
Python Projects
for Beginners

A Ten-Week Bootcamp Approach to
Python Programming
—
Connor P. Milliken

Python Projects for
Beginners

A Ten-Week Bootcamp Approach to
Python Programming

Connor P. Milliken

Python Projects for Beginners

ISBN-13 (pbk): 978-1-4842-5354-0			 ISBN-13 (electronic): 978-1-4842-5355-7
https://doi.org/10.1007/978-1-4842-5355-7

Copyright © 2020 by Connor P. Milliken

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-5354-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Connor P. Milliken
Derry, NH, USA

https://doi.org/10.1007/978-1-4842-5355-7

This book is dedicated to my girlfriend Jess.

Ever since we first met, you changed my life forever.

There’s so much that I wish to tell you each day,
like how beautiful you are, how you inspire me, or how I would

give anything just to be with you every second of the day.

Your smile lights up my whole world and you make me so
unbelievably happy.

Anytime I have a bad day, I know you’ll always be there for me.

I thought that I would only find you in my dreams, but here you are,
standing in front of me, looking beautiful as ever.

From the day I met you, I knew I wanted to give you everything.

You’re smart, motivated, beautiful, and resemble all that is
right with this world.

If I only do one thing right in life, I’d like it to be you.

I promise to always push you to be better, always support
you in times of need, and always be there with a Werther's

candy to help you study.

Your dreams have become my dreams, and whatever you want in life,

I want to be there to celebrate and help guide you.

I will always love you, past forever, with all my heart and soul.

So I have only one question left for you…

(turn the page)

Will You Marry Me?

vv

Chapter 1: Getting Started��� 1

Monday: Introduction��� 2

What Is Python?�� 2

Why Python?��� 3

Why This Book?�� 4

Who This Book Is For?�� 4

What You’ll Learn�� 5

Tuesday: Setting Up Anaconda and Python�� 6

Cross-Platform Development��� 6

Installing Anaconda and Python for Windows�� 6

What Is Anaconda?��� 8

What Is Jupyter Notebook?�� 8

Wednesday: How to Use the Terminal�� 9

Changing Directories�� 9

Checking the Directory��� 10

Making Directories��� 10

Creating Files�� 10

Checking a Version Number��� 11

Clearing the Terminal Output�� 11

Using the Python Shell��� 12

Writing Your First Line of Python�� 12

Exiting the Python Shell�� 13

Table of Contents
About the Author���xxi

About the Technical Reviewer���xxiii

Acknowledgments��xxv

vi

Thursday: Using Jupyter Notebook�� 13

Opening Jupyter Notebook��� 14

Creating a Python File�� 14

Jupyter Notebook Cells�� 15

Friday: Creating Your First Program��� 17

Line Numbers Introduced��� 17

Creating the Program��� 18

Final Output�� 19

Weekly Summary��� 20

Weekly Challenges��� 20

Chapter 2: Python Basics�� 21

Monday: Comments and Basic Data Types�� 22

What Are Comments and Why Use Them?�� 22

Writing Comments�� 23

What Are Data Types?��� 24

The Print Statement�� 24

Integers�� 25

Floats�� 25

Booleans��� 25

Strings�� 26

Tuesday: Variables�� 27

How They Work��� 27

Handling Naming Errors��� 28

Integer and Float Variables��� 28

Boolean Variables��� 29

String Variables�� 29

Using Multiple Variables��� 29

Using Operators on Numerical Variables�� 30

Overwriting Previously Created Variables��� 30

Whitespace��� 31

Table of Contents

vii

Wednesday: Working with Strings��� 31

String Concatenation�� 32

Formatting Strings�� 32

String Index�� 34

String Slicing�� 36

Thursday: String Manipulation��� 37

.�title( )��� 37

.�replace( )�� 37

.�find( )��� 38

.�strip( )�� 38

.�split( )��� 39

Friday: Creating a Receipt Printing Program�� 39

Final Design�� 40

Initial Process��� 40

Defining Our Variables�� 41

Creating the Top Border�� 42

Displaying the Company Info�� 42

Displaying the Product Info�� 43

Displaying the Total�� 44

Displaying the Ending Message��� 44

Displaying the Bottom Border��� 45

Weekly Summary��� 45

Challenge Question Solution�� 45

Weekly Challenges��� 46

Chapter 3: User Input and Conditionals��� 47

Monday: User Input and Type Converting��� 48

Accepting User Input�� 48

Storing User Input��� 48

What Is Type Converting?��� 49

Checking the Type�� 49

Table of Contents

viii

Converting Data Types�� 49

Converting User Input��� 50

Handling Errors��� 51

Code Blocks and Indentation�� 52

Tuesday: If Statements��� 52

How They Work��� 53

Writing Your First If Statement��� 53

Comparison Operators�� 54

Checking User Input��� 54

Logical Operators��� 55

Membership Operators��� 56

Wednesday: Elif Statements�� 58

How They Work��� 58

Writing Your First Elif Statement�� 59

Checking Multiple Elif Conditions��� 59

Conditionals Within Conditionals�� 60

If Statements vs. Elif Statements��� 60

Thursday: Else Statements�� 62

How They Work��� 62

Writing Your First Else Statement��� 62

Complete Conditional Statement�� 63

Friday: Creating a Calculator�� 64

Final Design�� 65

Step #1: Ask User for Calculation to Be Performed�� 65

Step #2: Ask for Numbers, Alert Order Matters�� 66

Step #3: Set Up Try/Except for Mathematical Operation��� 66

Final Output�� 67

Weekly Summary��� 69

Challenge Question Solution�� 69

Weekly Challenges��� 69

Table of Contents

ix

Chapter 4: Lists and Loops�� 71

Monday: Lists��� 72

What Are Lists?��� 72

Declaring a List of Numbers��� 72

Accessing Elements Within a List��� 73

Declaring a List of Mixed Data Types�� 73

Lists Within Lists�� 74

Accessing Lists Within Lists��� 74

Changing Values in a List��� 75

Variable Storage��� 76

Copying a List��� 77

Tuesday: For Loops�� 78

How Loops Work��� 78

Writing a For Loop�� 78

Range()��� 80

Looping by Element�� 80

Continue Statement�� 81

Break Statement��� 82

Pass Statement�� 82

Wednesday: While Loops��� 83

Writing a While Loop��� 84

While vs. For��� 84

Infinite Loops�� 84

Nested Loops�� 85

Thursday: Working with Lists��� 86

Checking Length��� 87

Slicing Lists�� 87

Adding Items�� 88

Removing Items�� 88

Working with Numerical List Data�� 90

Sorting a List�� 90

Table of Contents

x

Conditionals and Lists�� 91

Loops and Lists�� 92

Friday: Creating Hangman�� 93

Final Design�� 94

Previous Line Symbols Introduced��� 94

Adding Imports��� 95

Declaring Game Variables��� 96

Generating the Hidden Word��� 96

Creating the Game Loop��� 97

Outputting Game Information��� 97

Checking a Guess��� 98

Clearing Output��� 98

Creating the Losing Condition�� 99

Handling Correct Guesses�� 99

Creating a Winning Condition��� 100

Outputting Guessed Letters�� 101

Adding Guessed Letters�� 101

Handling Previous Guesses�� 102

Final Output�� 102

Weekly Summary��� 103

Challenge Question Solution�� 103

Weekly Challenges��� 104

Chapter 5: Functions��� 105

Monday: Creating and Calling Functions�� 106

What Are Functions?�� 106

Function Syntax�� 107

Writing Your First Function��� 107

Function Stages�� 108

UDF vs. Built-in��� 109

Performing a Calculation�� 109

Table of Contents

xi

Tuesday: Parameters�� 110

What Are Parameters?�� 110

Passing a Single Parameter��� 111

Multiple Parameters��� 111

Passing a List��� 112

Default Parameters��� 113

Making Parameters Optional�� 113

Named Parameter Assignment��� 114

*args��� 114

**kwargs��� 115

Wednesday: Return Statement�� 116

How It Works�� 116

Using Return��� 117

Ternary Operator��� 118

Thursday: Scope�� 119

Types of Scope��� 119

Global Scope Access�� 119

Handling Function Scope�� 120

In-Place Algorithms�� 120

Friday: Creating a Shopping Cart��� 121

Final Design�� 122

Initial Setup�� 122

Adding Items�� 123

Removing Items�� 123

Showing the Cart�� 124

Clearing the Cart��� 124

Creating the Main Loop�� 124

Handling User Input�� 125

Final Output�� 126

Table of Contents

xii

Weekly Summary��� 126

Challenge Question Solution�� 127

Weekly Challenges��� 127

Chapter 6: Data Collections and Files�� 129

Monday: Dictionaries��� 129

What Are Dictionaries?��� 130

Declaring a Dictionary�� 130

Accessing Dictionary Information��� 131

Using the Get Method��� 131

Dictionaries with Lists�� 132

Lists with Dictionaries�� 132

Dictionaries with Dictionaries��� 133

Tuesday: Working with Dictionaries��� 134

Adding New Information��� 134

Changing Information��� 135

Deleting Information��� 135

Looping a Dictionary��� 135

Wednesday: Tuples, Sets, Frozensets�� 137

What Are Tuples?�� 137

Declaring a Tuple�� 138

What Are Sets?��� 138

Declaring a Set��� 138

What Are Frozensets?��� 139

Declaring a Frozenset��� 139

Data Collection Differences�� 140

Thursday: Reading and Writing Files�� 140

Working with Text Files��� 141

Writing to CSV Files�� 142

Reading from CSV Files�� 142

File Modes in Python�� 143

Table of Contents

xiii

Friday: Creating a User Database with CSV Files��� 144

Final Design�� 144

Setting Up Necessary Imports�� 145

Handling User Registration��� 145

Handling User Login��� 146

Creating the Main Loop�� 147

Weekly Summary��� 148

Challenge Question Solution�� 149

Weekly Challenges��� 149

Chapter 7: Object-Oriented Programming��� 151

Monday: Creating and Instantiating a Class��� 152

What Is an Object?��� 152

OOP Stages��� 153

Creating a Class�� 153

Creating an Instance�� 154

Creating Multiple Instances�� 154

Tuesday: Attributes��� 156

Declaring and Accessing Attributes�� 156

Changing an Instance Attributes�� 157

Using the __init__( ) Method�� 157

The “self” Keyword��� 158

Instantiating Multiple Objects with __init__( )�� 159

Global Attributes vs. Instance Attributes�� 159

Wednesday: Methods��� 161

Defining and Calling a Method��� 161

Accessing Class Attributes in Methods�� 162

Method Scope�� 162

Passing Arguments into Methods��� 163

Using Setters and Getters��� 164

Incrementing Attributes with Methods��� 165

Table of Contents

xiv

Methods Calling Methods��� 166

Magic Methods��� 166

Thursday: Inheritance�� 168

What Is Inheritance?��� 168

Inheriting a Class�� 168

Using the super( ) Method�� 169

Method Overriding�� 170

Inheriting Multiple Classes��� 171

Friday: Creating Blackjack��� 172

Final Design�� 173

Setting Up Imports�� 174

Creating the Game Class�� 174

Generating the Deck��� 175

Pulling a Card from the Deck�� 175

Creating a Player Class��� 176

Adding Cards to the Player’s Hand��� 177

Showing a Player’s Hand�� 178

Calculating the Hand Total�� 179

Handling the Player’s Turn�� 181

Handling the Dealer’s Turn��� 182

Calculating a Winner��� 183

Final Output�� 184

Weekly Summary��� 184

Challenge Question Solution�� 185

Weekly Challenges��� 185

Chapter 8: Advanced Topics I: Efficiency��� 187

Monday: List Comprehension��� 188

List Comprehension Syntax�� 188

Generating a List of Numbers��� 189

If Statements�� 190

If-Else Statements�� 190

Table of Contents

xv

List Comprehension with Variables�� 191

Dictionary Comprehension��� 192

Tuesday: Lambda Functions��� 193

Lambda Function Syntax�� 193

Using a Lambda�� 193

Passing Multiple Arguments��� 194

Saving Lambda Functions�� 195

Conditional Statements�� 195

Returning a Lambda��� 196

Wednesday: Map, Filter, and Reduce��� 197

Map Without Lambdas�� 197

Map with Lambdas��� 198

Filter Without Lambdas��� 199

Filter with Lambdas�� 200

The Problem with Reduce�� 201

Using Reduce�� 201

Thursday: Recursive Functions and Memoization�� 203

Understanding Recursive Functions��� 203

Writing a Factorial Function��� 204

The Fibonacci Sequence�� 205

Understanding Memoization��� 206

Using Memoization��� 207

Using @lru_cache�� 208

Friday: Writing a Binary Search�� 209

Final Design�� 209

Program Setup��� 211

Step 1: Sort the List�� 211

Step 2: Find the Middle Index��� 212

Step 3: Check the Value at the Middle Index�� 213

Step 4: Check if Value Is Greater�� 213

Step 5: Check if Value Is Less��� 214

Table of Contents

xvi

Step 6: Set Up a Loop to Repeat Steps��� 214

Step 7: Return False Otherwise�� 215

Final Output�� 216

Weekly Summary��� 217

Challenge Question Solution�� 217

Weekly Challenges��� 218

Chapter 9: Advanced Topics II: Complexity��� 219

Monday: Generators and Iterators�� 220

Iterators vs. Iterables�� 220

Creating a Basic Iterator��� 220

Creating Our Own Iterator��� 221

What Are Generators?��� 222

Creating a Range Generator��� 222

Tuesday: Decorators��� 224

What Are Decorators?��� 224

Higher-Order Functions�� 225

Creating and Applying a Decorator��� 225

Decorators with Parameters��� 226

Functions with Decorators and Parameters��� 226

Restricting Function Access��� 227

Wednesday: Modules��� 229

Importing a Module�� 229

Importing Only Variables and Functions��� 230

Using an Alias��� 231

Creating Our Own Module�� 231

Using Our Module in Jupyter Notebook�� 232

Thursday: Understanding Algorithmic Complexity��� 234

What Is Big O Notation?�� 234

Hash Tables�� 236

Dictionaries vs. Lists�� 238

Battle of the Algorithms�� 239

Table of Contents

xvii

Friday: Interview Prep�� 241

Developer Interview Process�� 241

What to Do Before the Interview�� 243

General Questions�� 245

Whiteboarding and Technical Questions��� 248

End of Interview Questions��� 249

What to Do After the Interview��� 250

Weekly Summary��� 251

Challenge Question Solution�� 252

Weekly Challenges��� 252

Chapter 10: Introduction to Data Analysis��� 253

Monday: Virtual Environments and Requests Module�� 254

What Are Virtual Environments?��� 254

What Is Pip?�� 256

Creating a Virtual Environment��� 256

Activating the Virtual Environment��� 257

Installing Packages�� 258

APIs and the Requests Module��� 259

Using the Requests Module�� 259

Tuesday: Pandas�� 263

What Is Pandas?��� 263

Key Terms��� 264

Installing Pandas�� 265

Importing Pandas��� 265

Creating a DataFrame��� 265

Accessing Data��� 267

Built-in Methods��� 268

Filtration��� 271

Column Transformations��� 272

Aggregations�� 274

Table of Contents

xviii

Pandas Joins�� 277

Dataset Pipeline��� 280

Wednesday: Data Visualization�� 281

Types of Charts��� 282

Installing Matplotlib�� 282

Importing Matplotlib��� 283

Line Plot�� 283

Bar Plot��� 285

Box Plot�� 286

Scatter Plot��� 288

Histogram��� 289

Saving the Chart��� 292

Flattening Multidimensional Data��� 293

Thursday: Web Scraping�� 295

Installing Beautiful Soup�� 295

Importing Beautiful Soup�� 295

Requesting Page Content��� 296

Parsing the Response with Beautiful Soup�� 297

Scraping Data��� 297

DOM Traversal�� 299

Friday: Web Site Analysis��� 304

Final Design�� 304

Importing Libraries��� 306

Creating the Main Loop�� 307

Scraping the Web Site�� 307

Scrape All Text�� 308

Filtering Elements�� 309

Filtering Waste�� 310

Count Word Frequency��� 312

Sort Dictionary by Word Frequency�� 313

Displaying the Top Word��� 313

Table of Contents

xix

Graphing the Results�� 314

Final Output�� 315

Weekly Summary��� 315

Challenge Question Solution�� 316

Weekly Challenges��� 316

Afterword: Post-Course: What to Do Now?�� 319

Back-End Development with Python�� 319

Full-Stack Development with Python��� 320

Data Analysis with Python�� 320

Data Science with Python�� 320

Resources�� 320

Final Message�� 323

Index�� 325

Table of Contents

xxi

About the Author

Connor P. Milliken Focused on helping others achieve their

goals through education and technology, Connor P. Milliken

brings a wealth of programming and business experience to

his classes.

He graduated with a computer science degree from

Daniel Webster College and is pursuing a master’s in

computer science with a focus in interactive intelligence

from Georgia Tech.

Before becoming an instructor at Coding Temple, he was

designing simulators in the video game industry for several

years. During that time, he took on a vast number of roles

from business to programming that he used to release a total of 11 different titles on PC

and co-created an award-winning football card game called “Masters of the Gridiron.”

Connor has experience in more than seven different languages and three frameworks.

He focuses primarily in web development and data analytics using Python. When this

book was written, he taught for a coding bootcamp in Boston, MA, where students

can learn Python, web development, and data analytics over a 10-week full-time course.

He is now a software engineer at Hubspot, Inc. in Cambridge, MA.

Github: Connor-SM

xxiii

About the Technical Reviewer

Bharath Thiruveedula currently works for a major telco

service provider. He is core reviewer and key contributor to

various OpenStack/ONAP projects. Bharath is passionate

about open source technologies and is an evangelist who

is focused on making his mark in the Cloud/Container

domains. He has been working on distributed systems and

machine learning for a significant amount of time.  

xxv

Acknowledgments

I would like to thank the following people for their generosity and help:

Jessica Boucher, who has been my rock this whole time. Your love

and support have continued to help me in all my endeavors. I’m

truly blessed to have you in my life.

My family, who have supported and believed in me all my life.

Without your guidance, none of this would be possible. To have

parents and siblings like you all is nothing short of a miracle and I

wouldn’t have it any other way.

Clay and Dee Dreslough, who gave me an opportunity and

mentored me. This book would not be possible without your

guidance over the years. It was at Sports Mogul that I had realized

my passion of computer programming, thanks to you both.

Derek Hawkins, who mentored and taught me a lot about

teaching, programming, Python, and Ping Pong.

Kirsten Arnold, who created all the art within this book. The work

you were able to create from my poor drawing skills was exactly

what I had imagined.

Ripal Patel, who helped with the interview portion of Week

9. Your expertise in the hiring and interview process has been

wonderful for not only me but the students.

My friends, who over the years have been there for me through it

all. Whether it was watching my dog, going on adventures, or just

hanging out… thank you. I will always make the drive for you all.

My coaches, who taught me about perseverance, hard work,

commitment, and teamwork. Whether it was 6 AM practices or

triple sessions in the middle of summer, you’ve played a big part

in my life and for that I’m grateful.

xxvi

The Coding Temple team, who gave me the opportunity and

entrusted me to educate those wanting to pursue a career in tech.

The Apress team, who have helped me throughout this entire

process with writing, formatting, reviewing, and more.

My students, who helped to show me why teaching is so

rewarding.

Acknowledgments

1
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_1

CHAPTER 1

Getting Started
Hello there! Welcome to your first step toward becoming a Python developer. Exciting

isn’t it? Whether you’re just beginning to learn how to program, or have experience in

other languages, the lessons taught in this book will help to accelerate your goals. As a

Python instructor, I can guarantee you that it’s not about where you start, it’s about how

hard you’re willing to work.

At the time of writing this book, my daily job is a coding bootcamp instructor where I

teach students how to go from zero programming experience to professional developers

in just ten weeks. This book was designed with the intent to bring a bootcamp-based

approach to text. This book aims to help you learn subjects that are valuable to becoming

a professional developer with Python.

Each subsequent chapter will have an overview and a brief description of what we’ll

cover that week. This week we’ll be covering all the necessary basics to get us jump

started. Following the age old saying, “You must learn to walk before you can run,” we

must understand what our tools are and how to use them before we can begin coding.

Overview

•	 Understanding why and how this book works

•	 Installing Python and Anaconda

•	 Understanding how to use these new tools

•	 Understanding how to use the terminal

•	 Writing your first Python program

Without further ado, let’s get started, shall we?

2

�Monday: Introduction
Almost every programmer remembers that “Aha!” moment, when everything clicked

for them. For me that was when I picked up Python. After years of computer science

education, one of the best methods I found to learn was by building applications and

applying the knowledge you learn. That’s why this book will have you coding along

rather than reading about the theory behind programming. Python makes it simple to

pick up concepts otherwise difficult in other languages. This makes it a great language

for breaking into the development industry!

You may have already noticed that the structure of this book is different than most.

Instead of chapters, we have each topic separated by weeks or days. Notice the current

header for the section. This is part of the bootcamp-based approach, so that you may set

goals for each day. There will be two ways to follow along this book:

	 1.	 Over the course of ten weeks

	 2.	 Over the course of ten days

If you’d like to follow the 10-week approach, then think of each chapter as a weekly

goal. All chapters are broken up further into daily segments Monday to Friday. The

first four days, Monday through Thursday, will introduce new concepts to understand.

Friday, or better known as Project Day, is where we will create a program together

based on the lessons learned throughout the week. The focus is that you set aside 30–60

minutes each day to complete each daily task.

If you’re eager enough to try the bootcamp style, where you learn all the material

in ten days, then think of each chapter as a single day. Granted, you must know that in

order to complete this book in ten days, you will need to dedicate around 8 hours per

day, which is a typical day for coding bootcamp students. In bootcamps (like the one I

taught), we go over several concepts daily, and each subsequent day we reiterate the

topics learned from previous lessons. This helps to accelerate the process of learning

each concept.

�What Is Python?
Python is an interpreted, high-level, general-purpose programming language. To

understand what each of these descriptions mean, let’s make a few comparisons:

Chapter 1 Getting Started

3

•	 Low Level vs. High Level: Refers to whether we program using

instructions and data objects at the level of the machine or whether

we program using more abstract operations that have been provided

by the language designer. Low-level languages (like C, C++) require

you to allocate and manage memory, whereas Python manages

memory for us.

•	 General Purpose vs. Targeted: Refers to whether the operations of

the programming language are widely applicable or are fine-tuned to

a domain. For example, SQL is a targeted language that is designed

to facilitate extracting information from relational databases, but you

wouldn’t want to use it to build an operating system.

•	 Interpreted vs. Compiled: Refers to whether the sequence of

instructions written by the programmer, called “source code,” is

executed directly (by an interpreter) or whether it is first converted

(by a compiler) into a sequence of machine-level primitive

operations. Most applications designed with Python are run through

the interpreter, so errors are found at runtime.

Python also emphasizes code readability and uses whitespace to separate snippets of

code. We’ll learn more about how whitespace in Python works as we get into our lessons,

but for now just know that Python is a great first language to break into the computer

science industry.

�Why Python?
I could go on about why Python is so amazing, but a simple Google search would do

that for me. Python is one of the easier languages to learn. Notice I said “easier” and

not “easy”… that’s because programming is still difficult, but Python reads closer to

the English language than most other languages. This is one of the benefits of learning

Python, because concepts that you learn from this book are still applicable to other

languages. Python is also one of the most sought-after skills in the technology industry

today, used by companies such as Google, Facebook, IBM, etc. It’s been used to build

applications like Instagram, Pinterest, Dropbox, and much more!

Chapter 1 Getting Started

4

It’s also one of the fastest growing languages in 2019, climbing to the top 3 languages

to learn for the future.1 How well does it pay though? According to Indeed.com, the

average salary in 2018 was around $117,000 USD!2 That’s a lot of monopoly money!

One of the biggest reasons for learning Python, though, must be the use of the

language itself. It’s used in several different industries: front-end development, back-end

development, full-stack, testing, data analytics, data science, web design, etc., which

makes it a useful language.

�Why This Book?
Let’s start with the main reason for wanting to read this book. The material taught

throughout this book has a proven track record. I’ve personally used this exact

organization approach to help get my students well-paying positions across a variety of

industries. The structure of this curriculum has been repeatedly improved over the years

to stick with current industry trends.

One of the next great strengths of this book vs. its competitors is how the concepts

are taught. I won’t bore you with details; instead we’ll build small- and large-scale

applications together throughout the course of this book. The best way to learn is often

by doing! Especially when it comes to programming, one of the lessons I often tell

students is to just try writing the code, and if it breaks, fix it. You won’t be able to learn if

you don’t try to break things!

Lastly, this book will not only teach you how to program but how to think like a

programmer. At the beginning of each week, I’ll challenge you, and by the end of the

lesson, you’ll be able to understand the approach you need to take. You can always tell

the difference between those who are only able to program and those that are proven

developers.

�Who This Book Is For?
It’s always good to understand what you’re getting into before you start reading the book.

To want to read a book, you first must realize if the book itself is designed for you. If you

can answer yes to any of the following questions, then this book is for you:

1�www.tiobe.com/tiobe-index/
2�www.indeed.com/salaries/Python-Developer-Salaries

Chapter 1 Getting Started

5

•	 Do you have experience in other programming languages but want to

pick up a high-level language?

•	 Have you never programmed before but are eager to learn?

•	 Did you take computer science courses previously, but they just

didn’t help you learn how to create applications?

•	 Do you want to make a career change?

•	 Have you tried to learn languages previously but couldn’t because of

the difficulty of the language?

•	 Have you programmed in Python before but want to improve your

abilities and learn new tools?

This book is designed for a wide array of readers, no matter your background. The

real question is on you, “How hard are you willing to work?” The concepts taught in

this book can benefit anyone willing to learn. Even if you’ve programmed in Python

before, this book can still help you become a stronger developer.

�What You’ll Learn
This book was created to be used for bootcamp classes designed in teaching Python.

You can expect to cover necessary information that would be required of you on the job

as a Python developer. These concepts will give you the ability to go forward with your

education in programming. At the end of each chapter, we’ll use the concepts covered

to create a variety of real-world applications. After all, we’re not just focused on Python

here, we’re trying to build you up to become a better developer.

Tomorrow, we’ll find out how to install the necessary software that this book
uses. If you already have Anaconda and Python on your machine, you can skip to
Wednesday’s lesson.

Chapter 1 Getting Started

6

�Tuesday: Setting Up Anaconda and Python
Today, we’re going to get our software setup. Throughout this book we’ll be using a

software platform called Anaconda, an integrated development environment (IDE)

called Jupyter Notebook, and the language of Python itself. This book will strictly

cover Python 3; however, at times you may see me mention subtle differences between

versions 2 and 3. Let’s go ahead and download and install these first, then I’ll get into

what each of them are.

�Cross-Platform Development
Python runs on all major operating systems, making it a cross-platform language. This

means that you can write code on one operating system and work with someone that

uses a completely different machine than you. If both machines have Python installed,

they should both be able to run the program.

�Installing Anaconda and Python for Windows
Most OS X and Linux operating systems already come with Python installed; however,

you still need to download Anaconda. For Windows users, Python usually isn’t included,

but it gets installed with Anaconda. Use the following steps to install Anaconda properly:

	 1.	 Open your browser and type www.anaconda.com/distribution/.

	 2.	 Click the download button in the header (see Figure 1-1).

Figure 1-1.  Anaconda Download Page

	 3.	 Once you are on the next page, make sure you select the proper

operating system on the header at the top. Click that button

(see Figure 1-2).

Chapter 1 Getting Started

http://www.anaconda.com/distribution/

7

Figure 1-2.  Selecting an operating system

	 4.	 Next, click the download button for the Python 3.7 (or greater)

section (see Figure 1-3).

Figure 1-3.  Downloading Python 3.x version

	 5.	 This step is strictly for Windows users… Once the installer fully

downloads, go ahead and run it. Use all defaults except for one

option. When you get to the page in Figure 1-4, make sure you

click the “add to path” option. This will let us access Anaconda

through our terminal.

Figure 1-4.  Add to Path

Chapter 1 Getting Started

8

	 6.	 For all options (besides step 5 for Windows users), use default

settings. Then go ahead and click the “Install” button and let

Anaconda finish installing.

�What Is Anaconda?
Anaconda is a Python and R distribution software. It aims to provide everything you

need for Python “out of the box.” Its primary use is for data analytics and data science;

however, it’s a superb tool for learning as well. Upon downloading, it includes

•	 The core Python language and libraries

•	 Jupyter Notebook

•	 Anaconda’s own package manager

These are just a few features out of the many that Anaconda comes with; however,

these are the ones we’ll be using throughout the book. The first feature in this list is the

Python language and included packages that Python has access to. Libraries are pre-

written code by another developer that you can use for your own benefit. The second

feature is talked about in the next section. Lastly, Anaconda has a way of managing

environments for us. This is a complex topic that we’ll get into in later weeks.

�What Is Jupyter Notebook?
It is an open-source integrated development environment (IDE) that allows you

to create and share documents that contain live code, equations, visualizations, and

narrative text. For us, it’s essentially our notebook, where we will code along together. If

you’re not familiar with IDEs, they are simply a tool for developers to code in. Think of

them as a canvas for artists. It also allows you to write snippets of code without needing

to know a lot about Python. We’ll get more into Jupyter Notebook for Thursday’s lesson.

In today’s lesson, we installed Anaconda, Python, and Jupyter Notebook. Tomorrow,
we’ll learn why and how to use the terminal.

Chapter 1 Getting Started

9

�Wednesday: How to Use the Terminal
Depending on your operating system, you’re going to be using the Command Prompt

(Windows) or the Terminal (Linux and OS X). From this point forward, I’m going to

refer to it as the “terminal,” so just keep that in mind if you’re on Windows. The terminal

is a tool for users to be able to issue commands to the computer through basic text. For

most of this book, we will use the terminal to either test our Python code or run Jupyter

Notebook. Today we’ll be learning basic commands and how to use the Python shell. To

get started, let’s open the terminal. As each operating system will look different, terminal

sessions will be defined in code by the “$”. Any text you see after that symbol will be what

you need to write into the terminal yourself.

�Changing Directories
While inside the terminal, you’ll often want to move around from folder to folder. This

gives you the power to navigate around your computer. It’s important to understand how

to do this, as it’s always going to be what we do to start up Jupyter Notebook. In order to

change directories, you need to type in “cd” followed by the folder name you wish to go to.

$ cd desktop

If you need to go backward, out of a folder, then you’ll want to use two dots (“..”):

$ cd ..

Often, throughout this book, you’ll need to traverse through several directories to

get into a project folder. When you use the “cd” command, you can go as far forward or

backward as you select, you just need to specify the correct path to the folder you wish to

go to. Take the following code, for instance…

$ cd desktop/../desktop

We’re going into the desktop directory, but then going back out, only to go back into

it. There’s nothing wrong with this; however, this is just an example that the computer will

follow the path that you specify. Normally we would just cd into the desktop and be done.

Chapter 1 Getting Started

10

�Checking the Directory
To check the directory that you’re currently in, just look to the left of where you can write

these lines of text. For Windows users, the directory you’re currently in will be the ending

URL that you’re on, as marked in bold as follows:

C:\Users\name\desktop>

The last folder name is the “desktop,” which means that I’m currently in the directory

for my desktop. If I were to create any files or folders, they would be created directly on

there. To check which directory you’re in for Linux, it will be the name just to the left of

the “$”:

user@user:~/Desktop$

For OS X users, it’ll be to the left of your username (who you’re logged in as):

User-Macbook-Pro:Desktop Name$

�Making Directories
Though it’s certainly okay to go into your file explorer, right-click, and select “create new

folder,” it’s good to know how to create a new folder through the terminal session itself.

Make sure that you’re in the “desktop” directory that we “cd” into previously. Then write

the following line:

$ mkdir python_bootcamp

This will create a new folder called “python_bootcamp” on your desktop. We’ll be

using this folder from here on out to store our lessons so that we stay organized.

�Creating Files
Again, it’s easier to create files by going into your file explorer. However, sometimes we

need to create files in terminal depending on the file type. Before we create a new file,

however, let’s “cd” into our “python_bootcamp” folder that we created:

$ cd python_bootcamp

Chapter 1 Getting Started

11

Now, for Windows users, we’ll need to type the following:

$ echo.>example.txt

Or if you’re on Linux/OSX:

$ touch example.txt

You should now be able to see the sample.txt file in file explorer.

Note I f you don’t see the “.txt” extension, it’s because you don’t have
“extensions” checked in your preferences within file explorer.

�Checking a Version Number
The terminal is always a great way to check version numbers of certain software that we

download. Since we already downloaded and installed Python, let’s run the following

code:

$ python --version

�Clearing the Terminal Output
Sometimes the terminal gets full of useless output or just becomes tough to read. When

you want to clear the output, you need to write the following line (for Windows):

$ cls

For Linux/OSX users, you’ll need to type in the following:

$ clear

Chapter 1 Getting Started

12

�Using the Python Shell
Python is a language that requires what is called an “interpreter” to read and run the code we

create. When the Python shell is activated, it acts as a local interpreter within the terminal

session that is open. While it’s open, we can write any Python that we wish to execute.

This is generally great for practicing small snippets of code, so that you don’t have to open

an IDE and run an entire file. To start the Python shell up, while we are in the directory of

“python_bootcamp”, simply type “python” and hit enter. The following will appear:

$ python

Python 3.7.0 (v3)

Type "help", "copyright", "credits" or "license" for more information

>>>

The output will show the Python version you’re currently running. You’ll notice the

three arrows (>>>), this means that you’re now working within the Python interpreter.

While in the Python shell, everything you write is interpreted as the Python language. If

for some reason you receive the following response:

$ python

'python' is not recongized as an internal or external command, operable

program or batch file.

This means that Anaconda and Python were not installed properly. I’d advise you

to go back to yesterday’s lesson and reinstall Anaconda following the step-by-step

instructions given. You may need to restart your computer as well.

�Writing Your First Line of Python
Up to this point, we haven’t done any programming. Generally, I’m against not diving

right into coding myself; however, these basic setup instructions are crucial to getting

started as a developer. Although we haven’t gone over any Python just yet, while the

interpreter is still running, next to the arrows write the following code and hit enter:

>>> print("Hello, buddy!")

Chapter 1 Getting Started

13

There you go! You’ve just written your first line of Python and should see the

following output:

>>> print("Hello, buddy!")

Hello, buddy!

>>>

�Exiting the Python Shell
Now, I’ll get to explaining what you just wrote in a later lesson, but for now let’s get out of

the Python shell and finish today’s lesson by writing the following line and hitting enter:

>>> exit()

Today’s lesson was all about operating and understanding the terminal. This is
an important skill for several developer positions, especially those that use Linux
operating systems. Tomorrow we’ll discuss how to operate Jupyter Notebook!

�Thursday: Using Jupyter Notebook
Jupyter Notebook is going to be where we spend most of our time throughout this book.

It’s a powerful tool that is used in the data science community and makes it easier for us

to learn Python because we can solely focus on writing code. Today’s lesson is all about

how to use this tool, the cells, and how to open it.

Note E ach lesson will always ask you to open Jupyter Notebook, so keep this
page handy in case you need to come back to it.

Chapter 1 Getting Started

14

�Opening Jupyter Notebook
Jupyter Notebook can be opened through the Anaconda program; however, I want you

to start getting used to the terminal and how to operate it, so we’re not going to open

it through Anaconda. Instead, we’re going to do this through the terminal. The two

benefits to this are

•	 Jupyter Notebook will open in the same directory that our terminal is in

•	 Knowing how to use terminal will help you as a developer

If you still have the terminal session from yesterday open, skip the first step.

�Step 1: Open Terminal

We need to open terminal and “cd” into our “python_bootcamp” directory:

$ cd desktop/python_bootcamp

�Step 2: Writing the Jupyter Notebook Command

Opening Jupyter Notebook through the terminal is as simple as typing the name of the tool:

$ jupyter notebook

Be sure that you are in the proper directory before typing the code; otherwise it will

open wherever your terminal directory is currently located. Often, this will open Jupyter

Notebook up in your user folder. Jupyter Notebook will open in your browser.

�Creating a Python File
Anytime we start a new week, we’ll end up creating a new file to work from. To do so,

it’s simple; just click the “New” button on the right side of the screen when Jupyter

Notebook first opens. Then select “Python 3” (see Figure 1-5).

Chapter 1 Getting Started

15

Once you click the “Python 3” option, a new tab will open as this file. Click the name

at the top to rename it, and let’s name this file “Week_01” (see Figure 1-6).

Figure 1-5.  Creating a Python 3 notebook

Figure 1-6.  Changing the file name

Figure 1-7.  Notebook cells highlighted in red

�Jupyter Notebook Cells
Now that we’ve opened up Jupyter Notebook and created a file that we can work with,

let’s talk about cells. I’m not talking about biology; rather, in this notebook you’ll notice

the empty white rectangle section below the tools (see Figure 1-7). These are known as

“cells.”

Chapter 1 Getting Started

16

Each cell is where we can write our code, or even use the Markup language. Let’s

write some markup to begin with.

	 1.	 Click in the first cell, so the surrounding area glows blue.

	 2.	 In the toolbar, you’ll notice a drop-down menu that says “code.”

Click the drop-down, and select “markdown” instead.

	 3.	 Within the cell write the following:

Week 01

Note  When writing markup, the number of hashtags in a row relates to the size
of the heading. Like HTML header tags.

	 4.	 Let’s now run the cell to execute the code. To do this, you hold

shift and press enter (the cell must be selected).

	 5.	 When you use shift + enter, a new cell will appear below the

current one.

Within this newly created cell, let’s go ahead and write a simple line of Python to see

how the output works. Let’s go ahead and write the following:

this is python

print("Hello, buddy!")

Go ahead and run the cell. It will run all the code within the cell and output the

result. Again, don’t worry about the actual Python, this lesson is about how Jupyter

Notebook cells run.

For the rest of this book, we’ll be writing our code inside of Jupyter Notebook files.

I’ll be using markdown to specify certain sections, so be sure you’re comfortable with

running cells, writing markdown, and creating a new Jupyter Notebook file before

moving on.

Chapter 1 Getting Started

17

Today we learned how to use Jupyter Notebook and what we can do with cells. In
tomorrow’s lesson, we’ll build our first Python application!

�Friday: Creating Your First Program
Every Friday will be known as “Project Day,” where we will build a small application

or game together, which uses the concepts learned throughout the week. This week,

however, I’m just going to have you write some code into a cell so that you can see the

power of Python. Since we haven’t gone over any Python just yet, I wanted you to be able

to experience what we will learn over the upcoming weeks. The code your about to write

will use concepts from weeks 2, 3, and 4. By the end of these weeks, you’ll be able to

fully understand each line of the following code and make your own tweaks to make the

program more challenging.

We’re going to be working from the Jupyter Notebook file from yesterday’s lesson. If you

had closed out of the program since coming back to this book, go ahead and reopen the file.

Note I f you forgot how to open Jupyter Notebook, go back to yesterday’s lesson
and redo the steps, except for creating a file.

�Line Numbers Introduced
For larger projects, it becomes tough to follow along with books sometimes. For this

project, and all other lessons going forward, I’ll be implementing line numbers. This will

make it easier for you to follow along and check if you wrote the code correctly:

1| ←

Line numbers will now appear on the left side of all cells, as we will need to write all

this code within a single cell. Be sure to pay attention to these numbers, as you may see

them jump a couple lines:

1| # this is the first line in the cell

5| # this is the fifth line in the cell

Chapter 1 Getting Started

18

This means that you should write the second line shown, on the 5th line.

Note T urn lines on by pressing “L” after clicking the cell’s side.

�Creating the Program
The first thing that we need to do is create a new cell below the current cell in our file. In

order to do that, simply follow these steps:

	 1.	 Click the last cell in the file.

	 2.	 While it is highlighted, go to the “Insert” tab in the menu bar, and

click “Insert Cell Below.”

We now have a cell to work with for our project. If you’d like to create a markdown

cell that says “Guessing Game” as the header, feel free to look back at the previous

lesson and how we did it before. Within that new cell, let’s go ahead and write the

following code:

 1| # guessing game

 2| from random import randint

 3| from IPython.display import clear_output

 5| guessed = False

 6| number = randint(0, 100)

 7| guesses = 0

 9| while not guessed:

10| ans = input("Try to guess the number I am thinking of!")

 # use tab to indent

12| guesses += 1

14| clear_output()

16| if int(ans) == number:

17| print("Congrats! You guessed it correctly.")

 # use tab twice to indent twice

18| print("It took you { } guesses!".format(guesses))

19| break

20| elif int(ans) > number:

Chapter 1 Getting Started

19

21| print("The number is lower than what you guessed.")

22| elif int(ans) < number:

23| print("The number is greater than what you guessed.")

This program is not perfect by any means, but it’s certainly fun to try and guess

the number that the computer is thinking of. Now, I know that this looks like a

foreign language to you right now, but over the next couple of weeks, each line will

begin to make sense. Eventually you’ll even be able to make your own changes and

improvements to the game! What I want you to do now is run the cell and play the game.

Begin to think like a developer, and ask yourself these questions while you play:

•	 What improvements can I make?

•	 What makes the program crash?

•	 What would I do better?

Don’t be afraid if you get an error, it’s all part of the growth of becoming a developer!

The fun part about testing the code that you write is that you try to break it. As we go

forward, I’ll challenge you with questions about why a line in the code works the way it

does. When this happens, try to think about it for a couple minutes, even try to Google

the answer. As a developer you’ll find a lot of what you do is Googling a problem. This is

what separates good developers from great ones… the ability to figure out problems on

their own. With the rest of the lessons in this book, you’ll be well on your way to figuring

out problems without my help.

�Final Output
All source code for each week will be located within the Github repository for this book.

You may find the link to that repository in the front of the book. To find the specific

code for this week, simply open or download the “Week_01.ipynb” file from the Github

repository. If you ran into errors along the way, be sure to reference what you wrote with

the code in this file to see where you went wrong.

Today we were able to see our first Python program in action. Granted you may not
understand what is going on, I believe it’s crucial that you see the power of Python.
As we go forward, feel free to come back to this program and make your own
improvements to it. After all the only way you get better is by doing!!!

Chapter 1 Getting Started

20

�Weekly Summary
I know this week was a bit slow, but it is a crucial week in the process. We covered how to

download the necessary tools, how to use them, and how to use the terminal itself. These

topics are important in understanding the content going forward and will help set you

up for success.

At the end of this week, we ended up programming a fun guessing game together,

that I hope you tried to break and play around with. As a developer it’s important to

want to break a program, so that you may improve it. In the upcoming week, the real fun

begins. We’ll start to learn the basics of Python and eventually write a small program

together.

�Weekly Challenges
Each week will have its own challenges at the end that you should certainly try.

Completing them will help in improving your programming skills. As this week was

mostly about setting up, the following challenges won’t be about programming at all. All

other weeks, however, will give you good examples to test your abilities.

	 1.	 New File: Create a new Jupyter Notebook file called

“Week 1 – Challenges.” You should now have two files within

the main work folder.

	 2.	 Writing Markdown: Within the file from exercise 1, create a cell

with markdown in it that says “Challenge 1.” Try several different

header sizes. Pick the one you like best.

	 3.	 Exploring Python: You should get used to Googling problems

or topics that interest you. Try searching for Python topics that

interest you, and keep them in mind as you begin to learn the

language.

	 4.	 Motivating Yourself: Every programmer started from nothing.

Each one became a great programmer from pushing themselves

to learn the languages they were interested in. Figure out what

motivates you to want to become a developer and write it down.

Keep this in mind when you begin to struggle.

Chapter 1 Getting Started

21
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_2

CHAPTER 2

Python Basics
No matter what famous programmer you think of, like Bill Gates or Guido van Rossum,

they also started at a basic level at some point in their life. These basic concepts are a

necessity to build a foundation on which you can learn any programming language. After

all, you don’t start building a house from the roof down, you need to have a foundation

to work from. That’s where this week comes in to play.

The focus this week will be on data types and variables. These are core concepts in

just about any programming language. The beauty of learning a single language is that it

allows you to pick up other languages easily. This is due in part that all languages follow

the same core concepts. By the end of this week, you’ll be able to understand how to

write simple programs on your own. A program such as the one that we’ll build together,

where we will print information out to the user in a nicely formatted receipt.

This week I also introduce your first challenge question. These questions are to

ensure that you begin to “think like a developer.” Some questions may not have

definitive answers, but rather they’ll push you to create solutions and problem-solve. It’s

important that you spend some time thinking about each question, so that you can begin

to train your problem-solving skills. After all, it’s the most sought-after skill in every

development industry.

Overview

•	 Understanding data types

•	 How to use variables

•	 Seeing what you can do with strings

•	 How to manipulate a string

•	 Coding a program that prints receipts

22

CHALLENGE QUESTION

In programming, we have a concept called “algorithms.” An algorithm is simply just a set

of steps. Whether you know it or not, you’ve used algorithms throughout your life. A common

algorithm is a recipe that you follow to make food.

To think like a developer, you must begin to understand how a computer reads code. A computer

is only as smart as the program that it’s supposed to execute. This means that even the

smartest computers can fail if the steps aren’t correct. Let’s use a recipe to bake a cake, for

instance. If we miss a single step or leave the cake in the oven for too long, then we fail, as

would a computer that is missing a crucial step.

Now, I’d like you to think about the steps for making a peanut butter and jelly sandwich.

Write down your steps on a piece of paper. Try to think like a computer when you write them

out and understand that you need to be as precise as possible. The answer will be at the end

of this chapter.

�Monday: Comments and Basic Data Types
Today marks your first lesson of the Python language! The two concepts taught today will

help build that foundation that we’re striving for. To follow along with the content for

today, let’s open up Jupyter Notebook from our “python_bootcamp” folder. If needed, go

back to last week’s lesson on how to open up Jupyter Notebook. Once it’s open, create

a new file, and rename it to “Week_02.” Next, make the first cell markdown, with the

following code:

Comments & Basic Data Types

�What Are Comments and Why Use Them?
Comments are like notes that you leave behind, either for yourself or someone else to read.

They are not read in by the interpreter, meaning that you can write whatever you want, and

the computer will ignore it. A good comment will be short, easy to read, and to the point.

Putting a comment on every line is tedious, but not putting any comments at all is bad

practice. As you program, you’ll begin to understand what that happy medium looks like.

Chapter 2 Python Basics

23

When you begin to write larger programs, you’ll want to leave notes for yourself. Too

often have I created a program, stopped working on it for three weeks, and when I came

back, I forget what I was working on. Leaving comments isn’t only good for yourself but

also for others who will read your code. Think of comments as breadcrumbs that help

you understand what’s going on.

�Writing Comments
In Python, we can write comments using the hash (#) symbol. Any text that follows this

symbol will be commented out. In the cell below our markdown header, let’s write our

first comment:

this is a comment

Let’s go ahead and run the cell. Notice that nothing happens. This is because the

computer completely ignores any comments. For the most part, we’ll write comments on

their own line; however, in certain instances you may see comments written in line with

code. In the same cell as the previous comment, let’s add the following line:

print("Hello") # this is also a comment

The first portion of this line will run and output “Hello”, but the second part will be

ignored because of the hash symbol.

Note  Markdown uses hash characters for headers, like Python comments. Make
sure you know what type your cell is set to “markdown/cell.”

To write multiline comments so that you may write more descriptive paragraphs for

larger portions of code, we would need to use three opening and closing double quotes:

" " "

 This is a multi-Line comment

" " "

print("Hello") # this is also a comment

Chapter 2 Python Basics

24

Go ahead and run the cell. Notice that the text within the multiline comment gets

ignored. These types of comments are great for adding descriptive paragraphs about

your code. Be sure not to overuse them, however, as you can certainly make a mess of a

program by using too many of them.

�What Are Data Types?
Almost all languages use data types, they are essential to every program. Data types are

how we define values, likes words or numbers. If I were to ask you what a sentence is

made up of, you would probably reply with “words or characters.” Well, in programming,

we call them strings. Just the same as we refer to numbers as their own data type as well.

Data types define what we can do and how these values are stored in memory on the

computer. In Table 2-1, you’ll find that each row displays a data type, a sample value, and

a description for each. Read each section for a longer explanation for each type. You can

find the four basic types that we cover this week within the table.

Table 2-1.  Data type examples

 Data Types Sample Value Description

 Integer 5 Whole numbers

 Float 5.7 Decimal numbers

 Boolean True True or False values

 String “Hello” Characters within quotes

�The Print Statement
Before we go any further, I just want to touch on the print statement. In almost every

language, you need the ability to output information to the user; within Python we’re

able to do this through the print statement. Now I don’t want to get too far in depth,

but the print statement is what we call a function in Python. We will cover functions

during the entire fifth week. For now, though, just know that the print statement allows

us to output information to the user. The way it works is by writing the keyword “print”

followed by parenthesis. Whatever is inside of the parenthesis will be output for the user

to see.

Chapter 2 Python Basics

25

�Integers
These data types are often called integers or ints. They are positive or negative WHOLE

numbers with no decimal point. Integers are used for a variety of reasons, between math

calculations and indexing (which we'll get into later); they are a main data type in any

language. Let’s go ahead and print a couple examples out in the next cell of our file:

the following are all integers

print(2)

print(10)

Go ahead and run the cell. The resulted output should be a series of numbers 2 and 10.

�Floats
Anytime a number has a decimal point on it, they’re known as floating point data types.

It doesn’t matter if it has 1 digit, or 20, it’s still a float. The primary use of floats is in math

calculations, although they have other uses as well. Let’s check out an example:

the following are all floats

print(10.953)

print(8.0) # even this number is a float

Go ahead and run the cell. The output should be a series of numbers 10.953 and 8.0.

Note  The number “8.0” is considered a float, because it includes a decimal point.

�Booleans
The boolean data type is either a True or False value. Think of it like a switch, where it’s

either off or on. It can’t be assigned any other value except for True or False. Booleans

are a key data type, as they provide several uses. One of the most common is for tracking

whether something occurred. For instance, if you took a video game and wanted to

know if a player was alive, when the player spawned initially, you would set a boolean

Chapter 2 Python Basics

26

to “True”. When the player lost all their lives, you would set the boolean to “False”. This

way you can simply check the boolean to see if the player is alive or not. This makes for

a quicker program rather than calculating lives each time. Let’s go ahead and run the

following:

the following are booleans

print(True)

print(False)

Go ahead and run that cell. The output should be the words True and False,

respectively.

�Strings
Also known as “String Literals,” these data types are the most complex of the four that we

go over today. The actual definition of a string is

Strings in Python are arrays of bytes representing unicode characters.

To most beginners, that’s just going to sound like a bunch of nonsense, so let’s break

it down into something simple that we can understand. Strings are nothing more than a

set of characters, symbols, numbers, whitespace, and even empty space between two
sets of quotation marks. In Python we can use either single or double quotes to create

a string. Most of the time it’s personal preference, unless you want to include quotes

within a string (see line 3 in the next block). Whatever is wrapped inside of the quotation

marks will be considered a string, even if it’s a number. Let’s go ahead and write some

examples in the next cell for strings:

the following are strings

print(" ")

print("There's a snake in my boot!")

print('True')

The output will include an empty line at the top, as we print out nothing in the first

statement.

Chapter 2 Python Basics

27

MONDAY EXERCISES

	1.	 Output: Print out your name.

	2.	 Type Checking: Try checking the type of a value by using the type() method.

This will always print out what kind of data type you’re checking. This is useful

to check data types when you’re unsure. As an example:

>>> type(int) # will output <class 'int'>

Today, we focused on the four essential data types in Python. Understanding the
difference between each is key as we move forward. In tomorrow’s lesson, we will
begin to understand how to save these data types to be used later in the program.

�Tuesday: Variables
Variables are one of the most important beginner-level concepts in programming. They

allow us to save values into memory using a name that we assign. This lets us use those

values later in the program. Yesterday’s lesson covered different data types, but what if

you wanted to save one of those data types to use later? This works like how we store

information in our brain, variables are stored in computer memory, and we can access

them later by referencing the name we used. I won’t go into the theory behind how

Python stores information, as we’re focusing more on the application of programming,

but it’s worth noting that Python automatically handles memory storage and garbage
collection for us.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_02” and simply add a markdown cell at the bottom that says “Variables.”

�How They Work
We declare a name on the left side of the equals operator (“=”), and on the right side, we

assign the value that we want to save to use later. Take the following example (no need to

write this):

>>> first_name = "John"

Chapter 2 Python Basics

28

When you create a variable, the line where you assign the value is a step called

declaration. We’ve just declared a variable with a name of “first_name” and assigned it

the value of the string data type “John”. This string is now stored in memory, and we’re

able to access it by calling the variable name “first_name”.

Note  Variable names can contain only letters, underscores, and numbers;
however, they cannot start with a number.

�Handling Naming Errors
All programmers make mistakes, so it’s not a problem if you run into errors. It just comes

with the job. Let’s look at a common mistake that occurs with variables (no need to write

this):

>>> Sport = 'baseball' # capital 'S'

>>> print(sport) # lowercase 'S'

If we try to run this code, we’ll get the following error/output:

NameError: name 'sport' is not defined

This is because the names are completely different. We referenced a variable with a

lowercase “s” but declared one with capital “S.” To fix this we would capitalize the “s” in

sport within print.

�Integer and Float Variables
To store an integer or float in a variable, we give a name to the left of the operator and write

a number on the right side. In the next cell, let’s go ahead and write the following code:

num1 = 5 # storing an integer into a variable

num2 = 8.4 # storing a float into a variable

print(num1, num2) # you can print multiple items using commas

Go ahead and run that cell. Notice the output is 5 and 8.4, even though we print out

“num1” and “num2.” We’re printing out the value that is stored in those variables.

Chapter 2 Python Basics

29

�Boolean Variables
Remember that booleans are True or False values, so storing them is as simple as typing

in one of those two words. Let’s write the following:

storing a boolean into a variable

switch = True

print(switch)

Go ahead and run that cell. The resulted output is “True”. Notice that in Jupyter

Notebook, the value of True or False will glow green. This is a good indication if we wrote

it correctly.

�String Variables
Strings are as easy to store as the previous three data types. Just keep in mind that the use

of single or double quotes matters. Let’s go ahead and write the following code in a new cell:

storing strings into a variable

name = 'John Smith'

fav_number = '9'

print(name, fav_number) # will print 9 next to the name

Go ahead and run that. Remember that the string “9” is not the same as the integer 9.

These two data types act differently, even though the output looks similar.

