

© 	Copyright	2019	-	All	rights	reserved.
The	 content	 contained	within	 this	 book	may	 not	 be	 reproduced,	 duplicated	 or	 transmitted	without	 direct
written	permission	from	the	author	or	the	publisher.

Under	no	circumstances	will	any	blame	or	legal	responsibility	be	held	against	the	publisher,	or	author,	for
any	damages,	reparation,	or	monetary	loss	due	to	the	information	contained	within	this	book.	Either	directly
or	indirectly.

Legal	Notice:

This	book	 is	copyright	protected.	This	book	 is	only	 for	personal	use.	You	cannot	amend,	distribute,	 sell,
use,	 quote	 or	 paraphrase	 any	 part,	 or	 the	 content	within	 this	 book,	without	 the	 consent	 of	 the	 author	 or
publisher.

Disclaimer	Notice:

Please	note	the	information	contained	within	this	document	is	for	educational	and	entertainment	purposes
only.	All	effort	has	been	executed	 to	present	accurate,	up	 to	date,	and	reliable,	complete	 information.	No
warranties	of	any	kind	are	declared	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the
rendering	of	legal,	financial,	medical	or	professional	advice.	The	content	within	this	book	has	been	derived
from	various	sources.	Please	consult	a	 licensed	professional	before	attempting	any	 techniques	outlined	 in
this	book.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	is	the	author	responsible	for	any
losses,	 direct	 or	 indirect,	 which	 are	 incurred	 as	 a	 result	 of	 the	 use	 of	 information	 contained	within	 this
document,	including,	but	not	limited	to,	—	errors,	omissions,	or	inaccuracies.

TABLE	OF	CONTENTS

Introduction

Outline:
Chapter	1:	Python	basics
Chapter	2:	Data	analysis	with	Python
Chapter	3:	Data	Visualization	with	Python
Chapter	4:	Bonus	chapter	–	Introduction	to	Machine
learning	with	Python

Chapter	1	:	Python	Basics
Python	History
Installing	Python

Windows:
Mac/Linux	Os:
Windows:
The	Anaconda	navigator

Coding	with	Python:	The	rudiments
Statements,	Commands,	and	Expressions
Comments
Python	data	types
Numbers
Integers
Floats
Complex	numbers

Strings
String	Concatenation
Variables

Lists
List	indexing
String	Indexing

Tuples
Dictionaries

Booleans
Comparison	operators
Logical	operators

Conditional	statements	and	Loops
List	Comprehension

Functions

Chapter	2	:	Data	Analysis	with	Python
NumPy

Package	Installation
Manipulating	arrays
Indexing	and	selecting	arrays
Conditional	selection
NumPy	Array	Operations

Pandas
Series
Data	frames
Conditional	selection

Missing	Data
Group-By
Concatenate,	Join	and	Merge
Reading	and	Writing	data
Read
Write

Chapter	3	:	Data	Visualization	with	Python
Matplotlib
Seaborn
Pandas

Chapter	4	:	Machine	Learning	with	Python
So,	what	is	machine	learning?
Okay,	machine	learning	is	cool.	How	is	it	related
to	data	science?
Python	and	machine	learning

Types	of	machine	learning

Conclusion

Introduction

According	 to	a	 report	published	by	LinkedIn,	data	science	 is	one	of	 the	fastest
growing	 tech	 fields	within	 the	past	7	years.	The	need	 for	companies	 to	have	a
better	understanding	of	data	generated	via	their	business	has	motivated	a	lot	of
interest	 in	 the	 field.	 However,	 there	 is	 a	 gap	 to	 be	 breached	 as	 the	 supply	 of
competent	data	scientists	is	way	lower	than	the	demand.	This	makes	data	science
a	very	in-demand	skill,	with	generous	compensation	for	the	few	that	possess	the
relevant	 portfolio.	 On	 average,	 a	 data	 scientist	 makes	 about	 $109,000/year
(according	to	glassdoor.com);	this	puts	data	scientists	in	the	top	paid	ranks	of	the
tech	 industry.	 This	 tends	 to	 bring	 up	 certain	 questions:	 On	 a	 scale	 of	 ‘rocket
science’	to	‘quantum	physics’,	how	complicated	is	data	science?	Well,	 if	you	-
like	many	other	people	(myself	included),	have	wondered	what	data	science	is,
and	why	data	scientists	are	so	in-demand,	then	that	question	is	not	so	far-fetched.
On	the	contrary,	however,	data	science	is	not	that	complicated.

To	 risk	 over-simplification,	 data	 science	 is	 just	 the	 application	 of	 various
techniques	 –	 usually	 employing	 the	 fast	 and	 efficient	 data	 organization,
visualization	and	 interpretation	of	computer	programs	or	 software	 to	 transform
raw	data	into	information	for	decision-making.	This	type	of	information	is	useful
to	 managers	 in	 corporate	 institutions	 for	 informed	 risk-assessments,	 profit
optimization,	fraud	detection,	etc.	Imagine	the	great	prospects	data	science	offers
such	 businesses	 to	 consistently	 be	 ahead	 of	 the	 competition	 (assuming	 the
competition	 is	 not	 equally	 leveraging	 the	 awesomeness	 of	 data-science).
Advertisements	are	better	 targeted	at	consumers,	companies	are	more	aware	of
their	 economic	 performance	 and	 possible	 trends	 or	 options	 in	 production,	 etc.
These	available	prospects	serve	as	excellent	motivations	for	considering	a	career
in	 data	 science.	 However,	 without	 the	 right	 tools,	 guidance,	 and	 dedication,
mastering	 the	 skills	 required	 for	 data	 science	 would	 be	 a	 very	 tedious	 and
lengthy	task.	This	is	the	reason	for	writing	this	book;	to	bring	you	up	to	speed	on
the	skills	and	tools	to	begin	a	journey	into	the	exciting	and	rewarding	world	of
data	science.

At	this	point,	you	are	probably	quite	excited	about	data	science	and	the	secrets	it
has	to	offer,	however,	you	may	ask	“what	does	Python	have	to	do	with	it?”

Remember,	 data	 science	 leverages	 the	 exceptional	 processing	 and	 data
manipulation	 capacity	 of	 computers?	 To	 do	 this,	 the	 data	 scientist	 must

communicate	 the	 task	 in	 a	 clear	 and	 logical	 manner	 to	 the	 computer.	 The
problem	 arises	 in	 the	 fact	 that	 computers	 do	 not	 understand	 human	 language;
thus,	the	need	for	programming	languages	that	allow	powerful	communications
between	people	and	computers.

Python	 is	 a	 high-level	 programming	 language	 that	 reduces	 the	 complexity	 of
coding	using	almost	human	expressions	in	its	syntax.	This	allows	programmers
to	build	complex	algorithms	and	systems	with	exceptional	performances,	while
reducing	 coding	 time	 and	 resources.	 Also,	 Python	 has	 an	 extensive	 library	 of
tools	 and	 applications	 that	 makes	 data	 science	 less	 technical	 for	 beginners	 or
intermediate	programmers.	Therefore,	most	data	scientists	have	Python	as	 their
primary	tool	for	big	data,	data	analysis,	etc.

Now,	 here	 is	 the	 red	 pill	 –	 blue	 pill	 moment.	 This	 book	 has	 been	 carefully
designed	to	take	you	on	a	journey	to	leveraging	the	potentials	of	Python	for	data
science.	However,	the	extent	of	your	progress	also	depends	on	you.	Each	chapter
is	 outlined	 to	 introduce	 a	 certain	 concept,	 and	 helpful	 tips	 would	 be	 given	 to
allow	 you	 avoid	 common	 Noob-mistakes	 (Noob	 is	 a	 programming	 jargon	 for
beginner).	Also,	 there	would	be	practice	exercises	for	you	to	test	yourself	after
each	chapter.	This	is	meant	to	serve	as	a	motivation	for	practicing	the	techniques
or	lessons	that	were	introduced	in	the	chapter.

It	is	expected	that,	by	following	every	section	of	this	book	and	practicing	all	the
lessons	 presented,	 as	well	 as	 practice	 questions	 included,	 you	would	 not	 only
have	learned	the	basic	techniques	required	for	using	Python	for	data	science,	but
you	would	also	have	confidence	to	build	your	own	practical	systems	and	projects
using	Python.

The	outline	of	this	book	is	detailed	below,	and	it	is	a	guide	for	maximizing	your
use	of	this	book	depending	on	your	level	in	programming.	On	this	note,	I	wish
you	Godspeed	 as	 you	 journey	 through	 this	 book	 to	 becoming	 a	 data	 scientist
with	Python.

Outline:

Chapter	1:	Python	basics
This	chapter	 introduces	you	 to	 the	basics	of	Python.	The	 scope	of	 this	chapter
spans	all	the	necessary	details	for	getting	started	with	Python:	downloading	and
installation	 of	 relevant	 Python	 packages	 and	 tools	 i.e.	 Anaconda,	 managing
Python	 environments,	 and	 actual	 coding	 with	 Python.	 This	 is	 especially
important	 for	 those	 with	 little	 or	 no	 programming	 experience.	 Even	 with
programming	experience	(but	new	to	Python),	it	is	advisable	to	read	this	chapter.
Most	of	the	lessons	from	this	chapter	would	be	recalled	in	subsequent	chapters
as	we	dive	deeper	into	the	applications	of	Python	for	data	science.	However,	if
you	 already	 know	 the	 basics	 of	 Python	 and	 can	 already	 handle	 practical
problems	with	Python,	then	you	can	skip	this	chapter.	At	the	end	of	this	chapter,
a	basic	project	would	be	completed	using	Python,	and	you	can	also	try	out	some
of	 the	 exercises	 that	 follow.	These	 exercises	would	 incorporate	 all	 the	 lessons
from	the	chapter	and	doing	them	would	greatly	speed	up	your	progress.

Chapter	2:	Data	analysis	with	Python
Here,	 the	 skills	 and	 techniques	 learned	 in	 chapter	 1	 are	 leveraged	 for	 starting
data	 science.	The	most	 important	 (and	 popular)	 frameworks	 for	 analyzing	 and
structuring	 data	 with	 Python	 are	 introduced	 i.e.	 The	 NumPy	 and	 Pandas
frameworks.	 A	 few	 practical	 examples	 on	 using	 these	 frameworks	 will	 be
considered,	and	practice	exercises	are	provided.

Chapter	3:	Data	Visualization	with	Python
This	 chapter	 introduces	 the	 reader	 to	 various	 plotting	 techniques	 in	 Python.
There	 are	 various	 plot	 libraries	 for	 data	 visualization	 using	 Python,	 these
include:	Matplotlib,	Seaborn,	and	Pandas,	etc.	Data	visualization	is	a	significant
part	 of	 data	 science,	 as	 it	 explains	 the	 analyzed	 data	 better	 using	 graphical
representations.	For	example,	it	would	be	much	easier	to	view	the	trend	of	user
subscription	to	a	service	via	a	chart,	graph,	or	even	a	pictogram,	as	opposed	to
just	looking	at	numbers	in	a	spreadsheet	or	table!	This	is	the	essence	of	the	data
visualization	libraries	available	through	Python,	and	we	would	be	exploring	their
capabilities	 and	 specific	 usage	 in	 this	 chapter.	 Also,	 examples	 would	 be
presented	 here,	 and	 relevant	 practice	 questions	would	 be	 given.	At	 the	 end	 of

this	chapter,	 it	may	be	wise	 to	 review	all	 the	 lessons	from	chapter	2,	and	once
you	 are	 confident	 of	 your	 competence,	 to	 attempt	 solving	 some	 real-life
problems	using	the	skills	gained	from	reading	these	chapters.	After	all,	the	whole
purpose	of	data	science	is	to	solve	real-world	problems!

Chapter	 4:	 Bonus	 chapter	 –	 Introduction	 to	 Machine	 learning
with	Python
This	is	an	extra	package	added	to	this	book.	Machine	learning	is	useful	for	data
science,	 as	 it	 involves	 the	 use	 of	 powerful	 statistical	 techniques	 and	 tools	 for
improving	 outcomes	 through	 the	 evaluation	 of	 big	 data.	 Through	 machine
learning,	the	powerful	capacity	of	computers	for	finding	patterns	and	predicting
outcomes	via	probability	theory	is	leveraged.	While	this	is	not	a	comprehensive
study	 on	 the	 subject,	 the	 reader	 is	 introduced	 to	 the	 underlying	 concepts,
applications,	 and	 tools	 supported	 through	 Python	 for	 unleashing	 the	 power	 of
artificial	intelligence.

Chapter	1

Python	Basics

Python	History

This	 is	 a	 quick	 recap	 of	 the	 history	 of	 Python,	 along	 with	 some	 common
terminologies/references	 you	 might	 find	 when	 interacting	 with	 other	 Python
programmers.

Python	was	developed	and	introduced	in	the	late	1980s	by	a	Dutch	programmer
Guido	 Van	 Rossum	 .	 It	 is	 an	 object-oriented,	 interpreted,	 high-level
programming	language	with	high	portability	i.e.	Python	code/applications	can	be
run	 on	 multiple	 platforms	 that	 have	 a	 version	 of	 Python	 installed.	 The	 name
Python	 was	 also	 adapted	 from	 the	 name	 of	 a	 popular	 show	 “Monty	 Python”,
which	Guido	was	watching	at	the	time	he	developed	the	language.	So	far,	there
have	 been	 various	 versions	 of	 the	 language,	 with	 the	 latest	 being	 Python	 3.7
starting	from	2018.	While	there	have	been	debates	on	the	best	version	of	Python
to	use	i.e.	Python	version	2xx	or	3xx,	there	are	only	minor	differences	in	either
version.	In	this	book	however,	we	would	be	using	the	latest	Python	3xx	version.

Installing	Python

The	basic	way	of	 getting	Python	 installed	 on	your	 computer	 is	 by	visiting	 the
official	 website	 for	 Python	 www.python.org	 and	 downloading	 the	 version	 of
Python	 you	 need.	 Remember	 to	 download	 the	 setup	 that	 is	 specific	 to	 your
operating	system,	either	Windows,	Mac	Os	or	Linux.	For	Linux	or	Mac	users,
you	may	 already	 have	 a	 version	 of	 Python	 installed	 on	 your	 computer.	 After
downloading	and	installing	Python	through	the	set-up	file,	the	installation	can	be
verified	by	opening	a	 terminal	 in	mac	or	Linux	os,	or	 the	command	prompt	 in
windows.	 This	 example	 is	Windows	Os	 based,	 since	 it	 does	 not	 have	 Python
installed	by	default.	However,	the	same	command	works	on	Mac	and	Linux.

Windows:

Open	 a	 search	 by	 pressing	 Windows	 key	 +	 Q,	 search	 for	 command	 prompt,

http://www.python.org

right-click	 the	 result	 and	 select	 ‘run	 as	 administrator’.	The	Command	Prompt-
Admin	window	opens,	type:		python	-	-version.

If	Python	is	properly	installed,	you	should	get	a	result	like	this:	Python	3.7.	x 	.

Mac/Linux	Os:

Open	a	terminal	by	going	to	‘Applications	>>	Utilities,	then	click	on	Terminal.
Alternatively,	you	can	open	a	search	by	pressing	the	Command	key	+	Spacebar,
then	search	for	terminal	and	press	enter.	Once	the	terminal	opens,	type:		python
-	-version.

You	are	going	to	get	a	result	like	this:	Python	2.7.	x 	.

This	 version	 could	 however	 be	 the	 basic	 Python	 that	 comes	 with	 the	 Os.	 To
check	if	Python	version	3xx	is	installed,	type:	python3	-	-version

You	are	going	to	get	a	result	like	this:	Python	3.7.	x 	.

To	 start	 using	 Python	 via	 the	 command	 prompt	 or	 terminal,	 type:	 python
(without	quotes).	You	should	see	something	like	this:

Windows:
Python	3.7.2	(tags/v3.7.2:9a3ffc0492,	Dec	23,	2018,	22:20:52)	[MSC	v.1916	32	bit	(Intel)]	on	win32

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

The	 three	 arrowheads/greater-than-signs	 at	 the	 bottom	 is	 the	 trademark	 of	 the
Python	console.	This	means	you	are	now	in	a	Python	environment	and	can	start
writing	Python	codes.

Let	us	write	our	first	Python	code	using	the	command	prompt!

At	the	Python	console	(after	typing	‘python’	at	the	command	window),	enter	the
following	code:	print	(‘Hello	World’)	and	press	enter.	You	should	get	a	result
like	this:
print	(‘Hello	world’)

Hello	World

There,	we	just	wrote	our	first	Python	program	by	displaying	a	message	using	the
Python	print	function.

Hint:	 	 	 It	 should	be	noted	 that,	while	Python	3xx	uses	 the	print	 function	as	an
object,	i.e.	print	(‘Hello	World’),	the	print	function	is	a	statement	in	Python	2xx
i.e.	 print	 ‘Hello	 World’.	 This	 is	 one	 (among	 a	 few	 others)	 of	 the	 differences
between	 using	Python	 2	 and	Python	 3.	Hence,	 to	 avoid	 having	 errors	 in	 your
code	examples,	it	is	important	to	use	Python	version	3xx	to	follow	the	lessons	in
this	book.

Now,	we	have	learned	how	to	run	Python	via	the	command	window.	However,
to	 write	 larger	 programs	 that	 we	 would	 prefer	 to	 finish	 developing	 before
running	(the	command	window	runs	every	line	of	code	immediately!),	some	text
editors	like	notepad,	notepad++	and	various	IDEs	have	been	designed	to	create
and	save	Python	programs.	The	preferred	extension	for	Python	files	is	‘.py’	e.g.
Hello_world.py,	and	can	be	run	from	the	console	by	typing	the	full	path	to	the
Python	file	in	your	command	window.	

For	example,	if	we	saved	our	Hello_world	program	on	the	desktop.	The	file	path
could	 be	 something	 like	 this:
C:\Users\yourcomputername\Desktop\Hello_World.py.	 To	 run	 our	 Python
program:

Open	the	command	window,	and	enter	‘file	path’,	you	should	see	something	like
this:
Microsoft	Windows	[Version	10.0.17134.648]

(c)	2018	Microsoft	Corporation.	All	rights	reserved.

C:\Users\Username	>C:\Users\Username\Desktop\Hello_World.py

Hello	World

Tip:	To	write	Python	scripts	with	notepad:	create	a	notepad	text	file	and	open	it
>>	Once	opened,	write	your	Python	code	 in	 the	 file	>>	at	 the	 top	 left	corner,
click	file	and	select	save	as	>>	select	the	save	location	of	your	code	>>	In	the
‘filename’	box,	name	the	file	with	a	‘.py’	extension,	e.g.	program.py,	and	in	the
‘Save	as	type’	drop-down	list,	select	‘All	files’.	Then	click	save.

You	should	see	a	Python	file	in	your	save	location.	You	can	also	drag	and	drop
this	file	into	the	command	window	and	run	it	by	pressing	enter.

Exercise	 :	Try	writing	fun	programs	 to	display	 text	using	 the	print	 function	as
described	in	the	example.

The	Anaconda	navigator

This	 is	 a	 graphical	 user	 interface	 for	 running	 Python,	 and	 it	 is	 specially
optimized	for	data	science	with	Python.	It	is	highly	recommended	for	beginning
data	science	with	Python,	as	it	makes	the	management	of	important	data	science
packages	 and	 Python	 libraries	 easy.	 It	 is	 a	 part	 of	 the	 Anaconda	 distribution,
which	 comes	 with	 a	 version	 of	 Python	 (the	 latest	 Anaconda	 still	 comes	 with
Python	 3.7	 at	 this	 time,	 May,2019)	 i.e.	 if	 you	 do	 not	 have	 Python	 installed,
anaconda	will	install	a	version	of	Python	on	your	computer.

Figure	1:	The	anaconda	navigator

The	most	significant	advantage	of	using	anaconda	is	the	click-to-launch	features
it	offers	for	running	any	package	installed	in	its	path.	It	greatly	reduces	the	need
to	install	packages	via	command	prompt	using	the	pip	install 	method.	Also,	it	is
easy	to	create	virtual	environments	for	installing	and	running	various	versions	of
Python,	and	other	data	science	programs	like	‘R’.	Virtual	environments	are	paths
(or	folders)	specific	 to	certain	applications	or	packages	 in	an	operating	system.
So,	 by	 separating	 various	 packages	 into	 their	 respective	 virtual	 environment,
there	would	be	no	risk	of	conflict	in	running	multiple	packages/programs	at	the
same	time.

Anaconda	 also	 comes	 with	 an	 interactive	 IDE	 (Integrated	 development
environment)	for	running	Python	codes.	There	is	the	Spyder	IDE,	which	uses	a

console	 and	 script	 interface;	 the	 Jupyter	 notebook,	 which	 runs	 an	 interactive
Python	console	and	GUI	in	your	browser;	Jupyter	Lab,	etc.	We	would	be	using
the	Jupyter	notebook	for	our	subsequent	Python	programming	in	this	book.

To	 install	 anaconda	 navigator,	 go	 to	 www.anaconda.com/downloads	 and
download	the	latest	version	of	anaconda	distribution.	After	downloading,	run	the
setup	file	and	follow	the	onscreen	instructions	to	fully	install	anaconda	on	your
computer.

Once	 the	 installation	 is	done,	 the	next	 step	 is	 to	check	 if	 anaconda	 is	properly
installed.

Open	a	 search	using	Winkey	+	Q	 ,	 and	 type	 in	anaconda.	You	should	see	 the
anaconda	 navigator,	 and	 anaconda	 prompt	 displayed.	 Click	 on	 the	 anaconda
navigator.

If	 the	 anaconda	 navigator	 opens	 up,	 then	 it	 means	 you	 have	 successfully
installed	 anaconda.	Alternatively,	 you	 can	open	 the	 anaconda	prompt	 to	 check
for	the	version	of	anaconda	installed,	and	also	run	anaconda	navigator.

At	the	anaconda	prompt,	type:	conda	–version.	You	should	get	a	result	like	this:
(base)	C:\Users\Username	>Conda	--version

conda	4.6.14

To	check	the	version	of	Python	installed	with	 the	Anaconda	distribution,	type:
python	–version	.
(base)	C:\Users\Oguntuase>python	--version

Python	3.7.0

To	launch	the	navigator,	type:	anaconda-navigator

Once	the	navigator	opens,	the	installation	is	verified	and	our	work	is	done.

Now	that	we	have	installed	Python	via	anaconda	on	our	computer,	we	are	ready
to	start	our	data	science	journey	with	Python.	However,	as	stated	in	the	outline,
we	would	be	introducing	some	Python	fundamentals	which	are	considered	pre-
requisites	for	the	data	science	lessons.

Tip:	While	the	idea	for	computer	programming	is	mostly	similar,	the	difference
in	 programming	 languages	 exists	 in	 their	 syntax.	 Things	 like	 variable
declaration,	loops,	etc.	have	valid	formats	in	Python,	and	we	would	be	exploring
that	soon.	Ensure	to	follow	the	examples,	and	try	out	the	practice	exercises.

http://www.anaconda.com/downloads

Open	the	Jupyter	notebook	either	by	clicking	launch	via	the	anaconda	navigator,
or	open	anaconda	prompt	and	type:	Jupyter	notebook	.	A	browser	window	will
open	as	shown	in	figure	2	below.

Figure	2:	Jupyter	notebook

Once	 on	 the	 Jupyter	 notebook,	 at	 the	 right	 side	 click	 New	 >>	 then	 under
notebook,	click	python	3/python[default]	.

This	will	open	a	Python	editor	where	you	can	write	and	execute	codes	 in	real-
time.

Tip	:	Jupyter	notebook	files	are	saved	as	‘.	ipynb’,	and	can	be	accessed/opened
by	 browsing	 to	 the	 file	 location	 via	 the	 Jupyter	 notebook	 explorer	 page.
Jupyter	also	supports	Markdown,	and	other	live	coding	features	that	make	it
easier	 to	 annotate	 code.	 For	 extra	 information	 on	 using	 Jupyter,	 go	 to:
https://jupyter.readthedocs.io/en/latest/running.html#running

Coding	with	Python:	The	rudiments

In	 this	 section,	 you	 can	 either	 go	 through	 the	 exercises	 using	 Spyder	 IDE,

https://jupyter.readthedocs.io/en/latest/running.html#running

Jupyter	 notebook,	 or	 IDLE	 (for	 those	 that	 have	 Python	 installed	 outside
anaconda).	However,	it	is	recommended	you	use	the	Jupyter	lab	to	get	familiar
with	the	interface,	as	we	would	be	using	it	for	the	data	science	section.

Statements,	Commands,	and	Expressions

High-level	programming	languages	are	not	that	different	from	human	language.
They	 follow	a	particular	pattern	and	 rule.	Once	 that	 rule	 is	missed,	 it	gives	an
error.	In	language,	it	is	called	a	grammatical	error;	in	programming,	it	is	called	a
syntax	error.

A	statement	in	Python	is	a	complete	set(s)	of	instruction	that	achieves	a	task.	It
can	be	considered	as	an	equivalent	to	the	sentence	in	the	English	language	that
contains	a	Subject,	verb	and	object.

Recall	your	 first	Python	program,	print	 (‘Hello	World’)?	The	print	 ()	 function
used	 is	 a	 command.	 It	 can	be	considered	as	 a	verb,	which	does	nothing	on	 its
own.	The	‘Hello	World	’ 	part	is	the	expression,	which	is	the	stuff	to	be	done	.
Together	they	make	a	complete	instruction	called	a	statement,	which	tells	Python
exactly	what	to	do,	and	how!

There	are	many	commands	for	doing	various	things	in	Python,	and	we	would	get
familiar	with	using	them	as	we	progress.	Expressions	on	the	other	hand,	take	on
various	 forms.	 At	 times,	 it	 can	 be	 evaluated	 e.g.	 4+5;	 other	 times,	 like	 the
previous	example,	it	is	just	some	text	to	be	displayed.

Let	 us	 try	 another	 version	 of	 the	 ‘Hello	World’	 example.	 How	 about	 we	 tell
Python	 to	 display	 the	 two	most	 dreadful	words	 you	would	 hope	not	 to	 see	 on
your	screen	while	playing	a	game!	‘GAME	OVER’

Info:	Python	 is	 a	 great	 tool	 for	 game	development	 as	well.	 This	 example	 is	 a
reference	 to	 that	 possibility	 in	 the	 application	 of	 Python.	 However,	 for
standard	 game	 development,	 you	 would	 need	 to	 learn	 some	 specific
Python	libraries	and	methods.	You	can	find	extra	information	about	 this
from:	https://wiki.python.org/moin/PythonGames

To	do	this,	we	could	just	modify	the	expression	in	our	former	program.

In	Jupyter	notebook,	type:	print	(‘GAME	OVER!’)	and	press	Shift	+	Enter	to
run.	You	should	have	a	result	like	this:
In	[1]: ​	print	(‘GAME	OVER!’)

Out[1]: ​	GAME	OVER!

https://wiki.python.org/moin/PythonGames

Tip:	 for	 the	 print	 function	 in	 Python,	 you	 can	 enclose	 your	 expressions	 in	 a
single	quote	 ‘’,	double	quote	““,	or	 three	quotes	“’	“”.	However,	 always	make
sure	to	use	the	same	type	of	quotes	to	start	and	terminate	the	expression.

Comments

Consider	this	code	that	is	run	in	Jupyter	notebook:
In	[2]: ​	#	This	program	says	Hello	to	the	world
												#	Author:	random_Coder_Guy

												print	(‘Hello,	World!’)

Out[2]: ​	Hello,	World!

You	 can	 easily	 notice	 that	 the	 only	 thing	 displayed	 in	 the	 result	 is	 the	 ‘Hello,
World’	statement.	Now	let	us	try	this:
In	[3]: ​	This	program	says	Hello	to	the	world
						 ​	Author:	random_Coder_Guy
						 ​	print	(‘Hello,	World!’)

​
						File	"<ipython-input-14-239b196f5fd8>",	line	1

				 ​	 ​	This	program	says	Hello	to	the	world
															 ​										^
			 ​	SyntaxError:	invalid	syntax

We	get	an	error.	Python	 is	 even	kind	enough	 to	 tell	us	our	error	 is	 in	 the	 first
line!	The	difference	between	these	two	codes	is	immediately	obvious.	The	first
code	did	not	throw	an	error	because	of	the	pound-sign/hashtag	(#)	in	lines	1	and
2.	This	is	called	a	comment.

Comments	 are	 meant	 to	 illustrate	 code	 and	 improve	 its	 readability.	 When
reading	the	first	code,	it	is	obvious	what	the	program	is	intended	to	do.	However,
to	 prevent	 Python	 from	 executing	 those	 lines	 in	 our	 code	 (thereby	 leading	 to
syntax	error	as	in	the	second	code),	we	use	the	comment	sign	to	distinguish	these
texts.

A	good	question	would	be,	are	comments	compulsory?	The	only	answer	is	YES!
Comments	will	save	your	life	(while	coding	at	least,	it	would	not	do	so	much	in
a	Mexican	standoff),	and	probably	save	others	from	tearing	their	hair	out	while

trying	to	understand	your	code!

Have	you	ever	solved	a	problem	or	played	a	level	in	a	game	and	years	later,	you
cannot	 remember	 how	 you	 did	 it?	 Now	 imagine	 that	 happening	 to	 a	 very
important	code	you	wrote;	two	years	after,	you	cannot	figure	out	what	it	does	or
how	it	works.	That	is	a	form	of	bad	programming,	and	the	lesson	to	be	learned	is
‘ALWAYS	COMMENT	YOUR	CODE!’

Using	 the	 Jupyter	 notebook	 also	 offers	 more	 options	 for	 improving	 code
readability.	 Since	 it	 uses	 a	 web-based	 framework,	 it	 supports	 ‘markdown’
(which	 is	 just	 a	 way	 of	 formatting	 texts	 on	 webpages).	 To	 fully	 explore	 this
feature	 and	 other	 cool	 stuff	 with	 Jupyter,	 visit:
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/

Python	data	types

Data	types	are	specifications	of	the	kind	of	operations	a	programmer	expects	the
computer	 to	 perform	 on/with	 specific	 data	 items.	 It	 is	 what	 determines	 the
attributes	of	 the	elements	of	an	expression,	as	declared	by	 the	programmer	 i.e.
You.

Python,	 like	 any	other	programming	 language,	 is	 also	very	particular	 about	 its
data	 types.	The	following	are	 the	various	data	 types	available	 in	Python	which
we	would	be	using	later	on:

Numbers	(i.e.	integers,	floats,	complex	etc.)
Strings
Lists
Tuples
Dictionaries
Booleans
Print	formatting

Numbers

Numbers	 are	 represented	 in	 Python	 as	 either	 integers,	 floats	 (floating-point
numbers)	or	complex	numbers.

