

Table	of	Contents
Python	Interviews
Why	subscribe?
PacktPub.com

Foreword
Contributor
About	the	Author
Packt	is	Searching	for	Authors	Like	You

Preface
1.	Brett	Cannon
2.	Steve	Holden
3.	Carol	Willing
4.	Glyph	Lefkowitz
5.	Doug	Hellmann
6.	Massimo	Di	Pierro
7.	Alex	Martelli
8.	Marc-André	Lemburg
9.	Barry	Warsaw
10.	Jessica	McKellar
11.	Tarek	Ziadé
12.	Sebastian	Raschka
13.	Wesley	Chun
14.	Steven	Lott
15.	Oliver	Schoenborn
16.	Al	Sweigart
17.	Luciano	Ramalho
18.	Nick	Coghlan
19.	Mike	Bayer
20.	Jake	Vanderplas
Other	Books	You	May	Enjoy
Artificial	Intelligence	with	Python
Understanding	Software
Leave	a	review	-	let	other	readers	know	what	you	think

Python	Interviews

Python	Interviews
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the
prior	 written	 permission	 of	 the	 publisher,	 except	 in	 the	 case	 of	 brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the
accuracy	 of	 the	 information	 presented.	 However,	 the	 information
contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.
Neither	 the	 author,	 nor	Packt	Publishing	 or	 its	 dealers	 and	 distributors,
will	 be	 held	 liable	 for	 any	 damages	 caused	 or	 alleged	 to	 have	 been
caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about
all	 of	 the	 companies	 and	 products	 mentioned	 in	 this	 book	 by	 the
appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee
the	accuracy	of	this	information.

Acquisition	Editor:	Ben	Renow-Clarke

Project	Editor:	Radhika	Atitkar

Content	Development	Editors:	Joanne	Lovell

Technical	Editor:	Gaurav	Gavas

Copy	Editor:	Joanne	Lovell

Indexer:	Tejal	Daruwale	Soni

Graphics:	Tom	Scaria

Production	Coordinator:	Arvindkumar	Gupta

First	published:	February	2018

Production	reference:	1270218

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78839-908-1

www.packtpub.com

"Python"	 and	 the	 Python	 Logo	 are	 trademarks	 of	 the	 Python	 Software
Foundation.

mapt.io

Mapt	 is	an	online	digital	 library	 that	gives	you	 full	access	 to	over	5,000
books	and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your
personal	 development	 and	 advance	 your	 career.	 For	more	 information,
please	visit	our	website.

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks
and	Videos	from	over	4,000	industry	professionals
Learn	better	with	Skill	Plans	built	especially	for	you
Get	a	free	eBook	or	video	every	month
Mapt	is	fully	searchable
Copy	and	paste,	print,	and	bookmark	content

http://www.packtpub.com

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,
with	 PDF	 and	 ePub	 files	 available?	 You	 can	 upgrade	 to	 the	 eBook
version	 at	 www.PacktPub.com	 and	 as	 a	 print	 book	 customer,	 you	 are
entitled	 to	 a	 discount	 on	 the	 eBook	 copy.	 Get	 in	 touch	 with	 us
at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	 you	 can	also	 read	a	 collection	 of	 free	 technical
articles,	 sign	 up	 for	 a	 range	 of	 free	 newsletters,	 and	 receive	 exclusive
discounts	and	offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com

Foreword
Welcome,	all,	to	Python	Interviews!

People	often	get	confused	about	open	source	programming	 languages,
focusing	 merely	 on	 the	 technology	 behind	 the	 language	 —	 be	 it	 the
language	 itself,	 the	 libraries	 available	 for	 it,	 or	 the	 impressive	 products
that	are	built	with	 it	—	and	not	on	the	ecosystem	of	 individuals	 that	are
responsible	for	the	language	existing	in	the	first	place.

Python	 is	 an	 open	 source	 language,	 driven	mostly	 by	 volunteer	 efforts
from	 all	 around	 the	 globe.	 It's	 important	 to	 focus	 not	 only	 on	 the
technology	behind	what	makes	Python	great,	but	also	the	individuals	that
make	it	great	as	well.

The	 world	 of	 Python	 is	 not	 one	 comprised	 merely	 of	 code,	 but	 of	 a
community	of	like-minded	individuals	coming	together	to	make	the	world
a	better	place	through	the	open	source	ethos.	Thousands	of	 individuals
have	contributed	towards	the	success	of	Python.

This	 book	 contains	 interviews	 with	 an	 excellent	 selection	 of	 the
individuals	that	power	Python	and	its	wonderful	open	source	community.
It	 dives	 into	 the	 personal	 backgrounds	 of	 these	 individuals	 and	 the
opinions	 they	 have	 about	 the	 community,	 the	 technology,	 and	 the
direction	we're	headed	in,	together.

But,	 must	 importantly	 —	 it	 exposes	 that	 Python,	 the	 programing
language,	is	indeed	comprised	of	persons,	just	like	you,	trying	to	make	a
difference	in	the	world,	one	step	at	a	time.

Kenneth	Reitz

Director	at	Large	for	the	Python	Software	Foundation

Contributor
About	the	Author

Mike	Driscoll	has	been	using	Python	since	April	2006.	He	blogs	for	the
Python	 Software	 Foundation.	 Other	 than	 blogging,	 he	 enjoys	 reading
novels,	listening	to	a	wide	variety	of	music,	and	learning	photography.	He
writes	 documentation	 for	 the	 wxPython	 project's	 wiki	 page	 and	 helps
wxPython	users	on	their	mailing	 list.	He	also	helps	Python	users	on	the
PyWin32	list	and	occasionally	the	comp.lang.py	list	too.

Packt	 is	 Searching	 for	 Authors
Like	You
If	 you're	 interested	 in	 becoming	 an	 author	 for	 Packt,	 please
visit	 authors.packtpub.com	 and	 apply	 today.	 We	 have	 worked	 with
thousands	 of	 developers	 and	 tech	 professionals,	 just	 like	 you,	 to	 help
them	share	their	insight	with	the	global	tech	community.	You	can	make	a
general	application,	apply	for	a	specific	hot	topic	that	we	are	recruiting	an
author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Preface
Near	the	end	of	2016,	I	was	brainstorming	with	my	editor	about	the	kinds
of	books	might	be	of	interest.	I	had	been	doing	a	series	of	articles	on	my
blog	called	PyDev	of	the	Week	that	inspired	us	into	crafting	a	book	based
on	 interviewing	 core	members	 of	 the	 Python	 community.	 I	 spent	 some
time	hashing	out	20	names	of	people	that	I	thought	would	be	good	for	the
book	and	then	I	started	contacting	them	in	2017.

Over	the	course	of	about	8-12	months,	I	ended	up	interviewing	20	pillars
of	 the	Python	 community,	 although	my	 list	 changed	 several	 times	 over
that	period.	Some	people	weren't	available	or	couldn't	be	reached.	But	I
persevered	 and	 managed	 to	 pull	 together	 a	 well-rounded	 set	 of
representatives	of	the	Python	programming	community.

In	 this	 book,	 you	 will	 get	 interesting	 anecdotes	 about	 the	 history	 of
Python	and	its	creators,	such	as	Brett	Cannon	and	Nick	Coghlan.	You	will
discover	why	Python	didn't	have	Unicode	support	in	its	first	release,	and
you'll	hear	from	core	developers	about	where	they	think	Python	is	going
in	 the	 future.	You	will	 also	hear	 from	some	well-known	Python	authors,
like	Al	Sweigart,	Luciano	Ramalho,	and	Doug	Hellman.

I	 also	 spoke	 with	 some	 of	 the	 creators	 or	 core	 developers	 of	 popular
third-party	 packages	 in	 Python,	 such	 as	 web2py	 (Massimo	 Di	 Pierro),
SQLAlchemy	 (Mike	 Bayer),	 and	 the	 Twisted	 Framework	 (Glyph
Lefkowitz),	among	others.

My	 interview	 with	 Carol	 Willing	 was	 a	 lot	 of	 fun.	 She	 is	 also	 a	 core
developer	of	the	Python	language	itself,	so	learning	her	views	on	women
in	 technology	 and	 Python	 was	 quite	 enlightening.	 She	 is	 also	 a
contributor	 to	 Project	 Jupyter,	 so	 learning	more	 about	 that	 project	 was
exciting.

I	 think	 you	 will	 find	 Alex	 Martelli	 and	 Steve	 Holden's	 interviews	 to	 be
especially	compelling	as	they	have	been	working	with	Python	for	a	very
long	time	and	have	many	interesting	insights.

There	 is	 a	 lot	 to	 learn	 from	 all	 the	 individuals	 that	 I	 spoke	with.	 If	 you

happen	to	know	them,	you	know	that	even	better	 than	 I	do.	All	of	 them
were	great	to	chat	with	and	very	responsive	to	me	even	on	the	shortest	of
timelines.	If	you	happen	to	meet	them	at	a	conference,	be	sure	to	thank
them	for	their	contributions.

Special	thanks	go	out	to	all	the	people	I	interviewed.	They	took	time	out
of	 their	 lives	 to	help	me	with	 this	project	and	 I	 truly	appreciate	 it.	 I	also
want	to	thank	my	editors	for	keeping	this	project	on	track.	Finally,	I	would
like	 to	 thank	 my	 wife,	 Evangeline,	 for	 putting	 up	 with	 me	 interviewing
people	 at	 random	 times	 throughout	 the	 summer.	 And	 finally,	 I	 want	 to
thank	you,	dear	reader,	for	checking	out	this	book.

Chapter	1.	Brett	Cannon

Brett	 Cannon	 is	 a	 Canadian	 software	 engineer	 and	 Python	 core
developer.	 He	 is	 a	 principal	 software	 developer	 at	Microsoft,	 where	 he
works	 on	 editing	 tools.	 Previous	 roles	 include	 software	 engineer	 at
Google	 and	 creator	 at	 Oplop.	 Brett	 became	 a	 fellow	 of	 the	 Python
Software	Foundation	(PSF)	in	2003	and	served	as	a	director	of	the	PSF
between	2013	and	2014.	He	 is	a	 former	PyCon	US	committee	member
and	was	conference	chair	of	PyData	Seattle	2017.	Brett	led	the	migration
of	 CPython	 to	 GitHub	 and	 created	 importlib.	 Among	 his	 open	 source
achievements	is	caniusepython3	and	he	is	the	co-author	of	17	successful
Python	Enhancement	Proposals.

Discussion	themes:	core	developers,	v2.7/v3.x,	Python	sprints.

Catch	up	with	Brett	Cannon	here:	@brettsky

Mike	Driscoll:	Why	did	you	become	a	computer	programmer?

Brett	Cannon:	I	always	found	computers	interesting,	as	far	back	as	I	can
remember.	 I	 was	 lucky	 enough	 to	 go	 to	 an	 elementary	 school	 with	 a
computer	lab	full	of	Apple	IIes,	back	when	that	was	the	cutting	edge,	so	I
was	exposed	to	them	relatively	early	on.

In	the	year	between	junior	high	and	high	school,	I	took	a	computer	class

over	the	summer	and	that	included	a	little	bit	of	Apple	BASIC.	I	did	it	and
I	excelled	at	it,	to	the	point	that	I	think	I	finished	the	entire	class	in	the	first
week.	It	hadn't	really	clicked	that	I	could	do	that	for	a	job	at	that	point.

This	continued	through	high	school,	and	then	when	it	came	time	to	pick
courses	 for	 junior	 college,	 my	mom	 had	me	 promise	 her	 two	 things.	 I
agreed	 that	 I	 would	 take	 a	 course	 in	 philosophy	 and	 I	 would	 take	 a
course	in	computer	programming.	So	that's	what	I	did	and	I	loved	both.

Once	again,	I	read	my	introductory	C	book	in	the	first	two	weeks,	which
was	supposed	to	last	for	the	whole	semester.	I	remember	the	first	time	I
finished	it,	I	sat	down	and	implemented	tic-tac-toe	one	day	after	class.	 I
even	forgot	to	eat	dinner!	It	was	just	one	of	those	eureka	moments.	The
feeling	 of	 boundless	 creativity	 that	 this	 tool	 provided	 just	 engulfed	me.
That's	how	I	got	into	programming.

Brett	Cannon:	'The	feeling	of	boundless	creativity	that	this	tool
provided	just	engulfed	me.	That's	how	I	got	into	programming.'

I	 knew	 that	 tic-tac-toe	was	 a	 solved	 problem,	 so	 I	 thought	 that	 I	 could
actually	 write	 the	 logic	 so	 that	 I	 could	 play	 tic-tac-toe	 perfectly	 as	 a
program.	I	spent	something	like	six	hours	one	evening	doing	it,	and	I	was
utterly	blown	away	 that	 I	was	actually	able	 to	do	 that.	 It	opened	up	 the
possibilities	of	what	computers	could	do,	and	 the	 freedom	of	 it	 and	 the
ability	to	think	about	the	problems	just	really	grabbed	me.	I've	been	doing
it	ever	since.

Driscoll:	 What	 led	 you	 to	 becoming	 so	 involved	 with	 Python	 and	 its
community?

Cannon:	 Well,	 I	 ended	 up	 going	 to	 Berkeley	 and	 getting	 a	 degree	 in
philosophy,	but	I	kept	taking	computer	science	courses.	The	introductory
computer	science	course	at	Berkeley	had	an	entrance	exam,	and	I	was
worried	that	I	didn't	know	object-oriented	programming,	since	I	only	knew
C.	 So	 I	 looked	 around	 for	 an	 object-oriented	 programming	 language.	 I
found	Python,	 learned	it,	 loved	it,	and	kept	writing	personal	programs	in
it.

At	some	point	along	the	way,	I	needed	time.strptime,	the	function	to	take
a	string	that	represents	a	datetime	and	parse	it	back	into	a	time	tuple.	I
was	 on	 Windows	 at	 the	 time,	 and	 time.strptime	 wasn't	 available	 on
Windows.	As	a	result,	I	came	up	with	a	way	to	parse	it	where	you	had	to
still	plug	in	the	locale	information	but	it	would	still	parse	it.

Back	 then,	ActiveState's	cookbook	site	was	still	a	 thing,	so	 I	posted	my
recipe	of	how	to	do	strptime	up	on	ActiveState.	Later,	O'Reilly	published
the	 first	 edition	 of	 Python	 Cookbook,	 and	 Alex	 Martelli	 included	 that
recipe	 as	 the	 last	 recipe	 in	 the	 book,	 which	 also	 happened	 to	 be	 the
longest	recipe	in	the	book.

Brett	Cannon:	'So	I	posted	my	recipe	of	how	to	do	strptime	up	on
ActiveState.'

It	 still	 ticked	 me	 off,	 though,	 that	 people	 had	 to	 input	 their	 locale
information.	 I	was	 frustrated	 that	 I	couldn't	solve	 that.	So	 in	 the	back	of
my	mind,	 I	was	 continuously	 thinking	about	 how	 I	 could	get	 that	 locale
information	 out.	 Eventually,	 I	 solved	 it.	 It	 was	 actually	 the	 week	 after
graduating	 from	 Berkeley,	 and	 I	 gifted	 myself	 the	 time	 to	 write	 up	 the
solution,	so	that	you	didn't	have	to	enter	locale	information	anymore.

After	 I	 did	 that,	 I	 emailed	Alex	Martelli,	 since	we'd	exchanged	emails	a
couple	of	 times	at	 that	point,	 and	 I	 said,	 "Hey,	 I've	 fixed	 this	 so	 it's	 not
necessary	to	input	the	locale	anymore.	How	do	I	get	this	upstream?"	Alex
Martelli	 said,	 "Oh,	well	 you	 just	 email	 this	mailing	 list,	Python-Dev,	 and
you	can	submit	the	patch."

Brett	Cannon:	'Alex	Martelli	said,	"Oh,	well	you	just	email	this
mailing	list,	Python-Dev,	and	you	can	submit	the	patch."'

So,	I	emailed	the	list	and	I	 think	Skip	Montanaro	was	the	first	person	to
respond.	Skip	just	said,	"Yeah,	that's	great,	 just	upload	the	file	and	we'll
work	 at	 it	 and	 accept	 it."	 I	 thought	 that	 was	 awesome.	 I	 was	 able	 to
contribute	 to	 this	 project	 and	 this	 language,	which	 I	 thought	was	 really
interesting.

Brett	Cannon:	'I	was	able	to	contribute	to	this	project	and	this
language,	which	I	thought	was	really	interesting.'

All	 of	 this	 happened	 during	 a	 gap	 year	 I	 was	 taking	 between
undergraduate	 and	 graduate	 school.	 I	 was	 trying	 to	 get	 into	 graduate
school	 for	computer	science	and	I	knew	that	 I	was	going	to	need	some
more	 programming	 experience,	 beyond	 the	 courses	 I	 was	 taking.	 I
thought	that	I	could	contribute	to	Python	and	help	out.	I	had	all	the	time	in
the	world	back	then,	so	I	decided	I'd	get	involved.

Brett	Cannon:	'I	decided	I'd	get	involved.'

I	got	on	the	mailing	list	and	I	lurked	around	asking	questions.	Then	in	that
same	year,	I	offered	to	start	taking	up	the	Python-Dev	summaries,	which
had	stopped	at	 that	point.	Once	again,	 I	 figured	 I	had	 the	 time	 to	do	 it,
and	I	realized	it	was	a	good	way	for	me	to	learn,	because	it	forced	me	to
read	every	single	solitary	email	in	Python-Dev.

One	interesting	side	effect	was	that	I	got	to	know	about	any	small	issues
that	nobody	had	time	to	take	care	of,	so	I	saw	anything	that	cropped	up
before	 almost	 anybody	 else.	 I	 was	 able	 to	 very	 easily	 pick	 up	 small
issues	to	fix	and	learn,	and	I	was	able	to	continually	do	that.

In	 the	guise	of	 the	Python-Dev	summaries,	 I	got	 to	ask	more	and	more
questions.

At	some	point,	I	knew	enough,	and	I	became	a	core	developer	right	after
the	first	PyCon	(at	least	the	first	conference	labeled	PyCon),	in	2003.	At
that	 point	 I	was	 hooked.	 I'd	 got	 to	 know	 the	 team	 and	 the	 people	 had
become	 friends	of	mine.	 I	 just	 enjoyed	 it	 so	much	 and	 it	was	 fun,	 so	 I
stuck	with	it	and	I've	never	really	stopped	for	longer	than	a	month	since.

https://wiki.python.org/moin/GetInvolved

That	doesn't	mean	that	you	have	to	be	a	core	developer	 to	get	 into	 the

Python	community.	As	long	you	enjoy	it,	you	can	get	hooked	however	it
makes	sense	to	you.

Driscoll:	What	then	made	you	decide	to	start	blogging	and	writing	about
Python?

Cannon:	Blogging	is	one	of	those	ways	to	get	involved	and	since	I	enjoy
writing,	that	medium	happened	to	fit	the	way	that	I	like	to	communicate.	I
started	doing	it	way	back	when,	and	I've	more	or	less	consistently	done	it
ever	 since.	 I	 always	 enjoy	 that	 aspect	 of	 dispensing	 knowledge	 to	 the
world	as	best	as	I	can.

Driscoll:	Was	it	important	that	you	got	into	Python	at	just	the	right	time?
Do	you	recommend	getting	in	early	on	projects?

Cannon:	Yes,	it	was	one	of	those	situations	where	I	was	in	the	right	place
at	the	right	time,	and	with	the	free	time	I	needed	to	get	going.	I	managed
to	start	when	I	had	enough	time	to	contribute	as	much	as	I	wanted.

I	 also	 got	 started	when	 the	Python	 project	wasn't	 that	 big.	 I	 remember
when	 I	started	my	master's	 degree,	 people	would	ask	what	 I	 did	 in	my
spare	time.	When	I	said	I	contributed	to	Python,	they'd	reply,	"Is	that	the
language	with	 the	white	space?"	So	 I've	 just	been	doing	 this	 for	a	 long
time.

So	yes,	I	got	involved	in	the	project	at	an	ideal	point,	before	interest	in	the
language	surged	around	2005.	I	sometimes	wish	that	I'd	been	able	to	get
started	with	it	earlier	somehow,	but	I'd	have	been	younger,	so	that	might
not	 have	worked.	So	 it	was	 serendipitous	 that	 it	 all	 just	 came	 together
when	it	did.

Driscoll:	What	parts	of	Python	have	you	actively	contributed	to?	Is	there
a	module	that	you	helped	start	or	you	had	a	major	influence	on,	such	as
the	datetime	module?

Cannon:	 My	 influence	 was	 actually	 the	 time	 module.	 I	 predate	 the
datetime	 module!	 The	 first	 modules	 that	 I	 ever	 authored	 were	 the
dummy_thread	and	dummy_threading	modules	that	were	in	Python	2.

That	was	another	one	of	those	instances	where	someone	came	forward

and	recommended	it	as	a	cool	thing	to	do.	They	said	they'd	get	to	it,	but
over	 time	 they	didn't	 get	 to	 it,	 so	 I	 emailed	 them	saying,	 "Hey,	 are	 you
going	to	get	to	this?"	They	said	no,	but	that	it	would	still	be	a	useful	thing
to	do,	so	I	did	it.	Those	were	the	first	modules	that	I	ever	authored	from
scratch.

I've	essentially	touched,	I	think,	everything	in	the	Python	language	at	this
point.	I've	even	touched	the	parser,	which	very	few	people	ever	have	to
touch.	I	 think	that	I	helped	to	write	warnings	for	some	tokenization	thing
at	one	point.	I	played	a	big	part	in	the	compiler,	when	we	switched	from
going	from	a	concrete	syntax	tree	to	byte	code,	to	then	having	a	proper
concrete	syntax	tree,	to	an	abstract	syntax	tree	to	Python.

Brett	Cannon:	'I've	essentially	touched,	I	think,	everything	in	the
Python	language	at	this	point.'

Jeremy	Hilton	had	started	that	project,	and	Guido	van	Rossum	basically
gave	everyone	an	ultimatum,	because	the	project	had	been	taking	years
to	finish.	So	Guido	said,	"You	have	until	the	next	release	to	finish	this."

Brett	Cannon:	'So	Guido	said,	"You	have	until	the	next	release	to
finish	this."'

I	jumped	in	and	helped	Jeremy	to	carry	it	the	last	half	of	the	way.	I	did	a
similar	 thing	 with	 the	 warnings	 module.	 Neil	 Norbits	 had	 started	 to
implement	 it,	but	he	kind	of	drifted	off	 the	project,	so	 I	picked	 it	up	and
finished	 it	 the	 rest	 of	 the	way.	That's	 how	 I	 ended	up	being	one	of	 the
people	who	knew	the	warnings	module	a	little	too	well!

What	else	has	led	me	to	becoming	so	involved	in	Python?	Probably	the
one	thing	that	I'm	most	known	for	is	importlib.	I	wrote	most	of	the	current
implementation	of	import	(all	of	it	for	Python	3.3)	and	then	Nick	Coghlan
and	 Eric	 Snow	 helped	 a	 lot	 subsequently,	 but	 the	 whole	 importlib
package	was	my	doing.	Those	are	the	ones	that	come	to	mind	in	terms	of
what	 came	 directly	 from	me,	 but	 I've	 basically	 just	 touched	 everything
everywhere.	I	can't	keep	track	anymore	after	14	years!

Driscoll:	I	know	what	you	mean.	I	hate	it	when	I	come	across	some	code
and	I	think,	"Who	wrote	this,	and	why	is	it	so	bad?"	I	then	remember	that	I
wrote	it	a	good	two	years	ago!

Cannon:	Yeah,	 if	 you	manage	 to	 read	 your	 own	code	 from	six	months
ago	 and	 it	 still	 looks	 good,	 then	 there's	 probably	 something	 wrong.	 It
usually	means	you	haven't	learned	something	new	yet.

Brett	Cannon:	'If	you	manage	to	read	your	own	code	from	six
months	ago	and	it	still	looks	good…it	usually	means	you	haven't

learned	something	new	yet.'

Driscoll:	What	do	you	consider	 to	be	the	best	 thing	about	being	a	core
developer	of	Python?

Cannon:	Probably	just	the	friendships	that	I've	made	through	being	one.
A	lot	of	the	core	developers	are	friends	of	mine.

We	get	together	once	a	year	and	I	get	to	spend	almost	24	hours	a	day	for
a	whole	week	with	a	lot	of	these	people.	That's	on	top	of	the	time	I	get	to
spend	with	them	online	throughout	the	rest	of	the	year.	It's	probably	more
time	than	I	get	 to	spend	with	a	 lot	of	my	friends,	because	how	often	do
you	actually	get	to	take	basically	a	full	week	of	vacation	with	good	friends
of	yours?

So	yeah,	it's	honestly	the	friendships	at	this	point.	It's	being	able	to	hang
out	and	work	with	these	people,	 learn	from	them	and	enjoy	what	we	do
and	keep	doing	that.

I	 don't	 think	 about	 the	 impact	 of	 Python	 very	 often.	 It's	 a	 little	 mind-
boggling	sometimes	to	think	about,	so	I	try	not	to	dwell	on	it.	I	don't	want
any	form	of	an	ego	because	of	it,	so	I	try	to	actively	not	think	about	it	too
much.	If	I	do	just	sit	here	and	think	about	working	on	this	language	that's
used	by	however	many	millions	of	developers,	then	that's	a	bit	of	an	eye-
opener.	It's	kind	of	cool	to	be	able	to	say	that	I	work	on	that,	but	primarily
it's	about	getting	to	work	with	friends.

I	still	remember	very	clearly	when	I	first	joined	the	team,	and	even	further

back	when	 I	 joined	 the	mailing	 list,	 so	 although	 people	 say	 I'm	 one	 of
these	 big	 high-up	 leads	 on	 the	Python	 developer	 team,	 I've	 never	 fully
acclimated	 to	 that	 idea.	 I	 just	 don't	 think	 of	 myself	 that	 way.	 Guido
famously	was	once	asked	at	Google,	"On	a	scale	of	one	to	ten,	how	well
do	you	know	Python?"	He	said	an	eight.

'Guido	famously	was	once	asked	at	Google,	"On	a	scale	of	one	to
ten,	how	well	do	you	know	Python?"	He	said	an	eight.'

No	one	knows	the	entire	system,	because	it's	way	too	big	a	program	to
know.	We	 can	 all	 fit	 the	 basic	 semantics	 in	 our	 heads,	 but	 not	 all	 the
intricate	 details	 of	 how	 it	 actually	 works.	 How	 many	 people	 know
descriptors	or	meta	classes	like	the	back	of	their	hand?	I	have	to	look	up
that	stuff	on	occasion,	so	nobody	knows	the	whole	system.

Driscoll:	So	where	do	you	see	Python	going	as	a	language,	as	a	whole?
Do	you	see	it	getting	more	popular	 in	certain	fields,	or	 is	Python	getting
into	legacy	status	like	C++?

Cannon:	Python	is	in	an	interesting	position	today,	where	there	are	very
few	places	where	Python	hasn't	penetrated	into	as	a	major	player.	Sure,
there	 are	 certain	 areas,	 like	 low-level	 operating	 systems	 and	 kernel
development,	that	don't	suit	Python,	but	otherwise	it	can	feel	like	Python
is	pretty	much	everywhere.

The	one	place	I	know	we're	still	second	with	Python	is	in	data	science.	I
think	our	growth	trends	project	that	Python	won't	immediately	overtake	R
as	a	data	science	language	in	the	next	couple	of	years	at	least.	But	long
term,	 I	 do	 think	 that	 Python	will	 catch	 up.	 Otherwise,	 I	 just	 don't	 know
very	many	other	fields,	that	don't	require	a	systems	language,	where	we
aren't	competitive	for	first	place	with	Python.

I	 suppose	another	 area,	where	Python	 isn't	 so	 strong,	may	be	desktop
apps,	to	a	certain	extent.	Even	on	the	desktop,	people	use	us,	so	it's	not
like	 it's	devoid,	but	 there's	 just	a	 lot	of	competition	 in	 that	space.	 In	 the
long	 term,	 and	 we	might	 even	 be	 there	 already,	 we	 will	 hit	 the	 tipping
point	where	there's	so	much	Python	code	everywhere,	that	Python	itself
will	probably	never	go	away.

Brett	Cannon:	'In	the	long	term,	and	we	might	even	be	there	already,
we	will	hit	the	tipping	point	where	there's	so	much	Python	code
everywhere,	that	Python	itself	will	probably	never	go	away.'

Hopefully,	 Python	 will	 never	 be	 uttered	 in	 the	 same	 passing	 breath	 as
COBOL,	and	maybe	we'll	be	 loved	a	 little	bit	more	and	 for	 longer,	but	 I
don't	 see	 us	 ever	 really	 going	 anywhere.	 I	 think	 there's	 just	 too	 much
code	at	this	point	to	have	us	ever	disappear.

Driscoll:	 Python	 is	 one	 of	 the	 major	 languages	 in	 the	 current	 AI	 and
machine	 learning	boom.	What	do	you	 think	makes	Python	such	a	good
language	for	this?

Cannon:	I	think	the	ease	of	learning	Python	is	what	makes	it	good	for	AI.
The	people	 currently	working	 in	AI	has	 expanded	 beyond	 just	 software
developers,	 and	 now	 encompasses	 people	 like	 data	 scientists,	who	 do
not	write	code	constantly.

That	means	that	 there	 is	a	desire	 for	a	programming	 language	that	can
be	 easily	 taught	 to	 non-programmers.	Python	 fits	 that	 need	 nicely.	 You
can	look	at	how	Python	has	garnered	traction	with	people	in	the	sciences
and	in	computer	science	education,	to	see	how	this	is	not	a	new	trend.

Driscoll:	Should	people	move	over	to	Python	3	now?

Cannon:	As	someone	who	helped	to	make	Python	3	come	about,	I'm	not
exactly	 an	 unbiased	 person	 to	 ask	 about	 this.	 I	 obviously	 think	 people
should	make	the	switch	to	Python	3	 immediately,	 to	gain	the	benefits	of
what	has	been	added	to	the	language	since	Python	3.0	first	came	out.

Brett	Cannon:	'I	hope	people	realize	that	the	transition	to	Python	3
can	be	done	gradually,	so	the	switch	doesn't	have	to	be	abrupt	or

especially	painful.'

I	 hope	 people	 realize	 that	 the	 transition	 to	 Python	 3	 can	 be	 done
gradually,	so	 the	switch	doesn't	have	 to	be	abrupt	or	especially	painful.
Instagram	 switched	 in	 nine	 months,	 while	 continuing	 to	 develop	 new

features,	which	shows	that	it	can	be	done.

Driscoll:	Looking	ahead,	what's	happening	with	Python	4?

Cannon:	 The	 Python	 4	 thing	 is	 a	 whole	 conversation	 of	 its	 own,	 of
course.	 I	haven't	heard	much	about	Python	4,	and	 I'd	be	happy	 to	hear
about	it.	It's	mythical	and	it	doesn't	exist.	Python	4	is	like	Py4k	dreaming
versus	Py3k.	Just	where	could	the	language	go?

When	 it	 becomes	 time	 to	 do	 Python	 4,	 we'll	 probably	 clean	 up	 the
standard	 library	 a	 good	 amount	 and	 strip	 it	 down.	 There	 are	 some
language	 elements	 we'll	 probably	 finally	 get	 rid	 of,	 instead	 of	 leaving
them	in	there	for	compatibility	with	Python	2.

Brett	Cannon:	'When	it's	time	to	do	Python	4,	we'll	probably	clean
up	the	standard	library	a	good	amount,	and	strip	it	down.'

For	 Python	 4,	 we'll	 likely	 have	 a	 tracing	 garbage	 collector,	 instead	 of
reference	 counting	 to	 get	 that	 parallelism.	 I	 don't	 know	 yet,	 but	 that's
where	 I	 see	 it	 going:	more	or	 less	 the	 same,	especially	 because	we've
come	to	rely	more	on	the	things	that	the	community	has	built	up	around
Python.	 I	mean,	one	of	 the	reasons	we	have	huge	standard	 libraries,	 is
because	it	negates	the	internet,	right?

Python	 itself	 predates	Unicode	as	an	official	 standard,	 because	Python
first	went	public	in	February	1991	and	Unicode	1.0	went	final	in	October
1991.	I	wasn't	aware	of	that.	I	had	to	look	it	up,	because	it's	one	of	those
things	where	people	ask	me,	 "Hey,	why	didn't	you	do	Unicode	 from	the
beginning	like	Java?"	It's	like,	well,	we	predate	Unicode,	so	that's	why!

So	in	the	future,	I	don't	think	the	standard	library	will	need	to	be	quite	as
big	 as	 it	 is	 today.	We	 don't	 need	 it	 to	 be	 if	 you	 can	 just	 pip	 install	 the
equivalent	libraries.

We're	 lucky	 enough	 to	 have	 a	 vibrant	 community,	 so	 we	 have	 lots	 of
alternative	 third-party	 libraries	 that	are	of	such	a	high	standard,	 that	we
can	 probably	 thin	 out	 the	 standard	 library	 and	 lower	 the	 maintenance
burden	 on	 the	 core	 developers.	 I	 think	 we	 can	 do	 this	 in	 some	 future

Python	releases	without	any	risk	to	the	community	being	able	to	access
quality	 modules.	 I	 think	 it'll	 make	 Python	 easier	 and	 leaner,	 and	 just
better	to	work	with.

Brett	Cannon:	'So	in	Python	4,	I	don't	think	the	standard	library	will
need	to	be	quite	as	big	as	it	is	today.'

That's	what	I	suspect	we'll	do,	but	I	don't	get	to	make	that	call.	It	sounds
like	a	good	dream	anyway.	So	yes,	hopefully!	I'm	yet	to	have	anyone	tell
me	I'm	completely	insane	when	I	answer	questions	about	Python	4	with
these	ideas,	which	is	a	good	litmus	test.

Driscoll:	What	do	you	think	is	driving	the	recent	and	growing	interest	in
MicroPython?

Cannon:	 People	 do	 keep	 asking	me	 about	 writing	 about	 MicroPython.
While	I	don't	use	it	myself,	I	think	that	it	must	be	getting	bigger,	because	I
keep	getting	asked	about	it!	I'm	willing	to	bet	it's	because	of	the	education
sector,	 with	 a	 lot	 of	 people	 using	microbits	 and	 all	 that	 stuff.	 So	 that's
probably	where	all	the	MicroPython	interest	is	coming	from.

Driscoll:	How	can	we	all	start	to	contribute	to	the	Python	language?	How
do	we	get	started?

Cannon:	We	have	this	thing	called	the	Dev	Guide,	which	I	started	writing
back	in	2011.	Its	full	name	is	the	Python	Developer's	Guide.	Basically,	the
Dev	 Guide	 outlines	 everything	 you	 need	 to	 know	 so	 that	 you	 can
contribute	to	the	Python	language.

Brett	Cannon:	'The	Dev	Guide	outlines	everything	you	need	to	know
so	that	you	can	contribute	to	the	Python	language.'

The	Dev	Guide	(https://devguide.python.org/)	shows	you	how	to	get	 the
Python	 source	 code,	 compile	 it	 and	 run	 the	 test	 suite.	 It	 offers
suggestions	for	how	you	can	find	things	that	you'd	like	to	contribute.	You'll
also	 find	 the	documentation	 for	core	developers,	which	shows	you	how

you	can	do	a	code	review	and	everything	else.

The	Dev	Guide	 is	a	 rather	 large	document	at	 this	point	and	 it's	 kind	of
taken	on	a	life	of	its	own.	I	just	tell	people	to	go	and	read	the	Dev	Guide,
and	try	to	have	an	idea	about	what	you	want	to	help	with.	Pick	a	module
that	you're	really	 familiar	with,	 that	you	could	help	 to	 fix	bugs	 in,	or	 that
you	feel	very	comfortable	with.

We	have	a	core	mentorship	mailing	list	as	well,	which	is	not	archived	on
purpose	so	that	you	can	ask	any	question,	and	you	don't	have	to	worry
about	someone	finding	it	five	years	later.	So	sign	up	for	core	mentorship,
read	the	Dev	Guide	and	then	find	something	that	you	want	to	do!

Driscoll:	Can	we	contribute	to	Python	through	code	reviews?

Cannon:	 Yes,	 in	 fact	 at	 this	 point	 I've	 actually	 started	 to	 try	 to	 nudge
people	 towards	 doing	 code	 reviews,	 so	 if	 you're	 really	 familiar	 with	 a
module	and	there's	a	pull	request	on	GitHub	for	it,	please	go	for	it	and	do
a	code	review	for	that	pull	request.

If	 you	 feel	 comfortable	 doing	 code	 reviews	 and	 reviewing	 stuff	 on	 a
module	 that	 you	 use	 regularly	 or	 not,	 that's	 a	 really	 great	 way	 to
contribute	to	the	development	of	the	Python	language.

Brett	Cannon:	'If	you	feel	comfortable	doing	code	reviews	and
reviewing	stuff	on	a	module	that	you	use	regularly	or	not,	that's	a
really	great	way	to	contribute	to	the	development	of	the	Python

language.'

The	 biggest	 limitation	 we	 have,	 in	 driving	 Python	 forwards,	 is	 the
bandwidth	on	the	core	developers.	So	your	code	reviews	can	really	help
to	 make	 the	 projects	 easier	 to	 manage.	 Please	 help	 us	 to	 get	 more
patches	in,	and	bugs	fixed,	by	joining	in.

Driscoll:	How	else	can	we	contribute	to	the	Python	language?

Cannon:	A	big	help	to	the	Python	community	is	to	answer	questions	that
you	see	people	asking	about	Python,	and	to	answer	those	questions	by

just	being	open	and	honest.	It's	also	important,	of	course,	not	to	be	a	jerk
when	you	talk	about	Python.	It's	fine	to	just	be	nice	about	it.

Driscoll:	Are	 there	any	Python	projects	downstream	 that	someone	can
jump	in	and	contribute	towards?

Cannon:	Yes,	 if	you	don't	 find	a	current	module	that	 interests	you,	 then
you	might	find	it	 interesting	to	contribute	to	some	of	the	Python	projects
more	downstream	 that	need	 the	help.	For	 instance,	 the	next	 version	of
the	Python	package	index	can	always	use	some	help.	Jump	on	board	if
you	find	something	downstream	that	you	find	interesting.

Driscoll:	How	about	starter	projects?

Cannon:	 Honestly,	 it's	 really	 kind	 of	 hard	 to	 have	 starter	 projects.	We
typically	have	enough	people	who	are	involved	and	watching	to	just	jump
on	and	fix	them	instantly.	So	it's	hard	to	get	started	sometimes,	which	is
why	I'm	starting	to	push	for	more	of	the	pull	request	reviewing.

Driscoll:	 During	 PyCon,	 I	 see	 that	 there's	 usually	 a	 sprint	 set	 on	 the
Python	 language.	What	 sort	 of	 things	 do	 you	 guys	 do	 in	 those	 PyCon
sprints?

Cannon:	I've	led	a	number	of	those	PyCon	sprints	myself,	and	what	we
usually	do	is	sit	the	Python	core	team	down	around	some	tables	in	one	of
the	sprint	rooms,	and	more	or	less	just	say,	"Hey,	if	you	want	to	contribute
then	come	on	in."

We	 tell	 PyCon	 sprint	 attendees	 the	 exact	 same	 things	 that	 we	 say	 to
everyone	who	wants	 to	contribute	remotely:	here's	 the	Dev	Guide,	read
it,	get	your	tool	chain	up	and	running,	and	look	for	something	to	work	on.
If	you	find	something	then	go	for	it.

Brett	Cannon:	'We	tell	PyCon	sprint	attendees...here's	the	Dev
Guide,	read	it,	get	your	tool	chain	up	and	running,	and	look	for

something	to	work	on.'

Of	course,	at	the	sprints,	we're	there	in	the	room	to	answer	any	questions

that	anyone	may	have.	Typically,	someone	like	R.	David	Murray	will	find	a
list	 of	 easy	 bugs	 to	 hand	 out	 to	 people	 in	 the	 sprint	 room.	 It's	 a	 great
opportunity	 for	 people	 to	 come	 in	 and	 say	 hello.	 If	 they	 want	 to	 start
contributing,	 then	 they	 have	 core	 Python	 people	 in	 the	 room,	 so	 they
have	a	quick	turnaround	time	for	answers,	instead	of	having	to	wait	until
someone	 sees	 the	 email	 and	 replies.	 It's	 very	 much	 just	 turn	 to	 the
person	to	 your	 left,	 or	 to	 your	 right,	 and	you	can	ask	and	you	get	 your
answer.

Sometimes	we'll	give	a	short	presentation	 to	set	out	where	we're	going
during	the	sprint,	and	if	people	can	join	in	then	that's	great.	We	say,	"Here
are	the	tools,	here's	how	you	run	the	build,	and	here's	how	you	run	the
tests."	Then	we	get	coding.

The	 sprints	 are	 very	 laid	 back	 and	 relaxing	 compared	 to	 the	 rest	 of	 a
conference.	I	thoroughly	recommend	them	when	you	can	make	them.	It's
just	not	as	hectic	 in	a	sprint	room	as	in	the	main	area	of	a	show.	That's
because	 there	are	 less	people,	and	everyone's	 just	kind	of	sitting	down
and	relaxing.	There	are	no	transitions,	except	to	and	from	lunch,	and	it's
easier	 to	 find	 people	 to	 have	 conversations	 with,	 which	 is	 great.	 So
sprints	are	definitely	fun	to	go	to,	and	I'm	going	to	try	to	go	to	one	in	the
next	year	or	two	if	I	can.

Brett	Cannon:	'We	say,	"Here	are	the	tools,	here's	how	you	run	the
build,	and	here's	how	you	run	the	tests."	Then	we	get	coding.'

Driscoll:	Some	other	 teams	have	nice	 little	enticements	 too,	 like	 if	 you
are	helping	out	with	Russell	Keith-Magee's	BeeWare	project,	where	you
get	a	challenge	coin	on	your	first	contribution.	Have	you	seen	those?

Cannon:	Yes,	if	you	help	Russell's	project	out	he	gives	you	a	challenge
coin.	It's	a	big	and	impressive	metal	coin.	The	one	I'm	holding	in	my	hand
right	now	is	one	that	I	earned	from	Russell	and	it	takes	up	a	good	chunk
of	my	Nexus	5X	screen!

Here's	 how	 I	 earned	 my	 challenge	 coin	 from	 Russell:	 if	 you	 make	 a
contribution	 that	 the	 BeeWare	 project	 accepts,	 such	 as	 docs	 or	 what
have	you,	then	you	get	one	of	these	coins	the	next	time	you	see	Russell

in	 person.	 So	 in	my	 case,	 I	 happened	 to	 be	 on	 Twitter	 one	 day	 when
Russell	tweeted	about	an	example	repo,	and	I	found	a	couple	of	typos.	I
sent	a	pull	request	to	get	them	fixed	and	that's	how	I	finally	got	my	coin.
I'd	been	wanting	one	for	ages,	because	I	think	it	is	a	really	cool	token	of
appreciation,	and	anyone	can	earn	one	if	they	contribute.

If	you	don't	know	anything	about	challenge	coins,	then	99%	Invisible	had
a	 really	 good	 podcast	 episode	 explaining	 these	 things
(https://99percentinvisible.org/episode/coin-check/).

Brett	Cannon:	'If	you	don't	know	anything	about	challenge	coins,
then	99%	Invisible	had	a	really	good	podcast	episode	explaining

these	things.'

Driscoll:	Does	the	Python	core	team	offer	some	incentives	like	Russell's
challenge	 coins?	What	 do	 you	 feel	 is	 the	 core	 spirit	 and	 incentive	 for
people	to	contribute	to	the	Python	language?

Cannon:	 I've	always	wanted	 to	make	a	challenge	coin	 for	Python,	both
for	people	who	are	core	developers	and	for	people	who	have	contributed
a	patch.	That's	a	neat	idea.	But	I	also	don't	travel	as	much	as	Russell,	so
it's	a	little	harder	because	I'd	need	to	be	at	the	conferences	that	people
are	attending	 in	order	 to	give	 them	 the	coins.	But	 it's	a	cool	 idea	and	 I
wish	more	projects	did	it.

The	 Python	 core	 typically	 takes	 a	 very,	 kind	 of,	 passive	 approach	 to
incentives.	 It's	 true,	but	 that	 is	 really	 just	because	we're	putting	most	of
our	 time	 into	 the	Python	 language	 elements	 that	we	want	 to	 get	 done,
and	we	know	that	a	 lot	of	people	are	going	to	appreciate.	That	 really	 is
our	 deep	 incentive	 to	 contribute	 to	Python,	 and	 I	welcome	everyone	 to
join	in,	whether	remotely,	or	during	a	conference	sprint.

Driscoll:	Thank	you,	Brett	Cannon.

https://99percentinvisible.org/episode/coin-check/

Chapter	2.	Steve	Holden

Steve	Holden	 is	a	British	computer	programmer	and	a	 former	chairman
and	director	of	the	Python	Software	Foundation	(PSF).	He	 is	 the	author
of	Python	Web	Programming	and	co-authored	the	third	edition	of	Python
in	 a	Nutshell	with	Alex	Martelli	 and	Anna	Ravenscroft.	 Steve	works	 as
chief	technical	officer	at	Global	Stress	Index,	a	stress	management	start-
up	in	the	UK,	where	he	oversees	the	application	of	technology	producing
systems.	 A	 career	 promoting	 the	 Python	 language	 has	 taken	 Steve
around	the	world.	He	continues	to	support	open	source	Python	projects
and	speak	at	tech	conferences.

Discussion	themes:	PyCon,	the	PSF,	the	future	of	Python.

Catch	up	with	Steve	Holden	here:	@holdenweb

Mike	 Driscoll:	 So	 could	 you	 tell	 me	 why	 you	 decided	 to	 become	 a
computer	programmer?

Steve	Holden:	 In	 essence,	 I	 was	 very	 fond	 of	 electronics	 in	 my	 early
teens.	 I	 switched	 from	 chemistry	 to	 electronics	 because	 a	 chemistry
teacher	turned	me	off	the	subject.

So	I	started	my	career	at	the	age	of	15	as	a	trainee	production	engineer
in	a	television	factory.	After	18	months,	that	wasn't	really	going	as	well	as

it	 should.	 I	 began	 to	 look	 around	 for	 new	employment	 and	 I	 saw	a	 job
advertising	 a	 junior	 technician	 role	 at	 the	 computing	 laboratory,	 at	 my
local	university	in	Bradford.	So	I	applied	for	the	job	and	when	I	got	there,
it	 turned	 out	 that	 junior	 technician	 was	 just	 a	 job	 grade.	 What	 they
actually	wanted	was	a	keypunch	operator.

The	director	of	the	lab	thought	that	I	was	in	danger	of	going	off	the	rails.
He	decided	that	I	should	take	a	job	with	the	laboratory	for	six	months	and
learn	about	computers.	So	obviously	I	didn't	get	into	the	electronics	side
of	 it,	 because	 in	 those	 days,	 computer	maintenance	was	 an	 extremely
specialized	 job.	But	 I	 learned	how	 to	operate	a	computer	and	 I	 learned
how	to	program.	That	was	the	start	of	my	career	in	computing.

Driscoll:	That	makes	sense	to	me!	So	what	made	you	start	using	Python
and	what	makes	it	special	to	you?

Holden:	 Well,	 in	 the	 early	 1970s,	 I	 developed	 an	 interest	 in	 object-
oriented	programming	when	I	finally,	at	the	age	of	23,	went	to	university.	I
came	 across	 some	 of	 the	 early	 papers	 on	 Smalltalk	 from	 Alan	 Kay's
group	at	Xerox	PARC.

Steve	Holden:	'In	the	early	1970s	I	developed	an	interest	in	object-
oriented	programming.'

The	group	seemed	to	have	a	very	novel	approach	to	computing,	so	I	got
interested	 in	 Smalltalk.	 Eventually,	 about	 12	 years	 later,	 when	 I	 was
working	at	Manchester	University,	 I	actually	got	 the	chance	 to	play	with
Smalltalk	for	the	first	time.	I	got	a	research	student	to	implement	it	for	me.
There	was	no	UK	 implementation	of	Smalltalk	at	 the	 time.	 I	 discovered
that	 actually	 I	 didn't	 really	 like	 Smalltalk	 very	 much.	 So	 I	 gave	 up	 on
object-oriented	programming	for	about	another	10	years.

It	was	actually	when	I	moved	to	 the	United	States	 that	 I	came	across	a
book	on	Python.	I	think	it	was	Learning	Python,	which	was	at	that	time	by
Mark	Lutz	and	David	Ascher.	I	realized	that	Python	was	the	language	for
me!	Python	is	a	sensible,	comprehensible,	and	understandable	way	to	do
object-oriented	programming.

Steve	Holden:	'I	found	that	my	knowledge	of	the	language	grew	very
quickly	and	pretty	soon	I	was	answering	a	lot	of	questions.'

I	did	what	people	did	 in	 those	days,	which	was	 to	 join	 the	Python	 list.	 I
found	 that	my	 knowledge	of	 the	 language	grew	 very	 quickly	 and	pretty
soon	I	was	answering	a	lot	of	questions.	I	think	that	in	total	I	was	active
on	comp.lang.python	for	about	eight	years.	I	made	almost	200,000	posts!
That's	a	 lot	of	posts!	Although	unfortunately,	 I	 think	 that	Google	has	 let
most	 of	 that	 stuff	 disappear	 now,	 so	 the	 history	 is	 gone	 from
comp.lang.python.

Driscoll:	Python	is	being	used	now	in	AI	and	machine	learning.	What	do
you	think	makes	Python	so	popular?

Holden:	Python	has	several	advantages:	 it's	easy	 to	 read	and	you	can
experiment	interactively	with	objects	that	you	create	in	a	console	or	IDE.
Python	 also	 provides	 relatively	 easy	 ways	 to	 interact	 with	 compiled
languages	 that	provide	speed	 in	 large	calculations	 (nobody	expects	 the
Spanish	Inquisition).

Driscoll:	 Do	 you	 think	 that	 there	 are	 any	 problems	 currently	 with	 the
Python	language	or	its	community?

Holden:	 The	 Python	 community	 (which	 is	 actually	 a	 large	 number	 of
intersecting	communities)	just	seems	to	go	from	strength	to	strength.

I	 am	 happy	 to	 say	 that	 Python	 appears	 to	 be	 widely	 accepted	 as	 a
language,	 with	 a	 friendly	 and	 welcoming	 community.	 The	 Python
Software	Foundation	(PSF)	is	now	in	a	position	to	help	to	fund	volunteer
activities	 and	 offer	 a	 financial	 umbrella,	 as	 long	 as	 those	 activities
promote	and	support	the	mission	of	the	PSF.

Steve	Holden:	'The	Python	Software	Foundation	(PSF)	is	now	in	a
position	to	help	to	fund	volunteer	activities	and	offer	a	financial

umbrella.'

Having	 just	 completed	writing	 the	 third	 edition	 of	Python	 in	 a	 Nutshell,

with	Alex	Martelli	and	Anna	Ravenscroft,	I	would	say	that	the	language	is
in	 pretty	 good	 shape.	 However,	 I	 think	 that	 the	 new	 asynchronous
primitives	are	proving	to	be	more	difficult	for	the	average	programmer	to
learn	than	they	should	be.

Guido	van	Rossum	and	the	other	core	developers	have	done	a	great	job
of	not	distorting	the	language	too	far	in	order	to	make	the	additions.	But
the	 asynchronous	 paradigm,	 that	 is	 so	 familiar	 to	 Twisted	 developers,
isn't	 quite	 as	 intuitively	 obvious	 as	 a	 simple	 synchronous	 task
specification.

Steve	Holden:	'I	am	a	little	concerned	that	Python	development	isn't
doing	a	whole	lot	for	the	average	mainstream	user.'

To	be	frank,	I	am	a	little	concerned	that	Python	development	isn't	doing	a
whole	 lot	 for	 the	average	mainstream	user.	A	huge	amount	of	work	has
been	done	to	bring	asynchronous	programming	into	the	language,	which
now	 includes	 a	 cooperative	 multitasking	 mechanism	 that	 obviates	 the
need	for	threads.

As	 this	work	has	proceeded,	 the	developers	have	perceived	a	need	 for
values	 that	 are	 private	 to	 the	 execution	 context	 of	 a	 specific
asynchronous	 computation.	 You	 can	 think	 of	 them	 as	 asyncio's
equivalent	of	 thread-local	variables.	As	 I've	 followed	discussions	on	 the
Python-Dev	 list,	 I've	 seen	 much	 erudite	 discussion	 of	 issues	 that	 I
suspect	will	never	 impact	99.5%	of	Python	users.	So	 I	am	 thankful	 that
Python	is	so	dedicated	to	backward	compatibility!

Steve	Holden:	'I've	seen	much	erudite	discussion	of	issues	that	I
suspect	will	never	impact	99.5%	of	Python	users.'

I	 feel	 similarly,	 although	 rather	 less	 strongly,	 about	 the	 introduction	 of
annotations	to	Python.	They	were	 first	proposed	as	an	entirely	optional
element	of	 the	 language,	but	 because	people	are	using	 them,	 they	are
raising	 issues	 that	 are	 increasing	 the	 pressure	 to	 allow	 annotations	 in
places	like	the	standard	library.

I'd	 like	 it	 to	be	possible	for	beginners	to	continue	to	 learn	the	 language,
while	 remaining	 totally	 unaware	 of	 even	 the	 possibility	 of	 annotations,
which	can	then	be	added	later	and	completely	orthogonally	to	the	rest	of
the	language.	I'm	not	confident	that	this	will	continue	to	be	the	case.

Looking	 on	 the	 bright	 side,	 the	 relatively	 simple	 development	 of	 the	 f-
string	 notation	 has	 been	 so	 enthusiastically	 adopted	 by	 the	 Python	 3
community,	that	lots	of	code	is	being	written	that	won't	run	on	3.5,	simply
because	 it	 uses	 f-strings.	As	 usual,	Dave	Beazley	 has	 found	 diabolical
things	to	do	with	f-strings,	which	is	always	fun.

Driscoll:	How	can	we	overcome	those	issues?

Holden:	I'm	not	sure	that	there's	any	need	for	huge	efforts	to	overcome
those	issues.	It's	important	not	to	become	complacent	and	to	keep	up	the
efforts	 to	 improve	 the	 language	 and	 broaden	 its	 community	 to	 become
ever	larger	and	more	diverse.	PyCon	proved	that	technical	communities
can,	to	a	large	extent,	be	self-organizing.

Mike	Driscoll:	 I	know	that	you	have	been	the	chairman	of	PSF	and
PyCon	in	the	past.	How	did	you	first	become	involved?

Holden:	 I	went	 to	my	 first,	and	effectively	 the	 last,	 International	Python
Conference	in	2002.	While	the	content	was	great,	the	event	was	run	by	a
commercial	group	that	did	a	lot	of	business	with	Guido's	then	employer,
so	it	was	geared	to	those	who	had	the	budget	to	attend.

While	this	had	been	fine	in	the	early	days	of	the	language,	it	was	obvious
to	me	that	 if	Python	was	going	 to	be	 really	popular,	 then	 its	conference
needed	to	offer	a	home	to	many	more	people.	This	 included	the	people
that	I	was	engaging	with	on	a	daily	basis	on	comp.lang.python.

Steve	Holden:	'If	Python	was	going	to	be	really	popular,	then	its
conference	needed	to	offer	a	home	to	many	more	people.'

At	the	end	of	that	conference,	Guido	made	an	announcement	about	the
Python	 Software	 Authority	 (PSA),	 a	 more-or-less	 national	 governance
body.	 PSA	 was	 to	 be	 replaced	 by	 a	 non-profit	 foundation.	 Guido	 also

announced	the	creation	of	a	mailing	 list	 to	discuss	conferences,	which	I
eagerly	anticipated!

Sadly,	 the	 archives	 (https://mail.python.org/pipermail/conferences/)	 only
appear	to	go	back	to	May	2009.	But	I	remember	when	I	last	looked	at	the
complete	 collection,	 my	memory	 of	 waiting	 a	 long	 time	 for	 anything	 to
appear	was	completely	 false.	 It	 took	me	about	 two	days	 to	become	 the
first	poster	 in	 the	 list.	 I	expressed	my	opinion	 that	 the	community	could
and	 would	 do	 a	 better	 job	 of	 organizing	 the	 conference,	 on	 a	 purely
community	basis.

Steve	Holden:	'I	expressed	my	opinion	that	the	community	could
and	would	do	a	better	job	of	organizing	the	conference.'

I	had	the	good	fortune,	completely	by	accident,	to	move	to	Virginia.	This
was	within	20	or	30	miles	of	where	Guido,	Jeremy	Hylton,	Barry	Warsaw,
and	Fred	Drake	were	working	at	different	places,	while	they	collaborated
on	core	Python.

That	crew,	along	with	Tim	Peters,	who	had	until	then	lived	in	Boston,	got
together	 as	 employees	 of	 a	 company	 called	 BeOS.	 It	 looked	 like	 that
collaboration	 had	 a	 bright	 future	 and	 so	 it	 was	 a	 terrible	 blow	 when	 it
became	 obvious	 after	 about	 six	 months	 that	 BeOS	 was	 in	 trouble.
Fortunately,	Zope	Corporation,	which	is	now	Digital	Creations,	rented	an
office	space	for	them	and	they	established	PythonLabs.

Driscoll:	How	did	you	start	working	with	the	Python	team?

Holden:	 I	 had	 become	 known	 due	 to	 my	 voluminous	 contributions	 on
comp.lang.python	 and	 the	 publication	 of	 Python	 Web	 Programming	 in
2002.

So	when	 I	 contacted	Guido	 and	 suggested	 that	we	meet	 for	 lunch,	 he
invited	me	out	to	the	office	of	PythonLabs.	I	met	all	five	of	the	team	and
then	 we	 went	 out	 for	 a	 Chinese	 lunch	 at	 a	 place	 close	 by.	 These
meetings	became	regular	events	every	couple	of	weeks	or	so	and	one	of
the	topics	of	discussion	became	whether	the	community	really	could	get
behind	the	idea	of	having	no	professional	organizers.

https://mail.python.org/pipermail/conferences/

Steve	Holden:	'One	of	the	topics	of	discussion	became	whether	the
community	really	could	get	behind	the	idea	of	having	no

professional	organizers.'

I	think	by	the	late	1990s,	Guido	realized	that	something	a	bit	more	formal
was	 required	 and	 so	 the	 guys	 from	 PythonLabs	 started	 the	 PSF	 and
acquired	a	certain	amount	of	donated	 funding.	 I	explained	 that	 I'd	been
the	treasurer	of	DECUS	UK	&	Ireland	in	the	past	and	had	experience	of
community	 conferences.	 Guido	 said	 that	 if	 I	 would	 agree	 to	 chair	 the
conference,	then	the	PSF	would	underwrite	the	costs.

We	 rented	 space	 in	 The	 George	 Washington	 University's	 Cafritz
Conference	 Center	 and	 announced	 the	 dates,	 which	 received	 general
excitement.	 Then	 the	 informal	 team	 quickly	 established	 the	 PyCon-
organizers	list.	I	remember	that	we	got	a	lot	of	help	from	Nate	Torkington,
who	had	established	the	YAPC	(Yet	Another	Perl	Conference)	idea.

Steve	Holden:	'The	ethos	soon	emerged	that	everything	possible
would	be	done	by	volunteers,	to	keep	costs	down.'

The	 ethos	 soon	 emerged	 that	 everything	 possible	 would	 be	 done	 by
volunteers,	to	keep	costs	down.	Catherine	Devlin	stepped	in	to	organize
the	 food	 (taking	 account	 of	 everyone's	 dietary	 preferences	 is	 an
impossible	task).	I	can't	even	remember	how	the	tickets	were	sold,	since
utility	sites	weren't	available	then.

About	250	people	turned	up	for	the	conference,	which	was	preceded	by	a
two-day	sprint	and	 tutorials	session.	All	 talks	were	well	attended.	There
was	a	real	buzz	and	I	went	around	trying	to	make	sure	that	everyone	got
onto	the	internet.

That	conference	brought	the	Twisted	team	together	in	person	for	the	first
time.	When	I	 learned	 that	 they	were	having	networking	problems	 (most
systems	back	in	those	days	still	needed	an	Ethernet	cable),	I	impressed
them	by	installing	a	local	100	MHz	hub	just	for	them.

Driscoll:	Was	the	conference	a	financial	success?

Holden:	At	the	end	of	the	conference,	I	announced	that	it	appeared	that
the	event	had	made	roughly	$17,000	for	the	PSF.

Guido	proposed	 that	 I	be	given	half	of	 the	profits,	but	 I	objected	on	 the
grounds	that	the	PSF	needed	to	build	up	its	reserves.	He	also	proposed
me	as	a	PSF	member,	an	honour	that	I	was	happy	to	accept.	I	was	duly
voted	in.

At	 OSCON	 that	 year,	 I	 interviewed	 Guido
(http://www.onlamp.com/pub/a/python/2003/08/14/gvr_interview.html)
and	 he	 talked	 about	 the	 need	 to	 get	 some	 more	 experienced	 hands
involved	 with	 the	 PSF,	 which	 at	 the	 time	 he	 was	 leading	 due	 to	 the
recognition	that	his	name	lent	to	the	enterprise.

Steve	Holden:	'I've	never	been	a	big	fan	of	community	events
becoming	the	property	of	individuals.'

At	 the	end	of	 the	second	PyCon,	which	was	 in	 the	same	venue	a	year
later,	 I	 announced	 that	 I	 would	 chair	 one	 more	 conference.	 I've	 never
been	a	big	fan	of	community	events	becoming	the	property	of	individuals
and	 chairing	 had	 been	 taking	 up	 an	 enormous	 amount	 of	 my	 time.
Fortunately,	most	of	my	income	back	then	came	from	teaching	work	and
flexible	consulting,	that	I	could	do	largely	from	home.

If	memory	serves	me	correctly,	it	was	that	year	that	I	was	elected	to	the
PSF	 board.	 Guido	 stood	 down	 as	 chairman	 and	 the	 board	 elected
Stephan	 Deibel	 to	 replace	 him,	 asking	 Guido	 to	 continue	 to	 serve	 as
titular	 present.	 This	 meant	 that	 what	 time	 he	 had	 available	 could	 be
focused	on	development,	rather	than	administrivia.

Driscoll:	So,	at	what	point	did	you	step	down	from	your	role	as	chair	of
the	conference?

Holden:	At	the	end	of	the	third	PyCon,	which	was	again	and	for	the	final
time	 in	 Washington	 DC,	 nobody	 had	 stood	 up	 to	 chair	 the	 next
conference.	 I	 couldn't	 even	 tell	 them	 that	 there	 was	 going	 to	 be	 a
conference	the	following	year,	let	alone	when	and	where	it	would	be.

http://www.onlamp.com/pub/a/python/2003/08/14/gvr_interview.html

Steve	Holden:	'I	held	firm	in	my	belief	that	if	PyCon	was	going	to
make	it,	then	even	broader	support	needed	to	be	attracted	from	the

community.'

I	received	several	requests	to	chair	one	more	conference,	but	I	held	firm
in	 my	 belief	 that	 if	 PyCon	 was	 going	 to	 make	 it,	 then	 even	 broader
support	needed	 to	be	attracted	 from	 the	 community.	About	 two	months
later,	 Andrew	 Kuchling	 approached	 me	 to	 ask	 what	 was	 involved	 and
bless	him	he	 ran	 the	next	 two	 conferences,	which	were	held	 in	Dallas,
Texas.	They	marked	the	transition	to	using	fully	commercial	venues	and
with	that,	PyCon	has	gone	from	strength	to	strength.

Driscoll:	 If	 someone	 wants	 to	 learn	 programming,	 why	 should	 they
choose	Python?

Holden:	That	depends	on	what	age	they	are.	I'd	suggest	that	up	to	about
the	age	of	ten,	a	visual	programming	system	like	Scratch	might	be	more
appropriate.

Beyond	that	age,	Python	is	definitely	accessible	enough	to	be	a	good	first
programming	language.	There	is	a	huge	amount	of	open	source	Python
code	 in	diverse	areas.	Nowadays,	whatever	 field	you	work	 in,	 it's	 likely
that	there	will	be	some	Python	code	that	you	can	use	as	a	starting	point.

Steve	Holden:	'Python	is	definitely	accessible	enough	to	be	a	good
first	programming	language.'

Driscoll:	So	what	coding	techniques	do	you	recommend?

Holden:	 I'm	a	big	 fan	of	 test-driven	development,	 despite	having	 spent
my	first	30	years	as	a	programmer	not	doing	it.	I	see	Agile	as	being	more
desirable	 from	 a	 business	 point	 of	 view,	 because	 it	 allows	 all
stakeholders	 to	 select	 the	 work	 that's	 going	 to	 add	 most	 value	 to	 the
business.

I've	just	spent	almost	a	year	and	a	half	working	with	a	perversion	of	that
approach.	I'm	looking	forward	to	validating	 in	my	new	job	that	when	run

sensibly,	Agile	methods	are	a	productive	way	to	work.	But	I	see	Agile	less
as	 a	 coding	 technique	 and	 more	 as	 a	 development	 management
methodology.

Pair	 programming	 isn't	 used	 as	much	 as	 it	 used	 to	 be,	 but	 I	 think	 that
from	 a	 technology	 transfer	 point	 of	 view,	 it's	 an	 incredible
communications	 tool.	Younger	programmers	don't	 seem	 to	spend	much
time	 on	 career	 development,	 but	 as	 a	manager	 I	 want	 to	 see	my	 staff
growing	and	learning.	Pair	programming	is	one	way	that	they	can	acquire
new	skills	relatively	painlessly.

Driscoll:	After	learning	the	basics	of	Python,	what	next?

Holden:	Look	around	for	a	problem	that	interests	you	and	see	if	there	are
any	open	source	projects	in	that	area.

Steve	Holden:	'While	every	new	programmer	likes	to	think	that	they
can	break	ground,	it's	actually	much	easier	to	learn	by

collaborating.'

While	every	new	programmer	 likes	 to	 think	 that	 they	can	break	ground,
it's	actually	much	easier	 to	 learn	by	 collaborating	 in	a	 team	 that	 knows
what	 it's	 doing.	 Teamwork	 can	 teach	 you	 the	 practical	 software
engineering	 skills	 that	 are	 so	 valuable	 in	 becoming	 an	 effective
programmer.

People	like	to	say	that	anyone	can	code,	but	signs	are	now	emerging	that
this	may	not	be	true.	Anyway,	being	able	to	code	alone	is	nowhere	near
enough	to	build	practical,	functional	and	maintainable	systems.	Acquiring
those	other	skills	shouldn't	be	left	until	you	have	mastered	programming.

Mike	Driscoll:	What	about	Python	today	most	excites	you?

Holden:	The	really	exciting	thing	is	the	continued	development	of	Python
communities	and	the	 increase	 in	Python	usage,	especially	 in	education.
This	will	ensure	that	relatively	comprehensible	programming	tools	will	be
readily	available	to	anyone	that	needs	them	over	the	next	20	years.

I	have	on	my	desk	a	FiPy	device	that	has	Wi-Fi,	Bluetooth,	LoRa,	Sigfox,
and	 cellular	 communications	 on-chip,	 controlled	 by	 a	 MicroPython
controller	that,	besides	having	the	usual	hardware	bells	and	whistles,	like
digital	inputs	and	outputs,	gives	REPL	access	to	all	of	that	functionality.	I
can	hardly	wait	to	retire	and	play	with	these	things	properly.	Imagine	what
is	going	to	become	available	over	the	next	10	years!

Driscoll:	Where	do	you	see	the	Python	language	going	in	the	future?

Holden:	I'm	not	really	sure	where	the	language	is	going.	You	hear	loose
talk	of	Python	4.	To	my	mind	though,	Python	 is	now	at	 the	stage	where
it's	complex	enough.

Steve	Holden:	'You	hear	loose	talk	of	Python	4.	To	my	mind	though,
Python	is	now	at	the	stage	where	it's	complex	enough.'

Python	hasn't	bloated	in	the	same	way	that	I	think	the	Java	environment
has.	 At	 that	 maturity	 level,	 I	 think	 it's	 rather	 more	 likely	 that	 Python's
ideas	will	 spawn	 other,	 perhaps	more	 specialized,	 languages	 aimed	 at
particular	areas	of	application.	I	see	this	as	 fundamentally	healthy	and	I
have	 no	 wish	 to	 make	 all	 programmers	 use	 Python	 for	 everything;
language	choices	should	be	made	on	pragmatic	grounds.

I've	 never	 been	much	 of	 a	 one	 for	 pushing	 for	 change.	 Enough	 smart
people	are	 thinking	about	 that	 already.	So	mostly	 I	 lurk	 on	Python-Dev
and	occasionally	 interject	 a	 view	 from	 the	 consumer	 side,	when	 I	 think
that	things	are	becoming	a	little	too	esoteric.

Driscoll:	Should	people	move	over	to	Python	3?

