
M A N N I N G

Reuven M. Lerner

50 ten-minute exercises

Python Workout Exercises

EXERCISE 1 ■ Number guessing game

EXERCISE 2 ■ Summing numbers

EXERCISE 3 ■ Run timing

EXERCISE 4 ■ Hexadecimal output

EXERCISE 5 ■ Pig Latin

EXERCISE 6 ■ Pig Latin sentence

EXERCISE 7 ■ Ubbi Dubbi

EXERCISE 8 ■ Sorting a string

EXERCISE 9 ■ First-last

EXERCISE 10 ■ Summing anything

EXERCISE 11 ■ Alphabetizing names

EXERCISE 12 ■ Word with most repeated
letters

EXERCISE 13 ■ Printing tuple records

EXERCISE 14 ■ Restaurant

EXERCISE 15 ■ Rainfall

EXERCISE 16 ■ Dictdiff

EXERCISE 17 ■ How many different
numbers?

EXERCISE 18 ■ Final Line

EXERCISE 19 ■ /etc/passwd to dict

EXERCISE 20 ■ Word count

EXERCISE 21 ■ Longest word per file

EXERCISE 22 ■ Reading and writing CSV

EXERCISE 23 ■ JSON

EXERCISE 24 ■ Reverse Lines

EXERCISE 25 ■ XML generator

EXERCISE 26 ■ Prefix notation calculator

EXERCISE 27 ■ Password generator

EXERCISE 28 ■ Join numbers

EXERCISE 29 ■ Add numbers

EXERCISE 30 ■ Flatten a list

EXERCISE 31 ■ Pig Latin translation of a file

EXERCISE 32 ■ Flip a dict

EXERCISE 33 ■ Transform values

EXERCISE 34 ■ (Almost) supervocalic words

EXERCISE 35a ■ Gematria, part 1

EXERCISE 35b ■ Gematria, part 2

EXERCISE 36 ■ Sales tax

EXERCISE 37 ■ Menu

EXERCISE 38 ■ Ice cream scoop

EXERCISE 39 ■ Ice cream bowl

EXERCISE 40 ■ Bowl limits

EXERCISE 41 ■ A bigger bowl

EXERCISE 42 ■ FlexibleDict

EXERCISE 43 ■ Animals

EXERCISE 44 ■ Cages

EXERCISE 45 ■ Zoo

EXERCISE 46 ■ MyEnumerate

EXERCISE 47 ■ Circle

EXERCISE 48 ■ All lines, all files

EXERCISE 49 ■ Elapsed since

EXERCISE 50 ■ MyChain

Python Workout

Python Workout
50 TEN-MINUTE EXERCISES

REUVEN LERNER

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Frances Lefkowitz
Technical development editor: Gary Hubbard

Manning Publications Co. Review editor: Ivan Martinović
20 Baldwin Road Production editor: Lori Weidert
PO Box 761 Copy editor: Carl Quesnel
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Ignacio Beltran Torres
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617295508
Printed in the United States of America

www.manning.com

 Dedicated to my three children, who are also my best teachers—
Atara Margalit, Shikma Bruria, and Amotz David.

brief contents
1 ■ Numeric types 1

2 ■ Strings 17

3 ■ Lists and tuples 29

4 ■ Dictionaries and sets 53

5 ■ Files 71

6 ■ Functions 98

7 ■ Functional programming with comprehensions 116

8 ■ Modules and packages 143

9 ■ Objects 158

10 ■ Iterators and generators 197
vii

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxii
about the cover illustration xxiii

1 Numeric types 1
Useful references 2
EXERCISE 1 ■ Number guessing game 2
EXERCISE 2 ■ Summing numbers 8
EXERCISE 3 ■ Run timing 11
EXERCISE 4 ■ Hexadecimal output 14

2 Strings 17
Useful references 18
EXERCISE 5 ■ Pig Latin 18
EXERCISE 6 ■ Pig Latin sentence 22
EXERCISE 7 ■ Ubbi Dubbi 24
EXERCISE 8 ■ Sorting a string 26
ix

CONTENTSx
3 Lists and tuples 29
EXERCISE 9 ■ First-last 31
EXERCISE 10 ■ Summing anything 37
EXERCISE 11 ■ Alphabetizing names 40
EXERCISE 12 ■ Word with most repeated letters 46
EXERCISE 13 ■ Printing tuple records 49

4 Dictionaries and sets 53
Hashing and dicts 54
Sets 56
EXERCISE 14 ■ Restaurant 57
EXERCISE 15 ■ Rainfall 59
EXERCISE 16 ■ Dictdiff 64
EXERCISE 17 ■ How many different numbers? 68

5 Files 71
EXERCISE 18 ■ Final line 73
EXERCISE 19 ■ /etc/passwd to dict 78
EXERCISE 20 ■ Word count 81
EXERCISE 21 ■ Longest word per file 85
EXERCISE 22 ■ Reading and writing CSV 88
EXERCISE 23 ■ JSON 91
EXERCISE 24 ■ Reverse lines 95

6 Functions 98
EXERCISE 25 ■ XML generator 101
EXERCISE 26 ■ Prefix notation calculator 107
EXERCISE 27 ■ Password generator 111

7 Functional programming with comprehensions 116
EXERCISE 28 ■ Join numbers 118
EXERCISE 29 ■ Add numbers 125
EXERCISE 30 ■ Flatten a list 127
EXERCISE 31 ■ Pig Latin translation of a file 129
EXERCISE 32 ■ Flip a dict 131

CONTENTS xi
EXERCISE 33 ■ Transform values 133
EXERCISE 34 ■ (Almost) supervocalic words 135
EXERCISE 35a ■ Gematria, part 1 137
EXERCISE 35b ■ Gematria, part 2 139

8 Modules and packages 143
EXERCISE 36 ■ Sales tax 147
EXERCISE 37 ■ Menu 152

9 Objects 158
EXERCISE 38 ■ Ice cream scoop 161
EXERCISE 39 ■ Ice cream bowl 168
EXERCISE 40 ■ Bowl limits 175
EXERCISE 41 ■ A bigger bowl 180
EXERCISE 42 ■ FlexibleDict 183
EXERCISE 43 ■ Animals 185
EXERCISE 44 ■ Cages 189
EXERCISE 45 ■ Zoo 193

10 Iterators and generators 197
EXERCISE 46 ■ MyEnumerate 202
EXERCISE 47 ■ Circle 204
EXERCISE 48 ■ All lines, all files 207
EXERCISE 49 ■ Elapsed since 209
EXERCISE 50 ■ MyChain 211

index 215

preface
In many ways, learning a programming language is like learning a foreign (human)
language. You can take a course, understand the subject, and even do well on the final
exam. But when it comes time to actually use the language, you can find yourself flus-
tered, unsure of just what syntax to use, or what’s the most appropriate way to phrase
something—let alone be unable to understand native speakers.

 That’s where practice comes in. Practicing a foreign language gives you greater flu-
ency and confidence, allowing you to engage in deeper and more interesting conver-
sations. Practicing Python allows you to solve problems more quickly and easily, while
simultaneously writing more readable and maintainable code. The improvement hap-
pens over time, as you use the language in new and varied situations. It often isn’t
obvious that you have improved. And yet, when you look back to how you were using
the language just a few months before, the difference is stark.

 This book isn’t meant to teach you Python. Rather, it’s meant to give you the prac-
tice you need to achieve greater fluency. After going through the exercises in this
book—not just skimming through the questions and peeking at the answers—you will
write more readable, more idiomatic, and more maintainable Python code.

Python Workout is the result of conversations with students in my corporate Python
training classes. Once the course was over, they often asked where they could get addi-
tional practice, to continue improving their skills. This book draws upon the hands-on
labs that I give my students, as well as discussions that I have had with them during
and after class.
xiii

PREFACExiv
 The exercises are designed to help you internalize some of the core ideas in
Python: core data structures, functions, comprehensions, object-oriented program-
ming, and iterators. These might seem like simple topics, perhaps even too simple for
a book of exercises. But all of Python, from the largest application to the smallest
script, is based on these building blocks. Knowing them well is a crucial part of being a
fluent Python developer. I often say that ignoring these building blocks in favor of
more complex topics is akin to a chemistry student ignoring the elements in favor
of “real” chemicals.

 I can personally attest to the power of practice, not just as a Python instructor, but
also as a student. For several years, I’ve been learning Chinese, in no small part because
I travel to China every few months to teach Python courses there. Each lesson that I
take, and every exercise that I do, doesn’t seem to advance my fluency very much. But
when I return to China after an absence of several months, I find that the practice has
indeed helped, and that I’m able to communicate more easily with the locals.

 I’m still far from fluent in Chinese, but I’m making progress, and I delight in look-
ing back and seeing how far I’ve come. I hope and expect that Python Workout will do
the same for you, advancing your understanding and fluency with each passing day.

acknowledgments
It might be a cliché that writing a book is a cooperative endeavor, but it also happens
to be true. I thus want to thank and acknowledge a number of people, without whom
this book wouldn’t be possible.

 First and foremost, I want to thank the thousands of students I’ve had the privilege
of teaching over the years in my corporate Python training courses. It is thanks to
their questions, suggestions, insights, and corrections that the exercises, solutions,
and explanations are in their current state.

 Thanks also to the many subscribers to my weekly “Better developers” newsletter
(https://BetterDevelopersWeekly.com/), who often take the time to comment on and
correct topics about which I’ve written. I’ve learned a great deal from them, and often
put such insights to use in my teaching.

 Next, Philip Guo (http://pgbovine.net/) is an assistant professor of Cognitive Sci-
ence at UC San Diego. He’s also the author and maintainer of the “Python Tutor” site,
an invaluable tool that I often use in my courses, and that I encourage my students to
use as they puzzle through their Python code. I’ve used many screenshots from the
Python Tutor in this book, and almost every exercise solution includes a link to that
site, so that you can walk through the code yourself.

 Thanks to everyone who works on Python, from the core developers, to those who
write and blog about the language, to those who contribute packages. The Python
ecosystem is an impressive technical accomplishment, but I have also been impressed
by the number of truly helpful, decent, and warm people I’ve met who are responsible
for those accomplishments.
xv

https://BetterDevelopersWeekly.com/
http://pgbovine.net/

ACKNOWLEDGMENTSxvi
 A host of people at Manning have contributed to the book, making it far better
than anything I could have done on my own. (And there’s proof; the self-published
predecessor to this book wasn’t nearly as good as what you’re reading!) I’ve worked
closely with a few of them, all of whom have combined skill and patience in helping
this book come to life. Michael Stephens saw the promise of such an exercise-centric
book and encouraged me to work with Manning. Frances Lefkowitz was not only
skilled at editing the text and pointing out where it could be improved, broken up, or
illustrated; she also shepherded me through the book-writing process. Gary Hubbard
and Ignacio Beltran Torres both provided countless technical insights and edits, find-
ing bugs and helping me to tighten up bad explanations. And Carl Quesnel impressed
me to no end with his detailed edits of the final text.

 To all the reviewers: Annette Dewind, Bill Bailey, Charles Daniels, Christoffer Fink,
David Krief, David Moravec, David R. Snyder, Gary Hubbard, Geoff Craig, Glen Sirakavit,
Jean-François Morin, Jeff Smith, Jens Christian B. Madsen, Jim Amrhein, Joe Justesen,
Kieran Coote-Dinh, Mark Elston, Mayur Patil, Meredith Godar, Stefan Trost, Steve
Love, Sushant Bhosale, Tamara L. Fultz, Tony Holdroyd, and Warren Myers, your sug-
gestions helped make this a better book.

 Finally, my family has been patient throughout my business and academic career.
They were helpful and understanding as I grew my training practice, completed a
PhD, and then began to travel the world teaching Python. When it comes to this book,
they were actually patient twice: first when I self-published it on my website, and then
again when it was upgraded, expanded, and improved (rather dramatically) to become
what you’re now reading. Thanks to my wife, Shira, and to my children, Atara, Shikma,
and Amotz, for their understanding and appreciation.

about this book
Python Workout isn’t designed to teach you Python, although I hope and expect that
you’ll learn quite a bit along the way. It is meant to help you improve your understand-
ing of Python and how to use it to solve problems. You can think of it as a workbook,
one whose power and learning potential depends on you. The more effort you put
into this book, the more you’ll get out of it.

 In other words, this is a book that you should not just read or page through. For
the learning to happen, you’ll have to spend time answering the questions and mak-
ing inevitable mistakes. There’s a world of difference between reading a solution
and writing the solution yourself. I hope that you’ll invest time in answering the
problems; I promise that it’s an investment that’ll repay you handily in the future.

 By the time you finish Python Workout, you will have solved many problems having
to do with core data structures, functions, comprehensions, modules, objects, and
iterators. You will understand how to use them effectively and will know how to use
them in various idiomatic ways. Once you’ve finished with these exercises, you’ll find
it easier to design and write Python programs for work and pleasure.

 Note that it’s not cheating to look for help in the Python documentation, or even
on such sites as Stack Overflow (https://StackOverflow.com/). No developer can pos-
sibly remember everything that they need in their day-to-day work. I do hope that as
you progress through the book, and then use Python in your career, you’ll find your-
self consulting such documentation less, or only for more advanced topics.
xvii

https://StackOverflow.com/

ABOUT THIS BOOKxviii
Who should read this book
This book is aimed at developers who have taken a Python course, or perhaps read an
introductory book on the language. Indeed, the bulk of these exercises are aimed at
people who are in my intro Python course, or who have recently finished taking it. You
should already have an understanding of basic constructs, such as if and for, as well
as the core data structures, such as strings, lists, tuples, and dictionaries.

 But there’s a difference between having a passing familiarity with these topics and
knowing how to apply them to actual problems. If you can get by with Python but find
yourself going to Stack Overflow many times each day, then this book will help you to
become more confident and independent as you write Python code. I’d argue that if
you have been using Python regularly for less than six months, then you’ll gain from
this book.

How this book is organized: a roadmap
This book has ten chapters, each focusing on a different aspect of Python. However,
the exercises in each chapter will use techniques from other chapters. For example,
nearly every exercise asks you to write a function or a class, even though functions are
introduced in chapter 6 and classes are introduced in chapter 9. Think of the names
as general guidelines, rather than strict rules, for what you’ll be practicing and learn-
ing in each chapter.

 The chapters are

1 Numeric types: Integers and floats—and converting between numbers and strings.
2 Strings: Working with strings, and seeing them not just as text, but also as

sequences over which you can iterate.
3 Lists and tuples: Creating, modifying (in the case of lists), and retrieving from

lists and tuples.
4 Dictionaries and sets: Exploring the different ways you can use dicts, and some

of their useful methods. Also, some uses for sets, which are related to dicts.
5 Files: Reading from and writing to files.
6 Functions: Writing functions, including nested functions. Exploring Python’s

scoping rules.
7 Functional programming with comprehensions: Solving problems with list, set,

and dict comprehensions.
8 Modules and packages: Writing and using modules in a Python program.
9 Objects: Creating classes, writing methods, using attributes, and understanding

inheritance.
10 Iterators and generators: Adding the iterator protocol to classes, writing gener-

ator functions, and writing generator comprehensions.

ABOUT THIS BOOK xix
Exercises form the main part of each chapter. For each exercise, you’ll find five
components:

1 Exercise: A problem statement for you to tackle.
2 Working it out: A detailed discussion of the problem and how to solve it.
3 Solution: The solution code, along with a link to the code on the Python Tutor

(pythontutor.com) site so you can execute it. Solution code, along with test
code for each solution, is also available on GitHub at https://github.com/
reuven/python-workout

4 Screencast solution: A short video demonstration, in which I walk you through
the solution in a screencast. You can watch the video to see not just the answer,
but the process I go through in trying to get to that answer. If you read this
book in Manning’s liveBook platform, the screencast videos appear just after
each solution. In the print and ebook, you’ll use a link to a navigation page
(https://livebook.manning.com/video/python-workout), then select the exer-
cise by number and name.

5 Beyond the exercise: Three additional, related exercises. These questions are nei-
ther answered nor discussed in the book—but the code is downloadable, along
with all other solution code from the book. (See the next section for details.)
And you can discuss these additional exercises—and compare solutions—with
other Python Workout readers in the book’s online forum in Manning’s live-
Book platform.

Alongside the exercises are numerous sidebars, each explaining a topic that often
confuses Python developers. For example, there are sidebars on f-strings, variable
scoping, and what happens when you create a new object. The book also contains
numerous hints, tips, and notes—all pointers meant to help you improve your Python
coding fluency and to warn you away from repeating mistakes that I have made many
times over the years.

About the code
This book contains a great deal of Python code. Unlike most books, the code reflects
what you are supposed to write, rather than what you’re supposed to read. If experi-
ence is any guide, some readers (maybe you!) will have better, more elegant, or more
correct solutions than mine. If this is the case, then don’t hesitate to contact me.

 Solutions to all exercises, including the “beyond the exercise” questions, are avail-
able in two places: on Python Tutor (pythontutor.com), which provides an environ-
ment for you to execute the code, or on GitHub at https://github.com/reuven/
python-workout, which allows you to download the code. Not only does this repository
contain all the solutions, but it also includes pytest tests for each of them. (Unfamil-
iar with pytest? I strongly encourage you to read about it at https://pytest.org/, and
to use it to check your code.)

http://pythontutor.com/
https://github.com/reuven/python-workout
https://github.com/reuven/python-workout
https://github.com/reuven/python-workout
https://livebook.manning.com/video/python-workout
https://github.com/reuven/python-workout
https://github.com/reuven/python-workout
https://pytest.org/
http://pythontutor.com

ABOUT THIS BOOKxx
 There are some small differences between the code in the GitHub repository and
what is published in the book. In particular, the solutions in the book don’t include
docstrings for functions, classes, and modules; the docstrings are included in the down-
loadable repository.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 As I mentioned previously, purchasing this book also gives you access to screen-
casts of me solving each of the exercises. I hope that the combination of the solution
code (in print), explanation, Python Tutor link, downloadable code, pytest tests,
and screencasts will help you to fully understand each solution and apply its lessons
to your own code.

Software/hardware requirements

First and foremost, this book requires that you have a copy of Python installed. You
can download and install it most easily from https://python.org/. I suggest installing
the latest version available. There are also alternative ways to install Python, including
the Windows Store or Homebrew for the Mac.

 This book will work with any version of Python from 3.6 and up. In a handful of
places, the text describes features that are new in Python 3.7 and 3.8, but the solutions
all use techniques that work with 3.6. The programs all work across operating systems,
so no matter what platform you’re using, the exercises in this book will work.

 You don’t technically need to install an editor or IDE (integrated development
environment) for Python, but it’ll certainly come in handy. Two of the most popular
IDEs are PyCharm (from JetBrains) and VSCode (from Microsoft). Older and/or
more traditional Python developers use vim or Emacs (my personal favorite). But at
the end of the day, you can and should use whichever editor works best for you.
Python doesn’t really care what version you’re using.

liveBook discussion forum
Purchase of Python Workout includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/python-workout/discussion. You can also

https://python.org/
https://livebook.manning.com/#!/book/python-workout/discussion
https://livebook.manning.com/#!/book/python-workout/discussion
https://python.org/

ABOUT THIS BOOK xxi
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
Reuven M. Lerner is a full-time Python trainer. In a given year, he teaches courses at
companies in the United States, Europe, Israel, India, and China, as well as to individ-
uals around the world, via online courses. He blogs and tweets (@reuvenmlerner) fre-
quently about Python and is a panelist on the Business of Freelancing podcast. Reuven
lives in Modi’in, Israel with his wife and three children. You can learn more about
Reuven at https://lerner.co.il/.
xxii

https://lerner.co.il/
https://lerner.co.il/

about the cover illustration
The figure on the cover of Python Workout is captioned “Homme de la Terre de Feu,”
or “A man from the Tierra del Fuego.” The illustration is taken from a collection of
dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–
1810), titled Costumes civils actuel de tous les peoples connus, published in France in 1784.
Each illustration is finely drawn and colored by hand. The rich variety of Grasset de
Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns
and regions were just 200 years ago. Isolated from each other, people spoke different
dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, once so rich,
has faded away. It’s now hard to distinguish the inhabitants of different continents, let
alone different towns, regions, or countries. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiii

Numeric types
Whether you’re calculating salaries, bank interest, or cellular frequencies, it’s hard
to imagine a program that doesn’t use numbers in one way or another. Python has
three different numeric types: int, float, and complex. For most of us, it’s enough
to know about (and work with) int (for whole numbers) and float (for numbers
with a fractional component).

 Numbers are not only fundamental to programming, but also give us a good
introduction to how a programming language operates. Understanding how vari-
able assignment and function arguments work with integers and floats will help you
to reason about more complex types, such as strings, tuples, and dicts.

 This chapter contains exercises that work with numbers, as inputs and as out-
puts. Although working with numbers can be fairly basic and straightforward, con-
verting between them, and integrating them with other data types, can sometimes
take time to get used to.
1

2 CHAPTER 1 Numeric types
Useful references

EXERCISE 1 ■ Number guessing game
This first exercise is designed to get your fingers warmed up for the rest of the book. It
also introduces a number of topics that will repeat themselves over your Python
career: loops, user input, converting types, and comparing values.

 More specifically, programs all have to get input to do something interesting, and
that input often comes from the user. Knowing how to ask the user for input not only
is useful, but allows us to think about the type of data we’re getting, how to convert it
into a format we can use, and what the format would be.

 As you might know, Python only provides two kinds of loops: for and while. Know-
ing how to write and use them will serve you well throughout your Python career. The
fact that nearly every type of data knows how to work inside of a for loop makes such
loops common and useful. If you’re working with database records, elements in an
XML file, or the results from searching for text using regular expressions, you’ll be
using for loops quite a bit.

 For this exercise

 Write a function (guessing_game) that takes no arguments.
 When run, the function chooses a random integer between 0 and 100 (inclusive).

Table 1.1 What you need to know

Concept What is it? Example To learn more

random Module for generating ran-
dom numbers and select-
ing random elements

number = random.randint(1,
100)

http://mng.bz/Z2wj

Comparisons Operators for comparing
values

x < y http://mng.bz/oPJj

f-strings Strings into which expres-
sions can be interpolated

f'It is currently
{datetime.datetime
.now()}'

http://mng.bz/1z6Z and
http://mng.bz/PAm2

for loops Iterates over the ele-
ments of an iterable

for i in range(10):
print(i*i)

http://mng.bz/Jymp

input Prompts the user to enter
a string, and returns a
string

input('Enter your name: ') http://mng.bz/wB27

enumerate Helps us to number ele-
ments of iterables

for index, item in
enumerate('abc'):
print(f'{index}:
{item}')

http://mng.bz/qM1K

reversed Returns an iterator with
the reversed elements of
an iterable

r = reversed('abcd') http://mng.bz/7XYx

http://mng.bz/Z2wj
http://mng.bz/oPJj
http://mng.bz/1z6Z
http://mng.bz/PAm2
http://mng.bz/Jymp
http://mng.bz/wB27
http://mng.bz/qM1K
http://mng.bz/7XYx

3EXERCISE 1 ■ Number guessing game
 Then ask the user to guess what number has been chosen.
 Each time the user enters a guess, the program indicates one of the following:

– Too high
– Too low
– Just right

 If the user guesses correctly, the program exits. Otherwise, the user is asked to
try again.

 The program only exits after the user guesses correctly.

We’ll use the randint (http://mng.bz/mBEn) function in the random module to gen-
erate a random number. Thus, you can say

import random
number = random.randint(10, 30)

and number will contain an integer from 10 to (and including) 30. We can then do
whatever we want with number—print it, store it, pass it to a function, or use it in a
calculation.

 We’ll also be prompting the user to enter text with the input function. We’ll actu-
ally be using input quite a bit in this book to ask the user to tell us something. The
function takes a single string as an argument, which is displayed to the user. The func-
tion then returns the string containing whatever the user entered; for example:

name = input('Enter your name: ')
print(f'Hello, {name}!')

NOTE If the user simply presses Enter when presented with the input
prompt, the value returned by input is an empty string, not None. Indeed, the
return value from input will always be a string, regardless of what the user
entered.

NOTE In Python 2, you would ask the user for input using the raw_input
function. Python 2’s input function was considered dangerous, since it would
ask the user for input and then evaluate the resulting string using the eval
function. (If you’re interested, see http://mng.bz/6QGG.) In Python 3, the
dangerous function has gone away, and the safe one has been renamed
input.

Working it out

At its heart, this program is a simple application of the comparison operators (==, <,
and >) to a number, such that a user can guess the random integer that the computer
has chosen. However, several aspects of this program merit discussion.

 First and foremost, we use the random module to generate a random number. After
importing random, we can then invoke random.randint, which takes two parameters,
returning a random integer. In general, the random module is a useful tool whenever
you need to choose a random value.

http://mng.bz/mBEn
http://mng.bz/6QGG

4 CHAPTER 1 Numeric types
 Note that the maximum number in random.randint is inclusive. This is unusual in
Python; most of the time, such ranges in Python are exclusive, meaning that the
higher number is not included.

TIP The random module doesn’t just generate random numbers. It also has
functions to choose one or more elements from a Python sequence.

Now that the computer has chosen a number, it’s the user’s turn to guess what that
number is. Here, we start an infinite loop in Python, which is most easily created with
while True. Of course, it’s important that there be a way to break out of the loop; in
this case, it will be when the user correctly guesses the value of answer. When that hap-
pens, the break command is used to exit from the innermost loop.

 The input (http://mng.bz/wB27) function always returns a string. This means
that if we want to guess a number, we must turn the user’s input string into an integer.
This is done in the same way as all conversions in Python: by using the target type as a
function, passing the source value as a parameter. Thus int('5') will return the inte-
ger 5, whereas str(5) will return the string '5'. You can also create new instances of
more complex types by invoking the class as a function, as in list('abc') or
dict([('a', 1), ('b', 2), ('c', 3)]).

 In Python 3, you can’t use < and > to compare different types. If you neglect to turn
the user’s input into an integer, the program will exit with an error, saying that it can’t
compare a string (i.e., the user’s input) with an integer.

NOTE In Python 2, it wasn’t an error to compare objects of different types.
But the results you would get were a bit surprising, if you didn’t know what to
expect. That’s because Python would first compare them by type, and then
compare them within that type. In other words, all integers were smaller than
all lists, and all lists were smaller than all strings. Why would you ever want to
use < and > on objects of different types? You probably wouldn’t, and I found
that this functionality confused people more than it helped them. In Python 3,
you can’t make such a comparison; trying to check with 1 < [10, 20, 30] will
result in a TypeError exception.

In this exercise, and the rest of this book, I use f-strings to insert values from variables
into our strings. I’m a big fan of f-strings and encourage you to try them as well. (See
the sidebar discussing f-strings later in this chapter.)

Saved by the walrus
People coming to Python from other languages are often surprised to find while True
loops, in which we then trap user input and break. Isn’t there a better way? Some sug-
gest using the following code:

while s = input('Enter thoughts:'):
print(f'Your thoughts are: {s}')

http://mng.bz/wB27

5EXERCISE 1 ■ Number guessing game
Solution

import random

def guessing_game():
answer = random.randint(0, 100)

while True:
user_guess = int(input('What is your guess? '))

if user_guess == answer:
print(f'Right! The answer is {user_guess}')
break

if user_guess < answer:
print(f'Your guess of {user_guess} is too low!')

This makes a lot of sense—we’ll ask the user for their input and assign that to s. How-
ever, the value assigned to s will then be passed to while, which will evaluate it as a
Boolean. If we get an empty string, then the Boolean value is False, and we exit from
the loop.

There’s just one problem with this code: it won’t work. That’s because assignment in
Python is not an expression—that is, it doesn’t return a value. If it doesn’t return a value,
then it can’t be used in a while loop.

As of Python 3.8, that has changed somewhat. This version introduced the “assignment
expression” operator, which looks like := (a colon followed by an equal sign). But no one
really calls it the “assignment expression operator”; from early on, it’s been called the
“walrus operator.” Also from early on, this operator has been highly controversial. Some
people have said that it introduced unnecessary complexity and potential bugs into the
language.

Here’s how the previous loop would look in Python 3.8:

while s := input('Enter thoughts:'):
print(f'Your thoughts are: {s}')

With the walrus operator in the language, we can finally be rid of while True loops and
their potential for havoc! But wait—don’t we need to worry about the weird effects of
assignment in a while loop’s condition? Maybe, and that’s part of the controversy. But
I was convinced, in no small part, by the fact that regular assignment and the assignment
operator are not interchangeable; where one can be used, the other cannot. I think that
reduces the potential for abuse.

If you want to learn more about the walrus operator, its controversy, and why it’s actually
quite useful, I suggest that you watch the following talk from PyCon 2019, in which
Dustin Ingram makes an effective case for it: http://mng.bz/nPxv.

You can also read more about this operator in PEP 572, where it was introduced and
defined: http://mng.bz/vxOx.

http://mng.bz/vxOx
http://mng.bz/nPxv

6 CHAPTER 1 Numeric types
else:
print(f'Your guess of {user_guess} is too high!')

guessing_game()

You can work through a version of this code in the Python Tutor at http://mng.bz/
vx1q.

NOTE We’re going to assume, for the purposes of this exercise, that our user
will only enter valid data, namely integers. Remember that the int function
normally assumes that we’re giving it a decimal number, which means that its
argument may contain only digits. If you really want to be pedantic, you can
use the str.isdigit method (http://mng.bz/oPVN) to check that a string
contains only digits. Or you can trap the ValueError exception you’ll get if
you run int on something that can’t be turned into an integer.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

You’ll often be getting input from users, and because it comes as a string, you’ll often
need to convert it into other types, such as (in this exercise) integers. Here are some
additional ideas for ways to practice this idea:

 Modify this program, such that it gives the user only three chances to guess the
correct number. If they try three times without success, the program tells them
that they didn’t guess in time and then exits.

 Not only should you choose a random number, but you should also choose a
random number base, from 2 to 16, in which the user should submit their
input. If the user inputs “10” as their guess, you’ll need to interpret it in the

Walk through your code using Python Tutor
In this book, I use many diagrams from the Python Tutor (http://mng.bz/2XJX), an amaz-
ing online resource for teaching and learning Python. (I often use it in my in-person
classes.) You can enter nearly any Python code into the site and then walk through its
execution, piece by piece. Most of the solutions in this book have a link pointing to the
code in the Python Tutor so that you can run it without typing it into the site.

In the Python Tutor, global variables (including functions and classes) are shown in the
global frame. Remember that if you define a variable outside a function, you’ve created
a global variable. Any variables you create inside a function are local variables—and are
shown, in the Python Tutor, inside their own shaded boxes. Simple data structures, such
as integers and strings, are shown alongside the variables pointing to them, whereas
lists, tuples, and dicts are shown in graphical format.

http://mng.bz/oPVN
http://mng.bz/2XJX
http://mng.bz/vx1q
http://mng.bz/vx1q
http://mng.bz/vx1q
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

7EXERCISE 1 ■ Number guessing game
correct number base; “10” might mean 10 (decimal), or 2 (binary), or 16
(hexadecimal).

 Try the same thing, but have the program choose a random word from the dic-
tionary, and then ask the user to guess the word. (You might want to limit your-
self to words containing two to five letters, to avoid making it too horribly
difficult.) Instead of telling the user that they should guess a smaller or larger
number, have them choose an earlier or later word in the dict.

f-strings
Many people, when doing the “number guessing game” exercise, try to print a combina-
tion of a string and a number, such as “You guessed 5.” They quickly discover that
Python doesn’t allow you to add (using +) strings and integers. How, then, can you
include both types in the same line of output?

This problem has long troubled newcomers to Python from other languages. The earliest
method was to use the % operator on a string:

'Hello, %s' % 'world'

While C programmers rejoiced at having something that worked like printf, everyone
else found this technique to be frustrating. Among other things, % wasn’t super-intuitive
for new developers, forced you to use parentheses when passing more than one argu-
ment, and didn’t let you reference repeated values easily.

It was thus a vast improvement when the str.format method was introduced into
Python, letting us say

'Hello, {0}'.format('world')

Whereas I loved the use of str.format, many newcomers to Python found it a bit hard
to use and very long. In particular, they didn’t like the idea of referencing variables on
the left and giving values on the right. And the syntax inside of the curly braces was
unique to Python, which was frustrating for all.

Python 3.6 introduced f-strings, which are similar to the sort of double-quoted strings
programmers in Perl, PHP, Ruby, and Unix shells have enjoyed for decades. f-strings
work basically the same way as str.format but without having to pass parameters:

name = 'world'
f'Hello, {name}'

It’s actually even better than that. You can put whatever expression you want inside the
curly braces, and it’ll be evaluated when the string is evaluated; for example

name = 'world'
x = 100
y = 'abcd'
f'x * 2 = {x*2}, and y.capitalize() is {y.capitalize()}'

8 CHAPTER 1 Numeric types
EXERCISE 2 ■ Summing numbers
One of my favorite types of exercises involves reimplementing functionality that we’ve
seen elsewhere, either inside of Python or in Unix. That’s the background for this
next exercise, in which you’ll reimplement the sum (http://mng.bz/MdW2) function
that comes with Python. That function takes a sequence of numbers and returns the
sum of those numbers. So if you were to invoke sum([1,2,3]), the result would be 6.

 The challenge here is to write a mysum function that does the same thing as the
built-in sum function. However, instead of taking a single sequence as a parameter, it
should take a variable number of arguments. Thus, although you might invoke
sum([1,2,3]), you’d instead invoke mysum(1,2,3) or mysum(10,20,30,40,50).

NOTE The built-in sum function takes an optional second argument, which
we’re ignoring here.

And no, you shouldn’t use the built-in sum function to accomplish this! (You’d be
amazed just how often someone asks me this question when I’m teaching courses.)

 This exercise is meant to help you think about not only numbers, but also the
design of functions. And in particular, you should think about the types of parameters

(continued)

You can also affect the formatting of each data type by putting a code after a colon (:)
inside of the curly braces. For example, you can force the string to be aligned left or right,
on a field of 10 hash marks (#), with the following:

name = 'world'
first = 'Reuven'
last = 'Lerner'

f'Hello, {first:#<10} {last:#>10}'

I definitely encourage you to take a look at f-strings and to use them. They’re one of my
favorite changes to Python from the last few years.

For more information on f-strings, check the following resources:

 A comparison of Python formatting options, including f-strings: http://mng.bz/
Qygm

 A long article about f-strings and how they can be used: http://mng.bz/XPAY
 The PEP in which f-strings were introduced: http://mng.bz/1z6Z

What if you’re still using Python 2 and can’t use f-strings? Then you can and should still
use str.format, a string method that works approximately the same way, but with less
flexibility. Plus, you have to call the method, and reference the arguments by number or
name.

The format code #<10 means that
the string should be placed, left-
aligned, in a field of 10 characters,
with # placed wherever the word
doesn’t fill it. The format code
#>10 means the same thing,
but right-aligned.

http://mng.bz/XPAY
http://mng.bz/1z6Z
http://mng.bz/Qygm
http://mng.bz/Qygm
http://mng.bz/Qygm
http://mng.bz/MdW2

9EXERCISE 2 ■ Summing numbers
functions can take in Python. In many languages, you can define functions multiple
times, each with a different type signature (i.e., number of parameters, and parame-
ter types). In Python, only one function definition (i.e., the last time that the func-
tion was defined) sticks. The flexibility comes from appropriate use of the different
parameter types.

TIP If you’re not familiar with it, you’ll probably want to look into the splat
operator (asterisk), described in this Python tutorial: http://mng.bz/aR4J.

Working it out

The mysum function is a simple example of how we can use Python’s “splat” operator
(aka *) to allow a function to receive any number of arguments. Because we have pref-
aced the name numbers with *, we’re telling Python that this parameter should receive
all of the arguments, and that numbers will always be a tuple.

 Even if no arguments are passed to our function, numbers will still be a tuple. It’ll
be an empty tuple, but a tuple nonetheless.

 The splat operator is especially useful when you want to receive an unknown num-
ber of arguments. Typically, you’ll expect that all of the arguments will be of the same
type, although Python doesn’t enforce such a rule. In my experience, you’ll then take
the tuple (numbers, in this case) and iterate over each element with either a for loop
or a list comprehension.

NOTE If you’re retrieving elements from *args with numeric indexes, then
you’re probably doing something wrong. Use individual, named parameters if
you want to pick them off one at a time.

Because we expect all of the arguments to be numeric, we set our output local vari-
able to 0 at the start of the function, and then we add each of the individual numbers
to it in a for loop. Once we have this function, we can invoke it whenever we want, on
any list, set, or tuple of numbers.

 While you might not use sum (or reimplement it) very often, *args is an extremely
common way for a function to accept an unknown number of arguments.

Turning iterables into arguments
What if we have a list of numbers, such as [1,2,3], and wish to use mysum with it? We
can’t simply invoke mysum([1,2,3]); this will result in the numbers argument being a
tuple whose first and only element is the list [1,2,3], which looks like this:
([1,2,3],).

Python will iterate over our one-element tuple, trying to add 0 to [1,2,3]. This will result
in a TypeError exception, with Python complaining that it can’t add an integer to a list.

http://mng.bz/aR4J

10 CHAPTER 1 Numeric types
Solution

def mysum(*numbers):
output = 0
for number in numbers:

output += number
return output

print(mysum(10, 20, 30, 40))

You can work through this code in the Python Tutor at http://mng.bz/nPQg.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

It’s extremely common to iterate over the elements of a list or tuple, performing an
operation on each element and then (for example) summing them. Here are some
examples:

 The built-in version of sum takes an optional second argument, which is used as
the starting point for the summing. (That’s why it takes a list of numbers as its
first argument, unlike our mysum implementation.) So sum([1,2,3], 4) returns
10, because 1+2+3 is 6, which would be added to the starting value of 4. Reim-
plement your mysum function such that it works in this way. If a second argu-
ment is not provided, then it should default to 0. Note that while you can write
a function in Python 3 that defines a parameter after *args, I’d suggest avoid-
ing it and just taking two arguments—a list and an optional starting point.

 Write a function that takes a list of numbers. It should return the average (i.e.,
arithmetic mean) of those numbers.

 Write a function that takes a list of words (strings). It should return a tuple con-
taining three integers, representing the length of the shortest word, the length
of the longest word, and the average word length.

 Write a function that takes a list of Python objects. Sum the objects that either
are integers or can be turned into integers, ignoring the others.

(continued)

The solution in such a case is to preface the argument with * when we invoke the func-
tion. If we call mysum(*[1,2,3]), our list becomes three separate arguments, which will
then allow the function to be called in the usual way.

This is generally true when invoking functions. If you have an iterable object and want to
pass its elements to a function, just preface it with * in the function call.

http://mng.bz/nPQg
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

11EXERCISE 3 ■ Run timing
EXERCISE 3 ■ Run timing
System administrators often use Python to perform a variety of tasks, including pro-
ducing reports from user inputs and files. It’s not unusual to report how often a par-
ticular error message has occurred, or which IP addresses have accessed a server most
recently, or which usernames are most likely to have incorrect passwords. Learning
how to accumulate information over time and produce some basic reports (including
average times) is thus useful and important. Moreover, knowing how to work with
floating-point values, and the differences between them and integers, is important.

 For this exercise, then, we’ll assume that you run 10 km each day as part of your
exercise regime. You want to know how long, on average, that run takes.

 Write a function (run_timing) that asks how long it took for you to run 10 km.
The function continues to ask how long (in minutes) it took for additional runs, until
the user presses Enter. At that point, the function exits—but only after calculating and
displaying the average time that the 10 km runs took.

 For example, here’s what the output would look like if the user entered three data
points:

Enter 10 km run time: 15
Enter 10 km run time: 20
Enter 10 km run time: 10
Enter 10 km run time: <enter>

Average of 15.0, over 3 runs

Note that the numeric inputs and outputs should all be floating-point values. This
exercise is meant to help you practice converting inputs into appropriate types, along
with tracking information over time. You’ll probably be tracking data that’s more
sophisticated than running times and distances, but the idea of accumulating data
over time is common in programs, and it’s important to see how to do this in Python.

Working it out

In the previous exercise, we saw that input is a function that returns a string, based on
input from the user. In this case, however, the user might provide two types of input;
they might enter a number, but they also might enter the empty string.

 Because empty strings, as well as the numeric 0, are considered to be False within
an if statement, it’s common for Python programs to use an expression as shown in
the solution:

if not one_run:
break

It’s unusual, and would be a bit weird, to say

if len(one_run) == 0:
break

12 CHAPTER 1 Numeric types
Although this works, it’s not considered good Python style, according to generally
accepted conventions. Following these conventions can make your code more Pythonic,
and thus more readable by other developers. In this case, using not in front of a vari-
able that might be empty, and thus providing us with a False value in this context, is
much more common.

 In a real-world Python application, if you’re taking input from the user and calling
float (http://mng.bz/gyYR), you should probably wrap it within try (http://mng
.bz/5aY1), in case the user gives you an illegal value:

try:
n = float(input('Enter a number: '))
print(f'n = {n}')

except ValueError as e:
print('Hey! That's not a valid number!')

Also remember that floating-point numbers are not completely accurate. They’re
good enough for measuring the time it takes to run, but they’re a bad idea for any sen-
sitive measurement, such as a scientific or financial calculation.

 If you didn’t know this already, then I suggest you go to your local interactive
Python interpreter and ask it for the value of 0.1 + 0.2. You might be surprised by the
results. (You can also go to http://mng.bz/6QGD and see how this works in other pro-
gramming languages.)

 One common solution for this problem is to use integers. Instead of keeping track
of dollars and cents (as a float), you can just keep track of cents (as an int).

Gaining control with f-strings
If you want to print a floating-point number in Python, then you might want to use an f-string.
Why? Because in this way, you can specify the number of digits that will be printed out.
Here’s an example:

>>> s = 0.1 + 0.7
>>> print(s)
0.7999999999999999

That’s probably not what you want. However, by putting s inside of an f-string, you can
limit the output:

>>> s = 0.1 + 0.7
>>> print(f'{s:.2f}')
0.80

Here, I’ve told the f-string that I want to take the value of s and then display it as a
floating-point number (f) with a maximum of two digits after the decimal point. See the
reference table (table 1.1) at the start of this chapter for the full documentation on f-strings
and the formatting codes you can use for different data types.

http://mng.bz/gyYR
http://mng.bz/5aY1
http://mng.bz/5aY1
http://mng.bz/5aY1
http://mng.bz/6QGD

13EXERCISE 3 ■ Run timing
Solution

def run_timing():
"""Asks the user repeatedly for numeric input. Prints the average time an
d number of runs."""

number_of_runs = 0
total_time = 0

while True:
one_run = input('Enter 10 km run time: ')

if not one_run:
break

number_of_runs += 1
total_time += float(one_run)

average_time = total_time / number_of_runs

print(f'Average of {average_time}, over {number_of_runs} runs')

run_timing()

You can work through this code in the Python Tutor at http://mng.bz/4A1g.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Floating-point numbers are both necessary and potentially dangerous in the program-
ming world; necessary because many things can only be represented with fractional
numbers, but potentially dangerous because they aren’t exact. You should thus think
about when and where you use them. Here are two exercises in which you’ll want to
use float:

 Write a function that takes a float and two integers (before and after). The
function should return a float consisting of before digits before the decimal
point and after digits after. Thus, if we call the function with 1234.5678, 2 and
3, the return value should be 34.567.

 Explore the Decimal class (http://mng.bz/oPVr), which has an alternative
floating-point representation that’s as accurate as any decimal number can be.
Write a function that takes two strings from the user, turns them into decimal
instances, and then prints the floating-point sum of the user’s two inputs. In
other words, make it possible for the user to enter 0.1 and 0.2, and for us to get
0.3 back.

Look, it’s an infinite loop! It might seem weird to have
“while True,” and it’s a very bad idea to have such a loop
without any “break” statement to exit when a condition
is reached. But as a general way of getting an unknown
number of inputs from the users, I think it’s totally fine.

If one_run is an empty
string, stop.

http://mng.bz/4A1g
http://mng.bz/oPVr
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

14 CHAPTER 1 Numeric types
EXERCISE 4 ■ Hexadecimal output
Loops are everywhere in Python, and the fact that most built-in data structures are
iterable makes it easy to work through them, one element at a time. However, we typi-
cally iterate over an object forward, from its first element to the last one. Moreover,
Python doesn’t automatically provide us with the indexes of the elements. In this exer-
cise, you’ll see how a bit of creativity, along with the built-in reversed and enumerate
functions, can help you to get around these issues.

 Hexadecimal numbers are fairly common in the world of computers. Actually,
that’s not entirely true; some programmers use them all of the time. Other program-
mers, typically using high-level languages and doing things such as web development,
barely even remember how to use them.

 Now, the fact is that I barely use hexadecimal numbers in my day-to-day work. And
even if I were to need them, I could use Python’s built-in hex function (http://mng
.bz/nPxg) and 0x prefix. The former takes an integer and returns a hex string; the lat-
ter allows me to enter a number using hexadecimal notation, which can be more con-
venient. Thus, 0x50 is 80, and hex(80) will return the string 0x50.

 For this exercise, you need to write a function (hex_output) that takes a hex num-
ber and returns the decimal equivalent. That is, if the user enters 50, you’ll assume
that it’s a hex number (equal to 0x50) and will print the value 80 to the screen. And
no, you shouldn’t convert the number all at once using the int function, although it’s
permissible to use int one digit at a time.

 This exercise isn’t meant to test your math skills; not only can you get the hex
equivalent of integers with the hex function, but most people don’t even need that in
their day-to-day lives. However, this does touch on the conversion (in various ways)
across types that we can do in Python, thanks to the fact that sequences (e.g., strings)
are iterable. Consider also the built-in functions that you can use to solve this problem
even more easily than if you had to write things from scratch.

TIP Python’s exponentiation operator is **. So the result of 2**3 is the
integer 8.

Working it out

A key aspect of Python strings is that they are sequences of characters, over which we
can iterate in a for (http://mng.bz/vxOJ) loop. However, for loops in Python, unlike
their C counterparts, don’t give us (or even use) the characters’ indexes. Rather, they
iterate over the characters themselves.

 If we want the numeric index of each character, we can use the built-in enumerate
(http://mng.bz/qM1K) function. This function returns a two-element tuple with each
iteration; using Python’s multiple-assignment (“unpacking”) syntax, we can capture
each of these values and stick them into our power and digit variables.

http://mng.bz/nPxg
http://mng.bz/nPxg
http://mng.bz/nPxg
http://mng.bz/vxOJ
http://mng.bz/qM1K

15EXERCISE 4 ■ Hexadecimal output

le,
e’s

 at
 Here’s an example of how we can use enumerate to print the first four letters of
the alphabet, along with the letters’ indexes in the string:

for index, one_letter in enumerate('abcd'):
print(f'{index}: {one_letter}')

NOTE Why does Python have enumerate at all? Because in many other lan-
guages, such as C, for loops iterate over sequences of numbers, which are
used to retrieve elements from a sequence. But in Python, our for loops
retrieve the items directly, without needing any explicit index variable.
enumerate thus produces the indexes based on the elements—precisely the
opposite of how things work in other languages.

You also see the use of reversed (http://mng.bz/7XYx) here, such that we start with
the final digit and work our way up to the first digit. reversed is a built-in function
that returns a new string whose value is the reverse of the old one. We could get the
same result using slice syntax, hexnum[::-1], but I find that many people are con-
fused by this syntax. Also, the slice returns a new string, whereas reversed returns an
iterator, which consumes less memory.

 We need to convert each digit of our decimal number, which was entered as a
string, into an integer. We do that with the built-in int (http://mng.bz/4Ava) func-
tion, which we can think of as creating a new instance of the int class or type. We also
see that int takes two arguments. The first is mandatory and is the string we want to
turn into an integer. The second is optional and contains the number base. Since
we’re converting from hexadecimal (i.e., base 16), we pass 16 as the second argument.

Solution

def hex_output():
decnum = 0
hexnum = input('Enter a hex number to convert: ')
for power, digit in enumerate(reversed(hexnum)):

decnum += int(digit, 16) * (16 ** power)
print(decnum)

hex_output()

You can work through this code in the Python Tutor at http://mng.bz/Qy8e.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

reversed returns a new iterab
which returns another iterabl
elements in reverse order. By
invoking enumerate on the
output from reversed, we get
each element of hexnum, one
a time, along with its index,
starting with 0.Python’s ** operator is

used for exponentiation.

http://mng.bz/7XYx
http://mng.bz/4Ava
http://mng.bz/Qy8e
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

16 CHAPTER 1 Numeric types
Beyond the exercise

Every Python developer should have a good understanding of the iterator protocol,
which for loops and many functions use. Combining for loops with other objects, such
as enumerate and slices, can help to make your code shorter and more maintainable.

 Reimplement the solution for this exercise such that it doesn’t use the int func-
tion at all, but rather uses the built-in ord and chr functions to identify the
character. This implementation should be more robust, ignoring characters
that aren’t legal for the entered number base.

 Write a program that asks the user for their name and then produces a “name
triangle”: the first letter of their name, then the first two letters, then the first
three, and so forth, until the entire name is written on the final line.

Summary
It’s hard to imagine a Python program that doesn’t use numbers. Whether as numeric
indexes (into a string, list, or tuple), counting the number of times an IP address
appears in a log file, or calculating interest rates on bank loans, you’ll be using num-
bers all of the time.

 Remember that Python is strongly typed, meaning that integers and strings (for
example) are different types. You can turn strings into integers with int, and integers
into strings with str. And you can turn either of these types into a floating-point num-
ber with float.

 In this chapter, we saw a few ways we can work with numbers of different types.
You’re unlikely to write programs that only use numbers in this way, but feeling confi-
dent about how they work and fit into the larger Python ecosystem is important.

Strings
Strings in Python are the way we work with text. Words, sentences, paragraphs, and
even entire files are read into and manipulated via strings. Because so much of our
work revolves around text, it’s no surprise that strings are one of the most common
data types.

 You should remember two important things about Python strings: (1) they’re
immutable, and (2) in Python 3, they contain Unicode characters, encoded in
UTF-8. (See the sidebars on each of these subjects.)

 There’s no such thing as a “character” type in Python. We can talk about a “one-
character string,” but that just means a string whose length is 1.

 Python’s strings are interesting and useful, not only because they allow us to
work with text, but also because they’re a Python sequence. This means that we can
iterate over them (character by character), retrieve their elements via numeric
indexes, and search in them with the in operator.

 This chapter includes exercises designed to help you work with strings in a vari-
ety of ways. The more familiar you are with Python’s string manipulation tech-
niques, the easier it will be to work with text.
17

18 CHAPTER 2 Strings
Useful references

EXERCISE 5 ■ Pig Latin
Pig Latin (http://mng.bz/YrON) is a common children’s “secret” language in English-
speaking countries. (It’s normally secret among children who forget that their parents
were once children themselves.) The rules for translating words from English into Pig
Latin are quite simple:

 If the word begins with a vowel (a, e, i, o, or u), add “way” to the end of the
word. So “air” becomes “airway” and “eat” becomes “eatway.”

 If the word begins with any other letter, then we take the first letter, put it on
the end of the word, and then add “ay.” Thus, “python” becomes “ythonpay”
and “computer” becomes “omputercay.”

(And yes, I recognize that the rules can be made more sophisticated. Let’s keep it sim-
ple for the purposes of this exercise.)

 For this exercise, write a Python function (pig_latin) that takes a string as input,
assumed to be an English word. The function should return the translation of this word
into Pig Latin. You may assume that the word contains no capital letters or punctuation.

 This exercise isn’t meant to help you translate documents into Pig Latin for your
job. (If that is your job, then I really have to question your career choices.) However, it
demonstrates some of the powerful techniques that you should know when working
with sequences, including searches, iteration, and slices. It’s hard to imagine a Python
program that doesn’t include any of these techniques.