Integers

Numbers	 that	do	not	have	decimal	points	are	represented	as	 integers	 in	Python

https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/

with	 the	 type	 int	 ().	By	 default,	 Python	 assumes	 integers	 to	 be	 in	 decimal	 (or
base	10),	but	the	bases	can	be	changed	if	there	is	a	need	to	work	in	binary,	octal
or	hexadecimal.

You	can	do	arithmetic	operations	with	 integers	 right	 from	the	prompt	 (or	code
cell	in	Jupyter	notebook).

#	Code	for	arithmetic	operations	with	Python
In	[4]: ​	5	+	10
Out[4]: ​	15

In	[5]: ​	20	-	12
Out[5]: ​	8

In	[6]: ​	3*5
Out[6]: ​	15

In	[7]: ​	20/5
Out[7]: ​	4.0

Here	 we	 can	 see	 that	 Python	 can	 perform	 basic	 arithmetic	 operations	 with
integers.	If	you	observe,	it	is	clear	that	addition,	subtraction,	and	multiplication
of	integers	with	another	integer	results	in	an	integer.	For	division,	however,	the
result	is	a	number	with	a	decimal	point.	This	is	a	floating-point	number.

Tip:	 There	 are	 other	 arithmetic	 operations	 possible	 with	 integers.	 All	 these
operations	 are	 similar	 to	 those	 in	 basic	 mathematics.	 Remember	 Bodmas,
Pedmas	 or	 Pemdas?	 	 I	 like	 to	 use	 the	 acronym	 Bedmas	 for	 remembering	 the
priority	for	Python	arithmetic	operations.

B	rackets	 take	 first	priority,	 followed	by	E	xponentiation,	 then	D	 ivision	or	M
ultiplication	(they	have	the	same	priority	and	can	be	interchanged),	and	finally
A	ddition	and	S	ubtraction	(which	are	also	of	same	priority).

This	is	illustrated	in	the	following	code:
In	[8]: ​	#	This	code	tries	to	determine	order	operations	with	integers

​	 ​	(7-2*2)**3	/	(12-3**2)
Out[8]: ​	9.0

Now,	how	does	this	code	work?	First,	in-case	you	missed	it,	the	‘**’	is	the	sign
for	exponentiation	in	Python	(some	other	languages	allow	the	use	of	‘^’).

Looking	at	the	first	bracket	while	keeping	Bedmas	in	mind,	it	becomes	obvious
that	 the	exponentiation	inside	the	first	bracket	is	 treated,	making	it	(7-4)	which
gives	3.	Then	3	to	the	power	of	3	gives	27.

For	 the	 second	 bracket,	 the	 same	 technique	 applies	 and	 results	 in	 3.	 So,	 27/3
gives	9	and	Python	returns	a	floating-point	value	of	9.0	due	to	the	division.

Exercise:	Try	out	a	few	other	arithmetic	operations	with	integers	and	see	what
you	get.	Remember	to	follow	the	order	of	arithmetic	operations	to	avoid	errors.

Initially,	there	was	a	cap	to	the	number	of	characters	allowable	for	a	type	int	()
data	type,	but	it	has	been	lifted	in	new	releases	of	Python.	Now	you	can	declare
an	integer	type	with	as	many	numeric	characters	as	possible	(of	course,	there	is
the	limit	of	your	computer	memory!).	Also,	as	indicated	earlier,	you	can	perform
arithmetic	operations	on	integers	in	various	bases.	Python	converts	these	integers
to	decimal	and	then	performs	the	arithmetic	operation.

Example	1:	Assuming	we	need	to	multiply	52	by	158	.	5	in	base	2	is	‘101’,	and
15	in	base	8	is	‘17’
In	[9]: ​	#	This	code	multiplies	integer	in	various	bases	and	displays	the	decimal	equivalent

#	to	specify	101	in	base	2,	we	use	0b101

#	to	specify	17	in	base	8,	we	use	0o17		

0b101	*	0o17					

Out[9]: ​	75

Exercise:	 Try	 out	 some	 random	 mathematical	 operations	 with	 integers	 in
various	bases;	hexadecimal	is	still	unused.

Floats

These	are	numbers	that	have	a	decimal	point	in	their	representation.	They	can	be
considered	as	real	numbers	as	defined	in	mathematics.	Floats	were	introduced	as
a	 means	 of	 increasing	 the	 precision	 of	 representing	 numbers	 in	 computer
programs.

All	the	numeric	operations	that	are	possible	with	integers	can	also	be	replicated
with	floats,	and	Python	also	supports	float	–	integer	operations.

Python	 3	 handles	 float	 operations	 in	 a	 straightforward	 manner.	 In	 Python	 2,
however,	when	doing	division,	at	least	one	of	the	numbers	(usually	the	divisor)
must	always	be	represented	as	a	float	to	avoid	truncation	error	in	the	result.

Recall	that	integers	have	unlimited	representation	in	Python?	Floats	do	not	have
the	 same.	The	maximum	value	 a	 float	 can	 take	 is	 less	 than	 1.8e308	 (which	 is
considered	infinity	in	Python).
In	[10]: ​	1.8e308
Out[10]: ​	inf

On	 the	 other	 end	 of	 the	 number	 line,	 floats	 have	 a	minimum	value	 of	 1e-325
which	is	considered	zero.
In	[11]: ​	1e-325
Out[11]: ​	0.0

Tip:	Try	out	all	the	operations	you	have	done	with	integers	by	using	floats.

Complex	numbers

If	you	know	about	complex	numbers,	chances	are:	you	have	some	mathematics
or	 engineering	 background.	 This	 shows	 the	 potential	 for	 applying	 Python	 to
solving	abstract	engineering	or	mathematics	problems.

Complex	numbers	are	 represented	by	 their	 real	and	 imaginary	parts	 in	Python,
and	all	the	rules	of	mathematical	operations	that	apply	to	integers	and	floats	are
still	valid	with	Python’s	complex	numbers.

In	 Python,	 complex	 numbers	 are	 represented	 as	 {real}	 +	 {imaginary}	 j	 .
Although,	mathematicians	might	throw	a	fit,	since	they	prefer	the	‘i’	operator	for
imaginary	number.

Example	 2:	 write	 a	 program	 to	 calculate	 the	 product	 of	 5+3i	 and	 2+4i
(engineering	problems	might	have	the	form:	5+3j	and	2+4j	or	5+j3	and	2+j4)
In	[12]: ​	#	This	program	calculates	the	product	of	complex	numbers

​	 ​	(5+3j)	*	(2+4j)
Out[12]: ​	(-2+26j)

Strings

This	 is	 the	 representation	 of	 text	 characters	 in	 a	 programming	 language.	 In
Python,	 strings	are	 specified	between	quotation	marks,	 either	 single,	double	or
three	quotes.	Remember	the	Hello	World	program	we	wrote	earlier	on?	Well	it
was	a	string!

Example	3:	Let	us	try	creating	strings	with	the	single,	double	and	three	quotes
delimiters.	You	may	notice	that	Python	displays	the	same	results.
In	[13]: ​	‘Michael	Foster’ ​
Out[13]: ​	‘Michael	Foster’

In	[14]: ​	“David	Beckham”
Out[14]: ​	‘David	Beckham’

In	[15]: ​	"""Guillermo	Giovani"""
Out[15]: ​	‘Guillermo	Giovani’

You	may	wonder,	why	strings	are	equally	represented	by	either	single,	double	or
three	 quotes?	Why	 not	 stick	 to	 one	 convention?	The	 answer	 is	 obvious	 in	 the
way	 the	 English	 language	 is	 written.	 There	 are	 instances	 when	written	 words
require	 either	 single	 or	 double	 quotes	 (at	 most).	 The	 rule	 is	 to	 use	 a	 higher
number	of	quotes	to	wrap	the	string.

For	 example,	 let’s	 say	 I	 want	 Python	 to	 print	 the	 following	 statement:	 Hello
Mark,	it’s	nice	to	meet	you!

Let	us	try	the	single	quotes:

In	[16]: ​	‘Hello	Mark,	it’s	nice	to	meet	you!’

		 ​	File	"<ipython-input-23-43365d0419fc>"	,	line	1
	 ​				 ​	'Hello	Mark,	it's	nice	to	meet	you!'

																				^

		 ​	 ​	SyntaxError:	invalid	syntax

Using	double	quotes,	however,	gives	us	the	right	answer.

In	[17]: ​	"Hello	Mark,	it's	nice	to	meet	you!"

Out[17]: ​	"Hello	Mark,	it's	nice	to	meet	you!"

Notice	that	 the	output	 in	this	case	is	enclosed	in	double	quotes	as	well.	This	 is
due	 to	 the	 escape	 of	 the	 apostrophe	 within	 the	 expression	 (an	 apostrophe	 is
interpreted	as	a	single	quote	by	Python).	 	The	same	process	follows	for	double
quotes	in	expression.

While	 it	 is	 possible	 for	 three	 quotes	 to	 be	 used	 for	 writing	 multiline
strings/comments.	 It	 is	not	a	 formal	way	of	doing	so.	The	#	 is	 still	 the	default
comment	approach	in	Python	(line	by	line).

Example	4:	Let	us	try	a	fun	example.	We	would	display	a	cool	Mortal	Kombat
logo	 using	 the	 print	 function.	 This	 is	 just	 a	modification	 of	 the	 ‘Hello	world’
program	we	wrote	earlier.

To	do	 this	example,	we	need	 to	have	a	way	 to	specify	 the	 logo	as	strings.	For
this,	we	 need	ASCII	 art,	which	 you	 can	 design	 yourself,	 or	 copy	 example	 art
from	this	repository:	https://www.asciiart.eu/video-games/mortal-kombat

The	code	and	the	output	art	can	be	seen	in	figure	3.

Figure	3:	Illustrating	graphics	with	the	print	function	and	strings

https://www.asciiart.eu/video-games/mortal-kombat

Exercise:	Visit	the	Ascii	art	repository,	and	try	to	replicate	displaying	graphics
using	Python.

String	Concatenation

While	 it	 is	 not	 feasible	 to	 do	 arithmetic	 operations	 with	 strings	 (strings	 are
interpreted	as	text,	you	cannot	do	math	with	text),	strings	can	be	joined	together
or	replicated.

Example	5:	Let	us	assume	we	want	to	write	a	random	person’s	name.	We	have
the	First	and	Last	name.
In	[18]: ​	‘Fire’	+	‘	cracker	!’
Out[18]:	 ​	‘Fire	cracker’

Tip:	In	this	example,	notice	how	I	introduced	a	space	before	the	word	‘cracker’.
This	is	to	ensure	the	result	makes	sense,	as	otherwise	Python	would	have	strung
everything	together	like	this	‘Firecracker’	.

Example	6:	Now	 let	us	 try	 to	 replicate	a	 string.	 Imagine	you	need	 to	 type	 the
same	sentence	100	times!	Only	if	there	was	a	way	to	do	it	just	once?

In	this	example,	we	would	repeat	the	statement	‘I	love	Python	programming,	it’s
awesome’,	 three	 times.	 The	 same	 method	 used	 can	 be	 adapted	 for	 a	 larger
repetition,	it	only	requires	your	creativity!

In	[19]:	 ​	print(“I	love	Python	programming,	it’s	awesome\n”	*	3)
Out[19]:	 ​	I	love	Python	programming,	it’s	awesome

​	 ​	I	love	Python	programming,	it’s	awesome
​	 ​	I	love	Python	programming,	it’s	awesome

Tip:	 The	 print	 function	 helps	 to	 display	 strings	 in	 a	 proper	 manner,	 without
quotes.	Also,	it	allows	the	use	of	formatting	options,	like	the	new	line	character
\n	in	the	code	above.	Try	using	this	tip	to	display	more	elaborate	strings.

Variables

These	are	placeholders	for	data	of	any	type	i.e.	integers,	strings,	etc.	While	it	is
very	effective	 to	 imagine	a	variable	as	a	storage	space	for	 temporarily	keeping
data	until	it	is	needed,	I	prefer	to	think	of	variables	like	money.

Wait	what?	Yes,	Money.	While	it	doesn’t	technically	equate	in	description,	it	is

good	for	visualization	of	what	a	variable	does	with	your	data.

First,	I	believe	you	are	aware	of	the	fact	that	money	only	has	the	value	to	which
a	consensus	of	people,	say	the	world	bank,	assign	to	it!	(it	is	more	complicated
than	that,	but	that	is	the	general	idea).	That	means	the	$10	note	you	have	today
can	either	be	more	valuable	or	less	valuable	in	the	next	year	depending	on	what
happens	 in	 the	 economy	of	 the	 issuing	country,	 and	across	 the	world.	 It	 could
also	be	worth	nothing	if	the	world	so	decides.

Now,	relating	it	to	variables.	As	earlier	described,	they	are	placeholders	for	data.
To	declare	a	variable,	say	“X”,	you	will	assign	data	with	the	value	of	a	specific
data	type	to	it.	Then,	the	value	assigned	to	it	becomes	the	value	of	your	variable.
Now,	the	variable	carries	the	same	value	and	datatype	as	the	original	data	until
you	choose	to	re-assign	it,	or	it	gets	re-assigned	by	events	in	your	program.

Makes	 sense?	 Let	 us	 try	 a	 few	 examples	 to	 get	 a	 better	 understanding	 of
variables	in	Python.
In	[20]:	 ​	x	=	5
												y	=	10

												x	+	y

Out[20]:	 ​	15

As	you	may	observe	from	the	code,	x	is	now	of	value	5	and	y	of	value	10.	If	we
check	the	data	 type	of	x	or	y,	 they	would	both	have	 the	same	int()	datatype	as
their	assigned	data.
In	[21]:	 ​	type(x)
Out[21]:	 ​	int

Exercise	:	Try	checking	the	type	for	the	other	variable	y.	Change	the	values	of	x
and	y	and	perform	extra	operations	with	them.	Remember	that	variables	can	hold
strings	as	well,	just	remember	to	put	the	quotes	for	declaring	strings.

Tip	 :	 There	 are	 a	 few	 rules	 for	 declaring	 Python	 variables:	 First,	 Python
variables	can	only	begin	with	an	underscore	(_)	or	an	alphabet.	You	cannot	start
a	Python	variable	with	numbers	or	special	characters	i.e.	@,	$,	%,	etc.

Second,	Python	has	some	reserved	names	for	functions	i.e.	print,	sum,	lambda,
class,	continue,	if,	else,	etc.	These	names	cannot	be	used	for	declaring	variables
to	avoid	conflicting	Python’s	operations.

Also,	in	variable	declaration,	it	is	advisable	to	use	a	naming	convention	that	best

describes	 what	 your	 variable	 does.	 If	 your	 choice	 variable-name	 contains
multiple	 words,	 separate	 them	 with	 an	 underscore	 like	 this:	 variable_Name,
matric_Number,	total_Number_Of_Cars,	etc.

Example	 7:	 let	 us	 build	 a	 more	 elaborate	 program	 to	 illustrate	 string
concatenation.
In	[22]:	 ​	#	This	program	concatenates	first	and	last	name	and	displays	fullname.

​			 ​	First_name	=	‘James’
​	 ​	Last_name	=	‘Potter’
​	 ​	Fullname	=	First_name	+	‘	‘	+	Last_name

									 ​	print	(Fullname)
​				

Out[22]:	 ​	James	Potter

Tip:	Did	you	notice	there	was	no	use	for	quotation	marks	in	the	print	function?
This	is	because	the	variable	‘Fullname’	already	has	the	quotes	as	its	attributes.
By	putting	strings	in	the	print	function,	Python	would	think	you	wish	to	print	the
string	‘Fullname’	!

Let	us	check	the	attribute	of	the	variable	‘Fullname’.
In	[23]:	 ​	type(Fullname)
Out[23]:	 ​	str

Again,	let	us	build	a	more	complicated	version	of	the	name	program	that	accepts
user	input	for	first	name,	surname	and	age,	and	then	displays	something	witty.

In	 this	 example,	 the	 function	 input()	 would	 be	 used,	 and	 its	 syntax	 can	 be
deduced	from	the	code.	

In	[24]:	#	This	program	displays	name	and	says	witty	stuff

		 ​	First_name	=	input	('What	is	your	first	name	?\t')

		 ​	Last_name		=	input	('Last	name	too	?\t')
		 ​	Age								=	str	(input	('Your	age	?\t	'))
		 ​	Fullname	=	First_name	+	'	'	+	Last_name
		 ​	print	('Hello	'+	Fullname	+	'\n\n')
		 ​	print	('It	must	be	nice	to	be	'+	Age	+	';	I	am	a	computer,	I					have	no	age!')

Out[24]:	 ​	What	is	your	first	name	? ​	David
​	 ​	Last	name	too	? ​	Maxwell

	 ​				 ​	Your	age	? ​	25
			 ​	 ​	Hello	David	Maxwell

​	It	must	be	nice	to	be	25;	I	am	a	computer,	I	have	no	age!

It	might	also	be	easy	to	observe	the	datatype	conversion	of	the	age	variable	to	a
string	using	the	str	()	function.	This	is	also	possible	for	conversion	to	other	data
types	 i.e.	 int	 ()	 for	 conversion	 to	 integers,	 float	 ()	 for	 conversion	 to	 floating-
point	numbers,	and	complex	()	for	changing	to	complex	numbers.

Exercises

1.	 Create	a	 simple	program	 that	 takes	 the	name	of	 three	 friends,	and
welcomes	them	to	a	restaurant	e.g.	McDonalds.

2.	 Write	a	program	 that	accepts	an	 integer	value	and	displays	 it	 as	a
floating-point	number.

3.	 Write	a	simple	program	that	accepts	a	temperature	value	in	Celsius,
and	displays	its	Fahrenheit	equivalent.

Hint:	Conversion	from	Celsius	to	Fahrenheit	is	given	by:

Lists

Python	lists	are	not	so	different	from	the	general	idea	of	lists	in	regular	language.
It	 is	 just	 a	 collection	 of	 values	 in	 a	 sequence	 separated	 by	 commas.	 Lists	 can
hold	 values	 with	 different	 data	 types	 i.e.	 a	 Python	 list	 can	 be	 a	 combined
sequence	of	integers,	floats,	strings	etc.	Lists	can	be	assigned	to	variables	at	their
declaration,	and	a	few	list	operations	are	illustrated	in	the	following	examples:
#	List	examples

[1,2,3,4,6]																			#	List	of	integers

[12.1,13.42,15.6,18.93,20.0]		#	List	of	Floats

['New','Taken','Extra']							#	List	of	strings

['True','False']														#	List	of	Boolean	expressions

['Derek',25,125.50,True,]					#	List	of	different	data
types

To	 declare	 a	 Python	 list,	 the	 square	 brackets	 []	 are	 used,	 and	 values	 are
separated	by	commas.

All	the	lists	declared	above	show	how	Python	lists	are	flexible	for	holding	data
of	 any	 type.	However,	 these	 lists	 are	 just	 declared	 to	 be	 evaluated	once	 at	 the
command	window.	It	is	a	better	practice	to	assign	lists	to	variables	for	re-use.

Tip:	To	run	the	above	example,	copy	and	run	each	list	individually,	if	you	copy
all	these	lists	above	into	a	Jupyter	cell,	Python	will	return	only	the	result	of	the
last	declared	list.

List	indexing

Once	 you	 have	 declared	 a	 list,	 each	 value	 in	 the	 list	 can	 be	 accessed	 via	 a
method	called	 indexing.	To	understand	 this	 concept,	 imagine	a	 list	 is	 a	 library
with	various	types	of	books.	Librarians	usually	organize	books	by	category/type,
and	as	such,	you	wouldn’t	expect	to	find	a	science	book	in	the	arts	section.	Also,
in	each	category,	 the	 librarian	can	ease	access	by	allocating	a	serial	number	 to
each	 book.	 For	 example,	 the	 book	 on	 ‘World	 geography’	 could	 have	 the
identifier,	‘Science	A2’	which	belongs	only	to	that	book	in	that	specific	library.
In	another	library,	that	same	identifier	can	refer	to	‘Space	science’	or	something
else.	The	point	is,	each	element	in	a	specific	list	has	an	identifier	for	accessing	it,
and	 list	 indexing	 is	 the	 process	 of	 retrieving	 elements	 of	 a	 list	 using	 their
identifiers.

To	use	list	indexing,	the	list	must	first	be	assigned	to	a	variable.	It	is	also	worth
noting	that	Python	list	indexing	is	direction	dependent.	For	indexing	from	left	to
right,	Python	starts	indexing	at	‘0’,	while	right	to	left	indexing	starts	at	-1.

Example	8:	Let	us	grab	the	third	element	from	a	list.
In	[]: ​	Random_List	=	[1,2,3,4,’food’]

	 ​	 ​	Random_List	[2]
Out[]:	 ​	3

Alternatively,	we	could	have	grabbed	the	value	3,	from	Random_List	by	using
the	command	Random_List	[-3]	;	however,	it	is	not	a	common	convention.

There	 are	 also	 other	 versions	 of	 lists	 that	 contain	 other	 lists.	 These	 are	 called
nested	lists.

Example	9	:	This	is	a	Nested	list
Random_List2	=	[[1,2,3,4,'integers'],'food',	[12.3,5.2,10.0,'floats']]

To	understand	nested	lists,	 imagine	Russian	nesting	dolls.	The	name	is	derived
from	 the	 fact	 that	 the	 first	 doll	 layer	 contains	 the	 other	 dolls.	 If	 the	 layer	 is
removed,	the	next	layer	then	houses	the	rest	of	the	dolls.	This	goes	on	until	all
the	layers	of	dolls	are	removed	to	reveal	the	desired	layer	of	the	doll.	What	this
analogy	 portrays	 is	 that	 the	 same	 indexing	 approach	 works	 for	 lists	 that	 are
nested	within	other	lists.

Example	10:	Let	us	grab	the	value	10.0	from	Random_List2.
In	[]:		Random_List2	=	[[1,2,3,4,'integers'],'food',[12.3,5.2,10.0,'floats']]

		 ​	Random_List2	[2][2]
Out[]:	10.0

Here	 is	 what	 happened.	 By	 using	 the	 first	 command,	Random_List2	 [2]	 ,	 we
were	able	to	grab	the	nested	list	containing	the	desired	value	10.0.	If	you	count,
that	 list	 is	 the	 third	 element	 in	 Random_List2	 .	 Now,	 after	 using	 the	 first
indexing	to	grab	that	list,	we	can	now	index	that	new	list	as	well.	Within	this	new
list	 ‘Random_List2[2]’	 the	 value	 10.0	 is	 the	 3	 rd	 element,	 or	 at	 index	 2
(remember	that	Python	indexes	from	zero,	we	could	also	select	it	with	‘-2’),	so
to	grab	it,	we	just	index	that	list	at	2:	‘Random_List2[2][2]’	.	Easy	enough?	You
can	try	grabbing	other	elements	of	the	list	using	this	idea.

Example	11:	Let	us	create	a	program	that	accepts	user	information	and	displays
some	results.

In	[]:	 ​	#	Program	that	accepts	user	data
		 ​	user_Data	=	eval	(input	('''Please	enter	your	information	in	the	following
order:

		 ​	['Name',	Age,	Height	(in	metres),	Married	(enter	True/False)]

'''))

Please	enter	your	information	in	the	following	order:

['Name',	Age,	Height	(in	metres),	Married	(enter	True/False)]

['James	Franco',	41,	1.8,	False]

Output

Te	‘eval’	method	 in	 the	code	above	 is	used	 to	evaluate	any	 input	suggested	by
the	 user.	 This	 allows	 Python	 to	 accept	 the	 input	 in	 literal	 string	 form	 and
interpret	it	as	Python	code.	In	this	instance,	Python	recognizes	the	input	as	a	list
because	of	 the	[].	 It	also	assigns	 the	appropriate	datatype	 to	each	element	as
specified	in	the	list.

Now	that	the	user_Data	list	has	been	prepared,	we	can	now	assign	each	element
in	the	list	to	their	corresponding	variables	and	print	our	desired	output.

In	[]:	 ​	Name	 ​	 ​	=	user_Data[0]
									 ​	Age							 ​	=	user_Data[1]
										 ​	Height				 ​	=	user_Data[2]
										 ​	M_Status	 ​	=	user_Data[3]
										 ​	print(('''Here	are	your	details

						 ​	Name:	{}
							 ​	Age:	{}
							 ​	Height:	{}m
							 ​	Married:	{}''').format(Name,Age,Height,M_Status))

Output
Here	are	your	details

Name:	James	Franco

Age:	41

Height:	1.8m

Married:	False

Now,	 that	 was	 fun	 right?	 However,	 you	 may	 notice	 that	 a	 new	 method	 was
introduced	 in	 this	 section,	 the	 ‘.	 format’	 print	method.	 Here	 is	 how	 the	 code
works:	 From	 the	 user_Data	 list	we	 have	 declared	 in	 the	 first	 cell,	we	 grabbed
each	element	and	assigned	them	to	variables	‘Name,	Age,	Height	and	M_Status’.
To	 display	 all	 these	 elements	 without	 the	 need	 for	 concatenating	 strings	 or
changing	 data	 types,	 we	 can	 use	 the	 print	 function	with	 triple	 quotes	 to	 print
across	multiple	lines.	Alternatively,	we	could	have	used	single	or	double	quotes
along	with	newline/tab	escape	options	i.e.	\n	or	\t.

The	‘.	format’	method	is	a	way	of	controlling	print.	You	just	need	to	put	{	}	in
the	places	your	values	would	go,	and	then	specify	the	order.

Assuming	we	want	to	print	something	like:	I	am	5	years	old,	and	I	have	$20.
In	[]:	 ​	print	(('I	am	{}	years	old,	and	I	have	{}.').format(5,'$20'))

Output
I	am	5	years	old,	and	I	have	$20.

Hint	 :	 In	 the	 code	 above,	 the	 $20	 had	 to	 be	 specified	 as	 a	 string.	 A	 better
approach	 would	 be	 to	 use	 variable	 assignment	 i.e.	 Assigning	 5	 and	 $20	 to
variables	and	passing	them	into	the	‘.format’	method.

Exercise:	Write	a	program	that	displays	a	customer’s	bank	account	history.	This
is	 just	a	variation	of	 the	example	program.	If	your	code	does	not	work,	review
the	examples,	hints	and	comments	to	get	a	new	insight.

Indexing	a	range	(List	slicing)

Assuming	we	 need	 to	 grab	 a	 range	 of	 elements	 from	 a	 list,	 say	 the	 first	 three
elements,	this	can	be	achieved	via	range	indexing	or	slicing.	The	range	operator
is	 the	colon	 ‘:’,	 and	 the	 technique	has	 the	 following	syntax:	 	List	name	 [range
start	:	range	end	+1].

Example	12:	Grab	the	names	of	domestic	animals	from	the	following	list	[‘Cat’,
‘Dog’,	‘Goat’,	’Jaguar’,	’Lion’]	and	assign	it	to	a	variable	domestic_animals	.

In	[]:									Animals	=	['Cat',	'Dog',	'Goat',	'Jaguar',	'Lion']

															domestic_Animals	=	Animals	[0:3]

															print(domestic_Animals)

Output
['Cat',	'Dog',	'Goat']

Alternatively,	 if	our	desired	data	starts	 from	 the	 first	element,	 there	 is	no	need
for	specifying	the	index	‘0	 ’	(or	 index	‘-1	 ’	 in	right	 to	left	 indexing),	we	could
have	also	grabbed	the	data	with	‘domestic_Animals	=	Animals	[:	3]’	.

You	may	observe	that	the	element	‘Goat’	is	at	the	index	‘2’,	however,	the	range
syntax	 requires	 the	 ‘range	 end’	 argument	 to	 be	 specified	 as	 ‘range	 end	 +1’
which	is	3	in	this	case.

The	same	approach	is	used	for	doing	more	complicated	data	grabbing	as	seen	in
the	next	example.

Example	 13:	Write	 a	 program	 that	 selects	 three	 different	 treats	 from	 a	 list	 of
food	and	prints	a	message.

In	[]:	food_list	=	['rice',	'salad’,	['cake’,	‘ice-cream',	'cookies',	'doughnuts'],'Beans']

		 ​	treats	=	food_list	[2]	[1:4]
							print	('I	love	{},	{},	and	{}.’.format(treats[0],treats[1],treats[2]))

Output
I	love	ice-cream,	cookies,	and	doughnuts.

See	how	we	 combined	 the	 range	 indexing	with	 the	 .format	method?	 	Try	 out
some	 fun	 examples	 for	 yourself	 and	 consider	 your	 proficiency	 in	 using	 these
techniques.

String	Indexing

Strings	are	just	a	bunch	of	characters	‘strung’	 together.	Hence,	all	list	indexing
operations	are	also	applicable	to	strings.

Example	14	:	Grab	the	word	‘except’	from	a	string.
In	[]: ​	#	This	program	illustrates	string	indexing

String	=	'Exceptional'

#	index	-slice

#	index	-slice

new_string	=	String[:6]

#	Printing	the	output

print(new_string)

Output
Except

Example	15:	Grab	the	word	‘oats’	from	any	element	in	a	list.
In	[]:	 ​	#	grabbing	the	word	'medical'	from	a	list
		 ​	word_list	=	['nautical',['medieval',	'extravaganza'],'extra']
		 ​	word	=	word_list[1][0][:4]	+	word_list[0][5:8]
		 ​	print(word)

Output
medical

Tip	 :	 keep	 trying	 out	 variations	 of	 list	 and	 string	 indexing,	 they	 will	 be	 very
useful	in	subsequent	chapters.

Now	that	we	have	learned	how	to	index	lists	and	strings,	let	us	consider	the	case
where	we	need	to	assign	new	elements	to	a	list.

The	 first	 case	 is	 element	 re-assignment.	 Lists	 are	 mutable	 (strings	 are	 not
mutable),	 which	means	 they	 can	 allow	 you	 to	 change	 their	 initial	 declaration.
You	can	re-assign	list	elements	using	indexing,	and	you	can	also	add	or	remove
from	a	list	using	the	.append	,	.insert	,	.extend	,	.remove	methods.

Example	16:	Here	is	a	list	of	fruits	we	want	to	manipulate	[‘Apple’,	‘Orange’,
‘Banana’,	‘Cashew’,	‘Almond’].

In	[]:	#	Declaring	the	list	of	the	fruits

							fruits	=	['Apple',	'Orange',	'Banana',	'Cashew',	'Almond']

							fruits

Out[]:	['Apple',	'Orange',	'Banana',	'Cashew',	'Almond']

Now,	let	us	re-assign	the	second	element	in	the	list	i.e.	‘Orange’	and	change	it	to

‘Guava’
In	[]:	fruits[1]	=	'Guava'

fruits

Out[]:	['Apple',	'Guava',	'Banana',	'Cashew',	'Almond']

Notice	that	guava	has	been	indexed	as	the	second	element	in	the	list.	However,
Orange	has	been	removed/replaced.