Holden:	Only	when	they	need	to.	There	will	inevitably	be	systems	written
in	2.7	that	won't	get	migrated.	I	hope	that	their	operators	will	collectively
form	 an	 industry-wide	 support	 group,	 to	 extend	 the	 lifetimes	 of	 those
systems	 beyond	 the	 2020	 deadline	 for	 Python-Dev	 support.	 However,
anyone	starting	out	with	Python	should	clearly	learn	Python	3	and	that	is
increasingly	the	case.

Driscoll:	Thank	you,	Steve	Holden.

Chapter	3.	Carol	Willing

Carol	Willing	 is	 an	American	 software	 developer	 and	 former	 director	 of
the	 Python	 Software	 Foundation.	 For	 the	 last	 seven	 years,	 she	 has
provided	 open	 source	 software	 and	 hardware	 development	 for	 Willing
Consulting.	Carol	 is	a	geek	 in	 residence	at	Fab	Lab	San	Diego,	a	non-
profit	education	center.	She	is	a	core	developer	for	CPython	and	helps	to
organize	 both	 PyLadies	 San	 Diego	 and	 the	 San	 Diego	 Python	 User
Group.	Carol	is	also	a	research	software	engineer	for	Project	Jupyter	and
an	active	contributor	 to	open	source	Python	projects.	She	 is	passionate
about	teaching	tech	as	a	speaker	and	writer.

Discussion	themes:	CPython,	Jupyter,	the	PSF.

Catch	up	with	Carol	Willing	here:	@WillingCarol

Mike	Driscoll:	Could	you	give	me	a	 little	background	 information	about
yourself?

Carol	 Willing:	 I	 am	 someone	 who	 got	 involved	 in	 computing	 in
elementary	school	back	 in	 the	70s.	 I	actually	grew	up	 in	 the	shadow	of
Bell	Labs.	 In	a	similar	way	to	 the	Python	community,	 they	had	outreach
for	young	coders.

Then	I	had	the	opportunity	in	middle	school	to	continue	programming	on

the	first	TRS-80	and	an	Apple	II.	I	always	liked	programming	because	it
was	about	exploring	something	new.	There	was	no	internet	then,	so	you
pretty	 much	 just	 had	 the	 source	 code	 and	 some	 slim	 bit	 of
documentation.	You	were	 the	explorer	of	 the	computer,	 if	you	will.	So	 it
was	really	fun.

After	that	I	got	a	degree	in	electrical	engineering.	While	I	was	in	college,	I
had	the	opportunity	to	run	the	cable	television	station	on	campus.	I	got	to
learn	 the	 technical	 side,	 as	 well	 as	 how	 to	 motivate	 people	 who	 were
volunteers.

I	really	didn't	work	as	an	engineer	until	about	six	years	into	my	career.	I
took	a	 long	break	 from	work,	but	 the	whole	 time	I	was	doing	 things	 like
building	a	Linux	network	in	my	house.	I	decided	that	I	really	wanted	to	go
back	and	do	the	development	side,	because	that	was	what	really	rocked
my	world.	 I	 had	 an	 opportunity	 to	work	 on	 the	 Jupyter	 team	and	 that's
what	I'm	doing	now.

Driscoll:	 How	 did	 you	 go	 from	 being	 an	 electrical	 engineer	 back	 to
programming?	 I	 know	 a	 lot	 of	 electrical	 engineers	 are	 more	 hardware
oriented.

Willing:	 Well,	 I	 still	 have	 a	 real	 love	 for	 hardware	 and	 things	 like
MicroPython	 and	CircuitPython.	 That	 still	 interests	me	 quite	 a	 bit,	 but	 I
like	the	puzzle	of	programming.

Carol	Willing:	'I	like	the	puzzle	of	programming.'

I	 think	my	 first	 love	was	math	and	actually	programming.	The	electrical
engineering	stuff	that	I	liked	to	do	was	the	digital	communications	theory.
So	it	was	really	more	math	and	software	development	than	it	was	actually
the	hardware	stuff.

Driscoll:	 How	 did	 you	 end	 up	 using	 Python,	 instead	 of	 Ruby	 or	 some
other	language?

Willing:	Well,	 I	had	done	C++,	Java,	and	Ruby	 in	 the	early	Rails	days.
Then	when	I	was	looking	seriously	at	computer	languages,	I	realized	that

I	was	actually	looking	for	a	tech	community	that	I	would	enjoy	being	in.

In	Southern	California,	we	have	a	lot	of	opportunities	for	meetups.	For	a
while	 I	dabbled	 in	 the	Linux	community.	Then	 I	actually	started	working
with	 some	 people	 from	 OpenHatch	 on	 teaching	 people	 how	 to	 get
involved	in	open	source.

The	 more	 that	 I	 played	 around	 with	 Python,	 the	 more	 I	 started	 really
enjoying	the	readability	of	it.	Python	made	it	easy	to	get	things	done	and
there	were	vast	libraries	out	there.	So	that	was	my	route	to	Python.	It	was
a	nonlinear	path	to	the	world	of	Python,	but	a	good	path.

Driscoll:	 Could	 you	 explain	 how	 you	 became	 a	 core	 developer	 of
Python?

Willing:	Yes,	I	got	involved	with	organizing	some	of	the	talks	and	tutorials
for	PyCon	several	years	ago.	I	attended,	and	it	was	surprising	to	me	how
many	developers	 there	were	at	 the	CPython	sprints,	but	how	 few	were
women.

Carol	Willing:	'It	was	surprising	to	me	how	many	developers	there
were	at	the	CPython	sprints,	but	how	few	were	women.'

Nick	Coghlan,	and	a	couple	of	other	people,	were	explaining	to	me	how
things	worked.	I	felt	that	we	needed	better	outreach,	so	I	did	a	lot	of	work
with	the	Python	Developer's	Guide	and	also	outreach	within	the	PyLadies
community.	I	worked	with	Nick	and	Guido	van	Rossum	on	how	we	could
better	document	what	we	were	doing	and	make	 it	more	accessible.	So
that	was	the	way	that	I	became	a	core	developer.

Jupyter	relies	really	heavily	on	Python	3.	So	I	think	there's	a	strong	need
for	 voices	 from	outside	 of	 the	web	 community	 to	 also	 give	 back	 to	 the
core	 language.	 I	 think	 that	 Python	 is	 a	 great	 language	 and	 there's	 so
much	opportunity.	Even	 though	Python	has	been	around	 for	20	years,	 I
think	we've	barely	scratched	the	surface	of	where	this	language	can	take
us.

Carol	Willing:	'Even	though	Python	has	been	around	for	20	years,	I
think	we've	barely	scratched	the	surface	of	where	this	language	can

take	us.'

Driscoll:	So	what	parts	of	the	library	are	you	in	charge	of?	What	do	you
do	as	a	core	developer?

Willing:	 Right	 now,	 I'm	 mostly	 working	 on	 documentation	 and
development	 tools	guides.	 I	also	mentor	some	people	 in	 the	community
that	are	getting	started	developing	with	Python,	or	Core	Python.

I	 get	 involved	 with	 things	 that	 we	 rely	 heavily	 on	 in	 Jupyter,	 like
asynchronous	stuff.	If	I	had	more	time	then	I	would	be	more	involved	on
the	CPython	side.	Right	now,	though,	Jupyter	has	been	growing	in	leaps
and	bounds,	so	it	has	kept	us	a	little	busy.

I	also	 really	 love	getting	 involved	with	education.	 I	 think	 that	 if	 you	can
make	a	language	accessible	to	people,	then	you	get	lots	of	great	ideas.
That's	part	of	the	power	of	all	the	libraries	that	are	out	there	in	Python.

Driscoll:	So	what	are	you	doing	at	the	moment	with	the	Python	Software
Foundation	(PSF)?

Willing:	I	have	just	served	two	years	as	a	director	of	the	PSF.	Right	now,
I'm	 involved	with	several	of	 the	working	groups,	such	as	marketing	and
science.

Really	this	year	I'm	focusing	more	on	going	out	across	the	world	to	speak
and	share.	I	want	to	talk	about	the	state	of	education	surrounding	Python,
where	we	are	with	Python	 in	general	 across	many	 different	 disciplines,
and	also	how	that	fits	in	with	Jupyter.	Then	I'll	also	be	involved	again	with
PyCon	and	the	tutorials.	It's	actually	fun	to	read	all	of	the	proposals	that
people	send	in.

I'm	relatively	new	to	the	marketing	work	group,	but	we're	trying	to	explore
other	ways	 to	engage	 the	community	globally,	as	well	as	sponsors.	We
want	to	highlight	how	Python	is	actually	being	used	out	in	the	real	world.
The	 marketing	 group	 is	 trying	 to	 come	 up	 with	 a	 stronger	 Twitter
campaign,	 so	 that	 people	 have	 more	 of	 an	 idea	 about	 what	 the	 PSF

does.

Mike	Driscoll:	What	are	the	current	goals	for	the	PSF?

Willing:	The	mission	of	the	PSF	is	to	sustain	the	Python	language	itself
and	protect	the	copyrights.	There	is	also	a	goal	to	grow	the	language	and
the	use	of	the	language	globally	in	places	that	maybe	aren't	using	Python
already.

On	 a	 year-to-year	 basis,	 the	 goals	 may	 look	 a	 little	 bit	 different.
Obviously,	running	PyCon	is	very	important	and	will	always	be	a	goal	of
the	PSF.	Other	things	may	be	more	strategic,	such	as	deciding	how	we
balance	the	requests	for	grants	that	come	in,	with	other	projects	that	we
are	funding.

Another	thing	that's	really	important	across	all	of	the	open	source	world	is
the	 sustainability	 of	 projects	 and	 how	 you	 fund	 the	 infrastructure	 that
these	projects	are	 running	on.	We've	been	very	 fortunate	 in	 the	PSF	to
have	 had	 some	wonderful	 donors	 within	 the	 community	 and	 sponsors.
But	 if	 for	 some	 reason	 a	 sponsor	went	 away,	 people	would	 still	 expect
PyPI	to	be	up	and	running	and	also	the	website.

You	need	to	build	a	 long-term	sustainability	plan,	so	 that	you	don't	burn
out	your	volunteers.	The	PSF	also	needs	to	provide	the	 level	of	service
that	people	have	come	 to	expect.	 I	know	Donald	Stufft	has	done	a	 few
interviews	 on	 how	much	 traffic	 PyPI	 routes	 a	 day.	 The	 figure	 is	 pretty
phenomenal.	 PyPI	 is	 something	 that	 we	 all	 depend	 on.	 The	 PSF
maintains	the	presence	of	Python	within	the	world	and	the	infrastructure
that	you	may	take	for	granted	on	a	day-to-day	basis	as	a	developer.

Carol	Willing:	'The	PSF	maintains	the	presence	of	Python	within	the
world	and	the	infrastructure	that	you	may	take	for	granted	on	a	day-

to-day	basis	as	a	developer.'

Driscoll:	So,	 I	don't	know	 if	you	can	 talk	about	 this	or	not,	but	what	do
you	do	at	Project	Jupyter?

Willing:	I	can	tell	you	what	we	do	at	Project	Jupyter,	because	Jupyter	is

an	 open	 source	 project.	 It	 is	 funded	 with	 a	 scientific	 research	 project
grants,	as	well	as	some	corporate	donations.

There	are	basically	three	major	areas	within	Jupyter.	There's	the	classic
Jupyter	Notebook,	which	 grew	 out	 of	 the	 IPython	Notebook.	 There	 are
also	 the	 many	 different	 widgets	 and	 tools	 that	 integrate	 with	 the
Notebook.	Lastly	there's	JupyterHub,	which	is	what	I	work	specifically	on.

JupyterHub	looks	at	how	you	provide	Notebooks	to	a	group	of	people	in	a
cluster.	 That	 could	 be	 in	 a	 small	 workshop,	 or	 a	 research	 lab.	 We're
seeing	a	lot	of	use	of	JupyterHub	within	large	academic	institutions.	Also,
a	 lot	 of	 the	 researchers	 in	 high-performance	 computing	 are	 using
JupyterHub	for	very	numerically	intensive	processing.

Carol	Willing:	'Basically	JupyterLab	will	give	you	a	streamlined	IDE
feel,	with	some	nice	functionality.'

The	next	generation	of	the	Notebook	is	JupyterLab.	Basically,	JupyterLab
will	give	you	a	streamlined	IDE	feel,	with	some	nice	functionality.	You	can
pull	 graphs	 out	 of	 the	 page	 and	 have	 them	 still	 sync	 and	 reflect	 what
changes	are	happening.

JupyterLab	is	built	to	be	extensible,	so	you	can	add	things	and	customize
them.	 I've	 been	 using	 JupyterLab	 probably	 for	 about	 a	 year	 and	 in
different	iterations.	The	feedback	has	been	very	positive	and	JupyterLab
was	shared	at	SciPy	a	year	ago.

Driscoll:	Do	you	need	a	subscription	to	use	JupyterHub?	How	does	that
work?

Willing:	No,	JupyterHub	is	also	a	free	open	source	project.	So,	if	you	had
a	bare-metal	server,	you	could	deploy	 it	on	your	own	server.	You	could
just	 deploy	 JupyterHub	 on	 AWS,	 Azure,	 Google	 Cloud,	 or	 others	 like
Rackspace.

We	recently	put	together	a	guide	to	help	people	to	set	up	a	JupyterHub
deployment	using	Kubernetes.	That	 is	actually	working	out	 really	nicely.
There	 are	 multiple	 methods	 for	 the	 authentication	 of	 users,	 because

there's	 a	 lot	 of	 variability	 in	 how	 different	 academic	 institutions
authenticate	people.

Carol	Willing:	'You	can	provide	every	student	with	a	web	account
and	they	will	have	all	of	the	same	tools	and	the	same	experience.'

You	 want	 something	 that	 we	 call	 a	 spawner,	 which	 will	 spawn	 an
individual	 Jupyter	 Notebook	 instance	 for	 a	 person.	 That's	 why
JupyterHub	 is	 attractive	 to	 universities.	 You	 can	 provide	 every	 student
with	a	web	account	and	they	will	have	all	of	the	same	tools	and	the	same
experience.	You	don't	have	to	deal	with	installation	nightmares.

Driscoll:	Do	you	work	on	IPython	as	well?

Willing:	IPython	is	part	of	that	whole	Jupyter	project,	but	the	work	that	I
do	on	IPython	itself	is	minimal.	I	will	occasionally	help	them	to	try	out	new
releases.

Jupyter	 is	 all	 one	 big	 academic	 research	 project.	 We	 don't	 have	 an
overabundance	 of	 marketing	 resources,	 but	 we're	 trying	 to	 spread	 the
word.	One	of	the	things	that	I	think	is	really	powerful	about	Jupyter	is	that
you	can	share	information	in	such	a	way	that	people	can	interact	with	 it
easily.	I've	certainly	seen	students	really	gravitate	towards	Jupyter.

Driscoll:	So	what	do	you	like	about	the	Python	community?

Willing:	I	think	Brett	Cannon	and	other	people	have	said	before	that	you
come	 for	 the	 programming	 language,	 but	 you	 stay	 for	 the	 Python
community.	That	really	resonates.	In	the	tech	world,	I	don't	know	of	any
community	that's	been	more	welcoming	than	the	Python	community.

Carol	Willing:	'You	come	for	the	programming	language,	but	you	stay	for
the	Python	community.'

So	 many	 thoughtful	 and	 talented	 people	 are	 willing	 to	 share	 their
knowledge	and	ideas.	I	think	that	a	lot	of	that	comes	from	Guido	himself
and	his	willingness	 to	 have	a	 language	 that's	 easy	 to	 use	 and	 easy	 to
read.	Guido	also	encourages	people	and	answers	questions	because	he

wants	a	healthy	Python	community,	as	well	as	a	healthy	language.	I	think
that	is	really	important.

Carol	Willing:	'Guido	also	encourages	people	and	answers
questions	because	he	wants	a	healthy	Python	community,	as	well

as	a	healthy	language.'

I	 think	 it's	 fun	to	see	all	of	 the	different	 things	that	people	are	doing.	As
much	 as	 I	 love	 PyCon,	 I	 really	 love	 the	 regional	 conferences.	 That's
where	 you	 really	 see	 the	 new	 stuff	 that	 is	 happening.	You	 get	 different
people's	perspectives	and	find	out	what	they	are	using	Python	for.

There's	nothing	 like	 trying	 to	 teach	new	users	how	 to	do	something,	 to
make	 you	 realize	 that	 Python	 needs	 to	 improve	 the	 user	 experience
somewhere.	 As	 a	 developer,	 it's	 not	 pleasant	 for	 me,	 so	 for	 a	 new
learner,	who	doesn't	necessarily	know	if	their	thing	is	configured	correctly,
it's	even	more	unpleasant.

Driscoll:	What	is	exciting	you	about	Python	at	the	moment?

Willing:	 I	 think	 you've	 gathered	 from	 our	 conversation	 so	 far	 that	 my
interests	are	not	related	to	just	one	thing.

One	of	the	nice	things	about	Python	is	that	I	can	use	the	language	if	I'm
doing	 embedded	 stuff,	 web	 stuff,	 scientific	 development,	 or	 analysis.	 I
can	certainly	use	Python	for	teaching	kids	or	adults.	There	aren't	a	whole
lot	of	languages	that	I	can	say	are	really	strong	across	the	board	on	all	of
those	things.	I	think	that	Python	really	excels	there.

Carol	Willing:	'Learning	and	education	are	what	excite	me	about
Python.	Python	3	is	a	pleasure	to	use	for	teaching.'

Learning	and	education	are	what	excite	me	about	Python.	Python	3	is	a
pleasure	 to	 use	 for	 teaching	 and	 f-strings	 have	 greatly	 simplified	 string
formatting.	 MicroPython,	 CircuitPython,	 Raspberry	 Pi,	 micro:bit,	 and
Jupyter	have	inspired	more	young	people	to	make	some	really	interesting

projects.	 It	was	great	 fun	to	see	the	young	developers	at	PyCon	UK	far
exceed	our	expectations	with	their	projects	and	lightning	talks.

Driscoll:	 So,	 as	 a	 core	 developer	 of	 Python,	 where	 do	 you	 see	 the
language	going	in	the	future?

Willing:	 I	 think	 we're	 going	 to	 continue	 to	 see	 growth	 in	 the	 scientific
programming	part	of	Python.	So	 things	 that	support	 the	performance	of
Python	as	a	language	and	async	stability	are	going	to	continue	to	evolve.
Beyond	that,	I	think	that	Python	is	a	pretty	powerful	and	solid	language.
Even	if	you	stopped	development	today,	Python	is	a	darn	good	language.

I	 think	 that	 the	needs	of	 the	Python	community	are	going	 to	 feed	back
into	 Python	 and	 influence	 where	 the	 language	 goes.	 It's	 great	 that	 we
have	 more	 representation	 from	 different	 groups	 within	 the	 core
development	 team.	 Smarter	 minds	 than	 mine	 could	 provide	 a	 better
answer	to	your	question.	I'm	sure	that	Guido	has	some	things	in	mind	for
where	he	wants	to	see	Python	go.

Carol	Willing:	'A	better	story	in	mobile	is	definitely	needed.	But	you
know,	if	there's	a	need	then	Python	will	get	there.'

Mobile	 development	 has	 been	 an	 Achilles'	 heel	 for	 Python	 for	 a	 long
time.	I'm	hoping	that	some	of	the	BeeWare	stuff	is	going	to	help	with	the
cross-compilation.	A	better	story	 in	mobile	 is	definitely	needed.	But	you
know,	if	there's	a	need	then	Python	will	get	there.

I	 think	 that	 the	 language	 is	going	 to	continue	 to	move	 towards	 the	stuff
that's	 in	 Python	 3.	 Some	 big	 code	 bases,	 like	 Instagram,	 have	 now
transitioned	from	Python	2	to	3.	While	there	is	much	Python	2.7	code	still
in	 production,	 great	 strides	 have	 been	 made	 by	 Instagram,	 as	 they
shared	in	their	PyCon	2017	keynote.

Carol	Willing:	'It	will	vary	by	company,	but	at	some	point,	business
needs,	such	as	security	and	maintainability,	will	start	driving	greater

migration	to	Python	3.'

There's	more	tooling	around	Python	3	and	more	testing	tools,	so	it's	less
risky	 for	 companies	 to	 move	 some	 of	 their	 legacy	 code	 to	 Python	 3,
where	it	makes	business	sense	to.	It	will	vary	by	company,	but	at	some
point,	 business	 needs,	 such	 as	 security	 and	 maintainability,	 will	 start
driving	greater	migration	to	Python	3.	If	you're	starting	a	new	project,	then
Python	 3	 is	 the	 best	 choice.	 New	 projects,	 especially	 when	 looking	 at
microservices	and	AI,	will	further	drive	people	to	Python	3.

Driscoll:	Why	do	you	think	that	Python	is	being	used	so	much	for	AI	and
machine	learning?

Willing:	 The	 long	 history	 of	 Python	 being	 used	 in	 science	 and	 data
science	makes	Python	an	excellent	choice	for	AI.	The	rich	ecosystem	of
Python	 libraries,	 including	 scikit-learn,	 NumPy,	 pandas,	 and	 Jupyter,
gives	researchers	and	creators	a	solid	foundation	for	getting	work	done.

Carol	Willing:	'The	long	history	of	Python	being	used	in	science	and
data	science	makes	Python	an	excellent	choice	for	AI.'

Driscoll:	How	could	Python	be	a	better	language	for	AI?

Willing:	Sustaining	the	existing	Python	infrastructure	and	key	libraries	is
critical	 for	 the	 fundamental	 growth	 of	 Python.	 A	 healthy	 and	 inclusive
ecosystem,	and	corporate	funding	for	sustainability,	will	help	 to	continue
the	rapid	growth	of	AI,	deep	learning,	and	machine	learning.

Driscoll:	Are	 there	any	changes	 that	 you	hope	 to	 see	 in	 future	Python
releases?

Willing:	I	would	love	to	see	more	task-oriented	documentation	to	support
the	concurrency,	async,	parallelism,	and	distributed	processing.	We	have
had	some	wonderful	enhancements	in	the	past	few	releases,	and	it	would
be	fantastic	to	help	others	to	more	easily	use	these	enhancements.

Driscoll:	Thank	you,	Carol	Willing.

Chapter	4.	Glyph	Lefkowitz

Glyph	Lefkowitz	 is	 an	American	 software	 engineer	who	 has	worked	 on
numerous	open	 source	projects.	Previous	 roles	 include	 senior	 software
engineer	 at	 Apple,	 and	 today	 he	 works	 at	 Pilot.com,	 a	 bookkeeping
service	for	start-ups.	Glyph	 is	 the	original	 founder	of	Twisted,	a	network
programming	 framework	 written	 in	 Python.	 He	 continues	 to	 maintain
Twisted	and	play	an	active	role	in	the	Twisted	community.	In	2009,	Glyph
was	made	a	 fellow	of	 the	Python	Software	Foundation	 (PSF).	The	PSF
awarded	 Glyph	 its	 Community	 Service	 Award	 for	 contributions	 to	 the
Python	language	in	2017.

Discussion	themes:	v2.7/v3.x,	Python's	future,	diversity.

Catch	up	with	Glyph	Lefkowitz	here:	@glyph

Mike	Driscoll:	So	how	did	you	end	up	becoming	a	programmer?

Glyph	Lefkowitz:	Well,	my	programming	path	was	somewhat	circuitous.
I	 started	 off	 programming	 as	 a	 kid,	 but	 I	 do	 not	 have	 the	 stereotypical
story	of	learning	BASIC,	then	Perl.	There	wasn't	a	linear	progression,	or
some	professional	aspiration	that	I	had	to	do	programming.

I	 just	wanted	 to	make	 games	 like	 Zork	when	 I	was	 a	 kid.	My	 dad	 is	 a
professional	programmer,	so	he	tried	to	teach	me	APL.	I	did	not	take	to

programming	quickly.	I	learned	how	to	assign	variables	and	that	was	it.	I
had	no	 idea	what	variable	assignment	meant.	That	was	where	 I	stayed
for	about	five	years.

Then	I	 learned	HyperCard	and	I	started	to	get	 the	notion	of	control	 flow
and	 loops.	 I	 tried	 to	make	video	games	with	 it.	 The	whole	 time,	 for	my
entire	childhood,	I	was	trying	to	avoid	learning	to	program.	I	was	always
looking	for	non-programmer	stuff	to	do,	because	I	was	terrible	at	math.

Glyph	Lefkowitz:	'The	whole	time,	for	my	entire	childhood,	I	was
trying	to	avoid	learning	to	program.'

So	after	a	while,	HyperCard	sort	of	got	 limiting.	 I	got	SuperCard	and	at
some	point,	 I	 learned	what	 a	 variable	was	 and	 how	 to	make	programs
that	would	actually	operate	on	data	structures.	Then	I	learned	C++.	Once
I	understood	the	power	inherent	 in	programming,	after	years	of	trying	to
avoid	it,	then	I	really	got	into	it.

Glyph	Lefkowitz:	'Once	I	understood	the	power	inherent	in
programming,	after	years	of	trying	to	avoid	it,	then	I	really	got	into

it.'

I	learned	Java,	I	learned	Perl,	I	learned	Lisp	and	I	learned	Scheme,	all	in
high	 school.	 I	 taught	 a	 programming	 class	 at	my	 high	 school,	 so	 I	 got
really	into	it	by	the	time	I	was	about	17.	But	it	was	quite	a	slog	on	the	way
up	there.

Driscoll:	 So	 how	 did	 that	 end	 up	 pushing	 you	 from	 all	 those	 other
languages	into	Python?

Lefkowitz:	Well,	by	the	time	I	started	my	professional	career,	 I'd	sort	of
settled	on	Java.

I	 had	 some	 really	 terrible	 experiences	 with	 the	 proprietary	 runtime,
particularly	 for	 macOS,	 that	 shipped	 with	 Java.	 So	 I	 had	 professional
experience	with	the	runtimes	being	really	bad.	Basically,	there	was	a	bug

in	 the	 windowing	 system	 that	 the	 application	 I	 was	 working	 on	 kind	 of
leaned	on.

The	 application	 could	 not	 be	 rearchitected	 to	 avoid	 tickling	 this	 bug,
because	the	bug	was	connected	with	leaking	large	amounts	of	memory.
So	effectively	the	project	that	I	was	on	died	and	I	lost	the	job.	I	ended	up
being	 unemployed	 for	 a	 couple	 of	 months	 and	 as	 a	 result	 of	 that
experience	I	thought	well,	screw	Java,	I'm	not	doing	that	anymore,	mainly
because	of	the	runtime	issues.

Glyph	Lefkowitz:	'I	ended	up	being	unemployed	for	a	couple	of
months	and	as	a	result	of	that	experience	I	thought	well,	screw

Java.'

My	 very	 first	 reaction	 was	 to	 see	 what	 GNU	 had	 on	 offer	 for	 a	 Java
compiler.	I	thought	maybe	I	could	do	Java,	but	not	touch	the	runtime	stuff,
because	it	was	just	too	buggy.	The	conclusion	from	that	was	rapidly	that
none	of	that	stuff	worked.

So	at	the	same	time,	my	hobby	project,	which	does	exist	to	this	day,	was
this	online	 text-based	game	which	 I	 had	written	 in	 Java.	A	 tremendous
amount	of	the	work	that	I	had	done	in	Java	was	building	up	these	hash
tables	full	of	objects	with	run	methods.

There	were	then	arguments	to	the	run	methods,	which	I	would	inject	into
them	with	reflection.	The	whole	idea	was	that	you	were	supposed	to	wire
the	game	together	at	runtime.	It	was	kind	of	user-programmable,	but	in	a
more	restricted	way.

Driscoll:	So	how	did	this	game	work?

Lefkowitz:	You	would	have	a	set	of	building	blocks	that	were	somewhat
constrained,	 so	 that	 if	 you	 made	 something,	 it	 could	 have	 game
consequences	and	not	just	flavor	text	that	it	would	print.	So	almost	all	of
the	code	in	the	Java	version	was	this	tremendous	amount	of	ceremony,
associated	with	dynamically	composing	objects,	out	of	other	objects	that
might	be	arbitrary	collections.

I	 reimplemented	the	whole	thing	 in	Python	and	I	realized	that	you	didn't
need	to	do	any	of	 that	stuff.	Objects	 in	Python	were	 just	 these	dynamic
collections	 of	 things,	 that	 you	 could	 arbitrarily	 add	 attributes	 to	 and
retrieve	attributes	from.	You	could	look	into	other	dicts	and	all	that	stuff.

Glyph	Lefkowitz:	'I	reimplemented	the	entire	thing,	which	was	about
25,000	lines	of	Java	in	800	lines	of	Python,	and	I	thought	it	was	a

much	better	program.'

So	 I	 reimplemented	 the	 entire	 thing,	 which	 was	 about	 25,000	 lines	 of
Java	in	800	lines	of	Python,	and	I	thought	it	was	a	much	better	program.
Now	granted,	what	I	had	implemented	in	Java	was	a	crummy	version	of
the	Python	object	model,	so	it	was	particularly	easy	to	implement.

One	of	my	interests	that	has	endured	over	many	years	 is	composability
and	 the	 ability	 to	 automatically	 assemble.	 I	 want	 the	 ability	 to	 make
programs	 self-symmetric,	 so	 that	 you	 can	 have	 a	 large	 number	 of
implementations	of	the	similar	interface	and	compose	them	automatically.
Python's	 metaprogramming	 facilities	 were	 in	 this	 wonderful	 sweet	 spot
between	 say	 Lisp	 or	 Scheme,	 where	 there	 was	 so	 much	 power	 that
nothing	 was	 compatible.	 No	 two	 people	 would	 write	 the	 same	 object
model	in	those	languages.

At	 the	 other	 end,	 with	 something	 like	 Java,	 everything	 was	 very
standardized,	 but	 it	 didn't	 matter,	 because	 everything	 was	 also	 really
tedious.	 You	 couldn't	 automatically	 pull	 things	 together	 and	 everything
was	very	verbose,	so	it	wasn't	worth	trying	to	do	any	metaprogramming.

Python	 is	 standard	 enough	 that	 things	 work	 together,	 but	 flexible	 and
high-level	enough	that	you	get	almost	as	much	power	as	Lisp	macros.	So
that's	why	I've	stuck	with	it	ever	since,	although	because	I	know	a	bunch
of	 other	 languages,	 I	 periodically	 venture	 into	 them.	 But	 Python	 is
definitely	my	main	language	that	I've	built	my	career	on.

Glyph	Lefkowitz:	'Python	is	definitely	my	main	language	that	I've
built	my	career	on.'

Driscoll:	 Are	 you	 actually	 a	 core	 Python	 developer?	 I	 wasn't	 able	 to
discover	that	information.

Lefkowitz:	 I'm	 not.	 I	 have	 attended	 a	 bunch	 of	 core	 Python	 developer
events,	because	Twisted	is	a	pretty	high-profile	Python	project.

I	 went	 to	 a	 language	 summit	 a	 couple	 of	 years	 ago	 and	 I	 have	 triage
permissions	 on	 the	 bug	 tracker.	 I'm	 on	 the	 Python	 security	 response
team	 to	 provide	 a	 library	 perspective	 on	 this	 stuff.	 I	 also	 worked	 with
Guido	van	Rossum	a	 fair	amount	on	asyncio	getting	 integrated	 into	 the
standard	 library.	 For	 instance,	 providing	 feedback	 on	 that	 and	 the
experiences	I've	had	with	Twisted.

So	I'm	peripheral	 to	Python	core	development,	but	not	a	member	of	 the
core	 team.	 I	 never	 really	 had	 the	 desire	 to	 get	 involved.	 I	 basically
already	 spend	 way	 more	 time	 than	 I	 probably	 should	 doing	 volunteer
open	 source	 development,	 to	 be	 adding	 to	 that	 by	 doing	 Python	 core
stuff.	A	lot	of	people	use	Python	professionally	and	want	to	give	back,	but
I	already	give	back.

Driscoll:	 So,	 now	we're	 talking	 about	 Twisted,	 could	 you	 tell	me	about
how	Twisted	came	about	and	what	inspired	you	to	write	it?

Lefkowitz:	Well,	it	came	about	originally	because	of	that	very	same	video
game	that	I	was	telling	you	about	before.	I	started	off	in	Python	rewriting
the	Java	version	of	the	server	that	I	had	been	working	on.

The	 concurrency	 of	 that	 server	 was	 very	 heavily	 based	 on	 threads,
because	 there	 were	 multiple	 players	 walking	 around	 and	 multiple
autonomous	agents	doing	various	things.	So	there	was	just	a	big	mess	of
threads	 in	 Java.	 There	 was	 no	 other	 way	 to	 do	 it	 and	 the	 whole
ecosystem	was	kind	of	oriented	around	using	lots	of	threads.

Glyph	Lefkowitz:	'There	was	a	time...	when	the	term	massively
multithreaded	was	like	a	boast	that	projects	would	make.'

In	fact,	I'll	never	forget	this,	there	was	a	time,	in	the	late	1990s	and	very
early	2000s,	when	massively	multithreaded	was	like	a	boast	that	projects

would	make.	This	was	something	positive	that	they	were	claiming	about
their	project.

We	 had	 a	 similar	 type	 of	 architecture	 and	 it	 was	 a	 giant	 mess.	 There
were	tons	and	tons	of	horrible	bugs	that	were	the	result	of	 the	 incorrect
management	 of	 threads.	 I	 don't	 remember	 exactly	 how	 I	 discovered	 it,
but	basically	originally	there	were	three	threads	for	every	connection:	the
reader	thread,	the	writer	thread	and	the	logic	thread.

My	friend	James	Knight	rewrote	the	client/server	protocol	for	this	game.	I
believe	that	when	he	rewrote	it,	he	condensed	down	those	three	threads
into	a	single	thread	per	player,	by	using	the	select	module.

Driscoll:	What	did	this	development	mean	for	you?

Lefkowitz:	I	 looked	at	the	client/server	protocol	and	I	realized	that	there
were	multiple	 things	I	wanted	 to	know	about,	 that	 I	might	be	able	 to	do
with	a	socket.

Glyph	Lefkowitz:	'Once	I	found	out	about	the	select	module,	I	read
about	it	and	it	completely	changed	my	conception	of	how	programs

worked.'

So	 once	 I	 found	 out	 about	 the	 select	 module,	 I	 read	 about	 it	 and	 it
completely	 changed	 my	 conception	 of	 how	 programs	 worked.	 As	 I
mentioned	before,	my	early	introduction	to	programming	was	HyperCard,
so	 I	 had	 this	 intuitive	 notion	 that	 the	 computer	 is	 idle	 and	 waiting	 for
something	to	happen.

Driscoll:	Where	did	you	go	from	there?

Lefkowitz:	So,	after	messing	around	with	the	select	module	for	a	day	or
two,	I	realized	that	you	could	have	something	that	was	on	data	received,
or	on	connection	started,	and	do	something.

That	was	much	more	natural	to	me,	because	I	had	been	using	threads	to
sort	of	emulate	this,	but	never	felt	really	comfortable.	At	that	time,	I	didn't
have	 a	 good	 intuition	 about	 what	 happened	 when	 we	 started	 up	 a

program.	 It	 started	 threads	 in	 the	background,	or	something	concurrent
was	happening,	but	I	didn't	really	understand	how	the	parallelism	worked.

With	select,	you	could	see	the	parallelism	because	multiple	connections
would	 come	 in.	 Then	 there	 would	 just	 be	 multiple	 objects	 that	 I	 had
instantiated	and	that	had	methods	on	them,	which	I	was	calling	from	this
event	 loop.	So	building	that	up	from	the	bottom	gave	me	a	much	better
understanding	of	how	concurrency	worked.

From	there,	 the	 idea	was	 that	 the	game	would	be	what	 these	days	you
call	 an	 alternate	 reality	 game.	 It	 would	 be	 reaching	 out	 via	 various
protocols	 to	 send	 you	 emails	 or	 send	 you	 text	 messages.	 This	 really
dates	the	whole	thing,	because	the	web	server	was	not	the	first	thing	I	did
and	it	was	not	really	clear	that	the	web	thing	was	going	to	catch	on.

Glyph	Lefkowitz:	'The	web	was	just	a	really	slow	and	buggy	native
client	that	crashed	a	lot.'

For	 us,	 the	 Twisted	 development	 team,	 the	web	was	 just	 a	 really	 slow
and	buggy	native	client	that	crashed	a	lot.	We	could	write	native	clients	in
Python	 that	would	do	exactly	what	we	wanted.	Security,	of	course,	was
not	 nearly	 the	 concern	 that	 it	 is	 today,	 so	 it	 wasn't	 as	 clear	 that	 we
needed	sandboxing.	To	be	fair,	browser	security	was	also	terrible	at	 the
time,	but	it	was	not	like	we	were	really	thinking	about	that.	So	that's	how
the	project	got	built	up	into	the	multi-protocol	Hydra	that	it	is.

One	of	the	reasons	that	Twisted	existed	in	the	form	where	it	had	this	big
standard	library	built	 in,	was	that	we	really	wanted	developers	to	rewrite
their	protocols	 in	such	a	way	 that	you	did	not	need	 threads	 to	speak	 to
them.	I	still	feel	this	way	to	a	large	extent	today.

Driscoll:	What	lessons	did	you	learn	from	the	first	Twisted	releases?

Lefkowitz:	 Well,	 one	 lesson	 was	 that	 each	 time	 you	 made	 an	 object
persistent,	you	were	basically	making	a	vow	 to	support	 it	 for	 the	 rest	of
your	natural	life.

Glyph	Lefkowitz:	'One	lesson	was	that	each	time	you	made	an
object	persistent,	you	were	basically	making	a	vow	to	support	it	for

the	rest	of	your	natural	life.'

So	 we	 had	 all	 of	 these	 really	 crummy	 little	 classes	 that	 were	 dumb
implementation	 details.	 They	 were	 exactly	 the	 kind	 of	 thing	 you	 would
imagine	 if	 you	 got	 a	 bunch	 of	 bored	 19-year-olds	 to	 write	 a	 bunch	 of
production-critical	 server	 infrastructure.	 That's	what	we	were	 doing	 and
we	ended	up	creating	this	very	odd	situation	where	we	had	these	server
files	which	were	like	dozens	of	dead	objects	from	previous	versions	of	the
software.

We	 didn't	 know	 the	 files	 were	 in	 there	 because	 pickle	 has	 no	 way	 to
visualize	 your	 object	 graph,	 or	 show	you	what's	 going	on.	So	 the	main
web	server	for	Twistedmatrix.com,	up	until	around	2009,	was	this	45	MB
pickle	file.	We	didn't	know	why	it	was	so	big,	but	that	was	how	you	would
run	it.	You	would	just	 fire	up	a	Python	 interpreter	 to	run	the	reactor.	We
were	 living	 five	 to	 ten	 years	 in	 the	 future,	 but	 that	 wasn't	 necessarily
always	a	good	thing.

Driscoll:	What	problems	did	you	run	into?

Lefkowitz:	We	were	sometimes	 trying	 to	do	 things	 that	were	 really	bad
decisions,	because	there	was	no	tooling	associated	with	them.

There	was	no	supporting	ecosystem,	so	we	assumed	 that	we	could	do
something	alternative	that	was	not	keeping	all	of	our	config	and	plain	text
files.	We	 thought	we	could	 then	somehow	handwave	all	 the	benefits	of
version	 control	 and	 text	 diffing,	 and	 all	 the	 log	 processing	 tools	 would
somehow	 arrive	 in	 our	 ecosystem,	 but	 they	 never	 did.	 So	 we've	 been
trying	to	do	less	weird	for	the	sake	of	weird	in	the	last	five	to	ten	years	of
the	project,	which	is	still	less	than	half	its	lifetime.

Glyph	Lefkowitz:	'We've	been	trying	to	do	less	weird	for	the	sake	of
weird	in	the	last	five	to	ten	years	of	the	project.'

Driscoll:	So	you	mentioned	 that	you	were	helping	with	 the	asyncio	and

other	 library	 changes	 related	 to	 that.	 How	 do	 you	 see	 those	 changes
affecting	Twisted?

Lefkowitz:	I	actually	wrote	an	article	on	my	blog	about	this	a	while	back.
At	 the	 time,	 a	 vocal	 minority	 of	 Python	 users,	 who	 really	 didn't	 like
Twisted	 to	 begin	 with,	 sort	 of	 rejoiced	 that	 the	 library	 changes	 would
finally	kill	Twisted,	because	there	would	be	no	reason	to	use	it	anymore.

Glyph	Lefkowitz:	'A	vocal	minority	of	Python	users,	who	really	didn't
like	Twisted	to	begin	with,	sort	of	rejoiced	that	the	library	changes

would	finally	kill	Twisted.'

What	I	predicted	at	the	time,	and	I	think	this	prediction	has	largely	borne
out,	 was	 that	 sanctioning	 event-driven	 concurrency	 in	 the	 standard
library,	and	saying	 this	 is	 the	way	 that	Python	does	concurrency,	would
prompt	a	lot	of	new	interest	in	Twisted.

The	whole	Python	stack	has	really	been	converging	on	this	idea	of	event-
driven	concurrency	being	the	right	way	to	do	things.	Previously,	Twisted
had	 to	 be	 a	 good	 server	 framework	 that	 you	 could	 use	 to	 deploy	 your
applications.	 It	 also	 had	 to	 be	 a	 good	 GUI	 client	 framework,	 that	 you
could	use	to	write	direct	line	apps	and	desktop	apps.

Twisted	 needed	 to	 be	 a	 solid	 implementation	 of	 a	 bunch	 of	 design
patterns,	but	it	also	had	to	be	its	own	little	standard	library.	It	had	to	paper
over	 a	 bunch	of	 issues	 in	 the	Python	 standard	 library	 that	 had	a	 really
slow	 release	 cycle	 and	 you	 couldn't	 necessarily	 depend	 on	 for	 the
applications.

Glyph	Lefkowitz:	'This	tool	appeared	to	be	proselytizing	to	them
before	it	was	solving	their	problems.'

The	sort	of	breaking	point	that	Twisted	reached,	was	that	it	also	had	to	be
this	 messenger	 for	 event-driven	 networking.	 People	 would	 come	 to
Twisted	wanting	some	feature,	and	then	you	would	first	have	to	sell	them
on	the	idea	that	async	was	a	good	idea	at	all.	What	this	resulted	in	was

that	people	would	show	up	 to	Twisted	with	no	shared	expectations	and
no	background.	This	 tool	appeared	 to	be	proselytizing	 to	 them	before	 it
was	solving	their	problems.

In	order	to	live	in	the	Twisted	ecosystem	to	some	extent,	to	get	the	real
benefits	of	 it,	 you	would	have	 to	start	converting	your	code	over	 to	 this
async	model,	 and	 that	was	 a	 bunch	 of	 work.	 If	 you	 didn't	 know	 how	 it
worked	and	it	wasn't	 intuitive	to	you,	 it	would	be	baffling.	You	would	not
be	in	a	frame	of	mind	where	you'd	be	interested	in	hearing	about	it.

So	the	interesting	thing	is	that	even	people	who	are	stuck	on	Python	2.7,
and	will	be	for	the	next	decade,	show	up	to	Twisted	nowadays.

Driscoll:	Why	are	people	stuck	on	Python	2.7?

Lefkowitz:	People	kind	of	know	that	the	standard	library,	like	Python,	has
moved	 on.	 It's	 all	 event-driven	 now,	 it's	 all	 async,	 and	 they	 can't	 use
asyncio	because	they're	in	a	large	corporate	code	base.

Initially	 the	 transition	 from	 Python	 2	 to	 Python	 3	 was,	 frankly,
mismanaged.	The	core	team,	despite	warnings	from	concerned	users	like
myself,	 just	 didn't	 comprehend	 the	 scale	 of	 their	 own	 creation.	 They
underestimated	the	migration	effort	by	several	orders	of	magnitude.

Glyph	Lefkowitz:	'Initially	the	transition	from	Python	2	to	Python	3
was,	frankly,	mismanaged.'

The	 long	 life	 of	 Python	 2	 is	 a	 consequence	 of	 their	 responsible
management	 of	 that	 mistake.	 The	 Python	 development	 team	 saw	 that
users	were	 not	 upgrading,	 and	worked	 hard	 to	 understand	why	 and	 to
address	 the	 issues	 of	 big	 Python	 users.	 So	 it's	 not	 ideal,	 but	 it's
significantly	 better	 than	 the	 alternative,	 which	 was	 for	 Python	 3	 to
become	Perl	6.

Driscoll:	What's	your	opinion	of	Python	3?

Lefkowitz:	 I'm	 in	Python	3	 in	my	day	 job	now	and	 I	 love	 it.	After	much
blood,	 sweat	 and	 tears,	 I	 think	 it	 actually	 is	 a	 better	 programming

language	 than	 Python	 2	 was.	 I	 think	 that	 it	 resolves	 a	 lot	 of
inconsistencies.

Most	 improvements	 should	 mirror	 quality	 of	 life	 issues	 and	 the	 really
interesting	stuff	going	on	 in	Python	 is	all	 in	 the	ecosystem.	 I	absolutely
cannot	wait	for	a	PyPy	3.5,	because	one	of	the	real	downsides	of	using
Python	3	at	work	 is	 that	 I	now	have	 to	deal	with	 the	 fact	 that	all	of	my
code	is	20	times	slower.

When	 I	do	stuff	 for	 the	Twisted	ecosystem,	and	 I	 run	stuff	on	Twisted's
infrastructure,	we	use	Python	2.7	as	a	language	everywhere,	but	we	use
PyPy	 as	 the	 runtime.	 It	 is	 just	 unbelievably	 fast!	 If	 you're	 running
services,	then	they	can	run	with	a	tenth	of	the	resources.

A	PyPy	process	will	take	80	MB	of	memory,	but	once	you're	running	that
it	 will	 actually	 take	more	memory	 per	 interpreter,	 but	 less	 memory	 per
object.	So	if	you're	doing	any	Python	stuff	at	scale,	I	think	PyPy	is	super
interesting.

One	 of	my	 continued	 bits	 of	 confusion	 about	 the	 Python	 community	 is
that	there's	this	thing	out	there	which,	for	Python	2	anyway,	just	makes	all
of	 your	 code	 20	 times	 faster.	 This	 wasn't	 really	 super	 popular,	 in	 fact
PyPy	download	stats	still	show	that	it's	not	as	popular	as	Python	3,	and
Python	3	is	really	experiencing	a	huge	uptick	in	popularity.

Glyph	Lefkowitz:	'The	lack	of	viable	Python	3	implementation	for
PyPy	is	starting	to	hurt	it	quite	a	bit.'

I	do	think	that	given	that	the	uptake	in	popularity	has	happened,	the	lack
of	a	viable	Python	3	implementation	for	PyPy	is	starting	to	hurt	it	quite	a
bit.	But	it	was	around	and	very	fast	for	a	long	time	before	Python	3	had
even	hit	10%	of	PyPy's	downloads.	So	I	keep	wanting	to	predict	that	this
is	the	year	of	PyPy	on	the	desktop,	but	it	just	never	seems	to	happen.

Driscoll:	Why	do	you	think	PyPy	has	not	taken	off	on	the	server?

Lefkowitz:	I'm	still	not	quite	sure	why,	because	especially	for	companies
with	significant	infrastructure	spend,	it	could	save	them	literally	millions	of

dollars	a	year	to	run.

You	can	tell	companies	that	they	will	save	millions	of	dollars	a	year	if	they
rewrite	 all	 of	 their	 code.	 The	 problem	 is	 they	 would	 be	 taking	 a	 huge
security	risk,	blowing	up	the	size	of	their	development	team	and	making
no	 feature	 progress	 in	 two	 years.	 That's	 a	 bad	 trade-off	 and	 I	 can	 see
why	you	wouldn't	want	to	do	that.

With	PyPy	we	say,	 "Why	 is	 that	not	 the	 future?	We	 just	dropped	 in	 this
new	interpreter."	There	are	reasons	that	we	can't	use	it,	such	as	that	the
scientific	 Python	 community's	 tooling	 does	 not	 work	 on	 PyPy	 yet.	 But
that's	 actually	 the	 exception	 rather	 than	 the	 rule,	 and	 even	 NumPy
programs	largely	work	on	PyPy.	I	wrote	some	OpenGL	stuff	last	year	that
uses	PyPy	extensively	and	doing	that	was	really	interesting.

Driscoll:	What	do	you	like	about	PyPy?

Lefkowitz:	 You	 write	 an	 OpenGL	 program	 using	 CPython	 and	 it's
struggling	 to	 stay	 at	 50	 frames	 per	 second.	 You	 do	 the	 same	 thing	 in
PyPy	and	it's	300,	400	or	500	frames	per	second,	not	breaking	a	sweat
and	not	taking	up	CPU.

Glyph	Lefkowitz:	'Where	I	would	like	to	see	Python	go	is	for	it	to
adopt	more	advanced	technology.'

Where	 I	 would	 like	 to	 see	 Python	 go	 is	 for	 it	 to	 adopt	more	 advanced
technology,	 but	 for	 some	 reason	 we've	 collectively	 lagged	 behind.
Another	 thing	 that	 I	 think	 will	 be	 critical	 for	 determining	 where	 Python
goes	 is	 to	what	extent	we	can	get	away	 from	pip	as	a	 tool	 for	users	 to
install	applications.

I	 think	that	we	need	a	better	story	for	how	you	write	cross-platform	GUI
code,	even	 if	 it's	 really	basic.	For	 instance,	tkinter	 is	 bad	enough	 that
people	 just	 don't	 use	 it.	 We	 need	 a	 better	 story	 for	 how	 you	 package
applications.

I	want	to	make	an	app	that	I	can	upload	to	the	App	Store,	even	before	we
start	talking	about	mobile.	There	are	all	the	issues	of	resource	constraints

that	 come	 along	 with	 that.	 I	 want	 to	 compile	 my	 app	 and	 put	 it	 on
someone	else's	computer,	but	it	is	way	too	hard	to	do	that	right	now.

Driscoll:	Do	you	see	making	apps	becoming	easier?

Lefkowitz:	 I'm	encouraged	by	projects	 like	pybee/briefcase,	and	 I	 think
that	they're	starting	to	finally	gain	some	traction.

They're	a	very	small	project	with	very	big	problems	in	front	of	them.	But
they're	 also	 very	 determined	 and	 committed,	 with	 real	 experience	 of
navigating	those	issues.	This	is	evidenced	by	Pythonista,	the	iOS	Python
app,	which	uses	their	code.

I	think	that	the	story	around	building	and	integrating	Python	programs	is
getting	better	all	the	time.	I	am	optimistic	that	within	the	next	five	years,	it
won't	be	unusual	to	see	apps	that	are	fully	written	in	Python,	rather	than
the	small	handful	of	examples	that	we	have	now.

It	 would	 be	 a	 shame	 if	 the	 only	 way	 you	 could	 realistically	 get	 Python
code	 from	one	 computer	 to	 another	 was	Docker.	 Python	 should	 be	 on
your	Mac,	it	should	be	on	your	Android,	it	should	be	on	your	Linux	box,	it
should	 be	 in	 the	 cloud	 and	 it	 should	 be	 on	 your	 Raspberry	 Pi.	 In
particular,	with	the	emergence	of	the	Internet	of	Things,	I	really	wish	more
of	those	things	were	running	Python	web	servers.

Glyph	Lefkowitz:	'The	mission	is	Python	on	every	port,	and	we
really	feel	like	that's	an	important	mission.'

The	mission	 is	 Python	 on	 every	 port,	 and	 we	 really	 feel	 like	 that's	 an
important	mission.	So	many	services,	the	things	that	people	actually	use
to	 talk	 to	edge	network	devices	such	as	Nginx,	Apache,	XM	and	BIND,
are	also	in	C.

We're	 writing	 all	 of	 our	 application	 code	 in	 these	 high-level	 languages.
The	 things	 that	 are	 actually	 pulling	 the	 bytes	 off	 the	 wire	 and	 handing
them	to	your	application,	then	parsing	them,	are	all	barely-maintained	C
programs	from	20	years	ago.	This	is	a	real	danger.

So	the	idea	is	that	you	can't	do	crypto	in	Python.	Crypto	primitives	need
to	be	in	C,	but	those	are	a	tiny	part	of	a	security	application.	Higher-level
cryptographic	 constructions	 can	 (and	 really	 should)	 absolutely	 be
assembled	 in	 Python,	 where	 you're	 dealing	 with	 composing	 multiple
cryptographic	primitives	into	a	workable	whole.	Doing	that	composition	in
C	is	dangerous	and	error-prone.

In	many	 cases,	 you	 have	 to	 drop	 down	 to	 a	 sublayer,	 but	 you	 have	 to
write	 crypto	 primitives	 in	 a	 language	where	 you	 can	 tell	 the	 underlying
hardware	 to	 take	 fixed	 lengths	 of	 time	 to	 do	 things.	 So	 it	 has	 to	 be
completely	 data	 input	 independent.	 It	 also	 has	 to	 be	 extremely	 fast,
because	you	don't	want	to	be	paying	a	huge	overhead	to	encrypt	things.
You	just	need	to	encrypt	them	no	matter	what.

Driscoll:	Do	you	think	that	the	Python	language	is	here	to	stay?

Lefkowitz:	 Wow,	 that's	 an	 interesting	 question!	 I	 think	 that	 many
languages	 that	have	had	 the	 lifetime	 that	Python	has	had,	have	sort	of
slowly	faded	into	legacy	status.

Overall,	 I	 think	 one	 of	 the	 places	 that	 the	 Python	 language	 is	 going	 is
forwards.	It's	still	an	unbelievably	vibrant	community	and	it's	still	growing.
It	was	growing	slowly	at	the	beginning	and	it's	growing	slowly	now,	but	it
has	 been	 consistently	 growing	 over	 years	 and	 years.	 I	 think	 this	 is
interesting	because	there	are	a	lot	of	languages	that	have	been	gigantic
flashes	 in	 the	 pan.	 Ruby	 was	 hugely	 popular	 for	 a	 while	 and	 then	 its
popularity	really	plummeted	with	Rails	losing	popularity.

Glyph	Lefkowitz:	'I	think	Python	is	going	to	have	a	much	longer	life
than	previous	generations	of	languages.'

I	 think	 Python	 is	 going	 to	 have	 a	 much	 longer	 life	 than	 previous
generations	 of	 languages,	 which	 were	 in	 their	 heyday	 super-hot
technology,	and	then	faded	away	with	the	next	generation	of	stuff.	I	think
Python	is	becoming	its	own	next	generation.	Ironically,	I	think	that	Python
3	is	a	very	small	part	of	that.

One	 thing	 that	 I	 really	 hope	 happens,	 and	 I	 think	 it's	 another	 one	 that

hasn't	yet,	is	Python	in	the	browser.	Skulpt,	Pyjs,	PyPy.js,	and	a	bunch	of
other	projects	have	kind	of	got	things	that	are	good	proofs	of	concept,	but
again	nobody's	sitting	down	and	going:	 "I'm	a	new	Python	programmer
and	I	want	to	do	a	frontend	Python	app.	What	do	I	do?"

The	 answer	 to	 that	 is	 inevitably	 that	 the	 thing	 that	 actually	 lets	 you	 do
what	you	want	to	do	is	only	on	Git	master	in	this	one	project.	You've	got
to	check	it	out	and	check	out	another	project.	When	you	ask	the	question:
"Well,	 why	 can't	 I	 pip	 install	 this?"	 The	 answer	 is:	 "We're	 kind	 of	 still
working	on	it	and	it's	not	fully	done."

Glyph	Lefkowitz:	'I	do	think	that	Python	will	certainly	keep	growing
in	a	variety	of	different	backend	capacities.'

The	 answer	 should	 just	 be,	 of	 course,	 that	 you	 can	pip	 install	 it	 and	 it
shouldn't	be	harder	than	that.	So	that's	where	I	hope	the	community	will
go,	but	 I	do	 think	 that	Python	will	 certainly	keep	growing	 in	a	variety	of
different	backend	capacities.

I	also	think	that	where	we're	headed	as	a	language	and	an	ecosystem	is
towards	greater	diversity.	It's	going	to	take	us	to	some	surprising	places
that	I	can't	predict,	but	I	would	say	that	it	looks	like	Python	is	going	to	be
around	for	a	really	long	time.	I	think	that	for	now,	where	Python's	going	is
data	 science.	 There	 are	 obviously	 a	 lot	 of	 people	 interested	 in	 data
science	right	now.

Driscoll:	Python	is	being	used	a	lot	in	the	AI	and	machine	learning	boom.
Why	do	you	think	this	is?

Lefkowitz:	AI	is	a	bit	of	a	catch-all	term	that	tends	to	mean	whatever	the
most	advanced	areas	in	current	computer	science	research	are.

There	was	a	 time	when	 the	basic	graph-traversal	 stuff	 that	we	 take	 for
granted	was	considered	AI.	At	 that	 time,	Lisp	was	 the	big	AI	 language,
just	because	it	was	higher-level	than	average	and	easier	for	researchers
to	do	quick	prototypes	with.	 I	 think	Python	has	 largely	 replaced	 it	 in	 the
general	sense	because,	in	addition	to	being	similarly	high-level,	it	has	an
excellent	 third-party	 library	 ecosystem,	 and	a	 great	 integration	 story	 for

operating	system	facilities.

Lispers	will	object,	so	I	should	make	it	clear	that	I'm	not	making	a	precise
statement	about	Python's	position	 in	a	hierarchy	of	expressiveness,	 just
saying	that	both	Python	and	Lisp	are	in	the	same	class	of	language,	with
things	like	garbage	collection,	memory	safety,	modules,	namespaces	and
high-level	data	structures.

In	 the	 more	 specific	 sense	 of	 machine	 learning,	 which	 is	 what	 more
people	mean	when	they	say	AI	these	days,	I	think	there	are	more	specific
answers.	 The	 existence	 of	 NumPy	 and	 its	 accompanying	 ecosystem
allows	for	a	very	research-friendly	mix	of	high-level	stuff,	with	very	high-
performance	 number-crunching.	Machine	 learning	 is	 nothing	 if	 not	 very
intense	number-crunching.

Glyph	Lefkowitz:	'The	Python	community's	focus	on	providing
friendly	introductions...	to	non-programmers,	has	really	increased
its	adoption	in	the	sister	disciplines	of	data	science	and	scientific

computing.'

The	 Python	 community's	 focus	 on	 providing	 friendly	 introductions	 and
ecosystem	 support	 to	 non-programmers,	 has	 really	 increased	 its
adoption	in	the	sister	disciplines	of	data	science	and	scientific	computing.
Countless	 working	 statisticians,	 astronomers,	 biologists,	 and	 business
analysts	 have	 become	 Python	 programmers	 and	 have	 improved	 the
tooling.	 Programming	 is	 fundamentally	 a	 social	 activity	 and	 Python's
community	has	acknowledged	this	more	than	any	other	language	except
JavaScript.

Machine	 learning	 is	 a	 particularly	 integration-heavy	 discipline,	 in	 the
sense	 that	 any	 AI/machine	 learning	 system	 is	 going	 to	 need	 to	 ingest
large	amounts	of	data	from	real-world	sources	as	training	data,	or	system
input,	 so	 Python's	 broad	 library	 ecosystem	means	 that	 it	 is	 often	 well-
positioned	to	access	and	transform	that	data.

Driscoll:	What	could	be	done	 to	make	Python	a	better	 language	 for	AI
and	machine	learning?

Lefkowitz:	 Using	 more	 PyPy.	 Right	 now,	 the	 data	 science/machine
learning	 ecosystem	 in	 Python	 is	 very	 focused	 around	 the	 CPython
runtime,	which	is	unfortunate.

This	 means	 that	 new	 tools	 are	 often	 created	 without	 testing	 on	 PyPy,
which	means	 that	when	 they	have	performance	bottlenecks,	 rewrites	of
core	 logic	 in	C	(or,	 if	you're	 lucky,	Cython)	are	an	 inevitable	part	of	any
significant	project.

Glyph	Lefkowitz:	'Right	now	the	data	science/machine	learning
ecosystem	in	Python	is	very	focused	around	the	CPython	runtime,

which	is	unfortunate.'

This	 is	 largely	a	social	problem	and	the	technical	challenges	preventing
some	parts	of	the	current	Python	AI/machine	learning	infrastructure	from
running,	 or	 running	 well,	 on	 PyPy	 are	 not	 significant	 in	 terms	 of	 the
resources	they	would	take	to	fix	 if	their	maintainers	cared.	But,	from	the
perspective	of	someone	uninvolved	with	those	projects,	who	is	starting	a
project	 and	 trying	 to	 use	 PyPy,	 it's	 just	 one	 inscrutable	 failure	 after
another	in	some	code	you	don't	know	anything	about.

This	 is	 true	 in	several	 fields	of	Python's	application	and	 I	 just	wish	 that
more	folks	would	think	of	Python	as	a	language	that	can	be	very	fast,	and
competitive	with	Java	or	even	C++,	and	plan	accordingly	when	evaluating
their	testing	matrix.

Glyph	Lefkowitz:	'I	just	wish	that	more	folks	would	think	of	Python
as	a	language	that	can	be	very	fast,	and	competitive	with	Java	or

even	C++.'

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Lefkowitz:	My	main	wish	is	for	there	to	be	some	good	defaults	for	getting
new	projects	set	up.

For	example,	today	you	have	to	know	that	when	you	install	Python,	you

also	need	to	install	pip,	and	then	you	also	need	to	create	a	virtualenv,
but	 all	 of	 these	 steps	 are	 optional.	 You	 also	 have	 to	 hand-create	 a
setup.py	 to	 describe	 your	 project,	 then	 learn	 about	 building	 wheels,
specifying	dependencies	and	so	on.

What	 I'd	 like	 to	 see	 is	 Python	 presenting	 an	 integrated	 view	 of	 best
practices,	that	makes	it	harder	to	get	lost	in	the	weeds	of	installing	stuff.
This	could	be	just	having	a	new	project	button,	so	that	a	Python	project
would	look	like	any	other	kind	of	document	to	a	user	just	getting	started.
Also,	Python	could	look	more	like	an	app,	even	if	that	app	required	lots	of
command-line	use.

Secondary	 to	 that,	 I'd	 like	 to	 see	 tools	 that	 make	 it	 easier	 for	 library
authors	 to	 protect	 private	 implementation	 details	 from	 accidental
breakage.	 For	 example,	 you	 can	 import	 the	 stuff	 that	 the	 library	 has
imported,	rather	than	importing	the	stuff	that	the	library	is	trying	to	define.
Right	now,	upgrading	Python	libraries	is	extra	risky,	because	every	single
user	 of	 every	 library	 might	 have	 made	 a	 mistake	 like	 this	 and	 be
depending	on	a	bug.

The	 tool	 that	 I	want	 to	make	 it	 easy	 for	 users	 to	 create	 projects	would
benefit	 a	 lot	 from	 coming	with	 the	 language,	 but	 this	 type	 of	 boundary
enforcement	around	modules	would	have	to	be	built	into	the	language.	It
would	be	extremely	hard	to	build	it	in	the	ecosystem.

Driscoll:	 So	 what	 do	 you	 think	 is	 the	 best	 thing	 about	 the	 Python
community?

Lefkowitz:	One	of	the	things	that	I	think	is	really	good	is	the	commitment
to	diversity.	A	lot	of	people	think	that	this	is	a	political	thing	or	that	there
are	 different	 factions	 for	 pro-diversity	 and	 anti-diversity.	 Diversity	 is
almost	seen	as	taking	away	from	the	technical	stuff	somehow.

I	 can	 just	 share	 my	 own	 personal	 journey	 to	 becoming	 interested	 in
diversity	and	social	justice.	I	looked	around	a	Twisted	project	and	I	said,
"Why	are	we	100%	dudes?	What	is	going	on	here?	What	have	we	done
to	shut	women	out	of	this	project?"

Glyph	Lefkowitz:	'We	were	clearly	missing	out	on	half	the	talent	the

world	had	to	offer.'

I	felt	bad,	but	also	that	we	were	clearly	missing	out	on	half	the	talent	the
world	had	 to	offer	 in	 just	 the	most	obvious	way.	We	were	also	all	white
and	there	are	lots	of	people	of	color	who	also	have	talent	 to	offer.	They
weren't	showing	up.	So	 there's	certainly	a	degree	of	altruistic	 impulses,
but	 I	 also	 think	 that	 many	 people	 inside	 the	 Python	 community	 have
accepted	that	this	is	a	real	skills	gap	issue.

If	we	don't	get	a	diverse	group	of	people	working	on	our	stuff,	and	getting
involved	in	our	community,	 then	we're	not	going	to	make	software	that's
useful	to	a	lot	of	the	world.	We're	going	to	be	missing	out	on	a	lot	of	talent
and	we're	going	to	be	missing	out	on	a	 lot	of	 interesting	voices	that	will
challenge	us,	and	make	us	a	more	interesting	community.

Glyph	Lefkowitz:	'If	we	don't	get	a	diverse	group	of	people	working
on	our	stuff...	then	we're	not	going	to	make	software	that's	useful.'

So	when	we	talked	earlier	about	the	technical	directions	that	the	Python
community	has	been	moving	in,	those	directions	are	aided	by	this	pursuit
of	diversity.	I	believe	that	one	of	the	reasons	that	Python	is	popular	in	life
sciences	is	that	it	has	a	different	demographic	breakdown	than	the	rest	of
the	tech	industry.	I	think	Python	has	made	real	inroads	there,	in	large	part
because	people	look	at	the	Python	community	and	are	not	scared	off.	It's
not	an	intimidating	or	exclusionary	type	of	environment.

Glyph	Lefkowitz:	'The	Python	community	is	not	perfect.	We	still
have	a	long	way	to	go.'

Now	that	said,	I	felt	a	little	weird	commenting	on	this	because	I	also	feel
that	the	Python	community	is	not	perfect.	We	still	have	a	long	way	to	go.
The	 tech	 industry	overall	 is	 highlighting	women,	 just	 because	 that's	 the
most	 obvious	 demographic	 disparity,	 but	 there	 are	 also	 lots	 of	 other
underrepresented	groups.

When	you	 look	at	 the	representation	of	women	throughout	 the	software
industry,	you've	got	about	25	 to	30%,	depending	on	how	 it's	measured.
Then	 you	 look	 at	 the	 open	 source	 community	 and	 it's	 more	 like	 5%
women,	which	 is	a	 lot	better	 than	 it	was	a	couple	of	years	ago,	when	 it
was	about	1%.

The	Python	community	is	considerably	better	than	that,	but	still	when	you
look	 at	 people	 who	 are	 actively	 participating	 in	 projects,	 it's	 not	 even
really	 hitting	 the	 industry	 average,	 let	 alone	 the	 overall	 demographic
average.

Driscoll:	How	can	the	Python	community	encourage	more	diversity?

Lefkowitz:	 I	 think	we	 still	 have	 a	 long	way	 to	 go,	 but	 the	 fact	 that	 the
Python	community	has,	in	the	large	part,	acknowledged	the	real	problem
that's	affecting	a	lot	of	aspects	of	technology	is	important.	Diversity	is	an
issue	that's	affecting	the	culture	around	technology.

Glyph	Lefkowitz:	'Diversity	is	an	issue	that's	affecting	the	culture
around	technology.'

You	have	other	communities,	like	Clojure	or	Erlang,	which	have	fantastic
technology	on	offer,	but	they	don't	really	care	about	the	diversity	problem.
You	can	see	that	reflected	in	a	monoculture	among	their	thinking	and	the
lack	of	success	becoming	more	popular.

I	 think	 a	 community	 which	 is	 largely	 following	 in	 Python's	 footsteps	 is
Rust.	Despite	it	being	extremely	low-level	and	somewhat	tedious	to	write,
they	 do	 have	 some	 great	 ideas	 in	 that	 language.	 As	 a	 result	 of	 being
more	inclusive	and	thoughtful	about	the	way	the	community	is	organized,
Rust	 is	 skyrocketing	 in	 popularity	 from	 very	 far	 down	 on	 the	 list	 of
languages.

Glyph	Lefkowitz:	'I	think	that	the	inclusiveness	of	the	Python
community	is	definitely	the	best	thing	about	it.'

So	I	think	that	the	inclusiveness	of	the	Python	community	is	definitely	the
best	thing	about	it.	That	is	not	just	a	comment	on	its	political	orientation,
but	 a	 comment	 on	 its	 ability	 to	 produce	 interesting	 technology	 in	 the
future.

I	 think	 that	 Python	 has	 endured	 by	 being	 friendly.	 It's	 open	 to	 lots	 of
people	from	new	and	different	communities.	 I	don't	know	how	to	predict
the	future	really,	because	it's	going	to	depend	on	who	shows	up	next.

Driscoll:	Thank	you,	Glyph	Lefkowitz.

Chapter	5.	Doug	Hellmann

Doug	Hellmann	 is	an	American	software	developer	and	author.	He	 is	a
fellow	 of	 the	 Python	 Software	 Foundation	 (PSF)	 and	 served	 as
communications	director	for	almost	two	years.	Doug	was	a	columnist	for
the	Python	Magazine,	 before	 becoming	 editor-in-chief.	He	 also	 created
and	sustained	the	popular	Python	Module	of	 the	Week	blog,	which	was
compiled	and	published	 in	his	book,	The	Python	3	Standard	Library	 by
Example.	Doug	works	as	a	senior	principal	software	engineer	at	Red	Hat,
where	 he	 focuses	 on	 community	 leadership	 and	 achieving	 long-term
sustainability	for	OpenStack.

