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Preface
Artificial Intelligence (AI) is the newest emerging and disruptive technology among
varied businesses, industries, and sectors. This book demonstrates AI projects in Python,
covering modern techniques that make up the world of AI.

This book begins with building your first prediction model using the popular Python
library, scikit-learn. You will understand how to build a classifier using effective machine
learning techniques: random forest and decision trees. With exciting projects on predicting
bird species, analyzing student performance data, song genre identification, and spam
detection, you will learn the fundamentals and various algorithms and techniques that
foster the development of such smart applications. You will also understand deep learning
and the neural network mechanism through these projects with the use of the Keras library.

By the end of this book, you will be confident to build your own AI projects with Python
and be ready to take on more advanced content as you go ahead.

Who this book is for
This book is for Python developers who want to take their first step in the world of artificial
intelligence using easy-to-follow projects. Basic working knowledge of Python
programming is expected so that you can play around with the code.

What this book covers
, Building Your Own Prediction Models, introduces classification and techniques for

evaluation, and then explains decision trees, followed by a coding project in which a
predictor for student performance is built.

, Prediction with Random Forests, looks at random forests and uses them in a
coding project for classifying bird species.

, Applications for Comment Classification, introduces text processing and the bag-of-
words technique. Then shows how this technique can be used to build a spam detector for
YouTube comments. Next, you will learn about the sophisticated Word2Vec model and
practice it with a coding project that detects positive and negative product, restaurant, and
movie reviews.
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, Neural Networks, covers a brief introduction to neural networks, proceeds with
feedforward neural networks, and looks at a program to identify the genre of a song with
neural networks. Finally, you will revise the spam detector from earlier to make it work
with neural networks.

, Deep Learning, discusses deep learning and CNNs. You will practice
convolutional neural networks and deep learning with two projects. First, you will build a
system that can read handwritten mathematical symbols and then revisit the bird species
identifier and change the implementation to use a deep convolutional neural network that
is significantly more accurate.

To get the most out of this book
You need to have a basic understanding of Python and its scientific computing1.
libraries
Get Jupyter Notebook installed, preferably via Anaconda2.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux
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The code bundle for the book is also hosted on GitHub
at 

. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: 

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The  file shows class IDs with the bird species names."

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this.

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email  and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at  with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .
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Building Your Own Prediction

Models
Our society is more technologically advanced than ever. Artificial Intelligence (AI)
technology is already spreading throughout the world, replicating humankind. The
intention of creating machines that could emulate aspects of human intelligence such as
reasoning, learning, and problem solving gave birth to the development of AI technology.
AI truly rivals human nature. In other words, AI makes a machine think and behave like a
human. An example that can best demonstrate the power of this technology would be the
tag suggestions or face-recognition feature of Facebook. Looking at the tremendous impact
of this technology on today's world, AI will definitely become one of the greatest
technologies out there in the coming years.

We are going to be experimenting with a project based on AI technology, exploring
classification using machine learning algorithms along with the Python programming
language. We will also explore a few examples for a better understanding.

In this chapter, we are going to explore the following interesting topics:

An overview of the classification technique
The Python scikit library
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Classification overview and evaluation
techniques
AI provides us with various amazing classification techniques, but machine learning
classification would be the best to start with as it is the most common and easiest
classification to understand for the beginner. In our daily life, our eyes captures millions of
pictures: be they in a book, on a particular screen, or maybe something that you caught in
your surroundings. These images captured by our eyes help us to recognize and classify
objects. Our application is based on the same logic.

Here, we are creating an application that will identify images using machine learning
algorithms. Imagine that we have images of both apples and oranges, looking at which our
application would help identify whether the image is of an apple or an orange. This type of
classification can be termed as binary classification, which means classifying the objects of
a given set into two groups, but techniques do exist for multiclass classification as well. We
would require a large number of images of apples and oranges, and a machine learning
algorithm that would be set in such a way that the application would be able to classify 
both image types. In other words, we make these algorithms learn the difference between
the two objects to help classify all the examples correctly. This is known as supervised
learning.

Now let's compare supervised learning with unsupervised learning. Let's assume that we
are not aware of the actual data labels (which means we do not know whether the images
are examples of apples or oranges). In such cases, classification won't be of much help. The
clustering method can always ease such scenarios. The result would be a model that can be
deployed in an application, and it would function as seen in the following diagram. The
application would memorize facts about the distinction between apples and oranges and
recognize actual images using a machine learning algorithm. If we took a new input, the
model would tell us about its decision as to whether the input is an apple or orange. In this
example, the application that we created is able to identify an image of an apple with a 75%
degree of confidence:
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Sometimes, we want to know the level of confidence, and other times we just want the final
answer, that is, the choice in which the model has the most confidence.

Evaluation
We can evaluate how well the model is working by measuring its accuracy. Accuracy
would be defined as the percentage of cases that are classified correctly. We can analyze the
mistakes made by the model, or its level of confusion, using a confusion matrix. The
confusion matrix refers to the confusion in the model, but these confusion matrices can
become a little difficult to understand when they become very large. Let's take a look at the
following binary classification example, which shows the number of times that the model
has made the correct predictions of the object:

In the preceding table, the rows of True apple and True orange refers to cases where the
object was actually an apple or actually an orange. The columns refer to the prediction
made by the model. We see that in our example, there are 20 apples that were predicted
correctly, while there were 5 apples that were wrongly identified as oranges.
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Ideally, a confusion matrix should have all zeros, except for the diagonal. Here we can
calculate the accuracy by adding the figures diagonally, so that these are all the correctly
classified examples, and dividing that sum by the sum of all the numbers in the matrix:

Here we got the accuracy as 84%. To know more about confusion matrices, let's go through
another example, which involves three classes, as seen in the following diagram:

There are three different species of iris flowers. The matrix gives raw accounts of correct
and incorrect predictions. So, setosa was correctly predicted 13 times out of all the
examples of setosa images from the dataset. On the other hand, versicolor was predicted
correctly on 10 occasions, and there were 6 occasions where versicolor was predicted as
virginica. Now let's normalize our confusion matrix and show the percentage of the cases
that predicted image corrected or incorrectly. In our example we saw that the setosa species
was predicted correctly throughout:
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During evaluation of the confusion matrix, we also saw that the system got confused
between two species: versicolor and virginica. This also gives us the conclusion that the
system is not able to identify species of virginica all the time.

For further instances, we need to be more aware that we cannot have really high accuracy
since the system will be trained and tested on the same data. This will lead to memorizing
the training set and overfitting of the model. Therefore, we should try to split the data into
training and testing sets, first in either 90/10% or 80/20%. Then we should use the training
set for developing the model and the test set for performing and calculating the accuracy of
the confusion matrix.
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We need to be careful not to choose a really good testing set or a really bad testing set to get
the accuracy. Hence to be sure we use a validation known as K-fold cross validation. To
understand it a bit better, imagine 5-fold cross validation, where we move the testing set by
20 since there are 5 rows. Then we move the remaining set with the dataset and find the
average of all the folds:

Quite confusing, right? But scikit-learn has built-in support for cross validation. This
feature will be a good way to make sure that we are not overfitting our model and we are
not running our model on a bad testing set.

Decision trees
In this section, we will be using decision trees and student performance data to predict
whether a child will do well in school. We will use the previous techniques with some
scikit-learn code. Before starting with the prediction, let's just learn a bit about what
decision trees are.
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Decision trees are one of the simplest techniques for classification. They can be compared
with a game of 20 questions, where each node in the tree is either a leaf node or a question
node. Consider the case of Titanic survivability, which was built from a dataset that
includes data on the survival outcome of each passenger of the Titanic.

Consider our first node as a question: Is the passenger a male? If not, then the passenger most
likely survived. Otherwise, we would have another question to ask about the male
passengers: Was the male over the age of 9.5? (where 9.5 was chosen by the decision tree
learning procedure as an ideal split of the data). If the answer is Yes, then the passenger
most likely did not survive. If the answer is No, then it will raise another question: Is the
passenger a sibling? The following diagram will give you a brief explanation:

Understanding the decision trees does not require you to be an expert in the decision tree
learning process. As seen in the previous diagram, the process makes understanding data
very simple. Not all machine learning models are as easy to understand as decision trees.
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Let us now dive deep into decision tree by knowing more about decision tree learning
process. Considering the same titanic dataset we used earlier, we will find the best attribute
to split on according to information gain, which is also known as entropy:

Information gain is highest only when the outcome is more predictable after knowing the
value in a certain column. In other words, if we know whether the passenger is male or
female, we will know whether he or she survived, hence the information gain is highest for
the sex column. We do not consider age column best for our first split since we do not know
much about the passengers ages, and is not the best first split because we will know less
about the outcome if all we know is a passenger's age.

After splitting on the sex column according to the information gain, what we have now
is female and male subsets, as seen in the following screenshot:
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After the split, we have one internode and one question node, as seen in the previous
screenshot, and two paths that can be taken depending on the answer to the question. Now
we need to find the best attribute again in both of the subsets. The left subset, in which all
passengers are female, does not have a good attribute to split on because many passengers
survived. Hence, the left subset just turns into a leaf node that predicts survival. On the
right-hand side, the  attribute is chosen as the best split, considering the value 9.5 years
of age as the split. We gain two more subsets: age greater than 9.5 and age lower than 9.5:

Repeat the process of splitting the data into two new subsets until there are no good splits,
or no remaining attributes, and leaf nodes are formed instead of question nodes. Before we
start with our prediction model, let us know a little more about the scikit-learn package.
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Common APIs for scikit-learn classifiers
In this section, we will be learn how to create code using the scikit-learn package to build
and test decision trees. Scikit-learn contains many simple sets of functions. In fact, except
for the second line of code that you can see in the following screenshot, which is specifically
about decision trees, we will use the same functions for other classifiers as well, such as
random forests:

Before we jump further into technical part, let's try to understand what the lines of code
mean. The first two lines of code are used to set a decision tree, but we can consider this as
not yet built as we have not pointed the tree to any trained set. The third line builds the tree
using the  function. Next, we score a list of examples and obtain an accuracy number.
These two lines of code will be used to build the decision tree. After which, we predict
function with a single example, which means we will take a row of data to train the model
and predict the output with the survived column. Finally, we runs cross-validation,
splitting the data and building an entry for each training split and evaluating the tree for
each testing split. On running these code the result we have are the scores and the we
average the scores.

Here you will have a question: When should we use decision trees? The answer to this can be
quite simple as decision trees are simple and easy to interpret and require little data
preparation, though you cannot consider them as the most accurate techniques. You can
show the result of a decision tree to any subject matter expert, such as a Titanic historian
(for our example). Even experts who know very little about machine learning
would presumably be able to follow the tree's questions and gauge whether the tree is
accurate.



Building Your Own Prediction Models Chapter 1

[ 15 ]

Decision trees can perform better when the data has few attributes, but may perform poorly
when the data has many attributes. This is because the tree may grow too large to be
understandable and could easily overfit the training data by introducing branches that are
too specific to the training data and don't really bear any relation to the test data created,
this can reduce the chance of getting an accurate result. As, by now, you are aware of the
basics of the decision tree, we are now ready to achieve our goal of creating a prediction
model using student performance data.

Prediction involving decision trees and
student performance data
In this section, we're going to use decision trees to predict student performance using the
students, past performance data. We'll use the student performance dataset, which is
available on the UC Irvine machine learning repository at 

. Our final goal is to predict whether the student has
passed or failed. The dataset contains the data of about 649 students, with and 30 attributes
for each student. The attributes formed are mixed categorically  word and phrase, and
numeric attributes. These mixed attributes cause a small problem that needs to be fixed. We
will need to convert those word and phrase attributes into numbers.

The following screenshot shows the  first half of the attributes from the data:
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You must have noticed how some of the attributes are categorical, such as the name of the
school; sex; Mjob, which is the mother's occupation; Fjob, which is the father's occupation;
reason; and guardian. Others, such as age and traveltime, are numeric. The following
screenshot shows the second half of the attributes from the data:

It is clear that some of the attributes are better predictors, such as absences and the number
of past failures, while others attributes are probably less predictive, such as whether or not
the student is in a romantic relationship or whether the student's guardian is the mother,
father, or someone else. The decision tree will attempt to identify the most important or
predictive attributes using this information gain provided. We'll be able to look at the
resulting tree and identify the most predictive attributes because the most predictive
attributes will be the earliest questions.