Hint:	 This	 method	 uses	 the	 idea	 of	 variable	 re-assignment.	 The	 element
’Orange’	 is	 a	 variable	 in	 the	 fruits	 list	 and	 its	 name	 is	 based	on	 its	 index	 i.e.
fruits[1],	just	as	the	variable	name	for	‘Banana’	would	be	fruits[2].	So,	it's	just
a	matter	of	re-assigning	a	value	to	the	variable	like	we	learned	in	the	previous
section.

The	same	method	can	be	used	 to	 re-assign	any	elements	 in	 that	 list.	However,
what	if	we	have	a	nested	list?

Example	17:	Nested	list	re-assignments	also	follow	the	same	idea.	First	grab	the
nested	element	to	be	re-assigned,	and	then	assign	a	new	value	to	it.

In	[]:	#	To	re-assign	a	nested	element.

		 ​	New_list	=	['Apple',	['Orange','Guava'],	'Banana',	'Cashew',	'Almond']
		 ​	New_list
Out[]:	['Apple',	['Orange',	'Guava'],	'Banana',	'Cashew',	'Almond']

In	[]:	New_list[1][0]	=	'Mango'

							New_list

Out[]:	['Apple',	['Mango',	'Guava'],	'Banana',	'Cashew',	'Almond']

Exercise:	Now,	try	changing	the	element	‘target’	to	‘targeting’	in	this	list:
nest	=	[1,2,3,	[4,5,	['target']]]

Using	our	initial	list	of	fruits,	let	us	use	the	.append	method.	This	method	takes
the	 value	 passed	 to	 it	 and	 adds	 it	 to	 the	 end	 of	 the	 list.	 It	 can	 only	 add	 one
element	to	a	list	at	a	time.	If	more	than	one	element	is	passed	into	the	method,	it
adds	it	as	a	sub-list	to	the	intended	list.

Example	 18:	 Add	 the	 fruit	 Pawpaw	 to	 the	 list	 of	 fruits	 and	 make	 it	 the	 last
element.

In	[]:	#	Declaring	the	list	of	the	fruits

								fruits	=	['Apple',	'Orange',	'Banana',	'Cashew',	'Almond']

​	fruits.append	('Pawpaw')
​	fruits

Out[]:	['Apple',	'Orange',	'Banana',	'Cashew',	'Almond',	'Pawpaw']

To	add	a	sub-list,	use	the	method		.append	(‘[sub-list	elements]’)

Example	19:	Let	us	add	a	sub-list	of	carbohydrates	to	this	food	list
In	[]:	#Declaring	the	food	list

							foods	=	['Beans','plantain','fish']

		 ​	foods.append	(['Rice,	'Wheat'])

​	foods
Out[]:	['Beans',	'plantain',	'fish',	['Rice',	'Wheat']]

Now,	 let	 us	 use	 another	 method	 ‘.extend’	 .	 This	 method	 also	 adds	 its	 input
values	 to	 the	end	of	a	 list.	However,	unlike	 the	 .append	method,	 in	 the	case	of
multiple	input	values,	the	.extend	method	adds	each	element	to	the	list,	thereby
extending	the	list	index.

Example	20:			Use	the	.extend	method	to	add	two	elements	to	the	end	of	a	list.
In	[]:	#	Declaring	the	food	list

									foods	=	['Beans','plantain','fish']

									foods.extend(['Rice',	'Wheat'])

			foods

Out[]:	['Beans',	'plantain',	'fish',	'Rice',	'Wheat']

Tip:	The	.append	and	.extend	methods	both	accept	just	one	input	argument.	If	it
is	 more	 than	 one,	 enclose	 the	 inputs	 in	 a	 square	 bracket.	 This	 is	 seen	 in
examples	19	and	20.

Good,	 you	 have	 learned	 how	 to	 add	 elements	 to	 the	 end	 of	 a	 list	 using	 the
.append	and	.extend	methods.	Imagine	a	case	where	you	want	to	add	an	element

to	 any	 part	 of	 a	 list	 without	 replacing	 the	 element	 at	 that	 index.	 The	 .insert
method	 is	 appropriate	 for	 this.	 It	 also	 accepts	 one	 argument,	 and	 inserts	 that
value	at	the	specified	index.

The	.insert	method	has	the	following	syntax:		ListName.insert	(Desired	index,
New	value)

The	ListName	 is	 the	name	of	 the	 list	 to	be	manipulated.	Desired	 index	 is	 the
expected	 position	 of	 that	 element	 (remember	 indexing	 starts	 from	 0,	 or	 -1
depending	on	 indexing	preference),	and	New	value	 is	 the	element	 that	 is	 to	be
inserted	at	the	specified	index.

Example	21:	Consider	the	following	list	of	integers,	add	the	right	value	to	make
the	sequence	correct.	Count_to_ten	=	[1,2,4,5,6,7,8,10].
In	[]:	#	This	program	illustrates	the	.insert	method.

									Count_to_ten	=	[1,2,4,5,6,7,8,10]

									Count_to_ten.insert(2,3)

									Count_to_ten.insert(8,9)

									Count_to_ten

Out[]:	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

Let	us	review	how	that	worked.	The	first	use	of	the	.insert	in	example	21	assigns
the	value	3	to	index	2	as	specified	by	the	syntax.	Now	the	list	‘Count_to_ten’	has
increased	 in	 size	 and	 indexing	 by	 a	 value	 of	 1	 i.e.	 Count_to_ten	 =
[1,2,3,4,5,6,7,8,10]	 .	Now	we	 can	 add	 the	 value	 9	 to	 the	 proper	 index	 of	 8	 as
shown	in	the	4th	line	of	code.

Tip:	Be	aware	of	the	index	expansion	before	assigning	elements.	In	the	previous
example,	if	we	assigned	the	value	9	first,	the	indexing	of	the	other	value	3	would
not	have	been	affected	by	 the	 increase	 in	 the	 list	size.	Then	 the	 following	code
would	have	achieved	the	same	result:
In	[]:			Count_to_ten	=	[1,2,4,5,6,7,8,10]

									Count_to_ten.insert(7,9)

									Count_to_ten.insert(2,3)

									Count_to_ten

Out[]:	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

This	 is	because	 the	 insertion	of	a	value	 in	 the	 list	 shifts	 the	 list	 elements	 from

that	index	of	insertion	to	the	right.	Each	of	the	shifted	elements	now	has	an	index
incremented	by	the	number	of	elements	inserted	i.e.	if	an	element	had	an	index
of	3	 in	a	 list,	 and	 two	 items	were	 inserted	at	 its	 index	or	before	 its	 index,	 that
element	now	has	an	index	of	5.

The	last	method	we	would	consider	on	list	operations	is	 the	 .remove		 	method.
This	is	used	for	removing	an	element	from	a	list.	It	also	has	a	similar	syntax	with
the	.insert	method	and	uses	list	indexing.

Example	22:	Let	us	add	the	value	11	to	the	list	Count_to_ten	and	then	clear	it
using	the	.remove	method.

In	[]:	#	Using	the	output	list	from	the	last	example

		 ​	Count_to_ten.append(11)
Out[]:	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,11]

In	[]:	#	Resetting	back	to	10

		 ​	Count_to_ten.remove(11)
Out[]:	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

There	 is	 something	 to	 notice	 here,	 the	 .remove	 method	 does	 not	 require	 the
specification	of	 the	 index	of	 the	unwanted	element.	Only	 the	name	or	value	of
the	unwanted	element	is	needed.

Exercise:	Create	a	list	of	cars,	and	practice	various	manipulations	on	it.	Practice
adding	to	the	list,	removing	elements	etc.

Hint:	 let	 your	exercise	 require	all	 the	 list	manipulations	we	have	practiced	 so
far.	Get	creative!

Recall	how	lists	are	similar	to	strings	in	some	operations?	Well,	you	can	also	do
list	addition	and	multiplication	(repetition)	as	we	did	with	strings.

Example	23:	Here	are	a	few	list	additions	and	multiplications
In	[]:	#	Addition	and	multiplication	of	lists

		 ​	List1	=	[‘A’,	’B’,	’C’,	’D’]
		 ​	List2	=	[1,	2,	3,	4]
		 ​	CombinedList	=	List1	+	List2

		 ​	CombinedList
Out[]:	[‘A’,	’B’,	’C’,	’D’,	1,	2,	3,	4]

In	[]:	#	Multiplication	of	lists

		 ​	List2*2
Out[]:	[1,	2,	3,	4,	1,	2,	3,	4]

While	there	are	more	operations	possible	with	lists,	we	have	covered	enough	to
serve	as	a	good	foundation	for	further	applications	with	lists.

Tuples

These	are	similar	 to	 lists	 i.e.	a	sequence	of	comma	separated	values.	However,
unlike	 lists,	 tuples	 are	 immutable	 and	 they	 are	defined	using	 a	parenthesis	 ()	 .
Data	 can	 also	 be	 grabbed	 from	 tuples	 using	 the	 indexing	 technique.	 The
usefulness	of	tuples	arises	from	the	need	to	create	program	parts	that	cannot	be
changed	by	the	user/program	during	operation.	Imagine	creating	a	bank	account
program.	 Things	 like	 your	 ATM	 pin	 could	 be	 open	 for	 user	 modification.
However,	 imagine	 letting	 people	 have	 access	 to	 change	 their	 account	 details!
This	could	cause	a	conflict	in	the	banking	program.	These	are	the	kinds	of	data
that	 tuples	 can	 hold.	 Users	 can	 retrieve	 such	 data;	 however,	 they	 cannot	 be
changed.

Example	24:	Let	us	declare	some	tuples.
In	[]:	#	Tuples	can	be	declared	in	two	ways

		 ​	my_Tuple	=	(1,2,3,4,5)	 ​	#	way	1
			 ​	print(my_Tuple)
			 ​	type(my_Tuple)

Out[]:			 ​	(1,2,3,4,5)
​	tuple

In	[]:		my_Tuple2	=	1,2,3,4,5,	 ​	#	way	2
			 ​	print(my_Tuple2)
			 ​	type(my_Tuple2)
Out[]:	 ​	(1,2,3,4,5)

​	tuple

We	can	consider	the	two	types	of	tuple	declarations	shown	in	the	codes	above.
While	 the	 first	 method	 is	 the	 traditional	 and	 recommended	method,	 the	 other
method	is	equally	acceptable.	The	second	method	is	called	‘tuple	packing’,	and
we	would	discuss	its	relevance	later.

Any	sequence	of	comma-separated	items	declared	without	an	operator	or	special
characters	 like	 [],	 {	 },	 etc.	 automatically	 gets	 assigned	 as	 a	 tuple.	 This	 is
important.

As	explained	earlier,	all	the	regular	indexing	operations	involving	data	grabbing
can	 be	 done	 with	 tuples,	 however,	 it	 doesn’t	 support	 element	 assignment/re-
assignment	once	declared.

Another	reason	why	a	Python	programmer	might	prefer	to	use	a	tuple	over	a	list
is	 because	 tuple	 operations	 are	 faster	 than	 with	 lists	 as	 tuples	 require	 less
memory	allocation.

Example	25:
In	[]:	#	Comparing	Lists	with	tuples

		 ​	my_List	=	['Men',	'Index',	1,2,3]

		 ​	my_tuple	=	('Men',	'Index',	1,2,3)

		 ​	a	=	my_tuple.__sizeof__()	#	get	tuple	size
		 ​	b	=	my_List.__sizeof__()		#	get	list	size

		 ​	print('size	of	list	is	{},	and	size	of	tuple	is	{}.'.format(b,a))

Out[]:	size	of	list	is	80,	and	size	of	tuple	is	64.

Even	 though	 the	 elements	 in	 a	 tuple	 and	 list	 are	 exactly	 the	 same,	 they	 have
different	 sizes	 (in	 terms	 of	 memory).	 This	 is	 especially	 useful	 for	 designing
systems	that	have	limited	resources	with	high-efficiency	requirements.

Example	26:		Let	us	grab	some	elements	from	a	tuple	using	indexing

In	[]:	#	grabbing	tuple	elements

		 ​	A	=	my_tuple[0]
		 ​	B	=	my_tuple[1]
		 ​	print	('The	{}	of	{}	is	0.'.format(B,A))

Out[]:	The	Index	of	Men	is	0.

Exercise:	Try	out	other	indexing	operations	with	tuples.	Create	a	tuple	and	try	to
re-assign	one	of	the	elements	using	indexing.	What	did	you	observe	and	why?

Tuples	also	allow	an	operation	called	‘packing	and	unpacking’.	Either	operation
is	dependent	on	the	side	of	the	equality	operator	the	tuple	is.

Example	27:	Let	us	illustrate	tuple	packing	and	unpacking.
In	[]:	#	tuple	packing	and	unpacking

		 ​	Tuple	=	'Daniel',	'Dean',	'James'			#	Tuple	packing
		 ​	[Name1,	Name2,	Name3]	=	Tuple								#	tuple	unpacking
		 ​	print(Name1)
		 ​	print(Name2)
		 ​	print(Name3)
Out[]:	Daniel

		 ​	Dean
		 ​	James

Tuple	packing	and	unpacking	are	kind	of	like	a	convenient	way	of	using	tuples
for	 assignment/creating	 variables.	 Packing	 a	 tuple	 is	 just	 a	matter	 of	 declaring
the	 tuple,	 to	 unpack	 however,	 you	 just	 declare	 a	 number	 of	 choice	 variables
equal	 to	 the	 number	 of	 elements	 in	 the	 tuple.	 Each	 variable	 then	 takes	 the
corresponding	value	in	the	tuple	according	to	the	order	of	arrangement.	As	can
be	observed,	the	Name1	variable	corresponds	to	the	‘Daniel’	tuple	element,	and
so	on.

Hint:	The	square	brackets	around	the	declared	variables	is	unnecessary	in	tuple
unpacking.	It	is	just	standard	practice	to	use,	however,	using	()	or	nothing	will
give	the	same	results.	Try	it!

A	 common	 use	 for	 tuples	 is	 to	 hold	 value	 pairs.	 This	 is	 especially	 useful	 for

collecting	 data	 like	 user	 information	 for	 which	 each	 element	 stores	 a	 specific
user	data.

Example	28:
In	[]:	#	collecting	data	with	tuples

		 ​	User_Info	=	(('Name','James'),('Age',22))																																															#Nested	tuple
		 ​	A,B	=	User_Info[0]	 ​	#	Inner	Tuple	unpacking
		 ​	C,D	=	User_Info[1]	 ​	#	Inner	Tuple	unpacking
		 ​	print	(A,	':	',B)
		 ​	print	(C,	':	',D)

Out[]:		Name	:		James

​	Age	:		22

Dictionaries

These	are	also	similar	to	lists	and	tuples	in	certain	ways.	Unlike	lists	and	tuples,
dictionaries	are	declared	as	key-value	pairs	and	by	using	the	curly	braces	i.e.{	}	.
Think	of	dictionaries	like	safety	deposit	boxes.	You	can	keep	any	item	you	want
in	it	(except	your	car	of	course,	size	does	matter),	but	you	can	only	access	it	with
your	key!

In	Dictionaries	 indexing	 is	done	with	 the	key	associated	with	 the	value	stored.
Dictionaries	 are	 mutable	 in	 their	 keys	 and	 values	 (not-so-safe-deposit-box),
however,	 they	 can	 be	 secured	 by	 using	 tuples	 as	 their	 keys	 or	 key-value	 pairs
(depending	on	access	level	desired).

Example	29:	Let	us	declare	a	dictionary.
In	[]:		#	Dictionary	declaration

			 ​	my_Dict	=	{'Key1':	'Movies',	'Key2':	['Iron	Man',	'Avengers']}														

			 ​	print(my_Dict)
			 ​	print(type(my_Dict))

Out[]:		{'Key1':	'Movies',	'Key2':	['Iron	Man',	'Avengers']}

		 ​	<class	'dict'>

There,	we	 just	declared	a	dictionary.	Notice	 that	 the	 first	value	 is	a	string,	and
the	 second	 value	 is	 a	 list.	 The	 keys	 can	 be	 other	 datatypes	 as	 well,	 and	 not
necessarily	strings;	however,	string	key	names	are	usually	preferred	for	keeping
values	for	easy	call	and	code	readability.

To	grab	elements	in	a	dictionary,	the	keys	holding	the	value	is	first	called.

Example	30:	Grabbing	dictionary	elements
In	[]:	A	=	my_Dict['Key1']

		 ​			B	=	my_Dict['Key2']
		 ​			print	(A,':	',B)
Out[]:	Movies	:		['Iron	Man',	'Avengers']

We	can	see	that	by	calling	the	dictionary	keys,	we	passed	the	values	held	by	Key
1	and	key	2	to	the	variables	A	and	B.	More	complicated	dictionary	key	indexing
can	be	done.

Example	31:	Grabbing	elements	from	a	nested	dictionary.

First,	we	declare	our	dictionary:
In	[]:	Acct_Dict	=	{'Name':'Customer1','Account	type'

		 ​	 ​	:{'type1':'Savings','type2':	'Current'}}
							Acct_Dict

Out[]:	{'Name':	'Customer1',	'Account	type':	{'type1':	'Savings',	'type2':	'Current'}}

If	we	need	to	print	 that	 the	user	has	a	savings	type	of	bank	account,	we	would
need	to	grab	the	Second	key	‘Account	type’	first,	then	grab	the	first	key	of	that
resultant	dictionary.	Then	we	can	easily	pass	that	into	the	print	statement.

In	[]:	print('You	have	a	'+	Acct_Dict['Account	type']['type1']+	'	account')

Out[]:		You	have	a	Savings	account

Notice	 how	 the	 word	 ‘Savings’	 has	 been	 grabbed	 using	 dictionary	 key-value
indexing.	Since	the	name	of	the	keys	for	a	dictionary	is	important	to	getting	its
values,	 it	 is	 important	 to	 determine	 the	 keys	 it	 holds	 at	 any	 point	 in	 time.	 To
view	a	list	of	the	keys	a	dictionary	holds,	use	the	.keys()	method.

In	[]:	Acct_Dict.keys()				#	Checking	keys	held	by	Acct_Dict

Out[]:		dict_keys(['Name',	'Account	type'])

In	[]:	Acct_Dict['Account	type'].keys()				#	Checking	the	inner	keys

Out[]:		dict_keys(['type1',	'type2'])

Tip:	There	are	other	methods	 that	can	be	used	with	a	dictionary,	 even	 though
this	 is	all	we	would	need	 for	our	 lessons	here.	However,	 to	use	 these	methods
with	a	dictionary	or	 to	 find	 the	methods	available	 for	any	other	datatypes,	use
the	dir()	method.

In	[]:	#	Checking	possible	methods	with	datatypes

		 ​	#	Let	us	declare	some	datatypes	first	and	check	their	methods

		 ​	String	=	'Bob';	integer	=	100;	Float	=	25.3

		 ​	List	=	['Man'];	Tuple	=	5,			#	To	declare	a	single	tuple
								#	put	a	comma			after	the	single	value

		 ​	Dictionary	=	dict([('Name','Max')])											#	Dictionaries	can	be	declared

								#	using	dict()	as	well.

		 ​	A	=	dir(String);	B	=	dir(integer);	C	=	dir(Float)

		 ​	D	=	dir(List);	E	=	dir(Tuple)	;	F	=	dir(Dictionary)

		 ​	print	('''	Here	are	the	methods	possible	with	each	type

		 ​	Strings

		 ​	{}

		 ​	Integers

		 ​	{}

		 ​	Floats

		 ​	{}

​	Lists

		 ​	{}

		 ​	Tuples

		 ​	{}

​	Dictionaries

		 ​	{}
		 ​	'''.format(A,B,C,D,E,F))

Try	copying	and	running	the	code	above,	or	write	your	own	variation.	However,
the	point	is	for	you	to	find	out	all	the	possible	methods	available	to	any	data	type
in	 Python.	 This	 information	 gives	 you	 access	 to	 do	 advanced	 manipulations.
Also	notice	the	comments	in	the	code,	some	new	methods	of	declaring	‘Tuples’
and	‘Dictionaries’	were	introduced.	These	are	extra;	just	tricks	you	may	wish	to

use.	Same	with	the	use	of	semi-colon	to	allow	for	declaring	multiple	variables	or
commands	in	one	line.

Booleans

These	 are	 conditional	 datatypes	 that	 are	 used	 to	 determine	 the	 state	 of	 a
statement	or	block	of	code.	Booleans	have	two	possible	values	‘True’	or	‘False’
which	have	corresponding	integer	values	of	1	and	0	respectively.

In	[]:	 ​	A	=	True			#	Boolean	values	seem	like	strings	but	do	not	enclosed	in	quotations
		 ​	type(A)
Out[]:	 ​	bool

In	[]: ​	int(A)			#	Integer	value	of	the	Boolean
Out[]: ​	1

As	can	be	seen,	the	corresponding	integer	value	for	Boolean	‘True’	is	1.	Try	the
above	code	for	the	Boolean	‘False’.

For	 most	 operations,	 Booleans	 are	 usually	 output	 values	 used	 for	 specifying
conditions	 in	 a	 loop	 statement	 or	 checking	 for	 the	 existence	 of	 an	 element	 or
condition.	This	leads	us	to	the	use	of	comparison	and	logical	operators.

Comparison	operators

These	 operators,	 as	 their	 name	 implies,	 are	 used	 to	 check	 for	 the	 validity	 or
otherwise	of	a	comparison.	The	following	are	comparison	operators:

Table	1:	Comparison	operators
<

>

==

<=

>=

!

Less	than

Greater	than

Equal	to

Less	than	or	equal	to

Greater	than	or	equal	to

Not	operator	(can	be	combined	with	any	of	the	above)

This	checks	for	the	existence	of	an	element/value

in

Example	32:			Let	us	check	for	conditions	using	the	comparison	operators
In	[]:	#This	code	illustrates	the	Boolean	comparison	output

		 ​	print	(5	<	10);	print	(3>4);	print('Bob'=='Mary');

		 ​	print	(True	==	1);	print	(False	==	0);	print	(True	!=	1)
Out[]:	True

		 ​	False
		 ​	False
		 ​	True
		 ​	True
		 ​	False

In	[]:	#The	‘in’	operator

		 ​	print	('Max'	in	'Max	Payne');	print	(2	in	[1,3,4,5]);	print	(True	in	[1,0])

Out[]:	True

		 ​	False
		 ​	True

Logical	operators

These	 are	 the	 Python	 equivalent	 of	 logic	 gates.	 This	 is	 a	 basic	 technique	 for
performing	 logical	 operations	 and	 can	 also	 be	 combined	 using	 the	 interpreted
versions	of	De	Morgan’s	law.

In	 case	 you	were	wondering,	De	Morgan	 is	a	British	guy	 that	 found	a	way	 to
simplify	 Boolean	 logic	 using	 rules	 earlier	 invented	 by	 another	 British	 guy,
George	Boole	(Boolean	is	named	after	this	guy).

Table2:	Logical	operators
and/&

or/	|

Evaluates	to	true	if,	and	only	if,	both	operands	are	true,	false	otherwise.

Evaluates	to	true	if,	at	least,	one	of	the	operands	is	true,	false	otherwise.

This	is	an	inversion	of	the	value/operation	of	its	operand.

not/	!

Example	33:	Let	us	try	out	some	logical	operations	(truth	table)	with	the	‘and’
operator	.

In	[]:	#The	‘and’	operator

		 ​	print	(True	&	True);	print	(True	and	False);print	(False	and	False)
		 ​	print	(False	and	True);	print('foo'	in	'foobar'	and	1<2)
Out[]:	True

		 ​	False
		 ​	False
		 ​	False
		 ​	True

Example	34:	Let	us	 try	out	 some	 logical	operations	 (truth	 table)	with	 the	 ‘or’
operator.

In	[]:	#The	‘or’	operator

		 ​	print	(True	|	True);	print	(True	or	False);	print	(False	or	False)
		 ​	print	(False	or	True);	print	(('foo'	in	'foobar')	|	1<2)

Out[]:	True

		 ​	True
		 ​	False
		 ​	True
		 ​	True

For	 the	 last	 operation	 in	 the	 above	 code,	 notice	 how	 the	 string	 operation	 is
enclosed	 in	 parenthesis	 before	 the	 ‘logical	 or’	 is	 used.	This	 is	 because	Python
throws	 an	 error	 in	 the	 case	 of	 comparing	 string	 operations	 directly	with	 other
types	using	the	logical	or.

Exercises:

1.	 Here	 are	 two	 food	 lists:	 [‘Beans’,’Wheat’,’Bread’]	 and

[‘Rice’,’Plantain’,’Pizza’,’Spaghetti’]

a.	 Write	a	Python	code	to	check	if	the	word	‘Rice’	exists	in	both	lists.

b.	 Write	a	Python	code	to	check	if	‘Pizza’	exits	in	at	least	one	of	the
lists.

2.	 Create	a	Python	dictionary	with	two	keys.	Key	1	should	be	immutable,
while	key	2	can	change.	Alternatively,	the	values	held	by	key	1	and	2
are	a	sequence	of	integers;	however,	the	values	of	key	1	can	be	edited,
while	that	of	key	2	should	be	immutable.	Hint:	Recall,	immutable	data
types	are	strings	and	tuples.

Now	that	we	have	gone	through	all	the	data	types,	let	us	move	on	to	loops	and
conditionals.

Conditional	statements	and	Loops

These	are	a	 little	different	from	what	we	have	been	doing	so	far.	Our	previous
examples	 can	 be	 described	 as	 ‘sequential	 program	 execution’,	 in	 which
expressions	are	evaluated	line	by	line	without	any	form	of	control.	Conditional
statements,	however,	are	used	to	take	control	of	how	and	when	lines	of	code	are
executed.	Loops	on	the	other	hand,	are	used	to	repeat	the	execution	of	a	specific
code	or	blocks	of	code.	These	two	different	control	algorithms	are	mostly	used
together	to	develop	programs	of	varying	complexity,	although,	they	can	be	used
independently	of	each	other.

Let	us	consider	the	most	basic	and	often	used	conditional	statement	–	the	‘IF	’
statement.

This	has	a	syntax	of	the	form:
																				if		expression	:

																														statement

The	expression	in	this	case	is	usually	a	Boolean	operation,	while	the	statement	is
a	line/block	of	code	to	be	executed	once	the	Boolean	evaluates	to	either	true	or
false	(or	is	not	true	or	false).

Example	35:	Let	us	write	a	program	that	grants	a	user	access	when	any	of	three
correct	passwords	is	entered.

In	[]:	#	Grant	access	if	user	password	is	correct

		 ​	password_pool	=	('Smith_crete','Alex@456','CEO4life')

		 ​	user_password	=	input	('Please	enter	your	password:	\t')

		 ​	#	Now	the	IF	condition
		 ​	if	user_password	in	password_pool:
		 ​	print('\n	Access	granted!')

Out[]:	Please	enter	your	password:	CEO4life

		 ​	Access	granted!

That	was	a	fun	program,	right?	The	idea	is	for	Python	to	check	if	the	password
entered	by	the	user	is	available	in	the	earlier	declared	password	pool	(notice	that
the	 password	pool	 is	 a	 tuple?	This	 is	 a	 practical	way	 for	 creating	 fixed/secure
passwords)

Exercise:	Write	a	program	to	calculate	how	much	a	person	owes	for	keeping	a
movie	 past	 rent-due-date.	 Let	 there	 be	 an	 increase	 in	 price	 given	 the	 person
keeps	the	movie	past	3	days.

Example	36:
In	[]:	#	Movie	rent-overdue	price

		 ​	price1	=	5						#	$	5	for	every	day	past	due	within	first	3	days
		 ​	price2	=	7						#	$	7	for	every	day	past	due	after	first	3	days
		 ​	days_past_due	=	eval(input('How	many	days	past	due:\t'))

		 ​	#	If	statement

		 ​	if	days_past_due	<=	3:
					 ​	 ​	print('\nYou	owe	$',(days_past_due*price1))
		 ​	if	days_past_due	>	3:
			 ​	 ​	print('\nYou	owe	$',(3*price1	+	(days_past_due	-	3)*price2))

Out[]:	How	many	days	past	due:	 ​	4

		 ​	You	owe	$	22

See	 how	we	 can	 combine	multiple	 if	 statements	 to	 write	 even	more	 complex
code?	However,	 there	 is	 a	 better	 syntax	 for	 evaluating	multiple	 conditional	 IF
statements;	the	IF-ELSE	statements.

It	has	a	syntax	like	this:
																				if		expression	:

																														statement

​	 ​			else:
																								alternative	statement

Example	37:	Improved	version	of	example	35	using	IF-ELSE
In	[]:	#	Grant	access	if	user	password	is	correct	or	raise	alarm

		 ​	password_pool	=	('Smith_crete','Alex@456','CEO4life')

		 ​	user_password	=	input	('Please	enter	your	password:	\t')

		 ​	#	Now	the	IF-ELSE	conditions
		 ​	if	user_password	in	password_pool:
		 ​	 ​	print('\n	Access	granted!')
		 ​	else:

​	 ​	print('\n	Access	Denied!	Calling	Security	…')

Out[]:	Please	enter	your	password:	 ​	wrong	password

		 ​	Access	Denied!	Calling	Security	…

Now,	 this	 seems	 like	 a	 more	 reasonable	 security	 system,	 right?	 Still,	 the	 IF
conditional	 gets	 better	 with	 the	 IF-ELIF-ELSE	 syntax.	 This	 allows	 you	 to
specify	actions	in	multiple	situations.

Syntax:
																			if		expression	:

																														statement

																			elif		expression	:

																														statement

																			elif		expression	:

																														statement

​	 ​			else:
																								alternative/default	statement

The	syntax	above	can	be	explained	in	regular	language	as	“If	the	first	condition
is	 met,	 then	 execute	 the	 action	 within	 the	 first	 statement,	 or	 else,	 if	 the	 first
condition	 is	 not	met,	 do	 the	 action	 under	 the	 second	 statement.”	This	 goes	 on
until	the	else	statement	that	defaults	to	the	inability	of	the	program	to	fulfill	any
of	the	conditions	within	the	IF	and	ELIF	statements.

Example	38:	An	even	better	version	of	example	35.
In	[]:	#	Grant	access	and	greets	user	if	the	user	password	is	correct.