�Using Multiple Variables
In almost any program you’ll write, you’re going to need to perform some calculations or

manipulation on variables. In the following code, we access the values from previously

declared variables and add them together to create a sum. Make sure that the previous

cells have been run before running this cell. Let’s go ahead and put this in a new cell:

using two variables to create another variable

result = num1 + num2

print(result)

Chapter 2 Python Basics

30

After running this cell, you’ll notice that it added 5 and 8.4 together to output 13.4.

Note  If you get an error saying that a variable doesn’t exist, try running the cell
where that variable is declared first.

�Using Operators on Numerical Variables
Think of Python as a calculator, where we can alter any variables we want. In the

following code, we alter the “result” variable defined previously:

adding, deleting, multiplying, dividing from a variable

result += 1 # same as saying result = result + 1

print(result)

result *= num1 # same as saying result = result * num1

print(result)

Go ahead and run the cell. In the first line, we added 1 to the result, then later we

multiplied it by the value of “num1,” which is 5. All the while, the computer saved the

result variable so we could continue to edit it. Then we print the result, which comes

out to 72.0.

�Overwriting Previously Created Variables
Python makes it easy for us to change the value of a variable, by simply re-declaring it.

In some languages you would have to define the data type, but Python handles all of that

for us. We’ve seen this occur with the preceding result variable, but it’s worth noting in

its own cell:

defining a variable and overwriting it's value

name = 'John'

print(name)

name = 'Sam'

print(name)

Chapter 2 Python Basics

31

Go ahead and run that in a new cell. You’ll notice that the output shows “John” and

“Sam”. The location of when you access or re-declare your variables matter; keep that in

mind.

�Whitespace
Whitespace just means characters which are used for spacing and have an “empty”

representation. In the context of python, it means tabs and spaces. For example:

>>> name = 'John Smith'

There’s whitespace to the left and right of the equals operator. It’s not required,

but it makes reading the code easier. The computer simply ignores whitespace when

compiling the code. Within the string, however, the space is NOT whitespace, this is

simply a “spacing” character.

TUESDAY EXERCISES

	1.	 Variable Output: Store the value 3 in a variable called “x” and the value 10 in

a variable called “y”. Save the result of x * y into a separate variable called

“result”. Finally, output the information so it shows like the following:

>>> 3 + 10 = 13

	2.	 Area Calculation: Calculate the area of a 245.54” x 13.66” rectangle. Print out

the result. HINT: Area is width multiplied by height.

Variables are used everywhere, and Python makes it easy for us to incorporate
them. Being able to store information is a key part of any program. Tomorrow we’ll
look at how we can manipulate strings.

�Wednesday: Working with Strings
It’s important to understand what you can do with string data types. The next two days

cover working with and manipulating strings so that we may build a receipt printing

program at the end of the week. We won’t worry about taking in user input but rather

how to format strings, what a string index is, etc.

Chapter 2 Python Basics

32

To follow along with this lesson, let’s continue from our previous notebook file

“Week_02” and simply add a markdown cell at the bottom that says, “Working with
Strings.”

�String Concatenation
When we talk about concatenating strings, I mean that we want to add one string to the

end of another. This concept is just one of many ways to add string variables together to

complete a larger string. For the first example, let’s add three separate strings together:

using the addition operator without variables

name = "John" + " " + "Smith"

print(name)

Go ahead and run that cell below the markdown cell. The output we get is “John Smith”.

We ended up adding two strings that were names and separated them with the use of a

string with a space inside. Let’s go ahead and try to store the two names into variables

first:

using the addition operator with variables

first_name = "John"

last_name = "Smith"

full_name = first_name + " " + last_name

print(full_name)

Go ahead and run that cell. We get the exact same output as the previous cell;

however, we used variables to store the information this time.

�Formatting Strings
Earlier we created a full name by adding multiple strings together to create a larger

string. While this is perfectly fine to use, for larger strings it becomes tough to read.

Imagine that you had to create a sentence that used 10 variables. Appending all ten

variables into a sentence is tough to keep track of, not to mention read. We’ll need to use

a concept called string formatting. This will allow us to write an entire string and inject

the variables we want to use in the proper locations.

Chapter 2 Python Basics

33

�.format( )

The format method works by putting a period directly after the ending string quotation,

followed by the keyword “format”. Within the parenthesis after the keyword are the

variables that will be injected into the string. No matter what data type it is, it will insert

it into the string in the proper location, which brings up the question, how does it know

where to put it? That’s where the curly brackets come in to play. The order of the curly

brackets is the same order for the variables within the format parenthesis. To include

multiple variables in one format string, you simply separate each by a comma. Let’s

check out some examples:

injecting variables using the format method

name = "John"

print("Hello { }".format(name))

print("Hello { }, you are { } years old!".format(name, 28))

Go ahead and run that cell. We’ll see that the output in the first line is “Hello John”

and the second “Hello John, you are 28 years old”. Keep in mind that the format

function will inject variables and even data types themselves. In this instance, we

injected the integer value 28.

�f Strings (New in Python 3.6)

The new way to inject variables into a string in Python is by using what we call f strings.

By putting the letter “f” in front of a string, you’re able to inject a variable into a string

directly in line. This is important, as it makes the string easier to read when it gets longer,

making this the preferred method to format a string. Just keep in mind you need Python

3.6 to use this; otherwise you’ll receive an error. To inject a variable in a string, simply

wrap curly brackets around the name of the variable. Let’s look at an example:

using the new f strings

name = "John"

print(f"Hello {name}")

Go ahead and run the cell. We get the same output that we had gotten with the

.format() method; however, it’s much easier to read the code this time.

Chapter 2 Python Basics

34

Note  Throughout this book, we’ll be using the .format() method.

�Formatting in Python 2

Python 2 doesn’t include the .format() method; instead you would use percent
operators to mark the location of the variable being injected. The following is an

example to inject the variable “name” into the location of “%s”. The letter after the

percent operator signifies the data type. For integers, you would use “%d” for digit.

After the string closes, you would place a percent operator, followed by the variables

you would like to use. Let’s look at an example:

one major difference between versions 2 & 3

name = 'John'

print('Hello, %s' % name)

Go ahead and run that cell. You’ll notice that we get the same output as the previous

methods. If you wanted to format a string in Python 2 with multiple variables, then you

would need to write the following:

python 2 multiple variable formatting

first_name = "John"

last_name = "Smith"

print("Hello, %s %s" % (first_name, last_name))

 # surround the variables in parenthesis

Go ahead and run the cell. We’ll get the output “Hello, John Smith”. When passing

multiple variables, you need to surround the variable names within parenthesis and

separate each by a comma. Notice there are also two symbols within the string that

represent the location of each respective variable in order from left to right.

�String Index
One other key concept that we need to understand about strings is how they are stored.

When a computer saves a string into memory, each character within the string is

assigned what we call an “index.” An index is essentially a location in memory. Think of

Chapter 2 Python Basics

35

an index as a position in a line that you’re waiting in at the mall. If you were at the front

of the line, you would be given an index number of zero. The person behind you would

be given index position one. The person behind them would be given index position two

and so on.

Note  Indexing in most languages, including Python, starts at 0 not 1.

The same is true for Python strings. If we take a string like “Hello” and break down

their indexes (see Figure 2-1), we can see that the letter “H” is located at index zero. Let’s

try an example:

using indexes to print each element

word = "Hello"

print(word[0]) # will output 'H'

print(word[1]) # will output 'e'

print(word[-1]) # will output 'o'

In order to index a specific element, you use square brackets to the right of the

variable name. Within those square brackets, you put the index location you wish to

access. In the preceding case, we’re accessing the first two elements in the string “Hello”

stored in the variable “word”. The last line accesses the element in the last position.

Using negative index numbers will result in trying to access information from the back,

such that -4 would result in the output of the letter “e”.

Figure 2-1.  Index locations for a string

Be very careful when working with indexes. An index is a specific location in

memory. If you try to access a location that is out of range, you will crash your program

because it’s trying to access a place in memory that does not exist. For example, if we

tried to access index 5 on the “Hello”.

Chapter 2 Python Basics

36

�String Slicing
I want to just quickly introduce the topic of slicing. Slicing is used mostly with Python

lists; however, you can use it on strings as well. Slicing is essentially when you only want

a piece of the variable, such that if I only wanted “He” from the word “Hello”, we would

write the following:

print(word[0 : 2]) # will output 'He'

The first number in the bracket is the starting index; the second is the stopping

index. We will touch on this concept in a later week; however, feel free to mess around

with slicing. Before the day ends though, I’d like to quickly cover the start, stop, and step

arguments when slicing. The syntax for slicing is always

>>> variable_name[start : stop : step]

In the previous cell, we only included the start and stop because the step is optional

and defaults to incrementing by one each time. However, what if we wanted to print

every other letter:

print(word[0 : 5 : 2]) # will output 'Hlo'

Go ahead and run the cell. By passing the step as the number two, it increments

the index by two each time instead of one. We will cover this more in depth in a later

chapter; for now let this be an introduction into slicing with all three arguments.

WEDNESDAY EXERCISES

	1.	 Variable Injection: Create a print statement that injects an integer,

float, boolean, and string all into one line. The output should look like

“23 4.5 False John”.

	2.	 Fill in the Blanks: Using the format method, fill in the following

blanks by assigning your name and favorite activities into variables:

"{ }'s favorite sports is { }."

"{ } is working on { } programming!"

Chapter 2 Python Basics

37

We covered some key concepts when working with strings today, formatting and
indexing. Tomorrow we’ll use other methods that will help us manipulate strings.

�Thursday: String Manipulation
In many programs that you’ll build, you’re going to want to alter strings in one way or

another. String manipulation just means that we want to alter what the current string is.

Luckily, Python has plenty of methods that we can use to alter string data types.

To follow along, let’s continue from our previous notebook file “Week_02” and simply

add a markdown cell at the bottom that says, “Manipulating Strings.”

�.title( )
Often, you’ll run into words that aren’t capitalized that should be usually names. The

title method capitalizes all first letters in each word of a string. Try the following:

using the title method to capitalize a string

name = "john smith"

print(name.title())

Go ahead and run that cell. The output we get is a “John Smith” with capital letters

on each word. This method is great for formatting names correctly.

Note  Try using name.lower( ) and name.upper( ) and see what happens.

�.replace( )
The replace method works like a find and replace tool. It takes in two values within its

parenthesis, one that it searches for and the other that it replaces the searched value with:

replacing an exclamation point with a period

words = "Hello there!"

print(words.replace("!", "."))

Chapter 2 Python Basics

38

Go ahead and run that cell. This will result in an output of “Hello there.”.

Note  For the replace to be stored properly afterward, we would have to re-
declare our words variable: words = words.replace(‘!’, ‘.’).

�.find( )
The find method will search for any string we ask it to. In this example, we try to search

for an entire word, but we could search for anything including a character or a full

sentence:

finding the starting index of our searched term

s = "Look over that way"

print(s.find("over"))

Go ahead and run that cell. You’ll notice that we got an output of 5. Find returns the

starting index position of the match. If you count where the word “over” begins, the “o”

is at index location 5. This is important when you want to access a specific index on a

search.

�.strip( )
In cases where you want to get rid of a certain character on the left and right side of

a string, you would use the strip method. By default, it will remove spaces. Let’s try

running the following:

removing white space with strip

name = " john "

print(name.strip())

The output will produce “john” because we’ve removed all the spaces on the left and

right side.

Note  Try .lstrip( ) and .rstrip( ) and see what happens.

Chapter 2 Python Basics

39

�.split( )
I won’t go into too much detail with split simply because what it returns is a list and we

haven’t covered those quite yet; however, I wanted you to see how to use this method.

What it does is separate the words in the sentence into a group of words, stored within

a list. Now don’t worry about lists just yet, we’ll get there. For now, let’s just see how this

method works:

converting a string into a list of words

s = "These words are separated by spaces"

print(s.split(" "))

Go ahead and run the cell. The output results in a list of words “[‘These’, ‘words’,
‘are’, ‘separated’, ‘by’, ‘spaces’]”. We’ll come back to this method and why it’s important.

THURSDAY EXERCISES

	1.	 Uppercasing: Try manipulating the string “uppercase” so it prints out as all

uppercase letters. You’ll need to look up a new method.

	2.	 Strip Symbols: Strip all the dollar signs from the left side of this string “$$John

Smith”. Try it with .lstrip( ) and .strip( ). To see a description on how to use

the strip method further, try using the help function in Python by typing the

following:

>>> help(" ".strip)

Today you learned a handful of manipulation methods, but there are many more.
Try experimenting with others that you find on the Web.

�Friday: Creating a Receipt Printing Program
Welcome to your first project! We’ll be creating a very basic receipt printing program. For

this week, as we’ve learned about variables, operators, and string manipulation, we’ll be

using these skills in order to create this program.

Chapter 2 Python Basics

40

To follow along, let’s continue from our “Week_02” notebook and simply add a

markdown cell at the bottom that says, “Friday Project: Printing Receipts.”

�Final Design
It’s always good to picture the design of what you’re trying to build. For larger projects,

you’ll want to create a flow chart or some sort of design document that will keep you on

track. This way you don’t sway from the intended result. For us, we’ll be building a small

receipt printing program with the concepts we’ve learned, in which the output will look

like Figure 2-2.

Let’s begin, shall we!

�Initial Process
Whenever you begin a project, you must always understand where to start. No matter the

size of the project, there are certain dependencies. Like building a house, you must have

a foundation before you can put the roof on. Now, this program will be around 50 lines

and have little to no dependencies, so we’ll start with the top border and work our way

down to the bottom.

Figure 2-2.  End result of Friday project

Chapter 2 Python Basics

41

�Defining Our Variables
In the cell below our markdown header, let’s begin to define the variables that we’ll be

working with throughout this program:

1| # create a product and price for three items

2| p1_name, p1_price = "Books", 49.95

3| p2_name, p2_price = "Computer", 579.99

4| p3_name, p3_price = "Monitor", 124.89

I always like to introduce new concepts while building out these Friday projects, as

it’s good to implement good coding techniques. The technique introduced within this

block is the ability to declare multiple variables on the same line. To do so, we simply

separate the variable names and their associated values by a comma. Looking at the first

two variables declared, the value of “Books” will be saved into the variable name

“p1_name”, and the value “49.95” will be saved into the variable name “p1_price”.

Rather than writing six lines, we’ve reduced our program by half already. The less lines

we use the better (most times). Variables such as x and y, or in our case, a name and

price, are good examples of declaring variables associated together in one line.

Next, let’s define the variables we’ll be using for the company at the top of the

receipt. All the code for this project may be done in a single cell, or you can separate the

cells. It’s up to you. I’ve provided line numbers in case you follow along on a single cell:

6| # create a company name and information

7| company_name = "coding temple, inc."

8| company_address = "283 Franklin St."

9| company_city = "Boston, MA"

As an example, we’ve left the company name all lowercase so that we can use a string

manipulation method to fix this issue.

Lastly, let’s declare the message that we’ll output to the user at the bottom of the receipt:

11| # declare ending message

12| message = "Thanks for shopping with us today!"

Go ahead and run the cell. Now that we’ve defined all our variables, we can move on.

Chapter 2 Python Basics

42

�Creating the Top Border
As we can see from the design that we’ve laid out at the beginning of this project, we’ll

need to print out a border on the top and bottom. Let’s start with the top border:

14| # create a top border

15| print("*" * 50)

Go ahead and run the cell. There’s a new concept being applied here, where we write

“*” * 50. All we’re trying to do is print out 50 stars in a row for a top border, and rather

than making 50 print statements, we can simply multiply the string by the number we

want. This way we get our top border while keeping our code slim and easy to read.

Readability of code is always key.

�Displaying the Company Info
We’ve already defined our variables for the company in the preceding lines, so let’s

display them:

17| # print company information first, using format

18| print("\t\t{ }".format(company_name.title())

19| print("\t\t{ }".format(company_address))

20| print("\t\t{ }".format(company_city))

Go ahead and run the cell. These print statements may seem a little hard to

understand at first; however, I’m introducing an escape character to you. Escape

characters are read in by the defining backslash “\” character. Whatever comes after

that backslash is what the computer will interpret. In the three print statements, we use

“\t” for a tab indentation. Another popular escape character you may see is “\n” which

means newline and acts as if you hit the enter key. We use two escaping characters in a

row to center it within our output. Let’s create a divider:

22| # print a line between sections

23| print("=" * 50)

Chapter 2 Python Basics

43

Go ahead and run the cell. Like how we printed out our top border, we’ll multiply

the equal symbol by 50 to create the same width line. This will give the appearance of

separate sections.

�Displaying the Product Info
Looking at our original design, we want to create a header before we list out each

product’s name and price. This can be done simply by using our escaping characters for

indenting:

25| # print out header for section of items

26| print("\tProduct Name\tProduct Price")

Go ahead and run the cell. Due to the size of the header names, we only need to

use a single tab before each header. Now we can go ahead and output a row for each

products’ information:

28| # create a print statement for each product

29| print("\t{ }\t\t${ }".format(p1_name.title(), p1_price))

30| print("\t{ }\t\t${ }".format(p2_name.title(), p2_price))

31| print("\t{ }\t\t${ }".format(p3_name.title(), p3_price))

Go ahead and run the cell. We’re using similar styles as the previous print statements

in order to center each product’s title and price under their respective headers. Try not

to get too confused by all the symbols within the print string; you can simply break them

down to a tab, followed by the first variable being formatted into the string, followed by

two tabs, followed by a dollar sign (in order to make the price look like currency), and

followed by the second variable being formatted into the string. This completes the

section for our items, so let’s put in another section divider:

33| # print a line between sections

34| print('=' * 50)

Go ahead and run the cell. This will set us up for our next section to display the total.

Chapter 2 Python Basics

44

�Displaying the Total
Like the products section, we want to create a header for our total, but we want to also

center it underneath the price column of the products section. To do so, we’ll use three

tabs:

36| # print out header for section of total

37| print("\t\t\tTotal")

Go ahead and run the cell. Now that we have our total header aligned with the price

column in products, we can output our total on the next line. Before we can print out a

total, however, we must first calculate the total, which is the sum of all our products. Let’s

define a variable called total and then print it out:

39| # calculate total price and print out

40| total = p1_price + p2_price + p3_price

41| print("\t\t\t${ }".format(total))

Go ahead and run the cell. Again, we’ve gone ahead and added three tabs, plus a

dollar sign to make the total value appear as currency. Let’s now add a section border:

43| # print a line between sections

44| print("=" * 50)

Go ahead and run the cell to make sure it looks like the desired output so far.

�Displaying the Ending Message
To display the final thank you message, our design has it spaced out slightly more than

any other section, so we’ll need to add a couple of newlines to give it some extra spacing:

46| # output thank you message

47| print("\n\t{ }\n".format(message))

Go ahead and run the cell. Our message is now centered, and we’re ready to move on.

Chapter 2 Python Basics

45

�Displaying the Bottom Border
To finish off this simple printing program, we need to throw in a bottom border for

aesthetics:

49| # create a bottom border

50| print("*" * 50)

Go ahead and run the cell one last time.

Congratulations! As simple as it may be, it’s a huge milestone. After learning more
material, try coming back here to improve it.

�Weekly Summary
This week we went over some very important foundational concepts in programming

with variables and working with strings. You must always keep in mind that variables

need to be declared before you can use them and that the name associated is saved in

memory with the value on the right side of the equals operator. Strings are easy to work

with in Python, as the language has a variety of methods that we can call in order to do

the work for us. At the end of the week, we were able to build a simple receipt printing

program. Try breaking the program! I always encourage students to try and break

programs because it will teach you how to fix it.

�Challenge Question Solution
There isn’t a definitive solution to making a PB&J sandwich, but I want you to go back

and see if you weren’t specific enough. Computers are only as smart as we program
them to be, so if you said to put the peanut butter on the bread, it may just interpret it as

putting the entire jar on the bread instead. As a developer you need to be specific with

your descriptions. Even try rewriting a new algorithm with improved steps.

Chapter 2 Python Basics

46

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Side Borders: In the Friday project, we ended up creating borders

above and below the information printed out. Try adding a star

border on the sides as well now.

	 2.	 Researching Methods: We’ve gone over a few of the string

manipulation methods that are widely used; however, there are

many more; try looking up some and implementing them.

	 3.	 Reverse: Declare a variable equal to “Hello”. Reverse the string

using slicing. Try looking it up if you struggle.

Tip Y ou can define a start, stop, and step when slicing.

Chapter 2 Python Basics

47
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_3

CHAPTER 3

User Input and
Conditionals
Welcome to Week 3! This week we’ll be introducing how to work with user input and

making decisions within our programs. These “decisions” are known as branching
statements or conditionals. If you think of your life every day, you make decisions

based on specific conditions without knowing, such as when to get up in the morning,

what to have for lunch, when to eat, etc. These are known as branching statements. The

same applies in programming, where we need to have the computer make decisions.

Overview

•	 Working with user input

•	 How to use “if” statements to make decisions

•	 How to use “elif” statements to make multiple decisions

•	 How to use “else” statements to make decisions no matter what

•	 Building a calculator with decision-making and user input

CHALLENGE QUESTION

This week’s challenge is to test your ability to read code. I want you to read the code block

and think about whether it will work or not. If you believe it will not work, I want you to make a

note of why it won’t. It’s important to be able to both read and write:

>>> print('{} is my favorite sport'.format(element))

>>> element = 'Football'

After you’ve written down your answer, go ahead and run the code within a cell. If your answer

was incorrect, try to analyze where you why. The answer will be at the end of this chapter.

48

�Monday: User Input and Type Converting
In today’s lesson we’ll introduce the ability to interact with the user and a concept called

type conversion. These will be necessary to understand how to build the calculator at the

end of the week.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_03.”

Next, make the first cell markdown that has a header saying: “User Input & Type
Converting.” We’ll begin working underneath that cell.

�Accepting User Input
In many programs we’ll be creating, you’ll need to accept user input. To do so, we need

to use the input() function. Like the print function, input will print the string inside of

the parenthesis, but it will also create a box for the user to enter information. Let’s look at

an example:

accepting and outputting user input

print(input("What is your name? "))

Go ahead and run that cell. You’ll notice that the cell will output whatever you write

within the box. When the interpreter comes across the input function, it will pause until

enter is pressed.

Note  Information entered is taken into the program as a string.

�Storing User Input
In the previous cell, we simply printed out the input that the user put in. However, in

order to work with the data that they enter, we need to store it into a variable:

saving what the user inputs

ans = input("What is your name? ")

print("Hello { }!".format(ans))

Chapter 3 User Input and Conditionals

49

Go ahead and run that cell. Storing the information that the user puts in our program

is as easy as storing it into a variable. This way we can work with the data they input at

any point.

�What Is Type Converting?
Python defines type conversion functions to directly convert one data type to another

which is useful in day-to-day and competitive programming. In some situations, the

data you’re working with may not be the correct type. The most obvious example is user

input because no matter what the user types in, the input is taken as a string. If you are

expecting a number to be input, you’ll need to convert the input to an integer data type,

so that you’re able to work with it.

�Checking the Type
Before we go over how to type convert, I’d like to touch on an important function that

Python has which allows us to check the type of any given variable:

how to check the data type of a variable

num = 5

print(type(num))

Go ahead and run that cell. The output here will be “<class ‘int’>”. Don’t worry about

the class portion here, we’ll get into classes another week. Focus on the second part where it

outputs the type as an integer. This allows us to check what data type where working with.

�Converting Data Types
Python gives us the ability to type convert easily from one type to another simply by

wrapping the type around the variable. Let’s check out an example of converting a string

to an int:

converting a variable from one data type to another

num = "9"

num = int(num) # re-declaring num to store an integer

print(type(num)) # checking type to make sure conversion worked

Chapter 3 User Input and Conditionals

50

Go ahead and run that cell. We’ve just converted the string of “9” to an integer. Now

we can use the variable num in any calculations. For the conversion to process correctly,

we used the int() type conversion. Whatever data type is put inside of the parenthesis is

converted into an int. Check Table 3-1 for how to convert from one data type to another.

Table 3-1.  Converting data types

Current Type Data Value Converting to Proper Code Output

Integer 9 String str(9) '9'

Integer 5 Float float(5) 5.0

Float 5.6 Integer int(5.6) 5

String ‘9’ Integer int('9') 9

String ‘True’ Boolean bool('True') True

Boolean True Integer int(True) 1

As you can see, there are several ways to type convert; you just need to use the

keyword for each defining data type. The boolean type of True converts to an integer of

1 because the True and False values represent 1 and 0, respectively. Also, converting a

float to an integer will just truncate the decimal, as well as any numbers to the right of

the decimal.

Note N ot all data types can be converted properly. There are limits.

�Converting User Input
Let’s try working with a user’s input in order to add 100 to whatever they type:

working with user input to perform calculations

ans = input("Type a number to add: ")

print(type(ans)) # default type is string, must convert

result = 100 + int(ans)

print("100 + { } = { }".format(ans, result))

Chapter 3 User Input and Conditionals

51

Go ahead and run that cell. Inputting the number “9” will give us a proper result;

however, this conversion would not work well with the word “nine” because the default

return type for input is a string as noted by the first print statement in this cell.

�Handling Errors
In the last cell, we convert the user input to an integer; however, what if they put in a

word instead? The program would break right away. As a developer, we must assume

that the user won’t put the proper information that we expect them to. To handle this

issue, we’re going to introduce try and except blocks. Try and except are used to catch

errors. It works by trying to run what is inside the try block; if it doesn’t produce an error,

then it continues without hitting the except block; however, if an error occurs, then the

code in the except block runs. This is to make sure your program doesn’t stop running if

an error pops up. This is a generic way to handle errors; there are many other methods

like using the functions isalpha() and isalnum(). Let’s look at an example using the try

and except blocks:

using the try and except blocks, use tab to indent where necessary

try:

 ans = float(input("Type a number to add: "))

 print("100 + { } = { }".format(ans, 100 + ans))

except:

 print("You did not put in a valid number!")

without try/except print statement would not get hit if error occurs

print("The program did not break!")

Go ahead and run that cell. Try inputting different answers including non-numbers.

You’ll notice that our nonvalid print statement will output if you don’t input a number.

If we didn’t have the try and except in place, the program would break, and the last print

statement wouldn’t occur.

Chapter 3 User Input and Conditionals

52

�Code Blocks and Indentation
In most other programming languages, indentation is used only to help make the code

look pretty. For Python though, it is required for indicating a block of code. Let’s take our

previous code from the “Handling Errors” section. The two lines after our try statement

are indented and are known as blocks of code. These lines belong to the try statement

because they are directly indented after the statement. The same goes for our other print

statement within the except block. It’s the reason that our nonvalid print statement only

runs if the except block runs. All blocks of code need to be connected to a statement; you

can’t indent a section randomly.

Note  The indents must be consistent. It does not always need to be four spaces;
however, a tab is four spaces, so it's usually easier to indent with tabs.

MONDAY EXERCISES

	1.	 Converting: Try converting a string of “True” to a boolean, and then output its

type to make sure it converted properly.

	2.	 Sum of Inputs: Create two input statements, and ask the user to enter two

numbers. Print the sum of these numbers out.

	3.	 Car Information: Ask the user to input the year, make, model, and color of

their car, and print a nicely formatted statement like “2018 Blue Chevrolet

Silverado.”

Today was an important step in covering user input, how to convert from one data
type to another, and how to handle errors.

�Tuesday: If Statements
Today we’ll learn all about how to make decisions in our code. This will give us the ability

to have our programs decide what lines of code to run, depending on what the user

inputs, calculations, etc. This is the most important lesson of this week. Be sure to spend

a good amount of time going on today’s lesson.

Chapter 3 User Input and Conditionals

53

To follow along with this lesson, let’s continue from our previous notebook file

“Week_03” and simply add a markdown cell at the bottom that says, “If Statements.”

�How They Work
Every day you make hundreds of decisions. These decisions define what you do with

your day. In programming these are known as branching statements or “if statements.”

An if statement works the same way that a decision is made. You check a condition,

and if that condition is true, you perform the task, and if it’s not true, then you move on

without performing that task:

“Am I hungry?”

“Yes, so I should make some food.”

*** proceeds to cook food ***

The same decision-making process can be implemented in programming using an if

statement.

�Writing Your First If Statement
All branching statements begin the same way, with the keyword “if”. Following the keyword

is what is known as a condition. Lastly, there will always be an ending colon at the end

of the statement. The if statement checks to see if the given condition is True or False. If

the condition is True, then the code block runs. If it is False, then the program continues

without running any of the code indented directly after the if statement. Let’s try it out:

using an if statement to only run code if the condition is met

x, y = 5, 10

if x < y:

 print("x is less than y")

Go ahead and run that cell. Notice here that the output is “x is less than y”. This

is because we originally declared x equal to 5 and y equal to 10 and then used an if

statement to check if x was less than y, which it was. If x was equal to 15, then the print

statement indented after the “if” would have never ran, because the condition would

have been False.

Chapter 3 User Input and Conditionals

54

�Comparison Operators
Before we continue with branching statements, we need to go over comparison operators. So

far, we’ve used arithmetic operators for adding and subtracting values and assignment
operators for declaring variables, and with the introduction of the “if statement,” we’ve

now seen comparison operators. There are several comparisons that you’re able to

make. Most comparison operators that you’ll use, however, are shown in Table 3-2.

Table 3-2.  Comparison operators

Operator Condition Functionality Example

== Equality if x == y: if x is equal to y …

!= Inequality if x != y: if x does not equal y…

> Greater than if x > y: if x is greater than y…

< Less than if x < y: if x is less than y…

>= Greater or equal if x >= y: if x is greater or equal to y…

<= Less or equal if x <= y: if x is less or equal to y…

Note  w3 Schools1 has great reference material for additional information on the
many different types of operators.

�Checking User Input
A great use for our newly learned conditional statement is for checking user input. Let’s try:

checking user input

ans = int(input("What is 5 + 5? "))

if ans == 10:

 print("You got it right!")

1�www.w3schools.com/python/python_operators.asp

Chapter 3 User Input and Conditionals

http://www.w3schools.com/python/python_operators.asp

55

Go ahead and run that cell. Our conditional statement checks to see if the user’s

input is equal to the integer 10. If it is, then the indented print statement will run. Notice

in line two that we ask for user input and immediately convert their answer to an integer.

As we did not use a try and except, inputting a non-number would result in an error.

�Logical Operators
Logical operators are used to combine conditional statements. You can write as many

conditions on a single “if statement” as you’d like. Depending on the logical operators

used, the if statement may or may not run due. Let’s look at the three logical operators

we can use.

�Logical Operator “and”

The “and” logical operator is to ensure that, when you check multiple conditions, both
sides of the condition are True. This means that if either the condition to the left or right

of the “and” is False, then the code will not run the block of code. Let’s try an example:

using the keyword 'and' in an 'if statement'

x, y, z = 5, 10, 5

if x < y and x == z:

 print("Both statements were true")

Go ahead and run that cell. The output will result in “Both statements were true”

because x is less than y and the same value as z.

Note  You can have as many conditions in one line as you’d like.

�Logical Operator “or”

The “or” logical operator is used to check for one or both conditions to be true. Such

that if the condition to the left is False and the condition to the right is True, the block of

code will still run because at least one condition was True. The only time an “if block”

will not run using an “or” operator is when both conditions are False. Let’s check out an

example:

Chapter 3 User Input and Conditionals

56

using the keyword 'or' in an 'if statement'

x, y, z = 5, 10, 5

if x < y or x != z:

 print("One or both statements were true")

Go ahead and run that cell. Notice that we get an output of “One or both statements
were true”. This worked even though our second condition is False, since x is equal to z

and we we’re checking if it was not equal to it; however, since the condition on the left is

True, it runs.

�Logical Operator “not”

In certain instances, you’ll want to check for the opposite of a value. The “not” operator

is used for just that. It essentially returns the opposite of whatever the current value is.

Let’s try it out:

using the keyword 'not' within an 'if statement'

flag = False

if not flag: # same as saying if not true

 print("Flag is False")

Go ahead and run that cell. You’ll notice that the resulting output is “Flag is False”.

This is due to the “not” operator, which took the opposite value of False and made the

condition return True.

Note  We get the same result if we write “if flag == False:”.

�Membership Operators
Membership operators are used to test if a sequence appears in an object. There are two

keywords that we can use to check if a value exists in an object or not. Let’s check them out.

Chapter 3 User Input and Conditionals

57

�Membership Operator “in”

When you want to check if a given object has a value appear in it, you use the “in” operator.

The best use case is checking for a certain value within strings. Let’s check out an example:

using the keyword 'in' within an 'if statement'

word = "Baseball"

if "b" in word:

 print("{ } contains the character b".format(word))

Go ahead and run that cell. The resulted output is “Baseball contains the character b”.

This is case sensitive, but lucky for us the word Baseball has one lowercase and one

uppercase b.

�Membership Operator “not in”

Likewise, if you want to check to see if an object doesn’t include a specific value, you

would use the “not in” operator. This is essentially just checking the opposite of the “in”

operator. Let’s see:

using the keyword 'not in' within an 'if statement'

word = "Baseball"

if "x" not in word:

 print("{ } does not contain the character x".format(word))

Go ahead and run that cell. The resulting output is “Baseball does not contain the
character x”. It simply checks to see if the character x is not included in the string value

of our word variable.

TUESDAY EXERCISES

	1.	 Checking Inclusion – Part 1: Ask the user for input, and check to see if what

they wrote includes an “es”.

	2.	 Checking Inclusion – Part 2: Ask the user for input, and check to see if what

they wrote has an “ing” at the end. Hint: Use slicing.

Chapter 3 User Input and Conditionals

58

	3.	 Checking Equality: Ask the user to input two words, and write a conditional

statement to check if both words are the same. Make it case insensitive so that

capitals do not matter.

	4.	 Returning Exponents: Ask for the user to input a number, and return that

number squared if it is lower than 10. Hint: Investigate arithmetic expressions

for exponents.

Today was an important lesson on conditional statements. Having the ability to
let the computer make decisions and perform an action based off them is an
important key to any program.

�Wednesday: Elif Statements
Conditional statements give us the power to make decisions in our program, but so far,

we’ve only seen a glimpse of the capabilities that we have with them. Today, we’ll be

learning all about elif statements. They give us the ability to run separate blocks of code

depending on the condition. They are also known as “else if statements.”
To follow along with this lesson, let’s continue from our previous notebook file

“Week_03” and add a markdown cell at the bottom that says, “Elif Statements.”

�How They Work
As we saw in the previous lesson, conditional statements give us the ability to make

decisions within our program; however, how would you handle making multiple

decisions? In Python, we use the elif statement to declare another decision based on

a given condition. Elif statements must be associated with an if statement, meaning

that you cannot create an elif without an if. Python works in top to bottom order, so

it checks the first if statement; if that statement is False, it continues to the first elif

statement and checks that condition. If that condition returns False as well, it continues

to the next conditional statement until there are no more to check. However, once a

single conditional statement returns True, all other conditionals are skipped, even if

they are True. It works so that the first conditional to return True is the only block of

code that runs.

Chapter 3 User Input and Conditionals

59

�Writing Your First Elif Statement
Creating an elif statement is identical to an if statement, with one difference, you use the

elif keyword instead. You’re able to have multiple conditions for each elif as well. Let’s

try it:

using the elif conditional statement

x, y = 5, 10

if x > y:

 print("x is greater")

elif x < y:

 print("x is less")

Go ahead and run that cell. Notice that the output is “x is less”. It checked the initial

if statement, but since that returned False, it moved on to the elif conditional statement.

That statement returned True and the block of code within it ran.

�Checking Multiple Elif Conditions
Having the ability to write multiple decisions based on a single variable is a necessity,

which is why elif statements were built. Take the following code, for instance:

checking more than one elif conditional statement

x, y = 5, 10

if x > y:

 print("x is greater")

elif (x + 10) < y: # checking if 15 is less than 10

 print("x is less")

elif (x + 5) == y: # checking if 10 is equal to 10

 print("equal")

Go ahead and run that cell. The resulting output is “equal”. The first if and elif

statements both returned False, but the second elif statement returned True, which is

why that block of code ran. You can have as many elifs as you want, but they must be

associated with an if statement.

Chapter 3 User Input and Conditionals

60

Note  Within the conditional, we perform addition, but we wrap it within
parenthesis so that it executes the math operation first.

�Conditionals Within Conditionals
We’ve gone over how Python uses indentation to separate blocks of code. So far, we’ve

only seen one indentation level, but what if we added an if statement within an if

statement?

writing multiple conditionals within each other - multiple block levels

x, y, z = 5, 10, 5

if x > y:

 print("greater")

elif x <= y:

 if x == z:

 print("x is equal to z") # resulting output

 elif x != z:

 print("x is not equal to z") # won't get hit

Go ahead and run that cell. The output results in “x is equal to z”. To break it down,

the initial if statement returns False, and the next elif statement returns True, so it runs

that block. Now inside of that block is another conditional statement, so it checks the

first if statement, which returns True, and runs the block of code inside that.

�If Statements vs. Elif Statements
A major difference that you’ll need to understand going forward is the use for elif

statements against using multiple if statements. All elif statements are connected to one

original if statement, so that once a single conditional is True, the rest do not run. Let’s

see an example:

testing output of two if statements in a row that are both true

x, y, z = 5, 10, 5

if x < y:

Chapter 3 User Input and Conditionals

61

 print("x is less")

if x == z:

 print("x is equal")

Go ahead and run that cell. Notice that the resulting output is both print statements

here. This is due in part to having two if statements. These if statements are not related to

each other; they are separate conditional statements, whereas an elif is always connected

to an if.

testing output of an if and elif statement that are both true

x, y, z = 5, 10, 5

if x < y:

 print("x is less")

elif x == z:

 print("x is equal to z")

Go ahead and run that cell. Notice that the output here is only “x is less” and doesn’t

include the second print statement. That’s because an elif is attached to an if statement,

and once one of the conditionals returns True, all others will not be checked even if they

are True themselves.

WEDNESDAY EXERCISES

	1.	 Higher/Lower: Ask the user to input a number. Type convert that number, and

use an if/elif statement to print whether it’s higher or lower than 100.

	2.	 Find the Solution: Given the following code, fix any/all errors in order to make

it output “lower”:

x, y = 5, 10
if x > y:

 print("greater")

try x < y:

 print("lower")

Chapter 3 User Input and Conditionals

62

Today was the next step into creating a program that will make decisions for us,
not just one decision, but multiple.

�Thursday: Else Statements
The third and final part of any good decision is what to do by default. In Python, we

know them to be else statements. Today’s lesson will be quite short, but necessary in

understanding conditional statements further.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_03” and add a markdown cell at the bottom that says, “Else Statements.”

�How They Work
Else conditional statements are the end all be all of the if statement. Sometimes you’re

not able to create a condition for every decision you want to make, so that’s where the

else statement is useful. The else statement will cover all other possibilities not covered

and will always run the code if the program gets to it. This means that if an elif or if

statement were to return True, then it would never run the else; however, if they all

return False, then the else clause would run no matter what every time. Again, it’s always

easier to see it in code; let’s try!

�Writing Your First Else Statement
Like an elif statement, the else clause needs to always be associated with an original

if statement. The else clause covers all other possibilities, so you don’t need to write a

condition at all; you just need to provide the keyword “else” followed by an ending

colon. Remember that an else clause will run the code inside of it if the program reaches

the statement. Try the following:

using an else statement

name = "John"

if name == "Jacob":

 print("Hello Jacob!")

else:

 print("Hello { }!".format(name))

Chapter 3 User Input and Conditionals

63

Go ahead and run that cell. Notice the output here is “Hello John”. The first

if statement returned False, so as soon as it reached the else clause, it ran the print

statement inside of it.

�Complete Conditional Statement
Now that we’ve covered all three parts of a conditional statement, let’s go ahead and try

using all three together in one statement:

writing a full conditional statement with if, elif, else

name = "John"

if name[0] == "A":

 print("Name starts with an A")

elif name[0] == "B":

 print("Name starts with a B")

elif name[0] == "J":

 print("Name starts with a J")

else: # covers all other possibilities

 print("Name starts with a { }".format(name[0]))

Go ahead and run that cell. The resulting output is “Name starts with a J”, which

was output by the second elif statement. The first if and elif statements returned False, so

their blocks of code didn’t run. Once the second elif statement returned True and ran its

own code, the else statement will be skipped over and not run. Remember that indexing

starts at 0, so by using the bracket notation after the name variable was accessing the first

element within the string.

Note  Be sure to go back and check out the section on string indexing if you're
having trouble understanding the bracket notation.

Chapter 3 User Input and Conditionals

64

THURSDAY EXERCISES

	1.	 Fix the Errors: Given the following code, fix any/all errors so that it outputs

“Hello John” correctly:

>>> name = "John"

>>> if name == "Jack":

>>> print("Hello Jack")

>>> elif:

>>>> print("Hello John")

	2.	 User Input: Ask the user to input the time of day in military time without a

colon (1100 = 11:00 AM). Write a conditional statement so that it outputs the

following:

	 a.	 “Good Morning” if less than 1200

	 b.	 “Good Afternoon” if between 1200 and 1700

	 c.	 “Good Evening” if equal or above 1700

Today we learned all about else statements. You’re now able to build programs that
can generate code given a condition.

�Friday: Creating a Calculator
Last week we built a receipt printing program together. With the lessons learned from

this week, we’re going to be building a simple calculator that accepts user input and

outputs the proper result.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_03” and add a markdown cell at the bottom that says, “Friday Project: Creating
a Calculator.”

Chapter 3 User Input and Conditionals

65

�Final Design
For each week we always want to lay out the final design. As this week is based

around the logic rather than how it looks, we’ll lay out the steps necessary to build our

calculator:

	 1.	 Ask the user for the calculation they would like to perform.

	 2.	 Ask the user for the numbers they would like to run the operation

on.

	 3.	 Set up try/except clause for mathematical operation.

	 a.	 Convert numbers input to floats.

	 b.	 Perform operation and print result.

	 c.	 If an exception is hit, print error.

�Step #1: Ask User for Calculation to Be Performed
For each one of these steps, let’s put the code in separate cells. This will allow us to

section of the specific steps for our project, making it easier to test each step. The first

step is to ask the user to input the mathematical operation to be performed (add,

subtract, etc.):

step 1: ask user for calculation to be performed

operation = input("Would you like to add/subtract/multiply/divide? ").lower()

print("You chose { }.".format(operation)) # for testing purposes

Go ahead and run that cell. Depending on what the user inputs, your output will

print what they chose. You’ll notice that on the line where we accept the input, we also

convert it to lowercase right away. This is to avoid case-sensitive issues later. Our print

statement is simply for testing purposes on this cell only and will be removed later.

Chapter 3 User Input and Conditionals

66

�Step #2: Ask for Numbers, Alert Order Matters
In the cell below step #1, we’ll need to create the next step of our logic. Here, we ask the

user to input a couple of numbers and output those numbers for testing purposes:

step 2: ask for numbers, alert order matters for subtracting and dividing

if operation == "subtract" or operation == "divide":

 print("You chose { }.".format(operation))

 print("Please keep in mind that the order of your numbers matter.")

num1 = input("What is the first number? ")

num2 = input("What is the second number? ")

print("First Number: { }".format(num1)) # for testing purposes

print("Second Number: { }".format(num2)) # for testing purposes

Go ahead and run that cell. Notice that we put in a print statement alerting the user

that if they chose subtraction or division, the order of numbers matters. This is important

as num1 will always be on the left side of the operator (in our program), which makes a

huge difference.

Note R erun the previous cell if you get an error for undefined.

�Step #3: Set Up Try/Except for Mathematical Operation
The third, and final step, is to try performing the operation. The reason for setting up a

try/except block here is because we must convert the user’s input to floating data types.

We must assume that they may not enter the proper input. Let’s see how this cell will work:

step 3: setup try/except for mathematical operation

try:

 # step 3a: immediately try to convert numbers input to floats

 num1, num2 = float(num1), float(num2)

 # step 3b: perform operation and print result

 if operation == "add":

 result = num1 + num2

Chapter 3 User Input and Conditionals

67

 print("{ } + { } = { }".format(num1, num2, result))

 elif operation == "subtract":

 result = num1 - num2

 print("{ } - { } = { }".format(num1, num2, result))

 elif operation == "multiply":

 result = num1 * num2
 print("{ } * { } = { }".format(num1, num2, result))
 elif operation == "divide":

 result = num1 / num2

 print("{ } / { } = { }".format(num1, num2, result))

 else:

 # else will be hit if they didn't chose an option correctly

 print("Sorry, but '{ }' is not an option.".format(operation))

except:

 # steb 3c: print error

 print("Error: Improper numbers used. Please try again.")

Go ahead and run that cell. There’s a lot going on here so let’s start from the top.

We set up a try block and immediately convert the user’s input to floats. If this causes

an error, the except clause will be hit and output that an error occurred rather than the

program breaking. If the input can be converted, then we set up an if/elif/else statement

to perform the calculation and output the proper result. If they didn’t input a proper

operation, then we let them know. This cell is dependent on the previous two. If you’re

getting errors, rerun the previous cells.

�Final Output
Now that we’ve created the logic for our program in three separate cells, we can now put

it all together in one. Let’s remove all the testing print statements. You can essentially

take all the code from the three cells and paste them into one cell, resulting in the

following:

Chapter 3 User Input and Conditionals

68

step 1: ask user for calculation to be performed

operation = input("Would you like to add/subtract/multiply/divide? ").

lower()

step 2: ask for numbers, alert order matters for subtracting and dividing

if operation == "subtract" or operation == "divide":

 print("You chose { }.".format(operation))

 print("Please keep in mind that the order of your numbers matter.")

num1 = input("What is the first number? ")

num2 = input("What is the second number? ")

step 3: setup try/except for mathematical operation

try:

 # step 3a: immediately try to convert numbers input to floats

 num1, num2 = float(num1), float(num2)

 # step 3b: perform operation and print result

 if operation == "add":

 result = num1 + num2

 print("{ } + { } = { }".format(num1, num2, result))

 elif operation == "subtract":

 result = num1 - num2

 print("{ } - { } = { }".format(num1, num2, result))

 elif operation == "multiply":

 result = num1 * num2
 print("{ } * { } = { }".format(num1, num2, result))
 elif operation == "divide":

 result = num1 / num2

 print("{ } / { } = { }".format(num1, num2, result))

 else:

 # else will be hit if they didn't chose an option correctly

 print("Sorry, but '{ }' is not an option.".format(operation))

except:

 # steb 3c: print error

 print("Error: Improper numbers used. Please try again.")

Chapter 3 User Input and Conditionals

69

Go ahead and run that cell. Now you’re able to run a single cell to get our program

to work from start to finish. It’s not perfect, but it gives you the ability to perform

simple calculations. As always, try to break the program, change a line around, and

make it your own.

Congratulations on finishing another project! As simple as this calculator may be,
we have shown the ability to use logic, take user input and convert it, and check
for errors.

�Weekly Summary
What a week! We’ve just seen how we can interact with our user and be able to perform

branching statements. This will allow us to build projects with logic, which will perform

specific code based on information that the program is using. The biggest concepts to

remember here are our conditional statements and try/except blocks. It’s important to

know the difference between catching an error and an error causing your program to

crash. We always want to catch errors when possible to sure up our program. Next week

we’ll learn about loops and how we can continuously run blocks of code over and over

until we no longer want to.

�Challenge Question Solution
If you were to run the code block for the challenge question, you would find that it

produces an error. This is because we try to access our “element” variable before it’s

declared. If you were to reverse these two lines, the program would work as desired.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Reversing Numbers: Alter the calculator project so that the order

of the numbers doesn’t matter. There are a few ways to get the

same result; one way is to ask the user if they’d like to reverse the

placement of the numbers.

Chapter 3 User Input and Conditionals

70

	 2.	 Age Group: Ask the user to input their age. Depending on their

input, output one of the following groups:

	 a.	 Between 0 and 12 = “Kid”

	 b.	 Between 13 and 19 = “Teenager”

	 c.	 Between 20 and 30 = “Young Adult”

	 d.	 Between 31 and 64 = “Adult”

	 e.	 65 or above = “Senior”

	 3.	 Text-Based RPG: This is an open-ended exercise. Create a text-

based RPG with a story line. You take user input and give them

a couple choices, and depending on what they choose, they can

go down a different path. You’ll use several branching statements

depending on the length of the story.

Chapter 3 User Input and Conditionals

71
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_4

CHAPTER 4

Lists and Loops
Throughout this week, I’ll be introducing a new data type called “lists” and a new

concept called “loops.” Lists will give us the ability to store large sets of data, while loops

will allow us to rerun sections of our code.

These two topics are being introduced together because lists work well with loops.

Even though lists are one of the most important data types in Python, we needed to

understand the basics of data types and branching statements before introducing them.

By the end of the week, we’ll have the tools necessary to build a small-scale hangman

game. We’ll use all the concepts that we’ve learned from previous weeks and this week.

Through application and repetition, you’ll be able to understand each concept

further each time it’s introduced. If you don’t get a concept just yet, it’s important to keep

pushing through and try not to get stuck on a single lesson.

Overview

•	 Understanding list data types

•	 How and why to use for loops

•	 How and why to use while loops

•	 Understanding how to work with lists

•	 Creating Hangman together

CHALLENGE QUESTION

Imagine that you’re the mayor of a major city. For this example, let’s assume that the major

city is Boston, MA. You’ve just been alerted that you need to evacuate the city. What do you

do first?

72

�Monday: Lists
Today we’ll be introducing one of the most important data types in Python, the list. In

other languages, they are also known as “arrays” and have similar characteristics. This

is the first data collection that you learn. We’ll see other data collection types in later

weeks.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_04.”

Next, make the first cell markdown that has a header saying: “Lists.” We’ll begin working

underneath that cell.

�What Are Lists?
A list is a data structure in Python that is a mutable, ordered sequence of elements.

Mutable means that you can change the items inside, while ordered sequence is in

reference to index location. The first element in a list will always be located at index 0.

Each element or value that is inside of a list is called an item. Just as strings are defined

as characters between quotes, lists are defined by having different data types between

square brackets []. Also, like strings, each item within a list is assigned an index,

or location, for where that item is saved in memory. Lists are also known as a data
collection. Data collections are simply data types that can store multiple items. We’ll see

other data collections, like dictionaries and tuples, in later chapters.

�Declaring a List of Numbers
For our first list, we’re going to create a list filled with only numbers. Defining a list is

like any other data type; on the left of the operator is the name of the variable, and on the

right is the value. The difference here is that the value is a set of items declared between

square brackets. This is useful for storing similar information, as you can easily pass

around one variable name that stores several elements. To separate each item within a

list, we simply use commas. Let’s try:

declaring a list of numbers

nums = [5, 10, 15.2, 20]

print(nums)

Chapter 4 Lists and Loops

73

Go ahead and run that cell. You’ll get an output of [5, 10, 15.2, 20]. When a list is

output, it includes the brackets with it. This current list is made up of three integers and

one float.

�Accessing Elements Within a List
Now that we know how to define a list, we need to take the next step and understand

how to access items within them. In order to access a specific element within a list, you

use an index. When we declare our list variable, each item is given an index. Remember

that indexing in Python starts at zero and is used with brackets. Wednesday of Week 2

also covers indexing:

accessing elements within a list

print(nums[1]) # will output the value at index 1 = 10

num = nums[2] # saves index value 2 into num

print(num) # prints value assigned to num

Go ahead and run that cell. We’ll get two values output here, 10 and 15.2. The first

value is output because we’re accessing the index location of 1 in our nums list, which

has an integer of 10 stored there. The second value was printed out after we created a

new variable called num, which was set to the value stored at index 2 within our nums

list.

�Declaring a List of Mixed Data Types
Lists can hold any data type, even other lists. Let’s check out an example of several data

types:

declaring a list of mixed data types

num = 4.3

data = [num, "word", True] # the power of data collection

print(data)

Chapter 4 Lists and Loops

74

Go ahead and run that cell. This will output [4.3, ‘word’, True]. It outputs 4.3 as the

first item because when the list is defined, it stores the value of num, not the variable

itself.

�Lists Within Lists
Let’s get a little more complex and see how lists can be stored within another list:

understanding lists within lists

data = [5, "book", [34, "hello"], True] # lists can hold any type

print(data)

print(data[2])

Go ahead and run that cell. This will output [5, ‘book’, [34, ‘hello’], True] and [34,
‘hello’]. The first output is the entire data variable’s value, which stores an integer, a

string, a list, and a boolean data type. The second output is the list stored inside of our

data variable, which is located at index 2 and includes an integer and string data type.

�Accessing Lists Within Lists
In the last cell, we saw how to output the list stored within the data variable. Now,

we’ll see how we can access the items within the inner list. To access items within a list

normally, we simply use bracket notation and the index location. When that item is

another list, you simply add a second set of brackets after the first set. Let’s check out an

example and come back to it:

using double bracket notation to access lists within lists

print(data[2][0]) # will output 34

inner_list = data[2] # inner list will equal [34, 'hello']

print(inner_list[1]) # will output 'hello'

Go ahead and run that cell. The first output will be 34. This is because our first index

location is accessing the second index in data, which is a list. Then the second index

location specified is accessing the value in that list at location zero, which results in the

integer of 34. The second output is “hello”. We get this result because we declared a

Chapter 4 Lists and Loops

75

variable to store the value at index 2 of our data variable, which happens to be a list. Our

inner_list variable is now equal to [34, ‘hello’] and we access the value at index 1, which

is the string “hello”. To get a little bit more understanding of how multi-indexing works,

check out Table 4-1.

Notice that strings can also be index further. If you wanted to only print out the “b” in

“book,” you would simply write the following:

>>> print(data[1][0]) # will output 'b'

�Changing Values in a List
When you work with lists you need to be able to alter the value of the items within the

list. It’s like re-declaring a normal variable to a different value, except you access the

index first:

changing values in a list through index

data = [5, 10, 15, 20]

print(data)

data[0] = 100 # change the value at index 0 - (5 to 100)

print(data)

Go ahead and run that cell. Before we altered the value at index 0, it outputs [5, 10,
15, 20]. Once we accessed the zero index and changed its value to 100, however, the list

ended up changing to [100, 10, 15, 20].