The original dataset had three test scores: , , and . Where  would be first grade,
 being the second grade, and  being the final grade. We will simplify the problem by

just providing pass or fail. This can be done by adding these three scores and checking
whether the sum is sufficiently large enough which is 35. That brings us to about a 50%
split of students passing and failing, giving us a balanced dataset. Now let's look at the
code:
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We import the dataset ( ), which comes with semicolons instead of
commas; hence, we mention the separators as semicolons. To cross verify, we will find the
number of rows in the dataset. Using the length variable, we can see that there are 
rows.

Next we add columns for pass and fail. The data in these columns would contain 1 or 0,
where 1 means pass and 0 means fail. We are going to do that by computing with every
row what the sum of the test scores would be. This will be calculated as if the sum of three
score is greater than or equal to 35, 1 is given to the student and failing to that rule 0 is
given to the student. 

We need to  this rule on every row of the dataset, and this will be done using
the  function, which is a feature of Pandas. Here  means use apply per row
and  would mean apply per column. The next line means that a variable needs to be
dropped: either , , . The following screenshot of the code will provide you with an
idea of what we just learned:

The following screenshot shows the first 5 rows of the dataset and 31 columns. There are 31
columns because we have all the attributes plus our pass and fail columns: 



Building Your Own Prediction Models Chapter 1

[ 18 ]

As mentioned before, some of these columns are words or phrases, such as Mjob, Fjob,
internet, and romantic. These columns need to be converted into numbers, which can be
done using the  function, which is a Pandas feature, and we need to mention
which columns are the ones that we want to turn into numeric form.

In the case of Mjob, for example, the function it is going to look at all the different possible
answers or the values in that column and it's going to give each value a column name.
These columns will receive names such as rename the columns to Mjob at_home, Mjob
health, or Mjob. These new columns, for example, the Mjob at_home column will have
value 1 and the rest will have 0. This means only one of the new columns generated will
have one.

This is know as one-hot encoding. The reason this name was given is for example, imagine
some wires going into a circuit. Suppose in the circuit there are five wires, and you want
use one-hot encoding method, you need to activate only one of these wires while keeping
the rest of wires off.

On performing  function on our dataset, You can notice for example
activities_no and activities_yes columns. The originally associated columns that said no
had 1 as value under activies_no column followed by 0. The same as for activities_yes had
yes it would have a value 0 followed by 1 for others. This led to creation of many more new
columns around 57 in total but this made our dataset full of numeric data. The following
screenshot shows the columns activities_yes and activities_no columns:
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Here we need to shuffle the rows and produce a training set with first 500 rows and rest 149
rows for test set and then we just need to get attributes form the training set which means
we will get rid of the pass column and save the pass column separately. The same is
repeated for the testing set. We will apply the attributes to the entire dataset and save the
pass column separately for the entire dataset. 

Now we will find how many passed and failed from the entire dataset. This can be done by
computing the percentage number of passed and failed which will give us a result of 328
out of 649. This being the pass percentage which is roughly around 50% of the dataset. This
constitutes a well-balanced dataset:

Next, we start building the decision tree using the  function
from the scikit-learn package, which is a class capable of performing multi-class
classification on a dataset. Here we will use the entropy or information gain metric to
decide when to split. We will split at a depth of five questions, by using  as an
initial tree depth to get a feel for how the tree is fitting the data:
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To get an overview of our dataset, we need to create a visual representation of the tree. This
can be achieved by using one more function of the scikit-learn
package: . The following screenshot shows the representation of the
tree in a Jupyter Notebook:

It is pretty much easy to understand the previous representation that the dataset is divided
into two parts. Let's try to interpret the tree from the top. In this case if failure is greater
than or equal to 0.5, that means it is true and it placed on left-hand side of the tree.
Consider tree is always true on left side and false on right side, which means there are no
prior failures. In the representation we can see left side of the tree is mostly in blue which
means it is predicting a pass even though there are few questions as compared to the failure
maximum of 5 questions. The tree is o n right side if failure is less than 0.5, this makes the
student fail, which means the first question is false. Prediction is failure if in orange color
but as it proceeds further to more questions since we have used .

The following code block shows a method to export the visual representation which by
clicking on Export and save to PDF or any format if you want to visualize later:
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Next we check the score of the tree using the testing set that we created earlier:

The result we had was approximately 60%. Now let's cross verify the result to be assured
that the dataset is trained perfectly:

Performing cross-validation on the entire dataset which will split the data on a of
20/80 basis, where 20% is the on testing set and 80% is on the training set. The average
result is 67%. This shows that we have a well-balanced dataset. Here we have various
choices to make regarding :
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We use various  values from 1 to 20, Considering we make a tree with one
question or with 20 questions having depth value of 20 which will give us questions more
than 20 which is you will have to go 20 steps down to reach a leaf node. Here we again
perform cross- validation and save and print our answer. This will give different accuracy
and calculations. On analyzing it was found that on have depth of 2 and 3 the accuracy is
the best which was compared accuracy from the average we found earlier.

The following screenshot shows the data that we will be using to the create graph:

The error bars shown in the following screenshot are the standard deviations in the score,
which concludes that a depth of 2 or 3 is ideal for this dataset, and that our assumption of 5
was incorrect:
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More depth doesn't give any more power, and just having one question, which would be
did you fail previously?, isn't going to provide you with the same amount of information as
two or three questions would.

Our model shows that having more depth does not necessarily help, nor does having a
single question of did you fail previously? provide us with the same amount of information as
two or three questions would give us. 

Summary
In this chapter we learned about classification and techniques for evaluation, and learned in
depth about decision trees. We also created a model to predict student performance. 

In the next chapter, we will learn more about random forests and use machine learning and
random forests to predict bird species.
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Prediction with Random Forests
In this chapter, we're going to look at classification techniques with random forests. We're
going to use scikit-learn, just like we did in the previous chapter. We're going to look at
examples of predicting bird species from descriptive attributes and then use a confusion
matrix on them.

Here's a detailed list of the topics:

Classification and techniques for evaluation
Predicting bird species with random forests
Confusion matrix

Random forests
Random forests are extensions of decision trees and are a kind of ensemble method. 

Ensemble methods can achieve high accuracy by building several classifiers and running a
each one independently. When a classifier makes a decision, you can make use of the most
common and the average decision. If we use the most common method, it is called voting.
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Here's a diagram depicting the ensemble method:

You can think of each classifier as being specialized for a unique perspective on the data.
Each classifier may be a different type. For example, you can combine a decision tree and a
logistic regression and a neural net, or the classifiers may be the same type but trained on
different parts or subsets of the training data.

A random forest is a collection or ensemble of decision trees. Each tree is trained on a
random subset of the attributes, as shown in the following diagram:
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These decision trees are typical decision trees, but there are several of them. The difference,
compared with a single decision tree, particularly in a random forest, is that each tree is
only allowed to look at some of the attributes, typically a small number relative to the total
number of attributes available. Each tree is specialized to just those attributes. These
specialized trees are collected and each offers a vote for its prediction. Whichever outcome
gets the most votes from the ensemble of specialized trees is the winner. That is the final
prediction of the random forest.

Usage of random forest
We should consider using a random forest when there is a sufficient number of attributes to
make trees and the accuracy is paramount. When there are fewer trees, the interpretability
is difficult compared to a single decision tree. You should avoid using random forests if
interpretability is important because if there are too many trees, the models are quite large
and can take a lot of memory during training and prediction. Hence, resource-limited
environments may not be able to use random forests. The next section will explain the
prediction of bird species using random forests.

Predicting bird species with random forests
Here we will be using random forests to predict a bird's species. We will use the Caltech-
UC San Diego dataset ( ),
which contains about 12,000 photos of birds from 200 different species. Here we are not
going to look at the pictures because that would need a convolutional neural network
(CNN) and this will be covered in later chapters. CNNs can handle pictures much better
than a random forest. Instead, we will be using attributes of the birds such as size, shape,
and color.
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Here are just some of the species in the dataset:

Some, such as the American Crow and the Fish Crow, are almost indistinguishable, at least
visually. The attributes for each photo, such as color and size, have actually been labeled by
humans. Caltech and UCSD used human workers on Amazon's Mechanical Turk to label
the dataset. Researchers often use Mechanical Turk, which is a website service in which a
person gets paid a tiny amount of money for each photo they label to improve the dataset
using human insight rather than machine predictions.

If you have your own dataset that needs lots of human-provided labels,
you might consider spending some money on Mechanical Turk to
complete that task.
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Here's an example of a single photo and its labels:

We can see that the Summer Tanager is marked as having a red throat, a solid belly pattern,
a perching-like shape, and so on. The dataset includes information about how long it took
each person to decide on the labels and how confident the person is with their decisions,
but we're not going to use that information.

The data is split into several files. We'll discuss those files before jumping into the code:
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The  file shows class IDs with the bird species names. The  file
shows image IDs and filenames. The species for each photo is given in the

 file, which connects the class IDs with the image IDs.

The  file gives the name of each attribute, which ultimately is not going to
be that important to us. We're only going to need the attribute IDs:

Finally, the most important file is :
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It connects each image with its attributes in a binary value that's either present or absent for
that attribute. Users on Mechanical Turk produced each row in this file.

Now, let's look at the code:

We will first load the CSV file with all the image attribute labels.

Here are few things that need to be noted:

Space separation for all the values
No header column or row
Ignore the messages or warnings, such as  and

Use columns , , and , which have the image ID, the attribute ID, and the
present or non-present value

You don't need to worry about the attributes and the time taken to select them.
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Here, at the top of that dataset:

Image ID number 1 does not have attributes 1, 2, 3, or 4, but it does have attribute 5.

The shape will tell us how many rows and columns we have:

It has 3.7 million rows and three columns. This is not the actual formula that you want. You
want attributes to be the columns, not rows.

Therefore, we have to use pivot, just like Excel has a pivot method:

Pivot on the image ID and make one row for each image ID. There will be only1.
one row for image number one.
Turn the attributes into distinct columns, and the values will be ones or twos.2.

We can now see that each image ID is just one row and each attribute is its own column,
and we have the ones and the twos:
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Let's feed this data into a random forest. In the previous example, we have 312 columns
and 312 attributes, which is ultimately about 12,000 images or 12,000 different examples of
birds:

Now, we need to load the answers, such as whether it's a bird and which species it is. Since
it is an image class labels file, the separators are spaces. There is no header row and the two
columns are  and . We will be using  to have the same
result produced by , where the rows are identified by the image ID:
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Here's what it looks like:

The  column has , , , , and , all are labeled as . They're all albatrossed at the
top of the file. As seen, there are about 12,000 rows, which is perfect:

This is the same number as the attributes data. We will be using join.

In the join, we will use the index on the image ID to join the two data frames. Effectively,
what we're going to get is that the label is stuck on as the last column.

We will be now shuffling and then be splitting off the attributes. In other words, we want to
drop the label from the label. So, here are the attributes, with the first 312 columns and the
last column being a label:
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After shuffling, we have the first row as image 527, the second row as image 1532, and so
forth. The attributes in the label data are in agreement. On the first row, it's image 527,
which is the number 10. You will not know which bird it is, but it's of the kind, and these
are its attributes. But it is finally in the right form. We need to do a training test split.

There were 12,000 rows, so let's take the first 8,000 and call them training, and the call rest
of them testing (4,000). We'll get the answers using :

Max features show the number of different columns each tree can look at.
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For an instance, if we say something like, look at two attributes, that's probably not enough to
actually figure out which bird it is. Some birds are unique, so you might need a lot more
attributes. Later if we say  and the number of estimators denote the
number of trees created. The fit actually builds it.

Let's predict a few cases. Let's use attributes from the first five rows of the training set,
which will predict species 10, 28, 156, 10, and 43. After testing, we get 44% accuracy:

Even 44% accuracy is not the best result. There are 200 species, so having 0.5% accuracy is
much better than randomly guessing.

Making a confusion matrix for the data
Let's make a confusion matrix to see which birds the dataset confuses. The

 function from scikit-learn will produce the matrix, but it's a pretty big
matrix:
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Two hundred by two hundred is not easy to understand in a numeric form like this.