		 ​	#	Otherwise,	raise	an	alarm.
		 ​	password_pool	=	('Smith_crete','Alex@456','CEO4life')

		 ​	user_password	=	input	('Please	enter	your	password:	\t')

		 ​	#	Now	the	IF-ELIF-ELSE	conditions
		 ​	if	user_password	in	password_pool	and	user_password	==	'Smith_crete':
		 ​	print('\nAccess	granted!	Welcome	Dr.Smith')

		 ​	elif	user_password	in	password_pool	and	user_password	==	'Alex@456':

		 ​	print('\nAccess	granted!	Welcome	Mr.	Alexander')

		 ​	elif	user_password	in	password_pool	and	user_password	==	'CEO4life':
		 ​	print('\nAccess	granted!	Welcome	Mr.	CEO')

		 ​	else:	print('\nAccess	Denied!	Calling	Security	…')

Out[]:	Please	enter	your	password:	wrong	password

		 ​	Access	Denied!	Calling	Security	…

Out[]:	Please	enter	your	password:	Alex@456

		 ​	Access	granted!	Welcome	Mr.	Alexander

Out[]:	Please	enter	your	password:	Smith_crete

		 ​	Access	granted!	Welcome	Dr.	Smith

Out[]:	Please	enter	your	password:	CEO4life

							Access	granted!	Welcome	Mr.	CEO

Exercise:	 Now	 that	 you	 have	 learned	 the	 IF	 conditional	 statement	 and	 its
variations,	try	out	some	more	creative	and	complicated	examples	on	your	own.
For	 example,	 you	 can	write	 a	 program	 that	 checks	 a	 database,	 prints	 students
math	exam	scores	and	comments	on	whether	they	passed	the	exam	or	not.

Hint:	The	database	in	your	example	could	be	a	variation	of	the	‘password	pool
in	example	37’

Let	us	now	look	at	loops.	We	will	consider	two	loops:	The	While	loop	and	the
For	 loop	 .	 	As	 described	 earlier,	 a	 loop	will	 run	 indefinitely	 until	 a	 specified
condition	 is	met.	Due	 to	 this,	 they	can	be	used	 for	automating	and	performing
really	powerful	operations	spanning	a	 large	range;	however,	 they	must	be	used
with	caution	to	avoid	infinite	loops!

WHILE	loop

This	 loop	 is	used	 to	execute	a	 set	of	 statements	or	code	as	 long	as	a	 specified
condition	is	true.	The	conditional	statement	that	controls	the	algorithm	is	called	a
flag	and	is	always	true	for	all	non-zero	values.	When	the	flag	becomes	zero,	the
while	loop	then	passes	on	to	the	next	line	of	code	following	it.	There	could	be	a
single	statement	or	multiple	within	the	while	loop,	and	Python	supports	the	else
statement	for	the	while	loop.

A	while	loop	has	the	following	syntax:

while	flag	:

				statement

Example	39:	Writing	a	while	loop	to	print	a	statement	5	times.
In	[]:	#	while	loop	to	print	output	5	times

		 ​	i	=	1																#	counter

		 ​	while	i	<	6:									#	flag
				 ​	 ​	print	(i,':	I	love	Python')

					 ​	i	=	i+1								#	This	Increments	the	value	of	‘i’
	else:

					 ​	 ​	print	('\nThe	program	has	completed')

Out[]:	1	:	I	love	Python

		 ​	2	:	I	love	Python
		 ​	3	:	I	love	Python
		 ​	4	:	I	love	Python
		 ​	5	:	I	love	Python

		 ​	The	program	has	completed

Okay,	the	program	worked.	But	how?

The	first	thing	is	the	flag.	The	variable	‘i	’	was	declared	with	a	value	of	1.	For
the	first	iteration,	Python	checks	if	1	is	less	than	6:	the	flag	is	true	since	1	is	less
than	6,	and	the	print	statement	runs	(along	with	the	counter	we	added	to	print	the
status	of	the	loop).	This	continues	until	the	loop	is	complete	(when	i=6),	then	the
else	 statement	 runs	 (since	 the	 flag	 is	 now	 false).	Assuming	 the	 else	 statement
was	absent,	the	while	statement	ends	(or	in	the	case	of	a	larger	program,	it	passes
on	to	the	next	line	of	code).

Hint:	 Notice	 the	 increment	 we	 included	 after	 the	 print	 statement?	 This	 is
important,	 as	 it	 is	what	makes	 the	 value	of	 our	 counter	 change	 to	allow	 for	a
specific	loop	duration.	It	also	had	to	be	placed	within	the	While	loop	such	that
the	 increment	 executes	at	 each	 iteration.	 If	we	 remove	 the	 increment	 code,	we
would	have	an	infinite	loop	as	‘i’	(with	an	initial	value	of	1)	will	never	be	equal

to	6

Python	 loops	 have	 some	 extra	 control	 statements	 for	 handling	 their	 execution.
We	have	the	‘Break’,	’Continue’	and	‘pass’.	The	break	statement	is	used	to	stop
the	 execution	 of	 the	 loop	 once	 invoked.	 It	 could	 sometimes	 be	 useful	 for
safeguarding	 a	 loop	 against	 defaulting	 to	 an	 infinite	 loop.	 The	 continue
statement,	however,	 re-tests	 the	condition	of	 the	 loop	from	when	 it	 is	 invoked,
this	leads	to	a	continuation	of	the	loop	from	a	stop	point	(usually	used	to	resume
the	loop	after	a	break	statement).

We	would	not	use	 the	pass	statement	here,	as	 it	 is	only	useful	for	skipping	the
execution	of	a	loop	expression	which	is	otherwise	required	by	the	loop	syntax.

Example	40:	Let	us	use	a	while	loop	along	with	the	continue	statement	to	create
a	program	that	prints	numbers	from	1	to	10,	but	skips	8.
In	[]:	#	This	program	prints	1-10	but	skips	8

		 ​	i	=	0																#	Counter

	 ​	while	i<=9:
					 ​	 ​	i	=	i+1									#	Increment
					 ​	 ​	if	i	==	8:
									 ​	 ​	continue
					 ​	 ​	print(i)				

		 ​	else:	print	('\nThe	program	has	ended')

Out[]:	1

	2

	3

	4

	5

	6

	7

	9

	10

	The	program	has	ended

Tip:	Notice	 how	 our	 increment	 was	 placed	 before	 the	 ‘	 continue	 statement’?
This	is	important	to	prevent	an	infinite	loop.	In	this	case,	when	the	counter	‘	i	’
equals	 7,	 it	 is	 incremented	 to	 8	 and	 the	 if	 statement	 executes	 the	 ‘	 continue
statement’.	 The	 condition	 is	 then	 re-tested,	 and	 the	 increment	 adds	 1	 to	 the
value.	Since	9	is	greater	than	8,	the	rest	of	the	code	runs	till	the	loop	ends.

Assuming	the	increment	is	after	the	if	&	continue	statements,	when	‘i’	is	equal
to	 8,	 the	 continue	 statement	 re-tests	 the	 condition.	 Now	 since	 there	 is	 no
increment	 in	 the	value	of	 ‘i’	 after	 this	point,	 the	 condition	8	<=	9	will	 always
hold	true,	and	the	loop	continues	indefinitely!

Let	 us	 write	 the	 indefinite	 loop	 version	 of	 this	 program	 and	 use	 the	 break
statement	to	terminate	it	after	15	iterations.

Example	41:	This	program	uses	 the	break	and	continue	statement	 to	create	an
indefinite	loop	and	an	escape	sequence.

In	[]:	#	This	program	is	meant	to	print	1-10	and	skip	8

							#	It	runs	indefinitely	until	a	break

		 ​	i	=	1								#	loop	variables
		 ​	j	=	1
		 ​	while	i<=10:
					 ​	 ​	print	('Iteration	',j)		
					 ​	 ​	if	j	>=	15:
									 ​						break						#	loop	escape	sequence
					 ​	 ​	j	=	j+1

			 ​	 ​	if	i	==	8:
									 ​	 ​	continue							#	indefinite	loop
					 ​	 ​	print('\tvalue	=',i)				
					 ​	 ​	i	=	i+1		
						else:	print('\nThe	program	has	ended')

Out[]:	Iteration		1

​	 ​	value	=	1
	Iteration		2

​	 ​	value	=	2
	Iteration		3

​	 ​	value	=	3
	Iteration		4

​	 ​	value	=	4
	Iteration		5

​	 ​	value	=	5
	Iteration		6

​	 ​	value	=	6
	Iteration		7

​	 ​	value	=	7
	Iteration		8

	Iteration		9

	Iteration		10

	Iteration		11

	Iteration		12

	Iteration		13

	Iteration		14

	Iteration		15

See	how	the	loop	became	indefinite	at	output	‘7’	as	explained	earlier.

Tip:	Always	make	sure	your	loop	can	end	or	insert	a	break	statement	to	handle
such	errors.

For	loop

These	 loops	 are	 used	 for	 iterating	 through	 a	 sequence	 of	 values.	 It	 executes	 a
statement	 of	 code	 per	 each	 element	 present	 in	 the	 target	 sequence.	Like	while
loops,	they	are	also	subject	to	an	indefinite	execution	depending	on	how	they	are
declared.

The	for	loop	has	the	following	syntax:
for	iterator	in	sequence:

	 ​	statement

Recall	the	‘in’	operator	from	our	comparison	examples.	It	is	a	for	loop	operator.

The	 variable	 or	 name	 of	 iterator	 does	 not	 matter	 in	 the	 for	 loop,	 it	 could	 be
anything;	however,	the	sequence	must	be	properly	specified	along	with	the	loop
statement.

Note:	While	it	is	not	common	for	for	loops	to	be	infinite	in	Python,	it	is	possible.
Since	the	for	loop	iterates	through	a	sequence,	it	is	logical	that	the	duration	of
the	loop	is	dependent	on	the	size	of	the	sequence.	If	the	sequence	were	infinite	in
length,	then	the	for	loop	will	run	forever.

Below	 is	 a	 sample	 of	 an	 infinite	 for	 loop.	 Notice	 how	 the	 list	 will	 grow
indefinitely	 through	 the	 increment	of	 the	 list	 size	and	elements	via	 the	 .append
list	method.
In	[]:	 ​	Indefinite_list	=	[0]
	 ​	 ​	for	x	in	Indefinite_list:
				 ​	 ​					Indefinite_list.append(0)
				 ​	 ​					print(x)

The	 output	 is	 not	 included	 here	 because	 the	 code	 runs	 forever.	 You	 may	 try
running	 this	 program,	 however,	 when	 the	 code	 runs	 indefinitely,	 click	 the
‘Kernel’	 tab	 at	 the	 top	of	 your	 Jupyter	 notebook	 and	 select	 ‘restart	 kernel	 and
clear	output’.	This	will	restart	that	current	cell	and	stop	the	loop	immediately.

Now	let	us	try	some	for	loop	examples.

Example	42:	Let	us	write	a	code	that	prints	all	the	elements	in	a	list.
In	[]:	#	This	program	accepts	a	list	and	prints	its	elements	numbers

		 ​	List	=	eval	(input	('Please	enter	a	sequence	of	numbers	using	[]	:\t'))

		 ​	for	value	in	List:
					 ​	print	('\nValue',value,'is	:	',List[value-1])

Out[]:	Please	enter	a	sequence	of	numbers	using	[]	:														[1,2,3,4,5]

		 ​	Value	1	is	:		1

		 ​	Value	2	is	:		2

		 ​	Value	3	is	:		3

		 ​	Value	4	is	:		4

		 ​	Value	5	is	:		5

Recall,	the	for	loop	requires	a	sequence	for	its	iteration	to	occur.	In	cases	where
you	 need	 a	 certain	 number	 of	 iterations	 and	 want	 to	 declare	 an	 arbitrary
sequence	 of	 values	 with	 the	 desired	 length,	 you	 can	 use	 Python’s	 range()
function.

The	 range	 function	 creates	 a	 sequence	 of	 numerical	 values	 starting	 from	 the
lower	arguments	to	a	number	of	elements	specified	by	the	higher	argument.

Syntax: ​													range(x,y)

Here,	x	is	the	starting	value	of	the	sequence	with	y	values,	and	the	last	value	of	a
range	is	usually	y	-1.

Example	43:	Create	a	list	of	10	separate	integers	between	0	and	10.
In	[]:	#	using	the	range	function

	 ​	List	=	list(range(0,10))
	 ​	print(List)

Out[]:	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

Tip:	In	this	example,	 the	list	was	created	using	the	 list()	method.	However,	 the
range	function	has	been	demonstrated.

Exercise:	Write	a	for	loop	that	iterates	through	a	List	of	10	elements,	and	prints
the	value	of	each	element	along	with	the	iteration.	

Hint:	use	the	range()	 function	and	 list()	method	to	generate	your	list.	Also,	 try
different	 variations	 of	 this	 exercise	 (more	 practical	 and	 complicated
applications).

List	Comprehension

This	is	a	simple	way	of	running	for	loops	and	some	other	conditional	operations
with	lists	in	Python.
Syntax:

						[statement	for	iterator	in	sequence	if	condition]

						for	iterator	in	sequence:					#	Equivalent	code

​	 ​	 ​				if	condition:		

Example	44:			let	us	use	List	comprehension	to	square	all	the	elements	in	a	list
In	[]:	trial_List	=	list(range(10))

						[(trial_List[item])**2	for	item	in	trial_List]

Out[]:	[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

To	 use	 the	 IF	 statement	 part	 of	 the	 syntax,	we	 consider	 a	 quick	 IF	 statement
syntax	allowed	by	Python.
																										An	if	condition	else	B

This	 allows	 you	 to	 write	 a	 one-line	 IF	 statement	 that	 executes	 the
action/statement	‘A	’	if	condition	is	met,	else	it	evaluates	B	.	Hence,	for	the	IF
statement	part	 of	List	 comprehension	 syntax,	we	can	 consider	 the	preceding	 ‘
statement	for	iterator	in	sequenc	e 	’	as	‘A	’	which	executes	if	a	condition	is	met.

Example	45:	Let	us	use	the	IF	part	of	list	comprehension	to	grab	only	the	first
three	letters	of	each	string	item	in	a	list.

In	[]:	#	Grab	first	three	letters	of	strings

		 ​	List	=	['Matrix','Trilogy',1,3.4,'Cattle']

		 ​	#	grab	loop

		 ​	new_List	=	[things[:3]	for	things	in	List	if	type(things)==	str]
		 ​	print(new_List)

Out[]:	['Mat',	'Tri',	'Cat']

See	how	useful	 this	code	 is	and	compact	 too.	Here	we	 iterate	 through	 the	List
using	 the	 iterator	 ‘things’,	 and	 we	 asked	 Python	 to	 grab	 the	 slice	 of	 ‘things’
(which	would	be	the	element	it	indexes	at	any	instant	in	the	loop)	up	till	the	third
element	i.e.	things	[:3]	(recall	the	slice/range	grabbing	examples	and	exercises?).
All	 these	actions	are	 then	controlled	by	 the	 last	 IF	statement	 that	checks	 if	 the
element	indexed	by	‘things’	has	a	type	==	str	i.e.	is	a	string.	Easy	enough?

Exercise:	To	the	list	in	example	45,	add	the	following	words	‘Jeep’,	‘Man’	and
‘Go’.	Run	the	same	code	from	example	45	with	the	updated	list,	however,	only
grab	the	first	3	 letters	of	words	that	have	at	 least	3	 letters	 i.e.	all	 items	in	your
output	list	must	have	three	letters.

Hint:	Use	 the	 list	 .extend()	method	 from	previous	 examples	 to	 update	 the	 list.
Also,	use	the	function	len()	to	check	for	the	number	of	letters	in	a	word.	Finally,
the	IF	statement	can	take	logical	operators	‘and,	or,	not’	.

With	list	comprehension,	using	the	IF-ELSE	statement	is	a	little	different.	In	this
case,	the	IF-ELSE	statement	comes	first,	and	then	the	for	loop.

Syntax:	[A	if	condition	else	B	for	iterator	in	sequence]

This	is	just	like	the	one-lined	IF	statement,	however	with	a	for	loop	alongside	it.

Example	 46:	 Write	 a	 program	 that	 accepts	 user	 input	 for	 the	 number	 of	 list
elements.	Then	 the	program	creates	a	numeric	 list	 from	1	 to	 that	number,	with
values	being	squares	of	each	odd	number,	and	half	for	the	even	numbers.	

In	[]:	#	Create	user	defined	list

nitems	=	eval(input('Please	enter	number	of	list	items:	'))

		 ​	new_list		=	[x**2	if	x%2	!=	0	else	x/2	for	x	in	range(1,nitems+1)]

		 ​	print('\n		Here	is	your	custom	list\n\n',new_list)

Out[]:	Please	enter	the	number	of	list	items:	10

		 ​	Here	is	your	custom	list

		 ​	[1,	1.0,	9,	2.0,	25,	3.0,	49,	4.0,	81,	5.0]

See	how	we	created	such	a	powerful	program	in	3	lines.	That’s	the	advantage	of
list	comprehension.

Tip:	Take	 time	 to	 review	 the	 syntax	 for	 list	 comprehension,	 as	 it	will	 be	very
useful	in	writing	concise	codes	in	the	future.

There	 are	 other	 comprehension	 types	 in	 Python,	 like	 the	 dictionary
comprehension;	however,	list	comprehension	is	what	we	need	for	now.

Functions

In	Python,	or	any	other	programming	 language,	 the	use	of	 functions	cannot	be
underestimated.	It	allows	the	programmer	to	call	certain	code	blocks	to	perform
an	action	without	having	to	write	such	code	every	time.	Python	has	some	in-built
functions	like	the	‘range	()’,	‘list	()’,	‘type	()’,	etc.	that	we	have	used	in	previous
examples.	As	noticed,	using	these	functions	saved	us	time	in	their	use.	However,
since	Python	 is	more	 like	a	 tool/template	 for	writing	various	programs	 that	are
supported	within	 its	 library,	 it	can	hardly	contain	functions	that	would	perform
any	 action	 a	 programmer	 might	 require.	 This	 is	 why	 there	 is	 an	 option	 for
defining	 custom	 functions	 in	 Python.	With	 this	 option,	 you	 can	write	 and	 call
your	own	code	for	performing	a	larger	operation.

To	define	a	function	in	Python,	we	use	the	def	()	keyword.	You	may	choose	to
interpret	the	keyword	to	mean	‘define’.	It	makes	it	easier	to	comprehend.

Syntax:	 ​	 ​	def	function_name(‘arguments’):
​					 ​	 ​				lines	of	code

The	 function_name	 is	 the	whatever	 you	wish	 to	 name	 your	 function	 as.	 This
should	be	a	name	that	makes	sense	as	regards	what	the	function	does.	Functions
also	 accept	 arguments	 ,	 which	 are	 inputs	 for	 the	 function	 to	 evaluate.
Depending	 on	 the	 function	 you	 choose	 to	 define,	 the	 arguments	 can	 be	 of
anything,	or	nothing.

Seems	 easy	 enough,	 right?	 Let	 us	 define	 some	 functions	 and	 call	 them	 to
perform	certain	actions.

Example	47:	Define	a	function	that	prints	(‘Hello	User’)	when	called.
In	[]: ​	def	greet(name):
				 ​	 ​					print('Hello	',name)

Now,	let	us	call	the	function
In	[]: ​	greet('David')

​	 ​	Hello	David

In	[]:	 ​	greet	('Python	User	guy')

​	 ​	Hello		Python	User	guy

See,	we	 only	 needed	 to	 call	 the	 function	 and	 pass	 in	 our	 argument.	With	 this
method,	we	can	output	a	greeting	to	any	string	value	without	having	to	write	any
print	statement.

It	 is	 good	practice	 to	 include	 a	 ‘docstring’	when	writing	 a	 function.	These	 are
comments	(usually	multi-line)	that	tell	the	user	of	the	function	how	to	call	it	and
what	 it	does.	 In	 Jupyter	notebook,	once	 the	name	of	 a	 function	 is	 typed,	press
shift	key	+	tab	in	windows,	and	the	docstring	is	shown.	You	can	try	this	out	for
any	of	the	functions	we	have	used	so	far.

Figure	4:	Docstring	example	for	the	print	function.

To	include	a	docstring	for	your	function,	just	add	a	multi-line	comment	using	the
three	 quotes	 method.	 You	 can	 now	 check	 for	 the	 documentation	 of	 your
function.

Let	us	try	to	recreate	the	example	46	using	a	function.	The	function	prompts	the
user	for	the	required	list	 length,	and	then	outputs	a	custom	list.	We	would	also
include	a	documentation.

Example	48:
In	[]:	 ​	#	function	that	creates	a	user-defined	list

					 ​	def	custom_list(nitems):

					 ​	"""
				 ​	This	function	accepts	a	numeric	value	and	creates	a	list.
				 ​	The	list	contains	squares	of	odd	numbers	within	the	range
				 ​	of	1	and	user	input,	as	well	as,	half	values	for	the	even
					 ​	numbers	in	that	range.

					 ​	syntax:	custom_list(numeric	value)

					 ​	"""		
					 ​	if	nitems	>	0:						#	This	ensures	user	compliance

					 ​	new_list		=	[x**2	if	x%2	!=	0	else	x/2	for	x	in	range(1,nitems+1)]

				 ​	else:	print('Enter	a	valid	number	!')		#	in	case	of	a	fault.

					 ​	print('\n	Here	is	your	custom	list\n\n',new_list)		

Now,	we	have	created	our	function.	Let	us	call	the	function	to	view	the	action.

In	[]: ​	#	calling	the	function
										custom_list(5)

Out[]:	 ​	Here	is	your	custom	list

	 ​	 ​	[1,	1.0,	9,	2.0,	25]

The	 function	 works!	 However,	 since	 we	 only	 printed	 the	 output,	 we	 cannot
access	 the	 list	 created	 by	 the	 function.	 Assuming	we	 need	 to	 use	 that	 list	 for
other	operations	within	our	code	rather	than	just	to	view	it,	we	can	use	the	return
statement	 to	 assign	 our	 function	 output	 to	 a	 variable,	 which	 we	 can	 then	 use
later.

This	is	just	a	variation	of	the	code	in	example	48.

Example	49:
In	[]:	#	function	that	creates	a	user-defined	list	and	returns	a	value

						 ​	def	custom_list(nitems):

					 ​	"""
				 ​	This	function	accepts	a	numeric	value	and	returns	a	list.
				 ​	The	list	contains	squares	of	odd	numbers	within	the	range
				 ​	of	1	and	user	input,	as	well	as,	half	values	for	the	even
					 ​	numbers	in	that	range.

					 ​	syntax:	List_name	=	custom_list(numeric	value)

					 ​	"""		
					 ​	if	nitems	>	0:						#	This	ensures	user	compliance

		 ​	new_list		=	[x**2	if	x%2	!=	0	else	x/2	for	x	in	range(1,nitems+1)]

				 ​	else:	print('Enter	a	valid	number	!')		#	in	case	of	a	fault.

					 ​	return	new_list

Now	let	us	call	our	function	to	assign	the	list	to	a	variable	‘List’.
In	[]:	 ​	List	=	custom_list(10)
							 ​	List

Out[]:	[1,	1.0,	9,	2.0,	25,	3.0,	49,	4.0,	81,	5.0]

Notice	how	calling	‘List’	produces	an	output?	The	function	works	properly.

Exercise:	 Try	 creating	 a	 function	 that	 performs	 a	 variation	 of	 the	 action	 in
example	 45.	 The	 function	 accepts	 an	 input	 list	 (of	mixed	 types),	 and	 extracts
only	numbers	from	the	list.

Tip:	for	detecting	numbers,	you	can	use	a	variation	of	the	method	illustrated	in
example	 45	 i.e.	 type(item)	 ==	 int	 or	 double.	 Another	 method	 is	 to	 use	 the
.isdigit()	method,	i.e.	item.isdigits		

Example	50:	Illustrating	the	.isdigits()	method.
In	[]:	string	=	'123456ABC'	 ​	#	mixed	string	with	digits	and	characters
		 ​	A	=	[x	for	x	in	string	if	x.isdigit()]
		 ​	A
Out[]:	['1',	'2',	'3',	'4',	'5',	'6']

To	conclude	this	introductory	chapter	to	Python	programming,	we	would	look	at

a	few	more	functions	that	would	be	useful	is	the	next	section.	These	include:	the
map	 function,	 filter,	 and	 lambda	 expressions.	 Let	 us	 discuss	 the	 lambda
expressions	first,	as	they	are	mostly	useful	to	map	functions	and	filters	as	well.

Lambda	expression

This	 is	 also	 called	 an	 anonymous	 function.	 Lambda	 expressions	 are	 used	 in
instances	where	you	would	not	want	 to	write	 a	 full	 function.	 In	 this	 case,	 you
only	need	to	use	the	function	temporarily,	and	defining	an	entire	function	for	just
that	seems	redundant.

It	 also	 reduces	 the	 effort	 in	 writing	 code	 for	 defining	 functions.	 It	 has	 the
following	syntax:																 	var	=	lambda	argument:	statemen	t

A	function	can	equally	be	expressed	in	one	line	as	such:
def	function_name	(argument):	return	output

Example	 51:	 let’s	write	 a	 quick	 function	 that	 squares	 a	 number	 and	 returns	 a
value.
In	[]: ​	def	square_value	(number):	return	number**2			#definition
						square_value(10)		#	calling	the	function

Out	[]: ​	100

Alternatively,	using	lambda	expression:
In	[]:	 ​	square	=	lambda	number:number**2
						square(10)

Out[]: ​	100

The	lambda	expression	in	example	51,	can	be	compared	with	 the	square_value
function.	It	can	be	observed	that	some	words	have	been	eliminated:	def,	 return
and	 function_name.	 Note	 that	 lambda	 expressions	 have	 to	 be	 assigned	 to	 a
variable,	 and	 then	 the	 variable	 acts	 as	 a	 function	 as	 illustrated	 by	 the	 ‘square’
variable	which	achieves	the	same	result	as	the	square_value	function.

Map	function

The	map	function	is	another	convenient	way	of	working	with	lists,	especially	in
cases	where	 there	 is	 a	 need	 to	 pass	 the	 elements	 of	 a	 list	 to	 a	 function	 in	 an
iteration.	 As	 expected,	 for	 loops	 are	 the	 first	 consideration	 for	 such	 a	 task.
However,	 the	map	 function,	which	 iterates	 through	every	element	 in	a	 list	 and
passes	them	to	a	function	argument,	simplifies	such	task.
Syntax:	 ​	map	(function,	sequence/list)
To	return	the	map	as	a	list	of	values,	use	the	list	()	function	and	assign	to	a	variable.

var	=list	(map	(function,	sequence/list))

You	 could	 pass	 an	 actual	 function	 to	map,	 or	more	 practically,	 use	 a	 lambda
expression.

Example	 52:	 Let	 us	 write	 a	 code	 using	 the	 map	 function	 to	 square	 all	 the
elements	in	a	list.

In	[]:	#	This	program	squares	all	the	elements	in	a	list

				 ​	List	=	list(range(1,11))

		 ​	#	using	the	lambda	expression	'square'
				 ​	new_list	=	list(map(square,List))
				 ​	new_list

Out[]:	[1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

Exercise:	Using	the	lambda	expression	and	map	function,	write	a	program	that
creates	a	list	of	values	and	displays	all	the	elements	in	the	list.

Filter	function

These	 are	 used	 for	 extracting	 specific	 elements	 of	 a	 sequence	 based	 on	 a
Boolean	 function.	 The	 Boolean	 function	 can	 also	 be	 created	 using	 a	 lambda
expression,	and	the	filter	returns	the	expected	values	that	meet	the	filter	criteria
(consider	it	as	a	simplified	version	of	an	if	statement).

Syntax:	 ​	filter	(function,	sequence/list)

To	 return	 the	map	 as	 a	 list	 of	 values,	 use	 the	 list	 ()	 function	 and	 assign	 to	 a

variable.
var	=	list	(filter	(function,	sequence/list))

Example	 53:	 Extract	 only	 the	 even	 numbers	 from	 the	 new_list	 created	 from
example	52	using	the	filter	function.

In	[]:	#	Extracting	even	numbers

						 ​	criteria	=	lambda	value:value%2==0			#	even	number	identifier
					#	using	the	new_list	from	example	52

even_list	=	list(filter(criteria,new_list))

					even_list

Out[]:					[4,	16,	36,	64,	100]

The	 lambda,	 map	 and	 filter	 are	 usually	 used	 respectively.	 It	 is	 important	 to
master	them	and	it	will	considerably	improve	your	skills	with	list	manipulation
which	is	very	important	in	the	subsequent	section.

This	 concludes	 the	 introductory	 part	 to	 Python	 and	 all	 the	 pre-requisites	 for
following	 the	 lessons	 in	 the	 next	 chapter.	Complete	 the	 following	 exercises	 to
test	your	current	knowledge	of	major	lessons	from	this	chapter.	Best	of	luck!

Exercises:

These	exercises	 test	 your	 skills	on	all	 you	have	 learned	 in	 this	 chapter.	Try	 to
solve	 them	 yourself,	 and	 if	 you	 find	 any	 difficulty,	 review	 the	 examples	 and
syntax	all	over.

1.	 Given	the	following	variables:	quantity	=	‘Gravity’,	unit	=	‘m/s^2’,	and
value	=	10,	use	 the	 .format()	method	 to	print	 the	 following	statement:
Gravity	has	a	value	of	10	m/s^2.

2.	 Write	a	function	that	prints	True	if	the	word	‘good	’	occurs	in	any	list
of	strings.

3.	 Use	the	lambda	expression	and	filter	function	to	extract	words	that	do
not	 start	 with	 the	 letter	 ‘b	 ’	 in	 the	 following	 list
[‘bread’,’rice’,’butter’,’beans’,’pizza’,’lasagna’,’eggs’]

4.	 Given	this	nested	list,	use	indexing	to	grab	the	word	"hello	Python”.

list	=	[1,2,[3,4],[5,[100,200,['hello	Python']],23,11],1,7]

5.	 Given	this	nested	dictionary	grab	the	word	"hello	Python"

d	=	{'k1':[1,2,3,{'tricky':['oh','man','inception',{'target':[1,2,3,'hello']}]}]}

6.	 Write	a	function	that	accepts	two	arguments.	The	first	argument	is	the
student	name,	 the	other	 is	 the	student	score.	Let	 the	program	print	 the
student	name	and	grade.

The	output	is	dependent	on	the	following	criteria:

Criteria:

If	the	student	score	is	less	than	40:	 ​	Hello	student	name	you	had	an	F

If	the	student	score	is	between	40	and	44:	 ​	Hello	student	name	you	had	an	E

If	the	student	score	is	between	45	and	49:	 ​	Hello	student	name	you	had	a	D

If	the	student	score	is	between	50	and	59:	 ​	Hello	student	name	you	had	a	C

If	the	student	score	is	between	60	and	69:	 ​	Hello	student	name	you	had	a	B

If	the	student	score	is	from	70	and	above:	 ​	Hello	student	name
you	had	an	A,	Cool!