Discussion	themes:	OpenStack,	virtualenvwrapper,	v2.7/v3.x.

Catch	up	with	Doug	Hellmann	here:	@doughellman

Mike	Driscoll:	Why	did	you	become	a	programmer,	Doug?

Doug	Hellmann:	I	got	interested	in	computers	when	I	was	pretty	young,
through	some	summer	programs	that	my	local	school	system	ran	at	 the
time.	 I	 enjoyed	programming,	 and	 learning	 about	 how	computers	work,
so	I	decided	to	pursue	a	CS	degree	in	college.	The	work	we	did	in	school
really	 reinforced	 for	me	 that	 programming	was	something	 I	 could	enjoy
doing	for	a	living.

Driscoll:	Why	Python?	What	makes	Python	special	to	you?

Hellmann:	 I	 was	 first	 introduced	 to	 Python	 around	 1997,	 when	 I	 was
working	 in	 a	 tools	 and	 build	 management	 group	 for	 a	 GIS	 software
company	called	ERDAS.

We	 needed	 to	 build	 some	 tools	 to	 help	manage	 the	 builds	 on	 several
UNIX	 platforms,	 as	 well	 as	 Windows	 NT	 and	 95.	 We	 had	 a	 lot	 of
Makefiles	 and	 shell	 scripts,	 but	 they	 weren't	 especially	 portable.	 The
more	I	used	Python,	the	more	I	was	able	to	find	new	ways	to	use	it.

Doug	Hellmann:	'The	more	I	used	Python,	the	more	I	was	able	to
find	new	ways	to	use	it.'

After	first	learning	Python,	I	remember	being	simultaneously	happy	that	I
had	found	a	new	tool	language	that	was	so	easy	to	use,	and	sad	that	the
company	I	was	working	with	didn't	let	us	use	it	for	'real	work'	at	the	time!

Driscoll:	Doug,	 you	went	 on	 to	become	 the	 technical	 editor	 for	Python
Magazine,	which	I	used	to	really	enjoy.	I've	always	wondered	how	Python
Magazine	got	started...and	why	did	it	then	stop?

Hellmann:	Python	Magazine	began	with	Brian	Jones	as	 the	 first	editor-
in-chief.

Brian	pitched	the	idea	to	MTA,	the	publishers.	They	had	been	focused	on
the	 PHP	 community,	 but	 agreed	 that	 it	 seemed	 like	 the	 Python
community	could	also	support	a	magazine.

Was	that	the	right	call?	Well,	we	did	okay	for	a	while,	but	I	think	the	timing
was	poor	for	a	new	paid	print	publication	to	launch.	An	e-zine	might	work
better,	today,	but	it's	a	tough	industry.

Driscoll:	What	made	you	also	start	the	tremendously	successful	'Python
Module	of	the	Week'	series,	Doug?	What's	driven	you	to	carry	on	writing
PyMOTW	for	more	than	ten	years	now?

Hellmann:	Yes,	 it	has	been	over	 ten	years.	 I	started	the	PyMOTW	blog

series	(https://pymotw.com)	in	2007	as	a	way	to	push	myself	to	write	on	a
regular	 basis.	 I	 decided	 a	 theme	would	make	 it	 easier	 to	 find	 topics	 to
write	about,	and	writing	once	a	week	seemed	like	a	good	goal.

The	 interest	 from	 the	 rest	 of	 the	 community	 grew	slowly	over	 time,	 but
feedback	was	mostly	positive.	I'm	sure	I	would	have	stopped	early	on	if	it
wasn't	for	all	of	the	feedback	and	support	that	everyone	has	given	me.

Driscoll:	How	did	your	book	come	about,	Doug?

Hellmann:	At	 a	PyCon	a	 couple	of	 years	 into	 the	project,	Mark	Ramm
introduced	 me	 to	 Debra	 Williams	 Cauley,	 an	 editor	 from	 Pearson.	 I
pitched	the	idea	of	cleaning	up	the	blog	posts	and	turning	the	series	into
a	book.	Debra	helped	me	to	figure	out	how	to	structure	it	to	make	it	work
in	that	format.	The	whole	team	at	Pearson	has	been	great	to	work	with.

Doug	Hellmann:	'The	Python	3	Standard	Library	contains	hundreds
of	modules	for	interacting	with	the	operating	system,	interpreter,

and	internet.'

Driscoll:	Your	book	 is	 incredibly	helpful	 to	Python	developers.	So	what
do	you	 think	new	Python	programmers	should	do	once	 they've	 learned
the	basics?

Hellmann:	I	encourage	folks	to	set	a	goal	by	picking	a	problem	that	they
want	 to	solve	for	 themselves.	That	gives	 them	a	 framework	 for	 learning
things	 like	 how	 to	 break	 down	 a	 project	 into	 pieces	 that	 can	 be
implemented	one	at	a	time,	which	in	turn	helps	them	to	focus	on	learning
one	skill	at	a	time.

At	PyOhio	2015,	I	talked	about	one	of	my	own	projects	as	an	example	of
this.	 Of	 course,	 not	 all	 projects	 need	 to	 be	 as	 complex	 as	 the	 Smiley
example:

https://doughellmann.com/blog/2015/08/02/pyohio-talk-on-smiley-and-
iterative-development/

Every	 programmer	 builds	 little	 throw-away	 tool	 scripts	 as	well	 as	more

https://pymotw.com
https://doughellmann.com/blog/2015/08/02/pyohio-talk-on-smiley-and-iterative-development/

complicated	reusable	projects,	and	all	of	them	are	an	opportunity	to	learn
something	new.

Doug	Hellmann:	'Every	programmer	builds	little	throw-away	tool
scripts	as	well	as	more	complicated	reusable	projects,	and	all	of

them	are	an	opportunity	to	learn	something	new.'

Another	good	way	to	learn	is	to	attend	a	local	meetup,	and	talk	to	other
programmers.	The	Atlanta	Python	meetup	group	tries	to	maintain	a	good
mix	of	introductory	and	more	advanced	talks	to	help	encourage	folks	with
a	range	of	skills	to	attend	our	meetings.	Sometimes	the	most	informative
part	 of	 the	 evening	 is	 the	 Q&A	 after	 a	 talk,	 or	 the	 discussions	 during
breaks,	when	you	have	the	chance	to	ask	for	more	detail	or	clarification.

Driscoll:	What	active	projects	are	you	involved	in	today	Doug?

Hellmann:	For	the	past	five	years	I've	been	working	on	various	aspects
of	OpenStack.	Aside	 from	 the	cloud	management	 software	 itself,	we've
produced	 some	 interesting	 tools	 like	 the	 pbr	 library,	 to	 help	 with
packaging.

Driscoll:	So	how	did	you	get	started	as	an	OpenStack	developer?

Hellmann:	 I	started	working	on	OpenStack	at	DreamHost.	 I	had	known
Jonathan	 LaCour,	 the	 VP	 of	 engineering,	 through	 the	 Atlanta	 Python
meetup	for	a	few	years	and	the	timing	worked	out	well	when	he	needed
someone,	and	I	was	interested	in	changing	jobs.	We	had	a	small	team	in
the	 Atlanta	 area,	 and	 we	 all	 helped	 each	 other	 to	 bootstrap	 into	 the
OpenStack	community.

Doug	Hellmann:	'I	had	known	Jonathan	LaCour,	VP	of	Engineering,
through	the	Atlanta	Python	meetup	for	a	few	years...'

Driscoll:	So	the	power	of	meetups	was	really	 in	action	 there!	What	are
your	goals	for	OpenStack	at	the	moment?

Hellmann:	 I	 have	 a	 very	 flexible	 mandate	 from	 Red	 Hat	 to	 work	 on
what's	needed	to	keep	the	OpenStack	community	healthy.

I	serve	on	the	Technical	Committee,	which	is	our	elected	governing	body.
We	try	to	guide	the	project,	and	help	to	bring	the	large	contributor	base	to
some	level	of	consensus	when	we	have	major	decisions	to	make.

Doug	Hellmann:	'I	have	a	very	flexible	mandate	from	Red	Hat	to
work	on	what's	needed	to	keep	the	OpenStack	community	healthy.'

I	have	also	served	as	team	lead	for	 the	Oslo	team,	which	manages	the
set	of	common	libraries	shared	between	the	various	OpenStack	services.
We	try	to	build	the	libraries	to	be	as	reusable	as	possible,	but	sometimes
we	need	to	share	code	within	OpenStack	that	isn't	going	to	be	that	useful
to	anyone	else.

I've	also	worked	on	the	release	tools,	extending	the	pipeline	to	make	the
release	process	scale	from	a	highly	manual	process	for	five	projects,	to	a
highly	 automated	 process	 supporting	 around	 350	 different	 deliverables.
I've	 built	 some	 tools	 like	 reno,	 our	 release	 note	management	 program,
and	I	jump	in	on	other	initiatives	where	help	is	needed.

Driscoll:	So,	regarding	some	of	the	tools	that	you've	created,	what	was
your	inspiration	for	creating	virtualenvwrapper?

Hellmann:	While	I	was	working	as	a	technical	editor	and	 later	editor-in-
chief	 for	 Python	 Magazine,	 I	 ended	 up	 needing	 to	 manage	 a	 lot	 of
different	virtualenv's.	Each	author	provided	instructions	for	installing	the
tools	they	used	for	their	articles,	and	I	wanted	to	be	able	to	test	out	 the
code.

I	 started	writing	 a	 few	 aliases	 to	manage	 environments	 easily,	 and	 the
project	 grew	 organically	 from	 there.	 My	 workflow	 has	 changed
significantly	since	I've	been	so	focused	on	OpenStack,	so	I	haven't	been
contributing	 to	 virtualenvwrapper	 as	 much	 as	 I	 used	 to.	 I'm	 happy	 to
have	Jason	Myers	taking	over	as	the	lead	maintainer	on	the	project	these
days.

Driscoll:	So	while	you	were	creating	virtualenvwrapper,	can	you	tell	us
what	you	learned?

Hellmann:	Sure,	I	can	actually	think	of	three	things	that	I	learned	while	I
was	creating	virtualenvwrapper.

First	 of	 all	 I	 learned	 how	 contributions	 come	 from	 surprising	 directions.
Doug	Latornell	provided	the	original	patches	to	support	ksh.	I	had	no	idea
that	 anyone	would	 be	 interested	 in	 supporting	 ksh,	 so	 I	 hadn't	 thought
beyond	Bash.	I	think	he	was	using	virtualenvwrapper	on	an	AIX	system
at	that	point,	though,	and	his	patches	were	easy	to	integrate	and	support
once	they	merged.

The	 second	 thing	 I	 learned	 was	 that	 it's	 important	 to	 keep	 it	 fun.	 For
instance,	 I	created	 the	 following	site	 just	because	of	a	Tweet	 from	Alex
Gaynor:

https://bitbucket.org/dhellmann/virtualenvwrapper.alex

"The	virtualenvwrapper.alex	installs	aliases	for	typos	related	to	common
virtualenvwrapper	 commands.	 Really.	 It	 exists	 because	 Alex	 Gaynor
asked	nicely."

The	 third	 learning	 point	 that	 I	 have	 to	 offer	 is	 that	 you	 can't	 please
everyone	all	of	the	time.	So	virtualenvwrapper	supports	plugins	to	enable
folks	 to	 share	 their	 extensions,	 but	 there	 is	 now	 an	 entire	 category	 of
similar	tools	like	pyenv,	vex,	and	others	where	the	operating	model	is	very
different.	That's	great!	As	I	said,	my	own	workflow	has	changed	enough
that	I	don't	rely	on	virtualenv	wrapper	so	much	anymore,	either.

Driscoll:	 So	 if	 you	 could	 start	 virtualenvwrapper	 from	 scratch,	 what
would	you	do	differently?

Hellmann:	I	would	now	build	it	on	Python	3's	venv	instead	of	virtualenv
and	 today	 I	 would	 design	 it	 as	 a	 single	 main	 command	 that	 took
subcommands.

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Hellmann:	 I	 have	 always	 been	 most	 excited	 about	 the	 vibrant

https://bitbucket.org/dhellmann/virtualenvwrapper.alex

community.	 As	more	 people	 discover	Python,	 or	 apply	 it	 in	 new	 areas,
that	community	keeps	expanding.

Mike	 Driscoll:	 What	 are	 your	 thoughts	 on	 the	 long	 life	 of	 Python
2.7?

Hellmann:	 The	 long	 lifetime	 for	 Python	 2.7	 recognizes	 the	 reality	 that
rewriting	functional	software	based	on	backwards-incompatible	upstream
changes	isn't	a	high	priority	for	most	companies.

I	encourage	people	to	use	the	latest	version	of	Python	3	that	is	available
on	 their	deployment	platform	 for	all	new	projects.	 I	also	advise	 them	 to
carefully	reconsider	porting	 their	 remaining	 legacy	applications	now	that
most	actively	maintained	libraries	support	Python	3.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Hellmann:	 I	 am	most	 interested	 in	 the	work	 related	 to	 packaging	 right
now.	 Those	 changes	 will	 not	 go	 into	 Python	 itself,	 but	 into	 tools	 like
setuptools,	twine,	wheel,	pip,	and	warehouse.	Simplifying	 the	process	 of
packaging	and	distributing	Python	packages	will	help	all	of	our	users.

Driscoll:	Thank	you,	Doug	Hellmann.

Chapter	6.	Massimo	Di	Pierro

Massimo	Di	Pierro	is	an	Italian	web	developer,	data	science	expert,	and
lecturer.	 For	 the	 last	 15	 years,	 Massimo	 has	 been	 a	 professor	 for	 the
School	of	Computing	at	DePaul	University	in	Chicago.	He	is	the	inventor
and	 lead	 developer	 of	 web2py,	 an	 open	 source	 web	 application
framework	 written	 in	 Python.	 Massimo	 is	 a	 regular	 contributor	 to	 open
source	Python	projects	around	the	world	and	has	published	three	books
on	Python,	including	Annotated	Algorithms	in	Python.	His	active	work	 in
the	 Python	 community	 has	 seen	 him	 elected	 a	member	 of	 the	 Python
Software	Foundation	(PSF).

Discussion	themes:	web2py,	Python	books,	v2.7/v3.x.

Catch	up	with	Massimo	Di	Pierro	here:	@mdipierro

Mike	Driscoll:	How	did	you	become	a	computer	programmer?

Massimo	Di	Pierro:	So	I	am	a	physicist,	but	I	actually	started	computer
programming	when	 I	was	 in	middle	school.	My	dad	had	 the	 IBM	PC	at
home.	He	was	a	COBOL	programmer	and	he	was	mostly	working	with
accounting	software.

When	I	was	13	years	old,	my	dad	gave	a	lecture	on	COBOL.	I	went	with
him	and	he	 thought	 I	was	 just	 tagging	along,	but	 I	understood	what	he

was	saying	and	something	clicked.	My	dad	then	got	me	a	Commodore	64
and	I	started	programming	in	BASIC	first,	and	Pascal	later.

Driscoll:	So	how	did	you	get	into	the	Python	language?

Di	Pierro:	That	was	much	 later.	 I	was	doing	my	Ph.D.	 in	 the	UK	and	 I
was	mostly	programming	in	Fortran,	C,	and	C++.	My	work	was	on	lattice
quantum	chromodynamics	and	my	machine	was	a	Cray	T3E.	That	was
when	I	started	learning	Python.	At	the	time,	it	was	mostly	used	as	a	tool
to	 automate	 the	 processing	 of	 file	 and	 scripting	maintenance	 tasks.	By
2004,	it	had	become	my	favorite	language.

Driscoll:	Was	 there	 some	 epiphany	 that	made	 you	 decide	 that	 Python
was	 your	 favorite	 language,	 or	 were	 you	 just	 using	 the	 language	 so
much?

Di	Pierro:	So,	at	the	time,	a	lot	of	the	libraries	that	exist	today	were	either
not	available,	or	not	as	mature.

The	 thing	 that	 I	 really	 liked	 about	 Python	 was	 that	 I	 could	 do
introspection:	 I	could	ask	a	 function	what	 its	arguments	were.	So	using
Python,	I	could	write	code	that	would	understand	itself	to	some	extent.

Di	Pierro:	'Using	Python,	I	could	write	code	that	would	understand
itself	to	some	extent.'

I	 remember	doing	something	similar	 in	BASIC	many	years	before,	but	 I
could	not	easily	do	that	in	a	language	like	C++.	I	really	liked	the	idea	of
writing	a	program	that	could	rewrite	 itself.	For	example,	 I	have	written	a
library	called	OCL	 that	allows	me	 to	decorate	some	simple	 functions	 in
Python,	and	they	get	converted	at	runtime,	in	C	or	OpenCL,	and	run	at	a
higher	speed	(it	uses	PyOpenCL).

Driscoll:	So	what	made	you	create	web2py?

Di	Pierro:	So	web2py	started	in	2007.	At	that	time,	the	two	most	popular
Python	 frameworks	 were	 Django	 and	 TurboGears.	 I	 had	 two	 needs:	 I
wanted	 to	 teach	 web	 development	 in	 the	 model-view-controller

architecture,	and	for	myself	I	needed	to	build	some	web	apps.

I	was	evaluating	Django	and	TurboGears,	and	I	had	been	using	Django
for	some	time.	 I	had	built	a	content	management	system	 for	 the	United
Nations	 in	 Django,	 as	 pro	 bono	 work	 with	 the	 university.	 So	 I	 knew
Django	 pretty	 well,	 but	 I	 thought	 that	 Django	was	 verbose	 and	 kind	 of
difficult	to	teach	as	a	first	framework.

In	order	to	be	able	to	prime	in	Django	for	example,	you	needed	to	have
some	 familiarity	 with	 the	 Bash	 shell	 and	 some	 system	 administration
tools.	A	lot	of	my	students	at	that	time	did	not	have	that	experience.	So	I
wanted	to	teach	web	development	in	Python,	but	for	me	to	go	through	all
the	 tools	 to	get	 to	 that	point	was	too	much	work.	 I	needed	a	 framework
that	 would	 download	 a	 file,	 start,	 and	 do	 everything	 through	 the	 web
interface.

Di	Pierro:	'I	needed	a	framework	that	would	download	a	file,	start,
and	do	everything	through	the	web	interface.'

I	 also	 worked	 in	 TurboGears,	 which	 in	 many	 ways	 I	 liked	 better	 than
Django.	 But	 TurboGears	 was	 going	 through	 a	 big	 transition.	 It	 was	 a
framework	assembled	out	of	 components,	and	a	 lot	of	 the	components
were	being	replaced,	because	they	were	not	being	maintained.

TurboGears	did	not	appear	to	have	a	stable	API	and	therefore	it	was	not
suitable	 for	 me	 as	 a	 teaching	 tool.	 So	 I	 decided	 to	 apply	 what	 I	 had
learned,	and	build	a	framework	which,	in	my	opinion,	was	simpler	to	start
with.	I	never	thought	that	framework	would	become	as	popular	as	it	did.

Di	Pierro:	'I	decided	to	apply	what	I	had	learned,	and	build	a
framework	which,	in	my	opinion,	was	simpler	to	start	with.'

Driscoll:	So	what	do	you	consider	to	be	the	most	 important	 lesson	that
you	learned	while	you	were	creating	web2py?

Di	Pierro:	The	most	 important	 lesson	that	I	 learned	was	the	importance

of	 building	 a	 community.	 I	 got	 to	 know	 a	 lot	 of	 people	 by	working	with
them	remotely,	although	many	of	them	I	have	still	never	met.

When	I	started	web2py	I	was	not	familiar	with	collaboration	tools	like	Git.
The	 first	 version	 of	 web2py	 used	 Launchpad.	 I	 remember	 having
interactions	 where	 people	 just	 sent	 me	 emails	 offering	 their	 help	 or
making	suggestions.	I	was	not	prepared	for	that.

Di	Pierro:	'I	still	consider	it	a	critical	skill	being	able	to	collaborate
with	people	remotely,	even	if	you	don't	know	them	personally.'

I	didn't	know	exactly	how	to	handle	collaboration	for	many	years.	Today,	I
still	 consider	 it	 a	 critical	 skill	 being	 able	 to	 collaborate	 with	 people
remotely,	even	if	you	don't	know	them	personally.	I	mean,	eventually	I	got
to	know	them	and	 trust	 them	a	 lot.	Some	of	 the	people	 I	 trust	 the	most
are	people	I	met	through	web2py.

Driscoll:	Are	there	any	features	that	you've	seen	in	FaaS	or	Django	that
you	think	would	be	good	in	web2py?

Di	Pierro:	web2py	owes	a	lot	to	Django,	as	many	ideas	came	from	it,	as
well	as	from	other	frameworks.	Yet,	we	added	into	web2py	many	features
that	 Django	 did	 not	 have	 at	 the	 time.	 For	 example,	 stronger	 default
security	settings,	like	always	escaping	strings	by	default.	The	frameworks
have	very	different	philosophies.

There	are	many	projects	 that	use	Django	and	each	one	has	a	different
name	 and	 its	 own	maintainers.	 They	 are	 very	 advanced	 and	 very	well
maintained.	In	web2py,	we	try	to	keep	everything	in	one	package,	so	that
we	don't	have	a	big	ecosystem	outside	of	the	framework.

Di	Pierro:	'web2py	owes	a	lot	to	Django,	as	many	ideas	came	from
it,	as	well	as	from	other	frameworks.'

There	are	many	ideas	from	web2py	that	originated	in	other	frameworks,
but	I	believe	that	we	improved	on	some	of	those	ideas.	For	example,	the

mechanism	for	form	generation	and	processing	in	web2py	is	not	unique
but,	when	it	was	developed,	it	was	better	than	the	competition.

The	 model-view-controller	 design	 architecture	 was	 mostly	 taken	 from
Django	 and	 the	URL	mapping	was	 also	 very	 similar.	 For	 the	 latter,	 we
gave	 it	 default	 routing	 rules,	 like	 in	 Ruby	 on	 Rails.	 For	 the	 template
language,	 we	 decided	 that	 we	 didn't	 want	 a	 domain-specific	 language.
Instead,	we	wanted	pure	Python	in	templates,	which	is	kind	of	the	same
model	 as	 the	 ERB	 template	 language	 in	 Ruby	 on	 Rails,	 but	 using	 the
Python	language.

There	are	other	features,	that	were	added	later	in	web2py	that	were	also
inspired	by	other	 frameworks.	For	example,	one	thing	I	 liked	from	Flask
was	 this	 idea	of	 thread-local	variables.	So	 thread-local	would	allow	any
module	to	access	the	current	request	object,	the	current	response	object,
or	 the	 current	 session,	 even	 if	 the	 code	was	 rooted	 in	 a	module	which
was	imported	from	somewhere	else.	I	liked	the	way	Flask	handled	that.

So	there	are	definitely	many	ideas	that	came	from	other	frameworks	and
I	 think	 there's	 been	 a	 lot	 of	 learning	 from	 each	 other.	 Not	 everybody
admits	that,	but	I'm	happy	to	admit	it.

Di	Pierro:	'There's	been	a	lot	of	learning	from	each	other.	Not
everybody	admits	that,	but	I'm	happy	to	admit	it.'

Driscoll:	So	 I	 saw	 that	 you	 started	 self-publishing	books.	How	did	 that
happen?

Di	Pierro:	 I'm	an	academic,	 so	 I'm	supposed	 to	write	papers	and	write
books.	 Because	 I	 was	 writing	 documentation	 for	 software,	 it	 was
extremely	important	for	me	to	have	the	ability	to	update	the	content	of	a
book	quickly.	Self-publishing	allows	that.

I	 really	 believe	 in	 open	 source,	 not	 just	 for	 code,	 but	 in	 general	 for
educational	content.	 I	 self-publish	my	books	almost	at	 cost	 and	 I	make
them	available	for	free	download.	For	me,	making	the	content	up-to-date
and	available	quickly	is	the	priority.

Moreover,	if	I	write	a	book,	then	it	is	because	I	want	people	to	read	it,	not
because	I	think	there	is	a	profit	to	be	made.	In	the	end,	the	validation	of
the	 content	 comes	 from	 the	 readers	 and	 not	 from	 the	 publisher.	 So	 I
found	that	self-publishing	was	ideal	for	me.	That	said,	once	you're	done
with	a	book,	then	you	don't	want	to	touch	it	too	much.	Instead,	you	want
to	write	another	book!

Driscoll:	 Did	 you	 have	 any	 challenges	 that	 you	 needed	 to	 overcome
when	you	were	writing	your	books?

Di	Pierro:	Well,	 first	 of	 all,	 I'm	 not	 a	 native	 English	 speaker.	 So	 I	 can
write,	but	I	tend	to	make	a	lot	of	mistakes.	It	takes	me	forever	to	review
things	and	make	sure	that	they	are	fixed.

Di	Pierro:	'Even	if	I	consider	myself	an	expert,	that	does	not	mean
that	I	know	everything	about	a	subject.'

Another	challenge	 is	 that	even	 if	 I	consider	myself	an	expert,	 that	does
not	 mean	 that	 I	 know	 everything	 about	 a	 subject.	 I	 always	 have	 a
process,	which	is	to	write	the	code	first.	Then	I	look	at	the	code	and	I	turn
the	code	into	a	paper	or	a	book.	In	that	way,	I	manage	to	make	the	text
consistent	with	 the	code	examples.	 If	you	change	 the	code	after	you've
written	the	text,	then	sometimes	the	text	gets	out	of	sync,	so	I	really	try	to
make	sure	that	my	examples	are	as	good	and	as	complete	as	possible.

One	 challenge	 surrounding	 the	 book	 web2py	 was	 that	 I	 had	 a	 lot	 of
people	 submitting	 pull	 requests	 to	 the	 book	 on	 GitHub.	 They	 initially
contributed	 by	 making	 small	 corrections,	 but	 now	 sometimes	 they
contribute	quite	substantially.

Keeping	 track	of	 contributors	was	difficult,	because	 I	 knew	 their	GitHub
names,	 but	 I	 couldn't	 acknowledge	 them	 as	 people	 properly.	 People
always	 send	 me	 code,	 but	 they	 never	 submit	 the	 pull	 request	 in	 the
acknowledgements	 section.	 It's	 work	 for	 me	 to	 figure	 out	 who	 these
people	are	to	acknowledge	them.

Driscoll:	So	as	a	scientist,	or	a	teacher,	how	do	you	see	Python	helping
the	scientific	community?

Di	Pierro:	 I	can	see	 that	Python	has	been	growing	a	 lot	and	especially
within	 the	scientific	community.	 In	particular,	 I've	seen	growth	with	all	of
the	 machine	 learning	 stuff	 that's	 been	 coming	 out,	 such	 as	 sklearn,
TensorFlow,	and	Keras.

I	 remember	 when	 I	 started	 teaching	 15	 years	 ago,	 people	 didn't	 know
what	Python	was.	Some	colleagues	were	objecting	to	a	switch	from	Java
to	Python	as	the	primary	 teaching	 language.	Python	was	considered	by
many	to	be	"only	a	scripting	language"	and	something	very	specialized.

Di	Pierro:	'Python	was	considered	by	many	to	be	"only	a	scripting
language"	and	something	very	specialized.'

Today,	 in	 almost	 every	 class	 we	 teach,	 whether	 it's	 a	 neural	 network
class,	 a	 machine	 learning	 class,	 or	 a	 data	 analysis	 class,	 almost
everybody	 uses	 Python.	 So	 things	 have	 really	 changed	 a	 lot	 in	 that
respect.

Di	Pierro:	'The	major	problem	I	see	is	that	the	relation	between
Python	2	and	Python	3	is	still	an	issue.'

The	 major	 problem	 I	 see	 is	 that	 the	 relation	 between	 Python	 2	 and
Python	3	is	still	an	issue.	At	DePaul	University,	we	use	Python	3	almost
everywhere,	whereas	the	industry	still	uses	mostly	Python	2	everywhere,
which	is	a	problem	sometimes.

Another	 issue	 is	 that	 very	 few	 people	 use	 the	 new	 async	 logic	 that	 is
available	in	Python	3.	I	think	Python's	new	async	logic	is	really	powerful,
but	it's	not	as	friendly	as	JavaScript's	async	logic.	People	who	really	like
event-driven	async	programming	tend	to	prefer	JavaScript	(and	Node.js)
over	Python.

Di	Pierro:	'I	think	Python's	new	async	logic	is	really	powerful,	but
it's	not	as	friendly	as	JavaScript's	async	logic.'

Driscoll:	 I'm	actually	a	 little	bit	concerned	about	 these	other	companies
that	 are	 starting	 to	 support	 Python	 2.	 What	 do	 you	 think	 is	 going	 to
happen	 to	 these	splinter	groups,	 that	are	 following	Anaconda	or	 Intel,	 if
they	continue	to	support	Python	2	instead	of	3?

Di	Pierro:	 Well,	 I	 don't	 argue	 about	 the	 fact	 that	 Python	 3	 is	 a	 better
language	 than	 Python	 2,	 but	 I	 think	 that	 migration	 from	 Python	 2	 to
Python	 3	 is	 difficult.	 It	 cannot	 be	 completely	 automated	 and	 often	 it
requires	understanding	the	code.	People	do	not	want	to	touch	things	that
currently	work.

Di	Pierro:	'I	don't	argue	about	the	fact	that	Python	3	is	a	better
language	than	Python	2,	but	I	think	that	migration	from	Python	2	to

Python	3	is	difficult.'

For	example,	 the	str	 function	 in	Python	2	converts	 to	a	string	of	bytes,
but	 in	Python	 3,	 it	 converts	 to	Unicode.	So	 this	makes	 it	 impossible	 to
switch	from	Python	2	to	Python	3,	without	actually	going	through	the	code
and	understanding	what	type	of	input	is	being	passed	to	the	function,	and
what	kind	of	output	is	expected.

A	naïve	 conversion	may	work	 very	well	 as	 long	as	 you	don't	 have	any
strange	characters	in	your	input	(like	byte	sequences	that	do	not	map	into
Unicode).	When	that	happens,	you	don't	know	if	the	code	is	doing	what	it
was	supposed	to	do	originally	or	not.	Consider	banks,	for	example.	They
have	huge	codebases	in	Python,	which	have	been	developed	and	tested
over	many	years.	They	are	not	going	to	switch	easily	because	it	is	difficult
to	justify	that	cost.	Consider	this:	some	banks	still	use	COBOL.

There	are	tools	to	help	with	the	transition	from	Python	2	to	Python	3.	I'm
not	 really	an	expert	on	 those	 tools,	 so	a	 lot	of	 the	problems	 I	 see	may
have	a	solution	that	I'm	not	aware	of.	But	I	still	found	that	each	time	I	had
to	convert	code,	this	process	was	not	as	straightforward	as	I	would	like.

Driscoll:	 Do	 you	 see	 Python	 having	 any	 challenges	 in	 its	 adoption	 by
data	science?

Di	Pierro:	I	think	that	data	scientists	love	Python.	The	major	competitor	is

R	and	I	get	the	impression	that	R	is	more	popular	among	economists	and
statisticians.	But	I	don't	 think	R	is	more	popular	because	it's	better,	only
because	it	has	been	around	longer	and	it	is	more	focused.

R	has	been	around	 for	a	 long	 time	and	people	know	what	 they	can	do
with	R.	The	people	who	 know	 the	 language	well	 don't	 see	 the	need	 to
learn	 something	different.	R	has	always	 been	 focused	 on	 data	 science
specifically,	 so	 people	 in	 that	 community	 are	 more	 familiar	 with	 that
language.

Di	Pierro:	'I	see	Python	being	adopted	more	and	more	and
eventually	becoming	more	popular	than	R	for	data	science.'

I	would	compare	R	not	so	much	with	Python	as	a	language,	but	with	the
pandas	library.	I	think	that	Python	plus	pandas	makes	a	compelling	case
in	a	comparison	with	R.	That,	 in	 fact,	 is	what	 I	am	using	 right	now	 in	a
machine	learning	class.	But	I	see	Python	being	adopted	more	and	more
and	eventually	becoming	more	popular	 than	R	 for	data	science.	 I've	no
doubt	that	will	happen.

Driscoll:	Thank	you,	Massimo	Di	Pierro.

Chapter	7.	Alex	Martelli

Alex	Martelli	is	an	Italian	computer	engineer.	He	is	the	author	of	the	first
two	 editions	 of	Python	 in	 a	 Nutshell	 and	 the	 co-author	 of	 the	 first	 two
editions	of	Python	Cookbook	and	the	third	edition	of	Python	in	a	Nutshell.
Alex	is	a	fellow	of	the	Python	Software	Foundation	(PSF)	and	the	winner
of	both	 the	2002	Activators'	Choice	Award	and	 the	2006	Frank	Willison
Memorial	Award	for	contributions	to	 the	Python	community.	Since	2005,
he	has	worked	 for	Google,	and	 today	he	 is	a	senior	staff	engineer	and
tech	 lead	 of	 the	 team	 providing	 community	 support	 for	 Google	 Cloud
Platform.	Alex	 is	an	active	contributor	 to	Stack	Overflow	and	a	 frequent
speaker	at	technical	conferences.

Discussion	themes:	Python	books,	v2.7/v3.x,	Python	at	Google.

Catch	up	with	Alex	Martelli	here:	@aleaxi

Mike	Driscoll:	Could	 you	 give	 us	 a	 little	 background	 information	 about
yourself?

Alex	 Martelli:	 I	 graduated	 in	 electrical	 engineering	 back	 in	 my	 home
country,	Italy.	I	then	started	looking	around	for	jobs	where	I	could	design
integrated	 circuits.	Designing	other	 kinds	of	 systems	 sounded	 cool,	 but
integrated	circuits	were	where	it	was	at.

At	 the	time,	most	really	 interesting	design	was	being	done	by	American
firms,	so	I	ended	up	with	my	very	 first	 job	being	 in	America,	specifically
with	Texas	Instruments	(TI),	which	is	still	around.

TI	 was	 very	 prominent,	 with	 both	 consumer	 products	 and	 a	 lot	 of	 very
interesting	 chips.	 We	 apparently	 weren't	 very	 compatible	 though,
because	the	style	of	working	in	TI	included	starting	a	lot	of	projects	and
terminating	 them	very	abruptly.	 I	 found	myself	 in	 the	 terminated	 project
teams	over	and	over	again.

Alex	Martelli:	'I	found	myself	in	the	terminated	project	teams	over
and	over	again.'

I	 can't	 blame	 TI	 for	 that.	 They	 were	 trying	 to	 minimize	 disruption	 in
engineers'	lives,	and	as	the	youngest	guy,	and	an	immigrant,	I	obviously
had	no	roots	in	any	specific	place.	In	less	than	a	year,	I	ended	up	working
in	Dallas,	Austin,	Houston	and	Lubbock.	That's	four	different	labs	in	less
than	a	year!

It	was	a	bit	 stressful,	 so	 I	 restarted	 talks	with	 IBM	Research	 that	 I	 had
blocked	when	I	got	the	interesting	offer	from	TI.	It's	not	widely	known,	but
IBM	used	to	make	some	of	the	most	innovative	integrated	circuits	in	the
business,	 especially	 at	 research	 level,	 where	 they	 wouldn't	 be	 mass-
produced,	but	be	proofs	of	concept.	IBM	still	has	incredible	technology	in
the	field.

I	remember	around	that	time,	IBM	got	a	Nobel	Prize	for	spelling	out	the
word	 IBM	 in	 single	 atoms,	 with	 a	 very	 novel	 use	 of	 an	 electron
microscope	 to	place	atoms,	 rather	 than	observe	 them.	 It	still	strikes	me
as	a	science	fiction	event.

IBM,	 at	 some	 point,	 decided	 that	 it	 wanted	 a	 research	 lab	 in	 Italy,
specifically	Rome,	and	asked	for	volunteers.	Of	course,	 I	volunteered.	 It
would	give	me	an	 interesting	perspective	and	get	me	back	 to	my	home
country,	with	better	cappuccinos	and	pasta	being	the	main	attractions!	So
I	 found	myself	 back	 in	 Italy	 in	 the	 80s	 and	my	 career	 kept	 developing
from	there.

Driscoll:	How	did	you	end	up	becoming	a	computer	programmer?

Martelli:	 So	 that	 was	 at	 IBM.	 We	 had	 just	 finished	 developing	 this
prototype	image	processing	machine	which,	for	the	time,	was	incredible.
It	 had	 dedicated	 chips,	 a	 big	 frame	 buffer	 and	 a	 monitor	 that	 cost	 a
fortune	 at	 the	 time	 (though	 it	 would	 be	 considered	 nothing	 special
nowadays).

Alex	Martelli:	'We	had	just	finished	developing	this	prototype	image
processing	machine	which,	for	the	time,	was	incredible.'

At	 the	celebration	 for	 the	successful	 launch	of	our	prototype,	a	director
came	up	to	me	and	said,	"Congratulations	to	you	and	all	the	team.	It's	a
pity	that	the	prototype	will	now	be	gathering	dust	in	a	corner."	To	which	I
replied,	 "Why	 should	 it	 gather	 dust	 in	 a	 corner?	 We	 have	 at	 IBM
Research	a	lot	of	scientists	in	all	sorts	of	disciplines,	and	there's	demand
from	astronomers	to	geologists."

"Yeah	right,"	he	said,	"but	your	device	doesn't	support	 the	programming
languages	scientists	use,	 such	as	Fortran	and	APL.	To	use	 the	device,
you	need	 to	write	a	channel	program."	The	geologists	and	astronomers
just	didn't	do	those.	It	would	require	a	substantial	software	project	to	build
all	of	the	interfaces	and	libraries	they	needed.

I	 then	 said,	 "Well,	 can't	 we	 put	 together	 a	 small	 team	 to	 build	 that
software?"	 So	 he	 challenged	 me:	 "How	 many	 people	 do	 you	 think	 it
would	need?"

I	was	really	keen	to	have	'my'	machine	see	use,	rather	than	gather	dust,
so	I	shot	very	low.	I	said,	"Maybe	three?"

He	replied,	"Okay,	I	can	put	in	the	people.	So	you	go	and	put	together	the
team.	Show	me	something	working	in	six	months."

That's	 how	 you	 get	 to	 be	 a	 director	 at	 IBM	 I	 imagine.	 Not	 exactly	 by
setting	low	bars.	So	I	had	to	improvise	becoming	a	small-level	manager	(I
think	technical	lead	is	the	correct	term).	I	needed	to	teach	myself	enough
software	 to	 start	 writing	 the	 channel	 programs,	 incorporating	 them	 into

libraries,	 and	 finding	 out	 what	 algorithms	 they	 wanted	 in	 a	 library,
especially	 those	 which	 could	 be	 accelerated	 by	 this	 very	 powerful
peripheral.

Driscoll:	So	did	you	succeed?

Martelli:	After	six	months,	we	had	a	proof	of	concept	that	barely	worked,
but	we	were	given	the	go-ahead	to	continue.	In	the	end,	it	took	a	couple
of	 years,	 but	 we	 did	 deliver	 working	 libraries	 for	 APL	 and	 Fortran	 as
desired.	That	was	actually	very	significant.

Alex	Martelli:	'We	did	deliver	working	libraries	for	APL	and	Fortran
as	desired.	That	was	actually	very	significant.'

It	 made	 this	 beautiful	 piece	 of	 hardware	 meaningful.	 It	 was	 actually
usable	 by	 scientists	 and	 other	 programmers	 for	 powerful	 image
processing	 and	 visualization.	 Without	 the	 intermediate	 software,	 they
wouldn't	 teach	 themselves	 the	 assembly	 programming	 and	 channel
programming	to	do	that.

The	problem,	from	my	viewpoint,	was	that	for	over	two	years,	I	had	done
no	hardware	design	at	all.	I	had	not	even	followed	what	was	going	on	in
the	 field.	 Hardware	 design,	 especially	 at	 an	 integrated	 circuit	 level,
tended	to	get	about	a	revolution	per	year,	at	 the	time.	So	 if	you	weren't
very	much	on	top	of	the	game,	then	you	lost	track.

Driscoll:	Is	that	why	you	moved	towards	software?

Martelli:	 Well,	 I	 had	 to	 realize	 that	 despite	 my	 years	 of	 experience,	 I
could	be	 run	circles	around	by	any	bright	guy	 fresh	out	of	college,	with
the	latest	technologies	and	tools	under	his	fingers.

On	the	other	hand,	I	also	had	to	realize	that	even	the	most	simple	kind	of
management	 and	 software	 was	 a	 huge	 added	 value	 to	 the	 stuff	 that	 I
really	 wanted	 to	 do,	 which	 was	 to	 make	 cool	 systems	 with	 dedicated
integrated	circuits.

So,	on	 the	slippery	slope	a	 few	years	 later,	 I	had	 to	admit	 that	 I	wasn't

actually	able	 to	design	decent	modern	hardware	anymore.	 It	was	more
and	more	software	and	management	all	the	way.	I	think	there	are	a	lot	of
people	in	similar	situations,	who	start	out	on	the	hardware	side	and	then
gradually	realize	that	their	hardware	isn't	really	solving	problems.

Alex	Martelli:	'A	lot	of	people...start	out	on	the	hardware	side	and
then	gradually	realize	that	their	hardware	isn't	really	solving

problems.'

My	 daughter	 is	 in	 a	 similar	 situation	 now.	 She's	 got	 a	 Ph.D.	 in
telecommunication	 engineering	 (advanced	 radio	 systems)	 and	 she	was
very	keen	to	focus	on	hardware.	Nowadays,	her	working	days	tend	to	be
about	three-quarters	software.	That's	because	essentially,	all	networking,
more	and	more	down	to	the	lower	levels,	is	software-driven.

You	 don't	 design	 a	 specialized	 antenna,	 which	 works	 by	 itself,	 with	 no
intelligence	and	no	software.	These	days,	your	apparatus	has	to	have	a
dazzling	array	of	antennas	and	enough	intelligence	to	find	out	which	ones
should	be	activated	at	some	point,	based	on	the	signal	quality.	That	is	far
beyond	what	radio	meant	back	when	I	graduated,	but	it's	very	much	the
software	networking	of	today.

Driscoll:	So	how	did	you	end	up	getting	into	Python	itself?

Martelli:	Oh,	that's	a	different	funny	story.	Years	after	my	first	introduction
to	the	beguiling	world	of	software,	I	had	written	an	experimental	system,
on	my	own	time	and	using	my	own	equipment,	 to	develop	certain	 ideas
about	the	game	of	contract	bridge.

Contract	 bridge	 was	 invented	 in	 the	 1920s	 by	 Harold	 Vanderbilt.	 Until
about	 the	 time	 that	 I	 started	 dabbling	 with	 the	 game,	 there	 was	 little
mathematical	theory	on	it.	There	was	one	major	exception:	Émile	Borel,
the	 great	 mathematician,	 wrote	 a	 book	 on	 the	 mathematical	 theory	 of
bridge.

By	 the	 time	that	 I	came	along,	computers	had	become	strong,	powerful
and	cheap	enough	to	be	used	for	recreational	things,	without	necessarily
a	big	payoff.	So	I	resurrected	an	idea	that	had	been	first	expressed	as	a

thought	experiment	in	the	1930s,	and	put	it	into	practice	on	my	new	PC.

Alex	Martelli:	'I	resurrected	an	idea	that	had	been	first	expressed	as
a	thought	experiment	in	the	1930s.'

Perhaps	I	acted	like	a	typical	hardware	guy	turned	to	software,	because
my	solution	wasn't	 exactly	 organized	as	a	nice	programming	 system;	 it
was	a	horrid	mix	of	so	many	programming	 languages.	 I	 lost	count	 from
Modula-3	to	Perl,	and	from	Visual	Basic	to	Scheme,	but	the	whole	thing
worked!

Driscoll:	Did	the	program	play	a	lot	of	games	successfully?

Martelli:	 The	 program	 actually	 played	 each	 hand	 a	 million	 times	 and
recorded	 the	 results.	 It	 confirmed	 the	 incredible	 intuition	 of	 Ely
Culbertson,	who	was	the	brightest	figure	of	bridge	back	in	the	1920s	and
1930s.

So	I	wrote	everything	up	as	a	research	paper	and	submitted	it	to	the	most
prestigious	 magazine	 in	 the	 field:	 The	 Bridge	 World.	 The	 editor	 was
enthusiastic	 and	 worked	 with	 me	 to	 vastly	 improve	 the	 paper.	 My
research	was	published	in	January	and	February	of	the	year	2000,	in	The
Bridge	World.

After	that,	I	started	getting	communications	from	bridge	players,	including
champions,	asking	me,	"Hey,	can	you	apply	your	theory	and	your	method
to	this	particular	problem	I'm	struggling	with?"

I	was	quite	happy	to	accommodate	them,	except	that	the	whole	thing	was
so	fragile	and	each	time	I	changed	a	comma	here,	something	broke	over
there.	It	was	a	mess!	So	I	decided,	despite	it	being	usually	considered	a
trap,	that	the	whole	system	needed	to	be	rewritten.	I	wanted	it	to	be	in,	as
much	as	possible,	a	single	 language,	but	exactly	which	single	 language
was	a	real	problem!

Driscoll:	So	did	you	find	the	language	that	you	were	looking	for?

Martelli:	The	only	language	with	enough	power	would	have	been	Lisp.	I

honestly	 always	 had	 a	 strong	 predilection	 for	 Scheme,	 but	maybe	 that
had	something	to	do	with	the	hardware	background	of	Scheme	itself.

The	problem	was	 that	 the	 free	editions	 that	 I	could	get,	 just	didn't	have
enough	libraries	for	all	of	the	auxiliary	tasks	that	I	needed	to	do.	It	was	a
personal	 project	 and	 I	 was	 already	 pouring	 a	 lot	 of	 hours	 into	 it,	 but	 I
didn't	want	 to	spend	money	as	well.	A	colleague	said,	"Hey,	you	should
try	 this	 brand-new	 language	 that's	 coming	 out.	 It's	 all	 the	 rage	 and	 it's
known	as	Python."

Alex	Martelli:	'A	colleague	said,	"Hey,	you	should	try	this	brand-new
language	that's	coming	out.	It's	all	the	rage	and	it's	known	as

Python."'

I	said,	"Oh,	come	on!	I	know	at	least	a	dozen	languages.	The	last	thing	I
need	is	to	learn	yet	another!"	He	kept	insisting,	and	I	had	a	lot	of	respect
for	this	guy,	so	I	finally	gave	in	and	gave	it	a	try.	I	set	myself	a	little	task	to
solve	with	this	brand-new	language,	to	see	how	far	along	I	got.

Alex	Martelli:	'I	said,	"Oh,	come	on!	I	know	at	least	a	dozen
languages.	The	last	thing	I	need	is	to	learn	yet	another!"'

Another	 thing	 that	 I	 didn't	 know	much	 about	 in	 the	 late	 1990s	was	 the
newfangled	 'web'.	 It	 seemed	 interesting,	 so	 I	 decided	 to	 develop	 a
website.	 I	 taught	 myself	 the	 web	 technologies,	 and	 the	 Python
programming	 language,	all	within	a	weekend!	As	I	said,	you	have	to	be
somewhat	ambitious	in	this	field	if	you	want	to	get	anything	done!

I	 started	 hacking	 on	 a	 Friday	 night	 and	 kept	 looking	 at	 the	manual.	 At
some	point,	 I	started	 looking	much	 less	at	 the	manual,	because	 if	 I	 just
guessed	 how	 Python	 would	 work	 by	 analogy	 with	 how	 it	 worked
elsewhere,	 then	 I	 was	 right	more	 than	 90%	 of	 the	 time.	 The	 language
seemed	to	be	designed	just	for	my	brain	and	worked	exactly	the	way	that
my	brain	did.

Alex	Martelli:	'That	language	seemed	to	be	designed	just	for	my
brain	and	worked	exactly	the	way	that	my	brain	did.'

By	early	Saturday	afternoon,	 I	was	done.	 I	had	a	working	CGI	and	web
application	that	was	computing	the	conditional	probabilities	of	the	division
of	suits	in	the	game	of	contract	bridge!	Now,	what	could	I	do	with	the	rest
of	the	weekend?

I	said,	"I	know,	it's	good,	but	it's	only	in	Italian,	and	this	may	be	interesting
for	readers	in	other	languages.	Let	me	make	a	multilingual	version	also	in
English	or	French,	which	are	two	other	languages	that	I	speak	decently."

I	 realized	 that	 I	 needed	 a	 templating	 system.	So	 I	 sniffed	 around	 for	 a
templating	system	for	Python	without	much	success.	 I	 tried	using	Gofer
and	other	tools	of	the	time.

In	the	end,	I	decided	to	just	write	a	templating	system	myself!	I	named	it
Yet	Another	Python	Template	Utility	(YAPTU).	By	Sunday,	it	was	working
fine.	So	 I	packed	 it	up,	sent	 it	 to	one	of	 the	places	you	distributed	 free
software	back	then	and	I	had	my	working	website.

Driscoll:	Did	you	get	any	interest?

Martelli:	YAPTU	actually	attracted	the	attention	of	a	guy	who,	at	the	time,
happened	to	be	doing	the	website	for	computer	science	at	the	University
of	California,	Berkeley.	He	found	YAPTU	to	be	the	best	templating	utility.
He	 had	 already	 decided	 to	 use	 Python	 and	 so	 he	 made	 some
improvements,	 then	 sent	me	 a	 patch	 file.	We	 started	 discussing	 things
and	then	made	friends.

Alex	Martelli:	'We	started	discussing	things	and	then	made	friends.
The	guy	was	Peter	Norvig,	who	is	now	director	of	research	at

Google...'

The	guy	was	Peter	Norvig,	who	is	now	director	of	research	at	Google	and
author	 of	 the	 bestselling	 programming	 book	 Artificial	 Intelligence:	 A
Modern	Approach.	So	Python	was	already	starting	to	give	me	interesting

connections	at	the	time.

I	 tried	pushing	Python	at	work,	but	unfortunately	without	much	success.
Decision-making	was	in	the	hands	of	professional	management	and	they
knew	 that	 the	 future	 was	 Windows.	 Nothing	 else	 would	 survive,	 even
though	 our	 programs	 were	mostly	 intended	 for	 Unix	 workstations.	 It	 is
true	 that	 these	days,	 you	can	hardly	buy	a	Unix	workstation	anywhere;
it's	 all	 PCs	 with	 Linux	 or	Windows.	 So	 in	 that	 sense,	 their	 vision	 was
correct.

I	didn't	particularly	like	the	fact	that	our	programming	languages	were	to
be	restricted	to	what	Microsoft	really	wanted	to	support.	I	could	never	get
official	 approval	 from	 top	 management.	 What	 I	 had	 to	 do	 was	 sneak
Python	 into	 places	where	 top	management	wouldn't	 notice,	 such	as	all
the	 testing	 framework	 that	we	had,	which	was	a	hack	of	 shell	 scripting
haha.bat	files.

That	was	before	the	.cmd	era	 in	Windows.	They	all	became	very	useful
and	maintainable	Python	scripts,	but	 it	was	a	 little	unsatisfactory.	 I	was
spending	all	my	working	day	debugging	problems	with	Microsoft	Fortran
compiler,	 and	 then	doing	Python	only	 in	 the	 ripples	of	 time	 that	 I	 could
steal	here	and	there.

Driscoll:	 Slightly	 different	 topic,	 but	 how	 did	 you	 end	 up	 becoming	 an
author	of	books	on	Python?

Martelli:	I	loved	Python	so	much	that	I	wanted	to	give	back.	I	wanted	to
pay	back	the	enormous	gift	that	Guido	van	Rossum	and	everybody	in	the
Python	community	had	made	to	me,	and	everybody	else,	by	developing
this	language.

What	 could	 I	 do?	 Well,	 there	 was	 this	 Usenet	 group	 called
comp.lang.python,	where	people	asked	and	answered	questions.	I	have
always	had	a	knack	for	helping	people	out	with	 technical	questions.	So,
despite	 being	 a	 total	 newbie	 at	 the	 language,	 I	 started	 following.
Whenever	I	noticed	a	question	that	I	thought	I	could	answer	productively
and	constructively,	I	did	so,	and	apparently	with	a	lot	of	success!

Alex	Martelli:	'I	have	always	had	a	knack	for	helping	people	out	with

technical	questions.'

After	 just	a	 few	months,	one	of	 the	old-timers	of	 the	Python	community
nicknamed	me	 the	Martelli	 Bot.	 Apparently,	 I	 was	 the	 third	 "bot"	 in	 the
Python	 community.	 The	 point	 being	 that	 a	 huge	 amount	 of	 answers,
which	were	always	correct,	qualified	you	as	a	bot.	The	guy	who	came	up
with	the	funny	nickname,	by	the	way,	was	Steve	Holden,	and	I'm	honored
to	say	that	he	is	one	of	my	co-authors	on	my	latest	book:	the	third	edition
of	Python	in	a	Nutshell.

So	anyway,	this	gained	me	street	credibility	in	the	Python	community,	and
gave	me	the	courage	to	get	in	touch	with	O'Reilly,	noticing	that	there	was
no	Python	 in	 a	 Nutshell.	 I	 said,	 "Hey,	 maybe	 I,	 perhaps	 with	 a	 more
experienced	co-author,	could	do	something	about	it?"

They	 said,	 "Why	do	 you	need	a	 co-author?	Send	us	a	 sample	 chapter
and	a	chapter	plan."	It	developed	from	there.

Alex	Martelli:	'I	said,	"Hey,	maybe	I,	perhaps	with	a	more
experienced	co-author,	could	do	something	about	it?"'

Driscoll:	How	did	you	find	writing	Python	Cookbook?

Martelli:	I	had	to	take	a	little	detour	to	co-write	Python	Cookbook,	which
had	 lost	 an	 author	 in	 the	middle	 of	 early	 planning.	 It	 was	 fun	 because
those	were	 recipes	 from	 the	 community,	 but	 rephrased	 and	 adapted	 to
actually	usefully	address	the	silly	problem.

I	 contributed	 a	 lot	 of	 recipes	 on	 the	ActiveState	 site	 as	well.	 That	was
always	 fun!	 That	 was	 the	 equivalent	 of	 what	 would	 now	 be	 Stack
Overflow.	 Questions	 and	 answers	 on	 technical	 issues	 about	 a	 specific
topic	have	become	well-served	by	Stack	Overflow.	 I	 am	 very	 active	 on
there:	 I'm	 the	second	 top	poster	on	 the	Python	 tag,	and	 front	page	 top
0.001%	in	reputation.

Incidentally,	 Stack	 Overflow's	 chief	 data	 scientist	 has	 just	 published	 a
study	 about	 the	 popularity	 of	 programming	 languages,	 and	 how	 it

changes	with	time	based	on	tags	and	questions	on	Stack	Overflow.	The
language	with	the	fastest	growing	popularity	is	Python.

Alex	Martelli:	'The	forecast	is	that	Python	will	become	the	most
popular	programming	language	and	the	one	with	the	most	active

developers	by	early	2019.'

The	 forecast	 is	 that	Python	will	become	 the	most	popular	programming
language	 and	 the	 one	 with	 the	 most	 active	 developers	 by	 early	 2019.
Right	 now,	 it's	 just	 below	 Java	 and	 JavaScript,	 but	 it	 has	 passed
everything	else.	Perl	has	disappeared,	Ruby	has	disappeared,	and	C#	is
going	down	sharply.	Only	Java	and	JavaScript	hold,	but	they're	very	flat,
while	Python	is	growing	gangbusters.

Alex	Martelli:	'Only	Java	and	JavaScript	hold,	but	they're	very	flat,
while	Python	is	growing	gangbusters.'

There	 is	 a	 27%	 year-over-year	 growth	 in	 volume	 from	 a	 large	 base.	 I
found	that	an	interesting	confirmation	of	the	article	earlier	this	year,	from
Spectrum	Magazine,	 which	 proclaimed	 Python	 to	 be	 the	 most	 popular
programming	language	this	year.

That	was	based	on	a	kind	of	subjective	mix	of	very	different	indications,
such	 as	 job	 offers,	 courses,	 and	 seminars.	 Whereas	 Stack	 Overflow's
study	 was	 totally	 quantitative,	 totally	 objective,	 and	 just	 based	 on	 an
incredibly	 large	 volume	 of	 data.	 They	 both	 came	 to	 exactly	 the	 same
conclusion,	except	 that	Stack	Overflow,	of	course,	could	quantify	 things
much	better	and	more	precisely.

Driscoll:	 So	 could	 you	 describe	 anything	 that	 you've	 learned	 as	 an
author	of	books?

Martelli:	 Well,	 first	 of	 all,	 no	 matter	 how	 well	 you	 think	 you	 know	 a
language,	you're	probably	wrong	until	you've	written	a	couple	of	books	in
that	language.

Ideally,	you	write	with	the	cooperation	of	a	patient,	but	firm,	editor	whose
role	is	knowing	the	language,	how	it	looks	on	the	printed	page,	and	how
readers	will	absorb	it.

Of	 course,	 English	 is	 my	 third	 language,	 so	 I	 never	 thought	 I	 had	 a
particularly	strong	claim	to	having	a	command	of	it.	But	writing	the	books
improved	my	understanding	of	exactly	where,	at	least	in	written	English,
the	problems	are.

Alex	Martelli:	'We'll	keep	using	programming	languages	because	of
the	inherent	ambiguity,	power,	and	difficulty	of	natural	language.'

It's	amazing	how	powerful,	 rich,	 and	 difficult	 a	 tool	 natural	 language	 is.
That's	 why	 we'll	 keep	 using	 programming	 languages:	 because	 of	 the
inherent	 ambiguity,	 power,	 and	 difficulty	 of	 natural	 language.	 It's
impossible	to	express	things	with	absolute	precision	there.

Driscoll:	Can	you	give	an	example?

Martelli:	There	was	an	anecdote	I	read	once	in	the	mailing	list,	about	the
risks	 of	 automation	 and	 computing.	 It	 was	 about	 a	 formally-defined
system	 to	 route	ambulances	 in	a	 large	urban	area.	So	obviously	 it	was
literally	a	life-and-death	task.

One	of	the	things	written	down	originally	in	natural	language,	and	one	of
the	 constraints,	was	 that	 when	 a	 call	 to	 the	 emergency	 number	 came,
and	 the	 symptoms	were	 identified	 as	 those	 of	 a	 stroke,	 an	 ambulance
would	 be	 there	 in	 no	 more	 than	 15	 minutes	 (the	 maximum	 time	 that
would	still	give	you	a	good	chance).

When	the	system	was	translated	from	natural	language	to	proven	correct
programming,	many	things	improved,	except	that	there	were	a	small,	but
worrying,	 number	 of	 cases	 where	 the	 ambulance	 had	 been	 scheduled
and	 then	 it	never	showed	up.	So	what	happened	was	natural	 language
just	didn't	map	into	formal	logic.

Alex	Martelli:	'Natural	language	just	didn't	map	into	formal	logic.'

Remember,	 it	 was	 an	 urban	 area,	 with	 traffic.	 Although	 an	 ambulance
may	 have	 been	 blasting	 its	 sirens,	 it	 may	 still	 have	 been	 blocked	 for
minutes	 and	 minutes.	 If	 this	 happened,	 when	 15	 minutes	 and	 0.01
seconds	 had	 passed,	 the	 system	 deduced	 that	 the	 ambulance	 must
already	 have	 arrived,	 because	 one	 of	 the	 postulates	 is	 that	 the
ambulance	always	arrives	 in	 less	 than	15	minutes.	So	 if	 an	ambulance
had	 already	 arrived,	 it	 would	 have	 been	 useless	 to	 send	 another	 one
there	too.	This	meant	that	it	got	rerouted.

In	natural	 language,	when	we	say	 that	 the	ambulance	must	be	 there	 in
less	than	15	minutes,	 it's	not	a	postulate	because	it's	aspirational.	What
we	really	mean	is	 it's	absolutely	 important	and	by	all	means,	please	get
the	ambulance	there	that	fast.	It	doesn't	mean	if	you	don't	make	it,	 then
forget	 it	 because	15	minutes	and	1	second	 is	useless.	 It's	 undesirable,
but	better	than	nothing!

Alex	Martelli:	'When	you're	in	a	programming	language,	your
assertion	is	much	simpler:	you	say	what	happens.'

That's	one	tiny	example	of	how	natural	language	trips	you	up	all	the	time.
When	you're	in	a	programming	language,	your	assertion	is	much	simpler:
you	say	what	happens.	 If	 this	 isn't	 true,	 then	you	raise	an	exception.	 In
natural	language,	there's	so	much	background	that	you	take	for	granted
inevitably.	This	includes	all	common	knowledge	and	what	it	means	to	be
a	human	being	in	this	culture.

Driscoll:	So	can	you	describe	any	of	 your	most	 interesting	 interactions
with	the	readers	of	your	books?

Martelli:	There	have	been	a	few!	I'm	probably	thinking	some	of	the	most
interesting	ones	were	at	work,	where	a	colleague	would	come	up	to	me
and	say,	"So,	I'm	observing	this	strange	behavior	of..."	some	program	or
function	they	had	just	written.

I	would	take	a	look	and	spot	the	problem	and	help	them	to	fix	it.	That	was
not	so	much	based	on	me	knowing	Python	any	better,	but	on	me	having
what	I	call	debugger	eyes.	If	you	give	me	a	page	of	text	with	one	typo,	for
some	 reason	 I	 see	 the	 typo	 before	 I	 see	 the	 context	 of	 anything	 else.

That	is	actually	very	helpful	in	programming,	as	it	is	in	circuit	design.

People	 used	 to	 say,	 "So,	 I	 always	meant	 to	 ask	 you,	 are	 you	 the	Alex
Martelli	who	wrote	that	book?"	It	was	kind	of	fun	to	say,	"Yeah,	that	was
me,	in	my	copious	spare	time!"

Alex	Martelli:	'You	need	kudos	too,	not	just	hard-core	results.'

That	 kind	 of	made	my	 day.	 It	 doesn't	 happen	much	 anymore,	 because
I've	 been	 at	 my	 current	 employer	 for	 12	 and	 a	 half	 years	 and	 people
started	 to	 know	me	well	 enough.	 I	mean	 it's	 not	 objectively	 productive,
but	hey!	You	need	kudos	too,	not	just	hard-core	results.

Driscoll:	So	do	you	think	that	Python	2.7	is	dead?

Martelli:	The	third	edition	of	Python	in	a	Nutshell	had	a	problem.	I	 think
we	were	right	that	Python	2.7	is	far	from	dead.

Probably,	 the	 vast	majority	 of	 the	 lines	 of	 Python	 currently	 deployed	 in
production	are	Python	2.7,	 or	 other	Python	2	 versions,	 but	 those	 could
move	to	2.7	with	hardly	any	effort.	So	obviously	Python	2.7	is	not	going
anywhere.	 It's	 actually	 probably	 going	 away	 in	 2020	 when	 the	 Python
Software	 Foundation	 (PSF)	 officially	 stops	 supporting	 it	 (though	 I	 bet
some	entrepreneurs	will	 offer	 ongoing	 support	 on	 a	 commercial	 basis).
So	 it	was	 crucial	 to	 also	 cover	Python	 3,	 3.5,	 and	 3.6,	which	were	 the
recent	releases	and	 forthcoming	 releases	as	we	planned	and	wrote	 the
book.

Alex	Martelli:	'Python	2.7	is	far	from	dead.'

It's	too	early	right	now	to	drop	2.7.	So	we	have	a	book	that	covers	both,
and	that	makes	it	redundant	if	you	only	care	about	one	of	them.	That's	a
problem	 that	 will	 go	 away	 by	 the	 next	 edition.	 Of	 course,	 we	 will	 be
Python	3	something	only	and	no	2.7	need	apply.

A	 lot	of	stuff	will	 remain	 in	2.7,	probably	because	 it's	 just	 too	much	of	a

code	 base.	 YouTube,	 for	 example,	 is	 essentially	 a	 Python	 system.
There's	millions	of	lines	of	super-optimized	2.7	and	honestly,	it's	too	hard
to	 justify	migrating	 it	 all	 from	 a	 business	 standpoint.	We	 can't	 say	 let's
rewrite	X	million	lines	of	code,	given	the	amount	of	optimization	that	has
gone	into	YouTube	for	more	than	10	years.

If	 rewriting	 were	 to	 slow	 YouTube	 down	 by	 10%,	 can	 you	 quantify	 the
cost	 of	 that,	 not	 just	 to	 Google,	 but	 to	 everybody,	 what	 with	 YouTube
traffic	making	up	so	 large	a	 fraction	of	 the	 internet's	bandwidth?	A	10%
performance	 impact	would	 severely	make	 life	worse	 for	 everybody.	We
can't	afford	that!	So	that'll	go	by	other	directions.

Driscoll:	So	what	are	some	of	Python's	current	problems	as	a	language?

Martelli:	So,	if	I	had	a	magic	wand	and	could	go	back	to	just	before	the
first	version	of	Python	was	published,	and	could	make	only	one	change,	I
would	make	it	case	insensitive.

Alex	Martelli:	'Many	of	the	best	languages	were	case	insensitive.
That,	to	me,	would	be	the	greatest	improvement.'

I	 know	 since	 the	 C	 programming	 language	 came	 and	 dominated	 the
scene,	 people	 think	 of	 case	 insensitive	 as	 weird.	 But	 from	 Fortran,	 to
Pascal,	to	Ada,	many	of	the	best	languages	were	case	insensitive.	That,
to	me,	would	be	the	greatest	improvement.

You	may	not	notice	it	so	much	in	a	Western	culture,	but	the	very	concept
of	lowercase	and	uppercase	is	completely	artificial.	They	are	very	much
an	 artifact	 of	 our	 culture	 and	 of	 how	 we	 happen	 to	 have	 developed
writing.

I	 loved	 the	 Macintosh	 file	 system,	 because	 when	 you	 created	 a	 file
uppercase	 F-O-O	 (FOO),	 it	 preserved	 that	 case.	 But	 if	 you	 looked	 for
lowercase	 foo,	 it	 still	 gave	 you	 the	 file.	 This	 is	much	more	 likely	 to	 be
what	you	want	as	a	human	being.

Alex	Martelli:	'Voice	input	has	suddenly	become	an	absolutely	major

approach	to	input.'

Think	of	the	voice	recognition	system.	Voice	input	has	suddenly	become
an	absolutely	major	approach	to	input,	because	phones	make	it	so	much
easier	 to	 speak	 to	 them,	 than	 to	 use	 their	 little	 keyboards.	 Having	 to
maintain	 case	 distinction	 is	 a	 killer	 in	 that	 situation	 and	 shows	 up	 how
totally	artificial	it	is!	Specifying	uppercase	or	lowercase	is	just	not	natural
pronunciation.

I	find	myself	in	a	tiny	minority	wishing	for	case	insensitive	Python.	It's	true
that	 just	 about	 every	 language	 that	 competes	with	Python	 is	 also	 case
sensitive,	 so	 I	 guess	 it's	 a	 defect	 shared	 by	 just	 about	 every	 popular
language	today.

Something	 that	 Python	 does	 differently	 from	 other	 languages,	 and	 it
would	be	a	better	language	if	it	did	it	the	same	way,	is	one	of	the	Python
keywords.	 One	 of	 the	most	 popular	 keywords	 is	 def,	 which	 is	 used	 to
define	a	function.	The	problem	is	it's	not	a	keyword	and	it's	not	a	word.	It
doesn't	 mean	 anything!	 You	 know	 which	 language	 does	 it	 right	 there?
JavaScript.

Driscoll:	How	does	JavaScript	differ?

Martelli:	The	equivalent	keyword	is	function.	I	can't	imagine	why	Python
didn't	 use	 function	 to	 start	 with.	 It's	 so	 obvious!	 function	 is	 four	more
characters	 to	 type,	 but	 big	 deal!	 Any	 editor	 will	 AutoComplete	 for	 you,
right?

I	 know	 technically	 speaking,	 saying	 def	 foo	 or	 function	 foo	 makes
absolutely	 no	 difference.	 But	 I	 focus	 on	 the	 very	 little	 usability	 and
understandability	glitches.

Alex	Martelli:	'Python	is	possibly	the	most	usable	and	most
understandable	programming	language	there	has	ever	been.'

Python	 is	 possibly	 the	 most	 usable	 and	 most	 understandable
programming	language	there	has	ever	been.	So	those	few	places	where

it	isn't	kind	of	stand	out	more.

Python	 has	 only	 one	 kind	 of	 range	 and	 it's	 always	 going	 to	 be	 upper
bound	excluded,	so	it's	much	more	consistent	and	much	more	clear.	The
places	where	a	completely	arbitrary	word,	such	as	def,	 is	used	is	where
the	language	could	have	been	just	as	easily	designed	to	use	a	readable
word	like	function.