Here's some code from the scikit-learn documentation that allows us to plot the matrix and
the color in the matrix:
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We will need the actual names of the birds on the matrix so that we know the species that
are being confused for each other. So, let's load the classes file:
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Plot the matrix. This is the confusion matrix for this dataset:

The output looks like the following:
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The output is unreadable because there are 200 rows and columns. But if we open it
separately and then start zooming in, on the y axis you will see the actual birds, and on the
x axis, you will see the predicted birds:
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For example, the common yellow throat is the true one. Looking at the following graph, we
can see that the common yellow throat is confused with the black-footed albatross. When
we zoom out, we will see the confusion:

It's like a square of confusion that was there between the common yellow throat and the
black-footed albatross. Some features are terns, such as the arctic tern, black tern, Caspian
tern, and the common tern. Terns are apparently easy to confuse because they look similar.
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This set is a little bit confused too:

This is the set regarding sparrows. The confusion matrix tells us the things that we expect,
that is, birds that look similar are confused with each other. There are little squares of
confusion, as seen in the previous screenshot.

For the most part, you don't want to confuse an albatross with a common yellow throat
because this means that the dataset doesn't know with what it's doing.
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Since the bird's names are sorted, lesser is the square of confusion. Let's compare this with
the simple decision tree:

Here, the accuracy is 27%, which is less than the previous 44% accuracy. Therefore, the
decision tree is worse. If we use a Support Vector Machine (SVM), which is the neural
network approach, the output is 29%:

The random forest is still better.

Let's perform cross-validation to make sure that we split the training test in different ways.
The output is still 44% for the random forest, 25% for our decision tree, and 27% for SVM,
as shown in the following screenshot:
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The best results are reflected through random forests since we had some options and
questions with random forests.

For example, how many different questions can each tree ask? How many attributes does it
look at, and how many trees are there? Well, there are a lot of parameters to look through,
so let's just make a loop and try them all:
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These are all the accuracies, but it would be better to visualize this in a graph, as shown
here:

We can see that increasing the number of trees produces a better outcome. Also, increasing
the number of features produces better outcomes if you are able to see more features, but
ultimately, if you're at about 20 to 30 features and you have about 75 to 100 trees, that's
about as good as you're going to get an accuracy of 45%.
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Summary
In this chapter, we learned about random forests and classify bird species . Later, we
discussed the confusion matrix and different graphs that gave us output based on random
trees, decision trees, and SVM.

In the next chapter, we'll go look at comment classification using bag-of-words models and
Word2Vec models.
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Applications for Comment

Classification
In this chapter, we'll overview the bag-of-words model for text classification. We will look
at predicting YouTube comment spam with the bag-of-words and the random forest
techniques. Then we'll look at the Word2Vec models and prediction of positive and
negative reviews with the Word2Vec approach and the k-nearest neighbor classifier. 

In this chapter, we will particularly focus on text and words and classify internet comments
as spam or not spam or to identify internet reviews as positive or negative. We will also
have an overview for bag of words for text classification and prediction model to predict
YouTube comments are spam or not using bag of words and random forest techniques. We
will also look at Word2Vec models an k-nearest neighbor classifier.

But, before we start, we'll answer the following question: what makes text classification an
interesting problem?



Applications for Comment Classification Chapter 3

[ 47 ]

Text classification
To find the answer to our question, we will consider the famous iris flower dataset as an
example dataset. The following image is of iris versicolor species. To identify the species,
we need some more information other than just an image of the species, such as
the flower's Petal length, Petal width, Sepal length, and Sepal width would help us
identify the image better:

The dataset not only contains examples of versicolor but also contains examples of setosa
and virginica as well. Every example in the dataset contains these four measurements. The
dataset contains around 150 examples, with 50 examples of each species. We can use a
decision tree or any other model to predict the species of a new flower, if provided with the
same four measurements. As we know same species will have almost similar
measurements. Since similarity has different definition all together but here we consider
similarity as the closeness on a graph, if we consider each point is a flower. The following
graph is a comparison between sepal width versus petal width:
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If we had no way of measuring similarity, if, say, every flower had different measurements,
then there'd be no way to use machine learning to build a classifier.

As we are aware of the fact that flowers of same species have same measurement and that
helps us to distinguish different species. Consider what if every flower had different
measurement, it would of no use to build classifier using machine learning to identify
images of species.

Machine learning techniques
Before to that we considered images, let's now consider text. For example, consider the
following sentences and try to find what makes the first pair of phrases similar to the
second pair:
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I hope you got the answer to that question, otherwise we will not be able to build a decision
tree, a random forest or anything else to predict the model. To answer the question, notice
that the top pair of phrases are similar as they contain some words in common, such
as subscribe and channel, while the second pair of sentences have fewer words in
common, such as to and the. Consider the each phrase representing vector of numbers in a
way that the top pair is similar to the numbers in the second pair. Only then we will be able
to use random forest or another technique for classification, in this case, to detect YouTube
comment spam. To achieve this, we need to use the bag-of-words model.

Bag of words
The bag-of-words model does exactly we want that is to convert the phrases or sentences
and counts the number of times a similar word appears. In the world of computer science, a
bag refers to a data structure that keeps track of objects like an array or list does, but in such
cases the order does not matter and if an object appears more than once, we just keep track
of the count rather we keep repeating them.

For example, consider the first phrase from the previous diagram, it has a bag of words that
contents words such as channel, with one occurrence, plz, with one occurrence, subscribe,
two occurrences, and so on. Then, we would collect all these counts in a vector, where one
vector per phrase or sentence or document, depending on what you are working with.
Again, the order in which the words appeared originally doesn't matter.

The vector that we created can also be used to sort data alphabetically, but it needs to be
done consistently for all the different phrases. However, we still have the same problem.
Each phrase has a vector with different columns, because each phrase has different words
and a different number of columns, as shown in the following two tables:
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If we make a larger vector with all the unique words across both phrases, we get a proper
matrix representation. With each row representing a different phrase, notice the use of 0 to
indicate that a phrase doesn't have a word:

If you want to have a bag of words with lots of phrases, documents, or  we would need to
collect all the unique words that occur across all the examples and create a huge matrix, N x
M, where N is the number of examples and M is the number of occurrences. We could
easily have thousands of dimensions compared in a four-dimensional model for the iris
dataset. The bag of words matrix is likely to be sparse, meaning mostly zeros, since most
phrases don't have most words.

Before we start building our bag of words model, we need to take care of a few things, such
as the following:

Lowercase every word
Drop punctuation
Drop very common words (stop words)
Remove plurals (for example, bunnies => bunny)
Perform lemmatization (for example, reader => read, reading = read)
Use n-grams, such as bigrams (two-word pairs) or trigrams
Keep only frequent words (for example, must appear in >10 examples)
Keep only the most frequent M words (for example, keep only 1,000)
Record binary counts (1 = present, 0 = absent) rather than true counts

There are many other combinations for best practice, and finding the best that suits the
particular data needs some research.

The problem that we face with long documents is that they will have higher word counts
generally, but we may still want to consider long documents about some topic to be
considered, similar to a short document about the same topic, even though the word counts
will differ significantly.

Furthermore, if we still wanted to reduce very common words and highlight the rare ones,
what we would need to do is record the relative importance of each word rather than its
raw count. This is known as term frequency inverse document frequency (TF-IDF), which
measures how common a word or term is in the document. 
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We use logarithms to ensure that long documents with many words are very similar to
short documents with similar words. TF-IDF has two components that multiply, that is
when TF is high, the result is high but IDF measures how common the word is among all
the documents and that will affect the common words. So, a word that is common in other
documents will have a low score, regardless of how many times it appeared.

If a document has a low score which means the word appeared rarely and if the score is
high it means the word appears frequently in the document. But if the word is quite
common in all the documents then it becomes irrelevant to score on this document. It is
anyhow considered to have low score. This shows that the formula for TF-IDF exhibits in a
way we want our model to be. The following graph explains our theory:

We will be using the bag-of-words method to detect whether YouTube comments are spam
or .

Detecting YouTube comment spam
In this section, we're going to look at a technique for detecting YouTube comment spam
using bags of words and random forests. The dataset is pretty straightforward. We'll use a
dataset that has about 2,000 comments from popular YouTube videos (

). The dataset is formatted in a way
where each row has a comment followed by a value marked as 1 or 0 for spam or not spam.
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First, we will import a single dataset. This dataset is actually split into four different files.
Our set of comments comes from the PSY-Gangnam Style video:

Then we will print a few comments as follows:

Here we are able to see that there are more than two columns, but we will only require the
content and the class columns. The content column contains the comments and the class
column contains the values 1 or 0 for spam or not spam. For example, notice that the first
two comments are marked as not spam, but then the comment subscribe to me for call of
duty vids is spam and hi guys please my android photo editor download yada yada is
spam as well. Before we start sorting comments, let's look at the count of how many rows in
the dataset are spam and how many are not spam. The result we acquired is 175 and 175
respectively, which sums up to 350 rows overall in this file:
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In scikit-learn, the bag of words technique is actually called , which
means counting how many times each word appears and puts them into a vector. To create
a vector, we need to make an object for , and then perform the fit and
transform simultaneously:

This performed in two different steps. First comes the fit step, where it discovers which
words are present in the dataset, and second is the transform step, which gives you the bag
of words matrix for those phrases. The result obtained in that matrix is 350 rows by 1,418
columns:

There are 350 rows, which means we have 350 different comments and 1,418 words. 1418
word apparently are word that appear across all of these phrases. 

Now let's print a single comment and then run the analyzer on that comment so that we can
see how well the phrases breaks it apart. As seen in the following screenshot, the comment
has been printed first and then we are analyzing it below, which is just to see how it broke
it into words:
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We can use the vectorizer feature to find out which word the dataset found after
vectorizing. The following is the result found after vectorizing where it starts with numbers
and ends with regular words:
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Execute the following command to shuffle the dataset with fraction 100% that is adding
:

Now we will split the dataset into training and testing sets. Let's assume that the first 300
will be for training, while the latter 50 will be for testing:

In the preceding code,  is an
important step. At that stage, you have a training set that you want to perform a fit
transform on, which means it will learn the words and also produce the matrix. However,
for the testing set, we don't perform a fit transform again, since we don't want the model to
learn different words for the testing data. We will use the same words that it learned on the
training set. Suppose that the testing set has different words out of which some of them are
unique to the testing set that might have never appeared in the training set. That's perfectly
fine and anyhow we are going to ignore it. Because we are using the training set to build a
random forest or decision tree or whatever would be the case, we have to use a certain set
of words, and those words will have to be the same words, used on the testing set. We
cannot introduce new words to the testing set since the random forest or any other model
would not be able to gauge the new words.