Chapter	2

Data	Analysis	with	Python

Data	 analysis	 includes	 all	 the	 techniques	 and	 processes	 used	 in	 extracting
information	from	raw	data.	Since	raw	data	is	usually	unstructured	in	form,	and
hardly	 informative,	 the	 need	 to	 organize	 such	 data	 becomes	 even	 more
important.	While	 there	are	many	extra	 tools	 that	can	be	used	for	handling	data
analysis	i.e.	Microsoft	Excel,	R-language,	SQL,	etc.,	most	data	scientist	prefer	to
use	Python	due	to	its	extensive	libraries	and	support	packages	for	data	analysis.
The	most	 popular	 packages/frameworks	 which	 we	would	 be	 exploring	 in	 this
chapter	are	NumPy	and	Pandas.

NumPy
This	 is	 the	 numerical	 Python	 package	 which	 supports	 vector	 and	 matrix
operations.	It	is	a	very	popular	Python	package	for	scientific,	mathematical	and
engineering	 programming;	 especially	 for	 linear	 algebraic	 problems.	To	 a	 large
extent,	 numeric	 data	 can	 be	 simplified	 into	 arrays	 (vectors	 or	 matrices,
depending	 on	 dimensions),	 and	 this	 is	 why	 NumPy	 is	 equally	 useful	 in	 data
manipulation	and	organization.

Package	Installation

To	get	 started	with	NumPy,	we	have	 to	 install	 the	package	 into	our	version	of
Python.	 While	 the	 basic	 method	 for	 installing	 packages	 to	 Python	 is	 the	 pip
instal	 l 	 method,	 we	 will	 be	 using	 the	 conda	 instal	 l 	 method.	 This	 is	 the
recommended	way	of	managing	 all	 Python	packages	 and	virtual	 environments
using	the	anaconda	framework.

Since	we	installed	a	recent	version	of	Anaconda,	most	of	the	packages	we	need
would	 have	 been	 included	 in	 the	 distribution.	 To	 verify	 if	 any	 package	 is
installed,	you	can	use	 the	conda	lis	 t 	command	via	 the	anaconda	prompt.	This
displays	all	the	packages	currently	installed	and	accessible	via	anaconda.	If	your
intended	package	is	not	available,	then	you	can	install	via	this	method:

First,	ensure	you	have	an	internet	connection.	This	is	required	to	download	the
target	package	via	conda.	Open	 the	anaconda	prompt,	 then	enter	 the	 following
code:
Conda	install	package

Note	 :	 In	 the	code	above,	 ‘package’	 is	what	needs	 to	be	 installed	e.g.	NumPy,
Pandas,	etc.

As	described	earlier,	we	would	be	working	with	NumPy	arrays.	In	programming,
an	array	 is	an	ordered	collection	of	similar	 items.	Sounds	 familiar?	Yeah,	 they
are	just	like	Python	lists,	but	with	superpowers.	NumPy	arrays	are	in	two	forms:
Vectors,	 and	 Matrices.	 They	 are	 mostly	 the	 same,	 only	 that	 vectors	 are	 one-
dimensional	arrays	(either	a	column	or	a	row	of	ordered	items),	while	a	matrix	is
2-dimensional	 (rows	 and	 columns).	 These	 are	 the	 fundamental	 blocks	 of	most
operations	we	would	 be	 doing	with	NumPy.	While	 arrays	 incorporate	most	 of
the	operations	possible	with	Python	lists,	we	would	be	introducing	some	newer
methods	for	creating,	and	manipulating	them.

To	begin	using	the	NumPy	methods,	we	have	to	first	import	the	package	into	our
current	workspace.	This	can	be	achieved	in	two	ways:

import	numpy	as	np

Or

from	numpy	import	*

In	 Jupyter	 notebook,	 enter	 either	 of	 the	 codes	 above	 to	 import	 the	 NumPy
package.	The	first	method	of	 import	 is	recommended,	especially	for	beginners,
as	it	helps	to	keep	track	of	the	specific	package	a	called	function/method	is	from.
This	 is	 due	 to	 the	 variable	 assignment	 e.g.	 ‘np’,	which	 refers	 to	 the	 imported
package	throughout	the	coding	session.

Notice	 the	 use	 of	 an	 asterisk	 in	 the	 second	 import	 method.	 This	 signifies
‘everything/all’	 in	programming.	Hence,	 the	code	 reads	 ‘from	NumPy	 import
everything!!	’

Tip:	In	Python,	we	would	be	required	to	reference	the	package	we	are	operating
with	e.g.	NumPy,	Pandas,	etc.	It	is	easier	to	assign	them	variable	names	that	can
be	used	in	further	operations.	This	is	significantly	useful	in	a	case	where	there
are	multiple	packages	being	used,	and	the	use	of	standard	variable	names	such

as:	‘np’	for	NumPy,	‘pd’	for	Pandas,	etc.	makes	the	code	more	readable.

Example	55:				Creating	vectors	and	matrices	from	Python	lists.

Let	us	declare	a	Python	list.
In	[]:	 ​	#	This	is	a	list	of	integers
	 ​	 ​	Int_list	=	[1,2,3,4,5]
						 ​	Int_list

Out[]:	 ​	[1,2,3,4,5]

Importing	the	NumPy	package	and	creating	an	array	of	integers.
In	[]:	 ​	#	import	syntax

​	 ​	import	numpy	as	np
​	 ​	np.array(Int_list)

Out[]:	 ​	array([1,	2,	3,	4,	5])

Notice	 the	difference	 in	 the	outputs?	The	second	output	 indicates	 that	we	have
created	 an	 array,	 and	 we	 can	 easily	 assign	 this	 array	 to	 a	 variable	 for	 future
reference.

To	confirm,	we	can	check	for	the	type.
In	[]:	 ​	x	=	np.array(Int_list)
							 ​	type(x)
Out[]:	 ​	numpy.ndarray

We	have	created	a	vector,	because	it	has	one	dimension	(1	row).	To	check	this,
the	‘ndim’	method	can	be	used.

In	[]:	 ​	x.ndim				#	this	shows	how	many	dimensions	the	array	has
Out[]:	 ​	1

Alternatively,	the	shape	method	can	be	used	to	see	the	arrangements.
In	[]:	 ​	x.shape			#	this	shows	the	shape

Out[]:	 ​	(5,)

Python	describes	matrices	as	(rows,	columns) 	.	In	this	case,	it	describes	a	vector

as	(number	of	elements,) 	.

To	create	a	matrix	from	a	Python	list,	we	need	to	pass	a	nested	list	containing	the
elements	we	need.	Remember,	matrices	are	 rectangular,	and	so	each	 list	 in	 the
nested	list	must	have	the	same	size.

In	[]:	#	This	is	a	matrix

		 ​	x	=	[1,2,3]
		 ​	y	=	[4,5,6]

		 ​	my_list	=	[y,x]		#	nested	list

		 ​	my_matrix	=	np.array(my_list)		#	creating	the	matrix

		 ​	A	=	my_matrix.ndim
		 ​	B	=	my_matrix.shape

		 ​	#	Printing
		 ​	print('Resulting	matrix:\n\n',my_matrix,'\n\nDimensions:',A,
		 ​	'\nshape	(rows,columns):',B)

Out[]:	Resulting	matrix:

		 ​	[[4	5	6]
		 ​	[1	2	3]]

		 ​	Dimensions:	2
		 ​	shape	(rows,columns):	(2,	3)

Now,	we	have	created	a	2	by	3	matrix.	Notice	how	the	shape	method	displays
the	 rows	 and	 columns	 of	 the	matrix.	 To	 find	 the	 transpose	 of	 this	matrix	 i.e.
change	the	rows	to	columns,	use	the	transpose	() 	method.

In	[]:	 ​	#	this	finds	the	transpose	of	the	matrix
​	 ​	t_matrix	=	my_matrix.transpose()

									 ​	t_matrix

Out[]:	 ​	array([[4,	1],
							 ​	 ​	[5,	2],
							 ​	 ​	[6,	3]])

Tip:	 Another	 way	 of	 knowing	 the	 number	 of	 dimensions	 of	 an	 array	 is	 by
counting	the	square-brackets	that	opens	and	closes	the	array	(immediately	after
the	 parenthesis).	 In	 the	 vector	 example,	 notice	 that	 the	 array	was	 enclosed	 in
single	 square	 brackets.	 In	 the	 two-dimensional	 array	 example,	 however,	 there
are	two	brackets.	Also,	tuples	can	be	used	in	place	of	lists	for	creating	arrays.

There	 are	 other	methods	 of	 creating	 arrays	 in	 Python,	 and	 they	may	 be	more
intuitive	than	using	lists	in	some	application.	One	quick	method	uses	the	arange(
) 	function.

Syntax:	np.arange(start	value,	stop	value,	step	size,	dtype	=	‘type’)

This	method	 is	 similar	 to	 the	 range() 	method	we	used	 in	example	43.	 In	 this
case,	we	do	not	need	to	pass	its	output	to	the	list	function,	our	result	is	an	array
object	of	a	data	type	specified	by	‘dtype’.

Example	56	:	Creating	arrays	with	the	arange()	function.

We	will	create	an	array	of	numbers	from	0	to	10,	with	an	increment	of	2	(even
numbers).
In	[]:	 ​	#	Array	of	even	numbers	between	0	and	10

​	 ​	Even_array	=	np.arange(0,11,2)
​	 ​	Even_array

Out[]:	 ​	array([0,		2,		4,		6,		8,	10])

Notice	it	behaves	like	the	range	()	method	form	our	list	examples.	It	returned	all
even	values	between	0	and	11	(10	being	the	maximum).	Here,	we	did	not	specify

the	types	of	the	elements.

Tip:	Recall,	 the	 range	method	returns	value	up	 to	 the	 ‘stop	value	–	1’;	hence,
even	if	we	change	the	11	to	12,	we	would	still	get	10	as	the	maximum.

Since	the	elements	are	numeric,	they	can	either	be	integers	or	floats.	Integers	are
the	 default,	 however,	 to	 return	 the	 values	 as	 floats,	 we	 can	 also	 specify	 the
numeric	type.

In	[]:	 ​	Even_array2	=	np.arange(0,11,2,	dtype='float')
​	 ​	Even_array2

Out[]:	 ​	array([0.,		2.,		4.,		6.,		8.,	10.])

Another	 handy	 function	 for	 creating	 arrays	 is	 linspace() 	 .	 This	 returns	 a
numeric	array	of	 linearly	space	values	within	an	 interval.	 It	also	allows	for	 the
specification	of	the	required	number	of	points,	and	it	has	the	following	syntax:
np.linspace(start	value,	end	value,	number	of	points)

At	default,	linspace	returns	an	array	of	50	evenly	spaced	points	within	the
defined	interval.

Example	57	:	Creating	arrays	of	evenly	spaced	points	with	linspace()
In	[]:	#	Arrays	of	linearly	spaced	points

​	A	=	np.linspace(0,5,5)	#	5	equal	points	between	0	&	5
​	B	=	np.linspace	(51,100)	#	50	equal	points	between	51	&	100

							 ​	print	('Here	are	the	arrays:\n')
​	A
​	B

Here	are	the	arrays:

Out[]:	array([0.		,	1.25,	2.5	,	3.75,	5.])

Out[]:	array([1.,		2.,		3.,		4.,		5.,		6.,		7.,		8.,		9.,	10.,	11.,	12.,	13.,	14.,	15.,	16.,	17.,	18.,	19.,
20.,	21.,	22.,	23.,	24.,	25.,	26.,	27.,	28.,	29.,	30.,	31.,	32.,	33.,	34.,	35.,	36.,	37.,	38.,	39.,	40.,
41.,	42.,	43.,	44.,	45.,	46.,	47.,	48.,	49.,	50.])

Notice	how	the	second	use	of	linspace	did	not	require	a	third	argument.	This	is

because	we	wanted	50	equally	spaced	values,	which	is	the	default.	The	‘dtype’
can	also	be	specified	like	we	did	with	the	range	function.

Tip	 1:	 Linspace	 arrays	 are	 particularly	 useful	 in	 plots.	 They	 can	 be	 used	 to
create	 a	 time	 axis	 or	 any	 other	 required	 axis	 for	 producing	 well	 defined	 and
scaled	graphs.

Tip	2:	The	output	format	in	the	example	above	is	not	the	default	way	for	output
in	 Jupyter	 notebook.	 Jupyter	 displays	 the	 last	 result	 per	 cell,	 at	 default.	 To
display	multiple	 results	 (without	having	 to	use	 the	print	 statement	 every-time),
the	output	method	can	be	changed	using	the	following	code.

In[]:	#	Allowing	Jupyter	output	all	results	per	cell.

​	#	run	the	following	code	in	a	Jupyter	cell.

		 ​	from	IPython.core.interactiveshell	import	InteractiveShell
		 ​	InteractiveShell.ast_node_interactivity	=	"all"

There	are	times	when	a	programmer	needs	unique	arrays	like	the	identity	matrix,
or	a	matrix	of	ones/zeros.	NumPy	provides	a	convenient	way	of	creating	 these
with	the	zeros() 	,	ones() 	and	eye() 	functions.

Example	58:	creating	arrays	with	unique	elements.

Let	us	use	the	zeros	()	function	to	create	a	vector	and	a	matrix.
In	[]:	np.zeros(3)		#	A	vector	of	3	elements

		 ​	np.zeros((2,3))	#	A	matrix	of	6	elements	i.e.	2	rows,	3	columns

Out[]:	array([0.,	0.,	0.])

Out[]:	array([[0.,	0.,	0.],

					 ​			[0.,	0.,	0.]])

Notice	how	the	second	output	is	a	two-dimensional	array	i.e.	two	square	brackets
(a	matrix	of	2	columns	and	3	rows	as	specified	in	the	code).

The	same	thing	goes	for	creating	a	vector	or	matrix	with	all	elements	having	a
value	of	‘1’.

In	[]:	np.ones(3)		#	A	vector	of	3	elements

		 ​	np.ones((2,3))	#	A	matrix	of	6	elements	i.e.	2	rows,	3	columns

Out[]:	array([1.,	1.,	1.])

Out[]:	array([[1.,	1.,	1.],

					 ​				[1.,	1.,	1.]])

Also,	notice	how	the	code	for	creating	the	matrices	requires	the	row	and	column
instructions	 to	 be	 passed	 as	 a	 tuple.	 This	 is	 because	 the	 function	 accepts	 one
input,	so	multiple	inputs	would	need	to	be	passed	as	tuples	or	lists	in	the	required
order	(Tuples	are	recommended.	Recall,	they	are	faster	to	operate.).

In	 the	 case	 of	 the	 identity	matrix,	 the	 function	 eye	 ()	 only	 requires	 one	 value.
Since	 identity	 matrices	 are	 always	 square,	 the	 value	 passed	 determines	 the
number	of	rows	and	columns.

In	[]:	np.eye(2)		#	A	matrix	of	4	elements	2	rows,	2	columns

		 ​	np.eye(3)		#	3	rows,	3	columns

Out[]:	array([[1.,	0.],

								 ​						[0.,	1.]])
Out[]:	array([[1.,	0.,	0.],

								 ​						[0.,	1.,	0.],
								 ​						[0.,	0.,	1.]])

NumPy	also	features	random	number	generators.	These	can	be	used	for	creating
arrays,	as	well	as	single	values,	depending	on	the	required	application.	To	access
the	 random	 number	 generator,	 we	 call	 the	 library	 via	 np.rando	m 	 ,	 and	 then
choose	 the	 random	 method	 we	 prefer.	 We	 will	 consider	 three	 methods	 for
generating	random	numbers:	rand() 	,	randn() 	,	and	randint() 	.

Example	59:	Generating	arrays	with	random	values.

Let	 us	 start	 with	 the	 rand	 ()	 method.	 This	 generates	 random,	 uniformly
distributed	numbers	between	0	and	1.

In	[]:	np.random.rand	(2)				#	A	vector	of	2	random	values

		 ​	np.random.rand	(2,3)		#	A	matrix	of	6	random	values

Out[]:	array([0.01562571,	0.54649508])

Out[]:	array([[0.22445055,	0.35909056,	0.53403529],

								 ​			[0.70449515,	0.96560456,	0.79583743]])

Notice	how	each	value	within	the	arrays	are	between	0	&	1.	You	can	try	this	on
your	own	and	observe	the	returned	values.	Since	it	is	a	random	generation,	these
values	may	 be	 different	 from	 yours.	 Also,	 in	 the	 case	 of	 the	 random	 number
generators,	 the	 matrix	 specifications	 are	 not	 required	 to	 be	 passed	 as	 lists	 or
tuples,	as	observed	in	the	second	line	of	code.

The	 randn	 ()	method	 generates	 random	 numbers	 from	 the	 standard	 normal	 or
Gaussian	distribution.	You	might	want	to	brush	up	on	some	basics	in	statistics,
however,	 this	 just	 implies	 that	 the	 values	 returned	 would	 have	 a	 tendency
towards	the	mean	(which	is	zero	in	this	case)	i.e.	 the	values	would	be	centered
around	zero.

In	[]:	np.random.randn	(2)					#	A	vector	of	2	random	values

		 ​	np.random.randn	(2,3)		#	A	matrix	of	6	random	values

Out[]:	array([0.73197866,	-0.31538023])

Out[]:	array([[-0.79848228,	-0.7176693	,	0.74770505],

								 ​				[-2.10234448,		0.10995745,	-0.54636425]])

The	 randint()	 method	 generates	 random	 integers	 within	 a	 specified	 range	 or
interval.	 Note	 that	 the	 higher	 range	 value	 is	 exclusive	 (i.e.	 has	 no	 chance	 of
being	randomly	selected),	while	the	lower	value	is	inclusive	(could	be	included
in	the	random	selection).

Syntax:	np.random(lower	value,	higher	value,	number	of	values,	dtype)

If	the	number	of	values	is	not	specified,	Python	just	returns	a	single	value	within
the	defined	range.

In	[]:	np.random.randint	(1,5)									#	A	random	value	between	1	and	5

		 ​	np.random.randint	(1,100,6)					#	A	vector	of	6	random	values
​	np.random.randint	(1,100,(2,3))	#	A	matrix	of	6	random	values

Out[]:	4

Out[]:	array([74,	42,	92,	10,	76,	43])

Out[]:	array([[92,		9,	99],

													[73,	36,	93]])

Tip:	Notice	how	the	size	parameter	for	the	third	line	was	specified	using	a	tuple.
This	is	how	to	create	a	matrix	of	random	integers	using	randint.

Example	59	:	Illustrating	randint().

Let	 us	 create	 a	 fun	 dice	 roll	 program	 using	 the	 randint()	 method.	We	 would
allow	 two	 dice,	 and	 the	 function	 will	 return	 an	 output	 based	 on	 the	 random
values	generated	in	the	roll.

In	[]:	#	creating	a	dice	roll	game	with	randint()

		 ​	#	Defining	the	function
		 ​	def	roll_dice():
					 ​						"""	This	function	displays	a
					 ​						dice	roll	value	when	called"""

				 ​	dice1	=	np.random.randint(1,7)	#	This	allows	6	to	be	inclusive
				 ​						dice2	=	np.random.randint(1,7)

​	#	Display	Condition.
					 ​						if	dice1	==	dice2:

							 ​	print('Roll:	',dice1,'&',dice2,'\ndoubles	!')
									 ​				if	dice1	==	1:
										 ​								print('snake	eyes!\n')		
					 ​						else:

								 ​	print('Roll:	',dice1,'&',dice2)

In	[]:	 ​	#	Calling	the	function
		 ​	roll_dice()

Out[]:	 ​	Roll:		1	&	1
		 ​	doubles	!
		 ​	snake	eyes!

Hint:	 	Think	of	a	 fun	and	useful	program	to	 illustrate	 the	use	of	 these	random
number	 generators,	 and	 writing	 such	 programs	 will	 improve	 your	 chances	 of
comprehension.	Also,	a	quick	review	of	statistics,	especially	measures	of	central
tendency	&	dispersion/spread	will	be	useful	in	your	data	science	journey.

Manipulating	arrays

Now	that	we	have	learned	how	to	declare	arrays,	we	would	be	proceeding	with
some	methods	for	modifying	these	arrays.	First,	we	will	consider	the	reshape	()
method,	which	is	used	for	changing	the	dimensions	of	an	array.

Example	60	:	Using	the	reshape()	method.

Let	 us	 declare	 a	 few	 arrays	 and	 call	 the	 reshape	 method	 to	 change	 their
dimensions.

In	[]:	freq	=	np.arange(10);values	=	np.random.randn(10)

							freq;	values

Out[]:	array([0,	1,	2,	3,	4,	5,	6,	7,	8,	9])

Out[]:	array([1.33534821,		1.73863505,		0.1982571	,	-0.47513784,	1.80118596,	-1.73710743,	
​	-0.24994721,	1.41695744,	-0.28384007,		0.58446065])

Using	the	reshape	method,	we	would	make	‘freq’	and	‘values’	2	dimensional.
In	[]:	np.reshape(freq,(5,2))

Out[]:	array([[0,	1],

								 ​	[2,	3],
								 ​	[4,	5],
								 ​	[6,	7],
								 ​	[8,	9]])

In	[]:	np.reshape(values,(2,5))

Out[]:	array([[1.33534821,		1.73863505,		0.1982571	,	-0.47513784,		1.80118596],

		 ​	[-1.73710743,	-0.24994721,		1.41695744,						-0.28384007,		0.58446065]])

Even	 though	 the	values	array	still	 looks	similar	after	 reshaping,	notice	 the	 two
square	 brackets	 that	 indicate	 it	 has	 been	 changed	 to	 a	 matrix.	 The	 reshape
method	comes	in	handy	when	we	need	to	do	array	operations,	and	our	arrays	are
inconsistent	in	dimensions.	It	is	also	important	to	ensure	the	new	size	parameter
passed	to	the	reshape	method	does	not	differ	from	the	number	of	elements	in	the
original	array.	The	idea	is	simple:	when	calling	the	reshape	method,	the	product

of	the	size	parameters	must	equal	the	number	of	elements	in	the	original	array.

As	 seen	 in	 Example	 60,	 the	 size	 parameter	 passed	 as	 a	 tuple	 to	 the	 reshape
methods	 gives	 a	 value	 of	 10	 when	multiplied,	 and	 this	 is	 also	 the	 number	 of
elements	in	‘freq’	and	‘values’	respectively.

There	are	times	when	we	may	need	to	find	the	maximum	and	minimum	values
within	an	array	(or	real-world	data),	and	possibly	the	index	of	such	maximum	or
minimum	values.	 To	 get	 this	 information,	we	 can	 use	 the	 .max() 	 ,	 .min() 	 ,
.argmax() 	and	.argmin() 	methods	respectively.

Example	61:

Let	us	find	the	maximum	and	minimum	values	in	the	‘values’	array,	along	with
the	index	of	the	minimum	and	maximum	within	the	array.

In	[]:	A	=	values.max();B	=	values.min();

							 ​	C	=	values.argmax()+1;	D	=	values.argmin()+1

						print('Maximum	value:	{}\nMinimum	Value:	{}\

						\nItem	{}	is	the	maximum	value,	while	item	{}\

		 ​	is	the	minimum	value'.format(A,B,C,D))

Output
Maximum	value:	1.8011859577930067

Minimum	Value:	-1.7371074259180737

Item	5	is	the	maximum	value,	while	item	6	is	the	minimum	value

A	few	things	to	note	in	the	code	above:	The	variables	C&D,	which	defines	the
position	 of	 the	 maximum	 and	 minimum	 values	 are	 evaluated	 as	 shown	 [by
adding	1	to	the	index	of	the	maximum	and	minimum	values	obtained	via	argmax
() 	and	argmin	()],	because	Python	indexing	starts	at	zero.	Python	would	index
maximum	 value	 at	 4,	 and	minimum	 at	 5,	which	 is	 not	 the	 actual	 positions	 of
these	elements	within	the	array	(you	are	less	likely	to	start	counting	elements	in
a	list	from	zero!	Unless	you	are	Python,	of	course.).

Another	 observation	 can	 be	 made	 in	 the	 code.	 The	 print	 statement	 is	 broken
across	 a	 few	 lines	 using	 enter.	 To	 allow	Python	 to	 know	 that	 the	 next	 line	 of
code	 is	a	continuation,	 the	backslash	 ‘\’	 is	used.	Another	way	would	be	 to	use
three	quotes	for	a	multiline	string.

Indexing	and	selecting	arrays		

Array	indexing	is	very	much	similar	 to	List	 indexing	with	the	same	techniques
of	item	selection	and	slicing	(using	square	brackets).	The	methods	are	even	more
similar	when	the	array	is	a	vector.

Example	62:
In	[]:	#	Indexing	a	vector	array	(values)

		 ​	values
		 ​	values[0]			#	grabbing	1st	item
		 ​	values[-1]		#	grabbing	last	item
		 ​	values[1:3]	#	grabbing	2nd	&	3rd	item
		 ​	values[3:8]	#	item	4	to	8

Out[]:	array([1.33534821,		1.73863505,		0.1982571	,	-0.47513784,		1.80118596,	
-1.73710743,							-0.24994721,		1.41695744,	-0.28384007,		0.58446065])

Out[]:	1.3353482110285562

Out[]:	0.5844606470172699

Out[]:	array([1.73863505,	0.1982571])

Out[]:	array([-0.47513784,		1.80118596,	-1.73710743,	-0.24994721,		1.41695744])

The	 main	 difference	 between	 arrays	 and	 lists	 is	 in	 the	 broadcast	 property	 of
arrays.	When	a	slice	of	a	list	is	assigned	to	another	variable,	any	changes	on	that
new	variable	does	not	affect	the	original	list.	This	is	seen	in	the	example	below:

In	[]:	num_list	=	list(range(11))		#	list	from	0-10

		 ​	num_list																					#	display	list
		 ​	list_slice	=	num_list[:4]			#	first	4	items
		 ​	list_slice																			#	display	slice

		 ​	list_slice[:]	=	[5,7,9,3]				#	Re-
assigning	elements			

		 ​	list_slice																		#	display
updated	values

		 ​	#	checking	for	changes
		 ​	print('	The	list	changed	!')	if	list_slice	==	num_list[:4]\
		 ​	else	print('	no	changes	in	original	list')

Out[]:	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

Out[]:	[0,	1,	2,	3]

Out[]:	[5,	7,	9,	3]

		 ​	no	changes	in	the	original	list

For	arrays,	however,	a	change	in	the	slice	of	an	array	also	updates	or	broadcasts
to	the	original	array,	thereby	changing	its	values.

In	[]:	#	Checking	the	broadcast	feature	of	arrays

		 ​	num_array	=	np.arange(11)					#	array	from	0-10

		 ​	num_array																					#	display	array

		 ​	array_slice	=	num_array[:4]		#	first	4	items

		 ​	array_slice																			#	display	slice

		 ​	array_slice[:]	=	[5,7,9,3]				#	Re-
assigning	elements			

		 ​	array_slice																			#	display
updated	values

		 ​	num_array

Out[]:	array([0,		1,		2,		3,		4,		5,		6,		7,		8,		9,	10])

Out[]:	array([0,	1,	2,	3])

Out[]:	array([5,	7,	9,	3])

Out[]:	array([5,		7,		9,		3,		4,		5,		6,		7,		8,		9,	10])

This	happens	because	Python	tries	to	save	memory	allocation	by	allowing	slices
of	an	array	to	be	like	shortcuts	or	 links	to	the	actual	array.	This	way	it	doesn’t
have	to	allocate	a	separate	memory	location	to	it.	This	is	especially	ingenious	in
the	 case	 of	 large	 arrays	 whose	 slices	 can	 also	 take	 up	 significant	 memory.
However,	to	take	up	a	slice	of	an	array	without	broadcast,	you	can	create	a	‘slice
of	a	copy’	of	 the	array.	The	array.copy() 	method	is	called	to	create	a	copy	of
the	original	array.

In	[]:	 ​	#	Here	is	an	array	allocation	without	broadcast
		 ​	num_array					#	Array	from	the	last	example

							 ​	#	copies	the	first	4	items	of	the	array	copy
							 ​	array_slice	=	num_array.copy()[:4]

							 ​	array_slice																			#	display
array

						 ​	array_slice[:]	=	10											#	re-
assign	array

							 ​	array_slice																			#	display
updated	values

							 ​	num_array																				#	checking
original	list

Out[]:	 ​	array([5,		7,		9,		3,		4,		5,		6,		7,		8,		9,	10])

Out[]:	 ​	array([5,	7,	9,	3])

Out[]:	 ​	array([10,	10,	10,	10])

Out[]:	 ​	array([5,		7,		9,		3,		4,		5,		6,		7,		8,		9,	10])

Notice	that	the	original	array	remains	unchanged.

For	two-dimensional	arrays	or	matrices,	the	same	indexing	and	slicing	methods
work.	However,	it	is	always	easy	to	consider	the	first	dimension	as	the	rows	and
the	other	as	 the	columns.	To	select	any	item	or	slice	of	 items,	 the	 index	of	 the
rows	and	columns	are	specified.	Let	us	illustrate	this	with	a	few	examples:

Example	63	:	Grabbing	elements	from	a	matrix

There	are	 two	methods	 for	grabbing	elements	 from	a	matrix:	array_name[row]
[col]	or	array_name[row,col] 	.

In	[]:	#	Creating	the	matrix

		 ​	matrix	=	np.array(([5,10,15],[20,25,30],[35,40,45]))

		 ​	matrix							#display	matrix
		 ​	matrix[1]				#	Grabbing	second	row
		 ​	matrix[2][0]	#	Grabbing	35
		 ​	matrix[0:2]		#	Grabbing	first	2	rows
		 ​	matrix[2,2]			#	Grabbing	45

Out[]:	array([[5,	10,	15],

								 ​			[20,	25,	30],
								 ​			[35,	40,	45]])

Out[]:	array([20,	25,	30])

Out[]:	35

Out[]:	array([[5,	10,	15],

													[20,	25,	30]])

Out[]:	45

Tip:	 It	 is	 recommended	 to	 use	 the	 array_name[row,col] 	method,	 as	 it	 saves
typing	 and	 is	 more	 compact.	 This	 will	 be	 the	 convention	 for	 the	 rest	 of	 this
section.

To	grab	columns,	we	specify	a	slice	of	 the	row	and	column.	Let	us	 try	 to	grab
the	second	column	in	the	matrix	and	assign	it	to	a	variable	column_slice.

In	[]:	#	Grabbing	the	second	column

		 ​	column_slice	=	matrix[:,1:2]	#	Assigning	to	variable
		 ​	column_slice

Out[]:	array([[10],

								 ​			[25],
								 ​			[40]])

Let	us	consider	what	happened	here.	To	grab	the	column	slice,	we	first	specify
the	row	before	the	comma.	Since	our	column	contains	elements	in	all	rows,	we
need	 all	 the	 rows	 to	 be	 included	 in	 our	 selection,	 hence	 the	 ‘	 :	 ’ 	 sign	 for	 all.
Alternatively,	we	could	use	‘0	:	’ 	 ,	which	might	be	easier	 to	understand.	After
selecting	the	row,	we	then	choose	the	column	by	specifying	a	slice	from	‘1:2	’ 	,
which	 tells	 Python	 to	 grab	 from	 the	 second	 item	up	 to	 (but	 not	 including)	 the
third	item.	Remember,	Python	indexing	starts	from	zero.