If	 people	 were	 completely	 terrified	 by	 the	 long	 word	 function,	 I	 would
allow	'fun'.	It's	kind	of	a	joke.	After	all,	the	language	is	named	after	Monty
Python,	 so	you	can	 take	 'fun'	as	an	abbreviation	of	function,	or	 simply
select	it	because	using	Python	is	fun.	It	would	still	be	better	than	def.

Driscoll:	What	do	you	think	are	Python's	greatest	strengths?

Martelli:	I	actually	answered	this	one	while	dealing	with	the	glitches.	The
strengths	are	 the	clarity	and	consistency	of	Python	and	 the	aspirational
goal	the	language	has,	to	have	only	one	natural	and	obvious	way	to	do
things.

We	 can't	 quite	 get	 there	 of	 course,	 because	 for	 example,	 addition	 is
commutative,	so	a	+	b	and	b	+	a	are	 two	ways	to	express	the	sum	and
Python	 cannot	 change	 that.	 But	 it's	 aspirational	 and	 it	 really	 helps	 to
make	 somebody	 else's	 code	 much	 more	 readable	 to	 you	 on	 the	 first
pass.

If	 they're	at	all	a	good	Pythonista,	or	even	a	beginner,	 they	will	 in	most
cases	 have	 chosen	 the	 one	 obvious	 way,	 because	 it	 does	 tend	 to	 be
obvious.	 Where	 they	 haven't,	 and	 you	 show	 them	 what	 it	 would	 have
been,	 it's	 much	 easier	 to	 convince	 them.	 So	 this	 kind	 of	 aspirational
attempt	to	give	one	obvious	way	to	express	things	is	part	of	what	makes
the	language	so	clear,	so	useful	and	so	usable.

Alex	Martelli:	'This	kind	of	aspirational	attempt	to	give	one	obvious
way	to	express	things	is	part	of	what	makes	the	language	so	clear,

so	useful	and	so	usable.'

The	 fact	 that	 Python	 has	 extended	 to	 be	 used	 in	 just	 about	 every

application	niche	you	can	think	of,	I	believe	descends	from	this	clarity	and
conceptual	simplicity.	It	really	makes	it	easy	to	jump	aboard.

Not	everybody's	brain	will	be	such	a	perfect	match	for	Python	as	mine	is.
I'm	 not	 saying	 every	 experienced	 programmer	 will	 teach	 themselves
Python	 within	 one	 weekend,	 but	 it's	 a	 language	 where	 it	 can	 happen.
Despite	 liking	 a	 lot	 of	 things	 in	 other	 languages,	 such	 as	 Rust,	 I	 can't
imagine	somebody	doing	the	same	in	Rust	in	a	weekend.

Driscoll:	So	where	do	you	see	Python	going	in	the	future?

Martelli:	Everywhere!	You	know,	one	of	 the	greatest	scientific	 results	of
the	last	few	years	was	the	discovery	of	gravitational	waves.

We	 had	 a	 couple	 of	 keynotes	 at	 the	 PyCon	 Italia	 conference.	 Python
code	 was	 there	 as	 the	 common	 language	 to	 control	 all	 of	 the
instrumentation	 responsible	 for	 gathering	 the	 data,	 which	 eventually
showed	that	two	black	holes	were	slamming	into	each	other	and	sending
out	those	waves.

Alex	Martelli:	'Python	was	there	directing	the	data	processing.'

Incidentally,	if	I	recall	correctly,	for	several	seconds	just	the	waves	sent	by
that	 one	 event	 produced	more	 energy	 than	 all	 the	 rest	 of	 the	 universe
was	sending	together.	That's	quite	a	phenomenon	and	Python	was	there
directing	 the	 data	 processing.	 That	 is,	 overseeing	 all	 of	 the	 cleaning,
analysis,	and	correlation	of	those	measurements,	to	interpret	them	as	an
incredibly	 powerful	 short-duration	 event,	 incredibly	 far	 away.	That	clash
happened	 billions	 of	 years	 ago	 and	 it's	 just	 the	waves	 that	 are	 getting
here	right	now.	That's	one	example.

Science,	of	course,	is	fascinating	because	of	that.	More	and	more	I	end
up	chatting	with	big	 internet	companies	 that	still	prefer	 to,	 for	 their	core
applications,	 use	 other	 programming	 languages.	 They	 do	 this	 because
that's	 what	 the	 founder	 knew,	 and	 they	 have	 to	 accommodate	 Python
only	because	they	buy	other	companies.

A	lot	of	purchases	are	going	on	in	the	high-tech	field.	More	often	than	not,

those	 other	 companies	 are	 using	 Python,	 because	 that's	 part	 of	 what
makes	 them	 successful.	 They're	 twice,	 or	 three	 times	more	 productive
than	the	guys	who	are	using	lesser	languages.

Driscoll:	Do	you	think	more	companies	will	start	using	Python?

Martelli:	 Yes,	 any	 big	 company	 needs	 to	 adopt	 Python	 as	 one	 of	 the
things	 admitted	 in	 its	 production	 systems.	 The	 launch	 of	 TensorFlow
showed	 to	 me	 that	 Python	 will	 definitely	 be	 there	 at	 the	 forefront	 of
machine	learning	and	artificial	intelligence.

Even	if	the	internals	are	in	super-optimized	C++	and	assembly	language,
at	 the	application	 level	 the	 business	 logic	will	 be	 in	Python,	 because	 it
makes	 no	 sense	 to	 spend	 the	 energy	 to	 remake	 it	 otherwise.	 So
TensorFlow	is	Python	at	the	core.

Alex	Martelli:	'The	launch	of	TensorFlow	showed	to	me	that	Python
will	definitely	be	there	at	the	forefront	of	machine	learning	and

artificial	intelligence.'

I	cannot	imagine	niches	where	Python	will	never	be.	But	let's	discuss	the
exception:	 embedded	 systems.	 Python	 traditional	 implementations	 are
not	incredibly	spare	users	of	memory.	In	an	embedded	system,	you	need
to	have	that.	However,	if	not	Python	itself,	some	dialect	can	address	that
problem.

Specifically,	the	dialect	of	Python	that	addresses	the	embedded	language
device	 programming	 Internet	 of	 things	world	 is	 known	 as	MicroPython.
The	 BBC,	 I	 hear,	 is	 distributing,	 or	 has	 distributed,	 something	 like	 a
million	devices	running	MicroPython	to	schoolchildren.

Driscoll:	So	is	this	Python?

Martelli:	 It's	 not	 full	Python,	because	 it	 has	 to	put	 some	constraints	on
memory	use.

You	cannot	 just	dynamically	allocate	memory	 in	a	 two-dollar	device.	 It's
got	 to	 have	 64K,	 or	 a	 fixed	 amount	 of	memory.	 But	 you	 can	 still,	 with

some	 limitations	 about	 this	 dynamic	 allocation,	 do	 a	 lot	 of	 your
programming.

There	 are	 some	 implementation	 peculiarities	 that	 in	 the	 past	 have
blocked	 Python	 from	 some	 applications,	 but	 they're	 being	 attacked.	 I
know	 that	 Larry	 Hastings	 is	 slaving	 away	 at	 removing	 the	 Global
Interpreter	Lock	(GIL).	Despite	what	people	think,	the	GIL	is	irrelevant	to
90%	of	applications,	but	it	is	a	killer	for	the	10%	which	desperately	need
to	use	the	increasing	number	of	cores	that	chip	manufacturers	stuff	in.

If	you	have	an	algorithm	optimized	to	use	all	of	the	32	or	64	cores,	then
removing	 the	 GIL	 will	 make	 a	 huge	 difference	 for	 that	 tiny	 niche.
Gradually,	the	limitations	will	go	away.

Alex	Martelli:	'At	the	heart	of	operating	systems,	I	do	not	believe
we'll	see	much	more	Python	than	we	do	today.'

At	the	heart	of	operating	systems,	I	do	not	believe	we'll	see	much	more
Python	 than	 we	 do	 today.	 Python	 could	 be	 there	 where	 dynamic
allocation	is	okay,	but	that's	a	small	part	of	a	kernel.	Maybe	some	device
drivers	that	are	not	time-critical	can	do	that.	But	mostly,	I	see	Python	as
running	in	user	space,	not	in	kernel	space.

Driscoll:	Why	is	that?

Martelli:	 The	 kernels	 will	 need	 lower-level	 languages,	 and	 incidentally
they	are	desperately	starting	to	need	better	ones	than	C,	which	is	why	I'm
looking	into	Rust.

I	would	really	like	to	see	an	experimental	and	simple	OS	kernel	written	in
Rust.	Anyway,	 it	 certainly	 has	 the	 potential	 for	 it.	 Python	doesn't	 really,
because	of	memory	allocation.	Also,	the	MicroPython	trick	doesn't	really
work	 all	 that	 well,	 because	 you	 do	 need	 some	 dynamism.	 Controlling
paging	 is	 really	 hard	 there.	But	 apart	 from	 that	 super	 hard,	 super	 core
level,	 I	do	not	see	any	limit.	 I	can't	even	say	the	sky's	the	limit	because
gravitational	waves	are	very	much	in	the	sky,	yet	we	conquered	those.

Alex	Martelli:	'I	can't	even	say	the	sky's	the	limit	because
gravitational	waves	are	very	much	in	the	sky,	yet	we	conquered

those.'

The	only	thing	I	can	think	of	is	that	we	still	have	a	way	to	go	with	mobile
development	 with	 Python.	 I	 hear	 good	 things,	 but	 I	 have	 no	 personal
experience	with	Kivy.

It's	a	real	pity,	because	I	remember	Guido	chatting	with	Andy	Rubin	when
they	were	both	at	Google,	and	trying	to	convince	Andy	that	beyond	Java,
Android	 needed	 an	 application-level	 programming	 language	 that	 was
much	easier	to	use.	Andy	stuck	to	his	 idea	that	adding	more	 languages
makes	 things	harder	 for	programmers.	 It's	not	 true!	Unfortunately,	Andy
was	 the	 one	 in	 charge	 of	 the	 project,	 so	 Guido	 couldn't	 make	 any
headway.	 But	 it	 would	 be	 a	 different	 world	 if	 I'd	 managed	 to	 be	 more
convincing	somehow.

Driscoll:	So	what's	it	like	to	work	at	Google?

Martelli:	I	have	found	it	all	I	hoped	for	when	I	interviewed	there	13	years
ago	and	possibly	more!

Of	course,	for	me,	it	has	been	the	culmination	of	a	long	and	very	varied
career.	So	my	expectations	were	not	 the	shiny-eyed	ones	of	somebody
fresh	out	of	some	college.	They	were	tempered	by	having	observed	what
happens	in	reality	in	firms	operating	in	the	marketplace.	Nevertheless,	 it
got	easily	surpassed	and	I'm	not	even	sure	 it's	so	much	about	 the	 firm,
because	it's	about	the	people.	Well	okay,	a	firm	is	made	up	of	its	people.
The	 people	 being	 absolutely	 incredible	 is	 what	 makes	 the	 place
absolutely	incredible.

In	the	end,	the	secret	 is	to	have	a	bunch	of	awesome	people!	Now	that
was	probably	easier	when	Google	had	70	employees,	rather	than	70,000.
I	mean,	I'm	not	saying	it's	easy	to	find	70	great	people,	but	 it's	certainly
harder	to	find	70,000!	It	doesn't	have	to	be	100%	I	guess,	but	it	should	be
close	to	100%	awesome	people.

Alex	Martelli:	'In	the	end,	the	secret	is	to	have	a	bunch	of	awesome

people!'

By	awesome	people,	 I	don't	necessarily	mean	 just	brilliant.	 I'm	sure	 it's
much	easier	 to	 find	brilliant	people	 than	 to	 find	 the	 right	kind	of	people,
who	 care	 for	 the	 end-users,	 their	 colleagues	 and	 their	 partners	 on	 a
human	 level.	 I	 mean	 it's	 important	 being	 bright	 and	 everything,	 but	 a
bright	asshole	can	do	more	damage	than	a	dim	one,	right?	So	what	you
want	first	is	the	people	who	care:	people	who	are	emotionally	invested	in
the	success	of	their	teams,	their	suppliers,	and	their	users.

Driscoll:	Is	there	a	magic	to	finding	that?

Martelli:	I	don't	think	so!	You	can	read	all	the	books	published	out	there,
but	I	just	don't	think	so!	Because	faking	being	so	caring	and	things	in	an
interview	 is	much	easier	 than	actually	being	so	year	after	 year.	So	you
could	get	it	wrong.

Alex	Martelli:	'Anything	you	do	can	potentially	be	amplified	and	can
have	an	impact	that's	completely	disproportionate.'

On	a	technical	level,	the	whole	size	of	the	company	poses	problems	and
challenges	 of	 course.	 But	 it's	 also	 where	 you	 can	 get	 the	 greatest
satisfaction	from	work.	Anything	you	do	can	potentially	be	amplified	and
can	have	an	impact	that's	completely	disproportionate.

Just	 to	give	you	one	example:	 I	did	say	 I	am	active	on	Stack	Overflow.
Part	of	that	is	the	job	I	do	today,	which	is	tech	support	for	Google	Cloud
Platform,	 and	 this	 in	 good	 part	 happens	 through	 Stack	Overflow.	Well,
Stack	Overflow	itself	tells	me	I	have	helped	more	than	50	million	people.
Now,	I	don't	know	how	they	guess,	but	I	certainly	hope	 it's	 true!	 I	would
have	met	my	goal	of	paying	back	all	of	the	help	that	I	was	given	by	others
and	then	some.

I	know	I	haven't	reached	anywhere	like	that	order	of	magnitude	with	my
books.	If	I'm	lucky,	my	books	may	have	helped,	including	multiple	readers
per	 copy,	 a	million	people.	 It	 just	 doesn't	 get	 to	 50	million.	 That's	what
being	at	Google	can	mean.

Driscoll:	Are	there	any	downsides	to	this?

Martelli:	 Of	 course,	 beware!	 A	mistake	 gets	 amplified	 just	 as	much!	 A
little	oops,	and	you	send	some	system	down	for	an	hour.	Whoops!	Now
you	have	 inconvenienced	at	 the	 very	 least	 50	million	 people.	But	 I	 like
playing	on	this	larger-than-life	scenario.

Alex	Martelli:	'Teaching	something,	so	helping	out	somebody	who's
having	a	problem,	can	be	the	best	way	to	learn	about	that	issue

yourself.'

Teaching	something,	so	helping	out	somebody	who's	having	a	problem,
can	be	the	best	way	to	learn	about	that	issue	yourself.	You're	looking	at	it
from	 the	 outside	 in	 a	 sense,	 but	 then	 getting	 in,	 getting	 involved,	 and
getting	 engaged.	 You	 can	 exit	 from	 the	 experience	 with	 a	much	 better
understanding	of	that	subject.

Driscoll:	How	does	Google	use	Python?

Martelli:	Okay,	so	it's	a	long	story,	but	let's	start	before	Google	existed.	A
book	I	strongly	recommend	is	In	the	Plex	by	Steven	Levy.	He	was	given
unprecedented	access	to	Google	and	Googlers	to	write	this	book.

One	 thing	 I	 learned	 from	 that	 book	 is	 that,	 well	 before	 Google	 had	 a
name,	Larry	Page	in	his	Stanford	University	dormitory	was	trying	to	write
a	spider	 to	get	a	copy	of	 the	web	onto	 local	machines,	 to	process	and
experiment	with.	He	wanted	to	use	this	new	language,	Java	1.0	beta,	but
the	whole	thing	kept	crashing.	So	Larry	turned	to	his	dormitory	roommate
asking,	"Hey,	can	you	help	me	here?	I	just	can't	get	this	program	to	run!"

The	 roommate	 took	a	 look	and	 then	said,	 "Well,	 of	 course	not!	 It's	 that
junk	Java	thing!	Come	on!	Let's	use	a	real	programming	language!"

Larry	got	Python	and	100	lines	of	Python	later,	the	first	spider	was	born,
and	 a	 copy	 of	 the	 web	 was	 finding	 its	 way	 to	 the	 computer	 in	 this
dormitory	room.	So	in	a	sense,	without	Python	to	help	write	the	very	first
spider,	Google	might	never	have	been	born!

Alex	Martelli:	'Without	Python	to	help	write	the	very	first	spider,
Google	might	never	have	been	born!'

The	spider	 is	such	a	crucial	program	that	 it	must	have	been	rewritten	a
million	 times,	and	I'm	pretty	sure	right	now	it's	 the	most	optimized	bit	of
C++	 you	 can	 imagine.	 I	 haven't	 looked	 at	 it	 for	 years,	 but	 the	 creation
history	 is	 still	 valid.	 The	next	 big	 role	 for	Python	and	Google	was	as	 a
unifying	language	for	all	of	the	deep	infrastructure	tasks.

Driscoll:	What	was	your	role	at	that	time?

Martelli:	That's	where	I	came	in	as	an	uber	tech	leader	for	infrastructure.
Instead	of	Bash,	Perl,	and	other	powerful,	but	harder	to	read	languages,
everything	had	to	be	recast	into	Python.

That	was	my	first	job	and	essentially	my	team	and	I	went	around	working
with	 reliability	 engineers,	 system	 administrators,	 and	 so	 on,	 who	 had
written	very	useful	utilities	 in	Bash	or	Perl.	We	understood	exactly	what
was	going	on,	rewrote	them,	and	productionized	them	in	Python.	It	was	a
hundred	times	more	readable.

The	 next	 big	 hit	 was	 Google's	 attempt	 to	 address	 the	 market	 for
streaming	videos.	If	you've	ever	heard	of	a	project	called	Google	Video,
that	was	where	Google	would	hold	all	the	videos,	show	them	to	you,	and
let	you	search	for	them.	It	had,	for	the	time,	very	substantial	 investment
behind	 it:	 hundreds	 of	 brilliant	 engineers	 and	 hardware	 resources	 like
there	was	no	tomorrow.

Google	 Video	 kept	 losing	 the	 feature	 battle	 to	 this	 tiny	 start-up	 a	 few
miles	 away.	 Each	 time	 this	 little	 start-up	 unveiled	 a	 new	 successful
feature	that	customers	liked	a	lot,	our	engineers	would	scramble	to	put	up
something	 similar	 and	 take	 a	 month	 or	 two.	 Each	 time	 we	 launched
something	new	and	innovative,	that	little	start-up	had	it	done	in	a	week!

Driscoll:	Did	you	find	out	how	the	start-up	was	moving	so	quickly?

Martelli:	Eventually,	we	bought	that	 little	start-up	and	we	found	out	how
20	developers	ran	circles	around	our	hundreds	of	great	developers.	The
solution	was	 very	 simple!	Those	20	guys	were	using	Python.	We	were

using	C++.	So,	that	was	YouTube	and	still	is.

lex	Martelli:	'We	found	out	how	20	developers	ran	circles	around	our
hundreds	of	great	developers.	The	solution	was	very	simple!	Those

20	guys	were	using	Python.'

YouTube,	of	course,	 took	many	years	 to	 fully	develop	and	especially	 to
monetize,	 because	 the	 amount	 of	 resources	 it	 was	 using	 was	 huge!	 It
grew	in	popularity	gradually	and	it's	a	great	success	story	for	Python.

Other	 areas	 of	 user-facing	 code	 vary.	 Sometimes	 Python	 is	 at	 the
forefront,	for	example	Google	App	Engine	(our	first	foray	into	cloud,	and
still	 a	 very	 innovative	 product	 to	 this	 day)	 had	 Python	 as	 the	 first
supported	language.	For	years	Python	was	the	only	language	you	could
use	 there.	Then	Java	was	added	and	 then	others.	But	Python	 remains
the	most	popular	language	used	by	customers	on	App	Engine.

There	 is	other	stuff	 in	 the	Google	Cloud	Platform	where	we	have	to,	 for
technical	 reasons,	 limit	 the	 languages	 that	 our	 customers	 can	 use	 to
program.	 Python	 is	 typically	 always	 number	 one	 or	 number	 two.
TensorFlow	may	be	another	great	example	 there.	 I	mentioned	 it	earlier,
but	the	point	is	that	TensorFlow	is	the	most	popular	GitHub	downloading
there	has	been	for	a	long	time.

The	existence	of	App	Engine	has	biased	a	lot	of	internal	tools.	The	ones
that	could	be	deployed	on	an	internal-facing	version	of	App	Engine	could
use	Python	by	preference,	and	the	setup	 is	sufficiently	general	 that	you
can	do	almost	everything	that	way.	So	 in	practice,	 from	the	day	I	 joined
Google	 12	 and	a	 half	 years	 ago,	 I've	 had	 to	 do	a	 little	C++,	 especially
when	I	was	fixing	existing	systems.	But	it's	been	essentially	all	Python	all
the	way	for	me.

Driscoll:	Is	there	anything	else	that	you'd	like	to	discuss?

Martelli:	I'd	like	to	discuss	the	role	of	Python	in	education.	At	one	point,
maybe	over	10	years	ago,	 there	was	even	a	 funded	project	 that	Guido
worked	on	to	put	Python	in	a	core	role	for	education.	It	was	never	really
finished.	 Some	 great	 things	 came	 out	 of	 it,	 but	 the	 taking	 over	 of

education	just	didn't	happen.

Nowadays,	 Python	 is	 the	 number	 one	 programming	 language	 used	 in
college	 introductory	 courses.	 It	 overtook	 Java	 and	 others	 quite	 a	while
ago.	 But	 in	 high	 school,	 that's	 not	 the	 case.	 It	 seems	 that	 with	 the
importance	of	computers	growing,	 just	a	basic	 level	of	understanding	 is
appropriate	for	most	high	school	students.	They're	using	an	unholy	mix	of
languages.

So	what	could	we	do	to	make	Python	more	attractive	for	this	role?	What
I'm	thinking	is	that	having	it	online	and	able	to	be	run	through	a	browser
would	be	good.	There	are	several	sites	that	offer	such	features,	but	not	in
scalable	and	uniform	ways.

I	 think	 that	 the	 Python	 Software	 Foundation	 (PSF)	 could	 put	 an	 effort
behind	 it.	 Why	 is	 that?	 Well,	 because	 Chromebooks	 are	 the	 leading
machines	 in	 education	 today.	By	 far,	more	Chromebooks	 are	 selling	 to
schools	than	all	other	kinds	of	devices	put	together.	Why?	They're	cheap,
they're	powerful	enough,	they're	secure	and	they're	very	easy	to	control
from	the	administrator's	viewpoint.

Alex	Martelli:	'I	think	Python	does	not	need	changes,	but
infrastructure	work	to	make	a	highly	available	site	for	schools.'

Whatever	you	can	do	on	a	Chromebook,	meaning	essentially	on	a	good
browser	 on	 the	 web,	 is	 much	 easier	 to	 get	 into	 the	 curriculum	 than
something	you	have	to	install	on	whatever	operating	system.

I	think	Python	does	not	need	changes,	but	infrastructure	work	to	make	a
highly	available	site	 for	 schools	with	 the	kind	of	 features	 schools	need,
such	as	administrator	control.	This	would	make	a	 real	 difference	 to	 the
lives	of	millions	of	 schoolchildren.	So	 that's	my	plea	 for	 anybody	who's
wondering	what	cool	project	they	could	start	next	with	Python.

Driscoll:	Thank	you,	Alex	Martelli.

Chapter	8.	Marc-André	Lemburg

Marc-André	Lemburg	is	a	German	software	developer	and	entrepreneur.
He	 is	 the	CEO	 and	 founder	 of	 eGenix,	 which	 provides	 Python	 training
and	consulting	services.	Marc-André	is	a	core	developer	for	Python	and
the	 creator	 of	 a	 set	 of	 popular	 Python	 extensions.	 He	 is	 a	 founding
member	of	the	Python	Software	Foundation	(PSF)	and	has	served	as	a
director	 twice.	 Marc-André	 is	 the	 co-founder	 of	 the	 Python	 Meeting
Düsseldorf	and	the	chair	of	 the	EuroPython	Society	(EPS).	He	regularly
gives	talks	at	Python	conferences	around	the	world.

Discussion	themes:	mx	packages,	the	PSF,	v2.7/v3.x.

Catch	up	with	Marc-André	Lemburg	here:	@malemburg

Mike	Driscoll:	So	why	did	you	become	a	programmer?

Marc-André	Lemburg:	My	 father	worked	 at	 IBM,	 so	 I	was	 exposed	 to
programming	computers	quite	early.

I	 loved	 technology	and	making	 things	work,	 but	 at	 the	 time	 (late	 in	 the
1970s),	computers	were	still	pretty	much	out	of	reach	for	kids	of	my	age.	I
played	 around	with	 "programs"	which	were	written	 down	 on	 a	 piece	 of
paper	 and	 "run"	 by	 imagining	 how	 a	 real	 computer	 would	 probably
execute	them.

I	learned	programming	aged	11,	after	my	dad	purchased	a	Sinclair	ZX81.
First,	I	learned	BASIC	and	then	later	Z80	assembler,	since	the	ZX81	was
a	rather	slow	machine.	Assembler	was	particularly	fun.	I	had	to	write	the
programs	by	literally	putting	together	the	opcodes	bit	by	bit,	based	on	a
Z80	manual.	I	then	converted	the	opcodes	to	hex	and	entered	them	into
a	hex	editor	for	the	ZX81	by	hand,	in	order	to	run	the	routines.

Marc-André	Lemburg:	'I	learned	to	appreciate	performance,	as	well
as	pay	attention	to	details.'

The	effort	was	worth	it,	since	the	routines	ran	much	faster	than	the	ZX81
BASIC.	I	learned	to	appreciate	performance,	as	well	as	pay	attention	to
details.	A	bug	in	the	assembler	code	usually	meant	having	to	restart	the
ZX81,	after	running	the	program	and	having	to	reload	everything	all	over
again.	Given	the	cassette	drive	interface,	this	took	quite	a	while.

About	two	years	later,	my	dad	bought	the	first	IBM	PC1	and	I	started	to
learn	MS	BASIC,	Turbo	Pascal,	 and	Turbo	C.	 In	 school,	 I	 continued	 to
work	 a	 lot	 with	 computers	 and	 during	 university	 I	 founded	 my	 first
company.

Driscoll:	So	how	did	you	come	across	Python?

Lemburg:	 I	 first	 found	out	about	Python	when	 looking	 through	an	OS/2
Freeware	CD	 called	Hobbes	 in	 1994.	 Python	was	 listed	 as	 one	 of	 the
programming	languages	and	included	in	version	1.1.

I	read	Guido	van	Rossum's	tutorial	in	an	afternoon	and	was	immediately
convinced	that	I	had	found	what	I	had	always	been	looking	for.	Python	is
a	language	which	has	all	of	the	important	data	structures,	implemented	in
a	way	 that	 is	 easy	 to	 use,	with	 a	 clear	 syntax	and	no	need	 for	 explicit
memory	management	or	parentheses	to	define	blocks.

At	the	time,	I	was	mostly	writing	C	code,	so	I	had	to	deal	with	all	of	 the
difficulties	of	 a	 system	 language	on	a	 regular	 basis.	Problems	 included
memory	allocation,	pointer	arithmetic,	overflows,	segfaults,	long	sessions
in	debuggers,	and	the	slow	edit-compile-run-debug	cycle.

Marc-André	Lemburg:	'Python	had	everything	that	made	me	happy.'

Python	had	everything	that	made	me	happy:	an	interpreter	for	interactive
experiments,	good	documentation,	a	fairly	complete	standard	library	and
a	really	nice	C	API,	with	everything	needed	to	interface	Python	to	existing
C	code.	This	 included	a	detail	which	 I	 found	particularly	 interesting:	 the
interpreter	was	using	 the	data	structures	 it	provided	 for	 the	 language	to
also	implement	its	own	internals.

Driscoll:	 Could	 you	 explain	 how	 you	 became	 an	 entrepreneur	 and
founded	your	own	company?

Lemburg:	 I	 started	 working	 in	 IT	 at	 the	 age	 of	 17.	 In	 1993,	 while	 at
university,	 I	 formed	 my	 first	 company	 called	 IKDS	 and	 worked	 as	 a
freelancer	for	local	companies	that	wanted	to	enter	the	then	new	market
of	online	business.

After	 finishing	 university	 in	 1997,	 I	 used	 my	 experience	 from	 building
several	 website	 engines,	 to	 start	 working	 on	 a	 new	 web	 application
server.	 My	 aim	 was	 to	 build	 a	 system	 that	 would	 make	 it	 easy	 and
efficient	 to	 develop	 online	 web	 systems.	 The	 system	 would	 leverage
object-oriented	 technology,	 relational	 databases,	 and	 the	 simplicity	 and
elegance	of	Python.

After	 three	 years	 of	 hard	 work,	 I	 had	 finished	 the	 first	 release,	 with
everything	that	was	needed	 for	a	commercial	enterprise	product.	 I	 then
started	 a	 limited	 company	 to	 market	 the	 product	 early	 in	 2000.	 The
development	of	the	application	server	resulted	in	me	entering	the	world	of
open	source.

Marc-André	Lemburg:	'The	development	of	the	application	server
resulted	in	me	entering	the	world	of	open	source.'

Since	 I	 did	 not	 have	 enough	 resources	 available	 to	 thoroughly	 test	 the
software	that	I	was	writing,	I	decided	to	make	the	basic	modules	used	in
the	 application	 server	 open	 source.	 This	 is	 how	 the	 popular	 mx
Extensions	came	 to	be.	Commercially,	 the	application	server	was	not	a

success.	I	found	that	the	market	simply	didn't	yet	understand	the	benefits
of	such	a	product.

I	 then	 focused	 more	 on	 consulting	 and	 running	 projects	 for	 other
companies.	One	of	 the	more	 interesting	projects	was	a	 financial	 trading
system	 that	 was	 completely	 written	 in	 Python.	 Similar	 projects	 are
keeping	me	 fairly	 busy	 these	 days,	 so	 I	 unfortunately	 don't	 have	much
time	to	contribute	to	CPython	development	anymore.

Driscoll:	Can	you	explain	a	little	more	about	the	mx	Extensions	that	your
company	distributes	and	maintains?

Lemburg:	 I	started	working	on	 the	mx	Extensions	while	developing	 the
web	 application	 server	 in	 1997.	 At	 the	 time,	 I	 found	 that	 Python	 was
lacking	a	good	general-purpose	database	module.

There	was	an	old	Windows-based	ODBC	interface,	but	it	wasn't	really	up
to	 the	 task	of	 providing	 a	 viable	 and	performant	 interface	 to	 databases
across	 Windows	 and	 Unix	 platforms.	 I	 started	 writing	 mxODBC	 to
address	 this	 need.	 I	 wanted	 to	 create	 a	 fast	 and	 portable	 interface	 for
ODBC	drivers,	which	would	allow	me	to	connect	the	application	server	to
all	of	the	popular	databases.

While	 working	 on	 mxODBC,	 the	 lack	 of	 a	 good	 date/time	 handling
module	became	apparent.	mxDateTime	was	born	to	fix	this	and	became
a	 standard	 in	 the	 Python	world	 for	many	 years,	 until	 the	 Python	 stdlib
grew	its	own	datetime	module	in	Python	2.3.

Marc-André	Lemburg:	'mxDateTime	was	born...and	became	a
standard	in	the	Python	world	for	many	years.'

mxTextTools	 and	 several	 of	 the	 other	 mx	 packages	 were	 the	 result	 of
needing	 fast	 parsing	 for	 templating	 in	 the	 application	 server.	 This	 was
later	 used	 by	 other	 people	 to	 write	 parsing	 engines,	 for	 example
Biopython	 (parsing	 genome	 data),	 or	 drive	 parsers	 implementing	 user-
defined	grammars.

The	 Tagging	 Engine	 in	 mxTextTools	 works	 a	 bit	 like	 a	 Turing	 state

machine,	because	 it	provides	very	 fast	parsing	primitives,	which	can	be
assembled	using	Python	 tuples.	Several	utility	 functions	help	with	using
the	 parsing	 results	 for	 implementing	 search	 and	 replace.	 mxTextTools
was	first	written	for	8-bit	 text	and	binary	data.	A	few	years	 later,	a	client
hired	me	to	extend	this	to	Unicode.

The	 lesser	 known	 mxStack	 and	 mxQueue	 played	 a	 role	 as	 fast	 data
structures	in	the	application	server.	The	mxTools	package	is	a	collection
of	fast	built-ins	that	I	also	wrote	for	the	application	server.	Several	of	the
ideas	in	mxTools	were	eventually	added	to	core	Python	in	some	form.

Driscoll:	So	how	did	you	become	a	Python	core	developer?

Lemburg:	While	starting	to	write	the	mx	Extensions,	I	had	a	lot	of	contact
with	 the	 Python	C	 API	 and	 its	 internals.	 I	 contributed	 back	 patches	 to
CPython	and	became	a	core	developer	later	in	1997.

Probably	 more	 people	 know	 about	 my	 contributions	 to	 CPython	 in	 the
form	of	the	Unicode	integration.	In	1999,	Guido	contacted	Fredrik	Lundh
and	me	and	asked	us	to	bring	Unicode	to	Python.	This	was	initiated	by	a
grant	from	HP	to	the	Python	Consortium	(a	Python	Software	Foundation
predecessor).

Marc-André	Lemburg:	'Guido	contacted	Fredrik	Lundh	and	me	and
asked	us	to	bring	Unicode	to	Python.'

Fredrik	 worked	 on	 a	 new	 regular	 expression	 engine.	 I	 added	 native
Unicode	 support	 to	 Python.	 I	 also	 designed	 and	 wrote	 the	 codec
subsystem	 in	 Python.	 The	 initial	 release	 was	 in	 2000,	 with	 Python
1.6/2.0.	 I	 helped	 to	maintain	 this	 part	 of	CPython	2.0	 for	more	 than	 10
years.

Driscoll:	What	are	some	of	the	other	contributions	that	you	have	made	to
Python?

Lemburg:	 I	 contributed	 the	source	code	encoding	system,	 the	platform
module	 and	 parts	 of	 the	 locale	module.	 I	 was	 also	 responsible	 for	 the
pybench	 suite	 for	 measuring	 enhancements	 to	 CPython	 and	 several

patches	 and	 ideas	 to	 make	 Python	 run	 faster,	 or	 to	 make	 it	 more
comfortable.

Driscoll:	What	challenges	have	you	had	as	a	core	developer	of	Python?

Lemburg:	 In	 the	 early	 years,	 being	 a	 core	 developer	was	 a	 lot	 of	 fun,
since	the	processes	were	a	lot	less	formal	than	they	are	today.	The	only
real	 challenge	was	 that	 discussions	 targeting	Unicode	 often	 resulted	 in
endless	discussions	and	sometimes	flame	wars.

Marc-André	Lemburg:	'Discussions	targeting	Unicode	often	resulted
in	endless	discussions	and	sometimes	flame	wars.'

I	 don't	 know	 whether	 this	 was	 because	 Unicode	 was	 at	 the	 core	 of
working	with	text,	or	simply	due	to	the	many	strong	egos	participating	in
the	discussions.	I	took	most	of	these	discussions	with	a	grain	of	salt	and
good	humor.

Since	then,	we've	seen	several	generations	of	core	developers	come	and
move	 on.	 Integrating	 the	 new	 developers	 was	 often	 not	 easy	 and
involved	 lots	 of	 discussions.	 We	 had	 to	 try	 to	 explain	 how	 Python
development	 worked	 and	 move	 all	 of	 the	 new	 energy	 in	 the	 right
directions.

Driscoll:	Python	is	one	of	the	major	 languages	used	in	AI	and	machine
learning.	Why	do	you	think	this	is?

Lemburg:	Python	is	very	easy	to	understand	for	scientists	who	are	often
not	trained	in	computer	science.	It	removes	many	of	the	complexities	that
you	have	to	deal	with,	when	trying	to	drive	the	external	libraries	that	you
need	to	perform	research.

After	 Numeric	 (now	 NumPy)	 started	 the	 development,	 the	 addition	 of
IPython	Notebooks	(now	Jupyter	Notebooks),	matplotlib,	and	many	other
tools	to	make	things	even	more	intuitive,	Python	has	allowed	scientists	to
mainly	 think	 about	 solutions	 to	 problems	 and	 not	 so	 much	 about	 the
technology	needed	to	drive	these	solutions.

Marc-André	Lemburg:	'Python	has	allowed	scientists	to	mainly	think
about	solutions	to	problems	and	not	so	much	about	the	technology

needed	to	drive	these	solutions.'

As	 in	other	areas,	Python	 is	an	 ideal	 integration	 language,	which	binds
technologies	together	with	ease.	Python	allows	users	to	focus	on	the	real
problems,	 rather	 than	 spending	 time	 on	 implementation	 details.	 Apart
from	making	 things	 easier	 for	 the	 user,	Python	also	 shines	as	an	 ideal
glue	platform	 for	 the	people	who	develop	 the	 low-level	 integrations	with
external	libraries.	This	is	mainly	due	to	Python	being	very	accessible	via
a	nice	and	very	complete	C	API.

Driscoll:	How	could	Python	be	improved	for	AI	and	machine	learning?

Lemburg:	I	think	that	Python	is	already	one	of	the	best	choices	that	you
have	for	AI	and	machine	learning.	With	a	vibrant	community	engaged	in
making	 the	 language	 even	 better,	 Python	 is	 going	 to	 have	 a	 long	 and
great	future	in	this	area.

Mike	Driscoll:	Can	you	explain	how	the	Python	Software	Foundation
(PSF)	was	founded?

Lemburg:	 Before	 the	 PSF	we	 had	 the	 Python	 Software	 Activity	 group
(PSA),	for	which	you	had	to	pay	a	small	amount	each	year.	We	also	had
the	 lesser	 known	Python	Consortium,	 for	 companies	 to	 support	Python
development,	which	paid	big	bucks	each	year.

Both	 groups	 did	 not	 really	 provide	 enough	 support	 for	 Python.	 The
copyright	 in	 Python	 was	 also	 scattered	 across	 several	 different
companies	 (see	 the	 Python	 license	 stack).	 Two	 companies	 that	 had
significantly	 invested	 in	 Python,	 Zope	 Corporation,	 and	 ActivePython,
started	a	project	to	potentially	address	all	of	these	issues	with	a	new	non-
profit	organization.

This	 became	 the	 PSF	 and	 it	 was	 founded	 at	 IPC9,	 the	 commercial
International	Python	Conference	9.	We	had	16	Python	core	developers	at
the	 time	 and	 the	 two	 companies	 as	 founding	 members.	 The	 core
developers,	 including	Guido,	 licensed	 their	 contributions	 to	 the	 PSF	 by
signing	contributor	agreements	and	all	subsequent	releases	were	done	in

the	name	of	the	PSF.

Initially,	 the	 PSF	 did	 nothing	 more	 than	 work	 as	 a	 legal	 body	 for
maintaining	 the	 copyright	 in	 Python	 distribution.	 Later,	 the	 PSF	 also
received	the	trademark	rights	to	the	wordmark	Python	from	CNRI.

In	 2003,	 the	 PSF	 then	 underwrote	 the	 first	 PyCon	 US	 conference	 in
Washington.	This	new	development	introduced	a	revenue	stream	for	the
PSF,	 which	 opened	 up	 new	 possibilities	 for	 helping	 the	 Python
community.

Marc-André	Lemburg:	'This	new	development	introduced	a	revenue
stream	for	the	PSF,	which	opened	up	new	possibilities	for	helping

the	Python	community.'

As	PyCon	US	grew	and	commercial	sponsors	started	supporting	it	more,
the	 revenue	 also	 grew.	 This	 resulted	 in	 the	 PSF	 turning	 into	 a	 more
mature	organization	over	the	years.	I	was	on	the	PSF	board	for	several
years	to	help	with	these	developments.

Driscoll:	I	know	that	you	helped	to	organize	the	first	EuroPython.	Could
you	tell	me	about	that?

Lemburg:	 In	 2001,	 a	 group	 of	 European	 Python	 and	 Zope	 users	 and
companies	started	a	 long	discussion	about	 the	desire	 to	have	a	Python
conference	in	Europe.

The	 Python	 workshops	 and	 the	 IPC	 conferences	 were	 all	 in	 the	 US.
There	wasn't	much	going	on	for	Python	in	Europe	at	the	time.	I	was	one
of	 the	participants	 in	 the	discussions	and	 they	did	not	 seem	 to	want	 to
end.	Closer	to	the	event,	I	then	joined	the	executive	committee	to	actually
make	the	EuroPython	conference	happen.	That's	how	EuroPython	2002
came	to	be.

Marc-André	Lemburg:	'There	wasn't	much	going	on	for	Python	in
Europe	at	the	time.'

The	whole	 event	was	 run	 by	 volunteers,	 unlike	 the	 commercial	 Python
conferences	in	the	US	at	the	time.	We	were	on	a	very	small	budget.	As
such,	 EuroPython	 also	 predates	 PyCon	 US,	 which	 was	 the	 first
conference	that	was	run	by	volunteers	in	the	US.

EuroPython	2002	was	held	in	Charleroi.	It	was	a	lot	of	fun	to	be	able	to
run	 a	 first	 major	 European	 Python	 conference.	 EuroPython	 was	 also
quite	successful,	with	even	Guido	attending.	Nowadays,	there	are	lots	of
national	 Python	 events	 happening	 each	 year,	 so	 while	 EuroPython
doesn't	want	to	compete	with	other	national	Python	events,	it's	definitely
operating	in	that	space.

Driscoll:	How	has	EuroPython	changed	over	the	years?

Lemburg:	 Since	 the	 early	 days,	 EuroPython	 has	 grown	 a	 lot	 and	 it
passed	 the	1000	attendee	mark	 in	 2014.	The	 conference	 is	 still	 run	by
volunteers,	but	it's	no	longer	an	operation	which	can	be	run	on	the	side.

The	EuroPython	Society,	which	organizes	EuroPython,	has	a	lot	of	work
to	do	each	year	to	put	on	the	conference.	I'm	the	chair	of	the	organization
at	the	moment	and	have	been	on	the	board	for	several	years.	Each	year,
we're	 growing	 the	 event	 into	 a	 more	 professional	 setup.	 Still,	 it's	 a
challenge	staying	on	top	of	everything	that	needs	to	be	done	to	put	on	a
conference.	The	board	members	typically	have	to	work	between	200	and
400	hours	each	to	make	an	event	happen.

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Lemburg:	I'm	most	excited	about	the	native	async	I/O	support.	With	the
addition	of	new	keywords,	this	has	finally	become	usable	 in	Python	and
will	go	a	long	way	in	helping	to	use	the	full	CPU	power	that's	available	on
today's	machines.

Marc-André	Lemburg:	'I'm	most	excited	about	the	native	async	I/O
support.'

As	an	aside,	 I	 find	 the	Python	 type	annotations	 to	be	 the	 least	exciting
development	in	today's	Python.	They	take	away	a	lot	of	the	elegance	of

Python	 programs.	 Even	 though	 type	 annotations	 are	 optional,	 many
companies	will	enforce	their	use	via	corporate	policy.	This	will	eventually
result	 in	more	 and	more	 Python	 being	 written	 using	 these	 annotations
and	will	 make	 Python	 look	 a	 lot	 like	 any	 other	modern	 statically	 typed
scripting	language.

Driscoll:	 What	 do	 you	 think	 about	 Python	 2.7?	 Should	 everyone	 be
moving	over	to	the	latest	version?

Lemburg:	Yes,	they	should,	but	you	have	to	consider	the	amount	of	work
which	has	to	go	into	a	port	from	Python	2.7	to	3.x.	Many	companies	have
huge	 code	 bases	 written	 for	 Python	 2.x,	 including	 my	 own	 company
eGenix.	 Commercially,	 it	 doesn't	 always	make	 sense	 to	 port	 to	 Python
3.x,	 so	 the	 divide	 between	 the	 two	 worlds	 will	 continue	 to	 exist	 well
beyond	2020.

Marc-André	Lemburg:	'Commercially,	it	doesn't	always	make	sense
to	port	to	Python	3.x,	so	the	divide	between	the	two	worlds	will

continue	to	exist	well	beyond	2020.'

Python	2.7	does	have	its	advantages	because	it	became	the	LTS	version
of	 Python.	 Corporate	 users	 generally	 like	 these	 long-term	 support
versions,	since	they	reduce	porting	efforts	from	one	version	to	the	next.

I	 believe	 that	 Python	will	 have	 to	 come	 up	with	 an	 LTS	 3.x	 version	 as
well,	to	be	able	to	sustain	success	in	the	corporate	world.	Once	we	settle
on	such	a	version,	this	will	also	make	a	more	viable	case	for	a	Python	2.7
port,	 since	 the	 investment	 will	 then	 be	 secured	 for	 a	 good	 number	 of
years.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Lemburg:	Python	will	 need	 to	make	 it	 easier	 to	use	 the	 full	 number	of
cores	 and	 CPUs	 that	 you	 have	 in	 today's	 machines.	 Async	 I/O	 has
helped	by	making	better	use	of	a	single	core,	but	 it's	not	 the	answer	 to
multi-core	deployments.

Removing	 the	Global	 Interpreter	 Lock	 (GIL)	 and	 replacing	 it	 with	more

fine-grained	locking	mechanisms	would	be	one	approach,	but	it's	going	to
be	a	 long	and	 rocky	path	 to	such	a	world.	We	should	be	careful	not	 to
underestimate	 the	 complexities	 and	 possible	 breakage	 to	 the	 many	 C
extensions.	Alienating	these	would	set	back	Python	a	lot,	since	they	are
essential	 drivers	 of	 Python's	 success.	 As	 a	 result,	 we	 would	 have	 to
provide	a	 smooth	upgrade	path	 for	 the	existing	extensions,	perhaps	by
keeping	the	GIL	in	place	while	they	are	in	control.

In	 my	 opinion,	 we	 should	 also	 investigate	 other	 approaches,	 such	 as
making	 inter-process	 communication	 more	 efficient	 and	 user	 friendly,
perhaps	 even	 by	 adding	 new	 keywords	 to	 automatically	 run	 code	 in
parallel.

Driscoll:	Thank	you,	Marc-André	Lemburg.

Chapter	9.	Barry	Warsaw

Barry	Warsaw	 is	 an	American	 software	 engineer	 and	 a	member	 of	 the
Python	Foundation	team	at	LinkedIn.	Barry	worked	for	Canonical	 for	10
years,	becoming	an	Ubuntu	and	Debian	developer	with	responsibility	for
the	Python	ecosystem	on	 those	operating	systems.	He	was	 the	project
leader	 of	 GNU	 Mailman,	 a	 popular	 open	 source	 mailing	 list	 manager
written	in	Python.	Barry's	former	roles	include	lead	maintainer	for	Jython,
Python	release	manager	and	member	of	PythonLabs.	Today	he	is	a	core
developer,	 the	 author	 of	 several	 successful	 Python	 Enhancement
Proposals,	and	the	maintainer	of	numerous	Python	libraries.

Discussion	themes:	PythonLabs,	Python's	future,	v2.7/v3.x.

Catch	up	with	Barry	Warsaw	here:	@pumpichank

Mike	Driscoll:	How	did	you	end	up	becoming	a	programmer?

Barry	 Warsaw:	 I	 started	 programming	 when	 I	 was	 pretty	 young.
Computers	then	were	actually	Teletype	machines,	that	were	connected	to
mainframes	 in	 the	 school	 and	 the	main	 school	 district.	 So	 I	 got	 on	 the
Teletypes.

I	learned	BASIC,	which	was	really	fun.	I	remember	in	the	summer	of	that
year,	some	of	 the	kids	 in	another	school	used	 those	same	Teletypes	 to

break	 into	 the	mainframes	 in	 the	Board	of	Education.	So	 the	next	 year
they	pulled	them	all	out	of	the	schools	and	gave	us	6502-based	PCs.	The
teachers	didn't	know	how	to	use	them	at	all,	so	I	taught	the	teachers.

The	guidance	counselors	took	notice	of	what	 I	was	doing.	They	hooked
me	 up	 with	 summer	 internships	 at	 what	 was	 then	 called	 the	 National
Bureau	of	Standards	 (NBS),	 a	 federal	 research	 facility	 in	Gaithersburg,
Maryland.	 The	 NBS	 is	 where	 I	 learned	 to	 love	 sharing	 programs	 and
collaborating	with	other	people.

Driscoll:	So	did	you	work	with	NBS	all	through	high	school?

Warsaw:	 Yes,	 I	 interned	 with	 NBS	 through	 high	 school	 and	 through
college.	 Then	 I	 got	 a	 full-time	 job	 at	 what	 is	 now	 called	 the	 National
Institute	 of	 Standards	 and	 Technology	 (NIST)	 and	 I	 worked	 there	 until
1990.

My	internships	and	then	full-time	job	at	NIST	were	eye-opening,	because
I	didn't	actually	know	what	the	real	industry	was	like,	or	what	it	was	like	to
be	a	professional	programmer.

Barry	Warsaw:	'I	didn't	actually	know	what	the	real	industry	was
like,	or	what	it	was	like	to	be	a	professional	programmer.'

I	worked	with	 the	robotics	 team	at	 the	 time	and	although	I	wasn't	doing
much	robotics,	I	did	find	myself	working	on	the	graphical	user	interfaces
for	 industrial	robots	for	factory	automation.	That	work	was	just	amazing.
From	there	I	got	into	system	administration.	A	few	years	into	that	we	got
a	 lot	 of	 Sun-3s,	 so	 we	 learned	 SunOS,	 Unix,	 C	 programming,	 Emacs,
and	all	kinds	of	things	like	that.

I	 was	 a	 computer	 science	 undergraduate	 and	 it	 was	 fine,	 but	 I	 really
learned	 the	 trade	 by	 doing	 real	 programming	 at	NIST.	 I've	 noticed	 that
college	 classes	don't	 exactly	 prepare	 you	 for	what	 you	 actually	 end	 up
doing.

Barry	Warsaw:	'I	really	learned	the	trade	by	doing	real	programming

at	NIST.'

For	example,	I	was	talking	to	some	current	 interns	and	they	said	that	 in
college,	at	least	as	undergraduates,	you	don't	even	learn	version	control
systems,	 such	as	using	Git.	That	 is	 just	 amazing	 to	me.	 I	 can't	 believe
how	 divorced	 from	 the	 reality	 of	 working	 programmers	 the	 college
environment	 is.	 It	 is	very	shocking	when	you	get	out	 of	 college	and	 it's
completely	different	to	what	you	were	taught.

Driscoll:	Do	you	think	that	Python	offers	a	pathway	to	real	programming,
as	you	call	it,	for	new	programmers?

Warsaw:	Yes,	when	I'm	talking	to	kids	today	that	use	Python,	these	kids
have	 often	 somehow	 hooked	 up	 with	 a	 project	 on	GitHub.	 Sometimes
they've	even	come	to	a	Python	conference	and	stayed	for	the	sprints.

Kids	 learn	 so	 much	 more	 about	 modern	 software	 engineering	 best
practices	 that	 way.	 You	 can	 really	 see	 it.	 They	 come	 in	 and	 they
understand	how	 to	do	pull	 requests	and	how	 to	 file	good	bugs.	 I	 tell	all
the	young	kids	that	I	talk	with	to	find	a	GitHub,	GitLab,	or	even	Bitbucket
project	that	interests	them	and	start	getting	involved.

Python,	of	course,	is	an	amazing	community	for	that.	It's	so	welcoming	to
a	 diverse	 group	 of	 people.	 In	 the	 Python	 community	we're	 friendly,	 we
accept	anybody,	and	we	guide	and	mentor	 them.	So	I	also	 tell	students
who	 really	 want	 to	 learn	 how	 to	 do	 it	 right	 to	 come	 to	 the	 Python
community	and	get	engaged,	because	 they	are	going	 to	 learn	so	much
by	doing	that.

Driscoll:	How	did	you	end	up	getting	into	Python	yourself?

Warsaw:	 In	 1994,	 I	met	Roger	Masse.	His	 girlfriend	 (and	 current	wife)
and	my	wife	were	very	 friendly,	so	we'd	all	get	 together	 for	dinner.	Rog
and	I	really	connected	on	a	geek	level.

Rog	had	just	started	a	job	at	CNRI,	which	is	the	Corporation	for	National
Research	Initiatives	in	Virginia	(CNRI	was	started	by	Bob	Kahn	and	Vint
Cerf,	 who	 are	 two	 of	 the	 fathers	 of	 TCP/IP.)	 So	 in	 the	 late	 summer	 of
1994,	I	started	working	for	CNRI	too.

I	was	working	 on	 a	 project	 called	 knowbots.	 These	were	 little	 software
agents	 that	 would	 bundle	 themselves	 up	 and	move	 to	 a	 different	 host.
The	knowbots	would	do	some	work	over	at	another	host	and	then	move
around	the	internet	to	find	information	for	you.	Rog	and	I	started	working
on	that	project	in	Objective-C	on	NeXT	machines.

A	 little	 later,	some	friends	who	were	still	at	NIST	told	me	about	a	Dutch
guy	who	was	coming	 to	give	a	 little	workshop	on	 this	 language	 that	he
had	invented.	They	asked	whether	I'd	be	interested,	so	we	did	a	little	bit
of	research.	Of	course,	it	was	Guido	van	Rossum,	and	the	language	was
Python,	so	we	said,	"Sure,	we'd	love	to	come."

Barry	Warsaw:	'A	Dutch	guy...was	coming	to	give	a	little	workshop
on	this	language	that	he	had	invented.	They	asked	whether	I'd	be
interested,	so	we	did	a	little	bit	of	research.	Of	course,	it	was	Guido

van	Rossum,	and	the	language	was	Python.'

We	wanted	to	talk	to	Guido	about	some	of	his	ideas,	because	we	thought
that	Python	could	be	really	cool	for	this	Objective-C	project.	We	thought
we	could	script	Objective-C	in	Python.

The	workshop	was	in	November	of	1994.	There	were	only	20	of	us	and
we	just	fell	in	love	with	Python	and	Guido.	He	was	just	so	open	and	cool
and	the	workshop	was	really	fantastic.	I	think	both	Guido	and	I	were	fans
of	Emacs,	so	we	talked	about	how	docstrings	in	Python	could	work	a	little
bit	syntactically,	or	at	least	syntactically	like	docstrings	in	Emacs	Lisp.

After	the	workshop,	we	went	back	to	CNRI	and	were	just	gushing	about
how	 we	 thought	 Python	 was	 going	 to	 work	 really	 well.	 One	 of	 our
colleagues	said,	"Hey,	why	don't	we	try	to	hire	Guido?"	We	didn't	know	if
he	 wanted	 to	 come	 to	 the	 United	 States,	 or	 would	 be	 interested	 in
working	on	this	Objective-C	Python	thing,	or	the	knowbot	project.	But	he
was,	so	in	April	of	1995	Guido	started	at	CNRI.

We	moved	a	 lot	of	 the	 infrastructure	 from	 the	Netherlands	 to	Virginia.	 I
think	 at	 the	 time	 it	 was	 a	 CVS	 repository.	 So	 we	 pulled	 the	 CVS
repository	 over,	 did	 a	 lot	 of	 the	 system	 administration	 stuff	 for	 Python,
and	of	course	got	into	developing	Python	as	well.

Barry	Warsaw:	'Python	1.2	was	the	first	version	that	we	released	out
of	CNRI.	So	it	was	in	some	ways	very	much	today's	Python.'

I	knew	C	pretty	well	at	the	time,	so	we	did	a	lot	of	work	on	the	C	internals
of	Python	and	 then	also	 the	Python	standard	 library.	 I	 think	Python	1.2
was	 the	 first	 version	 that	we	 released	 out	 of	CNRI.	 So	 it	was	 in	 some
ways	very	much	 today's	Python.	Even	Python	3	has	 the	same	feel	 to	 it
that	Python	did	way	back	then.	Although	there	are	so	many	amazing	new
features,	that	I	don't	know	whether	you	would	recognize	it.

I	 seem	 to	 remember	 that	 although	 Python	 had	 classes,	 it	 didn't	 even
have	 keyword	 arguments.	 We	 were	 doing	 a	 lot	 of	 things	 with	 Tcl/Tk
graphically.	 The	 signatures	 of	 functions	 got	 ridiculous,	 because	 even
though	most	of	 the	arguments	were	None,	you	had	 to	pass	 them	all	 in.
So	that	was	the	motivation	for	doing	keyword	arguments.	Anyway,	CNRI
was	great	and	working	with	Guido	on	Python	was	fantastic.	We	did	that
until	Guido	moved	on.

Driscoll:	Steve	Holden	said	that	you	were	part	of	PythonLabs.	Were	you
one	of	the	founders?

Warsaw:	Yes,	in	2000	a	bunch	of	us	left	CNRI	to	seek	our	fortunes	with
Python.	 It	 was	 the	 five	 of	 us:	 Tim	 Peters,	 Jeremy	 Hilton,	 Fred	 Drake,
myself,	 and	 Guido.	 Roger	 stayed	 at	 CNRI.	 That	 group	 was	 what	 we
called	PythonLabs,	but	 it	was	more	of	 an	 inside	 joke.	 I	mean,	 it	wasn't
really	an	official	thing.

Barry	Warsaw:	'In	2000	a	bunch	of	us	left	CNRI	to	seek	our	fortunes
with	Python.'

We	joined	BeOpen,	but	that	lasted	for	a	few	months	and	then	went	away.
Then	we	all	moved	over	to	Zope	Corporation.	We	just	felt	 like	we	had	a
little	club	made	up	of	 the	 five	of	us	who	had	come	 from	CNRI	and	Tim
Peters,	of	course.	So	that's	really	what	PythonLabs	was.	I	even	made	a
joke	at	one	time	on	the	mailing	 list	and	asked	Tim	whether	PythonLabs
still	 exists.	 If	 you	 go	 to	 pythonlab.com,	 you'll	 find	 the	 very	 humorous
response	from	Tim	to	my	question.

Driscoll:	Did	you	guys	have	specific	roles	in	PythonLabs?

Warsaw:	 Not	 really,	 although	Guido	 really	 led	 the	work	 that	we	 did	 on
Python	and	the	work	that	we	did	with	Python.

I	can't	remember	many	of	the	details	about	what	we	did	in	the	beginning,
even	 with	 Zope	 Corporation.	 Of	 course,	 we	 all	 had	 tasks	 to	 do	 within
Zope	Corporation,	but	 then	we	would	get	 together	and	work	on	Python
itself.

Barry	Warsaw:	'We	worked	on	what	we	found	interesting,	which	was
internals,	new	features,	bug	fixes	or	infrastructure.'

We	 worked	 on	 what	 we	 found	 interesting,	 which	 was	 internals,	 new
features,	bug	fixes,	or	 infrastructure.	All	of	 that	stuff	really	needed	to	be
done	 back	 then,	 because	 the	Python	 community	was	 so	much	 smaller
than	it	is	now.

Driscoll:	So	were	 there	any	goals	at	 that	 time	 for	 the	Python	 language
that	you	guys	were	shooting	for?

Warsaw:	You	know,	it's	hard	for	me	to	remember	the	exact	timeline,	but
I'm	 sure	 someone	 could	 do	 the	 archaeology	 and	 figure	 out	 what	 the
features	were.	I	do	remember	the	big	pushes.

One	of	the	earliest	things	that	I	did	at	CNRI	was	work	with	Roger	on	what
was	called	the	grand	renaming.	The	Python	C	source	code	back	at	that
time	 didn't	 have	 the	 nice	 clean	 namespaces	 that	 the	 C	 API	 has	 now.
They	were	all	just	named	in	a	global	namespace.

The	problem	with	that	was	that	people	were	trying	to	embed	Python,	but
it	 wasn't	 going	 to	 work	 because	 those	 names	 were	 colliding	 with	 their
own	symbols.	So	we	did	the	grand	renaming,	where	we	went	through	the
entire	internal	C	API	and	cleaned	it	up,	so	that	you	could	embed	Python
in	 other	 C	 applications.	 So	 I	 remember	 that	 was	 one	 of	 the	 very	 first
things	that	I	did.

There	was	also	a	 lot	of	work	on	new-style	classes	at	 the	time,	which	of

course	 in	 Python	 3	 is	 the	 only	 kind	 of	 class.	 There	 were	 a	 lot	 of
discussions	about	how	the	type	system	would	work	in	the	new-style	class
infrastructure.

The	 other	 thing	 that	 I	 remember	 from	 the	 original	 workshop	 was	 that
there	 was	 this	 guy	 named	 Don	 Beaudry.	 He	 was	 doing	 some	 crazy
metaclass	 hacks.	 Of	 course,	 Jim	 Fulton	 was	 very	 interested	 in	 doing
metaclass	stuff	as	well.	Jim	was	the	CTO	of	Zope	Corporation.

Barry	Warsaw:	'By	Python	2.2,	we	really	wanted	to	do	metaclasses
right	and	fix	some	of	the	problems	with	the	semantics	of	classic

classes.'

I	 remember	 not	 really	 understanding	 much	 about	 metaclasses	 at	 the
original	Python	workshop.	It	went	over	my	head	at	the	time.	However,	by
Python	2.2,	we	really	wanted	to	do	metaclasses	right	and	fix	some	of	the
problems	with	the	semantics	of	classic	classes.

I	remember	a	lot	of	discussions	about	how	the	new-style	class	stuff	could
work	so	that	you	could	inherit	from	a	type	and	define	new	types,	as	well
as	new	instances.	There	were	just	so	many	features,	but	we	all	pitched	in
on	the	things	that	were	interesting	to	us.

Driscoll:	I	seem	to	recall	that	you	worked	on	the	original	email	 library	in
Python.	Do	you	remember	how	that	came	about?

Warsaw:	Yeah,	so	one	of	the	things	that	we	did	early	on	was	to	move	the
Python	mailing	list	to	CNRI.	It	was	still	being	run	at	CWI,	which	was	the
Dutch	institute	where	Guido	worked	before	he	came	to	the	US.

The	Python	mailing	list	was	running	on	Majordomo,	which	was	the	most
popular	mailing	list	software	at	the	time,	and	was	written	all	in	Perl.	When
we	moved	it	over,	 there	were	a	 lot	of	 things	that	we	wanted	to	improve.
By	the	way,	Ken	Manheimer	actually	crops	up	here	because	he	was	very
instrumental	in	the	early	days	of	Mailman.

So	we	pulled	 the	Majordomo	 installation	over	 to	CNRI,	but	 it	was	 really
inconvenient	making	the	changes	to	it	that	we	wanted	to	make,	because

we	didn't	enjoy	developing	in	Perl.	We're	Pythonistas,	right?

Barry	Warsaw:	'We	didn't	enjoy	developing	in	Perl.	We're
Pythonistas,	right?'

We	 had	 a	 friend	 by	 the	 name	 of	 John	 Viega,	 who	 was	 going	 to	 the
University	 of	 Virginia.	 John	 was	 friends	 with	 the	 guys	 in	 the	 Dave
Matthews	Band	 before	 they	 were	 big.	 So	 John	 wanted	 to	 write	 a	 little
mailing	list	manager	in	Python,	that	he	could	use	to	connect	the	fans	with
the	 band	 and	 send	 out	 announcements.	 He	 wrote	 the	 mailing	 list
manager,	and	we	caught	wind	of	it.

We	 thought	 that	maybe	we	could	work	on	 this	 thing	 for	Python	mailing
lists,	 because	 it	 would	 be	 better	 to	 have	 a	 Python-based	 mailing	 list
manager.	So	we	got	a	copy	of	the	mailing	list	manager,	but	John	lost	the
disc	 and	 the	 original	 copy	 of	 what	 eventually	 became	 Mailman.
Fortunately,	 Ken	 had	 a	 copy	 that	 he	 resurrected	 and	 we	 were	 able	 to
start	working	on	it	to	support	the	mailing	list	for	the	Python	community.

We	 decided	 that	 we	 would	 call	 the	 mailing	 list	 manager	 Mailman.	 We
then	put	 it	 into	 the	GNU	Project	and	put	 the	GPL	on	 it.	 I	personally	got
really	 involved	 with	 Mailman.	 It	 was	 interesting	 and	 I	 really	 loved	 the
aspect	of	allowing	people	to	communicate.

Barry	Warsaw:	'I	really	loved	the	aspect	of	allowing	people	to
communicate.'

The	other	really	cool	 thing	about	 the	early	Mailman	software	was	that	 it
had	a	web	interface,	which	was	something	that	Majordomo	didn't	have	at
the	time.	That	was	one	of	the	defining	factors,	in	my	opinion,	of	Mailman.

One	 of	 the	 things	 that	 I	 realized	 was	 that	 there	 was	 no	 good	 RFC
compliant	 email-parsing	 software.	 There	 really	 wasn't.	 There	 was	 the
rfc822	module	 in	 the	 standard	 library,	 but	 it	 wasn't	 very	 advanced	 and
new	email	standards	were	coming	out	for	the	format	of	email	messages.

It	became	apparent	that	rfc822	wasn't	going	to	cut	it.	So	I	worked	on	an
offshoot	 called	 mimelib,	 that	 added	 support	 for	 MIME	 constructs:
composing	messages,	having	different	MIME	types	and	images.	We	had
defined	a	model	 that	described	an	email	message,	especially	on	MIME
messages.

We	wanted	it	to	be	possible	to	programmatically	build	up	a	tree	of	email
messages.	We	had	a	parser	so	that	you	could	feed	it	a	bunch	of	Python	2
byte	 strings.	 You	 had	 this	 parser	 and	 it	 would	 give	 you	 a	 tree	 that
represented	 the	 email	 message.	 Then	 you	 could	 manipulate	 that	 and
pass	that	 tree	to	a	generator.	The	generator	would	 flatten	the	tree	back
into	 the	byte	 representation	of	an	email	message,	along	with	 the	MIME
boundaries	and	things	like	that.

We	tried	to	be	RFC	compliant	as	best	as	we	could.	I	think	we	were	pretty
successful,	 but	 they're	 very	 complicated	 standards.	 I	 think	 even	 now
we're	 learning	 the	deficiencies	and	 the	bugs	 in	 it.	 In	 any	 case,	mimelib
was	 a	 thing	 and	 I	 released	mimelib	 as	 a	 separate	 third-party	 package.
Then	I	started	using	mimelib	in	Mailman.	It	was	a	real	benefit	to	have	this
third-party	package	that	we	could	develop	separately	from	Mailman	and
just	pull	in	as	a	dependency.

I	 don't	 remember	 exactly	 when	 it	 happened,	 but	 there	 was	 a	 Python
release	 when	 we	 felt	 that	 mimelib	 was	 pretty	 stable	 and	 the	 API	 was
pretty	good.	So	we	pulled	mimelib	into	the	standard	library	and	renamed
it	as	 the	email	package,	which	 is	a	better	name	 for	 it	anyway,	because
there's	a	lot	more	to	it	than	just	MIME.

Barry	Warsaw:	'We	pulled	mimelib	into	the	standard	library	and
renamed	it	as	the	email	package.'

So	that's	 the	history	of	 the	email	package.	 It	came	 from	mimelib,	which
came	from	the	work	 in	Mailman,	on	 top	of	 the	 rfc822	module	 in	 the	old
Python	standard	library.	I	was	actually	joking	with	the	guys	that	we	should
have	called	 the	panel	session	at	PyCon	Grandpa's	Python	Time!	We've
all	been	around	Python	 for	so	 long.	We	should	say,	 "Kids!	Come	on	up
and	sit	around	the	fire.	Grandpa	will	 tell	you	stories	about	Python	in	the
old	days."

Driscoll:	 So	 we	 talked	 about	Mailman.	 Have	 you	 learned	 any	 lessons
that	you	would	like	to	share	from	being	the	lead	for	that	project?

Warsaw:	 I'm	 not	 sure	 that	 I'm	 really	 the	 best	 project	 leader!	 I	 have	 so
many	interests	and	find	it	difficult	to	spend	the	right	amount	of	time	with	a
project.

I	am	 fortunate	 to	have	core	developers	 in	 the	Mailman	project	who	are
fantastic	 developers,	 really	 amazing	 people	 and	 super	 friendly.	 The
highlight	of	my	PyCon	is	to	get	together	with	the	core	developers	to	hang
out	socially,	work	on	the	technology,	and	keep	it	current.

Barry	Warsaw:	'The	highlight	of	my	PyCon	is	to	get	together	with
the	core	developers	to	hang	out	socially,	work	on	the	technology,

and	keep	it	current.'

Mailman's	been	around	for	forever	now	and	it's	still	a	viable	project.	I	do
think	that	you	have	to	really	open	up,	trust	your	core	developers,	and	be
willing	 to	 hand	 over	 parts	 of	 a	 project.	 Great	 web	 designers	 really
understand	 the	 technology	 and	 can	 design	 a	 great	 interface	 that	 looks
good	 and	 is	 fun	 to	 use.	 That's	 great	 for	 me	 because	 then	 I	 can
concentrate	on	the	bits	that	really	interest	and	fire	me	up.

We've	had	some	Google	Summer	of	Code	projects	and	one	of	our	core
developers	came	from	there.	He's	just	done	an	amazing	amount	of	work
on	our	Docker	images	and	some	of	the	glue	layers.	It's	just	really	great	to
be	 able	 to	 have	 developers	 that	 you	 really	 like	 to	 work	 with,	 that	 you
know	are	just	really	smart	and	friendly.