Now we perform the transform on the dataset, and later we will use the answers for
training and testing. The training set now has 300 rows and 1,287 different words or
columns, and the testing set has 50 rows, but we have the same 1,287 columns:
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Even though the testing set has different words, we need to make sure it is transformed in
the same way as the training set with the same columns. Now we will begin with the
building of the random forest classifier. We will be converting this dataset into 80 different
trees and we will fit the training set so that we can score its performance on the testing set:
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The output of the score that we received is 98%; that's really good. Here it seems it got
confused between spam and not-spam. We need be sure that the accuracy is high; for that,
we will perform a cross validation with five different splits. To perform a cross validation,
we will use all the training data and let it split it into four different groups: 20%, 80%, and
20% will be testing data, and 80% will be the training data:

We will now perform an average to the scores that we just obtained, which comes to about
95% accuracy. Now we will print all the data as seen in the following screenshot:



Applications for Comment Classification Chapter 3

[ 58 ]

The entire dataset has five different videos with comments, which means all together we
have around 2,000 rows. On checking all the comments, we noticed that there are 
spam comments and  not-spam comments, that quite close enough to split it in to even
parts:

Here we will shuffle the entire dataset and separate the comments and the answers:

We need to perform a couple of steps here with  followed by the
random forest. For this, we will use a feature in scikit-learn called a Pipeline. Pipeline is
really convenient and will bring together two or more steps so that all the steps are treated
as one. So, we will build a pipeline with the bag of words, and then use 
followed by the random forest classifier. Then we will print the pipeline, and it the steps
required:
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We can let the pipeline name of each step by itself by adding  in
our  and it will name
them  and :

Once the pipeline is created you can just call it fit and it will perform the rest that is first it
perform the fit and then transform with the , followed by a fit with the

 classifier. That's the benefit of having a pipeline:

Now you call score so that it knows that when we are scoring it will to run it through the
bag of words , followed by predicting with the

:

This whole procedure will produce a score of about 94. We can only predict a single
example with the pipeline. For example, imagine we have a new comment after the dataset
has been trained, and we want to know whether the user has just typed this comment or
whether it's spam:
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As seen, it's detected correctly; but what about the following comment:

To overcome this and deploy this classifier into an environment and predict whether it is a
 or not when someone types a new comment. We will use our pipeline to figure out

how accurate our cross-validation was. We find in this case that the average accuracy was
about 94:

It's pretty good. Now let's add TF-IDF to our model to make it more precise:

This will be placed after . After we have produced the counts, we can
then produce a TF-IDF score for these counts. Now we will add this in the pipeline and
perform another cross-validation check with the same accuracy:
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This show the steps required for the pipeline:

The following output got us , a TF-IDF transformer,
and . Notice that  can be lower case or
upper case in the dataset; it is on us to decide how many words you want to have. We can
either use single words or bigrams, which would be pairs of words, or trigrams, which can
be triples of words. We can also remove stop words, which are really common English
words such as and, or, and the. With TF-IDF, you can turn off the  component and just
keep the  component, which would just be a log of the count. You can use  as well.
With random forests, you've got a choice of how many trees you use, which is the number
of estimators.

There's another feature of scikit-learn available that allows us to search all of these
parameters. For that, it finds out what the best parameters are:
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We can make a little dictionary where we say the name of the pipeline step and then
mention what the parameter name would be and this gives us our options. For
demonstration, we are going to try maximum number of words or maybe just a maximum
of 1,000 or 2,000 words. 

Using , we can mention just single words or pairs of words that are stop words, use
the English dictionary of stop words, or don't use stop words, which means in the first case
we need to get rid of common words, and in the second case we do not get rid of common
words. Using TF-IDF, we use  to state whether it's yes or no. The random forest we
created uses 20, 50, or 100 trees. Using this, we can perform a grid search, which runs
through all of the combinations of parameters and finds out what the best combination is.
So, let's give our pipeline number 2, which has the TF-IDF along with it. We will use  to
perform the search and the outcome can be seen in the following screenshot:
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Since there is a large number of words, it takes a little while, around 40 seconds, and
ultimately finds the best parameters. We can get the best parameters out of the grid search
and print them to see what the score is:

So, we got nearly 96% accuracy. We used around 1,000 words, only single words, used yes
to get rid of stop words, had 100 trees in the random forest, and used yes and the IDF and
the TF-IDF computation. Here we've demonstrated not only bag of words, TF-IDF, and
random forest, but also the pipeline feature and the parameter search feature known as grid
search.

Word2Vec models
In this section, we'll learn about Word2Vec, a modern and popular technique for working
with text. Usually, Word2Vec performs better than simple bag of words models. A bag of
words model only counts how many times each word appears in each document. Given
two such bag of words vectors, we can compare documents to see how similar they are.
This is the same as comparing the words used in the documents. In other words, if the two
documents have many similar words that appear a similar number of times, they will be
considered similar.

But bag of words models have no information about how similar the words are. So, if two
documents do not use exactly the same words but do use synonyms, such as please and
plz, they're not regarded as similar for the bag of words model. Word2Vec can figure out
that some words are similar to each other and we can exploit that fact to get better
performance when doing machine learning with text.
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In Word2Vec, each word itself is a vector, with perhaps 300 dimensions. For example, in a
pre-trained Google Word2Vec model that examined millions or billions of pages of text, we
can see that cat, dog, and spatula are 300-dimensional vectors:

Cat = <0.012, 0.204, ..., -0.275, 0.056> (300 dimensions)
Dog = <0.051, -0.022, ..., -0.355, 0.227>
Spatula = <-0.191, -0.043, ..., -0.348, 0.398>
Similarity (distance) between cat and dog 0.761
Similarity between cat and spatula 0.124

If we compare the similarity of the dog and cat vectors, we will get 0.761 or 76% of
similarity. If we do the same with cat and spatula, we get 0.124. It's clear that Word2Vec
learned that dog and cat are similar words but cat and spatula are not. Word2Vec uses
neural networks to learn these word vectors. At a high level, a neural network is similar to
random forest or a decision tree and other machine learning techniques because they're
given a bunch of inputs and a bunch of outputs, and they learn how to predict the outputs
from the inputs.

For Word2Vec, the input is a single word, the word whose vector we want to learn, and the
output is its nearby words from the text. Word2Vec also supports the reverse of this input-
output configuration. Thus, Word2Vec learns the word vectors by remembering its context
words. So, dog and cat will have similar word vectors because these two words are used in
similar ways, like she pet the dog and she pet the cat. Neural networking with Word2Vec can
take one of two forms because Word2Vec supports two different techniques for training.

The first technique is known as continuous bag of words, where the context words are the
input, leaving out the middle word and the word whose vector we're learning, the middle
word, is the output. In the following diagram, you can see three words before and after the
word channel:
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Those are the context words. The continuous bag of words model slides over the whole
sentence with every word acting as a center word in turn. The neural network learns the
300-dimensional vectors for each word so that the vector can predict the center word given
the context words. In other words, it can predict the output given its inputs.

In the second technique, we're going to flip this. This is known as skip-gram, and the center
word is the input and the context words are the outputs:

In this technique, the center word vector is used to predict the context words given that
center word.

Both of these techniques perform well for most situations. They each have minor pros and
cons that will not be important for our use case.

Doc2Vec
We're going to use Word2Vec to detect positive and negative product, restaurant, and
movie reviews. We will do so with a slightly different form of Word2Vec known as
Doc2Vec. In this case, the input is a document name, such as the filename, and the output is
the sliding window of the words from the document. This time, we will not have a center
word:
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In this case, as a vector that helps us predict the words, from knowing the filename. In fact,
the input is not very important, which in this case is the filename. We just need to keep
track of the words on the right side, and that they all came from the same document. So, all
of those words will be connected to that filename, but the actual content of that filename is
not important. Since we can predict the document's words based on its filename, we can
effectively have a model that knows which words go together in a document. In other
words, that documents usually talk about just one thing, for example, learning that a lot of
different positive words are used in positive reviews and a lot of negative words are used
in negative reviews.

Document vector
After training, we have a new document and we want to find its document vector. We'll use
the word similarities learned during training to construct a vector that will predict the
words in the new document. We will use a dummy filename since the actual name is not
important. What's important is that it's just one name. So, all of these words get connected
together under that one name:

Once we get that new document vector, we can compare it with other document vectors
and find which known document from the past is the most similar, as follows:
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Thus, we can use  to find which documents are most similar to each other. This
will help us detect positive and negative reviews because, ideally, the positive reviews will
have document vectors that are similar to each other and this will be the same for negative
reviews. We expect  to perform better than bag of words because  learns
the words that are used together in the same document, so those words that are similar to
bag of words never actually learned any information about how similar the words are
different.

Detecting positive or negative sentiments in
user reviews
In this section, we're going to look at detecting positive and negative sentiments in user
reviews. In other words, we are going to detect whether the user is typing a positive
comment or a negative comment about the product or service. We're going to use

 and  specifically and the  Python library for those services.
There are two categories, which are positive and negative, and we have over 3,000 different
reviews to look at. These come from Yelp, IMDb, and Amazon. Let's begin the code by
importing the  library, which provides  and  for logging to note
status of the messages:

First, we will see how to load a pre-built  model, provided by Google, that has
been trained on billions of pages of text and has ultimately produced 300-dimensional
vectors for all the different words. Once the model is loaded, we will look at the vector for

. This shows that the model is a 300-dimensional vector, as represented by the word
:
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The following screenshot shows the 300-dimensional vector for the word :
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The following screenshot shows the 300-dimensional vector for the word :

We obtain a result of 76% when computing the similarity of dog and cat, as follows:

The similarity between cat and spatula is 12%; it is a bit lower, as it should be:
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Here we train our  and  model using the following code:

We are using  because we want to determine a vector for each document, not
necessarily for each word in the document, because our documents are reviews and we
want to see whether these reviews are positive or negative, which means it's similar to
positive reviews or similar to negative reviews.  is provided by  and the
library has a class called  that allows us to use "

".

Now we create a utility function that will take a sentence or a whole paragraph and
lowercase it and remove all the HTML tags, apostrophes, punctuation, spaces, and repeated
spaces, and then ultimately break it apart by words:

Now it's time for our training set. We are not going to use the 3,000 Yelp, IMDb, and
Amazon reviews because there's simply not enough data to train for a good 
model. If we had millions reviews, then we could take a good portion of that to train with
and use the rest for testing, but with just 3,000 reviews it's not enough. So, instead, I've
gathered reviews from IMDb and other places, including Rotten Tomato. This will be
enough to train a  model, but none of these are actually from the dataset that we're
going to use for our final prediction. These are simply reviews. They're positive; they're
negative. I don't know which, as I'm not keeping track of which. What matters is that we
have enough text to learn how words are used in these reviews. Nothing records whether
the review is positive or negative.
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So,  and  are actually being used for unsupervised training. That means
we don't have any answers. We simply learn how words are used together. Remember the
context of words, and how a word is used according to the words nearby:

So, in each case, in each file, we simply make a  object with the words
from that document or that review plus a tag, which is simply the filename. This is
important so that it learns that all these words go together in the same document, and that 
these words are somehow related to each other. After loading, we have 175,000 training
examples from different documents:

Now let's have a look at the first 10 sentences in the following screenshot:
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We shuffle these documents and then feed them into our  trainer,
using , where we finally do the training of
the  model and where it learns the document vectors for all the different
documents.  and  are just parameters to say how to do the training. These are just
things that I found were the most accurate.  is where we are using the model that was
shown in the last section, which means it receives a filename and it predicts the words:

Here  means that we found that 50-dimensional vectors for each document was
best, and 300-dimensional vectors are optimal, because we don't have enough training
examples. Since we don't have millions or billions of data. This is a good 300 dimensional
vector, and 50 seemed to work better. Running this code uses the processor and all the
cores you have, so it will takes some time to execute. You will see that it's going through all
the percentages of how much it got through. Ultimately, it takes 300 seconds to get this
information in my case, which is definitely not bad. That's pretty fast, but if you have
millions or billions of training documents, it could take days.
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Once the training is complete, we can delete some stuff to free up some memory:

We do need to keep the inference data, which is enough to bind a new document vector for
new documents, but we don't need it to keep all the data about all the different words.

You can save the model and then load it later with the 
 command, if you want to put it in a product and deploy

it, or put it on a server:

After the model's been trained, you can infer a vector, which is regarding what the
document vector is for this new document. So, let's extract the words with the utility
function. Here we are using an example phrase that was found in a review. This is the 50-
dimensional vector it learned for that phrase:

Now the question that rises is what about a negative phrase? And another negative
phrases. Are they considered similar? Well, they're considered 48% similar, as seen in the
following screenshot:
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What about different phrases?  and . They're less
similar:

The model learned about how words are used together in the same review and that these
words go together in one way and that other words go together in a different way.

Finally, we are ready to load our real dataset for prediction:

To summarize, we used Yelp, Amazon, and IMDb reviews. We loaded different files and in
each file, each line had a review. As a result, we get the words from the line and found out
what the vector was for that document. We put that in a list, shuffle, and finally built a
classifier. In this case, we're going to use k-nearest neighbors, which is a really simple
technique.
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It's just a technique that says find all the similar documents, in this case, the nine closest
documents to the one that we're looking at, and count votes:

We will be using nine reviews for the purposes of this example, and if you have a majority,
let's say of positive reviews, then we will say that this is a positive review too. If the
majority says negative, then this is a negative too. We don't want a tie regarding the
reviews, which is why we say that there's nine instead of eight.