Exercise:	Try	to	create	a	larger	array,	and	use	these	indexing	techniques	to	grab
certain	elements	from	the	array.	For	example,	here	is	a	larger	array:

In	[]:	#	5	 	10	Array	of	even	numbers	between	0	and	100.

large_array	=	np.arange(0,100,2).reshape(5,10)

large_array					#	show

Out[]:	array([[0,		2,		4,		6,		8,	10,	12,	14,	16,	18],

								 ​			[20,	22,	24,	26,	28,	30,	32,	34,	36,	38],
								 ​			[40,	42,	44,	46,	48,	50,	52,	54,	56,	58],
								 ​			[60,	62,	64,	66,	68,	70,	72,	74,	76,	78],
								 ​			[80,	82,	84,	86,	88,	90,	92,	94,	96,	98]])

Tip:	 Try	 grabbing	 single	 elements	 and	 rows	 from	 random	 arrays	 you	 create.
After	getting	very	familiar	with	this,	try	selecting	columns.	The	point	is	to	try	as
many	 combinations	 as	 possible	 to	 get	 you	 familiar	 with	 the	 approach.	 If	 the
slicing	and	indexing	notations	are	confusing,	try	to	revisit	the	section	under	list
or	string	slicing	and	indexing.

Click	this	link	to	revisit	the	examples	on	slicing:	List	indexing

Conditional	selection

Consider	a	case	where	we	need	to	extract	certain	values	from	an	array	that	meet
a	 Boolean	 criterion.	 NumPy	 offers	 a	 convenient	 way	 of	 doing	 this	 without
having	to	use	loops.

Example	64:	Using	conditional	selection

Consider	 this	 array	 of	 odd	 numbers	 between	 0	 and	 20.	Assuming	we	 need	 to
grab	elements	above	11.	We	first	have	to	create	the	conditional	array	that	selects
this:

In	[]:	odd_array	=	np.arange(1,20,2)			#
Vector	of	odd	numbers

		 ​	odd_array																								#	Show	vector
		 ​	bool_array	=	odd_array	>
11						#	Boolean	conditional	array

		 ​	bool_array

Out[]:	array([1,		3,		5,		7,		9,	11,	13,	15,	17,	19])

Out[]:	array([False,	False,	False,	False,	False,	False,		True,	True,	True,	True])

Notice	how	the	bool_array	evaluates	to	True	at	all	instances	where	the	elements
of	the	odd_array	meet	the	Boolean	criterion.

The	Boolean	 array	 itself	 is	 not	 usually	 so	useful.	To	 return	 the	values	 that	we
need,	we	will	pass	the	Boolean_array	into	the	original	array	to	get	our	results.

In	[]:	useful_Array	=	odd_array[bool_array]		#	The	values	we	want

		 ​	useful_Array

Out[]:	array([13,	15,	17,	19])

Now,	that	is	how	to	grab	elements	using	conditional	selection.	There	is	however
a	more	compact	way	of	doing	this.	It	is	the	same	idea,	but	it	reduces	typing.

Instead	of	first	declaring	a	Boolean_array	to	hold	our	truth	values,	we	just	pass
the	condition	into	the	array	itself,	like	we	did	for	useful_array.

In	[]:	#	This	code	is	more	compact

		 ​	compact	=	odd_array[odd_array>11]	#	One	line
		 ​	compact

Out[]:	array([13,	15,	17,	19])

See	how	we	achieved	the	same	result	with	just	two	lines?	It	is	recommended	to
use	this	second	method,	as	it	saves	coding	time	and	resources.	The	first	method
helps	explain	how	it	all	works.	However,	we	would	be	using	the	second	method
for	all	other	instances	in	this	book.

Exercise:	 The	 conditional	 selection	works	 on	 all	 arrays	 (vectors	 and	matrices
alike).	 Create	 a	 two	 3 	 3	 array	 of	 elements	 greater	 than	 80	 from	 the
‘large_array’	given	in	the	last	exercise.

Hint:	 use	 the	 reshape	 method	 to	 convert	 the	 resulting	 array	 into	 a	 3	 	 3
matrix.

NumPy	Array	Operations

Finally,	we	will	be	exploring	basic	arithmetical	operations	with	NumPy	arrays.
These	operations	are	not	unlike	that	of	integer	or	float	Python	lists.

Array	–	Array	Operations

In	NumPy,	arrays	can	operate	with	and	on	each	other	using	various	arithmetic
operators.	Things	like	the	addition	of	two	arrays,	division,	etc.

Example	65:
In	[]:	#	Array	-	Array	Operations

		 ​	#	Declaring	two	arrays	of	10	elements
		 ​	Array1	=	np.arange(10).reshape(2,5)
		 ​	Array2	=	np.random.randn(10).reshape(2,5)
		 ​	Array1;Array2															#	Show	the	arrays

		 ​	#	Addition
		 ​	Array_sum	=	Array1	+	Array2
		 ​	Array_sum																		#	show	result	array

		 ​	#Subtraction
		 ​	Array_minus	=	Array1	-	Array2
		 ​	Array_minus																	#	Show	array

		 ​	#	Multiplication

		 ​	Array_product	=	Array1	*	Array2
		 ​	Array_product															#	Show

		 ​	#	Division
		 ​	Array_divide	=	Array1	/	Array2
		 ​	Array_divide																	#	Show

Out[]:	array([[0,	1,	2,	3,	4],

								 ​			[5,	6,	7,	8,	9]])

array([[2.09122638,		0.45323217,	-0.50086442,		1.00633093,		1.24838264],		[
1.64954711,					-0.93396737,		1.05965475,		0.78422255,								-1.84595505]])

array([[2.09122638,	1.45323217,	1.49913558,	4.00633093,	5.24838264],	[6.64954711,
5.06603263,	8.05965475,	8.78422255,	7.15404495]])

array([[-2.09122638,		0.54676783,		2.50086442,		1.99366907,		2.75161736],	[
3.35045289,		6.93396737,		5.94034525,		7.21577745,	10.84595505]])

array([[0.						,			0.45323217,		-1.00172885,			3.01899278,	4.99353055],
[8.24773555,						-5.60380425,			7.41758328,			6.27378038,					-16.61359546]])

array([[0.						,		2.20637474,	-3.99309655,		2.9811267	,		3.20414581],		[
3.03113501,					-6.42420727,		6.60592516,	10.20118591,							-4.875525]])

Each	 of	 the	 arithmetic	 operations	 performed	 are	 element-wise.	 The	 division
operations	require	extra	care	however.	In	Python,	most	arithmetic	errors	in	code
throw	 a	 run-time	 error,	 which	 helps	 in	 debugging.	 For	 NumPy,	 however,	 the
code	could	run	with	a	warning	issued.

Array	–	Scalar	operations

Also,	NumPy	supports	scalar	with	Array	operations.	A	scalar	 in	 this	context	 is
just	 a	 single	 numeric	 value	 of	 either	 integer	 or	 float	 type.	 The	 scalar	 –	Array
operations	 are	 also	 element-wise,	by	virtue	of	 the	broadcast	 feature	of	NumPy
arrays.

Example	66:
In	[]:	#Scalar-	Array	Operations

		 ​	new_array	=	np.arange(0,11)					#	Array	of	values	from	0-10
		 ​	print('New_array')
		 ​	new_array																							#	Show

		 ​	Sc	=	100																								#	Scalar	value

		 ​	#	let	us	make	an	array	with	a	range	from	100	-	110	(using	+)
		 ​	add_array	=	new_array	+	Sc						#	Adding	100	to	every	item
		 ​	print('\nAdd_array')
		 ​	add_array																							#	Show

		 ​	#	Let	us	make	an	array	of	100s	(using	-)
		 ​	centurion	=	add_array	-	new_array
		 ​	print('\nCenturion')
		 ​	centurion																							#	Show
		 ​	#	Let	us	do	some	multiplication	(using	*)

		 ​	multiplex	=	new_array	*	100				
		 ​	print('\nMultiplex')

		 ​	multiplex																							#	Show

		 ​	#	division	[take	care],	let	us	deliberately	generate
		 ​	#	an	error.	We	will	do	a	divide	by	Zero.

		 ​	err_vec	=	new_array	/	new_array
		 ​	print('\nError_vec')
		 ​	err_vec																								#	Show

		 ​	New_array

Out[]:	array([0,		1,		2,		3,		4,		5,		6,		7,		8,		9,	10])

		 ​	Add_array

Out[]:	array([100,	101,	102,	103,	104,	105,	106,	107,	108,	109,	110])

		 ​	Centurion

Out[]:	array([100,	100,	100,	100,	100,	100,	100,	100,	100,	100,	100])

		 ​	Multiplex

Out[]:	array([0,		100,		200,		300,		400,		500,		600,		700,		800,		900,	1000])

		 ​	Error_vec
						 ​	C:\Users\Oguntuase\Anaconda3\lib\site-
packages\ipykernel_launcher.py:27:																RuntimeWarning:	invalid	value	encountered	in
true_divide

array([nan,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.])

Notice	the	runtime	error	generated?	This	divide	by	zero	value	was	caused	by	the
division	of	the	first	element	of	new_arra	y 	by	itself,	i.e.	0/	0 	.	This	would	give	a
divide	by	zero	error	in	normal	Python	environment	and	would	not	run	the	code.
NumPy,	however,	ran	the	code	and	indicated	the	divide	by	zero	in	the	Error_ve
c 	array	as	a	‘nan	’ 	type	(not-a-number).	This	also	goes	for	values	that	evaluate
to	 infinity,	which	would	be	 represented	by	 the	value	 ‘+/-	 inf	 ’ 	 (try	1/	0 	using
NumPy	array-scalar	or	array-array	operation.).

Tip:	Always	take	caution	when	using	division	to	avoid	such	runtime	errors	that
could	later	bug	your	code.

Universal	Array	functions

These	are	some	built-in	functions	designed	to	operate	in	an	element-wise	fashion
on	 NumPy	 arrays.	 They	 include	 mathematical,	 comparison,	 trigonometric,
Boolean,	 etc.	 operations.	 They	 are	 called	 using	 the	 np.function_name(array)
method.

Example	67	:	A	few	Universal	Array	functions	(U-Func)
In	[]:	#	Using	U-Funcs

		 ​	U_add	=	np.add(new_array,Sc)		#	addition
		 ​	U_add																										#	Show

		 ​	U_sub	=	np.subtract(add_array,new_array)
		 ​	U_sub																										#	Show

		 ​	U_log	=	np.log(new_array)						#	Natural	log
		 ​	U_log																									#	Show

		 ​	sinusoid	=	np.sin(new_array)		#	Sine	wave
		 ​	sinusoid																							#	Show

		 ​	#	Alternatively,	we	can	use	the	.method
		 ​	new_array.max()																#	find	maximum
		 ​	np.max(new_array)														#	same	thing

Out[]:	array([100,	101,	102,	103,	104,	105,	106,	107,	108,	109,	110])

Out[]:	array([100,	100,	100,	100,	100,	100,	100,	100,	100,	100,	100])

C:\Users\Oguntuase\Anaconda3\lib\site-
packages\ipykernel_launcher.py:8:					RuntimeWarning:	divide	by	zero	encountered	in	log

Out[]:	array([-inf,	0.								,	0.69314718,	1.09861229,	1.38629436,	1.60943791,	1.79175947,
1.94591015,	2.07944154,	2.19722458,	2.30258509])

Out[]:	array([0.								,		0.84147098,		0.90929743,		0.14112001,	-0.7568025	,
-0.95892427,									-0.2794155	,		0.6569866	,		0.98935825,		0.41211849,	-0.54402111])

Out[]:	10

Out[]:	10

There	are	still	many	more	functions	available,	and	a	full	reference	can	be	found
in	 the	 NumPy	 documentation	 for	 Universal	 functions	 here:
https://docs.scipy.org/doc/numpy/reference/ufuncs.html

Now	that	we	have	explored	NumPy	for	creating	arrays,	we	would	consider	 the
Pandas	framework	for	manipulating	these	arrays	and	organizing	them	into	data
frames.

Pandas

This	is	an	open	source	library	that	extends	the	capabilities	of	NumPy.	It	supports
data	 cleaning	 and	 preparation,	 with	 fast	 analysis	 capabilities.	 It	 is	 more	 like
Microsoft	 excel	 framework,	 but	 with	 Python.	 Unlike	 NumPy,	 it	 has	 its	 own

https://docs.scipy.org/doc/numpy/reference/ufuncs.html

built-in	visualization	features	and	can	work	with	data	from	a	variety	of	sources.
It	is	one	of	the	most	versatile	packages	for	data	science	with	Python,	and	we	will
be	exploring	how	to	use	it	effectively.

To	 use	 pandas,	 make	 sure	 it	 is	 currently	 part	 of	 your	 installed	 packages	 by
verifying	with	the	conda	lis	t 	method.	If	it	is	not	installed,	then	you	can	install	it
using	the 	conda	install	panda	s 	command;	you	need	an	internet	connection	for
this.

Now	 that	 Pandas	 is	 available	 on	 your	 PC,	 you	 can	 start	 working	 with	 the
package.	First,	we	start	with	the	Pandas	series.

Series

This	is	an	extension	of	the	NumPy	array.	It	has	a	lot	of	similarities,	but	with	a
difference	 in	 indexing	 capacity.	 NumPy	 arrays	 are	 only	 indexed	 via	 number
notations	 corresponding	 to	 the	 desired	 rows	 and	 columns	 to	 be	 accessed.	 For
Pandas	series,	the	axes	have	labels	that	can	be	used	for	indexing	their	elements.
Also,	while	NumPy	arrays	 --	 like	Python	 lists,	are	essentially	used	 for	holding
numeric	data,	Pandas	series	are	used	for	holding	any	form	of	Python	data/object.

Example	68	:	Let	us	illustrate	how	to	create	and	use	the	Pandas	series

First,	we	have	to	import	the	Pandas	package	into	our	workspace.	We	will	use	the
variable	 name	 pd	 for	 Pandas,	 just	 as	 we	 used	 np	 for	 NumPy	 in	 the	 previous
section.

In	[]:	import	numpy	as	np			#importing	numpy	for	use

							 ​	import	pandas	as	pd		#	importing	the	Pandas	package

We	also	 imported	 the	numpy	package	because	 this	 example	 involves	a	numpy
array.

In	[]:	#	python	objects	for	use

		 ​	labels	=	['First','Second','Third']				
																															#	string	list

		 ​	values	=	[10,20,30]													#	numeric	list
		 ​	array	=	np.arange(10,31,10)					#	numpy	array
		 ​	dico	=	{'First':10,'Second':20,'Third':30}	
																										#	Python	dictionary

		 ​	#	create	various	series

		 ​	c	=	pd.Series(values)
		 ​	print('Default	series')
		 ​	A																																						#show

		 ​	B	=	pd.Series(values,labels)
		 ​	print('\nPython	numeric	list	and	label')
		 ​	B																																						#show

		 ​	C	=	pd.Series(array,labels)
		 ​	print('\nUsing	python	arrays	and	labels')
		 ​	C																																						#show

		 ​	D	=	pd.Series(dico)
		 ​	print('\nPassing	a	dictionary')
		 ​	D																																						#show

		 ​	Default	series

Out[]:	0				10

			 ​	1				20
		 ​	2				30
		 ​	dtype:	int64

		 ​	Python	numeric	list	and	label

Out[]:	 ​	First					10
		 ​	Second				20
		 ​	Third					30
		 ​	dtype:	int64

		 ​	Using	python	arrays	and	labels

Out[]:	 ​	First					10
		 ​	Second				20
		 ​	Third					30

		 ​	dtype:	int32

		 ​	Passing	a	dictionary

Out[]:	First					10

		 ​	Second				20
		 ​	Third					30
		 ​	dtype:	int64

We	have	 just	 explored	 a	 few	ways	 of	 creating	 a	Pandas	 series	 using	 a	 numpy
array,	 Python	 list,	 and	 dictionary.	 Notice	 how	 the	 labels	 correspond	 to	 the
values?	 Also,	 the	 dtypes	 are	 different.	 Since	 the	 data	 is	 numeric	 and	 of	 type
integer,	 Python	 assigns	 the	 appropriate	 type	 of	 integer	 memory	 to	 the	 data.
Creating	series	from	NumPy	arrays	returns	the	smallest	integer	size	(int	32).	The
difference	 between	 32	 bits	 and	 64	 bits	 unsigned	 integers	 is	 the	 corresponding
memory	allocation.	32	bits	obviously	requires	less	memory	(4bytes,	since	8bits
make	 a	 byte),	 and	 64	 bits	 would	 require	 double	 (8	 bytes).	 However,	 32bits
integers	 are	processed	 faster,	 but	 have	 a	 limited	 capacity	 in	holding	values,	 as
compared	with	64	bits.

Pandas	series	also	support	the	assignment	of	any	data	type	or	object	as	its	data
points.
In	[]:	pd.Series(labels,values)

Out[]:	10					First

						20				Second

						30					Third

						dtype:	object

Here,	 the	string	elements	of	 the	 label	 list	are	now	the	data	points.	Also,	notice
that	the	dtype	is	not	‘object’.

This	 kind	 of	 versatility	 in	 item	 operation	 and	 storage	 is	 what	 makes	 pandas
series	very	 robust.	Pandas	series	are	 indexed	using	 labels.	This	 is	 illustrated	 in
the	following	examples:

Example	69:
In	[]:	#	series	of	WWII	countries

		 ​	pool1	=	pd.Series([1,2,3,4],['USA','Britain','France','Germany'])
		 ​	pool1							#show
		 ​	print('grabbing	the	first	element')
		 ​	pool1['USA']		#	first	label	index

Out[]:	 ​	USA								1
		 ​	Britain				2
		 ​	France					3
		 ​	Germany				4
		 ​	dtype:	int64
		 ​	grabbing	the	first	element
Out[]:	1

As	shown	in	the	code	above,	to	grab	a	series	element,	use	the	same	approach	as
the	 numpy	 array	 indexing,	 but	 by	 passing	 the	 label	 corresponding	 to	 that	 data
point.	The	data	 type	of	 the	 label	 is	also	 important,	notice	 the	 ‘USA’	 label	was
passed	 as	 a	 string	 to	 grab	 the	 data	 point	 ‘1’.	 If	 the	 label	 is	 numeric,	 then	 the
indexing	would	be	similar	to	that	of	a	numpy	array.	Consider	numeric	indexing
in	the	following	example:

In	[]:	pool2	=	pd.Series(['USA','Britain','France','Germany'],[1,2,3,4])

		 ​	pool2						#show
		 ​	print('grabbing	the	first	element')
		 ​	pool2[1]		#numeric	indexing

Out[]:	1								USA

		 ​	2				Britain
		 ​	3					France
		 ​	4				Germany
		 ​	dtype:	object

		 ​	grabbing	the	first	element

Out[]:	'USA'

Tip:	you	can	easily	know	the	data	held	by	a	series	through	the	dtype.	Notice	how
the	dtype	for	pool1	and	pool2	are	different,	even	though	they	were	both	created
from	the	same	lists.	The	difference	is	that	pool2	holds	strings	as	its	data	points,

while	pool1	holds	integers	(int64).

Panda	series	can	be	added	together.	It	works	best	if	the	two	series	have	similar
labels	and	data	points.

Example	70	:	Adding	series

Let	us	create	a	third	series	‘pool	3’.	This	is	a	similar	series	as	pool1,	but	Britain
has	been	replaced	with	‘USSR’,	and	a	corresponding	data	point	value	of	5.

In	[]:	pool3	=	pd.Series([1,5,3,4],['USA','USSR','France',	
'Germany'])

		 ​	pool3

Out[]:	USA								1

		 ​	USSR							5
		 ​	France					3
		 ​	Germany				4
		 ​	dtype:	int64

Now	adding	series:
In	[]:	 ​	#	Demonstrating	series	addition
		 ​	double_pool	=	pool1	+	pool1
		 ​	print('Double	Pool')
		 ​	double_pool

		 ​	mixed_pool	=	pool1	+	pool3
		 ​	print('\nMixed	Pool')

		 ​	mixed_pool

		 ​	funny_pool	=	pool1	+	pool2

		 ​	print('\nFunny	Pool')
		 ​	funny_pool
		 ​	Double	Pool

Out[]:	USA								2

		 ​	Britain				4
		 ​	France					6
		 ​	Germany				8
		 ​	dtype:	int64

		 ​	Mixed	Pool

Out[]:	Britain				NaN

		 ​	France					6.0
		 ​	Germany				8.0
		 ​	USA								2.0
		 ​	USSR							NaN
		 ​	dtype:	float64

		 ​	Funny	Pool

C:\Users\Oguntuase\Anaconda3\lib\site-					packages\pandas\core\indexes\base.py:3772:
RuntimeWarning:	'<'	not	supported	between	instances	of	'str'	and	'int',	sort	order	is	undefined
for	incomparable	objects

		 ​	return	this.join(other,	how=how,	return_indexers=return_indexers)

Out[]:	USA								NaN

		 ​	Britain				NaN
		 ​	France					NaN
		 ​	Germany				NaN
		 ​	1										NaN
		 ​	2										NaN
		 ​	3										NaN
		 ​	4										NaN
		 ​	dtype:	object

By	adding	 series,	 the	 resultant	 is	 the	 increment	 in	 data	 point	 values	 of	 similar
labels	 (or	 indexes).	 A	 ‘NaN’	 is	 returned	 in	 instances	 where	 the	 labels	 do	 not
match.

Notice	the	difference	between	Mixed_pool	and	Funny_pool:	In	a	mixed	pool,	a
few	 labels	 are	 matched,	 and	 their	 values	 are	 added	 together	 (due	 to	 the	 add
operation).	For	Funny_pool,	no	labels	match,	and	the	data	points	are	of	different
types.	An	error	message	is	returned	and	the	output	is	a	vertical	concatenation	of
the	two	series	with	‘NaN’	Datapoints.

Tip:	As	long	as	two	series	contain	the	same	labels	and	data	points	of	the	same
type,	 basic	 array	 operations	 like	 addition,	 subtraction,	 etc.	 can	 be	 done.	 The
order	 of	 the	 labels	 does	 not	 matter,	 the	 values	 will	 be	 changed	 based	 on	 the
operator	being	used.	To	fully	grasp	this,	try	running	variations	of	the	examples
given	above.

Data	frames

A	 Pandas	 data	 frame	 is	 just	 an	 ordered	 collection	 of	 Pandas	 series	 with	 a
common/shared	index.	At	its	basic	form,	a	data	frame	looks	more	like	an	excel
sheet	 with	 rows,	 columns,	 labels	 and	 headers.	 To	 create	 a	 data	 frame,	 the
following	syntax	is	used:

pd.DataFrame(data=None,	index=None,	columns=None,	dtype=None,	copy=False)

Usually,	 the	data	 input	 is	an	array	of	values	 (of	whatever	datatype).	The	 index
and	column	parameters	are	usually	lists/vectors	of	either	numeric	or	string	type.

If	 a	 Pandas	 series	 is	 passed	 to	 a	 data	 frame	 object,	 the	 index	 automatically
becomes	the	columns,	and	the	data	points	are	assigned	accordingly.

Example	71	:	Creating	a	data	frame
In	[]:	df	=	pd.DataFrame([pool1])								#	passing	a	series

	df																																#	show

	#	two	series

	index	=	'WWI	WWII'.split()

	new_df	=	pd.DataFrame([pool1,pool3],index)

	new_df																												#	show

Output:
USA Britain France Germany

0 1 2 3 4

USA Britain France Germany

WWI 1 2 3 4

WWII 5 1 3 4

We	have	created	two	data	frames	from	the	pool	1	and	pool	3	series	we	created
earlier.	 Notice	 how	 the	 first	 data	 frame	 assigns	 the	 series	 labels	 as	 column
headers,	and	since	no	index	was	assigned,	a	value	of	‘0’	was	set	at	that	index	i.e.
row	header.

For	 the	 second	 data	 frame,	 the	 row	 labels	 were	 specified	 by	 passing	 a	 list	 of
strings	[‘WWI’,’WWII’].

Tip:	The	 .split() 	 string	method	 is	 a	 quick	 way	 of	 creating	 lists	 of	 strings.	 It
works	 by	 splitting	 a	 string	 into	 its	 component	 characters,	 depending	 on	 the
delimiter	passed	to	the	string	method.

For	 example,	 let	 us	 split	 this	 email	 ‘pythonguy@gmail.com’	 into	 a	 list
containing	the	username	and	the	domain	name.

In	[]:		#	Illustrating	the	split()	method

		 ​	email	=	'pythonguy@gmail.com'

		 ​	string_vec	=	email.split('@')

			 ​	string_vec					#	show
		 ​	A	=	string_vec[0];	B	=	string_vec[1]	#	Extracting	values
		 ​	print('Username:',A,'\nDomain	name:',B)

Out[]:		['pythonguy',	'gmail.com']

						 ​	Username:	pythonguy
						 ​	Domain	name:	gmail.com

To	create	a	data	frame	with	an	array,	we	can	use	the	following	method:

#	Creating	dataframe	with	an	array

Array	=	np.arange(1,21).reshape(5,4)		#	numpy	array

row_labels	=	'A	B	C	D	E'.split()

col_labels	=	'odd1	even1	odd2	even2'.split()

Arr_df	=	pd.DataFrame(Array,row_labels,col_labels)

Arr_df

Output:
odd1 even1 odd2 even2

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

D 13 14 15 16

E 17 18 19 20

Notice	how	this	is	not	unlike	how	we	create	spreadsheets	in	excel.	Try	playing
around	with	creating	data	frames.

Exercise:	 Create	 a	 data	 frame	 from	 a	 5 	 4	 array	 of	 uniformly	 distributed
random	values.	 Include	your	choice	 row	and	column	names	using	 the	 .split()
method.

Hint:	use	the	rand	function	to	generate	your	values,	and	use	the	reshape	method
to	form	an	array.

Now	that	we	can	conveniently	create	Data	frames,	we	are	going	to	learn	how	to
index	and	grab	elements	off	them.

Tip:	Things	to	note	about	data	frames.

They	are	a	collection	of	series	(more	like	a	list	with	Pandas	series
as	its	elements).
They	are	similar	 to	numpy	arrays	i.e.	 they	are	more	like	n	 	m
dimensional	 matrices,	 where	 ‘n’	 are	 the	 rows	 and	 ‘m’	 are	 the
columns.

Example	72	:	Grabbing	elements	from	a	data	frame.

The	easiest	elements	to	grab	are	the	columns.	This	is	because,	by	default,	each
column	element	is	a	series	with	the	row	headers	as	labels.	We	can	grab	them	by
using	a	similar	method	from	the	series	–	indexing	by	name.

In	[]:	#	Grab	data	frame	elements

		 ​	Arr_df['odd1']				#	grabbing	first	column

Out[]:	A					1

		 ​	B					5
		 ​	C					9
		 ​	D				13
		 ​	E				17
		 ​	Name:	odd1,	dtype:	int32

Pretty	easy,	right?	Notice	how	the	output	is	like	a	Pandas	series.	You	can	verify
this	by	using	the	type(Arr_df['odd1']) 	command.

When	more	than	one	column	is	grabbed,	however,	it	returns	a	data	frame	(which
makes	sense,	 since	a	data	 frame	 is	a	collection	of	at	 least	 two	series).	To	grab
more	than	one	column,	pass	the	column	names	to	the	indexing	as	a	list.	This	is
shown	in	the	example	code	below:

In	[]:	 ​	#	Grab	two	columns

		 ​	Arr_df[['odd1','even2']]	#	grabbing	first	and	last	columns

Output:
odd1 even2

A 1 4

B 5 8

C 9 12

D 13 16

E 17 20

To	 select	 a	 specific	 element,	 use	 the	 double	 square	 brackets	 indexing	notation
we	 learned	under	 array	 indexing.	For	 example,	 let	 us	 select	 the	value	15	 from
Arr_df.
In	[]:	Arr_df['odd2']['D']

Out[]:	15

You	may	decide	to	break	the	steps	into	two,	if	it	makes	it	easier.	This	method	is
however	preferred	as	 it	 saves	memory	from	variable	allocation.	To	explain,	 let
us	break	it	down	into	two	steps.

In	[]:	x	=	Arr_df['odd2']

		 ​	x

Out[]:	A					3

		 ​	B					7
		 ​	C				11
		 ​	D				15
		 ​	E				19
		 ​	Name:	odd2,	dtype:	int32

See	 that	 the	 first	 operation	 returns	 a	 series	 containing	 the	 element	 ‘15’.	 This
series	can	now	be	indexed	to	grab	15	using	the	label	‘D’.
In	[]:	x['D']

Out[]:	15

While	this	approach	works,	and	is	preferred	by	beginners,	a	better	approach	is	to
get	comfortable	with	the	first	method	to	save	coding	time	and	resources.

To	grab	rows,	a	different	indexing	method	is	used.
You	 can	 use	 either	 data_frame_name.loc[‘row_name’] 	 or
data_frame_name.iloc[‘row_index’] 	.

Let	us	grab	the	row	E	from	Arr_d	f 	.
In	[]:	print("using	.loc['E']")

						Arr_df.loc['E']

						print('\nusing	.iloc[4]')

						Arr_df.iloc[4]

								using	.loc['E']

Out[]:

						odd1					17

						even1				18

						odd2					19

						even2				20

						Name:	E,	dtype:	int32

								using	.iloc[4]

Out[]:

						odd1					17

						even1				18

						odd2					19

						even2				20

						Name:	E,	dtype:	int32

See,	the	same	result!

You	can	also	use	the	row	indexing	method	to	select	single	items.
In	[]:	Arr_df.loc['E']['even2']

		 ​	#	or
		 ​			Arr_df.iloc[4]['even2']

Out[]:	20

Out[]:	20

Moving	on,	we	will	try	to	create	new	columns	in	a	data	frame,	and	also	delete	a
column.

In	[]:	#	Let	us	add	two	sum	columns	to	Arr_df

		 ​	Arr_df['Odd	sum']	=	Arr_df['odd1']+Arr_df['odd2']
		 ​	Arr_df['Even	sum']	=	Arr_df['even1']+Arr_df['even2']

	Arr_df

Output:
odd1 even1 odd2 even2 Odd	sum Even	sum

A 1 2 3 4 4 6

B 5 6 7 8 12 14

C 9 10 11 12 20 22

D 13 14 15 16 28 30

E 17 18 19 20 36 38

Notice	 how	 the	 new	 columns	 are	 declared.	 Also,	 arithmetic	 operations	 are
possible	with	each	element	in	the	data	frame,	just	like	we	did	with	the	series.