Table 4-1.  Multi-indexing values

Index Location Value at Location Data Type Can Be Indexed Again

0 5 Integer No

 1 ‘book’ String Yes

 2 [34, ‘hello’] List Yes

 3 True Boolean No

Chapter 4 Lists and Loops

76

�Variable Storage
When variables are declared, the value assigned is put into a location in memory. These

locations have a specific reference ID. It’s not often you’ll need to check the ID of a

variable, but for educational purposes, it’s good to know how storage works. We would

use the id() function to check the storage location in memory for a variable:

>>> a = [5, 10]

>>> print(id(a)) # large number represents location in memory

When a list is stored in memory, each item is given its own location. Changing the

value using index notation will change the value stored within that memory block. Now,

if a variable’s value is another variable, like so:

>>> a = [5, 10]

>>> b = a

Changing the value at a specific index will change the value for both lists. Let’s see an

example:

understanding how lists are stored

a = [5, 10]

b = a

print("a: { }\t b: { }".format(a, b))

print("Location a[0]: { }\t Location b[0]: { }".format(id(a[0]), id(b[0])))

a[0] = 20 # re-declaring the value of a[0] also changes b[0]

print("a: { }\t b: { }".format(a, b))

Go ahead and run that cell. We’re going to get several outputs here. The first is

printing out the values of both list variables to show that they have the same values. The

second print statement will output the location in memory for each list’s first item. Then

lastly, after we change the value of the first item within our “a” list, the value in our “b”

list also changes. This is because they share the same memory location.

Chapter 4 Lists and Loops

77

�Copying a List
So how do you create a similar list without altering the original? You copy it! Let’s see

how:

using [:] to copy a list

data = [5, 10, 15, 20]

data_copy = data[:] # a single colon copies the list

data[0] = 50

print("data: { }\t data_copy: { }".format(data, data_copy))

Go ahead and run that cell. The output this time will result in only our data variable

having the first item set to 50. As data_copy was merely a copy of the list, now we’re able

to always keep the original list in tact if we need to use it again.

Note  You can also use the method .copy().

MONDAY EXERCISES

	1.	 Sports: Define a list of strings, where each string is a sport. Then output each

sport with the following line “I like to play {}”…

	2.	 First Character: For the following list, print out each item’s first letter. (output
should be ‘J’, ‘A’, ‘S’, ‘K’)

names = [‘John’, ‘Abraham’, ‘Sam’, ‘Kelly’]

Today was all about our first data collection type, the list. There was a lot to cover,
but it’s important to understand how to define, change values, and make copies
of lists.

Chapter 4 Lists and Loops

78

�Tuesday: For Loops
Today will be spent covering a crucial concept in programming, loops. In most

applications, you’re going to need the ability to run the same code more than once.

Rather than writing the same lines of code several times, we use loops. In Python there

are two types of loops, today’s lesson will be on “For Loops.”

To follow along with this lesson, let’s continue from our previous notebook file

“Week_04” and simply add a markdown cell at the bottom that says “For Loops.”

�How Loops Work
Loops are how programmers rerun the same lines of code several times. Loops will

always run until a condition is met. Take a first-person shooter, the game will continue to

run until either you’ve won, or your health reaches zero. Once either of those conditions

occur, the game ends.

Note  It’s always important to condense your code down to as few lines as
possible, as it is more efficient for the program.

Whether you know it or not, loops are everywhere in life. Every day we wake up, go

to work, and go to bed, we know it as a routine, but it’s simply a loop. We repeat the same

process each day until we reach the weekend. The same concept is applied to the loops

in our programs.

�Writing a For Loop
For loops are primarily used to loop a set number of times. Take Figure 4-1, for instance,

this syntax suggests that the loop will run five times. Let’s break this down further. Every

for loop begins with the keyword “for”. Then you define a temporary variable, sometimes

known as a counter or index. Next is the “in” keyword, followed by the range function

(which will be explained later). Lastly, we have a colon to end the statement. All for loops

will follow this exact structure of keyword, variable, keyword, function, and colon.

Chapter 4 Lists and Loops

79

Now that we’ve talked about the structure of writing a for loop, let’s write one:

writing your first for loop using range

for num in range(5):

 print("Value: { }".format(num))

Go ahead and run that cell. This will output “0, 1, 2, 3, 4” for our values. This loop is

essentially counting to five and printing out each number. So how does it print out each

number? When the for loop is created, the range function begins at zero by default and

assigns the value of zero into our temporary variable num. Each time through the loop is

what we call an iteration. For each iteration, once all the code within the block runs, the

current iteration is finished, and the loop starts over again at the top. Except this time, it

increments the value of num, which by default is 1. Our temporary variable is assigned

the value of 1 and continues to run the lines of code inside the for loop, which is simply

printing out the value of num. It will continue to do this until we reach the number 5. To

give you an idea of the values assigned for each iteration, reference Table 4-2.

Figure 4-1.  For loop syntax

Table 4-2.  Values assigned for each iteration using range()

 Loop Iteration Value of Num Output

 1 0 Value: 0

 2 1 Value: 1

 3 2 Value: 2

 4 3 Value: 3

 5 4 Value: 4

Chapter 4 Lists and Loops

80

Note T he value 5 is not output because range() counts up to but not including

�Range()
Range allows us to count from one number to another while being able to define where

to start and end and how much we increment or decrement by. Meaning that we could

count every other number or every fifth number if we wanted to. When used with a for

loop, it gives us the ability to loop a certain number of times. In the previous example, we

saw that a range of 5 printed out five numbers. This is because range defaults to starting

at 0 and increments by 1 each time. Let’s see another example:

providing the start, stop, and step for the range function

for num in range(2, 10, 2):

 �print("Value: { }".format(num)) # will print all evens between 2

and 10

Go ahead and run that cell. This time we’ve specified our program to start the loop

at the value of 2 and count to 10 but increment by 2. The output for our values becomes

“2, 4, 6, 8”.

�Looping by Element
When working with data types that are iterable, meaning they have a collection of

elements that can be looped over, we can write the for loop differently:

printing all characters in a name using the 'in' keyword

name = "John Smith"

for letter in name:

 print("Value: { }".format(letter))

Chapter 4 Lists and Loops

81

Go ahead and run that cell. The output will be each letter printed out one at a time.

Remember that strings can be indexed and are a collection of characters or symbols,

which makes them iterable. This for loop will iterate over each character and run the

code within the block with that character/symbol. Table 4-3 goes over the first few

iterations of this loop.

�Continue Statement
Now that we’ve seen how a loop works, let’s talk about a few important statements that

we can use with loops. The first is the continue statement. Once a continue statement is

hit, the current iteration stops and goes back to the top of the loop. Let’s see an example:

using the continue statement within a foor loop

for num in range(5):

 if num == 3:

 continue

 print(num)

Go ahead and run that cell. The output will result in “0, 1, 2, 4” because the continue

statement is only read when num is equal to the value of 3. Once the statement is hit,

it stops the current iteration and goes back to the top to continue looping on the next

iteration. This completely stops the code below continue from being interpreted, so it

doesn’t hit the print statement.

Table 4-3.  Iteration values for looping over strings with range

 Loop Iteration Value of Letter Output

 1 J Value: J

 2 o Value: o

 3 h Value: h

 4 n Value: n

 5 space symbol Value:

 6 S Value: S

Chapter 4 Lists and Loops

82

�Break Statement
One of the most important statements we can use is the break statement. It allows us to

break out of a loop at any point in time. Let’s see an example:

breaking out of a loop using the 'break' keyword

for num in range(5):

 if num == 3:

 break

 print(num)

Go ahead and run that cell. The output will result in “0, 1, 2” because we broke the

loop completely when num was equal to 3. Once a break is read, the loop completely

stops, and no more code within the loop is run. These are useful for stopping a loop

when a condition is met.

Note  If you use a double loop, the break statement will only break out of the loop
that the statement is within. Meaning, it will not break out of both loops if the break
statement is used within the inner loop.

�Pass Statement
The last of these three statements is pass. The pass statement is simply just a placeholder

so that the program doesn’t break. Let’s see an example:

setting a placeholder using the 'pass' keyword

for i in range(5):

 # TODO: add code to print number

 pass

Go ahead and run that cell. Nothing happens, but that’s a good thing. If you take the

pass statement out completely, the program will break because there needs to be some

sort of code within the block.

Chapter 4 Lists and Loops

83

It’s simply there so that we don’t have to write code within the loop just yet. It’s useful

for framing out a program.

Note  Using “TODO” is general practice for setting a reminder.

TUESDAY EXERCISES

	1.	 Divisible by Three: Write a for loop that prints out all numbers from 1 to 100

that are divisible by three.

	2.	 Only Vowels: Ask for user input, and write a for loop that will output all the

vowels within it. For example:

>>> "Hello" ➔ "eo"

Today was spent learning all about for loops and how they work. Looping allows us
to run the same lines of code several times.

�Wednesday: While Loops
We’ll be going over the other type of loop today, the while loop. Yesterday we saw how

loops work, and why we would use a for loop. A while loop is generally used when

you need to loop based on a condition rather than counting. Today will be all about

condition-based looping.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_04” and simply add a markdown cell at the bottom that says, “While Loops.”

Chapter 4 Lists and Loops

84

�Writing a While Loop
Like a for loop, the while loop starts out with the keyword “while”. Following that, we

have a conditional like we would use to write an if statement. Let’s see an example:

writing your first while loop

health = 10

while health > 0:

 print(health)

 health -= 1 # forgetting this line will result in infinite loop

Go ahead and run that cell. This will continue to print out the value of health until

the condition is met. In this case, once health is no longer greater than zero, the loop

stops running. On the last line, we decrement health by one, so each iteration reduces

health closer to zero. If we didn’t decrement health at any point in time, this would

become an infinite loop (which is bad).

�While vs. For
I’ve explained a few times now why we would use each loop; however, it’s always good to

reiterate concepts. For loops are generally used when you need to count or iterate over

a collection of elements. While loops are generally used when doing condition-based

looping. When using a while loop, often you’ll use boolean variables. Each loop has

their use cases; in most cases it’s personal preference, but the general rule of thumb is

counting with for loops, conditions with while loops.

Note T he pass, break, and continue statements all work the same way for while
loops as well.

�Infinite Loops
In a previous cell, I mentioned that infinite loops were bad. An infinite loop will continue

to run until the program breaks, the computer is shut down, or until time stops. Knowing

this, stay away from creating infinite loops. Here is an example of an infinite loop:

Chapter 4 Lists and Loops

85

>>> game_over = False

>>> while not game_over:

>>> print(game_over)

If you were to run this within a cell, eventually you would have to shut down Jupyter

Notebook and restart it (or at least the kernel). This is because the game_over variable

never becomes True, and the condition is running until game_over becomes True.

Always make sure you have a way to exit your loops, whether it be by a break or by a

condition.

�Nested Loops
The concept of a loop within a loop is what we call a nested loop. The concepts of a loop

still apply. When using nested loops, the inner loop must always finish running, before

the outer loop can continue. Let’s see an example:

using two or more loops together is called a nested loop

for i in range(2): # outside loop

 for j in range(3): # inside loop

 print(i, j)

Go ahead and run that cell. At first, this may seem a bit confusing, since there’s a lot

going on here. Let’s break the output down with Table 4-4.

Table 4-4.  Tracking nested loop values

 Iteration Value of i Value of j Inner Loop Count Outer Loop Count

 1 0 0 1 1

 2 0 1 2 1

 3 0 2 3 1

 4 1 0 4 2

 5 1 1 5 2

 6 1 2 6 2

Chapter 4 Lists and Loops

86

In total we can see that the inner loop runs six times and the outer loop runs twice.

The value of i only increments when the outer loop runs, which doesn’t occur until the

inner loop finishes. The inner loop must count from 0 to 3 each time to run the next

iteration on the outer loop.

WEDNESDAY EXERCISES

	1.	 User Input: Write a while loop that continues to ask for user input and runs

until they type “quit”.

	2.	 Double Loop: Write a for loop within a while loop that will count from 0 to 5,

but when it reaches 3, it sets a game_over variable to True and breaks out of

the loop. The while loop should continue to loop until game_over is True. The

output should only be 0, 1, 2.

Today was a bit of a shorter day, as the concept of loops is the same whether it’s a
while or for. Remember that a while loop is used for conditional looping, while we
use a for loop for counting/iterating.

�Thursday: Working with Lists
Now that we’ve learned what lists are and how to use loops, we’re going to go over how

to work with lists today. Lists are an important key to any program in Python, so we need

to understand our capabilities when using them.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_04” and simply add a markdown cell at the bottom that says, “Working with Lists.”

Chapter 4 Lists and Loops

87

�Checking Length
Often, we’ll need to know how many items are within a list. To do so, we use the len()

function:

checking the number of items within a list

nums = [5, 10, 15]

length = len(nums) # len() returns an integer

print(length)

Go ahead and run that cell. This will output 3. We use the length function for several

uses, whether it’s checking for an empty list or using it within the range function to loop

a list.

�Slicing Lists
A few weeks back we talked about slicing a string. Lists work the same way so that you’re

able to access specific items. Slicing follows the same arguments as the range function

start, stop, step:

accessing specific items of a list with slices

print(nums[1 : 3]) # will output items in index 1 and 2

print(nums[: 2]) # will output items in index 0 and 1

print(nums[: : 2]) # will print every other index - 0, 2, 4, etc.

print(nums[-2 :]) # will output the last two items in list

Go ahead and run that cell. The outputs are shown in the comments next to each

statement. We use bracket notation as if we’re accessing an index; however, we separate

the other values via a colon. The order is always [start : stop : step]. By default, start is

zero and step is one. You have the option to leave those values out if you’d like to keep

the defaults. Using a negative number for the step position will result in slicing backward.

If you use a negative number in the start or stop positions, then the slice will either start

or stop further from the back. Meaning that if you state -5 as the stop position, it will slice

from the start of the list all the way to five elements before the list ends.

Chapter 4 Lists and Loops

88

�Adding Items
When you need to add items to your lists, Python has two different methods for doing so.

�.append()

Append will always add the value within the parenthesis to the back of the list. Let’s see:

adding an item to the back of a list using append

nums = [10, 20]

nums.append(5)

print(nums) # outputs [10, 20, 5]

Go ahead and run that cell. We declared a list with two items in it to start and then

added the integer value of 5 to the back of the list.

�.insert()

The second method to add items to a list is using insert. This method requires an index

to insert a value into a specific location. Let’s see an example:

adding a value to the beginning of the list

words = ["ball", "base"]

nums.insert(0, "glove") # first number is the index, second is the value

Go ahead and run that cell. The output will result in [‘glove’, ‘ball’, ‘basex’]. Glove is

in the zero index now because we specified that index within our insert method.

�Removing Items
There are several ways to remove items from a list, the following are the main two

methods.

Chapter 4 Lists and Loops

89

�.pop()

By default, the pop method removes the last item in the list; however, you can specify an

index to remove as well. This method is also widely used to save the removed item too.

When pop is used, it not only removes the item but also returns it. This allows us to save

that value into a variable to be used later:

using pop to remove items and saving to a variable to use later

items = [5, "ball", True]

items.pop() # by default removes the last item

removed_item = items.pop(0) # removes 5 and saves it into the variable

print(removed_item, "\n", items)

Go ahead and run that cell. Using pop, we can see that it removed the True item first,

then the element in index zero, which happens to be the integer 5. While popping it out

of the list, we saved it into a variable, which we later output along with the new list.

�.remove()

The remove method allows us to remove items from a list based on their given value:

using the remove method with a try and except

sports = ["baseball", "soccer", "football", "hockey"]

try:

 sports.remove("soccer")

except:

 print("That item does not exist in the list")

print(sports)

Go ahead and run that cell. Here we’ll see that the output is our sports list without

soccer because we were able to remove it correctly. Now the reason why we use a try and

except with the removal is because if “soccer” didn’t exist in the list, then the program

would crash.

Chapter 4 Lists and Loops

90

�Working with Numerical List Data
Python provides a few functions for us to use on lists of numerical data, such as min,

max, and sum. There are several more that we can use, though these are used most

frequently:

using min, max, and sum

nums = [5, 3, 9]

print(min(nums)) # will find the lowest number in the list

print(max(nums)) # will find the highest number in the list

print(sum(nums)) # will add all numbers in the list and return the sum

Go ahead and run that cell. The output will result in 3, 9, and 17. As their names

state, they’ll find the minimum and maximum number. The sum function will simply

add all the numbers up.

�Sorting a List
Often, you’ll need to work with a sorted list. There are a couple methods for doing so, but

they are very different. One will change the original list, while the other returns a copy.

�sorted()

The sorted function will work on either numerical or alphabetical lists, but not one that is

mixed. Sorted also returns a copy of the list, so it doesn’t alter the original. Usually if you

need to keep the original intact, be sure to use this function:

using sorted on lists for numerical and alphabetical data

nums = [5, 8, 0, 2]

sorted_nums = sorted(nums) # save to a new variable to use later

print(nums, sorted_nums) # the original list is in tact

Go ahead and run that cell. You’ll notice the output of our nums list is still in the

original order when we declared it. To use the new sorted list, we simply save it to a new

variable.

Chapter 4 Lists and Loops

91

�.sort()

The sort method is used for the same purpose that our previous sorted function is used

for; however, it will change the original list directly:

sorting a list with .sort() in-place

nums = [5, 0, 8, 3]

nums.sort() # alters the original variable directly

print(nums)

Go ahead and run that cell. The resulted output will be a properly sorted list. Just

remember that the nums variable is now changed, as .sort() changes the value directly.

�Conditionals and Lists
When working with lists, often you’ll need to check if values exist. Now we’ll introduce

how to run conditional statements on a list. There are many reasons to run a conditional

on a list; these are simply a couple examples.

�Using “in” and “not in” Keywords

We’ve seen the use of these keywords already, when we covered conditional statements

last week. When working with lists, they serve a purpose to find values within the list

quickly:

using conditional statements on a list

names = ["Jack", "Robert", "Mary"]

if "Mary" in names:

 print("found") # will run since Mary is in the list

if "Jimmy" not in names:

 print("not found") # will run since Jimmy is not in the list

Go ahead and run that cell. The output results in “found” and “not found”. On the

first statement, we were trying to see if “Mary” existed in the list, which it does. The

second conditional statement checked to see if “Jimmy” did not exist, which is also true,

so it too runs.

Chapter 4 Lists and Loops

92

�Checking an Empty List

There are so many reasons to need to check for an empty list. It’s usually to ensure you

don’t cause any errors in your program, so let’s see how we can check:

using conditionals to see if a list is empty

nums = []

if not nums: # could also say 'if nums == []'

 print("empty")

Go ahead and run that cell. This will output “empty”. It’s mentioned in the

comment, but we could have also checked to see if it were equal to empty brackets. Here,

I wanted to show you how to use the “not” keyword. To check for a list with items, you

would write the following:

>>> if nums:

�Loops and Lists
You can use both the for and while loops to iterate over the items within a list.

�Using For Loops

When iterating over a list with a for loop, the syntax looks like when we used the range

function previously; however, this time we use a temporary variable, the in keyword,

and the name of the list. For each iteration, the temporary variable is assigned the item’s

value. Let’s try it out:

using a for loop to print all items in a list

sports = ["Baseball", "Hockey", "Football", "Basketball"]

for sport in sports:

 print(sport)

Go ahead and run that cell. Here we can see that this cell will output each item

within the list. During the first iteration, the temporary variable “sport” is assigned

“Baseball,” and once it prints it out, it moves on to the next item.

Chapter 4 Lists and Loops

93

�Using While Loops

While loops are always used for conditional looping. One great use case for a while loop

with lists is removing an item. There are so many uses, this is just one of them:

using the while loop to remove a certain value

names = ["Bob", "Jack", "Rob", "Bob", "Robert"]

while "Bob" in names:

 names.remove("Bob") # removes all instances of 'Bob'

print(names)

Go ahead and run that cell. The output will be our names list without “Bob” in the

list. We used the combination of the while loop with a conditional to check for our “Bob”

value in the list and then continued to remove it until our condition was no longer true.

THURSDAY EXERCISES

	1.	 Remove Duplicates: Remove all duplicates from the list below. Hint: Use the

.count() method. The output should be [‘Bob’, ‘Kenny’, ‘Amanda’]

>>> names = ['Bob', 'Kenny', 'Amanda', 'Bob', 'Kenny']

	2.	 User Input: Use a while loop to continually ask the user to input a word, until

they type “quit”. Once they type a word in, add it to a list. Once they quit the

loop, use a for loop to output all items within the list.

Today was important so that we could understand how to work with lists, whether
it be a conditional statement or a loop. There are many methods out there that lists
can use; we’ll go over more of them throughout the rest of this book.

�Friday: Creating Hangman
As the weeks go on, the projects will generally get longer. Today we’re going to be

building Hangman with the use of all the concepts learned from the past four weeks. As

usual, new concepts will be introduced as we code along. Today’s goal is to have a fully

Chapter 4 Lists and Loops

94

functioning Hangman game, where we can guess, lose a life, and win or lose the game.

We won’t be adding graphics, although after we complete the project together, feel free

to add them yourself.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_04” and add a markdown cell at the bottom that says, “Friday Project: Creating
Hangman.”

�Final Design
As always, we want to lay out our final design before we begin coding. This week will

not be based around graphics, like last week, so we’ll focus on the logic and the steps

necessary to run the program. Luckily for us, the logic is essentially the steps needed to

play the game:

	 1.	 Select a word to play with.

	 2.	 Ask user for input.

	 3.	 Check if guess is correct.

	 a.	 If it is, show the letter in the proper place.

	 b.	 If it isn’t, lose a life.

	 4.	 Continue steps 2 and 3 until one of the following occurs:

	 a.	 The user guesses the word correctly.

	 b.	 The user loses all their lives.

This is the main game play functionality. There are several other steps we need to

perform before actually running the game, like declaring game variables; however, this

is the primary functionality that we needed to lay out before we begin coding. Knowing

this structure will allow us to stay on track with our program.

�Previous Line Symbols Introduced
Like how we added line numbers back in Week 1, we’re going to introduce the

concept of line symbols for this project and all others going forward. With the need

to edit previously written lines, or even add code in the middle of the project, we’ll be

Chapter 4 Lists and Loops

95

introducing the concept of line symbols. These symbols will be shown by the use of three

empty squares and will represent previously written code. You can see an example here:

1| if num > 1: ◻◻◻
3| # new code will go here

5| print(◻◻◻

When we add lines in between previously written code, I will use these three squares

to signify which line should be above and below the code we’re writing. It also means

that you should leave the line unaltered. When we need to overwrite a previous line,

I will let you know. Be sure to pay attention to line numbers when you see those three

squares, as that will help to let you know if you missed a line or not.

Note T urn lines on by pressing “L” after clicking the cell’s side

�Adding Imports
We’ll be writing this program in one cell, and it will be around 50 lines long. The first step

is to import a few additional functions that we need:

1| # import additional functions

2| from random import choice

3| from IPython.display import clear_output

The second line is importing a function called “choice” which will select a random

item from a list. We’ll use this to randomize the word chosen. The third line is importing

a Jupyter Notebook specific function which clears the output. When using a loop, if we

don’t clear output, it will continue to output on top of each other.

Chapter 4 Lists and Loops

96

�Declaring Game Variables
The next step is to understand what variables we need to run the game and declare

them. If you think about Hangman and what we need to keep track of, we need to track

the user’s lives, the word they are trying to guess, a list of words to choose from, and

whether the game is over:

5| # declare game variables

6| words = ["tree", "basket", "chair", "paper", "python"]

7| word = choice(words) # randomly chooses a word from words list

8| guessed, lives, game_over = [], 7, False # multi variable assignment

Line seven declares a variable called word, which will select a random item from our

words list. The eighth line is where we declare three variables together; guessed will be

given the value of an empty list, lives will be set to 7, and game_over will be declared to

False.

Note  As we code along, feel free to write print statements to check the value of
each variable. It helps to see what we’re declaring.

�Generating the Hidden Word
During the game, we want the user to be able to see how many letters are within the

word. To do this, we can create a list of strings, where each string is an underscore. The

number of items in the list will be set to the same length of the word chosen:

10| # create a list of underscores to the length of the word

11| guesses = ["_ "] * len(word)

On line 11 we’re declaring a variable called guesses, which is set to a list of

underscores. We get the proper length by multiplying the list by the length of the word.

Chapter 4 Lists and Loops

97

�Creating the Game Loop
Every game has a main loop no matter the size of the program. Our main loop will

perform the logic that we defined in our Final Design section. Rather than writing it all

out at once, let’s take small steps. The first step is to be able to accept user input and stop

playing the game:

13| # create main game loop

14| while not game_over:

15| ans = input("Type quit or guess a letter: ").lower()

17| if ans == "quit":

18| print("Thanks for playing.")

19| game_over = True

Go ahead and run the cell. If you type “quit”, the program should stop as we are

looping until game_over is set to True, which only occurs when we input “quit”.

Note  Always make sure the cell is done running before moving on.

�Outputting Game Information
The next step is to start outputting information to the user. Let’s output their lives and

the word that they’re trying to guess in a nicely formatted statement:

14| while not game_over: ◻◻◻
15| # output game information

16| hidden_word = "".join(guesses)

17| print("Word to guess: { }".format(hidden_word))

18| print("Lives: { }".format(lives))

20| ans = input(◻◻◻

Go ahead and run the cell. Depending on the word chosen, you’ll get a different

output. If the word chosen was four letters, we’ll get an output of “Word to guess: _ _ _ _”

and “Lives: 7”. The format is nothing new, but what about line 16? The reason we’re able

Chapter 4 Lists and Loops

98

to create a string of underscores to output in line 17 is because of the join method. It

states that we want to join all the items within the guesses list together with no spaces in

between. For example:

>>> chars = ['h', 'e', 'l', 'l', 'o']

>>> print('-'.join(chars))

The preceding two lines would output “h-e-l-l-o”. This is a simple way to display our

list as a string.

�Checking a Guess
The next step is to check and see if the user’s input was a correct guess. We won’t alter

any letters just yet, as we first want to make sure we can identify a correct guess and

either output that they guessed correctly or remove a life:

24| game_over = True ◻◻◻
25| elif ans in word: # check if letter in word

26| print("You guessed correctly!")

27| else: # otherwise lose life

28| lives -= 1

29| print("Incorrect, you lost a life.")

Go ahead and run the cell. If you continue to guess incorrectly, you’ll notice the lives

will go below zero. Be sure to guess a correct letter and incorrect letter to know that this

works.

�Clearing Output
Now that we’re getting further with our program, we can see that the loop is continually

outputting information below previous outputs. Let’s begin to clear the output:

20| ans = input(◻◻◻
22| clear_output() # clear all previous output

24| if ans == 'quit': ◻◻◻

Chapter 4 Lists and Loops

99

Go ahead and run the cell. You’ll notice that it properly clears the previous information

displayed no matter how long we play. This is a Jupyter Notebook specific function.

�Creating the Losing Condition
The next logical operation would be creating a way to lose, since our lives can go below

zero:

31| print('Incorrect, ◻◻◻
33| if lives <= 0:

34| print("You lost all your lives, you lost!")

35| game_over = True

Go ahead and run the cell. Now if you lose all your lives, the game will stop running

and tell you that you lost. Remember that the loop is only running until game_over is

True, which is what we set it to once the variable of lives drops to zero.

�Handling Correct Guesses
Now that we can lose, we need the ability to see correct guesses. To understand how to alter

the letters shown, we first need to remember what’s being output. Our guesses list is being

turned into a string and output. This means that when the user has guessed correctly, we

need to change the items within our guesses list in their corresponding positions. The list

is the same length of the word we chose at the beginning of the cell, so each underscore

represents a letters position. If the word was “sport”, then the first underscore in “_ _ _ _”

would represent the “s”. We simply need to replace the proper underscore in the list with

the letter guessed. We can do this by using a for loop and keeping track of the index:

28| print('You guessed correctly!') ◻◻◻
30| # create a loop to change underscore to proper letter

31| for i in range(len(word)):

32| �if word[i] == ans: �# comapares

values at indexes

33| guesses[i] = ans

34| else: ◻◻◻

Chapter 4 Lists and Loops

100

Go ahead and run that cell. Now when guessing a correct letter, it will output the

change. The for loop is looping to the length of the word, and we’re using the variable “i”

to keep track of the index. We then check if each character is equal to the letter guessed.

If it is, then we change the item from an underscore to the letter guessed at that index.

Check out Table 4-5 for an example on the process. Let’s use “pop” for our word and “p”

for the guess.

�Creating a Winning Condition
One of the last steps to completing this project is building the winning condition. To win,

the user needs to guess all the letters within the random word chosen. We’re already

keeping track of the word as they guess correctly, so we just need to check that against

the random word:

40| game_over = True ◻◻◻
41| elif word == "".join(guesses):

42| print("Congratulations, you guessed it correctly!")

43| game_over = True

Go ahead and run the cell. Now the user can officially win if they guess all the letters

correctly. We use the same join method from earlier that turns our list into a string,

so that if any underscores remain in the list, the joined string will not be equal to the

random word. We then print out a congratulations and change our game_over variable to

True to end the loop.

Table 4-5.  Tacking index value to check guess

 Value of ans Value of i Value of word[i] Condition Value Value of guesses after change

 ‘p’ 0 ‘p’ True [‘p’, ‘_ ‘, ‘_ ‘]

 ‘p’ 1 ‘o’ False [‘p’, ‘_ ‘, ‘_ ‘]

 ‘p’ 2 ‘p’ True [‘p’, ‘_ ‘, ‘p’]

Chapter 4 Lists and Loops

101

�Outputting Guessed Letters
Although our game is now complete and we can win or lose, we should add one more

key functionality to it, which is handling previously guessed letters. Whenever a user

guesses a previous letter, they shouldn’t be penalized for it, but they should also be able

to see the previous guesses. At the beginning of this project, we created a variable called

guessed that we haven’t used until now. This variable has remained an empty list thus

far, so let’s implement it. Before we add to the list, let’s make sure we can print out the

information properly:

16| hidden_word = ◻◻◻
17| print("Your guessed letters: { }".format(guessed))

18| print("Word to guess ◻◻◻

Go ahead and run the cell. At the top of where we output information, we’re now

printing out the full list of guessed letters. It’s perfectly fine to leave this in list form.

Even when you guess, it’ll still show an empty list because we haven’t added that

functionality yet.

�Adding Guessed Letters
Let’s now add the functionality to append the user’s guess to our guesses list:

37| print("Incorrect, ◻◻◻
39| if ans not in guessed:

40|| guessed.append(ans) # add ans to guessed list

42| if lives <= 0: ◻◻◻

Go ahead and run the cell. Now the guesses list will update as the user plays

the game.

Chapter 4 Lists and Loops

102

�Handling Previous Guesses
The very last order of business is making sure that when they guess the same letter again,

that they don’t have a life taken away, but rather they are alerted that it’s been guessed.

We’ll need to rewrite the entire conditional statement for checking if the letter is in the

word though:

27|| game_over = True ◻◻◻
28| elif ans in word and ans not in guessed:

29|| print("You guessed correctly!") ◻◻◻
34| guesses[i] = ans ◻◻◻
35| elif ans in guessed:

36|| print("You already guessed that. Try again.")

37| else: ◻◻◻

Go ahead and run the cell. We had to change the elif statement for line 28 because

we also needed to check that the letter was not added to the guessed list yet. On line 35

we add a second elif statement that will check if the letter is specifically in the guessed

list. Remember that once an if/elif statement runs, the following statements will not. If

neither of those conditionals are True, then it means that they haven’t guessed the letter

yet, and it’s not in the random word. The game is now complete with full functionality.

�Final Output
Congratulations on completing this project! Due to the size of the project, the full code

will not be written here. Instead, you may find the completed version of the code where

this book’s resource files are located on Github. You can find the link in the front of the

book. All resource files for each week are located within that link. To find the specific

code for this project, simply open or download the “Week_04.ipynb” file. If you ran into

errors along the way, be sure to cross-reference your code with the code in this file and

see where you may have gone wrong. The final code output for all future projects can

also be found in the same location, so be sure to bookmark this page.

Chapter 4 Lists and Loops

103

What a day! We were able to use the concept of looping, along with the power of
lists to create a fun game. Try adding your own flare, or breaking it, to understand
further what may or may not work.

�Weekly Summary
This was certainly one of the longer weeks, filled with a ton of information. Be sure to

take some time to practice these concepts, either on your own or by completing the end

of week exercises. We covered why lists are so important in Python and how to use them

within our program. Also covered were the two loops that Python offers, for loops and

while loops. Using loops, we can rerun code as many times as necessary, or to iterate

over data collections like lists. If you feel overwhelmed with all the information, rest

assured that we use loops and lists in everything that we do. This will give you a lot of

practice and repetition.

�Challenge Question Solution
Even though there is a specific answer we’re looking for, this was a bit of a trick question.

If your first action was turning around and asking, “what is the problem?” or “why am

I evacuating the city?”, then you answered correctly. The reason we need to ask this

question first is because different problems require different solutions. If you began

writing an evacuation plan that required using cars, what if the problem was that all the

streets were flooded. It wouldn’t be very wise to advise people to drive out of the city.

Sometimes the answer to a question is a question itself. One other lesson to take away

from this is that you should always take a step back and think through each problem.

Never assume you know the solution right away; it’s okay to ask questions.

Chapter 4 Lists and Loops

104

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Pyramids: Use a for loop to build a pyramid of x’s. It should be

modular so that if you loop to 5 or 50, it still creates evenly spaced

rows. Hint: Multiply the string “x” by the row. For example, if you

loop to the range of 4, it should produce the following result:

>>> x

>>> x x

>>> x x x

	 2.	 Output Names: Write a loop that will iterate over a list of items

and only output items which have letters inside of a string. Take

the following list, for example, only “John” and “Amanda” should

be output:

>>> names = ['John', ' ', 'Amanda', 5]

	 3.	 Convert Celsius: Given a list of temperatures that are in Celsius, write

a loop that iterates over the list and outputs the temperature converted

into Fahrenheit. Hint: The conversion is “F = (9/5) ∗ C + 32”:

>>> temps = [32, 12, 44, 29]

Output would be [89.6, 53.6, 111.2, 84.2]

Chapter 4 Lists and Loops

105
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_5

CHAPTER 5

Functions
This week begins the topic of functions. Along with loops, functions can be one of the

tougher topics to understand. For this reason, this entire week has been dedicated to

covering functions only. This is also one of the more important topics in programming.

Knowing how to use a function will greatly improve your programming skills.

Functions give us the ability to make our programs much more powerful and clean

while also saving us time. We’ll go over how they work on the first day, but the reason we

use functions is because of the ability to write once and call repeatedly.

Many of the programs that we’ve already built can benefit from the use of functions,

especially games like Hangman. At the end of the week, we’ll build a program that

resembles a shopping cart list. We’ll see why it’s important to separate tasks such as

adding, removing, and displaying into separate functions.

Overview

•	 How to use functions and what they are

•	 Passing data around using parameters

•	 Returning data from functions

•	 Understanding scope and its importance

•	 Creating a shopping cart program

CHALLENGE QUESTION

Remember that an algorithm is nothing more than a set of step-by-step instructions. If we

were to write an algorithm for changing a light bulb, what would it look like? What problems

do you have to consider? How many steps are necessary? What is the most efficient method?

Using the following algorithm, what problems may occur?

106

	1.	 Retrieve spare bulb.

	2.	 Turn off switch powering current bulb.

	3.	 Unscrew current bulb.

	4.	 Screw in spare bulb.

	5.	 Turn on switch powering new bulb.

	6.	 If spare bulb does not turn on, repeat steps 1 through 5.

�Monday: Creating and Calling Functions
Today’s lesson is all about understanding what functions are, the stages of a function,

and how to write a function. We’ll find out why they are so important in programs and

how they’ll make our lives easier.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_05.”

Next, make the first cell markdown that has a header saying: “Creating & Calling
Functions.” We’ll begin working underneath that cell.

�What Are Functions?
One of the best reference materials for programming is w3schools.1 They even have

Python tutorials. Their official documentation describes functions as the following:

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.2

Programs will often need to run the same code repeatedly, and although loops help

with that, we don’t want to write the same loop many times throughout our program.

The solution to the issue is using a function. They essentially store code that will only run

when called upon.

1�www.w3schools.com/python/
2�www.w3schools.com/python/python_functions.asp

Chapter 5 Functions

https://www.w3schools.com/python
https://www.w3schools.com/python/python_functions.asp

107

All functions are generally associated with a single task or procedure. This makes it

easier for us to break down our program into functions. If you build a program that needs

to repeatedly print five lines of information, and you need to output it in five different

places, you would need to write 25 lines of code. Using a function, you would store the

five lines in a block and call the function whenever you need it, resulting in five lines for

the information to output and five lines for calling the function, for a grand total of ten

lines. This results in a much more efficient program.

�Function Syntax
Like loops, functions follow an exact pattern for every functioned created. They all

begin with the keyword “def”, followed by the name of the function. This name is

arbitrary and can be anything except for Python keywords and previously defined

functions. Directly following the name is the parenthesis, and within those are

parameters. We won’t cover parameters until tomorrow so just know that parameters

are optional, but parenthesis is required. Lastly, we need an ending colon like any

other Python statement. See Figure 5-1 for an example.

Figure 5-1.  Function syntax

�Writing Your First Function
Now that we know what the syntactical structure looks like, let’s go ahead and write

our own:

Chapter 5 Functions

108

writing your first function

def printInfo(): # defines what the function does when called

 print("Name: John Smith")

 print("Age: 45")

printInfo() # calls the function to run

printInfo() # calls the function again

Go ahead and run the cell. We define a function called printInfo, which prints two

lines of information each time it’s called. Below that we call the function twice, which

outputs the information two times. It may not seem like a more efficient program, but

imagine you needed to output that exact information 20 times in a program. It’s concise

and efficient.

�Function Stages
In Python there are two stages to each function. The first stage is the function definition.

This is where you define the name of the function, any parameters it’s supposed to accept,

and what it’s supposed to do in the block of code associated with it. See Figure 5-2.

Figure 5-2.  The two steps of a function life cycle (definition and call)

Chapter 5 Functions

109

The second stage is known as the function call. Functions will never run until called,

so you can define as many functions as you’d like, but if you never call one of them, then

nothing will happen. When you call a function, it will run the block of code within the

definition.

�UDF vs. Built-in
Without even knowing it, you’ve been using functions this whole time. Functions such

as range, print, len, etc., are all known as “built-in” functions. They are included in

Python because they serve a specific purpose to help build our applications. Now that

we’re learning about functions, we can begin to create our own known as UDFs or

“user-defined functions.”

�Performing a Calculation
Let’s check out one more example of a basic function, but this time do more than just

print inside of the block:

performing a calculation in a function

def calc():

 x, y = 5, 10

 print(x + y)

calc() # will run the block of code within calc and output 15

Go ahead and run the cell. We’ll get an output of 15 every time we call the calc

function here.

MONDAY EXERCISES

	1.	 Print Name: Define a function called myName, and have it print out your name

when called.

	2.	 Pizza Toppings: Define a function that prints out all your favorite pizza toppings

called pizzaToppings. Call the function three times.

Chapter 5 Functions

110

Although there wasn’t much coding today, it was important to understand the
value of functions. Now we can separate our code into blocks, which will make the
program easier to read and run.

�Tuesday: Parameters
One of the main reasons we use functions is so that we can make our code modular.

Today is all about understanding how to use parameters within functions and what

they are.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_05” and simply add a markdown cell at the bottom that says, “Parameters.”

�What Are Parameters?
Parameters are temporary variables declared on the function definition. While the

functions we’ve written so far perform a specific task, they aren’t modular because they

will always print out the same response for every call. When you want to call a function

with different values, you need to use parameters. Within the parenthesis of the function

definition is where you would state a parameter name. This is an arbitrary variable name

that you use to reference the value within the function block; however, you usually want

it to be relevant to the data that you’re working with. When calling the function, you

would pass in the necessary value to run the block of code with. Take Figure 5-3.

Figure 5-3.  Accepting parameters into a function

Chapter 5 Functions

111

Note A rguments are the values passed into the function call. In the preceding
figure, line 3 is passing the argument “John” into the printName function, where it
will the value will be passed into the parameter name

The function is defined with a parameter of “name” within the parenthesis. Again,

this could be called anything, but we’re expecting a person’s name to be passed in. The

block of code, when executed, will use the value of that parameter within the formatted

print statement. The call on line 3 is where we pass the value into the function, known as

an argument. In this example, we would get an output of “Hello John”. We could can now

call this function and pass in any string value we would like, and it will print it out. This

function is now modular.

�Passing a Single Parameter
Let’s use the example from Figure 5-3 to create our first function that accepts a parameter:

passing a single parameter into a function

def printName(full_name):

 print("Your name is: { }".format(full_name))

printName("John Smith")

printName("Amanda")

Go ahead and run the cell. We’ll get two different outputs here that use the same

function. Parameters allow us to pass different information for each call.

�Multiple Parameters
The preceding example passes a string data type into a function, so let’s check out how to

pass numbers and create a nicely formatted print statement:

Chapter 5 Functions

112

passing multiple parameters into a function

def addNums(num1, num2):

 result = num1 + num2

 print("{ } + { } = { }".format(num1, num2, result))

addNums(5, 8) # will output 13

addNums(3.5, 5.5) # will output 9.0

Go ahead and run that cell. Our function definition is expecting two numbers to be

passed into the parameters num1 and num2. Within the function block, we reference

these values passed in by their argument names.

�Passing a List
Passing around a large amount of data is usually easiest when it is stored in a list. For that

reason, functions are great at performing repetitive tasks on lists. Let’s see an example:

using a function to square all information

numbers1 = [2, 4, 5, 10]

numbers2 = [1, 3, 6]

def squares(nums):

 for num in nums:

 print(num**2)

squares(numbers1)

squares(numbers2)

Go ahead and run the cell. You can see that it will output all the numbers squared.

This is much more efficient than writing the for loop twice for each list. This is the beauty

of functions and passing in parameters.

Note  Remember that nums is an arbitrary name and is the variable that we
reference within the function block.

Chapter 5 Functions

113

�Default Parameters
In many situations, a parameter can be associated with a default value. Take the value

of pi for instance; it will always be 3.14, so we can set a parameter called pi to that exact

value. This allows us to call the function with an already defined value for pi. If you

wanted to have a more concise value for pi you could, but generally 3.14 is good enough:

setting default parameter values

def calcArea(r, pi=3.14):

 area = pi * (r**2)

 print("Area: { }".format(area))

calcArea(2) # assuming radius is the value of 2

Go ahead and run the cell. Now we can run the function without needing to pass a

value for pi. Default parameters MUST always go after non-default parameters. In this

example the radius must be declared first, then pi.

�Making Parameters Optional
Sometimes you need to make functions that take optional arguments. The best example

is always middle names; some people have them, and some don’t. If we wanted to write

a function that would print out properly for both situations, we would need to make the

middle name an optional parameter. We do this by assigning an empty string value as

the default:

setting default parameter values

def printName(first, last, middle=""):

 if middle:

 print("{ } { } { }".format(first, middle, last))

 else:

 print("{ } { }".format(first, last))

printName("John", "Smith")

printName("John", "Smith", "Paul") # will output with middle name

Chapter 5 Functions

114

Go ahead and run the cell. Whether you pass in a middle name or not, the function

will run efficiently either way. Keep in mind the order of our parameters! Parameters
must line up from left to right according to the function definition. If “Paul” was

placed as the second value after “John” in the second call, then our function would

assign “Paul” into the parameter “last.”

�Named Parameter Assignment
During the function call, you can explicity assign values into parameter names. This is useful

when you don’t want to mix up the order of values being passed in, as they work from left

to right by default. You can use parameter names to assign values for every parameter if

you choose, but it’s not necessary most of the time. Let’s check out an example:

explicity assigning values to parameters by referencing the name

def addNums(num1, num2):

 print(num2)

 print(num1)

addNums(5, num2 = 2.5)

Go ahead and run the cell. Here, we explicity assign the value of num2 in the call

using a keyword argument.

�*args
The use of *args allows you to pass a variable number of arguments into a function. This

allows you to make functions more modular. The magic isn’t the “args” keyword here

though; it’s really the unary operator (*) that allows us to perform this feature. You could

theoretically replace the word args with anyone, like “*data”, and it would still work.

However, args is the default and general standard throughout the industry. Let’s see how

we can use args in a function call:

Chapter 5 Functions

115

using args parameter to take in a tuple of arbitrary values

def outputData(name, *args):

 print(type(args))

 for arg in args:

 print(arg)

outputData("John Smith", 5, True, "Jess")

Go ahead and run the cell. You’ll notice that the args parameter takes in all values

not assigned in the call as a tuple, as output with our first print statement. We then

output each argument within that tuple. When you access the args parameter in the

block, you do not need to include the unary operator. Notice that “John Smith” was not

printed out. That’s because we have two parameters in the function definition, name and

*args. The first argument in the function call is mapped to the name parameter, and the

rest are inserted into the args tuple. This is a useful mechanism when you’re not sure

how many arguments to expect.

�**kwargs
Like args, kwargs allows us to take in an arbitrary number of values in a function;

however, it works as a dictionary with keyword arguments instead. Keyword arguments

are values passed in with keys, which allow us to access them easily within the function

block. Again, the magic here is in the two unary operators (**) not the keyword of

kwargs. Let’s check it out:

using kwargs parameter to take in a dictionary of arbitrary values

def outputData(**kwargs):

 print(type(kwargs))

 print(kwargs["name"])

 print(kwargs["num"])

outputData(name = "John Smith", num = 5, b = True)

Go ahead and run the cell. This time we can see that the type is a dictionary and

we’re able to output each key-value pair within the kwargs parameter like we would with

any other dictionary. The keyword arguments within this cell are in the function call,

where we specifically declare a key and value to be passed into the function.

Chapter 5 Functions

116

TUESDAY EXERCISES

	1.	 User Input: Ask the user to input a word, and pass that word into a function

that checks if the word starts with an uppercase. If it does output “True”,

otherwise “False”.

	2.	 No Name: Define a function that takes in two arguments, first_name and last_
name, and makes both optional. If no values are passed into the parameters, it

should output “No name passed in”; otherwise, it should print out the name.

Today was all about function parameters and how to use them. The use of
parameters makes our functions modular within our program, so that we can
successfully reduce the lines of code written.

�Wednesday: Return Statement
Up to this point, we’ve been printing out the data that our functions alter, but what do

you do if you need to access this information later? This is where the return statement

is used. Functions can manipulate data and then send it back to where the function call

occurred to save the information to be used for later. Today we’ll learn how to do that

and why it’s useful.

To follow along with this lesson, let’s continue from our notebook file “Week_05” and

simply add a markdown cell at the bottom that says, “Return Statement.”

�How It Works
Figure 5-4 depicts how the two parameters passed into the function are calculated first

and then returned to the original location of the call to be stored into a variable. This

variable can now be used later in the program with that value.

Chapter 5 Functions

117

You can return any data type but may only return a single variable. When you need to

return more than one piece of data, you would return a collection of data:

>>> def returnMultiple():

>>> a = 5

>>> b = 10

>>> return [a, b] # one data type holding multiple items

�Using Return
The return statement is used to send information back to where the function call

occurred. So far, we’ve used the print statement to output information, but this wouldn’t

work if we needed access to that value later in the program. Instead, we can return the

value and save it into a variable that we can work with later. Let’s check out a couple

examples:

using return keyword to return the sum of two numbers

def addNums(num1, num2):

 return num1 + num2

num = addNums(5.5, 4.5) # saves returned value into num

print(num)

print(addNums(10, 10)) # doesn't save returned value

Figure 5-4.  Returning information and storing into a variable

Chapter 5 Functions

118

Go ahead and run the cell. We’ll get 10 and 20 for an output. When we call addNums

the first time, it runs the function with 5.5 and 4.5 and returns the sum. It then stores that

returned value within num. The second time we call the function, we simply print it in

place. From here, we could reuse the value stored in num, but not the value returned by

the second call.

�Ternary Operator
A ternary operator is a shorthand Python branching statement. These operators can

be used to assign values into a variable, or in this case, deciding what the return from a

function:

shorthand syntax using a ternary operator

def searchList(aList, el):

 return True if el in aList else False

result = searchList(["one", 2, "three"], 2) # result = True

print(result)

Go ahead and run the cell. The ternary operator returns True because the given

condition is met. The same code written out normally would look like the following:

>>> if el in aList:

>>> return True

>>> else:

>>> return False

It’s generally good practice to write less if you can, but it’s not a necessity.

WEDNESDAY EXERCISES

	1.	 Full Name: Create a function that takes in a first and last name and returns the

two names joined together.

	2.	 User Input: Within a function, ask for user input. Have this function return that

input to be stored in a variable outside of the function. Then print out the input.

Chapter 5 Functions

119

Today we learned how to retrieve information from a function. This will allow us to
save the data it manipulates for later use.

�Thursday: Scope
Today we’re going to discuss an important concept called scope. This concept deals with

accessibility of variables declared within a program. We’ll go over the different types of

scope and how to do handle them.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_05” and simply add a markdown cell at the bottom that says, “Scope.”

�Types of Scope
In Python, there are three types of scope: global, function, and class. We haven’t gone

over classes just yet, so we’ll discuss class scope in a later chapter. Without knowing it,

we’ve used the other two types of scope. Global scope is when you declare a variable to

be accessible to an entire file or application. Most of the variables we’ve declared so far

have been global; however, in most programs you write, you will want to avoid global

variables. It’s okay in Jupyter Notebook for now though. Function scope is in reference

to variables being declared and accessible only within functions. A variable declared

inside of a function cannot be accessed outside of the function, as once the function

terminates, so do the variables declared within it.

�Global Scope Access
When global attributes are defined, they’re accessible to the rest of the file. However, we

must keep in mind how function scope works. Even when you declare a variable accessible

to the entire file, it will not be accessible within the function. Let’s see an example:

where global variables can be accessed

number = 5

def scopeTest():

 number += 1 # not accessible due to function level scope

scopeTest()

Chapter 5 Functions

120

Go ahead and run the cell. We’ll end up receiving an error because the function is

limited to variables declared within it or passed in.

Note  When passed in, it only passes the value, not the variable.

�Handling Function Scope
When dealing with variables declared in a function, you generally won’t need to access

it outside of the function. However, in order to access that value, best practice is to

return it:

accessing variables defined in a function

def scopeTest():

 word = "function"

 return word

value = scopeTest()

print(value)

Go ahead and run the cell. Now we have access to the word defined within the

function, we simply assign the returned value to another variable to work with.

�In-Place Algorithms
When passing variables into a function, you’re simply passing the value of that variable

and not the variable itself. Such that the following will not alter the variable num:

>>> num = 5

>>> def changeNum(n):

>>> n += 5

>>> print(num)

This is different when changing information via index though. Due to how index’s

work, via memory location and not by reference, changing an element in a list by the

index location will alter the original variable. Let’s check out an example:

Chapter 5 Functions

121

changing list item values by index

sports = ["baseball", "football", "hockey", "basketball"]

def change(aList):

 aList[0] = "soccer"

print("Before Altering: { }".format(sports))

change(sports)

print("After Altering: { }".format(sports))

Go ahead and run the cell. Notice how the first item in the sports list changes when

the function is called. This is due a change in value by the index itself when the list is

passed in. These are known as in-place algorithms because no matter where you alter

the information, it will change the values in the memory location directly.

THURSDAY EXERCISES

	1.	 Names: Create a function that will change the list passed in with a parameter

of name at a given index. Such that if I were to pass in “Bill” and index 1,
it would change “Rich” to “Bill.” Use the list and function definition in the

following:

>>> names = ['Bob', 'Rich', 'Amanda']

>>> def changeValue(aList, name, index):

Today was important in understanding how variable accessibility works. Knowing
this information will keep our variables secure.

�Friday: Creating a Shopping Cart
For today’s project, we’re going to build an application that stores products within a list.

We’ll be able to add, remove, clear, and show the products in the cart. All the concepts

taught throughout the past few weeks will be used.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_05” and add a markdown cell at the bottom that says, “Friday Project: Creating a
Shopping Cart.”

Chapter 5 Functions

122

�Final Design
As we’ve introduced functions this week, the final design will be based around the logic

of our program’s actions. Functions perform a specific task, which is usually an action.

For our shopping cart program, the actions that we need to consider are the tasks of

adding, removing, clearing, and showing the items within the cart. The logical design

will look like Figure 5-5.

Figure 5-5.  Shopping cart program logic

We’ll be sure to have one main function that will contain the loop and handle user

input.

�Initial Setup
Like the project from last week, we’ll be creating the program in a single cell, so make

sure you familiarize yourself with the concepts we used in that project. To start, let’s import

the clearing function from Jupyter Notebook and declare a global variable to work with:

1| # import necessary functions

2| from IPython.display import clear_output

4| # global list variable

5| cart = []

We wanted to declare a global variable of cart to work with throughout this program.

We’re going to use a list, as we’ll need to store several items. Using a list will also allow

us to edit the variable directly without having to pass it around because of how item

assignments work.

Chapter 5 Functions

123

�Adding Items
As stated in the initial design, we’ll want to create our functions first. We’ll start with the

function for adding items to our cart variable:

 7| # create function to add items to cart

 8| def addItem(item):

 9| clear_output()

10| cart.append(item)

11| print("{ } has been added.".format(item))

We won’t call this function until later when we create the main loop. When called,

this function will clear the output, append the item passed into the parameter, and

output to the user.

�Removing Items
Next, we’ll create the function that will remove items from our cart variable:

13| # create function to remove items from cart

14| def removeItem(item):

15| clear_output()

16| try:

17| cart.remove(item)

18| print("{ } has been removed.".format(item))

19| except:

20| print("Sorry we could not remove that item.")

We want to be sure to include a try and except clause around the remove statement

because when removing an item that doesn’t exist, the program would crash. This

prevents that occurrence and will either remove the item properly or output to the user

that it didn’t work.

Chapter 5 Functions

124

�Showing the Cart
We want the user to be able to view the cart at any time, which uses a simple loop:

22| # create a function to show items in cart

23| def showCart():

24| clear_output()

25| if cart:

26| print("Here is your cart:")

27| for item in cart:

28| print("- { }".format(item))

29| else:

30| print("Your cart is empty.")

Within the function, we clear the output first, then check to see if there are items

within the cart. If it’s empty, we let the user know; otherwise, we’ll loop over the items

and output one per line.

�Clearing the Cart
One of the last functions we need is the ability to clear the cart:

32| # create function to clear items from cart

33| def clearCart():

34| clear_output()

35| cart.clear()

36| print("Your cart is empty.")

Using the built-in clear method, we clear the cart of all items and let the user know.

