 2] + [3, 4] is the new list [1, 2, 3, 4]. The second is the
union operator |, which performs a simple union operation on
two sets. For example, the result of the expression {1, 2} | {3, 4}

is the new set {1, 2, 3, 4}.

The Code
Listing 6-5 provides a one-liner solution that calculates the
powerset of a given set s.

Dependencies
from functools import reduce

The Data
s = {1, 2, 3}

The One-Liner
ps = lambda s: reduce(lambda P, x: ➊P + [subset | {x} for subset in P], s, ➋[set()])

The Result
print(ps(s))

Listing 6-5: One-liner solution to calculate the powerset of a given set

Guess the output of this code snippet!

How It Works
The idea of this one-liner is to start the powerset as an empty
set ➋ and repeatedly add subsets to it ➊ until no more subsets
can be found.

Initially, the powerset contains only the empty set. In each
step, you take one element x out of the data set s and create
new subsets that naturally emerge by adding x to all subsets
that are already in the powerset ➋. As you’ve seen in the
introduction of this section, the size of the powerset therefore
doubles each time you consider an additional element x from
the data set s. In this way, you can grow the powerset with n
subsets one data set element at a time (but by n subsets at a
time). Note that the powerset grows exponentially: for any

new data set element x, you double the size of the powerset.
This is an inherent property of powersets: they quickly
overwhelm any storage capacity—even for relatively small
data sets with only a few dozen of elements.

You use the reduce() function to maintain the current
powerset in the variable P (which initially contains only the
empty set). Using list comprehension, the reduce() function
creates new subsets—one for each existing subset—and adds
them to the powerset P. In particular, it adds the value x from
the data set to each subset and thus doubles the size of the
powerset (containing the subsets with and without the data set
element x). In this way, the reduce() function repeatedly
“merges” two elements: the powerset P and an element x from
the data set.

Hence, the result of the one-liner is the following:

The Result
print(ps(s))
[set(), {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}]

This one-liner nicely demonstrates how important it is that
you have a thorough understanding of lambda functions, list
comprehension, and set operations.

CAESAR’S CIPHER ENCRYPTION
USING ADVANCED INDEXING
AND LIST COMPREHENSION
In this section, you’ll learn about an ancient encryption
technique called Caesar’s cipher, used by Julius Caesar
himself to obfuscate his private conversations. Unfortunately,
Caesar’s cipher is extremely simple to crack and offers no real
protection, but it’s still used for fun and obfuscation of forum
content that should be protected from naive readers’ eyes.

The Basics
Caesar’s cipher is based on the idea of shifting characters to be
encrypted by a fixed number of positions in the alphabet.
We’ll look at a particular case of Caesar’s cipher called the
ROT13 algorithm.

The ROT13 algorithm is a simple encryption algorithm
used in many forums (for example, Reddit) to prevent spoilers
or hide the semantics of a conversation from newbies. The
ROT13 algorithm is easy to decrypt—an attacker can crack
your code by running a probabilistic analysis on the
distribution of the letters in your encrypted text—even if the
attacker doesn’t know by how many positions you shifted each
character. You should never rely on this algorithm to actually
encrypt your messages! Still, there are many light applications
of the ROT13 algorithm:

Obscure the result of puzzles in online forums.
Obscure possible spoilers for movies or books.
Make fun of other weak encryption algorithms: “56-bit DES is at least
stronger than ROT13.”

Obscure email addresses on websites against 99.999 percent of email
spam bots.

So ROT13 is more of a popular running gag in internet
culture and an educational tool than a serious cipher.

The algorithm can be explained in one sentence: ROT13 =
Rotate the string to be encrypted by 13 positions (modulo 26)
in the alphabet of 26 characters (see Figure 6-4).

Figure 6-4: The table shows how each character in the alphabet is encrypted and
decrypted under the ROT13 algorithm.

In other words, you shift each character by 13 positions in
the alphabet. When shifting over the last character, z, you start
over at the first position in the alphabet, a.

The Code
Listing 6-6 creates a one-liner to encrypt the string s by using
the ROT13 algorithm!

Data
abc = "abcdefghijklmnopqrstuvwxyz"
s = "xthexrussiansxarexcoming"

One-Liner
rt13 = lambda x: "".join([abc[(abc.find(c) + 13) % 26] for c in x])

Result
print(rt13(s))
print(rt13(rt13(s)))

Listing 6-6: One-liner solution encrypting string s with the ROT13 algorithm

Use Figure 6-4 to crack this code: what’s the output of this
code snippet?

How It Works
The one-liner solution encrypts each character separately by
moving it 13 positions to the right in the alphabet stored in abc,
and then creates a list of these encrypted characters and joins
the elements in this list to get the encrypted phrase x.

Let’s take a closer look at how to encrypt each character.
You use list comprehension (see Chapter 2) to create the list of
encrypted characters by replacing each character c with the
character 13 positions to the right in the alphabet. It’s crucial
to prevent overshooting for all characters in the alphabet with
index >= 13. For instance, when shifting character z with
index 25 by 13 positions, you obtain index 25 + 13 = 38,
which is not a valid index of the alphabet. To fix this, you use
the modulo operator to ensure that when shifting a character
beyond the maximum index 25 for character z, you restart our
calculation of the final position of the character to be
encrypted with index == 0 (character a). Then, you proceed
shifting to the right for the remaining of the 13 positions that
have not already been applied before the restart (see Figure 6-
5). For example, character z is shifted by 13 positions to index
38 modulo 26 (in Python code: 38%26), which is index 12 or
character m.

Figure 6-5: Preventing overshooting by restarting the shift operation at index 0,
which results in the following shift sequence: 25 > 0 > 1 > . . . > 12

Here’s the critical part of the code that shows exactly how
each character c is shifted by 13 positions:

abc[(abc.find(c) + 13) % 26]

First, you find character c’s index in the alphabet abc.
Second, you shift the index by adding the integer 13 to
character c’s index in the alphabet abc considering our modulo
26 trick (as explained in the previous paragraphs).

The result of the one-liner code snippet is the following:

Result
print(rt13(s))
kgurkehffvnafknerkpbzvat

print(rt13(rt13(s)))
xthexrussiansxarexcoming

To summarize, you’ve learned the special variant of
Caesar’s cipher, the ROT13 algorithm, which shifts each
character in a string by 13 positions in the alphabet. Shifting it
twice by 13 + 13 = 26 index positions results in the original
character, meaning encryption and decryption use the same
algorithm.