Exercise:	 Add	 an	 extra	 column	 to	 this	 data	 frame.	 Call	 it	 Total	 Sum,	 and	 it
should	be	the	addition	of	Odd	sum	and	Even	sum.

To	 remove	a	 column	 from	a	data	 frame,	we	use	 the	data_frame_name.drop()
method.

Let	 us	 remove	 the	 insert	 a	 new	column	and	 then	 remove	 it	 using	 the	 .drop()
method.

In	[]:	Arr_df['disposable']	=	np.zeros(5)			#	new
column

						Arr_df			#show

Output:

odd1even1odd2even2
Odd
sum

Even
sum disposable

A1 2 3 4 4 6 0.0

B5 6 7 8 12 14 0.0

C9 10 11 12 20 22 0.0

D13 14 15 16 28 30 0.0

E17 18 19 20 36 38 0.0

To	remove	the	unwanted	column:
In	[]:	#	to	remove

		 ​	Arr_df.drop('disposable',axis=1,inplace=True)
		 ​	Arr_df

Output:

odd1 even1 odd2 even2 Odd	sum Even
sum

A 1 2 3 4 4 6

B 5 6 7 8 12 14

C 9 10 11 12 20 22

D 13 14 15 16 28 30

E 17 18 19 20 36 38

Notice	 the	 ‘axis=1’	and	 ‘inplace	=	True’	arguments.	These	are	parameters	 that
specify	 the	 location	 to	 perform	 the	 drop	 i.e.	 axis	 (axis	 =	 0	 specifies	 row
operation),	 and	 intention	 to	 broadcast	 the	 drop	 to	 the	 original	 data	 frame,
respectively.	 If	 ‘inplace=	 False’,	 the	 data	 frame	 will	 still	 contain	 the	 dropped
column.

Tip:	The	 ‘inplace	=	 False’	method	 is	 used	 for	 assigning	 an	 array	 to	 another
variable	without	including	certain	columns.

Conditional	selection

Similar	to	how	we	conditional	selection	works	with	NumPy	arrays,	we	can	select
elements	from	a	data	frame	that	satisfy	a	Boolean	criterion.

You	are	expected	to	be	familiar	with	this	method,	hence,	it	will	be	done	in	one
step.

Example	72:	Let	us	grab	sections	of	the	data	frame	‘Arr_df’	where	the	value	is	>
5.

In	[]:	#	Grab	elements	greater	than	five

Arr_df[Arr_df>5]

Output:
odd1 even1 odd2 even2 Odd	sum Even	sum

A NaN NaN NaN NaN NaN 6

B NaN 6.0 7.0 8.0 12.0 14

C 9.0 10.0 11.0 12.0 20.0 22

D 13.0 14.0 15.0 16.0 28.0 30

E 17.0 18.0 19.0 20.0 36.0 38

Notice	how	the	instances	of	values	less	than	5	are	represented	with	a	‘NaN’.

Another	 way	 to	 use	 this	 conditional	 formatting	 is	 to	 format	 based	 on	 column
specifications.

You	could	remove	entire	rows	of	data,	by	specifying	a	Boolean	condition	based
off	a	single	column.	Assuming	we	want	to	return	the	Arr_df	data	frame	without
the	row	‘C’.		We	can	specify	a	condition	to	return	values	where	the	elements	of
column	 ‘odd1’	 are	 not	 equal	 to	 ‘9’	 (since	 row	 C	 contains	 9	 under	 column
‘odd1’).
In	[]:	#	removing	row	C	through	the	first	column

						Arr_df[Arr_df['odd1']!=	9]

Output:
odd1 even1 odd2 even2 Odd	sum Even	sum

A 1 2 3 4 4 6

B 5 6 7 8 12 14

D 13 14 15 16 28 30

E 17 18 19 20 36 38

Notice	that	row	‘C’	has	been	filtered	out.	This	can	be	achieved	through	a	smart
conditional	statement	through	any	of	the	columns.
In	[]:		#	does	the	same	thing	:	remove	row	‘C’

							#	Arr_df[Arr_df['even2']!=	12]

In[]:	#	Let	us	remove	rows	D	and	E	through	'even2'

							Arr_df[Arr_df['even2']<=	12]

Output
odd1 even1 odd2 even2 Odd	sum Even	sum

A 1 2 3 4 4 6

B 5 6 7 8 12 14

C 9 10 11 12 20 22

Exercise:	Remove	rows	C,	D,	E	via	the	‘Even	sum’	column.	Also,	try	out	other
such	operations	as	you	may	prefer.

To	 combine	 conditional	 selection	 statements,	we	 can	 use	 the	 ‘logical	 and,	 i.e.
&’,	and	the	‘logical	or,	i.e.	 |’	for	nesting	multiple	conditions.	The	regular	‘and’
and	 ‘or’	operators	would	not	work	 in	 this	case	as	 they	are	used	 for	comparing
single	elements.	Here,	we	will	be	comparing	a	series	of	elements	that	evaluates
to	true	or	false,	and	those	generic	operators	find	such	operations	ambiguous.

Example	73:	Let	us	select	elements	that	meet	the	criteria	of	being	greater	than	1
in	 the	 first	 column,	 and	 less	 than	 22	 in	 the	 last	 column.	 Remember,	 the	 ‘and
statement’	only	evaluates	to	true	if	both	conditions	are	true.
In	[]: ​	Arr_df[(Arr_df['odd1']>1)	&	(Arr_df['Even	sum']<22)]

Output:
odd1 even1 odd2 even2 Odd	sum Even	sum

B 5 6 7 8 12 14

Only	the	elements	in	Row	‘B’	meet	this	criterion,	and	were	returned	in	the	data
frame.

This	approach	can	be	expounded	upon	to	create	even	more	powerful	data	frame
filters.

Missing	Data

There	 are	 instances	when	 the	 data	 being	 imported	 or	 generated	 into	 pandas	 is
incomplete	or	have	missing	data	points.	In	such	a	case,	the	likely	solution	is	to
remove	 such	 values	 from	 the	 dataset,	 or	 to	 fill	 in	 new	 values	 based	 on	 some
statistical	 extrapolation	 techniques.	 While	 we	 would	 not	 be	 fully	 exploring
statistical	 measures	 of	 extrapolation	 (you	 can	 read	 up	 on	 that	 from	 any	 good
statistics	 textbook),	 we	 would	 be	 considering	 the	 use	 of	 the	 .dropna() 	 and
.fillna() 	methods	for	removing	and	filling	up	missing	data	points	respectively.

To	illustrate	this,	we	will	create	a	data	frame	–	to	represent	imported	data	with
missing	values,	and	then	use	these	two	data	preparation	methods	on	it.

Example	 73:	 Another	 way	 to	 create	 a	 data	 frame	 is	 by	 using	 a	 dictionary.
Remember,	 a	 python	 dictionary	 is	 somehow	 similar	 to	 a	 Pandas	 series	 in	 that
they	have	key-value	pairs,	 just	as	Pandas	series	are	 label-value	pairs	 (although
this	is	a	simplistic	comparison	for	the	sake	of	conceptualization).

In	[]:	 ​	#	First,	our	dictionary
		 ​	dico	=	{'X':[1,2,np.nan],'Y':[4,np.nan,np.nan],'Z':[7,8,9]}
		 ​	dico	#show

		 ​	#	passing	the	dictionary	to	a	dataframe
		 ​	row_labels	=	'A	B	C'.split()
		 ​	df	=	pd.DataFrame(dico,row_labels)
		 ​	df	#show

Output:
{'X':	[1,	2,	nan],	'Y':	[4,	nan,	nan],	'Z':	[7,	8,	9]}

X Y Z

A 1.0 4.0 7

B 2.0 NaN 8

C NaN NaN 9

Now,	 let	 us	 start	 off	 with	 the	 .dropna() 	method.	 This	 removes	 any	 ‘null’	 or
‘nan’	 values	 in	 the	 data	 frame	 it’s	 called	off,	 either	 column-wise	 or	 row-wise,
depending	on	the	axis	specification	and	other	arguments	passed	to	the	method.	It
has	the	following	default	syntax:

df.dropna(axis=0,	how='any',	thresh=None,	subset=None,	inplace=False)

The	 ‘df’	 above	 is	 the	 data	 frame	 name.	 The	 default	 axis	 is	 set	 to	 zero,	which
represent	row-wise	operation.	Hence,	at	default,	the	method	will	remove	any	row
containing	‘nan’	values.

Let	us	see	what	happens	when	we	call	this	method	for	our	data	frame.
In	[]:		#	this	removes	‘nan’	row-wise

							df.dropna()

Output: X Y Z

A 1.0 4.0 7

Notice	 that	 rows	 B	 and	 C	 contain	 at	 least	 a	 ‘nan’	 value.	 Hence,	 they	 were
removed.

Let	us	try	a	column-wise	operation	by	specifying	the	axis=1.
In	[]:		#	this	removes	‘nan’	column-wise

							df.dropna(axis=1)

Output:
Z

A 7

B 8

C 9

As	expected,	only	the	column	‘Z’	was	returned.

Now,	 in	 case	we	want	 to	 set	 a	 condition	 for	 a	minimum	number	 of	 ‘non-nan’
values/	actual	data	points	required	to	make	the	cut	(or	escape	the	cut,	depending
on	your	perspective),	we	can	use	the	‘thresh’	(short	for	threshold)	parameter	to
specify	this.

Say,	we	want	to	remove	‘nan’	row-wise,	but	we	only	want	to	remove	instances
where	 the	 row	 had	 more	 than	 one	 actual	 data	 point	 value.	 We	 can	 set	 the
threshold	to	2	as	illustrated	in	the	following	code:
In	[]:	#	drop	rows	with	less	than	2	actual	values

							df.dropna(thresh	=	2)

Output:
X Y Z

A 1.0 4.0 7

B 2.0 NaN 8

Notice	how	we	have	filtered	out	row	C,	since	it	contains	only	one	actual	value
‘9’.

Exercise:	Filter	out	columns	in	the	data	frame	‘df’	containing	less	than	2	actual
data	points

Next,	 let	 us	 use	 the	 .fillna() 	 method	 to	 replace	 the	 missing	 values	 with	 our
extrapolations.

This	method	has	the	following	syntax:
df.fillna(value=None,	method=None,	axis=None,	inplace=False,	limit=None,
downcast=None,	**kwargs)

Tip:	Reminder,	you	can	always	use	shift	+	ta	b 	 to	check	the	documentation	of
methods	and	functions	to	know	their	syntax.

Let	 us	 go	 ahead	 and	 replace	 our	 ‘NaN’	 values	 with	 an	 ‘x’	 marker.	 We	 can
specify	the	‘X’	as	a	string,	and	pass	it	into	the	‘value’	parameter	in	.fillna() 	.
In	[]:	#	filling	up	NaNs

	df.fillna('X')

Output: X Y Z

A 1 4 7

B 2 X 8

C X X 9

While	marking	missing	data	with	an	 ‘X’	 is	 fun,	 it	 is	 sometimes	more	 intuitive
(for	lack	of	a	better	statistical	approach),	to	use	the	mean	of	the	affected	column
as	a	replacement	for	the	missing	elements.

Example	74	:	Filling	up	missing	data.

Let	us	first	use	the	mean	method	to	fill	up	column	‘X’,	then	based	off	that	simple
step,	 we	 will	 use	 a	 for	 loop	 to	 automatically	 fill	 up	 missing	 data	 in	 the	 data
frame.

In	[]:	#	Replacing	missing	values	with	mean	in	column	‘X’

		 ​	df['X'].fillna(value	=	df['X'].mean())
Out[]:	A				1.0

		 ​	B				2.0
		 ​	C				1.5
		 ​	Name:	X,	dtype:	float64

Notice	that	the	value	of	the	third	element	in	column	‘X’	has	changed	to	1.5.	This
is	the	mean	of	that	column.	The	one	line	code	that	accomplished	this	could	have
been	 broken	 down	 into	 multiple	 line	 for	 better	 understanding.	 This	 is	 shown
below:

In	[]:	 ​	#	variables
		 ​	xcol_var	=	df['X']
		 ​	xcol_mean	=	xcol_var.mean()		#	or	use	mean(xcol_var)

		 ​	#	instruction
		 ​	xcol_var.fillna(value	=	xcol_mean)

Out[]:	A				1.0

		 ​	B				2.0
		 ​	C				1.5
		 ​	Name:	X,	dtype:	float64

Same	results,	but	more	coding	and	more	memory	use	via	variable	allocation.

Now,	let	us	automate	the	entire	process.
In	[]:	for	i	in	'X	Y	Z'.split():														#	loop

						df[i].fillna(value	=	df[i].mean(),inplace=True)

						df																#	show

X Y Z

A 1.0 4.0 7

B 2.0 NaN8

C NaN NaN9

Output:
X Y Z

A 1.0 4.0 7

B 2.0 4.0 8

C 1.5 4.0 9

New	data	frame																																																Old	data	frame

While	the	output	only	displays	the	data	frame	on	the	left,	the	original	data	frame
is	put	here	 for	comparison.	Notice	 the	new	values	 replacing	 the	NaNs.	For	 the
column	‘Y’,	the	mean	is	4.0,	since	that	is	the	only	value	present.

This	is	a	small	operation	that	can	be	scaled	for	preparing	and	formatting	larger
datasets	in	Pandas.

Tip:	The	other	arguments	of	the	.fillna() 	method	can	be	explored,	including	the
fill	methods:	 for	 example,	 forward-fill	 -	 which	 fills	 the	missing	 value	with	 the
previous	row/column	value	based	on	the	value	of	the	limit	parameter	i.e.	if	limit

=	1,	it	fills	the	next	1	row/column	with	the	previous	row/column	value;	also,	the
back-fill	-	which	does	the	same	as	forward-fill,	but	backwards.

Group-By

This	Pandas	method,	as	the	name	suggests,	allows	the	grouping	of	related	data	to
perform	combined/aggregate	operations	on	them.

Example	75:	Creating	a	data	frame	of	XYZ	store	sales.
In	[]:	#	Company	XYZ	sales	information

							#	Dictionary	containing	needed	data

		 ​	data	=	{'Sales	Person':'Sam	Charlie	Amy	Vanessa	Carl	Sarah'.split(),
									 ​			'Product':'Hp	Hp	Apple	Apple	Dell	Dell'.split(),
									 ​			'Sales':[200,120,340,124,243,350]}
		 ​	print('XYZ	sales	information\n________________')		#	print	info.

		 ​	serial	=	list(range(1,7))									#	row	names	from	1-6
		 ​	df	=	pd.DataFrame(data,serial)			#	build	data	frame
		 ​	df

Output:		

XYZ	sales	information

Sales	Person Product Sales

1 Sam Hp 200

2 Charlie Hp 120

3 Amy Apple 340

4 Vanessa Apple 124

5 Carl Dell 243

6 Sarah Dell 350

From	 our	 dataset,	 we	 can	 observe	 some	 common	 items	 under	 the	 product

column.	This	is	an	example	of	an	entry	point	for	the	group-by	method	in	a	data
set.		We	can	find	information	about	the	sales	using	the	product	grouping.

In	[]:	#	finding	sales	information	by	product

		 ​	print('Total	items	sold:	by	product')
		 ​	df.groupby('Product').sum()

Total	items	sold:	by	product
Sales

Product

Apple 464

Dell 593

Hp 320

This	is	an	example	of	an	aggregate	operation	using	groupby.	Other	functions	can
be	called	to	display	interesting	results	as	well.	For	example,	.count() 	:
In	[]:		df.groupby('Product').count()

Output:
Sales	Person Sales

Product

Apple 2 2

Dell 2 2

Hp 2 2

While	 the	previous	operation	 could	not	 return	 the	 ‘Sales	 person’	 field,	 since	 a
numeric	operation	like	‘sum’	cannot	be	performed	on	a	string,	the	count	method
returns	the	instances	of	each	product	within	both	categories.	Via	this	output,	we
can	 easily	 infer	 that	XYZ	 company	 assigns	 two	 salespersons	 per	 product,	 and
that	each	of	the	sales	persons	made	a	sale	of	the	products.	However,	unlike	the

sum	method,	 this	 count	method	 does	 not	 give	 a	 clearer	 overview	of	 the	 sales.
This	 is	why	 so	many	methods	 are	 usually	 called	 to	 explain	 certain	 aspects	 of
data.	A	 very	 useful	method	 for	 checking	multiple	 information	 at	 a	 time	 is	 the
.describe()	method.
In	[]:		#Getting	better	info	using	describe	()

		 ​				df.groupby('Product').describe()

Output:
Sales

count mean std min 25% 50% 75% max

Product

Apple 2.0 232.0 152.735065124.0 178.00 232.0 286.00 340.0

Dell 2.0 296.5 75.660426 243.0 269.75 296.5 323.25 350.0

Hp 2.0 160.0 56.568542 120.0 140.00 160.0 180.00 200.0

Now,	this	is	more	informative.	It	says	a	lot	about	the	data	at	a	glance.	Individual
products	can	also	be	selected:	df.groupby(‘Product’).describe()[‘Product	name	e.g.	‘Apple’] 	.

Concatenate,	Join	and	Merge

These	are	methods	for	combining	multiple	data	frames,	or	data	sets	into	a	single
one.	 They	 differ	 in	 syntax,	 and	 achieve	 specific	 combinations	 of	 data	 frames
based	on	the	intended	output.

Concatenation	allows	datasets	to	be	‘glued’	together,	either	row-wise	or	column-
wise.	Here,	the	dimensions	of	the	data	frames	must	be	the	same	along	the	axis	of
concatenation,	i.e.	row-wise	concatenation	requires	the	two	data	frames	to	have
the	same	number	of	columns,	and	vice	versa.

Example	76:				Let	us	create	two	example	data	frames	and	use	the	concatenate
method.

In	[]:	 ​	#	Defining	a	dictionary	of	values
		 ​	d1	=	{'A':'A1	A2	A3'.split(),'B':'B1	B2	B3'.split(),
						 ​	 ​	'C':'C1	C2	C3'.split()}
		 ​	d2	=	{'A':'A4	A5	A6'.split(),'B':'B4	B5	B6'.split(),
						 ​	 ​	'C':'C4	C5	C6'.split()}

		 ​	#	Now	the	data	frames
		 ​	df1	=	pd.DataFrame(d1,index=	'1	2	3'.split())
		 ​	df2	=	pd.DataFrame(d2,index=	'4	5	6'.split())

		 ​	#	concatenating
		 ​	pd.concat([df1,df2])				#	row-wise	axis	=	0
		 ​	pd.concat([df1,df2],axis=1,sort=True)	#	col-wise	axis	=	1
Out[]:

A B C

1 A1 B1 C1

2 A2 B2 C2

3 A3 B3 C3

4 A4 B4 C4

5 A5 B5 C5

6 A6 B6 C6

Out[]:

A B C A B C

1 A1 B1 C1 NaN NaN NaN

2 A2 B2 C2 NaN NaN NaN

3 A3 B3 C3 NaN NaN NaN

3 A3 B3 C3 NaN NaN NaN

4 NaN NaN NaN A4 B4 C4

5 NaN NaN NaN A5 B5 C5

6 NaN NaN NaN A6 B6 C6

Notice	how	the	result	of	the	row-wise	concatenation	is	just	like	placing	the	first
data	 frame	on	 top	of	 the	other.	The	 attempt	 at	 column	concatenation	 for	 these
data	frames	resulted	in	NaNs	because	they	have	varying	indices.	While	df1	has
its	 index	 from	 1-3,	 with	 corresponding	 values;	 df2	 has	 its	 own	 index	 ranging
from	 4-6.	 To	 allow	 for	 proper	 column	 concatenation,	 we	 have	 to	 specify	 a
similar	index	as	below.

In	[]:	df2.index	=	'1	2	3'.split()	#	setting	same	index	as	df1

		 ​	#	This	should	then	work
		 ​	pd.concat([df1,df2],axis=1)	#	col-wise	axis	=	1

Out[21]:

A B C A B C

1 A1 B1 C1 A4 B4 C4

2 A2 B2 C2 A5 B5 C5

3 A3 B3 C3 A6 B6 C6

Now,	 this	 is	 a	 nicely	 combined	 data	 set.	 This	 is	 more	 likely	 the	 kind	 of
concatenation	you	would	encounter	while	working	with	data	sheets,	as	it	allows
for	a	more	flexible	naming	for	the	columns,	while	sharing	similar	row-indices.

Exercise:	Change	the	last	three	column	names	in	the	above	output	table	to	‘D	E
F’,	i.e.	the	table	should	now	have	columns	‘A	B	C	D	E	F’.

Hint:	use	df2.columns	=	‘value	’ 	to	change	the	column	names.

Merge	and	Join	on	the	other	hand,	are	more	similar.	They	take	two	data	frames

and	combine	them	together	column-wise.	They	both	require	a	specification	for	a
right	and	 left	data	 frame	respectively	 to	determine	 the	organization.	Also,	 they
require	an	extra	specification	for	an	entry	point	(usually	called	a	key)	where	the
join	or	merge	operation	occurs.	While	the	Merge	and	Join	methods	are	powerful,
we	will	not	be	exploring	them.

Reading	and	Writing	data

In	 real-world	 applications,	 data	 comes	 in	 various	 formats.	 These	 are	 the	most
common	 ones:	 CSV,	 Excel	 spreadsheets	 (xlsx	 /	 xls),	 HTML	 and	 SQL.	While
Pandas	can	read	SQL	files,	 it	 is	not	necessarily	 the	best	for	working	with	SQL
databases,	 since	 there	 are	 quite	 a	 few	 SQL	 engines:	 SQL	 lite,	 PostgreSQL,
MySQL,	etc.	Hence,	we	will	only	be	considering	CSV,	Excel	and	HTML.

Read

The	pd.read_file_type(‘file_name’) 	method	is	the	default	way	to	read	files	into
the	Pandas	framework.	After	import,	pandas	displays	the	content	as	a	data	frame
for	manipulation	using	all	the	methods	we	have	practiced	so	far,	and	more.

CSV	(comma	separated	variables)	&	Excel

Create	a	CSV	file	in	excel	and	save	it	in	your	python	directory.	You	can	check
where	your	python	directory	 is	 in	 Jupyter	 notebook	by	 typing:	 pwd()	 . 	 If	 you
want	to	change	to	another	directory	containing	your	files	(e.g.	Desktop),	you	can
use	the	following	code:

In	[]:	import	os

		 ​	os.chdir('C:\\Users\\Username\\Desktop')

To	 import	 your	 CSV	 file,	 type:	 pd.read_csv(‘csv_file_name’).	 Pandas	 will
automatically	detect	the	data	stored	in	the	file	and	display	it	as	a	data	frame.	A
better	approach	would	be	to	assign	the	imported	data	to	a	variable	like	this:

In	[]:	 ​	Csv_data	=	pd.read_csv(‘example	file.csv’)
						 ​	Csv_data													#	show

Running	 this	 cell	 will	 assign	 the	 data	 in	 ‘example	 file.csv’	 to	 the	 variable
Csv_data,	which	is	of	the	type	data	frame.	Now	it	can	be	called	later	or	used	for
performing	some	of	the	data	frame	operations.

For	excel	files	(.xlsx	and	.xls	files),	the	same	approach	is	taken.	To	read	an	excel

file	named	‘class	data.xlsx’,	we	use	the	following	code:
In	[]:	 ​	Xl_data	=	pd.read_excel(‘class	data.xlsx’)
					 ​	Xl_data													#	show

This	returns	a	data	frame	of	 the	required	values.	You	may	notice	that	an	index
starting	 from	 0	 is	 automatically	 assigned	 at	 the	 left	 side.	 This	 is	 similar	 to
declaring	a	data	frame	without	explicitly	including	the	index	field.	You	can	add
index	names,	like	we	did	in	previous	examples.

Tip:	in	case	the	excel	spreadsheet	has	multiple	sheets	filled.	You	can	specify	the
sheet	you	need	to	be	imported.	Say	we	need	only	sheet	1,	we	use:		sheetname	=
‘Sheet	 1	 ’ 	 .	 For	 extra	 functionality,	 you	 may	 check	 the	 documentation	 for
read_excel() 	by	using	shift+ta	b 	.

Write

After	working	with	our	 imported	or	pandas-built	data	frames,	we	can	write	 the
resulting	data	frame	back	into	various	formats.	We	will,	however,	only	consider
writing	back	to	CSV	and	excel.	To	write	a	data	frame	to	CSV,	use	the	following
syntax:
In	[]: ​	Csv_data.to_csv(‘file	name	’,index	=	False)

This	writes	the	data	frame	‘Csv_data’	to	a	CSV	file	with	the	specified	filename
in	the	python	directory.	If	the	file	does	not	exist,	it	creates	it.

Tip:	You	 can	also	use	 this	method	 to	 create	 spreadsheet	 files	 via	Python.	The
False	index	parameter	is	to	ensure	that	the	automatic	indexing	of	Jupyter	is	not
written	to	the	file,	thereby	messing	up	its	formatting.

For	 writing	 to	 an	 excel	 file,	 a	 similar	 syntax	 is	 used,	 but	 with	 sheet	 name
specified	for	the	data	frame	being	exported.

In	[]:			Xl_data.to_excel(‘file	name.xlsx’,sheet_name	=	‘Sheet	1’)

This	writes	the	data	frame	Xl_dat	a 	to	sheet	one	of	‘file	name.xlsx	’ 	.

Html

Reading	 Html	 files	 through	 pandas	 requires	 a	 few	 libraries	 to	 be	 installed:
htmllib5,	 lxml,	 and	 BeautifulSoup4.	 Since	 we	 installed	 the	 latest	 Anaconda,
these	 libraries	 are	 likely	 to	 be	 included.	Use	 conda	 lis	 t 	 to	 verify,	 and	 conda

instal	l 	to	install	any	missing	ones.

Html	tables	can	be	directly	read	into	pandas	using	the	pd.read_html	(‘sheet	url’
) 	 method.	 The	 sheet	 url	 is	 a	 web	 link	 to	 the	 data	 set	 to	 be	 imported.	 As	 an
example,	 let	us	 import	 the	‘Failed	bank	 lists’	dataset	 from	FDIC’s	website	and
call	it	w_data.

In	[]:	w_data	=	pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')

	w_data[0]

To	display	 the	result,	here	we	used	w_data	 [0] 	 .	This	 is	because	 the	 table	we
need	 is	 the	 first	 sheet	element	 in	 the	webpage	source	code.	 If	you	are	 familiar
with	HTML,	you	can	easily	identify	where	each	element	lies.	To	inspect	a	web
page	source	code,	use	Chrome	browser.	On	the	web	page	>>	right	click	>>	then,
select	‘view	page	source	’ 	.	Since	what	we	are	looking	for	is	a	table-like	data,	it
will	be	specified	like	that	in	the	source	code.	For	example,	here	is	where	the	data
set	is	created	in	the	FDIC	page	source	code:

FDIC	page	source	via	chrome

This	 section	 concludes	 our	 lessons	 on	 the	 Pandas	 framework.	 To	 test	 your
knowledge	 on	 all	 that	 has	 been	 introduced,	 ensure	 to	 attempt	 all	 the	 exercises
below.	 In	 the	 next	 chapter,	 we	 will	 be	 exploring	 some	 data	 visualization
frameworks.

For	 the	 exercise,	 we	 will	 be	 working	 on	 an	 example	 dataset.	 A	 salary
spreadsheet	from	Kaggle.com.	Go	ahead	and	download	the	spreadsheet	from	this
link:	www.kaggle.com/kaggle/sf-salaries

http://www.kaggle.com/kaggle/sf-salaries

Note:	You	might	be	required	to	register	before	downloading	the	file.	Download
the	file	to	your	python	directory	and	extract	the	file.

Exercises:	We	will	be	applying	all	we	have	learned	here.

1.	 Import	pandas	as	pd

2.	 Import	 the	CSV	 file	 into	 Jupyter	 notebook,	 assign	 it	 to	 a	 variable
‘Sal’,	and	display	the	first	5	values.

Hint:	 use	 the	 .head() 	method	 to	 display	 the	 first	 5	 values	 of	 a	 data
frame.	 Likewise,	 .tail() 	 is	 used	 for	 displaying	 the	 last	 5	 results.	 To
specify	more	values,	pass	‘n=value’	into	the	method.

3.	 What	is	the	highest	pay	(including	benefits)?				Answer:	567595.43

Hint:	Use	data	frame	column	indexing	and	.max() 	method.

4.	 According	to	 the	data,	what	 is	‘MONICA	FIELDS’s	Job	title,	and
how	much	does	she	make	plus	benefits?	Answer:		Deputy	Chief	of
the	Fire	Department,	and	$	261,366.14	.

Hint:	 Data	 frame	 column	 selection	 and	 conditional	 selection	 works
(conditional	 selection	 can	 be	 found	 under	 Example	 72.	 Use	 column
index	==’string’	for	the	Boolean	condition).

5.	 Finally,	who	earns	the	highest	basic	salary	(minus	benefits),	and	by
how	 much	 is	 their	 salary	 higher	 than	 the	 average	 basic	 salary.
Answer:	 NATHANIEL	 FORD	 earns	 the	 highest.	 His	 salary	 is
higher	than	the	average	by	$	492827.1080282971.

Hint:	 Use	 the	 .max() 	 ,	 and	 .mean() 	 methods	 for	 the	 pay	 gap.
Conditional	selection	with	column	indexing	also	works	for	the	employee
name	with	the	highest	pay.

Best	of	luck.

Chapter	3

Data	Visualization	with	Python

Data	visualization	can	be	described	as	the	various	ways	by	which	analyzed	data
i.e.	 information	 is	 displayed.	 Sometimes,	 even	 well-analyzed	 data	 is	 not
informative	 enough	 at	 a	 glance.	 With	 data	 visualization,	 which	 includes	 line
graphs,	bar	charts,	pictograms,	etc.	the	results/	analysis	being	presented	become
less	abstract	 to	 the	end-user,	and	decision-making	 is	enhanced.	 In	 this	chapter,
we	will	be	learning	various	techniques	for	displaying	the	results	of	our	analysis
with	NumPy	and	Pandas	frameworks.