You	need	 to	 have	 developers	 that	will	 put	 forth	 that	 kind	 of	 community
aspect	 that	 I	 like	with	Python.	The	Python	community	 is	welcoming	and
friendly,	 with	 a	 focus	 on	mentoring	 people	 as	 they	 come	 in.	 So	 I	 think
another	 lesson	 is	 to	be	open	with	what	 you	do	and	give	your	 time	and
your	expertise,	because	it	will	come	back	tenfold.

Barry	Warsaw:	'I	think	another	lesson	is	to	be	open	with	what	you
do	and	give	your	time	and	your	expertise.'

Driscoll:	Have	you	had	any	challenges	with	the	Mailman	project	that	you
didn't	expect	to	have?

Warsaw:	 Oh	 yeah.	 I	 don't	 get	 this	 too	 much	 these	 days	 but	 because
Mailman	is	free	and	we	give	it	away,	we	don't	really	even	know	all	of	the
people	who	use	it.

We	don't	control	Mailman	in	any	way	and	we	don't	tell	people	what	they
can	and	cannot	do	with	it.	Most	people	use	it	for	very	good	things,	such
as	 for	 their	biking	club,	or	 certainly	 in	a	 lot	 of	 tech	discussion	 lists.	But
some	 people	 do	 use	 Mailman	 for	 nefarious	 purposes,	 like	 spamming
people.	One	of	the	challenges	is	that	we	get	contacted	when	people	have
been	 spammed	 by	 unscrupulous	 developers	 and	 we	 get	 a	 lot	 of
threatening	emails	at	times,	which	is	very	disheartening.

One	of	the	things	that	I've	learned	is	that	people	reach	out	to	you	in	those
cases	 when	 they	 are	 frustrated.	 They're	 going	 through	 pain	 because
they're	 getting	 spammed	 by	 somebody.	 They	 don't	 know	 who	 is
spamming	 them	 and	 they're	 not	 getting	 any	 relief	 from	 that	 person,	 so
they	search	around.

Now,	we	put	very	prominent	notices	 that	we	do	not	condone	spam	and
we	do	not	approve	of	using	Mailman	for	any	kind	of	illegal	purposes.	We
encourage	people	to	use	Mailman	for	opt-in,	so	that	you	know	that	you're
signing	up	for	something.	But	we	can't	really	control	it.

Barry	Warsaw:	'One	of	the	things	that	I	have	found	helpful	is	to	let
people	know	that	there	is	a	human	on	the	other	side	of	Mailman.'

We	don't	have	any	kind	of	administrative	access,	but	people	reach	out	to
us	in	moments	of	frustration.	One	of	the	things	that	I	have	found	helpful	is
to	 let	people	know	 that	 there	 is	a	human	on	 the	other	side	of	Mailman.
Sometimes	we'll	do	a	little	bit	of	research	to	see	if	we	can	find	a	contact,
or	find	their	hosting	provider.	Even	the	most	frustrated	person	is	normally
very	appreciative	of	that.

So	that	was	really	challenging	back	in	the	early	days.	People	would	send
very	 nasty	 emails	 to	 my	 personal	 email	 address	 and	 that	 gets	 really

frustrating.	There	are	all	kinds	of	people	out	there	on	the	internet,	right?

Driscoll:	 So	 when	 we	 spoke	 for	 the	 PyDev	 of	 the	 Week	 series,	 you
mentioned	 that	you	worked	at	Canonical.	What	was	 it	 like	 to	work	at	 a
Linux	distribution	company?

Warsaw:	Well,	 it	was	 really	awesome.	 I	 stopped	working	 there	 in	April,
but	 I'd	 been	 there	 for	 ten	 years.	 I	 really	 enjoyed	 it	 and	 it	 was	 a	 great
position	 to	 be	 in,	 because	 I	 felt	 that	 I	 could	 really	 help	 the	 Python
community	for	Ubuntu	and	Debian.

Working	 at	 Canonical	 was	 a	 great	 nexus	 for	 helping	 people	 who	were
consumers	of	a	Linux	distro,	like	Ubuntu	or	Debian,	and	users	of	Python
on	those	platforms.	I'm	a	core	developer	for	Python,	so	when	a	problem
would	occur,	I	was	able	to	see	whether	the	fix	needed	to	go	in	Debian	or
Ubuntu	 and	 ask	 whether	 it	 needed	 to	 go	 in	 upstream	 Python	 or	 go	 in
some	library.

Barry	Warsaw:	'I'm	a	core	developer	for	Python,	so	when	a	problem
would	occur,	I	was	able	to	see	whether	the	fix	needed	to	go	in
Debian	or	Ubuntu	and	ask	whether	it	needed	to	go	in	upstream

Python	or	go	in	some	library.'

So	I	really	had	the	opportunity	to	work	very	closely	with	a	wide	range	of
Python	projects.	I	was	also	able	to	interact	with	Python	itself	and	work	on
areas	of	Python	that	I	thought	needed	to	be	improved	for	distribution	on
the	Linux	distro.	So	 it	was	 really	 fun.	 It	was	a	great	experience	and	 I'm
really	glad	that	I	had	the	opportunity	to	do	it.

Driscoll:	What	exactly	did	you	do	 in	your	 role	at	Canonical?	Could	you
explain	that?

Warsaw:	Yes,	so	I	was	a	member	of	the	Foundations	team,	which	was	a
small	team	that	worked	on	this	sort	of	plumbing	layer	of	a	Linux	distro.

So	 imagine,	at	 the	bottommost	part	you	have	a	kernel,	 right?	We	didn't
do	any	kernel	work	because	we	had	a	separate	kernel	team.	But	above
that	 you	 had	 things	 like	 the	 boot	 process,	 compilers,	 toolchains,	 and

package	building	the	archive	health.	So	as	things	 landed	 in	 the	archive,
you	wanted	to	make	sure	that	it	was	stable	and	robust.	It's	all	this	sort	of
random	mix	of	things	above	the	kernel,	but	below	the	desktop.

One	 of	 the	 things	 that	 the	 Foundation	 team	 was	 responsible	 for	 was
language	 interpreters.	Python	 is	 fairly	popular	 for	writing	scripts	 that	 the
operating	 system	 itself	 and	 the	 build	 processes	 use,	 so	 it	 is	 a	 pretty
important	language	for	Ubuntu	and	many	Linux	distributions.

Barry	Warsaw:	'One	of	the	things	that	I	was	responsible	for	was	the
general	health	of	the	Python	ecosystem	on	Ubuntu.'

One	of	the	things	that	I	was	responsible	for	was	the	general	health	of	the
Python	ecosystem	on	Ubuntu.	That	 included	working	on	transitions,	 like
trying	to	move	everybody	to	Python	3.	Then	as	new	versions	of	Python
would	come	out,	while	I	didn't	directly	do	the	interpreter,	I	did	work	on	all
the	packages	that	were	involved.

There	 are	 a	 lot	 of	 steps	 that	 you	 have	 to	 go	 through	 in	 order	 to	make
Python	 3.5	 the	 default	 version	 on	 Ubuntu.	 It's	 a	 long	 process.	 A	 lot	 of
packages	won't	build,	or	they	have	bugs	in	the	new	version	of	Python,	so
you	 have	 to	 fix	 those,	 prioritize	 and	 stuff	 like	 that.	 So	 one	 of	 the	main
things	that	I	did	on	Ubuntu	was	really	work	on	the	Python	ecosystem.

Again,	 I	 was	 looking	 at	 the	 tools	 and	 seeing	 what	 pain	 points	 Ubuntu
developers	were	having	with	 the	Python	 tools.	 I	was	 trying	to	 figure	out
how	to	 improve	them	and	where	to	 improve	them.	For	example,	 if	 there
was	some	friction	with	using	pip	and	setuptools	on	Ubuntu,	then	the	fixes
might	have	 to	go	 into	pip	and	setuptools.	 It	was	my	 responsibility	 to	be
aware	of	where	people	were	having	pains	using	Ubuntu.

Barry	Warsaw:	'I	was	looking	at	the	tools	and	seeing	what	pain
points	Ubuntu	developers	were	having	with	the	Python	tools.	I	was
trying	to	figure	out	how	to	improve	them	and	where	to	improve

them.'

In	addition,	I	did	a	lot	of	consulting	with	people	who	were	using	Python	on
Ubuntu.	If	people	had	Python	questions,	I	would	work	with	them,	answer
their	questions,	and	do	code	reviews.

I	also	worked	with	a	lot	of	people	in	the	community.	If	community	people
on	Ubuntu	had	questions	about	how	Python	worked,	or	had	problems,	I
was	 one	 of	 the	 people	 they	 could	 talk	 to	 and	 work	 with.	 A	 lot	 of	 it	 is
community-driven,	but	 I	 think	 if	you	 really	want	 to	make	a	distribution	a
success,	 then	you	have	to	put	resources	 into	 it.	Every	Linux	distribution
puts	resources	into	its	communities,	because	otherwise	it's	 just	going	to
fall	apart.

Barry	Warsaw:	'A	lot	of	it	is	community-driven,	but	I	think	if	you
really	want	to	make	a	distribution	a	success,	then	you	have	to	put

resources	into	it.'

Driscoll:	 Let's	move	 on	 to	 a	 slightly	 different	 topic.	What	 do	 you	 think
makes	Python	such	a	good	 language	 for	AI	and	machine	 learning	 right
now?

Warsaw:	Python	is	a	fantastic	glue	language.	It's	also	very	easy	to	learn
and	 use,	 both	 for	 expert	 programmers	 and	 for	 researchers,	 for	 whom
programming	is	not	their	primary	vocation.

I	think	both	of	these	aspects	make	Python	a	great	language	for	domains
like	machine	learning.	The	language	is	very	malleable	as	you	experiment,
but	robust	as	you	build	bigger	systems.	I	think	this	is	also	a	contributing
factor	to	why	we	see	Python	becoming	so	popular	 in	the	data	sciences.
These	 are	 often	 technologies	 where	 programming	 isn't	 the	 central
occupation,	but	kind	of	secondary	to	the	core	research	being	conducted.

Driscoll:	What	could	we	do	to	make	Python	an	even	better	language	for
AI	and	machine	learning?

Warsaw:	 I'm	 not	 sure	 that	much	 needs	 to	 change	with	Python,	 but	 it's
possible	 that	 the	 Python	 ecosystem	 could	 be	 improved	 to	 give	 more
visibility	 to	AI/machine	 learning	 libraries,	and	make	 it	easier	 to	 integrate
such	libraries	with	other	Python	applications,	frameworks,	and	libraries.

Driscoll:	So,	just	because	I'm	curious,	what	are	you	doing	now?

Warsaw:	 I	 just	 started	working	with	 LinkedIn	 a	 couple	 of	weeks	 ago.	 I
really	like	it.	I	think	it's	a	great	company	and	they	use	a	lot	of	Python.	So
I'm	still	doing	Python	work.	 I'm	working	on	Python	within	LinkedIn	and	I
love	the	team.

I	 think	LinkedIn	has	a	great	mission	and	 I	 am	psyched	about	what	 the
company	is	trying	to	do.	The	mission	is	to	connect	people	with	economic
opportunities,	so	 it's	kind	of	 funny	 that	LinkedIn	helped	me	to	 find	a	 job
and	that	job	happened	to	be	with	LinkedIn!

LinkedIn	also	has	a	lot	of	other	stuff	that	it	does.	I	really	like	the	focus	on
helping	people	 to	 find	 the	 right	 fit	 for	whatever	 they	want	 to	 do	 in	 their
professional	career.

Driscoll:	Since	you	have	such	a	deep	knowledge	of	Python,	could	you
tell	me	where	you	see	Python	going	as	a	language	in	the	future?

Warsaw:	 That's	 a	 really	 interesting	 question.	 I	 think	 in	 some	 ways	 it's
hard	to	predict	where	Python	is	going.	I've	been	involved	in	Python	for	23
years,	 and	 there	was	 no	way	 I	 could	 have	 predicted	 in	 1994	what	 the
computing	world	was	going	to	look	like	today.

Barry	Warsaw:	'I've	been	involved	in	Python	for	23	years,	and	there
was	no	way	I	could	have	predicted	in	1994	what	the	computing

world	was	going	to	look	like	today.'

I	 look	 at	 phones,	 IoT	 (Internet	 of	 things)	 devices,	 and	 just	 the	 whole
landscape	 of	 what	 computing	 looks	 like	 today,	 with	 the	 cloud	 and
containers.	 It's	 just	amazing	 to	 look	around	and	see	all	of	 that	stuff.	So
there's	no	real	way	to	predict	what	Python	is	going	to	look	like	even	five
years	from	now,	and	certainly	not	ten	or	fifteen	years	from	now.

I	 do	 think	 Python's	 future	 is	 still	 very	 bright,	 but	 I	 think	 Python,	 and
especially	 CPython,	 which	 is	 the	 implementation	 of	 Python	 in	 C,	 has
challenges.	 Any	 language	 that's	 been	 around	 for	 that	 long	 is	 going	 to
have	some	challenges.	Python	was	invented	to	solve	problems	in	the	90s

and	the	computing	world	is	different	now	and	is	going	to	become	different
still.

Barry	Warsaw:	'Python	was	invented	to	solve	problems	in	the	90s
and	the	computing	world	is	different	now	and	is	going	to	become

different	still.'

I	 think	 the	 challenges	 for	 Python	 include	 things	 like	 performance	 and
multi-core	or	multi-threading	applications.	There	are	definitely	people	who
are	working	on	that	stuff	and	other	implementations	of	Python	may	spring
up	like	PyPy,	Jython,	or	IronPython.

Aside	 from	 the	 challenges	 that	 the	 various	 implementations	 have,	 one
thing	that	Python	has	as	a	language,	and	I	think	this	is	its	real	strength,	is
that	it	scales	along	with	the	human	scale.	For	example,	you	can	have	one
person	write	up	some	scripts	on	their	laptop	to	solve	a	particular	problem
that	they	have.	Python's	great	for	that.

Barry	Warsaw:	'One	thing	that	Python	has	as	a	language,	and	I	think
this	is	its	real	strength,	is	that	it	scales	along	with	the	human	scale.'

Python	also	scales	to,	let's	say,	a	small	open	source	project	with	maybe
10	 or	 15	 people	 contributing.	 Python	 scales	 to	 hundreds	 of	 people
working	 on	 a	 fairly	 large	 project,	 or	 thousands	 of	 people	 working	 on
massive	software	projects.

Another	 amazing	 strength	 of	 Python	 as	 a	 language	 is	 that	 new
developers	 can	 come	 in	 and	 learn	 it	 easily	 and	 be	 productive	 very
quickly.	They	can	pull	down	a	completely	new	Python	source	code	for	a
project	that	they've	never	seen	before	and	dive	in	and	learn	it	very	easily
and	quickly.	There	are	some	challenges	as	Python	scales	on	the	human
scale,	 but	 I	 feel	 like	 those	 are	 being	 solved	 by	 things	 like	 the	 type
annotations,	for	example.

On	very	large	Python	projects,	where	you	have	a	mix	of	junior	and	senior
developers,	 it	 can	 be	 a	 lot	 of	 effort	 for	 junior	 developers	 to	 understand

how	to	use	an	existing	library	or	application,	because	they're	coming	from
a	more	statically-typed	language.

So	a	 lot	of	organizations	 that	are	building	very	 large	Python	codebases
are	 adopting	 type	 annotations,	 maybe	 not	 so	 much	 to	 help	 with	 the
performance	of	 the	applications,	but	 to	help	with	 the	onboarding	of	new
developers.	I	think	that's	going	a	long	way	in	helping	Python	to	continue
to	scale	on	a	human	scale.

Barry	Warsaw:	'I	think	if	we	address	some	of	those	technical
limitations...then	we're	really	setting	Python	up	for	another	20	years

of	success	and	growth.'

To	me,	the	language's	scaling	capacity	and	the	welcoming	nature	of	the
Python	community	are	 the	 two	 things	 that	make	Python	still	 compelling
even	after	23	years,	and	will	continue	to	make	Python	compelling	 in	 the
future.	I	think	if	we	address	some	of	those	technical	limitations,	which	are
completely	 doable,	 then	 we're	 really	 setting	 Python	 up	 for	 another	 20
years	of	success	and	growth.

Driscoll:	 Do	 you	 see	 any	 new	 features	 coming	 to	 Python,	 or	 is	 there
anything	else	that	you're	excited	about?

Warsaw:	 Yeah,	 another	 friend	 of	 mine,	 Eric	 Smith,	 who's	 also	 a	 core
developer,	comes	up	with	 these	great	 features	 that	you	don't	know	how
you	ever	used	Python	without.

One	new	feature	in	Python	3.6	is	the	f-strings,	the	format	strings.	I	have
only	used	f-strings	in	a	couple	of	projects,	because	they're	a	Python	3.6
feature,	but	I	love	f-strings.	I	also	love	contextlib.

Barry	Warsaw:	'I	say	this	with	every	release,	but	Python	3.7	is	truly
going	to	be	the	best	ever.'

I'm	also	very	excited	about	Python	3.7.	I	say	this	with	every	release,	but
Python	3.7	 is	 truly	going	 to	be	 the	best	ever.	We're	going	 to	see	some

great	 new	 libraries,	 improved	 support	 for	 asyncio,	 and	 better
performance.	Python	development	is	as	vibrant	as	ever	and	I	believe	that
the	 improvements	 to	 our	 workflow	 (for	 example,	 the	 switch	 to	 Git	 and
GitHub)	has	really	opened	up	Python	development	to	many	more	people.

I	love	that	folks	can	experiment	with	crazy	ideas,	like	the	gilectomy,	which
even	 if	 they	 don't	 pan	 out,	 provide	 fodder	 for	 future	 development.	 C
Python's	 implementation	 is	 easy	 to	 understand,	 navigate,	 and	 change,
and	 this	 goes	 a	 long	 way	 to	 making	 it	 a	 friendly	 platform	 for
experimentation	and	change.

All	the	while,	we	have	Guido's	continued	stewardship	and	other	long-time
developers	providing	 vision	 and	 coherence,	 so	 that	while	Python	 today
looks	 very	 different	 to	 Python	 from	 20+	 years	 ago,	 it	 still	 feels	 like	 the
same	well-designed,	consistent,	easy	to	learn,	yet	scalable	language.

Driscoll:	What	do	you	think	about	the	long	life	of	Python	2.7?

Warsaw:	We	all	know	that	we've	got	 to	get	on	Python	3,	so	Python	2's
life	is	limited.	I	made	it	a	mission	inside	of	Ubuntu	to	try	to	get	people	to
get	on	Python	3.	Similarly,	within	LinkedIn,	 I'm	 really	psyched,	because
all	 of	 my	 projects	 are	 on	 Python	 3	 now.	 Python	 3	 is	 so	 much	 more
compelling	than	Python	2.

Barry	Warsaw:	'We	all	know	that	we've	got	to	get	on	Python	3,	so
Python	2's	life	is	limited.'

You	don't	even	realize	all	of	the	features	that	you	have	in	Python	3.	One
of	the	features	that	I	think	is	really	awesome	is	the	async	I/O	library.	I'm
using	that	in	a	lot	of	things	and	think	it	is	a	very	compelling	new	feature,
that	started	with	Python	3.4.	Even	with	Python	3.5,	with	 the	new	async
keywords	for	I/O-based	applications,	asyncio	was	just	amazing.

There	are	tons	of	these	features	that	once	you	start	to	use	them,	you	just
can't	go	back	to	Python	2.	It	feels	so	primitive.	I	love	Python	3	and	use	it
exclusively	in	all	of	my	personal	open	source	projects.	I	find	that	dropping
back	to	Python	2.7	is	often	a	chore,	because	so	many	of	the	cool	things
you	depend	on	are	just	missing,	although	some	libraries	are	available	in

Python	2	compatible	back	ports.

I	 firmly	 believe	 that	 it's	 well	 past	 the	 time	 to	 fully	 embrace	 Python	 3.	 I
wouldn't	write	a	 line	of	new	code	 that	doesn't	support	 it,	although	 there
can	be	business	reasons	to	continue	to	support	existing	Python	2	code.

It's	almost	never	 that	difficult	 to	convert	 to	Python	3,	although	there	are
still	a	handful	of	dependencies	that	don't	support	it,	often	because	those
dependencies	 have	 been	 abandoned.	 It	 does	 require	 resources	 and
careful	 planning	 though,	 but	 any	 organization	 that	 routinely	 addresses
technical	debt	should	have	conversion	to	Python	3	in	their	plans.

That	 said,	 the	 long	 life	 of	Python	2.7	 has	been	great.	 It's	 provided	 two
important	benefits	I	think.	The	first	is	that	it	provided	a	very	stable	version
of	 Python,	 almost	 a	 long-term	 support	 release,	 so	 folks	 didn't	 have	 to
even	think	about	changes	in	Python	every	18	months	(the	typical	 length
of	time	new	versions	are	in	development).

Barry	Warsaw:	'Python	2.7's	long	life	also	allowed	the	rest	of	the
ecosystem	to	catch	up	with	Python	3.'

Python	2.7's	long	life	also	allowed	the	rest	of	the	ecosystem	to	catch	up
with	Python	3.	So	the	folks	who	were	very	motivated	to	support	 it	could
sand	down	the	sharp	edges	and	make	it	much	easier	for	others	to	follow.
I	think	we	now	have	very	good	tools,	experience,	and	expertise	in	how	to
switch	to	Python	3	with	the	greatest	chance	of	success.

I	 think	we	 reached	 the	 tipping	point	 somewhere	around	 the	Python	3.5
release.	Regardless	of	what	 the	numbers	say,	we're	well	past	 the	point
where	 there's	 any	 debate	 about	 choosing	Python	 3,	 especially	 for	 new
code.	 Python	 2.7	 will	 end	 its	 life	 in	 mid-2020	 and	 that's	 about	 right,
although	 not	 soon	 enough	 for	me!	 At	 some	 point,	 it's	 just	more	 fun	 to
develop	 in	 and	 on	 Python	 3.	 That's	 where	 you	 are	 seeing	 the	 most
energy	and	enthusiasm	from	Python	developers.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Warsaw:	 I've	 been	 thinking	 lately	 about	 significant	 changes	 to	 the	way

we	 develop	 C	 extension	 modules.	 I'd	 like	 to	 see	 us	 get	 out	 of	 that
business,	 by	 adopting	 something	 like	 Cython	 as	 the	 higher-level
language	and	tool	for	generating	extension	modules.	By	doing	this,	we'd
lay	the	groundwork	for	improvements	in	the	C	API,	uncoupled	from	all	the
existing	extension	modules	out	there.

We'd	be	able	to	experiment	with	more	internal	changes	that	break	the	C
API,	 such	 as	 removing	 the	Global	 Interpreter	 Lock	 (GIL)	 or	 adopting	 a
traditional	garbage	collector.	If	you	look	at	the	gilectomy	work	for	example
(that	 is,	 an	 experimental	 branch	 to	 remove	 the	GIL),	 it's	 very	 complex,
because	it	has	to	maintain	compatibility	with	the	existing	C	API	as	much
as	 possible.	 If	 we	 could	 break	 that,	 without	 breaking	 source-level
compatibility	 with	 third-party	 modules,	 we'd	 be	 much	 more	 free	 to
improve	things	internally.

Driscoll:	Thank	you,	Barry	Warsaw.

Chapter	10.	Jessica	McKellar

Jessica	 McKellar	 is	 an	 American	 software	 engineer	 and	 entrepreneur.
She	is	a	maintainer	for	several	open	source	projects	and	the	co-author	of
Twisted	Network	Programming	Essentials.	Jessica	is	a	former	director	of
the	 Python	 Software	 Foundation	 (PSF)	 and	 a	 former	 organizer	 of	 the
Boston	Python	User	Group.	She	is	passionate	about	growing	the	Python
community	 and	 serves	 as	 the	 diversity	 outreach	 chair	 for	PyCon	North
America.

Jessica	 is	 the	 founder	 and	 CTO	 of	 Pilot,	 a	 bookkeeping	 firm	 which	 is
powered	 by	 software.	 Previously,	 she	 was	 the	 founder	 and	 VP	 of
engineering	 for	 Zulip,	 a	 real-time	 collaboration	 start-up	 which	 Dropbox
acquired.

Discussion	themes:	Python	and	activism,	the	PSF,	Twisted.

Catch	up	with	Jessica	McKellar	here:	@jessicamckella

Mike	Driscoll:	Could	you	give	a	little	background	about	yourself?

Jessica	 McKellar:	 I'm	 an	 entrepreneur,	 software	 engineer,	 and	 open
source	developer	currently	living	in	San	Francisco.

I	am	extremely	proud	to	play	a	role	in	Python	community	initiatives.	I	joke

that	 I	don't	 ever	 take	 vacation	because	 I	 just	 travel	 to	 speak	at	Python
conferences.	This	has	given	me	the	opportunity	to	speak	with	and	learn
from	local	Python	communities	around	the	world.

Jessica	McKellar:	'I	am	extremely	proud	to	play	a	role	in	Python
community	initiatives.'

I'm	grateful	to	have	won	the	O'Reilly	Open	Source	Award	in	2013	for	my
outreach	efforts	in	the	Python	community.	This	was	really	recognizing	the
long-term	efforts	of	many	talented	people,	who	I	am	also	lucky	to	call	my
friends.

I'm	currently	a	founder	and	the	CTO	of	an	early-stage	enterprise	software
company,	where	I	am	delighted	to	have	been	using	and	benefiting	 from
Python	 3	 from	 the	 get-go.	 Previously,	 I	 was	 a	 founder	 and	 the	 VP	 of
engineering	at	Zulip.

Before	 that,	 I	 was	 a	 computer	 nerd	 at	 MIT	 who	 joined	 her	 friends	 at
Ksplice,	a	company	building	a	service	 for	 rebootless	kernel	updates	on
Linux,	 that	was	acquired	by	Oracle.	These	diverse	experiences	got	me
onto	the	Forbes	30	Under	30	class	of	2017	for	enterprise	software,	just	in
time	to	age	out	of	the	category.

Driscoll:	So	why	did	you	first	become	a	programmer?

McKellar:	 I	 had	 always	 liked	 using	 computers.	 A	 famous	 family	 photo
shows	me	in	front	of	an	Apple	IIci,	with	a	bottle	in	one	hand	and	a	mouse
in	 the	 other.	 But	 I	 didn't	 have	 any	 intentions	 around	 learning	 how	 to
program	until	I	was	in	college.

My	first	degree	is	actually	in	chemistry.	While	I	was	taking	my	chemistry
classes,	many	of	my	friends	were	in	the	computer	science	department.	I
would	sort	of	watch	them	out	of	the	corner	of	my	eye	and	think	to	myself
that	they	seemed	to	be	learning	a	toolkit	 full	of	tools	for	solving	a	broad
range	of	problems	in	the	world.	I	wanted	those	skills	too.

I	 took	a	couple	of	CS	classes	 in	my	sophomore	year,	was	 immediately
hooked	 and	 secretly	 got	 a	 summer	 internship	 at	 a	 software	 company

without	 telling	 my	 chemistry	 advisor	 (I	 don't	 recommend	 this	 tactic).	 I
managed	to	cram	a	CS	degree	into	my	remaining	couple	of	semesters.

Learning	how	 to	program	 is	a	profound	experience.	You	become	 fluent
within	a	system	and	learn	how	to	break	down	and	solve	problems	within	it
in	a	structured	way.	You	gain	confidence	as	a	debugger	and	as	a	problem
solver.

Jessica	McKellar:	'Learning	how	to	program	is	a	profound
experience...you	gain	confidence	as	a	debugger	and	as	a	problem

solver.'

Contributing	to	free	and	open	source	software	projects	is	also	a	profound
experience.	You	are	 instilled	with	 the	mindset	 that	 if	you	see	something
that	 could	be	better,	 in	 a	 language,	 library	or	 ecosystem,	 then	 you	 can
work	together	with	other	contributors	to	make	that	change	for	everyone's
benefit.

Jessica	McKellar:	'Contributing	to	free	and	open	source	software
projects	is	also	a	profound	experience.'

Believing	that	you	have	the	tools	to	identify	a	problem	in	the	world,	break
it	 down	 into	 steps,	 and	 work	 with	 others	 to	 implement	 a	 solution	 is	 a
powerful	mindset.	It's	an	activist's	mindset.	Programming	has	profoundly
impacted	 how	 I	 think	 about	 myself	 and	 my	 responsibility	 to	 my
community.	It	has	motivated	my	time	on	initiatives	ranging	from	teaching
programming	to	criminal	justice	reform.

Jessica	McKellar:	'Programming	has	profoundly	impacted	how	I
think	about	myself	and	my	responsibility	to	my	community.'

So	I'd	say	that	I	learned	how	to	program	because	I	wanted	the	problem-
solving	toolkit	that	programmers	have,	but	the	most	enduring	effect	is	that
it	 made	 me	 an	 activist.	 I	 have	 since	 devoted	 a	 lot	 of	 my	 energy	 to

creating	 opportunities	 for	 others	 to	 learn	 how	 to	 program	 because	 we
need	as	many	people	as	possible,	 on	 this	 planet,	 to	have	 the	 activist's
mindset	that	programming	encourages.

Jessica	McKellar:	'We	need	as	many	people	as	possible,	on	this
planet,	to	have	the	activist's	mindset	that	programming

encourages.'

Driscoll:	Why	Python?

McKellar:	I	learned	Python	because	that	was	the	language	used	in	many
computer	science	classes	at	MIT.	I	was	a	student	during	a	big	transition
from	Lisp	to	Python	at	the	university.

I've	since	used	Python	in	every	job	I've	ever	had	and	in	every	company
I've	started.	One	should	always	use	the	right	tool	for	any	task,	but	Python
has	 such	 broad	 utility	 and	 such	 a	 mature	 ecosystem,	 that	 it	 has
fortunately	frequently	been	the	right	tool.

Driscoll:	How	did	your	first	start-up	come	about,	Jessica?

McKellar:	My	first	start-up	was	Ksplice,	which	came	out	of	 the	master's
thesis	of	our	CEO,	Jeff	Arnold.

The	Ksplice	team	had	a	ton	of	collective	open	source	experience,	which
helped	us	to	 interface	with	 the	Linux	kernel	community.	The	experience
and	 knowledge	 that	 we	 had	 in	 open	 source	 also	 shaped	 how	 we	 did
software	development	in	what	came	to	be	a	highly	distributed	team.

Driscoll:	Can	you	tell	us	how	you	became	a	director	for	the	PSF?

McKellar:	 My	 Python	 community	 involvement	 started	 locally.	 I	 was
working	 with	 the	 Boston	 Python	 User	 Group	 to	 run	 a	 series	 of
introductory	 workshops	 for	 new	 programmers,	 as	 part	 of	 a	 diversity
outreach	initiative.	I	then	became	an	organizer	for	Boston	Python.

Jessica	McKellar:	'My	Python	community	involvement	started

locally.'

The	work	became	more	global	when	I	was	invited	to	the	inaugural	cohort
for	 the	 PSF's	 Outreach	 and	 Education	 Committee,	 which	 funded
community	 building	 and	 educational	 initiatives	 in	 Python	 communities
around	the	world.

At	 that	 point,	 I'm	grateful	 that	 Jesse	Noller,	 PSF's	 director,	 encouraged
me	 to	 reach	 for	 an	 even	 larger	 platform	 for	 community	 building.	 He
nominated	me	to	become	a	director	on	the	board.	I	was	elected	in	2012
and	served	for	three	years.

Driscoll:	What	was	your	focus	as	a	director	at	that	time?

McKellar:	 My	 focus	 was	 on	 global	 community	 development,	 including
providing	 financial	 support,	 and	 a	 lot	 of	 organizational	 infrastructure	 for
user	groups,	conferences	and	outreach	initiatives.

Driscoll:	 What	 lessons	 have	 you	 learned	 as	 a	 core	 maintainer	 of
Twisted?

McKellar:	My	first	ever	open	source	contribution	was	to	Twisted,	which	is
an	event-driven	networking	engine	written	in	Python!

I	distinctly	remember	that	formative	experience.	I	was	using	Twisted	in	a
project	 at	 an	 internship	 and	 I	 was	 using	 some	 documentation	 that	 I
thought	could	be	clearer.	I	said,	"Hey,	this	 is	my	chance	to	contribute	to
an	open	source	project.	I'm	going	to	go	for	it."

I	 probably	 read	 through	 the	 contribution	 guidelines	 three	 times	 top	 to
bottom.	I	was	anxious	that	 I	might	make	a	mistake	and	someone	would
yell	 at	me.	 I	 remember	 idling	 nervously	 in	 the	 IRC	 channel,	 opening	 a
new	 issue	 in	 the	 issue	 tracker,	 attaching	 a	 diff	 and	 generating	 and
regenerating	the	docs	to	convince	myself	that	everything	looked	perfect.	I
hovered	 my	 hand	 over	 the	 submit	 button	 for	 a	 solid	 minute	 before
working	up	the	nerve	to	click.

The	 outcome	 was	 that	 Glyph	 Lefkowitz,	 the	 creator	 of	 Twisted	 (and	 a
decade	later	still	a	friend	and	coworker),	patiently	walked	me	through	the

review	 process.	 He	 landed	 my	 change	 and	 encouraged	 me	 to	 keep
participating.	I	had	an	incredibly	positive	first	experience	of	contributing	to
an	open	source	project.

Jessica	McKellar:	'I	had	an	incredibly	positive	first	experience	of
contributing	to	an	open	source	project.'

That	ended	up	being	a	good	investment	for	Twisted	and	for	me,	as	I	went
on	to	contribute	many	more	patches,	become	a	core	maintainer	and	write
a	book	about	the	library.

The	enduring	open	source	lesson	from	Twisted	has	thus	been	about	the
importance	of	establishing	a	culture	that	welcomes	new	contributors.	This
is	 both	 because	 it	 is	 the	 right	 thing	 to	 do	 and	 because	 attracting	 and
retaining	a	diverse	contributor	base	is	critical	for	sustaining	a	large	open
source	project,	on	which	many	people	and	companies	depend.

Jessica	McKellar:	'The	enduring	open	source	lesson	from	Twisted
has	thus	been	about	the	importance	of	establishing	a	culture	that

welcomes	new	contributors.'

Driscoll:	 Can	 you	 tell	 me	 more	 about	 Pilot,	 the	 company	 that	 you
founded?

McKellar:	 Pilot	 is	 a	 bookkeeping	 firm	 (http://pilot.com).	 Unlike	 existing
bookkeeping	 services,	 we	 are	 using	 software	 to	 automate	 the	 heavy
lifting	and	a	small	 team	of	pros	to	handle	the	rest.	This	results	 in	books
that	are	more	accurate	(less	work	and	worry	for	you)	and	cheaper.	It	has
been	a	delight	to	build	this	company	on	Python	3!

Driscoll:	Thank	you,	Jessica	McKellar.

http://pilot.com

Chapter	11.	Tarek	Ziadé

Tarek	Ziadé	 is	 a	French	Python	developer	 and	author.	Past	 roles	 have
included	 R&D	 developer	 at	 Nuxeo	 and	 software	 engineer	 at	 Mozilla.
Today	Tarek	 is	a	staff	application	engineer	at	Mozilla,	where	he	creates
tools	 for	 developers.	 He	 has	 written	 several	 Python	 books,	 in	 both
English	 and	French,	 including	Expert	 Python	Programming	 and	Python
Microservices	 Development.	 Tarek	 is	 the	 founder	 of	 Afpy,	 a	 French
Python	 user	 group	 and	 has	 delivered	 talks	 at	 both	 PyCon	 and
EuroPython.	He	regularly	contributes	to	open	source	Python	projects.

Discussion	themes:	AI,	v2.7/v3.x,	Afpy.

Catch	up	with	Tarek	Ziadé	here:	@tarek_ziade

Mike	Driscoll:	Why	did	you	become	a	programmer?

Tarek	Ziadé:	 In	 hindsight,	 I	 became	a	 programmer	 for	 two	 reasons:	 to
become	 the	 god	 of	 my	 little	 world	 and	 to	 impress	 my	 mom,	 who	 is	 a
programmer	as	well.

When	I	was	six	years	old,	I	was	at	a	fair	with	my	mom.	There	was	a	giant
paper	sheet	on	the	floor,	with	a	turtle	that	had	a	pen.	You	could	program
the	turtle	with	cards	to	tell	it	where	to	go	and	when	to	put	the	pen	down
on	 the	 paper.	 I	 was	 obsessed	 with	 that	 turtle.	 The	 feeling	 of	 planning

what	would	happen	felt	so	good.

Years	 later,	my	mom	got	 us	 a	 serious	 computer	 (the	Thomson	TO8D),
and	 I	 could	 program	 in	 BASIC	 and	 Assembly.	 I	 built	 incredible	 things.
With	my	mom's	help,	I	was	driving	robots.

Driscoll:	What	sort	of	things	did	you	do	with	the	robots	with	your	mom?

Ziadé:	Well,	the	computer	we	bought	had	a	programmable	serial	port	and
extensions	to	get	a	parallel	port,	which	was	quite	rare	back	then.

We	were	driving	step	engines	 in	BASIC	or	Assembly	 (with	a	cartridge),
since	the	ports	could	be	directly	addressed.	This	was	nothing	fancy,	but
as	a	 kid,	 being	able	 to	do	at	 home	 something	 similar	 to	what	we	were
doing	with	that	turtle	amazed	me.

My	mom	also	got	one	of	those	fancy	Olivetti	laptops,	with	a	small	needles
printer	 that	could	print	stuff	 in	 three	colors.	We	were	having	fun	printing
fractals.	My	mom	was	doing	 the	heavy	 lifting	 (as	a	math	 teacher)	and	 I
was	just	tweaking	the	colors.

Driscoll:	So	how	did	you	come	across	Python?

Ziadé:	When	I	started	coding	professionally	 in	 the	nineties,	 I	was	using
Borland	tools	(C++Builder	and	Delphi)	which	could	use	VCL	components.

My	 company	 bought	 some	 VCL	 components,	 but	 we	 were	 highly
frustrated	by	the	poor	support	from	their	authors	and	some	bugs.	That's
when	I	discovered	the	Indy	Project,	which	was	developing	and	releasing
open	 source	 VCL	 components	 that	 provided	 most	 network	 protocols.
That	library	was	to	us,	what	Requests	is	to	Python	today.

Tarek	Ziadé:	'Communities	built	around	open	source	projects	struck
me	as	the	way	to	go	in	software	computing.'

I	 got	 intrigued	 by	 this	 open	 source	 concept.	 Communities	 built	 around
open	source	projects	struck	me	as	the	way	to	go	in	software	computing.
Through	 my	 online	 research,	 I	 found	 out	 about	 the	 Zope	 Project	 and

eventually	discovered	Python	through	that.	A	few	months	later,	I	joined	a
company	that	was	building	a	Zope	CMS.

Driscoll:	Have	you	done	anything	with	robots	using	Python?

Ziadé:	Not	really.	I	hacked	a	bit	on	a	Raspberry	Pi	when	I	first	got	one.	I
also	 hacked	 a	Wireless	Ghetto	 Blaster	 using	 a	 suitcase,	 some	 old	 car
speakers	and	a	Raspberry	Pi,	with	a	Wi-Fi	dongle	and	Mopidy.

Tarek	Ziadé:	'I	also	hacked	a	Wireless	Ghetto	Blaster	using	a
suitcase,	some	old	car	speakers	and	a	Raspberry	Pi.'

I	 looked	 at	 the	 OpenCV	 library	 through	 Python	 to	 do	 some	 image
processing.	Most	of	the	other	electronics	projects	that	I	worked	on	were
on	Arduino	and	its	pseudo	C	language.	My	most	advanced	project	was	a
small	RC	car	and	that	was	about	it.	I	got	a	little	bit	bored	after	that.

Driscoll:	Python	is	big	in	AI	and	machine	learning	at	the	moment.	What
do	you	think	makes	Python	so	popular?

Ziadé:	I	think	that	Python	has	become	popular	for	AI	because	the	SciPy
community	has	built	some	state-of-the-art	frameworks	and	libs	in	the	past
few	 years	 (pandas,	 scikit-learn,	 IPython/Jupyter)	 that	 lower	 the	 bar	 for
scientists	to	use	Python	instead	of	R	or	other	tools.

Tarek	Ziadé:	'AI	and	machine	learning	innovation	is	spearheaded	by
academics...Python	becomes	a	natural	fit	for	them.'

AI	and	machine	learning	innovation	is	spearheaded	by	academics.	Since
Python	 has	 steadily	 grown	 as	 one	 of	 the	 main	 languages	 for	 learning
programming	in	academics,	Python	becomes	a	natural	fit	for	them.

Driscoll:	What	did	you	personally	like	about	Python?

Ziadé:	 I	 fell	 in	 love	 with	 Python	 and	 its	 community.	 Python	 is	 open
source,	versatile,	and	powerful,	yet	simple	to	code.

Coming	from	a	C++	and	Delphi	background,	at	first	I	thought	that	Python
was	a	weak	scripting	 language	 that	 could	 not	 be	 used	 to	 build	 serious
applications.	 Eventually,	 I	 became	 impressed	 by	 how	 simple	 it	 was	 to
create	 Python	 programs	 that	 were	 concise	 and	 straightforward	 to
understand.

C++	and	Delphi	looked	over-engineered	at	that	point	for	all	of	the	network
applications	 that	 I	 was	 building.	 I	 could	 just	 write	 Python	 scripts	 that
followed	the	KISS	principle	and	build	serious	web	applications	that	way.

Driscoll:	What	would	you	say	are	Python's	strengths	and	weaknesses	as
a	language?

Ziadé:	Today,	with	over	a	decade	of	Python	programming	behind	me,	 I
think	that	Python's	biggest	strength	is	how	visionary	Guido	van	Rossum
and	the	Python-Dev	team	are.	As	far	as	I	can	tell,	every	decision	that	was
made	in	the	last	20	years	was	a	good	one.

Tarek	Ziadé:	'Python's	biggest	strength	is	how	visionary	Guido	van
Rossum	and	the	Python-Dev	team	are.'

From	 the	 memorandum	 (a	 CPython	 freeze	 designed	 so	 that	 other
implementations	 like	 PyPy	 and	 Jython	 could	 catch	 up),	 to	 how
asynchronous	features	were	gradually	added,	Python	got	modernized	in
the	right	direction.

Each	 time	 that	Python	was	getting	a	 little	bit	behind	compared	 to	other
languages,	 another	 feature	 would	 be	 added.	 Unlike	 some	 other
languages	 that	 had	 a	 stellar	 start,	 then	 faded	 again,	 Python	 is	 steadily
getting	bigger	every	year.

One	weakness	for	Python	is	the	standard	library.	The	fact	that	a	package
added	in	the	stdlib	is	rarely	removed	is	an	issue.	For	instance,	the	stdlib
currently	has	two	classes	named	Future	that	are	slightly	different.	One	is
in	asyncio	and	one	is	in	concurrent.	I	wish	Python	had	a	better	story	for
its	stdlib.

I	think	the	biggest	weakness	of	Python	is	the	Python	2	versus	Python	3

never-ending	debate.	That	issue	drove	away	some	developers,	because
of	 the	uncertainty	about	which	version	 to	use.	 It	 looks	 like	we're	getting
past	that	debate	now,	which	is	great.

Tarek	Ziadé:	'I	think	the	biggest	weakness	of	Python	is	the	Python	2
versus	Python	3	never-ending	debate.'

Driscoll:	What	is	your	opinion	on	the	long	life	of	Python	2.7?

Ziadé:	 I	 think	 that	 the	 transition	 took	 a	 while	 but	 it	 is	 happening
transparently	now	and	 it	 is	a	success.	The	Python	2	versus	3	days	are
over,	 since	 the	 Python	 3	 ecosystem	 is	 now	 mature	 enough	 for	 most
projects.

To	my	 knowledge,	 there	 are	 no	 major	 libs	 or	 frameworks	 that	 are	 still
lacking	 Python	 3	 support.	 So	 there's	 no	 good	 reason	 to	 start	 a	 new
project	using	Python	2.7.	People	just	use	Python	and	for	most	of	them	it
will	happen	to	be	Python	3.	One	day	Python	2.7	will	cease	to	exist	and
nobody	will	really	miss	it.

Tarek	Ziadé:	'One	day	Python	2.7	will	cease	to	exist	and	nobody	will
really	miss	it.'

Driscoll:	How	did	you	end	up	becoming	an	author	of	Python	books?

Ziadé:	 When	 I	 started	 programming	 in	 Zope	 and	 Python,	 I	 was	 the
creator	and	maintainer	of	a	French	forum	called	Zopeur.	I	was	spending	a
lot	of	time	answering	all	of	the	questions.

Zopeur	 started	 as	 a	 one-man	 project,	 so	 if	 I	 stopped	 answering
questions,	then	nobody	else	answered	them.	I	was	also	learning	so	much
by	actually	searching	for	answers	and	by	diving	into	the	details.

Tarek	Ziadé:	'I	was	also	learning	so	much	by	actually	searching	for
answers	and	by	diving	into	the	details.'

The	first	book	that	I	wrote	about	Python	came	about	because	I	wanted	to
dive	deeply	into	Python	and	make	my	work	useful	to	others.	I	was	filling	a
gap	too,	since	there	were	no	original	books	in	French	about	Python.

Driscoll:	What	have	you	learned	in	the	writing	process?

Ziadé:	Writing	 a	 book	 is	 a	 long	 and	 exhausting	 project.	 The	 first	 book
took	me	nine	months	and	was	very	painful	to	finish.	It's	easy	to	quit.	It's
also	common	 to	get	 lost	 in	details	and	 forget	about	 the	big	picture.	 I've
learned	 how	 to	 organize	 my	 thoughts	 and	 keep	 the	 big	 picture	 in	 my
head.

When	I	wrote	my	first	book	in	English,	I	also	learned	the	hard	way	that	it's
difficult	 to	 write	 in	 a	 non-native	 language.	 You	 need	 to	 keep	 your
sentences	as	straightforward	and	short	as	possible.	 I	was	also	exposed
to	a	larger	community	of	readers,	for	better	or	worse.

The	last	thing	to	note	about	writing	books	is	that	you	need	to	accept	that
your	 book	will	 never	 be	 perfect.	 By	 the	 time	 you	 have	 finished	writing,
and	 you	 have	 read	 back	 through	 the	 first	 chapters,	 you	 will	 want	 to
rewrite	things	all	over	again.

Tarek	Ziadé:	'You	need	to	accept	that	your	book	will	never	be
perfect.'

Driscoll:	Have	you	learned	anything	from	your	readers?	If	so,	what?

Ziadé:	I've	learned	a	lot	from	feedback	from	my	readers.	I	still	get	a	few
emails	from	readers	wanting	to	share	their	thoughts.

Sometimes	readers	want	 to	point	out	some	mistakes	or	share	solutions
that	they	think	are	better.	I	have	received	a	few	interesting	threads	that	I
wish	had	been	available	to	me	before	my	books	were	published.	 I	 think
books	 that	 are	 published	 on	 the	 web	 in	 real	 time,	 allowing	 readers	 to
send	 feedback	 as	 the	 writer	 delivers	 chapters,	 are	 superior	 for	 that
reason.

Driscoll:	Are	you	aware	of	any	other	books	about	Python	that	have	come

out	in	French	since	yours	were	published?

Ziadé:	 To	 be	 fair,	 there	was	 a	 Zope	 book	 before	mine.	But	 as	 far	 as	 I
know,	mine	 was	 the	 first	 book	 entirely	 dedicated	 to	 Python	 which	 was
written	 in	 French,	 by	 a	 native	 speaker.	 Since	 then,	 there	 have	 been
dozens	of	books	written	in	French	about	Python.	I	am	the	old	guard	now.

Tarek	Ziadé:	'Mine	was	the	first	book	entirely	dedicated	to	Python
which	was	written	in	French,	by	a	native	speaker.'

Driscoll:	Why	did	you	found	the	French	Python	User	Group,	Afpy?

Ziadé:	 As	 I	 mentioned	 earlier,	 I	 was	maintaining	 a	 Zope/Python	 forum
called	Zopeur.	At	some	point	 I	had	 the	 idea	of	having	a	meeting	 in	 real
life	in	Paris,	with	a	dozen	of	the	active	members.	We	met	for	beers	and
we	founded	a	foundation	around	Python.	After	that,	I	shut	down	my	forum
and	we	built	Afpy	on	the	ground.

Driscoll:	 What	 challenges	 did	 you	 face	 then	 and	 are	 there	 any
challenges	currently?

Ziadé:	The	first	few	years	of	running	Afpy	were	great.	We	were	all	good
friends	united	around	our	passion	for	Python.

The	first	challenge	that	we	met	was	how	to	integrate	French	companies
that	 wanted	 to	 be	 part	 of	 Afpy.	 That	 took	 us	 a	 few	 years,	 because
enterprises	 wanted	 to	 use	 our	 foundation	 as	 a	 tool	 to	 promote	 their
business	 (sometimes	 aggressively).	We	were	 risking	 losing	 the	 original
spirit	of	Afpy.

Tarek	Ziadé:	'We	were	risking	losing	the	original	spirit	of	Afpy.'

We	 were	 also	 a	 bit	 paranoid	 about	 what	 would	 happen	 if	 several
developers	 from	 the	 same	 company	 were	 elected	 to	 the	 steering
committee.	But	when	we	started	to	organize	PyCon	France,	it	became	a
natural	 fit	 for	 those	companies	 to	be	sponsors.	 In	hindsight,	 I	 think	 that

we	did	the	right	thing	by	being	protective.

Another	 challenge	was	 trying	 to	 have	more	 diversity	 in	 Afpy.	We	were
mostly	 men	 and	 I	 wanted	 to	 make	 our	 foundation	 more	 welcoming	 to
women.	I	did	some	work	around	that	and	found	that	diversity	was	a	very
controversial	 topic.	Eventually,	 I	got	burnt	out	 from	politics	and	the	work
was	not	fun	anymore.

Tarek	Ziadé:	'Eventually,	I	got	burnt	out	from	politics	and	the	work
was	not	fun	anymore.'

I	was	Afpy	president	for	seven	years,	so	I	felt	that	it	was	the	right	time	to
move	on.	I	am	not	sure	what	the	current	status	of	Afpy	 is,	since	I'm	not
involved.	Afpy	still	looks	like	a	vibrant	user	group	though,	which	is	great.

Driscoll:	 What	 made	 you	 choose	 Zope	 over	 some	 of	 the	 other
alternatives?

Ziadé:	The	standard	was	PHP-powered	frameworks	back	then,	but	Zope
was	the	cool	stuff.	Zope	was	very	innovative	and	with	Python	it	was	more
than	web	pages.

Tarek	Ziadé:	'Zope	was	very	innovative	and	with	Python	it	was	more
than	web	pages.'

Plone	was	starting	to	take	off	and	get	very	popular	in	France.	Companies
that	 specialized	 in	building	a	CMS	 for	government	agencies	often	used
Plone,	because	it	had	most	features	already	built	in.	Plone,	at	one	point,
was	at	the	top	of	the	game	for	accessibility	and	groupware	features.

Driscoll:	Which	Python	web	framework	do	you	use	now	and	why	do	you
use	it?

Ziadé:	At	Mozilla	we	do	a	lot	of	Django	and	Flask,	and	a	bit	of	Pyramid.
Occasionally	 we	 use	 some	 Twisted	 and	 Tornado.	 Since	 we're	 now
shipping	most	stuff	in	Docker	images,	developers	that	start	new	projects

are	 not	 tied	 to	 specific	 Python	 versions	 anymore.	 So	 asynchronous
frameworks	are	starting	to	get	used.

When	 I	 can	 pick	my	 framework	 of	 choice,	 I	 like	 to	 use	Bottle,	 for	 very
simple	web	services	and	Flask,	for	bigger	projects	that	need	a	bit	of	UI.
There	are	a	large	number	of	Flask	libraries	out	there.	That	said,	the	next
server-side	project	that	I	will	start	will	be	aiohttp,	that's	for	sure.

Driscoll:	Are	you	working	on	any	open	source	projects	yourself	that	you
would	like	to	talk	about?

Ziadé:	 I	work	on	several	projects,	but	a	project	that	I	am	obsessed	with
right	 now	 is	 molotov	 (http://molotov.readthedocs.io/).	 It's	 a	 small	 load
testing	tool,	based	on	Python	3.5+	and	aiohttp	client,	that	we're	using	to
test	our	web	services.

Tarek	Ziadé:	'A	project	that	I	am	obsessed	with	right	now	is
molotov.'

The	 design	 focuses	 on	 making	 it	 as	 straightforward	 as	 possible	 for
developers	 to	 write	 a	 load	 test,	 by	 describing	 a	 scenario	 using	 simple
Python	coroutines.	Once	we	have	a	set	of	those	functions,	then	they	are
used	to	run	simple	smoke	tests,	load	tests	and	distributed	load	tests.

Thanks	to	asyncio	and	aiohttp,	the	tool	can	send	a	pretty	amazing	load
on	 our	 services	 and	 we're	 able	 to	 break	 most	 services	 with	 a	 single
molotov	client.	I	am	adding	on	the	top	of	this	tool	some	CI	Helpers,	so	we
can	continuously	test	the	performance	of	our	service.

One	extension	that	I	am	going	to	add	this	quarter	is	the	ability	to	deploy	a
stack	with	Docker	images	on	AWS.	This	will	happen	prior	to	running	the
load	 test	and	grab	back	metrics	once	 it's	 done.	We	also	have	a	bigger
project	 called	 Ardere,	 that	 drives	 AWS	ECS	 for	 doing	 distributed	 tests.
You	can	follow	all	of	the	work	on	those	tools	at	https://github.com/loads.

Mike	Driscoll:	What	are	you	most	excited	about	in	Python	today?

Ziadé:	 Asynchronous	 programming.	 The	 addition	 of	 async/await	 in	 the

http://molotov.readthedocs.io/
https://github.com/loads

language	and	projects	like	aiohttp	are	truly	putting	Python	back	into	the
game	of	building	network	apps.	Of	course,	we	have	been	able	to	do	that
with	 Twisted	 for	 over	 a	 decade,	 but	 now	 it's	 part	 of	 the	 core	 and
implemented	in	a	beautiful	way.	It's	as	easy	as	in	Node.js	to	build	async
web	apps	in	Python.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Ziadé:	 I'd	 love	 to	 see	 PyPy	 on	 a	 par	with	CPython	 (maybe	we	 should
have	yet	another	memorandum	so	 that	PyPy	catches	up)	and	have	 the
ability	 to	 run	 any	 of	 my	 projects	 with	 it	 (including	 C	 extensions).	 More
anecdotally,	I	would	love	to	see	setup.py	killed	in	our	packaging	system.
It's	 the	 source	of	many	 issues.	 I've	 tried	and	 failed	 (see	PEP	390),	 but
maybe	one	day	it	will	happen.

Driscoll:	Thank	you,	Tarek	Ziadé.

Chapter	12.	Sebastian	Raschka

Sebastian	 Raschka	 received	 his	 doctorate	 in	 Quantitative	 Biology	 and
Biochemistry	 and	 Molecular	 Biology	 in	 2017,	 from	 Michigan	 State
University.	His	research	activities	included	the	development	of	new	deep
learning	 architectures	 to	 solve	 problems	 in	 the	 field	 of	 biometrics.
Sebastian	 is	 the	 bestselling	 author	 of	Python	Machine	 Learning,	 which
received	 the	ACM	Best	of	Computing	award	 in	2016.	He	contributes	 to
many	open	source	projects	including	scikit-learn.	Methods	that	Sebastian
implemented	are	being	used	in	real-world	machine	learning	applications
such	as	Kaggle.	He	is	passionate	about	helping	people	to	develop	data-
driven	solutions.

Discussion	themes:	Python	for	AI/machine	learning,	v2.7/v3.x.

Catch	up	with	Sebastian	Raschka	here:	@rasbt

Mike	 Driscoll:	 Could	 you	 give	 a	 little	 background	 information	 about
yourself?

Sebastian	 Raschka:	 Of	 course!	 My	 name	 probably	 already	 gives	 it
away,	but	I	was	born	and	raised	in	Germany,	where	I	lived	for	more	than
two	decades,	until	I	had	the	urge	to	go	on	an	adventure	and	study	in	the
US.

I	 received	 my	 undergraduate	 degree	 from	 Heinrich-Heine	 University	 in
Düsseldorf.	 I	 remember	one	day	walking	 to	 the	cafeteria	and	stumbling
upon	 a	 flyer	 regarding	 a	 study	 abroad	 program	 with	 Michigan	 State
University	(MSU).	I	was	super	intrigued	and	thought	that	this	might	be	a
worthwhile	experience.	So	not	 long	after	 that,	 I	studied	 for	 two	years	at
MSU	and	received	a	Bachelor	Plus/International	degree.

During	 those	 two	semesters,	 I	made	many	 friends	at	MSU	and	 thought
that	the	scientific	environment	would	provide	an	excellent	opportunity	for
me	to	grow	as	a	scientist,	which	is	why	I	applied	for	grad	school	at	MSU.
I	should	say	that	 this	chapter	of	my	 life	came	with	a	happy	ending,	as	 I
obtained	my	Ph.D.	in	December	2017.	So	that's	my	academic	career.

Sebastian	Raschka:	'During	my	time	as	a	graduate	student,	I	got
heavily	involved	in	open	source	in	the	context	of	data	science	and

machine	learning.'

During	 my	 time	 as	 a	 graduate	 student,	 I	 got	 heavily	 involved	 in	 open
source	in	the	context	of	data	science	and	machine	learning.	Also,	I	am	a
passionate	 blogger	 and	writer.	 Some	 people	may	 have	 stumbled	 upon
my	 book,	 Python	 Machine	 Learning,	 which	 was	 very	 well-received	 by
both	people	from	academia	and	the	industry.

With	my	book,	I	tried	to	bridge	the	gap	between	purely	practical	(that	is,
coding)	books	and	purely	theoretical	(i.e.,	math-heavy)	works.	Based	on
all	of	the	feedback	that	I	received,	Python	Machine	Learning	turned	out	to
be	super	useful	to	a	broad	audience.	The	book	was	translated	into	seven
languages	and	 is	 currently	 used	as	a	 textbook	at	 the	Loyola	University
Chicago,	the	University	of	Oxford,	and	many	others.

Driscoll:	Do	you	contribute	to	any	open	source	projects?

Raschka:	 Yes,	 besides	 my	 writings,	 I	 am	 contributing	 to	 open	 source
projects	 such	 as	 scikit-learn,	 TensorFlow	 and	 PyTorch.	 I	 also	 have	my
own	 little	open	source	projects	 that	 I	work	on	 in	my	 free	 time,	 including
mlxtend	and	BioPandas.

mlxtend	 is	 a	 Python	 library	 with	 useful	 tools	 for	 the	 day-to-day	 data

science	tasks.	It	aims	to	fill	the	gap	in	the	Python	data	science	system,	by
providing	tools	that	are	not	yet	available	in	other	packages.	For	example,
the	stacking	classifiers	and	regressors,	as	well	as	the	sequential	feature
selection	algorithms,	are	very	popular	in	the	Kaggle	community.

In	addition,	 the	frequent	pattern	mining	algorithms,	 including	Apriori	and
algorithms	for	deriving	association	rules,	are	super	handy.	Most	recently,	I
added	a	lot	of	non-parametric	functions,	for	evaluating	machine	learning
classifiers	from	bootstrapping,	to	McNemar's	tests.

Sebastian	Raschka:	'To	stay	most	productive,	I	didn't	want	to	learn
a	whole	new	API	for	each	little	side	project.'

The	 BioPandas	 project	 arose	 from	 the	 need	 to	 work	 with	 molecular
structures	from	different	file	formats	more	conveniently.	During	my	Ph.D.,
many	 projects	 involved	working	with	 protein	 structures,	 or	 structures	 of
small	 (drug-like)	molecules.	There	are	many	tools	out	 there	for	 that,	but
each	has	its	own	little	sublanguage.	To	stay	most	productive,	I	didn't	want
to	learn	a	whole	new	API	for	each	little	side	project.

The	 idea	 behind	 BioPandas	 is	 to	 parse	 structural	 files	 into	 pandas
DataFrames,	 a	 library	 and	 format	 that	most	 data	 scientists	 are	 already
familiar	with.	Once	the	structures	are	in	a	DataFrame	format,	we	can	use
all	 of	 the	 power	 of	 pandas	 that	 is	 at	 our	 disposal,	 including	 its	 super
flexible	selection	syntax.

A	 virtual	 screening	 tool	 that	 I	 recently	 developed,	 screenlamp,	 makes
heavy	 use	 of	 BioPandas	 as	 its	 core	 engine.	 I	 could	 screen	 databases
with	 more	 than	 12	 million	 molecules	 efficiently,	 which	 led	 to	 the
successful	 discovery	 of	 potent	 G	 protein-coupled	 receptor	 signaling
inhibitors,	 with	 applications	 to	 aquatic	 invasive	 species	 control,	 in
collaboration	with	experimental	biologists	at	MSU.

Sebastian	Raschka:	'Semi-adversarial	networks	are	a	deep	learning
architecture	that	I	developed	with	my	collaborators	in	the	iPRoBe

Lab	at	MSU.'

Besides	all	of	my	involvement	in	computational	biology,	one	of	my	other
passion	 projects	 involves	 semi-adversarial	 networks.	 Semi-adversarial
networks	 are	 a	 deep	 learning	 architecture	 that	 I	 developed	 with	 my
collaborators	 in	 the	 iPRoBe	Lab	at	MSU,	which	we	successfully	applied
in	the	context	of	privacy	concerns	in	the	field	of	biometrics.

In	particular,	we	applied	this	architecture	to	perturb	face	images	in	such	a
way	that	 they	 looked	almost	 identical	 to	 the	original	 input	 images,	while
soft	 biometric	 attributes,	 such	 as	 gender,	 were	 inaccessible	 by	 gender
predictors.	The	overall	goal	is	to	prevent	nasty	things	like	profiling,	based
on	soft	biometric	attributes,	without	a	user's	consent.

Driscoll:	So	why	did	you	become	a	programmer?

Raschka:	 I	 would	 say	 that	 the	 primary	 driving	 factor	 for	 becoming	 a
programmer	was	to	be	able	to	implement	my	'crazy'	research	ideas.

In	computational	biology,	we	already	have	many	tools	at	our	disposal	that
we	 can	 use	 without	 the	 need	 to	 program	 ourselves.	 However,	 using
existing	tools	(depending	on	the	research	task)	can	also	be	a	bit	limiting.
If	we	want	 to	 try	 something	 new,	 especially	 if	we	want	 to	 develop	 new
methods,	then	there	is	no	way	around	learning	how	to	program.

Like	most	people,	I	started	with	simple	Bash	scripting	in	a	Linux	shell.	At
some	 point,	 I	 realized	 that	 this	 wasn't	 quite	 enough,	 or	 not	 efficient
enough.	 During	 my	 undergraduate	 studies	 in	 Germany,	 I	 took	 a
bioinformatics	class	in	Perl.

When	I	saw	what	was	possible	with	Perl,	this	was	quite	an	eye-opening
experience.	 Later,	 when	 I	 was	 conducting	 statistical	 analyses	 and
preparing	data	visualizations	based	on	the	data	that	I	collected,	I	also	got
into	R.	Not	long	after	that,	I	got	into	Python.

Driscoll:	Why	Python?

Raschka:	Well,	I	mentioned	that	I	started	with	Perl	and	R.	However,	one
thing	 that	 most	 programmers	 have	 in	 common	 is	 that	 we	 consult	 the
internet	on	a	regular	basis	to	look	for	useful	pointers,	and	other	tips	and
tricks	for	achieving	certain	subtasks.

Sebastian	Raschka:	'I	stumbled	upon	many	different	resources	that
were	written	in	Python	and	I	thought	that	it	would	be	worthwhile

learning	this	language.'

Suffice	 it	 to	 say,	 I	 stumbled	 upon	 many	 different	 resources	 that	 were
written	 in	Python	and	 I	 thought	 that	 it	would	be	worthwhile	 learning	 this
language.	At	some	point,	 I	moved	away	from	Perl	entirely	and	did	all	of
my	 coding	 in	 Python:	 custom	 scripts	 for	 data	 collection,	 parsing	 and
analysis.

I	also	have	to	mention	that	I	did	all	of	the	statistical	analyses	and	plotting
in	R.	Actually,	 not	 too	 long	 ago,	when	 I	was	 revisiting	 an	 old	 project,	 I
stumbled	 upon	 my	 old	 Frankenstein-esque	 scripts	 (Bash	 scripts	 and
makefiles),	which	were	running	Python	and	R	in	tandem.

Now,	 back	 in	 2012,	 when	 the	 scientific	 computing	 stack	 was	 growing
quickly,	 I	 stumbled	 upon	 NumPy,	 SciPy,	 matplotlib	 and	 scikit-learn.	 I
realized	that	everything	that	I	did	in	R,	I	could	also	do	in	Python.	I	could
avoid	switching	back	and	forth	between	languages	in	my	projects.

Sebastian	Raschka:	'I	really	enjoy	being	part	of	and	interacting	with
the	vivid	Python	community.'

Looking	back,	picking	up	Python	was	probably	one	of	the	best	decisions
that	I	made.	Without	Python,	it	wouldn't	have	been	possible	for	me	to	be
so	productive.	But	besides	research	and	work,	I	really	enjoy	being	part	of
and	interacting	with	the	vivid	Python	community.	Whether	I	am	interacting
with	people	via	Twitter,	or	meeting	people	at	conferences	like	PyData	and
SciPy,	it's	always	a	fun	experience.

Driscoll:	 Python	 is	 one	 of	 the	 languages	 that	 is	 being	 used	 in	 AI	 and
machine	learning	right	now.	Could	you	explain	what	makes	it	so	popular?

Raschka:	I	think	there	are	two	main	reasons,	which	are	very	related.	The
first	reason	is	that	Python	is	super	easy	to	read	and	learn.

I	would	argue	that	most	people	working	in	machine	learning	and	AI	want

to	 focus	on	 trying	 out	 their	 ideas	 in	 the	most	 convenient	way	 possible.
The	focus	is	on	research	and	applications,	and	programming	is	just	a	tool
to	 get	 you	 there.	 The	more	 comfortable	 a	 programming	 language	 is	 to
learn,	 the	 lower	 the	 entry	 barrier	 is	 for	 more	 math	 and	 stats-oriented
people.

Sebastian	Raschka:	'I	would	argue	that	most	people	working	in
machine	learning	and	AI	want	to	focus	on	trying	out	their	ideas	in

the	most	convenient	way	possible.'

Python	is	also	super	readable,	which	helps	with	keeping	up-to-date	with
the	 status	 quo	 in	machine	 learning	 and	 AI,	 for	 example,	 when	 reading
through	code	implementations	of	algorithms	and	ideas.	Trying	new	ideas
in	 AI	 and	 machine	 learning	 often	 requires	 implementing	 relatively
sophisticated	 algorithms	 and	 the	 more	 transparent	 the	 language,	 the
easier	it	is	to	debug.

The	 second	 main	 reason	 is	 that	 while	 Python	 is	 a	 very	 accessible
language	itself,	we	have	a	lot	of	great	libraries	on	top	of	it	that	make	our
work	 easier.	 Nobody	 would	 like	 to	 spend	 their	 time	 on	 reimplementing
basic	algorithms	from	scratch	(except	in	the	context	of	studying	machine
learning	and	AI).	The	large	number	of	Python	libraries	which	exist	help	us
to	focus	on	more	exciting	things	than	reinventing	the	wheel.

Sebastian	Raschka:	'The	large	number	of	Python	libraries	which
exist,	help	us	to	focus	on	more	exciting	things	than	reinventing	the

wheel.'

By	 the	way,	 Python	 is	 also	 an	 excellent	 wrapper	 language	 for	 working
with	 more	 efficient	 C/C++	 implementations	 of	 algorithms	 and
CUDA/cuDNN,	which	is	why	existing	machine	learning	and	deep	learning
libraries	run	efficiently	in	Python.	This	is	also	super	important	for	working
in	the	fields	of	machine	learning	and	AI.

To	 summarize,	 I	 would	 say	 that	 Python	 is	 a	 great	 language	 that	 lets
researchers	 and	 practitioners	 focus	 on	 machine	 learning	 and	 AI	 and

provides	less	of	a	distraction	than	other	languages.

Driscoll:	Were	there	any	moments	where	things	may	have	gone	another
way,	but	surreptitiously	ended	up	the	way	that	they	did?

Raschka:	 That's	 a	 good	 question.	 Maybe	 the	 fact	 that	 Python	 was
popular	among	 the	Linux	community,	but	worked	very	well	on	Windows
as	well.	This	was	likely	a	big	contributor	to	Python	becoming	so	popular
today.

There	are	relatively	similar	 languages	out	 there	 like	Ruby.	The	Ruby	on
Rails	project	was	(and	still	is)	super	popular.	If	projects	like	Django	hadn't
started,	Python	might	have	become	less	popular	as	an	all-rounder,	which
may	 have	 led	 to	 fewer	 resources	 and	 open	 source	 contributions	 being
devoted	 to	 developing	 Python.	 In	 turn,	 Python	 may	 have	 been	 less
popular	as	a	language	for	machine	learning	and	AI.