Table 2.1 What you need to know

Concept What is it? Example To learn more

in Operator for searching in a
sequence

'a' in 'abcd' http://mng.bz/yy2G

Slice Retrieves a subset of ele-
ments from a sequence

returns 'bdf'
'abcdefg'[1:7:2]

http://mng.bz/MdW7

str.split Breaks strings apart, return-
ing a list

returns ['abc',
'def', 'ghi']

'abc def ghi'.split()

http://mng.bz/aR4z

str.join Combines strings to create
a new one

returns 'abc*def*ghi'
'*'.join(['abc', 'def',

'ghi'])

http://mng.bz/gyYl

list.append Adds an element to a list mylist.append('hello') http://mng.bz/aR7z

sorted Returns a sorted list, based
on an input sequence

returns [10, 20, 30]
sorted([10, 30, 20])

http://mng.bz/pBEG

Iterating over files Opens a file and iterates
over its lines one at a time

for one_line in
open(filename):

http://mng.bz/OMAn

http://mng.bz/yy2G
http://mng.bz/MdW7
http://mng.bz/aR4z
http://mng.bz/gyYl
http://mng.bz/aR7z
http://mng.bz/pBEG
http://mng.bz/OMAn
http://mng.bz/YrON

19EXERCISE 5 ■ Pig Latin
Working it out

This has long been one of my favorite exercises to give students in my introductory
programming classes. It was inspired by Brian Harvey, whose excellent series Computer
Science Logo Style (http://mng.bz/gyNl), has long been one of my favorites for begin-
ning programmers.

 The first thing to consider for this solution is how we’ll check to make sure that
word[0], the first letter in word, is a vowel. I’ve often seen people start to use a loop, as in

starts_with_vowel = False
for vowel in 'aeiou':

if word[0] == vowel:
starts_with_vowel = True
break

Even if that code will work, it’s already starting to look a bit clumsy and convoluted.
 Another solution that I commonly see is this:

if (word[0] == 'a' or word[0] == 'e' or
word[0] == 'i' or word[0] == 'o' or word[0] == 'u'):

break

As I like to say to my students, “Unfortunately, this code works.” Why do I dislike this
code so much? Not only is it longer than necessary, but it’s highly repetitive. The
don’t repeat yourself (DRY) rule should always be at the back of your mind when
writing code.

 Moreover, Python programs tend to be short. If you find yourself repeating your-
self and writing an unusually long expression or condition, you’ve likely missed a
more Pythonic way of doing things.

 We can take advantage of the fact that Python sees a string as a sequence, and use
the built-in in operator to search for word[0] in a string containing the vowels:

if word[0] in 'aeiou':

That single line has the combined advantage of being readable, short, accurate, and
fairly efficient. True, the time needed to search through a string—or any other Python
sequence—rises along with the length of the sequence. But such linear time, some-
times expressed as O(n), is often good enough, especially when the strings through
which we’ll be searching are fairly short.

TIP The in operator works on all sequences (strings, lists, and tuples) and
many other Python collections. It effectively runs a for loop on the elements.
Thus, using in on a dict will work but will only search through the keys, ignor-
ing the values.

Once we’ve determined whether the word begins with a vowel, we can apply the
appropriate Pig Latin rule.

http://mng.bz/gyNl

20 CHAPTER 2 Strings
Solution

def pig_latin(word):
if word[0] in 'aeiou':

return f'{word}way'

return f'{word[1:]}{word[0]}ay'

print(pig_latin('python'))

You can work through a version of this code in the Python Tutor at http://mng.bz/
XP5M.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

It’s hard to exaggerate just how often you’ll need to work with strings in Python. More-
over, Python is often used in text analysis and manipulation. Here are some ways that
you can extend the exercise to push yourself further:

 Handle capitalized words—If a word is capitalized (i.e., the first letter is capital-
ized, but the rest of the word isn’t), then the Pig Latin translation should be
similarly capitalized.

Slices
All of Python’s sequences—strings, lists, and tuples—support slicing. The idea is that if I say

s = 'abcdefgh'
print(s[2:6])

I’ll get all of the characters from s, starting at index 2 and until (but not including) index
6, meaning the string cdef. A slice can also indicate the step size:

s = 'abcdefgh'
print(s[2:6:2])

This code will print the string ce, since we start at index 2 (c), move forward two indexes
to e, and then reach the end.

Slices are Python’s way of retrieving a subset of elements from a sequence. You can
even omit the starting and/or ending index to indicate that you want to start from the
sequence’s first element or end at its last element. For example, we can get every other
character from our string with

s = 'abcdefgh'
print(s[::2])

Returns “cdef”

Returns “ce”

Returns “aceg”

http://mng.bz/XP5M
http://mng.bz/XP5M
http://mng.bz/XP5M
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

21EXERCISE 5 ■ Pig Latin
 Handle punctuation—If a word ends with punctuation, then that punctuation
should be shifted to the end of the translated word.

 Consider an alternative version of Pig Latin—We don’t check to see if the first letter
is a vowel, but, rather, we check to see if the word contains two different vowels.
If it does, we don’t move the first letter to the end. Because the word “wine”
contains two different vowels (“i” and “e”), we’ll add “way” to the end of it, giv-
ing us “wineway.” By contrast, the word “wind” contains only one vowel, so we
would move the first letter to the end and add “ay,” rendering it “indway.” How
would you check for two different vowels in the word? (Hint: sets can come in
handy here.)

Immutable?
One of the most important concepts in Python is the distinction between mutable and
immutable data structures. The basic idea is simple: if a data structure is immutable,
then it can’t be changed—ever.

For example, you might define a string and then try to change it:

s = 'abcd'
s[0] = '!'

But this code won’t work; you’ll get an exception, with Python telling you that you’re not
allowed to modify a string.

Many data structures in Python are immutable, including such basics as integers and
Boolean values. But strings are where people get tripped up most often, partly because
we use strings so often, and partly because many other languages have mutable strings.

Why would Python do such a thing? There are a number of reasons, chief among which
is that it makes the implementation more efficient. But it also has to do with the fact that
strings are the most common type used as dict keys. If strings were mutable, they
wouldn’t be allowed as dict keys—or we’d have to allow for mutable keys in dicts, which
would create a whole host of other issues.

Because immutable data can’t be changed, we can make a number of assumptions
about it. If we pass an immutable type to a function, then the function won’t modify it. If
we share immutable data across threads, then we don’t have to worry about locking it,
because it can’t be changed. And if we invoke a method on an immutable type, then we
get a new object back—because we can’t modify immutable data.

Learning to work with immutable strings takes some time, but the trade-offs are gener-
ally worthwhile. If you find yourself needing a mutable string type, then you might want
to look at StringIO (http://mng.bz/045x), which provides file-like access to a mutable,
in-memory type.

Many newcomers to Python think that immutable is just another word for constant, but
it isn’t. Constants, which many programming languages offer, permanently connect a
name with a value. In Python, there’s no such thing as a constant; you can always reassign

You’ll get an exception
when running this code.

http://mng.bz/045x

22 CHAPTER 2 Strings
EXERCISE 6 ■ Pig Latin sentence
Now that you’ve successfully written a translator for a single English word, let’s make
things more difficult: translate a series of English words into Pig Latin. Write a func-
tion called pl_sentence that takes a string containing several words, separated by
spaces. (To make things easier, we won’t actually ask for a real sentence. More specifi-
cally, there will be no capital letters or punctuation.)

 So, if someone were to call

pl_sentence('this is a test translation')

the output would be

histay isway away estay ranslationtay

Print the output on a single line, rather than with each word on a separate line.
 This exercise might seem, at least superficially, like the previous one. But here, the

emphasis is not on the Pig Latin translation. Rather, it’s on the ways we typically use
loops in Python, and how loops go together with breaking strings apart and putting
them back together again. It’s also common to want to take a sequence of strings and
print them out on a single line. There are a few ways to do this, and I want you to con-
sider the advantages and disadvantages of each one.

Working it out

The core of the solution is nearly identical to the one in the previous section, in which
we translated a single word into Pig Latin. Once again, we’re getting a text string as
input from the user. The difference is that, in this case, rather than treating the
string as a single word, we’re treating it as a sentence—meaning that we need to sep-
arate it into individual words. We can do that with str.split (http://mng.bz/aR4z).
str.split can take an argument, which determines which string should be used as the
separator between fields.

 It’s often the case that you want to use any and all whitespace characters, regardless
of how many there are, to split the fields. In such a case, don’t pass an argument at all;

(continued)

a name to point to a new value. But you can’t modify a string or a tuple, no matter how
hard you try; for example

s = 'abcd'
s[0] = '!'
t = s
s = '!bcd'

Not allowed, since
strings are immutable The variables s and t now

refer to the same string.

The variable s now refers to the new string, but t
continues to refer to the old string, unchanged.

http://mng.bz/aR4z

23EXERCISE 6 ■ Pig Latin sentence
Python will then treat any number of spaces, tabs, and newlines as a single separation
character. The difference can be significant:

s = 'abc def ghi'
s.split(' ')
s.split()

NOTE If you don’t pass any arguments to str.split, it’s effectively the same as
passing None. You can pass any string to str.split, not just a single-character
string. This means that if you want to split on ::, you can do that. However, you
can’t split on more than one thing, saying that both , and :: are field separa-
tors. To do that, you’ll need to use regular expressions and the re.split func-
tion in the Python standard library, described here: http://mng.bz/K2RK.

Thus, we can take the user’s input and break it into words—again, assuming that there
are no punctuation characters—and then translate each individual word into Pig Latin.
Whereas the one-word version of our program could simply print its output right away,
this one needs to store the accumulated output and then print it all at once. It’s cer-
tainly possible to use a string for that, and to invoke += on the string with each iteration.
But as a general rule, it’s not a good idea to build strings in that way. Rather, you should
add elements to a list using list.append (http://mng.bz/Mdlm) and then invoke
str.join to turn the list’s elements into a long string.

 That’s because strings are immutable, and += on a string forces Python to create a
new string. If we’re adding to a string many times, then each time will trigger the cre-
ation of a new object whose contents will be larger than the previous iteration. By con-
trast, lists are mutable, and adding to them with list.append is relatively inexpensive,
in both memory and computation.

Solution

def pl_sentence(sentence):
output = []
for word in sentence.split():

if word[0] in 'aeiou':
output.append(f'{word}way')

else:
output.append(f'{word[1:]}{word[0]}ay')

return ' '.join(output)

print(pl_sentence('this is a test'))

You can work through a version of this code in the Python Tutor at http://mng.bz/yydE.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Two spaces separating

Returns ['abc', '', 'def ', '', 'ghi']

Returns ['abc', 'def', 'ghi']

http://mng.bz/yydE
http://mng.bz/K2RK
http://mng.bz/Mdlm
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

24 CHAPTER 2 Strings
Beyond the exercise

Splitting, joining, and manipulating strings are common actions in Python. Here are
some additional activities you can try to push yourself even further:

 Take a text file, creating (and printing) a nonsensical sentence from the nth
word on each of the first 10 lines, where n is the line number.

 Write a function that transposes a list of strings, in which each string contains
multiple words separated by whitespace. Specifically, it should perform in such a
way that if you were to pass the list ['abc def ghi', 'jkl mno pqr', 'stu vwx yz']
to the function, it would return ['abc jkl stu', 'def mno vwx', 'ghi pqr yz'].

 Read through an Apache logfile. If there is a 404 error—you can just search for
' 404 ', if you want—display the IP address, which should be the first element.

EXERCISE 7 ■ Ubbi Dubbi
When they hear that Python’s strings are immutable, many people wonder how the
language can be used for text processing. After all, if you can’t modify strings, then
how can you do any serious work with them?

 Moreover, there are times when a simple for loop, as we used with the Pig Latin
examples, won’t work. If we’re modifying each word only once, then that’s fine, but if
we’re potentially modifying it several times, we have to make sure that each modifica-
tion won’t affect future modifications.

 This exercise is meant to help you practice thinking in this way. Here, you’ll imple-
ment a translator from English into another secret children’s language, Ubbi Dubbi
(http://mng.bz/90zl). (This was popularized on the wonderful American children’s
program Zoom, which was on television when I was growing up.) The rules of Ubbi
Dubbi are even simpler than those of Pig Latin, although programming a translator is
more complex and requires a bit more thinking.

 In Ubbi Dubbi, every vowel (a, e, i, o, or u) is prefaced with ub. Thus milk becomes
mubilk (m-ub-ilk) and program becomes prubogrubam (prub-ogrub-am). In theory,
you only put an ub before every vowel sound, rather than before each vowel. Given that
this is a book about Python and not linguistics, I hope that you’ll forgive this slight dif-
ference in definition.

 Ubbi Dubbi is enormously fun to speak, and it’s somewhat magical if and when you
can begin to understand someone else speaking it. Even if you don’t understand it,
Ubbi Dubbi sounds extremely funny. See some YouTube videos on the subject, such as
http://mng.bz/aRMY, if you need convincing.

 For this exercise, you’ll write a function (called ubbi_dubbi) that takes a single
word (string) as an argument. It returns a string, the word’s translation into Ubbi
Dubbi. So if the function is called with octopus, the function will return the string
uboctubopubus. And if the user passes the argument elephant, you’ll output
ubelubephubant.

http://mng.bz/90zl
http://mng.bz/aRMY

25EXERCISE 7 ■ Ubbi Dubbi
 As with the original Pig Latin translator, you can ignore capital letters, punctuation,
and corner cases, such as multiple vowels combining to create a new sound. When you
do have two vowels next to one another, preface each of them with ub. Thus, soap will
become suboubap, despite the fact that oa combines to a single vowel sound.

 Much like the “Pig Latin sentence” exercise, this brings to the forefront the various
ways we often need to scan through strings for particular patterns, or translate from
one Python data structure or pattern to another, and how iterations can play a central
role in doing so.

Working it out

The task here is to ask the user for a word, and then to translate that word into Ubbi
Dubbi. This is a slightly different task than we had with Pig Latin, because we need to
operate on a letter-by-letter basis. We can’t simply analyze the word and produce out-
put based on the entire word. Moreover, we have to avoid getting ourselves into an
infinite loop, in which we try to add ub before the u in ub.

 The solution is to iterate over each character in word, adding it to a list, output. If
the current character is a vowel, then we add ub before the letter. Otherwise, we just add
the letter. At the end of the program, we join and then print the letters together. This
time, we don’t join the letters together with a space character (' '), but rather with an
empty string (' '). This means that the resulting string will consist of the letters joined
together with nothing between them—or, as we often call such collections, a word.

Solution

def ubbi_dubbi(word):
output = []
for letter in word:

if letter in 'aeiou':
output.append(f'ub{letter}')

else:
output.append(letter)

return ''.join(output)

print(ubbi_dubbi('python'))

You can work through this code in the Python Tutor at http://mng.bz/eQJZ.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

It’s common to want to replace one value with another in strings. Python has a few
different ways to do this. You can use str.replace (http://mng.bz/WPe0) or str
.translate (http://mng.bz/8pyP), two string methods that translate strings and sets

Why append to a list, and not to
a string? To avoid allocating too
much memory. For short strings,
it’s not a big deal. But for long
loops and large strings, it’s a
bad idea.

http://mng.bz/eQJZ
http://mng.bz/WPe0
http://mng.bz/8pyP
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

26 CHAPTER 2 Strings
of characters, respectively. But sometimes, there’s no choice but to iterate over a
string, look for the pattern we want, and then append the modified version to a list
that we grow over time:

 Handle capitalized words—If a word is capitalized (i.e., the first letter is capital-
ized, but the rest of the word isn’t), then the Ubbi Dubbi translation should be
similarly capitalized.

 Remove author names—In academia, it’s common to remove the authors’ names
from a paper submitted for peer review. Given a string containing an article and
a separate list of strings containing authors’ names, replace all names in the
article with _ characters.

 URL-encode characters—In URLs, we often replace special and nonprintable
characters with a % followed by the character’s ASCII value in hexadecimal. For
example, if a URL is to include a space character (ASCII 32, aka 0x20), we
replace it with %20. Given a string, URL-encode any character that isn’t a letter
or number. For the purposes of this exercise, we’ll assume that all characters
are indeed in ASCII (i.e., one byte long), and not multibyte UTF-8 characters. It
might help to know about the ord (http://mng.bz/EdnJ) and hex (http://mng
.bz/nPxg) functions.

EXERCISE 8 ■ Sorting a string
If strings are immutable, then does this mean we’re stuck with them forever, precisely
as they are? Kind of—we can’t change the strings themselves, but we can create new
strings based on them, using a combination of built-in functions and string meth-
ods. Knowing how to work around strings’ immutability and piece together func-
tionality that effectively changes strings, even though they’re immutable, is a useful
skill to have.

 In this exercise, you’ll explore this idea by writing a function, strsort, that takes a
single string as its input and returns a string. The returned string should contain the
same characters as the input, except that its characters should be sorted in order, from
the lowest Unicode value to the highest Unicode value. For example, the result of
invoking strsort('cba') will be the string abc.

Working it out

The solution’s implementation of strsort takes advantage of the fact that Python
strings are sequences. Normally, we think of this as relevant in a for loop, in that we
can iterate over the characters in a string. However, we don’t need to restrict ourselves
to such situations.

 For example, we can use the built-in sorted (http://mng.bz/pBEG) function,
which takes an iterable—which means not only a sequence, but anything over which
we can iterate, such as a set of files—and returns its elements in sorted order. Invoking

http://mng.bz/EdnJ
http://mng.bz/nPxg
http://mng.bz/nPxg
http://mng.bz/nPxg
http://mng.bz/pBEG

27EXERCISE 8 ■ Sorting a string
sorted in our string will thus do the job, in that it will sort the characters in Unicode
order. However, it returns a list, rather than a string.

 To turn our list into a string, we use the str.join method (http://mng.bz/gyYl).
We use an empty string ('') as the glue we’ll use to join the elements, thus returning
a new string whose characters are the same as the input string, but in sorted order.

Solution

def strsort(a_string):
return ''.join(sorted(a_string))

print(strsort('cbjeaf'))

You can work through this code in the Python Tutor at http://mng.bz/pBd0.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Unicode
What is Unicode? The idea is a simple one, but the implementation can be extremely dif-
ficult and is confusing to many developers.

The idea behind Unicode is that we should be able to use computers to represent any
character used in any language from any time. This is a very important goal, in that it
means we won’t have problems creating documents in which we want to show Russian,
Chinese, and English on the same page. Before Unicode, mixing character sets from a
number of languages was difficult or impossible.

Unicode assigns each character a unique number. But those numbers can (as you imag-
ine) get very big. Thus, we have to take the Unicode character number (known as a code
point) and translate it into a format that can be stored and transmitted as bytes. Python
and many other languages use what’s known as UTF-8, which is a variable-length encod-
ing, meaning that different characters might require different numbers of bytes. Charac-
ters that exist in ASCII are encoded into UTF-8 with the same number they use in ASCII,
in one byte. French, Spanish, Hebrew, Arabic, Greek, and Russian all use two bytes for
their non-ASCII characters. And Chinese, as well as your childrens' emojis, are three
bytes or more.

How much does this affect us? Both a lot and a little. On the one hand, it’s convenient
to be able to work with different languages so easily. On the other hand, it’s easy to forget
that there’s a difference between bytes and characters, and that you sometimes (e.g.,
when working with files on disk) need to translate from bytes to characters, or vice versa.

For further details about characters versus strings, and the way Python stores characters
in our strings, I recommend this talk by Ned Batchelder, from PyCon 2012: http://mng
.bz/NKdD.

http://mng.bz/gyYl
http://mng.bz/NKdD
http://mng.bz/NKdD
http://mng.bz/NKdD
http://mng.bz/pBd0
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

28 CHAPTER 2 Strings
Beyond the exercise

This exercise is designed to give you additional reminders that strings are sequences
and can thus be put wherever other sequences (lists and tuples) can be used. We don’t
often think in terms of sorting a string, but there’s no difference between running
sorted on a string, a list, or a tuple. The elements (in the case of a string, the charac-
ters) are returned in sorted order.

 However, sorted (http://mng.bz/pBEG) returns a list, and we wanted to get a
string. We thus needed to turn the resulting list back into a string—something that
str.join is designed to do. str.split (http://mng.bz/aR4z) and str.join (http://
mng.bz/gyYl) are two methods with which you should become intimately familiar
because they’re so useful and help in so many cases.

 Consider a few other variations of, and extensions to, this exercise, which also use
str.split and str.join, as well as sorted:

 Given the string “Tom Dick Harry,” break it into individual words, and then sort
those words alphabetically. Once they’re sorted, print them with commas (,)
between the names.

 Which is the last word, alphabetically, in a text file?
 Which is the longest word in a text file?

Note that for the second and third challenges, you may well want to read up on the
key parameter and the types of values you can pass to it. A good introduction, with
examples, is here: http://mng.bz/D28E.

Summary
Python programmers are constantly dealing with text. Whether it’s because we’re
reading from files, displaying things on the screen, or just using dicts, strings are a
data type with which we’re likely familiar from other languages.

 At the same time, strings in Python are unusual, in that they’re also sequences—
and thus, thinking in Python requires that you consider their sequence-like qualities.
This means searching (using in), sorting (using sorted), and using slices. It also
means thinking about how you can turn strings into lists (using str.split) and turn
sequences back into strings (using str.join). While these might seem like simple
tasks, they crop up on a regular basis in production Python code. The fact that these
data structures and methods are written in C, and have been around for many years,
means they’re also highly efficient—and not worth reinventing.

http://mng.bz/pBEG
http://mng.bz/aR4z
http://mng.bz/gyYl
http://mng.bz/gyYl
http://mng.bz/gyYl
http://mng.bz/D28E

Lists and tuples
Consider a program that has to work with documents, keep track of users, log the
IP addresses that have accessed a server, or store the names and birth dates of chil-
dren in a school. In all of these cases, we’re storing many pieces of information.
We’ll want to display, search through, extend, and modify this information.

 These are such common tasks that every programming language supports collec-
tions, data structures designed for handling such cases. Lists and tuples are Python’s
built-in collections. Technically, they differ in that lists are mutable, whereas tuples
are immutable. But in practice, lists are meant to be used for sequences of the same
type, whereas tuples are meant for sequences of different types.

 For example, a series of documents, users, or IP addresses would be best stored
in a list—because we have many objects of the same type. A record containing
someone’s name and birth date would be best stored in a tuple, because the name
and birth date are of different types. A bunch of such name-birth date tuples, how-
ever, could be stored in a list, because it would contain a sequence of tuples—and
the tuples all would be of the same type.

 Because they’re mutable, lists support many more methods and operators. After
all, there’s not much you can do with a tuple other than pass it, retrieve its ele-
ments, and make some queries about its contents. Lists, by contrast, can be extended,
contracted, and modified, as well as searched, sorted, and replaced. So you can’t
add a person’s shoe size to the name-birth date tuple you’ve created for them.
But you can add a bunch of additional name-birth date tuples to the list you’ve
created, as well as remove elements from that list if they’re no longer students in
the school.
29

30 CHAPTER 3 Lists and tuples
 Learning to distinguish between when you would use lists versus when you would
use tuples can take some time. If the distinction isn’t totally clear to you just yet, it’s
not your fault!

 Lists and tuples are both Python sequences, which means that we can run for loops
on them, search using the in operator, and retrieve from them, both using individual
indexes and with slices. The third sequence type in Python is the string, which we
looked at in the previous chapter. I find it useful to think of the sequences in this way.

In this chapter, we’ll practice working with lists and tuples. We’ll see how to create them,
modify them (in the case of lists), and use them to keep track of our data. We’ll also use
list comprehensions, a syntax that’s confusing to many but which allows us to take one
Python iterable and create a new list based on it. We’ll talk about comprehensions quite
a bit in this chapter and the following ones; if you’re not familiar or comfortable with
them, look at the references provided in table 3.2.

Table 3.1 Sequence comparison

Type Mutable? Contains Syntax Retrieval

str No One-element strings s = 'abc' s[0] # returns 'a'

list Yes Any Python type mylist = [10, 20,
30, 40, 50]

mylist[2] # returns 30

tuple No Any Python type t = (100, 200, 300,
400, 500)

t[3] # returns 400

Table 3.2 What you need to know

Concept What is it? Example To learn more

list Ordered, mutable
sequence

[10, 20, 30] http://mng.bz/NKAD

tuple Ordered, immutable
sequence

(3, 'clubs') http://mng.bz/D2VE

List comprehensions Returns a list based on
an iterable

returns ['10', '20',
'30]

[str(x) for x in [10,
20, 30]]

http://mng.bz/OMpO

range Returns an iterable
sequence of integers

every 3rd integer,
from 10 until (and
not including) 50

numbers = range(10,
50, 3)

http://mng.bz/B2DJ

operator
.itemgetter

Returns a function that
operates like square
brackets

final('abcd') == 'd'
final = operator

.itemgetter(-1)

http://mng.bz/dyPQ

http://mng.bz/NKAD
http://mng.bz/D2VE
http://mng.bz/OMpO
http://mng.bz/B2DJ
http://mng.bz/dyPQ

31EXERCISE 9 ■ First-last
EXERCISE 9 ■ First-last
For many programmers coming from a background in Java or C#, the dynamic nature
of Python is quite strange. How can a programming language fail to police which type
can be assigned to which variable? Fans of dynamic languages, such as Python, respond
that this allows us to write generic functions that handle many different types.

 Indeed, we need to do so. In many languages, you can define a function multiple
times, as long as each definition has different parameters. In Python, you can only
define a function once—or, more precisely, defining a function a second time will
overwrite the first definition—so we need to use other techniques to work with differ-
ent types of inputs.

 In Python, you can write a single function that works with many types, rather than
many nearly identical functions, each for a specific type. Such functions demonstrate
the elegance and power of dynamic typing.

 The fact that sequences—strings, lists, and tuples—all implement many of the same
APIs is not an accident. Python encourages us to write generic functions that can apply
to all of them. For example, all three sequence types can be searched with in, can
return individual elements with an index, and can return multiple elements with a slice.

 We’ll practice these ideas with this exercise. Write a function, firstlast, that takes
a sequence (string, list, or tuple) and returns the first and last elements of that
sequence, in a two-element sequence of the same type. So firstlast('abc') will
return the string ac, while firstlast([1,2,3,4]) will return the list [1,4].

Working it out

This exercise is as tricky as it is short. However, I believe it helps to demonstrate the
difference between retrieving an individual element from a sequence and a slice from
that sequence. It also shows the power of a dynamic language; we don’t need to define

collections
.Counter

Subclass of dict useful
for counting items in
an iterable

roughly the same as
{'a':2, 'b':2,
'c':1, 'd':1}

c = collections
.Counter('abcdab')

http://mng.bz/rrBX

max Built-in function return-
ing the largest element
of an iterable

returns 30
max([10, 20, 30])

http://mng.bz/Vgq5

str.format String method returning
a new string based on
a template (similar to
f-strings)

returns 'x = 100, y
= [10, 20, 30]'

'x = {0}, y = {1}'
.format(100, [10,
20, 30])

http://mng.bz/Z2eZ

Table 3.2 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/rrBX
http://mng.bz/Vgq5
http://mng.bz/Z2eZ

32 CHAPTER 3 Lists and tuples
several different versions of firstlast, each handling a different type. Rather, we can
define a single function that handles not only the built-in sequences, but also any new
types we might define that can handle indexes and slices.

 One of the first things that Python programmers learn is that they can retrieve an
element from a sequence—a string, list, or tuple—using square brackets and a
numeric index. So you can retrieve the first element of s with s[0] and the final ele-
ment of s with s[-1].

 But that’s not all. You can also retrieve a slice, or a subset of the elements of the
sequence, by using a colon inside the square brackets. The easiest and most obvious
way to do this is something like s[2:5], which means that you want a string whose con-
tent is from s, starting at index 2, up to but not including index 5. (Remember that in
a slice, the final number is always “up to but not including.”)

When you retrieve a single element from a sequence (figure 3.1), you can get any type
at all. String indexes return one-character strings, but lists and tuples can contain any-
thing. By contrast, when you use a slice, you’re guaranteed to get the same type
back—so a slice of a tuple is a tuple, regardless of the size of the slice or the elements
it contains. And a slice of a list will return a list. In figures 3.2 and 3.3 from the Python
Tutor, notice that the data structures are different, and thus the results of retrieving
from each type will be different.

Figure 3.1 Individual elements (from the Python Tutor)

Figure 3.2 Retrieving slices from a list (from the Python Tutor)

33EXERCISE 9 ■ First-last
Given that we’re trying to retrieve the first and last elements of sequence and then
join them together, it might seem reasonable to grab them both (via indexes) and
then add them together:

not a real solution!
def firstlast(sequence):

return sequence[0] + sequence[-1]

But this is what really happens (figure 3.4):

def firstlast(sequence):
return sequence[0] + sequence[-1]

t1 = ('a', 'b', 'c')
output1 = firstlast(t1)
print(output1)

Staying in bounds
When retrieving a single index, you can’t go beyond the bounds:

s = 'abcd'
s[5] # raises an IndexError exception

However, when retrieving with a slice, Python is more forgiving, ignoring any index
beyond the data structure’s boundaries:

s = 'abcd'
s[3:100] # returns 'd'

In figures 3.2 and 3.3, there is no index 5. And yet, Python forgives us, showing the data
all the way to the end. We just as easily could have omitted the final number.

Figure 3.3 Retrieving slices from a tuple (from the Python Tutor)

Not a real solution!

Prints the string
'ac', not ('a', 'c')

34 CHAPTER 3 Lists and tuples
t2 = (1,2,3,4)
output2 = firstlast(t2)
print(output2)

We can’t simply use + on the individual elements of our tuples. As we see in figure 3.4,
if the elements are strings or integers, then using + on those two elements will give us
the wrong answer. We want to be adding tuples—or whatever type sequence is.

The easiest way to do that is to use a slice, using s[:1] to get the first element and
s[-1:] to get the final element (figure 3.5). Notice that we have to say s[-1:] so that
the sequence will start with the element at -1 and end at the end of the sequence itself.

Prints the integer
5, not (1, 4)

Figure 3.4 Naive, incorrect adding of slices (from the Python Tutor)

Figure 3.5 Working solution (from the Python Tutor)

35EXERCISE 9 ■ First-last
The bottom line is that when you retrieve a slice from an object x, you get back a new
object of the same type as x. But if you retrieve an individual element from x, you’ll get
whatever was stored in x—which might be the same type as x, but you can’t be sure.

Solution

def firstlast(sequence):
return sequence[:1] + sequence[-1:]

print(firstlast('abcd'))

You can work through this code in the Python Tutor at http://mng.bz/RAPP.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

One of these techniques involves taking advantage of Python’s dynamic typing; that is,
while data is strongly typed, variables don’t have any types. This means that we can
write a function that expects to take any indexable type (i.e., one that can get either a
single index or a slice as an argument) and then return something appropriate. This
is a common technique in Python, one with which you should become familiar and
comfortable; for example

 Don’t write one function that squares integers, and another that squares floats.
Write one function that handles all numbers.

 Don’t write one function that finds the largest element of a string, another that
does the same for a list, and a third that does the same for a tuple. Write just
one function that works on all of them.

 Don’t write one function to find the largest word in a file that works on files and
another that works on the io.StringIO (http://mng.bz/PAOP) file simulator
used in testing. Write one function that works on both.

Slices are a great way to get at just part of a piece of data. Whether it’s a substring or
part of a list, slices allow you to grab just part of any sequence. I’m often asked by stu-
dents in my courses how they can iterate over just the final n elements of a list. When I
remind them that they can do this with the slice mylist[-3:] and a for loop, they’re
somewhat surprised and embarrassed that they didn’t think of this first; they were sure
that it must be more difficult than that.

 Here are some ideas for other tasks you can try, using indexes and slices:

1 Write a function that takes a list or tuple of numbers. Return a two-element list,
containing (respectively) the sum of the even-indexed numbers and the sum of
the odd-indexed numbers. So calling the function as even_odd_sums([10, 20,
30, 40, 50, 60]), you’ll get back [90, 120].

In both cases, we’re using
slices, not indexes.

http://mng.bz/RAPP
http://mng.bz/PAOP
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

36 CHAPTER 3 Lists and tuples
2 Write a function that takes a list or tuple of numbers. Return the result of alter-
nately adding and subtracting numbers from each other. So calling the func-
tion as plus_minus([10, 20, 30, 40, 50, 60]), you’ll get back the result of
10+20-30+40-50+60, or 50.

3 Write a function that partly emulates the built-in zip function (http://mng.bz/
Jyzv), taking any number of iterables and returning a list of tuples. Each tuple
will contain one element from each of the iterables passed to the function.
Thus, if I call myzip([10, 20,30], 'abc'), the result will be [(10, 'a'), (20,
'b'), (30, 'c')]. You can return a list (not an iterator) and can assume that all
of the iterables are of the same length.

Are lists arrays?
Newcomers to Python often look for the array type. But for Python developers, lists are
the typical go-to data type for anyone needing an array or array-like structure.

Now, lists aren’t arrays: arrays have a fixed length, as well as a type. And while you could
potentially argue that Python’s lists handle only one type, namely anything that inher-
its from the built-in object class, it’s definitely not true that lists have a fixed length.
Exercise 9 demonstrates that pretty clearly, but doesn’t use the list.append or
list.remove methods.

NOTE Python does have an array type in the standard library (http://mng
.bz/wBlQ), and data scientists commonly use NumPy arrays (http://mng.bz/
qMX2). For the most part, though, we don’t need or use arrays in Python. They
don’t align with the language’s dynamic nature. Instead, we normally use lists
and tuples.

Behind the scenes, Python lists are implemented as arrays of pointers to Python objects.
But if arrays are of fixed size, how can Python use them to implement lists? The answer
is that Python allocates some extra space in its list array, such that we can add a few
items to it. But at a certain point, if we add enough items to our list, these spare locations
will be used up, thus forcing Python to allocate a new array and move all of the pointers
to that location. This is done for us automatically and behind the scenes, but it shows
that adding items to a list isn’t completely free of computational overhead. You can see
this in action using sys.getsizeof (http://mng.bz/7Xzy), which shows the number of
bytes needed to store a list (or any other data structure):

>>> import sys
>>> mylist = []
>>> for i in range(25):
... l = len(mylist)
... s = sys.getsizeof(mylist)
... print(f'len = {l}, size = {s}')
... mylist.append(i)

Running this code gives us the following output:

len = 0, size = 64
len = 1, size = 96

http://mng.bz/Jyzv
http://mng.bz/Jyzv
http://mng.bz/Jyzv
http://mng.bz/wBlQ
http://mng.bz/wBlQ
http://mng.bz/wBlQ
http://mng.bz/qMX2
http://mng.bz/qMX2
http://mng.bz/qMX2
http://mng.bz/7Xzy

37EXERCISE 10 ■ Summing anything
EXERCISE 10 ■ Summing anything
You’ve seen how you can write a function that takes a number of different types.
You’ve also seen how you can write a function that returns different types, using the
argument that the function received.

 In this exercise, you’ll see how you can have even more flexibility experimenting
with types. What happens if you’re running methods not on the argument itself,
but on elements within the argument? For example, what if you want to sum the

len = 2, size = 96
len = 3, size = 96
len = 4, size = 96
len = 5, size = 128
len = 6, size = 128
len = 7, size = 128
len = 8, size = 128
len = 9, size = 192
len = 10, size = 192
len = 11, size = 192
len = 12, size = 192
len = 13, size = 192
len = 14, size = 192
len = 15, size = 192
len = 16, size = 192
len = 17, size = 264
len = 18, size = 264
len = 19, size = 264
len = 20, size = 264
len = 21, size = 264
len = 22, size = 264
len = 23, size = 264
len = 24, size = 264

As you can see, then, the list grows as necessary but always has some spare room, allow-
ing it to avoid growing if you’re just adding a handful of elements.

NOTE Different versions of Python, as well as different operating systems and
platforms, may allocate memory differently than what I’ve shown here.

How much do you need to care about this in your day-to-day Python development? As
with all matters of memory allocation and Python language implementation, I think of
this as useful background knowledge, either for when you’re in a real bind when optimiz-
ing, or just for a better sense of and appreciation for how Python does things.

But if you’re worried on a regular basis about the size of your data structures, or the way
Python is allocating memory behind the scenes, then I’d argue that you’re probably wor-
rying about the wrong things—or you’re using the wrong language for the job at hand.
Python is a fantastic language for many things, and its garbage collector works well
enough most of the time. But you don’t have fine-tuned control over the garbage collec-
tor, and Python largely assumes that you’ll outsource control to the language.

38 CHAPTER 3 Lists and tuples
elements of a list—regardless of whether those elements are integers, floats, strings,
or even lists?

 This challenge asks you to redefine the mysum function we defined in chapter 1,
such that it can take any number of arguments. The arguments must all be of the
same type and know how to respond to the + operator. (Thus, the function should
work with numbers, strings, lists, and tuples, but not with sets and dicts.)

NOTE Python 3.9, which is scheduled for release in the autumn of 2020, will
apparently include support for | on dicts. See PEP 584 (http://mng.bz/mB42)
for more details.

The result should be a new, longer sequence of the type provided by the parameters.
Thus, the result of mysum('abc', 'def') will be the string abcdef, and the result of
mysum([1,2,3], [4,5,6]) will be the six-element list [1,2,3,4,5,6]. Of course, it
should also still return the integer 6 if we invoke mysum(1,2,3).

 Working through this exercise will give you a chance to think about sequences,
types, and how we can most easily create return values of different types from the
same function.

Working it out

This new version of mysum is more complex than the one we saw previously. It still
accepts any number of arguments, which are put into the items tuple thanks to the
“splat” (*) operator.

TIP While we traditionally call the “takes any number of arguments” parame-
ter *args, you can use any name you want. The important part is the *, not
the name of the parameter; it still works the same way and is always a tuple.

The first thing we do is check to see if we received any arguments. If not, we return
items, an empty tuple. This is necessary because the rest of the function requires that
we know the type of the passed arguments, and that we have an element at index 0.
Without any arguments, neither will work.

 Notice that we don’t check for an empty tuple by comparing it with () or checking
that its length is 0. Rather, we can say if not items, which asks for the Boolean value
of our tuple. Because an empty Python sequence is False in a Boolean context, we get
False if args is empty and True otherwise.

 In the next line, we grab the first element of items and assign it to output (fig-
ure 3.6). If it’s a number, output will be a number; if it’s a string, output will be a
string; and so on. This gives us the base value to which we’ll add (using +) each of the
subsequent values in items.

 Once that’s in place, we do what the original version of mysum did—but instead of
iterating over all of items, we can now iterate over items[1:] (figure 3.7), meaning
all of the elements except for the first one. Here, we again see the value of Python’s
slices and how we can use them to solve problems.

http://mng.bz/mB42

39EXERCISE 10 ■ Summing anything
You can think of this implementation of mysum as the same as our original version,
except that instead of adding each element to 0, we’re adding each one to items[0].

 But wait, what if the person passed us only a single argument, and thus args
doesn’t contain anything at index 1? Fortunately, slices are forgiving and allow us to
specify indexes beyond the sequence’s boundaries. In such a case, we’ll just get an
empty sequence, over which the for loop will run zero times. This means we’ll just get
the value of items[0] returned to us as output.

Solution

def mysum(*items):
if not items:

return items
output = items[0]

Figure 3.6 After assigning the first element to output (from the Python Tutor)

Figure 3.7 After adding elements to output (from the Python Tutor)

In Python, everything is considered “True” in an
“if,” except for “None,” “False,” 0, and empty
collections. So if the tuple “items” is empty,
we’ll just return an empty tuple.

40 CHAPTER 3 Lists and tuples
for item in items[1:]:
output += item

return output

print(mysum())
print(mysum(10, 20, 30, 40))
print(mysum('a', 'b', 'c', 'd'))
print(mysum([10, 20, 30], [40, 50, 60], [70, 80]))

You can work through this code in the Python Tutor at http://mng.bz/5aA1.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

This exercise demonstrates some of the ways we can take advantage of Python’s
dynamic typing to create a function that works with many different types of inputs,
and even produces different types of outputs. Here are a few other problems you can
try to solve, which have similar goals:

 Write a function, mysum_bigger_than, that works the same as mysum, except that
it takes a first argument that precedes *args. That argument indicates the
threshold for including an argument in the sum. Thus, calling mysum_bigger
_than(10, 5, 20, 30, 6) would return 50—because 5 and 6 aren’t greater than
10. This function should similarly work with any type and assumes that all of the
arguments are of the same type. Note that > and < work on many different types
in Python, not just on numbers; with strings, lists, and tuples, it refers to their
sort order.

 Write a function, sum_numeric, that takes any number of arguments. If the
argument is or can be turned into an integer, then it should be added to the
total. Arguments that can’t be handled as integers should be ignored. The
result is the sum of the numbers. Thus, sum_numeric(10, 20, 'a', '30',
'bcd') would return 60. Notice that even if the string 30 is an element in the
list, it’s converted into an integer and added to the total.

 Write a function that takes a list of dicts and returns a single dict that combines
all of the keys and values. If a key appears in more than one argument, the
value should be a list containing all of the values from the arguments.

EXERCISE 11 ■ Alphabetizing names
Let’s assume you have phone book data in a list of dicts, as follows:

PEOPLE = [{'first':'Reuven', 'last':'Lerner',
'email':'reuven@lerner.co.il'},

{'first':'Donald', 'last':'Trump',

We’re assuming that the
elements of “items” can
be added together.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
http://mng.bz/5aA1

41EXERCISE 11 ■ Alphabetizing names
'email':'president@whitehouse.gov'},
{'first':'Vladimir', 'last':'Putin',

'email':'president@kremvax.ru'}
]

First of all, if these are the only people in your phone book, then you should rethink
whether Python programming is truly the best use of your time and connections.
Regardless, write a function, alphabetize_names, that assumes the existence of a
PEOPLE constant defined as shown in the code. The function should return the list of
dicts, but sorted by last name and then by first name.

NOTE Python doesn’t really have constants; with the exception of some inter-
nal types and data structures, every variable, function, and attribute can
always be modified. That said, variables defined outside of any function are
generally referred to as “constants” and are defined in ALL CAPS.

You can solve this exercise several ways, but all will require using the sorted method
that you saw in the last chapter, along with a function passed as an argument to its key
parameter. You can read more about sorted and how to use it, including custom sorts
with key, at http://mng.bz/D28E. One of the options for solving this exercise involves
operator.itemgetter, about which you can read here: http://mng.bz/dyPQ.

Working it out

While Python’s data structures are useful by themselves, they become even more power-
ful and useful when combined together. Lists of lists, lists of tuples, lists of dicts, and
dicts of dicts are all quite common. Learning to work with these structures is an import-
ant part of being a fluent Python programmer. This exercise shows how you can not
only store data in such structures, but also retrieve, manipulate, sort, and format it.

 The solution I propose has two parts. In the first part, we sort our data according
to the criteria I proposed, namely last name and then first name. The second part of
the solution addresses how we’ll print output to the end user.

 Let’s take the second problem first. We have a list of dicts. This means that when
we iterate over our list, person is assigned a dict in each iteration. The dict has three
keys: first, last, and email. We’ll want to use each of these keys to display each
phone-book entry.

 We could thus say:

for person in people:
print(f'{person["last"]}, {person["first"]}: {person["email"]}')

So far, so good. But we still haven’t covered the first problem, namely sorting the list of
dicts by last name and then first name. Basically, we want to tell Python’s sort facility
that it shouldn’t compare dicts. Rather, it should compare the last and first values
from within each dict.

http://mng.bz/D28E
http://mng.bz/dyPQ
http://mng.bz/D28E

42 CHAPTER 3 Lists and tuples
 In other words, we want

{'first':'Vladimir', 'last':'Putin', 'email':'president@kremvax.ru'}

to become

['Putin', 'Vladimir']

We can do this by taking advantage of the key parameter to sorted. The value
passed to that parameter must be a function that takes a single argument. The func-
tion will be invoked once per element, and the function’s return value will be used
to sort the values.

 Thus, we can sort elements of a list by saying

mylist = ['abcd', 'efg', 'hi', 'j']
mylist = sorted(mylist, key=len)

After executing this code, mylist will now be sorted in increasing order of length,
because the built-in len function (http://mng.bz/oPmr) will be applied to each ele-
ment before it’s compared with others. In the case of our alphabetizing exercise, we
could write a function that takes a dict and returns the sort of list that’s necessary:

def person_dict_to_list(d):
return [d['last'], d['first']]

We could then apply this function when sorting our list:

print(sorted(people, key=person_dict_to_list))

Following that, we could then iterate over the now-sorted list and display our people.
 But wait a second—why should we write a special-purpose function (person_dict

_to_list) that’ll only be used once? Surely there must be a way to create a temporary,
inline function. And indeed there is, with lambda (http://mng.bz/GVy8), which returns
a new, anonymous function. With lambda, we end up with the following solution:

for p in sorted(people,
key=lambda x: [x['last'], x['first']]):

print(f'{p["last"]}, {p["first"]}: {p["email"]}')

Many of the Python developers I meet are less than thrilled to use lambda. It works but
makes the code less readable and more confusing to many. (See the sidebar for more
thoughts on lambda.)

 Fortunately, the operator module has the itemgetter function. itemgetter takes
any number of arguments and returns a function that applies each of those argu-
ments in square brackets. For example, if I say

s = 'abcdef'
t = (10, 20, 30, 40, 50, 60)

http://mng.bz/oPmr
http://mng.bz/GVy8

43EXERCISE 11 ■ Alphabetizing names
get_2_and_4 = operator.itemgetter(2, 4)
print(get_2_and_4(s))
print(get_2_and_4(t))

If we invoke itemgetter('last', 'first'), we’ll get a function we can apply to each of
our person dicts. It’ll return a tuple containing the values associated with last and first.

 In other words, we can just write:

from operator import itemgetter
for p in sorted(people,

key=itemgetter('last', 'first')):
print(f'{p["last"]}, {p["first"]}: {p["email"]}')

Solution

import operator

PEOPLE = [{'first': 'Reuven', 'last': 'Lerner',
'email': 'reuven@lerner.co.il'},

{'first': 'Donald', 'last': 'Trump',
'email': 'president@whitehouse.gov'},

{'first': 'Vladimir', 'last': 'Putin',
'email': 'president@kremvax.ru'}

]

def alphabetize_names(list_of_dicts):
return sorted(list_of_dicts,

key=operator.itemgetter('last', 'first'))

print(alphabetize_names(PEOPLE))

You can work through this code in the Python Tutor at http://mng.bz/Yr6Q.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Learning to sort Python data structures, and particularly combinations of Python’s
built-in data structures, is an important part of working with Python. It’s not enough
to use the built-in sorted function, although that’s a good part of it; understanding
how sorting works, and how you can use the key parameter, is also essential. This exer-
cise has introduced this idea, but consider a few more sorting opportunities:

 Given a sequence of positive and negative numbers, sort them by absolute value.
 Given a list of strings, sort them according to how many vowels they contain.
 Given a list of lists, with each list containing zero or more numbers, sort by the

sum of each inner list’s numbers.

Notice that itemgetter
returns a function.

Returns the
tuple ('c', 'e')

Returns the tuple (30, 50)

The “key” parameter
to “sorted” gets a
function, whose result
indicates how we’ll sort.

http://mng.bz/Yr6Q
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

44 CHAPTER 3 Lists and tuples
What is lambda?
Many Python developers ask me just what lambda is, what it does, and where they might
want to use it.

The answer is that lambda returns a function object, allowing us to create an anonymous
function. And we can use it wherever we might use a regular function, without having to
“waste” a variable name.

Consider the following code:

glue = '*'
s = 'abc'
print(glue.join(s))

This code prints a*b*c, the string returned by calling glue.join on s. But why do you
need to define either glue or s? Can’t you just use strings without any variables? Of
course you can, as you see here:

print('*'.join('abc'))

This code produces the same result as we had before. The difference is that instead of
using variables, we’re using literal strings. These strings are created when we need them
here, and go away after our code is run. You could say that they’re anonymous strings.
Anonymous strings, also known as string literals, are perfectly normal and natural, and
we use them all of the time.

Now consider that when we define a function using def, we’re actually doing two things:
we’re both creating a function object and assigning that function object to a variable. We
call that variable a function, but it’s no more a function than x is an integer after we say
that x=5. Assignment in Python always means that a name is referring to an object, and
functions are objects just like anything else in Python.

For example, consider the following code:

mylist = [10, 20, 30]

def hello(name):
return f'Hello, {name}'

If we execute this code in the Python tutor, we can see that we’ve defined two variables
(figure 3.8). One (mylist) points to an object of type list. The second (hello) points
to a function object.

Figure 3.8 Both mylist and hello point to objects (from the Python Tutor).

45EXERCISE 11 ■ Alphabetizing names
Because functions are objects, they can be passed as arguments to other functions. This
seems weird at first, but you quickly get used to the idea of passing around all objects,
including functions.

For example, I’m going to define a function (run_func_with_world) that takes a function
as an argument. It then invokes that function, passing it the string world as an argument:

def hello(name):
return f'Hello, {name}'

def run_func_with_world(func):
return func('world')

print(run_func_with_world(hello))

Notice that we’re now passing hello as an argument to the function run_func_with
_world (figure 3.9). As far as Python is concerned, this is totally reasonable and normal.

In many instances we’ll want to write a function that takes another function as an argu-
ment. One such example is sorted.

What does this have to do with lambda? Well, we can always create a function using def—
but then we find ourselves creating a new variable. And for what? So that we can use it
once? Ignoring environmental concerns, you probably don’t want to buy metal forks,
knives, and spoons for a casual picnic; rather, you can just buy plasticware. In the same
way, if I only need a function once, then why would I define it formally and give it a name?

This is where lambda enters the picture; it lets us create an anonymous function, perfect
for passing to other functions. It goes away, removed from memory as soon as it’s no lon-
ger needed.

If we think of def as both (a) creating a function object and then (b) defining a variable
that refers to that object, then we can think of lambda as doing just the first of these two
tasks. That is, lambda creates and returns a function object. The code that I wrote in
which I called run_func_with_world and passed it hello as an argument could be
rewritten using lambda as follows:

def run_func_with_world(f):
return f('world')

print(run_func_with_world(lambda name: f'Hello, {name}'))

Figure 3.9 Calling hello from another function (from the Python Tutor)

46 CHAPTER 3 Lists and tuples
EXERCISE 12 ■ Word with most repeated letters
Write a function, most_repeating_word, that takes a sequence of strings as input. The
function should return the string that contains the greatest number of repeated let-
ters. In other words

 For each word, find the letter that appears the most times.
 Find the word whose most-repeated letter appears more than any other.

That is, if words is set to

words = ['this', 'is', 'an', 'elementary', 'test', 'example']

then your function should return elementary. That’s because

 this has no repeating letters.
 is has no repeating letters.
 an has no repeating letters.
 elementary has one repeating letter, e, which appears three times.
 test has one repeating letter, t, which appears twice.
 example has one repeating letter, e, which appears twice.

(continued)

Here (figure 3.10), I’ve removed the definition of hello, but I’ve created an anonymous
function that does the same thing, using lambda.

To create an anonymous function with lambda, use the reserved world lambda and then
list any parameters before a colon. Then write the one-line expression that the lambda
returns. And indeed, in a Python lambda, you’re restricted to a single expression—no
assignment is allowed, and everything must be on a single line.

Nowadays, many Python developers prefer not to use lambda, partly because of its
restricted syntax, and partly because more readable options, such as itemgetter, are
available and do the same thing. I’m still a softie when it comes to lambda and like to
use it when I can—but I also realize that for many developers it makes the code harder
to read and maintain. You’ll have to decide just how much lambda you want to have in
your code.

Figure 3.10 Calling an anonymous function from a function (from the Python Tutor)

47EXERCISE 12 ■ Word with most repeated letters
So the most common letter in elementary appears more often than the most com-
mon letters in any of the other words. (If it’s a tie, then any of the appropriate words
can be returned.)

 You’ll probably want to use Counter, from the collections module, which is per-
fect for counting the number of items in a sequence. More information is here: http://
mng.bz/rrBX. Pay particular attention to the most_common method (http://mng.bz/
vxlJ), which will come in handy here.

Working it out

This solution combines a few of my favorite Python techniques into a short piece of
code:

 Counter, a subclass of dict defined in the collections module, which makes it
easy to count things

 Passing a function to the key parameter in max

For our solution to work, we’ll need to find a way to determine how many times each
letter appears in a word. The easiest way to do that is Counter. It’s true that Counter
inherits from dict and thus can do anything that a dict can do. But we normally
build an instance of Counter by initializing it on a sequence; for example

>>> Counter('abcabcabbbc')
Counter({'a': 3, 'b': 5, 'c': 3})

We can thus feed Counter a word, and it’ll tell us how many times each letter appears
in that word. We could, of course, iterate over the resulting Counter object and grab
the letter that appears the most times. But why work so hard when we can invoke
Counter.most_common?