Now we will compare the outcome with a random forest:

Now we need to perform cross-validation with the 9 nearest neighbors; we get 76%
accuracy for detecting positive/negative reviews with . For experimental purposes,
if we use a random forest without really trying to choose an amount of trees, we just get an
accuracy of 70%:

In such cases, k-nearest neighbors is both simpler and more accurate. Ultimately, is it all
worth it? Well, let's comparing it to the bag of words model. Let's make a little pipeline
with , TF-IDF, and random forest, and at the end, do cross-validation on
the same data, which in this case is the reviews. Here, we get 74%, as seen in the following
screenshot:
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The outcome that we found after executing the model build we found  was better.
 can be a lot more accurate than bag of words if we add a lot of training examples

that are of the same style as the testing set. Hence, in our case, the testing set was pretty
much the Yelp, Amazon, and IMDb reviews, which are all one sentence or one line of text
and are pretty short. However, the training set that we found came from different reviews
from different places, and we got about 175,000 examples. Those were often like paragraphs
or just written in different ways.

Ideally, we will train a  or  model on examples that are similar to what
we're going to predict on later, but it can be difficult to find enough examples, as it was
here so we did our best. Even so, it still turned out better than bag of words.

Summary
In this chapter, we introduced text processing and the bag of words technique. We then
used this technique to build a spam detector for YouTube comments. Next, we learned
about the sophisticated Word2Vec model and put it to task with a coding project that
detects positive and negative product, restaurant, and movie reviews. That's the end of this
chapter about text.

In the next chapter, we're going to look at deep learning, which is a popular technique
that's used in neural networks.
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Neural Networks

In this chapter, we will get an overview on neural networks. We will see what a simple
shallow neural network is and get some familiarity with how they work. We will do this by
trying to identify the genre of a song using a shallow neural network. We will also recall
our previous work on the spam detector to use the neural network. Further on, we will take
a look at larger neural networks, known as deep learning, and apply what is known as a
convolutional neural network to identify handwritten mathematical symbols. Finally we
will revisit the bird species identifier covered previously and use deep learning to produce
a much more accurate identifier.

The topics that we will be covering in this chapter are as follows:

Understanding neural networks
Identifying the genre of a song using neural networks
Recalling our work on the spam detector to use neural networks

Understanding neural networks
Neural networks, which were originally called artificial neural networks, are inspired by
actual neurons found in animal's brains and other parts of the nervous system. Neurons are
connected to each other and they receive and send impulses throughout the animal's body,
or in the case of computing, the network.
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The following diagram shows the components of a single neuron:

The following graph shows how a neuron fires:
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It is all or nothing, meaning, when the neuron gets enough input from its neighbors, it
quickly fires and sends a signal down its axon to each forward-connected neuron.

Here, we can see actual neurons in a brain:

A human brain has about 100 billion neurons all together, and has about 100 trillion
connections. It is worth noting that the neural networks we create in software have at least
1 million times less complexity.
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Feed-forward neural networks
Most of the neural networks that we design are feed forward and fully connected. This
means that every neuron connects to every neuron in the next layer. The first layer receives
inputs and the last layer gives outputs. The structure of the network, meaning the neuron
counts and their connections, is decided ahead of time and cannot change, at least not
during training. Also, every input must have the same number of values. This means that
images, for example, may need to be resized to match the number of input neurons. The
number of neurons in each layer is that layer's shape:

Each individual neuron adds up the values it receives from the prior layer. Each connection
from one neuron to the next has a weight. When adding the inputs, the inputs are
multiplied by the respective weights. Each neuron also has an extra input called a bias,
which is not connected to any other neurons. Once the weighted inputs have been added,
an activation function is applied to the sum.
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There are several common activation functions, for example, the hyperbolic tangent, whose
shape is shown here:

The output of each neuron is whatever comes out of the activation function.

The connection waits in a network start random and are adjusted during training. The
purpose of training is to examine hundreds, or thousands, or even more example cases and
adjust the network's weights until the network is sufficiently accurate.

After training, we have a network structure that we have already defined, and all the
weights that were learned during training. As such, the following is true:

A trained neural network = Structure + Learned weights
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This is shown here:

Now the network is ready to use on new data outside the training set.
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Training proceeds in batches, which means that several training cases are sent through the
network and the outputs, called predictions, are collected. Then, the loss is computed for
each batch, which is the measure of the overall error:

Each weight in the network is then adjusted depending on whether and how much that
weight contributed to the overall loss. With very gradual adjustments, it should be the case
that when examples in this batch are visited again, predictions will be more accurate.

The network is often trained over several epochs. By an epoch, we mean all the training
data having been processed once. So, 10 epochs means looking at the same training data 10
times. We often segregate 20% or so of the training data as a validation set. This is data that
we don't use during training and instead only use to evaluate the model after each epoch.

Ideally, we want the network to become more accurate, which means we want to decrease
loss, and this should be true for both the training set and the validation set.
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The following set of graph shows this ideal kind of behavior:

Note the signs of overfitting, meaning training loss goes down but validation loss goes up.

If the network is not designed correctly, for example, if it has too many layers, the network
may overfit, meaning it performs very well in the training set but poorly on the validation
set. This is an issue because ultimately we want to use the neural network on new data
from the real world, which will probably be a little different than the training set, hence we
use a validation set to see how well the network performs on data it didn't see for training.

Identifying the genre of a song with neural
networks
In this section, we're going to build a neural network that can identify the genre of a song.
We will use the GTZAN Genre Collection (

). It has 1,000 different songs from over 10 different
genres. There are 100 songs per genre and each song is about 30 seconds long.

We will use the  Python library,  to extract features from the songs. We will use
Mel-frequency cepstral coefficients (MFCC). MFCC values mimic human hearing and
they are commonly used in speech recognition applications as well as music genre
detection. These MFCC values will be fed directly into the neural network.
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To help us understand the MFCC, let's use two examples. Download Kick Loop 5 by Stereo
Surgeon. You can do this by visiting 

, and download Whistling by cmagar by visiting 
. One of them is a low-bass beat and the other is a

higher pitched whistling. They are clearly different and we are going to see how they look
different with MFCC values.

Let's go to the code. First, we have to import the  library. We will also import 
because we are going to list the files in the different genre directories. Also, import 
as usual. We will import  to draw the MFCC graphs. Then, will import the
Sequential model from Keras. This is a typical feed-forward neural network. Finally, we
will import the dense neural network layer, which is just a layer that has a bunch of
neurons in it:

Unlike a convolution, for example, it's going to have 2D representations. We are going to
use import activation, which allows us to give each neuron layer an activation function, and
we will also import , which allows us to turn the class names into things
such as rock, disco, and so forth, which is what's called one-hot encoding.

We have officially developed a helper function to display the MFCC values:
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First, we will load the song and then extract the MFCC values from it. Then, we'll use the
, which is a spectrogram show from the  library.

Here's the kick drum:

We can see that at low frequency, the bass is very obvious and the rest of the time it's kind
of like a wash. Not many other frequencies are represented.

However, if we look at the whistling, it's pretty clear that there's higher frequencies being
represented:
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The darker the color, or closer to red, the more power is in that frequency range at that
time. So, you can even see the kind of change in frequency with the whistles.

Now, here is the frequency for disco songs:

This is the frequency output:

You can sort of see the beats in the preceding outputs, but they're only 30 seconds long, so
it is a little bit hard to see the individual beats.
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Compare this with classical where there are not so much beats as a continuous kind of
bassline such as one that would come from a cello, for example:

Here is the frequency for hip-hop songs:
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It looks kind of similar to disco, but if it were required that we could tell the difference with
our own eyes, we wouldn't really need a neural network because it'd probably be a
relatively simple problem. So, the fact that we can't really tell the difference between these
is not our problem, it's the neural network's problem.

We have another auxiliary function here that again just loads the MFCC values, but this
time we are preparing it for the neural network:

We have loaded the MFCC values for the song, but because these values are between
maybe negative 250 to positive 150, they are no good for a neural network. We don't want
to feed in these large and small values. We want to feed in values near negative 1 and
positive 1 or from 0 to 1. Therefore, we are going to figure out what the max is, the absolute
value for each song, and then divide all the values by that max. Also, the songs are a
slightly different length, so we want to pick just 25,000 MFCC values. We have to be super
certain that what we feed into the neural network is always the same size, because there are
only so many input neurons and we can't change that once we've built the network.
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Next, we have a function called , which will go
through all the different genres and go through all the songs in the dataset and produce
those MFCC values and the class names:

As shown in the preceding screenshot, we will prepare a list for all the features and all the
labels. Go through each of the 10 genres. For each genre, we will look at the files in that
folder. The  folder shows how the dataset is organized.
When we are processing that folder, there will be 100 songs each for each file, we will
extract the features and put those features in the  list.
The name of the genre for that song needs to be put  in a list also. So, at the end, all features
will have 1,000 entries and all labels will have 1,000 entries. In the case of all features, each
of those 1,000 entries will have 25,000 entries. That will be a 1,000 x 25,000 matrix.

For all labels at the moment, there is a 1,000 entry-long list, and inside are words such
as , , , , , , , , , and .
Now, this is going to be a problem because a neural network is not going to predict a word
or even letters. We need to give it a one-hot encoding, which means that each word here is
going to be represented as ten binary numbers. In the case of the blues, it is going to be one
and then nine zeros. In the case of classical, it is going to be zero followed by one, followed
by nine zeros, and so forth. First, we have to figure out all the unique names by using the

 command to get them back as
integers. Then, we have to use , which turns those integers into one-hot
encoding. So, what comes back is 1000 x 10 dimensions. 1,000 because there are 1,000 songs,
and each of those has ten binary numbers to represent the one-hot encoding. Then, return
all the features stacked together by the command return 

 into a single matrix, as well as the one-hot matrix. So, we will call that
upper function and save the features and labels:
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Just to be sure, we will print the shape of the features and the labels as shown in the
following screenshot. So, it is 1,000 by 25,000 for the features and 1,000 by 10 for the labels.
Now, we will split the dataset into a train and test split. Let's decide the 80% mark defined
as  to perform a split:
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Before that, we will shuffle, and before we shuffle, we need to put the labels with the
features so that they don't shuffle in different orders. We will call

 and do the shuffle, split it using 
, and then we will have train and testsets, as

shown in the snapshot earlier. Looking at the shape of the train and the testsets, the train is
800, so 80% of the 1,000 for the rows: we have 25,010 features. Those aren't really all
features, though. It is actually the 25,000 features plus the 10 for the one-hot encoding
because, remember, we stacked those together before we shuffled. Therefore, we're going to
have to strip that back off. We can do that with . For
both the train input and the test input, we take everything but the last 10 columns, and for
the labels, we take the 10 columns to the end, and then we can see what the shapes of the
train input and train labels are. So now, we have the proper 800 by 25,000 and 800 by 10.

Next, we'll build the neural network:
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We are going to have a sequential neural network. The first layer will be a dense layers of
100 neurons. Now, just on the first layer, it matters that you give the input dimensions or
the input shape, and that's going to be 25,000 in our case. This says how many input values
are coming per example. Those 25,000 are going to connect to the 100 in the first layer. The
first layer will do its weighted sum of its inputs, its weights, and bias term, and then we are
going to run the  activation function. , if you recall, states that anything less than
0 will turn out to be a 0. Anything higher than 0 will just be the value itself. These 100 will
then connect to 10 more and that will be the output layer. It will be 10 because we have
done someone-hot encoding and we have 10 binary numbers in that encoding.

The activation used in the code, , says to take the output of the 10 and normalize
them so that they add up to 1. That way, they end up being probabilities and whichever
one of the 10 is the highest scoring, the highest probability, we take that to be the prediction
and that will directly correspond to whichever position that highest number is in. For
example, if it is in position 4, that would be disco (look in the code).

Next, we will compile the model, choose an optimizer such as Adam, and define the 
function. Any time you have multiple outputs like we have here (we have 10), you
probably want to do categorical cross-entropy and metrics accuracy to see the accuracy as
it's training and during evaluation, in addition to the loss, which is always shown:
however, accuracy makes more sense to us. Next, we can print , which tells
us details about the layers.