FINDING PRIME NUMBERS WITH
THE SIEVE OF ERATOSTHENES
Finding prime numbers is of critical importance for practical
applications such as cryptography. Many public-key methods
are safe (from a cryptographic point of view) only because
computation of prime factors of large numbers is generally
inefficient and slow. We’ll make a one-liner that uses an

ancient algorithm to root out all prime numbers from a range
of numbers.

The Basics
A prime number n is an integer that’s not divisible without a
remainder by any other integer, except for i and n. In other
words, for a prime number, there are no two integers a>1 and
b>1 whose product equals the prime number: a =n.

Say you want to check whether your given number n is a
prime number. Let’s start with a naive algorithm to determine
prime numbers (see Listing 6-7).

def prime(n):
➊ for i in range(2,n):
 ➋ if n % i == 0:
 return False
 return True

print(prime(10))
False

print(prime(11))
True

print(prime(7919))
True

Listing 6-7: Naive implementation to check whether a given number n is prime

The algorithm checks all numbers between 2 and n-1 ➊ to
see whether the number n will divide evenly into it with no
remainders ➋. For example, when determining whether
number n = 10 is a prime number, the algorithm quickly realizes
that the expression n % i == 0 evaluates to True for i = 2. It has
found a number i that is a divisor of n, so n cannot be a prime
number. In this case, the algorithm aborts any further
computation and returns False.

The time complexity for checking a single number is the
same as the input n: in the worst case, the algorithm needs n

loop iterations to check whether number n is a prime number.

Say you want to calculate all prime numbers from 2 to a
certain maximal number m. You could simply repeat the prime

b

test from Listing 6-7 m-1 times (see Listing 6-8). However, this
comes at huge processing cost.

Find all prime numbers <= m
m = 20
primes = [n for n in range(2,m+1) if prime(n)]

print(primes)
[2, 3, 5, 7, 11, 13, 17, 19]

Listing 6-8: Finding all prime numbers up to a maximal number m

Here we use list comprehension (see Chapter 2) to create a
list with all prime numbers smaller than m. We introduce a for

loop, meaning the algorithm requires m function calls of
is_prime(n) and so the time complexity is bounded by m**2. The
number of operations grows quadratically with the input m. To
find all prime numbers smaller than m = 100 takes up to m**2 =

10000 operations!

We’ll build a one-liner to drastically reduce this time cost.

The Code
With this one-liner, we’ll write an algorithm to find all prime
numbers up to a maximal integer number m that is more time
efficient than our naive implementation. The one-liner in
Listing 6-9 is inspired by an ancient algorithm called the Sieve
of Eratosthenes, which I’ll explain in this section.

Dependencies
from functools import reduce

The Data
n=100

The One-Liner
primes = reduce(lambda r, x: r - set(range(x**2, n, x)) if x in r else r,
 range(2, int(n**0.5) + 1), set(range(2, n)))
The Result
print(primes)
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Listing 6-9: One-liner solution implementing the Sieve of Eratosthenes

You’ll likely need some additional background knowledge
to understand what happens here.

How It Works
To be frank, I was hesitant to include this one-liner in the
book. It’s confusing, complex, and unreadable. Still, this is the
type of code you face in practice, and with this book, I want to
ensure you’re able to understand every single line of code—
even if it takes some time. I stumbled upon a version of this
one-liner at StackOverflow. It is loosely based on an ancient
algorithm called the Sieve of Eratosthenes that was designed to
calculate prime numbers.

NOTE

I modified the original StackOverflow one-liner for clarity. The original one-
liner can be found at https://stackoverflow.com/questions/10639861/python-
prime-generator-in-one-line/ at the time of this writing.

The Sieve of Eratosthenes Algorithm

The algorithm creates (conceptually) a huge array of numbers
from 2 to m, the maximal integer number. All the numbers in
the array are prime candidates, which means that the
algorithm considers them to be prime numbers potentially (but
not necessarily). During the algorithm, you sieve out the
candidates that cannot be prime. Only the ones that remain
after this filtering process are the final prime numbers.

To accomplish this, the algorithm calculates and marks the
numbers in this array that are not prime numbers. At the end,
all unmarked numbers are prime numbers.

The algorithm repeats the following steps:

1. Start with the first number 2 and increment it in every step of the process
until you find a prime number x. You know that x is prime if it is
unmarked because the fact that x is unmarked means that no smaller
number than x is a divisor of x—the definition of a prime number.

2. Mark all multiples of number x because they are also not prime: number
x is a divisor of all those numbers.

3. Perform simple optimization: start marking multiples from number x × x
instead of 2x because all numbers between 2x and x × x are already
marked. There is a simple mathematical argument for this that I will
describe later. For now, know that you can start marking from x × x.

Figures 6-6 to 6-11 explain this algorithm step-by-step.

https://stackoverflow.com/questions/10639861/python-prime-generator-in-one-line/

Figure 6-6: Initializing the Sieve of Eratosthenes algorithm

Initially, all numbers between 2 and m = 100 are unmarked
(white cells). The first unmarked number 2 is a prime number.

Figure 6-7: Mark all multiples of 2 because they are not prime. Ignore the marked
numbers for the rest of the algorithm.

Figure 6-8: Mark multiples of 3 as “non-prime.”

Increment to the next unmarked number, 3. Because it is
unmarked at this point, it is a prime number. Because you have
marked all multiples of numbers smaller than the current
number 3, no smaller number is a divisor of 3. By definition,
number 3 must be prime. Mark all multiples of 3 because they
are not prime. Start marking from number 3 × 3 because all
multiples of 3 between 3 and 3 × 3 = 9 are already marked.

Figure 6-9: Mark multiples of 5 as “non-prime.”

Go to the next unmarked number, 5 (which is a prime
number). Mark all multiples of 5. Start marking from number
5 × 5 because all multiples of 5 between 5 and 5 × 5 = 25 are
already marked.

Figure 6-10: Mark multiples of 7 as “non-prime.”

Increment to the next unmarked number, 7 (which is a
prime number). Mark all multiples of 7. Start marking from
number 7 × 7 because all multiples of 7 between 7 and 7 × 7 =
49 are already marked.

Figure 6-11: Mark multiples of 11 as “non-prime.”

Increment to the next unmarked number, 11 (which is a
prime number). Mark all multiples of 11. Because you would
start marking from number 11 × 11=121, you realize that this
is already larger than our maximal number m = 100. This
causes the algorithm to terminate. All remaining unmarked
numbers are not divisible by any number and are, therefore,
prime numbers.

The Sieve of Eratosthenes is much more efficient than the
naive algorithm because the naive algorithm checks each
number independently, ignoring all previous computations.
The Sieve of Eratosthenes, on the other hand, reuses results
from previous computational steps—a common idea in many
areas of algorithmic optimization. Each time we cross out
multiples of a prime number, we essentially save ourselves the

tedious work of checking whether this multiple is a prime
number: we already know that it isn’t.