Sebastian	Raschka:	'If	Travis	Oliphant	hadn't	started	the	NumPy
project...I	think	fewer	scientists	would	have	picked	up	Python	as	a

scientific	programming	language.'

If	Travis	Oliphant	hadn't	started	the	NumPy	project	(it	was	called	Numeric
back	then	in	1995),	I	think	fewer	scientists	would	have	picked	up	Python
as	a	scientific	programming	language	early	in	their	careers.	We	would	all
still	be	using	MATLAB.

Driscoll:	 So	 is	 Python	 just	 the	 right	 tool	 at	 the	 right	 time,	 or	 is	 there
another	reason	that	it's	become	so	important	in	AI	and	machine	learning?

Raschka:	I	think	that's	a	bit	of	a	chicken	or	the	egg	problem.

To	untangle	it,	I	would	say	that	Python	is	convenient	to	use,	which	led	to
its	wide	adoption.	The	community	has	developed	many	useful	packages
in	 the	 context	 of	 scientific	 computing.	 Many	 machine	 learning	 and	 AI
developers	 prefer	 Python	 as	 a	 general	 programming	 language	 for
scientific	computing,	and	 they	have	developed	 libraries	on	 top	of	 it,	 like
Theano,	MXNet,	TensorFlow	and	PyTorch.

On	an	interesting	side	note,	having	been	active	 in	 the	machine	 learning
and	 deep	 learning	 communities,	 there	 was	 one	 thing	 that	 I	 heard	 very
often:	"The	Torch	library	is	awesome,	but	 it	 is	written	 in	Lua,	and	I	don't
want	to	spend	my	time	learning	yet	another	language."	Note	that	we	have
PyTorch	now.

Mike	Driscoll:	Do	you	think	this	opens	the	door	for	any	Python
programmer	to	start	experimenting	with	AI?

Raschka:	I	do	think	so!	It	depends	on	how	we	interpret	AI,	but	regarding
deep	 learning	 and	 reinforcement	 learning,	 there	 are	 many	 convenient
packages	with	Python	wrappers	out	there.

Probably	the	most	popular	example	at	the	moment	would	be	TensorFlow.
Personally,	 I	 use	 both	 TensorFlow	 and	PyTorch	 in	my	 current	 research
projects.	I	have	been	using	TensorFlow	since	it	was	released	in	2015	and
like	 it	 overall.	 However,	 it	 is	 a	 bit	 less	 flexible	when	 trying	 out	 unusual
research	 ideas,	which	 is	why	 I	 recently	got	more	 into	PyTorch.	PyTorch
itself	 is	more	flexible	and	 its	syntax	 is	closer	 to	Python;	 in	 fact,	PyTorch
describes	itself	as	"a	deep	learning	framework	that	puts	Python	first."

Driscoll:	What	could	be	done	 to	make	Python	a	better	 language	 for	AI
and	machine	learning?

Raschka:	While	Python	is	a	language	that	is	very	convenient	to	use	and
nicely	interfaces	with	C/C++	code,	we	have	to	keep	in	mind	that	it	is	not
the	most	efficient	language.

Computational	efficiency	is	why	C/C++	is	still	the	programming	language
of	choice	for	several	machine	learning	and	AI	developers.	Also,	Python	is
not	supported	on	most	mobile	and	embedded	devices.	Here	we	have	to
distinguish	between	research,	development	and	production.

Sebastian	Raschka:	'The	convenience	of	Python	comes	at	a	price,
which	is	performance.'

The	convenience	of	Python	comes	at	a	price,	which	is	performance.	On
the	other	hand,	speed	and	computational	efficiency	comes	with	a	trade-
off	in	terms	of	productivity.	In	practice,	I	think	that	it's	usually	best	to	split
tasks	when	working	in	a	team,	for	instance,	having	people	who	specialize
in	 research	 and	 trying	 new	 ideas,	 and	 people	who	 specialize	 in	 taking
prototypes	to	production.

I	am	mainly	a	researcher	and	haven't	run	into	this	problem	yet,	but	I	have
also	heard	 that	Python	 is	not	good	 for	production.	 I	 think	 this	 is	mainly
due	to	existing	 infrastructure,	however,	and	the	tools	 that	are	supported
by	the	servers,	so	it's	not	really	Python's	fault	per	se.

Sebastian	Raschka:	'Python	doesn't	scale	as	well	as	other
languages	such	as	Java	or	C++.'

In	 general,	 due	 to	 its	 nature	 as	 a	 high-level	 and	 general-purpose
programming	language,	Python	doesn't	scale	as	well	as	other	languages
such	 as	 Java	 or	 C++,	 although	 they	 are	 more	 tedious	 to	 use.	 For
instance,	spending	 too	much	 time	 in	 the	Python	 runtime,	when	working
with	TensorFlow,	can	be	a	real	performance	killer.	Improving	the	general
efficiency	 of	 Python	 (I	 don't	 think	 this	 is	 really	 possible	 though	 while
keeping	 Python	 as	 convenient	 as	 it	 is)	 would	 be	 beneficial	 to	 AI	 and
machine	learning.

Sebastian	Raschka:	'Improving	the	general	efficiency	of
Python...would	be	beneficial	to	AI	and	machine	learning.'

While	 Python	 provides	 a	 great	 environment	 for	 rapid	 prototyping,	 it	 is
sometimes	a	little	bit	too	forgiving	and	dynamic	types	allow	you	to	make
mistakes	more	 easily.	 I	 think	 the	 recent	 introduction	 of	 type	 hints	 may
help	 to	 improve	 this	 issue	 to	 some	 extent.	 Also,	 keeping	 type	 hints
optional	is	a	great	idea,	because	while	it	helps	with	larger	code	bases,	it
can	also	be	an	annoyance	for	smaller	coding	projects.

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Raschka:	I	am	super	excited	that	I	can	do	anything	that	I	need	in	Python.
I	can	spend	my	time	efficiently	on	research	and	problem	solving,	without
the	need	to	spend	most	of	my	days	learning	new	tools	and	programming
languages.

Sebastian	Raschka:	'I	am	super	happy	with	the	status	quo	of
Python.	I	am	excited	about	the	continued	development	of	the

fundamental	data	science	libraries	like	NumPy.'

Sure,	sometimes	it's	good	to	look	beyond	the	Python	ecosystem,	to	see
what's	out	there	and	what	could	potentially	be	useful.	However,	overall,	I
am	super	 happy	with	 the	 status	 quo	of	Python.	 I	 am	excited	about	 the
continued	 development	 of	 the	 fundamental	 data	 science	 libraries	 like
NumPy,	which	received	a	large	grant	from	the	Moore	Foundation	to	focus
on	improving	the	library	even	further.

Also,	I	recently	saw	a	conference	talk	on	the	redesign	of	pandas,	pandas
2,	which	will	make	this	already	great	 library	even	more	efficient,	without
changing	the	user	interface.

The	 one	 thing	 I	 am	 probably	 most	 excited	 about,	 though,	 is	 the	 great
community	around	Python.	It's	great	to	feel	part	of	the	Python	community
and	 to	be	 in	 the	same	boat	 regarding	advancing	 the	 landscape	of	 tools
and	 science.	 I	 can	 share	 knowledge,	 learn	 from	 others	 and	 share	 my
excitement	with	likeminded	people.

Sebastian	Raschka:	'It's	great	to	feel	part	of	the	Python	community
and	to	be	in	the	same	boat	regarding	advancing	the	landscape	of

tools	and	science.'

Driscoll:	What	 do	 you	 think	 about	 the	 long	 life	 of	 Python	 2.7?	 Should
people	move	over?

Raschka:	That's	a	good	question.	Personally,	I	always	recommend	using
the	latest	version	of	Python.	However,	I	also	realize	that	this	is	not	always
possible	for	everyone.

If	your	project	involves	working	on	or	with	an	older	Python	2.7	code	base,
then	 it	 may	 not	 be	 feasible	 to	 make	 the	 switch	 in	 terms	 of	 resources.
Regarding	the	long	life	of	Python	2.7,	we	all	know	that	Python	2.7	will	not
be	officially	maintained	after	2020.	One	thing	that	might	happen	is	that	a
subcommunity	will	take	over	the	maintenance	of	Python	2.7.

Sebastian	Raschka:	'One	thing	that	might	happen	is	that	a
subcommunity	will	take	over	the	maintenance	of	Python	2.7.'

I	 also	wonder	whether	 it	would	be	worthwhile	 to	 spend	 the	energy	and
resources	maintaining	 Python	 2.7	 after	 2020	 as	 a	 side	 project,	 versus
taking	 the	 time	 to	port	Python	2.7	 code	 bases	 over	 to	Python	 3.x.	 The
long-term	maintenance	of	Python	2.7	will	always	remain	uncertain.

Personally,	I	always	install	the	latest	version	of	Python	when	it	comes	out
and	do	all	of	my	coding	in	Python	3.	However,	most	of	my	projects	also
support	Python	2.7.	The	reason	is	that	there	are	still	many	people	using
Python	2.7	who	cannot	switch,	and	I	don't	want	to	exclude	anyone.	So	if
it	does	not	require	any	major	hassle	or	clunky	workarounds,	then	I	write
my	code	in	a	way	that	is	compatible	with	both	Python	2.7	and	3.x.

Sebastian	Raschka:	'There	are	still	many	people	using	Python	2.7
who	cannot	switch	and	I	don't	want	to	exclude	anyone.'

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Raschka:	My	apologies,	but	my	answer	is	a	rather	boring	one:	I	am	quite
happy	 with	 Python's	 current	 set	 of	 features	 and	 don't	 have	 anything
significant	on	my	wish	list.

One	 thing	 that	 I	 and	multiple	 other	 people	 are	 sometimes	 complaining
about	is	Python's	Global	Interpreter	Lock	(GIL).	However,	for	my	needs,
it's	 typically	 not	 an	 issue.	 For	 instance,	 I	 like	 control	 over	 when	 to	 do
multithreading	or	multiprocessing.

I	 wrote	 my	 little	 multiprocessing	 wrappers	 (in	 the	 mputil	 package)	 to

evaluate	 Python	 generators	 lazily,	 which	 was	 an	 issue	 concerning
memory	consumption	when	I	was	working	with	vanilla	Pool	classes	from
Python's	 multiprocessing	 standard	 library.	 Besides,	 there	 are	 great
libraries	out	there,	like	joblib,	which	make	multiprocessing	and	threading
super	convenient.

On	top	of	that,	most	libraries	that	I	use	for	the	heavy	lifting	when	it	comes
to	 doing	 computations	 in	 parallel	 (Dask,	 TensorFlow,	 and	 PyTorch)
already	 support	 multiprocessing	 and	 use	 Python	 more	 as	 a	 glue
language	as	I	mentioned	earlier,	so	that	computational	efficiency	is	never
really	an	issue.

Driscoll:	Thank	you,	Sebastian	Raschka.

Chapter	13.	Wesley	Chun

Wesley	 Chun	 is	 an	 American	 software	 engineer	 who	 has	 worked	 at
Google	 for	 the	 past	 eight	 years.	 In	 his	 role	 as	 a	 senior	 developer
advocate,	 Wesley	 encourages	 developers	 to	 adopt	 Google	 tools	 and
APIs.	 He	 previously	 worked	 for	 Yahoo!	 and	 was	 one	 of	 the	 original
Yahoo!	 Mail	 engineers.	 Wesley	 is	 a	 fellow	 of	 the	 Python	 Software
Foundation	 (PSF)	and	 runs	CyberWeb	Consulting,	which	 specializes	 in
Python	training	and	technical	courses.	He	is	the	bestselling	author	of	the
Core	 Python	 Programming	 book	 series	 and	 co-authored	 Python	 Web
Development	with	Django.	Wesley	has	also	contributed	to	Linux	Journal,
CNET,	and	InformIT.

Discussion	themes:	Yahoo!	Mail,	Python	books,	v2.7/v3.x.

Catch	up	with	Wesley	Chun	here:	@wescpy

Mike	Driscoll:	So	why	did	you	become	a	programmer?

Wesley	Chun:	 I've	been	 fascinated	by	 the	ability	 to	write	code	 to	solve
problems	 for	 a	 long	 time	 now.	 My	 interest	 probably	 started	 during	 the
latter	years	of	high	school.

My	 programming	 teacher	 showed	 us	 how	 to	 write	 code	 implementing
Gauss-Jordan	 elimination	 and	 have	 a	 computer	 solve	 systems	 of

equations	automatically.	This	demonstrated	how	code	could	be	used	 to
automate	 tedious	work	 that	previously	 required	 inefficient	human	power
to	compute.

While	we	were	only	using	Commodore	BASIC,	being	able	 to	 implement
that	algorithm	and	watch	it	work	successfully,	was	one	of	the	factors	that
motivated	 me	 to	 become	 a	 professional	 developer.	 Wanting	 to	 make
people	and	processes	more	efficient	has	 led	 to	my	multi-decade	career
as	a	software	engineer.

Wesley	Chun:	'Wanting	to	make	people	and	processes	more
efficient	has	led	to	my	multi-decade	career	as	a	software	engineer.'

Driscoll:	 So	 how	 did	 you	 come	 across	 the	 Python	 programming
language?

Chun:	Finding	Python	was	not	by	choice.	 I	had	experience	with	C/C++
programming,	as	well	as	popular	shell	 languages	such	as	Tcl	and	Perl.
Then	I	began	working	at	a	start-up	company	where	Python	became	the
primary	 development	 language.	 I	 learned	 Python	 and	 helped	 to	 build
what	was	eventually	to	become	Yahoo!	Mail	in	the	late	1990s.

Driscoll:	How	was	Yahoo!	Mail	created?

Chun:	 In	 1997,	 I	 was	 working	 at	 a	 start-up	 called	 Four11.	 True	 to	 its
name,	 the	 first	 product	 released	 by	 the	 company	 was	 one	 of	 the	 first
online	versions	of	the	telephone	white	pages	directories.

The	Four11	service,	while	being	a	web	app,	was	written	entirely	in	C++,	a
monolithic	 binary	 that	 was	 burdensome	 to	 build	 and	 cumbersome	 to
maintain.	The	CTO	and	co-founder	began	 to	 look	 for	a	way	 to	develop
more	nimbly.

After	 researching	 a	 variety	 of	 scripting	 languages,	 the	CTO	 discovered
that	 if	you	 left	all	of	 the	hardcore	work	as	C++,	Python	was	a	 language
that	you	could	drop	in	as	the	front-end,	as	well	as	replace	the	middleware
with.

Our	 next	 product,	 RocketMail,	 was	 developed	 with	 this	modified	 stack.
We	created	our	own	web	framework	before	that	term	even	existed.	Using
this	 framework,	 our	 core	 team	 was	 able	 to	 launch	 a	 successful	 mail
service,	 which	 caused	 Yahoo!	 to	 acquire	 our	 company.	 RocketMail
became	Yahoo!	Mail	and	the	rest	is	history.

Driscoll:	So	how	did	you	end	up	becoming	an	author?

Chun:	 Becoming	 an	 author	 was	 also	 accidental.	 During	 one	 of	 my
summer	 internships	 at	 college,	 I	 was	 given	 the	 task	 of	 writing	 a	 user
manual	for	customers.

I	 learned	how	to	write	using	Ventura	Publisher	and	with	that	experience
under	 my	 belt,	 my	 coding	 and	 writing	 have	 been	 paired	 together	 ever
since.

Wesley	Chun:	'When	I	was	exposed	to	Python	in	the	workforce,
there	were	only	two	Python	books	on	the	market.'

When	 I	 was	 exposed	 to	 Python	 in	 the	 workforce,	 there	 were	 only	 two
Python	books	on	the	market.	One	was	a	large	case	study	book,	while	the
other	was	the	first	Python	book,	which	was	already	somewhat	outdated.
The	 need	 for	 a	 book	 about	 Python,	 for	 developers	 coming	 from
languages	like	C	and	shell	scripts,	drove	me	to	craft	the	first	Core	Python
Programming	book.

Driscoll:	What	have	you	learned	from	writing	Python	books?

Chun:	 If	 I	 wasn't	 already	 a	 developer,	 then	 I	 could	 probably	 say	 that	 I
learned	Python	from	writing	books.	Any	 time	 that	you	write	a	book,	you
need	to	do	some	research	into	the	subject	matter.

You	 should	 learn	 more	 information	 about	 your	 subject	 than	 is	 really
necessary.	In	order	to	take	a	thorough	look	at	a	programming	language,
you	must	become	familiar	with	both	commonly-used	features	and	corner
cases.

Driscoll:	How	have	your	readers	impacted	your	writing?

Chun:	Having	readers	come	up	to	me	and	let	me	know	that	I	was	one	of
their	 primary	 sources	 for	 learning	Python,	 always	 brings	 a	 smile	 to	my
face.

Wesley	Chun:	'Readers	come	up	to	me	and	let	me	know	that	I	was
one	of	their	primary	sources	for	learning	Python.'

Whenever	possible,	 I	ask	 for	direct	 feedback	 from	my	 readers	so	 that	 I
can	 make	 my	 books	 even	 better.	 Readers	 love	 the	 exercises	 after	 a
chapter,	which	help	to	reinforce	what	they	learned.	They	also	appreciate
the	wide	variety	of	topics	covered.

Driscoll:	Could	you	explain	the	idea	behind	CyberWeb	Consulting?

Chun:	 Yes,	 my	 home	 business	 is	 meant	 to	 consolidate	 all	 of	 the
freelance	 work	 that	 I	 perform	 for	 the	 Python	 community.	 CyberWeb
Consulting	 incorporates	magazine	articles,	 the	 technical	Python	 training
courses	 that	 I	 teach	 and	 other	 Python-related	 consulting	 opportunities
that	come	my	way.

Driscoll:	What	projects	are	you	working	on	now?

Chun:	 To	 this	 day,	 I	 still	 help	 people	 to	 discover	 how	 mundane	 and
laborious	 tasks,	 which	 were	 once	 performed	 by	 humans,	 can	 now	 be
automated.	This	frees	people	up	to	have	higher	pursuits.

Wesley	Chun:	'I	still	help	people	to	discover	how	mundane	and
laborious	tasks,	which	were	once	performed	by	humans,	can	now

be	automated.'

I'm	currently	a	developer	advocate	at	Google.	I	show	developers	how	to
integrate	Google	technologies	into	their	apps,	web	or	mobile.	I	started	by
advocating	Google	Cloud	Platform	products,	but	have	since	moved	to	the
familiar	G	Suite	productivity	applications:	Gmail,	Google	Drive,	Calendar,
Sheets,	etc.

While	people	are	familiar	with	these	well-known	apps,	I	focus	on	teaching
programmers	 about	 the	 developer	 platforms	 and	 APIs	 behind	 each	 of
those	 tools.	 You'll	 often	 find	 me	 on	 the	 G	 Suite	 Developers	 blog	 or
hosting	the	G	Suite	Developer	Show	(http://goo.gl/JpBQ40).

On	the	Python	side	of	the	house,	I'm	working	on	the	third	edition	of	Core
Python	 Programming,	 which	 was	 my	 first	 book.	 Readers	 familiar	 with
Core	Python	Programming	will	know	that	the	book	is	being	broken	up	into
two	volumes.	The	third	part	of	the	second	half,	Core	Python	Applications
Programming,	 was	 published	 back	 in	 2012.	 Now	 I'm	 writing	 the	 third
edition	 of	 the	 first	 half.	 This	 latest	 book	 will	 be	 called	 Core	 Python
Language	Fundamentals,	to	better	reflect	its	content.

I	 also	 have	 a	 Python	 blog,	 which	 I've	 honestly	 been	 neglecting.
Fortunately	for	me,	work	has	provided	content	for	the	blog	because	any
of	my	work	on	Google	developer	products	features	a	good	deal	of	Python
code.

Driscoll:	What	most	excites	you	about	Python	at	the	moment?

Chun:	 Believe	 it	 or	 not,	 I'm	most	 excited	 that	 people	 even	 know	what
Python	is	today.	Back	in	the	old	days,	nobody	had	ever	heard	of	Python
before.	Python	was	such	a	great	tool,	so	we	hoped	that	the	world	would
one	day	find	out	about	it.	I	think	we're	there	now.

Wesley	Chun:	'Python	was	such	a	great	tool,	so	we	hoped	that	the
world	would	one	day	find	out	about	it.	I	think	we're	there	now.'

I'm	also	excited	that	we	are	near	the	end	of	the	crossroads	of	having	both
Python	2	and	3.	Python	3	adoption	has	taken	off	and	most	packages	are
now	available.

Driscoll:	What	do	you	think	about	the	long	life	of	Python	2?

Chun:	 Soon	 Python	 2	 will	 be	 in	 the	 rear-view	 mirror.	 Those	 who	 are
skeptical	 of	 Python	 3.x	 may	 remain	 that	 way,	 but	 that	 group	 is	 slowly
disappearing.	Python	moving	from	2	to	3	is	not	the	same	as	moving	from
Perl	5	to	6.

http://goo.gl/JpBQ40

The	 long	 life	 of	 Python	 2	 was	 necessary	 because	 of	 the	 backwards
incompatibility	 of	 Python	 3.	 However,	 Python	 2.6	 and	 2.7	 are	 great
migration	 tools.	 They	 are	 the	 only	 2.x	 versions	 that	 have	 3.x	 features
backported	to	them,	to	help	with	the	overall	migration.

Wesley	Chun:	'I	proclaimed	that	it	would	take	a	decade	for	the	world
to	move	to	Python	3,	due	to	its	lack	of	compatibility	with	Python	2.'

I	 have	 been	 writing	 and	 speaking	 about	 the	 longevity	 of	 Python	 2	 for
some	time.	Back	in	2008,	when	3.0	launched,	I	proclaimed	that	it	would
take	 a	 decade	 for	 the	 world	 to	 move	 to	 Python	 3,	 due	 to	 its	 lack	 of
compatibility	with	Python	2.

Based	on	 the	momentum	that	 I'm	seeing	 today,	 I	 think	 that	 I'm	going	 to
be	 more	 accurate	 in	 my	 prediction	 than	 I	 thought	 was	 possible.	 My
original	 statement	 was	 mostly	 a	 flippant	 and	 abstract	 one,	 which	 has
gradually	 become	more	 concrete	 and	 realistic	 over	 the	 past	 few	 years.
But	Python	3.6	is	a	great	version	to	move	over	to!

Wesley	Chun:	'I	think	that	I'm	going	to	be	more	accurate	in	my
prediction	than	I	thought	was	possible.'

Driscoll:	 Python	 is	 being	 increasingly	 used	 today	 for	 AI	 and	 machine
learning.	Why	do	you	think	this	is?

Chun:	Python	makes	a	great	 language,	 regardless	of	 the	 field	 that	 it	 is
applied	to.	Python	does	not	require	its	users	to	be	computer	scientists	in
order	to	be	able	to	solve	problems.	The	language	syntax	does	not	get	in
the	way	for	those	who	want	a	tool	to	build	solutions	with.	Python	is	also
great	at	encouraging	group	collaboration	because	of	 its	understandable
syntax.

Driscoll:	 So	 how	 do	 you	 think	 that	 Python	 could	 be	 made	 a	 better
language	for	AI	and	machine	learning?

Chun:	 The	 continued	 development	 of	 existing	 Python	 libraries	 and	 the

creation	of	new	libraries	would	make	working	in	the	AI	field	even	easier.
That	would	help	everyone.

Wesley	Chun:	'The	continued	development	of	existing	Python
libraries	and	the	creation	of	new	libraries	would	make	working	in

the	AI	field	even	easier.'

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Chun:	 I'd	 love	 to	 see	 fewer	Python	 releases	and	 fewer	new	 features.	 I
think	what	the	language	has	today	(Python	3.6)	is	great.

Wesley	Chun:	'I'd	love	to	see	fewer	Python	releases	and	fewer	new
features.'

Sure,	 we	 need	 to	 have	 bug	 and	 security	 fixes.	 Additional	 performance
improvements	 would	 also	 be	 welcome,	 along	 with	 the	 solving	 of	 the
Global	 Interpreter	 Lock	 issue.	 However,	 I'd	 like	 to	 see	 the	 release
schedules	stretched	out.

Eventually,	I'd	like	to	see	development	mostly	stop	with	Python,	so	that	it
could	be	recognized	as	a	standard	like	C	or	C++.	If	further	improvements
need	to	be	made,	then	they	can	come	as	revisions	to	the	standard.	Being
recognized	 as	 a	 standard	 will	 bring	 about	 Python's	 legitimacy	 and	 its
greater	adoption,	especially	in	larger	corporations.

Driscoll:	Thank	you,	Wesley	Chun.

Chapter	14.	Steven	Lott

Steven	 Lott	 is	 an	 American	 software	 developer	 and	 author.	 He	 is	 an
associate	for	the	bank	holding	company	Capital	One	and	uses	Python	to
build	APIs	for	new	products.	Previously,	he	worked	as	a	solution	architect
for	CTG,	which	 provides	 IT	 services.	 In	 2003,	Steven	 started	using	his
talent	 for	 solving	 problems	 with	 Python	 to	 write	 books.	 He	 has	 since
authored	 titles	 including	Modern	 Python	 Cookbook,	Python	 for	 Secrets
Agents,	and	Functional	Python	Programming.	Steven	creates	educational
content	for	the	Python	community	and	writes	a	tech	blog.

Discussion	themes:	Python	pros	and	cons,	Python	books,	v3.6.

Catch	up	with	Steven	Lott	here:	@s_lott

Mike	Driscoll:	So	why	did	you	become	a	programmer?

Steven	Lott:	I	started	programming	in	the	1970s,	when	computers	were
rare.	My	school	had	two	Olivetti	Programma	101	calculators	and	an	IBM
1620	computer.

It	 was	 empowering	 being	 able	 to	 create	 useful	 behavior	 on	 these
machines,	such	as	simulating	random	events,	drawing	things	and	trying
to	design	new	kinds	of	games.	A	responsive	and	autonomous	device	was
the	ultimate	toy,	even	when	doing	math	homework.	The	idea	of	building

things	that	were	new	and	useful	via	software	was	compelling.	Also,	I	had
a	bunch	of	friends	who	hung	around	in	the	computer	room.

Driscoll:	How	did	you	start	using	Python?

Lott:	 In	 the	 late	 90s,	 as	 object-oriented	 programming	 was	 building
momentum,	I	started	tracking	the	popular	languages.

I	had	a	Macintosh	with	the	port	of	Smalltalk-80,	the	THINK	C++	compiler
and	 a	 JDK	 1.1.	 I	 made	 regular	 searches	 for	 emerging	 object-oriented
programming	technology	and	eventually	found	Python.

Steven	Lott:	'The	barriers	to	entry	for	Python	were	so	much	lower
than	the	other	languages	that	I	had	learned.'

The	 barriers	 to	 entry	 for	 Python	 were	 so	 much	 lower	 than	 the	 other
languages	that	I	had	learned.	There	was	only	a	runtime	and	no	complex
toolchain	 required	 to	 build	 software.	 Python	 was	 replacing	 Perl,	 AWK,
sed,	and	grep	with	one	tool	that	handled	a	variety	of	use	cases.	By	2000,
I	was	trying	to	build	useful	and	working	applications	in	Python.

Driscoll:	What	did	you	like	about	Python?

Lott:	 At	 first,	 I	 was	 drawn	 to	 the	 elegant	 simplicity	 of	 Python.	 The
standard	 library	provided	an	amazing	array	of	 tools.	As	 I	 learned	more,
the	 vast	 ecosystem	 of	 modules	 and	 packages	 outside	 of	 the	 standard
library	showed	me	how	much	could	be	done.

I	 used	 Python	 at	 work	 because	 I	 could	 solve	 a	 problem	 quickly.	 The
language	was	wonderful	 for	complex	data	wrangling	problems.	 In	many
cases,	success	stemmed	from	getting	started	quickly	and	discovering	the
nuances	 and	 complications	 of	 a	 problem	 as	 early	 as	 possible.	 Python
encourages	you	to	fail	quickly	and	start	again	on	a	new	course.

Steven	Lott:	'Python	encourages	you	to	fail	quickly	and	start	again
on	a	new	course.'

The	more	that	I	learn	about	NumPy,	the	more	that	I	see	Python	as	a	kind
of	universal	container	for	code.	The	NumPy	libraries	are	based	on	C	(and
Fortran),	so	having	a	Python	wrapper	makes	 them	widely	available	and
useful.

The	 underlying	 reason	 for	 using	Python	wasn't	 clear	 to	me	 until	Guido
van	Rossum's	keynote	speech	at	PyCon	2016.	Python's	biggest	strength
stems	 from	 the	 community.	 Python's	 open	 source	 nature	 creates	 and
encourages	a	community	effort	to	build	cool	new	things.

Steven	Lott:	'Python's	biggest	strength	stems	from	the	community.'

Python	 has	 numerous	 other	 strengths,	 such	 as	 its	 wide	 adoption	 as	 a
language.	Python	is	used	in	numerous	contexts:	scientists	are	using	it	to
analyze	 truly	 gigantic	 datasets	 and	 it's	 used	 to	 build	 scalable	 web
services	too.	Python	is	also	used	recreationally	by	home	hackers	who	are
integrating	their	Alexa,	Nest,	and	Arduino-based	temperature	sensors.

Another	strength	of	Python	is	sometimes	called	batteries	included.	With	a
single	download,	you	have	all	the	tools	you	want.	If	you	want	to	learn	the
language,	then	you	can	start	with	the	distribution	for	your	computer.	If	you
want	 to	 do	 data	 science,	 then	 you	 can	 start	 with	 the	 Anaconda
distribution,	which	is	where	lots	of	packages	are	bundled.

The	 Python	 Software	 Foundation	 (PSF)	 makes	 active	 steps	 to	 be	 as
inclusive	as	possible.	The	philosophy	is	that	everyone	should	be	able	to
learn	and	share	their	findings.	Python's	community	believes	that	nobody
should	be	excluded.	We're	all	using	Python	to	solve	problems,	so	we	all
need	help.

Driscoll:	What	are	Python's	weaknesses	as	a	language?

Lott:	I've	collected	a	few	lists	of	Python's	weaknesses.	Some	of	them	are
utterly	 farcical	and	 I've	seen	many	sentiments	which	make	no	sense	at
all.	A	few	complaints	about	Python	are	meaningful.

Overall,	 I've	 learned	 that	most	problems	 that	are	blamed	on	 the	Python
language	being	slow	are	more	often	than	not	due	to	ineffective	algorithm

and	data	structure	choices.

Steven	Lott:	'Python's	core	runtime	is	remarkably	fast.'

Python's	core	runtime	is	remarkably	fast.	Fortran	and	C	are	considerably
faster	 because	 they	 have	 optimizing	 compilers,	 that	 produce	 code
focused	on	the	underlying	chipset.	The	SciPy	and	NumPy	use	of	binary
code	wrapped	in	Python	addresses	this	concern	nicely.

Another	 issue	 is	 the	 opportunity	 for	 confusion	when	 using	Python.	 The
orthogonality	 between	 language	 statements	 and	 data	 structures	means
that	 lists,	 sets,	 and	 dictionaries	 have	 some	 overlapping	 features.	 The
immensely	 sophisticated	 implementation	 of	 Python	 data	 structures
makes	 it	 possible	 to	 make	 a	 bad	 choice	 and	 get	 correct	 answers,	 but
have	horribly	inefficient	code.

Lastly,	 a	 weakness	 for	 Python	 is	 the	 possibility	 of	 creating	 inheritance
problems.	Everything	is	dynamic,	so	it	can	be	difficult	for	tools	like	Pylint
to	 discern	 meaningful	 method	 redefinitions	 from	 spelling	 mistakes	 with
similar-looking	method	names	and	plain	bad	design.

The	 collections.abc	 module	 has	 decorators	 that	 can	 be	 used	 to
organize	 code	 and	 provide	 some	 help	 with	 checking	 redefinitions.	 The
type	 definitions	 in	 the	 typing	 module	 allow	 mypy	 to	 locate	 potential
problems.

Driscoll:	So	how	did	you	end	up	becoming	an	author	of	Python	books?

Lott:	 Most	 roles	 in	 my	 career	 more	 or	 less	 just	 happened	 to	 me,	 but
becoming	a	writer	was	a	conscious	decision.

In	 this	 case,	 I	 had	 decided	 that	 there	 could	 be	 value	 in	 teaching	 the
Python	language	and	the	associated	software	engineering	skills.	I	started
to	collect	notes	 for	a	book	 in	2002.	By	2010,	 I	had	 tried	self-publishing
several	books	on	Python.

Steven	Lott:	'Over	a	few	years,	I	answered	thousands	of	questions

about	Python	and	somehow	built	up	a	large	reputation.'

When	 Stack	 Overflow	 started,	 I	 was	 an	 early	 participant.	 There	 were
many	 interesting	Python	 questions.	 The	 questions	 showed	 gaps	where
more	 information	 was	 needed	 about	 Python	 specifically	 and	 software
engineering	 in	 general.	 Over	 a	 few	 years,	 I	 answered	 thousands	 of
questions	about	Python	and	somehow	built	up	a	large	reputation.

Driscoll:	What	have	you	learned	in	the	writing	process?

Lott:	 I've	 learned	 about	 the	 difficulty	 of	 creating	 meaningful	 and
interesting	 examples.	 An	 example	 needs	 to	 have	 a	 story	 arc	 and	 a
problem	that	requires	a	solution.

Stories	 require	drama	and	conflict,	and	 that	doesn't	often	surface	when
thinking	 about	 data	 structures	 and	 algorithms.	 I	 spend	 more	 time
wandering	around	trying	to	think	of	examples	than	doing	any	other	part	of
the	 writing	 process.	 A	 lot	 of	 the	 problems	 that	 I	 come	 up	 with	 are	 too
large	and	complex.

A	snippet	of	code	is	difficult	to	describe	if	it	doesn't	solve	a	problem.

For	example,	the	traveling	salesman	problem	has	a	compelling	story	arc
that	characterizes	graph	traversal.	Having	a	story	provides	a	 framework
for	 remembering	 the	 essential	 problem	 and	 seeing	 how	 the	 solution
works.	Pure	code	doesn't	help	anyone	 to	understand	why	 the	 language
construct	 is	 important.	 Code	 only	 exists	 to	 solve	 a	 problem,	 so	 it's
imperative	to	describe	the	problem.

Steven	Lott:	'Pure	code	doesn't	help	anyone	to	understand	why	the
language	construct	is	important.	Code	only	exists	to	solve	a

problem,	so	it's	imperative	to	describe	the	problem.'

Creating	stories	 requires	 the	 time	 to	 view	 the	problem	 from	a	distance,
which	is	essential	for	summarizing	and	abstracting	out	needless	details.
Finding	the	right	details	requires	a	deep	understanding.	 I	know	that	 I've
failed	 when	 the	 description	 of	 the	 code	 becomes	 long	 and	 complex,

involving	tangential	topics.

Driscoll:	 What	 are	 the	 pros	 and	 cons	 of	 self-publishing	 your	 books
versus	using	a	regular	publisher?

Lott:	 The	 difference	 between	 self-publishing	 and	 using	 a	 publisher	 is
editing.	 The	 way	 that	 Python	 handles	 documentation	 testing	 (via	 the
doctest	module)	means	that	the	technical	aspects	of	the	content	can	be
validated	automatically.	I've	become	better	at	this,	but	there	are	still	some
testing	gaps	in	my	published	code.

Other	 challenges	 are	 grammar,	 usage,	 clarity,	 precision,	 color,	 unity,
coherence,	 and	 concision.	 With	 Packt	 Publishing,	 there's	 a	 pipeline	 of
editors	who	 ask	 questions	 and	 notice	 the	 incomprehensible	 parts,	 long
before	my	book	lands	in	the	hands	of	a	reader.

When	I	self-published,	I	did	what	seemed	best	to	me.	Publishers	manage
costs,	prices,	and	revenue	streams	adroitly.	My	job	is	to	know	Python	and
Packt	Publishing	handles	the	rest.

Driscoll:	Have	you	learned	anything	from	your	readers?	If	so,	what?

Lott:	 My	 readers	 have	 taught	 me	 the	 importance	 of	 using	 the	 Python
doctest	 tool	 for	checking	each	example	 in	 the	body	of	a	book.	Readers
have	spotted	numerous	errors	from	code	that	I	didn't	check	properly.

Driscoll:	What	has	been	your	favorite	interaction	with	a	reader?

Lott:	 I	 work	 for	 a	 tech	 company	 in	Northern	Virginia.	 A	 co-worker	was
surprised	 to	 find	 out	 that	 I'd	 written	Mastering	 Object-Oriented	 Python.
They	 had	 bought	 the	 book	 based	 on	 recommendations	 and	 read	 the
outline,	without	really	looking	at	the	author's	name.

Driscoll:	So	which	of	 your	books	has	been	 the	most	popular?	Why	do
you	think	that	people	buy	one	book	over	another?

Lott:	 My	most	 successful	 book	 has	 been	Python	 for	 Secret	 Agents.	 It
seems	like	the	fun	factor	is	part	of	that.	If	a	book	has	a	wide	variety	of	fun
exercises	and	problems,	then	readers	can	see	how	Python	applies	to	the
problems	 that	 they	know	and	want	 to	solve.	 If	 the	book	 is	 too	narrowly

focused	 on	 one	 problem	 domain,	 or	 too	 abstract,	 then	 the	 practical
applications	become	hard	to	envision.

Driscoll:	What	new	and	exciting	trends	are	you	seeing	in	Python?

Lott:	 Python	 3.6	 is	 fast	 and	 getting	 faster.	 The	 developers	 working	 on
foundational	algorithms	have	done	impressive	things.

Steven	Lott:	'Python	3.6	is	fast	and	getting	faster.	The	developers
working	on	foundational	algorithms	have	done	impressive	things.'

The	 new	 internal	 data	 structures	 for	 the	 dict	 save	 memory	 and	 run
faster.	 This	 kind	 of	 internal	 re-engineering	 is	 exciting.	 There	 are	 huge
benefits	 that	 come	 from	having	an	upgrade	with	 few	visible	changes	 to
the	language.

Another	 exciting	 direction	 that	 Python	 is	 going	 in	 is	 connected	 to	 the
mypy	 project	 and	 the	 type	 hints.	 You	 have	 a	 handy	 quality	 tool	 that
doesn't	 involve	a	profound	change	to	 the	 language,	or	 the	development
tools.	This	can	help	you	to	write	more	reliable	code,	without	 introducing
significant	 overheads.	 If	mypy	becomes	part	 of	Pylint	 or	Pyflakes,	 then
that	will	help	even	more.

As	an	Arduino	maker,	I	often	collect	data	for	later	analysis	using	Python-
based	tools.	My	current	project	involves	a	customized	GPS	tracker,	which
will	be	used	on	a	boat	 to	monitor	 its	position	while	at	anchor.	An	alarm
will	 sound	 when	 the	 vessel	 is	 drifting.	 There	 are	 numerous	 other
examples	 of	 Internet	 of	 things	 (IoT)	 projects,	 where	 Python	 is	 an
important	part	of	the	overall	effort	to	build	something	new	and	useful.

Driscoll:	 Do	 you	 see	 Python	 becoming	 a	 popular	 language	 for
embedded	programming	now	that	MicroPython	is	becoming	popular?

Lott:	Yes,	MicroPython	and	the	pyboard	are	exciting	new	developments.
Raspberry	Pis	also	run	Python	nicely.

Steven	Lott:	'MicroPython	and	the	pyboard	are	exciting	new

developments.'

Processors	 continue	 to	 become	 faster	 and	 smaller,	 which	 means	 that
more	sophisticated	 languages	 can	 be	 used.	One	 of	 the	 first	 computers
that	I	ever	used	had	20K	of	memory	and	was	the	size	of	an	upright	piano.
My	first	Apple	II	Plus	had	64K	of	memory	and	covered	the	top	of	a	desk.
A	pyboard	has	1M	of	ROM	and	192K	of	RAM	in	a	package	which	is	 just
over	two	square	inches.

Driscoll:	Thank	you,	Steven	Lott.

Chapter	15.	Oliver	Schoenborn

Oliver	Schoenborn	 is	 a	 Canadian	 software	 developer	 and	 independent
software	 developer.	 Past	 roles	 have	 included	 working	 as	 a	 simulation
consultant	 at	CAE	 Inc	and	as	a	 visualization	 software	developer	 at	 the
National	 Research	 Council	 Canada.	 Oliver	 is	 passionate	 about
connecting	 with	 the	 business	 and	 government	 communities.	 He	 is	 the
author	 of	 Pypubsub	 (hosted	 at	 https://github.com/schollii/pypubsub),	 a
Python	package	that	gives	users	a	simple	way	to	decouple	parts	of	their
event-based	 application.	 Oliver	 regularly	 updates	 Pypubsub	 and
contributes	to	the	wxPython	mailing	list.

Discussion	themes:	Pypubsub,	Python	in	AI,	Python's	future.

Catch	up	with	Oliver	Schoenborn	here:	@schollii2

Mike	Driscoll:	So	let's	start	with	your	background.	Why	did	you	decide	to
become	a	programmer?

Oliver	Schoenborn:	Well,	a	buddy	at	school	was	selling	his	Apple	IIe.	I
had	never	done	programming	before	that,	but	I	decided	to	buy	his	used
computer.	I	was	14	at	the	time.

I	remember	being	quite	intrigued	by	the	BASIC	and	assembly	language.
There	 was	 a	 command	 prompt	 and	 you	 could	 somehow	 drop	 into	 the

https://github.com/schollii/pypubsub

assembly	 level	 to	 write	 assembly.	 I	 read	 the	 many	 manuals	 for	 the
computer,	which	described	how	to	program	 it.	 I	 tried	 to	write	some	 little
programs	and	eventually	got	into	Pascal.	I	really	enjoyed	it.

In	 my	 fifth	 year	 of	 high	 school,	 a	 school	 teacher	 asked	 us	 to	 do
something	 with	 a	 language	 called	 Logo.	 It	 was	 basically	 graphics
commands	to	move	a	pen	right,	left,	draw	lines	etc.	I	created	a	simulation
loop	in	there	so	that	I	could	simulate	a	little	aircraft	flying	and	dropping	a
bomb.	It	was	very	simple	but	it	was	fun,	and	the	teacher	was	impressed!

So	 that's	 how	 I	 got	 into	programming.	 It	was	more	or	 less	a	 chance	 in
some	ways.	At	 that	point,	 programming	was	still	 just	a	hobby,	because
my	goal	was	to	get	into	physics.

Driscoll:	So	how	did	you	end	up	getting	into	Python	itself?

Schoenborn:	At	work	we	had	a	project	that	needed	some	graphical	user
interface	development	on	Windows.

For	 the	previous	10	 years,	 I	 had	mostly	 programmed	 in	C++	on	UNIX,
developing	command	 line	 and	 3D	graphics	 applications,	 but	 not	menu-
based	 applications	 (except	 for	 a	 GUI	 written	 in	 Java	 AWT).	 I	 really
dreaded	 MFC,	 so	 I	 started	 looking	 into	 options	 on	Windows	 for	 doing
that.	 I	 came	across	Python	 (because	 it	was	platform	 independent),	and
Tk.

Oliver	Schoenborn:	'Python	was	the	perfect	fit.	As	soon	as	I	saw	the
language,	I	really	related	to	its	simple	and	clean	syntax.'

Python	was	the	perfect	fit.	As	soon	as	I	saw	the	language,	I	really	related
to	its	simple	and	clean	syntax.	I	don't	know	if	 it	 just	matched	my	way	of
thinking.	I	also	found	wxPython	and	saw	that	its	API	seemed	to	be	rather
solid.	I	fell	in	love	with	Python	and	the	ability	it	provided	to	quickly	create
interfaces	using	wxPython.

So	 how	 I	 got	 into	 Python	 was	 through	 a	 work	 project	 that	 had
requirements	that	were	more	easily	achievable	in	Python	than	in	C++.

Driscoll:	Was	this	how	you	got	involved	with	the	wxPython	community	as
well?

Schoenborn:	 That's	 right.	 I	 developed	my	 first	 application	 in	wxPython
as	a	result	of	that	project.	It	was	an	application	for	analyzing	seat	heating
and	 air-conditioning.	 Back	 then,	 automobile	 seat	 comfort	 was	 being
prototyped	using	this	kind	of	software.

So	I	used	wxPython	and	I	thought	that	the	publish-subscribe	pattern	that
it	supported	was	a	really	awesome	idea.	I	got	involved	more	heavily	with
the	wxPython	development	by	taking	over	the	Pubsub	component	of	that
library.

Oliver	Schoenborn:	'I	got	involved	more	heavily	with	wxPython
development	by	taking	over	the	Pubsub	component	of	the

wxPython	library.'

Driscoll:	So	was	Pubsub	started	by	someone	else?

Schoenborn:	 Yes,	 Robb	 Shecter	 created	 the	 first	 version	 of	 Pubsub.
There	 were	 limitations	 that	 I	 needed	 to	 get	 around	 (mostly,	 a	 memory
leak:	subscribers	were	not	released	after	they	were	no	longer	needed	by
the	application),	and	I	proposed	some	significant	patches	and	unit	tests.
Robb	was	looking	for	someone	to	take	over	wx.lib.pubsub.	So	I	did	that.

Driscoll:	 Is	 that	 also	when	Pubsub	 got	 split	 into	 its	 own	module	 away
from	wxPython?

Schoenborn:	 I	 think	 it	was	 a	 couple	 of	 years	 later.	Pubsub	was	 pretty
much	 a	 standalone	 sub-package,	 whereas	 most	 other	 wx.lib	 sub-
packages	 required	 other	 wxPython	 components.	 I	 wanted	 to	 make
wx.lib.pubsub	available	to	a	broader	set	of	developers,	and	others	on	the
wxPython	developers	group	agreed.

Oliver	Schoenborn:	'Pubsub	was	pretty	much	a	standalone
component.'

Driscoll:	Were	you	guys	aware	of	the	PyDispatcher	projects	at	that	time?

Schoenborn:	Well,	I	did	become	aware	of	PyDispatcher	at	some	point	in
those	years.	It	was	quite	a	different	approach.

I	 remember	 that	 at	 the	 time	 it	 was	 not	 topic-	 based.	 Pubsub	 was
sufficiently	different	 from	 it	 to	be	 justified	as	a	separate	package.	 It	has
been	a	while	since	I	have	looked	at	it,	but	it	would	be	interesting	actually
to	see	where	PyDispatcher	is	at	now.

There	 are	 several	 projects	 now	 that	 use	 the	 basic	 idea	 of	 topics,
messaging,	and	publish/subscribe	(such	as	MQTT	and	Google	pub/sub),
but	at	 the	network,	 that	 is	 the	 inter-application	 level,	whereas	Pypubsub
is	 at	 the	 application	 inter-component	 level.	 They	 have	 evolved	 much
more	 than	 Pubsub	 has	 had	 to	 evolve;	 Pypubsub	 is	 mature	 and
production	quality.

Driscoll:	 So	 I	 noticed	 that	 when	 you	 did	 that	 interview	with	me	 in	 the
PyDev	 of	 the	 Week	 series,	 you	 had	 switched	 to	 PyQt.	 How	 did	 that
happen?

Schoenborn:	That	was	some	time	in	2013.	We	basically	had	this	project
that	 involved	 modernizing	 an	 old	 prototype	 that	 our	 client	 had.	 The
application	 involved	 user-defined	 scripts	 that	 could	 be	 run	 by	 the
prototype	 and	 those	 were	 all	 written	 in	 Python.	 So	 we	 had	 to	 either
embed	a	Python	interpreter,	or	translate	huge	Python	scripts	into	another
language,	while	guaranteeing	the	same	outputs,	(a	task	that	could	not	fit
within	the	scope	of	the	project	budget).

Oliver	Schoenborn:	'We	had	to	either	embed	a	Python	interpreter,	or
translate	huge	Python	scripts.'

The	 graphics	 interface	 had	 to	 be	 very	 sophisticated.	 At	 the	 time,	 the
prototype	 had	 a	 3D	 component,	 where	 the	 user	 could	 rotate	 model
components	 in	a	3D	environment.	We	needed	to	 integrate	the	graphical
user	 interface	with	menus	and	 list	 views	as	a	sophisticated	2D	and	3D
canvas,	where	the	user	could	interact	with	things.

We	wanted	something	 that	was	stable,	powerful,	and	well-documented,
with	 an	 active	 community	 behind	 it.	 At	 the	 time,	 WPF,	 wxPython,	 and
PyQt	 (or	Qt,	 for	a	C++	 infrastructure)	were	 the	main	candidates	 for	us.
On	 the	 C#	 side	 there	 was	 WPF.	 We	 looked	 at	 a	 number	 of	 different
approaches	and	in	the	end	it	was	between	wxPython	and	PyQt.

PyQt	 seemed	 to	 have	 more	 powerful	 integration	 of	 a	 3D	 environment
than	 wxPython	 did.	 PyQt	 also	 seemed	 to	 be	 quickly	 growing	 towards
supporting	a	3D	scene	graph,	whereas	in	wxPython	I	would	have	had	to
use	OpenGL,	and	this	would	have	been	more	complicated.

Python	 3	was	 required,	 but	 I	 think	 that's	when	Robin	Dunn	 decided	 to
create	wxPython	3,	and	so	the	work	on	supporting	Python	3	was	still	very
early.	 Basically,	 there	 was	 only	 Python	 2.7	 for	 wxPython	 and	 the
availability	 of	 Qt	 Designer	 was	 also	 a	 factor.	 PyQt	 had	 a	 very
sophisticated	interface	for	creating	designs.

Oliver	Schoenborn:	'PyQt	definitely	seemed	to	have	momentum.'

An	 XML-driven	 user	 interface	 description	 was	 supported	 by	 both	 PyQt
and	WPF.

PyQt	definitely	seemed	to	have	momentum,	and	it	supported	commercial
use	of	the	package,	which	was	important	for	that	project.	I	had	had	some
negative	experiences	with	WPF,	fighting	with	the	black-magic	that	it	used
in	 order	 to	 bind	 properties	 to	 widgets.	 Also,	 there	 were	 signs	 that
IronPython	was	unmaintained.	All	things	considered,	we	picked	PyQt.	We
did	not	regret	the	choice.

Driscoll:	Going	back	 to	 the	Pypubsub	part,	 I	 forgot	 to	ask	you,	did	you
have	 any	 challenges	while	 running	 that	 open	 source	 project	 that	 you'd
like	to	talk	about?

Schoenborn:	Well,	 it	wasn't	 really	a	 technical	challenge,	but	 I	did	have
an	 interesting	 experience	 from	 an	 open	 source	 development	 point	 of
view.	It	reminded	me	that	you	don't	really	control	the	space	that	you	can
occupy	in	the	open	source	world.

Oliver	Schoenborn:	'You	don't	really	control	the	space	that	you	can
occupy	in	the	open	source	world.'

What	happened	was	 that	Pypubsub	was	on	SourceForge,	where	 it	was
named	simply	"pubsub",	because	that's	how	it	was	named	in	wxPython.
On	PyPI	 I	 had	named	 it	 pypubsub.	A	couple	of	 years	 later,	 I	 found	out
that	 there	was	 another	 project	 on	SourceForge	 called	Pypubsub,	 but	 it
hadn't	gone	anywhere.	Basically,	it	was	a	dead	project	and	sometimes	it
led	to	some	confusion	on	Stack	Overflow	and	the	two	pypubsub	forums.

That	 took	some	effort	 to	straighten	out.	 I	had	 to	contact	 the	author	and
explain	what	was	going	on.	Eventually,	he	agreed	and	I	was	able	to	take
ownership	of	the	"pypubsub"	name	on	SourceForge.

In	 the	meantime,	GitHub	had	become	 really	popular.	Some	people	had
copied	 my	 Pypubsub	 source	 code	 into	 GitHub,	 just	 to	 have	 it	 handy.
Nothing	wrong	with	that,	but	since	these	forks	were	not	to	add	features,
when	I	actually	decided	to	move	Pypubsub	to	GitHub,	I	had	to	 let	some
devs	 know	 that	 Pypubsub	 was	 finally	 available	 there.	 I	 explained	 that
there	 probably	was	 no	 longer	 a	 good	 reason	 to	 have	 separate	 copies.
This	was	an	interesting	aspect	of	open	source.

Driscoll:	How	much	of	a	commitment	was	the	project?

Schoenborn:	Well,	 there	have	been	various	periods	during	 the	past	15
years	when	I	made	major	changes	 to	 the	 implementation	and	extended
the	 API:	 fixing	 bugs,	 updating	 documentation,	 and	 make	 sure	 that	 all
tests	work	when	there	was	a	new	release	of	Python.	Finding	the	time	to
do	those	things	was	often	a	challenge.	It	 is,	I	guess,	another	 interesting
aspect	of	working	on	a	volunteer	basis.

Evolving	the	API,	while	maintaining	backwards	compatibility,	was	mostly
requested	by	Robin,	the	wxPython	author,	and	this	was	important	to	me
even	if	Pypubsub	was	technically	separate	from	wxPython.	It	was	a	major
technical	 challenge	 to	 make	 that	 possible.	 This	 led	 to	 the	 concept	 of
Pubsub	supporting	three	APIs	or	messaging	protocols.

Oliver	Schoenborn:	'It	was	a	major	technical	challenge.'

First,	 there	 was	 backwards	 compatibility	 with	 the	 very	 first	 version	 of
Pubsub.	That	was	what	I	called	the	version	1	messaging	protocol.	Then
there	 was	 the	 sort	 of	 "modern"	 Pubsub,	 which	 had	 significant
improvements	in	the	API,	and	there	were	two	APIs	for	that.

One	was	called	arg1	because	all	message	data	was	in	one	big	blob	given
as	 one	 argument	 to	 the	 sendMessage()	 function.	 The	 other	 was	 called
kwargs	 because	message	 data	was	 sent	 via	 keyword	 arguments	 in	 the
sendMessage()	 function.	 That	 was	 the	 default	 when	 you	 installed
Pypubsub	standalone.

A	 vanilla	 installation	 of	wxPython	would	 install	 the	 arg1	 API,	 since	 that
one	was	 almost	 100%	 compatible	with	 the	 version	 1	 API.	 A	 setup	 flag
could	 be	 set	 in	 the	 application	 code,	 before	 importing	 Pypubsub,	 to
choose	the	kwargs	protocol..

So	getting	all	that	to	work	was	a	major	headache.	I	had	to	sort	of	hijack
the	import	system	a	little	bit,	basically	to	allow	for	the	user	to	say,	"Well	in
this	application	I	want	the	arg1	protocol	and	in	this	wxPython	application,
I	want	the	kwargs	protocol.."

I	 also	added	some	code	 to	help	 transition	a	wxPython	application	 from
version	1	to	arg1,	to	kwargs	protocol.	That	was	tough	too.

I	really	wish	that	I	hadn't	had	to	do	all	that,	but	I	felt	at	the	time	that	it	was
a	necessary	evil..	Other	than	code	complexity,	it	made	the	import	system
used	 by	 Pypubsub	 rather	 complicated,	 which	 could	 interfere	 with
freezing.

Driscoll:	Why	did	you	focus	on	making	this	transition	possible?

Schoenborn:	Because	 I	had	 to	go	 through	 that	challenge	 in	one	of	my
own	 applications	 on	 a	 project.	 It	 was	 using	 the	 arg1	 protocol	 and
migrating	 it	 to	 the	new	kwargs	 protocol.	Although	not	 complex,	 this	was
somewhat	 tedious	 and	 error	 prone.	 It	 was	 worth	 adding	 these	 error
checkers	and	going	through	the	transition,	due	to	the	advantages	of	 the
kwargs	API.

I	had	the	concept	of	a	parameter	that	you	could	set	when	you	imported
Pypubsub.	 This	 would	 configure	 Pypubsub	 to	 do	 some	 "in-between"

tasks,	 that	 were	 useful	 during	 a	 transition	 between	 the	 two	messaging
protocols.	The	bridge	would	allow	you	 to	gradually	move	towards	being
fully	kwargs,	with	some	helpful	facilities	along	the	way.

Oliver	Schoenborn:	'The	code	was	certainly	more	complex	than	I
wanted	it	to	be.'

Getting	to	a	stable	API	took	quite	a	bit	of	effort.	The	frustration	was	that
the	code	was	certainly	more	complex	than	I	wanted	it	to	be,	so	it	was	a
harder	 to	maintain	and	harder	 to	 trace	 calls	 through	Pypubsub.	Also,	 it
caused	 some	 challenges	 for	 people	 who	 wanted	 to	 freeze	 their
application.

As	soon	as	I	was	able	to,	I	suggested	we	deprecate	all	of	that	old	stuff,
since	 it	was	 only	 useful	 for	 the	 wxPython	 app	 with	 the	 old	 API.	 Robin
agreed.	 In	2016,	 I	dropped	all	support	 for	version	1	and	arg1	protocols,
allowing	for	a	major	clean	up	and	the	simplification	of	the	code	base.	So
now	there's	just	one	API.	This	is	v4	of	Pypubsub.

Driscoll:	 So	 can	 you	 tell	 me	 about	 some	 other	 Python	 projects	 that
you've	been	involved	with	lately?

Schoenborn:	Sure,	one	 is	a	 really	cool	 closed-source	project,	which	 is
very	 challenging	 technically,	 with	 a	 very	 sophisticated	 GUI.	 I	 actually
mentioned	it	 indirectly	 in	discussing	the	reason	for	working	with	PyQt	 in
recent	years.

The	 application	 shows	 a	 canvas	 on	 which	 you	 can	 drop	 boxes	 and
connect	 them	 together	 in	different	ways.	The	difference	 from	a	 tool	 like
Visio	is	that	the	user	can	program	these	boxes	to	change	in	time,	like	an
animation,	to	represent	a	process.

The	user	does	this	by	defining	Python	scripts.	The	application	adds	a	live
Python	namespace	to	each	user	script,	so	that	the	user	can	dynamically
query	 the	 underlying	 model	 (such	 as	 code	 completion	 on	 properties
dynamically	changed	in	the	model).

Oliver	Schoenborn:	'The	application	adds	a	live	Python	namespace
to	each	user	script,	so	that	the	user	can	dynamically	query	the

underlying	model.'

So	there's	a	very	sophisticated	interface	for	creating	model	components,
adding	them,	and	 linking	 them.	There	 is	also	a	very	sophisticated	undo
function	that	covers	all	the	different	aspects	of	model	editing.

Oliver	Schoenborn:	'	As	usual,	there	was	10%	of	the	feature	that
occupied	90%	of	its	dev	time.'

We	coupled	the	view	to	the	undo/redo	so	that	the	user	could	always	see
what	 was	 going	 to	 be	 undone,	 or	 redone,	 as	 they	 navigated	 their
document.	 This	was	 an	 interesting	 challenge,	 and	 as	 usual,	 there	 was
10%	of	the	feature	that	occupied	90%	of	its	dev	time.

The	application	 is	 a	 simulation	 system,	 so	 it's	 not	 just	 creating	 lines	 or
boxes.	There	are	interface	components	to	manage	the	simulation,	that	is,
the	changing	of	the	model	in	time,	restoring	it	to	its	initial	state,	seeing	the
queue	of	changes,	etc.

So	 there	 is	a	very	 large	set	of	 functionality	 in	 the	application.	But	PyQt
has	been	awesome	to	work	with	in	that	respect.

Driscoll:	Could	you	explain	a	little	more	about	using	Qt	for	this	project?

Schoenborn:	 Yes,	 Qt's	 Graphics	 View	 has	 been	 really	 impressive	 in
terms	of	what	it	has	allowed	us	to	do.

I	remember	in	the	beginning,	it	was	not	always	obvious	how	to	do	certain
things	in	Qt.	For	example,	in	a	canvas-based	application,	where	you	can
do	so	many	different	things,	it's	super	useful	to	have	a	state	machine	to
manage	 what	 can	 be	 done	 at	 any	 given	 moment.	 There	 is	 no
documentation	 that	explains	 this	because	 it	 is	something	 that	you	 learn
over	the	years	as	a	useful	technique.	Note	that	Qt	has	built-in	support	for
state	machines,	but	it	wasn't	sufficiently	powerful	for	our	needs.

A	state	machine	allows	you	to	define	states	in	which	only	certain	actions
are	possible.	So	in	the	"creating	line"	state,	the	only	thing	you	can	do	is
cancel	creation,	drag	 the	mouse,	or	select	 the	 line	 target.	That's	where
the	 state	 machine	 shines.	 Without	 it,	 your	 code	 ends	 up	 an
unmaintainable	 spaghetti.	 Troubleshooting	 and	 extending	 with	 new
actions	is	so	much	simpler.

Although	the	Qt	docs	are	excellent,	there	are	things	you	figure	out	as	you
go.	Sometimes	you	say,	"Oh	yeah,	I	finally	understand	how	to	do	this.	I'm
going	 to	backtrack	a	bit	and	 fix	 things."	You	end	up	with	a	more	 robust
implementation	that	can	really	support	the	next	level	of	features.

Oliver	Schoenborn:	'You	end	up	with	a	more	robust	implementation
that	can	really	have	the	next	level	of	features.'

I'm	starting	to	get	kind	of	familiar	with	all	of	the	widgets	that	Qt	has.	There
was	a	nasty	bug	that	we	found,	when	we	upgraded	PyQt,	that	caused	a
whole	interface	to	show	all	sorts	of	lines	as	you	dragged	pieces	around.
Needless	 to	 say,	 that	 was	 a	 problem,	 but	 we	 really	 needed	 to	 update
PyQt	for	other	features.

We	 traced	 the	 problem	 back	 to	 the	 C++	 layer	 and	 by	 some	 incredible
stroke	of	 luck,	there	was	a	workaround:	 there	was	one	 line	of	code	that
we	just	had	to	put	in	our	application	at	Python	level.	We	didn't	even	need
to	 change	 the	 PyQt	 source	 code.	 As	 long	 as	 we	 had	 that	 one	 line	 of
code,	 then	 the	 bug	 would	 go	 away.	 I	 submitted:
https://bugreports.qt.io/browse/QTBUG-55918.

Another	very	interesting	aspect	of	using	Qt	was	unit	testing.	We	needed
unit	 tests	 for	 the	 GUI	 side	 of	 the	 application.	 We	 used	 the	 excellent
pytest,	and	had	one	test	suite	for	the	core	business	logic,	and	one	for	the
GUI	components.	Unit	testing	a	GUI	can	be	really	challenging:	you	have
to	script	user	actions.

Luckily,	Qt	makes	 this	 relatively	easy,	 in	 that	you	can	easily	 trigger	any
widget	event	just	by	calling	a	method.	But	being	event	based,	we	needed
a	way	to	define	a	bunch	of	user	actions,	with	the	expected	outcome.	So	I
created	a	library	to	support	doing	this.	Unfortunately,	source	is	closed,	so

https://bugreports.qt.io/browse/QTBUG-55918

I	could	not	share	the	code,	but	 I	mentioned	the	 idea	on	the	PyQt	 forum
and	some	people	implemented	their	own	concept	of	it.

Driscoll:	Python	is	one	of	the	major	languages	being	used	in	the	AI	and
machine	learning	boom.	What	do	you	think	is	behind	this?

Schoenborn:	 I	would	say	 that	 it's	 the	 "Olympian"	nature	of	Python	 that
makes	 it	good	 for	AI	and	machine	 learning.	Python	happens	 to	be	very
strong	in	many	of	the	necessary	elements,	instead	of	just	one	or	two.

Oliver	Schoenborn:	'It's	the	"Olympian"	nature	of	Python	that	makes
it	good	for	AI	and	machine	learning.'

For	 example,	 Python	 can	 be	 used	 for	 functional,	 procedural,	 or	 object-
oriented	coding,	in	any	combination,	and	the	code	is	still	understandable
and	 clean.	 Moreover,	 no	 compilation	 needed	makes	 the	 exploration	 of
algorithms	 and	 data	 so	 easy:	 you	 just	 modify	 the	 code	 and	 re-run	 the
script.

Finally,	 Python	 provides	 powerful	 abstractions	 using	 a	 simple	 syntax.
Maybe	I'm	biased,	but	I	think	that	Python	is	at	the	top	in	this	respect.	I'm
big	 on	 explicit	 and	 clean	 code,	 and	 on	 refactoring	 and	 testing.	 Being
strong	at	all	of	these	things	makes	Python	the	perfect	language	for	AI.

Mike	 Driscoll:	 What	 could	 be	 done	 to	 make	 Python	 a	 better
language	for	AI	and	machine	learning?

Schoenborn:	 A	 language	 is	 most	 useful,	 in	 a	 given	 problem	 domain,
when	the	abstractions	provided	match	those	of	the	problem	domain.

So	if	deep	learning	uses	neural	networks,	then	having	a	generic	concept
of	 a	 neural	 net	 could	 be	 really	 useful..	 This	 is	 currently	 provided	 by
libraries	 like	 TensorFlow.	 But	 perhaps	 as	 machine	 learning	 algorithms
improve,	 a	 generic	 abstraction	 for	 a	 neural	 net	 will	 emerge	 that	 can
become	a	basic	data	structure	like	lists	and	maps.

Also,	I	think	we	need	the	ability	to	ask	the	AI/machine	learning	functions,
"How	did	you	get	to	this	result?"	That's	how	humans	validate	conclusions.

They	 are	 aware	 of	 the	 logic	 they	 used,	 they	 can	 verbalise	 it,	 another
person	can	follow	it,	and	they	can	verify	its	correctness.

Driscoll:	Many	people	I	have	talked	to,	and	even	people	at	PyCon,	have
put	a	lot	of	emphasis	on	Python	growing	in	the	data	science	field.	Are	you
seeing	that	in	what	you're	doing,	or	can	you	give	me	any	kind	of	opinion
one	way	or	the	other?

Schoenborn:	 Yeah,	 Python	 is	 really	 growing	 in	 that	 field.	 Tools	 like
Jupyter,	 Anaconda,	 and	 scikit-learn	 are	 major	 reasons	 for	 this,	 in	 my
opinion.

Probably	in	combination	with	the	fact	that	with	large	compute	power,	the
speed	of	the	language	no	longer	matters	so	much.	Python	can	be	used	in
embedded	systems,	 so	 in	 principle	 some	predictive	 analytics	 based	 on
trained	machine	models	can	happen	in	the	devices	themselves.

Oliver	Schoenborn:	'With	large	compute	power,	the	speed	of	the
language	no	longers	matters	so	much.'

There	was	a	really	interesting	presentation	at	PyCon	in	2017.	A	presenter
was	 surveying	 the	 plotting	 libraries	 landscape.	 The	 survey	 started	 with
matplotlib	 and	 everything	 around	 that.	 Then	 the	 survey	 moved	 on	 to
some	 of	 the	 JavaScript	 libraries,	 in	 some	 cases	 related	 to	 Python
libraries.	So	this	was	really	fascinating,	because	there	is	a	lot	of	interest,
even	 for	my	own	clients,	 in	 using	pandas,	NumPy,	and	matplotlib.	This
showed	 that	 there	are	many	different	extensions	or	 layers	 that	you	can
add.

Speaking	 from	 a	 client	 perspective,	 you	 want	 a	 certain	 amount	 of
capability	 and	 you	 don't	 want	 to	 be	 limited	 to	 only	matplotlib,	 because
there's	so	much	more	that's	available.	You	also	know	that	you	don't	want
to	be	reinventing	the	wheel,	so	you	must	make	sure	that	what	you	build	is
sufficiently	generic.	If	you	want	to	do	statistical	analysis,	then	you	might
want	 to	 do	 it	 with	 Jupyter	 or	 R.	 You	 always	 try	 to	 get	 a	 sense	 of	 the
applications	that	are	providing	these	capabilities.

You	don't	want	to	force	the	user	to	use	matplotlib,	because	it	is	so	diverse

and	the	API	is	so	advanced.	There's	no	way	that	you	can	provide	a	GUI
component	that	supports	everything	that	matplotlib	can	do.

Python	is	such	an	expressive	language	and	so	easy	to	learn.	I	think	that's
why	Python	is	so	big	now	in	research	and	applied	research.	It's	easy	to
apply,	sophisticated	and	solves	technical	problems.

Oliver	Schoenborn:	'Python	is	such	an	expressive	language	and	so
easy	to	learn.	I	think	that's	why	Python	is	so	big	now	in	research

and	applied	research.'

Python	gives	you	all	 of	 the	 tools	 to	make	and	provide	something	 that's
robust	and	deterministic.	We	can	measure	performance,	find	bottlenecks
or	find	memory	leaks.	There	are	so	many	things	that	really	make	Python
a	great	tool.

Driscoll:	 Have	 there	 been	 any	 other	 particularly	 memorable	 PyCon
presentations?

Schoenborn:	 There	 was	 another	 interesting	 PyCon	 2017	 presentation
about	 the	Global	 Interpreter	Lock	 (GIL).	 In	 theory,	getting	 rid	of	 the	GIL
would	be	so	great:	we	could	run	Python	threads	on	separate	cores.

Oliver	Schoenborn:	'In	theory,	getting	rid	of	the	GIL	would	be	so
great.'