It will look something like the following:



Neural Networks Chapter 4

[ 94 ]

The output shape of the first 100 neuron layer is definitely 100 values because there are 100
neurons, and the output of the dense second layer is 10 because there are 10 neurons. So,
why are there 2.5 million parameters, or weights, in the first layer? That's because we have
25,000 inputs. Well, we have 25,000 inputs and each one of those inputs is going to each one
of the 100 dense neurons. So that's 2.5 million, and then plus 100, because each of those
neurons in the 100 has its own bias term, its own bias weight, and that needs to be learned
as well.

Overall, we have about 2.5 million parameters or weights. Next, we run the fit. It takes the
training input and training labels, and takes the number of epochs that we want. We want
10, so that's 10 repeats over the trained input; it takes a batch size which says how many, in
our case, songs to go through before updating the weights; and a  of
0.2 says take 20% of that trained input, split it out, don't actually train on that, and use that to
evaluate how well it's doing after every epoch. It never actually trains on the validation split,
but the validation split lets us look at the progress as it goes.

Finally, because we did separate the training and test ahead of time, we're going to do an
evaluation on the test, the test data, and print the loss and accuracy of that. Here it is with
the training results:
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It was printing this as it went. It always prints the loss and the accuracy. This is on the
training set itself, not the validation set, so this should get pretty close to 1.0. You actually
probably don't want it to go close to 1.0 because that could represent overfitting, but if you
let it go long enough, it often does reach 1.0 accuracy on the training set because it's
memorizing the training set. What we really care about is the validation accuracy because
that's letting us use the test set. It's data that it's just never looked at before, at least not for
training, and indeed it's relatively close to the validation accuracy, which is our final
accuracy. This final accuracy is on the test data that we separated ahead of time. Now we're
getting an accuracy of around 53%. That seems relatively low until we realize that there are
10 different genres. Random guessing would give us 10% accuracy, so it's a lot better than
random guessing.

Revising the spam detector to use neural
networks
In this section, we're going to update the spam detector from before to use neural networks.
Recall that the dataset used was from YouTube. There was an approximate of 2,000
comments with around half being spam and the other half not. These comments were of
five different videos.

In the last version, we used a bag of words and a random forest. We carried out a
parameter search to find the parameters best suited for the bag of words, which was the
CountVectorizer that had 1,000 different words in it. These 1000 words were the top used
words. We used unigrams instead of bigrams or trigrams. It would be good to drop the
common and the stop words from the English language. The best way is to use TF-IDF. It
was also found that using a 100 different trees would be best for the random forest. Now,
we are going to use a bag of words but we're going to use a shallow neural network instead
of the random forest. Also remember that we got 95 or 96 percent accuracy for the previous
version.
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Let's look at the code:

We start with importing. We'll use pandas once more to load the dataset. This time, we're
going to use the Keras Tokenizer. There's no particular reason to use Tokenizer, except to
show an alternative technique. We will import NumPy and then proceed to import the
sequential model for the neural networks, which is the typical feed-forward network. We
then have dense layers that are the typical neuron layers. We're also going to add the
dropout feature, which helps prevent over-fitting, and we're going to decide on the
activation for each layer. We are going to use the  method from the

 library from Keras to produce one-hot encoding, and we're going to introduce
 to perform our cross-validation.

First, we load the datasets:

There are five different CSV files. We will stack them on top of each other so that we have
one big dataset. We then shuffle it by running a sample which picks random rows. We're
going to say that we want to keep 100% of the data so that it effectively shuffles all of the
data.
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Now, the  technique takes a number of splits, say five, and produces the
indexes of the original dataset for those splits:

We're going to get an 80%/20% split for training and testing. This 20% testing will differ
with each split. It's an iterator, hence, we can use a  loop to look at all the different
splits. We will print the testing positions to see that they don't overlap for each split:

Here's the first split:
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Here's the second split:

Here's the third:
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Here's the fourth:

And finally, the fifth:

It is now obvious that they don't overlap.
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We then define a function that receives these indexes for the different splits and does the
bag of words, builds a neural net, trains it, and evaluates it. We then return the score for
that split. We begin by taking the positions for the train and test sets and extract the
comments:

We then proceed to build our Tokenizer. At this point, we can mention the number of
words we want it to support in the Tokenizer. A general research led us to the conclusion
that using 2,000 words was better than a 1000 words. For the random forest, using a 1,000
words is better and is supported by doing the GridSearch for all the different parameters.
There's no particular reason to believe that because the bag of words works best with a
1,000 words in comparison to the random forest, that it is what is necessarily best for the 
neural network as well. So, we're going to use 2,000 words in this case. This is just a
constructor. Nothing has really happened with the bag of words yet. The next thing we
need to do is learn what the words are and that's going to happen by using the

 method.
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Now,  should only be used on the training set. We only want to learn the
words in the training set. This helps us simulate the real world where you've only trained
your model on a certain set of data and then the real world presents possibly something
new that you've never seen before. To do this, we have a training testing split. We only
want to learn the words on the training set. If there are words in the testing set that we've
never seen before in the training set, they'll be ignored. This is good because that's how it's
going to work in the real world.

We'll learn the words on the training set but then transform both the training and the
testing comments into the bag of words model. The is used for the
same. It produces a matrix which can be fed directly into the neural network. We give it the

, which are the comments, and the . Then, we can then
decide if we want  scores, binary scores, or frequency counts. We're going to go with

 in this case.  is a number between 0 and any random integer, possibly a large
number, and in most cases it's not a good idea to give a neuron in a neural network very
large numbers or very small numbers, meaning negative numbers. Here, we want to kind
of scale these numbers between maybe 0 and 1, and -1 and 1. To scale between 0 and 1, we
can divide by the max. So, we have to look at all the training examples, all the training
numbers for TF-IDF, and divide each number by the maximum among those. We have to
do the same for the test. Now, the train inputs and test inputs are  scores that have
been rescaled to 0 to 1.

We also shift it between -1 and 1 by subtracting the average from each score. Now, for the
outputs, even though we could use binary, we're going to use categorical in this case for no
particular reason, except just to show it. We're going to take all of the desired outputs, the
classes, which is spam, not spam, and turn them into 1, 0 and 0, 1 encodings.

Now, we can build our network. We're going to build the network all over again for each
train/test split so it starts randomly. We're going to build a sequential network, which is a
typical feed-forward network. We're going to have a first layer of 512 neurons. They're
going to receive 2,000 different inputs. There's 2,000 because that's the size of the bag of
words.

We then use a ReLU activation. We could also use Tanh. ReLU is common in neural
networks today. It's pretty fast as well as accurate. There's a 512 layer and then a 2 layer.
The 2 is very specific because that's the output. We have one-hot encoding, so it's 1, 0, 0, 1,
so that's two neurons. It has to match the number of outputs we have. Each of the two has
links to 512 neurons from before. That's a lot of edges connecting the first layer to the
second layer.
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To prevent overfitting, we add a dropout. A 50% dropout means that every time it goes to
update the weights, it just refuses to update half of them, a random half. We then find the
weighted sum of their inputs.

We take that sum and run the softmax. Softmax takes these different outputs and turns
them into probabilities so that one of them is highest and they're all between 0 and 1. Then,
we compile the model to compute the loss as . This is
usually something one uses when they use one-hot encoding. Let's use the Adamax
optimizer. There are different optimizers that are available in Keras, and you can look at the
Keras documentation at .

Accuracy is an essential measure to work on while we train the network, and we also want
to compute accuracy at the very end to see how well it's done.

We then run fit on the training set.  is the train inputs,
and  is the matrix bag of words model, train outputs, and the one -hot
encoding. We are going to say that we want 10 epochs, which means it'll go through the
entire training set ten times, and a batch size of 16, which means it will go through 16 rows
and compute the average loss and then update the weight.

After it's been fit, which indirectly means it's been trained, we evaluate the test. It's not until
this point that it actually looks at the test. The scores that come out are going to be the loss
and whatever other metrics we have, which in this case is accuracy. Therefore, we'll just
show the accuracy times 100 to get a percent and we'll return the scores.

Now, let's build that split again, which is the k-fold split with five different folds:
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We collect the scores. For each split, we're going to run our  function and
save the scores. Here, it is running on each split. If you scroll, you will see that you get the
epochs going. We can see that the accuracy on the training input increases per epoch. Now,
if this gets really high, you might start worrying about over-fitting, but after the 10 epochs,
use the testing set which it's never seen before. This helps us obtain the accuracy number
for the testing set. Then, we'll do it all again for the next split and we'll get a different
accuracy. We'll do this a few more times until we have five different numbers, one for each
split.

The average is found as follows: :

Here, we get 95%, which is very close to what we got by using random forest. We didn't use
this neural network example to show that we can get 100%. We used this method to
demonstrate an alternative way to detect spam instead of the random forest method.

Summary
In this chapter, we covered a brief introduction to neural networks, proceeded with feed-
forward neural networks, and looked at a program to identify the genre of a song with
neural networks. Finally, we revised our spam detector from earlier to make it work with
neural networks.

In the next chapter, we'll look at deep learning and learn about convolutional neural
networks.
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Deep Learning

In this chapter, we'll cover some of the basics of deep learning. Deep learning refers to
neural networks with lots of layers. It's kind of a buzzword, but the technology behind it is
real and quite sophisticated.

The term has been rising in popularity along with machine learning and artificial
intelligence, as shown in this Google trend chart:

As stated by some of the inventors of deep learning methods, the primary advantage of
deep learning is that adding more data and more computing power often produces more
accurate results, without the significant effort required for engineering.

In this chapter, we are going to be looking at the following:

Deep learning methods
Identifying handwritten mathematical symbols with CNNs
Revisiting the bird species identifier to use images
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Deep learning methods
Deep learning refers to several methods which may be used in a particular application.
These methods include convolutional layers and pooling. Simpler and faster activation
functions, such as ReLU, return the neuron's weighted sum if it's positive and zero if
negative. Regularization techniques, such as dropout, randomly ignore weights during the
weight update base to prevent overfitting. GPUs are used for faster training with the order
that is 50 times faster. This is because they're optimized for matrix calculations that are used
extensively in neural networks and memory units for applications such as speech
recognition.

Several factors have contributed to deep learning's dramatic growth in the last five years.
Large public datasets, such as ImageNet, that holds millions of labeled images covering a
thousand categories and Mozilla's Common Voice Project, that contain speech samples are
now available. Such datasets have satisfied the basic requirement for deep learning-lot of
training data. GPUs have transitioned to deep learning and clusters while also focusing on
gaming. This helps make large-scale deep learning possible.

Advanced software frameworks that were released open source and are undergoing rapid
improvement are also available to everyone. These include TensorFlow, Keras, Torch, and
Caffe. Deep architectures that achieve state-of-the-art results, such as Inception-v3 are being
used for the ImageNet dataset. This network actually has an approximate of 24 million
parameters, and a large community of researchers and software engineers quickly
translating research prototypes into open source software that anyone can download,
evaluate, and extend.

Convolutions and pooling
This sections takes a closer look at two fundamental deep learning technologies, namely,
convolution and pooling. Throughout this section, we will be using images to understand
these concepts. Nevertheless, what we'll be studying can also be applied to other data, such
as, audio signals. Let's take a look at the following photo and begin by zooming in to
observe the pixels:



Deep Learning Chapter 5

[ 106 ]

Convolutions occur per channel. An input image would generally consist of three channels;
red, green, and blue. The next step would be to separate these three colors. The following
diagram depicts this: 
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A convolution is a kernel. In this image, we apply a 3 x 3 kernel. Every kernel contains a
number of weights. The kernel slides around the image and computes the weighted sum of
the pixels on the kernel, each multiplied by their corresponding kernel weights:

A bias term is also added. A single number, the weighted sum, is produced for each
position that the kernel slides over. The kernel's weights start off with any random value
and change during the training phase. The following diagram shows three examples of
kernels with different weights:
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You can see how the image transforms differently depending on the weights. The rightmost
image highlights the edges, which is often useful for identifying objects. The stride helps us
understand how the kernel slides across the image. The following diagram is an example of
a 1 x 1 stride:
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The kernel moves by one pixel to the right and then down. Throughout this process, the
center of the kernel will hit every pixel of the image whilst overlapping the other kernels. It
is also observed that some pixels are missed by the center of the kernel. The following 
image depicts a 2 x 2 stride:
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In certain cases, it is observed that no overlapping takes place. To prove this, the following
diagram contains a 3 x 3 stride: 

In such cases, no overlap takes place because the kernel is the same size as the stride.
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However, the borders of the image need to be handled differently. To affect this, we can use
padding. This helps avoid extending the kernel across the border. Padding consists of extra
pixels, which are always zero. They don't contribute to the weighted sum. The padding
allows the kernel's weights to cover every region of the image while still letting the kernels
assume the stride is 1. The kernel produces one output for every region it covers. Hence, if
we have a stride that is greater than 1, we'll have fewer outputs than there were original
pixels. In other words, the convolution helped reduce the image's dimensions. The formula
shown here tells us the dimensions of the output of a convolution:

It is a general practice to use square images. Kernels and strides are used for simplicity.
This helps us focus on only one dimension, which will be the same for the width and
height. In the following diagram, a 3 x 3 kernel with a (3, 3) stride is depicted: 
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The preceding calculation gives the result of 85 width and 85 height. The image's width and
height have effectively been reduced by a factor of three from the original 256. Rather than
use a large stride, we shall let the convolution hit every pixel by using a stride of 1. This
will help us attain a more practical result. We also need to make sure that there is sufficient
padding. However, it is beneficial to reduce the image dimensions as we move through the
network. This helps the network train faster as there will be fewer parameters. Fewer
parameters imply a smaller chance of over-fitting.