You may wonder why we start marking from the squared
prime number instead of the prime number itself. For example,
in the algorithm in Figure 6-10, you just found prime number
7 and start marking from number 7 × 7 = 49. The reason is that
you already marked all other multiples in previous iterations 7
× 2, 7 × 3, 7 × 4, 7 × 5, 7 × 6 because you marked all multiples
of numbers smaller than the current prime number 7: 2, 3, 4, 5,
6.

One-Liner Explained
Equipped with a thorough conceptual understanding of the
algorithm, you can now start investigating the one-liner
solution:

The One-Liner
primes = reduce(lambda r, x: r - set(range(x**2, n, x)) if x in r else r,
 range(2, int(n**0.5) + 1), set(range(2, n)))

This one-liner uses the reduce() function to remove, one step
at a time, all marked numbers from the initial set of all
numbers between 2 and n (in the one-liner: set(range(2, n))).

You take this set as the initial value for the set of unmarked
values r because, initially, all values are unmarked. Now the
one-liner goes over all numbers x between 2 and the square
root of n (in the one-liner: range(2, int(n**0.5) + 1)) and removes the
multiples of x from the set r (starting at x**2)—but only if the
number x is a prime number, known because it is not removed
from the set r at the current time.

Spend 5–15 minutes rereading this explanation and study
the different parts of the one-liner carefully. I promise you’ll
find this exercise worthwhile, as it will significantly improve
your Python code understanding skills.

CALCULATING THE FIBONACCI
SERIES WITH THE REDUCE()
FUNCTION

The popular Italian mathematician Fibonacci (original name:
Leonardo of Pisa) introduced the Fibonacci numbers in the
year 1202 with the surprising observation that these numbers
have significance in fields as various as math, art, and biology.
This section will show you how to compute the Fibonacci
numbers in a single line of code.

The Basics
The Fibonacci series starts with the numbers 0 and 1, and then,
each element that follows is the sum of the two previous series
elements. The Fibonacci series has the algorithm built in!

The Code
Listing 6-10 calculates a list of the n first Fibonacci numbers
starting with the numbers 0 and 1.

Dependencies
from functools import reduce

The Data
n = 10

The One-Liner
fibs = reduce(lambda x, _: x + [x[-2] + x[-1]], [0] * (n-2), [0, 1])

The Result
print(fibs)

Listing 6-10: Calculating the Fibonacci series in one line of Python code

Study this code and take a guess at the output.

How It Works
You’ll again use the powerful reduce() function. In general, this
function is useful if you want to aggregate state information
that’s computed on the fly; for example, when you use the
previous two Fibonacci numbers just computed to compute the
next Fibonacci number. This is difficult to achieve with list
comprehension (see Chapter 2), which can’t generally access
the values that have been newly created from the list
comprehension.

You use the reduce() function with three arguments that
correspond to reduce(function, iterable, initializer) to consecutively add
the new Fibonacci number to an aggregator object that
incorporates one value at a time from the iterable object as
specified by the function.

Here, you use a simple list as the aggregator object with the
two initial Fibonacci numbers [0, 1]. Remember that the
aggregator object is handed as the first argument to the function

(in our example, x).

The second argument is the next element from the iterable.
However, you initialized the iterable with (n-2) dummy values in
order to force the reduce() function to execute function (n-2) times
(the goal is to find the first n Fibonacci numbers—but you
already have the first two, 0 and 1) You use the throwaway
parameter _ to indicate that you are not interested in the
dummy values of the iterable. Instead, you simply append the
new Fibonacci number to the aggregator list x, calculated as
the sum of the previous two Fibonacci numbers.

AN ALTERNATIVE MULTILINE SOLUTION

Repeatedly summing two Fibonacci numbers was already
the simple idea of the one-liner in Listing 6-10. Listing 6-
11 gives a beautiful alternative solution.

n = 10
x = [0,1]
fibs = x[0:2] + [x.append(x[-1] + x[-2]) or x[-1] for i in range(n-2)]
print(fibs)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Listing 6-11: One-liner solution to find the Fibonacci
numbers in an iterative manner

This code snippet was submitted by one of my email
subscribers (feel free to join us at
https://blog.finxter.com/subscribe/) and uses list
comprehension with side effects: the variable x is updated
n-2 times with the new Fibonacci series element. Note that
the append() function has no return value, but returns None,
which evaluates to False. Thus, the list comprehension

https://blog.finxter.com/subscribe/

statement generates a list of integers using the following
idea:

print(0 or 10)
10

It doesn’t seem correct to perform the or operation on
two integers, but remember that the Boolean type is based
on the integer type. Every integer value other than 0 is
interpreted as True. Thus, the or operation simply uses the
second integer value as a return value instead of
converting it to an explicit Boolean value of True. A fine
piece of Python code!

In summary, you’ve improved your understanding of
another important pattern for Python one-liners: using the
reduce() function to create a list that dynamically uses the
freshly updated or added list elements to compute new list
elements. You will find this useful pattern quite often in
practice.

A RECURSIVE BINARY SEARCH
ALGORITHM
In this section, you’ll learn about a basic algorithm every
computer scientist must know: the binary search algorithm.
Binary search has important practical applications in many
implementations of basic data structures such as sets, trees,
dictionaries, hash sets, hash tables, maps, and arrays. You use
these data structures in every single nontrivial program.

The Basics
In brief, the binary search algorithm searches a sorted
sequence of values l for a particular value x by repeatedly
reducing the size of the sequence by half until only a single
value is left: either it’s the searched value or it doesn’t exist in
the sequence. In the following, you will examine this general
idea in detail.

For example, say you want to search a sorted list for value
56. A naive algorithm would start with the first list element,
check whether it’s equal to the value 56, and move on to the
next list element until it has checked all elements or found its
value. In the worst case, the algorithm goes over every list
element. A sorted list with 10,000 elements would take
approximately 10,000 operations to check each list element for
equality with the searched value. In algorithmic theory
language, we say that the runtime complexity is linear in the
number of list elements. The algorithm does not leverage all
the available information to achieve the greatest efficiency.

The first piece of useful information is that the list is
sorted! Using this fact, you can create an algorithm that
touches only a few elements in the list and still knows with
absolute certainty whether an element exists in the list. The
binary search algorithm traverses only log2(n) elements
(logarithm of base 2). You can search the same list of 10,000
elements by using only log2(10,000) < 14 operations!

For a binary search, you assume the list is sorted in an
ascending manner. The algorithm starts by checking the
middle element. If the middle value is bigger than the value
you want, you know that all elements between the middle and
the last list elements are larger than the value you want. The
value you want won’t exist in this half of the list, so you can
immediately reject half of the list elements with a single
operation.