But	 the	 GIL	 solves	 a	 very	 practical	 problem:	 synchronizing	 access	 to
Python	data	structures.	You	start	digging	into	the	GIL	by	analyzing	what
would	 be	necessary,	 and	what	would	 be	 the	 gain	 versus	 the	 cost.	 You
realize	 that	 the	GIL	 really	 simplifies	 a	 lot	 of	 things	 and	 may	 well	 be	 a
reason	that	it's	so	easy	to	do	complicated	things	with	Python.

You	can	basically	get	concurrent	programming,	without	all	the	catches	of
multi-threaded	 programming.	 Most	 often	 in	 a	 large	 class	 of	 problems,
that's	what	you	want.	 In	the	other	class	of	problems,	you	want	 to	 tackle
trivially	 parallelizable	problems.	 It's	 basically	where	 you	 are	 subdividing

the	solution	into	tasks.	There's	very	little	coupling	between	the	tasks	and
you	can	do	it	very	easily.

Monte	Carlo	is	one	example	because	it's	very	important	in	simulation	and
business	processes.	You	basically	want	 to	run	a	 large	number	of	 things
many	 times,	with	 very	 little	 variation	between	 them.	Python	makes	 that
easy	too.

For	 trivially	parallelizable	problems,	you	need	to	run	those.	You	can	run
them	 on	 separate	 cores,	 just	 using	 a	 multiprocessing	 module.	 Yes,
there's	even	that	capability!	So	many	different	things	that	are	complex	in
principle,	 are	 simple	 in	 Python,	 which	 makes	 it	 so	 usable	 for	 number
crunching	tasks.

Oliver	Schoenborn:	'So	many	different	things	that	are	complex	in
principle,	are	simple	in	Python.'

But	I	do	think	that	there	should	be	an	easier	way	to	run	Python	code	on
multiple	 cores	 without	 having	 to	 use	 the	 module.	 There	 should	 be
language	 constructs	 that	 work	 hand	 in	 hand	 with	 the	GIL.	 There	 is	 no
technical	infeasibility	there;	it's	just	that	there	has	to	be	enough	concerted
effort	to	make	it	happen.

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Schoenborn:	The	optional	 type	annotation	system,	asynchronous	calls,
and	the	multiprocessing	module.

Driscoll:	Which	language	is	Python's	biggest	competitor	would	you	say?

Schoenborn:	 JavaScript.	 It's	 just	 so	 unfortunate	 that	 JavaScript
dominates	the	web	side	of	things.	There	are	these	two	major	contenders:
JavaScript	 on	 the	web	and	Python	 in	 technical	 computing.	 If	 you	 really
need	the	raw	compute	speed,	then	you	can	do	C++.

You	can	get	major	speedups	 in	Python,	by	writing	some	C++	code	and
ingesting	 it	 in	 Python	 via	 SWIG	 and	 SIP.	 There	 is	 also	 Cython.	 It's	 so
easy	to	work	at	a	high	level	of	abstraction	with	Python,	with	that	compute

power	when	you	need	it	from	C++.

I	 don't	 know	where	 that's	 going	 to	go.	 I	 think	 that	 a	 lot	 of	 things	would
have	 to	 happen	 on	 the	 JavaScript	 side	 to	make	 it	 as	 powerful	 and	 as
simple	 to	 use	 as	 Python,	 but	 on	 the	 other	 hand,	 I	 can't	 see	 Python
becoming	a	supported	language	in	the	web	browser,	because	JavaScript
is	 just	 too	 established.	Maybe	 if	Google	 decides	 to	make	Python	 code
runnable	from	Chrome.

Oliver	Schoenborn:	'A	lot	of	things	would	have	to	happen	on	the
JavaScript	side	to	make	it	as	powerful	and	simple	to	use	as	Python.'

Driscoll:	So	is	Python	here	to	stay?

Schoenborn:	 I	 think	 that	 Python	 is	 here	 to	 stay.	 Python	 is	 too	 good	 a
language	 and	 its	 community	 has	 developed	 good	 quality	 and	 solid
libraries,	 and	 language	 evolution	 processes	 via	 PEPs.	 There	 is	 a	 very
rigorous	process	for	Python	and	a	 lot	of	smart	people	working	on	 it.	So
it's	here	to	stay	for	sure.

Driscoll:	What	 do	 you	 think	 about	 the	 long	 life	 of	 Python	 2.7?	 Should
people	move	over	to	the	latest	version?

Schoenborn:	 The	 long	 life	 of	 Python	 2.7	 is	 most	 irritating!	 Big
influencers,	 like	Ubuntu	 and	Google	Cloud	Platform,	must	 start	making
Python	3.6	their	default.

Oliver	Schoenborn:	'The	long	life	of	Python	2.7	is	most	irritating!'

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Schoenborn:	 I	 would	 like	 to	 see	 an	 optional	 static	 typing	 system	with
type	 inference	 (so	 types	do	not	need	declaration),	 true	parallelism,	and
an	optional	compilation	mode.

The	combination	of	optional	static	typing,	compilation,	and	type	inference

would	 allow	 the	 language	 to	 stay	 simple	 when	 starting,	 and	 get	 more
rigorous	when	needed.

It	could	also	provide	massive	gains	in	speed	and	productivity:	it's	always
a	 time	 saver	 to	 be	 able	 to	 point	 to	 any	 object	 and	 know	 exactly	 what
operations	 are	 either	 available	 on	 it,	 or	 required	 of	 it	 (within	 a	 function
signature).	Realistically,	I	don't	know	if	a	compilation	mode	(even	JIT)	that
freezes	types	is	feasible,	but	there	are	some	incredibly	smart	people	out
there,	so	I	would	not	discount	it.

With	regards	to	parallelism,	I'm	referring	to	the	ability	to	run	Python	code
on	multiple	cores	 simultaneously,	while	 keeping	 the	GIL.	Sure,	 there	 is
the	multiprocessing	module,	but	I'm	talking	about	constructs	built	into	the
language	itself	as	first-class	citizens.

Driscoll:	Thank	you,	Oliver	Schoenborn.

Chapter	16.	Al	Sweigart

Al	Sweigart	 is	 an	 American	 software	 developer	 and	 the	 creator	 of	 two
cross-platform	Python	modules:	Pyperclip,	 for	 copying	and	pasting	 text,
and	 PyAutoGUI,	 for	 controlling	 the	 mouse	 and	 keyboard.	 He	 is	 a
successful	author	who	has	published	four	books	on	Python	programming
and	a	book	on	Scratch,	a	programming	language	for	children.	Al's	books
teach	beginners	how	to	code	and	he	is	passionate	about	helping	young
people	and	adults	 to	develop	programming	skills.	Al	 focuses	on	making
programming	knowledge	more	accessible	and	regularly	speaks	at	Python
conferences.

Discussion	themes:	Python	books,	Python	packages,	v2.7/v3.x.

Catch	up	with	Al	Sweigart	here:	@AlSweigart

Mike	Driscoll:	So	how	did	you	become	a	programmer?

Al	Sweigart:	 I	was	a	kid	who	loved	the	8-bit	Nintendo.	Then	a	friend	of
mine	 found	a	book	 in	 the	elementary	school	 library	about	programming
games	in	BASIC.	I	was	hooked.

I	sort	of	hate	 telling	people	how	 I	got	 into	programming,	because	 I	was
one	of	those	people	who	started	when	they	were	a	young	kid.	I	worry	that
telling	my	story	makes	people	think,	"Oh	no,	I	haven't	been	programming

since	I	was	three	weeks	old,	so	it's	too	late	for	me.	I'll	never	catch	up!"

Al	Sweigart:	'If	anything,	programming	has	become	so	much	easier
than	it	was	20	years	ago.'

If	 anything,	 programming	 has	 become	 so	 much	 easier	 than	 it	 was	 20
years	 ago.	We	 didn't	 have	Wikipedia	 and	 Stack	 Overflow	 back	 then.	 I
think	 everything	 that	 I	 learned	 about	 programming	 between	 the	 third
grade	and	graduating	high	school,	anybody	could	now	 learn	 in	about	a
dozen	weekends.

Most	 of	my	 programming	 knowledge	 was	 drawn	 from	 that	 one	 book.	 I
tried	to	make	sense	of	the	reference	manual	that	came	with	my	family's
Compaq	386	computer.	I	couldn't	understand	that	manual	at	all.	I	ended
up	never	making	anything	as	impressive	as	the	Nintendo	games	I	played.

Driscoll:	So	how	did	you	end	up	moving	into	Python	itself?

Sweigart:	I	first	picked	up	Python	around	2004.	I	was	looking	at	making
some	web	apps,	and	I	was	mostly	programming	in	PHP	and	Perl,	when	a
friend	pointed	out	Python	to	me.

At	that	time,	I	wanted	to	learn	as	many	different	programming	languages
as	 I	 could,	 and	 Python	 was	 really	 nice.	 I	 loved	 the	 readability	 of	 the
language.	Everything	that	I	used	to	do	in	Perl,	I	started	doing	in	Python.	I
never	 found	a	programming	 language	 that	 I	 liked	 better	 after	 that,	 so	 I
just	stuck	to	Python	and	now	it's	been	over	a	decade.

I	 sometimes	 feel	 that	 I	 need	 to	 actually	 force	 myself	 to	 learn	 different
programming	 languages,	 just	 to	 stay	 on	 top	 of	 things.	 But	 Python	 has
become	my	go-to	 language.	Whenever	 I	have	 to	write	a	quick	script	or
automate	some	really	short	task,	it's	easy	to	use	Python.

Then	again,	 it's	 really	hard	 to	predict	 the	 future	and	 I've	stopped	 trying.
For	instance,	I	really	thought	that	something	would	come	along	to	replace
JavaScript,	 but	 if	 anything,	 it's	 just	 getting	 more	 popular!	 That,	 and	 I
originally	thought	that	 including	cameras	in	cell	phones	was	a	silly	 idea.
So	I've	learned	not	to	try	to	predict	the	future.

Al	Sweigart:	'It's	really	hard	to	predict	the	future	and	I've	stopped
trying.'

Driscoll:	Python	 is	playing	a	major	 role	 in	 the	AI	and	machine	 learning
boom.	Can	you	explain	that?

Sweigart:	 Well,	 not	 to	 fawn	 over	 Python	 too	 much,	 but	 what	 makes
Python	 great	 for	 AI	 are	 the	 things	 that	make	 it	 great	 as	 a	 language	 in
general.

Al	Sweigart:	'What	makes	Python	great	for	AI	are	the	things	that
make	it	great	as	a	language	in	general.'

Python	 is	 easy	 to	 learn	 and	 easy	 to	 use.	 It	 turns	 out	 that	 for	 most
applications	 this	 is	 what's	 important.	 "Powerful"	 is	 a	 meaningless	 term
when	 it	 comes	 to	 programming	 languages,	 because	 every	 language
describes	itself	as	"powerful".

Theoretically,	 there's	 no	 calculation	 that	 one	 language	 can	 do	 that
another	 language	 can't.	 In	 practice	 though,	 you	 need	 a	 human
programmer	 to	 take	 the	 time	 to	 sit	 down	 and	write	 the	 actual	 code.	 A
language	 that	 makes	 that	 easy	 to	 do	 is	 the	 one	 that	 will	 see	 more
adoption,	a	 larger	community,	and	more	 libraries.	So	 it	doesn't	 surprise
me	that	Python	takes	the	lead	in	something	like	machine	learning,	where
so	many	of	the	tools	were	developed	recently.

Driscoll:	What	made	you	decide	to	start	actually	writing	books	about	the
Python	language?

Sweigart:	 In	2008,	my	girlfriend	was	a	nanny	 for	a	10-year-old	kid.	He
wanted	to	learn	how	to	program,	but	he	didn't	really	know	where	to	start.	I
tried	 to	 find	something	on	 the	web	 for	him,	but	 so	much	of	 the	content
back	then	was	aimed	at	professional	software	developers.

So	I	started	writing	a	tutorial,	which	eventually	became	Invent	Your	Own
Computer	 Games	 with	 Python.	 I	 didn't	 want	 to	 bury	 the	 reader	 with
programming	 concepts	 and	 technical	 jargon.	 I	 just	 wanted	 to	 list	 the

source	 code	 to	 a	 game	 and	 then	 explain	 how	 its	 code	 worked.	 I	 kept
adding	more	games	and	eventually	 it	ballooned	 into	book	 length.	 I	self-
published	 it,	 but	 also	 put	 it	 on	 the	 web	 for	 free	 under	 a	 Creative
Commons	license.	People	seemed	to	like	it,	so	I	went	on	to	write	Making
Games	with	Python	and	Pygame.

There's	a	little	cipher	program	in	Invent	Your	Own	Computer	Games	with
Python.	I	thought	putting	a	bunch	of	these	classic	ciphers	together	would
make	a	good	book.	I'd	explain	not	only	how	to	write	code	to	perform	the
encryption,	but	also	how	to	break	the	encryption.	These	ciphers	are	from
ancient	Roman	times,	up	to	the	16th	century,	so	the	average	laptop	today
has	 more	 than	 enough	 computing	 power	 to	 break	 them.	 That	 book
became	Cracking	Codes	with	Python.

After	 I	wrote	that	 third	book,	writing	turned	 into	what	 I	did	with	all	of	my
spare	time.	There	came	a	point	where	 I	could	 take	a	chance,	 leave	 the
software	 developer	 job	 that	 I	 had,	 and	 write	 full-time.	 That	 worked	 out
pretty	well.

Al	Sweigart:	'I	came	up	with	the	right	idea	for	a	book,	at	the	right
time,	and	also	for	the	right	language.'

I	 thought	 that	 I'd	go	back	 to	another	developer	 job	after	a	year	or	so	of
writing,	but	Automate	 the	Boring	Stuff	with	Python	 completely	 blew	me
away	with	its	success.	It	was	mostly	luck.	I	came	up	with	the	right	idea	for
a	book,	at	the	right	time,	and	also	for	the	right	language.	So	a	lot	of	things
just	fell	together.

Driscoll:	Why	did	you	decide	to	self-publish?

Sweigart:	No	Starch	Press	had	approached	me	about	publishing	Invent
Your	 Own	 Computer	 Games	 with	 Python,	 but	 that	 plan	 had	 fallen
through.

I	had	this	half-edited	manuscript,	so	I	finished	editing	it	and	turned	it	into
a	 PDF	 to	 put	 on	 Amazon.	 All	 the	 promotion	 I	 did	 was	 online.	 I'd	 tell
people	about	it	on	forums.	People	didn't	see	it	as	spamming	because	the
PDF	was	also	completely	free	to	download.

Driscoll:	 Do	 you	 think	 that	 the	 success	 of	 Invent	Your	Own	Computer
Games	with	Python	was	due	to	having	the	book	as	a	PDF,	or	as	a	web
page?

Sweigart:	 I	 still	 think	 putting	 the	 book	 online	 for	 free,	 with	 a	 Creative
Commons	license,	led	to	more	people	buying	the	book.	People	could	see
the	 book	 and	 generate	 word	 of	 mouth.	 There	 were	 other	 benefits	 too.
With	 the	 book	 online,	 I	 could	 take	 a	 look	 at	 the	 traffic	 and	 see	 which
chapters	were	getting	the	most	attention.

Al	Sweigart:	'The	most	popular	chapters...were	on	GUI	automation,
web	scraping	and	regular	expressions.	So	when	PyCon	had	calls	for

talk	proposals,	those	were	the	topics	that	I	chose.'

The	most	popular	chapters	on	the	Automate	the	Boring	Stuff	with	Python
site	were	on	GUI	automation,	web	scraping,	and	regular	expressions.	So
when	 PyCon	 had	 calls	 for	 talk	 proposals,	 those	 were	 the	 topics	 that	 I
chose.	That's	how	I	started	speaking	at	the	regional	PyCons	and	then	at
US	PyCon	in	2017.

I've	noticed	that	the	most	popular	topics	in	my	books	are	not	always	the
stuff	 that	 I	 think	 is	 the	 most	 interesting.	 I	 remember	 that	 when	 I	 was
writing	Automate	the	Boring	Stuff	with	Python,	I	thought	that	the	chapter
on	 image	 manipulation	 would	 be	 popular.	 But	 it	 turns	 out	 that	 most
people	don't	need	to	generate	their	own	image	files	from	Python	scripts
as	much	as	I	do.

Al	Sweigart:	'I've	noticed	that	the	most	popular	topics	in	my	books
are	not	always	the	stuff	that	I	think	is	the	most	interesting.'

Driscoll:	What	have	you	learned	as	an	author?

Sweigart:	It's	going	to	be	more	work	than	you	think!	A	lot	of	people	email
me	and	say,	 "Oh	hey,	 I'm	 interested	 in	writing	a	book	on	programming.
Do	you	have	any	advice	for	me?"

I	 don't	 know	 what	 to	 tell	 them.	 I'm	 a	 software	 developer	 by	 training.	 I
know	what	 I	did	and	 that	my	approach	worked	 for	me.	But	 that's	 like	a
lottery	 winner	 advising	 you	 on	 which	 numbers	 to	 pick.	 Automate	 the
Boring	Stuff	with	Python	did	far	better	than	my	other	books.	I'm	not	really
sure	how	well	I	could	reproduce	those	results	for	someone	else.

My	most	recent	book	was	Scratch	Programming	Playground,	which	uses
the	 Scratch	 programming	 tool,	 from	 the	 MIT	 Media	 Lab,	 to	 teach
programming	 concepts	 to	 kids.	 That	 book	 is	 doing	 modestly	 well,	 but
unfortunately	the	audience	for	Scratch	isn't	as	large	as	the	audience	for
Python.

I	 did	 learn	 that	 writing	 is	 something	 you	 have	 to	 do	 to	 get	 better	 at	 it.
Actual	practice	is	better	than	any	advice	I	could	give.	Also,	I	learned	that
good	editors	are	worth	their	weight	in	gold.

Driscoll:	So	what	would	you	do	differently	if	you	could	start	over	with	one
of	your	other	books	that	didn't	do	so	well?

Sweigart:	 I	mean,	 if	we're	 talking	about	 the	 first	book,	 then	my	biggest
mistake	was	not	writing	it	for	Python	3.	Originally,	I	was	just	using	Python
2,	because	that's	what	I	knew.

I	didn't	start	questioning	that	decision	until	someone	said,	"Hey,	why	don't
you	use	Python	3?"	There	 really	wasn't	 a	particular	 reason	not	 to,	 so	 I
made	the	switch	to	Python	3	for	Invent	Your	Own	Computer	Games	with
Python.	That	turned	out	to	be	a	really	smart	thing.

Al	Sweigart:	'I	made	the	switch	to	Python	3	for	Invent	Your	Own
Computer	Games	with	Python.	That	turned	out	to	be	a	really	smart

thing.'

Another	 big	 mistake	 when	 writing	 Invent	 Your	 Own	 Computer	 Games
with	 Python	 was	 that	 I	 originally	 had	 the	 entire	 text	 just	 as	 HTML,
because	I	was	making	it	as	a	web	tutorial	in	a	text	file.	I	was	writing	unit
tests	 and	 using	 linting	 tools	 just	 to	 make	 sure	 that	 everything	 was
formatted	well.	That	turned	out	to	be	a	large	headache.

What	I	should	have	done	is	use	Microsoft	Word.	A	lot	of	people	are	really
surprised	when	 I	 tell	 them	 that,	 but	 Word	 and	 Excel	 are	 the	 two	 best
things	to	come	out	of	Microsoft.	If	I	could	send	a	message	10	years	back
in	time,	I'd	tell	myself	to	use	real	desktop	publishing	software.

Driscoll:	 Why	 did	 you	 choose	 Scratch,	 rather	 than	 one	 of	 the	 other
children's	beginner	languages?

Sweigart:	 Scratch	 is	 the	 best	 programming	 tool	 for	 kids	 that	 I've
encountered.	A	lot	of	programming	tools	for	kids	are	dumbed	down	to	the
point	that	I	don't	feel	like	they're	actually	teaching	programming.

Scratch	 made	 a	 lot	 of	 smart	 design	 decisions	 and	 teaches	 real
programming,	 while	 hiding	 the	 messy	 details.	 Everyone	 interested	 in
teaching	 kids	 to	 code	 should	 read	 the	 Scratch	 white	 paper	 by	 Mitch
Resnick	and	also	watch	his	TED	talk.

Driscoll:	So	I	want	to	change	topic	here	slightly.	Why	did	you	create	the
Python	packages	Pyperclip	and	PyAutoGUI?

Sweigart:	Pyperclip	and	PyAutoGUI	both	came	out	of	needs	 that	came
up	while	I	was	writing	programming	books.

Al	Sweigart:	'Pyperclip	and	PyAutoGUI	both	came	out	of	needs	that
came	up	while	I	was	writing	programming	books.'

In	 Cracking	 Codes	 with	 Python,	 you're	 dealing	 with	 encrypting	 and
decrypting	text.	Often,	you're	working	with	a	lot	of	random	nonsense	text
that	 you	 need	 to	 reproduce	 exactly,	 and	 having	 a	 copy-and-paste
mechanism	makes	that	much	easier.	It	lets	the	user	put	the	output	into	an
email,	or	 save	 it	 in	a	document.	So	 I	 thought,	 "Well,	how	do	you	copy-
and-paste	 text	 in	Python?"	There	were	some	modules	on	PyPI	 that	did
copy-and-paste,	 but	 they	would	 only	work	 on	 one	 operating	 system,	 or
they	only	worked	for	Python	2.

I	wanted	to	have	one	module	that	worked	on	all	operating	systems,	and
also	worked	for	Python	2	and	Python	3.	All	I	needed	was	a	copy	function
and	a	paste	function.	I	didn't	think	it	would	turn	out	to	be	much	work,	but

of	course	it	was.	Fortunately,	the	user	doesn't	have	to	see	all	the	messy
details	that	went	into	making	Pyperclip	work	on	so	many	platforms.	They
only	see	a	module	with	two	functions.

Driscoll:	So	how	did	you	get	started	on	this	idea	of	one	module?

Sweigart:	 I	 didn't	 want	 readers	 to	 have	 to	 deal	 with	 picking	 different
modules	depending	on	what	their	computer	setup	was.

I	 combined	 all	 of	 that	 code	 into	 one	 module,	 to	 become	 Pyperclip,
because	 I	 noticed	 that	 there	 was	 nothing	 on	 PyPI	 that	 did	 that.
PyAutoGUI	was	created	for	similar	reasons.	I	wanted	to	have	a	chapter
on	GUI	automation	for	Automate	the	Boring	Stuff	with	Python,	but	all	the
existing	 modules	 on	 PyPI	 were	 for	 different	 operating	 systems	 and
worked	differently.

Al	Sweigart:	'The	way	that	PyAutoGUI	came	about	was	because	of
this	need	to	have	one	module	that	just	worked.'

The	way	that	PyAutoGUI	came	about	was	because	of	this	need	to	have
one	 module	 that	 just	 worked.	 I	 think	 that's	 the	 main	 reason	 that
PyAutoGUI	is	the	most	popular	open	source	project	that	I've	ever	started.
It's	useful	to	a	wide	range	of	people.

Driscoll:	 What	 do	 you	 think	 should	 be	 the	 goal	 for	 anyone	 creating
Python	packages?

Sweigart:	 If	you	want	 to	create	a	Python	package,	or	any	software,	 the
most	important	thing	is	that	it's	easy	to	use.

Al	Sweigart:	'If	you	want	to	create	a	Python	package,	or	any
software,	the	most	important	thing	is	that	it's	easy	to	use.'

Before	I	even	start	writing	any	code,	I	just	type	out	what	the	API	would	be
like	and	how	I	would	use	it	myself.	 I	 think	a	 lot	of	programmers	 just	 like
writing	code	and	solving	technical	problems,	but	they	don't	realize	that	all

of	that	is	worthless	if	it's	too	complicated	for	people	to	actually	use.

Al	Sweigart:	'When	starting	out,	the	algorithms	you	write	don't	have
to	be	elegant.	You	don't	even	need	the	code	to	be	perfectly	clean.'

When	starting	out,	the	algorithms	you	write	don't	have	to	be	elegant.	You
don't	 even	 need	 the	 code	 to	 be	 perfectly	 clean.	 As	 long	 as	 using	 the
module	 is	 simple,	 then	 that's	 what	 gets	 people	 paying	 attention.	 Once
you	know	you've	made	something	that	works,	and	that	people	want,	then
you	can	clean	up	the	code	for	future	development.

Al	Sweigart:	'I'm	always	thrilled	that	many	people	use	Pyperclip	and
it	isn't	just	a	toy	that	I	created	for	myself.'

I'm	always	 thrilled	 that	many	people	use	Pyperclip	and	 it	 isn't	 just	a	 toy
that	I	created	for	myself.	I've	learned	a	lot	about	making	software	that	fits
other	 people's	 needs.	 For	 example,	 with	 PyAutoGUI,	 I	 received	 bug
reports	from	people	with	non-English	keyboards	or	non-English	language
settings.	These	were	 issues	 that	 I	would	have	never	 thought	of	 if	 I	was
the	only	one	using	my	creation.

It's	given	me	an	appreciation	 for	 just	how	much	effort	goes	 into	making
code	that	is	robust	enough	for	a	wide	and	diverse	set	of	users.	I've	made
a	few	other	open	source	projects,	but	Pyperclip	and	PyAutoGUI	are	 the
ones	that	taught	me	the	most	about	writing	software	for	other	people.

Driscoll:	 Are	 there	 any	 other	 major	 insights	 that	 you've	 learned	 from
operating	these	popular	open	source	projects?

Sweigart:	I've	learned	that,	for	the	most	part,	people	are	really	nice.	I've
heard	 some	 stories	 from	 open	 source	 maintainers	 about	 rude	 people
demanding	that	you	fix	the	bug	they're	encountering	right	then	and	there.
But	 the	people	 I've	communicated	with	are	 really	welcoming	and	even-
handed	about	their	criticisms.	I	really	appreciate	that.

Driscoll:	What	advice	would	you	give	to	anyone	who	is	reluctant	to	share

their	code	online?

Sweigart:	The	sooner	you	put	your	code	online	and	get	people	looking	at
it,	the	better.

You	have	to	get	over	that	fear	of	criticism,	because	I	know	code	reviews
have	 made	 me	 a	 better	 software	 developer	 more	 than	 anything	 else.
You're	missing	out	on	so	many	opportunities	 to	 improve	 if	you	don't	put
yourself	out	there,	and	you	can	always	post	under	an	alias	anyway.

Al	Sweigart:	'The	sooner	you	put	your	code	online	and	get	people
looking	at	it,	the	better.'

It's	 a	 lot	 like	 going	 to	 the	 gym.	 Sometimes	 people	 go	 to	 the	 gym	 and
they're	worried	that	everybody	else	is	watching	and	judging	them.	But	the
other	people	at	the	gym	are	too	busy	thinking	about	themselves	to	notice
them.	I	 think	the	same	thing	applies	to	code.	Most	people	don't	actually
read	 your	 code.	 I'm	 pretty	 sure	 that	 most	 technical	 recruiters	 who
contacted	me,	never	actually	took	the	time	to	go	through	the	hundreds	of
lines	of	code	that	I	had	out	there	already.

I	tend	to	hate	any	code	that	I	wrote	more	than	two	weeks	ago.	I	look	back
on	it	and	see	so	many	mistakes	and	rough	edges.	A	lot	of	programmers
are	 like	 that.	 If	 you're	worried	 that	 your	 code	 is	 too	 unpolished	 to	 post
online,	then	at	least	you're	in	good	company.

Driscoll:	So	do	you	have	any	specific	advice	for	someone	who	wants	to
create	the	next	big	open	source	package	in	Python?

Sweigart:	There's	something	called	the	Nobel	Prize	effect,	which	is	when
scientists	win	 a	Nobel	 Prize	 and	 then	 think,	 "What	 could	 I	 do	 to	win	 a
second	Nobel	Prize?	I	need	to	work	on	an	even	greater	problem."

Then	 they	set	 their	 sights	way	 too	high	and	never	accomplish	anything
again.	 I	 sometimes	 feel	 that	 way	 about	 Pyperclip	 and	 PyAutoGUI
because	I	didn't	imagine	they	would	become	as	popular	as	they	did.

My	GitHub	profile	has	a	 ton	of	other	 repos	 that	nobody	has	paid	much

attention	 to.	So	my	advice	would	be	 to	keep	working	on	different	 ideas
that	you	have.	It's	really	hard	to	predict	what's	going	to	become	popular.
This	was	 the	 case	with	 the	 open	 source	 projects	 that	 I've	 created,	 but
also	 with	 the	 books	 that	 I've	 written.	 I	 really	 had	 no	 idea	 that	 the
successful	 things	 that	 I've	worked	on	would	be	 successful.	Most	 of	 the
things	that	I've	worked	on	have	not	been	successful	at	all.

Start	small	and	keep	growing.	Learn	from	your	mistakes	and	realize	that
you	will	make	a	lot	of	them.	Put	your	code	out	there	for	criticism	and	learn
to	work	with	others,	because	all	 the	big	open	source	projects	are	made
by	 teams,	 not	 by	 individuals.	 I	 think	 that's	 probably	 the	 best	 recipe	 for
success.

Al	Sweigart:	'All	the	big	open	source	projects	are	made	by	teams,
not	by	individuals.'

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Sweigart:	 It	 seems	 like	we're	 finally	 turning	a	 corner	when	 it	 comes	 to
Python	3	adoption	and	for	good	reason.

There	 have	 been	 efficiency	 improvements	 to	 several	 places	 in	 the
language	 and	 most	 notably	 to	 dictionaries	 in	 3.6	 (which	 are	 at	 the
foundation	of	much	of	Python	 itself).	 The	asyncio	module	 seems	 like	 it
could	become	a	killer	 feature.	But	mostly	 I'm	 just	excited	 that	Python	 is
being	 used	 by	 more	 people	 outside	 of	 software	 engineering	 like
hobbyists,	academics,	and	data	scientists.

Driscoll:	What	 do	 you	 think	 about	 the	 long	 life	 of	 Python	 2.7?	 Should
everyone	move	to	Python	3	now?

Sweigart:	Yes,	absolutely	people	should	move	to	Python	3.	In	2018,	the
excuse	that	modules	don't	support	Python	3	yet	isn't	true	and	hasn't	been
true	for	years.

The	 only	 reason	 to	 continue	 to	 use	 Python	 2	 is	 if	 you	 have	 a	 large
existing	codebase	of	Python	2	code,	which,	since	Python	had	so	much
popularity	early	on,	is	unfortunately	the	case	for	a	lot	of	codebases.	But	I

feel	at	this	point	that	there's	been	too	many	improvements	to	Python	3	to
ignore.

Al	Sweigart:	'I	feel	at	this	point	that	there's	been	too	many
improvements	to	Python	3	to	ignore.'

The	 better	 handling	 of	 Unicode	 strings	 was	 the	 selling	 point	 for	 me
personally.	 I've	 seen	 a	 lot	 of	 code	 that	 just	 falls	 over	 the	 instant	 that
someone	 uses	 non-ASCII	 characters	 in	 a	 string	 somewhere.	 I	 always
thought	 it	was	odd	 that	 the	versions	before	Python	3	were	so	awkward
when	it	came	to	Unicode	characters,	until	a	friend	pointed	out	that	Python
mostly	predates	Unicode.	 It's	easy	 to	 forget	how	 long	Python	has	been
around.

Driscoll:	 So	 where	 do	 you	 see	 Python	 going	 as	 a	 language?	 What
features	 do	 you	 see	 coming	 in,	 or	 which	 fields	 do	 you	 see	 Python
opening	up	in?

Sweigart:	 Python	 looks	 out	 at	 the	 programming	 landscape	 and	weeps
because	there	are	no	more	worlds	to	conquer.

Al	Sweigart:	'Python	looks	out	at	the	programming	landscape	and
weeps	because	there	are	no	more	worlds	to	conquer.'

That's	 an	exaggeration,	 of	 course.	But	 it's	 amazing	how	many	different
areas	Python	 is	used	 in.	 It's	a	great	general	 scripting	 language,	but	 it's
also	used	in	massively	scaled	systems.	It's	used	for	web	apps,	but	also
machine	 learning.	 It's	 used	 by	 the	 largest	 tech	 companies,	 but	 also	 in
high	school	computer	science	classes.

I'm	trying	to	think	about	areas	where	Python	hasn't	been	so	successful.
Embedded	 devices	 is	 one	 area,	 but	MicroPython	 is	 addressing	 that	 as
well.	Python	 is	a	hard	sell	 for	 triple-A	gaming	and	VR,	but	 it's	great	 for
hobbyist	game	makers	and	even	a	few	indie	game	developers.	Python	is
used	 for	 web	 app	 backends,	 but	 JavaScript	 is	 still	 the	 king	 of	 the
frontend.	I	would	love	to	see	Python	in	the	browser.

I've	been	a	big	fan	of	the	changes	in	Python	3,	 if	anything	just	because
Python	3	got	strings	to	finally	work	sensibly.	A	lot	of	programmers	in	the
English-speaking	world	forget	that	ASCII	is	not	a	universal	code.	In	fact,
ASCII	 is	 not	 even	 universal	 in	 English-speaking	 countries.	 The	 original
ASCII	 character	 set	 has	 a	 dollar	 sign,	 but	 not	 a	 British	 pound	 symbol.
Writing	 code	 that	 won't	 break	 when	 somebody	 submits	 a	 string	 with
accented	letters	is	a	huge	win.

Al	Sweigart:	'The	Python	community	itself	is	the	best	community	in
tech	that	I've	ever	found.'

What	 makes	 me	 optimistic	 about	 Python	 isn't	 the	 language	 itself,	 so
much	as	 the	people	behind	 it.	 The	Python	 community	 itself	 is	 the	 best
community	in	tech	that	I've	ever	found.	They	care	about	being	open	and
inclusive,	 and	 that	 attracts	 a	 lot	 of	 new	blood	and	 fresh	eyes.	So	 I	 still
think	 that	 Python	 has	 a	 lot	 of	 steam,	 even	 though	 it's	 been	 around	 for
close	 to	 30	 years	 now.	 I	 think	 that	 Python	 is	 going	 to	 be	 relevant	 and
sticking	around	for	quite	some	time	yet.

Driscoll:	Thank	you,	Al	Sweigart.

Chapter	17.	Luciano	Ramalho

Luciano	Ramalho	 is	 a	 Brazilian	 software	 engineer	 and	 a	 fellow	 of	 the
Python	 Software	 Foundation	 (PSF).	 He	 is	 a	 technical	 principal	 at
ThoughtWorks,	 a	 design	 software	 company.	 Luciano	 previously	 taught
Python	 web	 development	 in	 the	 Brazilian	 banking,	 media,	 and
government	sectors.	He	is	the	author	of	Fluent	Python	and	served	as	a
council	 member	 for	 the	 Brazilian	 Python	 Association	 for	 four	 years.
Luciano	 regularly	 speaks	 at	 international	 Python	 conferences.	 He	 co-
owns	Python.pro.br,	 a	 training	 company	 and	 co-founded	Garoa	Hacker
Clube,	the	first	hackerspace	in	Brazil.

Discussion	themes:	Python	books,	APyB,	v2.7/v3.x.

Catch	up	with	Luciano	Ramalho	here:	@ramalhoorg

Mike	 Driscoll:	 Could	 you	 give	 a	 little	 background	 about	 yourself,
Luciano?

Luciano	Ramalho:	 Sure,	 I'm	 a	 self-taught	 programmer.	 I	 was	 born	 in
Brazil	in	1963.	When	I	was	15	years	old,	in	1978,	I	saw	the	Lunar	Lander
game	 running	 on	 a	 HP-25	 calculator	 and	 became	 excited	 about	 the
possibilities	 of	 combining	 programmable	 calculators	 and	 board	 games,
which	were	my	main	geek	passion	at	the	time.

Later	that	year,	my	father's	employer	gave	him	a	TI-58	calculator,	which	I
promptly	borrowed	and	never	returned.	My	first	 interesting	program	was
a	port	 of	 the	Lunar	 Lander	 from	 the	HP	 to	 the	TI	 language	 (both	were
assembly-like	languages).

In	1981	 I	 spent	a	year	as	an	exchange	student	 in	Harrisburg,	 IL,	and	 I
was	one	of	two	volunteers	that	taught	ourselves	to	program	on	the	Apple
II	computers	that	the	high	school	library	had	just	received;	no	one	else	in
the	school	knew	what	to	do	with	them.

After	I	came	back	to	Brazil,	my	first	job	was	translating	Apple	II	software
manuals	to	Portuguese,	and	my	second	job	was	teaching	programming,
which	became	a	lifelong	passion	for	me.

Luciano	Ramalho:	'My	second	job	was	teaching	programming,
which	became	a	lifelong	passion	for	me.'

Since	then,	I've	spent	about	half	of	my	time	being	a	programmer	and	half
of	 my	 time	 being	 a	 teacher.	 I	 worked	 as	 a	 programmer	 for	 8-bit
educational	 software,	CP/M	standalone	business	apps,	Windows	client-
server	apps,	Windows	and	macOS	CD-ROMs,	and	on	backend	systems
running	on	Unix	for	some	of	the	earliest	web	portals	in	Brazil.

I	 had	 a	 couple	 of	 small	 companies	 (a	 desktop	 publishing	 bureau,	 a
software	 house	 and	 a	 training	 company)	 and	 now	 I	 am	 proud	 to	 be	 a
principal	consultant	at	ThoughtWorks.

Today,	 the	 kind	 of	 programming	 that	 I	 like	 to	 do	 the	most,	 is	 example
code	 to	 illustrate	 new	 concepts	 in	 languages,	 APIs,	 and	 platforms.	 I'm
very	 interested	 in	DX	 (developer	 experience)	 as	well.	 I	 really	 enjoy	 the
challenge	of	coding	the	simplest	example	 that	can	demonstrate	an	 idea
and	still	be	interesting	(not	just	foo	and	bar	abstractions).	That's	why	I	call
myself	a	stand-up	programmer.

Driscoll:	Why	did	you	become	a	programmer?

Ramalho:	 I	 became	 a	 programmer	 because	 I	 enjoy	 programming	 as
much	as	I	enjoy	playing	board	games.

I	 see	 a	 very	 strong	 parallel:	 the	 keywords	 and	 functions	 provided	 by	 a
language	are	 like	 the	playing	pieces	and	other	game	 resources	at	your
disposal,	 which	 you	 must	 arrange	 to	 achieve	 the	 desired	 effect.	 The
language	semantics	are	like	the	game	rules.	If	a	language	has	syntactic
macros,	 then	 that's	 like	 being	 able	 to	 create	 completely	 new	 pieces
during	a	game	-	a	very	powerful	ability.

Luciano	Ramalho:	'I	became	a	programmer	because	I	enjoy
programming	as	much	as	I	enjoy	playing	board	games.'

Besides	being	fun,	programming	lets	us	have	a	huge	impact	in	the	world,
and	I	try	to	always	have	a	positive	impact.

Driscoll:	Why	Python?

Ramalho:	 I	 learned	more	 than	 a	 dozen	 languages	 before	 Python,	 and
I've	studied	at	 least	half	a	dozen	after	 it.	But	Python	 is	 the	one	that	 I've
used	for	the	longest	time	throughout	my	career.

Python	 fits	my	 brain,	 as	 the	 saying	 goes.	 I	 find	 it	 elegant	 yet	 practical,
simple	but	not	simplistic,	consistent	but	not	rigid	or	limiting.	After	a	while,
I	 also	made	many	 friends	 in	 the	 Python	 community,	 so	 that	 became	 a
huge	reason	to	stick	with	it,	even	when	sometimes	I	longed	for	something
different.

I	stumbled	upon	Python	in	1998	when	I	was	learning	the	OO	features	of
Perl	5,	which	I'd	been	using	for	web	development.	At	the	time,	whenever
someone	 in	 the	 Perl	 mailing	 lists	 asked	 about	 the	 OO-way	 of	 doing
something,	 comparisons	 to	 Python	 came	 up.	 After	 two	 or	 three	 such
mentions	of	Python,	I	decided	to	look	it	up.

Luciano	Ramalho:	'I	read	Guido	van	Rossum's	tutorial	and	fell	in
love	with	the	language.	It	combined	the	best	qualities	of	Perl	and

Java.'

I	 read	Guido	van	Rossum's	 tutorial	and	fell	 in	 love	with	 the	 language.	 It

combined	the	 best	 qualities	 of	Perl	 and	 Java,	 the	 two	 languages	 that	 I
was	 using	 most	 at	 the	 time.	 Python	 was	 a	 real	 OO	 language	 with	 a
decent	class	library,	 like	Java,	but	it	was	also	concise	and	practical,	 like
Perl,	 and	more	 readable,	 consistent,	 and	 pleasant	 to	 use	 than	 both.	 I
think	that	Python	is	a	masterpiece	of	language	design.

Driscoll:	What	do	you	think	makes	Python	such	a	good	language	for	AI
and	machine	learning?

Ramalho:	The	most	important	and	immediate	reason	is	that	the	NumPy
and	SciPy	libraries	enable	projects	such	as	scikit-learn,	which	is	currently
almost	a	de	facto	standard	tool	for	machine	learning.

The	reason	why	NumPy,	SciPy,	scikit-learn,	and	so	many	other	 libraries
were	created	in	the	first	place	is	because	Python	has	some	features	that
make	it	very	attractive	for	scientific	computing.	Python	has	a	simple	and
consistent	syntax	which	makes	programming	more	accessible	to	people
who	are	not	software	engineers.

Another	 reason	 is	 operator	 overloading,	 which	 enables	 code	 that	 is
readable	and	concise.	Then	there's	Python's	buffer	protocol	(PEP	3118),
which	 is	 a	 standard	 for	 external	 libraries	 to	 interoperate	 efficiently	 with
Python	 when	 processing	 array-like	 data	 structures.	 Finally,	 Python
benefits	from	a	rich	ecosystem	of	libraries	for	scientific	computing,	which
attracts	more	scientists	and	creates	a	virtuous	cycle.

Driscoll:	What	could	make	Python	a	better	language	for	AI	and	machine
learning?

Ramalho:	The	biggest	challenge	for	AI	and	machine	learning	projects	in
Python	 is	deploying	 to	production	with	all	 of	 the	external	dependencies
required	by	such	projects.	Containers	help	a	lot,	but	it's	never	easy.

Driscoll:	How	did	you	become	an	author,	Luciano?

Ramalho:	Fluent	Python	was	the	fourth	book	that	 I	started,	but	 the	first
that	 I	 finished.	 Writing	 a	 book	 takes	 a	 lot	 of	 time	 and	 it's	 easy	 to
underestimate	the	required	effort.

In	2013,	I	submitted	a	talk	proposal	for	OSCON	and	was	accepted.	While

I	was	at	the	conference,	I	approached	the	O'Reilly	booth	with	four	slides
of	 a	 presentation	 on	 my	 iPad:	 book	 title,	 about	 me,	 and	 two	 slides	 of
outline.	 They	 were	 interested	 and	 sent	 me	 the	 template	 for	 a	 book
proposal.	 A	 couple	 of	 months	 later,	 I	 had	 signed	 a	 contract	 and	 got	 a
small	advance.

I	 worked	 on	 the	 book	 part-time	 initially.	 During	 that	 time,	 Meghan
Blanchette,	the	editor,	was	the	only	person	reading	it.	She	gave	me	some
very	valuable	guidance,	especially	with	the	flow	of	the	book.

About	 nine	months	 into	 the	 project,	 the	 first	 deadline	was	 approaching
and	 I	 would	 not	 make	 it.	 The	 O'Reilly	 contract	 included	 a	 clause	 that
allowed	 a	 co-author	 to	 be	 imposed	 if	 I	 had	 a	 problem	 delivering.	 But
Fluent	Python	was	a	very	personal	project	for	me,	so	I	decided	to	quit	all
of	my	other	freelance	engagements	and	just	focus	on	the	book.

I	worked	for	another	nine	months,	probably	around	50	hours	a	week,	and
finished	 it.	 During	 that	 second	 half,	 the	 tech	 editors	 joined	 the	 project.
The	 reviewers	 were	 all	 people	 that	 I	 admire:	 Alex	 Martelli,	 Anna
Ravenscroft,	 Lennart	 Regebro,	 and	 Leonardo	 Rochael.	 Victor	 Stinner
focused	on	the	chapter	about	asyncio,	which	was	a	new	topic	for	the	rest
of	us.	They	all	gave	me	a	lot	of	excellent	feedback	and	encouragement.

Driscoll:	What	did	you	learn	from	writing	Fluent	Python?

Ramalho:	I	learned	a	lot	about	Python.	While	writing,	I	explored	parts	of
the	standard	library	that	I	had	never	visited	before.

I	 grokked	uniquely	Pythonic	 language	 features	 like	 attribute	 descriptors
and	yield	from	expressions.	 I	 finally	discovered	why	a	Python	program
on	Windows	 has	 no	 problem	 printing	 to	 cmd.exe	 console,	 but	 crashes
with	UnicodeEncodeError	when	its	output	is	redirected	to	a	file.

I	 learned	 a	 lot	 more	 about	 Python.	 I	 also	 learned	 the	 value	 of	 being
yourself.	Being	passionate	about	a	subject	and	knowing	it	well	are	good
foundations	for	creating	content.

Luciano	Ramalho:	'I	also	learned	the	value	of	being	yourself.	Being
passionate	about	a	subject	and	knowing	it	well	are	good

foundations	for	creating	content.'

I'm	 an	 avid	 reader,	 which	 is	 essential	 for	 writing.	 I	 am	 also	 very
opinionated	about	language	design.	As	a	reader,	I	had	been	annoyed	by
technical	authors	who	mixed	facts	and	opinions	in	their	writing,	so	I	came
up	with	 the	 idea	of	 the	Soapbox	sections	at	 the	end	of	 each	 chapter.	 I
could	offer	my	opinions,	while	 also	making	 it	 clear	 to	 readers	 that	 they
could	 skip	 that	 part.	 The	 Soapboxes	 were	 fun	 to	 write,	 and	 several
reviewers	 enjoyed	 them	 as	 well.	 So	 that's	 an	 example	 of	 how	 being
myself	worked	very	well.

The	Python	community	is	made	up	of	people	who	love	to	share	what	they
know,	 and	 they	 deserve	 credit.	 So	 I	 kept	 notes	 of	 all	 the	 important
references	 that	 I	 used	during	 the	 book,	 including	 not	 only	 other	 books,
but	also	blog	posts,	videos,	and	even	StackOverflow	answers.	 I	shared
these	notes	with	readers	in	the	Further	Reading	sections.	That	 is	also	a
feature	of	the	book	that	some	reviewers	have	praised.

Luciano	Ramalho:	'The	Python	community	is	made	up	of	people
who	love	to	share	what	they	know,	and	they	deserve	credit.	So	I

kept	notes	of	all	the	important	references.'

On	a	personal	level,	writing	Fluent	Python	and	witnessing	its	success	in
reviews	 and	 sales	 was	 great	 for	 my	 self-esteem,	 after	 I	 had	 failed	 at
writing	a	book	on	 three	prior	 attempts.	So	 I	 guess	one	 lesson	 is	 that	 it
pays	to	persevere	and	go	all-in	when	you	believe	in	a	project.

Some	 readers	 have	 offered	me	 a	 lot	 of	 great	 feedback,	 and	 the	 most
prolific	of	them	became	a	good	friend:	Elias	Dorneles.	So	another	lesson
is	 the	 importance	 of	 being	 open	 to	 feedback,	 and	 offering	 people	 the
opportunity	to	give	it.

Driscoll:	What	would	you	do	differently	if	you	could	start	over?

Ramalho:	 I'd	 write	 a	 shorter	 book!	 My	 original	 plan	 was	 to	 write	 300
pages,	but	in	the	end	it	came	to	770.

Alternatively,	 I	could	have	written	 five	shorter	books,	because	each	part
of	Fluent	Python	 from	 II	 to	 VI	 works	 pretty	 well	 independently.	 But	 the
resulting	volume	set	would	have	been	more	expensive	 for	 readers,	and
perhaps	 would	 not	 have	 resulted	 in	 the	 same	 level	 of	 recognition	 and
sales.

I	have	no	regrets,	because	I've	come	to	believe	that	whatever	happens	is
the	only	thing	that	could	have.	I	learned	this	from	author	Bruce	Eckel,	as
one	of	the	rules	for	open	space	events.

Luciano	Ramalho:	'Whatever	happens	is	the	only	thing	that	could
have.	I	learned	this	from	author	Bruce	Eckel,	as	one	of	the	rules	for

open	space	events.'

Driscoll:	 How	 did	 you	 end	 up	 co-founding	 the	 Brazilian	 Python
Association?

Ramalho:	 The	 Brazilian	 Python	 community	 grew	 organically	 around	 a
couple	 of	 mailing	 lists	 and	 a	 wiki	 created	 by	 Osvaldo	 Santana.	 I	 was
already	using	Python	as	my	main	 language,	and	 I	had	written	a	 tutorial
for	a	magazine,	but	it	was	Osvaldo's	wiki	that	encouraged	me	to	engage
with	the	wider	community.

Many	of	us	would	get	together	every	year	at	FISL,	which	was	the	largest
FOSS	conference	in	Brazil.	It's	incredible	how	meeting	face-to-face,	and
going	out	for	beers,	can	strengthen	a	community	that	started	online.

Luciano	Ramalho:	'It's	incredible	how	meeting	face-to-face,	and
going	out	for	beers,	can	strengthen	a	community	that	started

online.'

Rodrigo	Senra	organized	the	first	Brazilian	Python	conference,	and	Jean
Ferri	 the	 second.	 Running	 those	 conferences	 without	 a	 formal	 support
entity	was	difficult:	the	organizers	couldn't	sign	contracts,	issue	invoices,
or	 collect	 sponsorships	 in	 the	 name	 of	 a	 vague	 community.	 So	 at	 one
FISL,	we	decided	to	create	the	Brazilian	Python	Foundation.

We	faced	months	of	bureaucracy	when	we	 learned	 that	 foundation	 is	a
reserved	 word	 under	 Brazilian	 law.	 In	 order	 to	 be	 a	 foundation,	 we
needed	 a	 five-year	 plan	 of	 action.	 We	 needed	 some	 staff	 and	 an
endowment	large	enough	to	fund	our	staff	and	all	of	our	plans	for	at	least
five	years.	So	we	had	to	change	our	plans	and	become	the	more	humble
Brazilian	Python	Association	(APyB)!

In	 the	 end,	 we	 succeeded	 due	 to	 our	 perseverance	 and	 the
resourcefulness	of	Dorneles	Tremea,	our	first	managing	director	and	my
successor	as	president	of	the	APyB.

Driscoll:	 I've	 heard	 some	 people	 challenge	 the	 value	 of	 APyB.	What's
your	response	to	such	criticism?

Ramalho:	Yes,	I	know	that	some	people	have	questioned	the	usefulness
of	APyB,	which	does	demand	some	time	from	its	volunteer	president	and
directors	after	all.	My	main	argument	 in	 the	defense	of	APyB	 is	 that	we
tried	doing	without	it	and	it	was	worse.

Driscoll:	So	what	open	source	projects	are	you	working	on	right	now?

Ramalho:	Actually,	none	at	this	time!	I	did	start	the	pingo	project,	which	is
a	device-independent	API	for	programming	devices	with	GPIO	interfaces.
But	I	only	managed	to	attract	Lucas	Vido	as	a	solid	contributor.	Both	of	us
got	busy	with	other	things,	so	the	project	is	abandoned	right	now.	I'd	like
to	reboot	it,	but	I	don't	know	when	I'll	be	able	to	do	that.

All	of	the	code	and	slides	from	my	conference	talks	and	tutorials	is	open
content.	 I	 have	over	 50	presentations	 shared	 for	 anyone	who	wants	 to
see	them:	https://speakerdeck.com/ramalho.	All	of	these	talks	are	also	on
GitHub	 in	 the	 /fluentpython	 organization	 and	 in	 my	 personal	 GitHub
account	(/ramalho.)

I've	started	writing	open	content	for	 learning	Go.	It's	more	likely	that	my
next	 open	 source	 project	 will	 be	 a	 book	 or	 some	 other	 content,	 rather
than	applications	or	libraries.

Driscoll:	Oh,	that's	great	that	you're	thinking	about	writing	another	book!
So	do	you	have	any	advice	for	aspiring	authors?

https://speakerdeck.com/ramalho

Ramalho:	Well,	I'm	no	economist,	but	I	think	that	writing	books	is	just	as
likely	to	pay	your	bills	as	playing	the	guitar,	so	don't	do	it	for	the	money,
but	for	the	love	of	your	subject.

Also,	 be	 ready	 for	 a	 very	 long	 journey.	Have	 savings,	 so	 you	 can	 take
some	time	off	 just	 to	write	 if	needed.	Two	very	successful	authors	that	 I
know	have	told	me	that	most	of	the	experiences	that	they	have	had	with
co-authors	were	bad.	So	I	guess	there's	no	easy	way	out	of	the	long	and
mostly	lonely	journey	of	being	an	author!

Driscoll:	Have	you	considered	self-publishing	at	all?

Ramalho:	 Yes,	 I	 have,	 but	 while	 there	 are	 several	 self-publishing
alternatives,	I	think	that	it's	worthwhile	to	do	at	least	your	first	book	with	a
good	publisher	 if	you	can.	The	first	 reason	 is	all	of	 the	support	 that	you
get	from	a	good	editor	and	your	technical	reviewers.	The	second	reason
is	the	recognition	that	you	get	from	having	a	well-known	brand	promoting
your	work	and	adorning	its	cover.

Driscoll:	When	you're	writing	a	book,	do	you	create	the	code	before	you
start	writing	or	not?

Ramalho:	 I	 believe	 that	 code	 examples	 are	 the	 heart	 of	 any
programming	 book:	 you	 can't	 have	 an	 excellent	 book	without	 excellent
examples.	 David	Geary,	 the	 author	 of	 the	 classic	Graphic	 Java	 books,
once	wrote	that	writing	a	programming	book	is	essentially	coming	up	with
enlightening	examples,	 then	 surrounding	 them	with	explanations.	 I	 took
his	advice	and	it	worked	very	well	for	me.

Luciano	Ramalho:	'I	believe	that	code	examples	are	the	heart	of	any
programming	book:	you	can't	have	an	excellent	book	without

excellent	examples.'

So	 while	 the	 hardest	 part	 for	 me	 is	 certainly	 coming	 up	 with	 the
examples,	 I	 had	 created	 a	 lot	 of	 the	 code	 before	 I	 started	 writing.	 I
definitely	didn't	start	with	an	empty	text	file	and	a	blank	screen!

Many	 of	 the	 examples	 and	 explanations	 that	 are	 in	Fluent	 Python	 are

ones	 that	 I'd	 developed	 over	 more	 than	 10	 years	 of	 teaching	 and
speaking	about	Python.	 I	did	also	create	many	more	specifically	 for	 the
book,	and	in	fact	many	examples	that	I	never	used	in	the	book,	because
they	 either	 became	 too	 complicated,	 or	 I	 had	 then	 thought	 of	 better
examples.

Luciano	Ramalho:	'Here	is	a	great	learning	point	for	all	Python
teachers:	we	must	learn	to	let	go	of	our	examples	and	writing.'

Here	is	a	great	learning	point	for	all	Python	teachers:	we	must	learn	to	let
go	of	our	 examples	 and	writing,	when	necessary,	 no	matter	 how	much
work	we've	put	 into	them.	So	when,	as	 teachers	and	authors,	we	find	a
better	 approach,	 or	 we	 realize	 that	 we've	 just	 gone	 too	 far,	 then	 it's
important	that	we	let	go	of	our	examples	and	move	on	for	our	readers.

I	know	already	that	I	will	 try	 to	drop	even	more	material	 like	 this	when	I
work	on	my	next	book.	I	also	think	about	this	as	a	teacher.	The	writer	and
aviator	Antoine	de	Saint-Exupéry	said	 in	 the	context	of	airplane	design:
"It	 seems	 that	 perfection	 is	 attained	 not	when	 there	 is	 nothing	more	 to
add,	but	when	there	is	nothing	more	to	remove."

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Ramalho:	Besides	the	runaway	success	of	Python	in	data	science,	I	am
also	 excited	 about	 the	 potential	 of	 the	 async/await	 keywords	 to	 enable
asynchronous	 programming,	 not	 only	 through	 the	 standard	 asyncio
library,	but	also	through	third-party	libraries	such	as	Trio.

Regarding	 Python	 3.7,	 the	 addition	 that	 most	 excites	 me	 is	 PEP	 557,
which	 introduces	 a	 standard	 way	 of	 creating	 classes	 with	 explicit	 data
attributes.	This	is	something	that	libraries	such	as	ORMs	had	to	reinvent
repeatedly.

Driscoll:	What	do	you	 think	about	Python	2.7?	Should	people	move	 to
the	latest	version?

Ramalho:	 Yes,	 people	 should	 totally	 move	 over	 to	 Python	 3.6.	 The
language	is	evolving	nicely	and	most	libraries	have	been	ported	for	years

now.	However,	not	everyone	can	afford	to	make	the	move.

Luciano	Ramalho:	'Yes,	people	should	totally	move	over	to	Python
3.6.	The	language	is	evolving	nicely	and	most	libraries	have	been

ported	for	years	now.'

The	trickiest	part	is	sorting	out	the	issue	with	strings	versus	bytes.	This
is	a	 very	positive	 change,	but	one	 that	 can't	 be	automated,	because	 in
Python	 2.7	 strings	 are	 sometimes	 handled	 as	 human	 text	 and
sometimes	as	raw	bytes.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Ramalho:	 I'd	 like	 to	see	the	Global	 Interpreter	Lock	(GIL)	gone,	so	 that
we	 could	 leverage	 all	 processor	 cores	 when	 using	 threads	 for	 CPU
intensive	work.	Unfortunately,	the	latest	effort	to	do	so,	by	Larry	Hastings,
seems	to	have	stalled	in	mid-2017.

The	 main	 problem	 is	 that	 removing	 the	 GIL	 would	 break	 most	 (or	 all,
depending	on	who	you	ask)	external	 libraries	 that	 rely	 on	 the	Python/C
API.	 One	 fact	 that	 most	 people	 don't	 realize	 is	 that	 without	 the	 GIL,
writing	an	extension	for	Python	in	another	language	would	be	much	more
complicated.	So,	although	we	wish	that	the	GIL	did	not	exist,	in	reality	it	is
a	cornerstone	of	the	success	of	Python.

Eric	Snow,	a	Python	core	developer,	wrote	that	the	GIL	is	more	of	a	PR
issue.	Yes,	it	is	possible	to	write	highly	concurrent	I/O-bound	code	using
Python	 threads	 or	 asynchronous	 libraries.	 But	 when	 such	 a	 project
grows,	or	is	heavily	stressed,	CPU-intensive	bottlenecks	emerge.	Those
bottlenecks	 are	 extremely	 hard	 to	 find	 in	 threaded	 code,	 but	 they	 slow
down	everything	because	of	the	GIL.

Maybe	only	a	fraction	of	Python	projects	is	seriously	affected	by	the	GIL
today,	 but	 CPUs	 are	 getting	 more	 cores	 and	 not	 getting	 faster,	 so
leveraging	 multiple	 cores	 is	 becoming	 more	 and	 more	 important
(https://mail.python.org/pipermail/python-ideas/2015-June/034177.html	or
https://lwn.net/Articles/650521/).

https://mail.python.org/pipermail/python-ideas/2015-June/034177.html
https://lwn.net/Articles/650521/

Driscoll:	Thank	you,	Luciano	Ramalho.

Chapter	18.	Nick	Coghlan

Nick	Coghlan	is	an	Australian	software	developer	and	systems	architect.
His	past	 roles	 include	software	engineer	at	Boeing	Australia	and	senior
software	 engineer	 at	 Red	 Hat	 Asia	 Pacific,	 a	 provider	 of	 open	 source
solutions.	 Nick	 is	 a	 CPython	 core	 developer	 and	 BDFL-delegate	 for
Python	packaging	interoperability	standards.	He	is	a	founding	member	of
the	 Python	 Software	 Foundation	 (PSF)'s	 Python	 Packaging	 Working
Group,	and	the	founder	of	the	PyCon	Australia	Education	Seminar.	Over
the	 past	 20	 years,	 Nick	 has	 contributed	 to	 a	 range	 of	 open	 source
systems	and	software	projects.

Photo	credits	of	Nick	Coghlan:	©	Kushal	Das

Discussion	themes:	core	developers,	PEPs,	learning	Python.

Catch	up	with	Nick	Coghlan	here:	@ncoghlan_de

Mike	 Driscoll:	 What	 made	 you	 decide	 to	 become	 a	 computer
programmer?

Nick	Coghlan:	Originally,	I	just	did	programming	as	a	plaything	as	a	kid.
We	had	the	good	old	BASIC	programming	book	for	the	Apple	IIe.

It	wasn't	until	I	did	IT	in	my	first	year	of	high	school	that	I	discovered	that

computers	were	actually	a	thing	you	could	play	with	as	a	job.	The	school
that	I	went	to	was	one	of	the	first	in	the	state	to	actually	have	an	IT	class.
So	 that	 was	 pretty	 much	 why	 I	 then	 went	 into	 computer	 systems
engineering	at	university.

My	 initial	 full-time	 job	 out	 of	 university	 was	 embedded	 systems
programming	in	C,	for	a	Texas	Instruments	DSP.	From	there,	I	ended	up
doing	a	lot	more	systems	control	and	automation	stuff,	which	looks	a	lot
more	like	programming	than	it	does	embedded	software	development.	So
it	was	just	the	case	that	I	enjoyed	programming,	I	was	good	at	it,	and	you
can	make	money	from	it.

Driscoll:	So	why	did	you	move	into	Python?

Coghlan:	So	the	way	that	I	came	to	Python	is	actually	kind	of	interesting,
because	I	was	originally	a	C/C++	developer.

Nick	Coghlan:	'I	was	the	guy	who	then	replied,	"Can	we	use	a
different	language	instead?	I	already	know	Java,	and	I'd	like	to	use

Java."'

My	only	exposure	to	Python	at	university	was	from	a	networking	lecturer
who	 said,	 "I'm	 going	 to	 make	 you	 all	 do	 the	 assignments	 in	 Python,
because	I'm	confident	 that	none	of	you	will	know	it".	 I	was	the	guy	who
then	replied,	 "Can	we	use	a	different	 language	 instead?	 I	already	know
Java,	and	I'd	like	to	use	Java".

My	lecturer	said,	"Well,	if	you	really	want	to	use	Java	then	use	it,	but	try
Python	first".	So	I	tried	Python	1.5.2	and	it	was	fun.

Professionally,	 I	was	working	for	a	 large-scale	system	integrator	here	 in
Australia.	For	 the	DSP	program	 I	was	working	on,	my	 test	 suite	was	a
really	 rudimentary	C	program,	which	was	a	 success	 if	 it	 got	 to	 the	end
without	crashing.

We	 were	 just	 having	 lots	 of	 problems	 with	 the	 DSP	 code	 not	 working
properly	when	we	got	to	the	next	level	of	integration	testing.	So	we	had	a
huge	 amount	 of	 behavioral	 bugs	 getting	 through.	 We	 decided	 that	 we

needed	to	write	a	better	test	suite	to	feed	the	audio	in.	It	was	important	to
check	 that	 we	 were	 getting	 the	 answers	 we	 were	 expecting	 from	 the
actual	data	analysis,	not	simply	that	we	could	talk	to	the	DSP	and	ask	it
to	do	things	remotely.

Nick	Coghlan:	'It	was	important	to	check	that	we	were	getting	the
answers	we	were	expecting	from	the	actual	data	analysis.'

We	wanted	 to	 check	 the	 actual	 signal	 processing	 itself.	We	 also	 really
didn't	want	 to	write	 that	 in	C	and	C++.	Another	 part	 of	 the	 system	had
already	 had	 Python	 approved	 as	 a	 language	 for	 system	 control
components.	So	Python	wasn't	being	used	for	critical	path	stuff,	but	 just
orchestrating	all	the	different	bits	of	the	system,	and	starting	them	when
they	were	supposed	to	be	started.

There	 were	 two	 main	 options	 that	 we	 were	 looking	 at	 for	 doing	 the
automated	testing.	One	option	was	using	Python's	unittest	module,	with
SWIG,	to	generate	the	bindings	to	the	C++	drivers	that	actually	talked	to
the	DSP.	The	alternative	was	the	in-house	C/C++	test	framework	that	we
used	for	everything	else.	We	selected	Python.

Driscoll:	Why	did	you	choose	Python?

Coghlan:	The	thing	was	that	Python	had	the	unittest	module	to	actually
organize	 the	 testing.	 Python	 had	 SWIG	 to	 tie	 to	 the	 C++	 driver.	 We
controlled	the	API	of	that	driver,	so	making	it	play	nicely	with	SWIG	was
straightforward.

Then	the	 last	key	piece	was	that	Python,	 in	 its	standard	 library,	had	the
wave	module,	to	play	WAV	files	out	of	the	PC.	So	that	established	a	trend
for	 that	 whole	 project,	 which	 was	 Australia's	 High	 Frequency
Modernization	Project.	Python	just	ended	up	kind	of	proliferating	through
that	project	 for	all	 of	 the	bits	 that	were	 testing,	mocking	and	 simulating
system	interfaces	for	testing	purposes.

Driscoll:	So	I	know	that	another	Australian	helped	to	create	pywin32.	Did
you	have	any	involvement	in	that	project?

Coghlan:	No,	I've	only	ever	been	a	pywin32	user.	There	are	actually	lots
of	Australians	who	have	historically	contributed	to	the	Python	community.
But	 because	 they	 haven't	 really	 been	 active	 in	 PyCon	 Australia,	 or
anything	like	that,	I've	never	actually	met	them!

Driscoll:	Well,	let's	move	on.	How	did	you	become	a	core	developer	for
the	Python	language?

Coghlan:	So	my	short	answer	 to	 this	question	 is	 that	 I	 became	a	core
developer	by	arguing	with	Guido	van	Rossum!

Nick	Coghlan:	'I	became	a	core	developer	by	arguing	with	Guido
van	Rossum!'

What	 actually	 happened	 was	 that	 I'd	 been	 on	 Usenet	 since	 the	 late
1990s,	 and	 so	 I	 was	 very	 familiar	 with	 that	 whole	 online	 discussion
format.	After	I	started	using	Python,	I	ended	up	joining	the	original	Python
mailing	list,	and	participating	in	discussions	there.

I	 discovered	 that	 Python-Dev	 was	 a	 thing	 and	 started	 lurking	 on	 that,
originally	 with	 the	 intention	 just	 to	 listen	 to	 what	 people	 were	 talking
about.	 I	actually	started	participating	actively	 in	discussions	and	posting
as	well.	The	first	contribution	that	I	can	remember	actually	making	was	in
discussions	on	the	Python	list.

It	was	very	common	to	use	 the	timeit	module	 to	 time	snippets	of	code
and	say,	"Oh	this	is	faster	than	that."	At	that	point,	if	you	wanted	to	time
the	 snippets	 between	 two	different	 versions,	 you	had	 to	 find	where	 the
timeit	module	was	in	a	particular	version	of	the	standard	library.

We	said,	 "Hang	on!	Python	already	knows	where	 the	timeit	module	 is.
Why	 are	 we	 having	 to	 tell	 Python	where	 to	 find	 it?"	 So	 that	 ended	 up
becoming	a	patch	to	add	the	initial	version	of	the	-m	switch	in	Python	2.4.
I	 think	 Raymond	Hettinger	 reviewed	 that.	 This	 initial	 version	 of	 Python
could	 only	 do	 top-level	 modules	 and	 couldn't	 do	 packages	 or
submodules.	 Then	 finally	 by	 the	 time	 we	 reached	 Python	 2.7,	 the	 -m
switch	actually	worked	properly	and	did	all	the	things	you	would	expect	of
it.

Nick	Coghlan:	'Finally	by	the	time	we	reached	Python	2.7,	the	-m
switch	actually	worked	properly.'

Something	else	 interesting	happened	 in	 late	2004.	After	a	major	crunch
period	at	work,	 I	 took	 a	 leave	 of	 absence	 of	 three	months.	 I	 ended	 up
helping	 out	 Raymond	 and	 Facundo	Batista	with	 the	 initial	 performance
enhancements	on	the	Python	decimal	module.	We	were	looking	at	what
we	could	do	to	make	the	module	faster.

Driscoll:	Did	you	find	a	way	to	speed	things	up?

Coghlan:	There	was	actually	an	eventual	solution	several	years	later,	but
in	those	early	days,	there	was	lots	of	benchmarking	to	say,	"How	fast	can
we	make	this	just	as	a	pure	Python	thing?"

Nick	Coghlan:	'There	was	lots	of	benchmarking	to	say,	"How	fast
can	we	make	this	just	as	a	pure	Python	thing?"'