>>> Counter('abcabcabbbc').most_common()
[('b', 5), ('a', 3), ('c', 3)]

The result of invoking Counter.most_common is a list of tuples, with the names and val-
ues of the counter’s values in descending order. So in the Counter.most_common
example, we see that b appears five times in the input, a appears three times, and c
also appears three times. If we were to invoke most_common with an integer argument
n, we would only see the n most common items:

>>> Counter('abcabcabbbc').most_common(1)
[('b', 5)]

This is perfect for our purposes. Indeed, I think it would be useful to wrap this up into
a function that’ll return the number of times the most frequently appearing letter is
in the word:

def most_repeating_letter_count(word):
return Counter(word).most_common(1)[0][1]

Shows how often each item appears in
the string, from most common to
least common, in a list of tuples

Only shows the most common
item, and its count

http://mng.bz/rrBX
http://mng.bz/rrBX
http://mng.bz/rrBX
http://mng.bz/vxlJ
http://mng.bz/vxlJ
http://mng.bz/vxlJ

48 CHAPTER 3 Lists and tuples

The (1)[0][1] at the end looks a bit confusing. It means the following:

1 We only want the most commonly appearing letter, returned in a one-element
list of tuples.

2 We then want the first element from that list, a tuple.
3 We then want the count for that most common element, at index 1 in the tuple.

Remember that we don’t care which letter is repeated. We just care how often the
most frequently repeated letter is indeed repeated. And yes, I also dislike the multiple
indexes at the end of this function call, which is part of the reason I want to wrap this
up into a function so that I don’t have to see it as often. But we can call most_common
with an argument of 1 to say that we’re only interested in the highest scoring letter,
then that we’re interested in the first (and only) element of that list, and then that we
want the second element (i.e., the count) from the tuple.

 To find the word with the greatest number of matching letters, we’ll want to apply
most_repeating_letter_count to each element of WORDS, indicating which has the
highest score. One way to do this would be to use sorted, using most_repeating
_letter_count as the key function. That is, we’ll sort the elements of WORDS by num-
ber of repeated letters. Because sorted returns a list sorted from lowest to highest
score, the final element (i.e., at index –1) will be the most repeating word.

 But we can do even better than that: The built-in max function takes a key func-
tion, just like sorted, and returns the element that received the highest score. We can
thus save ourselves a bit of coding with a one-line version of most_repeating_word:

def most_repeating_word(words):
 return max(words,

key=most_repeating_letter_count)

Solution

from collections import Counter
import operator

WORDS = ['this', 'is', 'an',
'elementary', 'test', 'example']

def most_repeating_letter_count(word):
return Counter(word).most_common(1)[0][1]

def most_repeating_word(words):
return max (words,

key-most_repeating_letter_count (1) {0]{1}

print(most_repeating_word(WORDS))

You can work through this code in the Python Tutor at http://mng.bz/MdjW.

What letter appears the
most times, and how many
times does it appear?

Counter.most_common returns a
list of two-element tuples (value
and count) in descending order.

Just as you can pass
key to sorted, you can
also pass it to max
and use a different
sort method.

http://mng.bz/MdjW

49EXERCISE 13 ■ Printing tuple records
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Sorting, manipulating complex data structures, and passing functions to other func-
tions are all rich topics deserving of your attention and practice. Here are a few things
you can do to go beyond this exercise and explore these ideas some more:

 Instead of finding the word with the greatest number of repeated letters, find
the word with the greatest number of repeated vowels.

 Write a program to read /etc/passwd on a Unix computer. The first field contains
the username, and the final field contains the user’s shell, the command inter-
preter. Display the shells in decreasing order of popularity, such that the most pop-
ular shell is shown first, the second most popular shell second, and so forth.

 For an added challenge, after displaying each shell, also show the usernames
(sorted alphabetically) who use each of those shells.

EXERCISE 13 ■ Printing tuple records
A common use for tuples is as records, similar to a struct in some other languages.
And of course, displaying those records in a table is a standard thing for programs to
do. In this exercise, we’ll do a bit of both—reading from a list of tuples and turning
them into formatted output for the user.

 For example, assume we’re in charge of an international summit in London. We
know how many hours it’ll take each of several world leaders to arrive:

PEOPLE = [('Donald', 'Trump', 7.85),
('Vladimir', 'Putin', 3.626),
('Jinping', 'Xi', 10.603)]

The planner for this summit needs to have a list of the world leaders who are coming,
along with the time it’ll take for them to arrive. However, this travel planner doesn’t
need the degree of precision that the computer has provided; it’s enough for us to
have two digits after the decimal point.

 For this exercise, write a Python function, format_sort_records, that takes the
PEOPLE list and returns a formatted string that looks like the following:

Trump Donald 7.85
Putin Vladimir 3.63
Xi Jinping 10.60

Notice that the last name is printed before the first name (taking into account that
Chinese names are generally shown that way), followed by a decimal-aligned indication

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

50 CHAPTER 3 Lists and tuples
of how long it’ll take for each leader to arrive in London. Each name should be printed
in a 10-character field, and the time should be printed in a 5-character field, with one
space character of padding between each of the columns. Travel time should display
only two digits after the decimal point, which means that even though the input for Xi
Jinping’s flight is 10.603 hours, the value displayed should be 10.60.

Working it out

Tuples are often used in the context of structured data and database records. In par-
ticular, you can expect to receive a tuple when you retrieve one or more records from
a relational database. You’ll then need to retrieve the individual fields using numeric
indexes.

 This exercise had several parts. First of all, we needed to sort the people in alpha-
betical order according to last name and first name. I used the built-in sorted func-
tion to sort the tuples, using a similar algorithm to what we used with the list of dicts
in an earlier exercise. The for loop thus iterated over each element of our sorted
list, getting a tuple (which it called person) in each iteration. You can often think of
a dict as a list of tuples, especially when iterating over it using the items method
(figure 3.11).

The contents of the tuple then needed to be printed in a strict format. While it’s often
nice to use f-strings, str.format (http://mng.bz/Z2eZ) can still be useful in some cir-
cumstances. Here, I take advantage of the fact that person is a tuple, and that *per-
son, when passed to a function, becomes not a tuple, but the elements of that tuple.
This means that we’re passing three separate arguments to str.format, which we can
access via {0}, {1}, and {2}.

 In the case of the last name and first name, we wanted to use a 10-character field,
padding with space characters. We can do that in str.format by adding a colon (:)
character after the index we wish to display. Thus, {1:10} tells Python to display the
item with index 1, inserting spaces if the data contains fewer than 10 characters.
Strings are left aligned by default, such that the names will be displayed flush left
within their columns.

Figure 3.11 Iterating over our list of tuples (from the Python Tutor)

http://mng.bz/Z2eZ

51EXERCISE 13 ■ Printing tuple records
 The third column is a bit trickier, in that we wanted to display only two digits after
the decimal point, a maximum of five characters, to have the travel-time decimal
aligned, and (as if that weren’t enough) to pad the column with space characters.

 In str.format (and in f-strings), each type is treated differently. So if we simply give
{2:10} as the formatting option for our floating-point numbers (i.e., person[2]), the
number will be right-aligned. We can force it to be displayed as a floating-point number
if we put an f at the end, as in {2:10f}, but that will just fill with zeros after the decimal
point. The specifier for producing two digits after the decimal point, with a maximum
of five digits total, would be {5.2f}, which produces the output we wanted.

Solution

import operator
PEOPLE = [('Donald', 'Trump', 7.85),

('Vladimir', 'Putin', 3.626),
('Jinping', 'Xi', 10.603)]

def format_sort_records(list_of_tuples):
output = []
template = '{1:10} {0:10} {2:5.2f}'
for person in sorted(list_of_tuples,

key=operator.itemgetter(1, 0)):

output.append(template.format(*person))
return output

print('\n'.join(format_sort_records(PEOPLE)))

You can work through this code in the Python Tutor at http://mng.bz/04KW.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Here are some ideas you can use to extend this exercise and learn more about similar
data structures:

 If you find tuples annoying because they use numeric indexes, you’re not alone!
Reimplement this exercise using namedtuple objects (http://mng.bz/gyWl),
defined in the collections module. Many people like to use named tuples
because they give the right balance between readability and efficiency.

 Define a list of tuples, in which each tuple contains the name, length (in min-
utes), and director of the movies nominated for best picture Oscar awards last
year. Ask the user whether they want to sort the list by title, length, or director’s
name, and then present the list sorted by the user’s choice of axis.

You can use operator.itemgetter
with any data structure that
takes square brackets. You can
also pass it more than one
argument, as seen here.

http://mng.bz/gyWl
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
http://mng.bz/04KW

52 CHAPTER 3 Lists and tuples
 Extend this exercise by allowing the user to sort by two or three of these fields,
not just one of them. The user can specify the fields by entering them separated
by commas; you can use str.split to turn them into a list.

Summary
In this chapter, we explored a number of ways we can use lists and tuples and manipu-
late them within our Python programs. It’s hard to exaggerate just how common lists
and tuples are, and how familiar you should be with them. To summarize, here are
some of the most important points to remember about them:

 Lists are mutable and tuples are immutable, but the real difference between
them is how they’re used: lists are for sequences of the same type, and tuples
are for records that contain different types.

 You can use the built-in sorted function to sort either lists or tuples. You’ll get a
list back from your call to sorted.

 You can modify the sort order by passing a function to the key parameter. This
function will be invoked once for each element in the sequence, and the output
from the function will be used in ordering the elements.

 If you want to count the number of items contained in a sequence, try using the
Counter class from the collections module. It not only lets us count things
quickly and easily, and provides us with a most_common method, but also inher-
its from dict, giving us all of the dict functionality we know and love.

Dictionaries and sets
Dictionaries (http://mng.bz/5aAz), or dicts, are one of Python’s most powerful and
important data structures. You may recognize them from other programming lan-
guages, in which they can be known as “hashes,” “associative arrays,” “hash maps,”
or “hash tables.”

 In a dict, we don’t enter individual elements, as in a list or tuple. Rather, we
enter pairs of data, with the first item known as the key and the second item known
as the value. Whereas the index in a string, list, or tuple is always an integer, and
always starts with 0, dict keys can come from a wide variety of Python types—typically
integers or strings.

 This seemingly small difference, that we can use arbitrary keys to locate our val-
ues, rather than using integer indexes, is actually crucial. Many programming tasks
involve name-value pairs—such as usernames/user IDs, IP addresses/hostnames, and
email addresses/encrypted passwords. Moreover, much of the Python language itself
is implemented using dicts. So knowing how dicts work, and how to better use them,
will give you insights into the actual implementation of Python.

 I use dicts in three main ways:

 As small databases, or records—It’s often convenient to use dicts for storing
name-value pairs. We can load a configuration file into Python as a dict,
retrieving the values associated with the configuration options. We can store
information about a file, or a user’s preference, or a variety of other things
with standard names and unknown values. When used this way, you define a
dict once, often at the top of a program, and it doesn’t change.

 For storing closely related names and values—Rather than creating a number of
separate variables, you can create a dict with several key-value pairs. I do this
53

http://mng.bz/5aAz

54 CHAPTER 4 Dictionaries and sets
when I want to store (for example) several pieces of information about a web-
site, such as its URL, my username, and the last date I visited. Sure, you could
use several variables to keep track of this information, but a dict lets you man-
age it more easily—as well as pass it to a function or method all at once, via a
single variable.

 For accumulating information over time—If you’re keeping track of which errors
have occurred in your program, and how many times each error has hap-
pened, a dict can be a great way to do this. You can also use one of the classes
that inherit from dict, such as Counter or defaultdict, both defined in the
collections module (http://mng.bz/6Qwy). When used this way, a dict grows
over time, adding new key-value pairs and updating the values as the program
executes.

You’ll undoubtedly find additional ways to use dicts in your programs, but these are
the three that occur most often in my work.

Hashing and dicts
From what I’ve written so far, it might sound like any Python object can be used as the
key or value in a dict. But that’s not true. While absolutely anything can be stored in a
Python value, only hashable types, meaning those on which we can run the hash func-
tion, can be used as keys. This same hash function ensures that a dict’s keys are
unique, and that searching for a key can be quite fast.

 What’s a hash function? Why does Python use one? And how does it affect what
we do?

 The basic idea is as follows. Let’s assume that you have a building with 26 offices. If
a visitor comes looking to meet with a Ms. Smith, how can they know where to find
her? Without a receptionist or office directory, the visitor will need to go through the
offices, one by one, looking for Ms. Smith’s office.

 This is the way that we search through a string, list, or tuple in Python. The time it
takes to find a value in such a sequence is described in computer science literature as
O(n). This means that as the sequence gets longer, finding what you’re looking for
takes proportionally more time.

 Now let’s reimagine our office environment. There’s still no directory or recep-
tionist, but there is a sign saying that if you’re looking for an employee, then just go to
the office whose number matches the first letter of their last name—using the scheme
a=1, b=2, c=3, and so forth.

 Since the visitor wants to find Ms. Smith, they calculate that S is the 19th letter in
the English alphabet, go to room 19, and are delighted to find that she’s there. If the
visitor were looking for Mr. Jones, of course, they would instead go to room 10, since J
is the 10th letter of the alphabet.

 This sort of search, as you can see, doesn’t require much time at all. Indeed, it
doesn’t matter whether our company has two employees or 25 employees, or even 250
employees—as the company grows, visitors can still find our employees’ offices in the

http://mng.bz/6Qwy

55
same amount of time. This is known in the programming world as O(1), or constant
time, and it’s pretty hard to beat.

 Of course, there is a catch: what if we have two people whose last names both begin
with “S”? We can solve this problem a few different ways. For example, we can use the
first two letters of the last name, or have all of the people whose names begin with “S”
share an office. Then we have to search through all of the people in a given office,
which typically won’t be too terrible.

 The description I’ve given you here is a simplified version of a hash function. Such
functions are used in a variety of places in the programming world. For example,
they’re especially popular for cryptography and security, because while their mapping
of inputs to outputs is deterministic, it’s virtually impossible to calculate without using
the hash function itself. They’re also central to how Python’s dicts work.

 A dict entry consists of a key-value pair. The key is passed to Python’s hash func-
tion, which returns the location at which the key-value pair should be stored. So if you
say d['a'] = 1, then Python will execute hash('a') and use the result to store the key-
value pair. And when you ask for the value of d['a'], Python can invoke hash('a')
and immediately check in the indicated memory slot whether the key-value pair is
there. Dicts are called mappings in the Python world, because the hash function maps
our key to an integer, which we can then use to store our key-value pairs.

 I’m leaving out a number of details here, including the significant behind-the-
scenes changes that occurred in Python 3.6. These changes guaranteed that key-value
pairs will be stored (and retrieved) in chronological order and reduced memory
usage by about one third. But this mental model should help to explain how dicts
accomplish search times of O(1) (constant time), regardless of how many key-value
pairs are added, and why they’re used not only by Python developers, but by the lan-
guage itself. You can learn more about this new implementation in a great talk by Ray-
mond Hettinger at http://mng.bz/oPmM.

 The hash function explains why Python’s dicts

 always store key-value pairs together
 guarantee very fast lookup for keys
 ensure key uniqueness
 don’t guarantee anything regarding value lookup

As for why lists and other mutable built-in types are seen as “unhashable” in Python,
the reason is simple: if the key changes, the output from running hash on it will
change too. That means the key-value pair might be in the dict but not be findable. To
avoid such trouble, Python ensures that our keys can’t change. The terms hashable and
immutable aren’t the same, but there’s a great deal of overlap—and when you’re start-
ing off with the language, it’s not worth worrying about the differences very much.

http://mng.bz/oPmM

56 CHAPTER 4 Dictionaries and sets
Sets
Closely related to dicts are sets (http://mng.bz/vxlM), which you can think of as dicts
without values. (I often joke that this means sets are actually immoral dicts.) Sets are
extremely useful when you need to look something up in a large collection, such as
filenames, email addresses, or postal codes, because searching is O(1), just as in a dict.
I’ve also increasingly found myself using sets to remove duplicate values from an input
list—such as IP addresses in a log file, or the license plate numbers of vehicles that
have passed through a parking garage entrance in a given day.

 In this chapter, you’ll use dicts and sets in a variety of ways to solve problems. It’s
safe to say that nearly every Python program uses dicts, or perhaps an alternative dict
such as defaultdict from the collections module.

Table 4.1 What you need to know

Concept What is it? Example To learn more

input Prompts the user to enter a
string, and returns a string.

input('Enter your
name: ')

http://mng.bz/wB27

dict Python’s dict type for storing key-
value pairs. dict can also be
used to create a new dict.

d = {'a':1, 'b':2} or
d = dict'a', 1),
('b', 2

http://mng.bz/5aAz

d[k] Retrieves the value associated
with key k in dict d.

x = d[k] http://mng.bz/5aAz

dict.get Just like d[k], except that it
returns None (or the second,
optional argument) if k isn’t in d.

x = d.get(k) or x =
d.get(k, 10)

http://mng.bz/4AeV

dict.items Returns an iterator that returns a
key-value pair (as a tuple) with
each iteration.

for key, value in
d.items():

http://mng.bz/4AeV

set Python’s set type for storing
unique, hashable items. set
can also be used to create a new
set.

s = {1,2,3} #
creates a 3-
element set

http://mng.bz/K2eE

set.add Adds one item to a set. s.add(10) http://mng.bz/yyzq

set.update Adds the elements of one or
more iterables to a set.

s.update([10, 20,
30, 40, 50])

http://mng.bz/MdOn

str.isdigit Returns True if all of the char-
acters in a string are digits 0-9.

'12345'.isdigit()
returns True

http://mng.bz/oPVN

http://mng.bz/vxlM
http://mng.bz/wB27
http://mng.bz/5aAz
http://mng.bz/5aAz
http://mng.bz/4AeV
http://mng.bz/4AeV
http://mng.bz/K2eE
http://mng.bz/yyzq
http://mng.bz/MdOn
http://mng.bz/oPVN

57EXERCISE 14 ■ Restaurant
EXERCISE 14 ■ Restaurant
One common use for dicts is as a small database within our program. We set up the
dict at the top of the program, and then reference it throughout the program.

 For example, you might set up a dict of months, with the month names as keys and
numbers as values. Or perhaps you’ll have a dict of users, with user IDs as the keys and
email addresses as the values.

 In this exercise, I want you to create a new constant dict, called MENU, representing
the possible items you can order at a restaurant. The keys will be strings, and the val-
ues will be prices (i.e., integers). You should then write a function, restaurant, that
asks the user to enter an order:

 If the user enters the name of a dish on the menu, the program prints the price
and the running total. It then asks the user again for their order.

 If the user enters the name of a dish not on the menu, the program scolds the
user (mildly). It then asks the user again for their order.

 If the user enters an empty string, the program stops prompting and prints the
total amount.

For example, a session with the user might look like this:

Order: sandwich
sandwich costs 10, total is 10
Order: tea
tea costs 7, total is 17
Order: elephant
Sorry, we are fresh out of elephant today.
Order: <enter>
Your total is 17

Note that you can always check to see if a key is in a dict with the in operator. That
returns True or False.

Working it out

In this exercise, the dict is defined once and remains constant throughout the life of
the program. Sure, we could have used a list of lists, or even a list of tuples, but when
we have name-value pairs, it’s more natural for us to stick them into a dict, then
retrieve items from the dict via the keys.

 So, what’s happening in this program? First, we set up our dict (menu) with its keys
and values. We also set up total so that we can add to it later on. We then ask the user
to enter a string. We invoke strip on the user’s string so that if they enter a bunch of
space characters (but nothing else), we’ll treat that as an empty string too.

 If we get empty input from the user, we break out of the loop. As always, we check
for an empty string not with an explicit if order == '', or even checking len(order)
== 0, but rather with if not order, as per Python’s conventions.

 But if the user gave us a string, then we’ll look for it in the dict. The in operator
checks if the string exists there; if so, we can retrieve the price and add it to total.

58 CHAPTER 4 Dictionaries and sets
If order isn’t empty, but it’s not a key in menu, we tell the user that the product isn’t
in stock.

 On the one hand, this use of dicts isn’t very advanced or difficult to understand.
On the other hand, it allows us to work with our data in a fairly straightforward way,
taking advantage of the fast search that dicts provide and using the associated data
within our programs.

Solution

MENU = {'sandwich': 10, 'tea': 7, 'salad': 9}

def restaurant():
total = 0
while True:

order = input('Order: ').strip()

if not order:
break

if order in MENU:
price = MENU[order]
total += price
print(f'{order} is {price}, total is {total}')

else:
print(f'We are fresh out of {order} today')

print(f'Your total is {total}')

restaurant()

You can work through this code in the Python Tutor at http://mng.bz/jgPV.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

It might, at first, seem weird to think of a key-value store (like a dict) as a database. But
it turns out that examples abound of where and how you can use such a data struc-
ture. Here are some additional practice questions you can use to improve your skills in
this area:

 Create a dict in which the keys are usernames and the values are passwords,
both represented as strings. Create a tiny login system, in which the user must
enter a username and password. If there is a match, then indicate that the user
has successfully logged in. If not, then refuse them entry. (Note: This is a nice
little exercise, but please never store unencrypted passwords. It’s a major secu-
rity risk.)

Defines a constant dict with
item names (strings) and
prices (integers)Keeps asking the user for

input, until an explicit
“break” from the loop

Gets the user’s input, and uses
str.strip to remove leading and
trailing whitespaceIf “order” is an empty string,

break out of the loop.

If “order” is a defined menu item,
then get its price and add to total.

If “order” is neither
empty nor in the dict,
then we don’t serve
this item.

http://mng.bz/jgPV
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

59EXERCISE 15 ■ Rainfall
 Define a dict whose keys are dates (represented by strings) from the most recent
week and whose values are temperatures. Ask the user to enter a date, and dis-
play the temperature on that date, as well as the previous and subsequent dates,
if available.

 Define a dict whose keys are names of people in your family, and whose values
are their birth dates, as represented by Python date objects (http://mng.bz/
jggr). Ask the user to enter the name of someone in your family, and have the
program calculate how many days old that person is.

EXERCISE 15 ■ Rainfall
Another use for dicts is to accumulate data over the life of a program. In this exercise,
you’ll use a dict for just that.

 Specifically, write a function, get_rainfall, that tracks rainfall in a number of cit-
ies. Users of your program will enter the name of a city; if the city name is blank, then
the function prints a report (which I’ll describe) before exiting.

 If the city name isn’t blank, then the program should also ask the user how much
rain has fallen in that city (typically measured in millimeters). After the user enters
the quantity of rain, the program again asks them for a city name, rainfall amount,
and so on—until the user presses Enter instead of typing the name of a city.

 When the user enters a blank city name, the program exits—but first, it reports
how much total rainfall there was in each city. Thus, if I enter

Boston
5
New York
7
Boston
5
[Enter; blank line]

the program should output

Boston: 10
New York: 7

The order in which the cities appear is not important, and the cities aren’t known to
the program in advance.

Working it out

This program uses dicts in a classic way, as a tiny database of names and values that grows
over the course of the program. In the case of this program, we use the rainfall dict to
keep track of the cities and the amount of rain that has fallen there to date.

 We use an infinite loop, which is most easily accomplished in Python with while
True. Only when the program encounters break will it exit from the loop.

http://mng.bz/jggr
http://mng.bz/jggr
http://mng.bz/jggr

60 CHAPTER 4 Dictionaries and sets
 At the top of each loop, we get the name of the city for which the user is reporting
rainfall. As we’ve already seen, Python programmers typically don’t check to see if a
string is empty by checking its length. Rather, they check to see if the string contains a
True or False value in a Boolean context. If a string is empty, then it will be False in
the if statement. Our statement if not city_name means, “If the city_name variable
contains a False value,” or, in simpler terms, “if city_name is empty.”

 Let’s walk through the execution of this program with the examples provided ear-
lier in this section and see how the program works. When the user is asked for input
the first time, the user is presented with a prompt (figure 4.1). The rainfall dict has
already been defined, and we’re looking to populate it with a key-value pair.

After entering a city name (Boston), we enter the amount of rain that fell (5).
Because this is the first time that Boston has been listed as a city, we add a new key-
value pair to rainfall. We do this by assigning the key Boston and the value 5 to our
dict (figure 4.2).

 Notice that this code uses dict.get with a default, to either get the current value
associated with Boston (if there is one) or 0 (if there isn’t). The first time we ask about
a city, there’s no key named Boston, and certainly no previous rainfall.

 There are two parts to this exercise that often surprise or frustrate new Python pro-
grammers. The first is that input (http://mng.bz/wB27) returns a string. This is fine
when the user enters a city but not as good when the user enters the amount of rain
that fell. Storing the rainfall as a string works relatively well when a city is entered only
once. However, if a city is entered more than once, the program will find itself having
to add (with the + operator) two strings together. Python will happily do this, but the
result will be a newly concatenated string, rather than the value of the added integers.

Figure 4.1 Asking the user for the first input

http://mng.bz/wB27

61EXERCISE 15 ■ Rainfall
For this reason, we invoke int on mm_rain, such that we get an integer. If you want,
you could replace int with float, and thus get a floating-point value back. Regardless,
it’s important that if you use input to get input from the user, and if you want to use a
numeric value rather than a string, you must convert it.

Trapping input errors
My solution deliberately doesn’t check to see if the user’s input can be turned into an
integer. This means that if the user enters a string containing something other than the
digits 0–9, the call to int will return an error. I didn’t want to complicate the solution
code too much.

If you do want to trap such errors, then you have two basic options. One is to wrap the
call to int inside of a try block. If the call to int fails, you can catch the exception; for
example

try:
mm_rain = int(input('Enter mm rain: '))

except ValueError:
print('You didn't enter a valid integer; try again.')
continue

rainfall[city_name] = rainfall.get(city_name, 0) + mm_rain

In this code, we let the user enter whatever they want. If we encounter an error (excep-
tion) when converting, we send the user back to the start of our while loop, when we
ask for the city name. A slightly more complex implementation would have the user sim-
ply reenter the value of mm_rain.

Figure 4.2 After adding the key-value pair to the dict

62 CHAPTER 4 Dictionaries and sets
The second tricky part of this exercise is that you must handle the first time a city is
named (i.e., before the city’s name is a key in rainfall), as well as subsequent times.

 The first time that someone enters Boston as a city name, we’ll need to add the
key-value pair for that city and its rainfall into our dict. The second time that someone
enters Boston as a city name, we need to add the new value to the existing one.

 One simple solution to this problem is to use the dict.get method with two argu-
ments. With one argument, dict.get either returns the value associated with the
named key or None. But with two arguments, dict.get returns either the value associ-
ated with the key or the second argument (figure 4.3).

(continued)

A second solution is to use the str.isdigit method, which returns True if a string con-
tains only the digits 0–9, and False otherwise; for example

mm_rain = input('Enter mm rain: ').strip()
if mm_rain.isdigit():

mm_rain = int(mm_rain)
else:

print('You didn't enter a valid number; try again.')
continue

Once again, this would send the user back to the start of the while loop, asking them to
enter the city name once again. It also assumes that we’re only interested in getting inte-
ger values, because str.isdigit returns False if you give it a floating point number.

You might have noticed that Python’s strings have three methods with similar names:
isdigit, isdecimal, and isnumeric. In most cases, the three are interchangeable.
However, you can learn more about how they’re different at http://mng.bz/eQDv.

Figure 4.3 Adding to an existing name-value pair

http://mng.bz/eQDv

63EXERCISE 15 ■ Rainfall
Thus, when we call rainfall.get(city_name, 0), Python checks to see if city_name
already exists as a key in rainfall. If so, then the call to rainfall.get will return the
value associated with that key. If city_name is not in rainfall, we get 0 back.

 An alternative solution would use the defaultdict (http://mng.bz/pBy8), a class
defined in the collections (http://mng.bz/6Qwy) module that allows you to define
a dict that works just like a regular one—until you ask it for a key that doesn’t exist.
In such cases, defaultdict invokes the function with which it was defined; for
example

from collections import defaultdict
rainfall = defaultdict(int)
rainfall['Boston'] += 30
rainfall # defaultdict(<type 'int'>, {'Boston': 30})

rainfall['Boston'] += 30

rainfall # defaultdict(<type 'int'>, {'Boston': 60})

Solution

def get_rainfall():
rainfall = {}

while True:
city_name = input('Enter city name: ')
if not city_name:

break

mm_rain = input('Enter mm rain: ')
rainfall[city_name] = rainfall.get(city_name,

0) + int(mm_rain)

for city, rain in rainfall.items():
print(f'{city}: {rain}')

get_rainfall()

You can work through this code in the Python Tutor at http://mng.bz/WPzd.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

It’s pretty standard to use dicts to keep track of accumulated values (such as the num-
ber of times something has happened, or amounts of money) associated with arbitrary
values. The keys can represent what you’re tracking, and the values can track data hav-
ing to do with the key. Here are some additional things you can do:

defaultdict(int) means that if we say rainfall[k]
and k isn’t in rainfall, the int function will execute
without any arguments, giving us the int 0 back.

We don’t know what cities the user
will enter, so we create an empty
dict, ready to be filled.

If you’re from the United States,
then you might be surprised to
hear that other countries measure
rainfall in millimeters.

The first time we encounter a city,
we’ll add 0 to its current rainfall.
Any subsequent time, we’ll add the
current rainfall to the previously
stored rainfall. dict.get makes this
possible.

http://mng.bz/pBy8
http://mng.bz/6Qwy
http://mng.bz/WPzd
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

64 CHAPTER 4 Dictionaries and sets
 Instead of printing just the total rainfall for each city, print the total rainfall and
the average rainfall for reported days. Thus, if you were to enter 30, 20, and 40
for Boston, you would see that the total was 90 and the average was 30.

 Open a log file from a Unix/Linux system—for example, one from the Apache
server. For each response code (i.e., three-digit code indicating the HTTP
request’s success or failure), store a list of IP addresses that generated that code.

 Read through a text file on disk. Use a dict to track how many words of each
length are in the file—that is, how many three-letter words, four-letter words,
five-letter words, and so on. Display your results.

EXERCISE 16 ■ Dictdiff
Knowing how to work with dicts is crucial to your Python career. Moreover, once your
learn how to use dict.get effectively, you’ll find that your code is shorter, more ele-
gant, and more maintainable.

 Write a function, dictdiff, that takes two dicts as arguments. The function returns
a new dict that expresses the difference between the two dicts.

 If there are no differences between the dicts, dictdiff returns an empty dict. For
each key-value pair that differs, the return value of dictdiff will have a key-value pair
in which the value is a list containing the values from the two different dicts. If one of
the dicts doesn’t contain that key, it should contain None. The following provides some
examples:

d1 = {'a':1, 'b':2, 'c':3}
d2 = {'a':1, 'b':2, 'c':4}
print(dictdiff(d1, d1))
print(dictdiff(d1, d2))

d3 = {'a':1, 'b':2, 'd':3}
d4 = {'a':1, 'b':2, 'c':4}
print(dictdiff(d3, d4))

d5 = {'a':1, 'b':2, 'd':4}
print(dictdiff(d1, d5))

Working it out

Let’s start by thinking about the overall design of this program:

 We create an empty output dict.
 We go through each of the keys in first and second.
 For each key, we check if the key also exists in the other dict.
 If the key exists in both, then we check if the values are the same.
 If the values are the same, then we do nothing to output.
 If the values are different, then we add a key-value pair to output, with the cur-

rently examined key and a list of the values from first and second.
 If the key doesn’t exist in one dict, then we use None as the value.

Prints “{}”, because we’re
comparing d1 with itself

Prints “{'c': [3, 4]}”, because d1
contains c:3 and d2 contains c:4

Prints “{'c': [None, 4], 'd': [3, None]}”,
because d4 has c:4 and d3 has d:3

Prints “{'c': [3, None], 'd': [None, 4]}”,
because d1 has c:3 and d5 has d:4

65EXERCISE 16 ■ Dictdiff
This all sounds good, but there’s a problem with this approach: it means that we’re
going through each of the keys in first and then each of the keys in second. Given that
at least some keys will hopefully overlap, this sounds like an inefficient approach. It
would be better and smarter for us to collect all of the keys from first and second, put
them into a set (thus ensuring that each appears only once), and then iterate over them.

 It turns out that dict.keys() returns a special object of type dict_keys. But that
object implements several of the same methods available on sets, including | (union) and
& (intersection)! The result is a set containing the unique keys from both dicts together:

all_keys = first.keys() | second.keys()

NOTE In Python 2, dict.keys and many similar methods returned lists,
which support the + operator. In Python 3, almost all such methods were
modified to return iterators. When the returned result is small, there’s almost
no difference between the implementations. But when the returned result is
large, there’s a big difference, and most prefer to use an iterator. Thus, the
behavior in Python 3 is preferable, even if it’s a bit surprising for people mov-
ing from Python 2.

Because a set is effectively a dict without values, we know for sure that by putting these
lists into our all_keys set, we’ll only pass through each key once. Rather than check-
ing whether a key exists in each dict, and then retrieving its value, and then checking
whether the values are the same, I used the dict.get (http://mng.bz/4AeV) method.
This saves us from getting a KeyError exception. Moreover, if one of the dicts lacks
the key in question, we get None back. We can use that not only to check whether the
dicts are the same, but also to retrieve the values.

 Now let’s walk through each of the examples I gave as part of the problem descrip-
tion and see what happens:

d1 = {'a':1, 'b':2, 'c':3}
print(dictdiff(d1, d1))

We see this example in figure 4.4. In this figure, we see that the local variables first
and second both point to the same dict, d1.

Figure 4.4 Taking the diff of d1 and itself

http://mng.bz/4AeV

66 CHAPTER 4 Dictionaries and sets
When we iterate over the combined set of keys (figure 4.5), we’re actually iterating
over the keys of d1. Because we never find any differences, the return value (output)
is {}, the empty dict.

When we compare d1 and d2, we see that first and second point to two different
dicts (figure 4.6). They also have the same keys, but different values for the c key. We
can see in figure 4.7 how our output dict gets a new key-value pair, representing the
c key’s different values.

Figure 4.5 Iterating over the keys of d1

Figure 4.6 Comparing d1 and d2

67EXERCISE 16 ■ Dictdiff
When we compare d3 and d4, we can see how things get more complex. Our output
dict will now have two key-value pairs, and each value will be (as specified) a list. In
this way, you can see how we build our dict from nothing to become a report describ-
ing the differences between the two arguments.

Solution

def dictdiff(first, second):
output = {}
all_keys = first.keys() | second.keys()

for key in all_keys:
if first.get(key) != second.get(key):

output[key] = [first.get(key),
second.get(key)]

return output

d1 = {'a':1, 'b':2, 'c':3}
d2 = {'a':1, 'b':2, 'd':4}
print(dictdiff(d1, d2))

You can work through this code in the Python Tutor at http://mng.bz/8prW.

Figure 4.7 Adding a value to output

Gets all keys from both first
and second, without repeats

Takes advantage of the fact
that dict.get returns None
when a key doesn’t exist

http://mng.bz/8prW

68 CHAPTER 4 Dictionaries and sets
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Python functions can return any object they like, and that includes dicts. It’s often use-
ful to write a function that creates a dict; the function can combine or summarize
other dicts (as in this exercise), or it can turn other objects into dicts. Here are some
ideas that you can pursue:

 The dict.update method merges two dicts. Write a function that takes any
number of dicts and returns a dict that reflects the combination of all of them.
If the same key appears in more than one dict, then the most recently merged
dict’s value should appear in the output.

 Write a function that takes any even number of arguments and returns a dict
based on them. The even-indexed arguments become the dict keys, while the
odd-numbered arguments become the dict values. Thus, calling the function
with the arguments ('a', 1, 'b', 2) will result in the dict {'a':1, 'b':2} being
returned.

 Write a function , dict_partition, that takes one dict (d) and a function (f) as
arguments. dict_partition will return two dicts, each containing key-value
pairs from d. The decision regarding where to put each of the key-value pairs
will be made according to the output from f, which will be run on each key-
value pair in d. If f returns True, then the key-value pair will be put in the first
output dict. If f returns False, then the key-value pair will be put in the second
output dict.

EXERCISE 17 ■ How many different numbers?
In my consulting work, I’m sometimes interested in finding error messages, IP
addresses, or usernames in a log file. But if a message, address, or username appears
twice, then there’s no added benefit. I’d thus like to ensure that I’m looking at each
value once and only once, without the possibility of repeats.

 In this exercise, you can assume that your Python program contains a list of inte-
gers. We want to print the number of different integers contained within that list.
Thus, consider the following:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]

With the definition provided, running len(numbers) will return 7, because the list con-
tains seven elements. How can we get a result of 4, reflecting the fact that the list con-
tains four different values? Write a function, called how_many_different_numbers, that
takes a single list of integers and returns the number of different integers it contains.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

69EXERCISE 17 ■ How many different numbers?
Working it out

A set, by definition, contains unique elements—just as a dict’s keys are guaranteed to
be unique. Thus, if you ever have a list of values from which you want to remove all of
the duplicates, you can just create a set. You can create the set as in the solution code

unique_numbers = set(numbers)

or you can do so by creating an empty set, and then adding new elements to it:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = set()
for number in numbers:

unique_numbers.add(number)

This example uses set.add, which adds one new element to a set. You can add items
en masse with set.update, which takes an iterable as an argument:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = set()
unique_numbers.update(numbers)

Finally, you might be tempted to use the curly-brace syntax for sets:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = {numbers}

This code won’t work, because Python thinks you want to add the list numbers to the
set as a single element. And just as lists can’t be dict keys, they also can’t be elements
in a set.

 But of course, we don’t want to add numbers. Rather, we want to add the elements
from within numbers. Here we can use the * (splat) operator, but in a slightly different
way than we’ve seen before:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = {*numbers}

This tells Python that it should take the elements of numbers and feed them (in a sort
of for loop) to the curly braces. And indeed, this works just fine.

 Is it better to use set without the *, or {} with the *? That’s a judgment call. I’m
partial to the curly braces and *, but I also understand that * can be confusing to
many people and might make your code less readable/maintainable to newcomers.

Solution

def how_many_different_numbers(numbers):
unique_numbers = set(numbers)
return len(unique_numbers)

You can only use set.update with an iterable.
Think of it as shorthand for running a for loop on
each of the elements of numbers, invoking
set.add on the current iteration’s item.

Doesn’t work!

Invokes set on numbers, thus
returning a set with the unique
elements from numbers

70 CHAPTER 4 Dictionaries and sets
print(how_many_different_numbers([1, 2, 3, 1,
2, 3, 4, 1]))

You can work through this code in the Python Tutor at http://mng.bz/EdQD.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Whenever I hear the word unique or different in a project’s specification, I think of sets,
because they automatically enforce uniqueness and work with a sequence of values. So
if you have a sequence of usernames, dates, IP addresses, e-mail addresses, or products
and want to reduce that to a sequence containing the same data, but with each item
appearing only once, then sets can be extremely useful.

 Here are some things you can try to work with sets even more:

 Read through a server (e.g., Apache or nginx) log file. What were the different
IP addresses that tried to access your server?

 Reading from that same server log, what response codes were returned to
users? The 200 code represents “OK,” but there are also 403, 404, and 500
errors. (Regular expressions aren’t required here but will probably help.)

 Use os.listdir (http://mng.bz/YreB) to get the names of files in the current
directory. What file extensions (i.e., suffixes following the final . character)
appear in that directory? It’ll probably be helpful to use os.path.splitext
(http://mng.bz/GV4v).

Summary
Dicts are, without a doubt, the most versatile and important data structure in the
Python world. Learning to use them effectively and efficiently is a crucial part of
becoming a fluent developer. In this chapter, we practiced several ways to use them,
including tracking counts of elements and storing data we got from the user. We also
saw that you can use dict.get to retrieve from a dict without having to fear that the
key doesn’t exist.

 When working with dicts, remember

 The keys must be hashable, such as a number or string.
 The values can be anything at all, including another dict.
 The keys are unique.
 You can iterate over the keys in a for loop or comprehension.

http://mng.bz/EdQD
http://mng.bz/YreB
http://mng.bz/GV4v
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

Files
Files are an indispensable part of the world of computers, and thus of program-
ming. We read data from files, and write to files. Even when something isn’t really a
file—such as a network connection—we try to use an interface similar to files because
they’re so familiar.

 To normal, everyday users, there are different types of files—Word, Excel, Power-
Point, and PDF, among others. To programmers, things are both simpler and more
complicated. They’re simpler in that we see files as data structures to which we can
write strings, and from which we can read strings. But files are also more compli-
cated, in that when we read the string into memory, we might need to parse it into
a data structure.

 Working with files is one of the easiest and most straightforward things you can
do in Python. It’s also one of the most common things that we need to do, since
programs that don’t interact with the filesystem are rather boring.

 In this chapter, we’ll practice working with files—reading from them, writing to
them, and manipulating the data that they contain. Along the way, you’ll get used
to some of the paradigms that are commonly used when working with Python files,
such as iterating over a file’s contents and writing to files in a with block.

 In some cases, we’ll work with data formatted as CSV (comma-separated values)
or JSON (JavaScript object notation), two common formats that modules in Python’s
standard library handle. If you’ve forgotten the basics of CSV or JSON, I have some
short reminders in this chapter.

 After this chapter, you’ll not only be more comfortable working with files, you’ll
also better understand how you can translate from in-memory data structures (e.g.,
lists and dicts) to on-disk data formats (e.g., CSV and JSON) and back. In this way,
71

72 CHAPTER 5 Files
files make it possible for you to keep data structures intact—even when the program
isn’t running or when the computer is shut down—or even to transfer such data struc-
tures to other computers.

Table 5.1 What you need to know

Concept What is it? Example To learn more

Files Overview of working
with files in Python

f = open('/etc/passwd') http://mng.bz/D22R

with Puts an object in a
context manager ; in
the case of a file,
ensures it’s flushed
and closed by the end
of the block

with open ('file.text') as f: http://mng.bz/6QJy

Context
manager

Makes your own
objects work in with
statements

with MyObject() as m: http://mng.bz/B221

set.update Adds elements to a set s.update([10, 20, 30]) http://mng.bz/MdOn

os.stat Retrieves information
(size, permissions,
type) about a file

os.stat('file.txt') http://mng.bz/dyyo

os.listdir Returns a list of files in
a directory

os.listdir('/etc/') http://mng.bz/YreB

glob.glob Returns a list of files
matching a pattern

glob.glob('/etc/*.conf') http://mng.bz/044N

Dict compre-
hension

Creates a dict based
on an iterator

{word : len(word)
for word in 'ab cde'.split()}

http://mng.bz/Vggy

str.split Breaks strings apart,
returning a list

Returns ['ab', 'cd', 'ef']
'ab cd ef'.split()

http://mng.bz/aR4z

hashlib Module with cryp-
tographic functions

import hashlib http://mng.bz/NK2x

csv Module for working
with CSV files

x = csv.reader(f) http://mng.bz/xWWd

json Module for working
with JSON

json.loads(json_string) http://mng.bz/AAAo

http://mng.bz/D22R
http://mng.bz/6QJy
http://mng.bz/B221
http://mng.bz/MdOn
http://mng.bz/dyyo
http://mng.bz/YreB
http://mng.bz/044N
http://mng.bz/Vggy
http://mng.bz/aR4z
http://mng.bz/NK2x
http://mng.bz/xWWd
http://mng.bz/AAAo

73EXERCISE 18 ■ Final line
EXERCISE 18 ■ Final line
It’s very common for new Python programmers to learn how they can iterate over the
lines of a file, printing one line at a time. But what if I’m not interested in each line, or
even in most of the lines? What if I’m only interested in a single line—the final line of
the file?

 Now, retrieving the final line of a file might not seem like a super useful action. But
consider the Unix head and tail utilities, which show the first and last lines of a file,
respectively—and which I use all the time to examine files, particularly log files and
configuration files. Moreover, knowing how to read specific parts of a file, as opposed
to the entire thing, is a useful and practical skill to have.

 In this exercise, write a function (get_final_line) that takes a filename as an
argument. The function should return that file’s final line on the screen.

Working it out

The solution code uses a number of common Python idioms that I’ll explain here.
And along the way, you’ll see how using these idioms leads not just to more readable
code, but also to more efficient execution.

 Depending on which arguments you use when calling it, the built-in open function
can return a number of different objects, such as TextIOWrapper or BufferedReader.
These objects all implement the same API for working with files and are thus
described in the Python world as “file-like objects.” Using such an object allows us to
paper over the many different types of filesystems out there and just think in terms of
“a file.” Such an object also allows us to take advantage of whatever optimizations,
such as buffering, the operating system might be using.

 Here’s how open is usually invoked:

f = open(filename)

In this case, filename is a string representing a valid file name. When we invoke open
with just one argument, it should be a filename. The second, optional, argument is a
string that can include multiple characters, indicating whether we want to read from,
write to, or append to the file (using r, w, or a), and whether the file should be read by
character (the default) or by bytes (the b option, in which case we’ll use rb, wb, or ab).
(See the sidebar about the b option and reading the file in byte, or binary, mode.) I
could thus more fully write the previous line of code as

f = open(filename, 'r')

Because we read from files more often than we write to them, r is the default value for
the second argument. It’s quite usual for Python programs not to specify r if reading
from a file.

74 CHAPTER 5 Files
 As you can see here, we’ve put the resulting object into the variable f. And because
file-like objects are all iterable, returning one line per iteration, it’s typical to then
say this:

for current_line in f:
print(current_line)

But if you’re just planning to iterate over f once, then why create it as a variable at all?
We can avoid the variable definition and simply iterate over the file object that open
returned:

for current_line in open(filename):
print(current_line)

With each iteration over a file-like object, we get the next line from the file, up to and
including the \n newline character. Thus, in this code, line is always going to be a
string that always contains a single \n character at the end of it. A blank line in a file
will contain just the \n newline character.

 In theory, files should end with an \n, such that you’ll never finish the file in the
middle of a line. In practice, I’ve seen many files that don’t end with an \n. Keep this
in mind whenever you’re printing out a file; assuming that a file will always end with a
newline character can cause trouble.

 What about closing the file? This code will work, printing the length of each
line in a file. However, this sort of code is frowned upon in the Python world
because it doesn’t explicitly close the file. Now, when it comes to reading from files,
it’s not that big of a deal, especially if you’re only opening a small number of them
at a time. But if you’re writing to files, or if you’re opening many files at once,
you’ll want to close them—both to conserve resources and to ensure that the file
has been closed for good.

 The way to do that is with the with construct. I could rewrite the previous code as
follows:

with open(filename) as f:
for one_line in f:

print(len(one_line))

Instead of opening the file and assigning the file object to f directly, we’ve opened it
within the context of with, assigned it to f as part of the with statement, and then
opened a block.

 There’s more detail about this in the sidebar about with and “context managers,”
but you should know that this is the standard Pythonic way to open a file—in no small
part because it guarantees that the file has been closed by the end of the block.

75EXERCISE 18 ■ Final line
In this particular exercise, you were asked to print the final line of a file. One way to
do so might look like the following code:

for current_line in open(filename):
pass

print(current_line)

This trick works because we iterate over the lines of the file and assign current_line
in each iteration—but we don’t actually do anything in the body of the for loop.
Rather, we use pass, which is a way of telling Python to do nothing. (Python requires
that we have at least one line in an indented block, such as the body of a for loop.)

Binary mode using b
What happens if you open a nontext file, such as a PDF or a JPEG, with open and then
try to iterate over it, one line at a time?

First, you’ll likely get an error right away. That’s because Python expects the contents of
a file to be valid UTF-8 formatted Unicode strings. Binary files, by definition, don’t use
Unicode. When Python tries to read a non-Unicode string, it’ll raise an exception, com-
plaining that it can’t define a string with such content.

To avoid that problem, you can and should open the file in binary or bytes mode, adding
a b to r, w, or a in the second argument to open; for example

for current_line in open(filename, 'rb'):
print(current_line)

Now you won’t be constrained by a lack of Unicode characters.

But wait. Remember that with each iteration, Python will return everything up to and
including the next \n character. In a binary file, such a character won’t appear at the end
of every line, because there are no lines to speak of. Without such a character, what you
get back from each iteration will probably be nonsense.

The bottom line is that if you’re reading from a binary file, you shouldn’t forget to use the
b flag. But when you do that, you’ll find that you don’t want to read the file per line any-
way. Instead, you should be using the read method to retrieve a fixed number of bytes.
When read returns 0 bytes, you’ll know that you’re at the end of the file; for example

with open(filename, 'rb') as f:
while True:

one_chunk = f.read(1000)
if not one_chunk:

break
print(f'This chunk contains {len(one_chunk)} bytes')

Opens the file in “r” (read)
and “b” (binary) mode

The type of current_line here is bytes, similar
to a string but without Unicode characters.

Uses “with”, in a “context
manager,” to open the file

Reads up to 1,000 bytes and
returns them as a bytes object

76 CHAPTER 5 Files
The reason that we execute this loop is for its side effect—namely, the fact that the
final value assigned to current_line remains in place after the loop exits.

 However, looping over the rows of a file just to get the final one strikes me as a
bit strange, even if it works. My preferred solution, shown in figure 5.1, is to iterate
over each line of the file, getting the current line but immediately assigning it to
final_line.

When we exit from the loop, final_line will contain whatever was in the most recent
line. We can thus print it out afterwards.

 Normally, print adds a newline after printing something to the screen. However,
when we iterate over a file, each line already ends with a newline character. This can
lead to doubled whitespace between printed output. The solution is to stop print
from displaying anything by overriding the default \n value in the end parameter. By
passing end='', we tell print to add '', the empty string, after printing final_line.
For further information about the arguments you can pass to print, take a look here:
http://mng.bz/RAAZ.

Solution

def get_final_line(filename):
final_line = ''
for current_line in open(filename):

final_line = current_line
return final_line

print(get_final_line('/etc/passwd'))

You can work through a version of this code in the Python Tutor at http://mng.bz/
D24g.

Figure 5.1 Immediately before printing the final line

Iterates over each line of the file.
You don’t need to declare a
variable; just iterate directly
over the result of open.

http://mng.bz/RAAZ
http://mng.bz/D24g
http://mng.bz/D24g
http://mng.bz/D24g

77EXERCISE 18 ■ Final line
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Iterating over files, and understanding how to work with the content as (and after)
you iterate over them, is an important skill to have when working with Python. It is
also important to understand how to turn the contents of a file into a Python data
structure—something we’ll look at several more times in this chapter. Here are a few
ideas for things you can do when iterating through files in this way:

 Iterate over the lines of a text file. Find all of the words (i.e., non-whitespace
surrounded by whitespace) that contain only integers, and sum them.

 Create a text file (using an editor, not necessarily Python) containing two tab-
separated columns, with each column containing a number. Then use Python
to read through the file you’ve created. For each line, multiply each first num-
ber by the second, and then sum the results from all the lines. Ignore any line
that doesn’t contain two numeric columns.

 Read through a text file, line by line. Use a dict to keep track of how many times
each vowel (a, e, i, o, and u) appears in the file. Print the resulting tabulation.

Simulating files in Python Tutor
Philip Guo’s Python Tutor site (http://mng.bz/2XJX), which I use for diagrams and also to
allow you to experiment with the book’s solutions, doesn’t support files. This is under-
standable—a free server system that lets people run arbitrary code is hard enough to cre-
ate and support. Allowing people to work with arbitrary files would add plenty of logistical
and security problems.

However, there is a solution: StringIO (http://mng.bz/PAOP). StringIO objects are
what Python calls “file-like objects.” They implement the same API as file objects,
allowing us to read from them and write to them just like files. Unlike files, though,
StringIO objects never actually touch the filesystem.

StringIO wasn’t designed for use with the Python Tutor, although it’s a great work-
around for the limitations there. More typically, I see (and use) StringIO in automated
tests. After all, you don’t really want to have a test touch the filesystem; that would make
things run much more slowly. Instead, you can use StringIO to simulate a file.