Similarly, if the searched value is larger than the middle
element, you can reject the first half of the list elements. You
then simply repeat the procedure of halving the effective list
size of elements to be checked in each step of the algorithm.
Figure 6-12 shows a visual example.

Figure 6-12: Example run of the binary search algorithm

If the sublist contains an even number of elements, there’s
no obvious middle element. In this case, you round down the
index of the middle element.

You want to find the value 56 in the sorted list of eight
integer values while touching as few elements as possible. The
binary search algorithm checks middle element x (rounding
down), then discards the half of the list that 56 cannot possibly
be in. There are three general results of this check:

Element x is larger than 56. The algorithm ignores the right part of the
list.
Element x is smaller than value 56. The algorithm ignores the left part of
the list.
Element x is equal to value 56, as in the last line in Figure 6-12.
Congratulations—you have just found desired value!

Listing 6-12 shows a practical implementation of the binary
search algorithm.

def binary_search(lst, value):
 lo, hi = 0, len(lst)-1
 while lo <= hi:
 mid = (lo + hi) // 2
 if lst[mid] < value:
 lo = mid + 1
 elif value < lst[mid]:
 hi = mid - 1
 else:
 return mid
 return -1

l = [3, 6, 14, 16, 33, 55, 56, 89]
x = 56
print(binary_search(l,x))
6 (the index of the found element)

Listing 6-12: The binary search algorithm

This algorithm takes as arguments a list and a value to
search for. It then repeatedly halves the search space by using
the two variables lo and hi, which define the interval of
possible list elements in which the desired value could exist: lo
defines the start index, and hi defines the end index of the
interval. You check which of the cases the mid element falls in
and adapt the interval of potential elements accordingly by
modifying the lo and hi values as described.

While this is a perfectly valid, readable, and efficient
implementation of the binary search algorithm, it’s not a one-
liner solution, yet!

The Code
Now you’ll implement the binary search algorithm in a single
line of code (see Listing 6-13)!

The Data
l = [3, 6, 14, 16, 33, 55, 56, 89]
x = 33

The One-Liner
➊ bs = lambda l, x, lo, hi: -1 if lo>hi else \
 ➋ (lo+hi)//2 if l[(lo+hi)//2] == x else \
 ➌ bs(l, x, lo, (lo+hi)//2-1) if l[(lo+hi)//2] > x else \
 ➍ bs(l, x, (lo+hi)//2+1, hi)

The Results
print(bs(l, x, 0, len(l)-1))

Listing 6-13: One-liner solution to implement binary search

Guess the output of this code snippet!

How It Works
Because binary search lends itself naturally to a recursive
approach, studying this one-liner will strengthen your intuitive

understanding of this important computer science concept.
Note that I’ve broken this one-liner solution into four lines for
readability, though you can, of course, write it in a single line
of code. In this one-liner, I’ve used a recursive way of defining
the binary search algorithm.

You create a new function bs by using the lambda operator
with four arguments: l, x, lo, and hi ➊. The first two arguments l
and x are variables with the sorted list and the value to search
for. The lo and hi arguments define the minimal and the
maximal index of the current sublist to be searched for the
value x. At each recursion level, the code checks a sublist
specified by the indices hi and lo, which becomes smaller and
smaller by increasing the index lo and decreasing the index hi.
After a finite number of steps, the condition lo>hi holds True.
The searched sublist is empty—and you haven’t found the
value x. This is the base case of our recursion. Because you
haven’t found element x, you return -1, indicating that no such
element exists.

You use the calculation (lo+hi)//2 to find the middle element
of the sublist. If this happens to be your desired value, you
return the index of that mid element ➋. Note that you use
integer division to round down to the next integer value that
can be used as a list index.

If the mid element is larger than the desired value, it means
the elements on the right are also larger, so you call the
function recursively but adapt the hi index to consider only list
elements on the left of the mid element ➌.

Similarly, if the mid element is smaller than the desired
value, there is no need to search all elements on the left of the
mid element, so you call the function recursively but adapt the
lo index to consider only list elements on the right of the mid
element ➍.

When searching for the value 33 in the list [3, 6, 14, 16, 33, 55,

56, 89], the result is the index 4.

This one-liner section has strengthened your general code
understanding regarding features such as conditional
execution, basic keywords, and arithmetic operations, as well

as the important topic of programmatic sequence indexing.
More important, you’ve learned how to use recursion to make
complex problems easier.

A RECURSIVE QUICKSORT
ALGORITHM
Now you’ll build a one-liner to use the popular algorithm
Quicksort, a sorting algorithm that, as the name suggests,
quickly sorts the data.

The Basics
Quicksort is both a popular question in many code interviews
(asked by Google, Facebook, and Amazon) and a practical
sorting algorithm that’s fast, concise, and readable. Because of
its elegance, most introductory algorithm classes cover
Quicksort.

Quicksort sorts a list by recursively dividing the big
problem into smaller problems and combining the solutions
from the smaller problems in a way that it solves the big
problem.

To solve each smaller problem, the same strategy is used
recursively: the smaller problems are divided into even smaller
subproblems, solved separately, and combined, placing
Quicksort in the class of Divide and Conquer algorithms.

Quicksort selects a pivot element and then places all
elements that are larger than the pivot to the right, and all
elements that are smaller than or equal to the pivot to the left.
This divides the big problem of sorting the list into two
smaller subproblems: sorting two smaller lists. You then repeat
this procedure recursively until you obtain a list with zero
elements that, being sorted, causes the recursion to terminate.

Figure 6-13 shows the Quicksort algorithm in action.

Figure 6-13: Example run of the Quicksort algorithm

Figure 6-13 shows the Quicksort algorithm on a list of
unsorted integers [4, 1, 8, 9, 3, 8, 1, 9, 4]. First, it selects 4 as
the pivot element, splits up the list into an unsorted sublist [1,
3, 1, 4] with all elements that are smaller than or equal to the
pivot, and an unsorted sublist [8, 9, 8, 9] with all elements that
are larger than the pivot.

Next, the Quicksort algorithm is called recursively on the
two unsorted sublists to sort them. As soon as the sublists
contain maximally one element, they are sorted by definition,
and the recursion ends.

At every recursion level, the three sublists (left, pivot,
right) are concatenated before the resulting list is handed to the
higher recursion level.

The Code
You’ll create a function q that implements the Quicksort
algorithm in a single line of Python and sorts any argument
given as a list of integers (see Listing 6-14).