�Creating the Main Loop
So far, we’ve been creating the functions for handling the user’s actions. Now we need

to set up the program’s main function which will contain the master loop and ending

functionality:

Chapter 5 Functions

125

38| # create main function that loops until the user quits

39| def main():

40| done = False

42| while not done:

43| ans = input("quit/add/remove/show/clear: ").lower()

45| # base case

46| if ans == "quit":

47| print("Thanks for using our program.")

48| showCart()

49| done = True

51| main() # run the program

Go ahead and run the cell. You should now be able to type in “quit” and exit the

program; otherwise, it will continue to run. We haven’t set up what to do other than

exiting; however, we’ve made sure that our base case is set up properly, as to not create

an infinite loop. We also use the boolean variable done in order to keep track of whether

the master loop is complete.

�Handling User Input
The last step of this program is to add the functions we previously created to handle

user input:

49| done = True ◽◽◽
50| elif ans == "add":

51| item = input("What would you like to add? ").title()

52| addItem(item)

53| elif ans == "remove":

54| showCart()

55| item = �input("What item would you like to remove? ")

.title()

56| removeItem(item)

57| elif ans == "show":

58| showCart()

59| elif ans == "clear":

Chapter 5 Functions

126

60| clearCart()

61| else:

62| print("Sorry that was not an option.")

64| main() # run the program

Go ahead and run the cell. We’ve included several elif statements to handle the

user’s input. Now, depending on what they choose, we’ll be able to call the necessary

function. On lines 51 and 55, we accept a second input from the user to type in the item

they would like to add or remove, but we make sure to change it to title case for case

sensitivity purposes. If they don’t choose a proper task to perform, we make sure that we

let them know through the else clause.

�Final Output
Congratulations on completing this project! Due to the size of the project, you may find

the completed version of the code on Github. To find the specific code for this project,

simply open or download the “Week_05.ipynb” file. If you ran into errors along the way,

be sure to cross-reference your code with the code in this file and see where you may

have gone wrong.

Today we were able to build out a full shopping cart program with the use of
functions. We can see that our main loop is clean and easy to read. Even with this
small program, we can see the power of functions.

�Weekly Summary
This week was a big step forward into improving our programming skills. We learned

that functions are useful in reducing the number of lines of code written. They help

to make our program more efficient and easier to read. They can become modular

using parameters or even return specific data using the return keyword. One of the

last concepts we covered was how to deal with scope in a project and how it handles

a variables accessibility. At the end of the week, we built the shopping cart program

together to show the capabilities of using functions in a program. Next week we’ll

continue to build on our knowledge of advanced variables types called data collections.

Chapter 5 Functions

127

�Challenge Question Solution
The purpose of this challenge was to make you start thinking about possible errors in

the steps laid out. Before you start programming the algorithm, you need to understand

what could go wrong with the steps you’ve designed because computers are only as

smart as you program them to be. There are several problems with this algorithm.

Most notably between steps 2 and 3, where we try to replace the bulb. Did you check to

see if the bulb was too hot to touch? In this case we did not, so anybody following this

algorithm directly could get burned. As humans, basic instincts take over, and we would

stop touching it, but computers will continue to perform the task they’re told. Other

glaring problems would include checking the replacement bulb being the correct type,

and what to do with the bulb that we just replaced. The algorithm doesn’t specify a step

to dispose of it properly, so do we just leave it in our hand forever? These are steps we

need to consider when replacing a bulb. When you begin to build your own algorithms,

you need to not only make sure the algorithm works but that you’ve thought of how to

handle error-prone situations.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Refactor Hangman: This is a large task, so tread lightly, but try

to refactor the Hangman project from last week to use functions.

Think about what actions Hangman requires, and turn those tasks

into functions.

	 2.	 Removing by Index: In the shopping cart program, set up the

remove function so that you can remove via the index as well. Set

the list up so that it prints out as a numbered list, and when asked

to remove an item, the user can also type out a number next to

the list item. For example, using the following you can type “1” to

remove “Grapes”:

>>> 1) Grapes

>>> What would you like to remove? 1

Chapter 5 Functions

129
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_6

CHAPTER 6

Data Collections and Files
There are several data stuctures in Python. We’ll cover dictionaries, sets, tuples, and

frozensets this week to add to our knowledge of collections. Each one has a specific

purpose as we’ll see the differences between each.

Knowing how to work with files in any language is important. In order to work with

data, we’ll need to know how to read and write from several types of files. We’ll cover

how to work with text files and CSV files.

Overview

•	 Understanding dictionaries

•	 Working with dictionaries

•	 Learning other important data collections

•	 Working with files

•	 Creating a sample database with files

CHALLENGE QUESTION

This week’s challenge is to write a function that checks if a word is a palindrome. The function

should take in a single parameter and return True or False. Try writing the function on paper

first, then try programming it!

�Monday: Dictionaries
Today, we’ll be learning about a valuable data collection in dictionaries. They store

information using keys and are much more efficient than Python lists.

130

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_06.”

Next, make the first cell markdown that has a header saying: “Dictionaries.” We’ll begin

working underneath that cell.

�What Are Dictionaries?
A dictionary is a collection of unordered data, which is stored in key-value pairs. What

is meant by “unordered” is the way it is stored in memory. It is not accessible through

an index, rather it is accessed through a key. Lists are known as ordered data collections

because each item is assigned a specific location. Dictionaries work like a real-life

dictionary, where the key is the word and the values are the definition. Dictionaries are

useful for working with large data, mapped data, CSV files, APIs, sending or receiving

data, and much more.

�Declaring a Dictionary
Like other variables, the name of the variable goes to the left of the equals operator,

and on the right is the dictionary. All dictionaries are created by using open and closed

curly brackets. In between the curly brackets, we define our key-value pairs. Keys can

be declared with ONLY strings or numbers. There’s a colon that separates the key and

value. After the colon is the value, and this can be any data type including other data

collections or even another dictionary:

declaring a dictionary variable

empty = { } # empty dictionary

person = { "name": "John Smith" }

 # dictionary with one key/value pair

customer = {

 "name": "Morty",

 "age": 26

} # dictionary with two key/value pairs

print(customer)

Chapter 6 Data Collections and Files

131

Go ahead and run the cell. Here we can see that we declare three different

dictionaries, an empty one, one that has a single key-value pair, and another that has

multiple key value pairs. All key-value pairs must be separated by a comma. We’ll see

how to access this data next.

Note  You could also use dict() to declare an empty dictionary.

�Accessing Dictionary Information
All data stored within a dictionary is accessed via the key associated with the value

you’re trying to access. We simply write the name of the dictionary followed by square

brackets. Inside of the square brackets is the key. This will retrieve the value stored at

that key:

accessing dictionary information through keys

person = { "name": 'John" }

print(person["name"]) # access information through the key

Go ahead and run the cell. This will output “John” since that is what’s stored at the

“name” key.

�Using the Get Method
Another way of retrieving information is to use the get() method. The major difference

between using this method and the previous way of accessing a value is that the get

method won’t throw a key error. If the key doesn’t exist, it will simply return “None”. You

may also add in a second argument in the call, in order to have the program return a

more specific data type. Let’s try:

using the get method to access dictionary information

person = { "name": 'John" }

print(person.get("name")) # retrieves value of name key as before

print(person.get("age", "Age is not available.")) # get is a secure

way to retrieve information

Chapter 6 Data Collections and Files

132

Go ahead and run the cell. On the second print statement, we’ll receive the “Age is
not available” message because the key “age” does not exist. This gives us a more secure

way of retrieving information.

�Dictionaries with Lists
Dictionaries become powerful when you start working with data collections as values:

storing a list within a dictionary and accessing it

data = { "sports": ["baseball", "football", "hockey", "soccer"] }

print(data["sports"][0]) # first access the key, then the index

Go ahead and run the cell. In order to access the list, we must first access the “sports”

key. After that we can access items like any other list via the index. This will output

“baseball”. Keep in mind that we cannot create a dictionary that stores a list without first

attaching a key:

improperly storing a list within a dictionary

sports = ["baseball", "football", "hockey", "soccer"]

sports_dict = dict(sports) # will produce error, no key

Go ahead and run the cell. This will produce an error because there is no key

associated with the sports variable. To properly store this list, you would write the

following:

>>> sports_dict = dict({ "sports" : sports })

�Lists with Dictionaries
The combination of lists within dictionaries and vice-versa can become confusing when

trying to figure out how to access information. Always remember lists are indexed, and

dictionaries use keys. Depending on the order of the data stored, you’ll need to do one

or the other first. When a list is storing a dictionary, you need to access that dictionary

by the index first. After that you have access to the key-value pairs within the dictionary.

Let’s see an example:

Chapter 6 Data Collections and Files

133

storing a dictionary within a list and accessing it

data = ["John", "Dennis", { "name": "Kirsten" }]

print(data[2]) # the dictionary is in index 2

print(data[2]["name"]) # first access the index, then access the key

Go ahead and run the cell. First, we access the item in the second index, which is

our dictionary. Then we access the value stored at the “name” key, which is the output of

“Kirsten”.

Note  Be very careful when using numbers for keys.

�Dictionaries with Dictionaries
Dictionaries are very powerful and efficient due to how they’re stored in memory. Often,

you’ll want to use dictionaries as the value for your key-value pairs. Let’s see an example:

storing a dictionary within a dictionary and accessing it

data = {

 "team": "Boston Red Sox",

 "wins": { "2018": 108, "2017": 93 }

}

print(data["wins"]) # will output the dictionary within the wins key

print(data["wins"]["2018"]) # first access the wins key, then the next key

Go ahead and run the cell. This will output “108” in the second statement. We’re

able to access this information by accessing the first key of “wins” followed by the second

key of “2018”.

MONDAY EXERCISES

	1.	 User Input: Ask the user for their name and age, and then create a dictionary

with those key-value pairs. Output the dictionary once created.

	2.	 Accessing Ingredients: Output all the ingredients from the following list within

the “ingredients” key using a for loop:

Chapter 6 Data Collections and Files

134

>>> pizza = {

>>> 'ingredients': ['cheese', 'sausage', 'peppers']

>>> }

Data collections allow us to work with large data as they are stored in key-value
pairs. Remember that data is accessed through keys.

�Tuesday: Working with Dictionaries
Today’s lesson will cover how to add data, manipulating data, removing key-value pairs,

and iterating through dictionaries.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_06” and simply add a markdown cell at the bottom that says, “Working with
Dictionaries.”

�Adding New Information
You’ll often need to add new key-value pairs after declaring a dictionary. Let’s see how:

adding new key/value pairs to a dictionary

car = { "year": 2018 }

car["color"] = "Blue"

print("Year: { } \t Color: { }".format(car["year"], car["color"]))

Go ahead and run the cell. To add new pairs, on the left side of the equals operator,

you provide the dictionary name, followed by the new key within brackets. On the right

side is whatever you want the value to be. This will output a nicely formatted string with

our car information.

Note A s of Python, 3.7 dictionaries are ordered by default. In older versions of
Python, key-value pairs didn’t always keep their order. You would have needed to
use an OrderedDict( ).

Chapter 6 Data Collections and Files

135

�Changing Information
Altering key-value pairs is exactly like adding a new pair. If the key exists, it simply

overwrites the previous value; however, if it doesn’t exist, it will create a new key-value

pair for you:

updating a value for a key/value pair that already exists

car = { "year": 2018, "color": "Blue" }

car["color"] = "Red"

print("Year: { } \t Color: { }".format(car["year"], car["color"]))

Go ahead and run the cell. Like how we declared a new key-value pair earlier, since

the key “color” already exists in the dictionary, it simply overwrites the previous value.

�Deleting Information
Sometimes you’ll need to remove a certain pair. To do so, you’ll need to use the del

function:

deleting a key/value pair from a dictionary

car = { "year": 2018 }

try:

 del car["year"]

 print(car)

except:

 print("That key does not exist")

Go ahead and run the cell. Be very careful when deleting key-value pairs. If the key

you’re trying to remove doesn’t exist, it will crash the program. To avoid that problem, we

use a try/except.

�Looping a Dictionary
Dictionaries are iterable like lists. However, they have three different methods for doing

so. You can iterate over both the keys and values together, only keys, or only values.

Chapter 6 Data Collections and Files

136

�Looping Only Keys

To iterate through a dictionary while only accessing the keys, you’ll use the .keys() method:

looping over a dictionary via the keys

person = { "name": "John", "age": 26 }

for key in person.keys():

 print(key)

 print(person[key]) # will output the value at the current key

Go ahead and run the cell. As we iterate over person, our temporary variable of key

will be equal to each key name. This still gives us the ability to access each value by using

our key variable.

�Looping Only Values

When you don’t need to access the keys, using the .values( ) method is best:

looping over a dictionary via the values

person = { "name": "John", "age": 26 }

for value in person.values():

 print(value)

Go ahead and run the cell. We won’t have access to the key names, but for this

method, we’re only trying to get the values anyways. Our temporary variable value will

store each value from the key-value pairs as we iterate over person.

�Looping Key-Value Pairs

If you need the ability to access both the key and value, then you’ll want to use the

.items() method. This approach will assign two temporary variables instead of one:

looping over a dictionary via the key/value pair

person = { "name": "John", "age": 26 }

for key, value in person.items():

 print("{ }: { }".format(key, value))

Chapter 6 Data Collections and Files

137

Go ahead and run the cell. As we iterate over person, the key-value pairs are

assigned to their respective temporary variables of key and value. We now have access

to both easily.

Note  The temporary variable names are usually called “k” and “v.”

TUESDAY EXERCISES

	1.	 User Input: Declare an empty dictionary. Ask the user for their name, address,

and number. Add that information to the dictionary and iterate over it to show

the user.

	2.	 Problem-Solving: What is wrong with the following code:

>>> person = { 'name', 'John Smith' }

>>> print(person['name'])

Today was important in understanding how to work with dictionaries. Remember
that adding and altering key-value pairs are the same syntax.

�Wednesday: Tuples, Sets, Frozensets
Python includes several other data collections that all have their own features. Today,

we’ll look at another three that can be useful at times.

To follow along with this lesson, let’s continue from our notebook file “Week_06” and

simply add a markdown cell at the bottom that says, “Tuples, Sets, Frozensets.”

�What Are Tuples?
A tuple is identical to a list, except it is immutable. When something is immutable, it

means that it cannot be altered once declared. Tuples are useful for storing information

that you don’t want to change. They’re ordered like lists, so you can iterate through them

using an index.

Chapter 6 Data Collections and Files

138

�Declaring a Tuple
To declare a tuple, you use a comma to separate two or more items. Lists are denoted

by their square brackets on the outside, whereas tuples can be declared with optional

parenthesis. It’s more likely they’re declared with parenthesis as it’s easier to read. Let’s

see an example:

declaring a tuple

t1 = ("hello", 2, "hello") # with parens

t2 = True, 1 # without parens

print(type(t1), type(t2)) # both are tuples

t1[0] = 1 # will crash, tuples are immutable once declared

Go ahead and run the cell. You can see that we output the types of our variables,

which both output “tuple”. As stated, tuples are declared with and without parenthesis.

The last line in this cell will create an error because a tuple’s items cannot be altered

once declared. The only way to overwrite the data within a tuple is to re-declare the

entire tuple.

�What Are Sets?
Sets share the same characteristics of lists and dictionaries. A set is a collection of

information like a list; however, like a key in a dictionary, sets can only contain unique
values. They are also an unordered collection. This means that they cannot be accessed

by index but rather by the value itself like dictionary keys. They can be iterated through

though, like how dictionary keys can be looped over. Sets are practical in situations of

storing unique items.

�Declaring a Set
There are two ways to declare a set. The first way is by using the keyword “set” followed

by parenthesis and enclosing square brackets. The second way, which is more practical,

looks like a dictionary being declared by using a set of curly brackets. Let’s check it out:

Chapter 6 Data Collections and Files

139

declaring a set

s1 = set([1, 2, 3, 1]) # uses the set keyword and square brackets

s2 = {4, 4, 5} # uses curly brackets, like dictionary

print(type(s1), type(s2))

s1.add(5) # using the add method to add new items to a set

s1.remove(1) # using the remove method to get rid of the value 1

print(s1) # notice when printed it removed the second "1" at the end

Go ahead and run the cell. We’ll see that it outputs the types for both variables as

“sets”. When we output the value of our s1 variable, it ends up outputting “1, 2, 3” only.

Remember that sets are unique items, so it drops the second “1” value. Sets have various

methods that allow us to add, remove, and change information within them, as seen

with the add/remove lines.

�What Are Frozensets?
Frozensets are essentially the combination of a set and a tuple. They are immutable,

unordered, and unique. These are perfect for sensitive information like bank account

numbers, as you wouldn’t want to alter those. They can be iterated over, but not indexed.

�Declaring a Frozenset
To declare a frozenset, you use the keyword “frozenset” followed by parenthesis and

enclosing square brackets. This is the only way you can declare a frozenset. Let’s check

out an example:

declaring a frozenset

fset = frozenset([1, 2, 3, 4])

print(type(fset))

Go ahead and run the cell. We won’t use frozensets too often in this book, but all

these data collections serve a specific purpose for use in the Python language.

Chapter 6 Data Collections and Files

140

�Data Collection Differences
Table 6-1 shows a summary of the differences between each collection.

Table 6-1.  Collection similarities and differences

Data Collection Ordered Iterable Unique Immutable Mutable

List Yes Yes No No Yes

Dictionary No Yes Keys only Keys only Values only

Tuple Yes Yes No Yes No

Set No Yes Yes No Yes

Frozenset No Yes Yes Yes No

WEDNESDAY EXERCISES

	1.	 User Input: Ask the user to input as many bank account numbers as they’d

like, and store them within a list initially. Once the user is done entering

information, convert the list to a frozenset and print it out.

	2.	 Conversion: Convert the following list into a set of unique values. Print it out

after to check there are no duplicates:

>>> nums = [3, 4, 3, 7, 10]

Today we were able to view three other data collections. Each one has a purpose,
even though we mostly work with dictionaries and lists.

�Thursday: Reading and Writing Files
Depending on the type of program you’re writing, you’ll need to save or access

information. To do so, you’ll need to understand how to work with files, whether it be

creating, writing, or reading.

Chapter 6 Data Collections and Files

141

To follow along with this lesson, let’s continue from our previous notebook file “Week_06”

and simply add a markdown cell at the bottom that says, “Reading & Writing Files.”

�Working with Text Files
By default, Python comes with an open() function that allows us to create or modify

files. This function accepts two parameters, the file name, and the mode. If the file name

exists, then it will simply open the file for modification; otherwise, it will create the file

for you. The mode is in reference to how Python opens and works with the file. For

instance, if you simply need to grab information from the file, you would open it up to

read. This would allow you to work with the file while not accidentally changing it. Let’s

look at how to open, write, and read text files:

1| # opening/creating and writing to a text file

2| f = open("test.txt", "w+") # open file in writing and reading mode

3| f.write("this is a test")

4| f.close()

5| # reading from a text file

6| f = open("test.txt", "r")

7| data = f.read()

8| f.close()

9| print(data)

Go ahead and run the cell. Let’s walk through this line by line. We open the file in

writing and reading mode for full editing and assign the value into the variable f. On

line 3 we use the write() method to write our sentence to the file. Then we close the file.

Anytime you open a file, you must always close it. After we’ve created and written to

our test file, we open it back up in read-only mode. On line 7 we use the read() method

in order to read all the contents of the file into a single string, which is assigned to our

data variable. Then we output the info.

Note  Mode “w” will overwrite the entire file. Use “a” for appending.

Chapter 6 Data Collections and Files

142

�Writing to CSV Files
CSV files work with data by separating a comma between each cell. This is known as a

tabular data structure. To get started working with them, Python has a default library

called “csv.” We’ll need to import that in order to work with them. After importing this

library, we’ll use the second method of opening files using the “with” keyword. This

concept works like a while loop, so that while the file is open, we can work with it, and

once the block of code is done running, it closes the file automatically for us. Let’s check

out the example:

1| # opening/creating and writing to a csv file

2| import csv

3| with open("test.csv", mode="w", newline="") as f:

4| writer = csv.writer(f, delimiter=",")

5| writer.writerow(["Name", "City"])

6| writer.writerow(["Craig Lou", "Taiwan"])

Go ahead and run the cell. Let’s walk through this line by line. We import the CSV

library on line 2. Then we open the file in write mode as the variable f. We’ve also set

the newline parameter to an empty string so that it doesn’t create empty lines between

rows. On line 4, we create a writer variable that allows us to write to the CSV file. The last

two lines write a couple lines of data to the CSV file. Once the block is complete, the file

closes automatically, and we’re done. Go ahead and check out the file; you’ll see the new

data output. Remember that write mode will always overwrite any data that was in the

file previously.

�Reading from CSV Files
In order to read the data from the CSV file we just created, we can simply set the mode to read:

1| # reading from csv files

2| with open("test.csv", mode="r") as f:

3| reader = csv.reader(f, delimiter=",")

4| for row in reader:

5| print(row)

Chapter 6 Data Collections and Files

143

Go ahead and run the cell. You’ll notice that it outputs each row as a list with two

items inside. We opened the file in read mode as the variable f. We then create a reader

object through the CSV library which reads the contents in the file for us. Then we loop

over the reader variable and print out each piece of data.

Note O bjects will be covered in a later week.

�File Modes in Python
Table 6-2 shows a few more file modes that you can use in Python.

THURSDAY EXERCISES

	1.	 User Input: Ask a user for their favorite number, and save it to a text file.

	 2.	 Data Dumping: Using the dictionary of following data, save the

information to a csv file with the keys as the headers and the

values as the rows of data:

>>> data = {

'name' : ['Dave', 'Dennis', 'Peter', 'Jess'],

'language': ['Python', 'C', 'Java', 'Python']

}

Table 6-2.  File Modes

Mode Description

‘r’ This is the default mode. It opens the file for reading only.

‘w’ Opens file for writing. If file doesn’t exist, it creates one.

‘x’ Creates a new file. If file exists, the operation fails.

‘a’ Open in append mode. If file doesn’t exist, it creates one.

‘b’ Open in binary mode.

‘+’ Will open a file for reading and writing. Good for updating.

Chapter 6 Data Collections and Files

144

Today we learned how to work with text and CSV files. There are two methods for
working with files, each has their own purpose, but generally the with statement is
easier to work with.

�Friday: Creating a User Database with CSV Files
For this week’s project, we’ll be building a replica of a user database with CSV files. We’ll

be able to take input and allow users to log in/log out/register.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_06” and add a markdown cell at the bottom that says, “Friday Project: Creating a
User Database with CSV Files.”

�Final Design
This week’s project is all about logic. We need to understand how to set up a step-by-step

process for logging users in and out. There are three main parts to this program, registering

a user, logging a user in, and the main loop that will run the program. Knowing that the

first two are tasks, we can make functions out of them and call them when necessary in the

main loop. Let’s go ahead and lay out the logical process for this program:

	 1.	 Check to see if user is logged in.

	 a.	 If logged in, ask if they would like to log out/quit.

	 i.	 Either quit or log out user and restart.

	 b.	 Else, ask if they would like to log in/register/quit.

	 i.		 If log in, ask user for e-mail/password.

	 1.	 If correct, log user in and restart.

	 2.	 Else, display error and restart.

	 ii.	 If register, ask for e-mail/password/password2.

	 1.	 If passwords match, save user and restart.

	 2.	 Else, display error and restart.

	 iii.	 If quit, say thank you and exit program.

Chapter 6 Data Collections and Files

145

This is the program flowchart for our main loop. Now that you know exactly how the

program should run, I urge you to try and build it yourself before continuing. By doing

so, you’ll be able to reference my code, see where you may have made mistakes, etc. The

loop will continue to run until the user quits and allow them to register or log in. Once

logged in, you’ll only be able to log out or quit. It’s simple but will provide some insight

on how to handle menu systems.

�Setting Up Necessary Imports
First, let’s start by importing the necessary files and functions we need to run the

program:

1| # import all necessary packages to be used

2| import csv

3| from IPython.display import clear_output

We’ll be writing all the code in a single cell, so no need to run the cell right now.

We’ve gone ahead and imported the CSV library to be able to work with CSV files, as well

as the clear output function that allows us to clear our notebook statements from the cell.

�Handling User Registration
Next, we’ll design the function for registering users. Let’s check out that functionality:

 5| # handle user registration and writing to csv

 6| def registerUser():

 7| with open("users.csv", mode="a", newline="") as f:

 8| writer = csv.writer(f, delimiter=",")

10| print("To register, please enter your info:")

11| email = input("E-mail: ")

12| password = input("Password: ")

13| password2 = input("Re-type password: ")

15| clear_output()

17| if password == password2:

18| writer.writerow([email, password])

Chapter 6 Data Collections and Files

146

19| print("You are now registered!")

20| else:

21| print("Something went wrong. Try again.")

We start by defining the function and opening a CSV file called “user.csv”. This will

be the file where we store our data. We create a writer object with that file that will allow

us to append additional data. After asking the user for their information, we check that

both passwords entered are the same, and either add the user with the writer object

we created, or we let the user know that something went wrong. Feel free to call this

function and try it out. You should see the file be created after the first attempt.

�Handling User Login
The second task that we need to design is the ability to log users in. Let’s see how to do that:

23| # ask for user info and return true to login or false if incorrect info

24| def loginUser():

25| print("To login, please enter your info:")

26| email = input("E-mail: ")

27| password = input("Password: ")

29| clear_output()

31| with open("users.csv", mode="r") as f:

32| reader = csv.reader(f, delimiter=",")

34| for row in reader:

35| if row == [email, password]:

36| print("You are now logged in!")

37| return True

39| print("Something went wrong, try again.")

40| return False

In the user login function, we ask the user to enter their information. We then open

the file where the user information is being stored as read-only mode. A reader object is

created using the CSV library, and we loop through the data row by row on line 34. Each

row we read is in the form of a list with two items. The first item is always the e-mail,

and the second is the password. On line 35 we’re checking the row information against

Chapter 6 Data Collections and Files

147

a temporary list filled with the information that the user inputs. If the data matches, we

log them in and return True; otherwise, we tell them something went wrong and return

False. Try calling this function after registering.

Note  The file is stored in the same directory as the notebook file.

�Creating the Main Loop
Here’s where the magic happens. Thus far, we’ve created the two main functionalities of the

program, registering and logging a user. This main loop will handle the menu system and what

to show based on the user being logged in or not. Let’s go ahead and complete this program:

42| # variables for main loop

43| active = True

44| logged_in = False

46| # main loop

47| while active:

48| if logged_in:

49| print("1. Logout\n2. Quit")

50| else:

51| print("1. Login\n2. Register\n3. Quit")

53| choice = input("What would you like to do? ").lower()

55| clear_output()

57| if choice == "register" and logged_in == False:

58| registerUser()

59| elif choice == "login" and logged_in == False:

60| logged_in = loginUser()

61| elif choice == "quit":

62| active = False

63| print("Thanks for using our software!")

64| elif choice == "logout" and logged_in == True:

65| logged_in = False

66| print("You are now logged out.")

67| else:

68| print("Sorry, please try again!")

Chapter 6 Data Collections and Files

148

Go ahead and run the cell. Before the loop starts, we define a couple variables for

the program. These variables will keep track of the user being logged in and whether

the program should continue to run. Then we enter the main loop and display the

proper menu, depending on the user being logged in. As the user is never logged in

when the program starts, the second menu will be displayed. We then ask the user

what they would like to do using the input() method. The next section is where the

logic of our menu system occurs. Depending on the user’s choice, we perform a

specific action. We’ve made it so that the user can only log in or register if they are not

already logged in. Likewise, they can only log out if they are logged in. If they choose

to log in or register, we call the respective functions to perform their operations. For

logging the user in, remember that the function returns True or False, which we

then set the logged_in variable equal to. If the user decides to quit, we set our active

variable to False and exit the program. Until then, the program will continually show

the proper menu based on the user being logged in. If they choose anything but the

options included, we display our error message.

Today we were able to understand the logic behind a user registration process
with the use of CSV files. We’ll use similar concepts later in this book for
storing data.

�Weekly Summary
Throughout this week we learned about one of the more important data collections,

dictionaries. They are important when working with data as they allow us to assign key-

value pairs and retrieve information at a high speed. We also covered some other data

collections that serve a purpose in specific situations. After understanding collections,

we were able to learn about working with files. Writing and reading from files give us the

ability to add extra features to our programs, as we saw on the Friday project when we

created a user registration app. We’ll be able to apply this knowledge to programs that we

create later in this book.

Chapter 6 Data Collections and Files

149

�Challenge Question Solution
If you didn’t know what a palindrome was, hopefully you looked it up. It’s where a word

is spelled the same forward and backward, like “racecar.” There are a couple different

ways you could’ve gotten the answer to this question. The following is an example of a

simple and clean solution to the problem:

>>> def palindrome(word):

>>> return True if word == word[::-1] else False

Remember that we covered ternary operators in the previous chapter, which allow

us to write a one-line conditional statement. If you wrote out the entire if else statement

but were able to achieve the same result, then good job! Going forward you should start

trying to understand how to condense your code further to be properly optimized.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Changing Passwords: Add a function called “changePassword”

to the project from Friday that will allow users to change their

password when logged in.

	 2.	 Favorite Food: Write a new program that will ask users what their

favorite food is. Save the answers to a CSV file called “favorite_

food.csv”. After answering, display a table of tallied results.

Example of table:

Favorite Food? # of Votes

Turkey 5

Salad 3

Chapter 6 Data Collections and Files

151
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_7

CHAPTER 7

Object-Oriented
Programming
Many languages are known as object-oriented programming (OOP) languages. Python,

JavaScript, Java, and C++ are just a couple of names that use OOP. Throughout this week,

we’ll begin to understand what OOP is, why it’s so useful, and how to implement it

within a program.

In Python (and most languages), we create objects through classes that we build.

You can think of a class as a blueprint for how an object is created. Take a first-person

shooter video game, for instance. All players, vehicles, and weapons are objects. There

could be five people each on two teams, but each one of those people are created from

the same blueprint. They all have similar features like weight, height, hair color, etc.

Rather than writing the same lines of code for ten different people, you write a single

blueprint and create each person from that blueprint. This condenses code and makes

programs easier to manage and maintain. At the end of the week, we’ll build out a full

game of Blackjack together and see the power of Python classes!

Overview

•	 Understanding the basics of object-oriented programming

•	 What and how to use attributes (variables within a class)

•	 What and how to use methods (functions within a class)

•	 Understanding the basics of inheritance (parent or base classes)

•	 Creating Blackjack with classes

152

CHALLENGE QUESTION

What is the result of the following code?

 >>> values = { 4:4, 8:8, "Q":10, "ACE":11 }

 >>> card = ("Q", "Hearts")

 >>> print("{ }".format(values[card[0]]))

�Monday: Creating and Instantiating a Class
All objects in Python are created from classes. The point of OOP is to reuse the same

code while giving flexibility to create each object with their own features. Today, we’ll

learn the terms and stages of OOP, as well as how to write our first class.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_07.”

Next, make the first cell markdown that has a header saying: “Creating & Instantiating a
Class.” We’ll begin working underneath that cell.

�What Is an Object?
Look at your surroundings, what do you see? There may be a couch, chair, TV, book, etc.,

around you right now. In programming, all of these would be referenced as objects. Even

people would be referenced as objects. This is because all objects come from a specific

blueprint. In Python, those blueprints are known as classes. Let’s take a car, for instance.

All cars have similar features and can be built from a template. Each car will generally

have wheels, color, make, model, year, VIN number, etc. What classes allow us to do is

build out a blueprint that has all these features within it and create different cars from

it. This will lessen the code we have to write and give us the ability to give any car we

create personal characteristics specific to that object. Figure 7-1 illustrates this concept

of creating multiple objects from the same class.

Chapter 7 Object-Oriented Programming

153

�OOP Stages
There are two stages when using classes. The first stage is the class definition. Like

function definitions, this stage is where you write the blueprint to be used when called.

The second stage is called instantiation. It is the process of creating an object from the

class definition. After an object is instantiated, it is known as an instance. You may have

multiple instances from a single class definition. Let’s begin to look at how to define a

class and make an instance!

�Creating a Class
The first step in using classes is creating the class definition or “blueprint.” To create

a new class, the syntax is like functions, but you use the class keyword instead of def.

Within the indentation of this class block, we would write the blueprint for our class

attributes and methods. Don’t worry about those for now though; we’ll go over those

on Tuesday and Wednesday. For now, we’ll just use the keyword pass. Let’s check out

an example:

Figure 7-1.  Creating three similar cars from the same class blueprint

Chapter 7 Object-Oriented Programming

154

creating your first class

class Car():

 pass # simply using as a placeholder until we add more code tomorrow

Go ahead and run the cell. Nothing will happen, but that’s good because it means

it worked! All classes will be created with the same structure, except instead of writing

pass, we’ll fill the block with code that gives objects features.

Note I n Python, data types are also classes at their base. Printing out the type of
an integer results in <class ‘int’>.

�Creating an Instance
Now that we know how to create the class definition, we can begin to understand how

to create an instance of an object. Like storing a data type into a variable name, we use

similar syntax, except after the name of the class, we use parenthesis. We’ll go over what

these parentheses are used for in tomorrow’s lesson. Let’s check it out:

instantiating an object from a class

class Car(): # parens are optional here

 pass

ford = Car() # creates an instance of the Car class and stores into the

variable ford

print(ford)

Go ahead and run the cell. You’ll get an output like “<__main__.Car object at
0x0332DB>”. This is describing the class that the instance was built from “Car,” and the

location in memory that the class itself is stored “0x0332DB.” We’ve successfully created

an instance of the Car object and stored it into our “ford” variable.

�Creating Multiple Instances
Remember that you can create as many instances as you want from each class; however,

you store them in separate variables or data collections. Let’s create two instances from

our class:

Chapter 7 Object-Oriented Programming

155

instantiating multiple objects from the same class

class Car():

 pass

ford = Car()

subaru = Car() # creates another object from the car class

print(hash(ford))

print(hash(subaru)) �# hash outputs a numerical representation of the

location in memory for the variable

Go ahead and run the cell. When we output the hash values for our variables, we get

two different numbers. These numbers are a numerical representation of the variables’

location in memory. Meaning that although the two variables are created from the same

source, they are stored as separate entities within the program. This is the beauty of

objects, as each instance can have personal characteristics.

MONDAY EXERCISES

	1.	 Animals: Create a class called “Animals,” and create two instances from it. Use

two variables with names of “lion” and “tiger.”

	2.	 Problem-Solving: What’s wrong with the following code?

>>> class Bus:

>>> pass

>>> school_bus = Bus()

Today was the first step into the world of object-oriented programming. In order
to build objects in Python, we must first create class definitions, also known as
blueprints. From there, we can create single or multiple instances from that class.
This process is known as instantiation. Tomorrow we’ll see how we can give
features to each instance.

Chapter 7 Object-Oriented Programming

156

�Tuesday: Attributes
Yesterday we saw how to create a class definition. Today, we’ll begin to understand

how to give personalized features, known as attributes, to classes and their instances.

Attributes are just variables defined within a class, nothing more than that. If you hear

someone talking about attributes, you’ll immediately know that they’re speaking about

classes. An attribute is how we store personal information for each object instance.

Think of an attribute as a source of information for an object. For a car, an attribute could

be the color, number of wheels, number of seats, the engine size, etc.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_07” and simply add a markdown cell at the bottom that says, “Attributes.”

�Declaring and Accessing Attributes
Like variables, we declare attributes with a name and value; however, they are declared

inside of the class. We’ve talked about scope in a previous week; attributes are only

available within classes they are defined, so in order to access an attribute, you must

create an instance:

how to define a class attribute

class Car():

 �sound = "beep" # �all car objects will have this sound attribute

and its' value

 �color = "red" # �all car objects will have this color

attribute and its' value

ford = Car()

print(ford.color) # known as 'dot syntax'

Go ahead and run the cell. The output will result in “red”. When we instantiated the

ford variable from the Car class, it was created with two attributes. These attributes were

automatically set within the class definition, so every instance created from the Car class

will be given the sound “beep” and the color “red.” We’ll see how we can change this

later. In order to access an object’s attribute, you use dot syntax. You start by writing the

name of the instance, followed by a dot and the attribute you want to access. All classes

use this similar dot syntax in order to access attributes and methods (more on methods

tomorrow).

Chapter 7 Object-Oriented Programming

157

�Changing an Instance Attributes
Not all objects you create are going to have the same characteristics, so you need to have

the ability to change an attributes value. To do this, you’ll need to use dot syntax:

changing the value of an attribute

class Car():

 sound = "beep"

 color = "red"

ford = Car()

print(ford.sound) # will output 'beep'

ford.sound = "honk" # �from now on the value of fords sound is honk,

this does not affect other instances

print(ford.sound) # will output 'honk'

Go ahead and run the cell. You’ll notice that we’ll output the sound attribute of the

ford instance before and after we change it. Using dot syntax, we’re able to assign the

sound attribute a new value. This is no different than changing a variables’ value. The

ford object’s sound attribute will now be “honk” until we decide to change it.

�Using the __init__( ) Method
So far, we’ve been creating classes in a very basic form. When you want to instantiate

an object with specific properties, you need to use the initialization (init) method.

Whenever an instance is created, the init method is called immediately. You can use

this method to instantiate objects with different attribute values upon creation. This

allows us to easily create class instances with personalized attributes. Now, we’ll go

over methods tomorrow, so don’t worry too much about the syntax, but more so the

understanding of how to use this method. The declaration for this method has two

underscores before and after the word init. It also includes the “self” keyword (more

on this in the next section) inside of the parenthesis as a mandatory parameter. For this

example, we’ll create an instance with a color defined at instantiation. Let’s go ahead

and try it out:

Chapter 7 Object-Oriented Programming

158

1| �# using the init method to give instances personalized attributes upon

creation

3| class Car():

4| def __init__(self, color):

5| self.color = color # �sets the attribute color to the

value passed in

7| ford = Car("blue") # instantiating a Car class with the color blue

9| print(ford.color)

Go ahead and run the cell. We’ll get a resulting output of “blue”. When we create the

ford instance, it is initialized with the attribute color set to blue. All of this occurs on the

5th line. When we declare the ford variable to be instantiated, it passed the argument

“blue” into the initialization method immediately. The self argument is ignored and

“blue” is passed into the color parameter. Within the init method is where we set our

color attribute to the argument that was just passed in. Hence the value “blue.” Keep in

mind that parameters for this method work the same as functions and need to be in the

correct order.

�The “self” Keyword
The self keyword is a reference to the current instance of the class and is used to access

variables and methods associated with that instance. Think about a soccer team you’ve

never seen play before. How do you distinguish each player from the next? You would

probably use the numbers on the back of their jerseys. Even though each player is a

person with different features, it’s easy for you to pick out any of them based on their

number. In Python, it’s essentially how objects that are created from the same source are

identified. In the previous cell, we printed out the attribute color from the ford instance.

The reason Python knew where to access this value, specifically for ford, is because we

used the self keyword. We didn’t need it for basic classes because those attributes were

globally accessible, which will be covered later today. For now, just know that when

you want to instantiate an object with personalized attributes, you need to have the init

method declared and use the self keyword to save each attributes value.

Chapter 7 Object-Oriented Programming

159

�Instantiating Multiple Objects with __init__( )
To truly understand how the init method works, let’s instantiate a couple instances with

two attributes of different values:

defining different values for multiple instances

class Car():

 def __init__(self, color, year):

 �self.color = color # �sets the attribute color to the

value passed in

 self.year = year

ford = Car("blue", 2016) # �create a car object with the color blue

and year 2016

subaru = Car("red", 2018) # �create a car object with the color red and

year 2018

print(ford.color, ford.year)

print(subaru.color, subaru.year)

Go ahead and run the cell. The two print statements at the bottom will output each

instance’s attributes. When we instantiated the ford and subaru objects, we gave them

different values for each of their respective attributes. This is the beauty of OOP. We’re

able to build two different objects from the same source using just two lines. Even if the

class itself was thousands of lines long, to create ten different instances would only take

ten lines of code.

�Global Attributes vs. Instance Attributes
Without knowing it, you’ve been using both globally accessible attributes and instance
accessible attributes. Global attributes can be referenced by the class directly and all

its instances, whereas instance attributes (which are defined within the init method)

can only be accessed by the class instances. If an attribute is declared inside of a class,

but not within the init method, then it is known as a global attribute. Any attributes

declared within the init method using the self keyword are instance attributes. Let’s see

an example:

Chapter 7 Object-Oriented Programming

160

 1| # using and accessing global class attributes

 3| class Car():

 4| sound = "beep" # global attribute, accessible through the class itself

 6| def __init__(self, color):

 7| �self.color = "blue" # �instance specific attribute, not

accessible through the class itself

 9| print(Car.sound)

11| # print(Car.color) �won't work, as color is only available to

instances of the Car class, not the class itself

13| ford = Car("blue")

15| print(ford.sound, ford.color) # color will work as this is an instance

Go ahead and run the cell. On the 6th line we print out the sound “beep” by directly

accessing it through the class blueprint with dot syntax. You do this by using the name of the

class, instead of the name of an instance. We’re able to do this because the sound attribute

is set up as a globally accessible attribute. The entire 7th line is commented out because it

would produce an error since the color attribute is declared within the init method and is only

accessible to instances, not the class itself. Lastly, on the 9th line, after we instantiate the ford

instance, we print out both the sound and the color attribute. All class instances have access

to global and instance level attributes, which is why we’re able to output the sound. What you

must keep in mind, however, is that we weren’t able to give the ford instance a personalized

value for the sound attribute. Only when attributes are declared in the init method are we

able to give instances personal values upon instantiation. Currently, in order to give ford a

different value for the sound attribute, we would have to change it after its instantiation.

TUESDAY EXERCISES

	1.	 Dogs: Create a Dog class that has one global attribute and two instance level

attributes. The global attribute should be “species” with a value of “Canine.”

The two instance attributes should be “name” and “breed.” Then instantiate

two dog objects, a Husky named Sammi and a Chocolate Lab named Casey.

	2.	 User Input: Create a Person class that has a single instance level attribute of

“name.” Ask the user to input their name, and create an instance of the Person

class with the name they typed in. Then print out their name.

Chapter 7 Object-Oriented Programming

161

Today we learned all about attributes and how we can give classes personalized
variables. The use of the initialization method and self keyword allow us to declare
attributes at the time of instantiation. Lastly, the difference between global and
instance level attributes is key. Those attributes in the initialization method cannot
be accessed directly through the class but rather through instances of the class.

�Wednesday: Methods
When you think about objects, you associate certain features and actions with them.

Take a car, for instance. They’ll have attributes like color and wheels but also actions,

such as stop, accelerate, turn, etc. In classes, these actions are known as methods.

Methods are essentially functions that are within classes. If you hear someone talking

about methods, you’ll instantly know that they are talking about OOP. Today, we’ll see

how we can declare methods for our classes, how to call them, and why they are useful.

To follow along with this lesson, let’s continue from our notebook file “Week_07” and

simply add a markdown cell at the bottom that says, “Methods.”

�Defining and Calling a Method
Defining a method is the same as defining a function; however, you simply put the code

within the class indentation block. When declaring a method that you intend to access

through instances, you must use the self parameter in the definition. Without the self

keyword, the method can only be accessed by the class itself. In order to call a method,

you use dot syntax. As methods are just functions, you must call them with parenthesis

after the name of the instance:

defining and calling our first class method

class Dog():

 def makeSound(self):

 print("bark")

sam = Dog()

sam.makeSound()

Chapter 7 Object-Oriented Programming

162

Go ahead and run the cell. We’ll get “bark” as our output. When we created the class

definition, it included the method makeSound within the blueprint. Once we created

an instance of the Dog class, we were able to access the method by calling it using dot

syntax. You may have as many methods as you’d like within a class.

�Accessing Class Attributes in Methods
Within the methods you create, you’ll often need access to attributes defined within

the class. To do so, you need to use the self keyword in order to access the attribute.

Remember that self is in reference to the instance accessing the class. When we create

multiple instances, self is what allows the program to understand which sound attribute

to return. This is true even for global attributes. Let’s see an example:

using the self keyword to access attributes within class methods

class Dog():

 sound = "bark"

 def makeSound(self):

 �print(self.sound) # �self required to access attributes

defined in the class

sam = Dog()

sam.makeSound()

Go ahead and run the cell. We’ll get an output of “bark” again, except this time,

it was because we accessed the sound attribute declared within the class. Anytime

you need to reference an attribute using self, you must include self within the method

parameters.

�Method Scope
Like global attributes, you may have methods that are accessible through the class itself

rather than an instance of the class. These may also be known as static methods. They

are not accessible by instances of the class. Depending on the class your building, it may

help to have a method that is only accessible through the class and not the instances.

Let’s see an example:

Chapter 7 Object-Oriented Programming

163

 1| # �understanding which methods are accessible via the class itself and

class instances

 3| class Dog():

 4| sound = "bark"

 6| def makeSound(self):

 7| print(self.sound)

 9| def printInfo():

10| print("I am a dog.")

12| �Dog.printInfo() # �able to run printInfo method because it does

not include self parameter

14| �# Dog.makeSound() �would produce error, self is in reference to

instances only

16| sam = Dog()

18| sam.makeSound() # able to access, self can reference the instance of sam

20| �# sam.printInfo() �will produce error, instances require the self

parameter to access methods

Go ahead and run the cell. We’ve defined two methods within our Dog class this

time. One method has self within the parameter, while the other does not. The method

without the self parameter can be accessed through the class itself, which is why line 8

outputs “I am a dog.”. The 9th line is commented out because makeSound can only be

accessed by instances of our Dog class, not the class itself. Lastly, we can see that the

12th line is also commented out because methods that are not defined with self as a

parameter cannot be accessed by instances of the class. Otherwise, we would produce

an error. This is the importance of the self keyword.

�Passing Arguments into Methods
Methods work the same way as functions, where you can pass arguments into the

method to be used. When these arguments are passed in, they do not need to be

referenced with the self parameter, as they are not attributes, but rather temporary

variables that the method can use:

Chapter 7 Object-Oriented Programming

164

writing methods that accept parameters

class Dog():

 def showAge(self, age):

 �print(age) # �does not need self, age is referencing the

parameter not an attribute

sam = Dog()

sam.showAge(6) # passing the integer 6 as an argument to the showAge method

Go ahead and run the cell. We’ll get an output of 6. After defining an instance of

Dog, we called the method showAge and passed the argument of the integer 6 into the

method. The method was then able to print out age. We did not need to say “self.age”

because self is in reference to class attributes, not parameters.

�Using Setters and Getters
In programming there is a concept called setters and getters. They are methods that you

create to re-declare attribute values and return attribute values. We’ve seen how we can

alter attribute values by directly accessing them; however, this can sometimes lead to

problems or accidentally altering the value. Good practice is to create a method that will

alter the attribute value for you and call that method when you need to set a new value.

The same goes for when you want to access a given attributes value; instead of accessing

it directly, you call a method that will return the value. This gives us a safer way to access

an instances attributes. Let’s see how we can:

 1| �# using methods to set or return attribute values, proper programming practice

 3| class Dog():

 4| name = ' ' # �would normally use init method to declare, this is

for testing purposes

 6| def setName(self, new_name):

 7| �self.name = new_name # �declares the new value for the

name attribute

 9| def getName(self):

10| return self.name # returns the value of the name attribute

11| sam = Dog()

13| sam.setName("Sammi")

15| print(sam.getName()) # prints the returned value of self.name

Chapter 7 Object-Oriented Programming

165

Go ahead and run the cell. We’ve created two methods, one setter and one getter.

These methods will generally have their respective keywords “set” and “get” at the

beginning of the method names. On line 4 we define a setter to take in a parameter of

new_name and change the attribute name to the value passed in. This is better practice

to alter attribute values. On the 6th line we create a getter method that simply returns the

value of the name attribute. This is better practice to retrieve an attributes value. Lines 9

and 10 call both methods in order to alter and print out the returned value.

�Incrementing Attributes with Methods
Like setters, when you want to alter an attributes value by incrementing or decrementing

it rather than just changing it completely, the best way is to create a method to complete

the task:

incrementing/decrementing attribute values with methods, best

programming practice

class Dog():

 age = 5

 def happyBirthday(self):

 self.age += 1

sam = Dog()

sam.happyBirthday() # calls method to increment value by one

print(sam.age) # better practice use getters, this is for testing

purposes

Go ahead and run the cell. For this example, we created a method called

happyBirthday that will increment the age of the dog by one each time it is called. This is

simply better practice, but not a required method of altering class attribute values.

Chapter 7 Object-Oriented Programming

166

�Methods Calling Methods
When calling a method from another method, you need to use the self parameter. Let’s

create a getter method and a method that prints out the information of the dog based on

the value:

 1| # calling a class method from another method

 3| class Dog():

 4| age = 6

 6| def getAge(self):

 7| return self.age

 9| def printInfo(self):

10| �if self.getAge() < 10: # �need self to call other method

for an instance

11| print("Puppy!")

13| sam = Dog()

15| sam.printInfo()

Go ahead and run the cell. We’ll get an output of “Puppy” here. We can get the

returned value from our getter because of how we referenced the getAge method within

our printInfo method. It was using the self keyword and dot syntax. The condition

proved true, as the returned value was 6, so it proceeded to run the print statement

within the block.

�Magic Methods
While they have a funny name, magic methods are the underlying of classes in Python.

Without knowing, you’ve already used one, the initialization method. All magic methods

have two underscores before and after their name. When you print out anything,

you’re accessing a magic method called __str__. When you use operators (+, -, /, ∗, ==,

etc.), you’re accessing magic methods. They are essentially functions that decide what

operators and other tasks in Python perform. Don’t get too hooked on them, as we

won’t use them too much, but I wanted to introduce you to them. As mentioned, the

__str__ magic method is called when using the print function; it stands for the string

representation of a class. Let’s alter what gets printed out when we print out a class that

we defined ourselves:

Chapter 7 Object-Oriented Programming

167

using magic methods

class Dog():

 def __str__(self):

 return "This is a dog class"

sam = Dog()

print(sam) # will print the return of the string magic method

Go ahead and run the cell. Previously when we printed out a class, it would output

the name of the class blueprint and the memory location. Now, since we altered the

__str__ magic method, we were able to output a completely different print statement.

Keep in mind that the __str__magic method was expecting a string to be returned, not

printed. All magic methods require certain parameters and returned values. Feel free to

look up a couple more and alter others to see how they work!

WEDNESDAY EXERCISES

	1.	 Animals: Create a class definition of an animal that has a species attribute and

both a setter and getter to change or access the attributes value. Create an

instance called “lion,” and call the setter method with an argument of “feline.”

Then print out the species by calling the getter method.

	2.	 User Input: Create a class Person that takes in a name when instantiated but

sets an age to 0. Within the class definition setup, a setter and getter that will

ask the user to input their age and set the age attribute to the value input.

Then output the information in a formatted string as “You are 64 years old.”

Assuming the user inputs 64 as their age.

Today, we were able to learn about methods and how they essentially function
within classes. In order to access other methods, we need to use the self
parameter. Methods give classes extra functionality and are used in almost
every class we create. This will give all instances of a given class the same
functionalities.

Chapter 7 Object-Oriented Programming

168

�Thursday: Inheritance
Sometimes you’ll create classes that will have similar attributes or methods. Take a Dog

and Cat class, for example. Both will have nearly the same code, attributes, and methods.

Rather than writing the same code twice, we use a concept called inheritance.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_07” and simply add a markdown cell at the bottom that says, “Inheritance.”

�What Is Inheritance?
Inheritance is one of the concepts that allow classes to have code reusability within

programming. When you have two or more classes that use similar code, you generally

want to set up what is called a “superclass.” The two classes that will inherit all the code

within the superclass are known as “subclasses.” A great way to think of inheritance

is parents and their children. Parents pass down genes to their children, which are

inherited and help to define the traits the child will be born with. Inheritance works

the same way, where the subclass inherits all the attributes and methods within the

superclass. Rather than writing the same attributes and methods twice for two classes,

we can inherit a class and only need to write the code once.

�Inheriting a Class
To inherit a class, we need to put the name of the class we’re inheriting between the

parentheses after the name of our subclass. Let’s try it:

 1| # inheriting a class and accessing the inherited method

 3| class Animal():

 4| def makeSound(self):

 5| print("roar")

 7| class Dog(Animal): # inheriting Animal class

 8| species = "Canine"

10| sam = Dog()

12| sam.makeSound() # accessible through inheritance

14| lion = Animal()

16| # lion.species not accessible, inheritance does not work backwards

Chapter 7 Object-Oriented Programming

169

Go ahead and run the cell. On line 5, we inherit the Animal class into our Dog class.

This gives Dog the ability to access the makeSound method, which is why on line 8,

we’re able to use dot syntax to access makeSound. Remember though, inheritance does

not work backward, so Animal does not have access to attributes and methods defined

within the Dog class. For this reason, the 10th line is commented out because the species

attribute does not exist in Animal and trying to access it would produce an error.

�Using the super( ) Method
The super method is used to create forward compatibility when using inheritance. When

declaring attributes that are required within the superclass, super is used to initialize its

values. The syntax for super is the keyword super, parenthesis, a dot, the initialization

method, and any attributes within the parenthesis of the init call. Let’s see an example:

 1| # using the super() method to declare inherited attributes

 3| class Animal():

 4| def __init__(self, species):

 5| self.species = species

 7| class Dog(Animal):

 8| def __init__(self, species, name):

 9| self.name = name

10| �super().__init__(species) # �using super to declare the species

attribute defined in Animal

12| sam = Dog("Canine", "Sammi")

14| print(sam.species)

Go ahead and run the cell. On line 6 we declare the name attribute to equal the

argument being passed in because this attribute is only defined within the Dog class.

Line 7 is where the super method is called to initialize the species attribute because it is

declared inside of the superclass Animal. The use of super here helps to reduce lines of

code, which is more apparent when the superclass requires several attributes. Once the

super method is called, our species attributes value is set to the argument passed in, and

we can now access it through our Dog instance, which is why we’re able to output the

species on the 9th line.

Chapter 7 Object-Oriented Programming

170

�Method Overriding
Sometimes when using inheritance, you want the subclass to be able to perform a

different action when the same method is called. Take our makeSound method from the

previously created Animal class. It prints out “roar”, but that’s not the sound you want

dogs making when you create your Dog class. Instead, we use the concept of method
overriding to change what the method does. Within the subclass, we redefine the

method (with the same name) to perform the task differently. Python will always use the

method defined within the subclass first, and if one doesn’t exist, then it will check the

superclass. Let’s use method overriding to alter the makeSound method and print the

proper statement for our Dog class:

 1| # overriding methods defined in the superclass

 3| class Animal():

 4| def makeSound(self):

 5| print("roar")

 7| class Dog(Animal):

 8| def makeSound(self):

 9| print("bark")

11| �sam, lion = Dog(), Animal() # �declaring multiple variables on a

single line

13| sam.makeSound() # overriding will call the makeSound method in Dog

15| �lion.makeSound() # �no overriding occurs as Animal does not inherit

anything

Go ahead and run the cell. On the 8th line, we declare two instances sam and lion.