If you’re doing any software testing, you should take a serious look at StringIO, part of
the Python standard library. You can load it with

from io import StringIO

When we’re looking at files, the versions of code that you’ll see in Python Tutor thus will
be slightly different from the ones in the book itself. However, they should work the same
way, allowing you to explore the code visually. Unfortunately, exercises that involve direc-
tory listings can’t be papered over as easily, and thus lack any Python Tutor link.

http://mng.bz/2XJX
http://mng.bz/PAOP
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

78 CHAPTER 5 Files
EXERCISE 19 ■ /etc/passwd to dict
It’s both common and useful to think of files as sequences of strings. After all, when you
iterate over a file object, you get each of the file’s lines as a string, one at a time. But it
often makes more sense to turn a file into a more complex data structure, such as a dict.

 In this exercise, write a function, passwd_to_dict, that reads from a Unix-style
“password file,” commonly stored as /etc/passwd, and returns a dict based on it. If
you don’t have access to such a file, you can download one that I’ve uploaded at
http://mng.bz/2XXg.

 Here’s a sample of what the file looks like:

nobody:*:-2:-2::0:0:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0::0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1::0:0:System Services:/var/root:/usr/bin/false

Each line is one user record, divided into colon-separated fields. The first field (index
0) is the username, and the third field (index 2) is the user’s unique ID number. (In
the system from which I took the /etc/passwd file, nobody has ID -2, root has ID 0,
and daemon has ID 1.) For our purposes, you can ignore all but these two fields.

 Sometimes, the file will contain lines that fail to adhere to this format. For exam-
ple, we generally ignore lines containing nothing but whitespace. Some vendors (e.g.,
Apple) include comments in their /etc/passwd files, in which the line starts with a #
character.

 The function passwd_to_dict should return a dict based on /etc/passwd in
which the dict’s keys are usernames and the values are the users’ IDs.

Some help from string methods
The string methods str.startswith, str.endswith, and str.strip are helpful
when doing this kind of analysis and manipulation.

For example, str.startswith returns True or False, depending on whether the string
starts with a string:

s = 'abcd'
s.startswith('a') # returns True
s.startswith('abc') # returns True
s.startswith('b') # returns False

Similarly, str.endswith tells us whether a string ends with a particular string:

s = 'abcd'
s.endswith('d') # returns True
s.endswith('cd') # returns True
s.endswith('b') # returns False

str.strip removes the whitespace—the space character, as well as \n, \r, \t, and
even \v—on either side of the string. The str.lstrip and str.rstrip methods only

http://mng.bz/2XXg

79EXERCISE 19 ■ /etc/passwd to dict
Working it out

Once again, we’re opening a text file and iterating over its lines, one at a time. Here,
we assume that we know the file’s format, and that we can extract fields from within
each record.

 In this case, we’re splitting each line across the : character, using the str.split
method. str.split always returns a list of strings, although the length of that list
depends on the number of times that : occurs in the string. In the case of /etc/passwd,
we will assume that any line containing : is a legitimate user record and thus has all of
the necessary fields.

 However, the file might contain comment lines beginning with #. If we were to
invoke str.split (http://mng.bz/aR4z) on those lines, we’d get back a list, but one
containing only a single element—leading to an IndexError exception if we tried to
retrieve user_info[2].

 It’s thus important that we ignore those lines that begin with #. Fortunately, we can
use a str.startswith (http://mng.bz/PAAw) method. Specifically, I identify and dis-
card comment and blank lines using this code:

if not line.startswith(('#', '\n')):

The invocation of str.startswith passes it a tuple of two strings. str.startswith
will return True if either of the strings in that tuple are found at the start of the line.
Because every line contains a newline, including blank lines, we could say that a line
that starts with \n is a blank line.

 Assuming that it has found a user record, our program then adds a new key-value
pair to users. The key is user_info[0], and the value is user_info[2]. Notice how we
can use user_info[0] as the name of a key; as long as the value of that variable con-
tains a string, we may use it as a dict key.

 I use with (http://mng.bz/lGG2) here to open the file, thus ensuring that it’s
closed when the block ends. (See the sidebar about with and context managers.)

Solution

def passwd_to_dict(filename):
users = {}
with open(filename) as passwd:

for line in passwd:
if not line.startswith(('#', '\n')):

user_info = line.split(':')

remove whitespace on the left and right, respectively. All of these methods return
strings:

s = ' \t\t\ta b c \t\t\n'
s.strip() # returns 'a b c'
s.lstrip() # returns 'a b c \t\t\n'
s.rstrip() # returns ' \t\t\ta b c'

Ignores comment
and blank lines

Turns the line into a
list of strings

http://mng.bz/aR4z
http://mng.bz/PAAw
http://mng.bz/lGG2

80 CHAPTER 5 Files
users[user_info[0]] = int(user_info[2])
return users

print(passwd_to_dict('/etc/passwd'))

You can work through a version of this code in the Python Tutor at http://mng.bz/
lGWR.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

At a certain point in your Python career, you’ll stop seeing files as sequences of charac-
ters on a disk, and start seeing them as raw material you can transform into Python
data structures. Our programs have more semantic power with structured data (e.g.,
dicts) than strings. We can similarly do more and think in deeper ways if we read a file
into a data structure rather than just into a string.

 For example, imagine a CSV file in which each line contains the name of a country
and its population. Reading this file as a string, it would be possible—but frustrating—
to compare the populations of France and Thailand. But reading this file into a dict, it
would be trivial to make such a comparison.

 Indeed, I’m a particular fan of reading files into dicts, in no small part because
many file formats lend themselves to this sort of translation—but you can also use
more complex data structures. Here are some additional exercises you can try to help
you see that connection and make the transformation in your code:

 Read through /etc/passwd, creating a dict in which user login shells (the final
field on each line) are the keys. Each value will be a list of the users for whom
that shell is defined as their login shell.

 Ask the user to enter integers, separated by spaces. From this input, create a
dict whose keys are the factors for each number, and the values are lists contain-
ing those of the users’ integers that are multiples of those factors.

 From /etc/passwd, create a dict in which the keys are the usernames (as in the
main exercise) and the values are themselves dicts with keys (and appropriate
values) for user ID, home directory, and shell.

with and context managers
As we’ve seen, it’s common to open a file as follows:

with open('myfile.txt', 'w') as f:
f.write('abc\n')
f.write('def\n')

Most people believe, correctly, that using with ensures that the file, f, will be flushed and
closed at the end of the block. (You thus don’t have to explicitly call f.close() to ensure

http://mng.bz/lGWR
http://mng.bz/lGWR
http://mng.bz/lGWR
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

81EXERCISE 20 ■ Word count
EXERCISE 20 ■ Word count
Unix systems contain many utility functions. One of the most useful to me is wc (http://
mng.bz/Jyyo), the word count program. If you run wc against a text file, it’ll count the
characters, words, and lines that the file contains.

 The challenge for this exercise is to write a wordcount function that mimics the wc
Unix command. The function will take a filename as input and will print four lines
of output:

1 Number of characters (including whitespace)
2 Number of words (separated by whitespace)
3 Number of lines
4 Number of unique words (case sensitive, so “NO” is different from “no”)

the contents will be flushed.) But because with is overwhelmingly used with files, many
developers believe that there’s some inherent connection between with and files. The
truth is that with is a much more general Python construct, known as a context manager.

The basic idea is as follows:

1 You use with, along with an object and a variable to which you want to assign
the object.

2 The object should know how to behave inside of the context manager.
3 When the block starts, with turns to the object. If a __enter__ method is

defined on the object, then it runs. In the case of files, the method is defined but
does nothing other than return the file object itself. Whatever this method
returns is assigned to the as variable at the end of the with line.

4 When the block ends, with once again turns to the object, executing its
__exit__ method. This method gives the object a chance to change or restore
whatever state it was using.

It’s pretty obvious, then, how with works with files. Perhaps the __enter__ method isn’t
important and doesn’t do much, but the __exit__ method certainly is important and
does a lot—specifically in flushing and closing the file. If you pass two or more objects to
with, the __enter__ and __exit__ methods are invoked on each of them, in turn.

Other objects can and do adhere to the context manager protocol. Indeed, if you want,
you can write your own classes such that they’ll know how to behave inside of a with
statement. (Details of how to do so are in the “What you need to know” table at the start
of the chapter.)

Are context managers only used in the case of files? No, but that’s the most common
case by far. Two other common cases are (1) when processing database transactions
and (2) when locking certain sections in multi-threaded code. In both situations, you
want to have a section of code that’s executed within a certain context—and thus,
Python’s context management, via with, comes to the rescue.

If you want to learn more about context managers, here’s a good article on the subject:
http://mng.bz/B221.

http://mng.bz/B221
http://mng.bz/Jyyo
http://mng.bz/Jyyo
http://mng.bz/Jyyo

82 CHAPTER 5 Files
I’ve placed a test file (wcfile.txt) at http://mng.bz/B2ml. You may download and
use that file to test your implementation of wc. Any file will do, but if you use this one,
your results will match up with mine. That file’s contents look like this:

This is a test file.

It contains 28 words and 20 different words.

It also contains 165 characters.

It also contains 11 lines.

It is also self-referential.

Wow!

This exercise, like many others in this chapter, tries to help you see the connections
between text files and Python’s built-in data structures. It’s very common to use
Python to work with log files and configuration files, collecting and reporting that
data in a human-readable format.

Working it out

This program demonstrates a number of Python’s capabilities that many program-
mers use on a daily basis. First and foremost, many people who are new to Python
believe that if they have to measure four aspects of a file, then they should read through
the file four times. That might mean opening the file once and reading through it four
times, or even opening it four separate times. But it’s more common in Python to loop
over the file once, iterating over each line and accumulating whatever data the pro-
gram can find from that line.

 How will we accumulate this data? We could use separate variables, and there’s
nothing wrong with that. But I prefer to use a dict (figure 5.2), since the counts are
closely related, and because it also reduces the code I need to produce a report.

 So, once we’re iterating over the lines of the file, how can we count the various ele-
ments? Counting lines is the easiest part: each iteration goes over one line, so we can
simply add 1 to counts['lines'] at the top of the loop.

 Next, we want to count the number of characters in the file. Since we’re already
iterating over the file, there’s not that much work to do. We get the number of char-
acters in the current line by calculating len(one_line), and then adding that to
counts['characters'].

 Many people are surprised that this includes whitespace characters, such as spaces
and tabs, as well as newlines. Yes, even an “empty” line contains a single newline
character. But if we didn’t have newline characters, then it wouldn’t be obvious to
the computer when it should start a new line. So such characters are necessary, and
they take up some space.

 Next, we want to count the number of words. To get this count, we turn one_line
into a list of words, invoking one_line.split. The solution invokes split without any

http://mng.bz/B2ml

83EXERCISE 20 ■ Word count
arguments, which causes it to use all whitespace—spaces, tabs, and newlines—as
delimiters. The result is then put into counts['words'].

 The final item to count is unique words. We could, in theory, use a list to store new
words. But it’s much easier to let Python do the hard work for us, using a set to guar-
antee the uniqueness. Thus, we create the unique_words set at the start of the pro-
gram, and then use unique_words.update (http://mng.bz/MdOn) to add all of the
words in the current line into the set (figure 5.3). For the report to work on our dict,

Figure 5.2 Initialized counts in the dict

Figure 5.3 The data structures, including unique words, after several lines

http://mng.bz/MdOn

84 CHAPTER 5 Files
we then add a new key-value pair to counts, using len(unique_words) to count the
number of words in the set.

Solution

def wordcount(filename):
counts = {'characters': 0,

'words': 0,
'lines': 0}

unique_words = set()

for one_line in open(filename):
counts['lines'] += 1
counts['characters'] += len(one_line)
counts['words'] += len(one_line.split())

unique_words.update(one_line.split())

counts['unique words'] = len(unique_words)
for key, value in counts.items():

print(f'{key}: {value}')

wordcount('wcfile.txt')

You can work through a version of this code in the Python Tutor at http://mng.bz/
MdZo.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Creating reports based on files is a common use for Python, and using dicts to accu-
mulate information from those files is also common. Here are some additional things
you can try to do, similar to what we did here:

 Ask the user to enter the name of a text file and then (on one line, separated by
spaces) words whose frequencies should be counted in that file. Count how
many times those words appear in a dict, using the user-entered words as the
keys and the counts as the values.

 Create a dict in which the keys are the names of files on your system and the val-
ues are the sizes of those files. To calculate the size, you can use os.stat
(http://mng.bz/dyyo).

 Given a directory, read through each file and count the frequency of each let-
ter. (Force letters to be lowercase, and ignore nonletter characters.) Use a dict
to keep track of the letter frequencies. What are the five most common letters
across all of these files?

You can create sets with curly braces,
but not if they’re empty! Use set() to
create a new empty set.

set.update adds all of
the elements of an
iterable to a set.

Sticks the set’s length
into counts for a
combined report

http://mng.bz/MdZo
http://mng.bz/MdZo
http://mng.bz/MdZo
http://mng.bz/dyyo
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

85EXERCISE 21 ■ Longest word per file
EXERCISE 21 ■ Longest word per file
So far, we’ve worked with individual files. Many tasks, however, require you to analyze
data in multiple files—such as all of the files in a dict. This exercise will give you some
practice working with multiple files, aggregating measurements across all of them.

 In this exercise, write two functions. find_longest_word takes a filename as an
argument and returns the longest word found in the file. The second function, find-
_all_longest_words, takes a directory name and returns a dict in which the keys are
filenames and the values are the longest words from each file.

 If you don’t have any text files that you can use for this exercise, you can download
and use a zip file I’ve created from the five most popular books at Project Gutenberg
(https://gutenberg.org/). You can download the zip file from http://mng.bz/rrWj.

NOTE There are several ways to solve this problem. If you already know how
to use comprehensions, and particularly dict comprehensions, then that’s
probably the most Pythonic approach. But if you aren’t yet comfortable with
them, and would prefer not to jump to read about them in chapter 7, then no
worries—you can use a traditional for loop, and you’ll be just fine.

Working it out

In this case, you’re being asked to take a directory name and then find the longest
word in each plain-text file in that directory. As noted, your function should return a
dict in which the dict’s keys are the filenames and the dict’s values are the longest
words in each file.

 Whenever you hear that you need to transform a collection of inputs into a collec-
tion of outputs, you should immediately think about comprehensions—most com-
monly list comprehensions, but set comprehensions and dict comprehensions are also
useful. In this case, we’ll use a dict comprehension—which means that we’ll create a
dict based on iterating over a source. The source, in our case, will be a list of file-
names. The filenames will also provide the dict keys, while the values will be the result
of passing the filenames to a function.

 In other words, our dict comprehension will

1 Iterate over the list of files in the named directory, putting the filename in the
variable filename.

2 For each file, run the function find_longest_word, passing filename as an
argument. The return value will be a string, the longest string in the file.

3 Each filename-longest word combination will become a key-value pair in the
dict we create.

How can we implement find_longest_word? We could read the file’s entire contents
into a string, turn that string into a list, and then find the longest word in the list with
sorted. Although this will work well for short files, it’ll use a lot of memory for even
medium-sized files.

https://gutenberg.org/
http://mng.bz/rrWj

86 CHAPTER 5 Files
 My solution is thus to iterate over every line of a file, and then over every word in
the line. If we find a word that’s longer than the current longest_word, we replace the
old word with the new one. When we’re done iterating over the file, we can return the
longest word that we found.

 Note my use of os.path.join (http://mng.bz/oPPM) to combine the directory
name with a filename. You can think of os.path.join as a filename-specific version of
str.join. It has additional advantages, as well, such as taking into account the current
operating system. On Windows, os.path.join will use backslashes, whereas on Macs
and Unix/Linux systems, it’ll use a forward slash.

Solution

import os

def find_longest_word(filename):
longest_word = ''
for one_line in open(filename):

for one_word in one_line.split():
if len(one_word) > len(longest_word):

longest_word = one_word
return longest_word

def find_all_longest_words(dirname):
return {filename:

find_longest_word(os.path.join(dirname,
filename))

for filename in os.listdir(dirname)
if os.path.isfile(os.path.join(dirname,

filename))}

print(find_all_longest_words('.'))

Because these functions work with directories, there is no Python Tutor link.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

You’ll commonly produce reports about files and file contents using dicts and other
basic data structures in Python. Here are a few possible exercises to practice these
ideas further:

 Use the hashlib module in the Python standard library, and the md5 function
within it, to calculate the MD5 hash for the contents of every file in a user-
specified directory. Then print all of the filenames and their MD5 hashes.

 Ask the user for a directory name. Show all of the files in the directory, as well
as how long ago the directory was modified. You will probably want to use a

Gets the filename
and its full path

Iterates over all of
the files in dirname

We’re only interested
in files, not directories
or special files.

http://mng.bz/oPPM
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

87EXERCISE 21 ■ Longest word per file
combination of os.stat and the Arrow package on PyPI (http://mng.bz/nPPK)
to do this easily.

 Open an HTTP server’s log file. (If you lack one, then you can read one from
me at http://mng.bz/vxxM.) Summarize how many requests resulted in numeric
response codes—202, 304, and so on.

Directory listings
For a language that claims “there’s one way to do it,” Python has too many ways to list
files in a directory. The two most common are os.listdir and glob.glob, both of
which I’ve mentioned in this chapter. A third way is to use pathlib, which provides us
with an object-oriented API to the filesystem.

The easiest and most standard of these is os.listdir, a function in the os module. It
returns a list of strings, the names of files in the directory; for example

filenames = os.listdir('/etc/')

The good news is that it’s easy to understand and work with os.listdir. The bad news
is that it returns a list of filenames without the directory name, which means that to open
or work with the files, you’ll need to add the directory name at the beginning—ideally with
os.path.join, which works cross-platform.

The other problem with os.listdir is that you can’t filter the filenames by a pattern.
You get everything, including subdirectories and hidden files. So if you want just all of the
.txt files in a directory, os.listdir won’t be enough.

That’s where the glob module comes in. It lets you use patterns, sometimes known as
globbing, to describe the files that you want. Moreover, it returns a list of strings—with
each string containing the complete path to the file. For example, I can get the full paths
of the configuration files in /etc/ on my computer with

filenames = glob.glob('/etc/*.conf')

I don’t need to worry about other files or subdirectories in this case, which makes it much
easier to work with. For a long time, glob.glob was thus my go-to function for finding
files.

Then there’s pathlib, a module that comes with the Python standard library and makes
things easier in many ways. You start by creating a pathlib.Path object, which rep-
resents a file or directory:

import pathlib
p = pathlib.Path('/etc/')

Once you have this Path object, you can do lots of things with it that previously required
separate functions—including the ones I’ve just described. For example, you can get an
iterator that returns files in the directory with iterdir:

for one_filename in p.iterdir():
print(one_filename)

http://mng.bz/nPPK
http://mng.bz/vxxM

88 CHAPTER 5 Files
EXERCISE 22 ■ Reading and writing CSV
In a CSV file, each record is stored on one line, and fields are separated by commas.
CSV is commonly used for exchanging information, especially (but not only) in the
world of data science. For example, a CSV file might contain information about differ-
ent vegetables:

lettuce,green,soft
carrot,orange,hard
pepper,green,hard
eggplant,purple,soft

Each line in this CSV file contains three fields, separated by commas. There aren’t any
headers describing the fields, although many CSV files do have them.

 Sometimes, the comma is replaced by another character, so as to avoid potential
ambiguity. My personal favorite is to use a TAB character (\t in Python strings).

 Python comes with a csv module (http://mng.bz/Qyyj) that handles writing to
and reading from CSV files. For example, you can write to a CSV file with the follow-
ing code:

import csv

with open('/tmp/stuff.csv', 'w') as f:
o = csv.writer(f)
o.writerow(range(5))
o.writerow(['a', 'b', 'c', 'd', 'e'])

Not all CSV files necessarily look like CSV files. For example, the standard Unix
/etc/passwd file, which contains information about users on a system (but no longer
users’ passwords, despite its name), separates fields with : characters.

(continued)

In each iteration, you don’t get a string, but rather a Path object (or more specifically, on
my Mac I get a PosixPath object). Having a full-fledged Path object, rather than a string,
allows you to do lots more than just print the filename; you can open and inspect the file
as well.

If you want to get a list of files matching a pattern, as I did with glob.glob, you can use
the glob method:

for one_filename in p.glob('*.conf'):
print(one_filename)

pathlib is a great addition to recent Python versions. If you have a chance to use it, you
should do so; I’ve found that it clarifies and shortens quite a bit of my code. A good intro-
duction to pathlib is here: http://mng.bz/4AAV.

Creates a csv.writer object,
wrapping our file-like object “f”

Writes the integers from 0-4 to
the file, separated by commas

Writes this list of strings as a record
to the CSV file, separated by commas

http://mng.bz/4AAV
http://mng.bz/Qyyj

89EXERCISE 22 ■ Reading and writing CSV
 For this exercise, create a function, passwd_to_csv, that takes two filenames as
arguments: the first is a passwd-style file to read from, and the second is the name of a
file in which to write the output.

 The new file’s contents are the username (index 0) and the user ID (index 2).
Note that a record may contain a comment, in which case it will not have anything at
index 2; you should take that into consideration when writing the file. The output file
should use TAB characters to separate the elements.

 Thus, the input will look like this

root:*:0:0::0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1::0:0:System Services:/var/root:/usr/bin/false
I am a comment line
_ftp:*:98:-2::0:0:FTP Daemon:/var/empty:/usr/bin/false

and the output will look like this:

root 0
daemon 1
_ftp 98

Notice that the comment line in the input file is not placed in the output file. You can
assume that any line with at least two colon-separated fields is legitimate.

How Python handles end of lines and newlines on different OSs
Different operating systems have different ways of indicating that we’ve reached the end
of the line. Unix systems, including the Mac, use ASCII 10 (line feed, or LF). Windows sys-
tems use two characters, namely ASCII 13 (carriage return, or CR) + ASCII 10. Old-style
Macs used just ASCII 13.

Python tries to bridge these gaps by being flexible, and making some good guesses,
when it reads files. I’ve thus rarely had problems using Python to read text files that were
created using Windows. By the same token, my students (who typically use Windows)
generally have no problem reading the files that I’ve created on the Mac. Python figures
out what line ending is being used, so we don’t need to provide any more hints. And
inside of the Python program, the line ending is symbolized by \n.

Writing to files, in contrast, is a bit trickier. Python will try to use the line ending appropriate
for the operating system. So if you’re writing to a file on Windows, it’ll use CR+LF (some-
times shown as \r\n). If you’re writing to a file on a Unix machine, then it’ll just use LF.

This typically works just fine. But sometimes, you’ll find yourself seeing too many or too few
newlines when you read from a file. This might mean that Python has guessed incorrectly,
or that the file used a few different line endings, confusing Python’s guessing algorithm.

In such cases, you can pass a value to the newline parameter in the open function,
used to open files. You can try to explicitly use newline='\n' to force Unix-style new-
lines, or newline='\r\n' to force Windows-style newlines. If this doesn’t fix the prob-
lem, you might need to examine the file further to see how it was defined.

90 CHAPTER 5 Files
For a complete introduction to working with CSV files in Python, check out http://
mng.bz/XPP6/.

Working it out

The solution program uses a number of aspects of Python that are useful when working
with files. We’ve already seen and discussed with earlier in this chapter. Here, you can
see how you can use with to open two separate files, or generally to define any number
of objects. As soon as our block exits, both of the files are automatically closed.

 We define two variables in the with statement, for the two files with which we’ll
be working. The passwd file is opened for reading from /etc/passwd. The output
file is opened for writing, and writes to /tmp/output.csv. Our program will act as a
go-between, translating from the input file and placing a reformatted subset into
the output file.

 We do this by creating one instance of csv.reader, which wraps passwd. However,
because /etc/passwd uses colons (:) to delimit fields, we must tell this to csv.reader.
Otherwise, it’ll try to use commas, which will likely lead to an error—or, worse yet, not
lead to an error, despite parsing the file incorrectly. Similarly, we define an instance of
csv.writer, wrapping our output file and indicating that we want to use \t as the
delimiter.

 Now that we have our objects in place for reading and writing CSV data, we can
run through the input file, writing a row (line) to the output file for each of those
inputs. We take the username (from index 0) and the user ID (from index 2), create a
tuple, and pass that tuple to csv.writerow. Our csv.writer object knows how to take
our fields and print them to the file, separated by \t.

 Perhaps the trickiest thing here is to ensure we don’t try to transform lines that
contain comments—that is, those which begin with a hash (#) character. There are a
number of ways to do this, but the method that I’ve employed here is simply to check
the number of fields we got for the current input line. If there’s only one field, then it
must be a comment line, or perhaps another type of malformed line. In such a case,
we ignore the line altogether. Another good technique would be to check for # at the
start of the line, perhaps using str.startswith.

Solution

import csv

def passwd_to_csv(passwd_filename, csv_filename):
with open(passwd_filename) as passwd,

➥ open(csv_filename, 'w') as output:
infile = csv.reader(passwd,

delimiter=':')
outfile = csv.writer(output,

delimiter='\t')
for record in infile:

if len(record) > 1:
outfile.writerow((record[0], record[2]))

Fields in the input file are
separated by colons (“:”).

Fields in the output file are
separated by tabs (“\t”).

http://mng.bz/XPP6/
http://mng.bz/XPP6/
http://mng.bz/XPP6/

91EXERCISE 23 ■ JSON
Because we can’t write to files on the Python Tutor, there is no link for this exercise.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

CSV files are extremely useful and common, and the csv module that comes with
Python works with them very well. If you need something more advanced, then you
might want to look into pandas (http://mng.bz/yyyq), which handles a wide array of
CSV variations, as well as many other formats.

 Here are several additional exercises you can try to improve your facility with
CSV files:

 Extend this exercise by asking the user to enter a space-separated list of inte-
gers, indicating which fields should be written to the output CSV file. Also ask
the user which character should be used as a delimiter in the output file. Then
read from /etc/passwd, writing the user’s chosen fields, separated by the user’s
chosen delimiter.

 Write a function that writes a dict to a CSV file. Each line in the CSV file should
contain three fields: (1) the key, which we’ll assume to be a string, (2) the value,
and (3) the type of the value (e.g., str or int).

 Create a CSV file, in which each line contains 10 random integers between 10
and 100. Now read the file back, and print the sum and mean of the numbers
on each line.

EXERCISE 23 ■ JSON
JSON (described at http://json.org/) is a popular format for data exchange. In partic-
ular, many web services and APIs send and receive data using JSON.

 JSON-encoded data can be read into a very large number of programming lan-
guages, including Python. The Python standard library comes with the json module
(http://mng.bz/Mddn), which can be used to turn JSON-encoded strings into Python
objects, and vice versa. The json.load method reads a JSON-encoded string from a
file and returns a combination of Python objects.

 In this exercise, you’re analyzing test data in a high school. There’s a scores direc-
tory on the filesystem containing a number of files in JSON format. Each file rep-
resents the scores for one class. Write a function, print_scores, that takes a directory
name as an argument and prints a summary of the student scores it finds.

 If you’re trying to analyze the scores from class 9a, they’d be in a file called 9a.json
that looks like this:

[{"math" : 90, "literature" : 98, "science" : 97},
{"math" : 65, "literature" : 79, "science" : 85},

http://mng.bz/yyyq
http://json.org/
http://mng.bz/Mddn
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

92 CHAPTER 5 Files
{"math" : 78, "literature" : 83, "science" : 75},
{"math" : 92, "literature" : 78, "science" : 85},
{"math" : 100, "literature" : 80, "science" : 90}

]

The directory may also contain files for 10th grade (10a.json, 10b.json, and
10c.json) and other grades and classes in the high school. Each file contains the
JSON equivalent of a list of dicts, with each dict containing scores for several different
school subjects.

NOTE Valid JSON uses double quotes ("), not single quotes ('). This can be
surprising and frustrating for Python developers to discover.

Your function should print the highest, lowest, and average test scores for each subject
in each class. Given two files (9a.json and 9b.json) in the scores directory, we would
see the following output:

scores/9a.json
science: min 75, max 97, average 86.4
literature: min 78, max 98, average 83.6
math: min 65, max 100, average 85.0

scores/9b.json
science: min 35, max 95, average 82.0
literature: min 38, max 98, average 72.0
math: min 38, max 100, average 77.0

You can download a zipfile with these JSON files from http://mng.bz/Vg1x.

Working it out

In many languages, the first response to this kind of problem would be “Let’s create
our own class!” But in Python, while we can (and often do) create our own classes, it’s
often easier and faster to make use of built-in data structures—lists, tuples, and dicts.

 In this particular case, we’re reading from a JSON file. JSON is a data representa-
tion, much like XML; it isn’t a data type per se. Thus, if we want to create JSON, we
must use the json module to turn our Python data into JSON-formatted strings. And
if we want to read from a JSON file, we must read the contents of the file, as strings,
into our program, and then turn it into Python data structures.

 In this exercise, though, you’re being asked to work on multiple files in one direc-
tory. We know that the directory is called scores and that the files all have a .json
suffix. We could thus use os.listdir on the directory, filtering (perhaps with a list
comprehension) through all of those filenames such that we only work on those end-
ing with .json.

 However, this seems like a more appropriate place to use glob (http://mng
.bz/044N), which takes a Unix-style filename pattern with (among others) * and ?
characters and returns a list of those filenames that match the pattern. Thus, by invok-
ing glob.glob('scores/*.json'), we get all of the files ending in .json within the

http://mng.bz/Vg1x
http://mng.bz/044N
http://mng.bz/044N
http://mng.bz/044N

93EXERCISE 23 ■ JSON
scores directory. We can then iterate over that list, assigning the current filename (a
string) to filename.

 Next, we create a new entry in our scores dict, which is where we’ll store the
scores. This will actually be a dict of dicts, in which the first level will be the name of
the file—and thus the class—from which we’ve read the data. The second-level keys
will be the subjects; the dict’s values will be a list of scores, from which we can then cal-
culate the statistics we need. Thus, once we’ve defined filename, we immediately add
the filename as a key to scores, with a new empty dict as the value.

 Sometimes, you’ll need to read each line of a file into Python and then invoke
json.loads to turn that line into data. In our case, however, the file contains a single
JSON array. We must thus use json.load to read from the file object infile, which
turns the contents of the file into a Python list of dicts.

 Because json.load returns a list of dicts, we can iterate over it. Each test result is
placed in the result variable, which is a dict, in which the keys are the subjects and
the values are the scores. Our goal is to reveal some statistics for each of the subjects in
the class, which means that while the input file reports scores on a per-student basis,
our report will ignore the students in favor of the subjects.

 Given that result is a dict, we can iterate over its key-value pairs with result
.items(), using parallel assignment to iterate over the key and value (here called
subject and score). Now, we don’t know in advance what subjects will be in our
file, nor do we know how many tests there will be. As a result, it’s easiest for us to
store our scores in a list. This means that our scores dict will have one top-level key
for each filename, and one second-level key for each subject. The second-level
value will be a list, to which we’ll then append with each iteration through the JSON-
parsed list.

 We’ll want to add our score to the list:

scores[filename][subject]

Before we can do that, we need to make sure the list exists. One easy way to do this is
with dict.setdefault, which assigns a key-value pair to a dict, but only if the key
doesn’t already exist. In other words, d.setdefault(k, v) is the same as saying

if k not in d:
d[k] = v

We use dict.setdefault (http://mng.bz/aRRB) to create the list if it doesn’t yet
exist. In the next line, we add the score to the list for this subject, in this class.

 When we’ve completed our initial for loop, we have all of the scores for each class.
We can then iterate over each class, printing the name of the class.

 Then, we iterate over each subject for the class. We once again use the method
dict.items to return a key-value pair—in this case, calling them subject (for the
name of the class) and subject_scores (for the list of scores for that subject). We then
use an f-string to produce some output, using the built-in min (http://mng.bz/gyyE)

http://mng.bz/gyyE
http://mng.bz/aRRB

94 CHAPTER 5 Files
and max (http://mng.bz/Vgq5) functions, and then combining sum (http://mng.bz/
eQQv) and len to get the average score.

 While this program reads from a file containing JSON and then produces output
on the user’s screen, it could just as easily read from a network connection containing
JSON, and/or write to a file or socket in JSON format. As long as we use built-in and
standard Python data structures, the json module will be able to take our data and
turn it into JSON.

Solution

import json
import glob

def print_scores(dirname):

scores = {}

for filename in glob.glob(f'{dirname}/*.json'):
scores[filename] = {}

with open(filename) as infile:
for result in json.load(infile):

for subject, score in result.items():
scores[filename].setdefault(subject,

[])
scores[filename][subject].append(score)

for one_class in scores:
print(one_class)
for subject, subject_scores in scores[one_class].items():

min_score = min(subject_scores)
max_score = max(subject_scores)
average_score = (sum(subject_scores) /

len(subject_scores))

print(subject)
print(f'\tmin {min_score}')
print(f'\tmax {max_score}')
print(f'\taverage {average_score}')

Because these functions work with directories, there is no Python Tutor link.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Reads from the file infile
and turns it from JSON
into Python objects

Makes sure that
subject exists as a key
in scores[filename]

Summarizes the scores

http://mng.bz/Vgq5
http://mng.bz/eQQv
http://mng.bz/eQQv
http://mng.bz/eQQv
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

95EXERCISE 24 ■ Reverse lines
Beyond the exercise

Here are some more tasks you can try that use JSON:

 Convert /etc/passwd from a CSV-style file into a JSON-formatted file. The
JSON file will contain the equivalent of a list of Python tuples, with each tuple
representing one line from the file.

 For a slightly different challenge, turn each line in the file into a Python dict.
This will require identifying each field with a unique column or key name. If
you’re not sure what each field in /etc/passwd does, you can give it an arbi-
trary name.

 Ask the user for the name of a directory. Iterate through each file in that direc-
tory (ignoring subdirectories), getting (via os.stat) the size of the file and
when it was last modified. Create a JSON-formatted file on disk listing each file-
name, size, and modification timestamp. Then read the file back in, and iden-
tify which files were modified most and least recently, and which files are largest
and smallest, in that directory.

EXERCISE 24 ■ Reverse lines
In many cases, we want to take a file in one format and save it to another format. In
this function, we do a basic version of this idea. The function takes two arguments: the
names of the input file (to be read from) and the output file (which will be created).

 For example, if a file looks like

abc def
ghi jkl

then the output file will be

fed cba
lkj ihg

Notice that the newline remains at the end of the string, while the rest of the charac-
ters are all reversed.

 Transforming files from one format into another and taking data from one file and
creating another one based on it are common tasks. For example, you might need to
translate dates to a different format, move timestamps from Eastern Daylight Time
into Greenwich Mean Time, or transform prices from euros into dollars. You might
also want to extract only some data from an input file, such as for a particular date
or location.

Working it out

This solution depends not only on the fact that we can iterate over a file one line at
a time, but also that we can work with more than one object in a with statement.
Remember that with takes one or more objects and allows us to assign variables to

96 CHAPTER 5 Files
them. I particularly like the fact that when I want to read from one file and write to
another, I can just use with to open one for reading, open a second for writing, and
then do what I’ve shown here.

 I then read through each line of the input file. I then reverse the line using
Python’s slice syntax—remember that s[::-1] means that we want all of the elements
of s, from the start to the end, but I use a step size of –1, which returns a reversed ver-
sion of the string.

 Before we can reverse the string, however, we first want to remove the newline
character that’s the final character in the string. So we first run str.rstrip() on the
current line, and then we reverse it. We then write it to the output file, adding a new-
line character so we’ll actually descend by one line.

 The use of with guarantees that both files will be closed when the block ends.
When we close a file that we opened for writing, it’s automatically flushed, which
means we don’t need to worry about whether the data has actually been saved to disk.

 I should note that people often ask me how to read from and write to the same file.
Python does support that, with the r+ mode. But I find that this opens the door to
many potential problems because of the chance you’ll overwrite the wrong character,
and thus mess up the format of the file you’re editing. I suggest that people use this
sort of read-from-one, write-to-the-other code, which has roughly the same effect,
without the potential danger of messing up the input file.

Solution

def reverse_lines(infilename, outfilename):
with open(infilename) as infile, open(outfilename, 'w') as outfile:

for one_line in infile:
outfile.write(f'{one_line.rstrip()[::-1]}\n')

Because these functions work with directories, there is no Python Tutor link.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Here are some more exercise ideas for translating files from one format to another
using with and this kind of technique:

 “Encrypt” a text file by turning all of its characters into their numeric equiva-
lents (with the built-in ord function) and writing that file to disk. Now “decrypt”
the file (using the built-in chr function), turning the numbers back into their
original characters.

str.rstrip removes all whitespace
from the right side of a string.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

97EXERCISE 24 ■ Reverse lines
 Given an existing text file, create two new text files. The new files will each con-
tain the same number of lines as the input file. In one output file, you’ll write
all of the vowels (a, e, i, o, and u) from the input file. In the other, you’ll write
all of the consonants. (You can ignore punctuation and whitespace.)

 The final field in /etc/passwd is the shell, the Unix command interpreter that’s
invoked when a user logs in. Create a file, containing one line per shell, in
which the shell’s name is written, followed by all of the usernames that use the
shell; for example

/bin/bash:root, jci, user, reuven, atara
/bin/sh:spamd, gitlab

Summary
It’s almost impossible to imagine writing programs without using files. And while
there are many different types of files, Python is especially well suited for working with
text files—especially, but not only, including log files and configuration files, as well
those formatted in such standard ways as JSON and CSV.

 It’s important to remember a few things when working with files:

 You will typically open files for either reading or writing.
 You can (and should) iterate over files one line at a time, rather than reading

the whole thing into memory at once.
 Using with when opening a file for writing ensures that the file will be flushed

and closed.
 The csv module makes it easy to read from and write to CSV files.
 The json module’s dump and load functions allow us to move between Python

data structures and JSON-formatted strings.
 Reading from files into built-in Python data types is a common and powerful

technique.

Functions
Functions are one of the cornerstones of programming—but not because there’s a
technical need for them. We could program without functions, if we really had to.
But functions provide a number of great benefits.

 First, they allow us to avoid repetition in our code. Many programs have instruc-
tions that are repeated: asking a user to log in, reading data from a particular type
of configuration file, or calculating the length of an MP3, for example. While the
computer won’t mind (or even complain) if the same code appears in multiple
places, we—and the people who have to maintain the code after we’re done with
it—will suffer and likely complain. Such repetition is hard to remember and keep
track of. Moreover, you’ll likely find that the code needs improvement and mainte-
nance; if it occurs multiple times in your program, then you’ll need to find and fix
it each of those times.

 As mentioned in chapter 2, the maxim “don’t repeat yourself” (DRY) is a good
thing to keep in mind when programming. And writing functions is a great way to
apply the phrase, “DRY up your code.”

 A second benefit of functions is that they let us (as developers) think at a higher
level of abstraction. Just as you can’t drive if you’re constantly thinking about what
your car’s various parts are doing, you can’t program if you’re constantly thinking
about all of the parts of your program and what they’re doing. It helps, semantically
and cognitively, to wrap functionality into a named package, and then to use that
name to refer to it.

 In natural language, we create new verbs all of the time, such as programming
and texting. We don’t have to do this; we could describe these actions using many
more words, and with much more detail. But doing so becomes tedious and draws
98

99
attention away from the point that we’re making. Functions are the verbs of program-
ming; they let us define new actions based on old ones, and thus let us think in more
sophisticated terms.

 For all of these reasons, functions are a useful tool and are available in all program-
ming languages. But Python’s functions add a twist to this: they’re objects, meaning
that they can be treated as data. We can store functions in data structures and retrieve
them from there as well. Using functions in this way seems odd to many newcomers to
Python, but it provides a powerful technique that can reduce how much code we write
and increase our flexibility.

 Moreover, Python doesn’t allow for multiple definitions of the same function. In
some languages, you can define a function multiple times, each time having a differ-
ent signature. So you could, for example, define the function once as taking a single
string argument, a second time as taking a list argument, a third time as taking a dict
argument, and a fourth time as taking three float arguments.

 In Python, this functionality doesn’t exist; when you define a function, you’re
assigning to a variable. And just as you can’t expect that x will simultaneously contain
the values 5 and 7, you similarly can’t expect that a function will contain multiple
implementations.

 The way that we get around this problem in Python is with flexible parameters.
Between default values, variable numbers of arguments (*args), and keyword argu-
ments (**kwargs), we can write functions that handle a variety of situations.

 You’ve already written a number of functions as you’ve progressed through this
book, so the purpose of this chapter isn’t to teach you how to write functions. Rather,
the goal is to show you how to use various function-related techniques. This will allow
you not only to write code once and use it numerous times, but also to build up a hier-
archy of new verbs, describing increasingly complex and higher level tasks.

Table 6.1 What you need to know

Concept What is it? Example To learn more

def Keyword for defining func-
tions and methods

def double(x):
return x * 2

http://mng.bz/xW46

global In a function, indicates a vari-
able must be global

global x http://mng.bz/mBNP

nonlocal In a nested function, indi-
cates a variable is local to the
enclosing function

nonlocal x http://mng.bz/5apz

operator module Collection of methods that
implement built-in operators

operator.add(2,4) http://mng.bz/6QAy

http://mng.bz/xW46
http://mng.bz/mBNP
http://mng.bz/5apz
http://mng.bz/6QAy

100 CHAPTER 6 Functions
Default parameter values
Let’s say that I can write a simple function that returns a friendly greeting:

def hello(name):
return f'Hello, {name}!'

This will work fine if I provide a value for name:

>>> hello('world')
'Hello, world!'

But what if I don’t?

>>> hello()
Traceback (most recent call last):

File "<stdin>", line 1, in <module> TypeError: hello() missing 1 requi
red positional argument: 'name'

In other words, Python knows that the function takes a single argument. So if you call the
function with one argument, you’re just fine. Call it with no arguments (or with two argu-
ments, for that matter), and you’ll get an error message.

How does Python know how many arguments the function should take? It knows
because the function object, which we created when we defined the function with def,
keeps track of that sort of thing. Instead of invoking the function, we can look inside the
function object. The __code__ attribute (see figure 6.1) contains the core of the func-
tion, including the bytecodes into which your function was compiled. Inside that object
are a number of hints that Python keeps around, including this one:

>>> hello.__code__.co_argcount
1

In other words, when we define our function with a parameter, the function object keeps
track of that in co_argcount. And when we invoke the function, Python compares the
number of arguments with co_argcount. If there’s a mismatch, then we get an error, as
we saw a little earlier. However, there’s still a way that we can define the function such
that an argument is optional—we can add a default value to the parameter:

def hello(name='world'):
return f'Hello, {name}!'

When we run the function now, Python gives us more slack. If we pass an argument, then
that value is assigned to the name parameter. But if we don’t pass an argument, then the

Figure 6.1 A function object, along
with its __code__ section

101EXERCISE 25 ■ XML generator
EXERCISE 25 ■ XML generator
Python is often used not just to parse data, but to format it as well. In this exercise,
you’ll write a function that uses a combination of different parameters and parameter
types to produce a variety of outputs.

 Write a function, myxml, that allows you to create simple XML output. The output
from the function will always be a string. The function can be invoked in a number of
ways, as shown in table 6.3.

Notice that in all cases, the first argument is the name of the tag. In the latter two
cases, the second argument is the content (text) placed between the opening and
closing tags. And in the third case, the name-value pairs will be turned into attributes
inside of the opening tag.

string world is assigned to name, as per our default (see table 6.2). In this way, we can
call our function with either no arguments or one argument; however, two arguments
aren’t allowed.

NOTE Parameters with defaults must come after those without defaults.

WARNING Never use a mutable value, such as a list or dict, as a parameter’s
default value. You shouldn’t do so because default values are stored and
reused across calls to the function. This means that if you modify the default
value in one call, that modification will be visible in the next call. Most code
checkers and IDEs will warn you about this, but it’s important to keep in mind.

Table 6.3 Calling myxml

Call Return value

myxml('foo') <foo></foo>

myxml('foo', 'bar') <foo>bar</foo>

myxml('foo', 'bar', a=1, b=2, c=3) <foo a="1" b="2" c="3">bar</foo>

Table 6.2 Calling hello

Call Value of name Return value

hello() world, thanks to the default Hello, world!

hello('out there') out there Hello, out there!

hello('a', 'b') Error: Too many arguments No return value

102 CHAPTER 6 Functions
Working it out

Let’s start by assuming that we only want our function to take a single argument, the
name of the tag. That would be easy to write. We could say

def myxml(tagname):
return f'<{tagname}></{tagname}>'

If we decide we want to pass a second (optional) argument, this will fail. Some people
thus assume that our function should take *args, meaning any number of arguments,
all of which will be put in a tuple. But, as a general rule, *args is meant for situations
in which you don’t know how many values you’ll be getting and you want to be able to
accept any number.

 My general rule with *args is that it should be used when you’ll put its value into a
for loop, and that if you’re grabbing elements from *args with numeric indexes,
then you’re probably doing something wrong.

 The other option, though, is to use a default. And that’s what I’ve gone with. The
first parameter is mandatory, but the second is optional. If I make the second one
(which I call content here) an empty string, then I know that either the user passes
content or the content is empty. In either case, the function works. I can thus define it
as follows:

def myxml(tagname, content=''):
return f'<{tagname}>{content}</{tagname}>'

But what about the key-value pairs that we can pass, and which are then placed as attri-
butes in the opening tag?

 When we define a function with **kwargs, we’re telling Python that we might pass
any name-value pair in the style name=value. These arguments aren’t passed in the
normal way but are treated separately, as keyword arguments. They’re used to create a
dict, traditionally called kwargs, whose keys are the keyword names and whose values
are the keyword values. Thus, we can say

def myxml(tagname, content='', **kwargs):
attrs = ''.join([f' {key}="{value}"'

for key, value in kwargs.items()])
return f'<{tagname}{attrs}>{content}</{tagname}>'

As you can see, I’m not just taking the key-value pairs from **kwargs and putting
them into a string. I first have to take that dict and turn it into name-value pairs in
XML format. I do this with a list comprehension, running on the dict. For each key-
value pair, I create a string, making sure that the first character in the string is a space,
so we don’t bump up against the tagname in the opening tag.

 There’s a lot going on in this code, and it uses a few common Python paradigms.
Understanding that, it’s probably useful to go through it, step by step, just to make
things clearer:

103EXERCISE 25 ■ XML generator
1 In the body of myxml, we know that tagname will be a string (the name of the
tag), content will be a string (whatever content should go between the tags),
and kwargs will be a dict (with the attribute name-value pairs).

2 Both content and kwargs might be empty, if the user didn’t pass any values for
those parameters.

3 We use a list comprehension to iterate over kwargs.items(). This will provide
us with one key-value pair in each iteration.

4 We use the key-value pair, assigned to the variables key and value, to create a
string of the form key="value". We get one such string for each of the attribute
key-value pairs passed by the user.

5 The result of our list comprehension is a list of strings. We join these strings
together with str.join, with an empty string between the elements.

6 Finally, we return the combination of the opening tag (with any attributes we
might have gotten), the content, and the closing tag.

Solution

def myxml(tagname, content='', **kwargs):
attrs = ''.join([f' {key}="{value}"'

for key, value in kwargs.items()])
return f'<{tagname}{attrs}>{content}</{tagname}>'

print(myxml('tagname', 'hello', a=1, b=2, c=3))

You can work through a version of this code in the Python Tutor at http://mng.bz/
OMoK.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Learning to work with functions, and the types of parameters that you can define, takes
some time but is well worthwhile. Here are some exercises you can use to sharpen your
thinking when it comes to function parameters:

 Write a copyfile function that takes one mandatory argument—the name of
an input file—and any number of additional arguments: the names of files to
which the input should be copied. Calling copyfile('myfile.txt', 'copy1
.txt', 'copy2.txt', 'copy3.txt') will create three copies of myfile.txt:
one each in copy1.txt, copy2.txt, and copy3.txt.

 Write a “factorial” function that takes any number of numeric arguments and
returns the result of multiplying them all by one another.

The function has one mandatory parameter,
one with a default, and “**kwargs”. Uses a list

comprehension
to create a string
from kwargs

Returns the XML-
formatted string

http://mng.bz/OMoK
http://mng.bz/OMoK
http://mng.bz/OMoK
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

104 CHAPTER 6 Functions
 Write an anyjoin function that works similarly to str.join, except that the first
argument is a sequence of any types (not just of strings), and the second argu-
ment is the “glue” that we put between elements, defaulting to " " (a space). So
anyjoin([1,2,3]) will return 1 2 3, and anyjoin('abc', pass:'**') will
return pass:a**b**c.

Variable scoping in Python
Variable scoping is one of those topics that many people prefer to ignore—first because
it’s dry, and then because it’s obvious. The thing is, Python’s scoping is very different
from what I’ve seen in other languages. Moreover, it explains a great deal about how the
language works, and why certain decisions were made.

The term scoping refers to the visibility of variables (and all names) from within the pro-
gram. If I set a variable’s value within a function, have I affected it outside of the function
as well? What if I set a variable’s value inside a for loop?

Python has four levels of scoping:

 Local
 Enclosing function
 Global
 Built-ins

These are known by the abbreviation LEGB. If you’re in a function, then all four are
searched, in order. If you’re outside of a function, then only the final two (globals and
built-ins) are searched. Once the identifier is found, Python stops searching.

That’s an important consideration to keep in mind. If you haven’t defined a function,
you’re operating at the global level. Indentation might be pervasive in Python, but it
doesn’t affect variable scoping at all.

But what if you run int('s')? Is int a global variable? No, it’s in the built-ins name-
space. Python has very few reserved words; many of the most common types and func-
tions we run are neither globals nor reserved keywords. Python searches the builtins
namespace after the global one, before giving up on you and raising an exception.

What if you define a global name that’s identical to one in built-ins? Then you have effec-
tively shadowed that value. I see this all the time in my courses, when people write some-
thing like

sum = 0
for i in range(5):

sum += i
print(sum)

print(sum([10, 20, 30]))

TypeError: 'int' object is not callable

105EXERCISE 25 ■ XML generator
(continued)

Why do we get this weird error? Because in addition to the sum function defined in built-
ins, we have now defined a global variable named sum. And because globals come
before built-ins in Python’s search path, Python discovers that sum is an integer and
refuses to invoke it.

It’s a bit frustrating that the language doesn’t bother to check or warn you about rede-
fining names in built-ins. However, there are tools (e.g., pylint) that will tell you if you’ve
accidentally (or not) created a clashing name.

LOCAL VARIABLES

If I define a variable inside a function, then it’s considered to be a local variable. Local
variables exist only as long as the function does; when the function goes away, so do the
local variables it defined; for example

x = 100

def foo():
x = 200
print(x)

print(x)
foo()
print(x)

This code will print 100, 200, and then 100 again. In the code, we’ve defined two variables:
x in the global scope is defined to be 100 and never changes, whereas x in the local scope,
available only within the function foo, is 200 and never changes (figure 6.2). The fact that
both are called x doesn’t confuse Python, because from within the function, it’ll see the
local x and ignore the global one entirely.

Figure 6.2 Inner vs. outer x

106 CHAPTER 6 Functions
THE GLOBAL STATEMENT

What if, from within the function, I want to change the global variable? That requires the
use of the global declaration, which tells Python that you’re not interested in creating
a local variable in this function. Rather, any retrievals or assignments should affect the
global variable; for example

x = 100

def foo():
global x
x = 200
print(x)

print(x)
foo()
print(x)

This code will print 100, 200, and then 200, because there’s only one x, thanks to the
global declaration.

Now, changing global variables from within a function is almost always a bad idea. And
yet, there are rare times when it’s necessary. For example, you might need to update a
configuration parameter that’s set as a global variable.

ENCLOSING

Finally, let’s consider inner functions via the following code:

def foo(x):
def bar(y):

return x * y
return bar

f = foo(10)
print(f(20))

Already, this code seems a bit weird. What are we doing defining bar inside of foo? This
inner function, sometimes known as a closure, is a function that’s defined when foo is
executed. Indeed, every time that we run foo, we get a new function named bar back.
But of course, the name bar is a local variable inside of foo; we can call the returned
function whatever we want.

When we run the code, the result is 200. It makes sense that when we invoke f, we’re
executing bar, which was returned by foo. And we can understand how bar has access
to y, since it’s a local variable. But what about x? How does the function bar have access
to x, a local variable in foo?

The answer, of course, is LEGB:

1 First, Python looks for x locally, in the local function bar.
2 Next, Python looks for x in the enclosing function foo.
3 If x were not in foo, then Python would continue looking at the global level.
4 And if x were not a global variable, then Python would look in the built-ins name-

space.