The Data
unsorted = [33, 2, 3, 45, 6, 54, 33]

The One-Liner
q = lambda l: q([x for x in l[1:] if x <= l[0]]) + [l[0]] + q([x for x in l if x > l[0]]) if
l else []

The Result
print(q(unsorted))

Listing 6-14: One-liner solution for the Quicksort algorithm using recursion

Now, can you guess—one last time—the output of the
code?

How It Works
The one-liner directly resembles the algorithm we just
discussed. First, you create a new lambda function q that takes
one list argument l to sort. From a high-level perspective, the
lambda function has the following basic structure:

lambda l: q(left) + pivot + q(right) if l else []

In the recursion base case—that is, the case that the list is
empty and, therefore, trivially sorted—the lambda function
returns the empty list [].

In any other case, the function selects the pivot element as
the first element of list l, and divides all elements into two
sublists (left and right) based on whether they are smaller or
larger than the pivot. To achieve this, you use simple list
comprehension (see Chapter 2). As the two sublists are not
necessarily sorted, you recursively execute the Quicksort
algorithm on them too. Finally, you combine all three lists and
return the sorted list. Therefore, the result is as follows:

The Result
print(q(unsorted))
[2, 3, 6, 33, 33, 45, 54]

SUMMARY
In this chapter, you’ve learned important algorithms in
computer science addressing a wide range of topics including
anagrams, palindromes, powersets, permutations, factorials,

prime numbers, Fibonacci numbers, obfuscation, searching,
and sorting. Many of these form the basis of more advanced
algorithms and contain the seeds of a thorough algorithmic
education. Advancing your knowledge of algorithms and
algorithmic theory is one of the most effective ways to
improve as a coder. I would even say that the lack of
algorithmic understanding is the number one reason most
intermediate coders feel stuck in their learning progress.

To help you get unstuck, I regularly explain new algorithms
in my “Coffee Break Python” email series for continuous
improvement (visit https://blog.finxter.com/subscribe/). I
appreciate you spending your valuable time and effort
studying all the one-liner code snippets and explanations, and I
hope you can already see how your skills have improved.
Based on my experience teaching thousands of Python
learners, more than half the intermediate coders struggle with
understanding basic Python one-liners. With commitment and
persistence, you have a good chance of leaving the
intermediate coders behind and becoming a Python master (or
at least a top 10 percent coder).

https://blog.finxter.com/subscribe/

AFTERWORD

Congratulations! You’ve worked through this whole book and
mastered the Python one-liner like only a few people ever will.
You have built yourself a strong foundation that will help you
break through the ceiling of your Python coding skills. By
carefully working through all the Python one-liners, you
should be able to conquer any single line of Python code you
will ever face.

As with any superpower, you must use it wisely. Misuse of
one-liners will harm your code projects. In this book, I
compressed all algorithms into a single line of code with the
purpose of pushing your code understanding skills to the next
level. But you should be careful not to overuse your skill in
your practical code projects. Don’t cram everything into a
single line of code just to show off your one-liner superpower.

Instead, why not use it to make existing codebases more
readable by unraveling their most complex one-liners? Much
like Superman uses his superpowers to help normal people live
their comfortable lives, you can help normal coders maintain
their comfortable programmer lives.

This book’s main promise was to make you a master of
Python one-liners. If you feel that the book delivered on this
promise, please give it a vote on your favorite book
marketplace (such as Amazon) to help others discover it. I also
encourage you to leave me a note at chris@finxter.com if you
encountered any problem with the book, or wish to provide
any positive or negative feedback. We would love to improve

mailto:chris@finxter.com

the book continuously, considering your feedback in future
editions, so I’ll give away a free copy of my Coffee Break
Python Slicing ebook to anyone who writes in with
constructive feedback.

Finally, if you seek continuous improvement of your own
Python skills, subscribe to my Python newsletter at
https://blog.finxter.com/subscribe/, where I release new
educational computer science content such as Python cheat
sheets almost daily to offer you—and thousands of other
ambitious coders—a clear path to continuous improvement
and, ultimately, mastery in Python.

Now that you’ve mastered the single line of code, you
should consider shifting your focus to larger code projects.
Learn about object-oriented programming and project
management, and, most importantly, choose your own
practical code projects to constantly work on. This improves
your learning retention, is highly motivating and encouraging,
creates value in the real world, and is the most realistic form of
training. Nothing can replace practical experience in terms of
learning efficiency.

I encourage my students to spend at least 70 percent of
their learning time working on practical projects. If you have
100 minutes each day for learning, spend 70 minutes working
on a practical code project and only 30 minutes reading books
and working through courses and tutorials. This seems
obvious, but most people still do this wrong and so never feel
quite ready to start working on practical code projects.

It has been a pleasure to spend such a long time with you,
and I highly appreciate the time you invested in this training
book. May your investment turn out to be a profitable one! I
wish you all the best for your coding career and hope that
we’ll meet again.

Happy coding!

Chris

https://blog.finxter.com/subscribe/

INDEX

SYMBOLS
* operator

asterisk regex, 129–130, 134
multiplication, 2, 43, 45, 50
replication, 34–35
unpacking, 38

** (power) operator, 2

*? (nongreedy asterisk) regex operator, 130–131, 134

\ (escape) prefix, 138, 139, 141, 145

\n (newline) character, 4, 22, 23, 130

\s (whitespace) character, 4, 145–148

\t (tab) character, 4

^ (not) regex operator, 140, 145–147

{} (instances) regex operator, 134, 135, 142

- operator

negation, 2
subtraction, 2, 43, 45

. (dot) regex operator, 129, 133–134

" (double quote), 4

""" (triple quote), 4

() (group) regex operator, 133–134, 135, 137, 138

% (modulo) operator, 2, 167

| operator

or regex, 135, 144
union, 164–165

+ operator

addition, 2, 43, 45
at-least-one regex, 134
concatenation, 164–165

? (zero-or-one) regex operator, 130, 134, 139

?! (negative lookahead) regex operator, 149

?P (named group) regex operator, 145–147

' (single quote), 4

''' (triple quote), 4

/ (division) operator, 2, 43

// (integer division) operator, 2

[] operator
character class regex, 138, 140–141
indexing, 46
list creation, 6

_ (throwaway) parameter, 175

_ (trailing underscore) character, 98

A
abs() function, 2, 72

absolute values, 72

activation functions, 107

addition (+) operator, 2, 43, 45

advanced indexing, 56, 67

Air Quality Index (AQI) outliers example, 53, 54–56
algorithms. See also classification algorithms

anagram detection, 152–154
binary search, 176–180
clustering algorithms, 94–97
Fibonacci series, 174–176
Levenshtein distance, 159–162
linear regression, 83–89
obfuscation, 165–168
outlier detection, 70, 73–74
palindrome detection, 154–156
permutations calculation, 156–159
powerset creation, 162–165
prime number generation, 168–174
and programming mastery, 151–152