There	was	a	glorious	hack	 that	 I	 remember	 from	those	days.	We	made
the	discovery	 that	 in	pure	Python,	 if	 you	have	a	 tuple	of	digits	 that	you
would	 like	 to	 turn	 into	 a	 decimal	 number,	 then	 the	 fastest	 conversion
mechanism	that	CPython	itself	offers	is	to	convert	all	the	digits	to	strings,
concatenate	 the	 strings,	 and	 then	 use	 int	 to	 convert	 the	 concatenated
string	back	to	a	number.

This	 is	 because	 the	 string	 int	 conversions	 have	 been	 optimized	 to	 a
point	 where	 doing	 that	 is	 faster	 than	 doing	 all	 the	 multiplication	 and
addition	 operations	 as	 Python	 code.	 In	 C,	 of	 course,	 you	 do	 the
arithmetic.	Our	 findings	really	annoyed	the	PyPy	developers.	From	their
point	 of	 view,	 doing	 the	 arithmetic	 was	 a	 lot	 better,	 because	 the	 JIT
worked.	So	 this	meant	 that	 their	 decimal	module	was	 slower	 than	 they
liked.

I	 think	 that	 I	began	getting	 involved	 in	discussions	 just	after	Python	2.3
came	out.	One	of	the	popular	pastimes	was	making	fun	of	the	extended
slice	syntax.	You	had	 the	 reverse	smiley	of	open	bracket,	 colon,	colon,
-1,	 and	 close	 bracket,	 to	 reverse	 a	 sequence.	 This	 was	 long	 before

reversed	or	anything	like	that.

reversed	became	a	thing	because	it	turned	out	that	getting	the	arithmetic
right	for	reversing	a	slice	was	actually	quite	tricky.	It	was	just	really	prone
to	off-by-one	errors	 if	 you	 did	 it	manually.	So	adding	 in	 reversed	made
things	easier	to	read.

Driscoll:	What	 do	 you	 think	 about	 the	 long	 life	 of	 Python	 2.7?	 Should
people	move	over	to	the	latest	version?

Coghlan:	We	deliberately	set	the	support	period	of	Python	2.7	such	that
existing	 users	 could	 make	 their	 own	 decision	 about	 when	 they
considered	the	Python	3	ecosystem	to	be	sufficiently	mature	for	them	to
switch	over.

Nick	Coghlan:	'We	deliberately	set	the	support	period	of	Python	2.7
such	that	existing	users	could	make	their	own	decision.'

Folks	that	had	personally	felt	the	pain	of	Python	2.7's	limitations	migrated
early,	so	we're	now	at	 the	point	where	most	of	 the	 folks	 that	are	still	 to
migrate	are	either	looking	for	better	tools	to	help	them	with	that	process,
or	 are	 simply	 planning	 to	 sunset	 affected	 projects	 and	 products	 along
with	Python	2.7.

On	the	tooling	front,	one	of	 the	 important	use	cases	for	Python	3's	 type
hinting	machinery	 is	 to	 allow	 folks	 to	 statically	 check	 for	Python	 3	 type
correctness	 errors,	 even	 if	 their	 automated	 test	 coverage	 is	 low.	 This
greatly	expands	the	scope	of	code	which	can	be	reliably	migrated.

Driscoll:	What	changes	would	you	like	to	see	in	future	Python	releases?

Coghlan:	 I'd	 like	 to	see	better	 tools	 for	working	with	partially	structured
hierarchical	 data,	 but	 in	 a	 way	 that	 preserves	 Python's	 reputation	 as
executable	 pseudo	 code.	 I'd	 also	 like	 to	 continue	 reducing	 the
discrepancies	between	what	 can	be	done	with	extension	modules,	 and
what	specifically	requires	a	Python	source	module.

Finally,	 I'd	 like	 to	see	better	support	 for	protected	memory	management

models,	where	rather	than	aiming	to	serve	as	a	security	boundary,	we're
instead	providing	memory	separation	as	a	way	to	assist	with	maintaining
the	 correctness	 of	 concurrent	 code.	 CPython's	 subinterpreter	 feature
already	provides	this	to	some	degree,	but	that	capability	currently	has	a
lot	of	usability	challenges,	which	Eric	Snow	is	looking	to	address.

Driscoll:	 Well	 good!	 So	 let's	 pretend	 that	 I	 want	 to	 become	 a	 core
developer	like	you.	What	would	I	need	to	do	to	actually	become	one?

Coghlan:	So	one	of	 the	most	 important	 things	 is	 to	 figure	out	why	you
want	to	become	a	core	developer.	You	need	the	answer	to	that	question
because	 there	 are	 going	 to	 be	 inevitable	 frustrations	 where	 you	 ask
yourself:	"Why	the	hell	am	I	doing	this?!"

If	 you	 don't	 know	what	 your	motivations	 are,	 then	 that's	 going	 to	 be	 a
problem!	Nobody	else	can	answer	the	question	for	you.	Having	got	past
that	point,	the	main	thing	about	becoming	a	core	developer	is	that	a	lot	of
it's	actually	about	trust	and	earning	trust.

Nick	Coghlan:	'The	main	thing	about	becoming	a	core	developer	is
that	a	lot	of	it's	actually	about	trust	and	earning	trust.'

It's	 a	 case	 of	 contributing,	 so	 as	 core	 reviewers	 we're	 basically	 there
saying,	"Do	we	want	to	accept	this	change	and	maintain	it	into	the	future?
Can	we	give	a	good	answer	about	why	we	have	accepted	the	change,	if
later	asked?"

What	we're	 looking	 for	when	nominating	new	core	developers	and	core
reviewers	 is	someone	whose	ability	we	trust	 to	make	good	 judgements.
We	want	them	to	say,	"Yes,	this	is	a	suitable	change	that	will,	on	balance,
make	life	better	for	future	Python	users."

Programming	 language	 design	 is	 a	 game	 of	 trade-offs.	 If	 you	 try	 to
optimize	for	everything	at	once,	 then	you	end	up	optimizing	for	nothing.
So	there	are	a	lot	of	things	that	have	emerged	over	time	as	the	trade-offs
that	 make	 something	 Pythonic.	 It	 becomes	 a	 matter	 of	 understanding
whether	you	can	decide	something	on	your	own,	or	whether	you	need	to
take	a	problem	to	Python-Dev	for	discussion.

Nick	Coghlan:	'Programming	language	design	is	a	game	of	trade-
offs.	If	you	try	to	optimize	for	everything	at	once,	then	you	end	up

optimizing	for	nothing.'

Then	there	 is	a	 final	 level	of	escalation,	when	we	say,	"This	proposal	 is
tricky	 enough	 and	 there	 are	 enough	 subtleties	 here.	 There	 is	 enough
potential	 controversy	 here	 that	 we	 should	 escalate	 this	 problem	 to
become	a	full	Python	Enhancement	Proposal	and	thrash	out	the	details,
before	doing	anything	else."	 It's	ultimately	a	core	developer	 that	makes
the	decision	about	where	in	that	spectrum	a	particular	change	lies.

Nick	Coghlan:	'It's	ultimately	a	core	developer	that	makes	the
decision	about	where	in	that	spectrum	a	particular	change	lies.'

Driscoll:	How	does	a	core	developer	go	about	making	that	decision?

Coghlan:	Well,	bug	 fixes	are	usually	pretty	straightforward	because	we
know	 something	 is	 wrong.	 Even	 with	 a	 bug	 fix	 though,	 it's	 sometimes
confusing.

We	 have	 three	 sources	 of	 truth,	 because	 we	 have	 what	 the	 reference
interpreter	 does,	 what	 the	 test	 suite	 says	 it	 does,	 and	 what	 the
documentation	says	 it	does.	When	all	 three	of	 those	are	 in	 agreement,
then	you	know	that	there	is	consistency	with	what	you	are	doing.

Where	 things	 start	 becoming	 more	 of	 a	 matter	 of	 design	 judgment	 is
when	the	interpreter	does	something,	and	the	test	suite	and	the	docs	are
silent	 on	 it.	 That	 case	 just	 isn't	 tested,	 and	 isn't	 documented	 as	 doing
anything	 in	 particular.	 Then	 the	 other	 case	 is	 when	 the	 documentation
says	 one	 thing,	 but	 the	 tests	 and	 the	 implementation	 say	 something
different.	 In	 those	 cases,	 you	 have	 to	 say,	 "Well,	 is	 the	 documentation
right	and	it's	a	bug,	or	are	the	docs	just	wrong?"

Those	 are	 the	 kinds	 of	 things	 that	 you	 get	 to	 do	 as	 a	 core	 developer.
Whereas	 when	 you're	 contributor,	 you	 just	 want	 to	 get	 your	 ideas	 in.
That's	still	a	question	of	trust	management,	but	what	you're	trying	to	do	is
persuade	 reviewers	 that	 your	 change	 is	 worth	 making.	 So	 yeah,	 it's

certainly	interesting!

You	 need	 to	 understand	 what	 becoming	 a	 core	 developer	 entails,	 and
why	 it's	something	you	want.	 In	 terms	of	 the	practical	mechanics	of	 the
role,	 there's	 the	Dev	Guide	 that	Brett	Cannon	originally	wrote	with	BSF
funding.	The	Dev	Guide	has	been	maintained	and	enhanced	over	 time
and	it	explains	the	difference	between	being	a	core	developer	and	being
a	contributor	to	CPython.

Nick	Coghlan:	'There	are	extra	responsibilities	that	come	with	being
a	core	developer.'

There	 are	 extra	 responsibilities	 that	 come	with	 being	 a	 core	 developer.
The	 role	 includes	 working	 with	 issues,	 working	 with	 the	 reviewer,
understanding	the	review	process,	discussing	things	on	the	mailing	 lists
and	 making	 design	 decisions.	 You	 end	 up	 dealing	 with	 the	 inevitable
frustrations	 of	 actually	 working	 on	 such	 a	 big	 project.	 The	 core
mentorship	 mailing	 list	 can	 also	 be	 useful,	 depending	 on	 the	 kind	 of
person	you	are.

Driscoll:	 So	 I've	 always	 been	 interested	 in	 Python	 Enhancement
Proposals.	Could	you	describe	the	process	of	how	they	get	created	and
accepted?

Coghlan:	 Yes,	 so	 there	 are	 two	 different	 flows	 that	 the	 Python
Enhancement	Proposals	(PEPs)	can	go	through.

Nick	Coghlan:	'One	flow	is	when	a	core	developer	proposes	a
change	that	we	know	we	want	to	make,	but	we	also	know	that	this

change	will	be	big	and	complex.'

One	flow	is	when	a	core	developer	proposes	a	change	that	we	know	we
want	to	make,	but	we	also	know	that	this	change	will	be	big	and	complex.
We	know	without	anybody	telling	us	that	this	change	needs	to	be	a	PEP.
So	in	those	cases,	we'll	often	just	start	by	writing	the	PEP	and	committing
the	PEP	to	the	PEPs	repo.

We	will	 then	 start	 the	 discussion	 on	Python-ideas	 by	 saying,	 "Hey,	 I've
written	a	new	PEP	proposing	this,	and	here	is	why."	Discussions	basically
just	 start	 at	 that	 level.	 Core	 developers	 manage	 the	 PEP	 process,
because	we've	been	through	it	a	few	times	and	we	know	when	a	change
is	big	enough	to	qualify.

For	other	PEPs,	the	usual	point	of	genesis	is	when	somebody	comes	to
Python-ideas	with	 a	 suggestion.	 This	 suggestion	will	 have	 been	 kicked
around	 as	 a	 Python-ideas	 thread	 for	 a	 bit.	 People	will	 then	 have	 said,
"You	know	what,	 this	actually	sounds	 like	 it	 could	potentially	be	a	good
idea!"	 The	 decision	 is	 then	 made	 to	 turn	 the	 idea	 into	 a	 full	 PEP	 and
propose	the	 idea	 that	way,	 rather	 than	 just	submitting	 it	as	an	 issue	on
the	issue	tracker.

That	does	actually	remind	me	of	 the	third	way	that	PEPs	happen.	They
can	 come	 out	 of	 discussions	 on	 the	 issue	 tracker	 when	 we	 definitely
know	we	want	to	make	a	change,	but	there	are	lots	of	niggly	details.	We
write	 a	PEP,	 thrash	out	 the	 details,	 and	 then	 use	 that	 to	 drive	 how	we
implement	the	idea.

Nick	Coghlan:	'We	write	a	PEP,	thrash	out	the	details,	and	then	use
that	to	drive	how	we	implement	the	idea.'

Driscoll:	So	are	 these	changes	 just	discussed	until	 they	eventually	get
ironed	out,	and	then	accepted	or	rejected?

Coghlan:	It	depends	on	the	proposal.	With	some	proposals,	the	change
itself	is	not	controversial,	but	the	details	just	need	thrashing	out.

Those	 proposals	 will	 usually	 go	 through	 some	 discussion	 on	 Python-
ideas	and	Python-Dev.	The	decision	will	then	be	made	to	stop	thrashing
out	 the	 idea	 and	 start	 implementing	 it.	 The	 proposal	 becomes	 an
accepted	PEP	and	eventually	goes	through	to	final.

Some	proposals	are	more	borderline	and	we	put	a	question	 to	Python-
Dev	about	whether	 they	are	 in	 fact	a	good	 idea.	We	do	actually	have	a
proposal	 open	 at	 the	moment	 around	 the	 null	 coalescing	 operator.	We
genuinely	don't	 know	 if	we	want	 to	proceed.	This	PEP	would	make	 the

language	more	complex,	because	it's	a	cryptic	syntax	that	people	would
have	 to	 learn	and	understand.	So	 that's	 the	main	argument	against	 the
idea.	But	on	the	argument	in	favor,	you're	saying,	"Well,	this	is	a	pattern
that	comes	up	fairly	often	in	data	manipulation	pipelines."

So	 that	PEP	 is	still	 in	discussion,	until	 it	 does	get	 to	 the	point	of	 finally
being	put	to	Python-Dev	as	a	yes	or	no	question.	Then	the	decision	will
be	made	that	yes	we	definitely	want	 to	proceed,	or	no	we	don't,	unless
something	changes.

Nick	Coghlan:	'Very	occasionally,	you	do	get	PEPs	that	are	written
specifically	to	be	rejected.'

Very	 occasionally,	 you	 do	 get	 PEPs	 that	 are	 written	 specifically	 to	 be
rejected.	 In	 those	 cases,	 an	 idea	 keeps	 coming	 up,	 but	 the	 arguments
against	it	have	never	been	clearly	documented	anywhere.	So	someone	is
just	taking	the	time	to	write	down	the	idea	and	write	down	all	the	reasons
that	 we	 rejected	 the	 PEP,	 before	 saying,	 "Right!	 I'm	 posting	 this	 as	 a
rejected	PEP,	to	say	this	is	why	we	don't	do	this".	That	makes	me	think	of
some	of	the	new	stuff	that	I've	seen	in	Python	3.5	and	3.6,	that	was	only
partially	accepted	and	classed	as	provisional.

Driscoll:	So	 is	 that	slightly	different?	Does	 that	mean	 that	people	have
agreed	enough	that	they	want	to	add	something,	but	they	may	not	keep
it?

Coghlan:	Yes,	so	we	got	caught	a	couple	of	times	when	we	accepted	a
change,	 and	 the	 new	 API,	 and	 immediately	 put	 it	 under	 our	 standard
backwards	compatibility	guarantee.

What	we	ended	up	doing	was	painting	ourselves	into	a	corner.	We	were
stuck	supporting	an	API	that	actually	wasn't	very	good	for	the	problem	it
was	 aiming	 to	 solve.	We	were	 getting	 these	 suggestions	 and	 potential
module	additions	that	were	clearly	beneficial	and	clearly	helpful	for	users.
The	problem	was	 that	we	were	not	sure	we	had	 the	API	design	details
right.

Nick	Coghlan:	'We	were	stuck	supporting	an	API	that	actually	wasn't
very	good	for	the	problem	it	was	aiming	to	solve.'

We	didn't	want	to	put	anything	under	our	full	standard	library	backwards
compatibility	guarantee,	so	we	decided	not	to	include	the	additions.	This
approach	ended	up	being	bad	for	everyone,	because	it	kept	things	out	of
the	standard	library	that	really	should	have	been	in	there.

We	 also	 couldn't	 use	 that	 type	 of	 module	 to	 help	 us	 to	 improve	 other
parts	 of	 the	 standard	 library.	 Honestly,	 one	 of	 the	main	 ways	 that	 new
building	blocks	get	 into	 the	standard	 library	 is	because	we	want	 to	use
them	 in	other	parts	of	 the	standard	 library.	So	there's	a	standard	 library
enum	 type	now,	because	we	wanted	enum	 types	 in	 things	 like	 the	socket
module.

The	 provisional	 PEP,	 which	 I	 think	 ended	 up	 being	 PEP	 411,	 went
through	a	few	iterations.	Basically	PEP	411	was	designed	to	give	us	that
ability	to	accept	modules	that	we're	pretty	confident	we're	going	to	keep,
but	we're	not	sure	we	have	the	API	design	details	right	yet.

We	leave	a	PEP	as	provisional	for	a	couple	of	releases,	to	give	ourselves
the	right	to	make	breaking	changes	to	the	API	if	we	mess	something	up.	I
think	async	I/O	only	just	went	non-provisional	in	Python	3.6.

Nick	Coghlan:	'We	leave	a	PEP	as	provisional	for	a	couple	of
releases,	to	give	ourselves	the	right	to	make	breaking	changes	to

the	API	if	we	mess	something	up.'

Driscoll:	So	does	leaving	a	PEP	as	provisional	work	well?

Coghlan:	Yes,	we're	actually	really	happy	with	how	that's	worked	out.	 It
lets	us	give	people	that	clear	warning	that	a	PEP	is	still	a	bit	in	flux.	This
lets	users	know	that	we're	still	 figuring	out	the	details	and	if	 this	bothers
them,	then	they	shouldn't	use	that	PEP	yet.

There	was	 actually	 an	 interesting	 example	 recently	 for	Python	 3.6	with
pathlib.	So	pathlib	had	been	 included	as	a	provisional	API	and	 it	had

lots	of	interoperability	problems	with	other	standard	library	APIs	that	were
expecting	strings.

Nick	Coghlan:	'For	Python	3.6,	pathlib	had	hit	a	crossroads.'

For	Python	3.6,	pathlib	had	hit	a	crossroads	and	was	either	going	to	get
taken	out	of	the	standard	library	again	and	pushed	back	to	purely	being	a
PyPI	module,	or	the	interoperability	issues	had	to	be	fixed.	That	was	the
either/or	decision	that	was	before	the	core	development	team	for	Python
3.6.

This	decision	became	the	os.path	protocol,	or	the	os.fspath	protocol	and
the	path-like	objects	support,	which	is	basically	fixing	the	interoperability
problem	for	pathlib.	So	this	means	that	there	are	a	lot	of	standard	library
APIs	now	that	automatically	accept	path-like	objects.

Driscoll:	Alright,	so	what	is	the	Python	Packaging	Authority?

Coghlan:	So	the	Python	Packaging	Authority's	name	actually	started	as
a	joke	by	the	pip	and	virtualenv	developers.	They	wanted	a	name	for	the
development	 team	 that	 covered	 both	 projects.	 So	 they	 said,	 "Let's	 call
ourselves	the	Python	Packaging	Authority,	because	nobody	expects	 the
Python	Packaging	Authority!"

Then,	back	in	2013,	we	were	starting	to	actively	try	to	bring	more	of	the
tools,	 like	 setuptools	 and	 distutils,	 into	 that	 space.	 The	 Python
Packaging	User	Guide	 started	 bringing	 all	 that	 information	 together,	 to
offer	 a	more	 coherent	 and	officially	 recommended	way	of	 doing	 things.
We	 needed	 a	 name	 for	 that	 umbrella	 group	 too.	 We	 decided	 that	 the
Python	 Packaging	 Authority	 was	 kind	 of	 cool	 as	 a	 name,	 so	 we	 could
start	bringing	in	more	projects	under	that	umbrella.

Nick	Coghlan:	'We	decided	that	the	Python	Packaging	Authority	was
kind	of	cool	as	a	name,	so	we	could	start	bringing	in	more	projects

under	that	umbrella.'

Basically,	 the	 Python	 Packaging	 Authority	 occupies	 a	 role	 around
packaging	 tools	 and	 interoperability	 standards,	 that's	 similar	 to	 the	 role
that	core	developers	play	in	relation	to	Python	as	a	whole.	While	there's
some	 overlap	 between	 people	 who	 are	 interested	 in	 programming
language	design	and	people	who	are	 interested	 in	 software	distribution
design,	there	are	a	lot	of	people	who	fall	on	one	side	or	the	other.	Those
people	aren't	the	least	bit	interested	in	the	other	aspects.

Separating	the	two	types	of	people	means	that	anyone	who	cares	about
both	 types	of	design	 can	participate	 in	both	 subcommunities.	But	we're
not	constantly	trying	to	explain	the	complexities	of	software	distribution	to
language	designers	and	vice	versa.	I	 think	 this	split	has	made	people	a
lot	happier	in	general.	It's	nice	to	be	in	a	group	that	you	understand.	I	like
packaging,	 but	 I	 like	 Python	 too.	 So	 I'm	 kind	 of	 torn	 on	 which	 one	 I'd
probably	fall	under.	I'd	probably	want	to	work	on	Python	and	the	Python
Packaging	Authority	too.

Nick	Coghlan:	'I	like	packaging,	but	I	like	Python	too.	So	I'm	kind	of
torn	on	which	one	I'd	probably	fall	under.'

Driscoll:	 Python	 is	 one	 of	 the	 major	 languages	 being	 used	 in	 AI	 and
machine	learning.	Why	do	you	think	this	is?

Coghlan:	AI	and	machine	 learning	are	an	 interesting	mix	of	exploratory
interactive	 data	 analysis	 and	 heavy-duty	 number-crunching.	 CPython's
rich	 C	 API	 has	 led	 to	 Python	 serving	 as	 a	 'glue'	 language	 for
interconnecting	high	performance	components	written	 in	 languages	 like
C,	C++,	and	Fortran.

The	 scientific	 research	 community	 has	 been	 using	Python	 that	way	 for
more	than	20	years	(the	first	version	of	Numeric	was	released	in	1995).
This	means	that	Python	offers	a	unique	hybrid	of	a	flexible,	yet	easy-to-
learn	and	general-purpose	computing	 language,	combined	with	a	set	of
scientific	 computing	 libraries,	 developed	 for	 use	 in	 high-performance
computing	environments.

Driscoll:	What	could	be	done	 to	make	Python	a	better	 language	 for	AI
and	machine	learning?

Coghlan:	On	the	ease	of	use	side,	there	are	still	a	lot	of	opportunities	to
make	 components	 more	 readily	 available	 to	 users,	 either	 through
preconfigured	 freemium	 web	 services	 (like	 Google	 Colabatory	 or
Microsoft	 Azure	 Notebooks),	 or	 locally	 through	 the	 Python	 and	 Conda
packaging	toolchains.

On	the	performance	side,	there	are	also	a	lot	of	unexplored	opportunities
to	better	optimize	the	CPython	interpreter	and	the	Cython	static	compiler
(for	example,	Cython	doesn't	currently	ship	a	shared	dynamic	runtime,	so
there's	 likely	 a	 lot	 of	 duplicated	boilerplate	 code	 in	generated	modules,
that	not	only	makes	them	larger	and	slower	to	compile,	but	also	slower	to
import	at	runtime).

Driscoll:	So	I	noticed	that	you	are	a	fellow	blogger.	How	long	have	you
been	 writing	 about	 Python	 and	 what	 made	 you	 decide	 to	 become	 a
blogger?

Coghlan:	 It	was	probably	around	Python	3.3	that	I	started	talking	about
programming	stuff	on	my	blog.	Mostly,	I	find	writing	is	a	very	useful	aid	to
thinking.	You're	forced	to	get	an	idea	coherent	enough	to	be	readable.	So
that's	mainly	the	way	that	I	still	use	the	blog	now.	If	there's	something	in
particular	about	Python	 that	 I	want	 to	 reference	 later,	 then	 I	write	down
my	current	thoughts.

Driscoll:	 In	 your	 opinion,	 is	 Python	 a	 good	 language	 to	 actually	 start
learning	programming	with?

Coghlan:	 I	do	recommend	Python	as	a	first	 text-based	language.	For	a
lot	of	people,	starting	with	one	of	the	plug-and-play	languages	is	a	good
alternative	if	they	want	to	get	the	basic	concepts	down.

Nick	Coghlan:	'Once	you	want	to	get	into	full	combinatorial
programming,	then	Python's	a	very	good	language.'

Once	you	want	to	get	into	full	combinatorial	programming,	then	Python's
a	 very	 good	 language.	 The	 deliberate	 language	 design	 restrictions	 are
not	very	bright.	You	cannot	get	them	to	parse	very	complicated	action	at
a	distance	things.	If	you	study	linguistics,	then	you	realize	that	the	human

brain	also	struggles	to	parse	complicated	at	a	distance	things.

So	the	advantage	of	Python	is	that	you	only	need	one	token	look	ahead
to	 understand	 the	 context	 of	 the	 thing	 you're	 currently	 looking	 at.	 You
don't	 need	 to	 keep	much	 in	 your	 head	 to	 understand	what	 the	 code	 is
trying	 to	 tell	 you.	 We	 try	 to	 keep	 things	 visible	 as	 to	 where	 different
names	 are	 coming	 from.	 I	 think	 that	 makes	 a	 surprising	 amount	 of
difference	to	how	easy	it	is	for	people	to	fit	ideas	into	their	brain.

I	made	a	post	several	years	ago	about	scripting	languages	and	suitable
complexity.	 If	 you	 look	at	a	cookbook,	or	a	work	 instruction	guide,	 then
you	will	find	procedural	instructions.	The	outer	layer	of	a	cookbook	is	very
much	procedural	and	sequential.	Then	the	subfunctions	and	the	objects
are	all	kind	of	embedded	within	that	framework.	I	think	Python	works	well
for	people	because	it	reflects	how	we	interact	with	the	world.

Nick	Coghlan:	'I	think	Python	works	well	for	people	because	it
reflects	how	we	interact	with	the	world.'

Driscoll:	 Could	 you	 explain	 a	 little	 more	 about	 why	 Python	 works	 so
well?

Coghlan:	Sure,	we	do	things	in	sequence.	Starting	procedurally	as	your
foundation,	and	then	layering	all	of	your	other	things	on	top,	as	you	need
them,	makes	a	lot	of	sense.

Object-oriented	 programming,	 functional	 programming	 and	 event-based
programming	are	all	 techniques	 that	we	have	come	up	with	 to	manage
complexity.	 Whichever	 one	 of	 them	 you	 choose,	 as	 your	 fundamental
organizing	 principle	 for	 your	 language,	 then	 sets	 the	minimum	 level	 of
complexity	for	what	you	do.

It's	 really	 interesting	 to	 talk	 to	 people	 that	 teach	 with	 robotics	 and	 the
embodied	 computing	 type	 environment.	 When	 you	 teach	 that	 way,
starting	with	 objects	 is	 a	 good	way	 to	 go.	Embodied	 computing	 people
have	 that	 natural	 ability	 to	 say,	 "That	 robot	 sitting	 on	 my	 desk
corresponds	to	the	class	'Robot'	in	my	program."	They	can	do	that	visual
correlation.

I	think	it's	the	case	that	procedural	by	default	really	does	match	the	way
cookbooks	and	instructions	are	written.	That	is	good	for	lowering	barriers
to	entry	but,	at	 the	same	time,	Python	 is	a	 language	that	can	grow	with
you.	 Python	 has	 all	 the	 tools	 to	 do	mathematical	 programming,	 object-
oriented	programming	and	functional	programming.

Nick	Coghlan:	'Python	is	a	language	that	can	grow	with	you.'

You	can	use	Python	based	on	the	kinds	of	problems	that	you	have.	When
you	start	learning	more	about	particular	aspects	of	Python,	then	you	can
use	 that	as	a	 launching	point	 to	get	 into	 languages	 that	 specialize	 in	a
particular	area.	So	you	can	use	Python	to	launch	into	Haskell	(functional
programming),	Java	or	C#.

Driscoll:	So	let's	pretend	that	I	know	all	the	basics	of	Python	and	now	I
want	to	enhance	my	understanding	of	the	language.	What	should	I	do?

Coghlan:	The	important	question	to	ask	yourself	at	this	point	is	how	you
learn.	So	for	example,	for	myself,	 I	 figured	out	that	I'm	very	much	about
needs-based	learning.

Nick	Coghlan:	'I	learned	new	programming	techniques	and	new
libraries	in	order	to	solve	a	problem.'

I	don't	do	well	 learning	 things	 just	 for	 the	sake	of	 learning	 them.	 I	 learn
new	 programming	 techniques	 and	 new	 libraries	 in	 order	 to	 solve	 a
problem.	In	my	case,	I	find	the	problem	I'm	interested	in	solving	and	then
learn	whatever	I	need	to	do	to	solve	that.

In	 terms	 of	 learning	more,	 Allison	 Kaptur	 has	 written	 some	 quite	 good
stuff.	We've	started	adding	a	section	to	the	Dev	Guide	about	diving	 into
internals.	One	useful	trick	can	be	to	look	at	something	you	use	every	day,
particularly	an	open	source	library,	and	just	start	digging	into	the	code.

Nick	Coghlan:	'Look	at	something	you	use	every	day,	particularly	an

open	source	library,	and	just	start	digging	into	the	code.'

So	in	the	standard	library,	there	will	actually	be	links	to	the	source	code
from	the	standard	library	module	documentation.	Actually	just	going	and
reading	that,	and	trying	to	figure	out	why	certain	things	are	done,	can	be
useful.

That	 reminds	 me	 of	 another	 interesting	 project	 called	 Python	 Tutor
(pythontutor.com).	 Python	 Tutor	 is	 a	 code	 visualizer	 or	 a	 behavioral
visualizer.	As	you	work	through	the	code,	Python	Tutor	has	a	little	system
model	that	it	updates	progressively,	explaining	what's	going	on.

One	 strategy,	 that	 I	 know	 some	 people	 have	 certainly	 found	 useful,	 is
trying	 to	 change	 things,	 not	 because	 they	 actually	 want	 to	 make	 a
change,	but	just	to	learn	the	mechanics	of	what's	involved.

Driscoll:	What	are	you	most	excited	about	in	Python	today?

Coghlan:	 I'll	give	a	split	answer	here,	as	my	professional	and	personal
perspectives	on	the	question	are	slightly	different.

In	a	lot	of	ways,	Python	has	done	to	the	Linux	ecosystem	what	the	Linux
ecosystem	did	to	enterprise	organizations	in	general:	become	ubiquitous
without	 anyone	 really	 bothering	 to	 tell	 executive	management	 about	 it.
This	 means	 that	 everything	 we've	 achieved	 so	 far	 has	 been	 done
primarily	through	the	efforts	of	the	volunteer	community	contributors,	with
only	occasional	and	intermittent	 investments	from	large	commercial	and
institutional	users.

Nick	Coghlan:	'Everything	we've	achieved	so	far	has	been	done
primarily	through	the	efforts	of	the	volunteer	community

contributors.'

So	 professionally,	 the	 thing	 that	 most	 excites	 me	 is	 the	 fact	 that	 the
increase	 in	 the	 use	 of	AI	 and	machine	 learning	 techniques	 in	 business
software	development	 is	prompting	a	 lot	of	organizations	 to	 realize	 that
there's	 more	 to	 the	 world	 of	 software	 development	 than	 the	 current

enterprise	incumbents	of	C,	C++,	Java,	and	C#.

This	 has	 been	 most	 clearly	 visible	 in	 recent	 years	 through	 IEEE
Spectrum's	 annual	 multi-data-source	 language	 ranking,	 where	 Python
started	out,	in	2014,	at	the	edge	of	the	top	five	(with	C#),	but	has	steadily
climbed	through	those	rankings,	reaching	first	place	in	the	2017	edition	of
the	survey.

Personally,	 the	 thing	 that	 most	 excites	 me	 is	 the	 way	 we're	 getting
teachers	and	other	educators	directly	involved	in	the	open	source	Python
community.	 Prompted	 by	 an	 excellent	 keynote	 from	 James	 Curran	 at
PyCon	Australia	2014,	and	the	Education	Track	at	PyCon	UK,	I	founded
the	PyCon	Australia	Education	Seminar	in	2015,	and	we've	been	running
that	every	year	since.

A	lot	of	Python	user	groups	also	have	a	specific	focus	on	adult	education
and	offer	workshops	 for	 folks	 either	 looking	 to	 improve	 their	 computing
skills	 in	 their	 current	 profession,	 or	 contemplating	 a	 career	 change	 into
software	development.

Driscoll:	Thank	you,	Nick	Coghlan.

Chapter	19.	Mike	Bayer

Mike	 Bayer	 is	 an	 American	 software	 developer	 and	 a	 senior	 software
engineer	 at	 Red	 Hat,	 which	 sells	 open	 source	 software	 products.
Previous	positions	include	many	New	York-based	internet	companies	like
MLB.com.	 He	 also	 worked	 on	 content	 management	 software	 at	 Major
League	 Baseball.	 Mike	 is	 the	 creator	 of	 a	 number	 of	 open	 source
programming	 libraries	 for	Python,	 such	as	SQLAlchemy,	an	SQL	 toolkit
and	 object-relational	 mapper.	 He	 plays	 an	 active	 role	 in	 the	 Python
community	 by	 promoting	 good	 database	 software	 practices.	 Mike	 is	 a
regular	speaker	at	PyCon	US	and	smaller	conferences	in	Europe.

Discussion	themes:	SQLAlchemy,	AI,	v2.7/v3.x.

Catch	up	with	Mike	Bayer	here:	@zzzeek

Mike	Driscoll:	What	made	you	become	a	programmer?

Mike	Bayer:	 I've	had	an	 interest	 in	 computers	 since	1980,	when	 I	was
first	 exposed	 to	 early	 personal	 computers.	 I	 tried	 to	 learn	 game
programming	 in	 assembly	 language	 for	 early	 8-bit	 computers,	 without
much	 success.	 In	 high	 school,	 I	 was	 exposed	 to	 data	 structures	 and
procedural	programming	with	Pascal.

It	seemed	pretty	natural	 that	 I'd	become	a	programmer,	but	as	 it	 turned

out,	 I	 switched	 majors	 from	 computer	 engineering	 to	 music	 and	 took
several	years	off	from	touching	computers	at	all.	I	had	found	myself	being
overly	competitive	with	other	programmers	that	 I	met	on	bulletin	boards
and	I	didn't	like	who	I	was.

I	got	back	into	computers	strictly	because	it	was	the	only	way	that	I	could
eat	 and	 pay	 rent.	 About	 that	 time,	 the	 internet	 became	 a	 commercial
industry	and	I	immediately	got	involved	in	that	kind	of	work.

Once	 the	 first	 internet	bubble	came	along,	being	a	programmer	 in	NYC
was	 suddenly	 intense	 and	 exciting.	 Everyone	 wanted	 you	 to	 work	 for
them.	 The	 competitive	 element	 of	 programming	 has	 in	 fact	 created
continuous	problems	for	me	over	the	years.	I've	had	to	work	to	minimize
that	issue.

Driscoll:	So	how	did	you	get	started	with	Python?

Bayer:	Most	 of	my	 pre-Python	 career	 was	 spent	 programming	 in	 Perl,
Java,	 and	 a	 little	 bit	 of	 C.	 I	 was	 really	 into	 object-oriented	 application
design	 and	 I	 ended	 up	 going	 through	 a	 deep	 architecture	 astronaut
phase,	which	was	very	common	with	Java	programmers	in	the	late	1990s
and	early	2000s.

I	liked	the	idea	of	scripting	languages,	because	they	allowed	you	to	jump
right	 into	 a	 text	 file.	 You	 would	 have	 something	 that	 could	 work
immediately	 without	 the	 formality,	 boilerplate	 and	 compilation	 step	 of
Java.	So	 I	 also	 spent	 a	 lot	 of	 time	 trying	 to	 realize	OO	design	 in	Perl,
which	was	pretty	unsatisfying.

Mike	Bayer:	'After	a	few	years	of	refusing	to	accept	significant
whitespace,	I	finally	got	into	Python.'

I	became	aware	that	Python	might	be	something	that	could	really	strike	a
balance	 between	 those	 two	 worlds.	 After	 a	 few	 years	 of	 refusing	 to
accept	significant	whitespace,	 I	 finally	got	 into	Python	and	 realized	 that
the	language	was	in	fact	everything	that	I	was	looking	for.

Mike	Driscoll:	What	makes	Python	special	to	you?

Bayer:	What	impressed	me	about	Python	was	the	way	that	everything	in
your	interpreter	was	a	Python	object,	including	all	of	the	modules	that	you
imported.

Nowadays,	 that	whole	way	of	 looking	at	 things	 is	second	nature	 to	me.
But	when	I	first	learned	that	I	could	inspect	elements	of	the	program	itself
as	 just	more	 data,	 all	 of	 the	 other	 languages	 that	 I'd	 been	 exposed	 to
were	nothing	like	that.

Python	was	so	simple	 to	understand,	especially	after	 I	had	spent	years
never	really	understanding	what	Perl's	use	statement	did.	I	also	observed
in	Python	a	 certain	 emphasis	 on	 consistency	and	 correctness	 that	was
uncharacteristic	in	scripting	languages	in	general.

I	predicted	 that	 the	Python	programmers	 that	 I'd	be	working	with	would
be	higher	quality	developers	 than	 I'd	 otherwise	been	exposed	 to,	 since
they	were	attracted	to	Python!	That	turned	out	to	be	completely	true.

Driscoll:	So	what	inspired	you	to	create	SQLAlchemy?

Bayer:	Well,	I	had	always	had	the	goal	of	figuring	out	which	programming
language	I	wanted	to	make	my	home	in.	Within	that	 language,	I	wanted
to	work	up	a	full	suite	of	tools	that	I	could	use	for	everything.	I	wanted	to
be	able	to	strike	out	independently	and	build	applications	for	people.

Mike	Bayer:	'I	wanted	to	be	able	to	strike	out	independently	and
build	applications	for	people.'

At	my	various	 jobs,	 I	 had	always	had	 to	 create	 some	kind	of	 database
abstraction	layer	that	I'd	then	use	in	many	projects.	I	was	always	building
little	 template	 engines,	mini	 web	 frameworks	 and	 database	 abstraction
layers,	in	whatever	language	I	was	using,	which	I'd	try	to	standardize	for
all	of	my	projects.

So	when	I	got	into	Python,	I	was	unsatisfied	with	the	web	framework	tools
and	database	abstraction	tools	that	were	available	at	that	time.	I	had	also
written	many	 template	engines	and	database	access	 tools	already,	so	 I
had	a	lot	of	ideas.

Mike	Bayer:	'When	I	got	into	Python,	I	was	unsatisfied	with	the	web
framework	tools	and	database	abstraction	tools	that	were	available

at	that	time.'

I	 first	wrote	a	template	engine	called	Myghty,	which	was	an	almost	 line-
for-line	 port	 of	 the	 Perl	 template	 engine	 HTML::Mason.	 Myghty	 was
horrible,	yet	 it	gained	some	brief	popularity	and	 formed	the	basis	of	 the
first	version	of	the	Pylons	web	framework.

When	 I	 set	 out	 to	 write	 SQLAlchemy,	 I	 took	 a	 very	 deep	 and	 slow
approach,	 to	 try	 to	 make	 it	 amazing.	 I	 was	 still	 very	 flawed	 as	 a
programmer	and	especially	as	a	Python	programmer	at	that	point.	Early
SQLAlchemy	 had	 many	 awful	 design	 choices,	 but	 it	 still	 shined	 as
something	that	was	truly	unique	and	potentially	kind	of	amazing.	The	first
time	that	I	saw	the	unit	of	work	do	a	flush,	I	was	amazed.	I	realized	that
this	thing	might	have	a	deep	impact	on	people.

Driscoll:	So	how	did	Mako	come	about?

Bayer:	Mako	was	 very	 simply	 created	 to	 replace	Myghty	 and	 all	 of	 its
horrible	design	choices,	so	that	Pylons	could	have	a	template	engine	that
wasn't	embarrassing.

Mako	was	meant	to	be	a	very	capable	and	solid	template	engine,	which
could	more	or	less	be	 left	 to	go	on	 its	own	once	 it	was	complete.	While
Mako	 did	 gain	 more	 features	 over	 the	 years,	 I've	 considered	 it	 to	 be
complete	for	many	years	now.	I	still	use	Mako,	but	I'm	happy	for	Jinja2	to
be	the	de	facto	template	engine	in	Python.	Armin	Ronacher	did,	after	all,
credit	 Mako's	 architecture	 for	 being	 a	 lot	 of	 his	 inspiration	 for	 creating
Jinja2.

Mike	Bayer:	'I	still	use	Mako,	but	I'm	happy	for	Jinja2	to	be	the	de
facto	template	engine	in	Python.'

Driscoll:	 If	 you	 could	 start	 over	 with	 SQLAlchemy,	 what	 would	 you	 do
differently?

Bayer:	 There	were	 some	mistakes	 that	 I	made,	which	 led	 to	 scenarios
that	 ultimately	 benefited	 the	 project	 immensely.	 So	 if	 I	 had	 not	 made
those	mistakes,	then	I'm	not	sure	how	things	would	have	turned	out.

My	issue	with	competitiveness,	which	I've	mentioned,	caused	me	to	have
poor	 interactions	 very	 early	 on	 with	 some	 of	 the	 contributors.	 Chasing
away	people	who	had	good	ideas,	and	in	many	cases,	saw	things	much
more	clearly	than	I	did,	was	a	huge	mistake.

I	 should	 also	 have	 spent	 more	 time	 reading	 other	 Python	 code	 and
getting	better	at	using	the	correct	idiomatic	patterns,	rather	than	having	to
retroactively	fix	all	of	the	code	once	I	learned	new	things	about	Python.

If	I	could	start	over	with	SQLAlchemy,	I	would	do	other	things	differently
too.	There	were	a	lot	of	design	patterns	that	were	in	the	0.1	version	that	I
tried	to	get	rid	of	by	version	0.2	or	0.3.	I	couldn't	remove	those	patterns
totally.

Version	 0.1	 relied	 heavily	 on	 the	 implicit	 association	 of	 objects	 with
database	connections,	both	at	 the	 core	and	ORM	 levels.	Today,	 two	of
these	 patterns	 still	 exist	 as	 bound	 metadata	 and	 connectionless
execution.	 These	 patterns	 remain	 extremely	 popular,	 but	 continue	 to
create	subtle	confusion,	in	contrast	to	the	newer	patterns	that	are	based
on	explicitness.

Mike	Bayer:	'Had	I	been	starting	with	what	I	know	today,
SQLAlchemy	would	have	been	much	closer	to	the	mark	to	begin

with.'

There	are	many	other	API	patterns	 that	have	been	heavily	revised	over
the	years.	Had	I	been	starting	with	what	I	know	today,	then	SQLAlchemy
would	 have	 been	much	 closer	 to	 the	mark	 to	 begin	 with.	 There	 would
have	 been	 no	 need	 to	 go	 through	 major	 API	 changes	 in	 the	 early
releases.

I	also	should	have	recognized	 the	need	 for	a	good	SQL	migrations	 tool
early	 on,	 although	 sqlalchemy-migrate	 did	 a	 good	 job	 of	 handling	 this
until	I	had	time	to	create	Alembic	migrations.

Driscoll:	What	have	you	learned	from	creating	open	source	projects?

Bayer:	Well,	 for	 one	 thing,	 if	 your	 open	 source	 project	 turns	 out	 to	 be
popular,	then	it	will	never	be	finished.	If	your	project	is	linked	to	some	set
of	constantly	changing	technology,	like	Python	database	APIs,	then	your
work	will	never	be	done.

Mike	Bayer:	'If	your	open	source	project	turns	out	to	be	popular,
then	it	will	never	be	finished.'

I	had	no	idea	that	the	pace	of	bug	fixing	would	remain	constant	for	over
ten	years.	I	have	also	learned	that	to	be	successful	in	open	source,	you
do	have	to	have	a	lot	of	luck.	You	must	be	fortunate	enough	to	be	doing	a
project	at	 the	right	 time.	 I	got	 into	Python	much	earlier	 than	most	of	 the
community	and	produced	my	software	at	the	perfect	time.

Finally,	I've	learned	a	lot	about	the	calculus	that	you	must	apply	when	a
user	wants	 some	 feature,	 or	 behavior	 X.	 You	 can't	 really	 take	 them	 at
their	word.	Often,	when	users	think	that	they	want	X,	they	really	want	Y.
Sometimes	they	think	that	they	want	X,	but	they	haven't	thought	through
the	ramifications.

You	always	have	to	be	very	careful	about	how	you	go	about	adding	X.	At
the	same	 time,	 you	don't	want	 the	user	 to	 be	upset	 if	 you	are	denying
their	 feature	 request.	 Above	 all,	 as	 the	 maintainer,	 you	 need	 to	 be	 as
courteous	as	possible.	 This	 is	 extremely	 difficult,	 because	 lots	 of	 users
are	pretty	 disrespectful	 and	entitled.	You	gain	nothing	by	venting	about
this	though.

Driscoll:	 We're	 seeing	 Python	 being	 used	 a	 lot	 in	 AI	 and	 machine
learning.	Why	do	you	think	that	Python	is	such	a	great	language	for	this?

Bayer:	 What	 we're	 doing	 in	 that	 field	 is	 developing	 our	 math	 and
algorithms.	We're	putting	 the	algorithms	 that	we	definitely	want	 to	keep
and	optimize	into	 libraries	such	as	scikit-learn.	Then	we're	continuing	to
iterate	and	share	notes	on	how	we	organize	and	think	about	the	data.

Mike	Bayer:	'A	high-level	scripting	language	is	ideal	for	AI	and
machine	learning,	because	we	can	quickly	move	things	around	and

try	again.'

A	 high-level	 scripting	 language	 is	 ideal	 for	 AI	 and	 machine	 learning,
because	we	can	quickly	move	things	around	and	try	again.	The	code	that
we	create	spends	most	of	 its	 lines	on	representing	the	actual	math	and
data	structures,	not	on	boilerplate.

A	 scripting	 language	 like	Python	 is	 even	better,	 because	 it	 is	 strict	 and
consistent.	 Everyone	 can	 understand	 each	 other's	 Python	 code	 much
better	 than	 they	 could	 in	 some	 other	 language	 that	 has	 confusing	 and
inconsistent	programming	paradigms.

The	 availability	 of	 tools	 like	 IPython	 notebook	 has	 made	 it	 possible	 to
iterate	and	share	our	math	and	algorithms	on	a	whole	new	level.	Python
emphasizes	the	core	of	 the	work	 that	we're	 trying	 to	do	and	completely
minimizes	everything	else	about	how	we	give	the	computer	 instructions,
which	 is	 how	 it	 should	 be.	 Automate	 whatever	 you	 don't	 need	 to	 be
thinking	about.

Mike	Bayer:	'Automate	whatever	you	don't	need	to	be	thinking
about.'

Driscoll:	How	do	you	think	that	Python	could	be	a	better	language	for	AI
and	machine	learning?

Bayer:	Machine	learning	is	a	CPU	intensive	task,	so	we	need	to	continue
iterating	on	how	to	make	better	use	of	all	of	those	processor	cores,	which
unfortunately	 means	 the	 Global	 Interpreter	 Lock	 (GIL).	 Right	 now,	 the
only	way	to	do	that	is	to	use	multiprocessing.

Mike	Bayer:	'Python	still	lacks	a	decent	concurrency	paradigm.'

Python	 still	 lacks	 a	 decent	 concurrency	 paradigm	 that	 is	 somewhere

between	threads,	where	Python's	dynamic	contract	means	that	we	have
a	GIL	and	processes,	which	incur	complexity	and	expense	regarding	how
to	share	data.	It	might	be	helpful	to	have	an	interpreter	concept	that	acts
largely	 like	 multiprocessing,	 but	 is	 somehow	 doing	 it	 within	 a	 single
process	space.	This	concept	would	use	OS-level	 threads,	yet	still	 keep
the	processes	isolated	enough	that	they	don't	share	the	same	GIL.

Driscoll:	 What	 advice	 would	 you	 give	 to	 someone	 who	 is	 new	 to
programming	in	general?

Bayer:	There	is	a	lot	of	conventional	wisdom	in	computer	programming.
You	should	always	put	conventional	wisdom	on	trial.

Mike	Bayer:	'You	should	always	put	conventional	wisdom	on	trial.'

There	 are	 rules	 in	 programming,	 such	 as	 don't	 use	 mutable	 global
variables,	 which	 are	 actually	 more	 like	 training	 wheels	 for	 beginners.
They	are	good	 rules,	 that	have	a	 lot	of	 truth	 in	 them,	but	none	of	 them
apply	in	every	case.

As	 you	 progress	 from	 being	 a	 beginner	 to	 being	 more	 advanced,	 you
want	to	be	able	to	think	on	your	own.	You	also	want	 to	gain	experience
by	finding	novel	and	creative	ways	to	solve	problems.	These	ideas	might
not	 always	 work	 out,	 but	 establishing	 a	 core	 practice,	 of	 always
challenging	 the	 status	quo,	will	 hopefully	 allow	 you	 to	 see	a	 great	 new
solution	to	a	problem	one	day.

Driscoll:	 Which	 language	 would	 you	 recommend	 to	 someone	 who	 is
starting	out	in	programming?

Bayer:	I	think	Python	is	the	best	beginner	language	that	I've	ever	seen.
For	 your	 first	 few	 years	 of	 programming,	 you	 can	 just	 use	 Python	 and
you'll	 probably	 be	 doing	 JavaScript	 as	 well,	 since	 the	 browser	 is
unavoidable.

At	 some	 point,	 it's	 also	 a	 great	 idea	 to	 write	 some	 kind	 of	 scripting
language	 interpreter	 or	 compiler.	 An	 understanding	 of	 how	 instructions
declared	 at	 a	 high	 level,	 like	 a	Python	 function,	 end	 up	manifesting	 as

instructions	run	by	a	CPU,	is	an	essential	perspective	to	have.

Driscoll:	What	about	Python	today	most	excites	you?

Bayer:	 I'm	 excited	 that	 Python	 is	 becoming	 the	 default	 language	 that
virtually	 everyone	 who	 wants	 to	 do	 thoughtful	 work	 with	 data	 chooses
first,	particularly	in	the	field	of	journalism.

Mike	Bayer:	'I	look	forward	to	a	new	crop	of	journalists	who	can
program	Python	as	well	as	they	can	write	a	headline.'

Journalism	 is	 becoming	more	 data-driven	 and	 I	 look	 forward	 to	 a	 new
crop	of	 journalists	who	can	program	Python	as	well	as	 they	can	write	a
headline.	We	need	journalists	who	can	produce	stories	that	are	based	on
data	 from	 the	 ground	 up.	 This	 will	 hopefully	 lead	 to	 more	 data	 being
available	as	the	demand	increases.	Imagine	if	each	time	we	read	a	story
in	the	Washington	Post,	there	was	also	an	IPython	notebook	right	there,
which	we	could	use	to	analyze	the	data	in	the	story.

Driscoll:	Should	people	now	leave	Python	2.7	behind?

Bayer:	Moving	from	Python	2.7	is	a	problem	that	will	solve	itself.	I	 think
that	people	in	the	data	field	are	definitely	starting	with	the	3.x	series	now.
In	the	infrastructure	world	that	I	work	in,	we	are	understandably	taking	a
lot	longer	to	get	there,	but	we	will.

Mike	Bayer:	'Moving	from	Python	2.7	is	a	problem	that	will	solve
itself.	I	think	that	people	in	the	data	field	are	definitely	starting	with

the	3.x	series	now.'

Driscoll:	 What	 are	 some	 changes	 that	 you're	 hoping	 to	 see	 in	 future
Python	releases?

Bayer:	To	be	honest,	 in	 the	 future	 I'd	 like	 to	 see	 less	emphasis	on	 the
asyncio	system,	which	I	believe	is	a	widely	misunderstood	API.

New	programmers	 are	 starting	 their	 projects	 using	 async	 for	 the	 entire
system	 end-to-end.	 They	 are	 creating	 buggy	 and	 overly	 complicated
applications	as	a	result,	which	don't	perform	any	better	 than	they	would
using	traditional	techniques.

There	is	definitely	a	place	for	asynchronous	I/O,	but	in	virtually	any	real-
world	 application,	 it	 should	 be	 limited	 to	 dealing	 with	 interaction	 with
external	 resources	 and	 clients.	 This	 should	 only	 be	 when	 the	 scale	 of
external	data	 interaction	will	be	very	wide	and	concurrent	(e.g.	scraping
thousands	 of	 websites,	 or	 waiting	 for	 commands	 from	 thousands	 of
clients).

The	central	engines	of	our	applications	(those	which	are	interacting	with
local	data	and	doing	our	business	logic	and	algorithms),	should	be	written
with	 traditional	 threading.	 Asynchronous	 and	 synchronous	 components
can	 talk	 to	 each	 other	 quite	 well,	 however	 the	 programmer	 needs	 to
understand	 both	 paradigms	 well.	 The	 current	 async	 culture	 does	 not
emphasize	this	at	all.

Driscoll:	Thank	you,	Mike	Bayer.

Chapter	20.	Jake	Vanderplas

Jake	 Vanderplas	 is	 a	 data	 scientist	 and	 the	 author	 of	 Python	 Data
Science	Handbook.	He	is	a	director	of	open	software	for	the	University	of
Washington's	eScience	Institute,	where	he	works	with	researchers	from	a
variety	 of	 disciplines.	 Previous	 roles	 at	 the	 University	 of	 Washington
include	 director	 of	 research	 in	 physical	 sciences.	 Jake	 is	 a	 long-time
contributor	to	the	Python	scientific	stack	and	has	worked	on	projects	such
as	 SciPy,	 scikit-learn	 and	 Altair.	 He	 regularly	 speaks	 at	 Python
conferences	 in	 the	US	and	 has	 delivered	 keynote	 speeches	 at	 PyCon,
PyData	and	SciPy.	Jake	 is	a	visiting	 researcher	at	Google	and	writes	a
tech	blog.

Discussion	themes:	Python	in	data	science	and	astronomy.

Catch	up	with	Jake	Vanderplas	here:	@jakevd

Mike	Driscoll:	Could	you	tell	me	a	little	about	your	background?

Jake	Vanderplas:	 I	 studied	 physics	 as	 an	 undergraduate	 and	 spent	 a
few	 years	 after	 college	 working	 in	 the	 outdoors	 as	 an	 environmental
educator	and	a	mountaineering	guide.

After	a	 few	summers	sleeping	under	 the	stars	each	night	 in	California's
Sierra	 Nevada,	 I	 fell	 in	 love	 with	 astronomy	 and	 decided	 to	 take

advantage	 of	 my	 physics	 background	 to	 head	 to	 graduate	 school	 and
learn	more.

Up	until	my	first	year	of	graduate	school,	 I'd	only	done	a	bit	of	coding.	I
had	messed	around	with	HyperCard	 in	middle	school	and	 taken	a	C++
class	 in	 high	 school.	 I	 had	 also	 learned	 some	 basic	 Mathematica	 in
college.

Driscoll:	 How	 did	 you	 get	 started	 using	 the	 Python	 programming
language?

Vanderplas:	Astronomy	is	very	computationally-driven	these	days	and	so
when	I	started	graduate	school,	I	needed	to	relearn	how	to	code.

Jake	Vanderplas:	'Astronomy	is	very	computationally-driven	these
days...'

Most	 of	 my	 department	 was	 using	 IDL	 in	 those	 days,	 but	 I	 was	 lucky
enough	 to	 do	 a	 quarter-long	 research	 project	 with	 a	 professor	 who
recommended	 Python.	 He	 told	 me	 that	 Python	 was	 the	 future	 and	 in
retrospect	he	was	entirely	correct!

I	 taught	 myself	 Python	 over	 winter	 break	 by	 writing	 a	 Sudoku	 puzzle
solver	and	then	turning	that	 into	a	Sudoku	puzzle	generator.	Much	 later
on,	I	arrived	at	PyCon	2017	and	explained	why	Python	is	liked	and	used
by	so	many	scientists.

Driscoll:	What	do	you	like	about	Python?

Vanderplas:	I	like	Python	first	of	all	because	it	 is	open,	which	is	a	huge
advantage	 over	 some	 other	 tools	 favored	 by	 academics	 (Mathematica,
IDL	and	MATLAB	come	to	mind).

When	I	first	started	using	Python,	I	found	the	syntax	and	semantics	to	be
incredibly	clean	and	intuitive,	which	made	coding	fun	for	me	in	a	way	that
it	never	was	when	I	was	first	learning	C++.

Jake	Vanderplas:	'I	found	Python's	syntax	and	semantics	to	be
incredibly	clean	and	intuitive.'

Also,	 the	scientific	Python	ecosystem,	even	though	 it	was	fairly	nascent
when	 I	 started,	 is	 a	 huge	 boon.	 No	 matter	 what	 you	 want	 to	 do	 with
Python	in	science,	it's	likely	that	someone	has	created	a	package	for	it.

Python's	interoperability	with	so	many	other	languages	means	that	it	can
act	 like	 the	 glue	 between	 the	 various	 tools	 that	 scientists	 need	 to	 use
together.	 Then	 the	 'batteries	 included'	 aspect	 of	 Python	 means	 that
there's	a	built-in	 library	 for	nearly	everything	and	a	 third-party	 library	 for
everything	else.

Jake	Vanderplas:	'Python…can	act	like	the	glue	between	the	various
tools	that	scientists	need	to	use	together.'

Python's	 simple	 and	 dynamic	 nature	 makes	 it	 perfect	 for	 day-to-day
scientific	data	exploration,	where	 speed	 of	 development	 is	 primary	 and
speed	of	execution	is	often	secondary.

Last	 but	 not	 least,	 Python's	 open	 ethos	 does	 fit	 well	 with	 science	 and
we're	 seeing	 an	 increasing	 number	 of	 scientists	 hosting	 their	 research
code	on	GitHub	and	similar	services,	to	aid	in	reproducibility.

Driscoll:	How	is	Python's	open	ethos	helping	the	scientific	community?

Vanderplas:	 Python's	 open	 ethos	 is	 a	 great	 match	 for	 how	 science
should	be	done.	I	made	the	point	in	my	keynote	at	PyCon	2017	that	over
the	 past	 five	 to	 ten	 years,	 scientists	 have	 really	 absorbed	many	 of	 the
best-practice	lessons	from	the	open	source	community.

Code	sharing,	version	control,	unit	 testing,	and	code	documentation	are
essential	 for	 making	 sure	 that	 modern	 science	 is	 reproducible.	 The
people	 doing	 the	 best	 computational	 work	 in	 the	 scientific	 community
have	 adapted	 many	 of	 these	 practices	 from	 the	 open	 source	 (and
particularly	Python	open	source)	community.

Driscoll:	What	is	Python	missing	that	would	be	great	for	scientists?

Vanderplas:	The	biggest	challenge	with	Python	for	scientists	 is	 that	 the
scaling	 of	 computation	 requires	 writing	 code	 in	 a	 language	 other	 than
Python.

Jake	Vanderplas:	'The	biggest	challenge	with	Python	for	scientists
is	that	the	scaling	of	computation	requires	writing	code	in	a

language	other	than	Python.'

Tools	like	Cython	and	Numba	address	part	of	this	problem	by	letting	you
convert	Python	or	Python-like	code	to	fast	compiled	code,	but	there	is	a
cognitive	 overhead	 involved	 in	 deciding	 when	 and	 where	 to	 switch	 to
these	 additional	 tools.	 PyPy	 is	 promising,	 but	 the	 problem	 is	 that	 it
doesn't	 support	 CPython's	 C-API,	 which	 the	 bulk	 of	 the	 scientific
ecosystem	requires.

This	 is	why	some	people	 in	 the	 community	are	attracted	 to	 Julia.	 It's	 a
language	built	for	scientific	computation,	with	fast	LLVM-based	execution
built-in	 from	 the	ground	up.	 That	 said,	 Julia	 feels	 a	 bit	 clunky	 to	me	 in
some	areas	and	I	wish	we	could	have	a	happy	medium:	Python's	syntax
with	Julia's	performance.

Driscoll:	How	can	the	Python	community	help	the	scientific	community	to
learn	Python?	What	projects	are	you	currently	using	Python	in?

Vanderplas:	I	do	all	of	my	daily	work	in	Python.	Currently	I'm	involved	in
several	 research	 projects	 at	 the	 University	 of	 Washington	 (UW).	 I'm
mentoring	students	working	on	astronomy	and	on	transportation-focused
data	science.

I'm	helping	to	develop	the	Altair	library,	which	is	a	Python	interface	to	the
Vega-Lite	grammar	of	visualization.	I	think	it	will	be	a	good	fit	 for	one	of
the	current	holes	in	the	Python	scientific	space,	which	is	exploratory	data
analysis.

Jake	Vanderplas:	'I	generally	push	Python...and	these	days,	I	rarely

have	to	push	very	hard!'

Part	 of	my	 job	at	UW	 is	 essentially	 consulting	with	 researchers	 around
the	 university	 to	 help	 with	 computational	 or	 statistical	 aspects	 of	 their
research.	I	generally	push	Python	in	most	of	those	cases	and	these	days,
I	rarely	have	to	push	very	hard!

Driscoll:	Do	most	astronomists	do	a	lot	of	computer	programming?

Vanderplas:	 Computing	 is	 absolutely	 essential	 in	 modern	 astronomy!
The	 field	 has,	 for	 the	 most	 part,	 moved	 beyond	 the	 romantic	 days	 of
traveling	 to	 remote	 peaks	 to	 peer	 through	 telescopes.	 Even	 when
observing	 on-site,	 observations	 are	 recorded	 by	 CCDs	 attached	 to	 the
telescopes.

Beyond	 that,	 it's	 generally	 true	 that	 all	 of	 the	 easy	 observations	 have
already	 been	 made.	 To	 really	 push	 forward	 our	 understanding	 of	 the
universe	requires	novel	studies.	That	novelty	might	mean	observing	very
faint	 objects	 (in	 which	 case	 detailed	 noise	models	 are	 a	 necessity),	 or
observing	many	objects	to	learn	about	their	statistical	properties	(in	which
a	scalable	computing	environment	is	essential).

At	 either	 end	 of	 that	 spectrum,	 you	 better	 know	 how	 to	 write	 code	 to
ingest	telescope	images,	model	the	interesting	feature	and	spit	out	useful
results.

Driscoll:	How	common	is	it	for	scientists	to	need	to	write	code?

Vanderplas:	 Like	 in	 astronomy,	 scientists	 in	 most	 fields	 are	 finding
coding	to	be	essential.

Jake	Vanderplas:	'Scientists	in	most	fields	are	finding	coding	to	be
essential.'

We	astronomers	have	been	a	bit	 ahead	of	 the	 curve	when	 it	 comes	 to
data	 volumes,	 but	 as	 sensors,	 cameras,	 satellites	 and	 other	 devices
become	cheaper	and	more	abundant,	the	data	deluge	is	starting	to	be	a

feature	in	most	other	domains	as	well.

Driscoll:	Which	scientific	fields	use	programming	the	most?

Vanderplas:	It's	very	hard	to	say,	but	immense	volumes	of	data	are	being
produced	in	astronomy.

So	in	radio	astronomy,	for	example,	there	are	projects	that	are	producing
data	at	rates	of	about	5GB/s.	In	physics,	the	LHC	produces	data	at	a	rate
of	 about	 25GB/s.	 Then	 in	 biostatistics,	 gene	 sequencing	 data	 for	 an
individual	 is	 typically	 ~100s	 of	 GB.	 All	 of	 these	 fields	 are	 using
sophisticated	algorithms	to	extract	meaning	from	that	data.

Driscoll:	On	 the	other	 side	of	 the	coin,	are	you	aware	of	any	scientific
fields	where	Python	is	weak	in?	If	so,	what	are	they?

Vanderplas:	Some	fields	have	long	histories	of	ingrained	toolchains.	For
example,	 MATLAB	 could	 probably	 be	 described	 as	 standard	 in	 many
engineering	and	applied	math	departments.

Ten	 years	 ago,	 a	 language	 called	 IDL	 dominated	 most	 of	 astronomy
research,	 but	 that	 has	 changed	 and	 now	 Python	 is	 the	 dominant
language	mentioned	in	refereed	publications.

The	 way	 this	 changed	 in	 astronomy	 was	 two-fold.	 You	 had	 some
visionaries	 in	positions	of	 influence	 that	pushed	 for	Python	early	on	(for
example,	 Perry	 Greenfield	 at	 the	 Space	 Telescope	 Science	 Institute).
Then	 there	was	a	 real	groundswell	coming	 from	graduate	students	and
postdocs,	who	worked	hard	 to	 train	each	other	 (examples	are	software
carpentry	workshops	and	the	SciCoder	program).

Jake	Vanderplas:	'The	momentum	of	Python	sort	of	took	over.'

There	 has	 also	 been	 a	 community-wide	 push	 to	 standardize	 the
astronomy	 Python	 tool	 stack.	 The	 result	 is	 the	 (phenomenal)	 Astropy
project.	Beyond	that,	the	momentum	of	Python	sort	of	took	over.

Driscoll:	Thank	you,	Jake	Vanderplas.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by
Packt:

Python	Machine	Learning	-	Second	Edition

Sebastian	Raschka,	Vahid	Mirjalili

ISBN:	978-1-78712-593-3

Understand	 the	key	 frameworks	 in	data	science,	machine	 learning,
and	deep	learning
Harness	 the	 power	 of	 the	 latest	 Python	 open	 source	 libraries	 in
machine	learning
Master	 machine	 learning	 techniques	 using	 challenging	 real-world
data
Master	 deep	 neural	 network	 implementation	 using	 the	 TensorFlow
library
Ask	 new	 questions	 of	 your	 data	 through	machine	 learning	models
and	neural	networks
Learn	 the	 mechanics	 of	 classification	 algorithms	 to	 implement	 the
best	tool	for	the	job
Predict	continuous	target	outcomes	using	regression	analysis
Uncover	hidden	patterns	and	structures	in	data	with	clustering
Delve	 deeper	 into	 textual	 and	 social	 media	 data	 using	 sentiment
analysis

Artificial	Intelligence	with	Python
Prateek	Joshi

ISBN:	978-1-78646-439-2

Realize	different	classification	and	regression	techniques
Understand	 the	 concept	 of	 clustering	 and	 how	 to	 use	 it	 to
automatically	segment	data
See	how	to	build	an	intelligent	recommender	system
Understand	logic	programming	and	how	to	use	it
Build	automatic	speech	recognition	systems
Understand	the	basics	of	heuristic	search	and	genetic	programming
Develop	games	using	Artificial	Intelligence
Learn	how	reinforcement	learning	works
Discover	 how	 to	 build	 intelligent	 applications	 centered	 on	 images,
text,	and	time	series	data
See	 how	 to	 use	 deep	 learning	 algorithms	 and	 build	 applications
based	on	it

Understanding	Software
Max	Kanat-Alexander

ISBN:	978-1-78862-881-5

See	how	to	bring	simplicity	and	success	to	your	programming	world
Clues	to	complexity	-	and	how	to	build	excellent	software
Simplicity	and	software	design
Principles	for	programmers
The	secrets	of	rockstar	programmers
Max’s	views	and	interpretation	of	the	Software	industry
Why	Programmers	suck	and	how	to	suck	less	as	a	programmer
Software	design	in	two	sentences
What	is	a	bug?	Go	deep	into	debugging

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review
on	 the	 site	 that	 you	 bought	 it	 from.	 If	 you	 purchased	 the	 book	 from
Amazon,	 please	 leave	 us	 an	 honest	 review	 on	 this	 book’s	 Amazon
page.	This	 is	vital	so	 that	other	potential	 readers	can	see	and	use	your
unbiased	opinion	to	make	purchasing	decisions,	we	can	understand	what
our	 customers	 think	 about	 our	 products,	 and	 our	 authors	 can	 see	 your
feedback	on	 the	 title	 that	 they	have	worked	with	Packt	 to	 create.	 It	will
only	 take	a	 few	minutes	of	 your	 time,	 but	 is	 valuable	 to	 other	 potential
customers,	our	authors,	and	Packt.	Thank	you!

	Python Interviews
	Python Interviews
	Why subscribe?
	PacktPub.com

	Foreword
	Contributor
	About the Author
	Packt is Searching for Authors Like You

	Preface
	1. Brett Cannon
	2. Steve Holden
	3. Carol Willing
	4. Glyph Lefkowitz
	5. Doug Hellmann
	6. Massimo Di Pierro
	7. Alex Martelli
	8. Marc-André Lemburg
	9. Barry Warsaw
	10. Jessica McKellar
	11. Tarek Ziadé
	12. Sebastian Raschka
	13. Wesley Chun
	14. Steven Lott
	15. Oliver Schoenborn
	16. Al Sweigart
	17. Luciano Ramalho
	18. Nick Coghlan
	19. Mike Bayer
	20. Jake Vanderplas
	Other Books You May Enjoy
	Artificial Intelligence with Python
	Understanding Software
	Leave a review - let other readers know what you think