107EXERCISE 26 ■ Prefix notation calculator
EXERCISE 26 ■ Prefix notation calculator
In Python, as in real life, we normally write mathematics using infix notation, as in 2+3.
But there’s also something known as prefix notation, in which the operator precedes
the arguments. Using prefix notation, we would write + 2 3. There’s also postfix nota-
tion, sometimes known as “reverse Polish notation” (or RPN), which is still in use on
HP brand calculators. That would look like 2 3 +. And yes, the numbers must then be
separated by spaces.

 Prefix and postfix notation are both useful in that they allow us to do sophisticated
operations without parentheses. For example, if you write 2 3 4 + * in RPN, you’re tell-
ing the system to first add 3+4 and then multiply 2*7. This is why HP calculators have
an Enter key but no “=” key, which confuses newcomers greatly. In the Lisp program-
ming language, prefix notation allows you to apply an operator to many numbers
(e.g., (+ 1 2 3 4 5)) rather than get caught up with lots of + signs.

(continued)

What if I want to change the value of x, a local variable in the enclosing function? It’s not
global, so the global declaration won’t work. In Python 3, though, we have the nonlo-
cal keyword. This keyword tells Python: “Any assignment we do to this variable should
go to the outer function, not to a (new) local variable”; for example

def foo():
call_counter = 0
def bar(y):

nonlocal call_counter
call_counter += 1
return f'y = {y}, call_counter = {call_counter}'

return bar

b = foo()
for i in range(10, 100, 10):

print(b(i))

The output from this code is

y = 10, call_counter = 1
y = 20, call_counter = 2
y = 30, call_counter = 3
y = 40, call_counter = 4
y = 50, call_counter = 5
y = 60, call_counter = 6
y = 70, call_counter = 7
y = 80, call_counter = 8
y = 90, call_counter = 9

So any time you see Python accessing or setting a variable—which is often!—consider the
LEGB scoping rule and how it’s always, without exception, used to find all identifiers,
including data, functions, classes, and modules.

Initializes call_counter
as a local variable in foo Tells bar that assignments to

call_counter should affect the
enclosing variable in foo

Increments
call_counter,
whose value
sticks around
across runs of bar

Iterates over the numbers
10, 20, 30, … 90

Calls b with each of the
numbers in that range

108 CHAPTER 6 Functions
 For this exercise, I want you to write a function (calc) that expects a single
argument—a string containing a simple math expression in prefix notation—with an
operator and two numbers. Your program will parse the input and produce the appro-
priate output. For our purposes, it’s enough to handle the six basic arithmetic opera-
tions in Python: addition, subtraction, multiplication, division (/), modulus (%), and
exponentiation (**). The normal Python math rules should work, such that division
always results in a floating-point number. We’ll assume, for our purposes, that the
argument will only contain one of our six operators and two valid numbers.

 But wait, there’s a catch—or a hint, if you prefer: you should implement each of
the operations as a separate function, and you shouldn’t use an if statement to decide
which function should be run. Another hint: look at the operator module, whose
functions implement many of Python’s operators.

Working it out

The solution uses a technique known as a dispatch table, along with the operator mod-
ule that comes with Python. It’s my favorite solution to this problem, but it’s not the
only one—and it’s likely not the one that you first thought of.

 Let’s start with the simplest solution and work our way up to the solution I wrote.
We’ll need a function for each of the operators. But then we’ll somehow need to
translate from the operator string (e.g., + or **) to the function we want to run. We
could use if statements to make such a decision, but a more common way to do this
in Python is with dicts. After all, it’s pretty standard to have keys that are strings, and
since we can store anything in the value, that includes functions.

NOTE Many of my students ask me how to create a switch-case statement in
Python. They’re surprised to hear that they already know the answer, namely
that Python doesn’t have such a statement, and that we use if instead. This is
part of Python’s philosophy of having one, and only one, way to do some-
thing. It reduces programmers’ choices but makes the code clearer and easier
to maintain.

We can then retrieve the function from the dict and invoke it with parentheses:

def add(a,b):
return a + b

def sub(a,b):
return a - b

def mul(a,b):
return a * b

def div(a,b):
return a / b

def pow(a,b):
return a ** b

109EXERCISE 26 ■ Prefix notation calculator
def mod(a,b):
return a % b

def calc(to_solve):
operations = {'+' : add,

'-' : sub,
'*' : mul,
'/' : div,
'**' : pow,
'%' : mod}

op, first_s, second_s = to_solve.split()
first = int(first_s)
second = int(second_s)

return operations[op](first, second)

Perhaps my favorite part of the code is the final line. We have a dict in which the func-
tions are the values. We can thus retrieve the function we want with operations
[operator], where operator is the first part of the string that we broke apart with
str.split. Once we have a function, we can call it with parentheses, passing it our
two operands, first and second.

 But how do we get first and second? From the user’s input string, in which we
assume that there are three elements. We use str.split to break them apart, and
immediately use unpacking to assign them to three variables.

Hedging your bets with maxsplit
If you’re uncomfortable with the idea of invoking str.split and simply assuming that
we’ll get three results back, there’s an easy way to deal with that. When you invoke
str.split, pass a value to its optional maxsplit parameter. This parameter indicates
how many splits will actually be performed. Another way to think about it is that it’s the
index of the final element in the returned list. For example, if I write

>>> s = 'a b c d e'
>>> s.split()
['a', 'b', 'c', 'd', 'e']

as you can see, I get (as always) a list of strings. Because I invoked str.split without
any arguments, Python used any whitespace characters as separators.

But if I pass a value of 3 to maxsplit, I get the following:

>>> s = 'a b c d e'
>>> s.split(maxsplit=3)
['a', 'b', 'c', 'd e']

The keys in the operations dict are the
operator strings that a user might enter,
while the values are our functions
associated with those strings.

Breaks the user’s
input apart

Turns each of the user’s
inputs from strings into
integers

Applies the user’s chosen operator as a key in
operations, returning a function—which we then

invoke, passing it “first” and “second” as arguments

110 CHAPTER 6 Functions
All of this is fine, but this code doesn’t seem very DRY. The fact that we have to define
each of our functions, even when they’re so similar to one another and are reimple-
menting existing functionality, is a bit frustrating and out of character for Python.

 Fortunately, the operator module, which comes with Python, can help us. By
importing operator, we get precisely the functions we need: add, sub, mul, truediv/
floordiv, mod, and pow. We no longer need to define our own functions, because we
can use the ones that the module provides. The add function in operators does what
we would normally expect from the + operator: it looks to its left, determines the type
of the first parameter, and uses that to know what to invoke. operator.add, as a func-
tion, doesn’t need to look to its left; it checks the type of its first argument and uses
that to determine which version of + to run.

 In this particular exercise, we restricted the user’s inputs to integers, so we didn’t
do any type checking. But you can imagine a version of this exercise in which we could
handle a variety of different types, not just integers. In such a case, the various opera-
tor functions would know what to do with whatever types we’d hand them.

Solution

import operator

def calc(to_solve):
operations = {'+': operator.add,

'-': operator.sub,
'*': operator.mul,
'/': operator.truediv,
'**': operator.pow,
'%': operator.mod}

op, first_s, second_s = to_solve.split()
first = int(first_s)
second = int(second_s)

return operations[op](first, second)

print(calc('+ 2 3'))

You can work through a version of this code in the Python Tutor at http://mng.bz/
YrGo.

Notice that the returned list now has four elements. The Python documentation says that
maxsplit tells str.split how many cuts to make. I prefer to think of that value as the
largest index in the returned list—that is, because the returned list contains four ele-
ments, the final element will have an index of 3. Either way, maxsplit ensures that
when we use unpacking on the result from it, we’re not going to encounter an error.

The operator module provides
functions that implement all
built-in operators.

Yes, functions can be
the values in a dict!

You can choose between truediv,
which returns a float, as with the “/”
operator, or floordiv, which returns
an integer, as with the “//” operator.

Splits the line, assigning
via unpacking

Calls the function retrieved
via operator, passing “first”
and “second” as arguments

http://mng.bz/YrGo
http://mng.bz/YrGo
http://mng.bz/YrGo

111EXERCISE 27 ■ Password generator
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Treating functions as data, and storing them in data structures, is odd for many new-
comers to Python. But it enables techniques that, although possible, are far more
complex in other languages. Here are three more exercises that extend this idea even
further:

 Expand the program you wrote, such that the user’s input can contain any
number of numbers, not just two. The program will thus handle + 3 5 7 or / 100
5 5, and will apply the operator from left to right—giving the answers 15 and 4,
respectively.

 Write a function, apply_to_each, that takes two arguments: a function that takes
a single argument, and an iterable. Return a list whose values are the result of
applying the function to each element in the iterable. (If this sounds familiar, it
might be—this is an implementation of the classic map function, still available in
Python. You can find a description of map in chapter 7.)

 Write a function, transform_lines, that takes three arguments: a function that
takes a single argument, the name of an input file, and the name of an output
file. Calling the function will run the function on each line of the input file,
with the results written to the output file. (Hint: the previous exercise and this
one are closely related.)

EXERCISE 27 ■ Password generator
Even today, many people use the same password on many different computers. This
means that if someone figures out your password on system A, then they can log into
systems B, C, and D where you used the same password. For this reason, many people
(including me) use software that creates (and then remembers) long, randomly gen-
erated passwords. If you use such a system, then even if system A is compromised, your
logins on systems B, C, and D are all safe.

 In this exercise, we’re going to create a password-generation function. Actually,
we’re going to create a factory for password-generation functions. That is, I might
need to generate a large number of passwords, all of which use the same set of charac-
ters. (You know how it is. Some applications require a mix of capital letters, lowercase
letters, numbers, and symbols; whereas others require that you only use letters; and
still others allow both letters and digits.) You’ll thus call the function create_password
_generator with a string. That string will return a function, which itself takes an integer
argument. Calling this function will return a password of the specified length, using
the string from which it was created; for example

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

112 CHAPTER 6 Functions
alpha_password = create_password_generator('abcdef')
symbol_password = create_password_generator('!@#$%')

print(alpha_password(5)) # efeaa
print(alpha_password(10)) # cacdacbada

print(symbol_password(5)) # %#@%@
print(symbol_password(10)) # @!%%$%$%%#

A useful function to know about in implementing this function is the random module
(http://mng.bz/Z2wj), and more specifically the random.choice function in that mod-
ule. That function returns one (randomly chosen) element from a sequence.

 The point of this exercise is to understand how to work with inner functions: defin-
ing them, returning them, and using them to create numerous similar functions.

Working it out

This is an example of where you might want to use an inner function, sometimes
known as a closure. The idea is that we’re invoking a function (create_password
_generator) that returns a function (create_password). The returned, inner func-
tion knows what we did on our initial invocation but also has some functionality of its
own. As a result, it needs to be defined as an inner function so that it can access vari-
ables from the initial (outer) invocation.

 The inner function is defined not when Python first executes the program, but
rather when the outer function (create_password_generator) is executed. Indeed,
we create a new inner function once for each time that create_password_generator
is invoked.

 That new inner function is then returned to the caller. From Python’s perspective,
there’s nothing special here—we can return any Python object from a function: a list,
dict, or even a function. What is special here, though, is that the returned function
references a variable in the outer function, where it was originally defined.

 After all, we want to end up with a function to which we can pass an integer, and
from which we can get a randomly generated password. But the password must contain
certain characters, and different programs have different restrictions on what characters
can be used for those passwords. Thus, we might want five alphanumeric characters, or
10 numbers, or 15 characters that are either alphanumeric or punctuation.

 We thus define our outer function such that it takes a single argument, a string
containing the characters from which we want to create a new password. The result of
invoking this function is, as was indicated, a function—the dynamically defined create
_password. This inner function has access to the original characters variable in the
outer function because of Python’s LEGB precedence rule for variable lookup. (See
sidebar, “Variable scoping in Python.”) When, inside of create_password, we look for
the variable characters, it’s found in the enclosing function’s scope.

 If we invoke create_password_generator twice, as shown in the visualization
via the Python Tutor (figure 6.3), each invocation will return a separate version of

http://mng.bz/Z2wj

113EXERCISE 27 ■ Password generator
create_password, with a separate value of characters. Each invocation of the outer
function returns a new function, with its own local variables. At the same time, each of
the returned inner functions has access to the local variables from its enclosing func-
tion. When we invoke one of the inner functions, we thus get a new password based
on the combination of the inner function’s local variables and the outer (enclosing)
function’s local variables.

NOTE Working with inner functions and closures can be quite surprising and
confusing at first. That’s particularly true because our instinct is to believe
that when a function returns, its local variables and state all go away. Indeed,
that’s normally true—but remember that in Python, an object isn’t released
and garbage-collected if there’s at least one reference to it. And if the inner
function is still referring to the stack frame in which it was defined, then the
outer function will stick around as long as the inner function exists.

Solution

import random

def create_password_generator(characters):
def create_password(length):

output = []

Figure 6.3 Python Tutor’s depiction of two password-generating functions

Defines the
outer function Defines the inner function,

with def running each time
we run the outer function

114 CHAPTER 6 Functions

pa
for i in range(length):
output.append(random.choice(characters))

return ''.join(output)
return create_password

alpha_password = create_password_generator('abcdef')
symbol_password = create_password_generator('!@#$%')

print(alpha_password(5))
print(alpha_password(10))

print(symbol_password(5))
print(symbol_password(10))

You can work through a version of this code in the Python Tutor at http://mng.bz/
GVEM.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Thinking of functions as data lets you work at even higher levels of abstraction than
usual functions, and thus solve even higher level problems without worrying about the
low-level details. However, it can take some time to internalize and understand how to
pass functions as arguments to other functions, or to return functions from inside
other functions. Here are some additional exercises you can try to better understand
and work with them:

 Now that you’ve written a function to create passwords, write create_pass-
word_checker, which checks that a given password meets the IT staff’s accept-
ability criteria. In other words, create a function with four parameters: min_
uppercase, min_lowercase, min_punctuation, and min_digits. These repre-
sent the minimum number of uppercase letters, lowercase letters, punctuations,
and digits for an acceptable password. The output from create_password_
checker is a function that takes a potential password (string) as its input and
returns a Boolean value indicating whether the string is an acceptable password.

 Write a function, getitem, that takes a single argument and returns a function
f. The returned f can then be invoked on any data structure whose elements
can be selected via square brackets, and then returns that item. So if I invoke
f = getitem('a'), and if I have a dict d = {'a':1, 'b':2}, then f(d) will return
1. (This is very similar to operator.itemgetter, a very useful function in many
circumstances.)

 Write a function, doboth, that takes two functions as arguments (f1 and f2) and
returns a single function, g. Invoking g(x) should return the same result as
invoking f2(f1(x)).

How long do
we want the

ssword to be?

Adds a new, random
element from characters
to output

Returns a string based on
the elements of output

Returns the inner
function to the caller

http://mng.bz/GVEM
http://mng.bz/GVEM
http://mng.bz/GVEM
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

115EXERCISE 27 ■ Password generator
Summary
Writing simple Python functions isn’t hard. But where Python’s functions really shine
is in their flexibility—especially when it comes to parameter interpretation—and in
the fact that functions are data too. In this chapter, we explored all of these ideas,
which should give you some thoughts about how to take advantage of functions in
your own programs.

 If you ever find yourself writing similar code multiple times, you should seriously
consider generalizing it into a function that you can call from those locations. More-
over, if you find yourself implementing something that you might want to use in the
future, implement it as a function. Besides, it’s often easier to understand, maintain,
and test code that has been broken into functions, so even if you aren’t worried about
reuse or higher levels of abstraction, it might still be beneficial to write your code as
functions.

Functional programming
with comprehensions
Programmers are always trying to do more with less code, while simultaneously
making that code more reliable and easier to debug. And indeed, computer scien-
tists have developed a number of techniques, each meant to bring us closer to that
goal of short, reliable, maintainable, powerful code.

 One set of techniques is known as functional programming. It aims to make pro-
grams more reliable by keeping functions short and data immutable. I think most
developers would agree that short functions are a good idea, in no small part
because they’re easier to understand, test, and maintain.

 But how can you enforce the writing of short functions? Immutable data. If you
can’t modify data from within a function, then the function will (in my experience)
end up being shorter, with fewer potential paths to be tested. Functional programs
thus end up having many short functions—in contrast with nonfunctional programs,
which often have a smaller number of very long functions. Functional programming
also assumes that functions can be passed as arguments to other functions, some-
thing that we’ve already seen to be the case in Python.

 The good news is that functional techniques have the potential to make code
short and elegant. The bad news is that for many developers, functional techniques
aren’t natural. Not modifying any values, and not keeping track of state, might be
great ways to make your software more reliable, but they’re almost guaranteed to
confuse and frustrate many developers.

 Consider, for example, that you have a Person object in a purely functional lan-
guage. If the person wants to change their name, you’re out of luck, because all
data is immutable. Instead, you’ll have to create a new person object based on the
old one, but with the name changed. This isn’t terrible in and of itself, but given
116

117
that the real world changes, and that we want our programs to model the real world,
keeping everything immutable can be frustrating.

 Then again, because functional languages can’t modify data, they generally pro-
vide mechanisms for taking a sequence of inputs, transforming them in some way, and
producing a sequence of outputs. We might not be able to modify one Person object,
but we can write a function that takes a list of Person objects, applies a Python expres-
sion to each one, and then gets a new list of Person objects back. In such a scenario,
we perhaps haven’t modified our original data, but we’ve accomplished the task. And
the code needed to do this is generally quite short.

 Now, Python isn’t a functional language; we have mutable data types and assign-
ment. But some functional techniques have made their way into the language and are
considered standard Pythonic ways to solve some problems.

 Specifically, Python offers comprehensions, a modern take on classic functions that
originated in Lisp, one of the first high-level languages to be invented. Comprehensions
make it relatively easy to create lists, sets, and dicts based on other data structures. The
fact that Python’s functions are objects, and can thus be passed as arguments or stored
in data structures, also comes from the functional world.

 Some exercise solutions have already used, or hinted at, comprehensions. In this
chapter, we’re going to concentrate on how and when to use these techniques, and
expand on the ways we can use them.

 In my experience, it’s common to be indifferent to functional techniques, and par-
ticularly to comprehensions, when first learning about them. But over time—and yes,
it can take years!—developers increasingly understand how, when, and why to apply
them. So even if you can solve the problems in this chapter without using functional
techniques, the point here is to get your hands dirty, try them, and start to see the
logic and elegance behind this way of doing things. The benefits might not be imme-
diately obvious, but they’ll pay off over time.

 If this all sounds very theoretical and you’d like to see some concrete examples of
comprehensions versus traditional, procedural programming, then check out the
“Writing comprehensions” sidebar coming up in this chapter, where I go through the
differences more thoroughly.

Table 7.1 What you need to know

Concept What is it? Example To learn more

List comprehen-
sion

Produces a list based
on the elements of an
iterable

[x*x
for x in range(5)]

http://mng.bz/lGpy

Dict comprehen-
sion

Produces a dict based
on the elements of an
iterable

{x : 2*x
for x in range(5)}

http://mng.bz/Vggy

Set comprehen-
sion

Produces a set based
on the elements of an
iterable

{x*x
for x in range(5)}

http://mng.bz/GVxO

http://mng.bz/lGpy
http://mng.bz/Vggy
http://mng.bz/GVxO

118 CHAPTER 7 Functional programming with comprehensions
EXERCISE 28 ■ Join numbers
People often ask me, “When should I use a comprehension, as opposed to a tradi-
tional for loop?”

 My answer is basically as follows: when you want to transform an iterable into a list,
you should use a comprehension. But if you just want to execute something for each
element of an iterable, then a traditional for loop is better.

 Put another way, is the point of your for loop the creation of a new list? If so, then
use a comprehension. But if your goal is to execute something once for each element in
an iterable, throwing away or ignoring any return value, then a for loop is preferable.

 For example, I want to get the lengths of words in the string s. I can say

[len(one_word)
for one_word in s.split()]

In this example, I care about the list we’re creating, so I use a comprehension.
 But if my string s contains a list of filenames, and I want to create a new file for

each of these filenames, then I’m not interested in the return value. Rather, I want to
iterate over the filenames and create a file, as follows:

for one_filename in s.split():
with open(one_filename, 'w') as f:

f.write(f'{one_filename}\n')

input Prompts the user to
enter a string, and
returns a string

input('Name: ') http://mng.bz/wB27

str.isdigit Returns True or
False, if the string is
nonempty and con-
tains only 0–9

returns True
'5'.isdigit()

http://mng.bz/oPVN

str.split Breaks strings apart,
returning a list

Returns ['ab', 'cd', 'ef']
'ab cd ef'.split()

http://mng.bz/aR4z

str.join Combines strings to
create a new one

Returns 'ab*cd*ef'
'*'.join(['ab', 'cd',

'ef'])

http://mng.bz/gyYl

string.ascii
_lowercase

All English lowercase
letters

string.ascii_lowercase http://mng.bz/zjxQ

enumerate Returns an iterator of
two-element tuples,
with an index

enumerate('abcd') http://mng.bz/qM1K

Table 7.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/wB27
http://mng.bz/oPVN
http://mng.bz/aR4z
http://mng.bz/gyYl
http://mng.bz/zjxQ
http://mng.bz/qM1K

119EXERCISE 28 ■ Join numbers
In this example, I open (and thus create) each file, and write to it the name of the file.
Using a comprehension in this case would be inappropriate, because I’m not inter-
ested in the return value.

Transformations—taking values in a list, string, dict, or other iterable and producing a
new list based on it—are common in programming. You might need to transform file-
names into file objects, or words into their lengths, or usernames into user IDs. In all
of these cases, a comprehension is the most Pythonic solution.

 This exercise is meant to get your feet wet with comprehensions, and with imple-
menting this idea. It might seem simple, but the underlying idea is deep and powerful
and will help you to see additional opportunities to use comprehensions.

 For this exercise, write a function (join_numbers) that takes a range of integers.
The function should return those numbers as a string, with commas between the
numbers. That is, given range(15) as input, the function should return this string:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

Hint: if you’re thinking that str.join (http://mng.bz/gyYl) is a good idea here, then
you’re mostly right—but remember that str.join won’t work on a list of integers.

Working it out

In this exercise, we want to use str.join on a range, which is similar to a list of inte-
gers. If we try to invoke str.join right away, we’ll get an error:

>>> numbers = range(15)
>>> ','.join(numbers)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected str instance, int found

That’s because str.join only works on a sequence of strings. We’ll thus need to con-
vert each of the integers in our range (numbers) into a string. Then, when we have a
list of strings based on our range of integers, we can run str.join.

 The solution is to use a list comprehension to invoke str on each of the numbers
in the range. That will produce a list of strings, which is what str.join expects. How?

 Consider this: a list comprehension says that we’re going to create a new list. The ele-
ments of the new list are all based on the elements in the source iterator, after an expres-
sion is run on them. What we’re doing is describing the new list in terms of the old one.

 Here are some examples that can help you to see where and how to use list com-
prehensions:

 I want to know the age of each student in a class. So we’re starting with a list of
student objects and ending up with a list of integers. You can imagine a student
_age function being applied to each student to get their age:

[student_age(one_student)
for one_student in all_students]

http://mng.bz/gyYl

120 CHAPTER 7 Functional programming with comprehensions
 I want to know how many mm of rain fell on each day of the previous month. So
we’re starting with a list of days and ending with a list of floats. You can imagine
a daily_rain function being applied to each day:

[daily_rain(one_day)
for one_day in most_recent_month]

 I want to know how many vowels were used in a book. So we would apply a
number_of_vowels function to each word in the book, and then run the sum
function on the resulting list:

[number_of_vowels(one_word)
for one_word in open(filename).read().split()]

If these three examples look quite similar, that’s because they are; part of the power of
list comprehensions is the simple formula that we repeat. Each list comprehension
contains two parts:

1 The source iterable
2 The expression we’ll invoke once for each element

In the case of our exercise here, we had a list of integers. By applying the str function
on each int in the list, we got back a list of strings. str.join works fine on lists of strings.

NOTE We’ll get into the specifics of the iterator protocol in chapter 10,
which is dedicated to that subject. You don’t need to understand those details
to use comprehensions. However, if you’re particularly interested in what
counts as an “iterable,” go ahead and read the first part of that chapter before
continuing here.

Writing comprehensions
Comprehensions are traditionally written on a single line:

[x*x for x in range(5)]

I find that especially for new Python developers, but even for experienced ones, it’s hard
to figure out what’s going on. Things get even worse if you add a condition:

[x*x for x in range(5) if x%2]

For this reason, I strongly suggest that Python developers break up their list comprehen-
sions. Python is forgiving about whitespace if we’re inside of parentheses, which is
always (by definition) the case when we’re in a comprehension. We can break up this
comprehension as follows:

[x*x
for x in range(5)
if x%2]

Expression

Iteration

Condition

121EXERCISE 28 ■ Join numbers
By separating the expression, iteration, and condition on different lines, the comprehen-
sion becomes more ... comprehensible. It’s also easier to experiment with the compre-
hension in this way. I’ll be writing most of my comprehensions in this book using this
two- or three-line format, and I encourage you to do the same.

Note that using this technique, nested list comprehensions also become easier to
understand:

[(x,y)
for x in range(5)
if x%2
for y in range(5)
if y%3]

In other words, this list comprehension produces pairs of integers in which the first num-
ber must be odd, and the second number can’t be divisible by 3. Nested comprehen-
sions can be hard for anyone to understand, but when each of these sections appears
on a line by itself, it’s easier to understand what’s happening.

Nested list comprehensions are great for working through complex data structures, such
as lists of lists or lists of tuples. For example, let’s assume that I have a dict describing
the countries and cities I’ve visited in the last year:

all_places = {'USA': ['Philadelphia', 'New York', 'Cleveland', 'San Jose',
'San Francisco'],

'China': ['Beijing', 'Shanghai', 'Guangzhou'],
'UK': ['London'],
'India': ['Hyderabad']}

If I want a list of cities I’ve visited, ignoring the countries, I can use a nested list compre-
hension:

[one_city
for one_country, all_cities in all_places.items()
for one_city in all_cities]

I can also create a list of (city, country) tuples:

[(one_city, one_country)
for one_country, all_cities in all_places.items()
for one_city in all_cities]

And of course, I can always sort them using sorted:

[(one_city, one_country)
for one_country, all_cities in sorted(all_places.items())
for one_city in sorted(all_cities)]

Expression Iteration #1,
from 0 through 4

Condition #1, ignoring
even numbers

Iteration #2, from 0
through 4Condition #2, ignore

multiples of 3

122 CHAPTER 7 Functional programming with comprehensions
Now, a list comprehension immediately produces a list—which, if you’re dealing with
large quantities of data, can result in the use of a great deal of memory. For this rea-
son, many Python developers would argue that we’d be better off using a generator
expression (http://mng.bz/K2M0).

 Generator expressions look just like list comprehensions, except that instead of
using square brackets, they use regular, round parentheses. However, this turns out to
make a big difference: a list comprehension has to create and return its output list in
one fell swoop, which can potentially use lots of memory. A generator expression, by
contrast, returns its output one piece at a time.

 For example, consider

sum([x*x for x in range(100000)])

In this code, sum is given one input, a list of integers. It iterates over the list of integers
and sums them. But consider that before sum can run, the comprehension needs to
finish creating the entire list of integers. This list can potentially be quite large and
consume a great deal of memory.

 By contrast, consider this code:

sum((x*x for x in range(100000)))

Here, the input to sum isn’t a list; it’s a generator, one that we created via our genera-
tor expression. sum will return precisely the same result as it did previously. However,
whereas our first example created a list containing 100,000 elements, the latter uses
much less memory. The generator returns one element at a time, waiting for sum to
request the next item in line. In this way, we’re only consuming one integer’s worth of
memory at a time, rather than a huge list of integers’ memory. The bottom line, then,
is that you can use generator expressions almost anywhere you can use comprehen-
sions, but you’ll use much less memory.

 It turns out that when we put a generator expression in a function call, we can
remove the inner parentheses:

sum(x*x for x in range(100000))

And thus, here’s the syntax that you saw in the solution to this exercise, but using a
generator expression:

numbers = range(15)

print(','.join(str(number)
for number in numbers))

Solution

def join_numbers(numbers):
return ','.join(str(number)

for number in numbers)

print(join_numbers(range(15)))

Applies str to each number and puts
the new string in the output list

Iterates over the
elements of numbers

http://mng.bz/K2M0

123EXERCISE 28 ■ Join numbers
You can work through a version of this code in the Python Tutor at http://mng.bz/
zj4w.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Here are a few ways you might want to go beyond this exercise, and push yourself to
use list comprehensions in new ways:

 As in the exercise, take a list of integers and turn them into strings. However,
you’ll only want to produce strings for integers between 0 and 10. Doing this
will require understanding the if statement in list comprehensions as well.

 Given a list of strings containing hexadecimal numbers, sum the numbers
together.

 Use a list comprehension to reverse the word order of lines in a text file. That
is, if the first line is abc def and the second line is ghi jkl, then you should
return the list ['def abc', 'jkl ghi'].

map, filter, and comprehensions
Comprehensions, at their heart, do two different things. First, they transform one
sequence into another, applying an expression on each element of the input sequence.
Second, they filter out elements from the output. Here’s an example:

[x*x
for x in range(10)
if x%2 == 0]

The first line is where the transformation takes place, and the third line is where the fil-
tering takes place. Before Python’s comprehensions, these features were traditionally
implemented using two functions: map and filter. Indeed, these functions continue to
exist in Python, even if they’re not used all that often.

map takes two arguments: a function and an iterable. It applies the function to each ele-
ment of the iterable, returning a new iterable; for example

words = 'this is a bunch of words'.split()
x = map(len, words)
print(sum(x))

x squared

For each number from 0–9

But only if x is even

Creates a list of strings,
and assigns it to “words”

Applies the len function to
each word, resulting in an
iterable of integers

Uses the sum
function on x

http://mng.bz/zj4w
http://mng.bz/zj4w
http://mng.bz/zj4w
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

124 CHAPTER 7 Functional programming with comprehensions
(continued)

Notice that map always returns an iterable that has the same length as its input. That’s
because it doesn’t have a way to remove elements. It applies its input function once per
input element. We can thus say that map transforms but doesn’t filter.

The function passed to map can be any function or method that takes a single argument.
You can use built-in functions or write your own. The key thing to remember is that it’s
the output from the function that’s placed in the output iterable.

filter also takes two arguments , a function and an iterable, and it applies the function
to each element. But here, the output of the function determines whether the element
will appear in the output—it doesn’t transform the element at all; for example

words = 'this is a bunch of words'.split()

def is_a_long_word(one_word):
return len(one_word) > 4

x = filter(is_a_long_word, words)
print(' '.join(x))

While the function passed to filter doesn’t have to return a True or False value, its
result will be interpreted as a Boolean and used to determine if the element is put into
the output sequence. So it’s usually a good idea to pass a function that returns a True
or False.

The combination of map and filter means that you can take an iterable, filter its ele-
ments, then apply a function to each of its elements. This turns out to be extremely useful
and explains why map and filter have been around for so long—about 50 years, in fact.

The fact that functions can be passed as arguments is central to the ability of both map
and filter to even execute. That’s one reason why these techniques are a core part of
functional programming, because they require that functions can be treated as data.

That said, comprehensions are considered to be the modern way to do this kind of thing
in Python. Whereas we pass functions to map and filter, we pass expressions to com-
prehensions.

Why, then, do map and filter continue to exist in the language, if comprehensions are
considered to be better? Partly for nostalgic and historical reasons, but also because
they can sometimes do things you can’t easily do with comprehensions. For example,
map can take multiple iterables in its input and then apply functions that will work with
each of them:

import operator
letters = 'abcd'
numbers = range(1,5)

Creates a list of strings,
and assigns it to “words”

Defines a function that returns
a True or False value, based on
the word passed to it

Applies our function to
each word in “words”

Shows the words that
passed through the filter

We’ll use operator.mul as
our map function.

Sets up a four-
element string

Sets up a four-element
integer range

125EXERCISE 29 ■ Add numbers
EXERCISE 29 ■ Add numbers
In the previous exercise, we took a sequence of numbers and turned it into a sequence
of strings. This time, we’ll do the opposite—take a sequence of strings, turn them into
numbers, and then sum them. But we’re going to make it a bit more complicated,
because we’re going to filter out those strings that can’t be turned into integers.

 Our function (sum_numbers) will take a string as an argument; for example

10 abc 20 de44 30 55fg 40

Given that input, our function should return 100. That’s because the function will
ignore any word that contains nondigits.

 Ask the user to enter integers, all at once, using input (http://mng.bz/wB27).

x = map(operator.mul, letters, numbers)
print(' '.join(x))

This code prints the following:

a bb ccc dddd

Using a comprehension, we could rewrite the code as

import operator
letters = 'abcd'
numbers = range(1,5)

print(' '.join(operator.mul(one_letter, one_number)
for one_letter, one_number in zip(letters, numbers)))

Notice that to iterate over both letters and numbers at the same time, I had to use zip
here. By contrast, map can simply take additional iterable arguments.

What is an expression?
An expression is anything in Python that returns a value. If that seems a bit abstract to
you, then you can just think of an expression as anything you can assign to a variable, or
return from a function. So 5 is an expression, as is 5+3, as is len('abcd').

When I say that comprehensions use expressions, rather than functions, I mean that we
don’t pass a function. Rather, we just pass the thing that we want Python to evaluate,
akin to passing the body of the function without passing the formal function definition.

Applies operator.mul (multiply)
to the corresponding elements
of letters and numbersJoins the strings

together with spaces
and prints the result

http://mng.bz/wB27

126 CHAPTER 7 Functional programming with comprehensions
Working it out

In this exercise, we’re given a string, which we assume contains integers separated by
spaces. We want to grab the individual integers from the string and then sum them
together. The easiest way to do this is to invoke str.split on the string, which returns
a list of strings. By invoking str.split without any parameters, we tell Python that any
combination of whitespace should be used as a delimiter.

 Now we have a list of strings, rather than a list of integers. What we need to do is
iterate over the strings, turning each one into an integer by invoking int on it. The
easiest way to turn a list of strings into a list of integers is to use a list comprehension,
as in the solution code. In theory, we could then invoke the built-in sum function on
the list of integers, and we would be done.

 But there’s a catch. It’s possible that the user’s input includes elements that can’t
be turned into integers. We need to get rid of those; if we try to run int on the string
abcd, the program will exit with an error.

 Fortunately, list comprehensions can help us here too. We can use the third (filter-
ing) line of the comprehension to indicate that only those strings that can be turned
into numbers will pass through to the first line. We do this with an if statement, apply-
ing the str.isdigit method to find out whether we can successfully turn the word
into an integer.

 We then invoke sum on the generator expression, returning an integer. Finally, we
print the sum using an f-string.

Solution

def sum_numbers(numbers):
return sum(int(number)

for number in numbers.split()
if number.isdigit())

print(sum_numbers('1 2 3 a b c 4'))

You can work through a version of this code in the Python Tutor at http://mng.bz/
046p.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

One of the most common uses for list comprehensions, at least in my experience, is
for doing this combination of transformation and filtering. Here are a few additional
exercises you could do to ensure that you understand not just the syntax, but also
their potential:

Creates an
integer based
on number

Iterates through
each of the words
in numbers

Ignores words that can’t
be turned into integers

http://mng.bz/046p
http://mng.bz/046p
http://mng.bz/046p
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

127EXERCISE 30 ■ Flatten a list
 Show the lines of a text file that contain at least one vowel and contain more
than 20 characters.

 In the United States, phone numbers have 10 digits—a three-digit area code,
followed by a seven-digit number. Several times during my childhood, area
codes would run out of phone numbers, forcing half of the population to get a
new area code. After such a split, XXX-YYY-ZZZZ might remain XXX-YYY-ZZZZ,
or it might become NNN-YYY-ZZZZ, with NNN being the new area code. The
decision regarding which numbers remained and which changed was often
made based on the phone numbers’ final seven digits. Use a list comprehension
to return a new list of strings, in which any phone number whose YYY begins
with the digits 0–5 will have its area code changed to XXX+1. For example,
given the list of strings ['123-456-7890', '123-333-4444', '123-777-8888'],
we want to convert them to ['124-456-7890', '124-333-4444', '124-777-
8888'].

 Define a list of five dicts. Each dict will have two key-value pairs, name and age,
containing a person’s name and age (in years). Use a list comprehension to
produce a list of dicts in which each dict contains three key-value pairs: the orig-
inal name, the original age, and a third age_in_months key, containing the per-
son’s age in months. However, the output should exclude any of the input dicts
representing people over 20 years of age.

EXERCISE 30 ■ Flatten a list
It’s pretty common to use complex data structures to store information in Python.
Sure, we could create a new class, but why do that when we can just use combinations
of lists, tuples, and dicts? This means, though, that you’ll sometimes need to unravel
those complex data structures, turning them into simpler ones.

 In this exercise, we’ll practice doing such unraveling. Write a function that takes a
list of lists (just one element deep) and returns a flat, one-dimensional version of the
list. Thus, invoking

flatten([[1,2], [3,4]])

will return

[1,2,3,4]

Note that there are several possible solutions to this problem; I’m asking you to solve
it with list comprehensions. Also note that we only need to worry about flattening a
two-level list.

128 CHAPTER 7 Functional programming with comprehensions
Working it out

As we’ve seen, list comprehensions allow us to evaluate an expression on each element
of an iterable. But in a normal list comprehension, you can’t return more elements than
were in the input iterable. If the input iterable has 10 elements, for example, you can
only return 10, or fewer than 10 if you use an if clause.

 Nested list comprehensions change this a bit, in that the result may contain as
many elements as there are sub-elements of the input iterable. Given a list of lists, the
first for loop will iterate over every element in mylist. But the second for loop will
iterate over the elements of the inner list. We can produce one output element for
each inner input element, and that’s what we do:

def flatten(mylist):
return [one_element

for one_sublist in mylist
for one_element in one_sublist]

Solution

def flatten(mylist):
return [one_element

for one_sublist in mylist
for one_element in one_sublist]

print(flatten([[1,2], [3,4]]))

You can work through a version of this code in the Python Tutor at http://mng.bz/
jg4P.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Nested list comprehensions can be a bit daunting at first, but they can be quite helpful
in many circumstances. Here are some exercises you can try to improve your under-
standing of how to use them:

 Write a version of the flatten function mentioned earlier called flatten_odd
_ints. It’ll do the same thing as flatten, but the output will only contain odd
integers. Inputs that are neither odd nor integers should be excluded. Inputs
containing strings that could be converted to integers should be converted;
other strings should be excluded.

 Define a dict that represents the children and grandchildren in a family. (See
figure 7.1 for a graphic representation.) Each key will be a child’s name, and
each value will be a list of strings representing their children (i.e., the family’s
grandchildren). Thus the dict {'A':['B', 'C', 'D'], 'E':['F', 'G']} means

Iterates through each
element of mylist

Iterates through each
element of one_sublist

http://mng.bz/jg4P
http://mng.bz/jg4P
http://mng.bz/jg4P
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

129EXERCISE 31 ■ Pig Latin translation of a file
that A and E are siblings; A’s children are B, C, and D; and E’s children are F and
G. Use a list comprehension to create a list of the grandchildren’s names.

 Redo this exercise, but replace each grandchild’s name (currently a string) with
a dict. Each dict will contain two name-value pairs, name and age. Produce a list
of the grandchildren’s names, sorted by age, from eldest to youngest.

EXERCISE 31 ■ Pig Latin translation of a file
List comprehensions are great when you want to transform a list. But they can actually
work on any iterable—that is, any Python object on which you can run a for loop.
This means that the source data for a list comprehension can be a string, list, tuple,
dict, set, or even a file.

 In this exercise, I want you to write a function that takes a filename as an argu-
ment. It returns a string with the file’s contents, but with each word translated into Pig
Latin, as per our plword function in chapter 2 on “strings.” The returned translation
can ignore newlines and isn’t required to handle capitalization and punctuation in
any specific way.

Working it out

We’ve seen that nested list comprehensions can be used to iterate over complex data
structures. In this case, we’re iterating over a file. And indeed, we could iterate over
each line of the file.

 But we can break the problem down further, using a nested list comprehension to
first iterate over each line of the file, and then over each word within the current line.
Our plword function can then operate on a single word at a time.

 I realize that nested list comprehensions can be hard, at least at first, to read and
understand. But as you use them, you’ll likely find that they allow you to elegantly
break down a problem into its components.

 There is a bit of a problem with what we’ve done here, but it might not seem obvi-
ous at first. List comprehensions, by their very nature, produce lists. This means that if
we translate a large file into Pig Latin, we might find ourselves with a very long list. It

Figure 7.1 Graph of the family for nested list comprehensions

130 CHAPTER 7 Functional programming with comprehensions
would be better to return an iterator object that would save memory, only calculating
the minimum necessary for each iteration.

 It turns out that doing so is quite easy. We can use a generator expression (as sug-
gested in this chapter’s first exercise), which looks almost precisely like a list compre-
hension, but using round parentheses rather than square brackets. We can put a
generator expression in a call to str.join, just as we could put in a list comprehen-
sion, saving memory in the process.

 Here’s how that code would look:

def plfile(filename):
return ' '.join((plword(one_word)

for one_line in open(filename)
for one_word in one_line.split()))

But wait—it turns out that if you have a generator expression inside a function call,
you don’t actually need both sets of parentheses. You can leave one out, which means
the code will look like this:

def plfile(filename):
return ' '.join(plword(one_word)

for one_line in open(filename)
for one_word in one_line.split())

We’ve now not only accomplished our original task, we’ve done so using less memory
than a list comprehension requires. There might be a slight trade-off in terms of
speed, but this is usually considered worthwhile, given the potential problems you’ll
encounter reading a huge file into memory all at once.

Solution

def plword(word):
if word[0] in 'aeiou':

return word + 'way'

return word[1:] + word[0] + 'ay'

def plfile(filename):
return ' '.join(plword(one_word)

for one_line in open(filename)
for one_word in one_line.split())

You can work through a version of this code in the Python Tutor at http://mng.bz/
K2xP.

 Note that because the Python Tutor doesn’t support working with external files, I
used an instance of StringIO to simulate a file.

Iterates through each
line of filename

Iterates through
each word in the
current line

http://mng.bz/K2xP
http://mng.bz/K2xP
http://mng.bz/K2xP

131EXERCISE 32 ■ Flip a dict
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Whenever you’re transforming and/or filtering complex or nested data structures, or
(as in the case of a file) something that can be treated as a nested data structure, it’s
often useful to use a nested list comprehension:

 In this exercise, plfile applied the plword function to every word in a file.
Write a new function, funcfile, that will take two arguments—a filename and a
function. The output from the function should be a string, the result of invok-
ing the function on each word in the text file. You can think of this as a generic
version of plfile, one that can return any string value.

 Use a nested list comprehension to transform a list of dicts into a list of two-
element (name-value) tuples, each of which represents one of the name-value
pairs in one of the dicts. If more than one dict has the same name-value pair,
then the tuple should appear twice.

 Assume that you have a list of dicts, in which each dict contains two name-value
pairs: name and hobbies, where name is the person’s name and hobbies is a set
of strings representing the person’s hobbies. What are the three most popular
hobbies among the people listed in the dicts?

EXERCISE 32 ■ Flip a dict
The combination of comprehensions and dicts can be quite powerful. You might want
to modify an existing dict, removing or modifying certain elements. For example, you
might want to remove all users whose ID number is lower than 500. Or you might
want to find the user IDs of all users whose names begin with the letter “A”.

 It’s also not uncommon to want to flip a dict—that is, to exchange its keys and val-
ues. Imagine a dict in which the keys are usernames and the values are user ID num-
bers; it might be useful to flip that so that you can search by ID number.

 For this exercise, first create a dict of any size, in which the keys are unique and the
values are also unique. (A key may appear as a value, or vice versa.) Here’s an example:

d = {'a':1, 'b':2, 'c':3}

Turn the dict inside out, such that the keys and the values are reversed.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

132 CHAPTER 7 Functional programming with comprehensions
Working it out

Just as list comprehensions provide an easy way to create lists based on another iter-
able, dict comprehensions provide an easy way to create a dict based on an iterable.
The syntax is as follows:

{ KEY : VALUE
for ITEM in ITERABLE }

In other words

 The source for our dict comprehension is an iterable—typically a string, list,
tuple, dict, set, or file.

 We iterate over each such item in a for loop.
 For each item, we then output a key-value pair.

Notice that a colon (:) separates the key from the value. That colon is part of the syn-
tax, which means that the expressions on either side of the colon are evaluated sepa-
rately and can’t share data.

 In this particular case, we’re looping over the elements of a dict named d. We use
the dict.items method to do so, which returns two values—the key and value—with
each iteration. These two values are passed by parallel assignment to the variables key
and value.

 Another way of solving this exercise is to iterate over d, rather than over the output of
d.items(). That would provide us with the keys, requiring that we retrieve each value:

{ d[key]:key for key in d }

In a comprehension, I’m trying to create a new object based on an old one. It’s all
about the values that are returned by the expression at the start of the comprehen-
sion. By contrast, for loops are about commands, and executing those commands.

 Consider what your goal is, and whether you’re better served with a comprehen-
sion or a for loop; for example

 Given a string, you want a list of the ord values for each character. This should
be a list comprehension, because you’re creating a list based on a string, which
is iterable.

 You have a list of dicts, in which each dict contains your friends’ first and last
names, and you want to insert this data into a database. In this case, you’ll use
a regular for loop, because you’re interested in the side effects, not the return
value.

Solution

def flipped_dict(a_dict):
return {value: key

for key, value in a_dict.items()}

print(flipped_dict({'a':1, 'b':2, 'c':3}))

All iterables are acceptable in
a comprehension, even those
that return two-element
tuples, such as dict.items.

133EXERCISE 33 ■ Transform values
You can work through this code in the Python Tutor at http://mng.bz/905x.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Dict comprehensions provide us with a useful way to create new dicts. They’re typi-
cally used when you want to create a dict based on an iterable, such as a list or file. I’m
especially partial to using them when I want to read from a file and turn the file’s con-
tents into a dict. Here are some additional ideas for ways to practice the use of dict
comprehensions:

 Given a string containing several (space-separated) words, create a dict in which
the keys are the words, and the values are the number of vowels in each word. If
the string is “this is an easy test,” then the resulting dict would be {'this':1,
'is':1, 'an':1, 'easy':2, 'test':1}.

 Create a dict whose keys are filenames and whose values are the lengths of the
files. The input can be a list of files from os.listdir (http://mng.bz/YreB) or
glob.glob (http://mng.bz/044N).

 Find a configuration file in which the lines look like “name=value.” Use a dict
comprehension to read from the file, turning each line into a key-value pair.

EXERCISE 33 ■ Transform values
This exercise combines showing how you can receive a function as a function argument,
and how comprehensions can help us to elegantly solve a wide variety of problems.

 The built-in map (http://mng.bz/Ed2O) takes two arguments: (a) a function and
(b) an iterable. It returns a new sequence, which is the result of applying the function
to each element of the input iterable. A full discussion of map is in the earlier sidebar,
“map, filter, and comprehensions.”

 In this exercise, we’re going to create a slight variation on map, one that applies
a function to each of the values of a dict. The result of invoking this function,
transform_values, is a new dict whose keys are the same as the input dict, but whose
values have been transformed by the function. (The name of the function comes from
Ruby on Rails, which provides a function of the same name.) The function passed to
transform_values should take a single argument, the dict’s value.

 When your transform_values function works, you should be able to invoke it as
follows:

d = {'a':1, 'b':2, 'c':3}
transform_values(lambda x: x*x, d)

http://mng.bz/905x
http://mng.bz/YreB
http://mng.bz/044N
http://mng.bz/Ed2O
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

134 CHAPTER 7 Functional programming with comprehensions
The result of this call will be the following dict:

{'a': 1, 'b': 4, 'c': 9}

Working it out

The idea of transform_values is a simple one: you want to invoke a function repeat-
edly on the values of a dict. This means that you must iterate over the dict’s key-value
pairs. For each pair, you want to invoke a user-supplied function on the value.

 We know that functions can be passed as arguments, just like any other data types.
In this case, we’re getting a function from the user so we can apply it. We apply func-
tions with parentheses, so if we want to invoke the function func that the user passed
to us, we simply say func(). Or in this case, since the function should take a single
argument, we say func(value).

 We can iterate over a dict’s key-value pairs with dict.items (http://mng.bz/
4AeV), which returns an iterator that provides, one by one, the dict’s key-value pairs.
But that doesn’t solve the problem of how to take these key-value pairs and turn them
back into a dict.

 The easiest, fastest, and most Pythonic way to create a dict based on an existing iter-
able is a dict comprehension. The dict we return from transform_values will have the
same keys as our input dict. But as we iterate over the key-value pairs, we invoke
func(value), applying the user-supplied function to each value we get and using the
output from that expression as our value. We don’t even need to worry about what type
of value the user-supplied function will return, because dict values can be of any type.

Solution

def transform_values(func, a_dict):
return {key: func(value)

for key, value in a_dict.items()}

d = {'a':1, 'b':2, 'c':3}
print(transform_values(lambda x: x*x, d))

You can work through a version of this code in the Python Tutor at http://mng.bz/
jg2z.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Dict comprehensions are a powerful tool in any Python developer’s arsenal. They
allow us to create new dicts based on existing iterables. However, they can take some
time to get used to, and to integrate into your development. Here are some additional
exercises you can try to improve your understanding and use of dict comprehensions:

Applies the user-supplied function
to each value in the dict

Iterates through each
key-value pair in the dict

http://mng.bz/4AeV
http://mng.bz/4AeV
http://mng.bz/4AeV
http://mng.bz/jg2z
http://mng.bz/jg2z
http://mng.bz/jg2z
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

135EXERCISE 34 ■ (Almost) supervocalic words
 Expand the transform_values exercise, taking two function arguments, rather
than just one. The first function argument will work as before, being applied to
the value and producing output. The second function argument takes two argu-
ments, a key and a value, and determines whether there will be any output at
all. That is, the second function will return True or False and will allow us to
selectively create a key-value pair in the output dict.

 Use a dict comprehension to create a dict in which the keys are usernames and
the values are (integer) user IDs, based on a Unix-style /etc/passwd file. Hint:
in a typical /etc/passwd file, the usernames are the first field in a row (i.e.,
index 0), and the user IDs are the third field in a row (i.e., index 2). If you need
to download a sample /etc/passwd file, you can get it from http://mng.bz/
2XXg. Note that this sample file contains comment lines, meaning that you’ll
need to remove them when creating your dict.

 Write a function that takes a directory name (i.e., a string) as an argument. The
function should return a dict in which the keys are the names of files in that
directory, and the values are the file sizes. You can use os.listdir or glob
.glob to get the files, but because only regular files have sizes, you’ll want to fil-
ter the results using methods from os.path. To determine the file size, you can
use os.stat or (if you prefer) just check the length of the string resulting from
reading the file.

EXERCISE 34 ■ (Almost) supervocalic words
Part of the beauty of Python’s basic data structures is that they can be used to solve a
wide variety of problems. But it can sometimes be a challenge, especially at first, to
decide which of the data structures is appropriate, and which of their methods will
help you to solve problems most easily. Often, it’s a combination of techniques that
will provide the greatest help.

 In this exercise, I want you to write a get_sv function that returns a set of all
“supervocalic” words in the dict. If you’ve never heard the term supervocalic before,
you’re not alone: I only learned about such words several years ago. Simply put, such
words contain all five vowels in English (a, e, i, o, and u), each of them appearing
once and in alphabetical order.

 For the purposes of this exercise, I’ll loosen the definition, accepting any word that
has all five vowels, in any order and any number of times. Your function should find all
of the words that match this definition (i.e., contain a, e, i, o, and u) and return a set
containing them.

 Your function should take a single argument: the name of a text file containing
one word per line, as in a Unix/Linux dict. If you don’t have such a “words” file, you
can download one from here: http://mng.bz/D2Rw.

http://mng.bz/D2Rw
http://mng.bz/2XXg
http://mng.bz/2XXg
http://mng.bz/2XXg

136 CHAPTER 7 Functional programming with comprehensions
Working it out

Before we can create a set of supervocalic words, or read from a file, we need to find a
way to determine if a word is supervocalic. (Again, this isn’t the precise, official defini-
tion.) One way would be to use in five times, once for each vowel. But this seems a bit
extreme and inefficient.