Quicksort, 180–182
recursive, 157–159
runtime complexity, 154, 169, 177

all() function, 76

anagram detection example, 152–154

and keyword, 3–4

any() function, 36–37

append() list method, 7, 9, 22–23, 176

arange() function, 88

argsort() function, 64–65, 66–67

arithmetic operations, 2

arrays. See NumPy arrays

association analysis, 74–79

asterisk (*) regex operator, 129–130, 134

astype() function, 59, 69

at-least-one (+) regex operator, 134

autocorrection applications, 159

average() function, 44, 62–63, 117–119

axis argument, 61–63, 65–66, 73–74, 117–119

B
bestseller books filtering example, 68–69

bestseller bundle association example, 77–79

bias-variance trade-off, 113–114

binary search algorithm, 176–180

Boolean data
array operations, 54, 58–59, 72–73, 76
as NumPy array data type, 50
values and evaluation, 2–4, 56, 143, 160–161, 176

Boolean indexing, 57–59, 69

bounce rates, 70

boundary cases, 123

brackets ([])

character class regex operator, 138, 140–148

indexing operator, 46
list creation operator, 6

break keyword, 14

broadcasting
definition, 50
examples, 52–53, 54–56, 59, 61

C
Caesar’s cipher, 165

cardiac health cyclic data example, 33–35

categorical output, 90

centroids, 95

character class ([]) regex operator, 138, 140–141

character extraction example, 137–140

Christmas quote example, 135

classification algorithms
concepts, 120
and curse of dimensionality, 119
decision trees, 111–113
K-Nearest Neighbors, 100–104
logistic regression, 89–94
problem description, 89
support-vector machines, 119, 121–123

classifiers, 120

class labels, 93

close() (file) command, 23

cluster_centers_ attribute, 97–99

clustering algorithms, 94–97

coefficients, 83–86

collaborative filtering, 74–79

collection data types, 9–10

column vectors, 88

compilation, 133–134

compile() method, 133

concatenation
+ operator, 164–165

list, 7, 33–35, 164–165
string, 4

conditional execution, 13

container data structures, 6–12
dictionaries, 10–11
lists, 6–8
operations, 11–12
sets, 9–10
stacks, 8–9

context, in list comprehension, 12, 18–20, 24

continue statement, 14

control flow, 12
if, else, and elif, 13

loops, 13–14

convergence, 109

copurchases association examples, 74–79

corrupted list correction example, 31–33

cyclic data generation example, 33–35

D
database formatting example, 37–39

data cleaning example, 60–64

data structures. See container data structures; data types;
NumPy arrays

data types
Boolean, 2–4
None keyword, 4, 5–6
numerical, 2
and NumPy arrays, 50–51, 53, 59
strings, 4–5

dead code, 14

DecisionTreeClassifier module, 112–113

decision trees, 111–113, 123–126

def keyword, 14–15

dictionaries
data structure, 10–11
in employee data examples, 20, 36–37, 39

dimensionality
curse of, 119
and NumPy arrays, 42–43, 48–50

Divide and Conquer algorithms, 180

division (/) operator, 2, 43

dot (.) regex, 129, 133–134

double quote ("), 4

dtype property, 51, 53

duplicate character detection example, 145–147

E
edit distance, 159

element-wise operations, 43

elif keyword, 13

else keyword, 13

employee data examples
arithmetic, 45
clustering, 97–99
dictionary, 18, 20, 35–37

encryption, 165–166

endswith() string method, 5

ensemble learning, 123–126

error minimization, 85–86, 88

escape (\) prefix, 138, 139, 141, 145

expression, in list comprehension, 12, 18–20

extend() list method, 7

F
factorial calculation example, 156–159

false positives, 132

False value. See also Boolean data
of Python objects, 160–161
and while loops, 14

features and predictions, 82–83

Fibonacci series algorithm, 174–176

FIFO (first-in, first-out) structures, 8–9

file reading example, 22–24

filtering. See also association analysis, 68–69, 73–74

findall() function, 129–131, 135–137, 138, 142, 146–147

find() string method, 5, 28–29

Finxter ratings, 104–105, 109–110

fit() function
and decision trees, 112–113
and K-Nearest Neighbors (KNN) algoritjm, 101–103
and linear regression, 87–88
and logistic regression, 92–93
and neural network analysis, 108–109
and random forests, 124–125
and support-vector machines, 122

float data type and operations, 2, 50

float() function, 2

for loops, 12, 13–14, 18–20

fullmatch() function, 142–143, 144

functions. See also lambda functions; individual function
names

defined, 14–15
throwaway parameter (_), 175

functools library, 163

G
generator expressions, 36–37

greedy pattern matching, 130–131

group (()) regex operator, 133–134, 135, 137, 138

H
Hadamard product, 45

hashable data types, 9–10, 12

hash() function, 9, 12

histogramming, 154

home price prediction example, 100–103

hyperlink analysis example, 136–137

I
if keyword, 12, 13, 19

income calculation example, 45–46

incrementor functions, 16

indexes
[] operator, 46
advanced indexing, 56, 67
and argsort() function, 64–65
as arguments, 27
and Boolean arrays, 57–59, 69

index() list method, 8

inference phase, 83

initializer argument, 163–164

in keyword, 5, 11, 25

insert() list method, 7

Instagram influencer filtering example, 57–59

instances ({}) regex operator, 134, 135, 142

integer data type and operations, 2, 50

integer division (//) operator, 2

int() function, 2

investment portfolio risk example, 114–116

is keyword, 6

items() dictionary method, 11, 20

iterable arguments, 34

iterable (reduce()) argument, 163–164, 175

J
join() string method, 5, 166

K
(key, value) pairs, 10–11

keys() function, 11

K-Means algorithm, 95–99

KMeans module, 97–99

K-Nearest Neighbors (KNN) algorithm, 100–104

KNeighborsClassifier module, 103

KNeighborsRegressor module, 101–103

L
labeled vs. unlabeled data, 94–95

lambda functions
defining, 15–16, 24–26
recursive, 158–159, 160–162

lambda keyword, 15

len() function, 6

len() string method, 5

Levenshtein distance algorithm, 159–162

linear classifiers, 120

linear regression, 83–89
coding, 86–89
concepts and formulas, 83–86

LinearRegression module, 87

list comprehension
examples, 22–24, 115, 139
formula, 12, 18–20
and generator expressions, 36
nested, 21–22
with slicing, 29–30