The next line is where we call the makeSound method from our dog instance of sam. The

output results in “bark” because of method overriding. As the method was inherited,

but then redefined within the Dog class, it prints bark instead. On the 10th line, we call

the same method with our Animal instance lion. This output is “roar” because lion is

an instance of the Animal class. Remember that inheritance does not work backward.

Subclasses cannot give superclasses any features.

Chapter 7 Object-Oriented Programming

171

�Inheriting Multiple Classes
Thus far, we’ve seen how we can inherit from a single superclass. Now we’re going to try

inheriting from multiple classes. The main difference is how you super the attributes.

Rather than using the super method, you call the class name directly and pass in the self

parameter with the attributes. Let’s see how:

 1| # how to inherit multiple classes

 3| class Physics():

 4| gravity = 9.8

 6| class Automobile():

 7| def __init__(self, make, model, year):

 8| �self.make, self.model, self.year = make, model, year

declaring all attributes on one line

10| �class Ford(Physics, Automobile): # �able to access Physics and

Automobile attributes and methods

11| def __init__(self, model, year):

12| �Automobile.__init__(self, "Ford", model, year) # �super does

not work

with multiple

14| truck = Ford("F-150", 2018)

16| print(truck.gravity, truck.make) # output both attributes

Go ahead and run the cell. We’ll get an output of 9.8 and “Ford”. On line 7 you’ll

notice that we inherit two classes within the parenthesis for the Ford class. The 9th line

is where the magic occurs this time though. Instead of using super, we initialize the

variables by calling the name of the inherited class directly. Using the init method, we

pass the self parameter along with all the attributes that Automobile requires. Python

knows which superclass to use because of the name at the beginning of the line. On the

last line, we’re able to see that we have access to both attributes declared within Physics

and Automobile, where we are inheriting from.

Chapter 7 Object-Oriented Programming

172

THURSDAY EXERCISES

	1.	 Good Guys/Bad Guys: Create three classes, a superclass called “Characters”

that will be defined with the following attributes and methods:

	 a.	 Attributes: name, team, height, weight

	 b.	 Methods: sayHello

The sayHello method should output the statement “Hello, my name is Max and

I’m on the good guys”. The team attribute should be declared to a string of

either “good” or “bad.” The other two classes, which will be subclasses, will

be “GoodPlayers” and “BadPlayers.” Both classes will inherit “Characters” and

super all the attributes that the superclass requires. The subclasses do not need

any other methods or attributes. Instantiate one player on each team, and call

the sayHello method for each. The output should result in the following:

 >>> "Hello, my name is Max and I'm on the good guys"

 >>> "Hello, my name is Tony and I'm on the bad guys"

Today was all about inheritance in OOP. Using inheritance, we can cut down on
the repetitive lines that we write between similar classes. Inherited classes are
known as superclasses, while those that perform the inheritance are known
as subclasses. Also, the ability to override inherited methods is called method
overriding and provides class customization for subclasses.

�Friday: Creating Blackjack
Throughout this week, we’ve learned all about how to use classes in Python to improve our

programs. Today, we’ll put all that knowledge together and build the popular game Blackjack

together. We’ll use classes throughout the program, and you’ll be able to see how we are

able to structure a full-fledged object-oriented game in Python. It is assumed that you know

how to play Blackjack. If not, feel free to look up the rules and steps on how to play.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_07” and add a markdown cell at the bottom that says, “Friday Project: Creating
Blackjack.”

Chapter 7 Object-Oriented Programming

173

�Final Design
As with all previous Friday projects, we need to create a final design that we can follow.

This week is a little different, as we need to design our classes first as well. This will help

us figure out what attributes and methods our classes need to have before we even begin

programming. Sticking to this blueprint will improve the programming process. First,

let’s think about what classes we need. In Blackjack, you have specific game rules, game

actions, and the deck itself. Then we also need to consider that there is a player and a

dealer playing the game. It seems that we need to create two classes, one for the game

itself and one for the two players. You could argue that you need a separate class for the

dealer and player; however, we are keeping this game design a bit simpler. Let’s think

about what the Game class needs first:

•	 Game Attributes
deck – holds all 52 cards to be used within the game

suites – used to create deck, tuple of all four suits

values – used to create deck, tuple of all card values

•	 Game Methods
makeDeck – creates new 52-card deck when called

pullCard – pops random card from deck and returns it

The Game class is mainly going to keep track of the deck that we’re playing with.

We could certainly put all methods associated with the game inside of this class as well;

however, I’d like to keep the classes simple for you to understand. If you’d like to refactor

the game afterward, feel free to do so. Methods like checkWinner, checkBust, handleTurn,

etc., could all be part of the Game class. For this lesson, we’re not going to worry about

adding these methods to Game. Knowing what the Game class is going to handle is

going to help us understand what our Player class needs. Let’s go ahead and plan out the

attributes and methods for this class now:

•	 Player Attributes
hand – stores cards within player’s hand

name – string variable that stores name of the player or dealer

Chapter 7 Object-Oriented Programming

174

•	 Player Methods
calcHand – returns the calculated total of points in hand

showHand – prints out player’s hand in a nicely formatted statement

addCard – takes in a card and adds it to the player’s hand

As we can see, the Player class will be keeping track of each player’s hand and any

methods associated with altering the hand. Generally, you always want to put methods

that alter an attribute within the same class that the attribute is stored. Now that we

have a good idea of the attributes and methods needed for each class, we’ll follow this

guideline to program the game.

�Setting Up Imports
Let’s start writing this program by importing the necessary functions we’ll be using:

1| # importing necessary functions

2| from random import randint # allows us to get a random number

3| from IPython.display import clear_output

Feel free to test out the randint function. It takes in two arguments, a min and max,

and will return a random number between those arguments. The other import we need

is the ability to clear the output from the notebook cell.

�Creating the Game Class
Next, we’ll begin to write our main game class, which we’ll call Blackjack. Looking at our

design we created before, we’ll need to initialize the class with the attributes deck, suits,

and values:

 5| # create the blackjack class, which will hold all game methods and attributes

 6| class Blackjack():

 7| def __init__(self):

 8| self.deck = [] # set to an empty list

 9| self.suits = ("Spades", "Hearts", "Diamonds", "Clubs")

10| self.values = (2, 3, 4, 5, 6, 7, 8, 9, 10, "J", "Q", "K", "A")

Chapter 7 Object-Oriented Programming

175

We set the deck attribute to an empty list because we’re going to create a method

that creates the deck for us. The other two attributes are created as tuples so that we can

iterate over them without changing the items. We’ll use them in order to make the cards

for our deck.

�Generating the Deck
Using suits and values defined within the Blackjack class, we’re going to build our deck:

12| �# create a method that creates a deck of 52 cards, each card

should be a tuple with a value and suit

13| def makeDeck(self):

14| for suit in self.suits:

15| for value in self.values:

16| �self.deck.append((value, suit)) �# ex: (7,

"Hearts")

18| game = Blackjack()

19| game.makeDeck()

20| print(game.deck) # remove this line after it prints out correctly

Go ahead and run the cell. Our makeDeck method has generated a full deck of 52

tuples, each with a value in the 0 index and a suit in the 1 index. We’re storing each card

as a tuple because we don’t want to alter the value accidentally. In the last three lines, we

create an instance of the game, call the makeDeck method, and output the value of the

deck attribute. Be sure to remove the last line when you’re done, as the print statement is

only being used for debugging purposes.

�Pulling a Card from the Deck
Now that we have the deck created, we can create a method to pull a card from the deck.

We’ll use the pop method so that we can get an item and remove it from the deck at the

same time:

Chapter 7 Object-Oriented Programming

176

16| �self.deck.append((value, suit))

 # ex: (7, "Hearts") ◽◽◽
18| # method to pop a card from deck using a random index value

19| def pullCard(self):

20| return self.deck.pop(randint(0, len(self.deck) – 1))

22| game = Blackjack()

23| game.makeDeck()

25| �print(game.pullCard(), len(game.deck)) # �remove this line after

it prints out correctly

Go ahead and run the cell. You should get an output like “(7, ‘Hearts’) 51”. The tuple

is our card that we printed out, while the 51 is proving to us that it’s removing a card from

the deck. We set up the pullCard method so that it would pop a random card from the

deck. It chooses randomly because of the arguments we passed into randint. The max

number we want to allow is always one less than the size of the deck because indexing

starts at zero. If the deck has 45 cards left in it, we want the random integer to be from 0

to 44. It then pops the item in that random index, removes it from the deck, and returns it

back to where the method was called. Currently, we’re just printing it out, but later we’ll

add it to a player’s hand. Be sure to remove the last line when you’re done, as the print

statement is only being used for debugging purposes.

�Creating a Player Class
With the game class working properly, we turn our focus to the player class. Let’s begin

by creating the class definition to accept a name and set the hand to an empty list:

20| return self.deck.pop(randint(0, len(self.deck) – 1)) ◽◽◽
22| # create a class for the dealer and player objects

23| class Player():

24| def __init__(self, name):

25| self.name = name

26| self.hand = []

28| game = Blackjack()

29| game.makeDeck()

31| name = input("What is your name?")

Chapter 7 Object-Oriented Programming

177

32| player = Player(name)

33| dealer = Player("Dealer")

34| print(player.name, dealer.name) # remove after working correctly

Go ahead and run the cell. We’ll get a printed statement of the name that was input,

as well as “Dealer”. We define the player class to be initialized with the name and hand

attribute. The name attribute is taken in as an argument, while hand is set directly inside

of the class. After we instantiate the game object, we ask the user for their name and

create an instance of the Player class with their input. The dealer object will always be

known as “Dealer”, which is why we create the instance with that value being passed in

during the instantiation.

�Adding Cards to the Player’s Hand
Once we have the player objects being instantiated properly, we can begin to work on

the methods needed for the Player class. When looking at which method to program

first, you always need to think about what methods rely on other methods. For this class,

the calcHand and showHand methods rely on having cards in the hand. For this reason,

we’ll work on the addCard method and then focus on the other two:

26| self.hand = [] ◽◽◽
28| # take in a tuple and append it to the hand

29| def addCard(self, card):

30| self.hand.append(card)

32| game = Blackjack() ◽◽◽
37| dealer = Player("Dealer") ◽◽◽
39| # add two cards to the dealer and player hand

40| for i in range(2):

41| player.addCard(game.pullCard())

42| dealer.addCard(game.pullCard())

44| �print("Player Hand: { } \nDealer Hand: { }".format(player.hand,

dealer.hand)) # remove after

Chapter 7 Object-Oriented Programming

178

Go ahead and run the cell. We’ll get an output of two random cards within each of

the player’s hands. The addCard method simply takes in a tuple that represents a card

and appends it to the player’s hand. On the 40th line, we begin a for loop that will add

two cards to each hand. It does this by pulling a card using the game instance method

pullCard. That method returns a tuple, and that tuple is then passed into the addCard

method, which is then appended to the respective player’s hand. This loop will suffice as

the start of the game in which all players begin with two cards in their hand. Be sure to

remove the last line, as it’s used for debugging.

�Showing a Player’s Hand
In the previous section, we were printing out the full hand of each player. However, in

actual Blackjack, you only show the second card dealt to the dealer. It’s also bad practice

to reference the attribute directly, so we’ll need to create the showHand method to take

care of both these problems. We’ll use nicely formatted print statements to show the

hands, but more importantly, we’ll make sure that if it is still the player’s turn, then you

can only see one of the dealer’s cards:

30| self.hand.append(card) ◽◽◽
32| �# if not dealer's turn then only show one of his cards, otherwise show all

33| def showHand(self, dealer_start = True):

34| print("\n{ }".format(self.name))

35| print("===========")

37| for i in range(len(self.hand)):

38| if self.name == "Dealer" and i == 0 and dealer_start:

39| print("- of –") # hide first card

40| else:

41| card = self.hand[i]

42| print("{ } of { }".format(card[0], card[1]))

44| game = Blackjack() ◽◽◽
54| dealer.addCard(game.pullCard()) ◽◽◽
56| # show both hands using method

57| player.showHand()

58| dealer.showHand()

Chapter 7 Object-Oriented Programming

179

Go ahead and run the cell. The output results in the player’s hand showing both cards,

while the dealer only shows one. Let’s walk through this step by step. On line 33 we declare

the showHand method with the dealer_start parameter. This parameter will be a boolean

value which tracks whether we hide the first card the dealer is dealt. We set the default

value to True so that the only time we need to pass an argument of False into the method

is at the end when we want to show the dealer’s cards. The for loop on line 37 allows us to

print out each card in the player object’s hand. Line 38 is where we check two things:

	 1.	 The instance that called this method was the dealer.

	 2.	 It’s not the dealer’s turn yet (dealer_start == True).

If both are true, then we hide the first card; otherwise, we’ll show all the cards for

both the player and the dealer. The card variable is declared for ease of use when reading

the code, as we set it to one of the items within our hand, which represents a card. We

then print a formatted statement with the tuple’s values. This is done by accessing the 0

and 1 index of the tuples that represent each card. At the bottom of the cell, we call these

methods for each player object.

�Calculating the Hand Total
Now that we’re able to call a method to show each of the player’s hands correctly, we

need to calculate the total of the cards within the hand. This method becomes a bit

tricky, however, as we need to keep a few checks in mind:

	 1.	 Aces can be worth 11 or 1 point. They are worth 1 point if the total

is over 21.

	 2.	 If the dealer is only showing one card, the value of his hand should

only represent the value of that one card even though he has two

cards in his hand.

	 3.	 All face cards (J, Q, K) are worth 10 points.

There are several ways to handle this method. What we’ll program together is just one

of those many ways. When thinking about how to calculate aces, we need to check for their

value after we’ve calculated the total of all other cards. We’ll keep track of how many aces

we have first and then total them up afterward. To make sure we return the dealer’s total

properly, we’ll keep track of whether it’s his turn or not like we did in the showHand method.

Lastly, to calculate the face card values, we’ll create a dictionary of values to pull from:

Chapter 7 Object-Oriented Programming

180

42| print("{ } of { }".format(card[0], card[1])) ◽◽◽
43| print("Total = { }".format(self.calcHand(dealer_start)))

45| # if not dealer's turn then only give back total of second card

46| def calcHand(self, dealer_start = True):

47| total = 0

48| aces = 0 # calculate aces afterwards

49| �card_values = {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9,

10:10, "J":10, "Q":10, "K":10, "A":11}

51| if self.name == "Dealer" and dealer_start:

52| card = self.hand[1]

53| return card_values[card[0]]

55| for card in self.hand:

56| if card[0] == "A":

57| aces += 1

58| else:

59| total += card_values[card[0]]

61| for i in range(aces):

62| if total + 11 > 21:

63| total += 1

64| else:

65| total += 11

67| return total

69| game = Blackjack() ◽◽◽

Go ahead and run the cell. Starting at line 46, we declare our calcHand method

with the parameter dealer_start. We’ll set this parameter to a default of True, so that it

defaults to only showing the total of one card for the dealer. Line 47 is where we declare

our variable to keep track of the total. Line 48 is where we declare our variable to keep

track of how many aces we have in our hand. On line 49, we declare a dictionary of key-

value pairs that represent the card’s value. Our conditional statement on line 51 checks

to see if the dealer instance is the object calling this method, as well as if the dealer_start

parameter is True. If they are both true, then we’ll simply return the value of the second

card in the dealer’s hand. It’s the second card because we set the card variable to equal

the second item within the hand, which is the second card. Then we reference the card_

values dictionary with the card variables’ item in index 0. This item is going to be one of

Chapter 7 Object-Oriented Programming

181

the keys, and the dictionary will then return the value of that key-value pair. If the item at

index 0 is “J”, the dictionary will return a value of 10. The for loop starting on line 55 will

loop over each card in the respective player’s hand, reference the dictionary for a card

value, and add that card value to the current total. If the card is an ace, it will simply add

one to our aces variable and not add anything to the total. The next for loop on line 61

will loop as many times as there are aces in the player’s hand. For each ace, we’ll either

add 1 point or 11 points depending on the total. If adding 11 points to the hand makes

the total greater than 21, we simply add one point instead. At the end of the method, we

return the total. Lastly, line 43 is where we call calcHand within the showHand method.

We pass the dealer_start variable in case we’re trying to show the hand during the

dealer’s turn. Later, during the dealer’s turn, we’ll pass the argument of False, which will

then calculate the total of all the dealer’s cards rather than just one.

�Handling the Player’s Turn
The class definitions are now complete. We can begin to focus on the main game flow.

First, we’ll tackle the player’s turn. They should have the ability to hit or stay. If they stay,

their turn is over. If they hit, then we need to pull a card from the deck and add it to their

hand. After the card is added, we’ll have to check if the player went over 21. If they do,

they lose, and we’ll need to keep track of that to determine an output later:

83| dealer.showHand() ◽◽◽
85| player_bust = False # variable to keep track of player going over 21

87| while input("Would you like to stay or hit?").lower() != "stay":

88| clear_output()

90| # pull card and put into player's hand

91| player.addCard(game.pullCard())

93| # show both hands using method

94| player.showHand()

95| dealer.showHand()

97| # check if over 21

98| if player.calcHand() > 21:

99| player_bust = True # player busted, keep track for later

100| print("You lose!") # remove after running correctly

101| break # break out of the player's loop

Chapter 7 Object-Oriented Programming

182

Go ahead and run the cell. For now, try hitting until you go over 21. This will cause

an output of “You lose!”. Nothing happens if you don’t go over 21, as we haven’t handled

that yet, but we’ll get there. On line 85, we declare a variable to keep track of the player

going over 21. We then begin our while loop by asking the user if they’d like to hit or stay.

If they choose anything but stay, then the loop will run. Within the loop, we’ll clear the

output, add a card to the player’s hand, show the hand, and then check if they busted.

There are two ways for the loop to end, they bust, or they choose to stay.

�Handling the Dealer’s Turn
The dealer’s turn will be very similar to that of the player’s, but we won’t need to ask if

the dealer would like to hit. The dealer automatically hits while under 17. We’ll need to

track if the dealer busts as well though:

100| break # break out of the player's loop ◽◽◽
102| # handling the dealer's turn, only run if player didn't bust

103| dealer_bust = False

105| if not player_bust:

106| �while dealer.calcHand(False) < 17: # �pass False to

calculate all cards

107| # pull card and put into player's hand

108| dealer.addCard(game.pullCard())

110| # check if over 21

111| �if dealer.calcHand(False) > 21: # �pass False to

calculate all cards

112| dealer_bust = True

113| print("You win!") # remove after running correctly

114| break # break out of the dealer's loop

Go ahead and run the cell. Try running the cell until you get the dealer to go over 21,

resulting in the print statement running. We begin by declaring a variable on line 103

to track the dealer going bust. On line 105, we check to see if the player already busted,

as the round would already be over and the dealer doesn’t need to draw any cards. Line

106 is where our loop begins, which will add a card to the dealer’s hand and check if he

busted. The loop will continue until the dealer has more than 16 points, or he goes over 21.

Chapter 7 Object-Oriented Programming

183

When we call the calcHand method for the dealer this time, we pass the argument of

False. This is so that the method will calculate the complete total of the hand and not

just the second card, as we’ve been doing previously.

�Calculating a Winner
The final piece of this game is to calculate who the winner is. Thus far, we’ve put a couple

checks in place to see if either the player has already lost by going over 21. We’ll first check

to see if the player busted, then the dealer. If neither player busts, then we’ll need to see

who has the higher point total. If they tie, then it’s known as a push, and no one wins:

113| break # break out of the dealer's loop ◽◽◽
115| clear_output()

117| # show both hands using method

118| player.showHand()

119| �dealer.showHand(False) # �pass False to calculate and show all

cards, even when there are 2

121| # calculate a winner

122| if player_bust:

123| print("You busted, better luck next time!")

124| elif dealer_bust:

125| print("The dealer busted, you win!")

126| elif dealer.calcHand(False) > player.calcHand():

127| print("Dealer has higher cards, you lose!")

128| elif dealer.calcHand(False) < player.calcHand():

129| print("You beat the dealer! Congrats!")

130| else:

131| print("You pushed, no one wins!")

Go ahead and run the cell. We now have a fully functioning game of Blackjack! To

start, we clear the output and show both player’s hands. The main difference, though, is

on line 119. We pass the argument False into the showHand method for the dealer. This

is so that all the dealer’s cards show, along with the complete total. Remember that we

were calling the calcHand method within showHand and passing the value of dealer_

start, which we set to False with this method call. After that we set up a few conditions

which will output the proper result based on the given condition.

Chapter 7 Object-Oriented Programming

184

�Final Output
Congratulations on completing this project! Due to the size of the project, you may find

the completed version of the code on Github. To find the specific code for this project,

simply open or download the “Week_07.ipynb” file. If you ran into errors along the way,

be sure to cross-reference your code with the code in this file and see where you may

have gone wrong.

Even though today’s project was long, we were able to see some great examples
of object-oriented programming. Using classes gives us the ability to reuse several
lines of code like we did for the player and dealer objects. This program could
certainly be refactored to have more methods within the Blackjack class; however,
I wanted you to be able to read the code a little easier. For this reason, I kept the
classes shorter and the main game functionality separate. Be sure to test the game
and add your own features to it if you’d like.

�Weekly Summary
Throughout this week, we covered the concepts of object-oriented programming and

why they are important in the programming world. In Python, we know them as classes.

They allow us to reuse code and create multiple instances from one object. When

storing variables or creating functions inside of classes, they’re known as attributes and

methods. We’re able to reference these using dot syntax and the self parameter. Without

classes, we would need to hard-code every line for all objects within our programs. This

becomes especially apparent within larger-scale programs. To increase the reusability

of the code, we’re able to use inheritance. This allows subclasses to inherit attributes

and methods from superclasses, much like that of a parent and their child. At the end of

this week, we were able to create an object-oriented game of Blackjack. This showcased

the capabilities of OOP, as we were able to create multiple instances of the player object.

Going forward, be sure to think of the world around you as objects. It will help you adjust

to the world of OOP and understanding what an objects’ attributes and methods are.

Chapter 7 Object-Oriented Programming

185

�Challenge Question Solution
The solution of the challenge question is 10. The reasoning behind this output is due to

how dictionaries work. Remember that when accessing information from dictionaries,

you can access key-value pairs. When accessing a key from a dictionary, you get back

the value of that key-value pair. The following line is accessing the value of the first item

within the card variable:

 >>> card[0]

This will result in “Q”, as it is the first item within the tuple assigned into card. When

we access the dictionary, we’re accessing the value of the “Q” key. The last line would

look like this:

 >>> print("{ }".format(values["Q"]))

This would then output the value of the “Q:10” key-value pair, which is 10.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Game Loop: Using the code from our Friday project, create a

game loop so that you can continually play a new hand until the

player decides to quit. The cell should only stop running if the

player types in “quit”; otherwise, you should continue to play new

hands.

	 2.	 Adding Currency: Using the code from our Friday project, add

the ability to wager currency in the game. Be sure to track the

currency within the Player class, as the attribute should belong to

that object. Before each hand, ask the user how much they would

like to wager; if they win, add that amount to their currency; if they

lose, subtract that amount from what they currently have; and if

they tie, nothing should happen.

Chapter 7 Object-Oriented Programming

187
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_8

CHAPTER 8

Advanced Topics I:
Efficiency
Now that we have a solid base to work from, we can begin to dive into more advanced

topics. Over the next two weeks, we’ll be covering concepts that help to reduce the

amount of code you need to write. Many of these concepts will help prepare us for data

analysis in Week 10.

Throughout this week, we’ll be covering one-liners using list comprehension and

anonymous functions. This will help to reduce the lines of code by condensing the

same functionality within a single line. We’ll then cover a few of the built-in Python

functions that make working with data easier. The last concept we cover is when

functions call themselves, known as a recursive function. Often, these types of functions

lack efficiency, so we’ll cover how to use a caching concept called memoization. As this

week is all about advanced topics, we’ll dive into one of the more important algorithms

in programming… Binary Search! We’ll see how to program this algorithm line by line

and understand how searching algorithms are able to work efficiently.

Overview

•	 Building lists in one line using comprehensions

•	 Understanding one-line anonymous functions

•	 Using Python’s built-in functions for list alteration

•	 Understanding recursive functions and how to improve them

•	 Writing the algorithm for Binary Search

188

CHALLENGE QUESTION

For this week’s challenge, I’d like you to create a program that asks a user to input a number

and tells that user if the number they entered is a prime number or not. Remember that

prime numbers are only divisible by one and itself and must be above the number 2. Create

a function called “isPrime” that you pass the input into, and return a True or False value. Be

sure to keep efficiency in mind when programming the function.

�Monday: List Comprehension
List comprehension allows us to create a list filled with data in a single line. Rather

than creating an empty list, iterating over some data, and appending it to the list all on

separate lines, we can use comprehension to perform all these steps at once. It doesn’t

improve performance, but it’s cleaner and helps reduce the lines of code within our

program. With comprehension we can reduce two or more lines into one. Plus, it’s

generally quicker to write.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_08.”

Next, make the first cell markdown that has a header saying: “List Comprehension.”

We’ll begin working underneath that cell.

�List Comprehension Syntax
The syntax when using list comprehension depends on what you’re trying to write. The

general syntax structure for list comprehensions looks like the following:

>>> *result* = [*transform* *iteration* *filter*]

For example, when you want to populate a list, the syntax would have the following

structure:

>>> name_of_list = [item_to_append for item in list]

However, when you want to include an if statement, the comprehension would look

like the following:

>>> name_of_list = [item_to_append for item in list if condition]

Chapter 8 Advanced Topics I: Efficiency

189

The item will only be appended to the new list if the condition is met; otherwise, it

won’t include it. Lastly, if you would like to include an else condition, it would look like

the following:

>>> name_of_list = [item_to_append if condition else item_to_append for

item in list]

When using the else conditional within list comprehension, the first item will be

appended to the list only when the if statement proves True. If it is False, then the item

that comes after the else statement will be appended to the list.

�Generating a List of Numbers
Let’s try generating a list of numbers from 0 all the way up to 100 using list

comprehension:

create a list of ten numbers using list comprehension

nums = [x for x in range(100)] # generates a list from 0 up to 100

print(nums)

Go ahead and run the cell. You’ll notice that we output a list that includes 100

numbers. List comprehension has allowed us to build out this list within a single line

rather than writing out the for loop and append statement on separate lines. The

comprehension from the preceding cell is an exact representation of the following code:

>>> nums = []

>>> for x in range(100):

>>> nums.append(x)

As you can see, we’ve reduced three lines down to one using comprehension. This

doesn’t improve performance but does reduce the number of lines within our code. It

becomes more apparent in larger programs, and I highly recommend that you try to use

comprehension when possible. Going forward we’ll begin to use list comprehension

when building out lists.

Chapter 8 Advanced Topics I: Efficiency

190

�If Statements
Earlier, we went over how the syntax changes when including an if statement in your

comprehension. Let’s try an example by making a list of only even numbers:

using if statements within list comprehesion

nums = [x for x in range(10) if x % 2 == 0] # �generates a list of

even numbers up to 10

print(nums)

Go ahead and run the cell. For this comprehension, the variable x only gets

appended to the list when the condition proves True. In our case, the condition is True

when the current value of x is divisible by two. In the following, you’ll find the same code

that is needed without using comprehension:

>>> nums = []

>>> for x in range(10):

>>> if x % 2 == 0:

>>> nums.append(x)

This time we were able to reduce four lines of code down to one. This can often

improve readability of your code.

�If-Else Statements
Let’s take it one step further now and add in an else statement. This time we’ll append the

string “Even” when the number is divisible by two; otherwise, we’ll append the string “Odd”:

using if/else statements within list comprehension

nums = ["Even" if x % 2 == 0 else "Odd" for x in range(10)] # �generates

a list of

even/odd

strings

print(nums)

Chapter 8 Advanced Topics I: Efficiency

191

Go ahead and run the cell. This will output a list of strings that represent the

numbers odd or even value. Here we append the string “Even” when the if conditional

is True; otherwise, the else statement will be hit and append the string “Odd”. The same

representation of code without comprehensions can be found in the following:

>>> nums = []

>>> for x in range(10):

>>> if x % 2 == 0:

>>> nums.append("Even")

>>> else:

>>> nums.append("Odd")

We’ve reduced the lines of code from six down to one. Comprehensions are great

for quick generation of data; however, it becomes more difficult when the conditions

are larger. Comprehensions don’t allow for the use of elif statements, only if/else

statements.

�List Comprehension with Variables
Comprehension is great for generating data from other lists as well. Let’s take a list of

numbers and generate a separate list of those numbers squared, using comprehension:

creating a list of squared numbers from another list of numbers using

list comprehension

nums = [2, 4, 6, 8]

squared_nums = [num**2 for num in nums] # �creates a new list of squared

numbers based on nums

print(nums)

Go ahead and run the cell. We’ll get an output of [4, 16, 36, 64]. For this example,

we were able to generate the squared numbers by appending the expression “num∗∗2”.

The same representation of code without comprehension would look like the following:

>>> squared_nums = []

>>> for num in nums:

>>> squared_nums.append(num**2)

In this example, we were able to reduce the lines needed from three to one.

Chapter 8 Advanced Topics I: Efficiency

192

�Dictionary Comprehension
Not only can you use comprehension on lists but also Python dictionaries as well. The

syntax structure is the exact same, except you need to include a key-value pair instead of

a single number to insert into the dictionary. Let’s create a dictionary of even numbers as

keys, where the value is the key squared:

creating a dictionary of even numbers and square values using comprehension

numbers = [x for x in range(10)]

squares = { num : num**2 for num in numbers if num % 2 == 0 }

print(squares)

Go ahead and run the cell. We’ll get the following: “{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}”. We

were able to add each key-value pair using comprehension while checking to see if they

were an even number with the conditional statement.

MONDAY EXERCISES

	1.	 Degree Conversion: Using list comprehension, convert the following list to

Fahrenheit. Currently, the degrees are in Celsius temperatures. The conversion

formula is “(9/5) * C + 32”. Your output should be [53.6, 69.8, 59, 89.6].

>>> degrees = [12, 21, 15, 32]

	2.	 User Input: Ask the user to input a single integer up to and including 100.

Generate a list of numbers that are exactly divisible by that number up to and

including 100 using list comprehension. For example, if the number 25 was

input, then the output should be [25, 50, 75, 100].

Today’s focus was all about generating lists using a concept called list
comprehension. Depending on the expression needed, you’ll use a certain syntax
structure. Comprehension doesn’t improve performance; instead it reduces the
lines needed in our code to perform the same task. It can also improve readability.

Chapter 8 Advanced Topics I: Efficiency

193

�Tuesday: Lambda Functions
Lambda functions, otherwise known as anonymous functions, are one-line functions

within Python. Like list comprehension, lambda functions allow us to reduce the lines of

code we need to write within our program. It doesn’t work for complicated functions but

helps to improve readability of smaller functions.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_08” and simply add a markdown cell at the bottom that says, “Lambda Functions.”

�Lambda Function Syntax
The syntax for lambda functions will generally remain the same, unlike list

comprehensions when you begin to add the conditional statements. To start, let’s look at

the basic structure:

>>> lambda arguments : expression

Lambdas will always begin with the keyword lambda. Following that you’ll find

any arguments that are being passed in. On the right side of the colon, we’ll see the

expression to be performed and returned. Lambdas return the expression by default, so

we don’t need to use the keyword:

>>> lambda arguments : value_to_return if condition else value_to_return

Like list comprehension, the conditional statement goes at the end. This is as

complex as lambda functions get. Anything more than this would require writing the

function out completely.

Note  Lambdas basically use ternary operators on the right side of the colon.

�Using a Lambda
When using lambdas without storing them into a variable, you need to wrap parenthesis

around the function, as well as any arguments being passed in. Let’s start small by

writing a lambda function that will return the result of the argument squared:

Chapter 8 Advanced Topics I: Efficiency

194

using a lambda to square a number

(lambda x : x**2)(4) # takes in 4 and returns the number squared

Go ahead and run the cell. We’ll get an output of 16. The first set of parenthesis

holds the lambda function. The second set holds the argument being passed in. In this

case, the integer 4 is passed into x, and the expression x∗∗2 is performed and the result

returned. They are known as anonymous functions because they don’t have a name. In

the following, you’ll find the code written for a normal function that would perform the

same execution:

>>> def square(x):

>>> return x**2

>>> square(4)

We’ve taken three lines and turned them into one. Once you get used to reading

lambda syntax, programs become easier to read and write with these functions.

�Passing Multiple Arguments
Lambdas can take in any number of arguments, like functions. Let’s try passing in two

arguments this time and multiplying them by each other:

passing multiple arguments into a lambda

(lambda x, y : x * y)(10, 5) # x = 10, y = 5 and returns the

result of 5 * 10

Go ahead and run the cell. We’ll get an output of 50. This time the lambda function

accepted two arguments of x and y on the left side of the colon. On the right side of the

colon, it was able to perform the expression of multiplying those two arguments together

and returning the result. In the following, you’ll find the same code, as if we wrote a

normal function:

>>> def multiply(x, y):

>>> return x * y

>>> multiply(10, 5)

Same as before, we were able to save a couple lines of code to get the same result.

Chapter 8 Advanced Topics I: Efficiency

195

�Saving Lambda Functions
Lambdas get there name anonymous function because they don’t have a name to

reference or call upon. Once a lambda function is used, it can’t be used again unless it

is saved into a variable. Let’s use the same lambda function as before, except this time

save it into a variable called “square” that can be referenced even after the lambda

function is read:

saving a lambda function into a variable

square = lambda x, y : x * y

print(square)

result = square(10, 5) # calls the lambda function stored in the

square variable and returns 5 * 10

print(result)

Go ahead and run the cell. We’ll get the same output as before, except this time we got

it by calling square as a function. When functions are stored inside of variables, the variable

name acts as the function call. When we stored a lambda inside of the square variable, we

were able to call the lambda function by calling square and passing in the arguments.

Note  Even functions that are defined normally can be saved into variables and
referenced by the variable name.

�Conditional Statements
Once you begin adding conditional statements into a lambda function, they act the same

way that ternary operators do. The only difference is that you must provide both the if

and else statements. You can’t use just an if statement; it will render a syntax error, as it

always needs an expression to return . Let’s create a lambda that will return the greater

number between two arguments passed in:

using if/else statements within a lambda to return the greater number

greater = lambda x, y : x if x > y else y

result = greater(5, 10)

print(result)

Chapter 8 Advanced Topics I: Efficiency

196

Go ahead and run the cell. We’ll get an output of 10 as it is the higher value. Lambdas

are extremely useful when you need a function that can perform a simple conditional

such as this. The same code written as a normal function can be seen in the following:

>>> def greater(x, y):

>>> if x > y:

>>> return x

>>> else:

>>> return y

>>> result = greater(5, 10)

When conditional statements are used, it’s easy to see the power of lambda

functions. In this case we were able to turn five lines of code into one.

�Returning a Lambda
Where lambda functions shine is in their ability to make other functions more modular.

Let’s say we have a function that takes in an argument and we want that argument to

be multiplied with an unknown number later in the program. We can simply create a

variable that stores a returned lambda function while passing an argument. Let’s try a

couple examples:

returning a lambda function from another function

def my_func(n):

 return lambda x : x * n

doubler = my_func(2) # returns equivalent of lambda x : x * 2

print(doubler(5)) # will output 10

tripler = my_func(3) # returns equivalent of lambda x : x * 3

print(tripler(5)) # will output 15

Go ahead and run the cell. We’ll get an output of 10 and 15. What occurs when we

define our doubler variable is that we call my_func while passing in the integer value 2.

That value is used within the lambda function, and the lambda is then returned. However,

the lambda isn’t returned as “lambda x : x ∗ n”; it is now returned with the integer 2 in

place of n. Whenever doubler is called, it’s really the lambda function being called. Which

is why we get an output of 10 when we pass the value 5 into doubler. The same applies to

our variable tripler. We’re able to modify the result of my_func because of the returned

lambda function.

Chapter 8 Advanced Topics I: Efficiency

197

TUESDAY EXERCISES

	1.	 Fill in the Blanks: Fill in the blanks for the following code so that it takes in a

parameter of “x” and returns “True” if it is greater than 50; otherwise, it should

return “False”:

>>> ____ x _ True if x _ 50 ____ False

	2.	 Degree Conversion: Write a lambda function that takes in a degree value in

Celsius and returns the degree converted into Fahrenheit.

Today we were able to understand the differences between normal functions and
anonymous functions, otherwise known as lambda functions. They’re useful for
readability and being able to condense your code. One of their most powerful features
is being able to give functions more capabilities by being returned from them.

�Wednesday: Map, Filter, and Reduce
When working with data, you’ll generally need to be able to modify, filter, or calculate

an expression from the data. That’s where these important built-in functions come in to

play. The map function is used to iterate over a data collection and modify it. The filter

function is used to iterate over a data collection, and you guessed it… filter out data

that doesn’t meet a condition. Lastly, the reduce function takes a data collection and

condenses it down to a single result, like the sum function for lists.

To follow along with this lesson, let’s continue from our notebook file “Week_08” and

simply add a markdown cell at the bottom that says, “Map, Reduce, and Filter.”

�Map Without Lambdas
The map function is used when you need to alter all items within an iterable data

collection. It takes in two arguments, the function to be applied on each element and

the iterable data. When using map, it returns a map object, which is an iterator. Don’t

worry about what these are for now; just know that we can type convert them into a data

type that we can work with, like a list. Let’s try taking in a list of Celsius temperatures and

convert all of them to Fahrenheit:

Chapter 8 Advanced Topics I: Efficiency

198

1| # using the map function without lambdas

2| def convertDeg(C):

3| return (9/5) * C + 32

4| temps = [12.5, 13.6, 15, 9.2]

5| converted_temps = map(convertDeg, temps) # returns map object

6| print(converted_temps)

7| �converted_temps = list(converted_temps) # type convert map object

into list of converted temps

8| print(converted_temps)

Go ahead and run the cell. The first print statement will output “<map object at
0x00DC3D3>” or something similar. This is because the map function returns a map

object, not a converted data collection. On line 7, we’re able to convert the map object into

a list, which results in the output of “[54.5, 56.48, 59, 48.56]”. When map is called, the

function begins to iterate over the the temps list passed in. As it iterates, it passed a single

item into the convertDeg function until it passes all items in. The equivalent of the process

is the following:

>>> for item in temps:

>>> convertDeg(item)

Following the conversion, it appends the data to the map object. It isn’t until we

convert the map object that we’re able to see the converted temperatures.

�Map with Lambdas
Now that we’ve seen how to use map with a normally defined function, let’s try it with

a lambda function this time. As map requires a function as the first parameter, we can

simply program a lambda in place of the name of a defined function. We can also type

convert it on the same line:

using a map function with lambdas

temps = [12.5, 13.6, 15, 9.2]

converted_temps = list(map(lambda C : (9/5) * C + 32,

temps)) # type convert the map object right away

print(converted_temps)

Chapter 8 Advanced Topics I: Efficiency

199

Go ahead and run the cell. We’ll get the same output as we did before but in far less

lines of code. This is the beauty of combining these two concepts. The lambda function

takes in each item as the map function iterates over the temps list and returns the

converted value. The same process that we’re performing can be found in the lines of

code in the following:

>>> def convertDeg(degrees):

>>> converted = []

>>> for degree in degrees:

>>> result = (9/5) * degree + 32

>>> converted.append(result)

>>> return converted

>>> temps = [12.5, 13.6, 15, 9.2]

>>> converted_temps = convertDeg(temps)

>>> print(converted_temps)

As you can see, the use of lambda functions and map help to reduce the lines of code

used when we need to alter our data.

�Filter Without Lambdas
The filter function is useful for taking a collection of data and removing any information

that you don’t need. Like the map function, it takes in a function and an iterable data

type and returns a filter object. This object can be converted into a working list like we

did with our map object. Let’s use the same data and filter out any degrees that aren’t

above 55 degrees Fahrenheit:

using the filter function without lambda functions, filter out temps below 55F

def filterTemps(C):

 converted = (9/5) * C + 32

 return True if converted > 55 else False # use ternary operator

temps = [12.5, 13.6, 15, 9.2]

filtered_temps = filter(filterTemps, temps) # returns filter object

print(filtered_temps)

filtered_temps = list(filtered_temps) # �convert filter object to list

of filtered data

print(filtered_temps)

Chapter 8 Advanced Topics I: Efficiency

200

Go ahead and run the cell. The first output results in “<filter object at 0x00DC3D3>”,

like our map object output. The second statement results in the output of “[56.48, 59]”.

When we used filter and passed in temps, it looped over the list one item at a time. It

would then pass each item into the filterTemps function, and whether the return was

True or False, it would add the item to the filter object. It’s not until we type convert the

object into a list that we’re able to output the data. Using a lambda function can reduce

the lines of code needed even further.

�Filter with Lambdas
Let’s perform the same steps as earlier, except this time we’ll use a lambda function:

using the filter function with lambda functions, filter out temps below 55F

temps = [12.5, 13.6, 15, 9.2]

filtered_temps = list(filter(lambda C : True if (9/5) * C + 32 > 55 else

False, temps)) # type convert the filter

print(filtered_temps)

Go ahead and run the cell. We’ll get the same output as we did earlier, except this

time we were able to reduce the number of lines used with our lambda function. The

same process that we’re performing can be found in the lines of code in the following:

>>> def convertDeg(degrees):

>>> filtered = []

>>> for degree in degrees:

>>> result = (9/5) * degree + 32

>>> if result > 55:

>>> filtered.append(degree)

>>> return filtered

>>> temps = [12.5, 13.6, 15, 9.2]

>>> filtered_temps = convertDeg(temps)

>>> print(filtered_temps)

Like the map function using lambdas, coupling the filter function with a lambda cuts

our code down greatly.

Chapter 8 Advanced Topics I: Efficiency

201

�The Problem with Reduce
Although I’m going to show you how to use the reduce function, you should understand

that there’s a better method than using the actual function. Per the creator of Python

himself:

So now reduce( ). This is actually the one I've always hated most, because,
apart from a few examples involving + or ∗, almost every time I see a
reduce( ) call with a non-trivial function argument, I need to grab pen and
paper to diagram what's actually being fed into that function before I
understand what the reduce( ) is supposed to do. So in my mind, the appli-
cability of reduce( ) is pretty much limited to associative operators, and in
all other cases it's better to write out the accumulation loop explicitly.1

In his own words, he’s saying that reduce only serves a couple purposes, but other

than that, it’s useless, so it makes more sense to use a simple for loop. Let’s look at both

examples.

Note  Reduce was a built-in function in Python 2, since then it has been moved
into the functools library.

�Using Reduce
The reduce function accepts two arguments, the function to perform the execution and

the data collection to iterate over. Unlike filter and map, however, reduce iterates two

items at a time instead of one. The result of reduce is to always return a single result. In

the following example, we want to multiply all the numbers with each other. Let’s use

reduce to execute this example:

for informational purposes this is how you use the reduce function

from functools import reduce

nums = [1, 2, 3, 4]

result = reduce(lambda a, b : a * b, nums) # result is 24

print(result)

1�www.artima.com/weblogs/viewpost.jsp?thread=98196

Chapter 8 Advanced Topics I: Efficiency

202

Go ahead and run the cell. The output will be 24. As the reduce function takes in two

arguments, it condenses the nums list down to a single returned value. In the following,

you’ll see the suggested way of executing the same procedure:

>>> total = 0

>>> for n in nums:

>>> total = total * n

For the most part, it’s easy to see why Rossum was so adamant on suggesting for

loops instead, as reduce can become tough to understand when you try more complex

data collections like lists within lists.

WEDNESDAY EXERCISES

	1.	 Mapping Names: Use a lambda and map function to map over the list of

names in the following to produce the following result “[“Ryan”, “Paul”,
“Kevin Connors”].

>>> names = [" ryan", "PAUL", "kevin connors "]

	2.	 Filter Names: Using a lambda and filter function, filter out all the names that

start with the letter “A.” Make it case insensitive, so it filters out the name

whether it’s uppercase or not. The output of the following list should be

[“Frank”, “Ripal”].

>>> names = ["Amanda", "Frank", "abby", "Ripal", "Adam"]

Today we learned about a few important built-in functions that we can use when
working with data in Python. Coupling map and filter with lambdas helps to
improve our code readability and shorten the lines of code needed. Lastly, reduce
can be helpful in a few situations; however, a for loop will generally be more
readable.

Chapter 8 Advanced Topics I: Efficiency

203

�Thursday: Recursive Functions and Memoization
Recursion is a concept in programming where a function calls itself one or more times

within its block. These types of functions can often run into issues with speed, however,

due to the function constantly calling itself. Memoization helps this process by storing

values that were already calculated to be used later. Let’s first understand more about

recursive functions.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_08” and simply add a markdown cell at the bottom that says, “Recursive
Functions and Memoization.”

�Understanding Recursive Functions
All recursive functions have what is known as a “base case,” or a stopping point. Like

loops, you need a way to break out of a recursive call. Without one you create an infinite

loop that will eventually crash. For example, let’s imagine we set a base case of 1 for the

following questions:

	 1.	 Can you calculate the sum of 5?

	 2.	 Can you calculate the sum of 5 ∗ 4?

	 3.	 Can you calculate the sum of 5 ∗ 4 ∗ 3?

	 4.	 Can you calculate the sum of 5 ∗ 4 ∗ 3 ∗ 2?

	 5.	 Can you calculate the sum of 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1?

	 6.	 Yes, we reached our base case; the result is 120.

In this example, we started our recursive call at 5 and wanted to reach our base case

before we calculated the total. On each new call, we add a number to the expression,

which was the previous number minus one. This was an example of a factorial function

performing a recursive call. Depending on the task, functions could perform two

recursive calls at once. The most obvious example of this is the Fibonacci sequence.

We’ll program both together.

You may be asking yourself, how are these useful? In general, you can program a loop

to perform the same task that a recursive call can. So why use them? In certain instances,

recursive functions are easier to understand rather than programming a loop. They’re

used often in searching and sorting algorithms because of the repetitive tasks that occur.

Chapter 8 Advanced Topics I: Efficiency

204

Imagine you needed to search through a 4-dimensional array, otherwise known as a list

within a list within a list within a list. Rather than writing a bunch of for loops to iterate

through each list, you could write a recursive function that calls itself every time a new

dimension is found. The code would produce far less lines and be easier to read. Let’s

check out some examples!

�Writing a Factorial Function
Factorials are one of the easier examples of recursion because they are the result of

a given number multiplied by all previous numbers until zero is reached. Let’s try

programming it:

writing a factorial using recursive functions

def factorial(n):

 # set your base case!

 if n <= 1:

 return 1

 else:

 return factorial(n – 1) * n

print(factorial(5)) # the result of 5 * 4 * 3 * 2 * 1

Go ahead and run the cell. As we know from the example previously, we’ll get an

output of 120. The recursive call occurs within the else block. The return statement calls

the factorial function within itself because in order to get the result of factorial(5), it must

calculate “factorial(4) ∗ 5”. Then it must calculate “factorial(3) ∗ 4” in order to get the

result of factorial(4) as shown in the following:

	 1.	 factorial(5) = factorial(4) ∗ 5

	 2.	 factorial(4) = factorial(3) ∗ 4

	 3.	 factorial(3) = factorial(2) ∗ 3

	 4.	 factorial(2) = factorial(1) ∗ 2

	 5.	 factorial(1) = 1

Chapter 8 Advanced Topics I: Efficiency

205

This occurs until the base case is reached at factorial(1), which does not have a

recursive call and returns the value 1. As soon as the base case is reached, it can begin to

return all the calculated values back to the original call, as shown in the following:

	 1.	 factorial(1) = 1

	 2.	 factorial(2) = 1 ∗ 2 = 2

	 3.	 factorial(3) = 3 ∗ 3 = 6

	 4.	 factorial(4) = 9 ∗ 4 = 24

	 5.	 factorial(5) = 24 ∗ 5 = 120

Recursive functions work their way down until the base case is reached. Once a single

value is returned, it can then work its way back to the previous calls and return a result.

�The Fibonacci Sequence
The Fibonacci sequence is one of the most famous formulas in mathematics. It’s also

one of the most well-known recursive functions in programming. Each number in the

sequence is the sum of the previous two numbers, such that fib(5) = fib(4) + fib(3).

The base case for the Fibonacci sequence is 0 and 1 because the result of fib(2) is

“fib(2) = fib(1) + fib(0)”. In order to create the recursive sequence, we’ll need to return

the respective value once below the value of two:

writing the recursive fibonacci sequence

def fib(n):

 if n <= 1:

 return n

 else:

 return fib(n – 1) + fib(n – 2)

print(fib(5)) # results in 5

Go ahead and run the cell. We get 5 as the output. Remember that it’s not the result

of 3 + 4 but rather the result of fib(3) + fib(4). The Fibonacci sequence utilizes two

recursive calls in a single return, which makes it much more complex than our factorial

function. In order to calculate fib(5), fib(1) must be calculated five times. This is because

of the two-part recursive call. When these recursive calls occur, they essentially break out

into a pyramid-like structure. Let’s look at Figure 8-1, for instance.

Chapter 8 Advanced Topics I: Efficiency

206

This figure represents all the recursive calls that need to occur in order to calculate

the result of fib(5). As the number passed in grows, so to does the structure and number

of recursive calls. It’s exponential, which can slow down the program dramatically. Even

trying to execute fib(40) can take a couple minutes, and fib(100) will generally break

because of maximum recursion depth issues. Which leads us to our next topic on how to

solve this issue… memoization.

�Understanding Memoization
When you go to a web page for the first time, your browser takes a little while to load the

images and files required by the page. The second time you go to the exact same page, it

usually loads much faster. This is because your browser is using a technique known as

“caching.” When you loaded the page the first time, it saved the images and files locally.

The second time you accessed the web page, instead of re-downloading all the images and

files, it simply loaded them from the cache. This improves our experiences on the Web.

In computing, memoization is an optimization technique used primarily to speed

up computer programs by storing the results of previously called functions and returning

the saved result when trying to calculate the same sequence. This is simply known as

“caching,” and the preceding paragraph is a real-life example of how memoization can

improve performance. Let’s look at some examples of how memoization can improve

our recursive functions.

Figure 8-1.  Fibonacci sequence recursive sequence tree

Chapter 8 Advanced Topics I: Efficiency

207

�Using Memoization
In order to apply memoization to the Fibonacci sequence, we must understand what

the best method of caching values would be. In Python, dictionaries give us the ability

to store values based on a given key. They are also based on constant time in terms of

Big O Notation. We’ll get to this topic in the next week. For now, just understand that

dictionaries are much faster at returning information than most other data collections.

Due to the speed and unique key structure of dictionaries, we can use them to store the

value of each Fibonacci sequence. This way, once a single sequence like fib(3) has been

calculated, it does not need to be calculated again. It is simply stored into the cache and

retrieved when needed. Let’s try it out:

 1| # using memoization with the fibonacci sequence

 3| cache = { } # used to cache values to be used later

 5| def fib(n):

 6| if n in cache:

 7| return cache[n] # return value stored in dictionary

 9| result = 0

11| # base case

12| if n < = 1:

13| result = n

14| else:

15| result = fib(n – 1) + fib(n -2)

17| �cache[n] = result # �save result into dictionary with n as

the key

19| return result

21| print(fib(50)) # calculates almost instantly

Go ahead and run the cell. Notice this time it was able to calculate fib(50) almost

instantly. If we ran this without caching values, it could have taken hours or days to

execute the same calculation. This is the beauty of memoization at work. The process

begins by passing the argument into fib. The program then checks to see if the argument

appears as a key within the cache. If it does, it simply returns the value. If not, however,

it needs to calculate the proper result by using recursion until the base case is reached.

Once the base is reached, the values begin to save as key-value pairs within the cache.

Chapter 8 Advanced Topics I: Efficiency

208

As the recursive calls begin to work their way back up the structure, they simply pull the

values from the dictionary. Rather than having to calculate fib(2) thousands of times, it

only calculated it once thanks to memoization.

Note  Memoization is not perfect; there is a limit to how much you can store in a
single cache.

�Using @lru_cache
Now that we know how to create a caching system ourselves, let’s use Python’s built-in

method for memoization. It’s known as “lru_cache” or Least Recently Used Cache. It

performs the same way our memoization technique did earlier; however, it’ll do it in less

lines of code because we apply it as a decorator. Let’s check it out:

using @lru_cache, Python’s default moization/caching technique

from functools import lru_cache

@lru_cache() # python’s built-in memoization/caching system

def fib(n):

 if n <= 1:

 return n

 else:

 return fib(n – 1) + fib(n – 2)

fib(50) # calculates almost instantly

Go ahead and run the cell. We’ll get the same output as we did in the preceding cell

but this time with less lines. It’s performing the exact same technique, except it’s applied

as a decorator rather than directly within the function. There’s no better way, as far as

performance goes, but using lru_cache is much easier on the eyes.

THURSDAY EXERCISES

	1.	 Factorial Caching: Apply either the lru_cache built-in decorator to the factorial

function that we created previously, or set up your own caching system.

Chapter 8 Advanced Topics I: Efficiency

209

	2.	 Searching Data: Create a function that takes in two arguments, a list of data

and an item to search for. Search through the list of data passed in and return

True if the item to search for appears, otherwise, return False. If one of the

items is another list, create a recursive call so that you don’t need to create

another loop. Use the example call in the following as a reference on what

data to expect:

>>> searchList([2, 3, [18, 22], 6], 22)

Today, we learned all about recursive functions and how to improve them with the
concept of memoization. We were able to use a simple caching technique in order
to store previously computed values. Recursive functions can be useful when it
makes sense to use them, but in most cases a simple for loop would suffice, since
recursive functions can become slow over time.

�Friday: Writing a Binary Search
This week’s project is all about understanding one of the more efficient algorithms in

programming… Binary Search. When you need to search a list full of data, you need to

do it efficiently. It may not make sense to create an algorithm for a list of ten items but

imagine if it was one million items. You don’t want to search through the list item by item

to try and find what you’re looking for. Instead, we use algorithms like Binary Search to

perform these tasks.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_08” and add a markdown cell at the bottom that says, “Friday Project: Writing a
Binary Search.”