Matplotlib
This	is	a	python	library	for	producing	high-quality	2D	plots.	For	those	that	have
some	MATLAB	experience,	the	plotting	techniques	and	visualizations	here	will
seem	familiar.	Matplotlib	offers	a	lot	of	flexibility	with	plots,	in	terms	of	control
over	 things	 like	 the	 axes,	 fonts,	 line	 styles	 and	 size,	 etc.	 However,	 all	 these
require	writing	extra	lines	of	code.	So,	if	you	do	not	mind	going	the	extra	mile
(with	typing	code)	to	fully	specify	your	plots,	then	matplotlib	is	your	friend.	For
extra	 information	 about	 this	 package,	 visit	 the	 official	 page	 at
www.matplotlib.org

There	are	basically	two	approaches	to	plotting	data	in	matplotlib:	The	Functional
and	 the	 object-oriented	 (OO)	 approach,	 respectively.	You	might	 encounter	 the
two	terms	consistently	as	you	interact	with	programmers	and	other	programming
languages,	but	 they	are	 just	 two	 slightly	different	 approaches	 to	programming.
We	 will	 only	 be	 considering	 the	 functional	 approach	 here,	 as	 it	 is	 easy	 to
understand	for	beginners	and	also	requires	writing	fewer	lines	of	code.	The	OO
method,	 however,	 offers	 more	 control	 over	 the	 plots	 at	 the	 consequence	 of
writing	more	lines	of	code.	

To	start	off,	let	us	create	a	simple	cosine	plot	using	the	functional	approach.

First,	let	us	import	the	relevant	libraries	and	create	plot	data:
In	[]:	import	matplotlib.pyplot	as	plt	

http://www.matplotlib.org

						import	numpy	as	np

						%matplotlib	inline

						#	creating	plot	values

						x	=	np.linspace(0,10)		#	x-axis/time-scale

						y	=	np.cos(x)				#	corresponding	cosine	values

The	%matplotlib	inlin	e 	option	in	the	code	ensures	all	our	plots	are	displayed	as
we	 run	 each	 cell.	 If	 you	 are	 running	 a	 different	 python	 console,	 you	 can	 put
plt.show() 	at	the	end	of	your	code	to	display	your	plots.	plt.show() 	is	the	print(
) 	function	equivalent	for	matplotlib	plots.

Functional	method
In	[]:	#	functional	plot

		 ​	plt.plot(x,y)

Out[]:	[<matplotlib.lines.Line2D	at	0x25108cf27f0>]

Notice	 that	 we	 get	 an	Out[] 	 statement.	 This	 is	 because	we	 did	 not	 print	 the
result	using	plt.show() 	.	While	this	is	not	significant	if	you	are	using	Jupyter,	it
might	be	required	for	other	consoles.

We	can	also	plot	multiple	functions	in	one	graph.
In	[]:	 ​	z	=	np.sin(x)		#	Adding	an	extra	plot	variable
		 ​	plt.plot(x,y,x,z);plt.show()

To	 print	 multiple	 graphs,	 just	 pass	 each	 argument	 to	 the	 plot	 statement,	 and
separate	the	plots	with	commas.

To	make	our	graphs	more	meaningful,	we	can	label	the	axes	and	give	the	graph	a
title.
In	[]:	plt.plot(x,y,x,z)

	plt.xlabel('Time	axis')		#	labelling	x-axis

	plt.ylabel('Magnitude')		#	labelling	y-axis

	plt.title('Sine	and	Cosine	waves')		#	graph	title

	plt.show()		#	printing

Output:

Now,	this	is	a	better	figure.	Since	we	added	more	than	one	plot,	there	is	an	extra
functionality	called	‘legend’	which	helps	differentiate	between	the	plots.

The	 legend	 function	 takes	 in	 two	 arguments.	 The	 first	 is	 usually	 a	 string
argument	for	labeling	the	graphs	in	order.	The	second	is	for	extra	functionality,
like	 where	 the	 legend	 should	 be.	 The	 location	 argument	 is	 specified	 using
‘loc=value’.	 For	 value	 =	 1,	 upper	 right	 corner;	 2,	 for	 upper	 left	 corner;	 3,	 for
lower	left	corner;	and	4	for	the	lower	right	corner.	However,	if	you	would	rather
let	matplotlib	decide	the	best	location,	use	‘value=0’.

In	[]:	plt.plot(x,y,x,z)

		 ​	plt.xlabel('Time	axis')
		 ​	plt.ylabel('Magnitude')

		 ​	plt.title('Sine	and	Cosine	waves')
		 ​	plt.legend(['y','z'],loc=0)				#
loc=0	means	best	location

		 ​	plt.show()

Output:

Assuming	we	wish	to	plot	both	the	cosine	and	sine	wave	above,	but	side	by	side.

We	can	use	the	subplot	command	to	do	this.	Think	of	the	subplot	as	an	array	of
figures	with	a	specification	of	the	number	of	rows	and	columns.	So,	if	we	want
just	 two	 graphs	 beside	 each	 otherhat	 can	 be	 considered	 as	 a	 1	 row,	 and	 2
columns	array.

In	[]:	 ​	#	subplotting
		 ​	plt.subplot(1,2,1)				#	plot	1
		 ​	plt.plot(x,y)
		 ​	plt.title('Cosine	plot')

		 ​	plt.subplot(1,2,2)					#	plot	2
		 ​	plt.plot(x,z)
		 ​	plt.title('Sine	plot')

		 ​	plt.tight_layout()			#	avoid	overallping	plots
		 ​	plt.show()

Tip:	The	tight_layout()	line	ensures	that	all	subplots	are	well	spaced.	Always	use
this	 when	 sub-plotting	 to	 make	 your	 plots	 nicer.	 Try	 removing	 that	 line	 and
compare	the	output!

Output:

To	explain	 the	 subplot	 line	 i.e.	 subplot(1,2,1)	and	subplot(1,2,2):	The	 first	 two
values	are	the	number	of	rows	and	columns	of	the	subplot.	As	seen	in	the	above
result,	the	plot	is	on	one	row,	and	two	columns.	The	last	value	specifies	the	order
of	the	plot;	hence	(1,2,1)	translates	to	plotting	that	figure	in	the	first	row,	and	the
first	column	out	of	two.

We	 can	 specify	 the	 line	 colors	 in	 our	 plots,	 as	 well	 as	 the	 line	 style.	 This	 is
passed	as	a	 string	after	 the	plot	argument.	Since	all	 the	plot	options,	 including
marker	 style	 and	 the	 likes	 are	 exactly	 same	 as	 for	 Matlab,	 here	 is	 a	 link	 to
Matlab	plot	documentation	to	explore	all	the	extra	customization	feature	you	can
port	 to	 your	 matplotlib	 plots:
https://www.mathworks.com/help/matlab/ref/plot.html#btzpndl-1

Let	us	change	the	color	and	fonts	in	our	subplots	to	illustrate	this.
In	[]:	plt.subplot(1,2,1)				#	plot	1

	plt.plot(x,y,'r-x')			#	red	plot	with	-x	marker

	plt.title('Cosine	plot')

	 ​	plt.subplot(1,2,2)				#	plot	2
	plt.plot(x,z,'g-o')			#	green	plot	with	-o	marker

	plt.title('Sine	plot')

	plt.tight_layout()			#	still	avoiding	overallping	plots

https://www.mathworks.com/help/matlab/ref/plot.html#btzpndl-1

	plt.show()

Output:

Exercise:	Now	that	you	have	learned	how	to	plot	using	the	functional	approach,
test	your	skills.

Plot	this:

Tip:	use	np.arange(0,10,11) 	for	the	x-axis.

After	creating	your	plot,	you	may	need	to	import	it	into	your	documents	or	just
save	it	on	your	device.	To	do	this,	you	can	right-click	the	image	in	your	Jupyter
notebook	 and	 click	 copy.	 Then,	 you	 can	 paste	 the	 copied	 image	 into	 your
document.

If	you	prefer	to	save,	you	can	use	the	plt.savefig(‘figurename.extension’,	DPI	=
value) 	method.	Here,	figurename	is	the	desired	name	for	your	saved	image;	The
extension	 is	 the	 desired	 format	 i.e.	 PNG,	 JPG,	 BMP,	 etc.	 Finally,	 the	 DPI
specifies	 the	 quality	 of	 the	 image,	 the	 higher	 the	 better.	 Usually	 for	 standard
printing	quality,	about	300	is	good	enough.

Tip:	Learning	a	bit	more	about	these	specifications	can	really	help	you	generate
better	images	from	your	plots.

Seaborn
This	is	another	data	visualization	library	that	extends	the	graphical	range	of	the
matplotlib	 library.	 A	 lot	 of	 methods	 from	 matplotlib	 are	 applicable	 here,	 for
customizing	 plots.	However,	 it	 generates	 high	 quality,	 dynamic	 plots	 in	 fewer
lines	of	code.

Seaborn	 is	more	optimized	 for	plotting	 trends	 in	datasets,	 and	we	are	going	 to
explore	 a	 dataset	 using	 this	 library.	 Since,	 Seaborn	 is	 pre-loaded	 with	 a	 few
datasets	(it	can	call	and	load	certain	datasets	from	its	online	repository),	we	will
just	load	up	one	of	these	for	our	example.

Example	77	:	Loading	a	seaborn	dataset	and	plotting	trends

As	with	other	packages,	we	have	to	import	seaborn	using	the	standard	variable
name	‘sns’.

In	[]:	#	importing	seaborn

		 ​	import	seaborn	as	sns
		 ​	%matplotlib	inline

Next,	we	will	load	the	popular	‘tips’	dataset	from	Seaborn.	This	dataset	contains
information	about	a	restaurant,	the	tips	given	to	the	waiters,	amount	of	tip,	size
of	the	customer	group	(e.g.	a	party	of	3	people)	etc.

In	[]:	 ​	#	loading	a	dataset	from	seaborn
		 ​	tips_dataset	=	sns.load_dataset('tips')
		 ​	tips_dataset.head()

Out[]:

total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2

1 10.34 1.66 Male No Sun Dinner 3

2 21.01 3.50 Male No Sun Dinner 3

3 23.68 3.31 Male No Sun Dinner 2

4 24.59 3.61 Female No Sun Dinner 4

Next,	we	can	find	trends	in	the	data	using	different	kinds	of	plots.	Let	us	use	the
dist_plot	(distribution	plot)	to	observe	how	the	total_bill	is	distributed	across	the
dataset.

In	[]:	 ​	#Use	distplot
		 ​	sns.distplot(tips_dataset['total_bill'],bins	=	30,kde=False)

Out[]:<matplotlib.axes._subplots.AxesSubplot	at	0x28d3867d6d8>

The	distplot	 shows	 the	 distribution	 of	 certain	 trends	within	 data.	According	 to
the	plot	above,	we	can	infer	that	most	of	the	bills	are	within	the	range	of	$10	-
$20,	 since	 they	 have	 the	 tallest	 bins	 within	 the	 distribution.	 You	 may	 notice
some	 extra	 arguments	 in	 the	 distplot	 code,	 the	 bins	 argument	 controls	 the
number	 of	 histograms	 that	 are	 shown	 within	 the	 population.	 The	 higher	 the
value,	the	more	histograms.	Although,	sometimes	higher	can	make	the	data	less
obvious	 to	 read,	 so	 finding	 a	 balance	 is	 important.	 The	 next	 argument	 is	 the
‘kde’,	 which	 means	 kernel	 density	 estimate.	 It	 is	 sometimes	 preferred	 over
histograms,	 or	 along	with	 histograms	 for	 a	more	 accurate	 interpretation	 of	 the
data.	It	is	mostly	an	estimate	of	the	probability	density	function	of	any	variable
within	the	distribution,	more	like	the	histogram	but	smoother.	You	can	read	up
for	a	more	thorough	statistical	background	on	some	of	these	things.

Another	 useful	 plot	 is	 the	 relplot,	 which	 shows	 the	 relationship	 between	 two
variables	within	a	data_set.	It	is	good	for	comparison,	and	can	sort	results	based
off	categories	i.e.	sex,	age,	etc.	within	the	data.

Let	us	demonstrate	how	the	total_bill	relates	with	the	estimated	tip,	and	sort	by
category	male/female.

In	[]:	#	estimating	tip	with	respect	to	total_bill

		 ​	sns.relplot(x	="total_bill",	y="tip",	data	=	tips_dataset)

out	[]:

Here	 is	 a	 basic	 plot	without	 the	 category	 argument.	 This	 tells	 us	 that	 the	 tips
generally	 increase	with	 respect	 to	 the	 total	 bill.	The	higher	 bills	 correspond	 to
higher	tips,	and	lower	bills	to	lower	tips.	Adding	categories	makes	the	data	more
interesting	as	we	can	see	the	category	that	tips	more	or	less.

In	[]:	sns.relplot(x	="total_bill",	y="tip",	data	=	tips_dataset,	hue	=	'sex')

Out[]:	<seaborn.axisgrid.FacetGrid	at	0x28d3b9cedd8>

See	how	this	 is	a	more	 informative	data.	This	 tells	how	male	customers	 tipped
higher	per	total_bill	on	average	than	the	females.

Now	 this	 idea	 can	 be	 extended	 and	 applied	 to	 more	 advanced	 data.	 You	 can
further	 explore	 various	 plotting	 options	 with	 relplot	 via	 this	 link:
www.seaborn.pydata.org/tutorial/relational.html

The	relplot	is	even	extended	with	the	pairplot	option,	which	relates	everything	in
a	 data	 set	 in	 one	 plot.	 It	 is	 a	 great	way	 to	 get	 a	 quick	 overview	 of	 important

http://www.seaborn.pydata.org/tutorial/relational.html

trends	within	your	data.
In	[]:	sns.pairplot(tips_dataset,hue	=	'sex',	palette	=	'coolwarm')

Out[]:<seaborn.axisgrid.PairGrid	at	0x28d412f2e48>

See	how	easy	it	 is	to	observe	the	variations	between	the	three	main	parameters
within	the	data:	total_bill,	tip	and	size.	The	category	‘sex’	has	also	been	passed
to	observe	 the	 trends	 in	 that	wise.	For	each	 instance	where	a	variable	 is	being
compared	 with	 itself,	 we	 get	 a	 kernel	 density	 estimate,	 or	 a	 histogram	 if
specified.	The	other	comparisons	are	made	via	scatterplots.

From	the	pairplot,	we	can	quickly	infer	that	the	tips	do	not	necessarily	increase
with	increasing	party	size,	considering	that	the	largest	tip	is	within	the	party	size
of	 3.	 This	 inference	 can	 be	 found	 by	 observing	 graphs	 2,3,	 and	 3,2
(row,column).

You	may	wonder,	 could	 we	 also	 find	 the	 population	 size	 within	 a	 dataset	 by
category?	Well,	countplot	is	very	useful	for	that.	It	is	common	to	see	such	kinds
of	plots	within	a	document	like	the	US	census	report.	It	basically	displays	a	bar
chart,	with	 the	height	corresponding	 to	 the	population	of	a	category	within	 the
dataset.

In	[]:	 ​	sns.countplot(x	='sex',	data	=	tips_dataset)
Out[]:	<matplotlib.axes._subplots.AxesSubplot	at	0x28d41990978>

To	validate	this,	we	can	use	the	pandas	groupby	method	along	with	count.	Hope
you	can	recall	these	methods!

In	[]:	import	pandas	as	pd			#importing	pandas	to	use	groupby()

		 ​	tips_dataset.groupby('sex').count()

Out[]:

total_bill tip smoker day time size

sex

Male 157 157 157 157 157 157

Female 87 87 87 87 87 87

As	expected,	notice	how	the	male	and	female	counts	of	157	and	87	respectively
correspond	with	the	countplot	above.

These	 and	many	more	 are	 data	 visualization	 capabilities	 of	Seaborn.	For	 now,
these	 are	 some	 basic	 examples	 to	 get	 you	 started;	 you	 may	 visit	 the	 seaborn
official	documentation	gallery	 to	explore	more	plots	styles	and	options	via	 this
link:	https://seaborn.pydata.org/examples/index.html

Pandas
Well,	it's	our	friendly	pandas	again.	The	library	also	has	some	highly	functional
visualization	 capabilities.	 It	 is	 quite	 intuitive	 at	 the	 time	 to	 use	 these	 built-in
visualization	 options	 while	 working	 with	 pandas,	 unless	 something	 more
specialized	is	required.

First,	we	import	a	few	familiar	libraries:
In	[]:	#	importing	all	necessary	libraries

		 ​	import	numpy	as	np
		 ​	import	pandas	as	pd
		 ​	import	matplotlib.pyplot	as	plt
		 ​	%matplotlib	inline
		 ​	import	seaborn	as	sns

You	may	wonder	 why	 all	 the	 other	 libraries	 apart	 from	 Pandas	 are	 imported.
Well,	 your	 outputs	 will	 look	 much	 better	 with	 these	 libraries	 synchronized.
Pandas	plots	using	the	matplotlib	library	functionality	--	even	though	it	doesn’t
directly	call	it,	and	the	seaborn	library	makes	the	graphs/plots	look	better.

Let	us	work	with	a	different	dataset.	We	can	create	our	own	data	frame	and	call
plots	off	it.
We	will	create	a	data	frame	from	a	uniform	distribution.

In	[]:	#	let	us	create	our	dictionary

		 ​	d	=	{'A':np.random.rand(5),
						 ​						'B':np.random.rand(5),
						 ​						'C':np.random.rand(5),
						 ​						'D':np.random.rand(5)}

		 ​	#	now	creating	a	data	frame

https://seaborn.pydata.org/examples/index.html

		 ​	df	=	pd.DataFrame(d)
		 ​	df

Out[]:

A B C D

0 0.982520 0.469717 0.973735 0.397019

1 0.602272 0.148608 0.433559 0.929647

2 0.566168 0.737165 0.040840 0.435978

3 0.632309 0.772419 0.341389 0.603980

4 0.949631 0.906318 0.895018 0.679825

With	 our	 data	 frame,	 we	 can	 now	 observe	 trends.	 To	 create	 a	 histogram	 plot
using	 pandas,	 use	 the	 hist()	 function.	 Also,	 you	 can	 pass	 some	 matplotlib
arguments	like	‘bins’

In	[]:	df[['A']].hist(bins=30)

Out[]:	array([[<matplotlib.axes._subplots.AxesSubplot	object	at	0x0000028D432E50B8>]],

						dtype=object)

We	can	do	an	area	plot	of	the	values	as	well,	which	is	essentially	a	line	graph	of

the	values	with	the	area	underneath	shaded:
In	[]:	df.plot.area()

Out[]:	<matplotlib.axes._subplots.AxesSubplot	at	0x28d433b2438>

The	 transparency	 settings	 of	 this	 graph	 can	 be	 set	with	 the	 argument	 ‘alpha	=
value’.

We	 can	 also	 do	 a	 bar	 plot	 which	 can	 categorize	 our	 data	 based	 off	 of	 our
row_index.

In	[]:	df.plot.bar()

Out[]:	<matplotlib.axes._subplots.AxesSubplot	at	0x28d435fe828>

See,	 our	 x-axis	 has	 the	 row	 index,	 and	 the	 y-axis	 shows	 the	 value	 of	 in	 each
column	per	index.

This	kind	of	plot	can	be	useful	for	things	like,	sales	trends	per	month	(with	sales
as	values	and	months	as	row_index),	school	attendance	per	day,	etc.	Our	current
plots	might	not	be	too	informative	since	we	are	using	random	data,	however,	an
actual	data	set	would	reveal	more	details.

If	you	prefer,	the	bar	plots	can	be	stacked	to	give	better	visualization:
In	[]:	df.plot.bar(stacked	=	True,	alpha	=	0.8)

Out[]:	<matplotlib.axes._subplots.AxesSubplot	at	0x28d43a6e048>

This	kind	of	plot	gives	us	an	idea	of	the	total	values	per	category,	as	well	as	the
percentages	that	account	for	that	total.	We	can	still	observe	that	value	in	column
‘A’	contributes	the	most	in	category	‘0’,	followed	by	‘C’,	and	so	forth.

Line	plot:
In	[]:	df.plot.line(y	=['B','C'])

Out[]:	<matplotlib.axes._subplots.AxesSubplot	at	0x28d43b6fc88>

The	line	plot	takes	positional	arguments	of	the	x	and	y-axis.	In	this	case,	the	y-
axis	 has	 been	 specified.	Other	 specifications	 like:	 line	width	 ‘lw’,	 figsize,	 etc.
can	be	included	as	well.

We	 can	 also	 make	 a	 scatterplot,	 box	 plots	 and	 a	 few	 other	 plots	 that	 can	 be
useful	 for	 interpreting	 data.	 Depending	 on	 your	 choice,	 and	 proficiency	 with
these	plotting	techniques,	you	will	be	able	to	master	data	and	the	information	it
contains.

Go	 ahead	 and	 check	 these	 useful	 links	 for	 extra	 information	 on	 plotting	 with
pandas:
https://towardsdatascience.com/introduction-to-data-visualization-in-python-

89a54c97fbed
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html

With	 these	 data	 visualization	 options,	 you	 may	 start	 to	 test	 your	 skills	 by
displaying	 data	 in	 a	 whole	 range	 of	 formats.	 It	 is	 quite	 obvious	 that	 a	 good
knowledge	 of	 statistical	methods	would	 be	 very	 useful	 for	 excelling	 as	 a	 data
scientist,	since	data	science	mostly	deals	with	statistical	data.	While	statistics	can
be	intimidating	without	graphical	aides,	your	own	approach	will	be	better	as	you
now	have	the	full	potential	of	matplotlib,	seaborn	and	pandas	to	visualize	your
lessons.	For	 interactive	visualization	options	(not	covered	here),	you	can	check
out	 ‘plotly	 and	 cufflinks’	 libraries	 from	 this	 link:	 https://plot.ly/ipython-
notebooks/cufflinks/

In	 the	 next	 section,	 however,	 we	 give	 a	 brief	 introduction	 into	 the	world	 and
concepts	of	machine	learning.

https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://plot.ly/ipython-notebooks/cufflinks/

Chapter	4

Machine	Learning	with	Python

So,	what	is	machine	learning?

Machine	 learning	 is	 an	 advanced	 form	 of	 data	 analysis	 and	 computation	 that
utilizes	 the	 exceptional	 processing	 speed	 and	pattern	 recognition	 techniques	of
computers	for	finding	and	learning	new	trends	in	data.	Quite	long-winded	huh?

Simply	put,	it	is	an	artificial-intelligence-inspired	technique	of	programming	that
allows	computers	to	improve	their	learning	capabilities	through	the	data	they	are
fed,	or	can	access.	This	is	much	like	the	way	human	beings	develop	through	life.

While	Machine	learning	is	not	a	new	concept	or	 technology	--	 the	 term	was	in
fact	first	introduced	at	IBM	in	1959	by	American	gaming	and	AI	expert,	Arthur
Samuel	 –	 it	 has	 recently	 gained	 a	 lot	 of	 interests	 in	 terms	 of	 research	 and
applications	 across	 various	 fields.	 This	 is	 mostly	 due	 to	 the	 improvement	 in
processing	 capabilities	 of	 modern	 generation	 computers,	 along	 with	 portable,
high-level,	 and	 fast	 programming	 languages	 that	 support	 advanced	 pattern
recognition.	 The	 concept	 behind	 the	 technique	 is	 consistently	 being	 improved
and	tested,	and	it	will	be	a	key	player	in	the	bigger	technology	revolution	of	the
future.

Okay,	machine	learning	is	cool.	How	is	it	related	to	data	science?
Imagine	 this:	 You	 are	 a	 football	 player	 (or	 soccer	 in	 some	 countries,	 good
grief!),	 and	 you	 play	 defense.	 You	 have	 tried	 marking	 the	 opposing	 team’s
winger	three	times,	and	at	each	encounter,	he	did	a	step-over	and	dribbled	to	the
left.	Now,	 your	 team	 is	 defending,	 and	 that	 striker	 takes	 on	 your	 co-defender;
you	are	close	enough	to	shout	instructions	at	him/her,	what	do	you	say?

Mark	to	the	left!!!

Right?	Unfortunately,	he	dribbles	to	the	right	and	scores.	Everyone	blames	you.

Okay,	 that	 story	has	 a	bad	ending,	but	 the	point	 is	 that	you	made	a	prediction
based	 on	 what	 you	 have	 learned	 about	 that	 striker	 during	 your	 previous

encounters.

What	 if,	 before	 the	 game,	 you	 had	watched	 year-long	 footage	 of	 that	 striker’s
dribbling	techniques	and	tricks?	They	would	have	a	very	low	chance	of	getting
past	you,	right?	How	about	10	years	long	footage	(which	you	could	binge	watch
like	The	Flash!)?	No	chance,	at	all!

This	 is	 where	 the	 capability	 of	 machine	 learning	 applies	 to	 data	 science.
Computers,	 while	 not	 as	 smart	 as	 humans,	 are	 exceptionally	 great	 at	 finding
trends	(of	course	they	are,	computer	operations	are	all	about	pattern	recognition
via	 one’s	 and	 zero’s).	 Now,	 imagine	 that	 machine	 having	 access	 to	 a	 large
database,	like	all	the	tweets	on	twitter	for	the	past	5	years.	It	would	learn	quite	a
lot	 about	 pop-culture,	 that’s	 for	 sure	 (Financial	 stock	 predictions,	 fraud
detection,	 etc.).	 These	 are	 the	 most	 popular	 applications	 of	 machine	 learning,
and	the	technique	is	based	off	extracting	information	from	data;	data	science!

It	is	thus	important	for	any	current	or	aspiring	data	scientist	to	join	the	growing
machine	 learning	 community,	 and	 contribute	 a	 quota	 to	 improving	 the
technology.	There	are	a	few	programming	tools	that	are	optimized	for	machine
learning,	and	python	is	one	of	those.

Python	and	machine	learning
As	with	most	applications	of	python,	there	is	a	library	for	machine	learning	and
it’s	called	Scikit	Learn.	The	Scikit	learn	package	is	most	likely	included	in	your
distribution	of	anaconda,	and	you	can	go	ahead	and	verify	with	conda	lis	t 	at	the
anaconda	 prompt.	You	 can	 check	 out	 Scikit-learn’s	 official	 documentation	 via
this	link:	https://scikit-learn.org/stable/

Types	of	machine	learning
There	 are	 currently	 four	 generalized	 categories	 of	 machine	 learning,	 and	 this
knowledge	 is	 important	 depending	 on	 the	 application	 in	mind.	We	 have:	 The
supervised,	 semi-supervised,	 un-supervised	 and	 Reinforcement	 machine
learning.

In	 supervised	 learning,	 the	 desired	 output	 is	 known	 by	 the	 trainer	 (you,	 or
whoever	 is	 behind	 the	 keyboard).	 The	machine	 is	 trained	 using	 labeled	 inputs
which	 it	 associates	 with	 corresponding	 outputs.	 Through	 this,	 the	 machine
develops	a	predictive	model	for	linking	those	inputs	with	specific	outputs	over	a
period	 of	 iterative	 learning.	 It	 is	 not	 so	 different	 from	 the	 way	 we	 learn	 in	 a

https://scikit-learn.org/stable/

classroom,	with	a	 teacher	available	 to	correct	mistakes.	This	 is	 the	easiest,	but
usually	expensive	approach	to	machine	learning.

For	unsupervised	learning,	there	is	no	specific	goal	in	mind.	The	trainer	at	times
does	not	know	the	right	answer,	and	the	computer	only	finds	interesting	trends	in
the	data	based	on	a	 training	algorithm	 (usually	a	 clustering	 technique).	This	 is
similar	to	the	informal	learning	process	in	humans,	where	we	learn	based	on	our
interaction	with	our	environment.

The	 semi-supervised	approach	 is	 just	 a	 scaled-down	version	of	 the	 supervised,
which	 is	 useful	 in	 the	 absence	 of	 a	 complete	 labeled	 training	 data	 set.	 In	 this
case,	 the	 machine	 has	 to	 make	 some	 approximations	 to	 compensate	 for	 the
unlabeled	data.	It	is	cheaper	than	supervised	learning,	but	slower	and	relatively
less	efficient.

Finally,	the	reinforcement	learning	technique	is	a	trial-and-error	approach	based
on	 the	 points-reward	 system	 in	 gaming	 (It	 is	 actually	 used	 in	 new	 gaming
engines	 for	 creating	 competitive	 bosses).	 Here,	 the	 goal	 is	 to	 find	 the	 best
possible	 route	 to	 achieve	 a	 goal.	 This	 includes	 using	 the	minimum	 resources,
while	 maximizing	 time.	 It	 is	 also	 very	 useful	 in	 modern	 robotics.	 Here,	 the
machine	learns	from	its	experience	while	interacting	with	the	environment.

All	 of	 these	 applications	 of	 machine	 learning	 are	 possible,	 and	 ready	 for
exploring	via	Scikit	 learn	with	python.	All	 you	need	 is	 a	 good	 resource,	 time,
dedication	and	all	 the	knowledge	of	basic	data	 analysis	 and	visualization	 from
the	previous	sections	of	this	book;	this	is	because	data	cleaning	and	preparation
is	a	big	part	of	machine	learning.

Machine	 learning,	 like	 other	 elements	 of	 data	 science	 requires	 a	 good
background	in	statistical	analysis.	Things	like	regression	analysis	i.e.	linear	and
logistic	regression,	K-means	clustering,	K-NN	(nearest	neighbor),	etc.	Here	is	a
link	to	download	a	good,	and	free	book	that	can	introduce	you	to	some	of	these
statistical	 concepts:http://www-
bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

Conclusion

We	hope	you	have	learned	a	ton	from	this	book.	The	mastery	of	a	skill	is	not	just
in	 knowing,	 but	 continuous	 practice,	 wherein	 lies	 uniqueness	 of	 skill	 and
competence.	With	 time,	 you	 will	 keep	 pursuing	 that	 never-ending	 expanse	 of
knowledge	that	is	data	science.	At	least,	you	are	no	longer	a	novice!

	Introduction
	Outline:
	Chapter 1: Python basics
	Chapter 2: Data analysis with Python
	Chapter 3: Data Visualization with Python
	Chapter 4: Bonus chapter – Introduction to Machine learning with Python

	Chapter 1: Python Basics
	Chapter 1: Python Basics
	Python History
	Installing Python
	Windows:
	Mac/Linux Os:
	Windows:
	The Anaconda navigator

	Coding with Python: The rudiments
	Statements, Commands, and Expressions
	Comments
	Python data types
	Numbers
	Strings
	Lists
	Tuples
	Dictionaries
	Booleans
	Conditional statements and Loops
	Functions

	Chapter 2: Data Analysis with Python
	Chapter 2: Data Analysis with Python
	NumPy
	Package Installation
	Manipulating arrays
	Indexing and selecting arrays

	Pandas
	Series
	Data frames
	Missing Data
	Group-By
	Concatenate, Join and Merge
	Reading and Writing data

	Chapter 3: Data Visualization with Python
	Chapter 3: Data Visualization with Python
	Matplotlib
	Seaborn
	Pandas

	Chapter 4: Machine Learning with Python
	Chapter 4: Machine Learning with Python
	So, what is machine learning?
	Okay, machine learning is cool. How is it related to data science?
	Python and machine learning
	Types of machine learning

	Conclusion