lists. See also list comprehension

concatenation, 7, 33–35, 162–165
defining, 6
membership testing, 11
vs. NumPy arrays, 42, 43
operations on, 6–8

logical_and() function, 72–74

logistic regression, 89–94

LogisticRegression module, 92–93

loops, 13–14

lower() string method, 4

lung cancer logistic regression example, 90–94

M
machine learning

bias-variance trade-off, 113–114
classification concepts, 120
decision trees, 111–113
ensemble learning, 123–126
K-Means clustering algorithm, 94–99
K-Nearest Neighbors algorithm, 100–104
linear regression algorithm, 83–89
logistic regression algorithm, 89–94
model parameters, 83
neural network analysis, 104–110
overview, 81, 126
supervised, 82–83
support-vector machines, 119, 121–123
unsupervised, 94–95

machine learning models
decision trees, 111–113
K-Means clustering algorithm, 94–99
K-Nearest Neighbors algorithm, 100–104
linear regression function, 83–89
logistic regression function, 89–94
neural networks, 104–110

parameters, 83
random forests, 123–126
support-vector machines, 119, 121–123

map() function, 25–26

margin of error, 121

margin of safety, 123

mark non-prime numbers example, 169–174

mark string example, 25–26

mask index arrays, 59

match() function, 133–134, 135–136

Matplotlib library, 34, 71–72

max() function, 44–45, 46, 79

maximum likelihood models, 91–92

max_iter() argument, 109

mean, 70–71, 73–74

mean() function, 73

meta-predictions, 123

min() function, 44, 115

minimum wage test example, 35–37

MLPRegressor module, 108–110

modulo (%) operator, 2, 167

multilayer perceptron (MLP), 104–110

multiline strings, 4, 130, 137, 140–141, 149–150

multinomial classification, 90

multiplication of arrays, 45, 50, 73

multiplication (*) operator, 2, 43, 45, 50

multiset data structures, 10

mutability, 6–7

N
named groups, 145–147

n_clusters argument, 98

ndim attribute, 48–49

negation (-) operator, 2

negative lookahead, 149–150

negative lookahead (?!) regex operator, 149

n_estimators parameter, 124–125

neural network analysis
coding, 108–110
concepts of artificial, 106–107
example, 104–105

newline (\n) character, 4, 22, 23, 130

None keyword, 4, 5–6

nongreedy asterisk (*) regex operator, 130–131, 134

nongreedy pattern matching, 130–131, 134, 137

nonlinear classifiers, 120

nonsecure URL search example, 140–141

nonzero() function, 54–56

normal distribution data, 70–71

normal() function, 71

not keyword, 3–4

not (^) regex operator, 140, 145–147

null value. See None keyword

numerical data types and operations, 2

NumPy arrays
arithmetic operations on, 43–46, 72
axes and dimensionality, 48–50
axis argument, 61–63, 65–66, 76
Boolean operations, 54–56
broadcasting, 50, 52–53, 54–56
creating, 42–43
and data types, 50–51, 53, 59
filtering, 68–69
indexing, 46, 57–59
logical and operation, 72–73
minimum variance calculation, 114–116
reshaping, 61, 62–63
slice assignments, 60–61, 62–63

slicing, 46–48, 51–52, 58–59, 75–76, 78
sorting in, 64–67
statistics calculations, 116–119

NumPy library, 41, 43

O
obfuscation algorithm, 165–168

one-liners
resources, xxiii
use and misuse, 183–184
value of learning, xix–xxii

or keyword, 3–4

order of execution
in Boolean operations, 3–4
in regular expressions, 135

or (|) regex operator, 135, 144

outlier detection, 53–57, 70, 73–74

P
palindrome detection example, 154–156

pattern matching. See regular expressions

permutations calculation example, 156–159

Peters, Tim, The Zen of Python, xxi–xxii

pivot element, 180–183

plot() function, 34–35

pop() list method, 9

power (**) operator, 2

powersets, 162–165

predict() function, 88, 108–110, 122, 125

predictions and features, 82–83

predict_proba() function, 93–94

prime numbers
detection example, 168–169
generator example, 169–174

probability, a priori, 157

programming skills
and algorithm mastery, 151–152
development and practice, xix–xxii, 116, 126, 183–184
problem solving strategies, 143
productivity, 39–40, 87, 127
in rating example, 104–105, 109–110

pruning, 112

Python
code readability, xxi–xxii, 24, 116
libraries, xix–xx, 26, 41, 71, 86, 87, 163
naming conventions, 98
object truth values, 160–161
resources, xxiii
skills rating example, 104–105, 109–110

Q
Quicksort algorithm, 180–182

quotes
in regex expressions, 145, 145–150
in strings, 4

R
RandomForestClassifier module, 124

random forests, 123–126

random module, 71

randomness in decision trees, 113, 125–126

random_state parameter, 125

range() function, 12, 18–20, 169, 174

reading files example, 22–24

recursion and recursive functions, 157–159, 160–162, 177–
180, 180–182

reduce() function, 163–165, 169, 174, 175–176

regex. See regular expressions

regex characters, 128–131, 134–135, 138, 140–141

regex functions, 135, 137, 142–143, 149

regression problems
vs. classification problems, 89
and K-Nearest Neighbors algorithm, 100–101
and linear regression algorithm, 83

regular expressions. See also regex characters; regex functions
for character substitution, 149–150
compiled patterns, 133–134
for duplicate character detection, 145–147
false positives removal, 132–134
greedy and non-greedy pattern matching, 130
groups and named groups, 138–139, 145–146
negative lookahead, 149–150
special characters, 138
for user input validation, 141–145
for word repetition detection, 147–148

re module, 129–131

remove() list method, 7–8

replace() string method, 5

replication (*) operator, 34–35

reshape() function, 62–63, 88, 92–93, 101–103

return expressions, 15, 24–25

return keyword, 15

return values, 6, 24

reverse() list method, 8

ROT13 algorithm, 165–168

S
salary increase calculation example, 51–53

SAT score analysis example, 66–67

scikit-learn library, 86, 97–98

search() function, 135, 147

sequence aggregator examples, 164–165, 175

set comprehension, 12

sets
data structure, 9–10, 56
membership testing, 11–12
powerset construction example, 162–165

shape attribute, 49–50, 76

Sieve of Eratosthenes, 169–174

sigmoid function, 90–92

single quote ('), 4

sklearn package, 98

slice assignments, 31–33, 60–61

slicing
with list comprehension, 29–30
multidimensional, 46–48
with negative step size, 66, 67, 155–156
syntax and examples, 26–29