�Final Design
Although the program itself will be relatively small, we must understand how the

algorithm for Binary Search works. For our design concept this week, we’re going to lay

out the steps that we need to follow. Remember that algorithms are nothing more than a

set of steps. Binary Search is no different. Each step for this algorithm is as follows:

Chapter 8 Advanced Topics I: Efficiency

210

	 1.	 Sort the list.

	 2.	 Find the middle index.

	 3.	 Check the value at the middle index; if it’s the value we’re looking

for, return True.

	 4.	 Check the value at the middle index; if it’s greater than the value

we’re looking for, cut off the right half of the list.

	 5.	 Check the value at the middle index; if it’s less than the value

we’re looking for, cut off the left half of the list.

	 6.	 Repeat steps 2 through 6 until the list is empty.

	 7.	 If the while loop ends, it means there’s no items left, so return

False.

Let’s walk through an example together with the following arguments: [14, 0, 6, 32, 8],
and we’ll be looking for the number 14. See Table 8-1 for a step-by-step walk-through.

Table 8-1.  Binary Search example description

 Step Value of Variable Description Code

 1 list: [0, 6, 8, 14, 32] Sort the list immediately list.sort( )

 2 mid: 2 Find the middle, 5 / 2, round down len(list) // 2

 3 value: 8 Don’t return True, 8 is not 14 list[2]

 4 condition: False 8 is less than 14 don’t run block if list[2] > 14

 5 list: [14, 32] Run block, cut off first half of list list = list[mid + 1 :]

 2 mid: 1 Middle index is 1 because 2 / 2 len(list) // 2

 3 value: 32 Don’t return True, 32 is not 14 list[1]

 4 list: [14] Run block, cut off second half of list list = list[: mid - 1]

 2 mid: 0 Find the middle, 1 / 2, round down len(list) // 2

 3 return True Value at mid index is 14 return True return True

Chapter 8 Advanced Topics I: Efficiency

211

A linear search would require us to search the list item by item to see if the number

we’re looking for was in the list. When thinking about efficiency and how long a search

may take to complete the task, it would be based on the length of the list. As the length

of the list grows, so does the time it takes to find the number we’re looking for. With

a Binary Search, however, the time it takes to find a number within a list only takes a

minimal number of steps even when the list is a million numbers. For example, when

you search a list of one million numbers, a linear search could take one million tries to

find the number, but a Binary Search would be able to find it within 20 guesses. As it

searches, it cuts the list in half. Within 10 guesses you’re already working with a list of

under 2,000 items. This is the beauty of an efficient algorithm. Let’s walk through each

step together to understand how the algorithm is programmed.

�Program Setup
Before we begin to write our algorithm, we need to set up a way to generate a random list

of numbers. Let’s import the random module and use list comprehension to generate

some data:

1| # setting up imports and generating a list of random numbers to work with

2| import random

4| �nums = [random.randint(0, 20) for i in range(10)] # �create a list

of ten numbers

between 0 and 20

6| print(sorted(nums)) # for debugging purposes

Go ahead and run the cell. We import the random module in order to generate a list

of 20 random numbers with our list comprehension. For debugging purposes, we output

a sorted version of nums on line 6 in order to see the data that we’ll be working with.

�Step 1: Sort the List
The first step in the algorithm is to sort the list. Generally, you sort the list before passing

it in, but we want to take all precautions that this algorithm works even with unsorted

lists. Let’s begin by defining the function definition, as well as sorting the list passed in:

Chapter 8 Advanced Topics I: Efficiency

212

 4| nums = [random.randint(0, 20) for i in range(10)] # create a ... ◽◽◽
 6| def binarySearch(aList, num):

 7| # step 1: sort the list

 8| aList.sort()

10| print(sorted(nums)) # for debugging purposes

12| print(binarySearch(nums, 3))

We’ve added the function call at the bottom and will be printing the returned value,

but for now nothing will happen when you run the cell. Let’s move on to step 2.

�Step 2: Find the Middle Index
In this step, we need to find the middle index. I’m not talking about the value of the item

in the middle of the list but rather the actual index number. If we’re searching a list of

one million items, the middle index would be 500,000. The value at that index could be

any number, but again, that’s not what this step is for. Let’s write out the second step:

 8| aList.sort() ◽◽◽
10| # step 2: find the middle index

11| �mid = len(aList) // 2 # �two slashes means floor division – round

down to the nearest whole num

13| print(mid) # remove once working

15| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. In order to find the middle index, we need to divide

the length of the list by two and then round down to the nearest whole number. We

need to use whole numbers because an index is only ever a whole number. You could

never access index 1.5. Also, we round down because rounding up would cause index

out of range errors. For example, if there is one item within the list, then 1 / 2 = 0.5 and

rounding up to one would cause an error, as the single item within the list is at index

zero. The output will result in 5, as we’re working with a list of ten numbers. Go ahead

and remove the print statement at line 13 when you’re done.

Chapter 8 Advanced Topics I: Efficiency

213

�Step 3: Check the Value at the Middle Index
Now that we have the middle index, we want to see if the value at that given index is the

number that we’re looking for. If it is, then we want to return True:

11| mid = len(aList) // 2 # two slashes ... ◽◽◽
13| �# step 3: check the value at middle index, if it is equal to num

return True

14| if aList[mid] == num:

15| return True

17| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. You’ll get an output of either True or None, depending

on the list that was randomly generated for you. If the number 3 appears at index 5,

then your output will be True as our condition on line 14 is True and will run the return

statement.

�Step 4: Check if Value Is Greater
If the number that we’re looking for isn’t at the middle index, then we need to figure out

which half of the list to remove. Let’s first check if the value at the middle index is greater

than the number we’re searching for. If it is, we need cut off the right half of the list:

15| return True ◽◽◽
17| # �step 4: check if value is greater, if so, cut off right half of list

using slicing

18| elif aList[mid] > num:

19| aList = aList[: mid]

21| print(aList) # remove after working properly

23| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. On line 18 we check to see if the value at the middle index

of the list is greater than the argument that we passed in during the function call. Line 19

is where the magic of Binary Search occurs though. Using slicing, we’re able to re-declare

the value of aList to the beginning half of the list.

Chapter 8 Advanced Topics I: Efficiency

214

Note  Remember that slicing allows you to input the start, stop, and step. If
you don’t input a number like earlier, it implies that you are using default values.
Default values are start = 0, stop = len(list), and step = 1.

We imply that we want to keep the all items from index zero up to the middle index.

Remove line 21 after you’re done, as it will simply output the result of our new aList.

�Step 5: Check if Value Is Less
This step is the exact same as step 4 but with the opposite condition. If the value at the

middle index is less than the number we’re looking for, we want to remove the left half:

19| aList = aList[: mid] ◽◽◽
21| �# step 5: check if value is less, if so, cut off left half of list

using slicing

21| elif aList[mid] < num:

22| aList = aList[mid + 1 :]

23| print(aList) # remove after working properly

25| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. On line 22 we perform the opposite slice from step 4. This

time we declare “mid + 1” because we don’t want to include the middle index, as it’s

already been checked. The logic has now been implemented for our Binary Search. All

that’s left is to set up a loop to repeat steps 2 through 5 and return False if we don’t find

what we’re looking for.

�Step 6: Set Up a Loop to Repeat Steps
We’ll need to loop until the argument is found, or until the list is empty. This sounds like

a great case for a while loop. After creating the while statement, we need to make sure we

execute the code for steps 2 through 5 within the loop:

Chapter 8 Advanced Topics I: Efficiency

215

 8| aList.sort() ◽◽◽
10| # step 6: setup a loop to repeat steps 2 through 6 until list is empty

11| while aList:

12| mid = len(aList) // 2

14| if aList[mid] == num:

15| return True

16| elif aList[mid] > num:

17| aList = aList[: mid]

18| elif aList[mid] < num:

19| aList = aList[mid + 1 :]

21| print(aList) # remove after working properly

21| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. Our Binary Search is now performing all the necessary

steps to either return True when the argument is found or create an empty list, in which

case the loop will end. Remember that our preceding while statement is the same as

“while len(aList) > 0:”. All that’s left is to return False if the loop ends, as that means that

the list does not contain our number.

�Step 7: Return False Otherwise
To complete our Binary Search, we simply need to return False after the while loop ends:

19| aList = aList[mid + 1 :] ◽◽◽
21| �# step 7: return False, if it makes it to this line it means the list

was empty and num wasn’t found

22| return False

24| print(sorted(nums)) # for debugging purposes ◽◽◽

Go ahead and run the cell. We’ve now completed the Binary Search algorithm!

Now when you run the cell, you’ll get an output of either True or False. Feel free to

print out the list within the while loop, so you can see how the list is being truncated

on each step.

Chapter 8 Advanced Topics I: Efficiency

216

�Final Output
You can find all the code for this week, as well as this project in the Github repository.

The final output in the following won’t include any of the comments we added in

previous blocks so that you may see the complete version unobstructed:

 1| # full output of binary search without comments

 2| import random

 4| nums = [random.randint(0, 20) for i in range(10)]

 6| def binarySearch(aList, num):

 7| aList.sort()

 9| while aList:

10| mid = len(aList) // 2

12| if aList[mid] == num:

13| return True

14| elif aList[mid] > num:

15| aList = aList[: mid]

16| elif aList[mid] < num:

17| aList = aList[mid + 1 :]

19| return False

21| print(sorted(nums))

22| print(binarySearch(nums, 3))

Go ahead and run the cell. If you ran into any problems, be sure to reference this

code. Try increasing the number of items within the list you pass in and see how quickly

it can find your number. Even on large lists, this algorithm will execute with extreme

speed.

Today was important in understanding not only how Binary Search works, but how
we can program an algorithm from a set of step-by-step instructions. Algorithms
can be simple to understand, yet difficult to translate into code. Using this
algorithm, we can begin to understand how searches can be efficient, even when
there are large amounts of data to sift through.

Chapter 8 Advanced Topics I: Efficiency

217

�Weekly Summary
Throughout this week, we were able to go over some of the more advanced topics

within Python. As you begin to build your programming experience, you should

always be thinking about efficiency. First and foremost, we need to make sure that our

programs are correct in their execution, but then we need to be aware of their speed.

If an algorithm or program could give you the price of a stock to the cent, but it took

ten years to execute, it would be worthless. That’s the importance of a great algorithm.

Along with efficiency, we want to keep in mind the readability of our code. Although sing

list comprehension, lambdas, and recursive functions don’t improve the speed of our

program, it helps to improve our ability to read what’s happening. During the lessons

next week, we’ll be covering algorithmic complexity and the importance of performance

when using certain data types.

�Challenge Question Solution
In the following, you can find the solution to the challenge question this week:

 1| # ask user for input, return whether it is prime or not

 3| def isPrime(num):

 4| for i in range(2, int(num**0.5) + 1):

 5| if num % i == 0:

 6| return False

 7| else:

 8| return True

10| n = int(input("Type a number: "))

12| if isPrime(n):

13| print("That is a prime number.")

14| else:

15| print("That is not a prime number")

The most important part of this program is on line 4. Although you may have gotten

it correct, we wanted to create this program so that it was efficient. The statement on line

4 could have also looked like the following:

>>> for i in range(2, num):

Chapter 8 Advanced Topics I: Efficiency

218

The problem with this line, however, is that it’s not efficient. When you are trying to

calculate whether a number is prime or not, the square root of the number is as high as

you need to go. If a number isn’t divisible between two and the square root of itself, then

it means it’s a prime number. If we didn’t take the square root of the number passed

in to calculate prime, then we would’ve had to loop all the way to the prime number

itself. Let’s take the number 97, for instance, which is a prime number. Using the second

for loop statement, we would’ve looped for a total of 96 iterations. With the statement

written in the code block, however, we would only loop for a total of nine iterations. As

the number you’re passing in gets larger, so too does the iteration count. Therefore, it’s

always important to keep efficiency in mind when programming.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Recursive Binary Search: Turn the Binary Search algorithm that

we created together into a recursive function. Rather than using

a while loop, it should call itself in order to cut the list down and

eventually return True or False.

	 2.	 Efficient Algorithms: Looking at the Binary Search we wrote, how

could you possibly make it even more efficient?

	 3.	 Case-Sensitive Search: Rewrite the Binary Search so that it

works with a list that holds both numbers and letters. It should be

case sensitive. Use the following function call to understand the

parameters being passed in. Hint: “22” < ‘a’ will return True.

>>> binarySearch(['a', 22, '3', 'hello', 1022, 4, 'e'] ,

'hello') # returns True

Chapter 8 Advanced Topics I: Efficiency

219
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_9

CHAPTER 9

Advanced Topics II:
Complexity
This week is the continuation of advanced python concepts and will cover more topics

that a developer has to understand on the job.

To begin the week, we’ll cover a concept that you’ve been using this whole time,

generators and iterators. Over the following couple of days, we’ll cover decorators and

modules, which will help us in building larger-scale applications. These concepts will

help to understand how frameworks are used, like Flask and Django.

Although I don’t like talking about theory within this book, it’s important to

understand how time complexity works with algorithms. On Thursday, we’ll dive into

Big O Notation and understanding algorithms further. All the lessons within the book

have led you to the point of being able to further your education into becoming a Python

developer. This all leads us into our Friday project, which is interview prep. As this book

is set up as a tool for improving or changing your career, an important piece of that is the

interview process. There will be information about the process, what to expect, and how

to handle some interview questions that you may be asked.

Overview

•	 Understanding generator and iterator objects

•	 Using and applying decorators

•	 Creating and importing modules

•	 What is time complexity and Big O Notation?

•	 Knowing how to handle interviews, questions, and more

220

CHALLENGE QUESTION

As a programmer you must think about the time it takes to execute a program. Even a program

that will give you 100% accurate answers can be useless if it doesn’t give the answer to you

in time. Without looking it up, do you think lists or dictionaries are more efficient when needing

to retrieve and store information?

�Monday: Generators and Iterators
In previous sections of this book, you may have seen the words generators or iterators

mentioned. Without knowing, you’ve been using them the entire time. Today, we’ll dive

into what each of these concepts are and how to use them.

To follow along with the content for today, let’s open up Jupyter Notebook from our

“python_bootcamp” folder. Once it’s open, create a new file, and rename it to “Week_09.”

Next, make the first cell markdown that has a header saying: “Generators and Iterators.”

We’ll begin working underneath that cell.

�Iterators vs. Iterables
An iterator is an object that contains items which can be iterated upon, meaning

you can traverse through all values. An iterable is a collection like lists, dictionaries,

tuples, and sets. The major difference is that iterables are not iterators; rather they are

containers for data. In Python, iterator objects implement the magic methods iter and

next that allow you to traverse through its values.

�Creating a Basic Iterator
We can create iterators easily from iterables. You can simply use the iter() function to do so:

 1| # creating a basic iterator from an iterable

 3| sports = ["baseball", "soccer", "football", "hockey", "basketball"]

 5| my_iter = iter(sports)

 7| print(next(my_iter)) # outputs first item

Chapter 9 Advanced Topics II: Complexity

221

 8| print(next(my_iter)) # outputs second item

10| for item in my_iter:

11| print(item)

13| print(next(my_iter)) # will produce error

Go ahead and run the cell. Iterators will always remember the last item that they

returned, which is why we get an error on line 13. Using the next() method, we’re able

to output the next item within the iterator. Once all the items within the iterator have

been used, however, we can no longer traverse through the iterator, as there are no

more items left. Iterators are great for looping as well, and like lists and dictionaries,

we can simply use the in keyword (see line 10). You can still loop over the list like we

normally do, and it will always begin from index 0, but once our iterator is out of items,

we can no longer use it.

�Creating Our Own Iterator
Now that we’ve seen how to create an iterator from a Python iterable, let’s create our own

iterator class that will output each letter in the alphabet. To create an iterator, we’ll need

to implement the magic methods __iter__() and __next__():

 1| # creating our own iterator

 3| class Alphabet():

 4| def __iter__(self):

 5| self.letters = "abcdefghijklmnopqrstuvwxyz"

 6| self.index = 0

 7| return self

 9| def __next__(self):

10| if self.index <= 25:

11| char = self.letters[self.index]

12| self.index += 1

13| return char

14| else:

15| raise StopIteration

17| for char in Alphabet():

18| print(char)

Chapter 9 Advanced Topics II: Complexity

222

Go ahead and run the cell. The output results in the entire alphabet being printed

one letter at a time. We begin by creating an iterator with the name “Alphabet.” We

then use the iter method to declare the attributes associated with this iterator. Think of

the iter method as the initialization method for iterators. At the end of the iter method,

you must always return self. The next method is declared so that when called upon, the

iterator can return the next character in the string of letters. We stored an attribute called

index in order to track which item was supposed to be returned next. Lastly, we added

a condition on line 14 so that it raises a StopIteration error if it has already output all the

letters. Iterators are useful when you’re in need of traversing through Python collections

in a specific way.

�What Are Generators?
Generators are functions that yield back information to produce a sequence of results

rather than a single value. They’re a way to simplify the creation of an iterator. Normally,

when a function has completed its task and returned information, the variables declared

inside of the function will be deleted. With generators, however, they use the “yield”

keyword to send information back to the location it was called without terminating the

function. Generators don’t always have to yield back integers though you can yield any

information you’d like. Let’s look at a couple examples with both numbers and single

characters.

Note  Generators are simplified iterators.

�Creating a Range Generator
Although the range function is not a generator, we can make our own version that’s

created from a generator using the yield keyword. Let’s try it out:

 1| # creating our own range generator with start, stop, and step parameters

 3| def myRange(stop, start=0, step=1):

 4| while start < stop:

 5| print("Generator Start Value: { }".format(start))

 6| yield start

Chapter 9 Advanced Topics II: Complexity

223

 7| start += step # increment start, otherwise infinite loop

 9| for x in myRange(5):

10| print("For Loop X Value: { }".format(x))

Go ahead and run the cell. The two print statements are used to show you when the

generator myRange is accessed, compared to when the for loop outputs the result. We’re

able to call myRange like we would a normal range function because of the way that

generators operate. On line 3 we declare the function like we would any other, accepting

the same arguments as range would. We begin a while loop within the function on line 4

that will yield back the start value. Once the information is yielded back to the for loop,

it’s able to use that value for the current iteration. Once the for loop completes its code

block, it returns to the generator as the while loop condition has not been met. Normally,

once a function has returned information, it is not called upon again; however,

generators continue to return and store information until their condition is met. If we

didn’t increment the start value with step, we would create an infinite loop. Generators,

like iterators, can be useful when you need a specific sequence for iterating. Generators

are useful when you need to be memory aware. Although they are not as efficient when

it comes to performance, they are memory efficient when storing information. They’re

useful in situations when you need to create a data pipeline, which is when you need to

perform a set of executions on pieces of data.

MONDAY EXERCISES

	1.	 Reverse Iteration: Create an iterator that takes in a list, and when iterated over,

it returns the information in a reverse order. Hint: When accepting arguments

into an iterator, you need to use the init method, as well as iter and next. The

following call should result in “5, 4, 3, 2, 1”.

>>> for i in RevIter([1, 2, 3, 4, 5]):

	2.	 Squares: Create a generator that acts like the range function, except it

yields a squared number every time. The result of the following call should

be “0, 1, 4, 16”.

>>> for i in range(4):

Chapter 9 Advanced Topics II: Complexity

224

Today we were able to understand how to build our own range function, as well
as how data collections can be iterated over. Generators are simplified version of
iterators but use the yield keyword to return information. Iterators must always be
created by using the iter and next methods and are useful for creating our own
sequence for iterating.

�Tuesday: Decorators
If you want to learn about frameworks, or understand how to improve functions

within Python, then you need to understand what a decorator is and how it works.

It will help to simplify our code as well as reduce the lines necessary to improve our

programs.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_09” and simply add a markdown cell at the bottom that says “Decorators.”

�What Are Decorators?
Decorators, also known as wrappers, are functions that give other functions extra

capabilities without explicitly modifying them. They are denoted by the “@” symbol

in front of the function name, which is written above a function declaration like the

following:

>>> @decorator

>>> def normalFunc():

Decorators are useful when you want to perform some functionality before or

after a function executes. For example, let’s imagine you wanted to restrict access to

a function based on a user being logged in. Rather than writing the same conditional

statement for every function you create, you could put the code into a decorator

and apply the decorator onto all functions. Now, whenever a function is called, the

conditional statement will still run, but you were able to save yourself several lines.

This is a real-life example for the Flask framework, which restricts access to certain

pages based on user authentication using decorators. We’ll see a minimal example of

this later today.

Chapter 9 Advanced Topics II: Complexity

225

�Higher-Order Functions
A higher-order function is a function that operates on other functions, either by taking

a function as its argument or by returning a function. We saw this done in last week’s

lesson with lambdas, map, filter, and reduce. Decorators are higher-order functions

because they take in a function and return a function.

�Creating and Applying a Decorator
We’ll need to declare a function that takes in another function as an argument in order

to create a decorator. Inside of this decorator, we can then define another function to be

returned that will run the function that was passed in as an argument. Let’s see how this

is written:

 1| # creating and applying our own decorator using the @ symbol

 3| def decorator(func):

 4| def wrap():

 5| print("======")

 6| func()

 7| print("======")

 8| return wrap

10| @decorator

11| def printName():

12| print("John!")

14| printName()

Go ahead and run the cell. We’ll get an output of “John!” with equal signs above

and below the name that act as a border. On line 10 we attached our decorator to the

printName function. Whenever the printName function is called, the decorator will

run, and printName will be passed in as the argument of “func”. Within decorator we

declare a function called wrap. This wrap function will print a border, then call the func

argument, and then print another border. Remember that decorators must return a

function in order to run. Our decorator that we declared can be attached to any function

that we write. All functions with this decorator will simply run with a border above and

below them.

Chapter 9 Advanced Topics II: Complexity

226

�Decorators with Parameters
Although decorators simply add extra capabilities to functions, they can also have

arguments like any other function. Let’s take the following example where we want to

run a function x times:

 1| # creating a decorator that takes in parameters

 3| def run_times(num):

 4| def wrap(func):

 5| for i in range(num):

 6| func()

 7| return wrap

 9| @run_times(4)

10| def sayHello():

11| print("Hello!")

Go ahead and run the cell. This cell will output “Hello!” four times. The syntax

changes when the decorator accepts an argument. Our decorator this time accepted

an argument of num, and the wrap function accepted the function as the argument

this time. Within our wrap function, we created a for loop that would run the

function attached to our decorator as many times as the argument declared on the

decorator on line 9.

Note  When passing an argument into a decorator, the function is automatically
run, so we do not need to call sayHello in this instance.

�Functions with Decorators and Parameters
When you need a function to accept arguments, while also having a decorator attached

to it, the wrap function must take in the same exact arguments as the original function.

Let’s try it:

 1| # creating a decorator for a function that accepts parameters

 3| def birthday(func):

Chapter 9 Advanced Topics II: Complexity

227

 4| def wrap(name, age):

 5| func(name, age + 1)

 6| return wrap

 8| @birthday

 9| def celebrate(name, age):

10| print("Happy birthday { }, you are now { }.".format(name, age))

12| celebrate("Paul", 43)

Go ahead and run the cell. This will output a nicely formatted string with the

information passed in on line 12. When we call celebrate, the decorator takes in celebrate

as the argument of func, and the two arguments “Paul” and “43” get passed into wrap.

When we call our function within wrap, we pass the same arguments into the function

call; however, we increment the age parameter by one.

�Restricting Function Access
You’re probably wondering how decorators can serve a purpose, since the last few cells

seem meaningless. For each one of them, we could have simply added those lines within

the original function. That was just for syntax understanding though. Decorators are

used a lot with frameworks and help to add functionality to many functions that you’ll

write within them. One example is being able to restrict access of a page or function

based on user login credentials. Let’s create a decorator that will help to restrict access if

the password doesn’t match:

 1| # real world sim, restricting function access

 3| def login_required(func):

 4| def wrap(user):

 5| password = input("What is the password?")

 6| if password == user["password"]:

 7| func(user)

 8| else:

 9| print("Access Denied")

10| return wrap

12| @login_required

13| def restrictedFunc(user):

Chapter 9 Advanced Topics II: Complexity

228

14| print("Access granted, welcome { }".format(user["name"]))

16| user = { "name" : "Jess", "password" : "ilywpf" }

18| restrictedFunc(user)

Go ahead and run the cell. On line 13 we declared a normal function that would

take in a user and output a statement with their name and accessibility. Our decorator

was attached on line 12 so that when we call restrictedFunc and pass in our created

user, it would run through the decorator. Within the wrap function, we ask the user for

a password and check whether the password is correct or not on line 6. If they type in

the correct password, then we allow them to access the function and print out “Access
Granted”. However, if the password is incorrect, then we output “Access Denied” and

never run restrictedFunc. This is a simple example of how Flask handles user restrictions

for pages, but it proves the importance of decorators. We can now attach login_required

to any of the functions that we feel should be accessed only by users.

TUESDAY EXERCISES

	1.	 User Input: Create a decorator that will ask the user for a number, and run

the function it is attached to only if the number is less than 100. The function

should simply output “Less than 100”. Use the function declaration in the

following:

>>> @decorator

>>> def numbers():

>>> print("Less than 100")

	2.	 Creating a Route: Create a decorator that takes in a string as an argument with

a wrap function that takes in func. Have the wrap function print out the string,

and run the function passed in. The function passed in doesn’t need to do

anything. In Flask, you can create a page by using decorators that accept a URL

string. Use the function declaration in the following to start:

>>> @route("/index")

>>> def index():

>>> print("This is how web pages are made in Flask")

Chapter 9 Advanced Topics II: Complexity

229

Today was an important lesson in preparation for other technologies that use
Python, such as frameworks. Decorators help to improve function execution and
can be attached to any function necessary. This helps to reduce code and give
improved functionality.

�Wednesday: Modules
Most programs tend to include so many lines of code that you wouldn’t store it all within

a single file. Instead you separate the code into several files, which helps to keep the

project organized. Each one of these files is known as modules. Within these modules

are variables, functions, classes, etc., that you can import into a project. Luckily, Python

has a large following of developers that create modules for us to use in order to enhance

our own projects. Today, we’ll look at some modules that are included with Python, how

to import them, how to use them, and how to write our own modules to be used within

Jupyter Notebook.

To follow along with this lesson, let’s continue from our notebook file “Week_09” and

simply add a markdown cell at the bottom that says, “Modules.”

�Importing a Module
For the next few examples, we’ll be working with the math module, which is one of

Python’s built-in modules. This specific module has functions and variables to help us

with any problem related to math, whether it’s rounding, calculating pi, or many other

math-related tasks. For this first cell, we’re going to import the entire math module and

its contents:

import the entire math module

import math

print(math.floor(2.5)) # rounds down

print(math.ceil(2.5)) # rounds up

print(math.pi)

Chapter 9 Advanced Topics II: Complexity

230

Go ahead and run the cell. We’ll get an output of “2”, “3”, and “3.14”. When we

imported math, we were able to access all of math’s functions, variables, and classes.

In this example, we call two functions and one variable that are stored within the math

module. In order to import the entire module and its contents, you simply put the

keyword import before the name of the module. Whenever you’d like to access any of its

contents, you need to use dot syntax. Now we can use any of math’s code.

�Importing Only Variables and Functions
When you know that you won’t need to use the entire module, but rather a couple

functions or variables, you can import them directly. You should always make sure you

import only what you need. In the previous cell, we imported the entire math module;

however, we didn’t really need to, as we only used two functions and a variable from it.

To import something specifically, you’ll need to include the from keyword and the name

of what you’d like to import:

�importing only variables and functions rather than an entire module,

better efficiency

from math import floor, pi

print(floor(2.5))

print(ceil(2.5)) �will cause error because we only imported floor

and pi, not ceil and not all of math

print(pi)

Go ahead and run the cell. We’ll get an output of “2” and “3.14”. The import

statement changes slightly when importing specific parts of the module. To separate

multiple imports from a single module, you use a comma. We comment out the print

statement for ceil because it won’t work. We only imported floor and pi directly, but

not the ceil function. Notice that we don’t need to reference the math module with dot

syntax before the names either. This is because we imported the floor function and pi

variable directly, so we can now reference them without using dot syntax. Remember to

only import what you need.

Note Y ou can import classes from modules the same way as earlier; simply use
the name of the class.

Chapter 9 Advanced Topics II: Complexity

231

�Using an Alias
Often, the name of what you’d like to import can be lengthy. Rather than having to write

out an entire name each time you’d like to use it, you can give an “alias” or nickname

when importing:

using the 'as' keyword to create an alias for imports

from math import floor as f

print(f(2.5))

Go ahead and run the cell. We’ll get the same output as we do in the previous two

cells, except this time we were able to reference the floor function as just the letter “f “.

This is because of how we wrote our import statement using the “as” keyword. You

can rename anything that is imported, although it’s generally best to only do so on

larger names.

�Creating Our Own Module
Now that we know how to import and call a module, let’s create our own. Go ahead

and open any text editor you have on your computer like Notepad or TextEdit. Write the

following code in the file, and save it within the same folder that your “Week_09” file is

located, with the name “test.py”. If the two files aren’t in the same directory, it produces

an error:

creating our own module in a text editor

variables to import later

length = 5

width = 10

functions to import later

def printInfo(name, age):

 print("{ } is { } years old.".format(name, age))

See Figure 9-1 for an example of what the code will look like within a text editor.

Chapter 9 Advanced Topics II: Complexity

232

You’ve just written your first module! Remember that modules are nothing more

than code written in other files that we can import in any of our projects. Now let’s see

how to use them.

�Using Our Module in Jupyter Notebook
In any other circumstance, you’d import the variables and function we wrote in test.py

with the import and from keywords. Jupyter Notebook, however, works a little differently

when using modules that you’ve created. We’ll use the “run” command in order to load

in the entire module that we’ve created. After we run the file, we can use the variables

and functions that we wrote within the module. Let’s check out how to do so:

using the run command with Jupyter Notebook to access our own modules

%run test.py

print(length, width)

printInfo("John Smith", 37) �# able to call from the module because

we ran the file in Jupyter above

Go ahead and run the cell. You’ll notice that we’re able to output the variables and

function print statement that we declared within our test.py module. Keep in mind

that the run command runs the file as if it were a single cell. Any function calls or print

statements within our module would run immediately. To test this out, try putting a print

statement at the bottom of the module. When you work in a development environment

(IDE), you’ll write the import as you would normally, like the following:

>>> from test import length, width, printInfo

Figure 9-1.  test.py module with code in text editor (notepad++)

Chapter 9 Advanced Topics II: Complexity

233

This is just how Jupyter Notebook works with files that we create.

Note Y ou can place any modules you create within the Python folder on your
hard drive. Once the files are there, they can be accessed normally rather than
using the run command.

WEDNESDAY EXERCISES

	1.	 Time Module: Import the time module and call the sleep function. Make the

cell sleep for 5 seconds, and then print “Time module imported”. Although

we haven’t covered this module, this exercise will provide good practice

for you to try and work with a module on your own. Feel free to use Google,

Quora, etc.

	2.	 Calculating Area: Create a module named “calculation.py” that has a single

function within it. That function should take in two parameters and return the

product of them. We can imagine that we’re trying to calculate the area of

a rectangle and it needs to take in the length and width properties. Run the

module within Jupyter Notebook, and use the following function call within

the cell:

>>> calcArea(15, 30)

Today’s focus was all about modules, how to import them, how to use them, how
to create our own, and how to call our own modules within Jupyter Notebook.
Understanding how modules work will give you the ability to work with frameworks
in Python. Flask, for example, uses a lot of different modules, as each module
serves a specific purpose. When you need to keep your project organized, modules
are the answer.

Chapter 9 Advanced Topics II: Complexity

234

�Thursday: Understanding Algorithmic Complexity
Throughout this book, we’ve been learning by doing. At the beginning, I spoke about

how we wouldn’t go much into theory, but rather we would learn by building projects

together and coding along. Today’s focus is primarily on the theory of programming and

algorithms. If there is a theory in programming that you should understand, it should be

Big O Notation.

To follow along with this lesson, let’s continue from our previous notebook file

“Week_09” and simply add a markdown cell at the bottom that says, “Understanding
Algorithmic Complexity.”

�What Is Big O Notation?
As a software engineer, you’ll often need to estimate the amount of time a program may

take to execute. In order to give a proper estimate, you must know the time complexity of

the program. This is where algorithmic complexity comes in to play, otherwise known as

Big O Notation. It is the concept to describe how long an algorithm or program takes to

execute. Take a list, for example. As the number of items within the list grows, so does the

amount of time it takes to iterate over the list. This is known as O(n), where n represents

the number of operations. It’s called Big O Notation because you put a “Big O” in front of

the number of operations.

Big O establishes a worst-case scenario runtime. Even if you search through a list of

100 items and find what you’re looking for on the first try, this would still be considered

O(100) because it could possibly take up to 100 operations.

The most efficient Big O Notation is O(1), also known as constant time. It means that

no matter how many items or steps are required, it will always take the same amount of

time and generally occurs instantly. If we took the same list of 100 items and accessed

an index directly, this would be known as O(1). We would retrieve the value in that index

immediately without needing to iterate over the list.

One of the least efficient time complexities is O(n∗∗2). This is a representation of

a double loop. Our Bubble Sort algorithm that we wrote uses a double for loop and is

known as one of the less efficient sorting algorithms in programming; however, it is

simple to understand, so it makes for a good introduction into algorithms. We’ll see

later today how Bubble Sort compares to another algorithm that is designed to be

much more efficient.

Chapter 9 Advanced Topics II: Complexity

235

When you compare a simple search that iterates through each element of a list to

an efficient algorithm like Binary Search, you begin to see that they don’t grow at the

same rate over time. Take Table 9-1 that illustrates the amount of time to search for a

given item.

Table 9-1.  Big O Notation growth rate comparison1

 Number of Elements Simple Search Binary Search

 The runtime in Big O Notation O(n) O(log n)

 10 10 ms 3 ms

 100 100 ms 7 ms

 10,000 10 sec 14 ms

 1,000,000,000 11 days 32 ms

We can clearly see that efficient algorithms can help to improve our programs speed.

Therefore, it’s important to keep efficiency and time complexity in mind when writing

your code. The picture in Figure 9-2 depicts the complexity of the number of operations

over the number of elements.

1�https://guide.freecodecamp.org/computer-science/notation/big-o-notation/

Chapter 9 Advanced Topics II: Complexity

https://guide.freecodecamp.org/computer-science/notation/big-o-notation/

236

Not all of Big O Notation is covered here, so be sure to do some further research if

you’d like to understand these concepts further. This is simply an introduction into what

Big O is and why it is important when writing our programs.

�Hash Tables
When we originally covered dictionaries, we went over hashing very briefly. Now that

we’ve covered Big O Notation, understanding hash tables and why they’re important is

much easier. Dictionaries can be accessed in O(1) complexity because of how they are

stored in memory. They use hash tables to store the key-value pairs. Before we cover

hash tables though, let’s have a quick refresher on the hash function and how to use it:

>>> a, c = 'bo', "bob"

>>> b = a

>>> print(hash(a), hash(b), hash(c))

Figure 9-2.  Big O Notation complexity over time chart

Chapter 9 Advanced Topics II: Complexity

237

From the preceding code, we would get the same values for a and b and a separate

value for the hash of c. Hash functions are used to create an integer representation of a

given value. In this case the integer for the string “bo” and the variables a and b are the

same; however, “bob” and the c variable are completely different because they have a

different value.

When dictionaries store key-value pairs into memory, they use this concept. A hash

table is used to store a hash, a key, and a value. The hash stored is used for when you

need to retrieve a given value by the key. Take Table 9-2, for instance. There are three

key-value pairs in place, all with different hash values. When you want to acces the value

for name, you would write:

>>> person["name"]

What happens is Python hashes the string “name” and looks for the hash value

rather than the key itself. You can think of this like retrieving an item within a list by its

index. This is much more efficient as you can retrieve values based on hashes almost

instantly at O(1) time.

Dictionaries are helpful data collections for not only keeping information connected

but also improving efficiency. Keep this in mind when you’re trying to answer

programming questions or making a program faster. Like the information on Big O

Notation, this is simply an introduction into hash tables. If you’d like to learn more, be

sure to look it up using Google, Quora, etc.

Table 9-2.  Logical representation of

Python hash table

 Hash Key Value

 2839702572 Name John Smith

 8267348712 Age 32

 -2398350273 Language Python

Chapter 9 Advanced Topics II: Complexity

238

�Dictionaries vs. Lists
To understand the true power of a hash table and Python dictionaries, let’s compare it

against a list. We’ll write a conditional statement to have Python check for a given item

within a dictionary and list, and we’ll time how long each one takes. We’re going to

separate the code into two cells. The first cell will generate the dictionary and list with 10

million items:

creating data collections to test for time complexity

import time

d = { } # generate fake dictionary

for i in range(10000000):

 d[i] = "value"

big_list = [x for x in range(10000000)] # generate fake list

Go ahead and run the cell. Nothing will happen yet. We’ve simply made the variables

within this cell so that we don’t have to re-create them, as it takes a couple seconds

depending on your computer. In the following cell, we’re going to keep a timer on how

long each data collection takes to find the last element. We’ll use the time module in

order to track the start and end time:

 1| # retrieving information and tracking time to see which is faster

 3| start_time = time.time() # tracking time for dictionary

 5| if 9999999 in d:

 6| print("Found in dictionary")

 8| end_time = time.time() – start_time

10| print("Elapsed time for dictionary: { }".format(end_time))

12| start_time = time.time() # tracking time for list

14| if 9999999 in big_list:

15| print("Found in list")

17| end_time = time.time() – start_time

19| print("Elapsed time for list: { }".format(end_time))

Go ahead and run the cell. On lines 3 and 12, we access the current time in UTC

format. After checking our conditions, we get the current time in UTC format again;

however, we subtract the start time from it to get the number of seconds the entire

Chapter 9 Advanced Topics II: Complexity

239

execution took. You’ll notice there’s a large difference between the two times. The list

will usually take between 1 and 1.5 seconds, whereas the dictionary is almost instant

every time. Now this doesn’t seem like that big of a difference, but what if you needed

to search for 1000 items. Using a list now becomes a problem, as a dictionary would

continue to do it instantly, but the list would take much longer.

Note T he time module gets time in UTC (universal time) unless otherwise stated.
UTC began on January 1, 1970. The number you see when you output time.time()
is the number of seconds since that day at 12:00 AM.

�Battle of the Algorithms
One of the most obvious ways to test time complexity is to run two algorithms against

each other. This will allow us to really see the power behind an efficient algorithm.

We’re going to test Bubble Sort against another sorting algorithm called Insertion Sort.

Although Insertion Sort isn’t the most efficient algorithm when sorting, we’ll find out

that it’s still much more powerful than Bubble Sort. Let’s go ahead and write out the two

sorting algorithms within the first cell:

 1| # testing bubble sort vs. insertion sort

 3| def bubbleSort(aList):

 4| for i in range(len(aList)):

 5| switched = False

 6| for j in range(len(aList) – 1):

 7| if aList[j] > aList[j + 1]:

 8| �aList[j], aList[j + 1] = aList[j + 1],

aList[j]

 9| switched = True

10| if switched == False:

11| break

12| return aList

14| def insertionSort(aList):

15| for i in range(1, len(aList)):

16| if aList[i] < aList[i – 1]:

17| for j in range(i, 0, -1):

Chapter 9 Advanced Topics II: Complexity

240

18| if aList[j] < aList[j – 1]:

19| �aList[j], aList[j + 1] = aList

[j + 1], aList[j]

20| else:

21| break

22| return aList

Go ahead and run the cell. Now that we’ve defined the two functions we need to call, let’s

set up some random data to be sorted and set up a timer like we did in the previous section:

 1| # calling bubble sort and insertino sort to test time complexity

 2| from random import randint

 4| nums = [randint(0, 100) for x in range(5000)]

 6| start_time = time.time() # tracking time bubble sort

 7| bubbleSort(nums)

 8| end_time = time.time() – start_time

 9| print("Elapsed time for Bubble Sort: { }".format(end_time))

11| start_time = time.time() # tracking time insertion sort

12| insertionSort(nums)

13| end_time = time.time() – start_time

14| print("Elapsed time for Insertion Sort: { }".format(end_time))

Go ahead and run the cell. It’s not even a contest. Insertion Sort is a more efficient

algorithm than its counterpart. Although both use the concept of a double for loop,

Bubble Sort’s steps are much more inefficient because it starts at the front of the list each

time. It’s always important to keep time complexity in mind when designing your program

and algorithms. If you’re ever unsure what’s best to use, try testing it like we have here.

THURSDAY EXERCISES

	1.	 Merge Sort: Do some research, and try to find out the “Big O” representation

for a Merge Sort algorithm.

	2.	 Binary Search: What is the max number of guesses it would take for a Binary

Search to find a number within a list of 10 million numbers?

Chapter 9 Advanced Topics II: Complexity

241

Although today was more about theory than any other part of this book, it’s one of
the most important aspects of programming. Big O Notation helps us to understand
the efficiency of our programs and algorithms. It’s always important to understand
why we use certain data collections like dictionaries or lists. When efficiency is
important, dictionaries can be implemented to improve a program. This is another
reason why we use dictionaries for caching.

�Friday: Interview Prep
If you’re looking for a new career or job as a Python developer, then all these lessons

would be for naught if you can’t pass the interview process. For this Friday, we’re

going to cover the process of a general software development interview. We’ll cover

each stage, what to do before and after the interview, whiteboarding, answering

general and technical questions, and how to contour your resumes and profiles. This

lesson is meant to be helpful for those either struggling on the interview process or

those of you who have never had a formal software development interview. If you

have no interest in this section, and wish to continue, use today as a break from this

book’s schedule.

�Developer Interview Process
The interview process for a developer role can be broken down into many different

stages. In the following, you’ll find the main stages that many companies in the

industry practice. Keep in mind that this is a general interview process and not every

company will follow these to a tee. Use this section as more of a guide on what to

possibly expect:

•	 Stage 1

–– Basic questions about yourself along with past work experience.

The first step will usually be a phone call with a 3rd party recruiter,

internal recruiter, HR, or talent acquisition of the company.

During the first step of the interview process, the interviewer is

trying to gauge if you are the correct fit for the role. They are

looking for you to mention the “Buzzwords” along with providing

Chapter 9 Advanced Topics II: Complexity

242

information on why you are a good fit for the position. You want to

relate yourself to the position. Be sure to talk about your experi-

ence using the languages and technologies they’re looking for.

The interviewer is looking for you to meet half of the requirements

to make yourself a good match. No one will ever know everything,

but it is good to show them what you know and your willingness to

learn.

Note  Buzzwords are keywords that the position is looking for. For example, a
back-end position using Python would expect to hear words like API, JSON, Python,
Flask, Django, Jinja, Relational Databases, PostgreSQL, etc.

•	 Stage 2

–– If you’ve made it past the phone screen, you’ll usually be asked to

come in for an in-person interview. This stage is generally where

you meet other developers that currently work at the company.

Although they’ll ask you interview questions, this stage is generally

for the employees to see if they would like to work with you and

get to know you on a more personal level. Generally, you’ll inter-

view with small groups of employees at a time. You’ll have about

two to five of these sessions that will last around 10–15 minutes

each. Before hiring an individual, these groups will generally get

together to discuss potential candidates for the next stage. During

this stage, be sure to properly introduce yourself and shake each

person’s hand. Get to know each employee, and try to relate with

them on a personal level.

•	 Stage 3

–– This is the technical round. In this stage, questions will be asked

to assess the developer’s skills and abilities. Generally, there will

be a whiteboarding question, a couple technical questions on

paper, and a brain teaser. This stage is generally conducted with

the hiring manager, or team manager that you’ll be working with.

When asked a question, make sure you understand it clearly. You

are more than welcome to ask as many questions as you need to

Chapter 9 Advanced Topics II: Complexity

243

clearly understand the problem before answering the question. If

you do not know the answer to the question, let the interviewer

know that you have not worked with that concept or do not see

the problem. The interviewer during this stage will know if you

have no idea what you’re talking about so don’t try and make

something up. They’ll be more impressed with your honesty and

try to guide you through the problem. During this stage, they

don’t care if you’re right or wrong. They’re more interested in how

you think and how well you can problem-solve.

•	 Stage 4

–– At this point, you’re generally sitting with the hiring manager or

an HR personnel. In this stage, you can ask questions about the

company, as well as the job role. If you’ve made it this far, the

company has seen value in you as a potential employee. Usually,

this is where contract negotiations and salary conversations

occur. At the end of the interview, always have questions ready to

ask and lots of them. If you have no questions, it’s generally a sign

of not being prepared or laziness.

�What to Do Before the Interview
In almost everything that you do in life, you can never be too prepared. The same goes

for interviewing. The following are tips for what you should do before your interview:

•	 Research

–– Be sure to research the company you’re interviewing for. Don’t

just understand what products they create, or services they offer,

but know what charities they support, the companies they partner

with, etc. It shows that you’re involved and care about the compa-

nies’ well-being. A little goes a long way.

•	 Be Prepared

–– Put together a folder or portfolio of that includes your resume, a

pad of paper for taking notes during the interview, examples of

work, etc.

Chapter 9 Advanced Topics II: Complexity

244

•	 Resume

–– Always print on resume on higher quality paper.

–– Contour your resume to the job you’re interviewing for. For

example, for back-end roles, mention Python, SQL, database-

related technologies, etc.

–– Keep your resume to a single page.

–– Don’t add any fluff.

–– Keep it organized with sections like experience, skills, and

education.

–– Think of your resume as a 30-second elevator pitch.

–– Often, it helps to have a designer overlook your resume. Some

sites will do this for a small fee but help to make your resume look

more professional and organized.

•	 Portfolio Web Site

–– Not all developers have personal web sites, but it certainly looks

bad when you don’t. Imagine going to a dentist that has no teeth.

View yourself as the product that you’re trying to sell to compa-

nies, you should have a web site that shows your skills and allows

others to contact you.

•	 Github

–– Almost every hiring agency and company will look to your Github

to see the projects you’ve worked on.

–– It’s best to have complete projects on your portfolio as well. One

major project will always stand out better than 10 minor projects.

–– Include your Github account in your resume, portfolio web site,

and e-mails.

•	 LinkedIn

–– Most recruiters and companies are on LinkedIn for one reason,

and that’s to look for potential candidates for a job posting.

Chapter 9 Advanced Topics II: Complexity

245

–– Make sure your profile is up to date with all relative information

and projects that you’ve worked on.

–– Your profile picture should be professional. You don’t need to be

in a suit and tie, but it’s best not to have a picture of you on a

beach.

–– Look at this web site as your professional networking service.

–– Post often with information from the field you want to work in.

The more you post, the more apt a recruiter is to recognize you.

•	 Social Media

–– Make it private or keep it clean. You better believe companies will

look at your posts for a way to understand who you are, and if they

don’t like what they see, you won’t be getting a call back.

•	 Apply Directly

–– It always looks more professional to send in an application directly

to the company. Often, you’ll find a job you like on Indeed or

ZipRecruiter; however, these companies get flooded with applica-

tions every day on these sites, and they generally have algorithms to

eliminate most candidates. Sending a direct e-mail shows that you

put time and effort into directly contacting the company.

�General Questions
The following is a list of general nontechnical questions, followed by an example of

a good answer. These questions were selected because they are usually asked and

answered improperly:

•	 What salary are you looking for?

–– “I don’t have an exact number right now. I’d like to do some more

research on what other companies are offering for a similar

position. What do you pay your employees on average for this

position?”

–– Never state a number when they ask, this provides leverage for

them during any negotiation process.

Chapter 9 Advanced Topics II: Complexity

246

–– Counter their question with another question.

–– If they continue to ask you for a number, simply state the same

response.

•	 Where do you see yourself in five years?

–– “I’m more so focused on my skills over the next five years. I know

that focusing on continuing my education and improvement of

myself will lead me to where I need to be.”

–– Focusing on improving your skills shows compassion.

•	 Why did you want to be a software developer?

–– “I’ve always been intrigued by being able to build something out

of nothing, and I’ve always enjoyed a challenge. When you’re able

to solve problems and build applications, it’s a wonderful feeling.”

–– Show the passion that you have as a developer; it will always

come off as a strength.

–– Never mention it’s about money, even if it is.

•	 Why are you changing careers?

–– “It felt like I wasn’t being challenged enough in my previous

career and I’ve always been interested in programming and the

thrill that comes with building applications that improve people’s

lives.”

–– Like the previous question, show the passion and drive that you

have for this career.

–– Explaining that you like to be challenged shows your not lazy.

–– Never mention it’s about money, even if it is.

•	 Why do you want to work here?

–– “The applications that you build here help so many users around

the world, and I’d love to be a part of that.”

–– Talk about the applications or charities that the company works

with. It shows that you have passion, work well in teams, and that

your driven.

Chapter 9 Advanced Topics II: Complexity

247

–– Mentioning the culture of the company would be a great answer

as well.

–– Do not mention salary, benefits, or even worse… have no answer.

•	 Tell me about a tough software problem and how you solved it.

–– “I was working on a project where I was assigned to implement

the Steam API into the application. Unfortunately, the API

wouldn’t connect properly. Using the debugger, I set break

points at the import and function call locations. After realizing

that they weren’t being hit at all, I figured it must be an issue

with connecting. Having tried several import variations, and

reading through the documentation, I decided to set up the

application to close when the function was hit. When I ran the

program the next time, it closed instantly. Realizing that the

function is being called, but the application isn’t running prop-

erly, I figured it had to be an import issue. It wasn’t until I tested

the API in a more up-to-date application that the problem was

due to the code being written in version 2.2, when the API

required version 3.6. In order to connect the API, I had to manu-

ally import the library through a mapper function that could

translate the code between versions. After realizing that the

mapper worked, I was able to implement the libraries that the

Steam API included in its SDK.”

–– Go as in depth as you can with the problem. They want to

know every little detail that caused the issue, how you fixed

the problem, and all the ideas you had in trying to solve the

problem. Although the preceding answer may not have made

much sense to you right now, it shows the problem, what I did

to try and find the issue, as well as how I came up with a solution

once I found the problem.

Chapter 9 Advanced Topics II: Complexity

248

�Whiteboarding and Technical Questions
This section is a list of tips that you should consider using during the third stage of the

interview process for both whiteboarding and technical questions:

•	 Take Your Time

–– There’s absolutely no rush to solve a problem. Think through a

proper solution first before answering the question. Often, you’ll

think of two or three different solutions given time.

•	 Speak Out Loud

–– Always talk through your thought process. It makes the interviewer

feel more comfortable so that you’re both not sitting in a quiet

room while you think.

–– It shows the interviewer your ability to problem-solve.

–– Even if you don’t give the correct answer, they can at least

understand where you went wrong and offer some guidance.

•	 Steps > Syntax

–– When whiteboarding, you’ll need to write out a function or some

lines of code on the board in front of the interviewer. The most

important thing to remember is that your thought process is more

important than your actual code.

–– You can have syntactical bugs on a whiteboard and still pass the

interview; however, having an incorrect algorithm or set of steps

will cause you to fail.

•	 Ask Questions

–– If you’re unsure, ask questions. It’s perfectly fine to ask questions

when trying to solve a problem.

–– Keep in mind the questions you ask matter though. There’s a big

difference in asking what a sort method does, compared to what

type of sort method would you like me to use.

Chapter 9 Advanced Topics II: Complexity

249

•	 Algorithmic Complexity

–– Always keep in mind the complexity of an algorithm. You’ll

generally be asked after you write your code if there is a way to

improve the performance of it even further.

–– Know the Big O Notation category of the algorithm you just wrote.

–– Think about what data types or collections would work best for

your scenario.

•	 Be Honest

–– If you don’t know an answer, absolutely do not try and talk your

way through it. The interviewer during this stage is a professional

developer and can pick apart anything that doesn’t make sense.

–– Being honest and saying you’re not sure but are willing to learn

the material will always prove to be a better method of answering

questions you don’t know how to solve.

�End of Interview Questions
You never want to be empty handed at the end of an interview when they ask if you have

any questions. It’s usually good practice to take notes during an interview and write

down questions as you think of them. In the following, you’ll find a list of questions that

you should consider asking:

•	 How is the commute?

•	 Is parking free?

•	 Do you hold social events?

•	 If I wanted to further my career skills, do you guys offer any services or

tuition reimbursement?

•	 What kind of benefits do you offer?

•	 What is the company culture like?

•	 How many people will be working on the team with me?

•	 Will there be mentoring involved?

•	 Can you tell me more about the day-to-day responsibilities of this role?

Chapter 9 Advanced Topics II: Complexity

250

•	 What do you like best about working for this company?

•	 What is the typical career path within this company for someone in

this role?

•	 What are the next steps in the interview process?

•	 What might I expect in a typical day?

•	 What charities does this company support?

•	 Are there any company activities, like sports teams?

�What to Do After the Interview
Even if you pass the first three stages, you can still fail miserably if you don’t execute the

proper steps following the interview. In the following, you’ll find examples of what you

should do once the interview process is complete:

•	 Follow Up

–– Always, always, always send an e-mail to the interviewer imme-

diately, thanking them for their time. It shows respect and is a

courteous gesture.

•	 Critique Yourself

–– Understand your own mistakes. Don’t take it personal; the only

way you can get better is by understanding and self-reflecting.

•	 Continue Building

–– Always be working on projects and trying to improve your

portfolio.

–– Stay up to date with the latest libraries, languages, and

technologies.

–– Update your resume and portfolio often.

•	 Adventure Out

–– Go out to local networking events in your area. This is where

you’ll meet most of your connections. It’s always easier to land a

job when you know someone who works in the company.

Chapter 9 Advanced Topics II: Complexity

251

–– Events like code alongs, or hackathons, are a great way to meet

other developers looking to work together.

•	 Rejection

–– It happens, you won’t always get the job. If it does occur, be sure

to ask the interviewer in a courteous manner as to why you didn’t

get the job. Don’t take it personally; instead use this information

to become a better developer and improve.

Today was all about understanding the interview process and how you can
improve your interviewing skills. Even the greatest programmers can be terrible
interviewers. It takes a lot of hard work and focus to land the proper job, and even
then, it may not work out. The best advice is to just continue to improve your skills
and network with other software developers.