 What we can instead do is create a set from our word. After all, a string is a
sequence, and we can always create a set from any sequence with the set built in.

 Fine, but how does that help us? If we already have a set of vowels, we can check to
see if they’re all in the word with the < operator. Normally, < checks to see if one data
point is less than another. But in the case of sets, it returns True if the item on the left
is a subset of the item on the right.

 This means that, given the word “superlogical,” I can do the following:

vowels = {'a', 'e', 'i', 'o', 'u'}
word = 'superlogical'

if vowels < set(word):
print('Yes, it is supervocalic!')

else:
print('Nope, just a regular word')

This is good for one word. But how can we do it for many words in a file? The answer
could be a list comprehension. After all, we can think of our file as an iterator, one
that returns strings. If the words file contains one word per line, then iterating over
the lines of the file really means iterating over the different lines. If a set of the vowels
is a set based on the current word, then we’ll consider it to be supervocalic and will
include the current word in the output list.

 But we don’t want a list, we want a set! Fortunately, the difference between creating
a list comprehension and a set comprehension is a pair of brackets. We use square
brackets ([]) for a list comprehension and curly braces ({}) for a set comprehension.
A comprehension with curly braces and a colon is a dict comprehension; without the
colon, it’s a set comprehension.

 To summarize

 We iterate over the lines of the file.
 We turn each word into a set and check that the vowels are a subset of our

word’s letters.
 If the word passes this test, we include it (the word) in the output.
 The output is all put into a set, thanks to a set comprehension.

Using sets as the basis for textual comparisons might not seem obvious, at least at first.
But it’s good to learn to think in these ways, taking advantage of Python’s data struc-
tures in ways you never considered before.

137EXERCISE 35A ■ Gematria, part 1
Solution

def get_sv(filename):
vowels = {'a', 'e', 'i', 'o', 'u'}

return {word.strip()
for word in open(filename)
if vowels < set(word.lower())}

You can work through a version of this code in the Python Tutor at http://mng.bz/
lG18. Note that because the Python Tutor doesn’t support working with external files,
I used an instance of StringIO to simulate a file.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Set comprehensions are great in a variety of circumstances, including when you have
inputs and you want to crunch them down to only have the distinct (unique) elements.
Here are some additional ways for you to use and practice your set-comprehension
chops:

 In the /etc/passwd file you used earlier, what different shells (i.e., command
interpreters, named in the final field on each line) are assigned to users? Use a
set comprehension to gather them.

 Given a text file, what are the lengths of the different words? Return a set of dif-
ferent word lengths in the file.

 Create a list whose elements are strings—the names of people in your family.
Now use a set comprehension (and, better yet, a nested set comprehension) to
find which letters are used in your family members’ names.

EXERCISE 35A ■ Gematria, part 1
In this exercise, we’re going to again try something that sits at the intersection of
strings and comprehensions. This time, it’s dict comprehensions.

 When you were little, you might have created or used a “secret” code in which a
was 1, b was 2, c was 3, and so forth, until z (which was 26). This type of code happens
to be quite ancient and was used by a number of different groups more than 2,000
years ago. “Gematria,” (http://mng.bz/B2R8) as it is known in Hebrew, is the way in
which biblical verses have long been numbered. And of course, it’s not even worth
describing it as a secret code, despite what you might have thought while little.

Creates a set of
the vowels

Returns the word, without any
whitespace on either side

Iterates through
each line in
“filename”Does this word contain

all of the vowels?

http://mng.bz/lG18
http://mng.bz/lG18
http://mng.bz/lG18
http://mng.bz/B2R8
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

138 CHAPTER 7 Functional programming with comprehensions
 This exercise, the result of which you’ll use in the next one, asks that you create a
dict whose keys are the (lowercase) letters of the English alphabet, and whose values
are the numbers ranging from 1 to 26. And yes, you could simply type {'a':1, 'b':2,
'c':3} and so forth, but I’d like you to do this with a dict comprehension.

Working it out

The solution uses a number of different aspects of Python, combining them to create
a dict with a minimum of code.

 First, we want to create a dict, and thus turn to a dict comprehension. Our keys are
going to be the lowercase letters of the English alphabet, and the values are going to
be the numbers from 1 to 26.

 We could create the string of lowercase letters. But, rather than doing that our-
selves, we can rely on the string module, and its string.ascii_lowercase attribute,
which comes in handy in such situations.

 But how can we number the letters? We can use the enumerate built-in iterator,
which will number our characters one at a time. We can then catch the iterated tuples
via unpacking, grabbing the index and character separately:

{char:index
for index, char in enumerate(string.ascii_lowercase)}

The only problem with doing this is that enumerate starts counting at 0, and we want
to start counting at 1. We could, of course, just add 1 to the value of index. However,
we can do even better than that by asking enumerate to start counting at 1, and we do
so by passing 1 to it as the second argument:

{char:index
for index, char in enumerate(string.ascii_lowercase, 1)}

And, sure enough, this produces the dict that we want. We’ll use it in the next exercise.

Solution

import string

def gematria_dict():
return {char: index

for index, char
in enumerate(string.ascii_lowercase,

1)}

print(gematria_dict())

You can work through a version of this code in the Python Tutor at http://mng.bz/
WPx4.

Returns the key-value pair,
with the character and an
integer

Iterates over lowercase
letters with enumerate

http://mng.bz/WPx4
http://mng.bz/WPx4
http://mng.bz/WPx4

139EXERCISE 35B ■ Gematria, part 2
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Dicts are also known as key-value pairs, for the simple reason that they contain keys
and values—and because associations between two different types of data are extremely
common in programming contexts. Often, if you can get your data into a dict, it
becomes easier to work with and manipulate. For that reason, it’s important to know
how to get information into a dict from a variety of different formats and sources.
Here are some additional exercises to practice doing so:

 Many programs’ functionality is modified via configuration files, which are often
set using name-value pairs. That is, each line of the file contains text in the form
of name=value, where the = sign separates the name from the value. I’ve pre-
pared one such sample config file at http://mng.bz/rryD. Download this file,
and then use a dict comprehension to read its contents from disk, turning it into
a dict describing a user’s preferences. Note that all of the values will be strings.

 Create a dict based on the config file, as in the previous exercise, but this time,
all of the values should be integers. This means that you’ll need to filter out
(and ignore) those values that can’t be turned into integers.

 It’s sometimes useful to transform data from one format into another. Down-
load a JSON-formatted list of the 1,000 largest cities in the United States from
http://mng.bz/Vgd0. Using a dict comprehension, turn it into a dict in which
the keys are the city names, and the values are the populations of those cities.
Why are there only 925 key-value pairs in this dict? Now create a new dict, but
set each key to be a tuple containing the state and city. Does that ensure there
will be 1,000 key-value pairs?

EXERCISE 35B ■ Gematria, part 2
In the previous exercise, you created a dict that allows you to get the numeric value
from any lowercase letter. As you can imagine, we can use this dict not only to find the
numeric value for a single letter, but to sum the values from the letters in a word, thus
getting the word’s “value.” One of the games that Jewish mystics enjoy playing
(although they would probably be horrified to hear me describe it as a game) is to
find words with the same gematria value. If two words have the same gematria value,
then they’re linked in some way.

 In this exercise, you’ll write two functions:

 gematria_for, which takes a single word (string) as an argument and returns
the gematria score for that word

http://mng.bz/rryD
http://mng.bz/Vgd0
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

140 CHAPTER 7 Functional programming with comprehensions
 gematria_equal_words, which takes a single word and returns a list of those
dict words whose gematria scores match the current word’s score.

For example, if the function is called with the word cat, with a gematria value of 24 (3 +
1 + 20), then the function will return a list of strings, all of whose gematria values are
also 24. (This will be a long list!) Any nonlowercase characters in the user’s input should
count 0 toward our final score for the word. Your source for the dict words will be the
Unix file you used earlier in this chapter, which you can load into a list comprehension.

Working it out

This solution combines a large number of techniques that we’ve discussed so far in
this book, and that you’re likely to use in your Python programming work. (However,
I do hope that you’re not doing too many gematria calculations.)

 First, how do we calculate the gematria score for a word, given our gematria dict?
We want to iterate through each letter in a word, grabbing the score from the dict.
And if the letter isn’t in the dict, we’ll give it a value of 0.

 The standard way to do this would be with a for loop, using dict.get:

total = 0
for one_letter in word:

total += gematria.get(one_letter, 0)

And there’s nothing wrong with this, per se. But comprehensions are usually your best
bet when you’re starting with one iterable and trying to produce another iterable.
And in this case, we can iterate over the letters in our word in a list comprehension,
invoking sum on the list of integers that will result:

def gematria_for(word):
return sum(gematria.get(one_char,0)

for one_char in word)

Once we can calculate the gematria for one word, we need to find all of the dict words
that are equivalent to it. We can do that, once again, with a list comprehension—this
time, using the if clause to filter out those words whose gematria isn’t equal:

def gematria_equal_words(word):
our_score = gematria_for(input_word.lower())
return [one_word.strip()

for one_word in open('/usr/share/dict/words')
if gematria_for(one_word.lower()) == our_score]

As you can see, we’re forcing the words to be in lowercase. But we’re not modifying or
otherwise transforming the word on the first line of our comprehension. Rather,
we’re just filtering.

 Meanwhile, we’re iterating over each of the words in the dict file. Each word in
that file ends with a newline, which doesn’t affect our gematria score but isn’t some-
thing we want to return to the user in our list comprehension.

141EXERCISE 35B ■ Gematria, part 2
 Finally, this exercise demonstrates that when you’re using a comprehension, and
your output expression is a complex one, it’s often a good idea to create a separate
function that you can repeatedly call.

Solution

import string

def gematria_dict():
return {char: index

for index, char
in enumerate(string.ascii_lowercase,

1)}

GEMATRIA = gematria_dict()

def gematria_for(word):
return sum(GEMATRIA.get(one_char, 0)

for one_char in word)

def gematria_equal_words(input_word):
our_score = gematria_for(input_word.lower())
return [one_word.strip()

for one_word in
open('/usr/share/dict/words')

if gematria_for(one_word.lower()) ==
our_score]

Note: there is no Python Tutor link for this exercise, because it uses an external file.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Once you have data in a dict, you can often use a comprehension to transform it in
various ways. Here are some additional exercises you can use to sharpen your skills
with dicts and dict comprehensions:

 Create a dict whose keys are city names, and whose values are temperatures in
Fahrenheit. Now use a dict comprehension to transform this dict into a new
one, keeping the old keys but turning the values into the temperature in
degrees Celsius.

 Create a list of tuples in which each tuple contains three elements: (1) the
author’s first and last names, (2) the book’s title, and (3) the book’s price in
U.S. dollars. Use a dict comprehension to turn this into a dict whose keys are

Gets the value for the current
character, or 0 if the character
isn’t in the “GEMATRIA” dict

Iterates over the
characters in “word”

Gets the total score
for the input word

Removes leading and
trailing whitespace
from “one_word”Iterates over

each word in the
English-language

dict
Only adds the current word to
our returned list if its gematria
score matches ours

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

142 CHAPTER 7 Functional programming with comprehensions
the book’s titles, with the values being another (sub-) dict, with keys for (a) the
author’s first name, (b) the author’s last name, and (c) the book’s price in
U.S. dollars.

 Create a dict whose keys are currency names and whose values are the price of
that currency in U.S. dollars. Write a function that asks the user what currency
they use, then returns the dict from the previous exercise as before, but with its
prices converted into the requested currency.

Summary
Comprehensions are, without a doubt, one of the most difficult topics for people to
learn when they start using Python. The syntax is a bit weird, and it’s not even obvious
where and when to use comprehensions. In this chapter, you saw many examples of
how and when to use comprehensions, which will hopefully help you not only to use
them, but also to see opportunities to do so.

Modules and packages
Functional programming, which we explored in the previous chapter, is one of the
knottiest topics you’ll encounter in the programming world. I’m happy to tell you
that this chapter, about Python’s modules, will provide a stark contrast, and will be
one of the easiest in this book. Modules are important, but they’re also very
straightforward to create and use. So if you find yourself reading this chapter and
thinking, “Hey, that’s pretty obvious,” well, that’s just fine.

 What are modules in Python, and how do they help us? I’ve already mentioned
the acronym DRY, short for “Don’t repeat yourself,” several times in this book. As
programmers, we aim to “DRY up” our code by taking identical sections of code
and using them multiple times. Doing so makes it easier to understand, manage,
and maintain our code. We can also more easily test such code.

 When we have repeated code in a single program, we can DRY it up by writing a
function and then calling that function repeatedly. But what if we have repeated
code that’s used across multiple programs? We can then create a library—or, as it’s
known in the world of Python, a module.

 Modules actually accomplish two things in Python. First, they make it possible
for us to reuse code across programs, helping us to improve the reusability and
maintainability of our code. In this way, we can define functions and classes once,
stick them into a module, and reuse them any number of times. This not only
reduces the amount of work we need to do when implementing a new system, but
also reduces our cognitive load, since we don’t have to worry about the implemen-
tation details.

 For example, let’s say that your company has come up with a special pricing for-
mula that combines the weather with stock-market indexes. You’ll want to use that
143

144 CHAPTER 8 Modules and packages
pricing formula in many parts of your code. Rather than repeating the code, you
could define the function once, put it into a module, and then use that module every-
where in your program that you want to calculate and display prices.

 You can define any Python object—from simple data structures to functions to
classes—in a module. The main question is whether you want it to be shared across
multiple programs, now or in the future.

 Second, modules are Python’s way of creating namespaces. If two people are col-
laborating on a software project, you don’t want to have to worry about collisions
between their chosen variable and function names, right? Each file—that is, module—
has its own namespace, ensuring that there can’t be conflicts between them.

 Python comes with a large number of modules, and even the smallest nontrivial
Python program will use import (http://mng.bz/xWme), to use one or more of them.
In addition to the standard library, as it’s known, Python programmers can take advantage
of a large number of modules available on the Python Package Index (https://pypi.org).
In this chapter, we’ll explore the use and creation of modules, including packages.

HINT If you visit PyPI at https://pypi.org, you’ll discover that the number of
community-contributed, third-party packages is astonishingly large. Just as of
this writing, there are more than 200,000 packages on PyPI, many of which
are buggy or unmaintained. How can you know which of these packages is
worthwhile and which isn’t? The site “Awesome Python,” at http://mng.bz/
AA0K, is an attempt to remedy this situation, with edited lists of known stable,
maintained packages on a variety of topics. This is a good first place to check
for packages before going to PyPI. Although it doesn’t guarantee that the
package you use will be excellent, it certainly improves the chances of this
being the case.

Table 8.1 What you need to know

Concept What is it? Example To learn more

import Statement for importing
modules

import os http://mng.bz/xWme

from X import Y Imports module X, but only
defines Y as a global variable

from os import
sep

http://mng.bz/xWme

importlib.reload Re-imports an already loaded
module, typically to update
definitions during development

importlib.reload
(mymod)

http://mng.bz/Z2PO

pip Command-line program for
installing packages from PyPI

pip install
packagename

https://pypi.org/

Decimal Class that accurately handles
floating-point numbers

from decimal
import Decimal

http://mng.bz/RAX0

https://pypi.org
http://mng.bz/AA0K
http://mng.bz/AA0K
http://mng.bz/AA0K
http://mng.bz/xWme
http://mng.bz/xWme
http://mng.bz/Z2PO
https://pypi.org/
http://mng.bz/RAX0
http://mng.bz/xWme
https://pypi.org

145
Importing modules
One of the catchphrases in the Python world is “batteries included.” This refers to the
many TV commercials I saw as a child that would spend their first 29.5 seconds enticing
us to buy their exciting, fun-looking, beautiful toys … only to spend the final half second
saying, “batteries not included”—meaning that it wasn’t enough to buy the product to
enjoy it, we had to buy batteries as well.

“Batteries included” refers to the fact that when you download and install Python, you
have everything you’re going to need to get your work done. This isn’t quite as true as
used to be the case, and PyPI (the Python Package Index, described separately in this
chapter) provides us with a huge collection of third-party Python modules that we can
use to improve our products. But the fact remains that the standard library, meaning the
stuff that comes with Python when we install it, includes a huge number of modules that
we can use in our programs.

The most commonly used things in the standard library, such as lists and dicts, are built
into the language, thanks to a namespace known as builtins. You don’t need to worry
about importing things in the builtins module, thanks to the LEGB rule that I discussed
back in chapter 6. But anything else in the standard library must be loaded into memory
before it can be used.

We load such a module using the import statement. The simplest version of import
looks like

import MODULENAME

For example, if I want to use the os module, then I’ll write

import os

Notice a couple of things about this statement:

First, it’s not a function; you don’t say import(os), but rather import os.

Second, we don’t import a filename. Rather, we indicate the variable that we want to
define, rather than the file that should be loaded from the disk. So don’t try to import
"os" or even import "os.py". Just as def defines a new variable that references a
function, so too import defines a new variable that references a module.

When you import os, Python tries to find a file that matches the variable name you’re
defining. It’ll typically look for os.py and os.pyc, where the former is the original source
code and the latter is the byte-compiled version. (Python uses the filesystem’s time-
stamp to figure out which one is newer and creates a new byte-compiled version as nec-
essary. So don’t worry about compiling!)

Python looks for matching files in a number of directories, visible to you in sys.path.
This is a list of strings representing directories; Python will iterate over each directory
name until it finds a matching module name. If more than one directory contains a mod-
ule with the same name, then the first one Python encounters is loaded, and any subse-
quent modules will be completely ignored. This can often lead to confusion and conflicts,
in my experience, so try to choose unusual and distinct names for your modules.

146 CHAPTER 8 Modules and packages
(continued)

Now, import has a number of variations that are useful to know, and that you’ll probably
see in existing code—as well as use in your own code. That said, the ultimate goal is the
same: load a module, and define one or more module-related names in your name-
space.

If you’re happy loading a module and using its name as a variable, then import
MODULENAME is a great way to go. But sometimes, that name is too long. For that reason,
you’ll want to give the module name an alias. You can do that with

import mymod as mm

When you use as, the name mymod will not be defined. However, the name mm will be
defined. This is silly and unnecessary if your module name is going to be short. But if the
name is long, or you’re going to be referring to it a lot, then you might well want to give it
a shorter alias. A classic example is NumPy (https://numpy.org/), which sits at the core
of all of Python’s scientific and numeric computing systems, including data science and
machine learning. That module is typically imported with an alias of np:

import numpy as np

Once you’ve imported a module, all of the names that were defined in the file’s global
scope are available as attributes, via the module object. For example, the os module
defines sep, which indicates what string separates elements of a directory path. You can
access that value as os.sep. But if you’re going to use it a lot, then it’s a bit of a pain to
constantly say os.sep. Wouldn’t it be nice to just call it sep? You can’t do that, of course,
because the name sep would be a variable, whereas os.sep is an attribute.

However, you can bridge the gap and get the attribute loaded by using the following
syntax:

from os import sep

Note that this won’t define the os variable, but it will define the sep variable. You can
use from .. import on more than one variable too:

from os import sep, path

Now, both sep and path will be defined as variables in your global scope.

Worried about one of these imported attributes clashing with an existing variable,
method, or module name? Then you can use from .. import .. as:

from os import sep as s

There’s a final version that I often see, and that I generally advise people not to use. It
looks like this:

from os import *

https://numpy.org/

147EXERCISE 36 ■ Sales tax
EXERCISE 36 ■ Sales tax
Modules allow us to concentrate on higher-level thinking and avoid digging into the
implementation details of complex functionality. We can thus implement a function
once, stick it into a module, and use it many times to implement algorithms that we
don’t want to think about on a day-to-day basis. If you had to actually understand and
wade through the calculations involved in internet security, for example, just to create
a web application, you would never finish.

 In this exercise, you’ll implement a somewhat complex (and whimsical) function,
in a module, to implement tax policy in the Republic of Freedonia. The idea is that
the tax system is so complex that the government will supply businesses with a Python
module implementing the calculations for them.

 Sales tax on purchases in Freedonia depends on where the purchase was made, as
well as the time of the purchase. Freedonia has four provinces, each of which charges
its own percentage of tax:

 Chico: 50%
 Groucho: 70%
 Harpo: 50%
 Zeppo: 40%

Yes, the taxes are quite high in Freedonia (so high, in fact, that they’re said to have a
Marxist government). However, these taxes rarely apply in full. That’s because the
amount of tax applied depends on the hour at which the purchase takes place. The
tax percentage is always multiplied by the hour at which the purchase was made. At
midnight (i.e., when the 24-hour clock is 0), there’s no sales tax. From 12 noon until
1 p.m., only 50% (12/24) of the tax applies. And from 11 p.m. until midnight, 95.8%
(i.e., 23/24) of the tax applies.

This will load the os module into memory, but (more importantly) will take all of the attri-
butes from os and define them as global variables in the current namespace. Given that
we generally want to avoid global variables unless necessary, I see it as a problem when
we allow the module to decide what variables should be defined.

NOTE Not all names from a module will be imported with import *. Names
starting with _ (underscore) will be ignored. Moreover, if the module defines a
list of strings named __all__, only names specified in the module will be
loaded with import *. However, from X import Y will always work, regardless
of whether __all__ is defined.

At the end of the day, import makes functions, classes, and data available to you in your
current namespace. Given the huge number of modules available, both in Python’s stan-
dard library and on PyPI, that puts a lot of potential power at your fingertips—and explains
why so many Python programs start with several lines of import statements.

148 CHAPTER 8 Modules and packages
 Your job is to implement that Python module, freedonia.py. It should provide a
function, calculate_tax, that takes three arguments: the amount of the purchase,
the province in which the purchase took place, and the hour (an integer, from 0–24)
at which it happened. The calculate_tax function should return the final price, as
a float.

 Thus, if I were to invoke

calculate_tax(500, 'Harpo', 12)

a $500 purchase in Harpo province (with 50%) tax would normally be $750. However,
because the purchase was done at 12 noon, the tax is only half of its maximum, or
$125, for a total of $625. If the purchase were made at 9 p.m. (i.e, 21:00 on a 24-hour
clock), then the tax would be 87.5% of its full rate, or 43.75%, for a total price of
$718.75.

 Moreover, I want you to write this solution using two separate files. The calculate
_tax function, as well as any supporting data and functions, should reside in the file
freedonia.py, a Python module. The program that calls calculate_tax should be in
a file called use_freedonia.py, which then uses import to load the function.

Working it out

The freedonia module does precisely what a Python module should do. Namely, it
defines data structures and functions that provide functionality to one or more other
programs. By providing this layer of abstraction, it allows a programmer to focus on
what’s important to them, such as the implementation of an online store, without hav-
ing to worry about the nitty-gritty of particular details.

 While some countries have extremely simple systems for calculating sales tax,
others—such as the United States—have many overlapping jurisdictions, each of which
applies its own sales tax, often at different rates and on different types of goods. Thus,
while the Freedonia example is somewhat contrived, it’s not unusual to purchase or
use libraries to calculate taxes.

 Our module defines a dict (RATES), in which the keys are the provinces of Free-
donia, and the values are the taxation rates that should be applied there. Thus, we
can find out the rate of taxation in Groucho province with RATES['Groucho']. Or
we can ask the user to enter a province name in the province variable, and then get
RATES[province]. Either way, that will give us a floating-point number that we can use
to calculate the tax.

 A wrinkle in the calculation of Freedonian taxation is the fact that taxes get pro-
gressively higher as the day goes on. To make this calculation easier, I wrote a
time_percentage function, which simply takes the hour and returns it as a percentage
of 24 hours.

NOTE In Python 2, integer division always returns an integer, even when that
means throwing away the remainder. If you’re using Python 2, be sure to
divide the current hour not by 24 (an int) but by 24.0 (a float).

149EXERCISE 36 ■ Sales tax
Finally, the calculate_tax function takes three parameters—the amount of the
sale, the name of the province in which the sale took place, and the hour at which
the sale happened—and returns a floating-point number indicating the actual, cur-
rent tax rate.

Here’s a program that uses our freedonia module:

from freedonia import calculate_tax

tax_at_12noon = calculate_tax(100, 'Harpo', 12)
tax_at_9pm = calculate_tax(100, 'Harpo', 21)

print(f'You owe a total of: {tax_at_12noon}')
print(f'You owe a total of: {tax_at_9pm}')

The Decimal version
If you’re actually doing calculations involving serious money, you should almost certainly
not be using floats. Rather, you should use integers or the Decimal class, both of which
are more accurate. (See chapter 1 for some more information on the inaccuracy of
floats.) I wanted this exercise to concentrate on the creation of a module, and not the
use of the Decimal class, so I didn’t require it.

Here’s how my solution would look using Decimal:

from decimal import Decimal

rates = {
'Chico': Decimal('0.5'),
'Groucho': Decimal('0.7'),
'Harpo': Decimal('0.5'),
'Zeppo': Decimal('0.4')

}

def time_percentage(hour):
return hour / Decimal('24.0')

def calculate_tax(amount, state, hour):
return float(amount + (amount * rates[state] * time_percentage(hour)))

Notice that this code uses Decimal on strings, rather than floats, to ensure maximum
accuracy. We then return a floating-point number at the last possible moment. Also note
that any Decimal value multiplied or divided by a number remains a Decimal, so we
only need to make a conversion at the end.

Error checking the Pythonic way
Since a module will be used by many other programs, it’s important for it to not only be
accurate, but also have decent error checking. In our particular case, for example, we
would want to check that the hour is between 0 and 24.

150 CHAPTER 8 Modules and packages
Solution

RATES = {
'Chico': 0.5,
'Groucho': 0.7,
'Harpo': 0.5,
'Zeppo': 0.4

}

def time_percentage(hour):
return hour / 24

def calculate_tax(amount, state, hour):
return amount + (amount * RATES[state] * time_percentage(hour))

print(calculate_tax(500, 'Harpo', 12))

You can work through a version of this code in the Python Tutor at http://mng.bz/
oP1j.

 Note that the Python Tutor site doesn’t support modules, so this solution was
placed in a single file, without the use of import.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

(continued)

Right now, someone who passes an invalid hour to our function will still get an answer,
albeit a nonsensical one. A better solution would be to have the function raise an excep-
tion if the input is invalid. And while we could raise a built-in Python exception (e.g.,
ValueError), it’s generally a better idea to create your own exception class and raise it;
for example

class HourTooLowError(Exception): pass
class HourTooHighError(Exception): pass

def calculate_tax(amount, state, hour):
if hour < 0:

raise HourTooLowError(f'Hour of {hour} is < 0')

if hour >= 24:
raise HourTooHighError(f'Hour of {hour} is >= 24')

return amount + (amount * rates[state] * time_percentage(hour))

Adding such exceptions to your code is considered very Pythonic and helps to ensure
that anyone using your module will not accidentally get a bad result.

This means we’ll get 0%
at midnight and just
under 100% at 23:59.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
http://mng.bz/oP1j
http://mng.bz/oP1j
http://mng.bz/oP1j

151EXERCISE 36 ■ Sales tax
Beyond the exercise

Now that you’ve written a simple function that masks more complex functionality,
here are some other functions you can write as modules:

 Income tax in many countries is not a flat percentage, but rather the combina-
tion of different “brackets.” So a country might not tax you on your first $1,000
of income, and then 10% on the next $10,000, and then 20% on the next
$10,000, and then 50% on anything above that. Write a function that takes
someone’s income and returns the amount of tax they will have to pay, totaling
the percentages from various brackets.

 Write a module providing a function that, given a string, returns a dict indicating
how many characters provide a True result to each of the following functions:
str.isdigit, str.isalpha, and str.isspace. The keys should be isdigit,
isalpha, and isspace.

 The dict.fromkeys method (http://mng.bz/1zrV) makes it easy to create a
new dict. For example, dict.fromkeys('abc') will create the dict {'a':None,
'b':None, 'c':None}. You can also pass a value that will be assigned to each
key, as in dict.fromkeys('abc', 5), resulting in the dict {'a':5, 'b':5,
'c':5}. Implement a function that does the same thing as dict.keys but whose
second argument is a function. The value associated with the key will be the
result of invoking f(key).

Loading and reloading modules
When you use import to load a module, what happens? For example, if you say

import mymod

then Python looks for mymod.py in a number of directories, defined in a list of strings
called sys.path. If Python encounters a file in one of those directories, it loads the file
and stops searching in any other directories.

NOTE There are a number of ways to modify sys.path, including by setting
the environment variable PYTHONPATH and creating files with a .pth suffix in
your Python installation’s site-packages directory. For more information on
setting sys.path, see the Python documentation, or read this helpful article:
http://mng.bz/PAP9.

This means import normally does two distinct things: it loads the module and defines a
new variable. But what happens if your program loads two modules, each of which in turn
loads modules? For example, let’s say that your program imports both pandas and
scipy, both of which load the numpy module. In such a case, Python will load the module
the first time, but only define the variable the second time. import only loads a mod-
ule once, but it will always define the variable that you’ve asked it to create.

http://mng.bz/PAP9
http://mng.bz/1zrV

152 CHAPTER 8 Modules and packages
EXERCISE 37 ■ Menu
If you find yourself writing the same function multiple times across different pro-
grams or projects, you almost certainly want to turn that function into a module. In
this exercise, you’re going to write a function that’s generic enough to be used in a
wide variety of programs.

 Specifically, write a new module called “menu” (in the file menu.py). The module
should define a function, also called menu. The function takes any number of key-
value pairs as arguments. Each value should be a callable, a fancy name for a function
or class in Python.

 When the function is invoked, the user is asked to enter some input. If the user
enters a string that matches one of the keyword arguments, the function associated
with that keyword will be invoked, and its return value will be returned to menu’s caller.
If the user enters a string that’s not one of the keyword arguments, they’ll be given an
error message and asked to try again.

 The idea is that you’ll be able to define several functions, and then indicate what
user input will trigger each function:

from menu import menu

def func_a():
return "A"

def func_b():
return "B"

return_value = menu(a=func_a, b=func_b)
print(f'Result is {return_value}')

(continued)

This is done via a dict defined in sys called sys.modules. Its keys are the names of
modules that have been loaded, and its values are the actual module objects. Thus,
when we say import mymod, Python first checks to see if mymod is in sys.modules. If
so, then it doesn’t search for or load the module. Rather, it just defines the name.

This is normally a great thing, in that there’s no reason to reload a module once the pro-
gram has started running. But when you’re debugging a module within an interactive
Python session, you want to be able to reload it repeatedly, preferably without exiting
from the current Python session.

In such cases, you can use the reload function defined in the importlib module. It
takes a module object as an argument, so the module must already have been defined
and imported. And it’s the sort of thing that you’ll likely use all the time in development,
and almost never in actual production.

NOTE In previous versions of Python, reload was a built-in function. As of
Python 3, it’s in the importlib module, which you must import to use it.

153EXERCISE 37 ■ Menu
In this example, return_value will contain A if the user chooses a, or B if the user
chooses b. If the user enters any other string, they’re told to try again. And then we’ll
print the user’s choice, just to confirm things.

Working it out

The solution presented here is another example of a dispatch table, which we saw ear-
lier in the book, in the “prefix calculator” exercise. This time, we’re using the
**kwargs parameter to create that dispatch table dynamically, rather than with a hard-
coded dict.

 In this case, whoever invokes the menu function will provide the keywords—which
function as menu options—and the functions that will be invoked. Note that these
functions all take zero arguments, although you can imagine a scenario in which the
user could provide more inputs.

 We use ** here, which we previously saw in the XML-creation exercise. We could
have instead received a dict as a single argument, but this seems like an easier way for
us to create the dict, using Python’s built-in API for turning **kwargs into a dict.

 While I didn’t ask you to do so, my solution presents the user with a list of the valid
menu items. I do this by invoking str.join on the dict, which has the effect of creat-
ing a string from the keys, with / characters between them. I also decided to use
sorted to present them in alphabetical order.

 With this in place, we can now ask the user for input from any zero-argument
function.

Why do we check __name__?
One of the most famous lines in all of Python reads as follows:

if __name__ == '__main__':

What does this line do? How does it help? This line is the result of a couple different
things happening when we load a module:

 First, when a module is loaded, its code is executed from the start of the file until
the end. You’re not just defining things; any code in the file is actually executed.
That means you can (in theory) invoke print or have for loops. In this case,
we’re using if to make some code execute conditionally when it’s loaded.

 Second, the __name__ variable is either defined to be __main__, meaning that
things are currently running in the initial, default, and top-level namespace pro-
vided by Python, or it’s defined to be the name of the current module. The if
statement here is thus checking to see if the module was run directly, or if it was
imported by another piece of Python code.

In other words, the line of code says, “Only execute the below code (i.e., inside of the if
statement) if this is the top-level program being executed. Ignore the stuff in the if when
we import this module.”

154 CHAPTER 8 Modules and packages
Solution

def menu(**options):
while True:

option_string = '/'.join(sorted(options))
choice = input(

f'Enter an option ({option_string}): ')
if choice in options:

return options[choice]()

print('Not a valid option')

def func_a():
return "A"

def func_b():
return "B"

return_value = menu(a=func_a, b=func_b)
print(f'Result is {return_value}')

You can work through a version of this code in the Python Tutor at http://mng.bz/
nPW8.

 Note that the Python Tutor site doesn’t support modules, so this solution was
placed in a single file, without the use of import.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

(continued)

You can use this code in a few different ways:

 Many modules run their own tests when invoked directly, rather than imported.
 Some modules can be run interactively, providing user-facing functionality and

an interface. This code allows that to happen, without interfering with any func-
tion definitions.

 In some odd cases, such as the multiprocessing module in Windows, the
code allows you to differentiate between versions of the program that are being
loaded and executed in separate processes.

While you can theoretically have as many if __name__ == '__main__' lines in your
code as you want, it’s typical for this line to appear only once, at the end of your mod-
ule file.

You’ll undoubtedly encounter this code, and might even have written it yourself in the
past. And now you know how it works!

“options” is a dict
populated by the
keyword arguments.

An infinite loop, which
we’ll break out of when
the user gives valid input

Creates a string of sorted
options, separated by “/”

Asks the
user to

enter an
option

Has the user entered a
key from “**options”?

If so, then return the
result of executing the
function.

Otherwise, scold the
user and have them

try again.

http://mng.bz/nPW8
http://mng.bz/nPW8
http://mng.bz/nPW8
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

155EXERCISE 37 ■ Menu
Beyond the exercise

Now that you’ve written and used two different Python modules, let’s go beyond that
and experiment with some more advanced techniques and problems:

 Write a version of menu.py that can be imported (as in the exercise), but that
when you invoke the file as a stand-alone program from the command line,
tests the function. If you aren’t familiar with testing software such as pytest,
you can just run the program and check the output.

 Turn menu.py into a Python package and upload it to PyPI. (I suggest using
your name or initials, followed by “menu,” to avoid name collisions.) See the
sidebar on the difference between modules and packages, and how you can par-
ticipate in the PyPI ecosystem with your own open-source projects.

 Define a module stuff with three variables—a, b, and c—and two functions—
foo and bar. Define __all__ such that from stuff import * will cause a, c, and
bar to be imported, but not b and foo.

Modules vs. packages
This chapter is all about modules—how to create, import, and use them. But you might
have noticed that we often use another term, package, to discuss Python code. What’s
the difference between a module and a package?

A module is a single file, with a “.py” suffix. We can load the module using import, as
we’ve seen. But what if your project is large enough that it would make more sense to
have several separate files? How can you distribute those files together?

The answer is a package, which basically means a directory containing one or more
Python modules. For example, assume you have the modules first.py, second.py,
and third.py, and want to keep them together. You can put them all into a directory,
mypackage. Assuming that directory is in sys.path, you can then say

from mypackage import first

Python will go into the mypackage directory, look for first.py, and import it. You can
then access all of its attributes via first.x, first.y, and so forth.

Alternatively, you could say

import mypackage.first

In this case, Python will still load the module first, but it’ll be available in your program
via the long name, mypackage.first. You can then use mypackage.first.x and
mypackage.first.y.

Alternatively, you could say

import mypackage

156 CHAPTER 8 Modules and packages
(continued)

But this will only be useful if, in the mypackage directory, you have a file named
__init__.py. In such a case, importing mypackage effectively means that __init__.py
is loaded, and thus executed. You can, inside of that file, import one or more of the mod-
ules within the package.

What about if you want to distribute your package to others? Then you’ll have to create
a package. If this sounds strange, that you need a package to distribute your package,
that’s because the same term, package, is used for two different concepts. A PyPI pack-
age, or distribution package, is a wrapper around a Python package containing informa-
tion about the author, compatible versions, and licensing, as well as automated tests,
dependencies, and installation instructions.

Even more confusing than the use of “package” to describe two different things is the
fact that both the distribution package and the Python package are directories, and that
they should have the same name. If your distribution package is called mypackage, you’ll
have a directory called mypackage. Inside that directory, among other things, will be a
subdirectory called mypackage, which is where the Python package goes.

Creating a distribution package means creating a file called setup.py (documented
here: http://mng.bz/wB9q), and I must admit that for many years, I found this to be a
real chore. It turns out that I wasn’t alone, and a number of Python developers have
come up with ways to create distribution packages with relative ease. One that I’ve been
using for a while is called “Poetry” (http://mng.bz/2Xzd), and makes the entire process
easy and straightforward.

If you want to distribute packages via PyPI, you’ll need to register for a username and
password at https://pypi.org/. Once you have that, here are the minimal steps you’ll
need to take an existing package and upload it to PyPI with Poetry, using Unix shell
commands:

$ poetry new mypackage
$ cd mypackage
$ cp -R ~/mypackage-code/* mypackage
$ poetry build
$ poetry publish

Note that you can’t upload the specific name mypackage to PyPI. I suggest prefacing
your package name with your username or initials, unless you intend to publish it for pub-
lic consumption.

You could add plenty of other steps to the ones I’ve listed—for example, you can (and
should) edit the pyproject.toml configuration file, in which you describe your package’s
version, license, and dependencies. But creating a distribution package is no longer
difficult. Rather, the hard part will be deciding what code you want to share with the
community.

Creates a new package
skeleton called mypackage Moves into the top-

level directory

Copies the contents of the
Python package into its
subdirectory

Creates the
wheelfile and
tar.gz versions of
your package in
the dist directory

Publishes the package to PyPI; to
confirm, you enter your username

and password when prompted

http://mng.bz/wB9q
http://mng.bz/2Xzd
https://pypi.org/

157EXERCISE 37 ■ Menu
Summary
Modules and packages are easy to write and use, and help us to DRY up our code—
making it shorter and more easily maintainable. This benefit is even greater when
you take advantage of the many modules and packages in the Python standard library,
and on PyPI. It’s thus no wonder that so many Python programs begin with several
lines of import statements. As you become more fluent in Python, your familiarity
with third-party modules will grow, allowing you to take even greater advantage of
them in your code.

Objects
Object-oriented programming has become a mainstream, or even the mainstream,
way of approaching programming. The idea is a simple one: instead of defining
our functions in one part of the code, and the data on which those functions oper-
ate in a separate part of the code, we define them together.

 Or, to put it in terms of language, in traditional, procedural programming, we
write a list of nouns (data) and a separate list of verbs (functions), leaving it up to
the programmer to figure out which goes with which. In object-oriented program-
ming, the verbs (functions) are defined along with the nouns (data), helping us to
know what goes with what.

 In the world of object-oriented programming, each noun is an object. We say that
each object has a type, or a class, to which it belongs. And the verbs (functions) we
can invoke on each object are known as methods.

 For an example of traditional, procedural programming versus object-oriented
programming, consider how we could calculate a student’s final grade, based on
the average of their test scores. In procedural programming, we’d make sure the
grades were in a list of integers and then write an average function that returned
the arithmetic mean:

def average(numbers):
return sum(numbers) / len(numbers)

scores = [85, 95, 98, 87, 80, 92]
print(f'The final score is {average(scores)}.')
158

159
This code works, and works reliably. But the caller is responsible for keeping track of
the numbers as a list … and for knowing that we have to call the average method …
and for combining them in the right way.

 In the object-oriented world, we would approach the problem by creating a new
data type, which we might call a ScoreList. We would then create a new instance of
ScoreList.

 Even if it’s the same data underneath, a ScoreList is more explicitly and specifi-
cally connected to our domain than a generic Python list. We could then invoke the
appropriate method on the ScoreList object:

class ScoreList():
def __init__(self, scores):

self.scores = scores

def average(self):
return sum(self.scores) / len(self.scores)

scores = ScoreList([85, 95, 98, 87, 80, 92])
print(f'The final score is {scores.average()}.')

As you can see, there’s no difference from the procedural method in what’s actually
being calculated, and even what technique we’re using to calculate it. But there’s an
organizational and semantic difference here, one that allows us to think in a differ-
ent way.

 We’re now thinking at a higher level of abstraction and can better reason about
our code. Defining our own types also allows us to use shorthand when describing
concepts. Consider the difference between telling someone that you bought a “book-
shelf” and describing “wooden boards held together with nails and screws, stored
upright and containing places for storing books.” The former is shorter, less ambigu-
ous, and more semantically powerful than the latter.

 Another advantage is that if we decide to calculate the average in a new way—for
example, some teachers might drop the lowest score—then we can keep the existing
interface while modifying the underlying implementation.

 So, what are the main reasons for using object-oriented techniques?

 We can organize our code into distinct objects, each of which handles a differ-
ent aspect of our code. This makes for easier planning and maintenance, as well
as allowing us to divide a project among multiple people.

 We can create hierarchies of classes, with each child in the hierarchy inheriting
functionality from its parents. This reduces the amount of code we need to
write and simultaneously reinforces the relationships among similar data types.
Given that many classes are slight modifications of other ones, this saves time
and coding.

 By creating data types that work the same way as Python’s built-in types, our code
feels like a natural extension to the language, rather than bolted on. Moreover,

160 CHAPTER 9 Objects
learning how to use a new class requires learning only a tiny bit of syntax, so you
can concentrate on the underlying ideas and functionality.

 While Python doesn’t hide code or make it private, you’re still likely to hear
about the difference between an object’s implementation and its interface. If
I’m using an object, then I care about its interface—that is, the methods that I
can call on it and what they do. How the object is implemented internally is not
a priority for me and doesn’t affect my day-to-day work. This way, I can concen-
trate on the coding I want to do, rather than the internals of the class I’m using,
taking advantage of the abstraction that I’ve created via the class.

Object-oriented programming isn’t a panacea; over the years, we’ve found that, as
with all other paradigms, it has both advantages and disadvantages. For example, it’s
easy to create monstrously large objects with huge numbers of methods, effectively
creating a procedural system disguised as an object-oriented one. It’s possible to abuse
inheritance, creating hierarchies that make no sense. And by breaking the system into
many small pieces, there’s the problem of testing and integrating those pieces, with so
many possible lines of communication.

 Nevertheless, the object paradigm has helped numerous programmers to modu-
larize their code, to focus on specific aspects of the program on which they’re work-
ing, and to exchange data with objects written by other people.

 In Python, we love to say that “everything is an object.” At its heart, this means that
the language is consistent; the types (such as str and dict) that come with the lan-
guage are defined as classes, with methods. Our objects work just like the built-in
objects, reducing the learning curve for both those implementing new classes and
those using them.

 Consider that when you learn a foreign language, you discover that nouns and
verbs have all sorts of rules. But then there are the inevitable inconsistencies and
exceptions to those rules. By having one consistent set of rules for all objects, Python
removes those frustrations for non-native speakers—giving us, for lack of a better
term, the Esperanto of programming languages. Once you’ve learned a rule, you can
apply it throughout the language.

NOTE One of the hallmarks of Python is its consistency. Once you learn a
rule, it applies to the entire language, with no exceptions. If you understand
variable lookup (LEGB, described in chapter 6) and attribute lookup (ICPO,
described later in this chapter), you’ll know the rules that Python applies all
of the time, to all objects, without exception—both those that you create and
those that come baked into the language.

At the same time, Python doesn’t force you to write everything in an object-oriented
style. Indeed, it’s common to combine paradigms in Python programs, using an amal-
gam of procedural, functional, and object-oriented styles. Which style you choose, and
where, is left up to you. But at the end of the day, even if you’re not writing in an
object-oriented style, you’re still using Python’s objects.

161EXERCISE 38 ■ Ice cream scoop
 If you’re going to code in Python, you should understand Python’s object sys-
tem—the ways objects are created, how classes are defined and interact with their
parents, and how we can influence the ways classes interact with the rest of the
world. Even if you write in a procedural style, you’ll still be using classes defined by
other people, and knowing how those classes work will make your coding easier and
more straightforward.

 This chapter contains exercises aimed at helping you to feel more comfortable
with Python’s objects. As you go through these exercises, you’ll create classes and
methods, create attributes at the object and class levels, and work with such concepts
as composition and inheritance. When you’re done, you’ll be prepared to create and
work with Python objects, and thus both write and maintain Python code.

NOTE The previous chapter, about modules, was short and simple. This
chapter is the opposite—long, with many important ideas that can take some
time to absorb. This chapter will take time to get through, but it’s worth the
effort. Understanding object-oriented programming won’t just help you in
writing your own classes; it’ll also help you to understand how Python itself is
built, and how the built-in types work.

EXERCISE 38 ■ Ice cream scoop
If you’re going to be programming with objects, then you’ll be creating classes—lots
of classes. Each class should represent one type of object and its behavior. You can
think of a class as a factory for creating objects of that type—so a Car class would cre-
ate cars, also known as “car objects” or “instances of Car.” Your beat-up sedan would be
a car object, as would a fancy new luxury SUV.

Table 9.1 What you need to know

Concept What is it? Example To learn more

class Keyword for creating Python
classes

class Foo http://mng.bz/1zAV

__init__ Method invoked automatically
when a new instance is created

def __init__(self): http://mng.bz/PAa9

__repr__ Method that returns a string
containing an object’s printed
representation

def __repr__(self): http://mng.bz/Jyv0

super built-in Returns a proxy object on which
methods can be invoked; typi-
cally used to invoke a method
on a parent class

super().__init__() http://mng.bz/wB0q

dataclasses
.dataclass

A decorator that simplifies the
definition of classes

@dataclass http://mng.bz/qMew

http://mng.bz/1zAV
http://mng.bz/PAa9
http://mng.bz/Jyv0
http://mng.bz/wB0q
http://mng.bz/qMew

162 CHAPTER 9 Objects
 In this exercise, you’ll define a class, Scoop, that represents a single scoop of ice
cream. Each scoop should have a single attribute, flavor, a string that you can initial-
ize when you create the instance of Scoop.

 Once your class is created, write a function (create_scoops) that creates three
instances of the Scoop class, each of which has a different flavor (figure 9.1). Put
these three instances into a list called scoops (figure 9.2). Finally, iterate over your
scoops list, printing the flavor of each scoop of ice cream you’ve created.

Working it out

The key to understanding objects in Python—and much of the Python language—is
attributes. Every object has a type and one or more attributes. Python itself defines
some of these attributes; you can identify them by the __ (often known as dunder in

Figure 9.1 Three instances of Scoop, each referring to its class

Figure 9.2 Our three instances of Scoop in a list

163EXERCISE 38 ■ Ice cream scoop
the Python world) at the beginning and end of the attribute names, such as __name__
or __init__.

 When we define a new class, we do so with the class keyword. We then name the
class (Scoop, in this case) and indicate, in parentheses, the class or classes from which
our new class inherits.

 Our __init__ method is invoked after the new instance of Scoop has been created,
but before it has been returned to whoever invoked Scoop('flavor'). The new
object is passed to __init__ in self (i.e., the first parameter), along with whatever
arguments were passed to Scoop(). We thus assign self.flavor = flavor, creating
the flavor attribute on the new instance, with the value of the flavor parameter.

Just as with regular Python functions, there isn’t any enforcement of types here. The
assumption is that flavor will contain a str value because the documentation will
indicate that this is what it expects.

NOTE If you want to enforce things more strictly, then consider using
Python’s type annotations and Mypy or a similar type-checking tool. You can
find more information about Mypy at http://mypy-lang.org/. Also, you can
find an excellent introduction to Python’s type annotations and how to use
them at http://mng.bz/mByr.

To create three scoops, I use a list comprehension, iterating over the flavors and creat-
ing new instances of Scoop. The result is a list with three Scoop objects in it, each with
a separate flavor:

scoops = [Scoop(flavor)
for flavor in ('chocolate', 'vanilla', 'persimmon')]

If you’re used to working with objects in another programming language, you might
be wondering where the “getter” and “setter” methods are, to retrieve and set the
value of the flavor attribute. In Python, because everything is public, there’s no real

Talking about your “self”
The first parameter in every method is traditionally called self. However, self isn’t a
reserved word in Python; the use of that word is a convention and comes from the Small-
talk language, whose object system influenced Python’s design.

In many languages, the current object is known as this. Moreover, in such languages,
this isn’t a parameter, but rather a special word that refers to the current object. Python
doesn’t have any such special word; the instance on which the method was invoked will
always be known as self, and self will always be the first parameter in every method.

In theory, you can use any name you want for that first parameter, including this. (But,
really, what self-respecting language would do so?) Although your program will still work,
all Python developers and tools assume that the first parameter, representing the
instance, will be called self, so you should do so too.

http://mypy-lang.org/
http://mng.bz/mByr

164 CHAPTER 9 Objects
need for getters and setters. And indeed, unless you have a really good reason for it,
you should probably avoid writing them.

NOTE If and when you find yourself needing a getter or setter, you might
want to consider a Python property, which hides a method call behind the API
of an attribute change or retrieval. You can learn more about properties here:
http://mng.bz/5aWB.

I should note that even our simple Scoop class exhibits several things that are com-
mon to nearly all Python classes. We have an __init__ method, whose parameters
allow us to set attributes on newly created instances. It stores state inside self, and it
can store any type of Python object in this way—not just strings or numbers, but also
lists and dicts, as well as other types of objects.

NOTE Don’t make persimmon ice cream. Your family will never let you forget it.

Solution

class Scoop():
def __init__(self, flavor):

self.flavor = flavor

def create_scoops():
scoops = [Scoop('chocolate'),

Scoop('vanilla'),
Scoop('persimmon')]

for scoop in scoops:
print(scoop.flavor)

create_scoops()

You can work through a version of this code in the Python Tutor at http://mng.bz/
8pMZ.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

If you’re coding in Python, you’ll likely end up writing classes on a regular basis. And
if you’re doing that, you’ll be writing many __init__ methods that add attributes to
objects of various sorts. Here are some additional, simple classes that you can write
to practice doing so:

 Write a Beverage class whose instances will represent beverages. Each beverage
should have two attributes: a name (describing the beverage) and a temperature.

Every method’s first parameter is
always going to be “self,” representing
the current instance.

Sets the “flavor”
attribute to the value in
the parameter “flavor”

http://mng.bz/5aWB
http://mng.bz/8pMZ
http://mng.bz/8pMZ
http://mng.bz/8pMZ
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

165EXERCISE 38 ■ Ice cream scoop
Create several beverages and check that their names and temperatures are all
handled correctly.

 Modify the Beverage class, such that you can create a new instance specifying
the name, and not the temperature. If you do this, then the temperature
should have a default value of 75 degrees Celsius. Create several beverages and
double-check that the temperature has this default when not specified.

 Create a new LogFile class that expects to be initialized with a filename.
Inside of __init__, open the file for writing and assign it to an attribute,
file, that sits on the instance. Check that it’s possible to write to the file via
the file attribute.

What does __init__ do?
A simple class in Python looks like this:

class Foo():
def __init__(self, x):

self.x = x

And sure enough, with the Foo class in place, we can say

f = Foo(10)
print(f.x)

This leads many people, and particularly those who come from other languages, to call
__init__ a constructor, meaning the method that actually creates a new instance of
Foo. But that’s not quite the case.

When we call Foo(10), Python first looks for the Foo identifier in the same way as it
looks for every other variable in the language, following the LEGB rule. It finds Foo as a
globally defined variable, referencing a class. Classes are callable, meaning that they
can be invoked with parentheses. And thus, when we ask to invoke it and pass 10 as an
argument, Python agrees.

But what actually executes? The constructor method, of course, which is known as
__new__. Now, you should almost never implement __new__ on your own; there are
some cases in which it might be useful, but in the overwhelming majority of cases, you
don’t want to touch or redefine it. That’s because __new__ creates the new object,
something we don't want to have to deal with.