softmax function, 90

sorted (Python) function, 65, 66, 153–154

sort() (NumPy) function, 64–66, 67

sorting, 64–67, 153–154, 180–182

sort() list method, 8

split() function, 21–22

Stack Overflow, 170

stacks, 8–9

standard deviation, 70–71, 73–74, 117

start argument, 27, 155

startswith() string method, 5

statistics calculations, 116–119

std() function, 73, 117–119

step argument, 27

stock price examples
calculations, 61–62
linear regression, 84–89

stop argument, 27, 155

strings. See also multiline strings; regular expressions
data type, 4
selected methods, 4–5

strip() string method, 4, 22–24

str() string method, 4

sub() regex function, 149–150

subtraction (-) operator, 2, 43, 45

sum() function, 76, 77, 78

supervised machine learning, 82–83, 94

support-vector classification (SVC), 122

support-vector machines (SVMs), 119, 121–123

SVC module, 122

T
tab (\t) character, 4

team rankings example, 156–157

throwaway (_) parameter, 175

time format validation examples, 141–145

trailing underscore (_) character, 98

training data, 82–83, 100

tree module, 112–113

trees. See decision trees

triple quote ('''), 4

True value. See also Boolean data
of Python objects, 160–161
and while loops, 14

U
union (|) operator, 164–165

unlabeled vs. labeled data, 94–95

unpacking (*) operator, 38

unsupervised machine learning, 94–95

upper() string method, 5

urllib.request module, 132

urlopen() method, 132

URL search example, 140–141

user input validation examples, 141–145

V
values() function, 11, 36–37

van Rossum, Guido, 36

var() function, 115, 117–119

variance, 113–116, 126

W
web scraper example, 132–134

where() function, 116

while loops, 13–14

whitespace (\s) character, 4, 145–148

word repetition detection example, 147–148

X
xkcd() function, 71–72

Z
Zen of Python, The (Peters), xxi–xxii

zero-or-one (?) regex operator, 130, 134, 139

zip() function, 37–39

PYTHON, ELEVATED

Python One-Liners will teach you how to read and write “one-
liners”: concise statements of useful functionality packed into
a single line of code. You’ll learn how to systematically
unpack and understand any line of Python code, and write
eloquent, powerfully compressed Python like an expert.

The book’s five chapters cover tips and tricks, regular
expressions, machine learning, core data science topics, and
useful algorithms. Detailed explanations of one-liners
introduce key computer science concepts and boost your
coding and analytical skills.

You’ll learn about advanced Python features such as list
comprehension, slicing, lambda functions, regular expressions,
map and reduce functions, and slice assignments.

You’ll also learn how to:

Leverage data structures to solve real-world problems, like using
Boolean indexing to find cities with above-average pollution

Use NumPy basics such as array, shape, axis, type, broadcasting,
advanced indexing, slicing, sorting, searching, aggregating, and statistics
Calculate basic statistics of multidimensional data arrays and the K-
Means algorithm for unsupervised learning

Create more advanced regular expressions using grouping and named
groups, negative lookaheads, escaped characters, whitespaces, character
sets (and negative characters sets), and greedy/nongreedy operators
Understand a wide range of computer science topics, including
anagrams, palindromes, supersets, permutations, factorials, prime
numbers, Fibonacci numbers, obfuscation, searching, and algorithmic
sorting

By the end of the book, you’ll know how to write Python at its
most refined, and create concise, beautiful pieces of “Python
art” in merely a single line.

ABOUT THE AUTHOR
Christian Mayer has a PhD in computer science and is the
founder of the popular Python site Finxter
(https://blog.finxter.com/). Mayer is also the author of the
Coffee Break Python series.

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

https://blog.finxter.com/
http://www.nostarch.com/

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Python One-Liner Example
	A Note on Readability
	Who Is This Book For?
	What Will You Learn?
	Online Resources

	1 Python Refresher
	Basic Data Structures
	Container Data Structures
	Control Flow
	Functions
	Lambdas
	Summary

	2 Python Tricks
	Using List Comprehension to Find Top Earners
	Using List Comprehension to Find Words with High Information Value
	Reading a File
	Using Lambda and Map Functions
	Using Slicing to Extract Matching Substring Environments
	Combining List Comprehension and Slicing
	Using Slice Assignment to Correct Corrupted Lists
	Analyzing Cardiac Health Data with List Concatenation
	Using Generator Expressions to Find Companies That Pay Below Minimum Wage
	Formatting Databases with the zip() Function
	Summary

	3 Data Science
	Basic Two-Dimensional Array Arithmetic
	Working with NumPy Arrays: Slicing, Broadcasting, and Array Types
	Conditional Array Search, Filtering, and Broadcasting to Detect Outliers
	Boolean Indexing to Filter Two-Dimensional Arrays
	Broadcasting, Slice Assignment, and Reshaping to Clean Every i-th Array Element
	When to Use the sort() Function and When to Use the argsort() Function in NumPy
	How to Use Lambda Functions and Boolean Indexing to Filter Arrays
	How to Create Advanced Array Filters with Statistics, Math, and Logic
	Simple Association Analysis: People Who Bought X Also Bought Y
	Intermediate Association Analysis to Find Bestseller Bundles
	Summary

	4 Machine Learning
	The Basics of Supervised Machine Learning
	Linear Regression
	Logistic Regression in One Line
	K-Means Clustering in One Line
	K-Nearest Neighbors in One Line
	Neural Network Analysis in One Line
	Decision-Tree Learning in One Line
	Get Row with Minimal Variance in One Line
	Basic Statistics in One Line
	Classification with Support-Vector Machines in One Line
	Classification with Random Forests in One Line
	Summary

	5 Regular Expressions
	Finding Basic Textual Patterns in Strings
	Writing Your First Web Scraper with Regular Expressions
	Analyzing Hyperlinks of HTML Documents
	Extracting Dollars from a String
	Finding Nonsecure HTTP URLs
	Validating the Time Format of User Input, Part 1
	Validating Time Format of User Input, Part 2
	Duplicate Detection in Strings
	Detecting Word Repetitions
	Modifying Regex Patterns in a Multiline String
	Summary

	6 Algorithms
	Finding Anagrams with Lambda Functions and Sorting
	Finding Palindromes with Lambda Functions and Negative Slicing
	Counting Permutations with Recursive Factorial Functions
	Finding the Levenshtein Distance
	Calculating the Powerset by Using Functional Programming
	Caesar’s Cipher Encryption Using Advanced Indexing and List Comprehension
	Finding Prime Numbers with the Sieve of Eratosthenes
	Calculating the Fibonacci Series with the reduce() Function
	A Recursive Binary Search Algorithm
	A Recursive Quicksort Algorithm
	Summary

	Afterword
	Index