�Weekly Summary
This week was the second portion of the more advanced Python concepts. Much of the

lessons taught this week were important for not only interviewing but for improving the

performance of your projects. Iterators and generators are a type of object that can be

used to create better looping structures and algorithms. Being able to use decorators will

help to improve function capabilities and are widely used within frameworks like Flask

or Django. Modules allow us to use other developer’s code by importing the functions or

entire files into our program. Being able to write our own modules allows us to reduce

the amount of code in each file. You generally want to stay as organized as possible

because it makes the project easier to read, maintain, and fix. If there’s one topic you

need to understand from this week, however, it would be Big O Notation. Understanding

how Big O works can help in job interviews and knowing how to improve the speed of

an application. There are more advanced topics to cover on Python and programming in

general, but these last two weeks will give you enough to start building your own projects

and even move on to learning about frameworks and larger-scale applications using

databases.

Chapter 9 Advanced Topics II: Complexity

252

�Challenge Question Solution
We were able to review the exact answer to this question during the lesson from

Thursday. It was easy to see that dictionaries are clearly the more efficient way to store

and retrieve data. It’s always important to keep in mind the proper data structures to use

when working with large sets of data. You can be sure that similar questions will be asked

in an interview process.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 Understanding the Market: Go on to a job application web site

like Indeed or Monster, and look up potential jobs that you’re

interested in. Make notes of the qualifications and technologies

they’re looking for. After looking at several job descriptions, what

are the top three technologies? These should be your focus going

forward.

	 2.	 Shopping Cart Module: Take the code from our Shopping Cart

program that we wrote a few weeks back, and put it into a module.

In Jupyter Notebook, run the module, and get the program to work

properly.

	 3.	 Enhanced Shopping Cart: Add a new feature into the program

that allows the user to save the cart. Upon running the program,

the saved cart should load. The method should be written within

the module. Hint: Use a CSV or text file.

	 4.	 Code Wars: Make an account on www.codewars.com and try to

solve some problems. Code Wars has been used for interview

practice problems, improving your algorithm and problem-

solving skills, and much more. It will help to increase the skills

taught in this book. Try to solve a problem a day, and you’ll notice

your Python programming skills will improve.

Chapter 9 Advanced Topics II: Complexity

http://www.codewars.com

253
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7_10

CHAPTER 10

Introduction to Data
Analysis
Up to this point, we’ve covered enough Python basics and programming concepts to

move on toward bigger and better things. This week will encompass a full introduction

into the data analysis libraries that Python has to offer. We won’t go in depth like other

books that focus on this subject; instead we’ll cover enough to get you well on your way

to analyzing and parsing information.

We’ll learn about the Pandas library and how to work with tabular data structures,

web scraping with BeautifulSoup and understanding how to parse data, as well as data

visualization libraries like matplotlib. At the end of the week, we’ll use all these libraries

together to create a small project that scrapes and analyzes web sites.

Overview

•	 Working with Anaconda environments and sending requests

•	 Learning how to analyze tabular data structures with Pandas

•	 Understanding how to present data using matplotlib

•	 Using the BeautifulSoup library to scrape the Web for data

•	 Creating a web site analysis tool

254

CHALLENGE QUESTION

Imagine you’re a data analyst and you’ve just been handed a set of data that shows the

number of accidents for all drivers, their ages, and the size of their engines. You need to figure

out a way to display this information so that it tells a story. Normally you would create a graph

with x, y, z coordinates; however, that can become complicated, and you don’t have time for

that. How would you render the information so that it’s still considered 3-dimensional, but you

can only use the x and y axis?

�Monday: Virtual Environments and Requests Module
Today we’ll be learning all about virtual environments, why we need them and how to

use them. They’re necessary for what we need to do this week, which is downloading

and importing a few libraries to work with. We’ll also get into the requests module and

cover APIs briefly.

For today’s lesson, we won’t be starting out in Jupyter Notebook; instead open the

terminal and cd into the “python_bootcamp” folder if you haven’t already. If you have

the terminal running Jupyter Notebook, be sure to stop it, as we need to write some

commands in the terminal.

�What Are Virtual Environments?
Python virtual environments are essentially a tool that allows you to keep project

dependencies in a separate space from other projects. Most projects in Python need

to use modules that are not included by default with Python. Now, you could simply

download the modules (or libraries) into your Python folder to use; however, that could

cause some issues down the road. Let’s say you’re working on two separate projects,

where the first one uses Python version 2.7 and the second project uses Python version

3.5. If you try and use the same syntax for both, you’ll run into several issues. Instead,

you would create two separate virtual environments, one for each project. This way both

projects can run properly using the correct dependencies because of the personalized

virtual environment.

Chapter 10 Introduction to Data Analysis

255

Note  When creating a virtual environment, a folder called “venv ” will appear.
This is where all the libraries that you download are saved. Simply put, a virtual
environment is not much more than a folder that stores other files.

As an analogy to understand virtual environments, first picture our own planet.

Now think of it as an environment filled with grass, sun, clouds, air, etc. In the case

of programming, Python would be like the planet, and the grass, sun, clouds, and air

would be like libraries that you need to include in the environment. As Python does

not come included with them, we would create a virtual environment to store these

libraries so that we may import them into our project when needed. If you think of

Mars, that would be another project, with a separate virtual environment specifically

made for that program.

Virtual environments can often be a tough concept to grasp for anyone seeing it

for the first time, so here’s another analogy. Imagine you’ve planned two vacations,

one to the beach and the other to go skiing. Rather than using the same suitcase

filled with mixed clothes, you’ve decided to pack two separate suitcases. The one for

the beach will include a bathing suit, sunglasses, and flip-flops. The other suitcase

will include a jacket, skiis, and boots. In the following, you can find the relationships

within this analogy:

•	 Vacations ➤ Projects

•	 Suitcases ➤ Virtual Environments

•	 Clothes and Accessories ➤ Project Dependencies/Files

Note R emember from the first chapter, when working in terminal, you’ll see the
$ next to the commands that we enter. For the next few sections, we’ll be working
inside of terminal.

Chapter 10 Introduction to Data Analysis

256

�What Is Pip?
Pip is the standard package manager for Python. Anytime you need to download,

uninstall, or manage a library or module to use within your project, you use pip. It has

been included in all installations of Python since v3.4. To check your version of pip, write

the following in terminal:

$ pip --version

Feel free to visit the Python Package Index (PyPI) to view all the possible libraries

that you’re able to download. You can use any of them in your future projects. For today,

we’ll learn how to install and use the requests module, but first, let’s create and activate a

virtual environment.

�Creating a Virtual Environment
One of the big reasons Anaconda is such a wonderful tool is because of its ability to

organize virtual environments for us. We’re going to use it to create our first virtual

environment. While in terminal, type in the following command:

$ conda create --name data_analysis python=3.7

Go ahead and run the command. It’ll then ask you if you’d like to proceed by

typing in “y” or “n”, simply type “y” for yes and hit enter. A folder will be created within

the Anaconda directory in our program files. The folder will be given the name of

“data_analysis.” We’ve just created our own virtual environment using Python version

3.7. In order to use it, we must activate it. If you wanted to use Python’s default virtual

environment system, you can use the keyword “virtualvenv.” Be sure to look that up if

you’re interested. We will use Conda’s environments for the ease of use throughout this

chapter.

Note  You can create a conda environment from anywhere; you do not need to be
cd’ed into a specific folder.

Chapter 10 Introduction to Data Analysis

257

�Activating the Virtual Environment
The second step in using a virtual environment is activating it. Activating an

environment allows the computer to execute our scripts from a separate executable. By

default, we use the Python executable file stored in our program’s directory. We can see

the PATH of the executable by entering the following commands into the terminal:

We need to activate the Python shell first:

$ python

Now we can view the PATH by typing in the following lines:

>>> import os

>>> import sys

>>> os.path.dirname(sys.executable)

You’ll notice that the PATH is your default folder where Python was originally

installed. Go ahead and exit the Python shell once you’re done. We’ll come back to these

same commands at the end of this section to see how the PATH has changed once the

environment is activated.

Once you create the environment, you don’t need to create it again; you can simply

activate it anytime you need to use it. Before you’re able to download libraries into the

environment, you must first activate it. Depending on your operating system, write the

following command in terminal:

For Windows:

$ activate data_analysis

After activating the environment, you’ll see the name appear within parenthesis on

the left side of the terminal. It will be shown like the following:

 >>> (data_analysis) C:\Users...

For Mac/Linux:

$ source activate data_analysis

Chapter 10 Introduction to Data Analysis

258

Like Windows, after activating the environment, you’ll see the name to the left of

your directory:

 >>> (data_analysis) <User>~/Desktop...

If you can see the name on the side, you’ve successfully activated the environment.

Before we move on, let’s see where our executable is now by running the same

commands in the Python shell from the beginning of this section, to view the PATH of

the executable:

>>> import os

>>> import sys

>>> os.path.dirname(sys.executable)

After running those same lines, you’ll notice that a different PATH has been output.

This is the executable of our Conda environment that will be running our scripts. Now

we can begin to install any libraries or packages we may need to work with.

�Installing Packages
To install packages into the virtual environment, we’ll use pip. The syntax is always the

same to install any package. It’s the keywords pip install, followed by the package name.

In our case, we’ll be working with the requests package today. Let’s write the following

command:

$ pip install requests

Go ahead and run the command. We’ve just installed the requests module into

our environment to work with. To be sure that it installed properly, write the following

command:

$ conda list

This command lists out all the packages that are installed within this environment.

You’ll be able to see the requests package that we just downloaded as well as the other

packages that were downloaded initially when we created the environment.

Chapter 10 Introduction to Data Analysis

259

�APIs and the Requests Module
The requests module allows us to make HTTP requests using Python. It is the standard

library for making API calls and requesting information from outside resources.

Note  If you’re unfamiliar with HTTP requests, I suggest checking out the
w3schools1 resource for more information, as this book is not designed to cover
networking.

An application programming interface (API) is a set of functions and procedures

that allow applications to access the features or data of an operating system, application,

or other service. In a simpler description, APIs allow us to interact with web pages

and software designed by other developers. Imagine you need some data on housing

prices. Rather than collecting all that information yourself, you could use the resources

that major companies like Zillow and Trulia have put together. In order to access

that information, you need to call their API, which will return the data that you need.

APIs make a developer’s life easier because we can use data or tools created by other

companies within our projects.

�Using the Requests Module
Now that we’ve created and activated our environment and installed the package that

we’ll be working with for the rest of the day, we can open Jupyter Notebook.

Note  If you do not have the environment activated or the requests module
installed, then you will receive errors. Be sure to activate the environment, and
check that the requests module is installed.

To follow along with the content for the rest of the lesson, open up Jupyter Notebook

from our “python_bootcamp” folder in terminal. Once it’s open, create a new file, and

rename it to “Week_10.” Next, make the first cell markdown that has a header saying:

“Virtual Environments and Requests Module.” We’ll begin working underneath that cell.

1�www.w3schools.com/tags/ref_httpmethods.asp

Chapter 10 Introduction to Data Analysis

https://www.w3schools.com/tags/ref_httpmethods.asp

260

�Sending a Request

For this lesson, we’ll be requesting information from an API created by Github.

Generally, APIs require a key in order to use their service; however, we’ll be using one

that doesn’t require an API key. To begin, we must send a request to a specific URL,

which will send a response back to us. That response will include data that we’ll be able

to parse through. Write the following:

1| # sending a request and logging the response code

3| import requests

5| r = requests.get("https://api.github.com/users/Connor-SM")

7| print(r)

8| print(type(r))

Go ahead and run the cell. In order to use requests, you must import it, which is what

we do on line 3. Next, we use the get() method within the requests object in order to

request information from the given URL that we pass in. The data we expect to get back

will be the profile information for my Github account. Feel free to replace “Connor-SM” in

the URL with your own profile username. The first print statement will output a response

code. You should get back “<Response [200]>”; if you don’t, be sure to check your

Internet connection. This output is letting us know that we were successful in requesting

information from the Github URL. For a list of response codes and what they mean, be sure

to visit w3schools2 resource. The second print statement will output the type of our variable,

which is a request object. All request objects come preloaded with default methods and

attributes that we can access. This will allow us to work with the data that we received.

�Accessing the Response Content

In order to access the data that we get back in the response, we need to access the

content attribute within our requests object:

accessing the content that we requested from the URL

data = r.content

print(data)

2�www.w3schools.com/tags/ref_httpmessages.asp

Chapter 10 Introduction to Data Analysis

https://www.w3schools.com/tags/ref_httpmessages.asp

261

Go ahead and run the cell. We’ll get a byte string output with lots of brackets and

information in a way that’s difficult to read. Responses from APIs are generally sent in

string format, as strings are much lighter data types than objects. The actual response

that we get back is in JSON formatting. JavaScript Object Notation (JSON) format is the

equivalent of a Python dictionary and is the default format to send data via a request.

The next step is to convert the data from a JSON formatted string into a dictionary that

we can parse.

�Converting the Response

Luckily for us, the requests object comes with a built-in JSON conversion method called

json(). After we convert the response to a dictionary, let’s output all the key-value pairs:

converting data from JSON into a Python dictionary and outputting all

key-value pairs

data = r.json() # converting the data from a string to a dictionary

for k, v in data.items():

 print("Key: { } \t Value: { }".format(k, v))

print(data["name"]) # accessing data directly

Go ahead and run the cell. All the information is now easy to read and access, as

seen through the for loop implementation and the simple print statement.

�Passing Parameters

Most API calls that you perform will require extra information like parameters or

headers. This information is taken in by the API and used to perform a specific task.

Let’s perform a call this time while passing parameters in the URL to search for Python-

specific repositories on Github:

outputting specific key-value pairs from data

r = requests. get("https://api.github.com/search/repositories?q=language:

python")

data = r.json()

print(data["total_count"]) # �output the total number of repositories

that use python

Chapter 10 Introduction to Data Analysis

262

Go ahead and run the cell. There are a couple different ways that we can send

parameters through the request. In this case, we’ve written them directly into the URL

string itself. You may also define them within the get method like the following:

>>> requests.get("https://api.github.com/search/repositories",

>>> params = { 'q' = 'language:python' })

When sending parameters through the URL, you separate the URL and the

parameters with a question mark. To the right of the question mark are a set of key-value

pairs that represent the parameters being passed. For our example, the parameter being

passed has a key of “q” and a value of “requests+language:python”. The API on Github

will take this information and give us back the data on repositories that use Python,

because that’s what we asked for in our parameters. Not all APIs require parameters,

however, like our first call previously in this lesson. To figure out what is required

when calling an API, always read the documentation. Good documentation for APIs is

everything and can make your life as a developer much easier.

Note T o stop running the virtual environment, simply write into the terminal
“deactivate.” You will be asked to activate the environment before each lesson this
week.

MONDAY EXERCISES

	1.	 Test Environment: Create a new virtual environment called “test.” When

creating it, install Python version 2.7 instead of the current version. After

it’s completed, make sure it installed the proper version of Python by

checking the list.

	2.	 JavaScript Repositories: Using the requests module and the Github API link in

our last lesson, figure out how many repositories on Github use JavaScript.

Chapter 10 Introduction to Data Analysis

263

Today was an important introduction into data analysis. Not only did we cover how
to use virtual environments and why, but we also went over the requests module
with a brief introduction into APIs. When using any library for the rest of the week,
we’ll need to activate our data_analysis virtual environment. At the end of the
week, we’ll cover web scraping, which requires us to use the requests module.

�Tuesday: Pandas
When you need to work with data, Pandas is the ultimate tool. It’s essentially Excel on

steroids. If you’re familiar with the SQL language, this will come easier to you, as Pandas

is a mix of Python and SQL. By the end of the day, you’ll be able to analyze and work with

tabular data in a more efficient way than other traditional methods.

Like how yesterday’s lesson began, we need to install the Pandas library into our

virtual environment. To follow along with today’s lesson, cd into the “python_bootcamp”

folder, and activate the environment. We’ll begin today within the terminal.

Note  If you can’t remember how to activate the environment, go back to
yesterday’s lesson.

�What Is Pandas?
Pandas is a flexible data analysis library built within the C language, which is excellent

for working with tabular data. It is currently the de facto standard for Python-based data

analysis, and fluency in Pandas will do wonders for your productivity and frankly your

resume. It is one of the fastest ways of getting from zero to answer. Having been written

in C, it has increased speed when performing calculations. The Pandas module is a high

performance, highly efficient, and high-level data analysis library. It allows us to work

with large sets of data called DataFrames.

Note  NumPy is a fundamental package for scientific computing in Python. Built
from the C language, it uses multidimensional arrays and can perform calculations
at high-rate speeds.

Chapter 10 Introduction to Data Analysis

264

The Pandas library is useful in so many ways that you can do any of the following

and more:

•	 Calculate statistics and answer questions about the data like average,

median, max, and min of each column

•	 Finding correlations between columns

•	 Tracking the distribution of one or more columns

•	 Visualizing the data with the help of matplotlib, using plot bars,

histograms, etc.

•	 Cleaning and filtering data, whether it’s missing or incomplete, just

by applying a user-defined function (UDF) or built-in function

•	 Transforming tabular data into Python to work with

•	 Exporting the data into a CSV, other file, or database

•	 Feature engineer new columns that can be applied to your analysis

No matter what you need to do with data, Pandas is your end-all-be-all

analysis library.

�Key Terms
The following are key terms we’ll be using throughout this section. Be sure to look over

them and reference them when necessary:

•	 Series ➤ One-dimensional labeled array capable of holding data of

any type

•	 DataFrame ➤ Spreadsheet

•	 Axis ➤ Column or row, axis = 0 by row; axis = 1 by column

•	 Record ➤ A single row

•	 dtype ➤ Data type for DataFrame or series object

•	 Time Series ➤ Series object that uses time intervals, like tracking

weather by the hour

Chapter 10 Introduction to Data Analysis

265

�Installing Pandas
To install Pandas, make sure your virtual environment is activated first, then write the

following command into the terminal:

$ pip install pandas

After running the command, it should install a few packages that Pandas requires. If

you’d like to check and make sure you downloaded the proper library, just write out the

list command.

�Importing Pandas
To follow along with the rest of this lesson, let’s open and continue from our previous

notebook file “Week_10” and simply add a markdown cell at the bottom that says,

“Pandas.”

Importing Pandas is simple; however, there is an industry standard when you import

the library:

importing the pandas library

import pandas as pd # industry standard name of pd when importing

Go ahead and run the cell. We import Pandas as pd because it’s shorter and easier to

reference.

�Creating a DataFrame
The central object of study in Pandas is the DataFrame, which is a tabular data structure

with rows and columns like an Excel spreadsheet. You can create a DataFrame from a

Python dictionary or a file that has tabular data, like a CSV file. Let’s create our own from

a dictionary:

 1| �# using the from_dict method to convert a dictionary into a Pandas

DataFrame

 2| import random

Chapter 10 Introduction to Data Analysis

266

 4| �random.seed(3) # generate same random numbers every time, number

used doesn't matter

 6| �names = ["Jess", "Jordan", "Sandy", "Ted", "Barney", "Tyler",

"Rebecca"]

 7| ages = [random.randint(18, 35) for x in range(len(names))]

 9| people = { "names" : names, "ages" : ages }

11| df = pd.DataFrame.from_dict(people)

12| print(df)

Go ahead and run the cell. We import the random module so that we may create

random ages for our people on line 7. Using the seed method on line 4 will give us both

the same random numbers to work with. You could pass any number as the argument

into seed; however, if you use a number other than 3, you’ll get a different output than

this book.

Note R andom numbers aren’t truly random; they follow a specific algorithm to
return a number.

After we generate a list of names and random ages for each person, we create a

dictionary called “people.” The magic truly happens on line 11, where we use Pandas to

create the DataFrame that we’ll be working with. When it’s created, it uses the keys as

the column names, and the values match up with the corresponding index, such that

names[0] and ages[0] will be a single record. You should output a table that looks like

Table 10-1.

Chapter 10 Introduction to Data Analysis

267

�Accessing Data
There are a few different ways that we can access the data within a DataFrame. You have

the option to choose by the column or by the record. Let’s look at how to do both.

�Indexing by Column

Accessing data by a column is the same as accessing data from a dictionary with the key.

Within the first set of brackets, you put the column name that you would like to access. If

you’d like to access a specific record within that column, you use a second set of brackets

with the index:

1| # directly selecting a column in Pandas

2| print(df["ages"])

3| �print(df["ages"][3]) # �select the value of "ages" in the fourth

row (0-index based)

5| # print(df[4]) doesn't work, 4 is not a column name

Go ahead and run the cell. On line 2 we output the entire ages column of data. The

second statement allows us to access the value at a specific cell. Be careful though,

putting the index number in the first set of brackets will create an error, as the first set is

only meant for column names and “4” is not a column.

Table 10-1.  DataFrame

created from fake data

ages names

 0 25 Jess

 1 35 Jordan

 2 22 Sandy

 3 29 Ted

 4 33 Barney

 5 20 Tyler

 6 18 Rebecca

Chapter 10 Introduction to Data Analysis

268

�Indexing by Record

When you need to access an entire record, you must use loc. This allows us to specify the

record location via the index. Let’s access the entire first record, then the name within

that record:

directly selecting a record in Pandas using .loc

print(df.loc[0])

print(df.loc[0]["names"]) �# selecting the value at record 0 in the

"names" column

Go ahead and run the cell. We can see that we’re able to output the entire record.

In the case of using loc, you must specify the record index location first, then the

column name.

�Slicing a DataFrame

When you want to access a specific number of records, you must slice the DataFrame.

Slicing in Pandas works the exact same way as a Python list does, using start, stop, and

step within a set of brackets. Let’s access the records from index 2 up to 5:

slicing a DataFrame to grab specific records

print(df[2:5])

Go ahead and run the cell. This will output the records at index 2, 3, and 4. Again,

be careful when slicing as leaving off the colon would result in trying to access a

column name.

�Built-in Methods
These are methods that are frequently used to make your life easier when using Pandas.

It is possible to spend a whole week simply exploring the built-in functions supported by

DataFrames in Pandas. However, we will simply highlight a few that will be useful, to give

you an idea of what’s possible out of the box with Pandas.

Chapter 10 Introduction to Data Analysis

269

�head()

When you work with large sets of data, you’ll often want to view a couple records to get

an idea of what you’re looking at. To see the top records in the DataFrame, along with the

column names, you use the head() method:

accessing the top 5 records using .head()

df.head(5)

Go ahead and run the cell. This will output the top five records. The argument

passed into the method is arbitrary and will show as many records as you want from

the top.

�tail()

To view a given number of records from the bottom, you would use the tail() method:

accessing the bottom 3 records using .tail()

df.tail(3)

Go ahead and run the cell. This will output the bottom three records for us to view.

�keys()

Sometimes you’ll need the column names. Whether you’re making a modular script or

analyzing the data you’re working with, using the keys( ) method will help:

accessing the column headers (keys) using the .keys() method

headers = df.keys()

print(headers)

Go ahead and run the cell. This will output a list of the header names in our

DataFrame.

Chapter 10 Introduction to Data Analysis

270

�.shape

The shape of a DataFrame describes the number of records by the number of columns.

It’s always important to check the shape to ensure you’re working with the proper

amount of data:

checking the shape, which is the number of records and columns

print(df.shape)

Go ahead and run the cell. We’ll get a (7, 2) tuple returned, representing records and

columns.

�describe()

The describe method will give you a base analysis for all numerical data. You’ll be able

to view min, max, 25%, 50%, mean, etc., on all columns just by calling this method on the

DataFrame. This information is helpful to start your analysis but generally won’t answer

those questions you’re looking for. Instead, we can use this method as a guideline of

where to start:

checking the general statistics of the DataFrame using .describe(),

only works on numerical columns

df.describe()

Go ahead and run the cell. Remember that it’ll only give back information on

numerical column types, which is why we only see an output for the ages column.

�sort_values()

When you need to sort a DataFrame based on column information, you use this method.

You can pass in one or multiple columns to be sorted by. When passing multiple, you must

pass them in as a list of column names, in which the first name will take precedence:

sort based on a given column, but keep the DataFrame in tact using

sort_values()

df = df.sort_values("ages")

df.head(5)

Chapter 10 Introduction to Data Analysis

271

Go ahead and run the cell. In this cell, we’ve re-declared the value of our df variable

to our newly sorted DataFrame. This way we can view all the people sorted by age. You

may also pass in an argument to sort in descending order.

�Filtration
Let’s look at how to filter DataFrames for information that meets a specific condition.

�Conditionals

Rather than filtering out information, we can create a boolean data type column that

represents the condition we’re checking. Let’s take our current DataFrame and write a

condition that shows those who are 21 or older and can drink:

using a conditional to create a true/false column to work with

can_drink = df["ages"] > 21

print(can_drink)

Go ahead and run the cell. When you want to create a column based on a boolean

data type, you need to write out the condition based on the entire column. Here, we

created a can_drink variable that is storing the entire ages column values. They are

true-false values because of our condition that we created. We could potentially use this

to create another column to work with.

�Subsetting

When you need to filter out records but retain the information within the DataFrame

you need to use a concept called subsetting. We’ll use the same condition as earlier,

except this time we’ll use it to filter out records rather than create a true-false

representation:

using subsetting to filter out records and keep DataFrame intact

df[df["ages"] > 21]

Chapter 10 Introduction to Data Analysis

272

Go ahead and run the cell. The output results in only those records whose ages

are equal to or above the age of 21. We took the condition from above and wrapped it

within brackets while accessing the df variable. Although it may look weird, the syntax

representation is the following:

>>> dataframe_variable [conditional statement to filter records with]

You could also write the following for the same exact result:

>>> df[can_drink]

Remember that can_drink is a representation of true-false values, which means that

the preceding statement will filter out all records that have the value of false.

�Column Transformations
Rarely, if ever, will the columns in the original raw DataFrame imported from CSV or a

database be the ones you need for your analysis. You will spend lots of time constantly

transforming columns or groups of columns using general computational operations to

produce new ones that are functions of the old ones. Pandas has full support for this and

does it efficiently.

�Generating a New Column with Data

To create a new column within a DataFrame, you use the same syntax as if you were

adding a new key-value pair into a dictionary. Let’s create a column of fake data that

represents how long the people within our DataFrame have been customers with our

company:

1| # generating a new column of fake data for each record in the DataFrame

to represent customer tenure

2| random.seed(321)

4| tenure = [random.randint(0, 10) for x in range(len(df))]

6| �df["tenure"] = tenure # same as adding a new key-value pair in a

dictionary

7| df.head()

Chapter 10 Introduction to Data Analysis

273

Go ahead and run the cell. The output will result in a new column created with

random numbers for their tenure. We were able to add the column and its values on

line 6. In Table 10-2, you’ll find the updated DataFrame, sorted by age.

�apply()

Adding new columns based on current data is known as “feature engineering.” It

makes up a good portion of a data analysts’ job. Often, you won’t be able to answer the

questions you have from the data you collect. Instead, you need to create your own data

that is useful to answering questions. For this example, let’s try to answer the following

question: “What age group does each customer belong to?”. You could look at the persons’

age and assume their age group; however, we want to make it easier than that. In order to

answer this question easily, we’ll need to feature engineer a new column that represents

each customer’s age group. We can do this by using the apply method on the DataFrame.

The apply method takes in each record, applies the function passed, and sets the value

returned as the new column data. Let’s check it out:

feature engineering a new column from known data using a UDF

def ageGroup(age):

 return "Teenager" if age < 21 else "Adult"

df["age_group"] = df["ages"].apply(ageGroup)

df.head(10)

Table 10-2.  Adding a new column

to the DataFrame

ages names tenure

6 18 Rebecca 4

5 20 Tyler 6

2 22 Sandy 2

0 25 Jess 5

3 29 Ted 8

4 33 Barney 7

1 35 Jordan 5

Chapter 10 Introduction to Data Analysis

274

Go ahead and run the cell. Using the apply method, we’re able to create a new

column that easily answers our question. When adding the new age_group column, we

applied the ageGroup function based on the values in the ages column. It then iterated

over each record in the DataFrame and set the return value of either “Teenager” or

“Adult” as the value for the new age_group column. The apply method makes it easy for

us to add new data with our own UDF. Take a look at Table 10-3.

Note  When you need to apply a value based on multiple columns, you must set
the axis = 1.

�Aggregations
The raw data plus transformations is generally only half the story. Your objective is

to extract actual insights and actionable conclusions from the data, and that means

reducing it from potentially billions of rows to a summary of statistics via aggregation

functions. This section assumes some knowledge of SQL and the groupby function.

If you’re not familiar with how groupby works in SQL, visit w3schools3 for reference

material.

Table 10-3.  Feature engineering an age_group column

ages names tenure age_group

6 18 Rebecca 4 Teenager

5 20 Tyler 6 Teenager

2 22 Sandy 2 Adult

0 25 Jess 5 Adult

3 29 Ted 8 Adult

4 33 Barney 7 Adult

1 35 Jordan 5 Adult

3�www.w3schools.com/sql/sql_groupby.asp

Chapter 10 Introduction to Data Analysis

https://www.w3schools.com/sql/sql_groupby.asp

275

�groupby()

In order to condense the information down to a summary of statistics, we’ll need to use

the groupby method that Pandas has. Whenever you group information together, you

need to use an aggregate function to let the program know how to group the information

together. For now, let’s count how many records of each age group there are within our

DataFrame:

grouping the records together to count how many records in each group

df.groupby("age_group", as_index=False).count().head()

Go ahead and run the cell. When the information is grouped together using the

count method, the program will simply add up the number of records that belong in

each category. We’ll have two categories: adult with five records, and teenager with

two records. The first argument of our groupby method is the column we want to group

on, and the second is to make sure we don’t reset the index to become the age group

column. If it were set to True, then the resulting DataFrame would use age_group as the

unique identifier for each record.

�mean()

Instead of counting how many records there are in each category, let’s go ahead and find

the averages of each column by using the mean method. We’ll group based on the same

column:

grouping the data to see averages of all columns

df.groupby("age_group", as_index=False).mean().head()

Go ahead and run the cell. Using the mean method, we’ll be able to get the averages

for all numerical columns. The output should result in a DataFrame that looks like

Table 10-4.

Chapter 10 Introduction to Data Analysis

276

Just by averaging the information, we can see that adults tend to have a longer

tenure. Notice that the names column was dropped. This is because groupby only keeps

numerical data, as it wouldn’t be able to average out a string.

�groupby() with Multiple Columns

When you need to group by multiple columns, the arguments must be passed in as a list.

The first item in the list will be the main column that the DataFrame is grouped by. In

our case, let’s check how many adults have a tenure of five years:

grouping information by their age group, then by their tenure

df.groupby(["age_group", "tenure"], as_index=False).count().head(10)

Go ahead and run the cell. To answer the question, we needed to group by age_group

first, in order to condense the information into adults and teenagers. Next, we needed to

group the data further based on the tenure. This would allow us to see how many adults

there are for each length of tenure. As we don’t have much data, the answer is only two.

We arrive at this conclusion because we used the count method while grouping. All other

tenures for each age group have only one customer.

�Adding a Record

To add a record into the DataFrame, you’ll need to access the next index and assign a value as

a list structure. In our case, the next index would be 7. Let’s add an identical row that already

exists in our DataFrame, so we can see how to remove duplicate information in the next cell:

adding a record to the bottom of the DataFrame

df.loc[7] = [25, "Jess", 2, "Adult"] # add a record

df.head(10)

Table 10-4.  Grouping by age_group

and averaging data

age_group ages tenure

0 Adult 28.8 5.4

1 Teenager 19.0 5.0

Chapter 10 Introduction to Data Analysis

277

Go ahead and run the cell. This will add a new record at the bottom with the same

data as our record in index 0. You won’t need to add new records too often, but it helps

to know how to do it when the time comes.

�drop_duplicates()

Way too often will you see data with duplicate information, or just duplicate IDs. It’s

imperative that you remove all duplicate records as it will skew your data, resulting

in incorrect answers. You can remove duplicate records based on a single column or

an entire record being identical. In our case, let’s remove duplicates based on similar

names, which will remove the record we just added into our DataFrame:

removing duplicates based on same names

df = df.drop_duplicates(subset="names")

df.head(10)

Go ahead and run the cell. This will remove the second record with the name “Jess.”

By passing the column name into the subset parameter, we can remove all duplicates

with the same name.

Note O mitting the subset argument will remove only duplicate records that have
identical values in all columns.

�Pandas Joins
Often, you will have to combine data from several different sources to obtain the actual

dataset you need for your exploration or modeling. Pandas draws heavily on SQL in its

design for joins. This section assumes some knowledge of SQL and SQL joins. If you’re

not familiar with how joins work in SQL, visit w3schools4 for reference material.

4�www.w3schools.com/sql/sql_join.asp

Chapter 10 Introduction to Data Analysis

https://www.w3schools.com/sql/sql_join.asp

278

�Creating a Second DataFrame

Let’s create a secondary DataFrame to represent our customers posting ratings about

our company. We’ll create ratings for three users so we can see both inner joins and

outer joins:

�creating another fake DataFrame to work with, having same names and a

new ratings column

ratings = {

 "names" : ["Jess", "Tyler", "Ted"],

 "ratings" : [10, 9, 6]

}

ratings = df.from_dict(ratings)

ratings.head()

Go ahead and run the cell. Now that we’ve created a second DataFrame, we can join

the two DataFrames together, much like joining two tables together in SQL.

�Inner Join

Anytime you perform a join, you need a unique column to join the data with. In our

case, we can use the names column to join the ratings DataFrame with our original

DataFrame. Let’s perform an inner join on these two datasets so that we can connect

users with their ratings:

�performing an inner join with our df and ratings DataFrames based on

names, get data that matches

matched_ratings = df.merge(ratings, on="names", how="inner")

matched_ratings.head()

Go ahead and run the cell. We’ll get an output that looks like Table 10-5:

Chapter 10 Introduction to Data Analysis

279

Using the merge method, we were able to perform a join. By specifying the how

parameter to “inner,” we were able to return a DataFrame with only those records

who posted a rating. We could do a lot more with this data now than before. We could

calculate average age of customers who gave us a rating, average rating per age group,

etc. Joins will always help to connect separate DataFrames together, which helps

especially when working with databases.

�Outer Join

If we want to return all the records, but connect the ratings for people who gave one,

we would need to perform an outer join. This would allow us to keep all records from

our original DataFrame while adding the ratings column. We need to specify the how

parameter to “outer”:

�performing an outer join with our df and ratings DataFrames based on

names, get all data

all_ratings = df.merge(ratings, on="names", how="outer")

all_ratings.head()

Go ahead and run the cell. We’ll get a DataFrame of all seven records this time;

however, those that didn’t give a rating were given a NaN for a value. This stands for “Not

a Number.” Once we combine this information, we could then find out the average age of

those who gave a rating and those who didn’t. From a marketing perspective, this would

be helpful to know who the target demographic should be.

Table 10-5.  Joining DataFrames to view customer ratings and ages together

ages names tenure age_group ratings

0 20 Tyler 6 Teenager 9

1 25 Jess 5 Adult 10

2 29 Ted 8 Adult 6

Chapter 10 Introduction to Data Analysis

280

�Dataset Pipeline
A dataset pipeline is a specific process in which we take our data and clean it for our

model, which will be able to make predictions. This can be a lengthy process if the

dataset that you use is unclean. A dataset that is not clean will have duplicates records,

null values everywhere, or unfiltered information that leads to incorrect predictions.

Here is the general process:

	 1.	 Performing Exploratory Analysis

•	 In this step you want to get to know your data very well. Take

notes for what you see at a glance or what you may want to clean

or add. You essentially want to get a feel for what your data has

to offer. Make note of the number of columns, the data types,

outliers, null values, and columns that aren’t necessary. This is

generally when you want to plot out each column of data and

speculate correlations, non-informational features, etc.

	 2.	 Data Cleaning

•	 Improper cleaning can lead to poor predictions and bad

datasets. Here, you’ll want to remove unwanted observations

like duplicates, fix structural errors like columns that have the

same name but are typos, handle missing data, and filter outlier

information. This is key for the next step.

	 3.	 Feature Engineering

•	 Creating new information that isn’t depicted by the dataset is

important. You can use your own expertise if you have knowledge

of the subject, and you can isolate data which allows your

algorithms to focus more on the important observations. Here

you can feature engineer columns into a group, add dummy

variables, remove unused features, etc. This is where you want to

expand on the dataset with your own knowledge if you believe

data is either missing or could be created from the information

within the dataset.

Now that you know the process in which to clean a dataset, this will come in handy

for the first exercise at the end of the day.

Chapter 10 Introduction to Data Analysis

281

TUESDAY EXERCISES

	1.	 Loading a Dataset: Go to www.Kaggle.com, click “Datasets” in the top

bar menu. Choose a dataset that you like, and download it into the “python_
bootcamp” folder. Then, load the dataset into a Pandas DataFrame using the

read_csv method, and display the top five records.

	2.	 Dataset Analysis: This is an open-ended exercise. Run some analysis on the

dataset you chose from exercise #1. Try to answer questions like these:

	 a.	 How many records are there?

	 b.	 What are the data types of each column?

	 c.	 Are there duplicate records or columns?

	 d.	 Is there missing data?

	 e.	 Is there a correlation between two or more columns?

Today’s focus was on learning the all-important Pandas library and how to work
with DataFrames. We used some minor real-life examples, but for the most part,
today was just about understanding what you could do in Pandas. For Friday’s
project, we’ll use Pandas to help us analyze sporting statistics.

�Wednesday: Data Visualization
Data visualization is one of the most powerful tools an analyst has for two main reasons.

Firstly, it is unrivalled in its ability to guide the analyst’s hand in determining “what

to look at next.” Often, a visual is revealing of patterns in the data that are not easily

discernable by just looking at DataFrames. Secondly, they are an analyst’s greatest

communication tool. Professional analysts need to present their results to groups of

people responsible for acting based on what the data says. Visuals can tell your story

much better than raw numbers.

Chapter 10 Introduction to Data Analysis

http://www.kaggle.com

282

Like how yesterday’s lesson began, we need to install a library into our virtual

environment. To follow along with today’s lesson, cd into the “python_bootcamp” folder

and activate the environment. We’ll begin today within the terminal.

�Types of Charts
Knowing which chart to use is important in presenting your data properly. We’ll go over

several charts today; however, these are some of the common charts you’ll want to know:

•	 Line Chart: Exploring data over time

•	 Bar Chart: Comparing categories of data and tracks changes over

time

•	 Pie Chart: Explores parts of a whole, that is, fractions

•	 Scatter Plot: Like line charts, tracks correlations between two

categories

•	 Histogram: Unrelated from bar charts, shows distribution of

variables

•	 Candlestick Chart: Used a lot in financial sector, that is, can compare

a stock over a period

•	 Box Chart: Looks identical to candlestick charts, and compares

minimum, 1st, median, 3rd quartiles, and max values

Depending on what you need to accomplish in conceptualizing your data, you will

be able to choose a specific type of chart to portray your data.

�Installing Matplotlib
To install matplotlib, make sure your virtual environment is activated first, then write the

following command into the terminal:

$ pip install matplotlib

After running the command, it should install a few packages that matplotlib requires.

If you’d like to check and make sure you downloaded the proper library, just write out

the list command.

Chapter 10 Introduction to Data Analysis

283

�Importing Matplotlib
To follow along with the rest of this lesson, let’s open and continue from our previous

notebook file “Week_10” and simply add a markdown cell at the bottom that says,

“Matplotlib.”

Like Pandas, matplotlib has an industry standard name when you import the library:

importing the matplotlib library from matplotlib import

pyplot as plt # industry standard name of plt when importing

Go ahead and run the cell. We import pyplot as plt so that we can reference the many

charts that matplotlib has to offer.

�Line Plot
Let’s start with the most basic chart we can create, the line plot:

 1| # creating a line plot using x and y coords

 3| x, y = [1600, 1700, 1800, 1900, 2000] , [0.2, 0.5, 1.1, 2.2, 7.7]

 5| plt.plot(x, y) # creates the line

 7| plt.title("World Population Over Time")

 8| plt.xlabel("Year")

 9| plt.ylabel("Population (billions)")

11| plt.show()

Go ahead and run the cell. To start, we create our x and y coordinates for plotting.

The plot() method allows us to plot a single line; it just needs the coordinates passed in.

Lines 7, 8, and 9 are all for customizing the chart and its appearance. Lastly, we use the

show() method to render the chart. You should output a chart like Figure 10-1.

Chapter 10 Introduction to Data Analysis

284

When you want to add more lines to the chart, you simply apply as many plot()

methods as necessary. Let’s add some more customization to each plot line this time:

 1| # creating a line plot with multiple lines

 3| x1, y1 = [1600, 1700, 1800, 1900, 2000] , [0.2, 0.5, 1.1, 2.2, 7.7]

 4| x2, y2 = [1600, 1700, 1800, 1900, 2000] , [1, 1, 2, 3, 4]

 6| plt.plot(x1, y1, "rx-", label="Actual") # �create a red solid line

with x dots

 7| plt.plot(x2, y2, "bo--", label="Fake") # �create a blue dashed line

with circle dots

 9| plt.title("World Population Over Time")

10| plt.xlabel("Year")

11| plt.ylabel("Population (billions)")

12| plt.legend() # shows labels in best corner

14| plt.show()

Go ahead and run the cell. By adding a second set of coordinates, we’re able to plot

a second line using the plot() method on line 7. We also specified how the lines should

render using shorthand syntax. For the third argument in the plot method, we can pass

a string that represents the color, symbols for dots, and the line style. Finally, we added a

label to each line for making it easy to read the multiline chart, and we’re able to show it

by calling the legend() method. The output should look like Figure 10-2.

Figure 10-1.  Single line plot of population data

Chapter 10 Introduction to Data Analysis

285

�Bar Plot
When you need to plot categorical data, a bar plot is a much better choice. Let’s create

some fake data for the number of people that chose their favorite movie category and

plot it:

 1| # creating a bar plot using x and y coords

 3| �num_people, categories = [4, 8, 3, 6, 2] , ["Comedy", "Action",

"Thriller", "Romance", "Horror"]

 5| plt.bar(categories, num_people)

 7| plt.title("Favorite Movie Category", fontsize=24)

 8| plt.xlabel("Category", fontsize=16)

 9| plt.ylabel("# of People", fontsize=16)

10| plt.xticks(fontname="Fantasy")

11| plt.yticks(fontname="Fantasy")

13| plt.show()

Go ahead and run the cell. After creating our data to work with, we create our plot

on line 5. Using the bar() method, we’re able to create the bar plot. The numerical data

must always be set up on the y axis, which is why we have our categories in the x axis.

Figure 10-2.  Multiline plot of population data

Chapter 10 Introduction to Data Analysis

286

We’ve also added several new customizations to the chart. We can adjust the font size,

font to be displayed, and even adjust how large the tick marks appear. You should render

a chart like Figure 10-3.

�Box Plot
Box plots are useful in situations where you need to compare a single statistic either

over time or against categories. They are like candlestick charts in their design, where

you can view the min, max, 25% quartile, 75% quartile, and median, which can be useful

for displaying data over time. In the case of stocks, currency would be the y axis data

and time would be the x axis data. For our example, let’s create two separate groups and

display the heights for each:

 1| # creating a box plot – showing height data for male-female

 3| �males, females = [72, 68, 65, 77, 73, 71, 69] , [60, 65, 68, 61,

63, 64]

 4| heights = [males, females]

 6| plt.figure(figsize=(15, 8)) # makes chart bigger

 7| �plt.boxplot(heights) # �takes in list of data, each box is

its' own array, heights contains two

lists

Figure 10-3.  Bar plot of movie categories data

Chapter 10 Introduction to Data Analysis

287

 9| plt.xticks([1, 2] , ["Male" , "Female "]) # �sets number

of ticks and

labels on

x-axis

10| plt.title("Height by Gender", fontsize=22)

11| plt.ylabel("Height (inches)", fontsize=14)

12| plt.xlabel("Gender", fontsize=14)

14| plt.show()

Go ahead and run the cell. In order to plot the data in separate categories, we need to

have a list of lists. On line 4, we declare our data which is holding a list of heights for both

males and females. When we go to plot our data, it will separate each list into its own box.

You’ll notice the figure is much larger than usual; we declare a new figure size on line 6.

To render the chart though, we use the boxplot() method on line 7 and pass heights in

as our data. One of the more important lines is number 9, however, where we define the

number of categories to appear on the x axis. We order them as “Male” then “Female”

because that is the order in which they’re declared on line 4. The chart should render

like Figure 10-4.

Figure 10-4.  Box plot of height data

Chapter 10 Introduction to Data Analysis

288

�Scatter Plot
If you’re familiar with clusters, then you’ll know the importance of scatter plots.

These types of plots help to distinguish groups apart from each other by plotting a

dot for each set of data. Using two characteristics, like height and width of a flower,

we can classify which species a flower belongs to. Let’s create some fake data and

plot the points:

 1| # creating a scatter plot to represent height-weight distribution

 2| from random import randint

 3| random.seed(2)

 5| height = [randint(58, 78) for x in range(20)] # �20 records

between 4'10"

and 6'6"

 6| weight = [randint(90, 250) for x in range(20)] # �20 records

between 90lbs.

and 250lbs.

 8| plt.scatter(weight, height)

10| plt.title("Height-Weight Distribution")

11| plt.xlabel("Weight (lbs)")

12| plt.ylabel("Height (inches)")

14| plt.show()

Go ahead and run the cell. To create some fake data, we use the randint method

from the random module. Here, we’re able to create 20 records for both the height and

weight lists. To plot the data, we use the scatter() method and add some characteristics to

the plot. You should get an output like Figure 10-5.

Chapter 10 Introduction to Data Analysis

289

�Histogram
While line plots are great for visualizing trends in time series data, histograms are the

king of visualizing distributions. Often, the distribution of a variable is what you’re

interested in, and a visualization provides a lot more information than a group of

summary statistics. First, let’s see how we can create a histogram:

 1| # creating a histogram to show age data for a fake population

 2| import numpy as np # import the numpy module to generate data

 3| np.random.seed(5)

 5| �ages = [np.random.normal(loc=40, scale=10) for x in

range(1000)] # ages distributed around 40

 7| plt.hist(ages, bins=45) # bins is the number of bars

 9| plt.title("Ages per Population")

10| plt.xlabel("Age")

11| plt.ylabel("# of People")

13| plt.show()

Go ahead and run the cell. We’ve mentioned the NumPy module previously. It’s used

in data science to perform extremely fast numerical calculations. Pandas’ DataFrames

are built on top of NumPy arrays. For the purpose of this cell, however, you just need to

know that we’re using it to create random numbers that are centralized around a given

Figure 10-5.  Scatter plot of height-weight data

Chapter 10 Introduction to Data Analysis

290

number. The number we specify is passed into the loc argument on line 5. The scale

argument is how wide we want the random numbers to be apart. Of course, it will still

create numbers outside of that range, but it is primarily creating 1000 random numbers

centralized around the age of 40.

To create the histogram, we use the hist() method and pass in the proper data.

Histograms allow us to see how many times a specific piece of data appeared. In

our example, the age of 40 appears more than 60 times. The y axis represents the

frequency of the x axis value. The bins argument specifies how many bars you see on

the chart. You may be thinking: the more bins the better right? Wrong, there’s always

a fine line between too many and too little; often you’ll just have to test out the

proper number. We complete this chart by adding customization. The result should

look like Figure 10-6.

Although the data is fake, we can deduce a lot of information from the chart. We can

see outliers that may exist, where the general age range sits, and much more.

�Importance of Histogram Distribution

To see why histograms are so important with understanding central distribution, we’ll

need to create some more fake data. We’ll then plot both datasets and see how they

stack up:

Figure 10-6.  Histogram of centrally distributed age data

Chapter 10 Introduction to Data Analysis

291

showing the importance of histogram's display central distribution

florida = [np.random.normal(loc=60, scale=15) for x in range(1000)]

 # assume numpy is imported

california = [np.random.normal(loc=35, scale=5) for x in range(1000)]

chart 1

plt.hist(florida, bins=45, color="r", alpha=0.4) # �alpha is

opacity,

making it see

through

plt.show()

chart 2

plt.hist(california, bins=45, color="b", alpha=0.4) # �alpha is opacity,

making it see

through

plt.show()

chart 3

plt.hist(florida, bins=45, color="r", alpha=0.4) # �alpha is

opacity,

making it see

through

plt.hist(california, bins=45, color="b", alpha=0.4) # �alpha is opacity,

making it see

through

plt.show()

Go ahead and run the cell. We’re able to output three different histograms within

this cell because of the three show methods being called. When you look at the first

two histograms, they look identical. It’s tough to see, without looking further into

the charts, that the data is completely different. Therefore, to view the data properly,

we output the third histogram with both datasets overlapping as seen in Figure 10-7.

We’re now able to clearly see the difference in central distribution of each dataset.

This is important when it comes to analyzing data. We set alpha to 0.4 because

it allows us to set the opacity. The higher the number, the more solid the data

becomes.

Chapter 10 Introduction to Data Analysis

292

Note  When rendering several charts, matplotlib understands how to separate
each plot by resetting the chart to empty after the show method is run, until then
all information being plotted will be included in one chart.

�Saving the Chart
Being able to render these charts is wonderful; however, at times you need to use them

within a presentation. Luckily for us, matplotlib comes with a method that can save the

charts we create to a file. The savefig() method supports many different file extensions;

the most common “.jpg” is what we’ll use. Let’s render a simple plot line chart to the local

folder:

 1| # using savefig method to save the chart as a jpg to the local folder

 3| x, y = [1600, 1700, 1800, 1900, 2000] , [0.2, 0.5, 1.1, 2.2, 7.7]

 5| �plt.plot(x, y, "bo-") # creates a blue solid line with circle

dots

 7| plt.title("World Population Over Time")

 8| plt.xlabel("Year")

 9| plt.ylabel("Population (billions)")

11| plt.savefig("population.jpg")

Figure 10-7.  Histogram distribution plotting importance

Chapter 10 Introduction to Data Analysis

293

Go ahead and run the cell. You’ll notice a new image file in the “python_bootcamp”

folder called “population.jpg” now. If you don’t specify a URL path, it’ll save the image in

the local folder where the Jupyter Notebook file is located.

Note  You can save the chart in other formats like PDF or PNG.

�Flattening Multidimensional Data
Generally, in data analysis you want to avoid 3D plotting wherever possible. It’s not

because the information you want to convey isn’t contained within the result, but

sometimes it is simply easier to express a point by other means. One of the best ways to

represent a third dimension is to use color instead of depth.

For instance, imagine that you have three datasets that you need to plot: height,

weight, and age. You could render a 3D model, but that would be excessive. Instead,

you can render the height and weight like we have before on a scatter plot and color

each dot to represent the age. The third dimension of color is now easily readable rather

than trying to depict the data using the z axis (depth). Let’s create this exact scatter plot

together in the following:

 1| # creating a scatter plot to represent height-weight distribution

 2| from random import randint

 3| random.seed(2)

 5| height = [randint(58, 78) for x in range(20)]

 6| weight = [randint(90, 250) for x in range(20)

 7| age = [randint(18, 65) for x in range(20)] �# 20 records

between 18

and 65 years

old

 9| plt.scatter(weight, height, c=age) �# sets the age list to

be shown by color

11| plt.title("Height-Weight Distribution")

12| plt.xlabel("Weight (lbs)")

13| plt.ylabel("Height (inches)")

14| plt.colorbar(label="Age") # adds color bar to right side

16| plt.show()

Chapter 10 Introduction to Data Analysis

294

Go ahead and run the cell. By adding the c argument which represents color, into the

scatter plot, we can easily represent three datasets in a 2D manner as seen in Figure 10-8.

The color bar on the right side is created via line 14, where we also create the label for it.

In some cases, you do need to use the z axis, like representing spatial data. However, when

possible, simply using color as the third dimension is easier to not only create but to read

as well.

WEDNESDAY EXERCISES

	1.	 Three Line Plot: Create three random lists of data that have 20 numbers

between 1 and 10. Then create a line plot with three lines, one for each list.

Give each line their own color, dot symbol, and line style.

	2.	 User Information: Create a program that asks any number of users to give a

rating between 1 and 5 stars and plots a bar chart of the data when no more

users would like to answer. Use the following text as an example of what to ask:

>>> What would you rate this movie (1-5)? 4

>>> Is there another user that would like to review (y/n)? y

>>> What would you rate this movie (1-5)? 5

>>> Is there another user that would like to review (y/n)? n

*** bar plot renders with two categories and two ratings ***

Figure 10-8.  Rendering a 3D plot using color as the third dimension

Chapter 10 Introduction to Data Analysis

295

Today we learned the importance of data visualization and how to create custom
charts to show off our data properly. There’s a wide range of plots to choose
from when using matplotlib, and each have their own pros and cons which you
need to consider when choosing the type of plot. In the end, if you can’t properly
show the data to those making the business decisions, then all the data you’ve
collected is wasted.

�Thursday: Web Scraping
You may have heard the term “web scraping” previously. In most languages like Python,

web scraping is comprised of two parts: sending out a request and parsing the data. We’ll

need to use the requests module for the first part and a library called Beautiful Soup for

the second part. In a nutshell, the script you write to request data and parse it is called a

“scraper.” For today’s lesson, we’ll be collecting some data using these two libraries.

Like yesterday’s lesson, we need to install a library into our virtual environment. To

follow along with today’s lesson, cd into the “python_bootcamp” folder, and activate the

environment. We’ll begin today within the terminal.

�Installing Beautiful Soup
To install Beautiful Soup, make sure your virtual environment is activated first, then write

the following command into the terminal:

$ pip install bs4

After running the command, it should install a few packages that Beautiful Soup

requires.

�Importing Beautiful Soup
To follow along with the rest of this lesson, let’s open and continue from our previous

notebook file “Week_10” and simply add a markdown cell at the bottom that says, “Web
Scraping.”

Chapter 10 Introduction to Data Analysis

296

We need to import requests and the BeautifulSoup class that is within the

bs4 library:

importing the beautiful soup and requests library

from bs4 import BeautifulSoup

import requests

Go ahead and run the cell. We’ll use the requests module to send out a request

to a given URL. When the URL endpoint is not an API that gives back properly

formatted data but rather a web page that renders HTML and CSS, the response that

we get back is the code for that web page. In order to parse through this code, we

pass it into the BeautifulSoup object, which makes it easy to manipulate and traverse

through the code.