The __new__ method also returns the newly created instance of Foo to the caller. But
before it does that, it does one more thing: it looks for, and then invokes, the __init__
method. This means that __init__ is called after the object is created but before it’s
returned.

And what does __init__ do? Put simply, it adds new attributes to the object.

166 CHAPTER 9 Objects
(continued)

Whereas other programming languages talk about “instance variables” and “class vari-
ables,” Python developers have only one tool, namely the attribute. Whenever you have
a.b in code, we can say that b is an attribute of a, meaning (more or less) that b refer-
ences an object associated with a. You can think of the attributes of an object as its own
private dict.

The job of __init__ is thus to add one or more attributes to our new instance. Unlike
languages such as C# and Java, we don’t just declare attributes in Python; we must actu-
ally create and assign to them, at runtime, when the new instance is created.

In all Python methods, the self parameter refers to the instance. Any attributes we add
to self will stick around after the method returns. And so it’s natural, and thus pre-
ferred, to assign a bunch of attributes to self in __init__.

Let’s see how this works, step by step. First, let’s define a simple Person class, which
assigns a name to the object:

class Person:
def __init__(self, name):

self.name = name

Then, let’s create a new instance of Person:

p = Person('myname')

What happens inside of Python? First, the __new__ method, which we never define, runs
behind the scenes, creating the object, as shown in figure 9.3.

It creates a new instance of Person and holds onto it as a local variable. But then
__new__ calls __init__. It passes the newly created object as the first argument to
__init__, then it passes all additional arguments using *args and **kwargs, as
shown in figure 9.4.

Figure 9.3 When we create an object, __new__ is invoked.

167EXERCISE 38 ■ Ice cream scoop
Now __init__ adds one or more attributes to the new object, as shown in figure 9.5,
which it knows as self, a local variable.

Finally, __new__ returns the newly created object to its caller, with the attribute that was
added, as shown in figure 9.6.

Figure 9.4 __new__ then calls __init__.

Figure 9.5 __init__ adds attributes to the object.

Figure 9.6 Finally, __init__ exits, and the object in __new__ is returned to the caller.

168 CHAPTER 9 Objects
EXERCISE 39 ■ Ice cream bowl
Whenever I teach object-oriented programming, I encounter people who’ve learned
it before and are convinced that the most important technique is inheritance. Now,
inheritance is certainly important, and we’ll look into it momentarily, but a more
important technique is composition, when one object contains another object.

 Calling it a technique in Python is a bit overblown, since everything is an object,
and we can assign objects to attributes. So having one object owned by another object
is just … well, it’s just the way that we connect objects together.

 That said, composition is also an important technique, because it lets us create
larger objects out of smaller ones. I can create a car out of a motor, wheels, tires, gear-
shift, seats, and the like. I can create a house out of walls, floors, doors, and so forth.
Dividing a project up into smaller parts, defining classes that describe those parts, and
then joining them together to create larger objects—that’s how object-oriented pro-
gramming works.

 In this exercise, we’re going to see a small-scale version of that. In the previous
exercise, we created a Scoop class that represents one scoop of ice cream. If we’re
really going to model the real world, though, we should have another object into
which we can put the scoops. I thus want you to create a Bowl class, representing a
bowl into which we can put our ice cream (figure 9.7); for example

s1 = Scoop('chocolate')
s2 = Scoop('vanilla')
s3 = Scoop('persimmon')

b = Bowl()
b.add_scoops(s1, s2)
b.add_scoops(s3)
print(b)

(continued)

Now, could we add new attributes to our instance after __init__ has run? Yes, abso-
lutely—there’s no technical barrier to doing that. But as a general rule, you want to define
all of your attributes in __init__ to ensure that your code is as readable and obvious
as possible. You can modify the values later on, in other methods, but the initial defini-
tion should really be in __init__.

Notice, finally, that __init__ doesn’t use the return keyword. That’s because its
return value is ignored and doesn’t matter. The point of __init__ lies in modifying the
new instance by adding attributes, not in yielding a return value. Once __init__ is done,
it exits, leaving __new__ with an updated and modified object. __new__ then returns this
new object to its caller.

Figure 9.7 A new instance of Bowl,
with an empty list of scoops

169EXERCISE 39 ■ Ice cream bowl
The result of running print(b) should be to display the three ice cream flavors in our
bowl (figure 9.8). Note that it should be possible to add any number of scoops to the
bowl using Bowl.add_scoops.

Working it out

The solution doesn’t involve any changes to our Scoop class. Rather, we create our
Bowl such that it can contain any number of instances of Scoop.

 First of all, we define the attribute self.scoops on our object to be a list. We could
theoretically use a dict or a set, but given that there aren’t any obvious candidates for
keys, and that we might want to preserve the order of the scoops, I’d argue that a list is
a more logical choice.

 Remember that we’re storing instances of Scoop in self.scoops. We aren’t just
storing the string that describes the flavors. Each instance of Scoop will have its own
flavor attribute, a string containing the current scoop’s flavor.

 We create the self.scoops attribute, as an empty list, in __init__.
 Then we need to define add_scoops, which can take any number of arguments—

which we’ll assume are instances of Scoop—and add them to the bowl. This means,
almost by definition, that we’ll need to use the splat operator (*) when defining our
*new_scoops parameter. As a result, new_scoops will be a tuple containing all of the
arguments that were passed to add_scoops.

NOTE There’s a world of difference between the variable new_scoops and
the attribute self.scoops. The former is a local variable in the function,
referring to the tuple of Scoop objects that the user passed to add_scoops.
The latter is an attribute, attached to the self local variable, that refers to the
object instance on which we’re currently working.

Figure 9.8 Three Scoop objects in our bowl

170 CHAPTER 9 Objects
We can then iterate over each element of scoops, adding it to the self.scoops attri-
bute. We do this in a for loop, invoking list.append on each scoop.

 Finally, to print the scoops, we simply invoke print(b). This has the effect of call-
ing the __repr__ method on our object, assuming that one is defined. Our __repr__
method does little more than invoke str.join on the strings that we extract from
the flavors.

Notice, however, that we’re not invoking str.join on a list comprehension, because
there are no square brackets. Rather, we’re invoking it on a generator expression, which
you can think of as a lazy-evaluating version of a list comprehension. True, in a case
like this, there’s really no performance benefit. My point in using it was to demon-
strate that nearly anywhere you can use a list comprehension, you can use a generator
expression instead.

repr vs. str
You can define __repr__, __str__, or both on your objects. In theory, __repr__ pro-
duces strings that are meant for developers and are legitimate Python syntax. By con-
trast, __str__ is how your object should appear to end users.

In practice, I tend to define __repr__ and ignore __str__. That’s because __repr__
covers both cases, which is just fine if I want all string representations to be equivalent.
If and when I want to distinguish between the string output produced for developers and
that produced for end users, I can always add a __str__ later on.

In this book, I’m going to use __repr__ exclusively. But if you want to use __str__,
that’s fine—and it’ll be more officially correct to boot.

is-a vs. has-a
If you have any experience with object-oriented programming, then you might have been
tempted to say here that Scoop inherits from Bowl, or that Bowl inherits from Scoop.
Neither is true, because inheritance (which we’ll explore later in this chapter) describes
a relationship known in computer science as “is-a.” We can say that an employee is-a
person, or that a car is-a vehicle, which would point to such a relationship.

In real life, we can say that a bowl contains one or more scoops. In programming terms,
we’d describe this as Bowl has-a Scoop. The “has-a” relationship doesn’t describe inher-
itance, but rather composition.

I’ve found that relative newcomers to object-oriented programming are often convinced
that if two classes are involved, one of them should probably inherit from the other.
Pointing out the “is-a” rule for inheritance, versus the “has-a” rule for composition, helps
to clarify the two different relationships and when it’s appropriate to use inheritance ver-
sus composition.

171EXERCISE 39 ■ Ice cream bowl
Solution

class Scoop():
def __init__(self, flavor):

self.flavor = flavor

class Bowl():
def __init__(self):

self.scoops = []

def add_scoops(self, *new_scoops):
for one_scoop in new_scoops:

self.scoops.append(one_scoop)

def __repr__(self):
return '\n'.join(s.flavor for s in self.scoops)

s1 = Scoop('chocolate')
s2 = Scoop('vanilla')
s3 = Scoop('persimmon')

b = Bowl()
b.add_scoops(s1, s2)
b.add_scoops(s3)
print(b)

You can work through a version of this code in the Python Tutor at http://mng.bz/
EdWo.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

You’ve now seen how to create an explicit “has-a” relationship between two classes.
Here are some more opportunities to explore this type of relationship:

 Create a Book class that lets you create books with a title, author, and price.
Then create a Shelf class, onto which you can place one or more books with an
add_book method. Finally, add a total_price method to the Shelf class, which
will total the prices of the books on the shelf.

 Write a method, Shelf.has_book, that takes a single string argument and
returns True or False, depending on whether a book with the named title
exists on the shelf.

 Modify your Book class such that it adds another attribute, width. Then add a
width attribute to each instance of Shelf. When add_book tries to add books
whose combined widths will be too much for the shelf, raise an exception.

Initializes self.scoops
with an empty list

*new_scoops is just like
*args. You can use whatever
name you want.

Creates a string
via str.join and
a generator
expression

http://mng.bz/EdWo
http://mng.bz/EdWo
http://mng.bz/EdWo
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

172 CHAPTER 9 Objects
Reducing redundancy with dataclass
Do you feel like your class definitions repeat themselves? If so, you’re not alone. One of
the most common complaints I hear from people regarding Python classes is that the
__init__ method basically does the same thing in each class: taking arguments and
assigning them to attributes on self.

As of Python 3.7, you can cut out some of the boilerplate class-creation code with the
dataclass decorator, focusing on the code you actually want to write. For example,
here’s how the Scoop class would be defined:

@dataclass
class Scoop():

flavor : str

Look, there’s no __init__ method! You don’t need it here; the @dataclass decorator
used writes it for you. It also takes care of other things, such as comparisons and a
better version of __repr__. Basically, the whole point of data classes is to reduce your
workload.

Notice that we used a type annotation (str) to indicate that our flavor attribute should
only take strings. Type annotations are normally optional in Python, but if you’re declar-
ing attributes in a data class, then they’re mandatory. Python, as usual, ignores these
type annotations; as mentioned earlier in this chapter, type checking is done by external
programs such as Mypy.

Also notice that we define flavor at the class level, even though we want it to be an
attribute on our instances. Given that you almost certainly don’t want to have the same
attribute on both instances and classes, this is fine; the dataclass decorator will see
the attribute, along with its type annotation, and will handle things appropriately.

How about our Bowl class? How could we define it with a data class? It turns out that we
need to provide a bit more information:

from typing import List
from dataclasses import dataclass, field

@dataclass
class Bowl():

scoops: List[Scoop] = field(default_factory=list)

def add_scoops(self, *new_scoops):
for one_scoop in new_scoops:

self.scoops.append(one_scoop)

def __repr__(self):
return '\n'.join(s.flavor for s in self.scoops)

Let’s ignore the methods add_scoops and __repr__ and concentrate on the start of
our class. First, we again use the @dataclass decorator. But then, when we define our
scoops attribute, we give not just a type but a default value.

173EXERCISE 39 ■ Ice cream bowl
Notice that the type that we provide, List[int], has a capital “L”. This means that it’s
distinct from the built-in list type. It comes from the typing module, which comes with
Python and provides us with objects meant for use in type annotations. The List type,
when used by itself, represents a list of any type. But when combined with square brack-
ets, we can indicate that all elements of the list scoops will be objects of type Scoop.

Normally, default values can just be assigned to their attributes. But because scoops is
a list, and thus mutable, we need to get a little fancier. When we create a new instance
of Bowl, we don’t want to get a reference to an existing object. Rather, we want to invoke
list, returning a new instance of list and assigning it to scoops. To do this, we need
to use default_factory, which tells dataclass that it shouldn’t reuse existing
objects, but should rather create new ones.

This book uses the classic, standard way of defining Python classes—partly to support
people still using Python 3.6, and partly so that you can understand what’s happening
under the hood. But I wouldn’t be surprised if dataclass eventually becomes the
default way to create Python classes, and if you want to use them in your solutions, you
should feel free to do so.

How Python searches for attributes
In chapter 6, I discussed how Python searches for variables using LEGB—first searching
in the local scope, then enclosing, then global, and finally in the builtins namespace.
Python adheres to this rule consistently, and knowing that makes it easier to reason
about the language.

Python similarly searches for attributes along a standard, well-defined path. But that
path is quite different from the LEGB rule for variables. I call it ICPO, short for “instance,
class, parents, and object.” I’ll explain how that works.

When you ask Python for a.b, it first asks the a object whether it has an attribute named
b. If so, then the value associated with a.b is returned, and that’s the end of the process.
That’s the “I” of ICPO—we first check on the instance.

But if a doesn’t have a b attribute, then Python doesn’t give up. Rather, it checks on a’s
class, whatever it is. Meaning that if a.b doesn’t exist, we look for type(a).b. If that
exists, then we get the value back, and the search ends. That’s the “C” of ICPO.

Right away, this mechanism explains why and how methods are defined on classes, and
yet can be called via the instance. Consider the following code:

s = 'abcd'
print(s.upper())

Here, we define s to be a string. We then invoke s.upper. Python asks s if it has an attri-
bute upper, and the answer is no. It then asks if str has an attribute upper, and the
answer is yes. The method object is retrieved from str and is then invoked. At the same
time, we can talk about the method as str.upper because it is indeed defined on str,
and is eventually located there.

174 CHAPTER 9 Objects
(continued)

What if Python can’t find the attribute on the instance or the class? It then starts to check
on the class’s parents. Until now, we haven’t really seen any use of that; all of our classes
have automatically and implicitly inherited from object. But a class can inherit from any
other class—and this is often a good idea, since the subclass can take advantage of the
parent class’s functionality.

Here’s an example:

class Foo():
def __init__(self, x):

self.x = x
def x2(self):

return self.x * 2

class Bar(Foo):
def x3(self):

return self.x * 3

b = Bar(10)

print(b.x2())
print(b.x3())

In this code, we create an instance of Bar, a class that inherits from Foo (figure 9.9).
When we create the instance of Bar, Python looks for __init__. Where? First on the
instance, but it isn’t there. Then on the class (Bar), but it isn’t there. Then it looks at
Bar’s parent, Foo, and it finds __init__ there. That method runs, setting the attribute
x, and then returns, giving us b, an instance of Bar with x equal to 10 (figure 9.10).

Prints 20

Prints 30

Figure 9.9 Bar inherits from Foo,
which inherits from object.

Figure 9.10 b is an instance of Bar.

175EXERCISE 40 ■ Bowl limits
EXERCISE 40 ■ Bowl limits
We can add an attribute to just about any object in Python. When writing classes, it’s
typical and traditional to define data attributes on instances and method attributes on
classes. But there’s no reason why we can’t define data attributes on classes too.

 In this exercise, I want you to define a class attribute that will function like a con-
stant, ensuring that we don’t need to hardcode any values in our class.

 What’s the task here? Well, you might have noticed a flaw in our Bowl class, one
that children undoubtedly love and their parents undoubtedly hate: you can put as
many Scoop objects in a bowl as you like.

 Let’s make the children sad, and their parents happy, by capping the number of
scoops in a bowl at three. That is, you can add as many scoops in each call to
Bowl.add_scoops as you want, and you can call that method as many times as you
want—but only the first three scoops will actually be added. Any additional scoops will
be ignored.

Working it out

We only need to make two changes to our original Bowl class for this to work.
 First, we need to define a class attribute on Bowl. We do this most easily by making

an assignment within the class definition (figure 9.11). Setting max_scoops = 3 within
the class block is the same as saying, afterwards, Bowl.max_scoops = 3.

The same thing happens when we invoke x2. We look on b and can’t find that method.
We then look on type(b), or Bar, and can’t find the method. But when we check on
Bar’s parent, Foo, we find it, and that method executes. If we had defined a method of
our own named x2 on Bar, then that would have executed instead of Foo.x2.

Finally, we invoke x3. We check on b and don’t find it. We check on Bar and do find it,
and that method thus executes.

What if, during our ICPO search, the attribute doesn’t exist on the instance, class, or par-
ent? We then turn to the ultimate parent in all of Python, object. You can create an
instance of object, but there’s no point in doing so; it exists solely so that other classes
can inherit from it, and thus get to its methods.

As a result, if you don’t define an __init__ method, then object.__init__ will run.
And if you don’t define __repr__, then object.__repr__ will run, and so forth.

The final thing to remember with the ICPO search path is that the first match wins. This
means that if two attributes on the search path have the same name, Python won’t ever find
the later one. This is normally a good thing in that it allows us to override methods in sub-
classes. But if you’re not expecting that to happen, then you might end up being surprised.

Figure 9.11 max_scoops sits on the class,
so even an empty instance has access to it.

176 CHAPTER 9 Objects
But wait, do we really need to define max_scoops on the Bowl class? Technically, we
have two other options:

 Define the maximum on the instance, rather than the class. This will work
(i.e., add self.max_scoops = 3 in __init__), but it implies that every bowl
has a different maximum number of scoops. By putting the attribute on the
class (figure 9.12), we indicate that every bowl will have the same maximum.

 We could also hardcode the value 3 in our code, rather than use a symbolic
name such as max_scoops. But this will reduce our flexibility, especially if and
when we want to use inheritance (as we’ll see later). Moreover, if we decide to
change the maximum down the line, it’s easier to do that in one place, via the
attribute assignment, rather than in a number of places.

Second, we need to change Bowl.add_scoops, adding an if statement to make the
addition of new scoops conditional on the current length of self.scoops and the value
of Bowl.max_scoops.

Are class attributes just static variables?
If you’re coming from the world of Java, C#, or C++, then class attributes look an awful
lot like static variables. But they aren’t static variables, and you shouldn’t call them that.

Here are a few ways class attributes are different from static variables, even though their
uses might be similar:

Figure 9.12 A Bowl instance containing scoops, with max_scoops defined on the
class

177EXERCISE 40 ■ Bowl limits
Solution

class Scoop():
def __init__(self, flavor):

self.flavor = flavor

class Bowl():
max_scoops = 3

First, class attributes are just another case of attributes on a Python object. This means
that we can and should reason about class attributes the same as all others, with the
ICPO lookup rule. You can access them on the class (as ClassName.attrname) or on an
instance (as one_instance.attrname). The former will work because you’re using the
class, and the latter will work because after checking the instance, Python checks its
class.

In the solution for this exercise, Bowl.max_scoops is an attribute on the Bowl class. We
could, in theory, assign max_scoops to each individual instance of Bowl, but it makes
more sense to say that all Bowl objects have the same maximum number of scoops.

Second, static variables are shared among the instances and class. This means that
assigning to a class variable via an instance has the same effect as assigning to it via
the class. In Python, there’s a world of difference between assigning to the class variable
via the instance and doing so via the class; the former will add a new attribute to the
instance, effectively blocking access to the class attribute.

That is, if we assign to Bowl.max_scoops, then we’re changing the maximum number
of scoops that all bowls can have. But if we assign to one_bowl.max_scoops, we’re set-
ting a new attribute on the instance one_bowl. This will put us in the terrible situation of
having Bowl.max_scoops set to one thing, and one_bowl.max_scoops set to some-
thing else. Moreover, asking for one_bowl.max_scoops would (by the ICPO rule) stop
after finding the attribute on the instance and never look on the class.

Third, methods are actually class attributes too. But we don’t think of them in that way
because they’re defined differently. Whatever we may think, methods are created using
def inside of a class definition.

When I invoke b.add_scoops, Python looks on b for the attribute add_scoops and
doesn’t find it. It then looks on Bowl (i.e., b’s class) and finds it—and retrieves the
method object. The parentheses then execute the method. This only works if the method
is actually defined on the class, which it is. Methods are almost always defined on a
class, and thanks to the ICPO rule, Python will look for them there.

Finally, Python doesn’t have constants, but we can simulate them with class attributes.
Much as I did with max_scoops earlier, I often define a class attribute that I can then
access, by name, via both the class and the instances.

For example, the class attribute max_scoops is being used here as a sort of constant.
Instead of storing the hardcoded number 3 everywhere I need to refer to the maximum
scoops that can be put in a bowl, I can refer to Bowl.max_scoops. This both adds clarity
to my code and allows me to change the value in the future in a single place.

max_scoops is not a
variable—it’s an attribute
of the class Bowl.

178 CHAPTER 9 Objects
def __init__(self):
self.scoops = []

def add_scoops(self, *new_scoops):
for one_scoop in new_scoops:

if len(self.scoops) < Bowl.max_scoops:
self.scoops.append(one_scoop)

def __repr__(self):
return '\n'.join(s.flavor for s in self.scoops)

s1 = Scoop('chocolate')
s2 = Scoop('vanilla')
s3 = Scoop('persimmon')
s4 = Scoop('flavor 4')
s5 = Scoop('flavor 5')

b = Bowl()
b.add_scoops(s1, s2)
b.add_scoops(s3)
b.add_scoops(s4, s5)
print(b)

You can work through a version of this code in the Python Tutor at http://mng.bz/
NK6N.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

As I’ve indicated, you can use class attributes in a variety of ways. Here are a few addi-
tional challenges that can help you to appreciate and understand how to define and
use class attributes:

 Define a Person class, and a population class attribute that increases each time
you create a new instance of Person. Double-check that after you’ve created five
instances, named p1 through p5, Person.population and p1.population are
both equal to 5.

 Python provides a __del__ method that’s executed when an object is garbage
collected. (In my experience, deleting a variable or assigning it to another
object triggers the calling of __del__ pretty quickly.) Modify your Person class
such that when a Person instance is deleted, the population count decrements
by 1. If you aren’t sure what garbage collection is, or how it works in Python, take a
look at this article: http://mng.bz/nP2a.

 Define a Transaction class, in which each instance represents either a deposit or a
withdrawal from a bank account. When creating a new instance of Transaction,

Uses Bowl.max_scoops to
get the maximum per
bowl, set on the class

http://mng.bz/NK6N
http://mng.bz/NK6N
http://mng.bz/NK6N
http://mng.bz/nP2a
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

179EXERCISE 40 ■ Bowl limits
you’ll need to specify an amount—positive for a deposit and negative for a with-
drawal. Use a class attribute to keep track of the current balance, which should
be equal to the sum of the amounts in all instances created to date.

Inheritance in Python
The time has come for us to use inheritance, an important idea in object-oriented pro-
gramming. The basic idea reflects the fact that we often want to create classes that are
quite similar to one another. We can thus create a parent class, in which we define the
general behavior. And then we can create one or more child classes, or subclasses, each
of which inherits from the parent class:

 If I already have a Person class, then I might want to create an Employee class,
which is identical to Person except that each employee has an ID number,
department, and salary.

 If I already have a Vehicle class, then I can create a Car class, a Truck class,
and a Bicycle class.

 If I already have a Book class, then I can create a Textbook class, as well as a
Novel class.

As you can see, the idea of a subclass is that it does everything the parent class does,
but then goes a bit further with more specific functionality. Inheritance allows us to apply
the DRY principle to our classes, and to keep them organized in our heads.

How does inheritance work in Python? Define a second class (i.e., a subclass), naming
the parent class in parentheses on the first line:

class Person():
def __init__(self, name):

self.name = name

def greet(self):
return f'Hello, {self.name}'

class Employee(Person)
def __init__(self, name, id_number):

self.name = name
self.id_number = id_number

With this code in place, we can now create an instance of Employee, as per usual:

e = Employee('empname', 1)

But what happens if we invoke e.greet? By the ICPO rule, Python first looks for the attri-
bute greet on the instance e, but it doesn’t find it. It then looks on the class Employee
and doesn’t find it. Python then looks on the parent class, Person, finds it, retrieves the
method, and invokes it. In other words, inheritance is a powerful idea—but in Python, it’s
a natural outgrowth of the ICPO rule.

This is how we tell
Python that “Employee”
is-a “Person,” meaning it
inherits from “Person.”

Does this look funny to you?
It should—more soon.

180 CHAPTER 9 Objects
EXERCISE 41 ■ A bigger bowl
While the previous exercise might have delighted parents and upset children, our job
as ice cream vendors is to excite the children, as well as take their parents’ money. Our
company has thus started to offer a BigBowl product, which can take up to five scoops.

 Implement BigBowl for this exercise, such that the only difference between it and
the Bowl class we created earlier is that it can have five scoops, rather than three. And
yes, this means that you should use inheritance to achieve this goal.

 You can modify Scoop and Bowl if you must, but such changes should be minimal
and justifiable.

NOTE As a general rule, the point of inheritance is to add or modify func-
tionality in an existing class without modifying the parent. Purists might thus
dislike these instructions, which allow for changes in the parent class. How-
ever, the real world isn’t always squeaky clean, and if the classes are both writ-
ten by the same team, it’s possible that the child’s author can negotiate
changes in the parent class.

Working it out

This is, I must admit, a tricky one. It forces you to understand how attributes work,
and especially how they interact between instances, classes, and parent classes. If you
really get the ICPO rule, then the solution should make sense.

(continued)

There’s one weird thing about my implementation of Employee, namely that I set
self.name in ___init__. If you’re coming from a language like Java, you might be won-
dering why I have to set it at all, since Person.__init__ already sets it. But that’s just
the thing: in Python, __init__ really needs to execute for it to set the attribute. If we
were to remove the setting of self.name from Employee.__init__, the attribute
would never be set. By the ICPO rule, only one method would ever be called, and it would
be the one that’s closest to the instance. Since Employee.__init__ is closer to the
instance than Person.__init__, the latter is never called.

The good news is that the code I provided works. But the bad news is that it violates the
DRY rule that I’ve mentioned so often.

The solution is to take advantage of inheritance via super. The super built-in allows us
to invoke a method on a parent object without explicitly naming that parent. In our code,
we could thus rewrite Employee.__init__ as follows:

class Employee(Person)
def __init__(self, name, id_number):

super().__init__(name)
self.id_number = id_number

Implicitly invoking
Person.__init__ via super

181EXERCISE 41 ■ A bigger bowl
 In our previous version of Bowl.add_scoops, we said that we wanted to use
Bowl.max _scoops to keep track of the maximum number of scoops allowed. That
was fine, as long as every subclass would want to use the same value.

 But here, we want to use a different value. That is, when invoking add_scoops on a
Bowl object, the maximum should be Bowl.max_scoops. And when invoking add_scoops
on a BigBowl object, the maximum should be BigBowl.max_scoops. And we want to
avoid writing add_scoops twice.

 The simplest solution is to change our reference in add_scoops from Bowl.max
_scoops, to self.max_scoops. With this change in place, things will work like this:

 If we ask for Bowl.max_scoops, we’ll get 3.
 If we ask for BigBowl.max_scoops, we’ll get 5.
 If we invoke add_scoops on an instance of Bowl, then inside the method, we’ll

ask for self.max_scoops. By the ICPO lookup rule, Python will look first on the
instance and then on the class, which is Bowl in this case, and return Bowl.max-
_scoops, with a value of 3.

 If we invoke add_scoops on an instance of BigBowl, then inside the method
we’ll ask for self.max_scoops. By the iCPO lookup rule, Python will first look
on the instance, and then on the class, which is BigBowl in this case, and return
BigBowl.max_scoops, with a value of 5.

In this way, we’ve taken advantage of inheritance and the flexibility of self to use the
same interface for a variety of classes. Moreover, we were able to implement BigBowl
with a minimum of code, using what we’d already written for Bowl.

Solution

class Scoop():
def __init__(self, flavor):

self.flavor = flavor

class Bowl():
max_scoops = 3

def __init__(self):
self.scoops = []

def add_scoops(self, *new_scoops):
for one_scoop in new_scoops:

if len(self.scoops) < self.max_scoops:
self.scoops.append(one_scoop)

def __repr__(self):
return '\n'.join(s.flavor for s in self.scoops)

class BigBowl(Bowl):
max_scoops = 5

Bowl.max_scoops
remains 3.

Uses self.max_scoops, rather
than Bowl.max_scoops, to
get the attribute from the
correct class

BigBowl.max_scoops
is set to 5.

182 CHAPTER 9 Objects
s1 = Scoop('chocolate')
s2 = Scoop('vanilla')
s3 = Scoop('persimmon')
s4 = Scoop('flavor 4')
s5 = Scoop('flavor 5')

bb = BigBowl()
bb.add_scoops(s1, s2)
bb.add_scoops(s3)
bb.add_scoops(s4, s5)
print(bb)

You can work through a version of this code in the Python Tutor at http://mng.bz/
D2gn.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

As I’ve already indicated in this chapter, I think that many people exaggerate the
degree to which they should use inheritance in object-oriented code. But that doesn’t
mean I see inheritance as unnecessary or even worthless. Used correctly, it’s a power-
ful tool that can reduce code size and improve its maintenance. Here are some more
ways you can practice using inheritance:

 Write an Envelope class, with two attributes, weight (a float, measuring grams)
and was_sent (a Boolean, defaulting to False). There should be three meth-
ods: (1) send, which sends the letter, and changes was_sent to True, but only
after the envelope has enough postage; (2) add_postage, which adds postage
equal to its argument; and (3) postage_needed, which indicates how much
postage the envelope needs total. The postage needed will be the weight of the
envelope times 10. Now write a BigEnvelope class that works just like Envelope
except that the postage is 15 times the weight, rather than 10.

 Create a Phone class that represents a mobile phone. (Are there still nonmobile
phones?) The phone should implement a dial method that dials a phone num-
ber (or simulates doing so). Implement a SmartPhone subclass that uses the
Phone.dial method but implements its own run_app method. Now implement
an iPhone subclass that implements not only a run_app method, but also its
own dial method, which invokes the parent’s dial method but whose output is
all in lowercase as a sign of its coolness.

 Define a Bread class representing a loaf of bread. We should be able to invoke a
get_nutrition method on the object, passing an integer representing the
number of slices we want to eat. In return, we’ll receive a dict whose key-value
pairs will represent calories, carbohydrates, sodium, sugar, and fat, indicating

http://mng.bz/D2gn
http://mng.bz/D2gn
http://mng.bz/D2gn
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

183EXERCISE 42 ■ FlexibleDict
the nutritional statistics for that number of slices. Now implement two new
classes that inherit from Bread, namely WholeWheatBread and RyeBread. Each
class should implement the same get_nutrition method, but with different
nutritional information where appropriate.

EXERCISE 42 ■ FlexibleDict
I’ve already said that the main point of inheritance is to take advantage of existing
functionality. There are several ways to do this and reasons for doing this, and one
of them is to create new behavior that’s similar to, but distinct from, an existing
class. For example, Python comes not just with dict, but also with Counter and
defaultdict. By inheriting from dict, those two classes can implement just those
methods that differ from dict, relying on the original class for the majority of the
functionality.

 In this exercise, we’ll also implement a subclass of dict, which I call FlexibleDict.
Dict keys are Python objects, and as such are identified with a type. So if you use key 1
(an integer) to store a value, then you can’t use key '1' (a string) to retrieve that
value. But FlexibleDict will allow for this. If it doesn’t find the user’s key, it will try to
convert the key to both str and int before giving up; for example

fd = FlexibleDict()

fd['a'] = 100
print(fd['a'])

fd[5] = 500
print(fd[5])

fd[1] = 100
print(fd['1'])

fd['1'] = 100
print(fd[1])

Working it out

This exercise’s class, FlexibleDict, is an example of where you might just want to
inherit from a built-in type. It’s somewhat rare, but as you can see here, it allows us to
create an alternative type of dict.

 The specification of FlexibleDict indicates that everything should work just like a
regular dict, except for retrievals. We thus only need to override one method, the
__getitem__ method that’s always associated with square brackets in Python. Indeed,
if you’ve ever wondered why strings, lists, tuples, and dicts are defined in different
ways but all use square brackets, this method is the reason.

Prints 100, just
like a regular dict

Prints 500, just
like a regular dict

int key

Prints 100, even though
we passed a str

str key

Prints 100, even though
we passed an int

184 CHAPTER 9 Objects
 Because everything should be the same as dict except for this single method, we
can inherit from dict, write one method, and be done.

 This method receives a key argument. If the key isn’t in the dict, then we try to
turn it into a string and an integer. Because we might encounter a ValueError trying
to turn a key into an integer, we trap for ValueError along the way. At each turn, we
check to see if a version of the key with a different type might actually work—and, if
so, we reassign the value of key.

 At the end of the method, we call our parent __getitem__ method. Why don’t we
just use square brackets? Because that will lead to an infinite loop, seeing as square
brackets are defined to invoke __getitem__. In other words, a[b] is turned into
a.__getitem__(b). If we then include self[b] inside the definition of __getitem__,
we’ll end up having the method call itself. We thus need to explicitly call the parent’s
method, which in any event will return the associated value.

NOTE While FlexibleDict (and some of the “Beyond the exercise” tasks)
might be great for teaching you Python skills, building this kind of flexibility
into Python is very un-Pythonic and not recommended. One of the key ideas
in Python is that code should be unambiguous, and in Python it’s also better
to get an error than for the language to guess.

Solution

class FlexibleDict(dict):
def __getitem__(self, key):

try:
if key in self:

pass
elif str(key) in self:

key = str(key)
elif int(key) in self:

key = int(key)
except ValueError:

pass

return dict.__getitem__(self, key)

fd = FlexibleDict()

fd['a'] = 100
print(fd['a'])

fd[5] = 500
print(fd[5])

fd[1] = 100
print(fd['1'])

fd['1'] = 100
print(fd[1])

__getitem__ is what
square brackets [] invoke.

Do we have the
requested key?

If not, then tries turning
it into a string

If not, then tries turning
it into an integer

If we can’t turn it into an
integer, then ignores it

Tries with the regular dict
__getitem__, either with
the original key or a
modified one

185EXERCISE 43 ■ Animals
You can work through a version of this code in the Python Tutor at http://mng.bz/
lGx6.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

We’ve now seen how to extend a built-in class using inheritance. Here are some
more exercises you can try, in which you’ll also experiment with extending some
built-in classes:

 With FlexibleDict, we allowed the user to use any key, but were then flexible
with the retrieval. Implement StringKeyDict, which converts its keys into
strings as part of the assignment. Thus, immediately after saying skd[1] = 10,
you would be able to then say skd['1'] and get the value of 10 returned. This
can come in handy if you’ll be reading keys from a file and won’t be able to dis-
tinguish between strings and integers.

 The RecentDict class works just like a dict, except that it contains a user-
defined number of key-value pairs, which are determined when the instance is
created. In a RecentDict(5), only the five most recent key-value pairs are kept;
if there are more than five pairs, then the oldest key is removed, along with its
value. Note: your implementation could take into account the fact that modern
dicts store their key-value pairs in chronological order.

 The FlatList class inherits from list and overrides the append method. If
append is passed an iterable, then it should add each element of the iterable
separately. This means that fl.append([10, 20, 30]) would not add the list
[10, 20, 30] to fl, but would rather add the individual integers 10, 20, and 30.
You might want to use the built-in iter function (http://mng.bz/Qy2G) to
determine whether the passed argument is indeed iterable.

EXERCISE 43 ■ Animals
For the final three exercises in this chapter, we’re going to create a set of classes that
combine all of the ideas we’ve explored in this chapter: classes, methods, attributes,
composition, and inheritance. It’s one thing to learn about and use them separately,
but when you combine these techniques together, you see their power and under-
stand the organizational and semantic advantages that they offer.

 For the purposes of these exercises, you are the director of IT at a zoo. The zoo
contains several different kinds of animals, and for budget reasons, some of those ani-
mals have to be housed alongside other animals.

 We will represent the animals as Python objects, with each species defined as a dis-
tinct class. All objects of a particular class will have the same species and number of

http://mng.bz/lGx6
http://mng.bz/lGx6
http://mng.bz/lGx6
http://mng.bz/Qy2G
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

186 CHAPTER 9 Objects
legs, but the color will vary from one instance to another. We can thus create a white
sheep:

s = Sheep('white')

I can similarly get information about the animal back from the object by retrieving its
attributes:

print(s.species)
print(s.color)
print(s.number_of_legs)

If I convert the animal to a string (using str or print), I’ll get back a string combin-
ing all of these details:

print(s)

We’re going to assume that our zoo contains four different types of animals: sheep,
wolves, snakes, and parrots. (The zoo is going through some budgetary difficulties, so
our animal collection is both small and unusual.) Create classes for each of these
types, such that we can print each of them and get a report on their color, species, and
number of legs.

Working it out

The end goal here is somewhat obvious: we want to have four different classes (Wolf,
Sheep, Snake, and Parrot), each of which takes a single argument representing a
color. The result of invoking each of these classes is a new instance with three attri-
butes: species, color, and number_of_legs.

 A naive implementation would simply create each of these four classes. But of
course, part of the point here is to use inheritance, and the fact that the behavior in
each class is basically identical means that we can indeed take advantage of it. But
what will go into the Animal class, from which everyone inherits, and what will go into
each of the individual subclasses?

 Since all of the animal classes will have the same attributes, we can define __repr__
on Animal, the class from which they’ll all inherit. My version uses an f-string and grabs
the attributes from self. Note that self in this case will be an instance not of Animal,
but of one of the classes that inherits from Animal.

 So, what else should be in Animal, and what should be in the subclasses? There’s
no hard-and-fast rule here, but in this particular case, I decided that Animal.__init__
would be where the assignments all happen, and that the __init__ method in each
subclass would invoke Animal.__init__ with a hardcoded number of legs, as well as
the color designated by the user (figure 9.13).

 In theory, __init__ in a subclass could call Animal.__init__ directly and by name.
But we also have access to super, which returns the object on which our method

Prints “sheep”

Prints “white”

Prints “4”

Prints “White
sheep, 4 legs”

187EXERCISE 43 ■ Animals
should be called. In other words, by calling super().__init__, we know that the right
method will be called on the right object, and can just pass along the color and
number_of_legs arguments.

 But wait, what about the species attribute? How can we set that without input
from the user?

 My solution to this problem was to take advantage of the fact that Python classes
are very similar to modules, with similar behavior. Just as a module has a __name__
attribute that reflects what module was loaded, so too classes have a __name__ attri-
bute, which is a string containing the name of the current class. And thus, if I invoke
self.__class__ on an object, I get its class—and if I invoke self.__class__.__name__,
I get a string representation of the class.

Abstract base classes
The Animal class here is what other languages might call an abstract base class,
namely one that we won’t actually instantiate, but from which other classes will inherit.
In Python, you don’t have to declare such a class to be abstract, but you also won’t get
the enforcement that other languages provide. If you really want, you can import ABC-
Meta from the abc (abstract base class) module. Following its instructions, you’ll be
able to declare particular methods as abstract, meaning that they must be overridden
in the child.

Figure 9.13 Wolf inherits from Animal. Notice which methods are defined where.

188 CHAPTER 9 Objects
Solution

class Animal():
def __init__(self, color, number_of_legs):

self.species = self.__class__.__name__
self.color = color
self.number_of_legs = number_of_legs

def __repr__(self):
return f'{self.color} {self.species},
➥{self.number_of_legs} legs'

class Wolf(Animal):
def __init__(self, color):

super().__init__(color, 4)

class Sheep(Animal):
def __init__(self, color):

super().__init__(color, 4)

class Snake(Animal):
def __init__(self, color):

super().__init__(color, 0)

class Parrot(Animal):
def __init__(self, color):

super().__init__(color, 2)

wolf = Wolf('black')
sheep = Sheep('white')
snake = Snake('brown')
parrot = Parrot('green')

print(wolf)
print(sheep)
print(snake)
print(parrot)

You can work through a version of this code in the Python Tutor at http://mng.bz/
B2Z0.

(continued)

I’m not a big fan of abstract base classes; I think that it’s enough to document a class
as being abstract, without the overhead or language enforcement. Whether that’s a
smart approach depends on several factors, including the nature and size of the project
you’re working on and whether you come from a background in dynamic languages. A
large project, with many developers, would probably benefit from the additional safe-
guards that an abstract base class would provide.

If you want to learn more about abstract base classes in Python, you can read about
ABCMeta here: http://mng.bz/yyJB.

Our Animal base class
takes a color and
number of legs.

Turns the current
class object into a
string

Uses an f-string to
produce appropriate
output

http://mng.bz/yyJB
http://mng.bz/B2Z0
http://mng.bz/B2Z0
http://mng.bz/B2Z0

189EXERCISE 44 ■ Cages
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

In this exercise, we put a few classes in place as part of a hierarchy. Here are some
additional ways you can work with inheritance and think about the implications of the
design decisions we’re making. I should note that these questions, as well as those fol-
lowing in this chapter, are going to combine hands-on practice with some deeper,
philosophical questions about the “right” way to work with object-oriented systems:

 Instead of each animal class inheriting directly, from Animal, define several new
classes, ZeroLeggedAnimal, TwoLeggedAnimal, and FourLeggedAnimal, all of
which inherit from Animal, and dictate the number of legs on each instance.
Now modify Wolf, Sheep, Snake, and Parrot such that each class inherits from
one of these new classes, rather than directly from Animal. How does this affect
your method definitions?

 Instead of writing an __init__ method in each subclass, we could also have a
class attribute, number_of_legs, in each subclass—similar to what we did earlier
with Bowl and BigBowl. Implement the hierarchy that way. Do you even need an
__init__ method in each subclass, or will Animal.__init__ suffice?

 Let’s say that each class’s __repr__ method should print the animal’s sound,
as well as the standard string we implemented previously. In other words,
str(sheep) would be Baa—white sheep, 4 legs. How would you use inheri-
tance to maximize code reuse?

EXERCISE 44 ■ Cages
Now that we’ve created some animals, it’s time to put them into cages. For this exer-
cise, create a Cage class, into which you can put one or more animals, as follows:

c1 = Cage(1)
c1.add_animals(wolf, sheep)

c2 = Cage(2)
c2.add_animals(snake, parrot)

When you create a new Cage, you’ll give it a unique ID number. (The uniqueness
doesn’t need to be enforced, but it’ll help us to distinguish among the cages.) You’ll
then be able to invoke add_animals on the new cage, passing any number of animals
that will be put in the cage. I also want you to define a __repr__ method so that print-
ing a cage prints not just the cage ID, but also each of the animals it contains.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

190 CHAPTER 9 Objects
Working it out

The solution’s definition of the Cage class is similar in some ways to the Bowl class that
we defined earlier in this chapter.

 When we create a new cage, the __init__ method initializes self.animals with an
empty list, allowing us to add (and even remove) animals as necessary. We also store
the ID number that was passed to us in the id_number parameter.

 Next, we implement Cage.add_animals, which uses similar techniques to what we
did in Bowl.add_scoops. Once again, we use the splat (*) operator to grab all argu-
ments in a single tuple (animals). Although we could use list.extend to add all of
the new animals to list.animals, I’ll still use a for loop here to add them one at a
time. You can see how the Python Tutor depicts two animals in a cage in figure 9.14.

 The most interesting part of our Cage definition, in my mind, is our use of __repr__
to produce a report. Given a cage c1, saying print(c1) will print the ID of the cage, fol-
lowed by all of the animals in the cage, using their printed representations. We do this
by first printing a basic header, which isn’t a huge deal. But then we take each animal in
self.animals and use a generator expression (i.e., a lazy form of list comprehension)
to return a sequence of strings. Each string in that sequence will consist of a tab followed
by the printed representation of the animal. We then feed the result of our generator
expression to str.join, which puts newline characters between each animal.

Solution

class Animal():
def __init__(self, color, number_of_legs):

self.species = self.__class__.__name__
self.color = color
self.number_of_legs = number_of_legs

def __repr__(self):
return f'{self.color} {self.species}, {self.number_of_legs} legs'

class Wolf(Animal):
def __init__(self, color):

super().__init__(color, 4)

class Sheep(Animal):
def __init__(self, color):

super().__init__(color, 4)

class Snake(Animal):
def __init__(self, color):

super().__init__(color, 0)

class Parrot(Animal):
def __init__(self, color):

super().__init__(color, 2)

191EXERCISE 44 ■ Cages
Figure 9.14 A Cage instance containing one wolf and one sheep

192 CHAPTER 9 Objects
class Cage():
def __init__(self, id_number):

self.id_number = id_number
self.animals = []

def add_animals(self, *animals):
for one_animal in animals:

self.animals.append(one_animal)

def __repr__(self):
output = f'Cage {self.id_number}\n'
output += '\n'.join('\t' + str(animal)

for animal in self.animals)
return output

wolf = Wolf('black')
sheep = Sheep('white')
snake = Snake('brown')
parrot = Parrot('green')

c1 = Cage(1)
c1.add_animals(wolf, sheep)

c2 = Cage(2)
c2.add_animals(snake, parrot)

print(c1)
print(c2)

You can work through a version of this code in the Python Tutor at http://mng.bz/
dyeN.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

We’re once again seeing the need for composition in our classes—creating objects
that are containers for other objects. Here are some possible extensions to this code,
all of which draw on the ideas we’ve already seen in this chapter, and which you’ll see
repeated in nearly every object-oriented system you build and encounter:

 As you can see, there are no limits on how many animals can potentially be put
into a cage. Just as we put a limit of three scoops in a Bowl and five in a BigBowl,
you should similarly create Cage and BigCage classes that limit the number of
animals that can be placed there.

 It’s not very realistic to say that we would limit the number of animals in a cage.
Rather, it makes more sense to describe how much space each animal needs
and to ensure that the total amount of space needed per animal isn’t greater

Sets an ID number for each
cage, just so that we can
distinguish their printouts

Sets up an empty
list, into which we’ll
place animals

The string for each cage
will mainly be from a
string, based on a
generator expression.

http://mng.bz/dyeN
http://mng.bz/dyeN
http://mng.bz/dyeN
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

193EXERCISE 45 ■ Zoo
than the space in each cage. You should thus modify each of the Animal sub-
classes to include a space_required attribute. Then modify the Cage and Big-
Cage classes to reflect how much space each one has. Adding more animals
than the cage can contain should raise an exception.

 Our zookeepers have a macabre sense of humor when it comes to placing ani-
mals together, in that they put wolves and sheep in the first cage, and snakes
and birds in the other cage. (The good news is that with such a configuration,
the zoo will be able to save on food for half of the animals.) Define a dict
describing which animals can be with others. The keys in the dict will be classes,
and the values will be lists of classes that can compatibly be housed with the
keys. Then, when adding new animals to the current cage, you’ll check for com-
patibility. Trying to add an animal to a cage that already contains an incompati-
ble animal will raise an exception.

EXERCISE 45 ■ Zoo
Finally, the time has come to create our Zoo object. It will contain cage objects, and
they in turn will contain animals. Our Zoo class will need to support the following
operations:

 Given a zoo z, we should be able to print all of the cages (with their ID num-
bers) and the animals inside simply by invoking print(z).

 We should be able to get the animals with a particular color by invoking the
method z.animals_by_color. For example, we can get all of the black ani-
mals by invoking z.animals_by_color('black'). The result should be a list
of Animal objects.

 We should be able to get the animals with a particular number of legs by invok-
ing the method z.animals_by_legs. For example, we can get all of the four-
legged animals by invoking z.animals_by_legs(4). The result should be a list
of Animal objects.

 Finally, we have a potential donor to our zoo who wants to provide socks for all
of the animals. Thus, we need to be able to invoke z.number_of_legs() and
get a count of the total number of legs for all animals in our zoo.

The exercise is thus to create a Zoo class on which we can invoke the following:

z = Zoo()
z.add_cages(c1, c2)

print(z)
print(z.animals_by_color('white'))
print(z.animals_by_legs(4))
print(z.number_of_legs())

194 CHAPTER 9 Objects
Working it out

In some ways, our Zoo class here is quite similar to our Cage class. It has a list attribute,
self.cages, in which we’ll store the cages. It has an add_cages method, which takes
*args and thus takes any number of inputs. Even the __repr__ method is similar to
what we did with Cage.__repr__. We’ll simply use str.join on the output from run-
ning str on each of the cages, just as the cages run str on each of the animals. We’ll
similarly use a generator expression here, which will be slightly more efficient than a
list comprehension.

 But then, when it comes to the three methods we needed to create, we’ll switch
direction a little bit. In both animals_by_color and animals_by_legs, we want to get
the animals with a certain color or a certain number of legs. Here, we take advantage
of the fact that the zoo contains a list of cages, and that each cage contains a list of ani-
mals. We can thus use a nested list comprehension, getting a list of all of the animals.

 But of course, we don’t want all of the animals, so we have an if statement that fil-
ters out those that we don’t want. In the case of animals_by_color, we only include
those animals that have the right color, and in animals_by_legs, we only keep those
animals with the requested number of legs.

 But then we also have number_of_legs, which works a bit differently. There, we
want to get an integer back, reflecting the number of legs that are in the entire zoo.
Here, we can take advantage of the built-in sum method, handing it the generator
expression that goes through each cage and retrieves the number of legs on each ani-
mal. The method will thus return an integer.

 Although the object-oriented and functional programming camps have been fight-
ing for decades over which approach is superior, I think that the methods in this Zoo
class show us that each has its strengths, and that our code can be short, elegant, and
to the point if we combine the techniques. That said, I often get pushback from stu-
dents who see this code and say that it’s a violation of the object-oriented principle of
encapsulation, which ensures that we can’t (or shouldn’t) directly access the data in
other objects.

 Whether this is right or wrong, such violations are also fairly common in the
Python world. Because all data is public (i.e., there’s no private or protected), it’s
considered a good and reasonable thing to just scoop the data out of objects. That
said, this also means that whoever writes a class has a responsibility to document it,
and to keep the API alive—or to document elements that may be deprecated or
removed in the future.

Solution

This is the longest and most complex class definition in this chapter—and yet, each of
the methods uses techniques that we’ve discussed, both in this chapter and in this book:

class Zoo():
def __init__(self):

self.cages = []

Sets up the self.cages
attribute, a list where
we’ll store cages

195EXERCISE 45 ■ Zoo
def add_cages(self, *cages):
for one_cage in cages:

self.cages.append(one_cage)

def __repr__(self):
return '\n'.join(str(one_cage)

for one_cage in self.cages)

def animals_by_color(self, color):
return [one_animal

for one_cage in self.cages
for one_animal in one_cage.animals
if one_animal.color == color]

def animals_by_legs(self, number_of_legs):
return [one_animal

for one_cage in self.cages
for one_animal in one_cage.animals
if one_animal.number_of_legs ==

number_of_legs]

def number_of_legs(self):
return sum(one_animal.number_of_legs

for one_cage in self.cages
for one_animal in one_cage.animals)

wolf = Wolf('black')
sheep = Sheep('white')
snake = Snake('brown')
parrot = Parrot('green')

print(wolf)
print(sheep)
print(snake)
print(parrot)

c1 = Cage(1)
c1.add_animals(wolf, sheep)

c2 = Cage(2)
c2.add_animals(snake, parrot)

z = Zoo()
z.add_cages(c1, c2)

print(z)
print(z.animals_by_color('white'))
print(z.animals_by_legs(4))
print(z.number_of_legs())

You can work through a version of this code in the Python Tutor at http://mng.bz/
lGMB.

Defines the method
that’ll return animal
objects that match
our color

Defines the method
that’ll return animal
objects that match
our number of legs

Returns the
number of legs

http://mng.bz/lGMB
http://mng.bz/lGMB
http://mng.bz/lGMB

196 CHAPTER 9 Objects
Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Now that you’ve seen how all of these elements fit together in our Zoo class, here are
some additional exercises you might want to try out, to extend what we’ve done—and
to better understand object-oriented programming in Python:

 Modify animals_by_color such that it takes any number of colors. Animals hav-
ing any of the listed colors should be returned. The method should raise an
exception if no colors are passed.

 As things currently stand, we’re treating our Zoo class almost as if it’s a singleton
object—that is, a class that has only one instance. What a sad world that would
be, with only one zoo! Let’s assume, then, that we have two instances of Zoo,
representing two different zoos, and that we would like to transfer an animal
from one to the other. Implement a Zoo.transfer_animal method that takes a
target_zoo and a subclass of Animal as arguments. The first animal of the spec-
ified type is removed from the zoo on which we’ve called the method and
inserted into the first cage in the target zoo.

 Combine the animals_by_color and animals_by_legs methods into a single
get_animals method, which uses kwargs to get names and values. The only
valid names would be color and legs. The method would then use one or both
of these keywords to assemble a query that returns those animals that match the
passed criteria.