We often use max or average pooling between convolution dimensionality instead of
varying the stride length. Pooling looks at a region, which, let us assume, is 2 x 2, and keeps
only the largest or average value. The following image depicts a 2 x 2 matrix that depicts
pooling: 

A pooling region always has the same-sized stride as the pool size. This helps avoid
overlapping. 

Pooling doesn't use any weights, which means there is nothing to train.
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Here's a relatively shallow convolutional neural networks (CNNs) representation:

We observe that the input image is subjected to various convolutions and pooling layers
with ReLU activations between them before finally arriving at a traditionally fully
connected network. The fully connected network, though not depicted in the diagram, is
ultimately predicting the class. In this example, as in most CNNs, we will have multiple
convolutions at each layer. Here, we will observe 10, which are depicted as rows. Each of
these 10 convolutions have their own kernels in each column so that different convolutions
can be learned at each resolution. The fully connected layers on the right will determine
which convolutions best identify the car or the truck, and so forth. 

Identifying handwritten mathematical
symbols with CNNs
This sections deals with building a CNN to identify handwritten mathematical symbols.
We're going to use the  dataset. This contains 168,000 images from 369 different
classes where each represents a different symbol. This dataset is a more complex analog
compared to the popular MNIST dataset, which contains handwritten numbers.
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The following diagram depicts the kind of images that are available in this dataset:
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And here, we can see a graph showing how many symbols have different numbers of
images:

It is observed that many symbols have few images and there are a few that have lots of
images. The code to import any image is as follows:
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We begin by importing the  class from the  library. This allows us to show
images inside Jupyter Notebook. Here's one image from the dataset:

This is an image of the alphabet A. Each image is 30 x 30 pixels. This image is in the RGB
format even though it doesn't really need to be RGB. The different channels are
predominately black and white or grayscale. We're going to use these three channels. We
then proceed to import CSV, which allows us to load the dataset:

This CSV file states all the different filenames and the class names. We import the image
class from , which allows us to load the image. We import

, which then allows us to convert the images into  arrays.
Let's us then go through the data file, taking a closer look at every filename and loading it,
while recording which class it belongs to:
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The immediate next step would be to save the images and the classes and use the CSV
reader. We need to set a counter to make sure we skip the first row, which is the header of
the CSV file. Only after this, we proceed to open the image, which is in the first column of
each row. This is converted into an array. The achieved result will have dimensions of 30 x
30 x 3, which is interpreted as 30 width, 30 height, and 3 channels (RGB).

These three channels will have numbers between 0 and 255. These are typical pixel values,
which are not good for a neural network. We need values that lie between 0 and 1 or -1 and
1. To do this, we divide each pixel value by 255. To make things easier, we're going to
collect the filename, the class name, and the image matrix and put them into our images
list. We will also make a note of the name of the class. The following snippet will make us
understand the concept to a greater depth:
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The file is named .  is the name of the class followed by the
array. The array has dimensions 30 x 30 x 3. The innermost and last dimension, is 3. Each
1.0 depicts the color white. We understand this because we divided everything by 255 as
mentioned earlier. 

We have 168,000 images in the  dataset:

We then proceed to shuffle and then split the data on an 80% train, 20% test basis. As seen
in the following codeblock, we first shuffle, then proceed to split the image: 

Because we use these tuples with three different values, we're going to need to ultimately
collect all that into a matrix:

We need to collect the images as well as the labels. To collect the images, we go through
each row and take each third element. This element is the image matrix. We stick it all
together into a  array. The same is done for the train and test datasets.

For the outputs, we need to go and pick out the second value. These are still strings, such
as  and . We need to convert the second value into one-hot encoding before it can be used
for a neural network.
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We proceed to use scikit-learn's preprocessing label encoder and one-hot encoder:

We're going to make a  object and we're going to both fit and transform on
the classes:

The  function learns which classes exist. It learns that there are 369 different class
names. The  function turns them into integers. This is done by sorting the classes
and giving each class an integer ID.  helps to reproduce the list of
classes as integer IDs. The one-hot encoder takes these integers and fits on them; this too
learns how many different integers are represented. Just as  learned about
the class names,  is going to learn that there are 369 different integers.

The code then moves to  which transforms  into integers.
These integers are then transformed into one-hot encoding. The one-hot encoding returns a
369-dimension with the first dimension of 369 values and a vector of 369 values. All values
are zeros except for a single 1. The position of this 1 depends on which class it
is.  undergoes the same process. When the training data for input and output
is ready, we proceed to build a neural network.
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To do this, we are going to use  again:

Sequential is a feed-forward network. Even though there are convolutions that still feed
forward and are not recurrent, there are no cycles. Dense layers are used at the end of the
network. We also use  to try to prevent overfitting. When we switch from
convolutions to dense layers, we need to use the  command, since convolutions are
two-dimensional and dense layers are not. We also need to use  and

.

The following code block is our network design:

This is modeled after MNIST design, which handles handwritten numbers. We start by
making a sequential model. We need to add a convolution layer that has 32 different
convolutions. The kernel size will be 3 x 3 and the activation will be ReLU. Since this is the
first layer, we need to mention the input shape. If you recall, the dimensions were 30 x 30 x
3.

We use the kernel size of 3 x 3 and the stride as 1 as it is the default value. Having the stride
as 1 will require padding. This is going to produce a 30 x 30 x 32 shape because there are 32
convolutions. The 30 x 30 dimensions remain constant. WE now observe that we haven't
really reduced dimensions just by doing this convolution.



Deep Learning Chapter 5

[ 121 ]

 is used to reduce the dimensions by half. This is possible because it has a 2 x 2
pool size. We then follow with another convolution layer, which is another dimensionality
reduction.

After all the convolutions have taken place, we flatten everything. This converts a two-
dimensional representation into a one-dimensional representation. This is then fed into a
dense layer with more than 1,000 neurons.

This dense layer will then have a  activation. This is then fed into another dense layer
of neurons. This time around, there are 369 of them for the class outputs. This is the

 output. We're not going to do any particular activation except for
softmax. So, the original values will be rescaled to be between 0 and 1. This means that the
sum of all the values across the 369 different neurons is 1.0. Softmax basically turns the
output into a probability.

Proceeding to compiling  again helps us predict one of
multiple classes. You would want to do this on the  optimizer and observe it's
accuracy. Here's the model's summary:
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It is observed that the convolution layer doesn't change the dimensions, but the pooling
does. It reduces it by half because of the odd dimension size, that is, 15. The next layer is at
13 output, which also gets reduced by half. The  parameters are used
for learning the convolutions. The  parameters are used for learning the
weights connected to the prior layer. In a similiar fashion, the 
parameters are for the weights for the prior layer. Ultimately, we have about 1.6 million
parameters.

We're going to visualize the performance's accuracy and validation's accuracy with
TensorBoard. We're going to save all the results into a directory called 

 because that's the style of the network we built earlier. The following is a callback:

Keras supports callbacks of various types. The callback is used in the  method, so after
every epoch, it calls the callback. It passes information to the callback, such as the
validation loss and the training loss. We use 10 epochs and a batch size of 32, with a 0.2,
20%, validation split.

Here's the result of the training:
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Now, there are a lot of choices, but ultimately we need to check them. We got about 76%
validation accuracy, and when we test this out on the test set, we get the same 76%
accuracy. Now, there were a lot of decisions in this design, including how many
convolution layers to have and what size they should be, what kernel should be used or
what size of kernel, what kind of stride, what the activation was for the convolutions,
where the max pooling showed up, if it ever did, what the pooling size was, how many
dense layers we have, when do they appear, what is the activation, and so on and so forth.
A lot of decisions. It's quite difficult to know how to choose these different designs. These
are actually called hyperparameters.

The weights that can be learned during the fit procedure are just called parameters, but the
decisions you have to make about how to design the network and the activation functions
and so forth we call hyperparameters, because they can't be learned by the network. In
order to try different parameters, we can just do some loops:

We will time how long it takes to train each of these. We will collect the results, which
would be the accuracy numbers. Then, we will try a convolution 2D, which will have one or
two such layers. We're going to try a dense layer with 128 neurons. We will try a dropout as

, which will be either yes or no, and means
0-25%, 50%, 75%. So, for each of these combinations, we make a model depending on how
many convolutions we're going to have, with convolution layers either one or two. We're
going to add a convolution layer.
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If it's the first layer, we need to put in the input shape, otherwise we'll just add the layer.
Then, after adding the convolution layer, we're going to do the same with max pooling.
Then, we're going to flatten and add a dense layer of whatever size that comes from 

. It will always be ,
though.

If  is used, we're going to add a dropout layer. Calling this dropout means, say it's
50%, that every time it goes to update the weights after each batch, there's a 50% chance for
each weight that it won't be updated, but we put this between the two dense layers to kind
of protect it from overfitting. The last layer will always be the number of classes because it
has to be, and we'll use softmax. It gets compiled in the same way.

Set up a different log directory for TensorBoard so that we can distinguish the different
configurations. Start the timer and run fit. Do the evaluation and get the score, stop the
timer, and print the results. So, here it is running on all of these different configurations:
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0.74 is the actual test set accuracy. So, you can see that there are a lot of different numbers
for accuracy. They go down to low point sevens up to the high point sevens, and the time
differs depending on how many parameters there are in the network. We can visualize
these results because we are using the callback function.

Here's the accuracy and loss, which are from the training set:

And here's the validation accuracy and validation loss:
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Zoom out a bit so that we can see the configurations on the side, and then we can turn them
all off. Turn  back on. This was the first one we tried:

You can see that the accuracy goes up and the loss goes down. That's pretty normal.
Validation accuracy goes up and loss goes down, and it mostly stays consistent. What we
don't want to see is validation loss skyrocketing after a while, even though the accuracy is
going way up. That's pretty much by-definition overfitting. It's learning the training
examples really well, but it's getting much worse on the examples it didn't see. We really
don't want that to happen. So, let's compare a few things. First, we'll compare different
dropouts. Let's go to -  but with different dropouts.

As far as loss goes:

We can see that with a very low dropout, such as 0 or 0.25, the loss is minimized. That's
because if you want to really learn that training set, don't refuse to update weights. Instead,
update all of them all the time. With that same run, by looking at the dark blue line, we can
see that it definitely overfit after just two epochs because the validation loss, the examples it
did not see, started to get much worse. So, that's where the overfitting started. It's pretty
clear that dropout reduces overfitting. Look at the 0.75 dropout. That's where the validation
loss just got better and better, which means lower and lower.
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It doesn't make it the most accurate, though, because we can see that the accuracy is not
necessarily the best for our training set or the validation set:

Actually, about 0.5 seems pretty good for a validation set. Now, let's just make sure it's the
same for other layers. Again, with no dropouts (0.0), we get the lowest training loss but the
highest validation loss. Likewise, we get a 0.75 dropout for the lowest validation loss but
not necessarily the best training.