�Requesting Page Content
To begin scraping data, let’s send a request to a simple web page that contains only

a poem:

performing a request and outputting the status code

page = requests.get("http://www.arthurleej.com/e-love.html")

print(page)

Go ahead and run the cell. We’ll get an output of “<Response [200]>”. This lets

us know that the request to the web page was a success. In order to see what we

received back as a response though, we need to access the content attribute of the

page variable:

outputting the request response content

print(page.content)

Chapter 10 Introduction to Data Analysis

297

Go ahead and run the cell. This will output a large string of all the code that was

used to write this web page, including tags, styles, scripts, etc. As the book stated

earlier, this URL renders a web page, so the response we get back is a string of all the

code. The next step is to turn the response into an object that we can work with and

parse through the data.

�Parsing the Response with Beautiful Soup
The Beautiful Soup library comes with many attributes and methods that make

parsing the code easier for ourselves. Using this library, we can make the code easy

to view, scrape, and traverse through. We’ll need to create a BeautifulSoup object to

work with by passing the page content into it, along with the type of parser we want

to use. In our case, we’re working with HTML code, so we’ll need to use the HTML

parser:

turning the response into a BeautifulSoup object to extract data

soup = BeautifulSoup(page.content, "html.parser")

print(soup.prettify())

Go ahead and run the cell. The prettify() method will create a well-formatted output

for us to view. This makes it easier for us to see the actual code that is written. The soup

object knew how to parse the content properly because of the parser that we specified.

Beautiful Soup works with other languages, but we’ll be working with HTML for this

book. Now that we’ve turned the content into an object we can use, let’s learn how to

extract the data from the code.

�Scraping Data
There are many methods to extract data using Beautiful Soup. The following sections will

cover a few of the main methods in doing so. Basic HTML knowledge is assumed for this

section.

Chapter 10 Introduction to Data Analysis

298

�.find()

To find a specific element within the code, we can use the find() method. The argument

we pass is the tag that we want to search for, but it will only find the first instance and

return it. Meaning that if there are four bold element tags within our code, and we use

this method to find a bold tag, it will respond back with only the first bold element tag

found. Let’s try it out:

using the find method to scrape the text within the first bold tag

title = soup.find("b")

print(title)

print(title.get_text()) # extracts all text within element

Go ahead and run the cell. If you look at the code using the inspector tab in your

web browser’s console tools, you’ll be able to see that the first bold tag within the code is

the title of the poem. The first print statement results in “Love” and the second

is simply the text within the element. We were able to extract the text by using the get_
text() method.

�.find_all()

To find all instances of a given element, we use the find_all() method. This will give us

back a list of all tags found within the code. Let’s find all bold tags within the code and

extract the text:

get all text within the bold element tag then output each

poem_text = soup.find_all("b")

for text in poem_text:

 print(text.get_text())

Go ahead and run the cell. If you were to look at the code using your inspector

tools, you would notice that all the text is within bold tags. The result is an output of

the entire poem.

Chapter 10 Introduction to Data Analysis

299

�Finding Elements by Attributes

All HTML elements have attributes associated with them, whether it’s a style, id, class,

etc., you can use Beautiful Soup to find elements with a specific attribute value. Let’s

request a response from my personal Github page and find the element that shows my

username:

1| # finding an element by specific attribute key-values

3| page = requests.get("https://github.com/Connor-SM")

4| soup = BeautifulSoup(page.content, "html.parser")

6| �username = soup.find("span", attrs={ "class" : "vcard-username" }

) # find first span with this class

8| �print(username) # �will show that element has class of vcard-

username among others

9| print(username.get_text())

Go ahead and run the cell. We send a request to Github and parse the content into a

BeautifulSoup object to work with. On line 6, we search for a span tag element that has

an attribute of class, whose value is “vcard-username.” This will output the entire span

tag, including text, attributes, and the syntax on line 8. Lastly, we extract the text on line 9

to output the username associated with this page.

Note  Finding elements by attributes also works with the find_all method. You can
also include multiple key-value pairs to look for within the attrs argument.

�DOM Traversal
This section will cover how to extract information by traversing through the DOM

hierarchy. The DOM, short for Document Object Model, is a concept in web design that

describes the relationships and structure between elements on a browser. All elements

on a web page belong to one of three relationships:

	 1.	 Parent-Child

	 2.	 Sibling

	 3.	 Grandparent-Grandchild

Chapter 10 Introduction to Data Analysis

300

This concept is important to understand when you are web scraping because you

may need to access the children of a specific element. The children are in reference to all

elements within another element. Take the following HTML code, for instance:

<body>

 <div>

 <h1>Title</h1>

 <h3>Sub-title</h3>

 <p>Text</p>

 </div>

</body>

In this example, the <div> element is the parent of the h1, h3, and p elements. Those

three elements are known as the children. If we wanted to extract all the text from within

this <div> element, we could access the children elements.

Note  In the preceding example, the h1, h3, and p elements are all siblings. The
body would be the parent of the div element and the grandparent of the h1, h3,
and p elements.

As the DOM is a web design concept, it’s covered briefly in this book. If you would

like more information on the subject or basic HTML knowledge, be sure to visit the

w3schools5 resource.

�Accessing the Children Attribute

Lucky for us, when Beautiful Soup converts the page content into an object, it keeps

track of the children for all elements. This allows us to traverse through the DOM and

parse data as we see fit. Let’s grab the poem from earlier and convert the response into a

BeautifulSoup object:

5�www.w3schools.com/js/js_htmldom.asp

Chapter 10 Introduction to Data Analysis

https://www.w3schools.com/js/js_htmldom.asp

301

traversing through the DOM using Beautiful Soup – using the children

attribute

page = requests.get("http://www.arthurleej.com/e-love.html")

soup = BeautifulSoup(page.content, "html.parser")

print(soup.children) # outputs an iterator object

Go ahead and run the cell. The children elements within the soup object are

stored within an iterator. For the following exercise, let’s extract the title element

from the web page.

�Understanding the Types of Children

Before we begin, we first need to understand the types of children within the

BeautifulSoup object. Let’s convert the iterator into a list of elements that we can

loop over:

understanding the children within the soup object

for child in list(soup.children):

 print(type(child))

Go ahead and run the cell. As a result, we’ll get four children but only three

different types:

•	 <class ‘bs4.element.Doctype’>

–– A Doctype object is in reference to the Docstring that defines the

HTML version used.

•	 <class ‘bs4.element.NavigableString’>

–– A string corresponds to a bit of text within a tag. Beautiful Soup

uses the NavigableString class to contain these bits of text. So far,

we’ve used the get_text() method to extract text; however, you can

use the following to extract data as well:

>>> tag.string

Which results in NavigableString type.

Chapter 10 Introduction to Data Analysis

302

•	 <class ‘bs4.element.Tag’>

–– A Tag object corresponds to an XML or HTML tag in the original

document. When we access the elements and their text, we’ll be

accessing the original tags to do so.

If you were to output each of these objects, you’d find that all the code, aside from

the Doctype, appear in the Tag object.

�Accessing the Tag Object

If we want to access the text within the title tag, we need to traverse into its parent first, which

happens to be the head tag. Now that we know the elements that we’re looking for reside in

the Tag object, we need to save that object to a variable and output the sections within it:

accessing the .Tag object which holds the html – trying to access the

title tag

html = list(soup.children)[2]

for section in html:

 print("\n\n Start of new section")

 print(section)

Go ahead and run the cell. When you output each section within our HTML variable,

you’ll realize that there’s an empty section at the first index, before the location of the

head element. We output the print statement for each new section, in case an empty

string occupies an index.

�Accessing the Head Element Tag

Now that we know the head element is at index 1 of the HTML children, we can perform

the same execution to access each child within the head:

accessing the head element using the children attribute

head = list(html.children)[1]

for item in head:

 print("\n\n New Tag")

 print(item)

Chapter 10 Introduction to Data Analysis

303

Go ahead and run the cell. When you output each tag within the head, you’ll notice

the title tag that we’ve been searching for resides at index 1.

Note R emember that each object stored in these variables is an iterator and can
be type converted into lists.

�Scraping the Title Text

The final step is to extract the text from the title tag:

scraping the title text

title = list(head)[1]

print(title.string) # .string is used to extract text as well

print(type(title.string)) # results in NavigableString

print(title.get_text())

Go ahead and run the cell. We’ve just traversed through the DOM in order to scrape

the text from our title element.

Note T he ability to access an object’s children elements allows us to create
modular or automated web scrapers that can perform a various number of tasks.
As most sites follow a similar style on their web pages, creating a script that
would extract information on a single page would allow us to do so on many
other pages if we knew the proper pattern. For instance, the online statistical
database for baseball called baseball-reference holds data for all baseball players
throughout the history of the MLB. Each player has a unique identifier on the web
site’s URL. If you wrote a parsing script that would extract information for one
player, you would be able to write a loop to extract information from all players in
the database.

Chapter 10 Introduction to Data Analysis

304

THURSDAY EXERCISES

	1.	 Word Count: Write a program that counts how many words are in the following

link: www.york.ac.uk/teaching/cws/wws/webpage1.html. Use the

requests module and Beautiful Soup library to extract all text.

	2.	 Question #2: Using the following link, extract every stadium name out of

the table: https://en.wikipedia.org/wiki/List_of_current_

National_Football_League_stadiums. There should be 32 total names.

Today we learned how to collect information via a web scraper. Using the requests
module, we can receive a response of code that renders a given web page. We
can then turn this response into an object to easily parse and extract data via
the Beautiful Soup library. In tomorrow’s lesson, we’ll use all the libraries that we
learned throughout this week in order to analyze information that we scrape off the
Web.

�Friday: Web Site Analysis
Today’s project will include the requests module, Beautiful Soup, and matplotlib libraries.

The goal for this project is to create a script that will accept a web site to scrape and

display the top words used within the site. We’ll plot the results within a nicely formatted

bar plot, making it easier to understand for those looking at the data.

To follow along with today’s lesson, cd into the “python_bootcamp” folder, and

activate the environment. We’ll continue from our previous notebook file “Week_10” and

add a markdown cell at the bottom that says, “Friday Project: Website Analysis.”

�Final Design
As we do each week, we need to lay out a design of what the final program should look

like, as well as how it should function. For testing purposes, we’ll use Microsoft’s home

page. Eventually, we’ll want the final output to look like Figure 10-9.

Chapter 10 Introduction to Data Analysis

http://www.york.ac.uk/teaching/cws/wws/webpage1.html
https://en.wikipedia.org/wiki/List_of_current_National_Football_League_stadiums
https://en.wikipedia.org/wiki/List_of_current_National_Football_League_stadiums

305

We’re going to make the program continually ask the users if they’d like to scrape a

web site, followed by accepting the users’ input for the site they’d like to analyze. After

that, we can perform our web site; filter out all information that isn’t useful like article

words, newline characters, etc.; and finally be able to create the bar plot. The program

output should look like the following:

>>> Would you like to scrape a website (y/n)? y

>>> Enter a website to analyze: https://www.microsoft.com/en-us/

>>> The top word is: Microsoft

>>> *** show bar plot ***
>>> Would you like to scrape a website (y/n)? n

>>> Thanks for analyzing! Come back again!

In order to get the output working properly, we need to create an outline of the steps

the program will require. Feel free to take a second to try and write them out yourself.

The program that we create will need to perform the following steps:

	 1.	 Ask users if they’d like to web scrape a site.

•	 If the user says yes

	 1.	� Accept input from users about the site they would like to

scrape.

	 2.	 Send a request to the web site.

	 3.	 Parse all text from page content within the request response.

Figure 10-9.  Analyzing Microsoft’s most frequent words on their home page

Chapter 10 Introduction to Data Analysis

306

	 4.	 Filter out all non-text elements, such as scripts, comments, etc.

	 5.	� Filter out all article words and useless characters like

newlines and tabs.

	 6.	� Loop over all remaining text and count the frequency of each

word.

	 7.	 Keep the top seven words and display the most used word.

	 8.	 Create a bar plot of the top seven words.

•	 If the user says no

	 1.	 Exit the program and display a thank you message.

	 2.	 Continue to ask the users if they’d like to scrape a site until they

say no.

�Importing Libraries
We need to start off by importing all the libraries that we’ll be using throughout this

project. Let’s put all the imports in their own cell so that we only need to run the import

once rather than importing them each time we run the code for the program:

1| # import all necessary libraries

2| import requests

3| import matplotlib.pyplot as plt

4| from bs4 import BeautifulSoup

5| from bs4.element import Comment

6| from IPython.display import clear_output

Go ahead and run the cell. The only new import that you haven’t seen before is the

import on line 5. To analyze only words that appear on the page, we’ll need to filter

out all text within the comments somewhere in the program. Using the Comment class

later will allow us to recognize if the text is within a comment or not, so that we can

filter it out properly.

Chapter 10 Introduction to Data Analysis

307

�Creating the Main Loop
Let’s write all the following code in the next cell, so that we don’t have to rerun all the

imports. We’ll need to create a main loop, so that we can continue to ask the users if

they’d like to scrape a web site. When they do, we’ll simply print the site they entered

for now:

 1| �# main loop should ask if user wants to scrape, then what site to

scrape

 2| while input("Would you like to scrape a website (y/n)? ") == "y":

 3| try:

 4| clear_output()

 6| site = input("Enter a website to analyze: ")

 8| print(site) # remove after runs properly

 9| except:

10| print("Something went wrong, please try again.")

12| print("Thanks for analyzing! Come back again!")

Go ahead and run the cell. This gives us our basic loop structure of asking the users for

input about the site they would like to scrape. If they choose not to scrape, then we output

a thank you message. We want to wrap the main portion of this loop in a try-except clause

because we can’t expect the user to always input a valid URL. If the user doesn’t put in

a valid URL, an error could occur. Now, we don’t have to worry about the error, and the

program will continually ask the users if they’d like to scrape another web site.

Note A nytime you restart the notebook, you’ll need to run the import cell again.

�Scraping the Web Site
Now that we’ve accepted input from the user, we need to scrape the web site. It would be

best to separate this code from the main loop, so let’s put it inside of its own function:

 1| # request site and return top 7 most used words

 2| def scrape(site):

 3| page = requests.get(site)

Chapter 10 Introduction to Data Analysis

308

 5| soup = BeautifulSoup(page.content, "html.parser")

 7| print(soup.prettify()) # remove after runs properly

 9| # main loop should... ◽◽◽
14| site = input("Enter a website... ◽◽◽
16| scrape(site)

17| except: ◽◽◽

Go ahead and run the cell. After we ask the user to input a web site, we call the scrape

function on line 16 with the site variable as the argument. The program will then request

the content from the site and parse it with BeautifulSoup. For testing purposes, we use

the prettify() method to output the response that we get back. If you look through the

output, you’ll notice there’s a lot of text inside of element tags that don’t show up on the

web site. Tags like scripts and comments include text that we do not want to include in

our analysis, so we’ll need to filter them out eventually. Once they are filtered out, we’ll

be left with the actual text that appears on the home page of the web site. Remove the

code on line 7 once the cell runs properly.

Note T o follow along with the book, use the Microsoft URL: www.microsoft.
com/en-us/.

�Scrape All Text
Now that we’re receiving a response, we can begin to parse all the text within the page

content:

 1| # request site and return top 7 most used words

 2| def scrape(site):

 3| page = requests.get(site)

 5| soup = BeautifulSoup(page.content, "html.parser")

 7| �text = soup.find_all(text=True) # will get all text within the

document

 9| print(text) # remove after runs properly

11| # main loop should... ◽◽◽

Chapter 10 Introduction to Data Analysis

http://www.microsoft.com/en-us/
http://www.microsoft.com/en-us/

309

Go ahead and run the cell. We use the find_all method from our BeautifulSoup

object in order to grab every piece of text contained within the page. Notice this gives us

back a list that contains newline characters, tab characters, scripts, comments, and the

actual text that we need within the proper text elements like h1, p, etc. The next step is to

filter out those unnecessary elements. Remove line 9 once the cell runs properly; this is

used for testing purposes only.

�Filtering Elements
Although we’re parsing the text from the page content, much of the text is within

elements that we don’t want to include in our analysis. Let’s take the script tag, for

instance. The script tag is used to write JavaScript within the web page. If we were to

include this in our analysis, it would lead to improper results. The same goes for HTML

comments, which look like the following:

<!-- this is an HTML comment -->

Any text within an HTML comment is not seen on the web page. It’s the same

concept as a Python comment. They’re used for programmers and not read by

compilers. Knowing that we only want to perform an analysis on words that appear on

the page, we must filter out these unnecessary elements:

 1| # filter out all elements that do not contain text that appears on site

 2| def filterTags(element):

 3| �if element.parent.name in ["style", "script", "head", "title",

"meta", "[document]"]:

 4| return False

 6| if isinstance(element, Comment):

 7| return False

 9| return True

17| text = soup.find_all(text=True)... ◽◽◽
19| visible_text = filter(filterTags, text)

21| for text in visible_text:

22| print(text) # remove after runs properly

24| # main loop should... ◽◽◽

Chapter 10 Introduction to Data Analysis

310

Go ahead and run the cell. After we parse all the text from the page content on

line 17, we filter out the unnecessary elements on line 19. The filter method is used

to loop over every item within our text variable and apply the filterTags function to

know if the item should be included. We basically want to return True if the item is

not a comment or element tag that shouldn’t be included. Line 3 is where we check

to see if the text is within an element that we do not want to include. All the strings

included in the list on line 3 are HTML elements. Comments are slightly different

though because they are not elements. To know if an item is a comment, we need to

use Beautiful Soup’s Comment object.

Note  When Beautiful Soup parses the page content, it recognizes HTML as one
of four objects: Tag, NavigableString, BeautifulSoup, and Comment.

On line 6, we check to see if the item is an instance of the Comment object. If it is,

we return False so that we can filter it out. If the item is not a comment or its parent is a

valid element, then we return True. We then loop over the variable to output each item

on line 21. We’re now left with only the words that appear on the web page. You’ll notice

that there is a lot of white space between each word, which is the next step. Remove

line 22 after the cell runs properly, as it is only used for testing purposes.

�Filtering Waste
The next step is to filter out any escaping characters (newlines, tabs); article words, such as

a, an, the, etc.; and any other words we deem useless. When we perform the analysis on a

site, we want to see the topmost descriptive words. Knowing that a site’s top word is “the”

does not depict any information about the site. For example, when scraping a news site,

we would expect to see keywords about the top story of the day. To perform this filter, we’ll

need to create another function that will handle removing what we call “waste”:

 1| filter article words and hidden characters

 2| def filterWaste(word):

 3| �bad_words = ("the", "a", "in", "of", "to", "you", "\xa0", "and",

"at", "on", "for", "from", "is", "that", "his",

 4| �"are", "be", "-", "as", "&", "they", "with", "how",

"was", "her", "him", "i", "has", "|")

Chapter 10 Introduction to Data Analysis

311

 6| if word.lower() in bad_words:

 7| return False

 8| else:

 9| return True

11| # filter out all elements that do not... ◽◽◽
31| for text in visible_text: ◽◽◽
32| words = text.replace("\n", "").replace("\t", "").split("

") # replace all hidden chars

34| words = list(filter(filterWaste, words))

36| for word in words:

37| print(word, end=" ") # remove after runs properly

39| # main loop should... ◽◽◽

Go ahead and run the cell. We start this process on line 31 by looping over each item

in visible_text and replacing all newline and tab characters with empty strings. Then we

run a filter on that item with our filterWaste function to see if we need to remove it from

the list on line 34. Within the filterWaste function, we define a set of words or characters

that we want to filter out called bad_words. After converting the item to lowercase, we

check to see if it exists within bad_words; if it does, we return False; otherwise, we return

True to keep it within the list. On line 37 we output each word after we perform the filter.

The words contained in this output are descriptive and informative enough to tell us

what the web site is mainly talking about. Remove line 37 once the cell runs properly, as

this is used for testing purposes only.

Note  You can add more words or characters to the bad_words data collection if
you’d like. This is to simply get us by for the time being. There is a library called
NLTK which has a large list of article words and characters that you can use for
larger projects when necessary.

Chapter 10 Introduction to Data Analysis

312

�Count Word Frequency
After we’ve filtered out all the waste and elements, we’re left with the proper words to

run our analysis on. The next step is to count the number of times a given word appears.

A dictionary would be best practice to keep track of the count for each word because we

can use the word as the key and the frequency as the value:

29| �visible_text = filter(filterTags, text)... ◽◽◽
31| word_count = { }

33| for text in visible_text: ◽◽◽
38| for word in words: ◽◽◽
39| if word != "": �# if it doesn't equal an empty

string

40| if word in word_count:

41| word_count[word] += 1

42| else:

43| word_count[word] = 1

45| print(word_count) # remove after runs properly

53| # main loop should... ◽◽◽

Go ahead and run the cell. On line 31 we create our dictionary to keep track of the

word count. As we loop over each word in our words list, we first check to see if it’s

an empty string because we converted all escaping characters to empty strings and

certainly don’t want to include them in the count. On line 40, we check to see if the

word has already been added to the dictionary, in which case we would add one to

the value (line 41). If it hasn’t been added to the dictionary yet, then we simply add a

key of the word and a value of 1. We output the result on line 45 to see the word and its

frequency. Now we can view all the words and the times they occurred; however, we

want to plot the top words, so we’ll need to sort the dictionary next. Remove line 45

after the cell runs properly.

Chapter 10 Introduction to Data Analysis

313

�Sort Dictionary by Word Frequency
In order to output or return the top seven words, we’ll need to sort the dictionary by

the value:

43| word_count[word] = 1 ◽◽◽
45| �word_count = sorted(word_count.items(), key=lambda kv: kv[1],

reverse=True) # sort on value

47| print(word_count[:7]) # remove after runs properly

49| # main loop should... ◽◽◽

Go ahead and run the cell. To understand what’s going on here, first we need to

clarify what the output of .items() becomes:

>>> d = { "word" : 1, "hello" : 2 }

>>> result = d.items()

>>> print(result)

dict_items([("word", 1), ("count", 2)])

The result is a couple tuples within a list. Normally, using the sorted function on a

dictionary would result in a list sorted by the key; however, when we use the lambda

function to sort based on value by changing the key argument, it’s really taking in each

of these tuples and sorting based on index 1, which is the value, which represents the

frequency of the word. Remember that the sorted function returns a list. When we run

line 45, it results in a list of tuples sorted from highest to lowest value because of the

argument “reverse=True”. Lastly, we output the top seven words by slicing. Remove line

47 after the cell runs properly.

�Displaying the Top Word
Now that we’re getting the top seven words, let’s output the most used word for good

measure:

45| word_count = sorted... ◽◽◽
47| return word_count[:7]

49| # main loop should... ◽◽◽
54| site = input("Enter a website... ◽◽◽

Chapter 10 Introduction to Data Analysis

314

56| top_words = scrape(site)

58| top_word = top_words[0] # tuple of (word, count)

60| print("The top word is: { }".format(top_word[0])) #

don't remove

61| except: ◽◽◽

Go ahead and run the cell. We start by returning the top seven words from the scrape

function rather than printing them out. This will return the list of tuples back to our main

loop on line 56 and save them into the top_words variable. After that, we assign the first

tuple into our top_word variable because it represents the most frequent word used on

the page. Lastly, we output the top word on line 60 by accessing the zero index of the

tuple that contains the word and frequency count.

�Graphing the Results
The last step in our program that we need to execute is graphing the results within a bar plot:

 1| # graph results of top 7 words

 2| def displayResults(words, site):

 3| count = [item[1] for item in words][: : -1] �# reverses

order

 4| word = [item[0] for item in words][: : -1] �# gets word out

of reverses

order

 6| plt.figure(figsize=(20, 10)) �# define how large the figure

appears

 8| plt.bar(word, count)

10| �plt.title("Analyzing Top Words from: { }...".format(site[:50]),

fontname="Sans Serif", fontsize=24)

11| plt.xlabel("Words", fontsize=24)

12| plt.ylabel("# of Appearances", fontsize=24)

13| plt.xticks(fontname="Sans Serif", fontsize=20)

14| plt.yticks(fontname="Sans Serif", fontsize=20)

Chapter 10 Introduction to Data Analysis

315

16| plt.show()

77| print("The top word is... ◽◽◽
79| displayResults(top_words, site) # call to graph

80| except: ◽◽◽

Go ahead and run the cell. We’ll get the final output that we we’ve been programming

toward throughout this entire lesson. The graph will show the top seven words and their

frequency in a nicely formatted bar plot by calling the displayResults function on line 79.

We pass in the arguments of top_words and site in order to give the graph its data and

title. On lines 3 and 4, we separate the values and words into their respective lists using

comprehension. We then reverse them using the slice at the end; otherwise, it would

show the graph from highest to lowest. The bar graph is plotted on line 8 by passing this

data into the bar method. Lastly, we add a title, labels, and some styles.

�Final Output
The program is now complete and can be used to analyze the top words for any web

site. Note that some sites can and do block the request, in which case the exception will

be executed. You can find all the code for this week, as well as this project in the Github

repository.

Today we learned how to create a program that would scrape any site input by
the user. It was important to see how we could use several of these data analysis
libraries together to create a useful tool. Now we can use this web tool to analyze
news sites and see trending information. Of course, this is a simple web scraper
but with proper modifications could become a more useful tool.

�Weekly Summary
There are many Python libraries that are useful for data analysis. Throughout this week,

we covered some of the most widely used modules and libraries in the industry. This

week has prepared you to begin learning more about analysis and how to implement

these libraries further to improve your skills. Having covered virtual environments,

you’ll know how to work with Python libraries and manage your packages. Using the

Chapter 10 Introduction to Data Analysis

316

requests module, we were able to call APIs and parse page content. This module allows

our programs to communicate with other software in order to improve user experience.

One of the most important libraries this week, however, is the Pandas data analysis

library. It’s used by data analysts and scientists in almost every field. It gives you the

power to use Python and SQL together; it’s extremely efficient and makes working with

databases and files much easier. It’s truly the end all, be all library for analysis. Data

analysis wouldn’t be complete, however, without visualization. Using matplotlib we

were able to cover a variety of plots that we could use and how to effectively showcase

our data. It’s important to remember that data without proper visualization will never

produce quality results. The last library we covered was for web scraping with Beautiful
Soup, an important library to help make sense of other languages within Python, where

we were able to parse information and text from a page request. Lastly, we coupled three

of these four lessons within a program to create a web scraping analysis tool. To further

your learning on this topic, you can use www.elitedatascience.com or learn about the

data science libraries, such as NLTK and SK-Learn.

�Challenge Question Solution
As we learned in the lesson on Wednesday, it’s difficult and time-consuming to try

and implement a 3D visualization of data. The question this week asked how we could

simplify this while expressing a 3-dimensional graph. Having covered the answer

toward the end of the lesson on Wednesday, we found that we can use color as a third

dimension. This allows us to keep a graph within 2-dimensional space but have three

dimensions. This is important to keep in mind when trying to simplify data for those who

make decisions based on visualizations.

�Weekly Challenges
To test out your skills, try these challenges:

	 1.	 User Input: As we saw in our Friday project, there were

many article words or characters that we wanted to filter out.

Unfortunately, we can’t keep track of all of them for each site. For

this challenge, implement a block of code that asks the users what

additional words or characters they would like to filter out so that

they may alter the words shown.

Chapter 10 Introduction to Data Analysis

http://www.elitedatascience.com

317

	 2.	 Saving the Plot: Implement a block of code that asks the users if

they would like to save the file. If they do, be sure to ask the users

what they would like to call the image and save it with that name.

	 3.	 Pandas Implementation: Rather than using a dictionary to track

the words from the web site scrape in our project, implement

Pandas into the code to track the information. You should be able

to perform a head or tail function to see the top or bottom most

frequently used words.

	 4.	 Saving the Data: After implementing Pandas to save the unique

words and their frequency, output the information to a CSV for

each site. The name of the file should represent the web site name,

for example, “microsoft_frequent_words.csv”.

Chapter 10 Introduction to Data Analysis

319
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7

AFTERWORD

�Post-Course: What to
Do Now?
Often, when a student finishes a class or a reader finishes a book, they’re left wondering

where to go next? It’s a broad question, especially when you’re new to this field. If you’ve

been programming for a long time, this is probably easy for you, as you most likely read

this book to pick up or switch to Python. For the rest of you, it’s much tougher, especially

if this is the first book you’ve read on programming.

My answer is generally the same to each person that asks… what interests you? Your

answer will affect my advice for you. What follows is a list of resources, video channels,

and other books to read based on the category that interests you. Each section has been

separated by the types of jobs you can receive with knowledge of Python.

When you embark on becoming a programmer, remember to give back to the

community. As a developer, we use resources like Quora or Stack Overflow to help

get answers to our problems. Be the type of person that answers respectfully and

helpfully. Remember those that helped you out did so on their free time. Without the

continued help throughout our community, we would not learn and continue

to improve.

�Back-End Development with Python
When you become a developer, there are many roles you can apply for. Back-end

development is made for those of us who don’t want to worry about the design,

interfaces, or anything front end related but rather focus on the algorithms, speed, and

mechanics of the software itself. If you find passion in Python and back-end concepts

like SQL, servers, requests, and APIs, then this is a great place for you to start.

https://doi.org/10.1007/978-1-4842-5355-7

320

�Full-Stack Development with Python
Full-stack development encompasses front end, back end, server side, and web dev all in

one. There’s a lot to learn when you want to become a full-stack engineer. If you’re eager

to learn more about how to build full-scale web sites, software as a service, networking,

and more… then this path would help.

�Data Analysis with Python
We only began to scratch the surface of what you can do with Python in data analytical

roles. If you found that you enjoyed Week 10 within the book, then this would certainly

be a great next step for you.

�Data Science with Python
We never touched upon this subject, merely pointed out certain concepts in Week 10.

Data science encompasses many different fields of study: machine learning, artificial

intelligence, computer systems, web scraping, forms of data analysis, and much more.

If you think you’d be interested in learning more about these topics, this is the right

step for you.

�Resources
Table 1 shows general resources. These are resources just to get you started on the right

path. There are many more valuable resources out there for each of these categories.

Afterword Post-Course: What to Do Now?

321

Table 1.  Resources

Name Type Category

Beginning Django
By Daniel Rubio (Apress, 2017)

Book Full Stack

Beginning Python, 3rd ed.
By Magnus Lie Hetland (Apress, 2017)

Book General

The New and Improved Flask Mega Tutorial
By Miguel Grinberg (Self-published, 2017)

Book Full Stack

HTML and CSS: Design and Build Websites
By Jon Duckett (John Wiley & Sons, 2011)

Book Front End

Deep Learning with Python
Francis Chollet (Manning Publications, 2017)

Book Data Science

Practical SQL
By Anthony DeBarros (No Starch Press, 2018)

Book Back End

Python for Data Analysis
By Wes McKinney (O’Reilly Media, 2012)

Book Data Analysis

Python Machine Learning
By Sebastian Raschka (Packt Publishing, 2015)

Book Data Science

Python Crash Course
By Eric Matthes (No Starch Press, 2015)

Book General

Quora
www.quora.com/

Web General

Stack Overflow
https://stackoverflow.com/

Web General

Code Wars
www.codewars.com/

Web Back End

Hacker Rank
www.hackerrank.com/

Web General

w3schools
www.w3schools.com/

Web General

(continued)

Afterword Post-Course: What to Do Now?

http://www.quora.com/
https://stackoverflow.com/
http://www.codewars.com/
http://www.hackerrank.com/
http://www.w3schools.com/

322

Table 1.  (continued)

Name Type Category

Geeks for Geeks
www.geeksforgeeks.org/

Web Back End

Elite Data Science
https://elitedatascience.com/

Web Data Science

Socratica
www.youtube.com/user/SocraticaStudios

YouTube General

Traversy Media
www.youtube.com/user/TechGuyWeb

YouTube Full Stack

Sentdex
www.youtube.com/sentdex

YouTube Data Science

Siraj Raval
www.youtube.com/channel/

UCWN3xxRkmTPmbKwht9FuE5A

YouTube Data Science

Pretty Printed
www.youtube.com/channel/UC-

QDfvrRIDB6F0bIO4I4HkQ

YouTube Full Stack

Programming with Mosh
www.youtube.com/user/programmingwithmosh

YouTube Full Stack

DesignCourse
www.youtube.com/user/DesignCourse

YouTube Front End

Computerphile
www.youtube.com/user/Computerphile

YouTube Back End

Afterword Post-Course: What to Do Now?

http://www.geeksforgeeks.org/
https://elitedatascience.com/
http://www.youtube.com/user/SocraticaStudios
http://www.youtube.com/user/TechGuyWeb
http://www.youtube.com/sentdex
http://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
http://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
http://www.youtube.com/channel/UC-QDfvrRIDB6F0bIO4I4HkQ
http://www.youtube.com/channel/UC-QDfvrRIDB6F0bIO4I4HkQ
http://www.youtube.com/user/programmingwithmosh
http://www.youtube.com/user/DesignCourse
http://www.youtube.com/user/Computerphile

323

�Final Message
To my readers, I just want to thank you from the bottom of my heart for taking the time

to read this book. A lot of work, time, effort, and sweat went into the creation of each

of these lessons, and I hope that you enjoyed reading them, as much as I have enjoyed

writing them. It’s truly been an honor to contribute to the world of technology, and I’m

forever grateful for the opportunity to help you in your pursuit of knowledge. If I can give

you one last piece of advice, it’s to always keep learning and don’t give up. I didn’t enjoy

programming for a long time, but then it became a passion of mine. With hard work and

effort, you can accomplish anything.

Afterword Post-Course: What to Do Now?

325
© Connor P. Milliken 2020
C. P. Milliken, Python Projects for Beginners, https://doi.org/10.1007/978-1-4842-5355-7

Index

A
Algorithmic complexity

Big O Notation, 234–236
Bubble Sort, 239
dictionaries vs list, 238
hash tables, 236, 237
insertion sort, 240

Anaconda, 6
defined, 8
installation, 6–8

Application programming
interface (API), 259

Attributes
declaration, 156
global vs. instance, 159, 160
__init__() method, 157–158
instances, 157
self keyword, 158

B
Big O Notation, 234–236
Binary search

final design, 209–211
program setup

loop to repeat steps, 214–215
middle index, 212, 213
output, 216
return false, 215
sort the list, 211–212

value greater, 213
value less, 214

Blackjack game
addCard method, 177, 178
build, deck, 175
calcHand method, 180, 181
calculate winner, 183
code, 184
dealer’s turn, 182, 183
game class, create, 174–175
game loop, 185
necessary functions, import, 174
player class, create, 176, 177
player’s turn, 181, 182
pop method, 175
pullCard method, 176
showHand method, 178, 179

Branching statements/conditionals
elif statements

checking multiple conditions, 59
within conditionals, 60
working, 58

else statements
code, 62, 63
working, 62

if statements
checking user input, 54
code, 53
comparison operators, 54
vs elif statements, 60

https://doi.org/10.1007/978-1-4842-5355-7

326

logical operators, 55–57
working, 53

Built-in functions, 109

C
Calculator, project

creating
design, 65
numbers, 66
output, 67–68
try/except block, 66, 67
user to input, 65

Command prompt (Windows)
or terminal

changing directories, 9
directory, 10
files, create, 10
interpreter, 12
issue commands, 9
output, 11
Python shell, 12–13
version numbers, 11

Comments
defining, 22
hash (#) symbol, 23, 24

D, E
Database with CSV files

main loop, 147, 148
necessary files, import, 145
process, 144, 145
registering users, 145–146
user login, 146

Data collection, 140
Data types, 24–26

Data visualization
bar plot, 285–286
box plot, 286–287
charts types, 282
definition, 281
flattening multidimensional

data, 293, 294
histogram, 289, 290, 292
importing matplotlib, 283
install matplotlib, 282
line plot, 283–285
savefig() method, 292, 293
scatter plot, 288–289

Decorators
creating and applying, 225
defining, 224
functions, 226
higher-order function, 225
parameters, 226
restrict function

access, 227, 228
del function, 135
describe method, 270
Dictionary

access information, 131
add information, 134
change information, 135
declaration, 130–131
defined, 130
delete information, 135
key-value pairs, 133
lists, 132–133
looping

.items() method, 136

.keys() method, 136

.values() method, 136
values, 132

displayResults function, 315

Branching statements/conditionals (cont.)

INDEX

327

F
File modes, Python, 143
Filter function, 197

with lambdas, 200
without lambdas, 199, 200

filterWaste function, 311
find() method, 38, 298
find_all() method, 298
For loops

break statement, 82
continue statement, 81
element, 80
iteration, 79
pass statement, 82
range (), 80
syntax, 79
working, 78

Format method, 33
Frozensets, 139
Functions

creating and calling, 106
lifecycle, 108
parameters

accepting, 110
assign values, 114
default, 113
keyword arguments, 115
multiple, 111
optional arguments, 113
passing list, 111–112
using ∗args, 114, 115

performing calculation, 109
return statement, 116–118
scope

access, 119
handling function, 120
in-place algorithms, 120, 121

structure, 107
syntax, 107
UDF vs built-in, 109

G
General software development interview

developer interview
process, 241, 242

do before process, 243–245
end process, 249–251
nontechnical questions, 245–247
whiteboarding and technical

questions, 248
Generators, 222–224
get() method, 131, 132
groupby method, 275

H
Hangman, project

checking guess, 98
clear output, 98
create game loop, 97
create string, 96
declaring variables, 96
design, 94
importing function, 95
line symbols, 95
losing condition, 99
outputting guessed letters, 101–102
outputting information, 97
tracking index value, 100
winning condition, 100

Hash tables, 236, 237
head() method, 269
Higher-order function, 225
hist() method, 290

Index

328

I
id() function, 76
Inheritance

class, 168, 169
defined, 168
method overriding, 170
multiple classes, 171
super method, 169

__init__() method, 157
in-place algorithms, 121
iter() function, 220
Iterators

vs iterable, 220
creating own class, 221–222

J
JavaScript Object Notation

(JSON), 261
Jupyter Notebook, 6, 8

benefits, 14
cells, 15, 16
defined, 13
open terminal, 14
Python file, 14, 15

K
keys() method, 269

L
Lambda/anonymous functions

conditional
statements, 195, 196

multiple arguments, 194
returning, 196
saving, 195

syntax, 193
usage, 193, 194

len() function, 87
List comprehension

degree conversion, 192
dictionary, 192
if-else statement, 190, 191
if statement, 190
list of numbers,

generation, 189
syntax structure, 188, 189
user input, 192
variables, 191

Lists
accessing elements, 73
accessing within

lists, 74
changing values, 75
data_copy, 77
declaring data types, 73
declaring numbers, 72
definition, 72
multi-indexing, 75
stored within another, 74
variable storage, 76
working

add items, 88
conditionals, 91–92
for loops, 92
numerical data, 90, 91
remove items, 88, 89
while loops, 93

Lists
data_copy, 77
working

slicing, 87
use len() function, 87

Logical operator, 55

INDEX

329

M, N
Magic methods, 166
map function, 197

with lambda, 198, 199
without lambda, 197, 198

Membership operators, 56
Memoization, 187

beauty of, 207
caching, 206
definition, 206
dictionaries, 207
lru_cache, 208

Methods
attributes value,

alter, 165
calling method, 166
class attributes, 162
defining, 161–162
getters, 164–165
magic methods, 166–167
pass arguments, 163–164
setters, 164–165
static, 162–163

Modules
importing variables and

functions, 229, 230
Jupyter Notebook, 232
text editor code, 231–232
using alias, 231

O
Object-oriented

programming (OOP)
class definition, 153
create, class, 153–154
instance, creation, 154
instantiation, 153

multiple instances, 154–155
objects, 152

open() function, 141

P, Q
Palindrome, 149
Pandas

accessing data
built-in functions, 269
by column, 267
by record, 268
slicing DataFrame, 268

aggregations
adding record, 276
drop_duplicate(), 277
groupby method, 275, 276
mean method, 275

built-in functions
describe method, 270
keys() method, 269
shape, 270
sort values, 270
tail() method, 269

column transformations, 272–274
creating DataFrame, 265, 266
dataset pipeline, 280
defining, 263
filtration, 271
importing, 265
installation, 265
joins

creating second DataFrame, 278
inner join, 278
outer join, 279

key terms, 264
library, 264

.pop() method, 89

Index

330

prettify() method, 297, 308
Project Day

developer, 19
guessing game, 18, 19
line numbers, 17

Python
back-end development, 319
benefits, 3
cross-platform, 6
data analysis, 320
data science, 320
defined, 2
full-stack development, 320
resources, 320

R
range function, 222
Reading and writing files

open() function, 141
read CSV files, 142
write CSV files, 142
write() method, 141

Receipt printing program, project
border, 42
creating, design, 40
define variables, 41
displaying

bottom border, 45
company info, 42
ending message, 44
product info, 43
total, 44

Recursive functions, 187
base case, 203
factorial function, 204
fibonacci sequence, 205, 206
uses, 203

reduce function, 197
arguments, 201, 202
creator of Python, 201

remove method, 89
replace method, 37

S
savefig() method, 292
Sets

declaration, 139
defined, 138

Shopping cart, project
adding items, 123
clear the cart, 124
creating main

loop, 124–126
design, 122
output, 126
removing

items, 123
user input, 125
view items, 124

Skills, challenges, 149
sorted() function, 90
sort() method, 91
split method, 39
String

call index, 34, 35
concatenation, 32
format method, 33, 34
manipulation

.find (), 38

.replace (), 37

.split (), 39

.strip (), 38

.title(), 37
slicing, 36

INDEX

331

T
tail() method, 269
.title () method, 37
Tuple

declaration, 138
defined, 137

Type conversion functions
checking type, 49
converting data

types, 49, 50
converting user input, 50
handling errors, 51, 52

U
User-defined function (UDF)/built-in

function, 264
User input

accepting, 48
storing, 48

V
Variables

booleans, 29
calculations/manipulation, 29
change value, 30
declaration, 28
integer/float, 28
naming errors, 28
strings, 29
using operators, 30
whitespace, 31

Virtual environments
activating, 257, 258
create Conda’s, 256
install packages, 258
Pip, 256

request module
accessing response, 260
convertion method, 261
passing

parameters, 261, 262
sending request, 260

W, X, Y, Z
Web scraping

data
find() method, 298
find_all() method, 298
finding elements, 299

DOM traversal
accessing children

attribute, 300
accessing head element

tag, 302
accessing tag object, 302
relationships, 300
title text, 303
types of children, 301

importing Beautiful Soup, 295
install Beautiful Soup, 295
parsing response, 297
requesting page content, 296

Web site analysis
count word frequency, 312
creating main loop, 307
display top word, 313, 314
filtering waste, 310, 311
final design, 304, 305
flattering elements, 309
graphing results, 314, 315
importing libraries, 306
output, 315
scrap all text, 308

Index

332

scrap web site, 307
sort dictionary, 313

While loops
code, 84
vs for loop, 84

infinite, 84
nested, 85

“with” keyword, 142
wrap function, 226
write() method, 141

Web site analysis (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started
	Monday: Introduction
	What Is Python?
	Why Python?
	Why This Book?
	Who This Book Is For?
	What You’ll Learn

	Tuesday: Setting Up Anaconda and Python
	Cross-Platform Development
	Installing Anaconda and Python for Windows
	What Is Anaconda?
	What Is Jupyter Notebook?

	Wednesday: How to Use the Terminal
	Changing Directories
	Checking the Directory
	Making Directories
	Creating Files
	Checking a Version Number
	Clearing the Terminal Output
	Using the Python Shell
	Writing Your First Line of Python
	Exiting the Python Shell

	Thursday: Using Jupyter Notebook
	Opening Jupyter Notebook
	Step 1: Open Terminal
	Step 2: Writing the Jupyter Notebook Command

	Creating a Python File
	Jupyter Notebook Cells

	Friday: Creating Your First Program
	Line Numbers Introduced
	Creating the Program
	Final Output

	Weekly Summary
	Weekly Challenges

	Chapter 2: Python Basics
	Monday: Comments and Basic Data Types
	What Are Comments and Why Use Them?
	Writing Comments
	What Are Data Types?
	The Print Statement
	Integers
	Floats
	Booleans
	Strings

	Tuesday: Variables
	How They Work
	Handling Naming Errors
	Integer and Float Variables
	Boolean Variables
	String Variables
	Using Multiple Variables
	Using Operators on Numerical Variables
	Overwriting Previously Created Variables
	Whitespace

	Wednesday: Working with Strings
	String Concatenation
	Formatting Strings
	.format()
	f Strings (New in Python 3.6)
	Formatting in Python 2

	String Index
	String Slicing

	Thursday: String Manipulation
	.title()
	.replace()
	.find()
	.strip()
	.split()

	Friday: Creating a Receipt Printing Program
	Final Design
	Initial Process
	Defining Our Variables
	Creating the Top Border
	Displaying the Company Info
	Displaying the Product Info
	Displaying the Total
	Displaying the Ending Message
	Displaying the Bottom Border

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 3: User Input and Conditionals
	Monday: User Input and Type Converting
	Accepting User Input
	Storing User Input
	What Is Type Converting?
	Checking the Type
	Converting Data Types
	Converting User Input
	Handling Errors
	Code Blocks and Indentation

	Tuesday: If Statements
	How They Work
	Writing Your First If Statement
	Comparison Operators
	Checking User Input
	Logical Operators
	Logical Operator “and”
	Logical Operator “or”
	Logical Operator “not”

	Membership Operators
	Membership Operator “in”
	Membership Operator “not in”

	Wednesday: Elif Statements
	How They Work
	Writing Your First Elif Statement
	Checking Multiple Elif Conditions
	Conditionals Within Conditionals
	If Statements vs. Elif Statements

	Thursday: Else Statements
	How They Work
	Writing Your First Else Statement
	Complete Conditional Statement

	Friday: Creating a Calculator
	Final Design
	Step #1: Ask User for Calculation to Be Performed
	Step #2: Ask for Numbers, Alert Order Matters
	Step #3: Set Up Try/Except for Mathematical Operation
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 4: Lists and Loops
	Monday: Lists
	What Are Lists?
	Declaring a List of Numbers
	Accessing Elements Within a List
	Declaring a List of Mixed Data Types
	Lists Within Lists
	Accessing Lists Within Lists
	Changing Values in a List
	Variable Storage
	Copying a List

	Tuesday: For Loops
	How Loops Work
	Writing a For Loop
	Range()
	Looping by Element
	Continue Statement
	Break Statement
	Pass Statement

	Wednesday: While Loops
	Writing a While Loop
	While vs. For
	Infinite Loops
	Nested Loops

	Thursday: Working with Lists
	Checking Length
	Slicing Lists
	Adding Items
	.append()
	.insert()

	Removing Items
	.pop()
	.remove()

	Working with Numerical List Data
	Sorting a List
	sorted()
	.sort()

	Conditionals and Lists
	Using “in” and “not in” Keywords
	Checking an Empty List

	Loops and Lists
	Using For Loops
	Using While Loops

	Friday: Creating Hangman
	Final Design
	Previous Line Symbols Introduced
	Adding Imports
	Declaring Game Variables
	Generating the Hidden Word
	Creating the Game Loop
	Outputting Game Information
	Checking a Guess
	Clearing Output
	Creating the Losing Condition
	Handling Correct Guesses
	Creating a Winning Condition
	Outputting Guessed Letters
	Adding Guessed Letters
	Handling Previous Guesses
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 5: Functions
	Monday: Creating and Calling Functions
	What Are Functions?
	Function Syntax
	Writing Your First Function
	Function Stages
	UDF vs. Built-in
	Performing a Calculation

	Tuesday: Parameters
	What Are Parameters?
	Passing a Single Parameter
	Multiple Parameters
	Passing a List
	Default Parameters
	Making Parameters Optional
	Named Parameter Assignment
	*args
	**kwargs

	Wednesday: Return Statement
	How It Works
	Using Return
	Ternary Operator

	Thursday: Scope
	Types of Scope
	Global Scope Access
	Handling Function Scope
	In-Place Algorithms

	Friday: Creating a Shopping Cart
	Final Design
	Initial Setup
	Adding Items
	Removing Items
	Showing the Cart
	Clearing the Cart
	Creating the Main Loop
	Handling User Input
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 6: Data Collections and Files
	Monday: Dictionaries
	What Are Dictionaries?
	Declaring a Dictionary
	Accessing Dictionary Information
	Using the Get Method
	Dictionaries with Lists
	Lists with Dictionaries
	Dictionaries with Dictionaries

	Tuesday: Working with Dictionaries
	Adding New Information
	Changing Information
	Deleting Information
	Looping a Dictionary
	Looping Only Keys
	Looping Only Values
	Looping Key-Value Pairs

	Wednesday: Tuples, Sets, Frozensets
	What Are Tuples?
	Declaring a Tuple
	What Are Sets?
	Declaring a Set
	What Are Frozensets?
	Declaring a Frozenset
	Data Collection Differences

	Thursday: Reading and Writing Files
	Working with Text Files
	Writing to CSV Files
	Reading from CSV Files
	File Modes in Python

	Friday: Creating a User Database with CSV Files
	Final Design
	Setting Up Necessary Imports
	Handling User Registration
	Handling User Login
	Creating the Main Loop

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 7: Object-Oriented Programming
	Monday: Creating and Instantiating a Class
	What Is an Object?
	OOP Stages
	Creating a Class
	Creating an Instance
	Creating Multiple Instances

	Tuesday: Attributes
	Declaring and Accessing Attributes
	Changing an Instance Attributes
	Using the __init__() Method
	The “self” Keyword
	Instantiating Multiple Objects with __init__()
	Global Attributes vs. Instance Attributes

	Wednesday: Methods
	Defining and Calling a Method
	Accessing Class Attributes in Methods
	Method Scope
	Passing Arguments into Methods
	Using Setters and Getters
	Incrementing Attributes with Methods
	Methods Calling Methods
	Magic Methods

	Thursday: Inheritance
	What Is Inheritance?
	Inheriting a Class
	Using the super() Method
	Method Overriding
	Inheriting Multiple Classes

	Friday: Creating Blackjack
	Final Design
	Setting Up Imports
	Creating the Game Class
	Generating the Deck
	Pulling a Card from the Deck
	Creating a Player Class
	Adding Cards to the Player’s Hand
	Showing a Player’s Hand
	Calculating the Hand Total
	Handling the Player’s Turn
	Handling the Dealer’s Turn
	Calculating a Winner
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 8: Advanced Topics I: Efficiency
	Monday: List Comprehension
	List Comprehension Syntax
	Generating a List of Numbers
	If Statements
	If-Else Statements
	List Comprehension with Variables
	Dictionary Comprehension

	Tuesday: Lambda Functions
	Lambda Function Syntax
	Using a Lambda
	Passing Multiple Arguments
	Saving Lambda Functions
	Conditional Statements
	Returning a Lambda

	Wednesday: Map, Filter, and Reduce
	Map Without Lambdas
	Map with Lambdas
	Filter Without Lambdas
	Filter with Lambdas
	The Problem with Reduce
	Using Reduce

	Thursday: Recursive Functions and Memoization
	Understanding Recursive Functions
	Writing a Factorial Function
	The Fibonacci Sequence
	Understanding Memoization
	Using Memoization
	Using @lru_cache

	Friday: Writing a Binary Search
	Final Design
	Program Setup
	Step 1: Sort the List
	Step 2: Find the Middle Index
	Step 3: Check the Value at the Middle Index
	Step 4: Check if Value Is Greater
	Step 5: Check if Value Is Less
	Step 6: Set Up a Loop to Repeat Steps
	Step 7: Return False Otherwise
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 9: Advanced Topics II: Complexity
	Monday: Generators and Iterators
	Iterators vs. Iterables
	Creating a Basic Iterator
	Creating Our Own Iterator
	What Are Generators?
	Creating a Range Generator

	Tuesday: Decorators
	What Are Decorators?
	Higher-Order Functions
	Creating and Applying a Decorator
	Decorators with Parameters
	Functions with Decorators and Parameters
	Restricting Function Access

	Wednesday: Modules
	Importing a Module
	Importing Only Variables and Functions
	Using an Alias
	Creating Our Own Module
	Using Our Module in Jupyter Notebook

	Thursday: Understanding Algorithmic Complexity
	What Is Big O Notation?
	Hash Tables
	Dictionaries vs. Lists
	Battle of the Algorithms

	Friday: Interview Prep
	Developer Interview Process
	What to Do Before the Interview
	General Questions
	Whiteboarding and Technical Questions
	End of Interview Questions
	What to Do After the Interview

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Chapter 10: Introduction to Data Analysis
	Monday: Virtual Environments and Requests Module
	What Are Virtual Environments?
	What Is Pip?
	Creating a Virtual Environment
	Activating the Virtual Environment
	Installing Packages
	APIs and the Requests Module
	Using the Requests Module
	Sending a Request
	Accessing the Response Content
	Converting the Response
	Passing Parameters

	Tuesday: Pandas
	What Is Pandas?
	Key Terms
	Installing Pandas
	Importing Pandas
	Creating a DataFrame
	Accessing Data
	Indexing by Column
	Indexing by Record
	Slicing a DataFrame

	Built-in Methods
	head()
	tail()
	keys()
	.shape
	describe()
	sort_values()

	Filtration
	Conditionals
	Subsetting

	Column Transformations
	Generating a New Column with Data
	apply()

	Aggregations
	groupby()
	mean()
	groupby() with Multiple Columns
	Adding a Record
	drop_duplicates()

	Pandas Joins
	Creating a Second DataFrame
	Inner Join
	Outer Join

	Dataset Pipeline

	Wednesday: Data Visualization
	Types of Charts
	Installing Matplotlib
	Importing Matplotlib
	Line Plot
	Bar Plot
	Box Plot
	Scatter Plot
	Histogram
	Importance of Histogram Distribution

	Saving the Chart
	Flattening Multidimensional Data

	Thursday: Web Scraping
	Installing Beautiful Soup
	Importing Beautiful Soup
	Requesting Page Content
	Parsing the Response with Beautiful Soup
	Scraping Data
	.find()
	.find_all()
	Finding Elements by Attributes

	DOM Traversal
	Accessing the Children Attribute
	Understanding the Types of Children
	Accessing the Tag Object
	Accessing the Head Element Tag
	Scraping the Title Text

	Friday: Web Site Analysis
	Final Design
	Importing Libraries
	Creating the Main Loop
	Scraping the Web Site
	Scrape All Text
	Filtering Elements
	Filtering Waste
	Count Word Frequency
	Sort Dictionary by Word Frequency
	Displaying the Top Word
	Graphing the Results
	Final Output

	Weekly Summary
	Challenge Question Solution
	Weekly Challenges

	Afterword:
Post-Course: What to Do Now?
	Back-End Development with Python
	Full-Stack Development with Python
	Data Analysis with Python
	Data Science with Python
	Resources
	Final Message

	Index