Summary
Object-oriented programming is a set of techniques, but it’s also a mindset. In many
languages, object-oriented programming is forced on you, such that you’re constantly
trying to fit your programming into its syntax and structure. Python tries to strike a
balance, offering all of the object-oriented features we’re likely to want or use, but in a
simple, nonconfrontational way. In this way, Python’s objects provide us with structure
and organization that can make our code easier to write, read, and (most impor-
tantly) maintain.

https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

Iterators and generators
Have you ever noticed that many Python objects know how to behave inside of a
for loop? That’s not an accident. Iteration is so useful, and so common, that
Python makes it easy for an object to be iterable. All it has to do is implement a
handful of behaviors, known collectively as the iterator protocol.

 In this chapter, we’ll explore that protocol and how we can use it to create iter-
able objects. We’ll do this in three ways:

1 We’ll create our own iterators via Python classes, directly implementing the
protocol ourselves.

2 We’ll create generators, objects that implement the protocol, based on some-
thing that looks very similar to a function. Not surprisingly, these are known
as generator functions.

3 We’ll also create generators using generator expressions, which look quite a bit
like list comprehensions.

Even newcomers to Python know that if you want to iterate over the characters in a
string, you can write

for i in 'abcd':
print(i)

This feels natural, and that’s the point. What if you just want to execute a chunk of
code five times? Can you iterate over the integer 5? Many newcomers to Python
assume that the answer is yes and write the following:

for i in 5:
print(i)

Prints a, b, c, and d,
each on a separate line

This doesn’t
work.
197

198 CHAPTER 10 Iterators and generators
This code produces an error:

TypeError: 'int' object is not iterable

From this, we can see that while strings, lists, and dicts are iterable, integers aren’t.
They aren’t because they don’t implement the iterator protocol, which consists of
three parts:

 The __iter__ method, which returns an iterator
 The __next__ method, which must be defined on the iterator
 The StopIteration exception, which the iterator raises to signal the end of the

iterations

Sequences (strings, lists, and tuples) are the most common form of iterables, but a
large number of other objects, such as files and dicts, are also iterable. Best of all,
when you define your own classes, you can make them iterable. All you have to do is
make sure that the iterator protocol is in place on your object.

 Given those three parts, we can now understand what a for loop really does:

 It asks an object whether it’s iterable using the iter built-in function (http://
mng.bz/jgja). This function invokes the __iter__ method on the target object.
Whatever __iter__ returns is called the iterator.

 If the object is iterable, then the for loop invokes the next built-in function on
the iterator that was returned. That function invokes __next__ on the iterator.

 If __next__ raises a Stopiteration exception, then the loop exits.

This protocol explains a couple things that tend to puzzle newcomers to Python:

1 Why don’t we need any indexes? In C-like languages, we need a numeric index
for our iterations. That’s so the loop can go through each of the elements of the
collection, one at a time. In those cases, the loop is responsible for keeping
track of the current location. In Python, the object itself is responsible for pro-
ducing the next item. The for loop doesn’t know whether we’re on the first
item or the last one. But it does know when we’ve reached the end.

2 How is it that different objects behave differently in for loops? After all, strings
return characters, but dicts return keys, and files return lines. The answer is
that the iterator object can return whatever it wants. So string iterators return
characters, dict iterators return keys, and file iterators return the lines in a file.

If you’re defining a new class, you can make it iterable as follows:

 Define an __iter__ method that takes only self as an argument and returns
self. In other words, when Python asks your object, “Are you iterable?” the
answer will be, “Yes, and I’m my own iterator.”

 Define a __next__ method that takes only self as an argument. This method
should either return a value or raise StopIteration. If it never returns Stop-
Iteration, then any for loop on this object will never exit.

http://mng.bz/jgja
http://mng.bz/jgja
http://mng.bz/jgja

199
There are some more sophisticated ways to do things, including returning a separate,
different object from __iter__. I demonstrate and discuss that later in this chapter.

 Here’s a simple class that implements the protocol, wrapping itself around an iter-
able object but indicating when it reaches each stage of iteration:

class LoudIterator():
def __init__(self, data):

print('\tNow in __init__')
self.data = data
self.index = 0

def __iter__(self):
print('\tNow in __iter__')
return self

def __next__(self):
print('\tNow in __next__')
if self.index >= len(self.data):

print(
f'\tself.index ({self.index}) is too big; exiting')

raise StopIteration

value = self.data[self.index]
self.index += 1
print('\tGot value {value}, incremented index to {self.index}')
return value

for one_item in LoudIterator('abc'):
print(one_item)

If we execute this code, we’ll see the following output:

Now in __init__
Now in __iter__
Now in __next__
Got value a, incremented index to 1

a
Now in __next__
Got value b, incremented index to 2

b
Now in __next__
Got value c, incremented index to 3

c
Now in __next__
self.index (3) is too big; exiting

This output walks us through the iteration process that we’ve already seen, starting
with a call to __iter__ and then repeated invocations of __next__. The loop exits
when the iterator raises StopIteration.

Stores the data in an
attribute, self.data

Creates an index
attribute, keeping track
of our current position

Our __iter__ does the simplest
thing, returning self.

Raises StopIteration if our
self.index has reached the end

Grabs the current value,
but doesn’t return it yet

Increments
self.index

200 CHAPTER 10 Iterators and generators
 Adding such methods to a class works when you’re creating your own new types.
There are two other ways to create iterators in Python:

1 You can use a generator expression, which we’ve already seen and used. As you
might remember, generator expressions look and work similarly to list compre-
hensions, except that you use round parentheses rather than square brackets.
But unlike list comprehensions, which return lists that might consume a great
deal of memory, generator expressions return one element at a time.

2 You can use a generator function—something that looks like a function, but when
executed acts like an iterator; for example

def foo():
yield 1
yield 2
yield 3

When we execute foo, the function’s body doesn’t execute. Rather, we get a generator
object back—that is, something that implements the iterator protocol. We can thus
put it in a for loop:

g = foo()
for one_item in g:

print(one_item)

This loop will print 1, 2, and 3. Why? Because with each iteration (i.e., each time we
call next on g), the function executes through the next yield statement, returns
the value it got from yield, and then goes to sleep, waiting for the next iteration.
When the generator function exits, it automatically raises StopIteration, thus end-
ing the loop.

 Iterators are pervasive in Python because they’re so convenient—and in many
ways, they’ve been made convenient because they’re pervasive. In this chapter, you’ll
practice writing all of these types of iterators and getting a feel for when each of these
techniques should be used.

iterable vs. iterator
The two terms iterable and iterator are very similar but have different meanings:

 An iterable object can be put inside a for loop or list comprehension. For some-
thing to be iterable, it must implement the __iter__ method. That method
should return an iterator.

 An iterator is an object that implements the __next__ method.

In many cases, an iterable is its own iterator. For example, file objects are their own iter-
ators. But in many other cases, such as strings and lists, the iterable object returns a
separate, different object as an iterator.

201
Table 10.1 What you need to know

Concept What is it? Example To learn more

iter A built-in function
that returns an
object’s iterator

iter('abcd') http://mng.bz/jgja

next A built-in function
that requests the
next object from an
iterator

next(i) http://mng.bz/WPBg

StopIteration An exception raised
to indicate the end
of a loop

raise StopIteration http://mng.bz/8p0K

enumerate Helps us to number
elements of
iterables

for i, c in enumerate('ab'):
print(f'{i}: {c}')

http://mng.bz/qM1K

Iterables A category of data in
Python

Iterables can be put in for loops or
passed to many functions.

http://mng.bz/EdDq

itertools A module with many
classes for imple-
menting iterables

import itertools http://mng.bz/NK4E

range Returns an iterable
sequence of
integers

every 3rd integer, from 10
to (not including) 50
range(10, 50, 3)

http://mng.bz/B2DJ

os.listdir Returns a list of files
in a directory

os.listdir('/etc/') http://mng.bz/YreB

os.walk Iterates over the
files in a directory

os.walk('/etc/') http://mng.bz/D2Ky

yield Returns control to
the loop temporar-
ily, optionally return-
ing a value

yield 5 http://mng.bz/lG9j

os.path.join Returns a string
based on the path
components

os.path.join('etc',
'passwd')

http://mng.bz/oPPM

time.perf_
counter

Returns the num-
ber of elapsed sec-
onds (as a float)
since the program
was started

time.perf_counter() http://mng.bz/B21v

zip Takes n iterables as
arguments and
returns an iterator
of tuples of length n

returns [('a', 10),
('b', 20), ('c', 30)]
zip('abc',
 [10, 20, 30])

http://mng.bz/Jyzv

http://mng.bz/jgja
http://mng.bz/WPBg
http://mng.bz/8p0K
http://mng.bz/qM1K
http://mng.bz/EdDq
http://mng.bz/NK4E
http://mng.bz/B2DJ
http://mng.bz/YreB
http://mng.bz/D2Ky
http://mng.bz/lG9j
http://mng.bz/oPPM
http://mng.bz/B21v
http://mng.bz/Jyzv

202 CHAPTER 10 Iterators and generators
EXERCISE 46 ■ MyEnumerate
The built-in enumerate function allows us to get not just the elements of a sequence,
but also the index of each element, as in

for index, letter in enumerate('abc'):
print(f'{index}: {letter}')

Create your own MyEnumerate class, such that someone can use it instead of enumer-
ate. It will need to return a tuple with each iteration, with the first element in the
tuple being the index (starting with 0) and the second element being the current ele-
ment from the underlying data structure. Trying to use MyEnumerate with a noniter-
able argument will result in an error.

Working it out

In this exercise, we know that our MyEnumerate class will take a single iterable object.
With each iteration, we’ll get back not one of that argument’s elements, but rather a
two-element tuple.

 This means that at the end of the day, we’re going to need a __next__ method that
will return a tuple. Moreover, it’ll need to keep track of the current index. Since
__next__, like all methods and functions, loses its local scope between calls, we’ll
need to store the current index in another place. Where? On the object itself, as an
attribute.

 Thus, our __init__ method will initialize two attributes: self.data, where we’ll
store the object over which we’re iterating, and self.index, which will start with 0
and be incremented with each call to __next__. Our implementation of __iter__ will
be the standard one that we’ve seen so far, namely return self.

 Finally __next__ checks to see if self.index has gone past the length of
self.data. If so, then we raise StopIteration, which causes the for loop to exit.

Multiclass iterators
So far, we’ve seen that our __iter__ method should consist of the line return self
and no more. This is often a fine way to go. But you can get into trouble. For example,
what happens if I use our MyEnumerate class in the following way?

e = MyEnumerate('abc')

print('** A **')
for index, one_item in e:

print(f'{index}: {one_item}')

print('** B **')
for index, one_item in e:

print(f'{index}: {one_item}')

203EXERCISE 46 ■ MyEnumerate
Solution

class MyEnumerate():
def __init__(self, data):

self.data = data
self.index = 0

We’ll see the following printout:

** A **
0: a
1: b
2: c
** B **

Why didn’t we get a second round of a, b, and c? Because we’re using the same iterator
object each time. The first time around, its self.index goes through 0, 1, and 2, and
then stops. The second time around, self.index is already at 2, which is greater than
len(self.data), and so it immediately exits from the loop.

Our return self solution for __iter__ is fine if that’s the behavior you want. But in
many cases, we need something more sophisticated. The easiest solution is to use a sec-
ond class—a helper class, if you will—which will be the iterator for our class. Many of
Python’s built-in classes do this already, including strings, lists, tuples, and dicts. In such
a case, we implement __iter__ on the main class, but its job is to return a new instance
of the helper class:

in MyEnumerate

def __iter__(self):
return MyEnumerateIterator(self.data)

Then we define MyEnumerateIterator, a new and separate class, whose __init__
looks much like the one we already defined for MyIterator and whose __next__ is
taken directly from MyIterator.

There are two advantages to this design:

1 As we’ve already seen, by separating the iterable from the iterator, we can put
our iterable in as many for loops as we want, without having to worry that it’ll
lose the iterations somehow.

2 The second advantage is organizational. If we want to make a class iterable, the
iterations are a small part of the functionality. Thus, do we really want to clutter
the class with a __next__, as well as attributes used only when iterating? By del-
egating such problems to a helper iterator class, we separate out the iterable
aspects and allow each class to concentrate on its role.

Many people think that we can solve the problem in a simpler way, simply by resetting
self.index to 0 whenever __iter__ is called. But that has some flaws too. It means
that if we want to use the same iterable in two different loops simultaneously, they’ll
interfere with one another. Such problems won’t occur with a helper class.

Initializes MyEnumerate with
an iterable argument, “data”

Stores “data” on the
object as self.data

Initializes self.index with 0

204 CHAPTER 10 Iterators and generators
def __iter__(self):
return self

def __next__(self):
if self.index >= len(self.data):

raise StopIteration
value = (self.index, self.data[self.index])
self.index += 1
return value

for index, letter in MyEnumerate('abc'):
print(f'{index} : {letter}')

You can work through a version of this code in the Python Tutor at http://mng.bz/
JydQ.

 Note that the Python Tutor sometimes displays an error message when Stop-
Iteration is raised.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

Now that you’ve created a simple iterator class, let’s dig in a bit deeper:

 Rewrite MyEnumerate such that it uses a helper class (MyEnumerateIterator), as
described in the “Discussion” section. In the end, MyEnumerate will have the
__iter__ method that returns a new instance of MyEnumerateIterator, and the
helper class will implement __next__. It should work the same way, but will also
produce results if we iterate over it twice in a row.

 The built-in enumerate method takes a second, optional argument—an integer,
representing the first index that should be used. (This is particularly handy
when numbering things for nontechnical users, who believe that things should
be numbered starting with 1, rather than 0.)

 Redefine MyEnumerate as a generator function, rather than as a class.

EXERCISE 47 ■ Circle
From the examples we’ve seen so far, it might appear as though an iterable simply
goes through the elements of whatever data it’s storing and then exits. But an iterator
can do anything it wants, and can return whatever data it wants, until the point when
it raises StopIteration. In this exercise, we see just how that works.

 Define a class, Circle, that takes two arguments when defined: a sequence and
a number. The idea is that the object will then return elements the defined number
of times. If the number is greater than the number of elements, then the sequence

Because our object will
be its own iterator,
returns self Are we at the end of the

data? If so, then raises
StopIteration.

Sets the value to
be a tuple, with the
index and value

Increments
the index

Returns
the tuple

http://mng.bz/JydQ
http://mng.bz/JydQ
http://mng.bz/JydQ
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

205EXERCISE 47 ■ Circle
repeats as necessary. You should define the class such that it uses a helper (which I call
CircleIterator). Here’s an example:

c = Circle('abc', 5)
print(list(c))

Working it out

In many ways, our Circle class is a simple iterator, going through each of its values.
But we might need to provide more outputs than we have inputs, circling around to
the beginning one or more times.

 The trick here is to use the modulus operator (%), which returns the integer
remainder from a division operation. Modulus is often used in programs to ensure
that we can wrap around as many times as we need.

 In this case, we’re retrieving from self.data, as per usual. But the element won’t
be self.data[self.index], but rather self.data[self.index % len(self.data)].

 Since self.index will likely end up being bigger than len(self.data), we can no
longer use that as a test for whether we should raise StopIteration. Rather, we’ll
need to have a separate attribute, self.max_times, which tells us how many iterations
we should execute.

 Once we have all of this in place, the implementation becomes fairly straightfor-
ward. Our Circle class remains with only __init__ and __iter__, the latter of which
returns a new instance of CircleIterator. Note that we have to pass both self.data
and self.max_times to CircleIterator, and thus need to store them as attributes in
our instance of Circle.

 Our iterator then uses the logic we described in its __next__ method to return one
element at a time, until we have self.max_times items.

Another solution
Oliver Hach and Reik Thormann, who read an earlier edition of this book, shared an ele-
gant solution with me:

class Circle():

def __init__(self, data, max_times):
self.data = data
self.max_times = max_times

def __iter__(self):
n = len(self.data)
return (self.data[x % n] for x in range(self.max_times))

This version of Circle takes advantage of the fact that an iterating class may return any
iterator, not just self, and not just an instance of a helper class. In this case, they
returned a generator expression, which is an iterator by all standards.

Prints a, b, c, a, b

206 CHAPTER 10 Iterators and generators
Solution

class CircleIterator():
def __init__(self, data, max_times):

self.data = data
self.max_times = max_times
self.index = 0

def __next__(self):
if self.index >= self.max_times:

raise StopIteration
value = self.data[self.index % len(self.data)]
self.index += 1
return value

class Circle():
def __init__(self, data, max_times):

self.data = data
self.max_times = max_times

def __iter__(self):
return CircleIterator(self.data,

self.max_times)

c = Circle('abc', 5)
print(list(c))

You can work through a version of this code in the Python Tutor at http://mng.bz/
wBjg.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

I hope you’re starting to see the potential for iterators, and how they can be written in
a variety of ways. Here are some additional exercises to get you thinking about what
those ways could be:

(continued)

The generator expression iterates a particular number of times, as determined by
self.max_times, feeding that to range. We can then iterate over range, returning the
appropriate element of self.data with each iteration.

In this way, we see there are multiple ways to answer the question, “What should
__iter__ return?” As long as it returns an iterator object, it doesn’t matter whether it’s
an iterable self, an instance of a helper class, or a generator.

http://mng.bz/wBjg
http://mng.bz/wBjg
http://mng.bz/wBjg
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

207EXERCISE 48 ■ All lines, all files
 Rather than write a helper, you could also define iteration capabilities in a class
and then inherit from it. Reimplement Circle as a class that inherits from
CircleIterator, which implements __init__ and __next__. Of course, the
parent class will have to know what to return in each iteration; add a new attri-
bute in Circle, self.returns, a list of attribute names that should be returned.

 Implement Circle as a generator function, rather than as a class.
 Implement a MyRange class that returns an iterator that works the same as

range, at least in for loops. (Modern range objects have a host of other capabil-
ities, such as being subscriptable. Don’t worry about that.) The class, like range,
should take one, two, or three integer arguments.

EXERCISE 48 ■ All lines, all files
File objects, as we’ve seen, are iterators; when we put them in a for loop, each itera-
tion returns the next line from the file. But what if we want to read through a number
of files? It would be nice to have an iterator that goes through each of them.

 In this exercise, I’d like you to create just such an iterator, using a generator func-
tion. That is, this generator function will take a directory name as an argument. With
each iteration, the generator should return a single string, representing one line from
one file in that directory. Thus, if the directory contains five files, and each file con-
tains 10 lines, the generator will return a total of 50 strings—each of the lines from file
0, then each of the lines from file 1, then each of the lines from file 2, until it gets
through all of the lines from file 4.

 If you encounter a file that can’t be opened—because it’s a directory, because
you don’t have permission to read from it, and so on—you should just ignore the
problem altogether.

Working it out

Let’s start the discussion by pointing out that if you really wanted to do this the right
way, you would likely use the os.walk function (http://mng.bz/D2Ky), which goes
through each of the files in a directory and then descends into its subdirectories. But
we’ll ignore that and work to understand the all_lines generator function that I’ve
created here.

 First, we run os.listdir on path. This returns a list of strings. It’s important to
remember that os.listdir only returns the filenames, not the full path of the file.
This means that we can’t just open the filename; we need to combine path with the
filename.

 We could use str.join, or even just + or an f-string. But there’s a better approach,
namely os.path.join (http://mng.bz/oPPM), which takes any number of parameters
(thanks to the *args) and then joins them together with the value of os.sep, the
directory-separation character for the current operating system. Thus, we don’t need to
think about whether we’re on a Unix or Windows system; Python can do that work for us.

http://mng.bz/D2Ky
http://mng.bz/oPPM

208 CHAPTER 10 Iterators and generators
 What if there’s a problem reading from the file? We then trap that with an except
OSError clause, in which we have nothing more than pass. The pass keyword means
that Python shouldn’t do anything; it’s needed because of the structure of Python’s
syntax, which requires something indented following a colon. But we don’t want to do
anything if an error occurs, so we use pass.

 And if there’s no problem? Then we simply return the current line using yield.
Immediately after the yield, the function goes to sleep, waiting for the next time a
for loop invokes next on it.

NOTE Using except without specifying which exception you might get is gen-
erally frowned upon, all the more so if you pair it with pass. If you do this in
production code, you’ll undoubtedly encounter problems at some point, and
because you haven’t trapped specific exceptions or logged the errors, you’ll
have trouble debugging the problem as a result. For a good (if slightly old)
introduction to Python exceptions and how they should be used, see: http://
mng.bz/VgBX.

Solution

import os

def all_lines(path):
for filename in os.listdir(path):

full_filename = os.path.join(path,
filename)

try:
for line in open(full_filename):

yield line
except OSError:

pass

The Python Tutor site doesn’t work with files, so there’s no link to it. But you could see
all of the lines from all files in the /etc/ directory on your computer with

for one_line in all_lines('/etc/'):
print(one_line)

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Beyond the exercise

If something you want to do as an iterator doesn’t align with an existing class but can
be defined as a function, then a generator function will likely be a good way to
implement it. Generator functions are particularly useful in taking potentially large

Gets a list of
files in path

Uses os.path.join to
create a full filename
that we’ll open

Opens and iterates over
each line in full_filenameReturns the line

using yield, needed
in iterators

Ignores file-related
problems silently

http://mng.bz/VgBX
http://mng.bz/VgBX
http://mng.bz/VgBX
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

209EXERCISE 49 ■ Elapsed since
quantities of data, breaking them down, and returning their output at a pace that
won’t overwhelm the system. Here are some other problems you can solve using gen-
erator functions:

 Modify all_lines such that it doesn’t return a string with each iteration, but
rather a tuple. The tuple should contain four elements: the name of the file,
the current number of the file (from all those returned by os.listdir), the
line number within the current file, and the current line.

 The current version of all_lines returns all of the lines from the first file, then
all of the lines from the second file, and so forth. Modify the function such that it
returns the first line from each file, and then the second line from each file, until
all lines from all files are returned. When you finish printing lines from shorter
files, ignore those files while continuing to display lines from the longer files.

 Modify all_lines such that it takes two arguments—a directory name, and a
string. Only those lines containing the string (i.e., for which you can say s in
line) should be returned. If you know how to work with regular expressions
and Python’s re module, then you could even make the match conditional on a
regular expression.

NOTE In generator functions, we don’t need to explicitly raise StopIteration.
That happens automatically when the generator reaches the end of the func-
tion. Indeed, raising StopIteration from within the generator is something
that you should not do. If you want to exit from the function prematurely, it’s
best to use a return statement. It’s not an error to use return with a value
(e.g., return 5) from a generator function, but the value will be ignored. In a
generator function, then, yield indicates that you want to keep the generator
going and return a value for the current iteration, while return indicates that
you want to exit completely.

EXERCISE 49 ■ Elapsed since
Sometimes, the point of an iterator is not to change existing data, but rather to pro-
vide data in addition to what we previously received. Moreover, a generator doesn’t
necessarily provide all of its values in immediate succession; it can be queried on occa-
sion, whenever we need an additional value. Indeed, the fact that generators retain all
of their state while sleeping between iterations means that they can just hang around,
as it were, waiting until needed to provide the next value.

 In this exercise, write a generator function whose argument must be iterable. With
each iteration, the generator will return a two-element tuple. The first element in the
tuple will be an integer indicating how many seconds have passed since the previous
iteration. The tuple’s second element will be the next item from the passed argument.

 Note that the timing should be relative to the previous iteration, not when the
generator was first created or invoked. Thus the timing number in the first iteration
will be 0.

210 CHAPTER 10 Iterators and generators
 You can use time.perf_counter, which returns the number of seconds since the
program was started. You could use time.time, but perf_counter is considered more
reliable for such purposes.

Working it out

The solution’s generator function takes a single piece of data and iterates over it.
However, it returns a two-element tuple for each item it returns, in which the first ele-
ment is the time since the previous iteration ran.

 For this to work, we need to always know when the previous iteration was executed.
Thus, we always calculate and set last_time before we yield the current values of
delta and item.

 However, we need to have a value for delta the first time we get a result back. This
should be 0. To get around this, we set last_time to None at the top of the function.
Then, with each iteration, we calculate delta to be the difference between current
_time and last_time or current_time. If last_time is None, then we’ll get the value
of current_time. This should only occur once; after the first iteration, last_time will
never be zero.

 Normally, invoking a function multiple times means that the local variables are
reset with each invocation. However, a generator function works differently: it’s only
invoked once, and thus has a single stack frame. This means that the local variables,
including parameters, retain their values across calls. We can thus set such values as
last_time and use them in future iterations.

Solution

import time

def elapsed_since(data):
last_time = None
for item in data:

current_time = time.perf_counter()
delta = current_time - (last_time

or current_time)
last_time = time.perf_counter()
yield (delta, item)

for t in elapsed_since('abcd'):
print(t)
time.sleep(2)

You can work through a version of this code in the Python Tutor at http://mng.bz/
qMjz.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

Initializes last_time
with None

Gets the
current time

Calculates the delta
between the last
time and now

Returns a two-
element tuple

http://mng.bz/qMjz
http://mng.bz/qMjz
http://mng.bz/qMjz
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

211EXERCISE 50 ■ MyChain
Beyond the exercise

In this exercise, we saw how we can combine user-supplied data with additional infor-
mation from the system. Here are some more exercises you can try to get additional
practice writing such generator functions:

 The existing function elapsed_since reported how much time passed between
iterations. Now write a generator function that takes two arguments—a piece of
data and a minimum amount of time that must elapse between iterations. If the
next element is requested via the iterator protocol (i.e., next), and the time
elapsed since the previous iteration is greater than the user-defined minimum,
then the value is returned. If not, then the generator uses time.sleep to wait
until the appropriate amount of time has elapsed.

 Write a generator function, file_usage_timing, that takes a single directory
name as an argument. With each iteration, we get a tuple containing not just
the current filename, but also the three reports that we can get about a file’s
most recent usage: its access time (atime), modification time (mtime), and cre-
ation time (ctime). Hint: all are available via the os.stat function.

 Write a generator function that takes two elements: an iterable and a function.
With each iteration, the function is invoked on the current element. If the
result is True, then the element is returned as is. Otherwise, the next element is
tested, until the function returns True. Alternative: implement this as a regular
function that returns a generator expression.

EXERCISE 50 ■ MyChain
As you can imagine, iterator patterns tend to repeat themselves. For this reason,
Python comes with the itertools module (http://mng.bz/NK4E), which makes it
easy to create many types of iterators. The classes in itertools have been optimized
and debugged across many projects, and often include features that you might not
have considered. It’s definitely worth keeping this module in the back of your mind
for your own projects.

 One of my favorite objects in itertools is called chain. It takes any number of
iterables as arguments and then returns each of their elements, one at a time, as if
they were all part of a single iterable; for example

from itertools import chain

for one_item in chain('abc', [1,2,3], {'a':1, 'b':2}):
print(one_item)

This code would print:

a
b
c

http://mng.bz/NK4E

212 CHAPTER 10 Iterators and generators
1
2
3
a
b

The final 'a' and 'b' come from the dict we passed, since iterating over a dict returns
its keys.

 While itertools.chain is convenient and clever, it’s not that hard to implement.
For this exercise, that’s precisely what you should do: implement a generator function
called mychain that takes any number of arguments, each of which is an iterable. With
each iteration, it should return the next element from the current iterable, or the first
element from the subsequent iterable—unless you’re at the end, in which case it
should exit.

Working it out

It’s true that you could create this as a Python class that implements the iterator proto-
col, with __iter__ and __call__. But, as you can see, the code is so much simpler, eas-
ier to understand, and more elegant when we use a generator function.

 Our function takes *args as a parameter, meaning that args will be a tuple when
our function executes. Because it’s a tuple, we can iterate over its elements, no matter
how many there might be.

 We’ve stated that each argument passed to mychain should be iterable, which
means that we should be able to iterate over those arguments as well. Then, in the
inner for loop, we simply yield the value of the current line. This returns the current
value to the caller, but also holds onto the current place in the generator function.
Thus, the next time we invoke __next__ on our iteration object, we’ll get the next
item in the series.

Solution

def mychain(*args):
for arg in args:

for item in arg:
yield item

for one_item in mychain('abc', [1,2,3], {'a':1, 'b':2}):
print(one_item)

You can work through a version of this code in the Python Tutor at http://mng.bz/
7Xv4.

Screencast solution

Watch this short video walkthrough of the solution: https://livebook.manning.com/
video/python-workout.

args is a tuple
of iterables

Loops over
each iterable

Loops over each element of
each iterable, and yield’s it

http://mng.bz/7Xv4
http://mng.bz/7Xv4
http://mng.bz/7Xv4
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout
https://livebook.manning.com/video/python-workout

213EXERCISE 50 ■ MyChain
Beyond the exercise

In this exercise, we saw how we can better understand some built-in functionality by
reimplementing it ourselves. In particular, we saw how we can create our own version
of itertools.chain as a generator function. Here are some additional challenges you
can solve using generator functions:

 The built-in zip function returns an iterator that, given iterable arguments,
returns tuples taken from those arguments’ elements. The first iteration will
return a tuple from the arguments’ index 0, the second iteration will return a
tuple from the arguments’ index 1, and so on, stopping when the shortest of
the arguments ends. Thus zip('abc', [10, 20, 30]) returns the iterator equiv-
alent of [('a', 10), ('b', 20), ('c', 30)]. Write a generator function that
reimplements zip in this way.

 Reimplement the all_lines function from exercise 49 using mychain.
 In the “Beyond the exercise” section for exercise 48, you implemented a MyRange

class, which mimics the built-in range class. Now do the same thing, but using a
generator expression.

Summary
In this chapter, we looked at the iterator protocol and how we can both implement
and use it in a variety of ways. While we like to say that there’s only one way to do
things in Python, you can see that there are at least three different ways to create an
iterator:

 Add the appropriate methods to a class
 Write a generator function
 Use a generator expression

The iterator protocol is both common and useful in Python. By now, it’s a bit of a
chicken-and-egg situation—is it worth adding the iterator protocol to your objects
because so many programs expect objects to support it? Or do programs use the itera-
tor protocol because so many programs support it? The answer might not be clear, but
the implications are. If you have a collection of data, or something that can be inter-
preted as a collection, then it’s worth adding the appropriate methods to your class.
And if you’re not creating a new class, you can still take advantage of iterables with
generator functions and expressions.

 After doing the exercises in this chapter, I hope that you can see how to do the
following:

 Add the iterator protocol to a class you’ve written
 Add the iterator protocol to a class via a helper iterator class
 Write generator functions that filter, modify, and add to iterators that you would

otherwise have created or used
 Use generator expressions for greater efficiency than list comprehensions

214 CHAPTER 10 Iterators and generators
Conclusion
Congratulations! You’ve reached the end of the book, which (if you’re not peeking
ahead) means that you’ve finished a large number of Python exercises. As a result,
your Python has improved in a few ways.

 First, you’re now more familiar with Python syntax and techniques. Like someone
learning a foreign language, you might previously have had the vocabulary and gram-
mar structures in place, but now you can express yourself more fluently. You don’t
need to think quite as long when deciding what word to choose. You won’t be using
constructs that work but are considered un-Pythonic.

 Second, you’ve seen enough different problems, and used Python to solve them,
that you now know what to do when you encounter new problems. You’ll know what
questions to ask, how to break the problems down into their elements, and what
Python constructs will best map to your solutions. You’ll be able to compare the trade-
offs between different options and then integrate the best ones into your code.

 Third, you’re now more familiar with Python’s way of doing things and the vocabu-
lary that the language uses to describe them. This means that the Python documenta-
tion, as well as the community’s ecosystem of blogs, tutorials, articles, and videos, will
be more understandable to you. The descriptions will make more sense, and the
examples will be more powerful.

 In short, being more fluent in Python means being able to write better code in less
time, while keeping it readable and Pythonic. It also means being able to learn more
as you continue on your path as a developer.

 I wish you the best of success in your Python career and hope that you’ll continue
to find ways to practice your Python as you move forward.

index
Symbols

* (splat) operator 9–10, 38, 190
**kwargs parameter 153
*args parameter 9–10, 38, 212
% (modulus operator) 205
+ operator 38, 60
< operator 3–4, 136
> operator 3–4

A

abstract base class 187
abstract methods 187
access time (atime) 211
adding numbers 125–127

exercise 126
solution 126

after integer 13
all_keys set 65
all_lines function 207, 209, 213
alphabetizing names 40–46

exercise 41–43
solution 43

anonymous strings 44
array type 36
Arrow package, PyPI 87
assignment expression operator 5
associative arrays 53
atime (access time) 211
average method 159

B

b flag 75
before integer 13
binary mode 75
break command 4

BufferedReader object 73
built-in types 55
builtins module 145
builtins namespace 173
bytes mode 75

C

__call__ method 212
callable classes 165
callable value 152
capitalized words 20, 26
cdef string 20
ce string 20
chain object 211
child classes 179
chr function 16, 96
Circle class 204–205, 207

exercise 205–206
solution 206

CircleIterator class 205, 207
class attributes 176
class keyword 161, 163
classes 161–168, 185–189

Circle class 204–207
exercise 205–206
solution 206

exercise 162–164, 186–188
FlexibleDict class 183–185

exercise 183–184
solution 184–185

MyEnumerate class 202–204
exercise 202–203
solution 203–204

solution 164, 188
code point 27
collections 29
215

INDEX216
collections module 47, 51, 54
collections.Counter 31
comparison operators 3
comparisons 2
complex type 1
composition 168–175, 189–193

exercises 169–170, 190
solutions 171, 192

comprehensions
adding numbers 125–127

exercise 126
solution 126

flattening lists 127–129
exercise 128
solution 128

flipping dicts 131–133
exercise 132
solution 132–133

gematria 137–142
exercises 138, 140–141
solutions 138, 141

joining numbers 118–125
exercise 119–122
solution 122–123

overview 117
Pig Latin translator 129–131

exercise 129–130
solution 130

supervocalic words 135–137
exercise 136
solution 137

transforming values 133–135
exercise 134
solution 134

constant time 55
constants 21, 41
context managers 72, 74, 79, 81
Counter class 47, 183
Counter.most_common 47
create_scoops function 162
creation time (ctime) 211
CSV (comma-separated values), reading and

writing 88–91
exercise 90
solution 90–91

csv module 88, 91
csv.reader 90
csv.writer 90
csv.writerow 90
ctime (creation time) 211
current_line 76

D

data attributes 175–180
exercise 175–177
solution 177–178

dataclass decorator 172
dataclasses.dataclass 161
date objects 59
Decimal class 13, 144, 149
def function 44
defaultdict 63, 183
default_factory 173
__del__ method 178
dial method 182
dict 56, 160, 183
dict comprehension 72, 117
dictdiff function 64–68

exercise 64–67
solution 67

dict.fromkeys method 151
dict.get method 56, 60, 62
dictionaries (dicts)

dictdiff function 64–68
exercise 64–67
solution 67

hashing and 54–55
number of different integers 68–70

exercise 69
solution 69–70

rainfall tracker 59–64
exercise 59–63
solution 63

restaurant menu 57–59
exercise 57–58
solution 58

sets 56
dict.items method 56, 93, 132
dict.keys() method 65, 151
dict_partition function 68
dict.setdefault 93
dict.update method 68
digit variable 14
dispatch table 153
distribution package 156
DRY (don’t repeat yourself) 19, 143,

179–180

E

elapsed_since function 211
end of lines 89
__enter__ method 81
enumerate function 2, 14, 118, 201–202, 204
enumerate iterator 138
Envelope class 182
eval function 3
even_odd_sums function 35
except OSError clause 208
__exit__ method 81
expressions 125

INDEX 217
F

field separators 23
filename variable 85
files

JSON 91–95
exercise 92–94
solution 94

longest word per file 85–88
exercise 85–86
solution 86

password file reader 78–81
exercise 79
solution 79–80

reading and writing CSV 88–91
exercise 90
solution 90–91

retrieving final line 73–77
exercise 73–76
solution 76–77

reversing lines 95–97
exercise 95–96
solution 96

word counter 81–84
exercise 82–84
solution 84

file_usage_timing function 211
filter function 123–124
final_line 76
find_all_longest_words function 85
find_longest_word function 85
firstlast function 31–37

exercise 31–35
solution 35

FlatList class 185
flatten function 128
flattening lists 127–129

exercise 128
solution 128

flatten_odd_ints function 128
flavor attribute 163
FlexibleDict class 183, 185

exercise 183–184
solution 184–185

flipping dicts 131–133
exercise 132
solution 132–133

float type 1, 13
floating-point numbers 12
floating-point values 11
foo function 165
for loops 2
format_sort_records function 49
freedonia.py module 148
from X import Y 144
f-strings 2, 4, 7–8, 12, 50, 126
funcfile function 131

functional programming
adding numbers 125–127

exercise 126
solution 126

flattening lists 127–129
exercise 128
solution 128

flipping dicts 131–133
exercise 132
solution 132–133

gematria 137–142
exercises 138, 140–141
solutions 138, 141

joining numbers 118–125
exercise 119–122
solution 122–123

Pig Latin translator 129–131
exercise 129–130
solution 130

supervocalic words 135–137
exercise 136
solution 137

transforming values 133–135
exercise 134
solution 134

functions
password-generation function 111–114

exercise 112–113
solution 113–114

prefix notation calculator 107–111
exercise 108–110
solution 110

XML generator 101–107
exercise 102–103
solution 103

G

garbage collection 178
gematria 137–142

exercises 138, 140–141
solutions 138, 141

gematria_equal_words function 140
gematria_for function 139
generator expressions 122, 170, 197
generator functions 197, 200
generators 197

iterator for all lines, all files 207–209
exercise 207–208
solution 208

mychain generator function 211–214
exercise 212
solution 212

time elapsed since last iteration 209–211
exercise 210
solution 210

get_final_line function 73

INDEX218
__getitem__ method 183–184
get_nutrition method 182
get_rainfall function 59
get_sv function 135
glob method 88, 92
global frame 6
globbing 87
glob.glob function 72, 87, 133, 135

H

“has-a” rule 170
hash function 55
hash maps 53
hash marks 8
hash tables 53
hashable types 54–55
hashes 53
hashlib module 72, 86
hexadecimal output 14–16

exercise 14–15
solution 15

hex_output function 14

I

ICPO rule 177, 180
if clause 128, 140
if statement 11, 60
immutable strings 17
immutable structures 21
import function 144–145, 151, 155
import MODULENAME variable 146
importlib module 152
importlib.reload 144
in operator 17–19, 30–31, 57
IndexError exception 79
inheritance 180–183

exercise 180–181
solution 181–182

__init__ method 161, 163, 165–167, 175, 186,
202, 205, 207

__init__.py file 156
input errors 61
input function 2–4, 11, 56, 118
int class 15
int function 6, 14, 16
int type 1
io.StringIO 35
“is-a” rule 170
isdecimal method 62
isdigit method 62
isnumeric method 62
itemgetter function 42–43, 46
items method 50
items tuple 38
iter function 185

__iter__ method 198, 200, 204–205, 212
iter method 201
iterables 200–201
iterators

Circle class 204–207
exercise 205–206
solution 206

iterator for all lines, all files 207–209
exercise 207–208
solution 208

mychain generator function 211–214
exercise 212
solution 212

MyEnumerate class 202–204
exercise 202–203
solution 203–204

time elapsed since last iteration 209–211
exercise 210
solution 210

itertools module 200–201, 211
itertools.chain function 213

J

JavaScript object notation. See JSON
joining numbers 118–125

exercise 119–122
solution 122–123

join_numbers function 119
JSON (JavaScript object notation) 71

exercise 92–94
solution 94

json module 91–92, 94
json.load method 91, 93

K

d 56
key argument 184
key parameter 42, 47
KeyError exception 65
keys 53
key-value pairs 53, 55, 62, 127, 152

L

lambda function 42, 44–46
len function 42, 94
lines, end of 89
list comprehensions 30, 117
list.append function 18, 23, 36
list.remove method 36
lists

alphabetizing names 40–46
exercise 41–43
solution 43

INDEX 219
lists (continued)
firstlast function 31–37

exercise 31–35
solution 35

flattening lists 127–129
exercise 128
solution 128

printing tuple records 49–52
exercise 50–51
solution 51

summing anything 37–40
exercise 38–39
solution 39–40

useful references 30–31
word with most repeated letters

46–49
exercise 47–48
solution 48

loading modules 151
LogFile class 165
longest word per file 85–88

exercise 85–86
solution 86

M

map function 123–124, 133
mappings 55
max function 31, 94
menu function 153
menu.py file 152, 155
menus 152–156

exercise 153–154
restaurant menu 57–59

exercise 57–58
solution 58

solution 154
min function 93
mm function 146
modification time (mtime) 211
modules 155

menus 152–156
exercise 153–154
solution 154

sales tax calculator 147–152
exercise 148–150
solution 150

modulus operator (%) 205
most_common method 47
most_repeating_letter_count function 48
most_repeating_word function 46
multiprocessing module 154
mutable structures 21
mychain generator function 211–214

exercise 212
solution 212

MyEnumerate class 202, 204
exercise 202–203
solution 203–204

MyEnumerateIterator class 203–204
mylist function 42, 44
mymod function 146
mypackage directory 155
MyRange class 207, 213
mysum function 8–9, 38–39
mysum_bigger_than function 40

N

__name__ variable 153
name-value pairs 53
nested list comprehensions 121, 131
__new__ method 165–166, 168
newline character 74, 82, 89
__next__ method 198, 200, 202, 204–205, 207, 212
next method 201
Novel class 179
number_of_vowels function 120
numbers

adding 125–127
exercise 126
solution 126

joining 118–125
exercise 119–122
solution 122–123

number guessing game 2–8
exercise 3–5
solution 6

number of different integers 68–70
exercise 69
solution 69–70

summing 8–10
exercise 9–10
solution 10

numbers argument 9
numbers function 9
numeric types

hexadecimal output 14–16
exercise 14–15
solution 15

numeric types (continued)
number guessing game 2–8

exercise 3–5
solution 6

run timing 11–13
exercise 11–12
solution 13

summing numbers 8–10
exercise 9–10
solution 10

useful references 2
NumPy 36, 146

INDEX220
O

object class 36
object-oriented programming 158
objects

classes 161–168, 185–189
exercises 162–164, 186–188
solutions 164, 188

combining techniques
193–196

exercise 194
solution 194–195

composition 168–175,
189–193

exercises 169–170, 190
solutions 171, 192

data attributes 175–180
exercise 175–177
solution 177–178

FlexibleDict class 183–185
exercise 183–184
solution 184–185

inheritance 180–183
exercise 180–181
solution 181–182

one-character string 17
one_line.split 82
open function 73
operator module 42
operator.itemgetter 30, 41, 51
ord function 16, 96, 132
os module 145, 147
os.listdir function 70, 72, 87, 92, 133,

135, 201, 207, 209
os.path.join function 86–87, 201, 207
os.path.splitext 70
os.py function 145
os.pyc function 145
os.sep function 146, 207
os.stat function 72, 84, 87, 95
os.walk function 201, 207
output variable 9

P

packages
menus 152–156

exercise 153–154
solution 154

parent class 179
pass keyword 208
passwd file 90
passwd_to_csv function 89
passwd_to_dict function 78
password file reader 78–81

exercise 79
solution 79–80

password-generation function 111–114
exercise 112–113
solution 113–114

Path object 87
pathlib module 87
Person class 116, 178
person_dict_to_list function 42
Phone class 182
Pig Latin

sentences 22–24
exercise 22–23
solution 23

translator 129–131
exercise 129–130
solution 130

words 18–22
exercise 19–20
solution 20

pip 144
pl_sentence function 22
plus_minus function 36
plword function 129, 131
PosixPath object 88
power variable 14
prefix notation calculator 107–111

exercise 108–110
solution 110

printf 7
printing tuple records 49–52

exercise 50–51
solution 51

print_scores function 91
procedural programming 158
punctuation 21
PyPI (Python Package Index) 145, 155–156
Python property 164
Python Tutor 6
Pythonic code 12
PYTHONPATH variable 151

R

r+ mode 96
rainfall tracker 59–64

exercise 59–63
solution 63

randint function 3
random module 2–4
range class 30, 207, 213
range function 119, 201
raw_input function 3
re module 209
read method 75
RecentDict class 185
redundancy, reducing 172
reload function 152
reloading modules 151

INDEX 221
__repr__ method 161, 170, 189
re.split function 23
restaurant menu 57–59

exercise 57–58
solution 58

result variable 93
result.items() method 93
retrieving final line 73–77

exercise 73–76
solution 76–77

return statement 209
return_value function 153
reversed function 14–15
reversing lines 95–97

exercise 95–96
solution 96

run timing 11–13
exercise 11–12
solution 13

run_app method 182
run_func_with_world function 45

S

sales tax calculator 147–152
exercise 148–150
solution 150

Scoop class 162, 164, 168
ScoreList 159
self parameter 163, 166
self.data attribute 202, 205–206
self.index attribute 202–203, 205
self.max_times 205–206
sep function 146
sequences 30, 198
set.add 56, 69
sets

dictdiff function 64–68
exercise 64–67
solution 67

number of different integers 68–70
exercise 69
solution 69–70

set.update 56, 69, 72
setup.py file 156
Shelf class 171
shell 49, 97
slices 18, 32, 34–35
sorted function 18, 26, 28, 41–43, 48, 50, 121
sorting strings 26–28

exercise 26–27
solution 27

space_required attribute 193
splat (*) operator 9–10, 38, 190
split 83
standard library 144–145

StopIteration exception 198, 200–201, 204, 209
str function 30, 120, 160
__str__ method 170
str.endswith method 78
str.format method 7–8, 31, 50
string indexes 32
string literals 44
string module 138
string.ascii_lowercase 118
string.ascii_lowercase attribute 138
StringIO 21, 77, 137
strings

Pig Latin sentences 22–24
exercise 22–23
solution 23

Pig Latin words 18–22
exercise 19–20
solution 20

sorting strings 26–28
exercise 26–27
solution 27

Ubbi Dubbi 24–26
exercise 25
solution 25

useful references 18
str.isalpha function 151
str.isdigit method 6, 56, 62, 118, 126, 151
str.isspace function 151
str.join function 18, 23, 27–28, 118–119, 130, 153,

170, 207
str.lstrip method 79
str.replace function 25
str.rstrip() method 79, 96
strsort function 26
str.split method 18, 22–23, 28, 52, 72, 79, 118, 126
str.startswith method 78–79, 90
str.strip method 78
subclasses 179
subject_scores 93
sum function 8, 10, 94, 120, 122
summing

anything 37–40
exercise 38–39
solution 39–40

numbers 8–10
exercise 9–10
solution 10

sum_numbers function 125
sum_numeric function 40
super built-in 161
supervocalic words 135–137

exercise 136
solution 137

sys.getsizeof 36
sys.modules function 152
sys.path function 145, 151

INDEX222
T

text. See words and text
TextIOWrapper object 73
this object 163
time elapsed since last iteration 209–211

exercise 210
solution 210

time_percentage function 148
time.perf_counter 201, 210
transforming values 119, 133–135

exercise 134
solution 134

transform_values function 133–135
tuples

alphabetizing names 40–46
exercise 41–43
solution 43

firstlast function 31–37
exercise 31–35
solution 35

printing tuple records 49–52
exercise 50–51
solution 51

summing anything 37–40
exercise 38–39
solution 39–40

useful references 30–31
word with most repeated letters 46–49

exercise 47–48
solution 48

TypeError exception 4, 9

U

Ubbi Dubbi 24–26
exercise 25
solution 25

unhashable types 55
Unicode 17, 27, 75
unique_words.update 83
un_timing function 11
upper attribute 173
URL-encode characters 26

V

ValueError exception 6, 150, 184
variable-length encoding 27

W

wc function 81
while loops 2, 5, 61
while True loops 4–5
width attribute 171
with statement 71–72, 74, 80–81, 90, 95
wordcount function 81
words and text

alphabetizing names 40–46
exercise 41–43
solution 43

Pig Latin sentences 22–24
exercise 22–23
solution 23

Pig Latin translator 129–131
exercise 129–130
solution 130

Pig Latin words 18–22
exercise 19–20
solution 20

reversing lines 95–97
exercise 95–96
solution 96

Ubbi Dubbi 24–26
exercise 25
solution 25

word counter 81–84
exercise 82–84
solution 84

word with most repeated letters
46–49

exercise 47–48
solution 48

X

XML generator 101–107
exercise 102–103
solution 103

Y

yield statement 200–201

Z

zip function 36, 201, 213

Reuven M. Lerner

ISBN: 978-1-61729-550-8

T
o become a champion Python programmer you need
to work out, building mental muscle with your hands
on the keyboard. Each carefully selected exercise in this

unique book adds to your Python prowess—one important
skill at a time.

Python Workout presents 50 exercises that focus on key
Python 3 features. In it, expert Python coach Reuven
Lerner guides you through a series of small projects, practic-
ing the skills you need to tackle everyday tasks. You’ll
appreciate the clear explanations of each technique, and
you can watch Reuven solve each exercise in the accompa-
nying videos.

What’s Inside
● 50 hands-on exercises and solutions
● Coverage of all Python data types
● Dozens more bonus exercises for extra practice

For readers with basic Python knowledge.

Reuven M. Lerner teaches Python and data science to compa-
nies around the world.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/python-workout

$59.99 / Can $79.99 [INCLUDING eBOOK]

 Python Workout

PYTHON/PROGRAMMING

M A N N I N G

“Whether you’re a Python
novice or, like me, have been

away from the language
for a while, this book is a

great way to build strength
with Python.”

—Mark Elston, Advantest America

“A practical introduction
to the Python programming
language, built around fun

 and well-chosen exercises.”—Jens Christian Bredahl Madsen
Systematic

“The practical course you
need to become fl uent

 in Pythonic programming!”—Jean-François Morin
Laval University

“This book pulls back
the layers and allows you

 to master Python.”—Jeff Smith, Agilify Automation

See first page

	Python Workout
	brief contents
	1 n Numeric types 1
	2 n Strings 17
	3 n Lists and tuples 29
	4 n Dictionaries and sets 53
	5 n Files 71
	6 n Functions 98
	7 n Functional programming with comprehensions 116
	8 n Modules and packages 143
	9 n Objects 158
	10 n Iterators and generators 197

	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Software/hardware requirements

	liveBook discussion forum

	about the author
	about the cover illustration
	1 Numeric types
	Useful references
	Exercise 1 – Number guessing game
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 2 – Summing numbers
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 3 – Run timing
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 4 – Hexadecimal output
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	2 Strings
	Useful references
	Exercise 5 – Pig Latin
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 6 – Pig Latin sentence
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 7 – Ubbi Dubbi
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 8 – Sorting a string
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	3 Lists and tuples
	Exercise 9 – First-last
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 10 – Summing anything
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 11 – Alphabetizing names
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 12 – Word with most repeated letters
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 13 – Printing tuple records
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	4 Dictionaries and sets
	Hashing and dicts
	Sets
	Exercise 14 – Restaurant
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 15 – Rainfall
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 16 – Dictdiff
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 17 – How many different numbers?
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	5 Files
	Exercise 18 – Final line
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 19 – /etc/passwd to dict
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 20 – Word count
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 21 – Longest word per file
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 22 – Reading and writing CSV
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 23 – JSON
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 24 – Reverse lines
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	6 Functions
	Exercise 25 – XML generator
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 26 – Prefix notation calculator
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 27 – Password generator
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	7 Functional programming with comprehensions
	Exercise 28 – Join numbers
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 29 – Add numbers
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 30 – Flatten a list
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 31 – Pig Latin translation of a file
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 32 – Flip a dict
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 33 – Transform values
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 34 – (Almost) supervocalic words
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 35a – Gematria, part 1
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 35b – Gematria, part 2
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	8 Modules and packages
	Exercise 36 – Sales tax
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 37 – Menu
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	9 Objects
	Exercise 38 – Ice cream scoop
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 39 – Ice cream bowl
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 40 – Bowl limits
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 41 – A bigger bowl
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 42 – FlexibleDict
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 43 – Animals
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 44 – Cages
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 45 – Zoo
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary

	10 Iterators and generators
	Exercise 46 – MyEnumerate
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 47 – Circle
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 48 – All lines, all files
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 49 – Elapsed since
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Exercise 50 – MyChain
	Working it out
	Solution
	Screencast solution
	Beyond the exercise

	Summary
	Conclusion

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