Now, let's compare how many dense layers they have. We're just going to stick with
dropout 0.5, so we'll use . So, we have one convolution layer, , and a
dropout of 0.50:

So the choice here is, does the dense layer have 128, 256, 512, 1,024, or 2,048? In the previous
graph, we can see that there are some clear cases of overfitting. Pretty much anything that's
not the 128 starts to suffer from overfitting. So, a dense layer of 128 is probably the best
choice. Now, let's compare one convolution layer to two convolution layers:
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Not a big difference, actually. For validation, we get two convolution layers and receive the
lowest loss, which is usually the same as the highest accuracy. This means that we've
narrowed down. This is called model selection, which is all about figuring out what the best
model is, as well as the best hyperparameters. We've narrowed this down to the two-
dimensional convolution, two layers of that, 128 dense in the first dense layer, and 50%
dropout. Given that, let's retrain on all the data so that we have the best trained model we
could possibly have:

We get our two convolution layers, we do our dense 128 dropout 0.5, and in this case we
take all the data we have, the entire dataset trained and tested, and stick it all together.
Now, we can't really evaluate this model because we just lost our testing set, so what we're
going to do instead is use this model to predict other images. Actually, we're going to save
the model after it's fit and we're going to show how to load in a minute. If you're going to
load this in another file, you're also going to want to know what those labels were called
because all we know is the one-hot encoding. From the one-hot encoding, we can get back
the integer number, but still that's not the same as the actual name of the symbol. So, we
have to save the classes from  and we're just going to use a  file to
save that.



Deep Learning Chapter 5

[ 129 ]

Let's train the model:

This could actually be all in a separate file. You can load everything again:

Import  and you can use the  feature. The model file there
actually saves the structure as well as the weights. That's all you need to do to recover the
network. You can print the summary again. For , we need to call the
constructor again and give it the classes that we saved ahead of time.

Now, we can make a function called predict takes an image. We do a little bit of
preprocessing to turn the image into an array, we divide it by 255, and we predict. If you
have a whole set of images, you won't need to do this reshape, but since we just have one,
we can put it in an array that has a single row. We will get the prediction out of this, and
using , we can reverse the prediction to the actual name of the class, the
name of the symbol, and which prediction? Well, it's one-hot encoding, so you can figure
out the position of the highest number. This takes all the neuron outputs, the 369, figures
out what the largest confidence number is, and says that's the one that was predicted.
Therefore, one-hot encoding would tell you this particular symbol, and then we can print it:
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Here's how we can use that function:

We're actually using the training images for this purpose instead of making new ones, but
you get the idea. You take an image that says that's an , and I'm 87% confident about it.
For pi prediction, we're 58% confident and for alpha prediction, we're 88% confident. Next,
we'll look at the bird species example we used previously, and instead of using all of the
attributes that humans created, we're going to use the images themselves.
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Revisiting the bird species identifier to use
images
In this section, we're going to revisit the bird species identifier from before. This time, we're
going to update it to use neural networks and deep learning. Can you recall the birds
dataset? It has 200 different species of birds across 12,000 images. Unlike last time, we won't
be using the human-labeled attributes, and instead we'll use the actual images without any
pre-processing. In our first attempt, we're going to build a custom convolutional neural
network, just like we did for the mathematical symbols classifier.

Let's go to the code. We will start with the typical imports:

We'll make some convenience variables, the rows and columns of the image, the width and
height, and the number of channels, RGB, though every bird image will be equal. Even
though they're not all necessarily the same size, we're going to resize them to this size so
that they're all consistent:
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Now, this project introduces an interesting feature on Keras called an image data
generator:

The data generator can produce new images from the existing training set and these new
images can have various differences; for example, they can be rotated, they can be flipped 
horizontally or vertically, and so forth. Then, we can generate more examples than we
actually started with. This is a great thing to do when you have a small number of training
examples. We have, in our case, about 6,000 training sets. That's relatively small in deep
learning, so we want to be able to generate more; the data generator will just keep
generating them as long as we keep asking for them. For the training images, we want to
also generate versions with the horizontal flip. We don't want to do a vertical flip because I
don't expect any bird images to be upside down. We also want to support rotations of up to
45 degrees, and we want to rescale all the pixel values to divide by 255. Actually,

 just calls the constructor, so nothing's actually happened yet. What
you want to do next is use , so that your images can be organized
into directories or subdirectories.

We have a  directory, and inside that there's going to be a folder for each bird class.
So, there's 200 different folders inside train and inside those folders are the images for that
particular bird. We want all the images to be resized to 256 x 256 and we can indicate that
instead of using binary, we want to use categorical classes, meaning that we will have lots
of different classes (200, in this case). We're going to use the data generator for the test set
too, just because  is a convenient function. We don't want to do any
flips, though, or rotations. We just want to use the testing set as is so we can compare it
with other people. The other really convenient thing about  is that
it's automatically going to produce a  matrix with the image data, and it's also going
to give the class values in one-hot encoding.

So, what was several steps before is now being done all at once.
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Now, I don't really need to do a reset, but since these are technically iterators, if you're
constantly fixing the model and trying to retrain, then you might want to do a reset so that
you get all the same images in the same order. In any event, it's an iterator, so you can call
next, reset, and so forth:

Now, we will build a sequential model, which is going to be a convolutional model. We
have a convolution kernel of 3 x 3, 64 of this. We also have a  and another convolution
built by , which we can do a max pooling with, and just from experimentation, I
discovered that this works relatively well: 3 x 3 followed by 3 x 3, each 64. By having a
pretty dramatic max point of 4 x 4, so we repeat this process and then we flatten. We have a
dropout of 50% just to reduce overfitting, a dense of 400 neurons, another dropout, and
then 200 for the output because there are 200 different classes, and because it's categorical
one-hot encoding, we want to use softmax so that only one of those 200 has the highest
value. We also want to ensure that they all add up to 1.0.
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Here's the summary of the model. Ultimately, we have about 5 million parameters:

The different variations I did that had far more parameters, such as, say, 100 million
performed worse because there were just too many parameters. There's either too many
parameters, meaning it's really hard to train it to learn anything because obviously all the
parameters start random, so it's really hard to make those parameters trend toward the
right values, or there are so few that it's not going to learn anything either. There's kind of a
balance that you have to find, and 5 million, I think, is somewhere near that balance.
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Now, if you use a generator, you don't have all the data for the training prepared ahead of
time; it's going to produce those images as it goes:

That makes it actually quite memory-efficient. You don't have to load the whole dataset
ahead of time. It'll just make it as needed, but you have to call  instead of
just using fit. What you give instead of the train input and train output is the generator. The
generator knows how to produce the image matrices and it knows how to produce one-hot
encoding. So, again, that's extremely convenient when you have images. There's other
kinds of generators, too. Look at the Keras documentation for these.

 shows how many images to produce per epoch, or how many batches
to produce. The generator, by default, produces batches of 32 images. Regarding the
number of epochs, and if you want to do some statistics on TensorBoard, you can set up a
callback and verbose 2 so that we can see some output here.

There are 10 epochs:
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We can see that the training accuracy is on the images that is training on. It's not very
accurate for what the accuracy is going to be on the test set, so we do this separately. The
test images are also in a generator. You don't just evaluate you use 
and you say, how many images do you want to evaluate? We'll just do 1,000, and we'll get 22%
accuracy.

That's not so bad. Random guessing would yield 0.5%, so 22% is pretty good, and that's just
from a handcrafted model starting from scratch that had to learn everything from those
bird images. The reason I'm saying things like this is because the next thing we're going to
do is extend a pre-trained model to get a good boost in accuracy.

This model was built by hand, but it would be even better to extend something such
as , which is shown here:

It's quite deep; it has a lot of convolutional layers and, like most CNNs, it ends with a fully-
connected layer or perhaps multiple fully connected layers. The  model was
designed for ImageNet. Well, it's the dataset, and there's competitions associated with it
where there are millions of images and 1,000 different classes, such as insects, houses, cars,
and so on. The  model is state-of-the-art, or it was at one point. It was
ImageNet's competition to combat other databases. We're going to use most of this network
all the way up until the fully-connected layers. We don't want the final fully-connected or
dense layers because those are designed for ImageNet. Specifically, there are 1,000 outputs
and that's not good for us. We don't need to recognize the ImageNet images. We do need to
recognize our bird images however, and there's only 200 different classes.
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So, we just chop off the front of that and replace it with our own fully-connected layer, or
multiple layers. We're going to use all the convolutions that it learned, and all of the kernels
that it learned based on those ImageNet images. Let's go to the code. To do this, import

 from Keras's applications. There's other models that you can choose from
that Keras has available as well:

We're going to use the data generator just like we did previously.

This is where it starts to become different:

First, load the  model using the ImageNet weights. 
means to drop off the dense fully connected layers at the top. That's what they call the top.
That's where it finally produces 1,000 different outputs. We don't want that. We want just
the convolutions. This would be called the . Call , which is the output of the
base model, add a , which means that it's computing the average
across the whole convolution, and then put in some dense layers, with 1,024 dense neurons
and another layer of 200. Of course, the 200 is because we have 200 different bird species,
and the 1,024 is just to learn how the convolutions can match the bird species and then
produce a model with those layers. The input of the model is the input of 
and the output is .

At this point, you can call regular model functions such as compile, but before we compile,
we want to mark all of the base model layers and all of the convolutions as not trainable.



Deep Learning Chapter 5

[ 138 ]

We're going to perform two steps here. When we attached our new two dense layers, the
1,024 dense and the 200 dense, those have random weights, so they're pretty much useless
so far. The convolutions have been learned on ImageNet, so they're good. We don't want to
change the convolutions below all those kernels by training on our bird images until we get
that new pair of dense layers in the right order. So, we're first going to mark those layers
from the inception model as not trainable; just keep those numbers as they are we're only
going to train our two new layers:

That happens next on the fit generator, just like before.

We will do 100 epochs to start off:
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And we'll do an evaluation:

So, now, we're up to 44% accuracy. So just by using the inception v3 weights and structure
or ImageNet but replacing the top two layers with our own fully-connected network, we
get a 20% boost from what we had with our own custom convolutional neural network. But
we can do even better.

We can use what we just got so that the model has now trained the top two layers and
marked everything as trainable:

So, now that the top two layers are kind of massaged into a form that is reasonable, with
44% accuracy, we're going to let the entire network update all of our bird images. We're
going to do it very slowly using stochastic gradient descent with a very slow learning rate
and a high momentum. Going through 100 epochs, we now have 64%:
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So, we basically did a 20% boost each time. With the custom CNN, we got 22% accuracy
just by starting from scratch. Now, of course, this is not as big of a network as the inception
model, but it kind of shows what happens if you just start from scratch. Then, we started
with inception, all the kernels, but then added our own random 2 layers on top, with
random weights, trained those weights but did not change the kernels, and we got 44%
accuracy. Finally, we went through and updated all the weights, kernels, and the top layer,
and we got 64% accuracy.

So, this is far far better than what random guessing would be, which is 0.5%, and it's been
an increasing gain in accuracy each time we've improved the model. You can save the
result and then you can load it into a separate file, perhaps by loading the model:

You also want to know what the class names are if you want to print the name of the bird to
the user:
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In this case, we can just list the subdirectories in a sorted form because that's going to match
the one -hot encoding, and we can define a function called  where you give it a
filename with an image in it and it loads that image. Make sure it resizes it and converts it
into an array, divides it by 255, and then runs the predictor. All this was done for us before
with the image generator:

But now, because we're doing this one at a time, we're just going to do it by hand instead.
Run the prediction, find out what the best score was, the position, and retrieve the class
name and then print it, plus the confidence. There's a couple of examples of just birds that I
found on the internet:

I can't guarantee that these were not part of the training set, but who knows. In the case of
the hummingbird, they got it right. The house wren was also predicted correctly. However,
the goose was not predicted correctly. This is an example of letting the user type in
filenames. So if you have your own images that are relatively close to photography type
images, you should consider using a pre-trained model like  to get a major
gain in accuracy.
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Summary
In this chapter, we discussed deep learning and CNNs. We practiced with convolutional
neural networks and deep learning with two projects. First, we built a system that can read
handwritten mathematical symbols and then revisited the bird species identifier form and
changed the implementation to use a deep convolutional neural network that is
significantly more accurate. This concludes the Python AI projects for beginners.
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